
Contents

Introduction i

1 Conservation Laws 1

1.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Admissibility conditions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Admissibility Condition 1 . . . . . . . . . . . . . . . . . . . 8

1.2.2 Admissibility Condition 2 . . . . . . . . . . . . . . . . . . . 8

1.2.3 Admissibility Condition 3 . . . . . . . . . . . . . . . . . . . 10

1.3 Riemann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 The Non-Convex Scalar Case . . . . . . . . . . . . . . . . . 17

1.4 Functions with Bounded Variation . . . . . . . . . . . . . . . . . . 20

1.5 BV Functions in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Wave-Front Tracking and Existence of Solutions . . . . . . . . . . 24

1.6.1 The Scalar Case . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.2 The System Case . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Uniqueness and Continuous Dependence . . . . . . . . . . . . . . . 29

2 Macroscopic models for supply chain and networks 34

2.1 The Armbruster-Degond-Ringhofer model . . . . . . . . . . . . . . 34

2.1.1 Scaling and dimensionless formulation . . . . . . . . . . . . 39

2.1.2 Interpolation and weak formulation . . . . . . . . . . . . . 40

2.2 The Göttlich-Herty-Klar model . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Modeling general networks . . . . . . . . . . . . . . . . . . 46

2.3 A continuum-discrete model for supply chain network . . . . . . . 48

2.3.1 Basic De�nitions . . . . . . . . . . . . . . . . . . . . . . . . 50

1



CONTENTS

2.3.2 Riemann Solvers for suppliers . . . . . . . . . . . . . . . . . 54

2.3.3 Waves production . . . . . . . . . . . . . . . . . . . . . . . 74

2.4 Equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4.1 A node with one outgoing sub-chain . . . . . . . . . . . . . 76

2.4.2 A node with one incoming sub-chain . . . . . . . . . . . . . 77

2.4.3 Bullwhip e¤ect . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Numerical Schemes 81

3.1 Numerical methods for Göttlich-Herty-Klar model . . . . . . . . . 81

3.1.1 Correction of numerical �uxes in case of negative queues . . 82

3.1.2 Di¤erent space and time grid meshes . . . . . . . . . . . . . 84

3.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Godunov scheme for 2� 2 systems . . . . . . . . . . . . . . . . . . 90

3.2.1 Fast Godunov for 2� 2 system . . . . . . . . . . . . . . . . 93

3.3 Numerics for Riemann Solvers . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 Discretization of the Riemann Solver SC1 . . . . . . . . . . 97

3.3.2 Discretization of the Riemann Solver SC2 . . . . . . . . . . 97

3.3.3 Discretization of the Riemann Solver SC3 . . . . . . . . . . 98

4 Simulations and Optimization 100

4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.1 Example of Göttlich-Herty-Klar model for supply chain . . 100

4.1.2 Example of continuum-discrete model for supply chain . . . 103

4.1.3 Example of Klar model for supply chain network . . . . . . 106

4.1.4 Example of continuum-discrete model for supply chain net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.5 Simulation of a simple supply network using both models . 109

4.2 Optimization of Klar model . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2



List of Figures

1.1 Conservation of �ux. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The characteristic for the Burgers equation in the (t; x)-plane. . . . 5

1.3 Superposition of characteristic curves for a Burgers equation. . . . 6

1.4 Solution to Burgers equation. . . . . . . . . . . . . . . . . . . . . . 7

1.5 A solution u� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 The condition (1.23) in the case u� < u+. . . . . . . . . . . . . . . 10

1.7 The condition (1.23) in the case u� > u+. . . . . . . . . . . . . . . 11

1.8 Shock and rarefaction curves. . . . . . . . . . . . . . . . . . . . . . 16

1.9 Shock wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Rarefaction waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.11 De�nition of ~f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.12 De�nition of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.13 Solution to the Riemann problem with u� > 0 and u+ < � (u). . . 20

1.14 A piecewise constant approximation of the initial datum satisfying

(1.45) and (1.46). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.15 The wave front tracking construction until �rst time of interaction. 26

1.16 Construction of �generalized tangent vectors�. . . . . . . . . . . . . 30

2.1 Example of a simple network structure . . . . . . . . . . . . . . . . 43

2.2 Relation between �ow and density . . . . . . . . . . . . . . . . . . 43

2.3 Geometry of a vertex with multiple incoming and outcoming arcs . 46

2.4 Supply network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Flux (F): Left, f (��; �). Right, f (�; ��). . . . . . . . . . . . . . . . . 52

