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Chapter 1

Introduction

1.1 Motivation

Advances in sensing and storage technology have created many high-volume

and high-dimensional data sets. The generation of multi-dimensional data has

proceeded at an explosive rate in many disciplines: bioinformatics, finance, e-

commerce, internet applications, geology, satellite detection and hyperspectral

imaging are only few examples of this trend. Most of the data is stored digi-

tally in electronic media, thus providing huge potential for the development of

automatic data analysis.

The increase in both the volume and the variety of data requires advances

in data mining which is the task of discovering interesting patterns from large

amounts of data which can be stored in databases, data warehouses, or other in-

formation repositories. Data mining involves an integration of techniques from

multiple disciplines such as database technology, statistics, machine learning,

high-performance computing, pattern recognition, neural networks, data visu-

alization, information retrieval, etc.
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Data mining techniques can be broadly classified into two types [Tukey, 1977]:

(i) exploratory or descriptive, meaning that the investigator does not have pre-

specified models or hypotheses but wants to understand the general character-

istics or structure of the data, and (ii) confirmatory or inferential, meaning that

the investigator wants to confirm the validity of a hypothesis/model or a set of

assumptions given the available data.

Machine learning provides the technical basis of data mining by extracting

information from the raw data in the databases. The process usually consists

of the following: transforming the data to a suitable format, cleaning it, and

inferring or making conclusions regarding the data. Machine learning is divided

into two primary sub-fields: supervised learning (classification) and unsuper-

vised learning (clustering), the first involving only labeled data (training pat-

terns with known category labels) while the latter involving only unlabeled data

[Duda et al., 2001].

In traditional methodology, all these techniques assume many observations

and a few, well chosen variables. The trend today is towards more observations

but also to larger numbers of variables. There are a lot of examples where the

observations gathered on individual instances are curves, or spectra, or images,

or even movies, so that a single observation has dimensions in the thousands or

billions, while there are only tens or hundreds of instances available for study.

In a gene expression microarray data set, for instance, there could be tens or

hundreds of dimensions, each of which corresponds to an experimental condition.

As the classical methods are simply not designed to cope with this kind of

explosive growth of dimensionality of the observation vector, new methods of

high-dimensional data analysis could be developed [Donoho, 2000].
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1.2 Contribution

The main purpose of this work of thesis is to find the most reasonable solutions

for two data mining problems related to the management of high dimensional

data. As mentioned in Section 1.1, the large volume of data that is currently

collected in various fields of application can not be managed using data mining

standard techniques: each technique is able to explore the solution space in a

different way and it is often sensible to initial conditions. This thesis wants

to emphasize the need to take a step forward in order to address the problems

which arise from time to time and to use the correct data mining method for

the problem at hand.

In particular two main applications of mining high dimensional data are

considered in this work. The first one deals with cloud detection, a problem

of multispectral satellite image classification, demonstrating the high reliability

of the statistical techniques of discriminant analysis in classifying this type of

images. Such classification technique has been compared with standard ones

based on physical principles in order to benchmark the processing costs and the

pass/fail rate [Amato et al., 2008]. The second application addresses the need

to handle high dimensional data for which it is necessary to make assumptions

rather than to have a confirmation (as in the previous application) . This

naturally leads to the problem of clustering the data allowing to find significant

structures within them. Instead of dwelling on one or more particular techniques

of clustering, we chose to address the problem in a more comprehensive way by

the so-called consensus clustering: rather than seek a single solution to the

problem, the goal is to find all possible equivalently valid solutions. To this

purpose an automatic procedure based on Least Squares Consensus Clustering

has been developed.

The applications have been tested using both synthetic and real data-sets,
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actually demonstrating the validity of the procedures. Strong emphasis has also

been put on results validation through the use of "goodness" indicators in order

to demonstrate the reliability of the techniques developed.

1.3 Thesis organization

The rest of the thesis is organized as follows: An overview of supervised learning

and classification methods is presented in Chapter 2 with a particular reference

to discriminant analysis techniques. Chapter 3 discusses in detail the method-

ology of cloud detection. Also the pre-processed data, the experimental results

and analysis are provided at the end of this chapter. Chapter 4 contains an

overview of clustering and consensus clustering techniques. The Least Squares

Consensus clustering in presented in Chapter 5. Finally experimental results

and analysis are provided in Chapter 6, followed by conclusions and future

study in Chapter 7.
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Chapter 2

Classification methods

2.1 Supervised learning and classification meth-

ods

Supervised machine learning is the process of learning a set of rules from in-

stances (examples in a training set), or more generally speaking, creating a

classifier that can be used to generalize from new instances. The process of

applying supervised machine learning to a real-world problem is described in

Figure 2.1 [Kotsiantis, 2007].

The first step is collecting the data-set. If a requisite expert is available, then

he could suggest which fields (attributes, features) are the most informative. If

not, then the simplest method is that of “brute-force,” which means measuring

everything available in the hope that the right (informative, relevant) features

can be isolated. The second step is the data preparation and data preprocess-

ing that cope with missing/noisy data and the infeasibility of learning from

very large data-sets. During preprocessing, feature subset selection is used for

identifying and removing as many irrelevant and redundant features as possi-
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Figure 2.1: The process of supervised machine learning.
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ble in order to reduce the dimensionality of the data and enable data mining

algorithms to operate faster and more effectively. The fact that many features

depend on one another often influences the accuracy of supervised classification

models. This problem can be addressed by constructing new features from the

basic feature set [Markovitch and Rosenstein, 2002]. This technique is called

feature construction/transformation. These newly generated features may lead

to the creation of more concise and accurate classifiers. In addition, the dis-

covery of meaningful features contributes to better comprehensibility of the

produced classifier, and a better understanding of the learned concept.

Algorithm selection is a critical step and depends on the data collection and

preprocessing steps. A common method for comparing and choosing the su-

pervised algorithms is to perform statistical comparisons of the accuracies of

trained classifiers on specific data-sets. Classification algorithms aim at assign-

ing a class label for each input example. Given a training data set of the form

(xi, yi), where xi ∈ Rn is the ith example and yi ∈ {1, . . . ,K} is the ith class

label, we aim at finding a learning model H such that H(xi) = yi for new un-

seen examples. The classification problem is simply formulated in the two class

case, where the labels yi are just +1 or −1 for the two classes involved. Several

algorithms have been proposed to solve this problem in the two class case, some

of which can be naturally extended to the multiclass case, and some that need

special formulations to be able to solve the latter case.

The multiclass classification problem can be solved by naturally extending

the binary classification technique for some algorithms [Aly, 2005]. These in-

clude:

1. Neural Networks and, in particular, Multilayer Feed forward Neural Net-

works provide a natural extension to the multiclass problem. Instead of

just having one neuron in the output layer, with binary output, one could

17



have N binary neurons. Weightings are applied to the signals passing from

one neuron to another, and it is these weightings which are tuned in the

training phase to adapt a neural network to the particular classification

at hand.

2. Decision Trees [Breiman et al., 1984] try to infer a split of the training

data based on the values of the available features to produce a good gen-

eralization. The split at each node is based on the feature that gives the

maximum information gain. Each leaf node corresponds to a class label.

3. k-Nearest Neighbors [Bay, 1998] is considered among the oldest non para-

metric classification algorithms. To classify an unknown example, the

distance (using some distance measure e.g. Euclidean) from that example

to every other training example is measured. The k smallest distances are

identified, and the most represented class in these k classes is considered

the output class label. The value of k is normally determined using a

validation set or using cross-validation.

4. Naive Bayes [Rish, 2001] is a successful classifier based upon the principle

of Maximum A Posteriori (MAP).

5. Support Vector Machines [Cortes and Vapnik, 1995] are based upon the

idea of maximizing the margin i.e. maximizing the minimum distance

from the separating hyperplane to the nearest example. The basic SVM

supports only binary classification, but extensions have been proposed to

handle the multiclass classification case as well. In these extensions, addi-

tional parameters and constraints are added to the optimization problem

to handle the separation of the different classes.
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2.2 Discriminant analysis

In the present work we have used discriminant analysis methods for the problem

of images classification. The purpose of any discriminant analysis method is to

assign a p-variate observation x (pixel) to one class from a set of K classes with

the lowest possible error rate. In the standard setting, observations are described

by multivariate random vectors coming from a certain class k(k = 1 . . .K)

characterized by a density function fk(x). An observation is decided to be

drawn from one and only one class (Bayes rule) and error is incurred if it is

assigned to a wrong one. The cost or loss associated with such an error is

usually defined by L(k, k̃), where k is the correct class assignment and k̃ is the

assignment that was actually made. A special but commonly occurring loss L

is the 0− 1 loss defined by

L(k, k̃) =


0, if k = k̃

1, otherwise

(2.1)

In this case the Bayes decision rule actually used in the algorithm allocates x

to the class k̃ such that fk(x)πk is maximum, where fk(x) are k-class conditional

density functions and πk are unconditional class prior probabilities, assumed

uniform in the present work. Discriminant analysis requires a training data-set

that can be considered as a sample of feature vectors from each class used to

learn the density functions of the classes.

2.2.1 Probability density function

The most popular classification rules are based on the normal theory, which

assumes that the densities fk are Gaussian. Such standard parametric rules in-

clude linear and quadratic discriminant analysis (e.g., [Anderson, 1984]), which

have been shown to be quite useful in a wide variety of problems. However, in
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practice, the form of the class-conditional densities is seldom known and hardly

meets the hypothesis of gaussianity. Therefore a careful analysis of the density

functions of the values for different samples is very important for the correct

application of the discriminant analysis. First of all, one can evaluate the overall

feasibility of the discriminant analysis in classifying samples: the more density

functions are split away for different classes, the more the discriminant analysis

will be able to classify samples correctly. If density functions are recognized as

belonging to classic known types, simple parametric discriminant analysis meth-

ods can be applied; in the opposite case discriminant analysis naturally extends

to the situation where nothing is known about the densities fk except possibly

for some assumptions about their general behavior. The suggested approach

is to estimate the densities fk from a training set using nonparametric density

estimates and to substitute these estimates into the Bayes decision rule to give a

nonparametric discriminant rule. The most popular procedure for nonparamet-

ric density estimation is kernel density estimation with appropriate smoothing

parameter selection [Wand and Jones, 1995]:

fk(x) =
1
Nk

Nk∑
`=1

H(x− z`), (2.2)

where Nk is the size of the training set for class k and z ≡ (z`)`=1,...,Nk
≡

(z(1)
` , . . . , z

(p)
` ) . A popular choice of the kernel function H is the Gaussian one.

Most often the p-variate density function is taken as the product of univariate

functions as [Wand and Jones, 1995]:

H(x) =
1

(2π)p/2σ1 · · ·σp

p∏
j=1

exp

(
−
(
x(j)

)2
2σ2

j

)
, (2.3)

where [Wand and Jones, 1995]
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σj = 1.09σ̂jN−0.2
k (2.4)

and σ̂2
j is an estimate of the variance of the multispectral component j for the

(dropped) class k. However, it is known that while in one-dimensional density

estimation it is not crucial to estimate the tails accurately, this is no longer true

in high dimensional spaces where regions of relatively low density can still be

extremely important parts of the multidimensional density.

For the purpose of the present analysis unidimensional Gaussian kernel den-

sity estimation and corresponding bandwidth were considered (Eqs. (2.2)-(2.4)).

2.2.2 Transforms

To estimate a density function as the product of univariate functions requires

an assumption of independence of data that does not always hold in practice.

In the case of Gaussian distributions this can be fixed by transforming original

multivariate data into principal components by Principal Component Analy-

sis (PCA) and then proceeding with classification. For general distributions,

application of PCA to the data only decorrelates them, without yielding full

independence. A possible remedy is to seek for a transform that makes data

mutually independent irrespective of their distribution. Independent Compo-

nent Analysis (ICA) achieves such a task. It is a statistical method for lin-

early transforming an observed multidimensional random vector into a random

vector whose components are stochastically as independent from each other

as possible. Several procedures to find such transformations have been re-

cently developed in the signal processing literature relying either on Comon’s

information-theoretic approach [Comon, 1984] or Hyvärinen’s maximum negen-

tropy approach [Hyvärinen, 1997]. The present work considers this latter ap-

proach and relies on the Matlab package fastica [Hyvärinen, 1999], available at
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the Website http://www.cis.hut.fi/projects/ica/fastica/, for its implementation.

fastica looks for independent components maximizing an index of nongaussianity

through some suitable contrast functions (u2, u3, tanh(u), u exp(−u2/2), with u

being seeked independent component). Details of the method (ICDA) are re-

ported in [Amato et al., 2003].

2.2.3 Discriminant analysis methods

Three nonparametric and two parametric discriminant analysis methods for

multispectral cloud classification have been considered:

1. LDA (Linear Discriminant Analysis), based on Gaussian density functions

with common variance among classes;

2. QDA (Quadratic Discriminant Analysis), based on Gaussian density func-

tions with general covariance of the multispectral radiance/reflectance for

each class;

3. NPDA (NonParametric Discriminant Analysis), where a nonparametric

estimate of the density functions is made for each component separately;

4. PCDA (Principal Component Discriminant Analysis [Amato et al., 2003]),

where original components are transformed into principal components

prior to nonparametric density estimation;

5. ICDA (Independent Component Discriminant Analysis [Amato et al., 2003]),

where original components are transformed into independent components

prior to nonparametric density estimation. To this purpose the fastica

package was resorted to estimate independent components by using the

contrast function u3.
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Chapter 3

Statistical cloud detection

from SEVIRI multispectral

images

3.1 Cloud detection

Remote sensing is leading an increasingly significant contribution to environ-

mental monitoring and Earth observation. A lot of techniques have been devel-

oped to analyze and extract information from remotely sensed data for several

applications as agriculture, deforestation, pollution, earthquakes, fire detection,

oceans monitoring and risk management. The first step in remotely sensed im-

age analysis for all these applications is the detection of the areas which can be

actually supervised: a significant portion of land surface is obscured by clouds

and this fact complicates the observations of surface processes and phenomena

from space. So cloud detection is a preliminary important operation in most
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algorithms for processing radiance data measured from sensors on board satel-

lites.

