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1 Introduction

This thesis deals with economic models in the presenceextternalities. Fol-
lowing La! ont (1988), we provide below the debnition of externality.

An externality is any Oindirect &ectO that a consumption or a production
activity has on individual preferences and on consumption or production
possibilities.

Olndirect ¢ ectO means that theleect is created by an economic agent!dérent
from the one who is &ected, and the éect is not produced through the price
system. In this case the price system only plays the role of matching demand
and supply.® The debnition above shows that the presence of externalities
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3 On the other hand, the external € ects that directly pass through the price system

are called pecuniary externalities.
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requires a new description of agentsO characteristics (individual preferences,
consumption sets and production technologies).

The thesis consists of three chapters. Chapter 1 deals with the existence of
competitive equilibria in a general production economy with externalities. In
Chapter 2, we provide some regularity results in production economies with
externalities. In Chapter 3 we study some testable restrictions in a specibc
model with externalities and public goods. One Pnds below an introduction
of the three chapters.
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1.1 Chapter 1 B OExistence of Equilibria in a General Equilibrium model with
Production and Externalities: A Dil erentiable ApproachO

In Chapter 1, we consider a general model of production economy with con-
sumption and production externalities. In a di erentiable framework, our pur-
pose is to prove the non-emptiness and the compactness of the set of compe-
titive equilibria with consumptions and prices strictly positive.

Why do we care about the existence of equilibria from a lderentiable view-
point? The starting point of studying the set ofregular economies is the non-
empty and compact set of equilibria in a dierentiable setting. The relevance of
regular economies and issues related to the global approach of the equilibrium
analysis are discussed in the following subsection.



Our model of externalities is based on the seminal works by Lant and
Laroque (1972), Laont (1977,1978,1988), where individual consumption sets,
individual preferences and production technologies depend on the choices of
all households and Prms. We provide below some economic examples of this
dependency.

¥ (Externalities on preferences).  Building of a mall in a residential area
is an example of positive (or negative) externalities created by a Prm on the
preferences of people living in that area.

¥ (Externalities on consumption sets). As in general equilibrium mo-
dels a la ArrowbDebreu, each individual has to choose a consumption in
his consumption set which describes the set of all consumption alternatives
which are a priori possible for the individual. In the following examples,
externalities d ect individual consumption sets and do not directly bect
preferencesi) In the case of internet or electricity, the congestion due to the
global consumption limits the physically possible individual consumption,
il ) an increase in the production of transport services decreases the minimal
threshold of consumption of fuel, i{i ) an increase of polluting production
makes worse the individual health, and consequently it increases the survival
threshold of consumption of medicines.

¥ (Externalities on production technologies). In counterpart, externali-
ties may be created by consumers on bPrms. For instance, an over consump-
tion of air-conditioner and consequently of electricity, might produce an
electrical breakdown, decreasing all the production activities. Finally, ex-
ternalities may be created by Prms on bPrms. For exampl@) the polluting
production of a brm that damages the land used by an agricultural Prm
might cause a reduction of the production of the agricultural brm(ii) a
Prm that extracts oil from a land can &ect another brm that extracts
oil from a nearby land whenever the oil comes from an joint underground
reservoir.

In Chapter 1, we consider a private ownership economy with a Pnite num-
ber of commodities, households and Prms. Each brm is characterized by a
technology described by an inequality on a Herentiable function called the
transformation function.# Each household is characterized by a consumption
set, preferences and an initial endowment of commodities. Each consumption
set is described by an inequality on a terentiable function called thepossibi-

lity function. The same idea is used in recent works on restricted participation
in Pnancial markets where portfolio sets are described by linear ot dren-

4 For production technologies described by transformation functions, see for in-
stance Mas-Colell et al. (1995).



tiable functions.® Individual preferences are represented by a utility function.
Firms are owned by households. Utility, possibility and transformation func-
tions depend on the consumption of all households and on the production
activity of all brms.

Facing a price system, each brm chooses in his production set a production
plan which solves his probt maximization problem taking as given the choices
of the others, i.e. given the level of externality created by the other bPrms
and households. Each household chooses in his consumption set a consump-
tion bundle which solves his utility maximization problem under the budget
constraint taking as given the choices of the others, i.e. given the level of ex-
ternality created by the other households and Prms. The associated concept of
equilibrium is nothing else than an equilibriumra la Nash, the resulting allo-
cation being feasible with the initial resources of agents. This notion includes
as a particular case the classical equilibrium debnition without externalities
at all.

The main result of Chapter 1 is Theorem 12 which states that for all initial
endowments which satisfy appropriate survival conditions, the set of compet-
itive equilibria with consumptions and prices strictly positive is non-empty
and compact.

Following the seminal work by Smale (1974), and more recent works by Vil-
lanacci and Zenginobuz (2005) and Bonnisseau and del Mercato (2010), we
prove Theorem 12 using SmaleOs extended approach and homotopy argu-
ments.® The homotopy idea is that any economy with externalities is con-
nected by an arc to some economy without externalities at all. Along this arc,
equilibria move in a continuous way without sliding b the boundary.

SmaleOs extended approach dis from the one based on the aggregate excess
demand function by the feature that equilibria are described in terms of prst
order conditions and market clearing conditions. In the presence of external-
ities, this approach overcomes the following ‘diculty: the individual demand
functions depend on the individual demand functions of the others, which de-
pend on the individual demand functions of the others, and so on. So, it would
be impossible to debPne an aggregate excess demand function which depends
only on prices and initial endowments.

We now compare our contribution with previous works. Villanacci and Zengi-
nobuz (2005) focus on a specibc kind of externalities, namely pubic goods.
Bonnisseau and del Mercato (2010) consider a pure exchange economy where

5 See for instance, Siconolb (1986,1988), Balasko, Cass and Siconolp (1990), Pole-
marchakis and Siconolb (1997), Cass, Siconolp and Villanacci (2001), Carosi and
Villanacci (2005), Aouani and Cornet (2009).

6 The reader can Pnd a survey of this approach in Villanacci et al. (2002).



only consumption externalities are studied. So, Chapter 1 extends the latter
one to the case of externalities in a production economy.

In Kung (2008) and Mandel (2008), each consumption set coincides with the
positive orthant of the commodity space. So, concerning the consumption side,
our result is more general since it also allows externalities on general consump-
tion sets. Furthermore, in Kung (2008) bPrms produce private and public goods
but there are no private externalities on the production side. Concerning the
existence proof, dierently from our contribution, Mandel (2008) uses an ap-
proach based on the aggregate excess demand and Breuwer degree But,

in order to use aggregate excess demandOs approach the author hesléoge
the commodity space treating externalities as additional variables. Further-
more, following Chapter 4 of Milnor (1965), our proof is based on the theory
of degree modulo 2The degree theory modulo 2 is simpler than the Brouwer
degree that requires the concept of oriented manifold in order to deduce the
existence result from regularity properties and from the Index Theorem.

Finally, the result by Bonnisseau and Medecin (2001) is more general than
ours since in that work individual consumption sets and Prms technologies are
represented by correspondences, and the existence proof is based on bxed point
arguments. Moreover, in Bonnisseau and Medecin (2001) non-convexities are
allowed on the production side. For this reason, their existence result involves
more sophisticated techniques than those we use. Since we are interested in a
model where one can perform comparative static analysis, at the cost of loosing
generality, to describe individual consumption sets and bPrms technologies we
choose to use an inequality on terentiable functions instead of more general
correspondences. Furthermore, in order to use SmaleOs extended approach and
standard Prst order conditions, bxing the externalities we require classical
convexity assumptions to be satisbed. In this mild context, we provide an
existence proof simpler than that of Bonnisseau and Medecin (2001).

1.2 Chapter 2 B OExternalities in Production Economies: Regularity resultsO

In Chapter 2, we consider a production economy with consumption and pro-
duction externalities. Our propose is to provide sucient conditions for the
generic regularity of such economies.

Why do we care about regular economies? We recall that an economyergular

if it has a Pnite set of equilibria and if every equilibrium locally depends in a
continuous or di erentiable manner on the parameters describing the economy.
Therefore, at a regular economy, it is possible to perform comparative static
analysis. The relevance of regular economies and issues related to the global
approach of the equilibrium analysis can be found in Smale (1981), Mas-Colell



(1985), Balasko (1988).
Regular economies are also important for two key aspects listed below.

(1) Pareto improving policies It is well known that several sources of market
failures such as incomplete Pnancial markets, public goods and external-
ities prevent competitive equilibrium allocations to be Pareto optimal.
In recent works, the achievement of Pareto improving policies is based
on the set of regular economies. In flerent settings, see for instance
Geanakoplos and Polemarchakis (1986, 2008), Citanna, Kajii and Vil-
lanacci (1998), Citanna, Polemarchakis and Tirelli (2006), Villanacci and
Zenginobuz (2006, 2010).

(2) Testable restrictions An economic model is testable if it generates re-
strictions that must be satisbed by the observable data. It is well known
that there are two ways to construct testable restrictions. The Onon-
parametricO approach is based on the general revealed preferences axiom
(GARP) or related axioms. On the other hand, the OparametricO ap-
proach is based on dierentiable techniques which give rise to conditions
remindful Slutsky conditions. This approach focuses on thiecal struc-
ture of the equilibrium manifold, that is, on regular economies, see for
instance Chiappori, Ekeland, Kdbler and Polemarchakis (2004).

It is an important and still open issue to study Pareto improving policies in the
presence of externalities. Furthermore, before implementing any public policy
one should verify whether the observed data are consistent with the economic
model. So, Chapter 2 is a brst step to study testable restrictions and Pareto
improving policies in production economies with externalities.

As in Chapter 1, we consider a private ownership economy with consumption
and production externalities. But, we restrict our attention to the case in which

all the consumption sets coincide with the positive orthant of the commodity
space. So, concerning the consumption side the model discussed in Chapter 2
is less general than the one considered in Chapter 1.

Now we describe our contributions. We provide an example of a production
economy with externalities and an inPnite set of equilibria for all the initial
endowments. The example shows that regularly fails because of thest order
external € ect on transformation functions. So, in order to avoid situations
such as the one shown by the example, we consider a displacement of the
boundary of the production sets, that is,simple perturbationsof the trans-
formation functions. But, as shown by Bonnisseau and del Mercato (2010) in
the case of only consumption externalities, regularity may fail whenever the
second-order external leects are too strong. So, the basic assumptions and the
perturbations mentioned above may be not dficient to control the second-
order external dfects thereby preventing the regularity result. Thus, we also



introduce two additional assumptions on the second-order external ects.

Our main result is Theorem14 which states that almost aferturbed economies

are regular, where the termalmost all means in a open and full measuré.

As a consequence of Theorem 14, we get Corollary 19 which states the non-
emptiness and the openness of the set of regular economies in the space of
endowments and transformation functions.

Finally, we compare our contribution with previous contributions. As in Chap-

ter 1, we follow SmaleOs extended approach. Concerning recent works on public
goods and externalities, Villanacci and Zenginobuz (2005), Kung (2008) and
Bonnisseau and del Mercato (2010) also use SmaleOs extended approach. Vil-
lanacci and Zenginobuz (2005) focus on a specibc kind of externalities, namely
public goods. In Kung (2008), dierently from our model, there are no exter-
nalities on the production side. Furthermore, in order to get a regularity result,
the author does not make any additional assumptions on utility functions, but
perturbations of utility functions are also needed. In Bonnisseau and del Mer-
cato (2010), only consumption externalities are considered. So, our regularity
result extends the latter one to the case of production economy.

The model in Mandel (2008) is more general than ours since the author allows
for non-convexity on the production side. But, as stressed in Chapter 1, dir-
ently from our contribution, the author has to enlarge the commodity space
treating externalities as additional variables. Moreover, the author assumes
that a small change in the externalities created by all the agents on a agent
does not generate changes in the choices of the latter agent which would in turn
involve the exact same change on the behavior of the others, see Assumption
TR2 in Mandel (2008). But, di! erently from our assumptions, Assumption
TR2 involves endogenous variables, more precisely the derivatives of house-
holds® demands and brmsO supplies. So, this assumption implicitly involves the
Lagrange multipliers, that is the equilibrium prices.

1.3 Chapter 3 b OTestable restrictions in a specibPc model with externalities
and public goods: The collective consumption modelO

As we emphasized in the previous subsection, it is important to study testable
restrictions in general equilibrium models in the presence of externalities.
Testable restrictions on the classical general equilibrium model have been

widely studied in literature, see for example the seminal paper of Brown and
Matzkin (1996), and Chiappori, Ekeland, Kubler and Polemarchakis (2004).

7 See Smale (1981).



The brst testable restrictions in a model that involves externalities and public
goods are provided by Browning and Chiappori (1998) for eollective con-
sumption model More precisely, the authors consider a non-unitary household
model in which the decisions taken by the two intra-household members are
Pareto € cient. In the last decades, the collective consumption model for the
analysis of household decisions has become increasingly popular. The reasons
for this interest stand in that individuals within a household are heteroge-
neous (i.e. they have dierent preferences) and an intra-household decision
process takes place within a household. The standanditary model considers

a household as a single decision maker who maximizes his preferences sub-
ject to his budget constraint. But, there exists empirical evidence showing
that the unitary model does not hold for household decisions. So, the uni-
tary model is obviously too restrictive, since it implicitly endows households,
rather than individuals, with preferences over consumption goods. In particu-
lar, the well-known properties of the classical demand function and especially
the symmetry of the Slutsky matrix are often rejectect

In Browning and Chiappori (1998), one does not observe what goods are pri-
vately consumed and what goods are publicly consumed within the household.
The authors assume that only prices and aggregate demand with respect to
some power distribution between the two intra-household members are ob-
served. Using a OparametricO approach based dredéntiable techniques, the
authors prove that the aggregate demand is compatible with the Pareto op-
timal decision behavior if it satisbes some restrictions on a OPseudo-SlutskyO
matrix. The OPseudo-SlutskyO matrix is the sum of the classical Slutsky ma-
trix which measures the change in demand induced by the variation of prices
and income, and another matrix which measures the change in demand in-
duced by the variation of power distribution. Furthermore, the authors show
that a collective model with two intra-household members can be rejected if
at least bve goods are present in the economy.

Successively, Chiappori and Ekeland (2006) generalize the previous model con-
sidering a group with many individuals and production, and provide necessary
and su cient restrictions in terms of OPseudo-SlutskyO matrix. Importantly,
using the OparametricO approach, the authors show thise private and
public nature of consumption is not testable . More precisely, the au-
thors show that the collective consumption model has exactly the same testa-
bility implications as two more specibc collective models, i.e. a brst benchmark
case where all goods are publicly consumed within the household and a sec-
ond benchmark case, without externalities at all, where all goods are privately
consumed within the household.

8 See for example, Browning and Meghir (1991) and Browning and Chiappori
(1998).



Di! erently from Browning and Chiappori (1998), Cherchye, De Rock, Ver-
meulen (2007) provide a Onon-parametricO characterization of the collective
consumption model. The Onon-parametricO approach in the tradition of Afriat
(1967) and Varian (1982) contributions. This approach does not rely on any
functional specibcation regarding the group consumption process, and it typ-
ically focuses on revealed preference axioms (i.e. GARP or related axioms).
In Cherchye, De Rock, Vermeulen (2007), assuming positive externalities the
authors derive necessary and Swient conditions for a rationalization of a
data set consistent with the collective consumption model. Furthermore, the
authors show that it is sU' cient to have a data set with three observations and
three goods to reject collective rationality for a household with two members.

In Chapter 3, using the Onon-parametricO restrictions found by Cherchye, De
Rock, Vermeulen (2007), we provide examples showing th&e private and
public nature of consumption have testable implications

So, in contrast with the previous literature, we bnd that the Onon-parametricO

approach does imply testability of privateness versus publicness of consump-
tion, even if one only observes the aggregate group consumption. Furthermore,
we obtain that the case where all the goods are publicly consumed within the

household is independent from the case where all the goods are privately
consumed within the household. More precisely, a data set that satisbes the
restrictions for the Prst case does not necessarily satisfy the restrictions for
the second case, and vice versa.

How can we interpret this dl erence between the testability conclusions of
our approach and the ones of the OparametricO approach? Our explanation is
that, unlike Chiappori and EkelandOs approach, our Onon-parametricO restric-
tions involve personalized prices a la Lindahl and personalized consumptions,
although we do not require personalized prices and personalized consump-
tions to be observable. Under this view, the nature of the Onon-parametricO
approach seems to imply stronger testability restrictions.
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Chapter 1
ND

Existence of equilibria in a general
equilibrium model with production and
externalities: A di ! erentiable approach *

Vincenzo Platino 2
DISES, Universita degli Studi di Salerno, Italy

Key words: externalities, production economies, competitive equilibrium, SmaleOs
extended approach, homotopy approach.

1 Long abstract

We consider a general model of a private ownership economy with consumption
and production externalities. Each brm is characterized by a technology de-
scribed by an inequality on a di erentiable function called thetransformation
function. Each household is characterized by a consumption set, preferences
and an initial endowment of commodities. Each consumption set is described
by an inequality on a di erentiable function called thepossibility function.
Individual preferences are represented by a utility function. Firms are owned
by households. Utility, possibility and transformation functions depend on the
consumption of all households and on the production activities of all Prms.

Using SmaleOs extended approach and homotopy arguments, undegrentia-
bility and boundary conditions, we prove the non-emptiness and the compact-
ness of the set of competitive equilibria with consumptions and prices strictly
positive.

1 This chapter is based on del Mercato and Platino (2010).

2 Dipartimento di Scienze Economiche e Statistiche (DISES), Universita degli
Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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The homotopy idea is that any economy with externalities is connected by
an arc to some economy without externalities at all. Along this arc, equilibria
move in a continuous way without sliding b the boundary. SmaleOs extended
approach di ers from the one based on the aggregate excess demand function
by the feature that equilibria are described in terms of pPrst order conditions
and market clearing conditions. In the presence of externalities, this approach
overcomes the following di culty: the individual demand functions depend on
the individual demand functions of the others, which depend on the individual
demand functions of the others, and so on. So, it would be impossible to debPne
an aggregate excess demand function which depends only on prices and initial
endowments.

Chapter 1 is organized as follows. In Section 2, we present the model and the
assumptions. In Section 3, the concept of competitive equilibrium is adapted
to our economy. Then, we focus on the equilibrium function which is built on
prst order conditions associated with households and and Prms maximization
problems. In Section 4, we present our main result, Theorem 12.

In Appendix A we provide some technical details. In Appendix B, the reader
can bnd the characterization of Pareto optimal allocation without externali-
ties.

2 The model and the assumptions

There is a Pnite numberC of physical commodities or goods labeled by
the superscriptc ! C := {1,...,C}. The commodity space isR®. There
is a Pnite numberH of households or consumers labeled by the subscript
h! # := {1,...,H}. Each householdh is characterized by an endowment
of commodities, a possibility function and preferences described by a util-
ity function. There is a Pnite numberJ of brms labeled by the subscript
j ! J:={1...,3}. Each brmj is owned by the households and it is char-
acterized by a technology described by a transformation function. Individual
utility, possibility and transformation functions are a ected by the consump-
tion choices of all households and the production activities of all brms which
represent theexternalities created on individual agents (households and Prms)
by all the other agents. The notations are summarized below.

e ¥ = (Y, ...¥5, .., y") is the production plan of brmj. As usual, the output
components are positive and the input components are negativg;; :=
(Y;)z=; denotes the production plan of Prms other than andy := (;)j#J
denotes the production of all the bPrms.

e Xj is the consumption of commodityc by householdh;
Xp = (XE, .., x5, ..,x%) denotes householhOs consumptior;  := ( Xy )= h



denotes the consumption of households other tham and x := (Xn)n H
denotes the consumption of all the households.

¥ For eachj ! J, the technology of brmj is described by an inequality on a
function t; called thetransformation function. This description is usual for
smooth production economies, see for instance Mas-Colell et al. (1995). An
innovation of this chapter comes from the dependency of the production set
with respect to the production activities of other Prms and the consumption
of households. That is, givery-; and x, the production set of the Prmj is
described by the following set,

! .
Yy ;,x) =y b ROy, y,x) " 0

where the transformation functiont; is a function fromR®# R€(U" D # RCH
to R. So,t; describes the way PrnjOs technology is! &cted by the actions
of the other agents.