2.6 A junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 First and second family curves . . . . . . . . . . . . . . . . . . . . 55

3



LIST OF FIGURES

2.8 Case �) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Case �) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 An example of Riemann Solver: case �). . . . . . . . . . . . . . . . 59

2.11 An example of Riemann Solver: case �). . . . . . . . . . . . . . . . 60

2.12 Case �) for the Riemann Solver SC2. . . . . . . . . . . . . . . . . 64

2.13 Case �) for the Riemann Solver SC2. . . . . . . . . . . . . . . . . 64

2.14 Case �) and �) (namely �1) and �2)) for the Riemann Solver SC3. 66

2.15 One outgoing sub-chain. . . . . . . . . . . . . . . . . . . . . . . . . 68

2.16 P belongs to 
 and P is outside 
 . . . . . . . . . . . . . . . . . . 69

2.17 One incoming sub-chain . . . . . . . . . . . . . . . . . . . . . . . . 71

2.18 Waves production on an outgoing sub-chain: case a.2). . . . . . . . 75

2.19 The outgoing sub-chain is an active constraint and the incoming

ones are not active constraints. . . . . . . . . . . . . . . . . . . . . 76

2.20 The incoming sub-chains are active constraints and the outgoing

one is not an active constraint. . . . . . . . . . . . . . . . . . . . . 77

3.1 Negative queue bu¤er occupancy at tn+1. . . . . . . . . . . . . . . 83

3.2 Case�tj�1 < �tj . Left: not proportional case. Right: proportional

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Case �tj�1 > �tj : . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Di¤erent time meshes for �uxes corrections. . . . . . . . . . . . . . 87

3.5 Case 1, with
�
�+; �+

�
2 B. . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Case 2, with
�
�+; �+

�
2 A. . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Intermediate state between the two waves. . . . . . . . . . . . . . . 96

4.1 In�ow pro�le f1 (t) prescribed as initial data on the �rst arc. . . . 101

4.2 Behaviour of queues . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Behaviour of �nal density . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Comparison between ordinary and other methods for q2. . . . . . . 103

4.5 Evolution of �ux f , density �, and processing rate �, on processors

2, 3, 4, with Riemann Solver SC1 and " = 0:1. . . . . . . . . . . . 104

4.6 Evolution of �ux f , density �, and processing rate �, on processors

2, 3, 4, with Riemann Solver SC2 and " = 0:1. . . . . . . . . . . . 105

4



LIST OF FIGURES

4.7 Evolution of �ux f , density �, and processing rate �, on processors

2, 3, 4, with Riemann Solver SC3 and " = 0:1. . . . . . . . . . . . 105

4.8 Evolution of �ux f , density �, and processing rate �, on processors

2, 3, 4, with Riemann Solver SC3 and " = 0:01. . . . . . . . . . . . 106

4.9 Supply chain network with 16 arcs and 10 nodes. . . . . . . . . . . 107

4.10 Queue on the last processor with �12 = 0:7 and �12 = 0:3. . . . . . 108

4.11 Queue on the last processor with �12 = 0:3 and �12 = 0:7. . . . . . 109

4.12 A Riemann Problem for the RA2-SC3 algorithm: the initial den-

sity and the density after some times. . . . . . . . . . . . . . . . . 110

4.13 A Riemann Problem for the RA2-SC3 algorithm: the initial pro-

duction rate and the production rate after some times. . . . . . . . 110

4.14 A Riemann Problem for the SC2 algorithm: the initial density and

the density after some times. . . . . . . . . . . . . . . . . . . . . . 111

4.15 A Riemann Problem for the SC2 algorithm: the initial production

rate and the production rate after some times. . . . . . . . . . . . 111

4.16 aaaaa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.17 Results for Klar model. Case(a): density for the �rst processors;

Case(b): density for the second processors; Case(c): density for the

third processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.18 Behaviour of the �nal density: �1 for 0 � x � 10; t > 0, �2 for