Clouds are generally characterized by higher reflectance and lower tempera-

ture than the underlying earth surface. However, there are many surface condi-

tions when this characterization of clouds is inappropriate. Additionally, some

cloud types such as thin cirrus, low stratus at night, and small cumulus are dif-

ficult to be detected because of insufficient contrast with the surface radiance.

Many of these concerns can be mitigated by multispectral approaches to cloud

detection and, for this reason, the availability of multispectral sensors, able to

measure radiance emitted by Earth surface at several and narrow spectral bands,

represents an important improvement in this field.

Several algorithms devoted to cloud detection are available for multispec-

tral data. Most of them are based upon the spectral behavior of clouds both

in the emissive infrared and reflective bands. Generally some decision rules

are set involving a few selected spectral bands; then thresholds on the value of

radiances are empirically chosen to discriminate between the cloudy and clear

sky conditions. Methods based on decision rules underwent a significant evo-

lution during recent years, even permitting to retrieve not only the presence of

clouds but also several related features, e.g., tracking, shape [Yang et al., 2006,

Yang et al., 2007].

Physical methodologies suffer from some drawbacks as high variability of

clouds, dependence of radiance on the emissivity of the surface, which is very

difficult to estimate accurately over land, and the choice of suitable bands for

the decision rules. For this reason there was in the recent years interest towards

classification methods that approach the problem of cloud detection through

statistical methods: classification methods learn the statistical features of the

cloudy and clear sky conditions “on-field”, that is starting from “truth” images
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where the sky conditions are “certainly” known; then sky conditions on other

“new” images are inferred from these by relying on some of the statistical prop-

erties learned. The idea of statistical classification is based on the fact that

the spectral signature of each pixel contains information on the physical char-

acteristics of the land underlying the pixel and/or the clouds eventually present

in the atmosphere above. Therefore from this information we can infer, e.g.,

the statistical properties of the type of land cover or cloud associated to that

pixel. It is clear that the use of medium or high resolution spectral data (i.e.,

multivariate data in the statistical terminology) opens new perspectives to ap-

plications: actually, coverage of a wider fraction of the electromagnetic spectrum

at a better spectral resolution means to represent better the spectral signature

corresponding to each pixel and then to pick the unique spectral features of

clouds better.

In recent years a lot of works have been published on this topic; we mention

methodologies based on Support Vector Machines (SVM) applied to MODIS

data [Han et al., 2006, Lee et al., 2004]. [Lee et al., 2004] give an excellent ex-

ample of statistical methods applied directly to the physical methodology un-

derlying an operative product of cloud detection. We also recall “neural-network

classifiers” which include multilayer Back- Propagation Neural Network (BPNN),

Self Organizing Map (SOM) [Stephanidis et al., 1995], Probability Neural Net-

work (PNN) [Tian et al., 1999], etc. They need a training phase to learn cloud

features from “truth” images. A BPNN classification system was tested on MSG-

SEVIRI images using MODIS cloud mask product both in training and testing

phase [Falcone and Azimi-Sadjadi, 2005]. Moreover, as a fixed neural network

may not be able to deal with a sequence of images obtained at different times

of the day, temporal adaptive neural network-based cloud classification systems

have been developed [Tian et al., 2000]. METEOSAT images were considered
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in [Macias-Macias et al., 2004]. Also fuzzy rule based approaches have been

proposed to estimate cloud cover [Baum et al., 1997, Ghosh et al., 2003].

Another technique that was used in the cloud classification field is based on

textural features analysis which consists in distinguishing clouds by the spatial

distribution characteristics of gray levels corresponding to a region in one spe-

cific channel [Ameur et al., 2004]. While the spectral features of clouds may

change, their textural properties are often distinct and tend to be less sensitive

to the effects of atmospheric attenuation or detector noise. Most of the texture-

based cloud classification methods in the past had used statistical measures

based on Gray Level Co-occurrence Matrix (GLCM) and its variants, such as

Gray Level Difference Vector (GLDV). Several comparative studies on textural

features have been conducted [Gu et al., 1989], however there is no consistent

and optimal feature extraction scheme determined at this time. From the sta-

tistical point of view full use of multivariate data has intrinsic issues both from

the theoretical and the numerical point of view that have to be carefully in-

vestigated. Here we stress that multivariate analysis is subject to the so called

well known “curse of dimensionality”, that expressed in a statistical sense ac-

counts for the degradation of estimation accuracy with a growing number of

dimensions. From the practical point of view this means that accuracy is worse

when the same number of data points is spread over more dimensions or, as a

counterpart, that a much higher number of points is required to get the same

accuracy as the unidimensional case. A raw way to face the curse of dimen-

sionality is to neglect correlations among variates (i.e., spectral bands) and to

deal with all variates separately. A better solution is to take full account of the

link among the variates by considering properly their dependence or, at least,

covariance structure. As we have seen in Section 2.2.2 this can be accomplished,

e.g., through a Principal Component Analysis, where new variates are consid-
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ered with respect to the original ones, that are their linear combinations claimed

to be fully decorrelated. We claim that statistical classification via discriminant

analysis has a strong connection with the physical consolidated methodologies

based on thresholds and decision rules on radiances/reflectances. Actually uni-

dimensional discriminant analysis is the statistical counterpart of the thresholds

on reflectances/radiances at single wavelengths; in the bidimensional case, dis-

criminant analysis is the counterpart of physical decision rules involving couples

of spectral bands, since it defines regions in the radiance/reflectance plane where

pixels are classified as clear or cloudy. In addition we observe that these regions

can have shapes with a growing generality (semi-planes in the case of Linear

Discriminant Analysis, paraboloids for Quadratic Discriminant Analysis, and

so on) according to the assumptions made by discriminant analysis; the key

point is that these shapes include and are more general than the ones of the

physical classification methods. When we increase the number of dimensions

(i.e., spectral bands) the regions of the hyperplanes that discriminate between

clear and cloudy pixels are even more general and complicated and there is no

counterpart of any decision rule developed physically. In this work the link be-

tween statistical and physical classification is made definitely strong by a full

plug-in of some physical classification methodology into discriminant analysis.

This is accomplished in the training phase of discriminant analysis, where sta-

tistical properties of the cloudy and clear sky conditions have to be learned:

a cloud mask produced by another sensor is used to this purpose. Of course

this choice poses new questions to the cloud detection through discriminant

analysis concerning reliability of the cloud mask product used for training and

consequently accuracy of the produced final cloud mask.

We mention in advance that the product used for the training phase is

MOD35 available from NOAA starting from MODIS sensor on board EOS se-
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ries satellites [Salomonson et al., 1998]; MOD35 is claimed to yield an accurate

cloud mask. We also point out that a cloud mask obtained directly from SEVIRI

sensor is available from EUMETSAT [Derrien and Le Gleau, 2005]. We stress

that only pixels classified as clear or cloudy with a good confidence are used in

the training phase, which increases robustness of the method; in addition, pro-

vided that the number of erroneous training pixels is small, discriminant analysis

is even able to correct such occurrences. The physical/statistical methodology

proposed in the present work can reveal useful with new sensors, because it

represents a not expensive and fast method to produce cloud masks during the

commissioning phase immediately following the launch of the sensor.

3.2 Data

Meteosat Second Generation (MSG) is a significantly enhanced follow-on system

to the previous generation of Meteosat. MSG consists of a series of four geosta-

tionary meteorological satellites, along with ground-based infrastructure, that

will operate consecutively until 2018. The first MSG satellite to be launched

was Meteosat-8, in 2002. The second satellite followed up in December 2005.

MSG has been designed in response to user requirements and serves the needs

of nowcasting applications and numerical weather prediction in addition to pro-

vision of important data for climate monitoring and research. The MSG system

has brought major improvements in these services through its radiometer, the

Spinning Enhanced Visible and InfraRed Imager (SEVIRI). SEVIRI is a 50 cm

diameter aperture, line by line scanning radiometer which provides image data in

four Visible and Near InfraRed (VNIR) channels and eight InfraRed (IR) chan-

nels. The VNIR channels include also a High Resolution Visible (HRV) channel

to scan the Earth with a 1 km sampling distance at sub satellite point. All the

other channels (including the IR channels) are designed to scan the Earth with
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a 3 km sampling distance. The imaging is performed by combining satellite spin

and rotation (stepping) of the scan mirror. The images are taken from South

to North and East to West. The E-W scan is achieved through the rotation of

the satellite with a nominal spin rate of 100 rpm. Spectral characteristics of

SEVIRI are shown in Table 3.1.

Channel ID Channel Type Wavelengths (μm)
Central Minimum Maximum

VIS 0.6 VNIR 0.635 0.56 0.71
VIS 0.8 VNIR 0.81 0.74 0.88
IR 1.6 VNIR 1.64 1.50 1.78
IR 3.9 IR 3.92 3.48 4.36
IR 6.2 Water vapour 6.25 5.35 7.15
IR 7.3 Water vapour 7.35 6.85 7.85
IR 8.7 IR 8.70 8.30 9.10
IR 9.7 IR 9.66 9.38 9.94
IR 10.8 IR 10.80 9.80 11.80
IR 12.0 IR 12.00 11.00 13.00
IR 13.4 IR 13.40 12.40 14.40
HRV Visible Broadband (0.4-1.1)

Table 3.1: SEVIRI spectral characteristics.

SEVIRI data are available at the EUMETSAT on-line archive, website

http://archive.eumetsat.org/en/index.html.

Data, distributed in Level 1:5 BSQ format, are calibrated. Their format is

described in [Damman and Mueller, 2006].

Five SEVIRI data-sets were used in our study: three of them were taken on

daytime and the other ones on nighttime. Table 3.2 shows these data-sets and

the corresponding data and time (in UTC format) of the SEVIRI acquisition;

EUMETSAT (European Organization for the Exploitation of Meteorological

Satellites) file names are also shown; a literal identification (ID) is assigned to

each set of data for the purposes of the present work.

A geographic area extending on Europe, from Iberian Peninsula to Italy,

was selected from the full disk. Figure 3.1 shows the RGB image of this area
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ID File name Date Time (UTC)

A MSG15-0100-NA-20040630111237.433000000Z-132926 June 30, 2004 11:12
B MSG15-0100-NA-20040715102736.486000000Z-136066 July 15, 2004 10:27
C MSG15-0100-NA-20040815112737.020000000Z-135782 August 15, 2004 11:27
D MSG15-0100-NA-20040706214237.472000000Z-139840 July 6, 2004 21:42
E MSG15-0100-NA-20040818212737.141000000Z-133532 August 18, 2004 21:27

Table 3.2: SEVIRI data-sets.

obtained starting from SEVIRI channels at 0.635 μm, 0.81 μm and 1.64 μm for

the June 30, 2004 data-set (ID=A).

As already mentioned in Section 2.1, classification methods require a train-

ing data-set from which statistical properties of the classes can be learned. To

this purpose MODIS (Moderate Resolution Imaging Spectroradiometer) cloud

mask was used. MODIS is the keystone instrument on board NASA EOS (Earth

Observation System) Terra and Aqua satellites [Salomonson et al., 1998]. They

view the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral

bands from the short wave visible to the long wave infrared. A cloud mask ob-

tained from MODIS radiance is available as product MOD35. It is a daily, global

Level 2 product generated at 1 Km and 250 m (at nadir) spatial resolutions.

MOD35 algorithm [Ackerman et al., 1998, Li et al., 2003, Platnick et al., 2003]

identifies some conceptual domains according to some geographical parameters

(surface type, illumination, daytime or nighttime). For each pixel belonging

to a particular domain some tests try to infer contamination of clouds from

the measured radiances/reflectances. Some tests involve single channels, others

two channels through differences or ratios. Channels involved in the tests are

a subset of the full channels of MODIS (14 out of 36). Suitable thresholds are

defined for each test that discriminate between the status of cloudy or clear

pixel. The answer of each test is not binary; rather a confidence indicator be-

tween 0 and 1 is yielded where 0 represents high confidence in cloudy conditions

and 1 high confidence in clear conditions (intermediate values of course indicate
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Figure 3.1: RGB image of European area, taken by SEVIRI sensor on June 30,
2004 11:27 (UTC) (data-set A).
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less confidence about the two conditions). Actually, tests are combined in 5

groups aiming at detecting particular categories of clouds: Group I for thick

high clouds; Group II detects thin clouds; Group III, relying on reflectance, is

devoted to low clouds; Group IV is specialized for high thin clouds; finally Group

V detects high thin cirrus. For each group a confidence indicator is defined as

the smallest confidence indicator of the tests belonging to it.

Finally a cloud mask indicator, Q, is computed as the geometric mean of

the confidence indicators of the 5 Groups. This approach is conservative in

the estimation of clear sky: for example, if any of all tests is totally confi-

dent that the pixel is cloudy (confidence indicator equal to 0), then the pixel

is classified as confidently cloudy. Actually, the cloud mask of MOD35 pro-

vides four levels of confidence according to the value assumed by Q: confi-

dently clear (Q > 0.99), probably clear (0.95 < Q ≤ 0.99), uncertain clear

(0.66 < Q ≤ 0.95), cloudy (Q ≤ 0.66). MOD35 is claimed to yield a very

robust cloud mask; its algorithm still undergoes changes to improve detec-

tion capability (see, e.g., [Liu et al., 2004], for nighttime polar region). Ra-

diometrically accurate radiances are required, so holes in the cloud mask will

appear wherever the input radiances are incomplete or of poor quality. As

all official EOS data products, MOD35 is created in Hierarchical Data Format

(HDF) and is available from the EDG (EOS Data Gateway) on-line catalog at

the website http://edcimswww.cr.usgs.gov/pub/imswelcome/. Use of MODIS

data as a training data-set for detecting arctic clouds has also been made in

[Shi et al., 2007]. An estimate of the classification error for the MOD35 prod-

uct is given in [Lee et al., 2004]: the value obtained on a purposely built data-set

directly classified by a meteorologist is about 18%; this value is reported only

for the whole training set (that is considering pixels classified probably clear or

cloudy as confidently clear or cloudy, respectively), so that the misclassification
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ID File name Date Time (UTC)

A MOD35-L2.A2004182.1110.004.2004182223742 June 30, 2004 11:10
B MOD35-L2.A2004197.1025.004.2004197235042 July 15, 2004 10.25
C MOD35-L2.A2004228.1120.004.2004256073242 August 15, 2004 11:20
D MOD35-L2.A2004188.2140.004.2004189085034 July 6, 2004 21:40
E MOD35-L2.A2004231.2120.004.2004258132428 August 18, 2004 21:20

Table 3.3: MODIS data-sets.

error for pixels confidently classified is somewhat smaller. [Shi et al., 2007] also

give an estimate of the error affecting MOD35 cloud mask over arctic regions,

based on a training data-set purposely defined by an expert (about 11%).