¥ As in general equilibrium models a la ArrowbDebreu, each househdldhas
to chose a consumption in his consumption s&t;,. Analogously to the pro-
duction side, each consumption seX,, is described in terms of an inequality
on a function! ,,.2 We call ! ;, the possibility function of householdsh. The
main innovation of this chapter comes from the dependency of the consump-
tion set with respect to the consumptions of the other households and the
production activities of bPrms. So, giverx- , and y the consumption set of
householdh is given by

Xn(Xep,Y) = .xh! RS, : !'n(Xn,Xon,y)" O

where the possibility function! 1, is a function from RS, # RSH" D # RC3
to R. Thus, ! , describes the way in which the set of all consumption alter-
natives which area priori possiblefor householdh is a ected by the actions
of the other agents.

¥ Each householch ! H has preferences described by a utility function,
Up : (XnyXen,y) ! RE, # REM" D 4 RO 96 up(xp, X1, y) ! R

unh(Xn, X n,y) is the utility level of householdh associated with &p, X 1, Y).
So, un describes the way householdOs preferences aréexted by the con-
sumption and the production of the other agents.

¥ sy ! [0,1] is the share of Prnj owned by householdh; s, := (Sjh)jia !
[0,1] denotes the vector of the shares of all brms owed by househbld
s:=(sn)nn ! [0,1]". The set of all shares is

#
S:={s! [01P" : &j!J, s,=1}
h! H

3 In same spirit, see Smale (1974), and Bonnisseau and del Mercato (2010).



¥ ¢ is the endowment of commodityc owned by householdh;
en:=(¢€,.. €,.., er?) denotes householthOs endowmene := (e)hi -

¥ E:=((un,!n,&n,Sn)nin, (L) a) is an economy

¥ p° is the price of one unit of commodityc; p := (p, .., 0% ...p%) ! RS, ;
prices of goods are expressed in units of account.

¥ Givenw = (wl, .., w5 ..,w€) ! R®, we denote

w' o= (whws w1 RETE

We make the following assumptions on the transformation functiong; {, ; .
Assumption 1 Forallj! J,

(1) The function t; is a C* function.

(2) For each (y-;,x) ! RCO" D™ REH "t (0,y-;,x) # O.

(3) For each (y-j,x) ! RCU" D™ RCH “the function tj(§y-,x) is di! eren-
tiably strictly decreasing, i.e.

$(y-j,x) ! RO R and Sy R, Dyt (v y+5,%) % O

(4) For each(y-j,x) ! RCU"D" RSH ‘the functiont;(§y-,x) is C? and itis
di! erentiably strictly quasi-concave, i.e. for every; ! RC, D§j t (Y)Y, %)
is negative debnite orkerDy, t; (y;, Y-, X). 4

We remark that, given the externalities, the assumptions ofy are standard

in OsmoothO general equilibrium models. Indeed, from Point 1 of Assumption
1 the production set is closed and from Point 4 of Assumption 1 it is convex.
Point 2 of Assumption 1 states that inactivity is possible. As usual Point

2 of Assumption 1 implies that for any price systenp ! RS, and for any
given externalities, the optimal probt of Prnj is non-negative?® This property
ensures that every consumer has a positive wealth, since the aggregate probt
is non-negative. Consequently the individual budget constraint is non-empty
for any given externality and price system. Point 3 of Assumption 1 represents
the Ofree disposalO property.

4 Let v and v¥ be two vectors in R", v &v” denotes theinner product of v and v*
Let A be a real matrix with m rows and n columns, andB be a real matrix with
n rows andl columns, AB denotes thematrix product of A and B. Without loss of
generality, vectors are treated as row matrices andA denotes both the matrix and
the following linear application A : v! R" & A(v):= AvT I RI™ wherev' denotes
the transpose ofv and RI™ := {w" : w! R™}. When m = 1, A(v) coincides with
the inner product A &v, treating A and v as vectors inR".

5 Indeed, by Point 2 of Assumption 1 the production plan 0 is in the production
set of form| whatever are the externalities.



Debne the setY” of all production plans which are in the production sets
whatever are the externalities, that is
|

Yi= 4t RO (2,9)! REFHRY (4, 11,2)$0, %! I (1)

The following assumption onY can be interpreted as the asymptotic irre-
versibility and Ono free lunchO assumption at the aggregate level.

#
Assumption 2 If y'! CY and 4 $ O, theny =0 for everyj! J.©
j#d

The assumption above ensures that the set of feasible allocation of the economy
E is bounded. Furthermore, Assumption 2 guarantees that the set of feasible
allocation is bounded for any bxed externalities. As a consequence of this
assumption, one gets the boundedness of the set of feasible allocations along
all the arc associated with the homotopy dePned in Subsection 4.2 (see Lemma
16 and Step 21 of Lemma 17). One should notice that Assumption 2 is in the
same spirit as Assumption UB (Uniform Boundedness) of Bonnisseau and
Medecin (2001) and Assumption P3 of Mandel (2008).

We make the following assumptions on the utilities functionsug )nxn -
Assumption 3 Forall ! H,

(1) The function w;, is continuous in its domain and it isC? in the interior
of its domain.

(2) For each (z-n,y) ! RSP P # RCI| the function un(& - p,v) is di! eren-
tiably strictly increasing, i.e.

%(x h,y) ! R Y # R and %y, ! RS, , Dy, un(zh, v n,y) & O

(3) For each(z- n,y) ! REM D# RCY | the function un(& -, y) is C2 and it
is dil erentiably strictly quasi-concave, i.e., for every, ! RS, , DZ un(zn, 2+ n,y)
is negative depbnite orker Dy, un(xn, z- ).

(4) For each (2 p,y) ! RE™ Y # RS and for eachu ! Imun(dz- p,v),

Clre{zn ! RS, tun(zn 2 n,9) $ u} ' RE

So, bxing the externalities, the assumptions om, are standard in OsmoothO
general equilibrium models. In Points 1 and 4 of Assumption 3 we consider
consumption z- , in the closure of RS"" | just to look at the limit of a

behavior (see Steps.2 and 22 of Lemma 17).

We make the following assumptions on the possibility functionsyf)nzn -

6 CY denotes the asymptotic cone ofY .



Assumption 4 Forallh! H,

(1) !4 is continuous in its domain and it isC* in the interior of its domain.

(2) (Convexity of the consumption set) For eaclix, n,y) ! RSH' V" RCI,
the function! (4 x: 1, y) is quasi-concave’

(3) (Survival consition) There existsx, ! RS, such that! y(Xp, X n,y) # 0

for every x, p, ! RSM' Y and for everyy ! R®J.

(4) (Individual desiderability) (a) For each(x; n,y) ! RSM' D" RCI the func-
tion ! ,(dx n,Y) is di! erentiable and for every;, ! RS, , Dy, ! n(Xn, X1 n,Y) $
0; (b) for each (X;n,y) ! REM' Y " RS and for everyx, ! RS, ,
Dy, ! h(Xn, X1 n,Y) Y% RS, .

We remark that, Pxing the externalities, from Points 1 and 2 of Assumption 4,
one gets the usual assumptions on the closedness and on the convexity of the
consumption set. Point 3 of Assumption 4, is called the Osurvival conditionO
since it guarantees that there exists at least a consumption bundle which
belongs to the consumption seX (X n,Y), Whatever are the externalities.
Point 4(a) in Assumption 4 means that the consumption set is OsmoothO while
Point 4(b) implies that householdh can increase the consumption of at least
one commodity remaining in his consumption set. Consequently, according to
Point 2 of Assumption 3 (that is stricly increasing utility functions), Point 4(b)

of Assumption 4 means each household can increase his utility remaining in his
consumption set, from which one classically deduces that the individual budget
constraint is binding. In Assumption 4, we consider consumption bundles y,

in the closure of RS Y, just to look at limit of a behavior (see Proposition

7 which is used in Step 2 of Lemma 17).

T denotes the set ot := (t;);-, satisfying Assumption 1 and Assumption 2,
U denotes the set ofi := (un)ny Satisfying Assumption 3, andX denotes the
set of! :=(!)nn Satisfying Assumption 4.

Remark 5 From now on, we takeu ! U, ! ! X, t! T ands! S as
given. So, an economy is complete characterized by the individual endowments

e=(e)nn-

We debne now the set of endowments which satisfy tisairvival Assumption
for given possibility functions. As it is well known, the Survival Assumption
states that each household can dispose of a strictly positive quantity of every
commodity from his initial endowment still remaining in the interior of his
consumption set.

7 Since! p is C! in the interior of its domain, then for each (x; n,y) ! REH! D

RCY | the function ! n(4 X n,Y) is di! erentiably quasi-concave.



!
Debnition 6 Let! ! X. Debne the sek, := E,
h!' H

" RS where

' C C(H" 1) CJ# C
E! = Xp ! R++ : !h(xh’X“ h!y)# 01 $(X" hiy) ! R+ %R + R++

h

From Point 3 of Assumption 4,E, is nonempty and it is open by debpnition.
From Points 3 and 4@) of Assumption 4, the Survival Assumption is satisped
on the setE, since for alle! E, the following property holds true for every
h! H.8

$(x-n,y) ! RET VR, &%, ! RS, i1 n(%n,x-1n,y) > 0ands,' e (2)

As a direct consequence of Points 1 and 2 of Assumptions 4 and (2) we get the
following proposition. The continuous selection functions given by Proposition

7 will play a fundamental role in the construction of the continuous homotopy
used to show our main result (see Theorem 12). Specibcally, we use Proposition
7 to debne the homotopies given by (16) and (17).

Propositign 7 For all h! H, there exists a continuous selection fgnction
g, - RY™ DRI %E,, (RS, such that for each(x-,y, &) ! RY" P %
RS %E, , ! n(& (X n,Y,&), X n,y) > 0and £,(X- n,y, &) "' en.

3 Competitive equilibrium with externalities

In this section, we Prst provide the notion of competitive equilibrium associa-
ted with our economy. Second, we debne the equilibrium function using the
prst order conditions associated with Prms and households maximization prob-
lems.

Without loss of generality, commodity C is the numeraire good So, given
p' ! R, ! with innocuous abuse of notation, we denotp:= (p',1)! RS, .

Debnition 8 (x*,y*,p™) I RSH %R % RS, ! is a competitive equilibrium
for the economye = (e,)n  if

8 Lete,! E,.Thus, ey = X, + v with Xy, given by Point 3 of Assumption 4 and
v) 0. Fix the externalities and consider$y, := Xn + ! Dy, " h(Xn, X" n,Y). By Point
4(a) of Assumption 4 and the debnition of di erentiable function, property (2) is
satisbed for somd > 0.



(1) forall j! J,vy;

; solves the following problem

max p' ay,
%" RE 3)
subject to t;(y;,yy;,x') " 0

(2) For all h! H, xj, solves the following problem

max Un(Xn, Xjp, Y')

xn" RS,
subject to ! n(Xn, Xz, ¥') " 0, (4)
pax,# p aent  sny)
i"J
(3) (x',y")! REH$! RS satispes market clearing conditions, that is

! ! |
Xnh= et Y (5)
h" H h" H i"J

In the following propositions, using KarushDKuhnbTuckerOs conditions we char-
acterize the solutions of Prms and households maximization problems.

Proposition 9  Givenyy; ! RU#U x' I R¢H andp'' | REFE,

Q) if yj’ is a solution to problem (3), then it is the unique solution.

(2) y; ! RCis the solution to problem (3) if and only if there exist$; ! R..

such that(y'," ) is the unique solution to the following system

i

$p "Dyt vh, X)) =0

(6)
%t (y;.,yh; . x') = 0

Proposition 10 Givene,! E,,, X4, ! REH#D v 1 RCI andp'' | RE#1,

|
Q) if pra sp yj! " 0, then there exists a unique solution to problem (4).
i"J
(2) x;, ! RS, is the solution to problem (4) if and only if there exists
(#, 1) ' Rir $ R such that(xj,#,, 1) is the unique solution to the
following system

Dy, Un(Xn, Xie 1y, ¥') %#np + pnDy, ! n(Xn, Xyp,Y') =0
!
%p! a(xn %e, % Sih yj!) =0 (7)

& "
min Mn, ! n(Xn, X, Y') =0



DebPne the set of endogenous variables as

= RS 1 R.!R"1 RCIR, '1RC!

with generic element! == (X, ", 1, Y, #,pP') == (( Xn, " h, Hn)n 1, (Y5 #)jm 0, P).

We can now describe equilibria using the propositions above and market clear-
ing conditions (5). One should notice that, due to the Walras law and the
second equation in (7), the market clearing condition for commoditg is Ore-
dundantO. Therefore, in the following remark we omit in (5) the condition for
commodity C.

Remark 11 1# = (x#"# p# y* ## p") " | is an extended competitive equi-
librium for the economye™ E, if and only if

(1) (XE,"E, u#,) solves system (7) for alh " H,
(2) (v, #]) solves system (6) for al] " J,
(3) (x*,y") satisbes the following market clearing conditions

#

For a given economye" E,, the equilibrium function Fe:! $ RY™'

Fe(!) = ((F& (1), F&2 (1) FE (Mnrm (FEH(H) L FE2 (1), Fe' (1) (8)

is debned byF"! (1) := Dy, Up(Xn, X1 n, Y) # "hP+ HaDy, $n(Xn, X1 1, ),
Fo2(!) = #pa(xn # en #  spy;), F&3(1) = min {pn, $n(Xn, X n,Y)},
: " :

@gl(!) = pt ##Dyjt,-(yj,y!j,x), FL2(1) == t(y;,yij,X), and FM (1) =
x}1 # yj\ # e}1

h* H "3 h* H

By Remark 11,!# " | is an extended equilibrium for the economg " E,

if and only if Fe (!%) = 0. With innocuous abuse of terminology, we call #

simply an equilibrium.

4 Existence of competitive equilibria

In this section we prove our main result, that is competitive equilibria with
consumptions and prices strictly positive exist, and the set of equilibria is
compact.



Theorem 12 (Existence and compactness) Given(u,!, ) U" X" T
ands! S, for each economye! E,, the set of equilibria is non-empty and
compact.

In order to prove Theorem 12, following the seminal paper by Smale (1974),
we use homotopy arguments, namely Theorem 13 which is a consequence of
the homotopy invariance of the topological degree. More specibcally, following
Chapter 4 of Milnor (1965), Theorem 13 is based on the topological degree
theory of degree mod 2The reader can bPnd a survey of this approach in
Villanacci et al. (2002). The theory ofdegree mod 2is simpler than the one
used in Mas-Colell (1985) that requires the concepts of oriented manifold and
the associated topological degree D tlgrouwer degreeb in order to deduce
the existence result from regularity properties of equilibria and from the Index
Formula.

Theorem 13 (Homotopy Theorem) LetM andN be twoC? boundaryless
manifolds of the same dimensiony ! N andf,g : M # N be such that:1.

f and g are C% 2. #d %(y) is odd, andg is C! in an open neighborhood of
g (y); 3.y is a regular value forg; 4. there exists a continuous homotopy
L from g to f such thatL'(y) is compact. Then,f' (y) is compact and

friy)$ %

To apply Theorem 13, we consider the equilibrium functiori-, debned in
Section 3 which plays the role of the functiorf . In order to construct the
required homotopy and the function that will play the role of the functiong,

we proceed as follows. First, we construct the so called Otest economyO. The
test economy will be built using a Pareto optimal allocation of an appropriate
production economya la ArrowbDebrewithout externalities at all Second, we
construct the equilibrium function G associated to the test economy playing
the role of the functiong. Finally, we provide the required homotopyH. from

G to Fe playing the role ofL.

The test economy and the equilibrium functionG are debned in Subsection
4.1. The homotopyH. is given in Subsection 4.2. In Subsection 4.3, we verify
that all the assumptions of Theorem 13 are satisPed. More specibcaBy,'(0)

is a singleton,G is C! in an open neighborhood o' 1(0), 0 is a regular value
of G and H/ 1(0) is compact.

One should notice that, as a consequence of the properties above, one gets
that degree mod 2of G is equal to 1. Since the homotopy, is continuous
and H¢ 1(0) is compact, the homotopy invariance of the topological degree
implies that the degree mod 2of the equilibrium function F is equal to 1.

10



4.1 Test economy

In order to construct the test economy, bxing the externalities, we Prst consider
a Pareto optimal allocation of a standard production economy a la Arrowb
Debreu. Second, we construct the equilibrium functiol using the Second
Welfare Theorem in such a way that, at the test economy, the equilibrium
exists and it is unique.

Let X := (Xn)mn ! REH be an arbitrary consumption andy := (y;);1; ! R
be an arbitrary production. Fixing the externalities at , y), debPnety(x;) :=
Un(Xh, X" 1, ¥), T (Yi) := (Y, ¥ ;,X), and the corresponding production eco-
nomy a la ArrowbDebreu, namely

|

E:= (RS, ,Unnn, (§)js, &) 9)
ht H

where all the consumption sets coincide with the strictly positive orthant of
the commodity space, that isX;, = RS, . Since there are no externalities at all,

the notions of feasibility and Pareto optimality are standard. It is well known

that, under Assumptions 1, 2 and 3, there exists a Pareto optimal allocation
of the economyE, denoted by

(%9 R R

and there exist Lagrange multipliers G = ((T)ne, " F)jg) P R LY
RS, " RJ, such that (x,y,i,",#) is the unique solution to the following
system.®

#
Dy U1(X1, X 1,¥) # " =0
I'hDy, Un(Xn, X p, Y) # " =0, $h %l
6 Un(Xn, X+ 1, ¥) # Un(Xh, X+ 1,Y) =0, $h %l
"+ #Dyt(y,y;,X)=0,%j ! J
tJ(yJ’ 1 X)=0, $J'J

#,'eho
h!' H

(10)

It is well known that the Pareto optimal allocation (X, §) can be supported by
some price systenp. That is, using DebreuOs vocabulary,() is an equilib-
rium relative to some price systenp. ° From system (10), one easily deduces

9 For a formal proof, see Appendix B.
10 See Section 64 of Debreu (1959).
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below the supporting pricep and the equilibrium equations satisbed byx( V)
for appropriate Lagrange multipliers.

More precisely, there exists!(, 11, 1) == (T n, Bn)nrns (1)jra) ! (Res " R)P
RJ, such that

Dy, Un(Xn, X+ n,Y) # Lup=0, $h! H
&
pé-kh:pé-(en"" thyj),$h! H

jra
p+ "Dy t(¥,y;,x)=0, $j ! J (11)
4, y;,X)=0, $j ! J
& & &
Xn # yj# e, =0

0

h! H jtd h! H
where
#° dg #
— uC — [ — P \ -
b= 4 1, = g$h%1, o= ac P =
and &
&= Xn#  SpY (12)

it
We call test economy the economy debPned below

E:= (RS, ,Un, &, Sh)n Hy (5)jra)

The test economyE is a standard private ownership economy la ArrowD
Debreu with no externalities at all. By system (11), since KarushbBKuhnb
Tucker conditions are sui cient to solve the classical brms and households
maximization problems, &, !,y,",p') is a competitive equilibrium for the
economyE. Importantly, as will be shown in Lemma 14 of Subsection 4.3, the
economyE has a unique equilibrium??

Using the Pareto optimal allocation &, ¥) and the Lagrange multipliers debPned
above, consider the vector

&=(xt,my,1,p)! " (13)

1 One should notice that the endowments given by (12) are not necessarily posi-
tive. There are di! erent redistributions that give rise to positive endowments. For

b akn '
pba ppkn
uniqueness of the equilibrium is not so obvious since the redistribution depends on
the supporting price and on the Pareto optimal consumption allocation. For details,
see the proof of Lemma 14.

example, &, = and &, = &, |, 4en. But, in the latter case, the

12



where ki, =0 for all 4! H. In a natural way, from system (11), one deduces
the equilibrium function G satisfying G(*) = 0. The function G :! " Rdm!