10 � x � 40; t > 0, and �3; �4; �5 for 40 � x � 50; t > 0. . . . . . . 113

4.19 Results for the continuum-discrete model. Case(a): density for the

�rst processors; Case(b): density for the second processors; Case(c):

density for the third processors. . . . . . . . . . . . . . . . . . . . . 114

4.20 Behaviour of the �nal density: �1 for 0 � x � 10; t > 0, �2 for

10 � x � 40; t > 0, and �3; �4; �5 for 40 � x � 50; t > 0. . . . . . . 115

4.21 Pro�le of input �ow with displacement of discontinuities . . . . . . 115

4.22 �j�12 < �j�11 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.23 �j�12 > �j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.24 Shift of the queue j. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.25 qj (�t) > 0: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.26 Shift of the queue qj . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.27 qj (�t) = 0: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5



LIST OF FIGURES

4.28 qj (�t) = 0: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.29 case 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.30 case 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.31 case 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.32 case 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.33 J versus Steepest Descent. . . . . . . . . . . . . . . . . . . . . . . . 126

4.34 Evolution of points (t1; t2). . . . . . . . . . . . . . . . . . . . . . . 126

6



Introduction

The aim of this thesis is to present some macroscopic models for supply chains

and networks able to reproduce the goods dynamics, successively to show, via sim-

ulations, some phenomena appearing in planning and managing such systems and,

�nally, to deal with optimization problems. The analyzed macroscopic models are

based on the conservation laws, which are represented by special partial di¤erential

equations where the variable is a conserved quantity, physically a quantity which

can neither be created nor destroyed. The main idea is to look at large scales so

to consider the processed parts as small particles which �ow in a continuous way

and to assume the conservation of their density.

Depending on the observation scale supply networks modeling is characterized

by di¤erent mathematical approaches: discrete event simulations and continuous

models. Since discrete event models (see [11]) are based on considerations of

individual parts, their main drawback is, however, an enormous computational

e¤ort. Then a cost-e¤ective alternative to them is continuous models, described

by some partial di¤erential equation. The �rst proposed continuous models date

back to the early 60�s and started with the work of [4] and [15], but the most

signi�cant in this direction was [10], where the authors, via a limit procedure on

the number of parts and suppliers, have obtained a conservation law ([3], [9]),

whose �ux involves either the parts density or the maximal productive capacity.

Then, in recent years continuous and homogenous product �ow models have

been introduced, for example in [8], [14], [10], [17], [18], and they have been built in

close connection to other transport problems like vehicular tra¢ c �ow and queuing

theory. Extensions on networks have been also treated in [13], [19], [20].

In this thesis, starting by the historical model of Armbruster - Degond - Ring-

hofer, we have compared two di¤erent macroscopic models, i.e. the Klar model,

i



Introduction

based on a di¤erential partial equation for density and an ordinary di¤erential

equation to capture the evolution of queues, and a continuum-discrete model,

formed by a conservation law for the density and an evolution equation for process-

ing rate. Both the models can be applied for supply chains and networks.

A supply network is characterized by a set of interconnected suppliers which,

in general, consist of a processor and, if we deal with the Klar model, a bu¤er

or a queue. Each processor is characterized by a maximum processing rate �j ,

length Lj , and processing time Tj . The quantity
Lj
Tj
represents the processing

velocity. To study the dynamics at the connection points or junctions, some special

parameters are introduced; in particular when the number of incoming suppliers

is greater than the outgoing ones, we consider the priority parameters (q1; :::; qn),

where qi 2 ]0; 1[ determines a level of priority at the junction of incoming suppliers,
while, on the contrary, we consider the �ux distribution parameters (�1; :::; �m),

where �j 2 ]0; 1[, with
mX
j=1

�j = 1, indicates the percentage of parts addressed from

an incoming supplier to an outgoing one. At junctions, a way to solve Riemann

problems, i.e. Cauchy problems with constant initial data on each arc, is prescribed

for the continuum-discrete model and a solution at junctions guaranteeing the

conservation of �uxes is de�ned.

We have to notice some di¤erences between the Klar and continuum-discrete

model. In fact, the �rst one considers the formation and propagation of queue,

under the assumption that the processing rate �j is constant, while the second

one do not taking account of queues but describes the evolution of �j which is

a time-spatial dependent function. It is evident that the two models complete

each other. In fact, the approach of Klar is more suitable when the presence

of queue with bu¤er is fundamental to manage goods production. On the other

hand, the mixed continuum-discrete model is useful when there is the possibility

to reorganize the supply chain, i.e when the productive capacity can be readapted

for some contingent necessity. In order to make a comparison of the two models,

some numerical results are shown via simulations.