For each SEVIRI data-set one corresponding MOD35 product was selected.

They are shown in Table 3.3, including date, acquisition time and corresponding

file names. Of course SEVIRI and MODIS data-sets were chosen such that pas-

sage times over the analyzed zone were coinciding as much as possible. MOD35

products generated at 1 km spatial resolution were used.

As SEVIRI and MODIS sensors have different grids and, especially, spatial

resolutions, MODIS data were resampled on the SEVIRI grid before using them

to create the training data-sets.

To this purpose associated MOD03 product can be used to obtain geograph-

ical coordinates on the MODIS grid, avoiding the interpolation error of the

reduced grid (5 Km) provided with MOD35. MOD03 product was not avail-

able with the scenes considered in this work, however no practical misalignment

has been detected by interpolating the reduced resolution grid provided with

MOD35 to the full 1 Km grid. In our experiments only pixels on the SEVIRI

grid where all corresponding MODIS pixels were classified by MOD35 as confi-

dently clear or confidently cloudy were selected to build the training data-sets.

In Table 3.4 the number of training data for each MODIS data-set is shown

separately for land and water.

Two classes are defined corresponding to “cloudy” and “clear sky” conditions
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ID Total pixels Confidently classified Cloudy Clear
Land A 140.888 97.776 (69.4%) 36.416 61.360

B 104.328 80.124 (76.8%) 46.925 33.199
C 89.714 59.839 (66.7%) 27.028 32.811
D 117.744 78.064 (66.3%) 49.163 28.901
E 99.284 58.280 (58.7%) 22.065 36.215

Water A 128.064 100.658 (78.6%) 47.049 53.609
B 83.915 73.845 (88.0%) 26.980 46.865
C 89.803 76.063 (84.7%) 51.334 24.729
D 106.480 69.212 (65.0%) 66.335 2877
E 82.399 34.937 (42.4%) 30.019 4918

Table 3.4: Number of training data.

and the classification is performed separately on land and water pixels. Of course

classification on daytime involved all the 11 SEVIRI bands; for visible and near

infrared channels (0.635 μm, 0.81 μm and 1.64 μm) a geometric conversion from

radiance to reflectance was performed. For nighttime classification only the 8

infrared channels have been considered.

Discriminant analysis methods described in Section 2.2.3 are multivariate

in the sense that the (multivariate) probability density functions of the popu-

lations are factorized into their (univariate) spectral components. In the case

of LDA, QDA and NPDA this is only a raw approximation of the statistical

properties of the population, whereas PCDA and ICDA provide a much better

approximation. These methods could be applied to all the 11 spectral bands

for daytime data-sets and all the 8 spectral bands for nighttime data-sets; how-

ever different bands have not the same quality for several reasons: instrumental

arguments related with the lower signal to noise ratio of the infrared channels

with respect to the visible ones; noise induced by atmosphere; ultimately, but

most important, the information content is very different among the spectral

bands. Furthermore there can be statistical reasons for selecting spectral bands

to be used in the classification. These reasons are mainly related to the so called

“curse of dimensionality” already discussed in Section 3.1. Indeed the method-
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ologies described in the present work naturally circumvent this problem in that

independence is guaranteed through proper transforms. Nevertheless, we have

investigated a progressive inclusion of the bands for the classification analysis,

with the main objective to assess the role of the bands for the classification

in a quantitative way. In practice we have selected some bands and estimated

their effectiveness in classifying data. Two different strategies were considered

for selecting the bands:

• simple forward. The first band is selected by an exhaustive search over all

N bands as the one that gives the best classification performance on the

training data-set; the second band is selected by the same criterion among

all the remaining N-1 bands; the other bands are chosen orderly with the

same criterion by a recursive procedure.

• forward-backward. At each step of the procedure a check is made whether

eliminating one of the already selected bands improves performance of the

classification; this allows one to limit the bias eventually introduced by

the forward recursive procedure. See also [Groves and Bajcsy, 2003] for

an alternative band selection methodology based on a priori estimate of

the information content of the bands.

3.3 Experiments

This section shows the experiments worked out on the data of Section 3.2. Two

different numerical experiments have been conducted in order to evaluate accu-

racy of the classification methods and robustness with respect to the training

data-set:

• Experiment 1 : A data-set is defined starting from one of the MOD35

products of Table 3.3 for the training of the classification methods. Clas-
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sification is performed on the data of the corresponding SEVIRI data-set

(see Table 3.2) and performance indicators are evaluated for the training

set (test data-set coinciding with the training data-set);

• Experiment 2 : Again a data-set is defined starting from one of the MODIS

data-sets of Table 3.3 for the training of the classification methods; how-

ever classification is performed on SEVIRI data-sets of different days (test

data-set different from the training data-set).

From MOD35 product a water–land mask was extracted and each of the two

experiments was performed on land pixels and water pixels separately. The

results are shown in separate tables. In order to estimate the performance

of the classification methods quantitatively, the following indicators have been

considered:

• sk (percentage of agreement), defined as the percentage of pixels belonging

to the class k (cloud or clear sky) correctly classified;

• F+
k (false positive rate of class k), defined as the percentage of pixels known

to belong to the class different from k and erroneously classified as belong-

ing to class k;

• F−k (false negative rate of class k), defined as the percentage of pixels known

to belong to class k and erroneously classified as belonging to the other

class;

• κk(kappa-statistic coefficient). It is the chance-corrected measure of agree-

ment for each class, defined as (sk − pc)/(1 − pc), where sk is the above

mentioned observed percentage of agreement and pc is the percentage

agreement that would occur by chance alone; values of κ > 0.7 are claimed

to indicate a good classification.
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• S, global success percentage of correctly classified pixels for the whole set

of data.

• κ (global kappa-statistic coefficient). It is the chance corrected measure

of agreement for the whole set of data.

Numerical values of these indicators have been obtained comparing the classifi-

cation results with the corresponding MOD35 products. We recall that for the

purpose of training set definition and performance evaluation only SEVIRI pix-

els composed of MODIS pixels all classified confidently (both clear and cloudy)

are considered. This is due to the fact that assignment of pixels classified by

MOD35 as probably clear or cloudy to their respective confident classes would

almost surely (in a probabilistic sense) produce several misclassifications of the

discriminant analysis in correspondence of the MOD35 pixels erroneously clas-

sified. We are aware that this procedure could bias positively the performance

indicators obtained, since many pixels not included in the analysis are probably

more difficult to be classified correctly. However pixels classified confidently by

MOD35 are majority of all pixels in an extent that depends on the particular

scene.

3.3.1 Analysis of class density functions

Analysis of density function of spectral radiance for the two considered classes

(“cloud” and “clear sky”) is an important step to apply correctly the discrimi-

nant analysis. If the density functions belong to known families then simpler

and more efficient parametric classification methods could be resorted; in the

opposite case discriminant analysis should be based on a nonparametric esti-

mate of the density functions. Figure 3.2 (for land) and Figure 3.3 (for water)

show the density function of reflectance or radiance (where relevant) of the con-

sidered classes as obtained by Kernel density estimation for the data-set A.
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Figure 3.2: Probability density function (pdf) of reflectance/radiance corre-
sponding to the 11 SEVIRI channels. Plots refer to the data-set A (daytime)
and land pixels.

Figure 3.4 shows the density functions of the first 4 principal components in

clear and cloudy sky conditions for the same data-set A (separately over land

and over water). Of course principal components are now a mixing of the orig-

inal reflectance/radiance at the wavelengths of the SEVIRI sensor. It is clear

that density functions of radiance (or reflectance) hardly can be described well

by Gaussians, while transform to principal components makes density functions

unimodal and even more Gaussian-like. In addition overlap of the density func-

tions is much lower in the latter case, which potentially improves the rate of

classification.

Analysis conducted on the other daytime data-sets (not shown here for the

sake of brevity) has shown similar results. Figures 3.6, 3.5 and 3.7 show the

results of the same analysis conducted on the nighttime data-set E.
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Figure 3.3: Probability density function (pdf) of reflectance/radiance corre-
sponding to the 11 SEVIRI channels. Plots refer to the data-set A (daytime)
and water pixels.
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Figure 3.4: Probability density function (pdf) of the first 4 principal components
of reflectance/radiance.Left: land pixels; right: water pixels. Plots refer to the
data-set A (daytime).
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Figure 3.5: Probability density function (pdf) of reflectance/radiance corre-
sponding to the 11 SEVIRI channels. Plots refer to the data-set E (nighttime)
and water pixels.
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Figure 3.6: Probability density function (pdf) of reflectance/radiance corre-
sponding to the 11 SEVIRI channels. Plots refer to the data-set E (nighttime)
and land pixels.
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Figure 3.7: Probability density function (pdf) of the first 4 principal components
of reflectance/radiance. Left: land pixels; right: water pixels. Plots refer to the
data-set E (nighttime).

3.3.2 Experiment 1

Table 3.5 shows the success percentage, S, obtained by QDA and NPDA on

the data-sets A (daytime) and E (nighttime) when only one spectral band is

considered for classification. Of course in this case results of PCDA and ICDA

coincide with NPDA because in this unispectral case original and transformed

components coincide. The table aims at giving a first indication about the role

of spectral bands in detecting clouds. A more accurate analysis on the use of

more bands will be shown later on. Analysis of Table 3.5 indicates that IR

bands are better suited to classify clouds over land whereas success percent-

age is higher for visible and near infrared bands over water. Actually there

is a group of infrared spectral bands (8.70–13.40 μm for land) and a group of

visible and near infrared spectral bands (0.635–1.64 μm for water) where top

performance is quite homogeneous within. In both cases performance obtained

by the other (less relevant) group of spectral bands is generally not too bad,
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Band Wavelength Data-set A Data-set E
(mm) Land Water Land Water

QDA NPDA QDA NPDA QDA NPDA QDA NPDA
1 0.635 86.0 85.8 96.0 96.7 - - - -
2 0.81 90.2 90.5 95.2 96.1 - - - -
3 1.64 67.6 67.3 95.4 96.0 - - - -
4 3.90 81.5 84.1 68.4 70.2 94.2 94.2 90.0 92.6
5 6.25 75.7 75.3 73.4 76.2 85.6 85.0 73.3 81.6
6 7.35 86.5 86.3 87.6 89.0 91.8 91.7 77.2 76.7
7 8.70 95.9 95.8 93.7 93.8 94.1 94.4 87.1 93.7
8 9.66 95.3 95.2 91.4 93.0 92.5 92.4 83.4 89.9
9 10.80 96.0 95.9 94.0 94.1 93.9 94.2 85.4 93.1
10 12.0 95.9 95.8 93.6 93.8 94.2 94.5 84.6 92.6
11 13.40 94.7 94.5 91.5 92.2 94.5 95.1 83.4 86.5

Table 3.5: Success percentage, S, obtained by QDA and NPDA separately over
land and water for data-sets A (daytime) and E (nighttime) when only one
single spectral band is used for classification

especially when compared with the physical cloud detection methods, where

performances quickly drop with wavelength (see, e.g., [Lutz, 1999] for the SE-

VIRI cloud mask from EUMETSAT). Comparing Table 3.5 with Figures 3.2 -

3.7 we observe that such digits find an easy explanation in the density functions

of radiance/reflectance, since best performances are obtained for those spectral

bands whose density functions have least overlap between the cloudy and clear

sky classes. Finally we observe that performance during the nighttime is worse

than during daytime.

We have first considered the case of land pixels. Figure 3.8 shows global

percentage of success, S, for the classification methods of Section 2.2.3 when

the spectral bands are progressively chosen by the simple forward procedure.

The figure refers to the data-set A of Table 3.2 when training and test data-sets

coincide.

Figure 3.8 clearly shows all the features of the classification methods con-

sidered in the present work. In particular, QDA and ICDA–PCDA have higher

performance; moreover NPDA has a performance curve that soon degrades after
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Figure 3.8: Success percentage, S, of the considered classification methods, when
the data-set A is considered both as a training and test data-set. Plot refers to
pixels over land.

only 4 spectral bands. In practice these curves are the result of transformation

and nonparametric density estimation effects. NPDA curve says that a raw

use of multispectrality is ineffective in improving classification rates with more

spectral bands. Compared with LDA we see that the NPDA performs better

with a few bands, but it degrades from the 5th on; these means that the po-

tential increase of the information content of several bands is hindered by the

poor nonparametric density estimate for some spectral bands. Therefore even a

very simple LDA outperforms NPDA from 5 spectral bands on, because of the

robust density estimation obtained by parametric methods (actually, estimate

of mean and variance of Gaussian). Anyway, performances of both methods are

constantly below QDA and PCDA–ICDA. As far as the latter are concerned,

we observe that PCDA and ICDA are able to exploit multispectrality at best,

because we do not observe significant decrease with the number of bands. QDA
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suffers from a slight decrease of performance from 8 bands on due to the worse

estimate of the covariance matrices for the least informative spectral bands.