G()=((GM(),GM2(), G Dhn, (GHH(1), G2 (1))ja , GM (1)
(14)

is dePned byG"1 (1) = Dy un(xn, T n,7) # "np, GM2(1) = #p a(axn #
b # - sing;)s G2 (1) == min {n, #n(#n (2 .y, en), 20, 9)}, GHE() = p+
8Dyt (.73, 7), PF20) = iy 7y 7) and GV () 1=y d g
" e}]. We remark that the continuous function#, is given by Propgsition 7
Zan GM3(H = Ly, = 0 since #n(#n (2 1, v, en), z 1, y) > O.

4.2 The homotopy

The basic idea is to homotopize endowments and externalities by an arc from
the equilibrium conditions given in the economyE to the ones associated to
our economyE. But, one bPnds the following di culty.

At equilibrium, the individual wealth is positive at the beginning and at the
end of the arc. Indeed, in the econom§f, the budget constraint in system
(11) and the endowment debned by (12) imply that the individual wealth
b aky is positive. In the economyE, the individual wealth is also positive
by inactivity assumption and standard arguments from probt maximization.
But, the individual wealth might not be positive along the homotopy arc, and
consequently the individual budget constraint might be empty. We illustrate
the reason below.

If one homotopizes the endowments, then the individual wealth is given by
pé[%n + (1 # %er]+ pa  sjhy which is by (12) equal to
jrd

pal%n + (1 # Ap]+ pa  sinly # (1# DY) (15)
jrd

So, the individual wealth is positive ifp ay; $ p a(1l# %Y for every; ! J.
Using standard arguments from probt maximization, this condition is satisped
if the production plan (1# %Y; belongs to the production set of brimy. On
the other hand, if, at the same time, one homotopizes the externalities, then
the production set along the arc is given by

Yi(%; + (1 # Ny, % + (1 # A1)

13



But, one cannot be sure that the production plan (2 !)Yy; belongs to the
production set above. Consequently, the individual wealth given by (15) might

not be positive.

Thus, to overcome this di culty, we will debPne the homotopyH.in two times

by two homotopies. Namely, in the Prst homotopy' ., we homotopize the
initial endowments, and in the second homotopy. we homotopize the exter-
nalities in the production sets. Finally, we remark that if one assume strong
convexity assumption on the production set, i.e. the functiont; is quasi-
concave also with respect to externalities, one does not need two homotopies
since initial endowments and externalities can be homotopized at the same

time.
Debne the following convex combinations
x(1):=1Ix+@! )X

y('):=1y+@! )y
en(!)=len+(1! )&,

and the following two homotopies!' .: $" [0,1]# RY™' debned by

()= (D RO B e (B TR D) T ()

"ET(" 1) = Dy un(Xn, X n(1),Y(1) ! #np

"hzey= 1 pdaxp ! oen(t)! - Sin Y
il
TE(1) = min {006 (X .Y, @)% n,Y)) (16)
"LE(", 1) = pt %Dy t(y;, Y-, %)
mL2m) = G (¥, ¥, %) "
WeE gyl e
ht H i3 ht H

and#:$" [0,1]# RY™' debned by

14



(1) = (BT B ) B e (B2 (L) R (e ()

L2, ") i= Dy, Un(Xn, X_n,Y) ! #np+
"UnDy, $n (" Xn (18 ")Xn(Xoh, Y &)y Xoh, Y)

Ph2@, "y =1 palx,! e! Sin Y
jed

Le3 (") = min {un, $n("Xn + (1 1 ")Xn(X_n, Y, &), X n,¥)} (17

LLE(,") == p+ %Dy i (v, Y ("), x(™))
EZ(L") = 0y () x()
)= !y e

heH jed heH

where the continuous functiork;, is given by Proposition 7.

Now, dePne the homotopyHe : " " [0,1]# RY™!,
#
@#e(!,z&) if0$ &$ 2
0

He(!, &) = (18)

g!e(!,z&! 1)if2$&$ 1

Observe thatH. is a continuous function. Indeed#. and! . are continuous be-
cause they are composed by continuous functioqs (see Point 1 of Assumptions

1, 3 and 4, and Proposition 7). Moreoverti, ! % is well debned since
#.(1,1)=1¢(1,0)
Finally, observe that

He(!,0) = #(1,0)= G(!)and He (1, 1) = ' (!,2) = Fe(!)
4.3 Properties of the homotopy
To verify the assumptions of Theorem 13, we provide the three following lem-

mas, namely Lemmas 14, 15 and 17.

Lemma 14 G1(0) = {!} where) is given by (13), andG is C! in an open
neighborhood of .

Proof. By (11) and (14), ) %G~%(0). Let !’ %" be such thatG(!") = 0, we
show that !’ = V.
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Claim 1. (x',y') = (X%, V). Otherwise, suppose that X',y") £ (X, ¥). Consider
the convex combination

(YY) = oK)+ S )

We brst prove that (" ,y" ) is a feasible allocation of the economig debned
by (9). Indeed, sinceG-2(!') = G-2(¥) = 0 and the function t; (4¥,;,X) is
strictly quasi-concave (see Point 4 of Assumption 1), we get

(Y, Ve, X) >0 " j#J (19)
From (12) and G"2(!") = 0, summing overh we get

Xi°S  yCS( xS ¥ =3P xS y'S( sy
h$H i$J h$H i$J h$H i$J h$H i$J

Since &, y) is a Pareto optimal allocation, from the last equation. of system

(10) we have that x, $ Y = en. Therefore, we obtain  x;© $
" h$H . j$J W hSH h$H

yi€$s  ef=3%p"d x3$ y'$  e]whichis equal to zero by
j$ h$H . h$H §$d h$H
GM (1Y =0. Thus, X, $ Yy = e, and consequently
h$H j$ h$H

WS Y= e (20)
h$H j$3J h$H

Thus, (19) and (20) imply that (x" ,y" ) is a feasible allocation oE.
Second, we show that for alh # H,

Un (X, e, Y) % Un(Xn, Xsn, V) (21)

Indeed, by (12)GM(1") = G"?(1") = 0 and Karush-Kuhn-Tucker su cient
conditions, x;, solves the following maximization problem

max. Un(Xn, Xsn,Y)
Xh$RS_:+ W
subjectto p'ax, & p'akn+  5n P Ay $ V)
j$J
Notice that X, belongs to the budget constraint of the problem above since
snP &Y, $¥;) %0. Indeed, fromG-*(1') = G?(!") = 0 and Karush-Kuhn-

i$J
Tucker su cient conditions,yj! solves the following optimization problem

1 z
max p ay;
yj $RC P

subject to t;(y;,Vs;,X) %0

16



From G-2(}) = 0, Yy; belongs to constraint set of the problem above, and so
pa(y; ! ¥;)" 0. Therefore, (21) is completely proved.

Finally, (21) and the strict quasi-concavity of u,(8X-,y) (see Point 3 of
Assumption 3) imply that for all h # H

Un (X", X 1, Y) > min{un(Xp, X 1, ¥), Un(Xn, Xo 1, ¥)} = Un(Xn, X 1, Y)
which contradicts the Pareto optimality of (, V).
Claim 2. ("', (., #.,p") =(*, i #,p). By G"(1") = G"(}) = 0, we get

h = DyeUn(Xp,Xo 1Y) = DyeUn(Xn,Xw 1, Y) = *n

So, for every commodityc $ C,

oc = D e Un (Xh, X, Y) _ Dxgun(Xn,Xn,y) _ o

- nl J_,

h h

Proposition 7 andGM3(!1") = G"3(!) = 0 imply pj, =0 = p,. By GH1(1') =
G-1(}) = 0, we get

I,:)! c | pc B
= #.
Dyet; (¥, Y-, %) J

# o= , =1
Dyetj (¥, ¥, %)

!
J

Claim 3. G is C! in a open neighborhood o&" 1(0) = !. Since$, and X are
continuous functions, the functiong, debPned below is continuous

Oh ! H#D %00 ()= (Sn(Xn(Xeny Y, &), Xn,y) ! Hn) #R

Forall h# H, g,(*) > 0 since$n(Xn(X- n, ¥, &), X+ 1, ¥) > 0 and i, = 0. Thus,
in some open neighborhood () & ! of ! we getg,(!) > 0 for all h # H.
Therefore, in the open neighborhootl (¥), the componentG"-3(!) = py, for all
h # H while the componentsG™*(1), G"?(1),G%(!),G-2(1) and GM (1) are
given by (14). So,G(!) is obviously aC? function in | (*). =

Lemma 15 D,G(}) has rankdim! .
Proof. The computation of D, G(}) is described below,

wherety, and {; are given in (9) andl :=[l¢- 1|0} 1sc. DebPne

# $ .
"= (X" " Hndnoets (UYL #)jen P # RT(CT T RICEH Y RO

17



In order to prove that D, G(*) has full rank, we show that ifD,G(!)(! ) =0
then! =0. D,G(*)(! ) =0 is given by the following system.

(h.1) D5, un(Xn, X1 n, Y)(! Xn) 1 1 "pp! "W p)=0"h#H

(h2) pé( th! yj)' pé.l Xkp,=0" h#H
i"J

(h3) ! 4, =0 " h# H
(-1 #DIt ¥,y ) y)+ ! #HDy i (%,y %)+ F( p)=0"j#J
(-2) Dy (%, ¥ .x)a y; =0"j #J

(M) Ixp! 1y =0
h

"H i"J

(22)
We brst prove that if ! x, = 0 for every h # H, then! = 0. In this case,
Equation (h.1) in system (22) becomesk pd ",! ",& (! p') = 0. Considering
commodity C, we obtain! ", =0 forall h# H. So,! *, (! p') =0 implies
| p =0 since*,, > 0. Equations (. 1) and (j. 2) in system (22) can be now
written as follows
( +( + ( +

l#jDijtj(Yj’y!j’X) Dyjtj(Yj'y!jaX)Ti ) 'Y, )0

- = (23)
Dyjtj(yj'y!jix) 0

| #,

Sincet; (8y, ;,X) is strictly quasi-concave, (see Point 4 of Assumption 1), and
Dy, t (¥, Y1 j,X) $ 0, (Point 3 of Assumption 1), the following matrix has full
rank. 12 ( +

) B,V %) Dy (9,5 ,%)T
Dy t; (¥, ¥1,X) 0

12 A di! erentiably strictly quasi-concave function with gradient di! erent from zero
has the bordered Hessian with determinant di erent from zero.

Xh N Y " p'
Dy, Un(Xn) ! Inp Df. Un(kn) | ! b7 N
Ipaxn! &n'! sih(y; ! ¥l [ ! P bsin
i

Hh 1
P+ "nDy t(y}) D2 () | Dy Gy | &
) Dy ti (%)

xp! oyl e & I &
hH ) h" H
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Therefore, ( y;,! !;) =(0,0) by (23). So, one get$ =0.
Second, we prove that x, =0 for everyh! H.

Suppose by contradiction that there ish ! H such that! x; £ 0. We Pprst
claim that

! D2 KXo
I Xp Xhu“(““’x "Y1 ) < 0 (24)

h! H h

Multiplying both sides of G *(#) = 0 by sjn! v;, we get
pasn! y + Dy tj (¥, ¥, X) asp! y; =0 (25)
So,pasp! y; =0 by, equatlon (.2) in system (22). Summing ovey, for each
h! H, one getsp &( I yj) = 0 which implies
jitd
pé‘ Xh =0 (26)
by equation (h.2) in system (22). Multiplying G™1(# = 0 by ! x., one obtains
th Uh(xh,x" h,Y) al Xp = 0
From Point 3 of Assumption 3 and"}, > 0, one gets

Uh()fhyx h,V)( Xn)# 0, $hi H

h

with a strict inequality for h, since! xz % 0. Summing overh, one obtains
(24).

Second, we claim that

!
lpa !x)<0 (27)
h! H

[
From (26), multiplying (h.1) in system (22) by'l.l,ﬂ and summing overh, one
gets "
! X !X 1 z I
|y DX ) (s
h! H h h! H
Thus, (27) follows from (24).

!
Finally, we show below that! p'§ ! x}]) % 0 which leads to a contradiction
h! H
taking into account (27), and consequentlyy x, = 0 for all h ! H which
complete the proof of the lemma.
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By (M) in system (22), one has
pacy ! x) =t A ! )
it

h! H
By (]. 2) in system (22), multiplying (j. 1) in system (22) by! y; and summing
overj one has! p &1 yj) =1 >l y D2t (.7, X)(! ¥j)- Thus,

it jird

PP A x) = YN Dl (LY Y)

h! H ird

Therefore,! p' é(Z! x\h) " 0 sincet;(ay-;,X) is strictly quasi-concave (see
h!' H
Point 4 of Assumption 1). m

Lemma 16 For eachr # RS, , the following sets are bounded.

Ac ={0¢y) # RS $ R | %(x,y) # RS 8 R 1t (yfye;,%) " O

(28)
& #J and Y xp! > y''or}
h! H jtd
R, = {6y # RESRY (v, y.;,%)" 0, & #J and Y xpl Dy 1}

h! H jrd
(29)
Proof. We prove that A, is bounded. Consequently®;, is bounded since it

is included in Ay, . Let (x*y* # A, . Sincex} (0 for everyh # H, we have
that x*is bounded from below by zero. Therefore for evety# H

0) X)) Y+ Yy
K

h! H

Thus, to show that A;, is bounded it is enough to prove that the se¥ * M,
is bounded where the seY is debned by (1) and

M, = {y*#R® : Y y'+r" 0}
itd

Since a subset oR" is bounded if and only if its asymptotic cone is reduced to

zero, we show now thaC(Y * M;) = {0}. One should notice thatC(Y * M,) +

CY * CM,. 2 Since the asymptotic cone of a set is immune to translation, we

get CM, = CM,, whereMo := {y*# R : > y*" 0}. M, is a closed cone
jitd

with vertex 0, thus CMy = M. So, in order to prove thatCY * CM, we have
to show that CY * My = {0} which directly follows from Assumption 2. m

13Let (Bi);,, + R" be a family of subsets ofR", C(* i Bj) +* i1| CB;.
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Lemma 17 For eache! E,, H}(0) is compact.

Proof. Lete! E,. Observe thatH (0)="!,%0)" ".(0). Since the union
of a Pnite number of compact sets is compact, it is enough to show tHgt*(0)
and " .*(0) are compact.

Claim 1. ! 1(0) is compact.

We prove that, up to a subsequence, every sequente, (" )--n # ! 1(0) con-
verges to an element of L 1(0), where!" = (x",# ,u",y",$",p ‘). First
observe that, since{"" : %! N} # [0, 1], up to a subsequence,'()-y con-
verges to somé# ! [0, 1]. From Steps 11, 12, 1.3 and 14 below, we have that
up to a subsequence/ ()N converges to some” := (x*, #, u¥, y*, %, p*') |
#. Since the homotopy! ¢ is continuous, taking the limit, we get the desired
result, that is (1#,"#) 1 1 L 1(0).

Step 1.1. Up to a subsequencgx’,y" )y converges to soméx* y*) | REH ¢
RSJ. We brst prove that the sequencex(,y )y belongs to the set®;, given
by (29) of Lemma 16. Using a similar strategy as in Claim 1 of Lemma 14, by
(12),! 21", ""y=0and ! M(1","") = 0 one easily gets

| | |

X%y = e, &% N

h"H i"J h" H

So, k",y ) n# &, by! L2(1","") = 0. Consequently, the sequence(,y")- n
belongs to ck, which is compact by Lemma 16. Up to a subsequence,
(x",y" )y converges to somexf,y*) | cl&, # R¢H $ RS, and thus
(X#,y#) | RSH $ RCJ .

Step 1.2. The consumption allocationx” is strictly positive, i.e. x* ' 0.
The proof is based on Point 4 of Assumption 3. By (12) and1(1","") =
120" ""y =0, x solves the following problem for evergo! N.*

max Un(Xn, %, o (" )Y ("))

Xp" R, 1 . .
subject top’ éxn ( P &l e+ (L %" Wnl+ P A sy %(1%" "))
i"J

(30)
We claim brst that for every%! N, the point
e+ (1 %" )kn (31)
belongs to the budget constraint of the problem above. ByLi(1","") =
1£2(1","") = 0 and KarushDKuhnBTucker sl cient conditions,y; solves the

14 KarushBKuhnbTucker conditions are sl cient to solve problem (30).
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following problem for every! ! N.

max p' ay;
A e (32)
subject totj (y;,y-;,X) " O

Since inactivity is possiblet; (0,y.;,X) " 0 by Point 2 of Assumption 1. Since
(X, ¥) is a Pareto optimal allocation, t; (y;,y- ;,X) = 0 by system (10). Since
tj(@y-;,X) is strictly quasi-concave, we get

GCIOH@H )Y Y X) = (A # )Y Y )" 0

So, the production plan (1# "')y; belongs to the constraint set of problem
(32), and thusp' &(y; # (1# "')y;) " 0. Therefore,

Pa sply#@#")Yy)" 0
jrd

which completes the proof of the claim.

We claim now that x{ belongs to the closure of some upper contour set. Ob-
viously, for every! I N

UnOcho X1,y ) 7 Un( e (L s X (7)Y )

By Point 2 of Assumption 3, for every#> 0 we have that

n(h + #LXE (7)Y (1) > Un( e+ (L # kX ()Y (1)

wherel:=(1,...,1)! RS, . So, taking the limit for ! $ +% and using the
continuity of u, given by Point 1 of Assumption 3, we get

UnOch + #L X ("), ) un (e + (L # " F)xn, X (), YA =
That is, for every #> 0 the point (x{ + #1) belongs to the following set
{xn! RE, tun(xn, x5, ("%), Y7 (") " U}

So, the pointx{ belongs to the closure of set above which is included Rf;,
by Point 4 of Assumption 3. Thereforex{ ! R¢H. One should notice that,
since"# 1 [0,1], x¥,,("#) is not necessarily strictly positive. For that reason,

in Point 4 of Assumption 3 we considek- ,, in RS(H" D

Step 1.3. Up to a subsequencd$',p ‘)i n converges to somgs?, p*') !
R}, & RS, L. By ! L1(%,"') =0, considering commodityC, we get
1

$ = # : LN
J DY,C tj (yJ Yo i ,X)
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Taking the limit for ! ! +" and using the continuity of Dt; and the Ofree
disposalO property (see Points 1 and 3 of Assumption 1), the sequeﬁc}egg N

converges to
1

= H# - >0
J DyJC tj (y] 1y#j 7X)
By ! L1(#,$') =0, for every commodityc$ C and for all! %N we have

P o= #7 Dyt (] Ve %)

Taking the limit and using Points 1 and 3 of Assumption 1, for alc $ C we
get

pe=#" ;Dyftj (yjuyy#j ,X) >0
Therefore,p’ ' %RS#1.

Step 1.4. Up to a subsequencg%, ' )i n converges to soméo, 1) %R, &
RY. By ! M3(#,$') = 0 and Proposition 7, we havey;, = 0 for every ! %N.
Taking the limit, we get p, = 0.

By ! M (#,$') =0, considering commodityC, for every! %N we get
% = DyeUn(Xp, Xyn($), Y ($))

Taking the limit and using the continuity of Duy, (see Point 1 of Assumption
3) we have

% = DyeUn(Xp, Xzn(3), Y ($))
which is strictly positive since bxing the externalities the functiom, is strictly
increasing (see Point 2 of Assumption 3).

Claim 2. "%#1(0) is compact

Let (#,%' ), n be a sequences i%1(0). As in Claim 1, ($'), n converges
to $ %][0,1]. From Seps 2, 22, 23 and 24 below, we have that, up to a
subsequence# ), , converges to an elementt = (x",%, 1,y ," ", p") %#.
Since" ¢ is a continuous function, taking limit one gets#,$") %" #1(0).