Moreover, an optimization problem of sequential supply chains modeled by the

Klar approach has been treated. The aim is to �nd the con�guration of production

according to the supply demand minimizing the queues length, i.e. the costs of

inventory, and obtaining an expected pre-assigned out�ow. The control problem is

ii



Introduction

solved introducing and minimizing a cost functional which takes into account the

�nal �ux of production and the queues representing the stores. The functional is

not linear, so to �nd its minimum, a mathematical technique has been introduced.

It is based on the choice of an input �ow which is a piecewise constant function,

with a �nite number of discontinuities. Considering on each of them an in�ni-

tesimal displacement which generates traveling temporal shifts on processors and

shifts on queues, we are able to compute numerically the value of the variation of

functional respect to each discontinuities. Finally, we use the steepest-descent al-

gorithm to �nd, via simulations, the optimal con�guration of input �ow, according

to the pre-�xed desired production.

This work is organized as follow.

Chapter 1 deals with hyperbolic systems of conservation laws, introducing basic

de�nitions and giving the tools to prove existence and uniqueness of solutions.

Chapter 2 presents the main macroscopic models for supply chains and networks,

based on conservation laws. Chapter 3 is devoted to numerical methods used to

discretize the proposed models in Chapter 2. Chapter 4, �nally, compares, via

simulations, the models for both chains and networks, and describes how to use

the introduced optimization technique on Klar model to obtain a wished out�ow

minimizing the queues of the processed parts.

iii



Chapter 1

Conservation Laws

In this chapter we present some basic de�nitions about system of conserva-

tion laws which are special partial di¤erential equations where the variable is a

conserved quantity. The models for supply chain networks we deal are based on

conservation laws.

1.1 De�nitions

De�nition 1 A system of conservation laws in one space dimension is a system

of the form 8>>>>><>>>>>:
@tu1 + @xf1 (u) = 0

:

:

@tun + @xfn (u) = 0

(1.1)

it can be written as

@tu+ @xf (u) = 0; (1.2)

where u = (u1; ::::un) : [0;+1[ � R ! Rn is the �conserved quantity� and f =
(f1; ::::fn) : Rn ! Rn is the �ux.

Remark 2 (The scalar case). If n = 1, u takes value in R and f : R ! R,
then (1.2) is a single equation. In this case, we say that (1.2) is a scalar equation.

In the last case, integrating (1.2) on an arbitrary space interval [a; b],

1



De�nitions

Figure 1.1: Conservation of �ux.

d

dt

Z b

a
u (t; x) dx = �

Z b

a
f (u (t; x))x dx = f (u (t; a))� f (u (t; b)) =

= [in�ow at a]� [out�ow at b]

holds. This relationship shows that the quantity u is neither created nor de-

stroyed, i.e. in any interval [a; b] the total amount of u can change only due to the

quantity of u entering and exiting respectively at x = a and x = b.

We always assume f to be smooth, thus, if u is a smooth function, then (1.2)

can be rewritten in the quasi linear form

ut +A (u)ux = 0; (1.3)

where A (u) is the Jacobian matrix of f at u.

De�nition 3 The system (1.3) is said �hyperbolic� if, for every u 2 Rn, all the
eigenvalues of the matrix A (u) are real. Moreover (1.3) is said � strictly hyper-

bolic� if it is hyperbolic and if, for every u 2 Rn, the eigenvalues of the matrix
A (u) are all distinct.

It is clear that equations (1.2) and (1.3) are completely equivalent for smooth

solutions. Instead, if u has a jump, the (1.3) is in general not well de�ned, since

there is a product of a discontinuous function A (u) with the distributional deriva-

tive, which is in this case a Dirac measure. Hence (1.3) is meaningful only within

a class of continuous functions.

Example 4 (Gas dynamics). The Euler equations describing the evolution of a

2



De�nitions

non viscous gas take the form

�t + (�v)x = 0, (conservation of mass),

(�v)t +
�
�v2 + p

�
x
= 0, (conservation of momentum),

(�E)t + (�Ev + pv)x = 0, (conservation of energy),

where � is the mass density, v is the velocity while E = e + v2

2 is the energy

density per unit mass. The system is closed by a constitutive relation of the form

p = p (�; e), giving the pressure as a function of the density and the internal energy.