Notice that PCDA, which is nonparametric, does not show significant degra-

dation of the performance also because, as observed in Figures 3.4 and 3.7 of

Section 3.3.1, the density functions of the principal components have a much

simpler (often Gaussian-like) shape, therefore nonparametric methods increase

robustness in this case. This also explains why PCDA and ICDA have simi-

lar performances (recall that PCA only decorrelates general probability density

functions but makes multivariate Gaussian independent). We also mention that

ICDA (which relies on the fastica package) shows difficult or slow convergence

in several circumstances. Therefore from now on, unless specified differently,

when we show results concerning PCDA we mean that they apply to ICDA as

well. In addition no practical difference was detected in the results by using the

contrast functions defined in the fastica package and described in Section 2.2.2.

Finally results will be shown when the simple forward procedure has been

used for selecting spectral bands progressively (discussed at the end of Section

3.2); actually they substantially coincide with the ones obtained when the for-

ward– backward procedure is considered. A similar analysis conducted on the

other data-sets (B and C), not shown here for brevity’s sake, has given similar

results.

Figure 3.10 shows these results for the nighttime data-set E. Of course lack

of visible bands changes the framework deeply, mainly because the contribution

of the visible and near infrared bands to the information content of data is

missing. As a consequence success curves are now different from the daytime

case and values are lower. QDA and PCDA–ICDA keep on being the best

performing methods, even though dependence on the number of spectral bands

is less clear. This is due to the fact that information content of infrared bands
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Figure 3.9: Success percentage, S, of the considered classification methods, when
the data-set E is considered both as a training and test data-set. Plot refers to
pixels over land.

is more homogeneous among bands as can be argued from the one-band success

percentages shown in Table 3.5.

Figures 3.10 and 3.11 show the results of the same analysis performed on

water pixels for the data-set A (daytime) and E (nighttime), respectively. The

conclusion already drawn for land pixels also hold for this case.

It is now useful to discuss the selection of spectral bands accomplished by

the methods. Tables 3.6 and 3.7 show the bands progressively chosen and the

corresponding global success rate, S, for all the discriminant analysis methods

when the training and test data-set A is considered (for land and water, re-

spectively). Tables 3.8 and 3.9 refer to the same results as Tables 3.6 and 3.7

for the case of the nighttime data-set E. Results are consistent with indications

from Table 3.5 in that the best performing groups of spectral bands are chosen

first. In different data-sets (not shown here) the trend is similar, even though
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Figure 3.10: Success percentage, S, of the considered classification methods,
when the data-set A is considered both as a training and test data-set. Plot
refers to pixels over water

the order of choice of the spectral bands can be different among the groups due

to their equivalent role in classification.

Finally we observe once more the important role of multispectrality, since

adding less performing spectral bands improves the overall performance of the

method even with respect to the best performing bands and is even able to make

a simple LDA quite competitive.

Results of Figures 3.8, 3.9, 3.10 and 3.11 are global, in the sense that they

refer to all clear and cloudy pixels; as a consequence the global indicator S could

be biased by the different number of cloudy or clear pixels. For this reason Table

3.10 shows the full set of statistical indicators introduced in this section for all

the SEVIRI data-sets of Table 3.2 disaggregated by class when classification is

performed on land pixels. Results refer to the use of all the bands for all the

classification methods. Each column corresponds to the experiment where the
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Figure 3.11: Success percentage, S, of the considered classification methods,
when the data-set E is considered both as a training and test data-set. Plot
refers to pixels over water.

same data-set is used for the training and the testing step (they are shown in

the rows ‘train’ and ‘test’); we again recall that only SEVIRI pixels composed

of corresponding MOD35 pixels classified as confidently clear or cloudy take

part to the analysis. The global success percentage, S, over those pixels (both

clear and cloudy) already seen previously is shown in the column ‘All’, whereas

in the columns ‘Cloudy’ and ‘Clear’ partial indicators for both conditions are

separately given. The high values of the κ index for the global data-set (cloudy

and clear sky pixels) suggest that the good values of global success percentage

are shared also by clear and cloudy pixels (recall that for 2-class problem global

κ index coincides with the class related ones). This is confirmed by inspection

of the partial (cloudy or clear) success rates. We also notice that the number

of false positive and negative rates is quite limited for both clear and cloudy

conditions. In addition for the best performing methods differences between
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LDA QDA NPDA PCDA-ICDA
λ (µm) S λ (µm) S λ (µm) S λ (µm) S
10.80 96.1 10.80 96.0 10.80 95.9 10.80 95.9
3.90 96.5 3.90 97.0 1.64 96.7 3.90 97.0
8.70 96.6 1.64 97.0 0.635 96.6 13.40 97.1
13.40 96.7 13.40 97.3 13.40 97.1 7.35 97.5
7.35 96.8 7.35 97.6 6.25 97.1 0.81 97.6
6.25 97.1 8.70 97.7 0.81 97.1 6.25 97.7
1.64 97.2 6.25 97.7 12.00 97.1 9.66 97.7
0.81 97.2 0.81 97.7 7.35 96.9 1.64 97.7
0.635 97.2 9.66 97.6 8.70 96.8 12.0 97.7
9.66 97.2 12.00 97.6 9.66 96.6 0.635 97.7
12.00 97.2 0.635 97.5 3.90 96.4 8.70 97.7

Table 3.6: Bands chosen for the classification of the data-set A (daytime) over
land pixels

the clear and cloudy classes became small, about 1% at most for PCDA for all

cases.

Table 3.11 shows the same results as Table 3.10 when the classification is

performed on water pixels. Examining Tables 3.10 and 3.11 we notice that the

global success percentage S is, on the average, greater when the classification is

performed on daytime data-sets (A, B and C) with respect to nighttime data-

sets (D and E), both for land and water pixels. This result depends partly on

the greater number of spectral bands used for daytime classification (SEVIRI

visible and near infrared channels at 0.635 μm, 0.81 μm and 1.64 μm are missing

for nighttime experiments), and partly on the intrinsic better performance of

VNIR spectral bands with respect to IR bands over water pixels.

Finally, Figure 3.12 shows the cloud mask estimated by PCDA over all pixels

of the considered area (that is, also pixels classified as probably cloudy or clear

by MOD35); it has to be compared with Figure 3.1, which is the correspond-

ing RGB image. Summarizing we can say that PCDA and QDA are excellent

discriminant analysis tools to detect clouds, relying on an efficient treatment of

multispectrality and on a robust estimate of density functions, respectively.
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Figure 3.12: Cloud mask obtained by PCDA for the data-set A when the same
data-set is used to train discriminant analysis. Black: unprocessed pixels; blue:
clear pixels over water; green: clear pixels over land; white: cloudy pixels over
land or water.

LDA QDA NPDA PCDA-ICDA
λ (µm) S λ (µm) S λ (µm) S λ (µm) S

8.70 93.7 0.635 96.0 0.635 96.7 0.635 96.7
3.90 95.0 13.40 96.5 6.25 96.8 6.25 96.9
10.80 95.3 7.35 96.7 0.81 96.7 3.90 96.6
6.25 95.4 6.25 96.8 10.80 96.8 0.81 96.4
7.35 95.4 0.81 96.7 1.64 96.7 13.40 96.8
13.40 95.9 8.70 96.8 3.90 96.7 7.35 97.1
9.66 96.0 1.64 96.8 8.70 96.7 1.64 97.2
12.00 96.0 12.00 96.8 12.00 96.6 9.66 97.2
1.64 95.9 10.80 96.8 13.40 96.4 8.70 97.0
0.81 96.0 9.66 96.7 9.66 96.2 12.00 97.0
0.635 96.2 3.90 96.7 7.35 96.0 10.80 97.0

Table 3.7: Bands chosen for the classification of the data-set A (daytime) over
water pixels.
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LDA QDA NPDA PCDA-ICDA
λ (µm) S λ (µm) S λ (µm) S λ (µm) S

3.90 93.7 13.40 94.5 13.40 95.1 13.40 95.1
6.25 93.8 6.25 94.6 12.00 95.1 3.90 95.5
9.66 94.2 3.90 94.7 6.25 95.2 7.35 95.3
7.35 94.2 9.66 95.0 8.70 95.1 6.25 95.0
10.80 94.5 10.80 95.2 7.35 95.1 9.66 94.9
12.00 95.2 8.70 95.3 3.90 95.1 10.80 95.1
8.70 95.1 12.00 95.3 9.66 95.0 8.70 95.4
13.40 95.1 7.35 95.3 10.80 94.9 12.00 95.7

Table 3.8: Bands chosen for the classification of the data-set E (nighttime) over
land pixels.

LDA QDA NPDA PCDA-ICDA
λ (µm) S λ (µm) S λ (µm) S λ (µm) S

3.90 80.3 3.90 90.0 8.70 93.7 8.70 93.7
8.70 84.6 10.80 93.0 3.90 93.5 6.25 94.1
6.25 86.8 13.40 93.6 6.25 93.5 3.90 94.6
10.80 88.8 6.25 93.8 10.80 93.3 13.40 94.8
12.00 89.4 8.70 94.0 12.00 93.1 10.80 94.8
13.40 89.9 9.66 94.1 9.66 92.8 12.00 95.1
7.35 90.2 12.00 94.1 7.35 92.4 9.66 94.8
9.66 90.2 7.35 93.9 13.40 91.8 7.35 94.6

Table 3.9: Bands chosen for the classification of the data-set E (nighttime) over
water pixels.
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Table 3.11: Error indicators of LDA, QDA, NPDA and PCDA methods for
classification on water pixels (Experiment 1).
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Table 3.12: Error indicators of LDA, QDA, NPDA and PCDA methods for
classification of daytime data-sets on land pixels (Experiment 2).
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Table 3.13: Error indicators of LDA, QDA, NPDA and PCDA methods for
classification of daytime data-sets on water pixels (Experiment 2).
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land pixels water pixels
train D E D E
test E D E D

Cloudy Clear Cloudy Clear Cloudy Clear Cloudy Clear
LDA s 90.3 97.9 94.9 94.3 64.4 98.9 97.9 72.5

κ 0.89 0.89 0.89 0.89 0.33 0.33 0.64 0.64
F+ 3.4 5.9 3.4 8.6 0.2 218.6 1.2 48.5
F− 9.7 2.1 5.1 5.7 35.6 1.1 2.1 27.5
S 95.0 94.7 69.2 96.8
κ 0.90 0.89 0.38 0.94

QDA s 91.4 97.7 95.4 91.9 83.9 96.7 97.5 86.1
κ 0.90 0.90 0.87 0.87 0.58 0.58 0.70 0.70
F+ 3.7 5.2 4.7 7.9 0.5 99.0 0.6 56.3
F− 8.6 2.3 4.6 8.1 16.1 3.3 2.5 13.9
S 95.3 94.1 85.7 97.0
κ 0.91 0.88 0.71 0.94

NPDA s 80.2 99.4 97.1 66.4 72.3 98.4 98.8 64.2
κ 0.82 0.82 0.67 0.67 0.41 0.41 0.65 0.65
F+ 0.9 12.8 19.8 4.9 0.2 175.7 1.6 27.8
F− 19.8 0.6 2.9 33.6 27.7 1.6 1.2 35.8
S 91.9 85.7 75.8 97.3
κ 0.84 0.71 0.52 0.95

PCDA s 91.2 97.4 95.9 88.8 84.7 95.5 97.9 81.2
κ 0.89 0.89 0.85 0.85 0.59 0.59 0.69 0.69
F+ 4.2 5.5 6.3 7.3 0.7 91.8 0.8 47.8
F− 8.8 2.6 4.1 11.2 15.3 4.5 2.1 18.8
S 95.0 93.4 86.3 97.2
κ 0.90 0.87 0.73 0.94

Table 3.14: Error indicators of LDA, QDA, NPDA and PCDA methods for
classification of nighttime data-sets on land and water pixels (Experiment 2).
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Figure 3.13: RGB image of European area, taken by SEVIRI sensor on July 15,
2004 10:27 (UTC) (data-set B).

3.3.3 Experiment 2

Figure 3.13 shows the RGB image corresponding to the data-set B. In Figure

3.14 the results of QDA classification when B is used as test data-set and A is

used as training one are shown. As for the Experiment 1 we notice a good cloud

detection both on land and water pixels. This fact is confirmed by numerical

results.

Tables 3.12 and 3.14 show the statistical indicators introduced in this section

for LDA, QDA, NPDA and PCDA-ICDA methods for daytime SEVIRI data-

sets when the classification is performed on land and water pixels, respectively.

Comparison with Tables 3.10 and 3.11 shows that the loss of performance in
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Figure 3.14: Cloud mask obtained by QDA for the data-set B when the data-set
A is used to train discriminant analysis. Black: unprocessed pixels; blue: clear
pixels over water; green: clear pixels over land; white: cloudy pixels over land
or water.
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classification is very limited, especially considering that using a training set at a

different period than the test one can produce a change of the spectral signature,

both for the possibly different cloud typologies and for the land characteristics.

Finally Table 3.14 shows a not very good performance for an instance over water

(training set D and test set E); it is due to a high number of false positive clear

pixels, which occurs also for the reverse case (training set E and test data-set

D). In this respect we observe from Table 3.4 that the number of clear pixels

used for the training step is very small (about 3000 - 5000), therefore they are

not fully representative of the global physical characteristics of water pixels.
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Chapter 4

Clustering and Consensus
Clustering: Background

4.1 Clustering: an open problem

A large number of clustering definitions can be found in the literature. The

simplest definition is shared among all and includes one fundamental concept:

the goal of data clustering, also known as cluster analysis, is to discover the

natural grouping(s) of a set of patterns, points, or objects [Jain, 2009].