Step 2.1. Up to a subsequencéx',y' ) n converges to soméx',y') %RSH &
RCY. By "L2(#,$') = 0, we have that for every! %N and for every;j

(Y, Yy ($), () =0

Summing" 3-2(#,$') =0 over h, by "¥ (#,$') =0 we get > x, # >y, =
h! H jrd

> e, forall! %N. Therefore, &',y'), n belongs to the seA, given by (28).

h!' H

Consequently, the sequence{(,y'):: n belongs to clA;, which is compact by

23



Lemma 16. So, up to a subsequence' (y' )i n converges to somex(,y ) !
clA, " R¢H # RS and thus (x',y") ! RSH # RSV,

Step 2.2. The consumption allocationx” is strictly positive, i.e. x" $ 0. The
argument is similar to the one used in Step.2 of Claim 1. It sul ces to replace

(1) the problem (30) with the following problem

max  Un(Xn, X1, Y')

xp! RS,

subject to ! n("! xp + (1 %" )Xn(Xin, V' s €0), XipsY') & O
P éxn' paem+pa spy
i1y
according to" D(# ,"') = "Dh2# )y = "h3@# ") =0,
(2) the point given by (31) with x,(x},,Y', e) given by Proposition 7,
(3) the problem (32) with the following problem
max p ay;
pre b (33)
subject t0t; (¥}, ¥} ("), X' ("1)) & 0

according to" L1(# ,"') = "L2(#,"')=0.

Next, as in Step 12 of Claim 1 one easily shows that,, belongs to the closure
of {Xn ! RS, Un(Xn,Xgp,Y ) & U= Un(Xn(Xep» Y €h)s Xgh, Y )}. One should
notice that although x,,,, may not be positive, Assumption 4 and consequently
Proposition 7 ensure thatk, (X, p,, Y , €,) is well debned and strictly positive.

Step 2.3. Up to a subsequencg$',p ‘)i n converges to somg$’,p ') !
Ri, # R%#1. Using Points 1 and 3 of Assumption 1, the proof is similar to
the one of Step 1.3 in Claim 1.

Step 2.4. Up to a subsequencg%, 1' ), n converges to somé&o, ') ! RY, #
RY. We have two possible cases, in Caag "" =0, and in Caseb), "" ! (0, 1].

Case a)."" = 0. Using " 13(# ,"') = 0, we bPrst claim that there exists& ! N
such that for every& & &,

Mh =0
Since"" =0, the sequence
(" xh (1 %" ) Kn(Xien, V' €0) Xigns Y )i N

converges to Xn (X4, Y »€n), Xz, Y ). By Proposition 7,

L h(Xn (X, Y 2 €1), Xaps Y ) > 0
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So, the continuity of the functionsk;, and ! ,, (see Proposition 7 and Point 1

non o onl

of Assumption 4) imply that there is"' ! N such that for every ,
n(# Xh + (L # # )Xn(X .Y @), X, y') > 0
which proves the claim. Thus, the sequencei(); xn converges tau;, = 0.

By ! 24($,#) = 0, considering commodityC, we get% = Dyc Un(Xj, X , ')
for every" " "'. Taking the limit and using the continuity of Duy, (Point 1
of Assumption 3), we get

% = Dy Un(Xh, X 1Y)
which is strictly positive by Point 2 of Assumption 3.

Case b).# ! (0,1]. We brst claim that up to a subsequence, ') sn $
RY, % RY converges to some%, ') ! RY % RY. Second, we show that
% & 0.

In order to prove the claim above, it is enough to show that%, W) «n is
bounded for everyh ! H. Otherwise, suppose that there is a subsequence
that without loss of generality we continue to denote with %, W,): #n Such
that ' (%, 1;,)' diverges to H . Consider the following sequence in the sphere
which is a compact set.'®

#
(%, 1p)
I ((Vﬂ, UI"‘I)' 1 #N

#
0, !
Up to a subsequence, (O, Hn) converges to some%, Un) ¥ (0,0).16

(%M,
Obviously, % " 0 andp, " O, since% > 0 andp, " Oforall" ! N.

Dividing both sides of! M3($ ,# ) =0 by ' (%, 1,)' , and taking the limit, we
get
%P = # WDy, ! n(# Xxh + (1 # #)Xn(X 1, Y 8n), Xe YY) (34)

Notice that p, > 0 and % > 0. Indeed from Point 4@) of Assumption 4, we
know that

Dy, ! n(# X+ (L # #)X0 (% 1, Y &), X 1Y) F O

Thus, pp > 0 because ifu, = 0, from (34) we get% = 0 which contradicts
the fact that (%, 1) ¥ (0,0). Finally, u, > 0, # > 0,p' ! RS, and (34)
imply % > O.

15Since’ (!}, 1y)1#n' diverges to +( , without loosing of generality, we suppose

that ' (! i, Wp,)' > O for every".
16 Observe that (! p, un) ¥ (0,0) since' (! p, up)' = 1.
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We prove now that

Lhp &kn(X Y, 6n) < 1P 8Xp (35)

Since! j > 0, Proposition 7 implies that

P 8n(Xip, Y @) < 1hp de, (36)

Multiplying ! B-2("»,#) =0 by ', for every$ ! N we get! ¥p” ae, + ! {p” &

Siny” = ! 7p” axy. Thus, dividing both sides by" (! {;, pi)" and taking the
j#d
limit, we get "
Ihp &en+ 1hp & spy) = 1ap A, (37)

j#d
Therefore, (35) follows from (36) and (37) since
lhp & spy # 0
j#d

The inequality above follows byl L1("v,#) = 1L2("7,#") = 0 and the possibi-
lity of inactivity (Point 2 of Assumption 1). Indeed, Karush-Kuhn-Tucker
su' cient conditions imply that y;’ solves problem (33), and consequently’ a
y/ # 0 for every$ ! N. Multiplying both sides by ! ;, dividing by " (! 7, ui)"

and taking the limit, we get! ,p' &y # 0 for everyj ! J.

Finally, we show that
Lnp @kn(X Y &) # 1np' X, (38)

which combined with (35) leads to a contradiction. Therefore, our claim is
completely proved.

Sincepy, > 0, there existsn ! N such that yy > 0 for every$ # n. From
PR3, #) = 0, we get % (#'x; + (1 $ #)Xn(X¥ 1, ¥, &), X¥p,,y") = 0 for
every$ # n. Taking the limit, one gets

% (# Xn + (1 $ #)Xn(X Y &), X, Y') =0

Therefore, (34) and the Karush-Kuhn-Tucker st cient conditions imply that
X;, solves the following problem.

min ! .p' éxp
Xn#RC, (39)
subject to % (# xn + (1 $ #)Xn(Xi 1, Y . &), Xe p, V' ) # O

By Proposition 7, xn(x: ,,¥', &) belongs to the constraint of this problem,
and so (38) holds true.
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Therefore, one concludes that the sequenck;, (1)1 n is bounded, and con-
sequently it admits a subsequence converging to some,u’) ! Rt " RY.

Now we show that! * # 0. From! -3("!, #') = 0, taking the limit, we get
Lap = D Un(Xns Xy Y )+ # Do, S0 (# X + (18 # )Xn(Xyn, Y €)Xy, ¥V')

Sincey;, % 0, by Point 2 of Assumption 3 and Point 4 of Assumption 4, we
have

P = DycUn(Xp, Xgp, Y )+ # Ly Dye $n(# Xy +H(1 S #)Xn (X, Y 1 €0), X,y ) > 0

for some commodityc. Sincep ¢ > 0, ! > 0 which completes the proof of
the step. m

Appendix A

Proof of Proposition 7. For all h! H, the correspondencé : RS# 1 »

RCI " E. | RS, debned by

% (Xen Yo &) = {Xn ! RE 1 $n(Xn, Xen,y) > 0 andx, & e}

is nhon-empty convex valued by (2) and by Point 2 of Assumption 4. From
Point 1 of Assumption 4, for allx, ! RS, , the following set

% 1(xn) := {(Xun, Y, &) ! RSP RO EL - $(xn, Xgn,y,) > 0 andx, & e}

is open inRSH# V" RCI" E. . Moreover, REM# P RCI" E. equipped with
the metric induced by the Euclidean distance is metrizable, thus paracompact.
Then, we have the desired result since the correspondefigesatisbes all the
assumptions of MichaelOs Selection Theorémm

Proof of Proposition 9.  Since the externalities are bxed, the proof is stan-
dard as in the case without externalitiesm

Proof of Proposition 10. By (2), that is the Survival Assumption, there
existsXp such that $n(Xn, Xz, Y') %0 andX, & e,. If p'& sy, %0, then

jrd .
X belongs to the constraint set of problem (4). In order to apply WeierstrassOs

17 See Florenzano (2003), Proposition 1.5.1, page 29.
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Theorem, one replaces problem (4) with the following problem.

max U, (Xp, Xup, Y
e W (X Xy oY)

subject to ! (X, X,y )! O
J n(Xn I#hY) (40)

pax," pae+  spy;)

31

Un(Xn, Xg e Y ) 1 Un(Xns X, V)

It is an easy matter to show that problems (4) and (40) are equivalent. Further-
more, by the continuity of the functionsu,, and! , (see Point 1 of Assumptions

3 and 4) and by Point 4 of Assumption 3, the constraint set associated with
problem (40) is a compact set included iR¢, . Sinceu,(§x;,,Yy") is continu-
ous, from WeierstrassOs theorem, a solution of problem (40) exists, and it also
a solution to problem (4).

The solution to problem (4) is unique, since the objective function is strictly
quasi-concave (see Point 3 of Assumption 3),,(8x,,,Y ) is quasi-concave
(see Point 2 of Assumption 4) and the budget set is convex. So, point (1) is
completely proved.

Point (2) follows showing that problem (4) satisbes the Karush-Kuhn-Tucker
necessary and ducient conditions. We debnegl(x,) = #p a(x, # e, #

' s;ny;) and g?(x) i= ! (Xp, Xy 5, Y'). Karush-Kuhn-Tucker necessary con-
41J

ditions are satisPed. Indeed, SlaterOs condition holds true sigé&,) > O,
0%(X) > 0, and g* and g® are pseudo-concavé® By Point 2 of Assumption
3 and Point 4() of Assumption 4, the Lagrange multiplier", associated to
the budget constraint is strictly positive. Karush-Kuhn-Tucker su cient con-
ditions are satisPed. Indeedy,(4xy,,y ) is pseudo-concave, ang' and g?
are quasi-concave?

Finally, using Point 4 of Assumption 4 and Proposition 7, one shows the
unigueness of the Lagrange multiplier$® m

Appendix B

Characterization of Pareto optimality without externalities

18 Sinceg? is linear, it is pseudo-concave. From Points 2 and 4) of Assumption 4,
g? is quasi-concave with gradient di erent from zero, then it is pseudo-concave.
¥ From Point 3 of Assumption 3, u,(dXy,,Yy ) is di! erentiable strictly quasi-
concave, then it is pseudo-concave. Sincg! is linear, it is quasi-concave. Finally,
from Point 2 of Assumption 4, g? is quasi-concave.

20 For additional details, we refer to the proof of Proposition 5 in del Mercato (2006).
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et E = ((R$, ,Un)ni 1, (tj)j1 5, 1) be the economy debned by (9) where:=

e,. Debne the following sets
h!' H

U = {l(uh)h!H Do Im Ty (x,y)! RS # RS §(y))$ 0% ! J,

Xn& Yy, ' randUn(xn) $ up %h! H}
hi H i1

B = {Uner | e IMUn " Up ! 1M Ty, (Un, (Un)ner) ! Ur)

By Point 2 of Assumption 1, the set®;, debned by (29) is non-empty. Thus,
the setsU, and B, are non-empty. Let Ul )pey ! ¥, . Consider the following
optimization problem

max U1(X1
(xy)! RE! $ RS bat)

subject to t;(y;) $ O for everyj ! J
Un(xn) $ uj for everyh €1
. Xh & . Vi r
h! H it

(41)

Proposition 18 There exists a unique solutior{%, $) to problem (41).

Proof. In order to apply WeierstrassO Theorem, one replaces problem (41)
with the following problem

max Uq(X1q
(xy)! RE! $ RC (xa)

subject to t;(y;) $ O for everyj ! J

Un(xp) $ uf for everyh €1 (42)
Ui(X1) $ l,ﬁ

CoXh &y

h H i3

whereu? | Imuy is given by the debnition oft);. Since Ui n ! Yy, there

exists % y) | REH # R suchthatfj(y/) $ Oforallj ! J, xi& vy’
h! H jrd

r and U, (x{) = uf, %h! H.

DenoteK ; the constraints set associated with problem (42K ; is non-empty
since (f)nu ! U. We brst claim that K; is a compact set included in
RSH # RCY. We notice that K, = N ) &, where

N = {(xy)! RE # R® 1un(xn) $ uj wh! H}

and A, is dePned by (29). So, from Lemma 16 we have thkt; is bounded.
Furthermore, K ; is closed. Indeed, take a sequence (y' ),  in K 1 converging
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to some ,y). Since &',y )i in! N, (X,y) belongs to the set Glcw - ges N
which is included inR$H " RS by Point 4 of Assumption 3. So, X,y) #
RS¢H " RSY. Since the functionu;, are continuous (see Point 1 of Assumption
3), (x,¥) # N. Since the functiond; are continuous (see Point 1 of Assumption
1), (x,y) # A, and so &,y) # K1 which completes the proof of the claim.

By WeierstrassO Theorem, there exists a solutiak ¥) to problem (42). The
solution to problem (42) is unique since the objective function is strictly quasi-
concave (see Point 3 of Assumption 3) and the constraints set is convex (see
Point 4 of Assumption 1 and Point 3 of Assumption 3).

We complete the proof showing that problems (41) and (42) are equivalent.
Denote with K the constraints set associated with problem (41). Letx( V)
be a solution to problem (41), one gets; (k1) $ uy(x¥) = uf since &% y" #
K. Thus, (x,¥) # K1 and (X, ¥) solves problem (42) since sinck; ! K.
Viceversa, suppose thatX, ¥) is a solution to problem (42), obviously X, ¥) #
K. Let (X,y) # K.If Ul(Xl) $ Uf, then (X, y) # K, and SOU]_(X]_) $ Ul(Xl).

If Ui(x1) < u¥, then Uy(x1) $ uf > Uy(x1). Thus, (X, V) solves problem (41),
which complete the proof of the lemmam

Proposition 19 Let (X, ¥) be the allocation given by Lemma 18. There exists
(LA = ((Pnst, T ()0 ) # R RS, " RI, such that(x,y,!, 1, #)
is the unique solution to the following system.

Dy, Ui(X1) %" =0
1Dy, Un(Xn) %" =0, &h =1
Unh(Xp) %UR(Xn) =0, &h =1
"+ #Dyt(y)=0,& # T
t(y)=0,& #J

& &

Or% Xp t+ yj=0
h! H itd

(43)

Proof. The result follows showing that Karush-Kuhn-Tuker® conditions are
necessary conditions to solve problem (41). The Lagrangean function associa-
ted with problem (41) is given by

N & 4 & _ .\ & &
E(X! Y, ! ) !#) = U]_(X]_)"‘ ! h(Uh(Xh)o/th)-'- #j tj (yJ )+ (r% Xnt yJ)
h$1 j13 hH  jid

where (,",#) = (("n)nss, ", (#)j1 ) # RI¥L" R¢" RY is the vector of the
Lagrange multipliers associated with the constraints set of problem (41). So,

30



the Karush-Kuhn-Tuker conditions are given by

(1) Dy, Us(x1) ! 1 =0

(2) "nDx,Un(Xn)! ! =0, " h#1
#(3)! +#Dyt(y;)=0,"j3%J

(4) min{"n,Us(xn) ! up} =0, "h#1
(5) min{#,t (Y(j]z} = 0,'0'/01' $J

%
& (6) min{!,r! Xn + yi} =0
h" H i"J

(44)

It is enough to show that the Jacobian matrix associated with the constraints
functions of problem (41) has full row rank. The Jacobian matrix is described
below.

X2 X X1 Y1 VA

& )

UZ(XQ)! U!Z E DX2U.2(X2) 0 0 0 0 ai
UH(XH)! U=_| : 0 DXHUH(XH) 0 0 0 z
» %xh+%yj§ Ilc I'le lle lc lc f
h"H i"d ' 0 0 0 Dylfl(yl) 0 *
ti(y1) : : : x
. ( B +

) 0o ... 0 0 0 ...Dyti(w)

ta(ys)

The matrix above has full row rank sinceDy, Un(Xn) % 0 and Dy, t;(y;) & O
(see Point 3 of Assumption 1 and Point 2 of Assumption 3) imply that the
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determinant of the square sub-matrixD debned below is dierent from zero.

»

0 Dyifl(yl) ces 0

O

|

o
PSS S S S S8R

o ... 0 0 0 ...Dufs(ys)

Therefore, the conditions given by (44) are necessary to solve problem (41).
By Lemma 18 and equations (1), (2) and (3) in system (44), the Lagrange
multipliers are unique. Furthermore, Point 3 of Assumption 1 and Point 2
of Assumption 3 imply that the Lagrange multipliers satisfying system (44)
are strictly positive, and consequently, all the constraints in problem (41) are
binding. So, in particular one gets

Up(Xp) = Uy ! h=1

Therefore from system (44) one deduces system (43) and the lemma is com-
pletely proved. m Using Proposition 19, one easily proves the following propo-
sition.

Proposition 20 If (X, Y) is a solution of problem (41), then(X, ¥) solves the
problem below

max U1(X1
(xy)#RE! $REY (x2)

subject to tj(y;) # O for eachj $ J
U(h(Xh) # Un(Xn) for h=1
Xn % Yi &r
h#H j#J

(45)

Proof. It follows from system (43) in Lemma 19 and the fact that Karush-
Kuhn-Tucker conditions are st cient to solve problem (45). Indeed, by Points
2 and 3 of Assumption 3 the functiort; is quasi-concave with gradient dier-
ent from zero, and by Point 4 of Assumption 1 and Point 3 of Assumption 3,
the constraint functions associated with problem (45) are quasi-concava.
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We remind that (x,¥) ! R¢H " RS is Pareto optimal allocation of the pro-
duction economyE if there is no other allocation &, ¢) ! R¢" " RS such
that
— . # #
(1) §(y;)# Oforallj! J and Xn$r+ Yi
ht H jtd
(2) Uh(Xpn) # Un(Xy) for all h! H and Ug(Xk) > Uk(Xk) for somek ! H.

Proposition 21 (X, Y) solves problem (45) if and only if it is a Pareto optimal
allocation of E.

Proof. By debnition of Pareto optimal allocation, if §, ¥) is a Pareto opti-
mal allocation then (k, ¥) solves problem (45). Suppose now thak(y) solves
problem (45), we prove that K, V) is a Pareto optimal allocation. By contra-
diction, suppose that there is an allogation, y) ! R¢H " RS such that
fj (yj) # Oforallj ! J, Xn $ 1+ B Uh(Xn) # Uh(ky) forallh! H
h! H jrd

and U (Xx) > Uk(xg) for somek ! H. JIf k = 1, then we get a contradiction
since &, ¥) solves problem (45). Itk &1, by the continuity of Uy (see Point 1
of Assumption 3), there existsl > 0 such that oy (%x & !1°) > uy(k«) where
1¢! R¢ has all the components equal to 0 except the componentvhich is
equal to 1. Thus, the allocation k,y) ! R¢H " RS debned below

X1 = X+ 11°¢

Xk::)'(k&!].c
Xp = Xy ' hl H\{ 1,k} (46)
yi=y%"itd

satispes the constraints of problem (45) arai(x;) > U;(X;) sinceu is strictly
increasing (see Point 2 of Assumption 3). So, once again we get a contradiction
since (&, ¥) solves problem (45).m
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Chapter 2
ND

Externalities in production economies:
Regularity results 1!
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1 Long abstract

We consider a general model of a private ownership economy with consumption
and production externalities. Each brm is characterized by a technology de-
scribed by an inequality on a di erentiable function called thetransformation
function. Each household is characterized by a consumption set, preferences
and an initial endowment of commaodities. In this chapter, we assume that
all the consumption sets coincide with the positive orthant of the commod-
ity space. Individual preferences are represented by a utility function. Firms
are owned by households. Utility and transformation functions depend on the
consumption of all households and on the production activities of all Prms.

