## SOME GROUP PROPERTIES ASSOCIATED WITH TWO-VARIABLE WORDS

## MAURIZIO MERIANO

## Abstract

Let w(x, y) be a word in two variables and  $\mathcal{W}$  the variety determined by w. In this thesis, which includes a work made in collaboration with C. Nicotera [5], we raise the following question: if for every pair of elements a, b in a group G there exists  $g \in G$  such that  $w(a^g, b) = 1$ , under what conditions does the group G belong to  $\mathcal{W}$ ?

We introduce for every  $g \in G$  the sets

$$W_L^w(g) = \{ a \in G \mid w(g, a) = 1 \}$$

and

$$W_R^w(g) = \{ a \in G \mid w(a, g) = 1 \},$$

where the letters L and R stand for left and right. In [2], M. Herzog, P. Longobardi and M. Maj observed that if a group G belongs to the class  $\mathcal{Y}$  of all groups which cannot be covered by conjugates of any proper subgroup, then G is abelian if for every  $a, b \in G$  there exists  $g \in G$  for which  $[a^g, b] = 1$ . Hence when G is a  $\mathcal{Y}$ -group and w is the commutator word [x, y], the set  $W_L^w(g) = W_R^w(g)$  is the centralizer of g in G, and the answer to the problem is affirmative. If G belongs to the class  $\mathcal{Y}$ , we show that, more generally, the problem has a positive answer whenever each subset  $W_L^w(g)$  is a subgroup of G, or equivalently, if each subset  $W_R^w(g)$  is a subgroup of G. The sets  $W_L^w(g)$  and  $W_R^w(g)$  can be called the centralizer-like subsets associated with the word w. They need not be subgroups in general: we examine some sufficient conditions on the group G ensuring that the sets  $W_L^w(g)$  and  $W_R^w(g)$  are subgroups of G for all g in G. We denote by  $\mathcal{W}_L^w$  and  $\mathcal{W}_R^w$  respectively the class of all groups G for which the set  $W_L^w(g)$  is a subgroup of G for every  $g \in G$  and the class of all groups G for which each subset  $W_R^w(g)$  is a subgroup.

In particular, we consider the n-Engel word

$$w(x,y) = [x,_n y],$$

with  $n \geq 2$ . We say that a group G is in the class  $\mathscr{C}_n$  if for every pair of elements  $a, b \in G$  there exists  $g \in G$  such that  $[a^g, b] = 1$ . L.-C. Kappe and P.M. Ratchford proved [3] that if G is a metabelian group, then the centralizer-like subsets associated with the second variable of w are all subgroups of G. From this property it follows that every metabelian  $\mathscr{C}_n$ -group is n-Engel. If n = 2, then we extend this result to the class of all solvable groups, while if n > 2 we prove that any finitely generated solvable  $\mathscr{C}_n$ -group is m-Engel, for some non-negative integer m.

In Chapter 3 of the thesis, we consider the centralizer-like subsets associated with some commutator words in two variables. First we focus on two-variable words of the form

$$w(x,y) = C_n[y,x],$$

where  $C_n$  is a left-normed commutator of weight  $n \geq 3$  with entries from the set  $\{x, y, x^{-1}, y^{-1}\}$ . N.D. Gupta [1] considered a number of group laws of the form

$$C_n = [x, y],$$

observing that any finite or solvable group satisfying such a law is abelian. The question arises whether each group satisfying a law of the form  $C_n = [x, y]$  is abelian. L.-C. Kappe and M.J. Tomkinson [4] solved the problem in the case n = 3, by showing that the variety of groups satisfying one of the laws of the form  $C_3 = [x, y]$  is the variety of the abelian groups. In [6], P. Moravec extended the result to the case n = 4.

We show that every locally nilpotent group belongs to the classes  $\mathcal{W}_L^w$  and  $\mathcal{W}_R^w$  associated with the word w. Moreover, if w(x,y) is one of the  $2^{n-1}$  words of the form

$$[y, x^{\alpha_1}, x^{\alpha_2}, \dots, x^{\alpha_{n-1}}][y, x]$$

or one of the  $2^{n-1}$  words of the form

$$[x^{\alpha_1}, y, x^{\alpha_2}, \dots, x^{\alpha_{n-1}}][y, x],$$

where  $\alpha_i \in \{-1, 1\}$  for every i = 1, ..., n - 1, then any metabelian group belongs to the class  $\mathcal{W}_L^w$ . In metabelian groups a symmetry of the centralizer-like subsets associated with the words of the form  $w(x, y) = C_n[y, x]$  holds: if

$$w(x,y) = [r_1, r_2, r_3, \dots, r_n][y, x],$$

with  $r_i \in \{x, y, x^{-1}, y^{-1}\}$  for every i = 1, ..., n, then for every element g in a metabelian group G we have

$$W_R^w(g) = W_L^{\overline{w}}(g)$$

and

$$W_L^w(g) = W_R^{\overline{w}}(g),$$

where  $\overline{w}(y,x) = [r_2, r_1, r_3, \dots, r_n][x, y].$ 

In Section 3.2.1 we more specifically investigate the word w when n = 3. If G is a metabelian group, for the case n = 3 we observe that G belongs to the class  $\mathcal{W}_L^w$  for exactly eleven of the words w, by exhibiting counterexamples for the remaining words.

We conclude Chapter 3 investigating the words of the form

$$w(x,y) = (xy)^n y^{-n} x^{-n},$$

for some integer n. They are also called the n-commutator words. We prove that  $\mathcal{W}_L^w = \mathcal{W}_R^w$ , and if the centralizer-like subsets  $W_L^w(g)$  and  $W_R^w(g)$  are both subgroups of G, then we also have  $W_L^w(g) = W_R^w(g)$ .

R. Baer introduced the *n*-center Z(G, n) of a group G: it is defined as the set of all elements  $g \in G$  which *n*-commute with every element  $h \in G$ , i.e.

$$(gh)^n = g^n h^n$$
 and  $(hg)^n = h^n g^n$ .

For every element g in a group G we define the n-centralizer  $C_G(g, n)$  of g in G as the set of all elements of G which n-commute with g, namely, with our notation,

$$C_G(g,n) = W_L^w(g) \cap W_R^w(g)$$

when w is the n-commutator word. The n-centralizer  $C_G(g, n)$  is not necessarily a subgroup, even if the group is metabelian. However, we prove that if a group G is 2-Engel, then  $C_G(g, n) = W_L^w(g) = W_R^w(g)$  is a subgroup of G for every  $g \in G$ .

## REFERENCES

- [1] N.D. GUPTA, Some group-law equivalent to the commutative law. Arch. Math., 17 (1966), 97-102.
- [2] M. HERZOG, P. LONGOBARDI, M. MAJ, On a commuting graph on conjugacy classes of groups. Communications in Algebra, 37:10 (2009), 3369-3387.
- [3] L.-C. KAPPE, P.M. RATCHFORD, On centralizer-like subgroups associated with the n-Engel word. Algebra Colloq. 6 (1999), 1-8.
- [4] L.-C. KAPPE, M.J. TOMKINSON, Some conditions implying that a group is abelian. Algebra Colloquium, 3 (1996), 199-212.
- [5] M. MERIANO, C. NICOTERA, On groups with a property of two-variable laws. Submitted (2013).
- [6] P. MORAVEC, Some commutator group laws equivalent to the commutative law, Communications in Algebra, 30(2) (2002), 671-691.