An operational definition of clustering can be stated as follows: given a

representation of N objects, find k groups based on a measure of similarity

such that the similarities between objects in the same group (cluster) are high

while the similarities between objects in different groups are low. An ideal

cluster can be defined as a set of points that is compact and isolated. Actually,

a cluster is a subjective entity that is in the eye of the beholder and whose

significance and interpretation requires domain knowledge. But, while humans

are excellent cluster seekers in two and possibly three dimensions, we need

automatic algorithms for high dimensional data. It is this challenge along with

the unknown number of clusters for the given data that has resulted in thousands

of clustering algorithms that have been published and that continue to appear
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[Jain, 2009].

Although in the literature there are as many different classifications of clus-

tering algorithms as the number of algorithms itself, there is one simple classifi-

cation that allows essentially splitting them into the following two main classes:

• Hierarchical Clustering

• Partitional Clustering

Hierarchical clustering creates a hierarchy of clusters which may be represented

in a tree structure called dendrogram [Duda et al., 2001]. The root of the tree

consists of a single cluster containing all observations, and the leaves correspond

to individual observations. Algorithms for hierarchical clustering are generally

either agglomerative, in which one starts at the leaves and successively merges

clusters together; or divisive, in which one starts at the root and recursively

splits the clusters. Any valid metric may be used as a measure of similarity

between pairs of observations. The choice of which clusters to merge or split is

determined by a linkage criterion, which is a function of the pairwise distances

between observations. The major drawback of this kind of approach is that

the entire dendrogram is sensitive to previous (and possible erroneous) cluster

merging (or splitting) i.e data are not permitted to change cluster membership

once assignment has taken place.

Partitional methods attempt to minimize a cost function or an optimality

criterion which associates a cost to each instance-cluster assignment. The goal

is to solve an optimization problem to satisfy the optimality criterion imposed

by the model, which often means minimizing the cost function.

One of the most popular partitional clustering is the classic K-means algo-

rithm, developed 50 years ago in different scientific fields [Ball and Hall, 1965,

MacQueen, 1967]. The K-means algorithm assigns each point to the cluster

whose center (also called centroid) is nearest. The center is the average of all
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the points in the cluster — that is, its coordinates are the arithmetic mean

for each dimension separately over all the points in the cluster. The main ad-

vantages of this algorithm are its simplicity and speed which allows it to run

on large data-sets. Its disadvantage is that it does not yield the same result

with each run, since the resulting clusters depend on the initial random assign-

ments. It minimizes intra-cluster variance, but does not ensure that the result

has a global minimum of variance. Another disadvantage is the requirement for

the concept of a mean to be definable which is not always the case. For such

data-sets the K-medoids variant (see the most common realization Partition-

ing Around Medoids (PAM) algorithm [Theodoridis and Koutroumbas, 2006])

is appropriate. Other popular variants of K-means include the Fast Genetic

K-means Algorithm (FGKA) [Lu et al., 2004a] and the Incremental Genetic K-

means Algorithm (IGKA) [Lu et al., 2004b].

Other examples of partitional clustering algorithms are Fuzzy C-means clus-

tering [Bezdek, 1981], Gaussian mixture models [McLachlan and Basford, 1988],

QT (quality threshold) clustering [Heyer et al., 1999], Simulating Annealing

(SA) method [Gelatt et al., 1983] and spectral clustering [Yu and Shi, 2003].

If the goal of traditional clustering is to assign each data point to one and

only one cluster, in contrast, Fuzzy C-means clustering assigns different de-

grees of membership to each point. The membership of a point is thus shared

among various clusters. This creates the concept of fuzzy boundaries which

differs from the traditional concept of well-defined boundaries. In the Gaus-

sian mixture models approach the data are viewed as coming from a mixture

of Gaussian densities, each representing a different cluster. The EM algorithm

[Dempster et al.,1977] is often used to infer the parameters of the models. Sev-

eral Bayesian approaches have been developed to improve the mixture models for

data clustering, including Latent Dirichlet Allocation (LDA) [Blei et al., 2003]
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and Pachinko Allocation model [Li and McCallum, 2006]. QT (quality thresh-

old) clustering is an alternative method of partitioning data, invented for gene

clustering. It requires more computing power than K-means, but does not re-

quire specifying the number of clusters a priori, and always returns the same

result when run several times. The Simulating Annealing (SA) method was de-

veloped in analogy to an experimental annealing procedure, where the stability

of metal or glass is improved by heating or cooling. Solutions for an optimization

problem are heated and heated in simulations to find a “good” quality solution,

i.e. one admissible solution with very low cost. In the case of clustering, a solu-

tion which achieved a low value of the associated cost function can be accepted.

While convergence in probability to the global minimum has been established,

SA techniques are often slow because of its randomized stochastic search in

the whole parameter space. Deterministic Annealing (DA) methods intend to

overcome this deficiency, while preserving the main advantages of SA. Spectral

clustering techniques make use of the spectrum of the similarity matrix of the

data to perform dimensionality reduction for clustering in fewer dimensions.

Finally, among all clustering methods, it is important to remember also

the self-organizing map (SOM) or self-organizing feature map (SOFM). A self-

organizing map is a type of artificial neural network that is trained using un-

supervised learning to produce a low-dimensional (typically two-dimensional),

discretized representation of the input space of the training samples, called a

map. Self-organizing maps are different from other artificial neural networks

in the sense that they use a neighborhood function to preserve the topological

properties of the input space. This makes SOMs useful for visualizing low-

dimensional views of high-dimensional data. The model was first described as

an artificial neural network by the Finnish professor Teuvo Kohonen, and is

sometimes called a Kohonen map [Kohonen , 2001]. Like most artificial neural
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networks, SOMs operate in two modes: training and mapping. Training builds

the map using input examples. It is a competitive process, also called vector

quantization. Mapping automatically classifies a new input vector.

Despite the development of so many clustering algorithms, and their success-

ful application in a lot of different fields, clustering remains an open problem

[Jain, 2009] for various reasons: the ambiguous definition of a cluster, the choice

of features used to represent the data, the determination of the number of clus-

ters in the data, the difficulty in defining an appropriate similarity measure and

an objective function are only few examples. But one of more discussed prob-

lems concerns the cluster validity: clustering algorithms tend to find clusters in

the data irrespective of whether or not any clusters are present.

Moreover different clustering algorithms applied to the same data-set pro-

duce different solutions because each algorithm imposes a structure on the data.

It is clear that the “best” clustering algorithm does not exist and it is better

to try different approaches to determine the solution, particularly when there

is no a priori knowledge on the data structure. An interesting question is to

identify algorithms that generate similar partitions irrespective of the data.

In other words a clustering of clustering algorithms has to be performed. In

[Jain et al., 2004], for example, the authors clustered 35 different clustering al-

gorithms into 5 groups based on their partitions on 12 different data-sets. The

similarity between the clustering algorithms is measured as the averaged sim-

ilarity between the partitions obtained on the 12 data sets. The similarity

between a pair of partitions is measured using the Adjusted Rand Index (ARI)

[Hubert and Arabie, 1985] .

Additionally, many popular clustering algorithms, as partitional clustering

and model-based clustering, are based on initial random assignments or follow

random procedures. Thereby it is common to obtain different clusterings, when
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the same algorithm runs several times on the same data, and to explain the data

distribution properly with more solutions. Obviously choosing a single solution

becomes in some how arbitrary.

All these considerations lead to important questions: as different clustering

algorithms (or also more runs of the same algorithm) find different data par-

titions, are the discovered clusters valid? Does the true solution really exist

or is it an utopia? And even more interestingly, how is important to find this

hypothetical single solution? These questions have introduced new trends in

data clustering research leading to the development of the “consensus cluster-

ing” concept.

4.2 Introduction to Consensus Clustering

Consensus clustering, also known in literature as clustering ensembles or clus-

tering aggregation has emerged as an important elaboration of the classical

clustering problem. Consensus clustering can be defined as the process of com-

bining multiple individual clustering results obtained for a particular data-set

into a single consensus solution which is a better fit in some sense than the

existing clusterings. When cast as an optimization problem, consensus clus-

tering is known as median partition, and has been shown to be NP-complete

[Barthlemy and Leclerc, 1995].

As mentioned in Section 4.1, we may use a variety of clustering algorithms to

partition a data-set into several clusters. Each of these clustering algorithms has

its own clustering criteria and imposes partitions on the data based on certain

assumptions. Due to the lack of prior information about the underlying cluster

structure, which is inherent to cluster analysis, we usually do not know which al-

gorithm to choose in order to correctly identify this structure. Researchers have

thus attempted to avoid selecting one particular criterion/algorithm by using
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instead a set of clustering solutions produced by different algorithms, called a

cluster ensemble, and then incorporate them into a single partition referred to as

the consensus solution. There are many different ways of generating a clustering

ensemble and then combining the partitions. For example, multiple data par-

titions can be generated by: multiple clustering algorithms, multiple runs with

random initializations of the same clustering algorithm, subsets re-sampled from

a data-set, combining of different data representations (feature spaces), etc. A

cluster ensemble improves clustering performance, as it can compensate for pos-

sible errors made by some clustering solutions by introducing the correct output

of others; hence it can be more accurate and robust than each of the individual

components.

As for the clustering, also for the consensus clustering problem, a lot of

algorithms have been developed to solve different questions in many fields of

applications. In the following we show a brief overview of the most important

methodologies used for this kind of problems leaving out the algorithms details.

Strehl and Ghosh [Strehl and Ghosh, 2002] consider various formulations for

the consensus clustering, most of which reduce the problem to a hyper-graph

partitioning problem. This approach introduces the problem of combining mul-

tiple partitionings of a set of objects into a single consolidated clustering without

accessing the features or algorithms that determined these partitionings. They

discuss three approaches towards solving this problem to obtain high quality

consensus functions. Their techniques have low computational costs and this

makes it feasible to evaluate each of the techniques discussed below and arrive

at the best solution by comparing the results against the objective function.

The first step of the consensus functions is to transform the data partitions into

a hyper-graph representation. The Cluster-based Similarity Partitioning Algo-

rithm (CSPA) uses a pairwise similarity: the similarity between two data-points
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is defined to be directly proportional to number of constituent clusterings of the

ensemble in which they are clustered together. The intuition is that the more

similar two data-points are the higher is the chance that constituent clusterings

will place them in the same cluster. CSPA is the simplest heuristic, but its

computational and storage complexity are quite expensive. The HyperGraph

Partitioning Algorithm (HGPA) obtains the combined partition by partitioning

the hyper-graph into k unconnected components of approximately the same size,

by cutting a minimum number of hyper-edges. Finally, the Meta-CLustering Al-

gorithm (MCLA) is based on clustering clusters: each cluster is represented by

a hyper-edge. The idea in MCLA is to group and collapse related hyper-edges

and assign each object to the collapsed hyper-edge in which it participates most

strongly.

Also based on the hyper-graph theory is the work of Fern and Brodley

[Fern and Brodley, 2004] who proposed the Hybrid Bipartite Graph Formula-

tion (HBGF) algorithm that forms a bipartite graph between clusters and data-

points, and then partitions the graph to obtain the final consensus clustering.

This paper proposes a new graph formulation that simultaneously models both

instances and clusters as vertices in a bipartite graph. Such a graph retains all

of the information of an ensemble, allowing both the similarity among instances

and the similarity among clusters to be considered collectively to construct the

final clusters.

Punera and Ghosh [Punera and Ghosh, 2008] extended the idea of hard clus-

tering ensembles to the soft clustering scenario: while the other techniques are

very varied in the algorithms they employ, the common thread is that they only

work with hard constituent clusterings. The authors investigated Soft Cluster

Ensembles and developed a “soft version” of CSPA, MCLA [Strehl and Ghosh, 2002]

and HBGF [Fern and Brodley, 2004] algorithms named respectively sCSPA (soft
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CSPA), sMCLA (soft MCLA) and sHBGF (soft HBGF).

In [Gionis et al., 2007] the authors consider the following problem: given a

set of clusterings, find a single clustering that agrees as much as possible with

the input clusterings. This problem, known as clustering aggregation, appears

naturally in various contexts. For example, clustering categorical data is an

instance of the clustering aggregation problem; each categorical attribute can

be viewed as a clustering of the input rows where rows are grouped together

if they take the same value on that attribute. Clustering aggregation can also

be used as a meta clustering method to improve the robustness of clustering

by combining the output of multiple algorithms. Furthermore, the problem

formulation does not require a priori information about the number of clusters;

it is naturally determined by the optimization function. In this work, Gionis et

al. give a formal statement of the clustering aggregation problem, and propose

a number of algorithms which make use of the connection between clustering

aggregation and the problem of correlation clustering.

In [Fred and Jain, 2002] the idea of evidence accumulation (EAC) for com-

bining the results of multiple clusterings is addressed. Given a data set (N

objects or patterns in D dimensions), a clustering ensemble (a set of object par-

titions) is produced. According to the EAC concept, each partition is viewed as

an independent evidence of data organization, individual data partitions being

combined, based on a voting mechanism, to generate a new N × N similarity

matrix between the N patterns. The final data partition of the N patterns is

obtained by applying a hierarchical agglomerative clustering algorithm on this

matrix. Also the authors have developed a theoretical framework for the anal-

ysis of the proposed clustering combination strategy and its evaluation, based

on the concept of mutual information between data partitions.

The study performed in [Topchy et al., 2005] extends previous research on
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clustering ensembles in several respects. The authors propose a probabilistic

model of consensus using a finite mixture of multinomial distributions in a space

of clusterings. A combined partition is found as a solution to the corresponding

maximum-likelihood problem using the EM algorithm. Also they define a new

consensus function that is related to the classical intraclass variance criterion

using the generalized mutual information definition and demonstrate the efficacy

of combining partitions generated by weak clustering algorithms that use data

projections and random data splits.