As in Chapter 1, we follow SmaleOs extended approach. Our purpose is to
provide sU' cient conditions for the regularity of such economies. Showing by
an example that basic assumptions are not enough to guarantee a regularity
result in the space of initial endowments, we provide Swient conditions for

the regularity in the space of endowments and transformation functions.

Chapter 2 is organized as follows. Section 2 is devoted to the model and basic
assumptions. In Section 3, we brie3y resume the debnitions of competitive

1 This chapter is based on del Mercato and Platino (2011).

2 Dipartimento di Scienze Economiche e Statistiche (DISES), Universita degli
Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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equilibria and of the equilibrium function. In Section 4, we state the dePnition
of a regular economy and we recall its properties. In Section 5, we provide our
example and the notion of aperturbed economylin Section 6, we introduce
two additional assumptions. In Section 7, we present our main results, namely
Theorem 14 which states the regularity result for for almost all perturbed
economies In Section 8, we provide an important consequence of Theorem
14, namely Corollary 19 which states the regularity result in the space of
endowments and transformation functions.

In Appendix A, one Pnds classical results from derential topology used in
our analysis. In Appendix B, the reader can bnd a comparison of our results
with those of Mandel (2008).

2 The model and the assumptions

There is a Pnite numberC of physical commodities or goods labeled by the
superscriptc ! C := {1,...,C}. The commodity space isR®. There are

a bnite numberJ of brms labeled by the subscripj ! J = {1,...,J}
and a Pnite numberH of households or consumers labeled by the subscript
h! H := {1,...,H}. Each brmj is owned by the households and it is
characterized by a technology described by a transformation function. Each
householdh is characterized by preferences described by a utility function,
shares on the brms probts and an endowment of commodities. In Chapter
2, we assume that all consumption sets coincide with the positive orthant of
the commodity space. Utility and transformation functions are hected by the
consumption choices of all households and by the production activities of all
Prms. The notations are summarized below.

¥y = (¥} .. ¥ ., ¥F) is the production plan of Prmj. As usual, the output
components are positive and the input components are negativg,; :=
(Yz),=; denotes the production plan of Prms other than andy := (;)j#J
denotes the production of all the bPrms.

¥ Xt is the consumption of commodityc by householdh,
Xp = (XE, .., x5, ..,x%) denotes householhOs consumptior;  := ( Xy )= h
denotes the consumption of households other tham and x := (Xn)nzn
denotes the consumption of all the households.

¥ For eachj ! J, the technology of bPrmj is described by an inequality
on a functiont; called the transformation function. An innovation of this
chapter comes from the dependency of the production set with respect to
the production activities of other brms and the consumption of households.
That is, giveny, j and x, the production set of the brmj is described by



the following set,
|

Yi(yrj,X) = .yj! R @ t(y,yij,x)" O

where the transformation functiont; is a function fromR®# R0 U# RGH
to R, t :=(t;);»,5. So,t; describes the way bPrm Os technology is! @cted
by the actions of the other agents.

¥ Each householch ! H has preferences described by a utility function,
Ut (X X nY) ! RS # RS D # RO @6 un(xn,xin,y) ! R

un(Xn, X1 n,Y) is the utility level of householdh associated with &n, Xi 1, Y),
U :=(Un)n H.So,u, describes the way householiOs preferences areexted
by the actions of the other agents.

¥ s, ! [0,1] is the share of brnj owned by householth; s, = (Sjn )i~y !
[0,1F denotes the vector of the shares of all brms owed by househhbld
s:=(sn)nu ! [0,1]". The set of all shares is given by

#
S:={s! [0,1P" : &j!J, s,=1}
h" H
¥ € is the endowment of commodityc owne~d by household,;
en = (€, .., €, .., ) denotes householthOs endowment := (&)n 1 -
¥ E:=((un, e, Sh)nn,(tj)jJ) is an economy

¥ pCis the price of one unit of commodityc, prices are expressed in units of
account,p :=(p',...p5% ..,p%) ! RS, .

¥ Givenw = (wh, .., wS, ..,w€) ! R®, we denote

w' o= (whws w1 REHE

We make the following assumptions on the transformation functions =

()3 -
Assumption 1 Forallj! J,

(1) The function t; is a C? function.

(2) For each (y;j,x)! RCO'D# REH ,(0,y1;,x)" O.

(3) For each (y;j,x) ! RCG'D # REH the function t;(4y: ;,x) is differen-
tiably strictly decreasing, i.e.

&(yrj,x) ! RO D# REM and &y’ ! R, Dy tj(yf,y1j,x)" 0

(4) Foreach(y:j,x)! RCU!'D# RSH  the functiont;(4y: j,X) is C? and it is
differentiably strictly quasi-concave, i.e. for every; ! R®, ng t (Y, Y1 j,X)



is negative debnite orkerDy, t;j (y;,yi j,X)."

We remark that, given the externalities, the assumptions ofy are standard

in OsmoothO general equilibrium models. Indeed, from Point 1 of Assumption
1 the production set is closed and smooth, from Point 4 of Assumption 1 itis
convex. Point 2 of Assumption 1 states that inactivity is possible. Point 3 of
Assumption 1 represents the Ofree disposalO property.

Debne the setY; of all production plans which are on the production sets

whatever are the externalities, that is
|

Yoi= YU RO (v, ) REF#RY v,y )80, % ! (1)

The following assumption can be interpreted in a similar way as Assumption
2 in Chapter 1, that is the asymptotic irreversibility and Ono free lunchO as-
sumptions at the aggregate level for any possible displacement of the boundary
of the production sets.

Assumption 2 Letb:=(h);j4; ! R> andt+b:=(t;+h)js; . Forallb$ 0,
if y'! CYyypand  y; $ O, theny =0 for everyj ! J.*
j#d

The assumption above ensures that the for all possible displacements of the
boundary of the production sets, the set of feasible allocation is bounded, see
Lemma 15.

We make the following assumptions on the utilities functions = (Up)nzH -
Assumption 3 Forallh! H,

(1) The function uy, is continuous in its domain and it isC? in the interior
of its domain.

(2) For each (xi p,Yy)! RiﬁrH! Y # RS, the function un(dx n,Yy) is di! eren-
tiably strictly increasing, i.e.

%(x: n,y) ! RS V# RS and %x;, | RS, Dy, Un(Xp, X1 n,Y) & O

(3) For each (x; n,y) ! RSH' V# RS, the function u,(4x n,Yy) is C2 and it
is di! erentiably strictly quasi-concave, i.e., for every, ! RS, D3 Un(Xn, X1 n,Y)

3 Let v and v’ be two vectors in R", v &v' denotes theinner product of v and v'.

Let A be a real matrix with m rows and n columns, andB be a real matrix with

n rows and| columns, AB denotes thematrix product of A and B. Without loss of

generality, vectors are treated as row matrices and\ denotes both the matrix and
the following linear application A : v! R" ' A(v):= AvT | RM wherev' denotes
the transpose ofv and R™ := {w™ : w! R™}. When m = 1, A(v) coincides with
the inner product A av, treating A and v as vectors inR".

4 CYq,p denotes the asymptotic cone ofY;_p.



is negative depbnite orkerDy, Un(Xn, Xi n).
(4) For each (X, n,y)! REM' V" RCI and for eachu! Imun(dx n,Y),

Clre{Xn ! RS, Un(Xn, X n,y) # U} $ RS,

Fixing the externalities, the assumptions oru, are standard in OsmoothO
general equilibrium models.

T denotes the set of = (t;);~, satisfying Assumption 1 and Assumption 2,
and U denotes the set oli = (up)nry satisfying Assumption 3.

Remark 4 From now on,u! U ands! S are kept Pxed and an economy is
parameterized by transformation functions and initial endowments, e) taken
in the following setT " R$H.

3 Competitive equilibrium with externalities

This section summarizes the notions and the main result of Chapter 1.

Without loss of generality, commodity C is the numeraire good So, given
p' ! RS ! with innocuous abuse of notation, we denotg:= (p',1)! RS, .

Debnition 5 (x*,y#,p™) 1 R¢H " RS " RE! ! is a competitive equilibrium
for the economy(t,e) ! T " R¢H if

Q) forall j! J, yj# solves the following problem

max p* ay,
yi " RC Py (2)
subject to t;(y;,y{;,x*) # 0

(2) Forall h! H, x{ solves the following problem

max  Un(Xn, X{ , ¥¥)

Xh" RY, | (3)
subject to p* ax, % p” a(e, + Sih yj#)
i"J

(3) (x*,y"H ! REH"1 RS satisbes market clearing conditions, that is
! ! !
Xp = et Y (4)
h" H h" H i"J
In the following propositions, using the KarushbBKuhnbTucker necessary and
sul cient conditions, we characterize the solutions of Prms and households



maximization problems.

Proposition 6 Giveny:; ! R°U" Y x' I R¢H andp'' ! RE !

++ 1

Q) if yj’ is a solution to problem (5), then it is the unique solution.

(2) y; ! RCis the solution to problem (5) if and only if there exists; ! R..
such that(yj’ ! j’) is the unique solution to the following system
|

#p +' D tJ(le ’ ):O

(5)
$tj(y11 ) '):0

Proposition 7 Givenx!, ! RS" Y y' 1 R andp'' I RS L,

%
Q) ifpa sn yj! " 0, then there exists a unique solution to problem (5).
j#J
(2) x;, ! RS, is the solution to problem (5) if and only if there exists |, !
R..+ such that(x;," ) is the unique solution to the following system
!
=# DXh Uh(Xh,X-!- h1y!) # " hp! = O
%
E#p axn# en#  Spy)=0
j#J
Let! := (RS, $ R )M $ (RS R.y ) $ RS, ! be the set of endogenous vari-
ables with generic elementt:= (x,",y,!,p') = (( Xn, " n)nr, (Vi ! j)ja P

(6)

We can now describe equilibria using the propositions above and the market
clearing conditions (4). One should notice that, due to the Walras law and
the second equation in (6), the market clearing condition for commodit§ is
OredundantO.

For a given economytie) ! T $ RE¢H, the equilibrium function Fie 1! %
Rdim ! ’

Fre (#) == (FRY(#) , FR2 @) hen (Fid (3 FIZ @) 00 FL ) (7)

|0§ debned byFthe1 (#) = Dy, Un(Xn, X" 1, Y) # "np, F2(#) = #pa(xn # e, #
SihY;), Fte (#H = p+ Dy t(y,yj,X), I:te (#) = t(y;,y,%), and

oy, o, %
N# = Xp# Y # e,.

h#H j#d h#H

]#J

# 1 1 is an extended equilibrium for the economyt(e) ! T $ R¢H if and
only if Fie (#)=0. We call # simply an equilibrium.

Theorem 8 (Existence and compactness) For every economy(t,e) ! T$
R$H | the equilibrium setF;.'(0) is non-empty and compact.



4 Regular economy and its properties

In this section, Prst we recall the notion of a regular economy. Second, we
provide the main properties of a regular economy, see Proposition 10 below.

Debnition 9 (t,e) ! T " REH is a regular economy if for each' ! F,.}(0),

(1) Fie is a C! function around!'.®
(2) The di! erential mappingD, Fi¢('') is onto.

R denotes the set of regular economies.

Our main result is Theorem 14 in Section 7 which states the regularity result
for almost all perturbed economies.

Now, debPneB := R® " R¢H, and endow the setC?(B, R) with the C2
Whitney topology (see Debnition 21 in Appendix A), the seR¢H with the
Euclidean topology, and the sefl " R¢H with the topology induced by the
product topology onC?(B, R)’ " R¢H.

As a consequence of Theorem 14, the 98tis a non-empty open subset of
T" R¢H, see Corollary 19 in Section 8. So, one easily deduces the following
proposition from Theorem 8, Corollary 19, Lemma 20 in Section 8, a conse-
guence of the Regular Value Theorem and the Implicit Function Theorem (see
Corollary 23 and Theorem 26 in Appendix A).

Proposition 10 (Properties of regular economies) For each(t,e)! R,

(1) the equilibrium set associated with the econonfy €) is a non-empty Pnite
set, i.e.,

#r1 N\{O}: F 0)={'%..,1"}

(2) there exist an open neighborhootl of (t,e) in T " RSH, and for each
i =1,...,r an open neighborhootl; of ! in ! and a continuous function
g :1$ U such that

(a) Uj %Uk = &Ifj = k,

(b) gi(t! e): !|1 .

(c) forall (the)! I, Fat(0) = {g(t e): i=1,...,1},
(d) the economieg(t” €) ! | are regular.

5 Fie is a C! function around !' means that there exists an open neighborhood
I (") of I'" in! such that the restriction of Fye to | (!') is a C! function.



5 An example and perturbations of production sets

In this section, Prst we provide an example of a production economy with ex-
ternalities and an inPnite set of equilibria for all initial endowments. Second,
in order to avoid situations such as the one shown by the example, we con-
sider displacements of the boundaries of the production sets, that Emple
perturbations of the transformation functions.

Consider one household, two Prms and two commodities. bet= (x*, x?) be
the consumption of the household ang; = (yjl,yjz) be the production plan of
Prmj = 1,2. We denote withe = (€e!, €?) the initial endowment. The utility

function is given by

1 1
u(xt, xt) = > Inx*+ > In x2

In this example, each Prm uses commodity 2 to produce commodity 1. More-
over, the production set of brm is a ected by the output of the other brm.
The production set of brm;j is the following set.

Yi(vi) = {(vhyD) ! REiy2" Oandtj(yhy2yl) =2 #yPHyl#yl$ O}

We remark that all the basic assumptions to get the existence of equilibria
are satisbed except Point 2 of Assumption 1. Although Point 2 of Assumption
1 is not satisbed, the existence result holds true since, at equilibrium, the
aggregate probt is non-negative. See the aggregate probt given by condition
(10) below, and related comments at page 7 of Chapter 1.

Normalize the price of commodity 2. At equilibrium, Prnj solves the following
maximization problem

"o 2
max p yj + yj
y]1,> 0, y§< 0 |

subjectto 2 #y?# y;1 # y'$ 0

For each brmj = 1,2, the associated Karush-Kuhn-Thucker conditions are
given by |

" 1 T "
p =1, 1=1;! L 2 #YPHYTHY =0

# yj2

Thus, at equilibrium, one gets
yi'=2p #y,h andy,® = #(p)? 8)

and
Y.t =2p #y,tandy,’ = #(p)? (9)



By (8), at equilibrium, the aggregate probt is given by

12
YY) E PRI ) () Ry ()P =0 (10)

j_
So, household®s maximization problem is given by
1 1 1 2
Xr'nF%T sInx*+ SInx
subjectto p'xt+ x2" p'et+ €
The associated Karush-Kuhn-Thucker conditions are given by
1 1
— =1 p-’ -
2x1 2x2

Thus, at equilibrium, one gets

=1, pxlex2=pe+é

| 1 | ] 1 |
x't= —(pet+e)andx'?= Z(pe + &) (11)
2p 2
Using market clearing condition for commodity 1, one Pnds the equilibrium
p = (eh)2 +16e?! €' (12)

8
Finally, using (8), (9), (11) and (12), any bundle
((p', 1), x',yi,y5) # R2, $ R2, $ R?$ R? such thaty,* # [0,2p']

is a competitive equilibrium. Thus, we have an inPnite set of equilibria which
are parametrized byy,! # [0, 2p'].

One should notice that without externalities at all, if the output price in-
creases then the output supply of both Prms increases t60So, equilibria are
completely determined. In our example, we have an inbnite set of equilibria
since, for giveny,?, if the output price p' increases byk units then the output
supply y;! of brm 1 increases byRunits, and consequently the output supply

y5! of Prm 2 does not change since the price increase is compensated by brm
10s output increase. Therefore, the output supply of brm 2 is indeterminate
since the two ¢ ects d set each others.

So, in order to overcome theleacts described above, we considample pertur-
bations of the transformation functions. The dePnition of a perturbed economy
for a givent # T is provided below.

®.In this case, the transformation function of brm j is given by t;(yj,y?) :=

2 Ly?rylh



Debpnition 11 (Perturbed economies) Lett! T, a perturbed production
economy(t + b, & is parametrized by transformation levelb:= (B );;; ! RJ,
and endowmente! R¢H where

t+b:=(t+b)s
I :=RJ, " R¢" denotes the set of perturbed production economies.

It an easy matter to show that for every (b,€ ! !, the perturbed production
economy (t+b,8! T" REH since t + bsatisfies Assumptions 1 and 2.

6 Two additional assumptions

One should notice that in the previous example,

(1) the perturbations of the production sets are su" cient to control the first-
order external e#ects,

(2) there are no second-order external e#ects since the derivatives of the
marginal productions with respect to the choices of the others are equal
to zero.

But, as shown in Bonnisseau and del Mercato (2010), in the case of only
consumption externalities, regularity may fail when the second-order exter-
nal e#fects are too strong. So, the basic assumptions and the perturbations
introduced in the previous paragraph may be not su" cient to control the
second-order external e#ects thereby preventing the regularity result. Thus,
we introduce the following two additional assumptions.

!
Assumption 12 Let(x,y,z)! R¢'" RS" RS such thatz ! ker Dy, tj (Yj, Y, X)
" " jrd
and z =0.Then,z D¢, t(yj,yj,X)(z) < 0 wheneverz # 0.
i1 f1J

Assumption 13 Let (x,v,y,z) ! R¢H " REH " RS " RS such thatv !

ker Dy, Un(Xn, X" h,Y), Z! ker Dy tj (y;,y-j,Xx)and vy =z, then
h! H jtd h! H jta
Q) vy kaxh Un (Xn, X+ 1, Y)(Vk) < 0 wheneverv, # 0,
k! H #
(2) z DLyt Y, X) (%) $ 0 wheneverv ! ker Dy, tj (Y, Y, X)
k! H jrd

for everyk ! H.

Assumptions 12 and 13 can be interpreted in a similar way as Assumption 9
in Bonnisseau and del Mercato (2010). More specifically,

10



¥ Assumption 12 means that the kect of changes in the production plans
(Yt )rej of Prms other thanj on the marginal productionDy, t; (y;, Y-, X)
is OdominatedO by the!@ct of changes in the production plary; of brm
j . Indeed, under Point 4 of Assumption 1, Assumption 12 states that the
ab!solute value ofz Dﬁjtj (Y, ¥ j,X)(z) is larger than the remaining term
zi Dy by, x)(Z)

fE]
¥ Points 1 of Assumption 13 means that the !leect of changes in the con-

sumptions (g)k#n Of the households other tharh on the marginal utility
Dy, Un(Xn, X+ 1, y) is OdominatedO by the!ect of changes in the consump-
tion x;, of householdh. Under Point 3 of Assumption 3, Points 1 of Assump-
tion 13 means that the absolute value of/hDﬁj Unh(Xn, X 1, Y)(Vh) is larger

than the remaining termvy, D2 . Un(Xn, X» n, Y)(Vi).
kEh

We provide below an example of transformation functions which satisfy As-
sumption 12. In the example, there are two Prms and two commodities. Let
yj = (yjl,yjz) be the production plan of brmj = 1,2. Each bPrm uses com-
modity 2 to produce commodity 1, swjl > 0 and yj2 < O for everyj =1,2.
Each production technology is bected by the output of the other bPrm in the
following way.

ti(yny2) =2 (1 y)lyd! yrandty(ys,ys) =2 (! y2)"yi! y

with I > 0 and" > 0. An example of utility function which satispes Point
1 of Assumption 13 is provided in Section 4 of Bonnisseau and del Mercato
(2010).

7 Regularity for almost all perturbed economies

In this section, we prove the following theorem which is our main result. Let
t" T, consider the set of perturbed economiés given by DebPnition 11.

Theorem 14 (Regularity for almost all perturbed economies) The set
"t of (b,e" " such that(t + b, is a regular economy is an open and full
measure subset of;.

In order to prove the theorem above, we introduce the following notations and
we provide three auxiliary lemmas, namely Lemmas 15, 16 and 17.

For given (b, " "¢, by Point 1 of Assumptions 1 and 3 the equilibrium
function Fy.p e is C! everywhere. So, by Debnition 9 the economy < b, 8 is
regular if

## " F.50), rankD, Fr.pe(#) = dim #

11



DePne the following set

¢C:= (,b,e! E'Y0): rankD,E(!,b,8 < dim! :
where the functionf : ! " " # RY™! is debned by
F(t,0,8:= Frpe(!)
and denote with# the restriction to F' *(0) of the projection of! " " onto

"¢, that is
#:(,b,8! E'Y0)# #(!,b,8:=(b,a! ",

We can now express the sét given in Theorem 14 as
lllt' = "t\ #(d:)

So, in order to prove Theorem 14, it is enough to show that(¢) is a closed
setin"; and #(¢) is of measure zero.

We brst claim that # (¢) is a closed set iff' ;. From Point 1 of Assumptions 1
and 3,F is a continuous function onl " ", and D, E is a continuous function on
E! 1(0). The set¢ is characterized by the fact that the determinant of all the
square submatrices ob, E (!, b, 8 of dimension dim! is equal to zero. Since
the determinant is a continuous function andD, E is continuous onkE!' 1(0),
the set € is closed inE' 1(0). Thus, #(C) is closed since the projectior# is
proper.” The properness of the projectior# is provided in Lemma 16 given
below.

Furthermore, we also provide Lemma 15 which states that the set of feasible
allocations is bounded and it is used to prove Step 1 in the proof of Lemma
16.

Lemma 15 For every(t,r)! T " RS, , the following set is bounded.

— CHn CJ : $ $ '
Ft,r = {(X1y) I R++ R | t] (y] 1y! j!X) $ 01 %J I ‘J and Xh& yj r}
h" H i*J
(13)

Proof. The setF;, is bounded since it is included in the sef\;; debned in
Lemma 16 of Chapter 1 which is bounded by Assumption 2a

Lemma 16 The projection# : E! 1(0) # " is a proper function.

Proof. We show that any sequence!(,b,e).-n ( E'%0), up to a sub-
sequence, converges to an element Bf 1(0), knowing that the sequence
#(1",b,e)n=(b,e)n( "¢ converges to sometf,e’) ! ",.

7 See Debnition 25 in Appendix A.

12



We recall that !' = (x',"",y",#',p'"). In order to simplify the notation,
debne

t! (yj Y j !X) = t(yjly! j !X)+ b'
Step 1. Up to a subsequencéx',y'),-n converges ta(x*, y#) I REH " RS,

The idea of the proof is to show that for an appropriatef(r) ! T" RS, , the
sequenceX',y' )~ n belongs to the setfF; . debned by Lemma 15.

Consider the following set{b : $ ! N} # {If} which is obviously compact,
and debne

b:=max{b :$! N} #{b"} and t:=t+D

By debnition, we gett(y;,y: j,X) $ t'(y;,y:j,X) for every (yj,yij,x)! R®"
RCU! D RCH and for every$ ! N. SinceE!2(1',B,€)=0, forevery$! N
we get

fj(yj!!y!!j1x!)$ 0

Now, for every commodityc consider the following compact sefe’ : $ !
N} # { €}, and debne

C

re:= e and 1:=(r%¢c

max
ec" {e'c:l " N}${e' ¢} h" H

Summing EM2(1' B ,€) = 0 over h, by EM(1',B,€) = 0 we have that

X, % y, = g forall$! N.So, by depnition for all$! N, we get
h"H i"J h"H

Xp% Yy &T
h" H i"J

Thus, (x',y')i"n ' Fgr. Consequently, the sequencex{,y'),~n belongs to
clF¢+ which is compact since it is bounded by Lemma 15. So, up to a sub-
sequence, X',y )~y converges to somexf,y*) I clF;.' R " RS, and
thus (x*,y#) 1 RE¢H " RS,

Step 2. The consumption allocationx” is strictly positive, i.e. x* (0.

The proof is based on Point 4 of Assumption 3. B™1(1! b, €)= EM2(1! B, €)=
0 and KarushBKuhnbTucker ducient conditions,x;, solves the following prob-
lem for every$ ! N.

max  Un(Xn, Xi n,Y')

o RS, | :

subjecttop &xh & p 4g, + P &  SpY,
"3

13



We prst claim that for every! ! N, the point €, belongs to the budget
constraint of the problem above. Byt-1("! b ,¢e) = El2("' B,€) =0 and
KarushbKuhnbTucker su cient conditions,yj’ solves the following problem for
every! I N.

max p ay;

yj ! RC P J (14)

subjecttot; (y;,y-;,x')" 0
Since inactivity is possible,tj! (0,y: j ,X')" 0 by Point 2 of Assumption 1. So,
pay: " p &0 = 0. Therefore,

p! a th yj! "0
jrd

which completes the proof of the claim.

We claim now that x{ belongs to the closure of some upper contour set. Ob-
viously, for every! I N

uh(xiwx'!' h1y!) ! uh(eL,x-‘- h1y!)

By Point 2 of Assumption 3, for every# > 0 we have thatup (X}, + #1,x! ,,y') >
un(e,, X,y ) wherel:=(1,...,1)! RS, . So, taking the limit for ! # +$
and using the continuity ofuy, given by Point 1 of Assumption 3, sinced,) n
converges tcgf | RS, we getun(xi+ #1, x¥,,y") " un(ef, x#,,y") ;= u. That
is, for every#> 0 the point (xf + #1) belongs to the following set

{xn! RS, un(xn, x¥, ¥y " u}

So, the pointx{ belongs to the closure of set above which is included Rf;,
by Point 4 of Assumption 3. Thereforexf ! R¢H.

Step 3. Up to a subsequencg$',p ‘)i n converges to somé$?, p*') !
R, %RE
By Ei-1 ("' b,€) =0, considering commodityC, we get

1
Dyc GOy Y. xt)

$ =& , "IN

Debnet” := t + I, whereli” is the limit of the sequencel§ ), . Taking the
limit for ! # +$ , by Points 1 and 3 of Assumption 1, the sequenc&j(); I'N
converges to

1
$7 =& >0
’ Dyc th(y?, v, x¥)
By i1 ("' B,€) =0, for every commodityc& C and for all! ! N we have

P = &8 Dyt (¥, X)

14



Taking the limit, by Points 1 and 3 of Assumption 1, for allct C we get
P =" 1 Dyeti(y),yi;,x') > 0

Therefore,p' \ # RS, L.

Step 4. Up to a subsequence, ("')i#n converges to some "' # RY, .

By EN1(# ,b,€) =0, considering commodityC for every$ # N we get

h = Dxﬁ Uh(X!h,X-!- h!y!)

Taking the limit and using the continuity of Duy, (see Point 1 of Assumption
3) we have

"= DygUn(, X y)
which is strictly positive since bxing the externalities the functiom,, is di! er-
entiably strictly increasing (see Point 2 of Assumption 3).m

To complete the proof of Theorem 14, we claim now that (¢) is of measure
zero in#,. The result follows by Lemma 17 given below and a consequence
of SardOs Theorem (see Theorem 24 in Appendix A). Indeed, Lemma 17 and
Theorem 24 imply that there exists a full measure subsé&t of #, such that for
each p,@ # $ and for each# such that E(#,b,8 =0, rank D-E(#,b,8 =
dim % Now, let (b, # " (&), then there exists# # %such that E(#b,8 =

0 and rankD-F (#,b,8 < dim % So, 0, # $. This prove that " (€) is
included in the complementary of$, that is in $€ = #,\ $. Since$° has
zero measure, so too doé&s(C). Thus, the set of regular perturbed economies
#; is of full measure sincé $ #; which completes the proof of Theorem 14.

Lemma 17 0 is a reqular value for E .

Proof. It is enough to prove that for each #,b,€') # E" 1(0), the Jacobian
matrix D, F (#,0,€) has full row rank.

Let & = ((&Xn, &" n)nen, (&Y), & )jzs,&p') # RH(CED 04 RICH) o5 RC" 1,
We need to show that&D- ,F(#,0,€) = 0 implies & = 0. Consider the
computation of the partial Jacobian matrix with respect to the following vari-
ables?®

((Xns " ho@)ngrs (Y5, . 8)j40 ,p\)

8 The computation of D, F (!', b, &) is described in Appendix B.
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The partial system! D, pF (1,0, €) =0 is written in detail below.

&
: ! XhD)%th uh(xiw’xi!#my!)! ! "kp! + #]I' ijskyj tj (yj!ayq!#jax!)"'
E i
E L #ED (YL Y X ) H P [Ies1l0]=0, " k# H
RN
!l xpdp =0, " h#H
& I 2 Iyl ! & | ! & y 2 o !

. h" H j"J

g #H Dy (Y LY, X )t P leka]0]=0, " f # ]
I
! Y ADy () Ye, X)) =0, ] #
! "pp' ! ! p [1c#1|0]=0, " h# H
g & o & o, & ny, & \
;| hoXg ! F'(xp oy ! Shy; )+ ly; =0
®  h'H h* H i"J i"J

Sincep'© =1, we get
| ", =0foreachh#H and! p' =0

So, the above system becomes

& | | I & | | ] | n
(1) D XhDE o, Un(Xhs Xien, Y )+ #1 YiDE (Y] Ve, X)) =0, " k#H
h" H i3

() ! xpdp =0," h#H

& D | & o | )
3) i H! XhD)%thUh(X'h,X#h,y')‘F_ J#j'! YJDiyjtj(yj,y#j,X'):O, F#J
" -

(4) !y 8Dy ti(y, ¥y, X')=0, " j#J

& nl \ & \
. (5) ! DO ly; =0
h" H i"d
(15)

Multiplying both sides of equationE*(!',B,€)=0by ! y, and using equa-
tion (4) in system (15), we get! y; &p' = ! #! y; 4Dyt Q/j!,y;j,x‘):o.
Summing overj and considering commodityC, we obtain ! ! yj\ ap'' =
i"J
! ij. Multiplying equation (2) in system (15) by" |, summing overh and
" & &
considering commodityC, we obtain ~ "}! x$ = ! "1 x, ap'. Finally
h" H h" H
&
using equation (5) in system (15), we get "i! x5 = ! ! yj\ ap' =
h" H i"J
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!
! ij. From the previous result and equation (5) in system (15), we obtain
jed
! !
! ;l Xh = ! Yi
heH j€ed

Observe that fromF"1("*, b*, e*) = 0 and equation (2) in system (15), we get

#
(' Xh)hEH I kerDXh uh(Xr]axihay*)
heH

From equation (4) in system (15) , we obtain

#
(" Yj)jea ! kerDy, t; (Y}, yZ;, X")

jed
Multiplying both sides of equationF!1("*, b*,e) =0 by ! x4 and using equa-
tion (2) in system (15), one obtains

$
I Xy ! kerDy, t; (Y, y%;,x%), " k! H
jed

Now, for everyh! H and for everyj ! J debne
vh =1 Xpandz =1y, (16)

From the previous arguments it follows that the vector (i, Vn)ner, (¥}, Z)jea )

satisbes the following conditions.
! !

Vh = Z (17)
cH jed
(Vh)hen ! kerDy, un(Xp, X" p, Y*) (18)
hﬁH
(Z)jes ! kerDy, t; (Y}, y%;, X) (29)
jed
Vi | kerDy, t; (Y, y%;,x%), " k! H (20)

jed
Multiplying both sides of equation (1) in system (15) by, we get
| |
’ 2 *

! XhD)%th Un(Xp, X2, V) (Vi) = # . #iL Y Dy (s Y25, X)) (V)
heH jed

Since! ; $0 for all h! H, then it follows by (16) that for eachk ! H
Vh 2 * * * — ! * 2 * % *
7+ Do Un (X, X2, Y)W = # 0 #7Z0D5, 8 (Y] Y75 X)) (Vi)
heH* h jed

Summing overk ! H, we get
VA , ! ! 5
1* kaxh Un (X:\’ Xihl y*)(vk) = # #j*zj kayj tj (yj*! yi] ) X*)(Vk)
heH * hkeH jed keH
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From (17), (18) and (19), all the conditions of Assumption 13 are satisbed.
Since! J' > 0 for eachj ! J, the equality above, (20) and Point 2 of Assump-
tion 13 imply that

! 1 ! 2 | | | "

ﬁvh DXth uh(xi']’ X# h’y. )(Vk) O

h*H h k"H
Since"} > 0 forallh! H, Point 1 of Assumption 13 implies thatv, = 0 for
all h! H, and by (16) we get

' xp =0, #h! H

So, condition (17) becomes |
Zj =0 (21)
i"Jd
and equation (3) in system (15) becomes
!

i"d

Multiplying both sides by zz and summing upf ! J, we obtain

! | l | | |

lizi Dy y (Y, Y, X )Nz) =0

i"J f"d
By (19) and (21), all the conditions of Assumption 12 are satisped. Since
IJ' > 0 for eachj ! J, Assumption 12 implies thatz = O for eachj ! J,
and so by (16), we get

Ly, =0, #j ! J

Thus, ! =0 which completes the proof. m

The following remark is an easy consequence of Theorem 14.

Remark 18 Since" | is a full measure subset df; = R}, $ R¢H, then it is
dense in" ;. Thus, one easily deduces thdt! is dense inR} $ R¢H.

8 Regularity in the space of endowments and transformation func-
tions

In the following corollary, we provide an important consequence of Theorem
14, that is the set of regular economies is a non-empty open subset of the
space of endowments and transformation functions.

As in Section 4, we recall thaB = R’ $ R¢H, C?(B, R) is endowed with the
C? Whitney topology (see Debnition 21 in Appendix A) and the seT $ R¢H
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is endowed with the topology induced by the product topology 062(B, R)” !
REH.

Corollary 19 The setR of regylar economies is a open subset ©f! R¢H

and it contains the following set {(t+ b,&: (b, " !1}.°
T

In order to prove the corollary above, we introduce the following notation and
we provide an auxiliary lemma, namely Lemma 20. Describe the set of regular
economies as

R={(te" T! RS : #1" F(4te) 1(0), rankD,F(!,t,e) =dim "}

where the global equilibrium functionF : " ! T ! R¢H $ RY™! given by
F(',te):= Fe(!). Using the debnition of open set and the following lemma,
one easily checks that the seR is a open subset of | R¢H.

Lemma 20 The functionsF and D,F debned o' | C%(B,R)’! R¢H are
continuous.

Proof. We prove that F is continuous. In a analogous way one easily shows
that D,F is a continuous function. SinceC?(B, R) is a linear space and- is

a linear function with respect tot " C?(B, R)’, it is enough to prove that

F is continuous at any point ¢,0,8) with t =0 " C%@B,R)’ and (,8) "

"1 RE¢H. SinceF is continuous at (, 0, €) if and only if all its components are
continuous, we show that the componerfE-(!,t,e) = p+ " Dy, ti (¥j, ¥+, %)

is continuous at (,0,€). Using the same strategy, one easily proves that all
the other components of are continuous.

Fix a commodity ¢c" Cand #> 0, we claim that there exists an open neigh-
borhood! of (y,x,*;,p%0)in B! RZ ! C?B,R) such that

#(Y, X" p50 " 1P+ Dyt (. v, X) %P7 < #

#%#;

H—

Fix #, > 0 and# > 0 such that # :=

J
strictly positive function $ debPned orB such that

> 0, and a continuous and

Ky, x) < #

Since$ is continuous at ,X), for given %:= #%$(y,X) > 0 there exists an
open neighborhood (Y, X, #) of (y,X) in B such that

#(y,x) " 1Y, X, #), §y,x) < %+ §y,%) = # (22)

9 The set! | is given by Theorem 14.
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Consider now the open neighborhooHN (0, !) of the function O determined by
I in the C? Whitney topology, that is
N(,!)={t! C3B,R) : |t(y,x)| < !(y,x) and
"DXt(y,x)" < 1(y,X), #(y,x)! Band#k=1,2}
By (22), for everyt! N(O,!) and for every ,x) ! 1(y,X,"1) we get
IDyeti (¥, ¥ 5, )1 8" Dy ti (i, yrj,X)" <™
thebne now the following open neighborhood of K&, #;,p% 0) in B %R3, %
C4%B,R)

== 1(y,X,"1) %I (#,"2) %I (p%"3) %N (0,!)
For every (x,y,#;,p%1t) ! | we get

[P°+ #; Dyt (¥, V1 j,X) & P°$ [p° & P°| + #;[Dyet; (y;, 1§, X)| <
"g (# + "2)IDyeti (Y, Y, X) S s (H + "2) "Dy iy, X)" <

" et ey &3,
s+ (#H +")" ="+ (H+ z)#j o,
So, the claim is completely proved.s
Appendix A

Whitney topology

Let B := R® %R¢H. We are interested onC? functions debned orB (see
Point 1 of Assumption 1),C?(B, R) denotes the set ofC? functions fromB to

R. We provide below the debnition of theC? Whitney topology on C?(B, R).
SinceC?(B, R) is a linear space, in order to dePne th€2 Whitney topology

on C?(B, R), itis su! cient to dePne neighborhood basis of the function zero.
For additional details, see for instance Allen (1981, p. 284), Smale (1974, p.
4) and Golubitsky and Guillemin (1973, p. 42).

Debnition 21 Let! : B ' R be a continuous and strictly positive function.
The open neighborhood (0,!) of the function0! C?(B, R) is debned as

N(,!):={g! C3B,R) : |9(2)]<!'(2)#z! B and
"DXg(z)" < !(z2)#z! B and#k =1,2}
Neighborhoods of ! C?(B, R), for f € 0 can be constructed for translation,

that is the neighborhood of determined by! is given byN(f,!) = f +
N(O,!). For everyf ! C?(B, R), the collection of{N (f, !)}i4co(s r,. ) forms
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a neighborhood basis of the functioh in the C? Whitney topology, where!
varies in the space of all continuous and strictly positive functions.

The C2 Whitney topology on C2(B, R) is not necessarily metrizable. However,
if the set B is compact, theC? Whitney topology coincides with the topology
of the C2? uniform convergence on compact&’

Regular values and transversality

The theory of general economic equilibrium from a terentiable prospective

is based on results from dierential topology. Following are the ones used in
our analysis. These results, as well as generalizations on these issues, can be
found for instance in Guillemin and Pollack (1974), Hirsch (1976), Mas-Colell
(1985) and Villanacci et al. (2002).

Theorem 22 (Regular Value Theorem) LetM, N be C" manifolds of di-
mensionsm and n, respectively. Letf : M I N be aC" function. Assume
r>max{m" n,0}. If y# N is a regular value forf , then

(D) if m<n, f'i(y)=$,
(2) if m%n, either f'1(y)=$, or f'1(y) is an (m" n)-dimensional sub-
manifold of M .

Corollary 23 Let M, N be C" manifolds of the same dimension. Let :
M I N be aC' function. Assumer % 1. Let y # N a regular value forf
such thatf ' (y) is non-empty and compact. Thenf ' 1(y) is a bnite subset of
M.

The following results is a consequence of SardOs Theorem for manifolds.

Theorem 24 (Transversality Theorem) LetM, " and N beC" manifolds of

dimensionsm, p and n, respectively. Letf : M & " ! N be aC'" function.
Assumer > max{m" n,0}. If y# N is a regular value forf , then there exists
a full measure subset " of " such that for any" # " ", y # N is a regular

value forf,, where
fr:##M! f,.BH=FH")#N

Debnition 25 Let (X,d) and (Y,d) be two metric spaces. A functiors :
X 1 Y is proper if it is continuous and one among the following conditions
holds true.

(1) $ is closed and$' (y) is compact for eachy # Y,
10We recall that by debnition, f" ! f in the topology of C? uniform convergence

on compacta if and only if (f ")hgn, (Df Mgy and (D?f ") gy converge uniformly
to f, Df and D?f respectively on any compact set included irB.
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(2) if K is a compact subset of, then!' 1(K) is a compact subset oX,
(3) if (x"),~n Is a sequence irX such that(! (x")),n converges inY, then
(x")y N has a converging subsequence Xn.

The above conditions are equivalent.