The problem of consensus clustering is of particular significance in the emerg-

ing field of gene expression data analysis and functional genomics, where the

need for the molecular-based refinement of broadly defined biological classes

is an active field of study, in particular in cancer diagnosis, prognosis, and

treatment, among others. In gene expression data analysis the relatively small

sample size is compounded by the very high dimensionality of the data avail-

able and this fact makes the clustering results especially sensitive to noise

and susceptible to over-fitting. A lot of proposals exist for the use of resam-

pling and cross validation techniques to simulate perturbations of the origi-

nal data set, so as to assess the stability of the clustering results with re-

spect to sampling variability [Ben-Hur et al., 2002, Bertoni and Valentini, 2007,

Bhattacharjee et al., 2001, Dudoit and Fridlyand, 2002]. Upon some of those

ideas Monti et al. [Monti et al., 2003] develop a general, model-independent

resampling-based methodology of class discovery and clustering validation and

visualization tailored to the task of analyzing gene expression data. They call

the new methodology consensus clustering, as it provides for a method to repre-

sent the consensus across multiple runs of a clustering algorithm, to determine

the number of clusters in the data, and to assess the stability of the discovered

clusters. The method can also be used to represent the consensus over multiple
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runs of a clustering algorithm with random restart (such as K-means, model-

based Bayesian clustering, SOM, etc.), so as to account for its sensitivity to the

initial conditions.

4.3 Meta Clustering: does exist a unique solu-
tion?

The brief review of Section 4.2 shows that most ensemble methods combine

the clusterings they identify into a one final clustering because their goal is

to find a better, single, very compact clustering. But as different clustering

algorithms (or also more runs of the same algorithm with different parameters

and/or initializations) applied to the same data-set find different data partitions,

it is right to think that the “true” solution does not really exist and, even more

interestingly, the final goal is not to find this hypothetical single solution. In fact

in many applications different clusterings can put in evidence distinct groupings

of the data which find a meaningful explanation in the nature of the problem.

A typical example comes from the biological data analysis: different partitions

of the same data-set can reveal different subtypes of tumors or diseases which

could not emerge from a unique solution. In these cases the real problem is the

analysis of a small group of equivalently good solutions rather than the search

for the best partition of the data-set.

This idea is at the basis of the so called meta clustering which does not

attempt to combine different clusterings into one clustering. Instead, it groups

different clusterings into meta clusters to allow users to select the clustering

that is most useful for them.

A useful work on this topic is presented in [Caruana et al., 2006] where the

authors introduce the meta clustering as a new approach to the problem of clus-

tering: rather than finding one optimal clustering of the data, meta clustering
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finds many alternate good clusterings of the data and allows the user to select

which of these clusterings is most useful, exploring the space of reasonable clus-

terings. To prevent the user from having to evaluate too many clusterings, the

many base-level clusterings are organized into a meta clustering, a clustering of

clusterings that groups similar base-level clusterings together. This meta clus-

tering makes it easier for users to evaluate the clusterings and efficiently navigate

to the clustering(s) useful for their purposes. The whole process is composed of

three steps. First, a large number of potentially useful high-quality clusterings

is generated. Then a distance metric over clusterings measures the similarity

between pairs of clusterings. Finally, the clusterings are themselves clustered

at the meta level using the computed pairwise similarities. The clustering at

the meta level allows the user to select a few representative yet qualitatively

different clusterings for examination. If one of these clusterings is appropriate

for the task at hand, the user may then examine other nearby clusterings in the

meta level space.

Founded on this main idea, the goal of the second proposed application is

to develop an automatic procedure which, starting from the generation of an

initial ensemble of clustering solutions for a certain selected data-set and pass-

ing through well defined steps, allows to provide a limited number of different

equivalently “good” clustering solutions. To this purpose we propose a consen-

sus clustering algorithm called Least-Squares Consensus Clustering as explained

in Section 5.1. This method extends the idea of the Least-Squares Clustering

[Dahl, 2006] and allows to extrapolate in an automatic way a small number of

different clustering solutions from an initial (large) set of clusterings obtained

by applying any clustering algorithm to a selected data-set. As for a consensus

clustering algorithm it is fundamental to evaluate the obtained results, we also

define a measure of quality in terms of Least-Squares Error (see Section 5.2).
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In addition to evaluate the level of representativeness of the consensus cluster-

ing solutions, this measure of quality represents the discrimination threshold to

select a small group of meaningful solutions. In order to have an immediate

feedback on the analysis results, we also suggest a graphical visualization (see

Section 5.6).

As we will explain in more details in Chapter 5, unlike related works (also

[Caruana et al., 2006]) the developed methodology is completely automatic and

totally independent from the methods used for the generation of the initial clus-

terings ensemble. Also it is user-independent because, once selected the data-set

and generated the clusterings ensemble, the user is only called to analyze and

understand a limited group of solutions provided by the procedure itself.
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Chapter 5

Least Squares Consensus
Clustering Algorithm

5.1 Least-Squares Consensus Clustering

The proposed consensus clustering algorithm is based on the idea of Least-

Squares Clustering (LS) used in [Dahl, 2006] which describes a model-based

clustering procedure for microarray expression data based on a well-defined sta-

tistical model, specifically, a conjugate Dirichlet process mixture (DPM) model.

In the assumed model, two genes come from the same mixture component if

and only if their relevant latent variables governing expression are equal. The

model is fit using Markov Chain Monte Carlo (MCMC). Each iteration of the

Markov chain yields a clustering of the data. Providing a single point estimate

for clustering based on the thousands of clusterings in the Markov chain has been

proved to be challenging [Medvedovic and Sivaganesan, 2002]. One approach is

to select the observed clustering with the highest posterior probability; this is

called the maximum a posteriori (MAP) clustering. Unfortunately, the MAP

clustering may only be slightly more probable than the next best alternative, yet

represents a very different allocation of observations. Alternatively, Medvedovic

and Sivaganesan suggest using hierarchical agglomerative clustering based on a
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distance matrix formed using the observed clusterings in the Markov chain. As

alternative, Dahl proposes a method to form a clustering from the many cluster-

ings observed in the Markov chain. The method is called Least-Squares Model

Based Clustering (or, simply, Least-Squares Clustering). It selects the observed

clustering from the Markov chain that minimizes the sum of squared devia-

tions from the averaged pairwise probability matrix that elements are clustered

together.

Starting from this basic idea, we have defined a Least-Squares Consensus

Clustering of a set of clusterings solutions and its associated quality measure.

Let Y be a given data-set of dimensions N × D, where N is the number

of elements to cluster and D is the number of features. Let γk be a vector

of dimension N , encoding a clustering solution for the data-set Y . We define

Γ = {γ1, . . . , γM} a collection of M >> 1 distinct clustering solutions for Y

obtained from any clustering algorithm.

For each clustering γk ∈ Γ, k = 1, . . . ,M , we have built an association

matrix δ(γk) of dimension N ×N , whose (i, j) element is δi,j(γk), an indicator

of whether element i is clustered with element j. Element-wise averaging of the

association matrices of all the clusterings γk ∈ Γ yields the pairwise probability

matrix of clusterings:

π =
1
|Γ|
∑
γk∈Γ

δi,j(γk). (5.1)

where |Γ| is defined as the number of elements in the set Γ.

Specifically, the Least-Squares Consensus Clustering γ̂LS is defined as the

observed clustering which minimizes the sum of squared deviations of its asso-

ciation matrix from the pairwise probability matrix π:

γ̂LS = arg min
γk∈Γ

N∑
i=1

N∑
j=1

(δi,j(γk)− πi,j)2. (5.2)
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The Least-Squares Consensus Clustering presents many advantages:

1. it uses information from all the starting clusterings via the pairwise prob-

ability matrix;

2. it selects as consensus one of the original clusterings, instead of forming a

new clustering via an external, ad hoc algorithm;

3. it is independent from the number of clusters k present in each single

clustering;

4. the consensus clustering presents a label for all the N data-set elements:

none element is eliminated by the procedure.

5.2 Least-Squares Error

The aim of a consensus clustering algorithm is to combine different clustering

solutions to obtain a new final clustering which is representative of the initial

clustering ensemble. The level of representativeness of the obtained consensus

clustering should be evaluated using an objective criterion. For this reason we

have defined a quality measure called Least-Squares Error which account for the

goodness of the Least-Squares Consensus Clustering.

More specifically, given a Least-Squares Consensus Clustering γ̂LS for a cer-

tain group of clustering solutions Γ = {γ1, . . . , γM} we have defined the Least-

Squares Error ELS associated to a Least-Squares Consensus Clustering γ̂LS as

ELS(Γ) =
1
|Γ|
∑
γk∈Γ

N∑
i=1

N∑
j=1

(δi,j(γk)− δi,j(γ̂LS))2. (5.3)

Intuitively, the Eq. (5.3) shows that the greater is the Least-Squares Error

ELS the more distant is the Least-Squares Consensus Clustering γ̂LS from the

other clusterings γk ∈ Γ, k = 1, . . . ,M . On the other hand, when the Least-
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Squares Error ELS is small, the clustering γ̂LS is closer to the other clusterings

and therefore it is more representative of the whole group.

As well as to define the level of representativeness of the Least-Squares Con-

sensus Clustering, this measure of quality represents the discrimination thresh-

old to select a small group of meaningful solutions as explained in Section 5.4.

5.3 Similarity measure and hierarchical cluster-
ing

Whereas Least-Squares Error can provide a measure of the closeness of a group

of clusterings, the pairwise comparison of two partitions can be done using

similarity measures such as Minkowski Index, Jaccard Coefficient, correlation

and matching coefficients (see [Ben-Hur et al., 2002] for a review). In our studies

we used a measure S based on the entropy of the confusion matrix between

clustering solutions [Bishehsari et al., 2007].

Given two clustering solutions γl and γr, where γl is made of n clusters and

γr is made of m clusters, we define the confusion matrix Zlr between γl and γr

as a matrix which entries are the number of elements belonging to the cluster i

of γl, denoted as γil , and to the cluster j of γr, denoted as γjr :

Zlri,j =| {akil ∈ γil , k = 1, . . . , | γil |: akil ∈ γjr} | (5.4)

for i = 1, . . . , n and j = 1, . . . ,m. The obvious tool to measure the disorder

of a cluster is the entropy H. If Ri is the i-th row of Z and Cj is the j-th column

of Z, then H(Ri) measures the disorder of the i-th cluster of γl with respect to

γr, and H(Cj) measures the disorder of the j-th cluster of γr with respect to

γl. The similarity of γr versus γl is defined as the mean entropy of the clusters

of γr versus γl:
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S(Zlr) =
∑
i

(P (γil ) ·H(Ri)) (5.5)

where the a-priori probability of a cluster γil , P (γil ), can be approximated as

(| γil |)/(total number of objects). The similarity of γl versus γr can be obtained

with the analogue formula on Cj , which turns to be S((Zlr)′). As in general is

S(Zlr) 6= S((Zlr)′) the final measure of similarity between the two clusterings

lies in the trade-off between S(Zlr) and S((Zlr)′) and is defined as follows:

Sa(Zlr) = S(Zlr) + a · S((Zlr)′) (5.6)

where a ∈ [0, 1] can be used to set the acceptable level of “sub-clusteringness”

of γr versus γl (see [Bishehsari et al., 2007] for details).

When a collection of M clustering solutions Γ = {γ1 . . . γM} is considered,

the similarity measure (Eq. (5.6)) can be computed for any pair of clusterings

(γr, γl) ∈ Γ and assembled in a similarity matrix SM of dimension M ×M .

In order to visualize the relationships between the different clusterings, we can

apply a hierarchical clustering algorithm on the similarity matrix SM , giving

origin to a meta-clustering dendrogram in which leaves represent the clustering

solutions.

In general for a selected data-set of dimensions N × D, where N is the

number of items to be clustered and D the number of dimensions, given an

N×N distance (or similarity) matrix, the basic process of hierarchical clustering

(defined by S.C. Johnson in [Johnson, 1967]) is the following:

1. Start by assigning each item to a cluster, so that if there are N items,

there are also N clusters, each containing just one item. Let the distances

(similarities) between the clusters the same as the distances (similarities)

between the items they contain.

76



2. Find the closest (most similar) pair of clusters and merge them into a

single cluster, so that now there is one cluster less.

3. Compute distances (similarities) between the new cluster and each of the

old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of

size N .

Step 3 can be done in different ways, which depends on the selected linkage

criterion.

If cluster r is formed from clusters p and q, nr is the number of objects in

cluster r and xri is the i-th object in cluster r, the main linkage functions can

be summarized as follows:

• Single linkage, also called nearest neighbor, uses the smallest distance

between objects in the two clusters:

d(r, s) = min(dist(xri, xsj)), i ∈ (1, . . . , nr), j ∈ (1, . . . , ns) (5.7)

• Complete linkage, also called furthest neighbor, uses the largest distance

between objects in the two clusters:

d(r, s) = max(dist(xri, xsj)), i ∈ (1, . . . , nr), j ∈ (1, . . . , ns) (5.8)

• Average linkage uses the average distance between all pairs of objects in

any two clusters:

d(r, s) =
1

nrns

nr∑
i=1

ns∑
j=1

dist(xri, xsj) (5.9)

• Centroid linkage uses the Euclidean distance between the centroids of the

two clusters:

d(r, s) = |xr − xs| (5.10)
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where

xr =
1
nr

nr∑
i=1

xri

• Median linkage uses the Euclidean distance between weighted centroids of

the two clusters:

d(r, s) = |x̃r − x̃s| (5.11)

where x̃r and x̃s are weighted centroids for the clusters r and s. If cluster

r was created by combining clusters p and q, x̃r is defined recursively as

x̃r =
1
2

(x̃p + x̃q)

• Ward’s linkage uses the incremental sum of squares; that is, the increase in

the total within-cluster sum of squares as a result of joining two clusters.

The within-cluster sum of squares is defined as the sum of the squares of

the distances between all objects in the cluster and the centroid of the

cluster. The equivalent distance is:

d2(r, s) = nrns
|xr − xs|2

(nr + ns)
(5.12)

where xr and xs are the centroids of clusters r and s, as defined in the

centroid linkage.

The results of hierarchical clustering are usually presented in a dendrogram.