Theorem 26 (Implicit Function Theorem) Let M, N beC" manifolds of the
same dimension. Assume ! 1. Let (X, ") be a topological space, antl :

M " X # N be a continuous function such thabD,f (# x) exists and it is
continuous onM " X. If f(#x) =0 and D,f (# x) is onto, then there exist
an open neighborhood of x in X, an open neighborhoodJ of # in M and

a continuous functiong : | # U such thatg(x) = # f (#,x%» = 0 holds for
# xH $ U" | if and only if # = g(x*, and D,f (# x* is onto for every
(# x"$ U" | such thatf (# x*=0.

Appendix B

The computation of D, oF (#%, %, €%) is described below, wher@cyc: 1y is a
zero matrix and i := [l ¢, 1|0kc: 1yuc
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Comparison with Mandel (2008)

In this section we compare the results obtained in Chapter 2 with the regularity
result in Mandel (2008).

As discussed in Introduction, Mandel (2008) has to enlarge the commodity
space treating externalities as additional variables. Moreover, bxing the pro-
duction technologies, in order to provide a regularity result for almost all initial
endowments, the author assumes that a small change in the externalities cre-
ated by all the agents on an agent does not generate changes in the choices
of the latter agent which would in turn involve the exact same change on
the behavior of the others, see Assumption TR2 at page 1395. As stressed in
Introduction, Assumption TR2 involves endogenous variables, more precisely
the derivatives of consumersO demands and brmsO supplies.

We now show that Assumption TR2 implicitly involves the Lagrange multipli-
ers, that is the equilibrium prices. Furthermore, we show that this assumption
is equivalent to assume that the partial Jacobian matrix of the following com-
ponents _ _

(FEH () FEZ Onens (FE () FEE (1))
of the equilibrium function debned in (7), with respect to the variables ¥, " n)ni H
(Y, #;)j1 5 ) has full rank, which implies that the Jacobian matrixD, Fie(!")
given in DebPnition 9 is onto.

For simplicity, we prove this equivalence by considering the simple case of
one household, two Prms and production externalities among Prms. In order
to state Assumption TR2 of Mandel (2008) in this context, one needs to
enlarge the commaodity space introducing the additional variable® ! R? for

j = 1,2 which represent the externalities created by Prin Furthermore, one
requires that at equilibrium the supplyy; (p,$x;) of Prmj must be equal to
the externalities $ created by brmj, that is

$" yi(p.%)=0

A simple case: Assumption TR2, Mandel (2008). The square matrixC
given below has full rank.

w2 wl "2
1 2

1
1 2

| $
1 0 #D,1y3(p."5) #D,2yi(p,"
"1#yip2) 11Y1(P."2) #Dy2yi(p 2)y
..2# 2( ,,) " 0 1 #D!%yf(p’nz)#Dlgyf(p.nz)%
yr(p,“2) »

1 1 U # #Dayi(p,"1) #D,2y3(p."1) 1 o é
> #y5(p,"1) #Dl o #Dl P ' )
"Z# Y3(p,"1) 11Y3(P."1) #Dy2y3(p."1)

We claim that the assumption above is equivalent to assume that the matrix
A debned below has full rank. The matriA is nothing else that the partial

24



Jacobian matrix of the components I{t""el(! ), th,'ez (!))j=1,2 of the equilibrium
function debned in (7), with respect to the variablesy," j);=1 .

" 1Dy1ta(y1, ¥2)
"1Dy2ta(y1,Y2)

" 0

" 2Dyita(y2, Y1)
Y2 w " 5D2 Lt "2D32t2 0 Dygtz "2D|21y2t2 "2D|22y2t2

n 2Dy§t2(y2,yl) # 2 O t1Y2 t1)2

yi yi "1 Y2 Y5 "2
[
" 1D§%t1 " lD)%fy%tl Dy%tl " 1D§%y%t1 " 1D§§y%t1 0
" 1D§%y§t1 " 1D§§t1 Dy%tl " 1D§a%y%tl " 1D§§y%t1 0
Dy%tl Dy%tl 0 Dy%tl Dygtl 0

n 2 " 2 n 2 n 2
ZDy;ZLtz 2Dy§y%t2 Dy%tZ 2Dy%y%t2 ZDyfy%tz
2=y3y3

Dy%tz Dy%tz Dy%tz Dygtz 0

In order to prove that matrix A has full rank if and only if matrix C has full
rank, we consider an auxiliary matrixB which is the partial Jacobian matrix
of the following system.

(h.1) Dy, un(Xp)! $hp=0

2
(h2) ! paix,! &!  y)=0
j=1

(J-1) p+"iDyt(y;,yj)=0, j=1,2
(4.2) ti(y;,yj)=0, j=1,2

+
M) x ! y ! =0
j=1,2

' (E) #!y =0, j=1,2

We recall that equation E) means that at equilibrium the supplyy; of Prm
j must be equal to the externalities# created by Prmj. The matrix B given
below is the partial Jacobian matrix of the left side of equations.(1), (j. 2),
(M) and (E) with respect to the variables §;," ;,# );=1 2.
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| vi i ' % % L2 i "2 "3 "3
. ) ! 1D5%t1 ! 1D§Mt1 Dy%tl 0 0 0 0 0 ! 1D!2%y%t1 ! 1D!2Mt1
+ 11D 1t1(y1,"2) w
p 1 y% 1(y1,"2) ool 1D§1y2t1 ! 1D§2t1 Dyztl 0 0 0 0 0 ! 1D|21y2t1 ! 1D|22y2t1
p2+ | 1Dy2t1(yl,"2) " 1Y1 1 1 c2Y1 271
1 :: Dylt]_ Dyztl 0 0 0 0 0 0 D!1t1 D!ztl
t1(y1,"2) " S 8 0 1,D2t, !,D2, .t Dyity ! 2D2, ,tr ! 2D2, ,to é é
p1+ ! 2Dy1t2(y2,"1) " y% y%y% Y2 !%y% !fy%
1 "
" 0 0 0 1!,D2 .ty !3D%,t; D2ty !2D2, ,ta | 2D2, Lt 0 0
p? + ! 2Dy§t2()/2,"1) " 2Fyiyze T 2Eyz? R N
ta(y2,"1) :: 0 0 0 Dy%tz Dygtg 0 D!%tz D!%tz 0 0
Wiy oyl " 11 0 0 0 0 0 1 0 0 0
1 . yl n
w2 2 " 0 11 0 0 0 0 0 1 0 0
1° Y1
w1y oyl # 0 0 0 11 0 0 0 0 1 0
2 Y2
w2 | 2 0 0 0 11 0 0 0 0 1
2 Y2

It is easy to check that matrix A has full rank if and only if matrix B has full
rank. So, in order to prove our claim it is enough to show that matriB has
full rank if and only if matrix C has full rank.

First of all, one should notice thatD-,,y;(p,!;;) given in matrix C can be
obtained di! erentiating the Karush-Kuhn-Tucker necessary and Sucient con-
ditions associated with the probt maximization problem of Prnj and using
the Cramer rule. Now, consider the square submatri®, obtained by taking
the prst three rows and the brst three columns of matriB. The submatrix
B1 has full rank.}! So, multiplying the prst three rows of matrixB by the
inverse matrix ofB; and summing row 1 to row 7 and row 2 to row 8 one gets
the following matrix. 2

1 'We recall that a di! erentiably strictly quasi-concave function with gradient dif-
ferent from zero has a bordered Hessian with determinant di! erent from zero (see
Points 3 and 4 of Assumption 1).

12 One should notice that also D, Vi (p,"1j) is obtained di! erentiating the Karush-
Kuhn-Tucker necessary and su" cient conditions associated with the profit maxi-
mization problem of firm j and using the Cramer rule.
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P YivE L s % 2 T g 'z "3 $
100 0 0 0 0 ! D;%Y%(p,"z) ! D;g)’%(p,"z)
" 0
» 010 0 0 0 0 0 1D,yi(p."2) ! D;;yf(p,u)?
" 001 0 0 0 0 0 ! D,1tH(p."2) Dy2ti(p"2) é
" 1 2 1 2 | 2 1 2
:: 000 ! sz%tz ! 2Dy%y%t2 Dy%tz ! zD!%y%tz ! 2D!%y%t2 0 0 é
" 0001!,D2 ,t; !2D2,ts Doty !2D2, Ltz !2D2, ,tz 0 0 %
" Y2Y3 Y2 Y2 t1ys 2 f
" 000 Dy%tz Dygtz 0 D!%tz D!%tz 0 0 ?
w000 0 0 0 1 0 ! D, 1yi(p."2) ! D!Sy%(p,"z)%
" 000 0 0 0 0 1 ! D!%y%(p,"z) ! Dlgyf(p,"z %
0
#000 11 0 0 0 0 1 0
000 0 11 0 0 0 0 1

Similarly, consider the square submatri®, obtained by taking the 4th, the 5th
and the 6th rows and the 4th, the 5th and the 6th columns. The submatrix
B, has full rank. So, multiplying the 4th, the 5th and the 6th rows of the
previous matrix by the inverse matrix ofB, and summing row 4 to row 9 and
row 5 to row 10 one gets the following matrix.

P VIVElayzvita ] "1 g "3
100000 0 0 I Dy1yi(p,"2) ! Dy2yi(p."2)
" 2 T2 9/
" 010000 0 0 ! D!%yf(p,"z) ! Dlgyf(p,"z)%
" 001000 0 0 1Dy313(p,"2) Dyz!A(p."2) ?
w000100! D!%y%(pyul) ! D!fyé(p,"l) 0 0 f
" 000010! D!%yg(p,"l) ! leyg(p,"l) 0 0 ?
w 000001! Dy1!a(p,"1) ! Dy2! 2(p."1) 0 0 f
" 000000 1 0 ! D!%y%(p,"z) ! D!gy%(p,"z)g
w 000000 0 1 ! D, 1yi(p."2) ! D!gyf(p,"z)?
#000000! D!%y%(p,"l) ! D!%y%(p,"l) 1 0 é
000000! D!%yg(p,"l) ! D!fyg(p,"l) 0 1

Finally, it is easy to check that the matrix above has full rank if and only if
matrix C has full rank. ConsequentlyB has full rank if and only if C has full
rank which completes the proof of our claim.
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Testable restrictions in a specibc model with
externalities and public goods: The collective
consumption model !
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1 Long abstract

We consider the collective consumption modetvith the two intra-household
members. We present the “non-parametric” methodology to test two bench-
mark cases of the collective consumption model, that is

¥ the case where all goods are publicly consumed within the household and

¥ the case where all goods are privately consumed within the household and
the individual preferences are egoistic.

Di! erently from the the previous literature, we find that the private and
public nature of consumption does have testable implications, even if one
only observes the aggregate group consumption. We believe that such “non-
parametric” approach is able to obtain stronger testability conclusions since
it focuses on conditions which involves personalized prices a la Lindahl and
personalized consumptions. Importantly, we do not require personalized prices
and personalized consumptions to be observable. Also, we derive the minimum

1 This Chapter is based on Cherchye, De Rock and Platino (2010).
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Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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number of observations that enables us to distinguish between the collective
model and the two benchmark cases.

Chapter 3 is organized as follows. Section2 sets the stage by briel3y recap-
turing Onon-parametricO tests of the unitary model. Section 3 introduces the
necessary and ducient conditions for the collective rationalization. Section 4
focuses on the two benchmark cases. In Section 5 we describe our main results
and Section 6 contains some concluding remarks.

In Appendix one Pnds the proofs of the results.

2 The Unitary Model

The unitary approach consider a household as a single decision maker that
maximizes its utility function subject to the budget constraint. Suppose to
observeT choices oh-valued bundles. For each observation g ! R} denotes
the consumption bundle andp; ! R?, the associate price vector. Le6 =
{(p,q);t=1,...,T} be the set of observations.

In this Section, we want to investigate if the data set has been generated by a
concave, continuous and monotonically increasing utility functiotd. We start
debning the concept of unitary rationalization of a data set as follows:

Debnition 1 LetS= {(p;,q);t=1,...,T} be a set of observations. A utility
function U provides a unitary rationalization of S if for each g

U(q) " U(a)
for all q! R? such thatp, &g# p: &g.

A unitary rationalization of the data set S requires that, for each observation
t, quantity g maximizes the utility function subject to the budget constraint

p: &G .

Varian (1982) shows that there exists a concave, continuous and monotonically
increasing utility function that rationalizes the data setS if and only if the
the data setS satisbes theGeneralize Axiom of Revealed Preferen¢&SARP).

Depnition 2 ( GARP ) Let S = {(p,q);t=1,...,T} be a set of observa-
tions. The setS satisbes the Generalize Axiom of Revealed Preferen€@ARP)
if there exist relationsRg, R such that

(i) if psags" psag then gRoq;



(i) if xRoqu, uRoG,,-- ., & Rog for some (possibly empty) sequengs, v, ...,
z) then xsRq;

(i) if Rqg thenp édg ! pr &ck.

Rule (i) states that the consumption vectorg is Odirect revealedO owg(i.e.

&Rog) if g was chosen when the consumption vectoy was available (i.e.
ps &g " ps 4g). R is the transitive closure of Ry and it is known as the
Orevealed preferenceQ relation; see (ii)le Finally rule (iii) states that each
consumption vectorg is expenditure minimizing (i.e.p; ag ! p; ag) with

respect to all the revealed preferred vectorg (i.e. Rq).

This leads to the following proposition:

Proposition 3 Let S= {(p;,q);t=1,...,T} be a set of observations. The
following conditions are equivalent:

(i) there exists a concave, continuous and monotonically increasing utility
function U that provide a unitary rationalization of S;

(i) The data set S satispesGARP.

Finally, one should observe that unitary rationality can be tested if we have
a data set with at least two observations and two goods.

A data set S with only one observation and/or one good always satisbes
GARP. More precisely, ifT = 1 it is not possible to specify the set of the
revealed preferred bundles, that is the Obetter thanO set. Therefore it is not
possible to rejectGARP. Moreover, if ¢ # R, all the scalar products in
DebPnition 2 are scalar multiplications. This implies thatgRoq if and only if

& " g and obviously alsogsRq if and only if g5 " . Thus, the quantity g

is always cost minimizing. It follows that it is not possible to rejecGARP.

3 General Collective Consumption Model

The collective approach assumes that members within a household are het-
erogeneous and have own preferences. Browing and Chiappori (1998) consider
a non-unitary household model in which the decisions taken by the two intra-
household members are Paretd eient, without specifying a particular point

on the Pareto frontier. The authors assume that all the goods can be con-
sumed privately, publicly or both, yet only prices and aggregate demand with
respect to some power distribution between the two intra-household members
are observed. Using a parametric approach, Browning and Chiappori (1998)



prove that the aggregate demand is compatible with the Pareto optimal deci-
sion behavior if it satisPes some restrictions on a Pseudo-Slutsky matrix. The
Pseudo-Slutsky matrix is the sum of the classical Slutsky matrix which mea-
sures the change in demand induced by the variation of prices and income,
and another matrix which measures the change in demand induced by the
variation of power distribution. In addition, Browning and Chiappori (1998)
show that a collective model with two intra-household members can be tested
if we have a data set with at least bve goods.

This section recaptures the principal results of Cherchye, De Rock, Vermeulen
(2007) . More precisely, the authors, using a nonparametric approach, provide
testable conditions involving personalized pricesa la Lindahl and personalized
consumptions. However, the authors do not require that personalized prices
and personalized consumptions are observable data.

3.1 General Collective Rationality

We consider one household with two member#\ (and B) that purchases a
vector of goodsq! R? with corresponding pricegp! R, . All goods can be
consumed privately, publicly or both.

We assume that the empirical analyst has no information on the decomposi-
tion of the observed quantitiesq into the bundles of private and public con-
sumptions. Therefore, we need to introduce (unobservefasible personalized
guantities x that comply with the (observed) aggregate quantities). More
formally, we debne:

x = (x*,x8,x®) with x*,x®,x®1 RY, andx*+x®+x®=q (1)

The feasible personalized quantitieg capture a possible feasible decomposi-
tion of the (observed) aggregate consumptiog in the (unobserved) private
quantities x* and xB and in the public consumptionx©.

Suppose to observ& choices ofn-valued bundles. For each observationthe
vector ¢ ! RY records the quantities chosen by the group under the prices
p. ! RY, . We denote withS = {(p;,q);t=1,...,T} the corresponding set of
T observations (i.e. the data set). Collective rationality in terms of the general
collective model (general-CR) of a set of observatioigsrequires the existence
of utility functions U” and U®B such that each observed quantity bundle can
be characterized as Pareto!ecient. Thus, we get the following depPnition:

Depnition 4 (general-CR) Let S = {(p,q);t=1,...,T} be a set of ob-
servations. A pair of utility functions U” and UB provides a general-CR (i.e.
a collective rationalization in terms of the general collective model) &fif for
each observatiort there exist feasible personalized quantitias = (X2, xB, x&)



and ;! R.. such that:
UA(Xe) + HeUB (X)) " UA(X) + pUB(x)

for all x = (xA,xB,x®) with x°! R?, c= A,B,G and p; &(x* + xB + x®) #
p: &G .

The weight p; represents the relative bargaining power of membd3 with
respect to memberA. It rel3ects the Pareto & cient characterization of the
optimal intra-household allocation. A general-CR of the data se$ requires
the existence, for each observation of feasible personalized quantities, that
maximize a weighted sum of the intra-household member utilities subject to
the household budget constrainp; ag. 3

3.2 Revealed preference characterization

Following Cherchye, De Rock, Vermeulen (2007), we debfeasible personal-
ized prices(p;*, p?) for the (observed) pricesp; as follows

pt=(p" p® . ) and pf = (P $ B P p° LS ) @
with p, 8, pf® 1 R? andpf# p, c= A,B,G

where p* and p? captures the fractions of the price for the feasible person-
alized quantities x; paid respectively by membersA and B. More precisely,
pM and pf*® are respectively the price paid by membeh for the own private
consumption and for the private consumption of membeB, and p/® is the
price paid by memberA for the public consumption. The interpretation ofp?

is similar. One should notice thatp* and p? can be interpreted as the Lindahl
prices of membelA and B respectively.

Proposition 6 states that collective rationality requiresGARP consistency for
each individual member:

DePnition 5 Consider feasible personalized prices and quantities for a set of
observationsS = {(p;,q);t = 1,...,T}. For m = A,B, the set{(p[", xt);
t=1,..., T} satisPesGARP if there exist relationsR{', R™ such that

(i) if pI"éxs" pl ax; then xsRY xy;

3 It is immediate to note that collective rationalization of a data set S is more

general that unitary rationalization. In fact, if p; =0 and x;* = q, for each obser-
vation t, we get back to unitary rationalization. However, following Cherchye, De

Rock, Vermeulen (2007), we did not allow for this possibility. Therefore, we assume
M ! R4+ for each observationt.



(i) if xsR{'Xu, XuR{'Xy, ..., X;R{'X; for some (possibly empty) sequende,
V, ..., 2) then xsRMxy;

(iii) if xsR™x¢, then p™ ax; ! p" &xXs.

The following Proposition is due to Cherchye, De Rock, Vermeulen (2007). It
provides the necessary and swcient conditions for a collective rationalization
of the data setS in terms of feasible personalized prices and quantities.

Proposition 6 Let S = {(p,q);t=1,...,T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasing utility functions UA and UB that provide a general-CR of5;

(i) there exist feasible personalized prices and quantities such that for each
memberm =1, 2, the set{(p",x;);t=1,..., T} satisPesGARP.

Proof. See Cherchye, De Rock, Vermeulen (2007), Proposition 1, page 557.
|

Collective rationality (i.e. Proposition 6) di" ers from unitary rationality (i.e.
Proposition 1), since it requiresGARP consistency for each intra-household
memberm in terms of the (unobserved) feasible personalized prices and quan-
tities (i.e. pi" and x;, m = A,B) and not at the (observed) aggregate level
S.

One should notice that, for each observatior, it is possible to construct

inbnite feasible personalized prices and quantitiegy, p2, x;). Therefore, col-

lective rationality requires that there exists at least ondeasible personalized
data set$ := {(pf,pE,x);t = 1,...,T} such that the the necessary and
sul cient conditions given in Proposition 6 are satisbed.