This is a tree-like plot where each step of hierarchical clustering is represented

as a fusion of two branches of the tree into a single one. The branches represent

clusters obtained on each step of hierarchical clustering. Figure 5.1 shows an

example of dendrogram obtained when a hierarchical agglomerative clustering

is applied to a synthetic data-set (2-dimensional Gaussian of 50 items) using

the complete linkage criterion (see Eq. (5.8)). In this example each leaf of the

tree represents a single item.
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Figure 5.1: Dendrogram example.

The final step of a hierarchical clustering algorithm is the horizontal cut of

the dendrogram in order to obtain a suitable partition of the tree in groups

of sub-trees which represent the desired data partition. Unfortunately no hi-

erarchical clustering algorithms performs an automatic cut of the dendrogram

but to this aim an external criterion or a partially knowledge of the data-set

properties must be used in contrast with the nature of the clustering problem.

In an analogous way it is possible to apply a hierarchical clustering to a

collection of M clustering solutions Γ = {γ1 . . . γM} using the similarity matrix

SM for the distances between clusterings and selecting a linkage criterion. The

result of this procedure is the same described for a single clustering but in this

case the dendrogram leaves represent the clustering solutions Γ = {γ1 . . . γM}

instead of the items.

5.4 Algorithm

The proposed methodology, based on the Least-Squares Consensus Clustering,

allows to extrapolate in an automatic way a small number of different clustering

solutions from an initial (large) set of clusterings obtained by applying any
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clustering algorithm to a selected data-set. In the final analysis the aim of

the methodology is to find an automatic procedure to cut the dendrogram of

clustering solutions in order to obtain a suitable partition of the tree in a group

of sub-trees. Each sub-tree will be characterized by a consensus clustering which

is one leaf of the same sub-tree and by its quality measure.

Let once again Y be a given data-set of dimensionsN×D and Γ = {γ1, . . . , γM}

a collection of M >> 1 distinct clustering solutions for Y obtained from any

clustering algorithm. The goal is to find a set of L solutions γ∗1 , . . . , γ∗L, with

L << M , which are representative of the solutions in Γ, and to define a measure

of quality E1, . . . , EL associated to them.

The algorithm can be summarized in the following steps:

1. Consider a set of M clustering solutions Γ = {γ1 . . . γM} for the selected

data-set Y .

2. Calculate the similarity matrix SM (Eq. (5.6)).

3. Construct a dendrogram using a hierarchical clustering algorithm applied

to SM .

4. For i = 1, . . . ,M − 1 ( number of dendrogram nodes)

(a) Denote Γ1 . . .Γl the groups of solutions (sub-trees) obtained when

cutting the tree at the i-th node. Note that only a group can be

changed at each step as the dendrogram cut can be realized at each

level of leaves aggregation.

(b) Compute γ∗1 . . . γ∗l as the Least-Squares Consensus clusterings of the

sub-sets Γ1 . . .Γl using Eq. (5.2).

(c) Compute the errors ELS(Γk) (Eq. (5.3)) for each of the sets Γk, k =

1 . . . l.
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Figure 5.2: Global Least-Squares Error ELS versus the number of steps.

(d) Compute a global error term EiLS at the i-th node as

EiLS = max(ELS(Γk), Ei−1
LS ) (5.13)

Each Γk, k = 1 . . . l can be composed of a leaf that is aggregated to the

set of previous solutions or by two sub-groups joined in a node.

5. Construct the plot of the global Least-Squares Error EiLS versus the num-

ber of steps i (see Figure 5.2 for example).

6. Cut the dendrogram on the basis of the behavior obtained for the global

Least-Squares Error function (see Section 5.5 for details).

7. Retrieve as Least-Squares Consensus Clusterings γ∗1 . . . γ∗L corresponding

to such cut off.

This procedure evaluates at each step a sub-group of clusterings solutions,
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their consensus solution and associated errors. The algorithm can be easily

implemented either like a top-down or a bottom-up procedure on the tree. The

dendrogram cut allows to split the original tree in a certain number of sub-

trees Γ1 . . .ΓL with L � M , each representing a group of clusterings with its

representative consensus γi and its quality measure ELS(γi), i = 1 . . . L.

5.5 Automatic cutoff selection

The plot of the Least-Squares Error versus the number of steps presents some

“jumps” as we can see from Figure 5.2 obtained applying the whole procedure

to a synthetic data-set described in more details in Chapter 6. These jumps

emphasize the aggregation of a single clustering or a group of solutions which

are far (in Least-Square sense) from the group of solutions obtained by the

previous aggregation. The determination of a threshold value on the plot, in

correspondence to one of these jumps, permits to individuate a corresponding

cut-off on the dendrogram, putting into evidence several groups of clusterings

that are similar. Obviously the threshold selection represents a crucial step

of the whole procedure and an automatic selection, rather than a manual and

subjective one, is desirable. Many different techniques can be applied to this

purpose.

In [Zhu and Ghodsi, 2006] , the authors present an automatic cut-off selec-

tion from the scree plot via the use of profile likelihood. Their work places into

the context of dimensionality reduction methods and the problem of automati-

cally select the number of coordinates to use for projection in a lower dimension

space.

Let d1 ≥ d2 ≥ . . . ≥ dp ≥ 0 be the ordered coordinates. In the case

of Principal Component Analysis (PCA), for example, these are the ordered

eigenvalues. If a gap exists at position q, 1 ≤ q ≤ p, then Σ1 = {d1, d2, . . . , dq}
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and Σ2 = {dq+1, dq+2, . . . , dp} can represent samples from two different distribu-

tions f(d, θ1) and f(d, θ2). The log-likelihood function, under the independence

assumption, can be written as:

l(q, θ1, θ2) =
q∑
i=1

log f(di; θ1) +
p∑

j=q+1

log f(dj ; θ2) (5.14)

By plugging into the Eq. (5.14) the maximum likelihood estimates (MLE) of θ1

and θ2, a profile log-likelihood for q can be written as:

lq(q) =
q∑
i=1

log f(di; θ̂1(q)) +
p∑

j=q+1

log f(dj ; θ̂2(q)) (5.15)

An estimate of q can be obtained by maximizing the profile log-likelihood

defined in the Eq. (5.15). To this aim a simple exhaustive search can be used,

that is computing lq(1), lq(2), . . . , lq(p) and estimating q with:

q̂ = arg max lq(k) k = 1, 2, . . . , p (5.16)

For simplicity assume f to be the Gaussian distribution:

f(d, µj , σ2) =
1√

2πσ2
exp

{
− (d− µj)2

2σ2

}
j = 1, 2. (5.17)

It is important to use a common scale parameter σ for both Σ1and Σ2. If a

different σ is used for each model, it becomes too flexible and it is possible for

the profile log-likelihood (Eq. (5.15)) to become infinite, e.g., when q = 1 and

q = p− 1. For completeness, for any given q, the MLEs for µ1and µ2are simply

the sample averages:

µ̂1 =

∑
di∈Σ1

di

q
and µ̂2 =

∑
dj∈Σ2

dj

p− q
(5.18)

and the MLE for the common scale parameter σ2 is:

σ̂2 =
(q − 1)s2

1 + (p− q − 1)s2
2

p− 2
, (5.19)
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where s2
j is the sample variance of Σj .

We have applied the procedure to our problem replacing the scree plot with

the least-squares error curve and assuming the Gaussian distribution for the

profile log-likelihood. This allows to determine a threshold for the dendrogram.

The result is a list of groups of solutions (sub-trees) which are all distinct each

other and, by construction, do not admit overlaps, but the result is strongly

dependent on the hierarchical clustering algorithm used to construct the den-

drogram from the similarity matrix.

5.6 Pairwise matrix visualization

As noticed in Section 5.4 the proposed approach applied to a given data-set

provides a limited number of solutions Γ1, . . . ,ΓL with L � M . Generally the

end user is called to analyze this restrict group of solutions and the development

of a visualization tool to this aim becomes very important to simplify and speed

up his work.

Different ways to visualize the consensus clustering results are available in

literature. For example in [Monti et al., 2003] the authors proposed a consensus

matrix reordering and visualization to help assess the clusters composition and

number. In particular, in the range of their work, associating a color gradient

to the 0-1 range of real numbers, so that white corresponds to 0, and dark red

corresponds to 1, and assuming the matrix is arranged so that items belonging

to the same cluster are adjacent to each other , a matrix corresponding to

perfect consensus will be displayed as a color-coded heat map characterized by

red blocks along the diagonal, on a white background.

For our purposes, in order to have an immediate feedback on the analysis

results, we suggest the following graphical visualization. Let Γl be one of the so-

lutions and γ̂lLS its corresponding Least-Squares consensus clustering. Without
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loss of generality, we can re-arrange the samples in order to place together ele-

ments with the same label, so that γ̂lLS contains first all the samples that belong

to cluster 1, then the ones in cluster 2, finally the ones in cluster k. The average

pairwise probability matrix π̂lij can be rearranged accordingly. Note that each

element (i, j) of this matrix takes the value 1 if the corresponding couple of

elements are allocated in the same cluster in all the clusterings of the group Γl

and takes the value 0 if the corresponding couple of elements are allocated in

different clusters in each clustering. All the values included in the range [0, 1]

model the intermediate conditions. In this way, associating a color gradient to

this range of real numbers, a heat-map of the pairwise probability matrix of

each group Γi can be displayed. In this heat-map the pixels will represent the

data-set elements.

It is easy to see that when the clusterings of the same group are similar (in

Least-Square sense), homogeneous blocks appear in the matrix showing that

these sets of elements have been clustered always in the same manner. Also this

visualization enables to display “how many” and “which” clusters are “mixed”,

that is to highlight the elements classified in a different way in several clusterings.

To improve this type of visualization a further reorganization of the blocks is

possible: for each block, the portion of cells with value 1 are arranged in the

upper left corner of the block and, using an iterative procedure, all the other

portions are arranged in a descending order depending on their values in the

range [0,1]. This makes easier to evaluate the homogeneity of each clusters, to

detect outliers or possible different assignments but, on the other hand, all the

information on the elements position is missed.

Figure 5.3 shows an example of heat-map visualization. In this case it is

evident the presence of six different clusters. Two of them (respectively the first

and the fifth starting from the upper left corner) are totally homogeneous. Other
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Figure 5.3: Heat-map visualization example.
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two (the second and the fourth) are only partially mixed. Finally there are two

clusters (the third and the sixth) which are very mixed, that is, their elements

are clustered in different ways in the clusterings of the selected sub-tree.
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Chapter 6

Results and Analysis

6.1 Experimental setup

To evaluate the performance of our method we have considered several different

synthetic and real data-sets and generated the initial set of clustering solutions

applying different clustering algorithms to them. All the software we developed

runs in the MATLAB environment.

6.1.1 Simulated data

Several synthetic data-sets have been generated to test the procedure described

in the Chapter 5. We present here four of the whole sets of experiments per-

formed. Three of these data-sets are composed by mixtures of Gaussians in 2

dimensions with different covariance matrices. The first data-set is composed

by a mixture of 5 Gaussians from each of them we have sampled 150 points

with a total of N=750 points; the second data-set is composed by a mixture of

6 Gaussians from each of them we have sampled 100 points with a total of N =

600 points; finally the third data-set is composed by a mixture of 7 Gaussians

from each of them we have sampled 100 points with a total of N = 700 points

The data-sets are shown in Figure 6.1.

The last data-set we consider has an a priori known multi-level hierarchi-
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cal structure inspired by the one used in [Bertoni and Valentini, 2008] where

the authors proposed a new method based on Bernstein’s inequality to assess

the statistical significance and to discover multi-level structures in biomolecular

data. It is a two-dimensional synthetic data-set with a three level hierarchical

structure: at a first level three large clusters are present in the data; at a second

level we have six clusters and finally at a third-level twelve clusters may be de-

tected. The data-set is composed by a total of N = 600 points and it is shown

in Figure 6.2.

This data-set allows to show the effectiveness and practical utility of our

methodology in discovering hidden sub-structures of the data.

In the first set of simulations we have used K-means as clustering algorithm

to generate the initial group of clustering solutions for each of the three synthetic

data-sets. After 500 runs of K-means we have retained only the 35 distinct

clusterings as initial set for the first data-set, only the 44 distinct clusterings

for the second data-set and only the 49 distinct clusterings for the third one.

For each group of these solutions we have computed the similarity matrix SM

according to Equation 5.6, we have constructed the dendrogram of clustering

solutions using the “complete linkage” algorithm, implemented in MATLAB

toolbox, and then we have applied the proposed algorithm to the hierarchical

tree of the solutions in a bottom-up approach.

Figure 5.2 shows the plot of Least Squares Error of the clusterings set at each

step for the data-set composed by 6 Gaussians (second data-set); the figures

for the other two data-sets (not shown for brevity reasons) are very similar.

Applying the automatic selection procedure to the Least Squares Error curve for

this data-set, we have obtained a threshold value in correspondence of the step

number i = 33. This step corresponds to a particular node and consequently to a

particular cut on the dendrogram. The result of this cut is shown in the central
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Figure 6.1: Synthetic data-sets composed, respectively, by a mixture of 5, 6 and
7 Gaussians in 2 dimensions.
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Figure 6.2: Synthetic data set: a three-level hierarchical structure with 3, 6 and
12 clusters in 2 dimensions.

panel of the Figure 6.3: we have highlighted different groups of clusterings using

different colors for each group of clusterings solutions Γi. The upper and lower

panels of the figure show the dendrograms for the data-set one and the data-set

three respectively.

Now consider again the second data-set for example (similar considerations

can be made for the other data-sets). We have extrapolated a set of 12 solutions

(8 groups and 4 singletons) from the initial 44 clusterings. See Table 6.1 for

details.

Finally in Figure 6.4 we show the pairwise matrix visualization applied on

the group Γ7 = {γ28, γ29, γ31, γ32, γ33, γ34, γ35, γ36, γ38} formed by 9 clusterings,

which is highlighted in red color in the central pane of Figure 6.3.