Since the necessary and sicient conditions given in Proposition 6 are ex-
pressed in terms of the (unobservable) variables, it is howevel diult to use
them in empirical work. Cherchye, De Rock, Vermeulen (2007) construct nec-
essary and sl cient conditions expressed in terms of the (observed) aggregate
prices and quantitiesS. 4

Finally, one should observe that collective rationality can be tested if we have
a data set with at least three observations and three goods.

A data set S with two observations and/or two goods always fulbls the con-

4 See Cherchye, De Rock, Vermeulen (2007), Proposition 2, page 561 and Proposi-
tion 4, page 564.



ditions given in Proposition 2. Suppose to have T = 2 and n ! 2. In this
case, one can always assign one observation to each individual, say for exam-
ple X§ = ¢4, X3 = p, and consider the following personalized prices pM* = p,
PiB = pf'® = 0 for each observation t = 1, 2. Using this setting, GARP cannot
be rejected. In fact one always has X;RA X5 (or equivalently py &y = prép ! 0)
and 0" p5 &y = po &g . Similar arguments hold for member B. Suppose now
to have T! 2 and n = 2. In this case, we can always assign one good to each
individual, say for example (X{)1 = (¢)1, (XB)2 = (@ )2, and define p* = p,
P = pf® = 0 for each observation t = 1,...,T. Since all scalar products
are scalar multiplications, it is easy to show that it is not possible to reject
GARP.

4 Two benchmark models

In the previous Section, we have considered a model that takes into account
intra-household externalities and public consumption. In this section we will
focus on two benchmark cases. Specifically, we will consider a model in which
all the the goods are publicly consumed and another model in which all the
goods are privately consumed and individuals have egoistic preferences (i.e.
egoistic model). Due to complexity of the general model, these two special
cases are mostly used in standard economic theory.

Chiappori and Ekeland (2006), using a parametric approach, show that the
public or private nature of household consumption does not have testable
implications.

4.1 All Goods are Publicly Consumed

In the first benchmark we assume that all the consumption is public. We for-
malize this by assuming individuals preferences that are represented by a con-
cave, continuous and monotonically increasing utility functions g’l‘,b(XG) =
U™(0,0,x®). Clearly, in this case we have X® = q (or x* + x8 = 0). So,
the actual personalized quantities are e! ectively observed. Thereby, we de-
fine collective rationality in terms of the collective model with only public
consumption (public-CR) as follows:

Debnition 7 (public-CR) Let S = {(p,q);t = 1,..., T} be a set of ob-
servations. A pair of utility functions Uﬁub and UpBub provides a public-CR of
S (i.e. a collective rationalization in terms of the collective model with only
public consumption), if for each observatioh there existsy; # R.+ such that

Upin(a) + MeUSp(a) T Upin(@) + HeUgp(a)



forallq! RY and paq” p;aq.

A public rationalization of the data set S requires that each consumption
vector ¢ maximize a weighted sum of the intra-household member utilities
subject to the household budget constrainp; &g .

As for the collective model, the analyst does not observe the fraction of the
price paid by the two members for the quantitiesy. To characterize non-
parametric conditions for public rationalization, we need to debne feasible
personalized pricesg', p?). Obviously, the Lindahl pricesp{*® and p, # p{*®
are the only relevant components to get the desired characterization.

Proposition 8 Let S = {(p,q);t =1,...,T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasing utility functions U‘fub and Ufub that provides a public-CR of S;

(ii) there exist feasible personalized prices and quantities, with X = xB =0,
such that for each member m = A, B, the set {(p", X¢); t =1,..., T} satisfies
GARP.

The above proposition follows directly from Proposition 6. A public-CR re-
quires GARP consistency for each intra-household memben in terms of
(unobserved) feasible personalized prices and (observed) quantities (pE.
andg, m= A,B).

Proposition 8 is di erent from Proposition 6. More precisely, the conditions
for general-CR are nonlinear since all scalar multiplications are expressed in
terms of (unobserved) feasible personalized price®'(p?) and quantities, .

Di! erently, the conditions for public-CR are linear since all scalar multipli-
cations are in terms of (unobserved) feasible personalized pricg$,?) and
(observed) quantitiesqg. This di! erence suggests that these two models have
di! erent testable implications.

4.2 Egoistic Model

In the second benchmark case, all the goods are privately consumed i.e.
xA + xB = . In addition, the individuals have egoistic preferences, which
implies that they only care for their own consumption (i.e. no consumption
externalities). We formalize this by assuming that individual preferences are
represented by concave, continuous and monotonically increasing utility func-
tions UZ(x*) := UA(x*,0,0) and Ug,«(x®) := U®(0,x®,0). The correspond-
ing concept of collective rationality in terms of the collective model with all



private consumption is the following:

DePnition 9 A pair of utility functions Ué*go and UeBgo provides an egoistic-CR
of S (i.e. a collective rationalization in terms of the collective model with all
consumption private and egoistic preferences), if for each observatibithere

exist feasible personalized quantitieg, with x? =0 and ;! R.+ such that
U(ﬁgo(xﬁ) + Mt Uggo(x?) "’ U(ﬁgo(XA) + Ht Uggo(XB)
for all x = (x*,xB,0) with x™ ! R?, m= A,B andp, &x” + xB) # p, &q.

Egoistic-CR of the data setS requires that there exist, for each observation
t, OprivateO quantitieg and xP that maximize a weighted sum of the intra-
household member utilities subject to the household budget constraipt ag.

The econometrician does not observe the true private quantitieg(, ¢ ). Dif-
ferently from the previous case, the (observed) pricgg are exactly the prices
paid for each individual for own consumption. More precisely, for each ob-
servationt, pM = p, and pf® = 0. Proposition 10 gives the necessary and
sul cient conditions for a egoistic-CR of the data se5:

Proposition 10 LetS= {(p,q);t=1,...,T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasig utility functions UZ,, and US,, that provide an egoistic-CRof S;

(i) there exist feasible personalized prices, witpf* = p, and pf*® =0, and
feasible personalized quantities, witk® = 0, such that for each membem =

A, B, the set{(p",x;); t=1,..., T} satisPesGARP.

Egoistic-CR (Proposition 10) requiresGARP consistency at individual level
in terms of the (observed) priceg, and the (unobserved) feasible personalized
guantities x;. The necessary and ducient conditions are df erent with respect
to those of general-CR and public-CR. In particular these conditions are linear
in terms of the (unobserved) feasible personalized quantities Therefore, this
di" erence suggests that the three models have' drent testable implications.

5 Testing the nature of goods

In this section we Prst provide two examples that show that the nature of goods

is testable even if one observes only aggregate data. Our results thus imply
that consistency with the general model does not necessarily imply consistency
with the two benchmark models. Secondly, our examples also show that the



two benchmark models are independent from each other. More precisely, if
the aggregate data set is consistent with one of the two benchmark models, it
need not be consistent with the other benchmark model.

5.1 Collective Rationality does not imply public-CR

In this subsection we provide an example that contains a data set that satispes
general-CR but not public-CR.

Example 1 Suppose that the data s& contains the following 3 observations
of bundles consisting of 3 quantities:

®w=05,22), x=(2,52), =(2,2)5)
p1=(4’111)1 p2=(1’4!1)1 p3:(1’1’4)

This data setS satisbes the conditions in Proposition 6 (i.e. there exists a
general-CR), but it fails to satisy the conditions in Proposition 8 (i.e. there
does not exist a public-CR).

See the Appendix for the explanation of the example.

This example leads to two remarkable results. Firstly, as discussed in the in-
troduction, it contrasts with the results of Chiappori and Ekeland (2006).
These authors, following a parametric approach, show that the general collec-
tive model and the collective model with only public consumption are indistin-
guishable if one only observes aggregate data. More precisely, the authors show
that, when only aggregate data are available, the general collective consump-
tion model has exactly the same testability implications. Example 1 shows
that this is no longer the case if one adopts our revealed preference approach.

Secondly, this example shows that a data set with only three goods and three
observations is enough to distinguish between the general collective model
and the collective model with only public consumption. Moreover, one should

notice that, as the general collective consumption model, it is not possible

to reject public-CR if the number of observations or the number of goods is

smaller than three.

Supposel =2 and n! 2. One can always consider the following personalized
prices: pi'“ = p; and ps¢ = 0. It is easy to verify that, using these feasible
personalized pricesGARP conditions in Proposition 8 cannot be rejected.
Next,if n=2and T ! 2, one can always suppose that each individual pay for
one good, say for examplgy(*“); = (py)1 and (p/'“), = 0, for each observation
t=1,..,T.Again, it is immediate to verify that it is a solution for the GARP
conditions in Proposition 8.

10



Thus, three observations and three goods represent the lower bounds for the
collective models to have testable implications.

Finally, it should be noted that the parametric approach needs a data set with
at least bve goods to test the collective consumption model characterized
in Propositions 8; see Browning and Chiappori (1998) and Chiappori and
Ekeland (2006). Thus, our revealed preference approach requires a smaller
number of goods than the parametric approach.

5.2 General-CR does not imply egoistic-CR

In this section, we provide an example with contains a data set that satisbes
general-CR but not an egoistic-CR.

Example 2 Suppose that the data set S contains the following 4 observations
of bundles consisting of 4 quantities:

&% =(,000), »=(0,100), z3=(0,0,1,0), 0. =(0,0,0,1)
pr=(7,4,44), =(4,7,4,4), p=(4,4,7,4), pa=(4,44,7)

This data set S satisfies the conditions in Proposition 6 (i.e. there ezists a
general-CR), but it rejects the conditions in Proposition 10 (i.e. there does
not exist an egoistic-CR).

See the Appendix for the explanation of the example.

As for the previous examples, we have two remarks. First, in contrast to the

di! erentiable approach, our Orevealed preferenceO methodology makes it possi-
ble to distinguish between the general collective model and the egoistic model.
Thus, we can conclude that the private nature of the goods is testable. Sec-
ondly, in our example we considered a data set with four observations and
four goods. However, we conjecture that it is possible to Pgure out examples
for data set for with four observations and three goods. For mathematical
elegance we have used many zeros in our data set.

Finally, one should notice that we considered a data set with four observations.
We prove in Proposition 11 that this is the minimum number of observations
that we need to test egoistic-CR.

Proposition 11  Let S = {(p, q);t = 1,2, 3} be a set of three observations.
Suppose that there exists a general-CR of S, then there always exists a com-
bination of concave, continuous and monotonically increasig utility functions
U4 and UB  that provides an egoistic-CR of S.

ego ego
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5.3 Independence of egoistic-CR and public-CR

In the previous subsection, we have shown that the general collective model is
distinguishable from the two specibc benchmark models. In the Appendix we
argue that it is possible to distinguish between the two benchmark models.
More precisely, in the Appendix we show that the data set in Example 1
satispes the testable conditions for a egoistic-CR, and the data set in Example
2 satisbes the testable conditions for a public-CR. Thus, we can conclude
that if the data set is consistent with one benchmark model, this does not
necessarily imply that it is also consistent with the other benchmark model.

It is enough have a data set with four observations and four gootiso be
able to test the nature of the goods. Moreover, this result could directly carry
over to OintermediateO collective models that stand between the two benchmark
cases, i.e models which assume that part of the goods is privately consumed
(without externalities) while all other goods are publicly consumed. See Cher-
chye, De Rock, Vermeulen (2010) for a detailed discussion.

6 Conclusion

Chapter 3 has adopted the nonparametric Orevealed preferenceO methodology
due to Cherchye, De Rock, Vermeulen (2007) for analyzing the testable restric-
tions for the two benchmark cases of the collective consumption model. That
is, the case in which all the goods are publicly consumed and the case in which
all the goods are privately and individuals have egoistic preferences. These two
polar cases were analyzed previously by Chiappori and Ekeland (2006). Using
a parametric approach, the authors showed that these two benchmark cases
have the same testable restrictions than the general model (i.e. all goods can
be consumed privately, publicly or both). So, their main result is that it is
not possible to test the nature of the goods from aggregate data on group
behavior.

Di! erently from Chiappori and Ekeland (2006), using a nonparametric char-
acterization which involve personalized prices a la Lindahl and feasible per-
sonalized consumptions, we show that the nature of goods is testable. More
precisely, we obtain dierent testable restrictions as soon as we have a data
set with four observations and four goods. Importantly, in our approach, we
do not require that Lindahl prices and personalized quantities are observable.
Therefore, this approach could be useful for empirical applications.

5 We think that it should be enough a data set with four observations and three
goods.

12



We want to conclude this chapter considering a possible extension. This basic
framework could be extended considering many group members. Of course,
this generalization will not d ect the core of our results.

Appendix
Example 1

There exists a general-CR of SConsider the following personalized quantities
and prices:

X1 = (0, 0,0), Pt =(p,0,p1), P; =(0,p,0)
X2=(;02,;0210)1 P =(p20,p2), P5 =(0,p,0)
X3 = (0, s, 0), P =(ps0,ps), P5 =(0,ps,0)

It is easy to show that the GARP conditions in Proposition 6 are satisbed
for both members. So, one can conclude that the data set at hand satisbes
general-CR.

There exists an egoistic-CR of St is immediate to see that these personalized
feasible prices and quantities satisfy the conditions in Proposition 10. So, we
can conclude that the data set in this example is consistent with an egoistic-
CR.

There does not exist a public-CR of S.et us prove this ad absurdum and
assume that we have a construction of feasible prices that satisbes condition
(i) in Proposition 8.

One should notice that for anyt,s = 1,2, 3, with t £ s, the structure of the
data set in this example implies thatp, 4q > p: ag. Therefore we must have
feasible prices such that eithep/® & > pA° &g or (p" p®) & > (p" pPi®) &
GARP conditions in Proposition 8 require that if p\® &g # pi'® acg, then
piC ags $ piC aq. So, since for anyt,s = 1,2, 3 with t £ s, ps &g > ps &g
and pi® ags $ pi® aq one gets ps " pA°) Ag > (ps " pA©) Aq. Therefore,
if x;RAXs, we must havexsREx;. Given that this holds for anyt,s = 1,2, 3,
with t £ s, we conclude that(i) x;RAX, and x,R%x3 for memberA, and (ii)
x3RE x, and x,RE x; for memberB is a possible solution of public-CR.

Assume thatpy® = (!4,!,,!3). The GARP condition for memberA in Propo-
sition 8 requires that

13



P ap ! P Aq" 20, +5!,+215!1 Bl 421,421,
"0l 1 # L,

The GARP condition for memberB in Proposition 8 requires that

(P2# %) dp ! (P2# P5°) g™ 2(1# 1) +5(4 # 1) +2(1 # ! 5)
I 2(L# 1) +2(4 # 1,)+51 # !3)
"3 I #

Overall, this impliesthat 3! !, ! !, which gives us the desired contradiction
since by construction! ; ! 1. Of course, all the other possible solutions of
public-CR lead to the same contradictions. Therefore, we conclude that there
cannot exist a public-CR of the data set in Example 1.

Example 2

There exists a general-CR of SConsider the following personalized quantities
and prices withpy© = (4,3.5,0,0) and p5© = (4,4,3.5,0).

X1 =(0,0,q), Py =(p,pupP), P; =(0,00);
X2=(0,0,), P> =(p2p2.P5%), P =(0,0p# p5°);
x3=(0,0,08), 5 =(psPsp3), P5=(0,0ps# P5°);
x4=(0,0,qs), Py =(0,0,0), Pz = (0,0, pa).

It is easy to show that the GARP conditions in Proposition 6 are satisped
for both members. So, one can conclude that the data set at hand satispes
general-CR.

There exists a public-CR of Slt is immediate to see that these personalized
feasible prices and quantities satisfy the conditions in Proposition 8. So, we
can conclude that the data set in this example is consistent with a public-CR.

There does not exist an egoistic-CR of $.et us prove this ad absurdum and
assume that we have a construction of feasible prices that satisbes condition
(i) in Proposition 10.

Again, one should notice that for anyt,s = 1,2,3, with t $ s, the structure

of the data set in this example implies thatp, &g > p: &. Therefore, with no
loss of generality, we can assume that the solution of feasible prices leads to
(i) x1REX2, X2R8 X3 and X3R4 x4 for memberA, and (i) x4RE X3, X3R5 X, and
X,RE x1 for memberB.

14



Assume thatx5 = (0,!,0,0) and x5 = (0,0,",0). The GARP conditions for
the two members in Proposition 10 require that the following holds:

P axy ! phaxy" T 4

ps axs ! pyaxy" 7' 41 4

P> axy ! pdax" 7(A#!)! 4@Q# ") ! 4

P axs! p§ax," T(A#")! 4
This implies that 21 1 1 4 21 "1 2and 21 | and thus also that
' $ %. Thereby we obtain the desired contradiction and we conclude that
there cannot exist an egoistic-CR of the data set in Example 2.

Proof of Proposition 4. Example 1 of Cherchye, De Rock, Vermeulen
(2007) shows that we cannot have a general-CR if we have a data set with
the following structure: py aqx $ pra(p + &), ppag $ p2 & + ) and

p: dx $ ps a(qp + &) hold simultaneously. With no loss of generality, we
assume thatp, &g < p, a(qr + ).

Consider the following personalized quantities and prices for an%]0, 1]:

X1 = (0, 0,0), Pt =(p,0,p1), P; =(0,p,0)
X2 = (! g, (1# 1)®,0), p5 =(p2,0,p2), P53 =(0,p20)
X3 = (0, s, 0), P =(ps0,ps), P =(0,ps,0)

These feasible prices and quantities are consistent with the collective model
with only private goods (i.e.x® = 0) and egoistic preferences (i.epgf* = p
and pf*® =0).

In order to prove that this is a solution for egoistic-CR, we need to check
GARP for the sets{(pf*,x;);t =1,2,3} and {(p?,x);t=1,2,3}.

We start considering memberA. We need to verify that condition (iii) in
Debnition 5 is satisbed. First, for each observatian we construct the set of
the revealed preferred bundles (i.e. Opening Conditions) and after we check if
every observationt is cost minimizing over the revealed preferred set (Closing
Conditions).

Opening Conditions

(1) pt* axy $ it axt & praq $ ! prag;
(i) praxt S P &5 & pag $ 0;

(iii.1) P axh $ pi axd & Ipagp $ O,
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Closing Conditions

(iv.1) Pt ax5 ! Pt axy " ! page ! pp Ay
(v.1) ™ &xg ! p* &t " 0! pséaq;

(vi.1) pa axg ! pet a4 " 0! | psan.

We consider now membeB. The conditions to satisfy the GARP are given
by:

Opening Conditions

(1.2) (Ps# P5°) &x5 $ (pa# p5°) &5 " psdgs$ (1# !)pséop;
(11.2) (ps# P5°) &x5 $ (ps# p5°) &P " pségs $ O
(iii.1) (P2 # P5°) &x5 $ (p# po®) &P " (1# !)p.ag $ 0.

Closing Conditions

(iv.2) (p2# P°) &x5 | (p# P°) axs ™ (1#!)pégp! ps acs;
(v.2) (po# Pr°) &F ! (po# pr°) &35 " 0! ppégs;

(vi.2) (pu# PRB) &XB 1 (pu# PIB)&XE " 0! (1#!)p: &g

Conditions (4.m), (iii.m), m = A, B are trivially satisPed. Sox;R4 X3, XoR5 X3,
and x3RE x4, X2RE x;. One should notice that also the corresponding closing
conditions, i.e. (v.m), (vi.m), m = A, B are trivially satispPed.

We do not know ifx; belongs to the set of the revealed preferred bundles)xof
(i.e. if x;REX7), and if x3 belongs to the set of the revealed preferred bundles
of X, (i.e. if xsR8Xy), or equivalently if conditions (i.m), m = A, B hold true.
However, given thatp, ap < p, &1 + ), there must exists an! %[0, 1] such
that ! pap ! paq and (1# ! )po & ! pe ag. This implies that conditions
(iv.m), m = A,B are satisped. So, all closing conditions are satisbed.
Therefore GARP is satisped and we cannot reject egoistic-CH.
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