Two homogeneous blocks are clearly visible along the diagonal: they rep-

resent two clusters whose elements have been clustered together in all the 9

solutions of the group. Other two clusters present only minor mixed regions

identifiable in different colors on the border of the blocks. Finally two clusters

present less conserved areas and illustrate the situation when some elements can
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Figure 6.3: Dendrogram of the clustering solutions for the synthetic data-sets.
Different colors indicate different groups of aggregated clusterings.
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Group Clusterings
Γ1 γ18, γ19, γ20, γ21, γ22, γ23

Γ2 γ2, γ3, γ4, γ5, γ15, γ16

Γ3 γ8, γ9, γ10, γ11, γ12, γ13, γ14, γ17, γ24

Γ4 γ6, γ7

Γ5 γ1

Γ6 γ25

Γ7 γ28, γ29, γ31, γ32, γ33, γ34, γ35, γ36, γ38

Γ8 γ37

Γ9 γ39, γ40

Γ10 γ26

Γ11 γ27, γ30

Γ12 γ41, γ42, γ43, γ44

Table 6.1: Groups of clustering solutions obtained by the dendrogram cut for
the second synthetic data-set.
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Figure 6.4: Pairwise matrix visualization for the group of clusterings Γ7 =
{γ28, γ29, γ31, γ32, γ33, γ34, γ35, γ36, γ38} obtained applying the algorithm to the
second synthetic data-set.
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be clustered either with one or the other cluster.

We have repeated the study with

1. Γ generated by K-means with different values of k in a certain range of

values.

2. Γgenerated by EM algorithm with assigned value of k.

3. Γgenerated by EM algorithm with different values of k in a certain range

of values.

4. Γgenerated by both K-means and EM algorithms.

In all these cases the experimental results are very similar to those shown in the

presented example.

In order to show the capability of the proposed approach to detect a multi

level structure present in a data-set we also present the results obtained when

the whole procedure is applied to the synthetic data-set described in Figure 6.2.

In the first set of simulations we have used K-means as clustering algorithm to

generate the initial group of clustering solutions. Clearly when K-means runs

with k = 3 clusters our procedure results unnecessary as the 3 clusters of the

first level structure are well separated. Instead we obtained very interesting

results after 500 runs of K-means with k = 6 clusters. In this case we have

retained only the 26 distinct clusterings as initial set Γ. For these solutions we

have computed the similarity matrix SM according to Equation 5.6, we have

constructed the dendrogram of clustering solutions using the “complete linkage”

and then we have applied the proposed algorithm to the hierarchical tree of the

26 solutions in a bottom-up approach.

Figure 6.5 shows the plot of Least Squares Error of the clusterings set at

each step. Applying the automatic selection procedure to the Least Squares

Error curve, we have obtained a threshold value in correspondence of the step
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Figure 6.5: Least Square Error of the clusterings set at each step of the Algo-
rithm for the synthetic data-set with a multi-level hierarchical structure.

Group Clusterings Consensus
Γ1 γ24, γ26 γ24

Γ2 γ19, γ22, γ27 γ27

Γ3 γ6, γ7, γ10, γ12 γ6

Γ4 γ17, γ20, γ23 γ23

Γ5 γ2, γ3, γ5, γ9, γ11, γ15 γ15

Γ6 γ1, γ4, γ8, γ13, γ14, γ16 γ16

Γ7 γ18, γ21, γ25 γ18

Table 6.2: Groups of clustering solutions obtained by the dendrogram cut for
the synthetic data-set with the multi-level hierarchical structure.

number i = 21. This step corresponds to a particular node and consequently to

a particular cut on the dendrogram. The result of this cut is shown in Figure

6.6. We have extrapolated a set of 7 solutions from the initial 26 clusterings.

See Table 6.2 for details.

Finally in Figure 6.7 and Figure 6.8 we show the pairwise matrix visual-

ization applied on all the groups of clusterings obtained from the procedure

application. For each group is also visualized the scatter plot of the correspond-

ing Least Square consensus clustering of the group. A rapid analysis of these
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Figure 6.6: Dendrogram of the clustering solutions for the synthetic data-set
with the multi-level hierarchical structure.

plots allow the user to have a complete vision of the data structure. In fact

each group of clusterings emphasizes a sub-structure: one or two clusters of the

first level structure are detected and the remaining one or two are partitioned

in two or more clusters detecting the second and third level structure (six and

twelve clusterings respectively) embedded in the selected data-set. Moreover a

further look to the pairwise visualization shows that the blocks on the diagonal

are quite homogeneous for the majority of the groups, that is the clusterings

belonging to the same group are very similar each other.

We stress that a single run of K-means applied to this data-set gives only one

(random) of this clustering solutions hiding the natural structure of the data-set.

On the other hands multiple running of K-means gives a lot of solutions which

result very hard to analyze. Our result represents a good trade-off between the

two situations providing the minimum number of solutions to analyze to have

a general understanding of the data structure.

Finally we have applied the procedure to the same data-set with k = 12
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Figure 6.7: Pairwise matrix visualization for the groups of clusterings Γ1,Γ2,Γ3

and Γ4 (starting from the upper panel) obtained applying the algorithm to the
synthetic data-set with the multi-level hierarchical structure.
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(that is the real classification). Considering 500 runs of K-means we have ob-

tained 380 different clustering solutions which the proposed algorithm reduced

to 80 groups with their Least Squares consensus clusterings. It is important

to notice that only few of the K-means solutions are similar to the real classi-

fication and it seems very unlikely to obtain one of them with a single run of

K-means. Nevertheless our approach is able to show not only these solutions

near to the real classification but also other groups of clusterings which highlight

the hierarchical structure of the considered data-set.

6.1.2 Real data-set

As real data set we have chosen the well known Leukemia data-set [Golub, 1999].

It is composed by a group of 25 acute myeloid leukemia (AML) samples and

another group of 47 acute lymphoblastic leukemia (ALL) samples, that can

be subdivided into 38 B-Cell and 9 T-Cell subgroups, resulting in a two-level

hierarchical structure.

We have applied the procedure described in Section 6.1.1 with all its variants

drawn in Points 1.-4.: no significant differences have been obtained. For this

reason we have focalized our attention on the K-means algorithm. As for the

synthetic data-sets, we have considered 500 runs to obtain the starting set of

clustering solutions Γ. For the sake of brevity we report only the experiment

with k = 3. In this case Γ consists of M = 12 different solutions. We have

computed the similarity matrix SM and we have built the hierarchical tree

using the complete linkage, then we have applied the algorithm. Applying the

automatic selection procedure to the Least Squares Error curve we have obtained

a threshold value in correspondence of the step number i = 8.

The result of the subsequent dendrogram cut is shown in Figure 6.9: we have

highlighted different groups of clusterings using different colors for each group

and extrapolated a set of 5 solutions from the starting 12 clusterings. Figure
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Figure 6.8: Pairwise matrix visualization for the groups of clusterings Γ5, Γ6 and
Γ7 (upper, central and lower panel respectively) obtained applying the algorithm
to the synthetic data-set with the multi-level hierarchical structure.
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Figure 6.9: Dendrogram of the clustering solutions for the real data-set. Differ-
ent colors indicate different groups of aggregated clusterings.

6.10 shows the pairwise matrix visualization applied on all the groups of the

obtained clusterings. Comparing the Least Square consensus clusterings of each

group (γ3, γ7, γ4, γ1 and γ9, respectively) with the known data classification it

is clear that only γ1 separates the data in the right manner.

On the other hand the clusterings γ3, γ7, γ4 and γ9 separate the AML

elements from the ALL ones which are divided in different ways displaying a

sub level structure which is actually present in the data.

6.2 Method robustness

In order to have a preliminary idea of the robustness of the proposed procedure

we have carried out a series of tests on the same synthetic data-sets.

For brevity reasons we report here only the tests performed on the data-set

composed of 6 Gaussians. The experiments have been organized in the following

way:

1. We have carried out a set of 100 experiments applying K-means algorithm
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Figure 6.10: Pairwise matrix visualization for the 5 groups of clusterings ob-
tained applying the algorithm to the real data-set. Starting from the upper
panel on the left, the plots are referred to the clusterings groups with γ3, γ7,
γ4, γ1 and γ9 as consensus clustering respectively.

with fixed value of k to generate the starting ensemble of clustering so-

lutions Γ. In each experiment we have run K-means 500 times on the

data-set with k = 6 and we have considered only the different solutions.

2. We have carried out a set of 100 experiments applying K-means algorithm

with k variable in a certain range to generate the starting ensemble of

clustering solutions Γ. In each experiment we have run K-means 100

times on the data-set with k = 3, 100 times with k = 4, 100 times with k

= 5 and 100 times with k = 6.

3. We have carried out a set of 100 experiments applying EM algorithm with

fixed value of k to generate the starting ensemble of clustering solutions

Γ. In each experiment we have run EM 500 times on the data-set with k

= 6 and we have considered only the different solutions.

For each experiment our method, as a consequence of the data-dependent den-
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drogram cut, can provide a different number L of representative clustering solu-

tions. It is clear that the procedure results robust if the number L is the same

for each experiment or, at least, it is constrained in a narrow range and the

clustering solutions are not too much different each other.

Figure 6.11 summarizes the results for the 3 experiments. The upper panel

shows the histogram of the number L of solutions for the first set of experiments.

We observe that for 70 experiments the dendrogram cut gives 4 representative

solutions. Another less pronounced peak in the histogram is clear for L = 12 . In

conclusion the procedure appears robust at a first approximation. The central

panel shows the histogram of the number L of solutions for the second set of

experiments. Again the procedure appears robust even though, as expected,

the number of solutions is going to be larger than the previous case. The lower

panel shows the histogram of the number L of solutions for the third set of

experiments. The histogram appears very similar to the first case (K-means

algorithm).

Obviously this robustness analysis is only a preliminary one as it is limited

to the control of the number of different solutions obtained with the repeated

experiments and not to the control of the single solution obtained but it gives

a fast feed-back to the proposed problem opening new perspectives for further

investigations.

102



0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

L

Figure 6.11: Upper panel: histogram of the number L of solutions obtained from
the first set of experiments (K-means algorithm with fixed value of k); Central
panel: Histogram of the number L of solutions obtained from the second set of
experiments (K-means algorithm with variable values of k); Lower panel: His-
togram of the number L of solutions obtained from the third set of experiments
(EM algorithm with fixed value of k).
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Chapter 7

Conclusions and Future Work

In this thesis two data mining problems related to the management of high

dimensional data have been addressed. The first one deals with cloud detection,

a problem of multispectral satellite image classification, demonstrating the high

reliability of the statistical techniques of discriminant analysis in classifying

this type of images. The second application addresses the need to handle high

dimensional data (as biological data for example) for which it is necessary to

find significant structures within them.

In details, the first application demonstrated very good feasibility of statis-

tical (supervised) discriminant analysis in detecting cloud mask over a Western

European area from multispectral remotely sensed images taken from radiome-

ters on board geostationary satellites, precisely SEVIRI on board MSG. Relia-

bility of cloud detection ranged from good to excellent in all analyzed conditions

(over land, water, on daytime and nighttime). This result was achieved resort-

ing to some mathematical tools (namely, Principal and Independent Component

Analysis and nonparametric density estimation) able to exploit multispectral

character of the sensor at best and to fix some theoretical issues intrinsic with

multivariate data analysis. The method can be considered fully integrated phys-

ical/statistical, where the link with physics is guaranteed by the use of a very
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consolidated cloud mask to train the (statistical) discriminant analysis. By its

very nature it can be considered as a valid alternative for sensors having cloud

masks not consolidated yet and as a way to develop cloud masks of new sensors

in a quite fast time.

Several points have to be addressed in order to improve accuracy of the cloud

mask further and, especially, to extend it to the full disk (i.e., all latitudes and

longitudes of the hemisphere looked at by the geostationary satellite) and to

the whole day. First of all robustness of the cloud mask has to be evaluated

with respect to the “true” cloud mask used for the training of the discriminant

analysis (in the present work product MOD35 based on the MODIS sensor):

even though same robustness is guaranteed by the statistical character of the

method and by choosing only pixels estimated confidently clear or cloudy for

the training phase, however particular conditions, as light clouds, could deserve

more attention. Better spatial classification can be obtained by using also the

High Resolution Visible (HRV) channel. Further improvement of the method-

ology can be obtained by resorting on classification tools region-based rather

than pixels-based: actually clouds naturally have an intrinsic spatial correlation

that is transferred into the image.

With regard to the second application, we have investigated the multiple

clustering solution problem. Our work differs from the classical consensus clus-

tering approach as it relies on the belief that a single optimal solution for a

clustering problem does not exist and it is often more desirable to provide a

limited number of different “good” solutions.

To this purpose we have proposed a consensus clustering algorithm called

Least-Squares Consensus Clustering which extends the idea of the Least-Squares

Clustering and allows to extrapolate in an automatic way a small number of dif-

ferent clustering solutions from an initial (large) set of clusterings obtained by
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applying any clustering algorithm to a selected data-set. We have also defined

a measure of quality in terms of Least-Squares Error and, in order to have an

immediate feedback on the analysis results, we have suggested a graphical visu-

alization of the obtained solutions. The developed methodology is completely

automatic and totally independent from the methods used for the generation of

the initial clusterings ensemble.

We have illustrated the motivation, the practical utility and the performance

of the proposed method using both simulated and real data. In all the exper-

iments the algorithm allows to discover the multi level patterns hidden in the

data providing the minimum number of clustering solutions to analyze to have

a global understanding of the data structure.

Even if the proposed approach is user-independent, a drawback of the proce-

dure is, of course, its dependence on the hierarchical clustering algorithm used

to construct the dendrogram. To this end our future work will be dedicated

to overcome this disadvantage using, for example, other clustering algorithms.

Moreover we will also investigate the stability of the clustering solutions.
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