The particular form of p depends on what gas we consider.

A basic feature for the nonlinear system (1.2) is that the classical solutions

may not exist for some positive time, even if the initial datum is smooth. This

can be shown by the method of characteristics, brie�y described for a quasilinear

system. Consider the Cauchy problem(
ut + a (t; x; u)ux = h (t; x; u) ;

u (0; x) = u (x) ;
(1.4)

and, for every y 2 R, the curves x (t; y), u (t; y) solving8>>>>><>>>>>:

dx
dt = a (t; x; u) ;
du
dt = h (t; x; u) ;

x (0; y) = y;

u (0; y) = u (y) :

(1.5)

The curves t! x (t; y) when y 2 R are called characteristics.
The implicit function theorem implies that the map

(t; y)! (t; x (t; y)) (1.6)

is locally invertible in a neighborhood of (0; x0) and so it is possible to consider the

map u (t; x) = u (t; y (t; x)) where y (t; x) is the inverse of the second component

of (1.6). It is easy to check that u (t; x) satis�es (1.4).

Example 5 Consider the scalar inviscid Burgers�equation

ut +

�
u2

2

�
x

= 0 (1.7)

3
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with the initial condition

u (0; x) = u0 (x) =
1

1 + x2
: (1.8)

For t > 0 small, the solution can be found by the method of characteristics; if u is

smooth, the (1.7) can be rewritten as

ut + uux = 0;

from which we get that the directional derivative of the function u = u (t; x) along

the vector (1; u) vanishes. Therefore the solution u to this Cauchy problem must

be constant along the characteristic lines in the (t; x)-plane:

t! (t; x+ tu0 (x)) =

�
t; x+

t

1 + x2

�
:

For t < T = 8p
27
, these lines do not intersect together and so the solution is

classical

u

�
t; x+

t

1 + x2

�
=

1

1 + x2
: (1.9)

Indeed, at t = 8p
27
, since the characteristics intersect together, a classical solution

cannot exist for t � 8p
27
. In fact, the map

x! x+
t

1 + x2

is not one-to-one and (1.9) no longer de�nes a single valued solution of the Cauchy

problem.

According to achieve a global existence result, we must deal with weak solu-

tions.

De�nition 6 Fix u0 2 L1loc (R;Rn) and T > 0. A function u : [0; T ]� R! Rn is
a weak solution to the Cauchy problem(

ut + f (u)x = 0;

u (0; x) = u0 (x) ;
(1.10)

if u is continuous as a function from [0; T ] into L1loc and if, for every C
1 function

 with compact support contained in the set ]�1; T [� R, it holdsZ T

0

Z
R
fu �  t + f (u) �  xg dxdt+

Z
R
u0 (x) �  (0; x) dx = 0: (1.11)

4
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Figure 1.2: The characteristic for the Burgers equation in the (t; x)-plane.

Remark 7 As consequence of the fact that u is continuous as a function from

[0; T ] to L1loc and of equation (1.11), we note that a weak solution u to (1.10)

satis�es

u (0; x) = u0 (x) for a.e. x 2 R

Since weak solutions may develop discontinuities in �nite time, we introduce

some notations to treat them.

De�nition 8 A function u = u (t; x) has an approximate jump discontinuity at

the point (� ; �) if there exist vectors u�, u+ 2 Rn and � 2 R such that

lim
r!0+

1

r2

Z r

�r

Z r

�r
ju (� + t; � + x)� U (t; x)j dxdt = 0;

where

U (t; x) =

(
u�; if x < �t;

u+; if x > �t:
(1.12)

The function U is called a shock traveling wave.

The following theorem holds.

Theorem 9 Consider a bounded weak solution u to (1.2) with an approximate

jump discontinuity at (� ; �). Then

�
�
u+ � u�

�
= f

�
u+
�
� f

�
u�
�
: (1.13)

5
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Figure 1.3: Superposition of characteristic curves for a Burgers equation.

Equation (1.13), called Rankine-Hugoniot condition, gives a condition on dis-

continuities of weak solutions of (1.2) relating the right and left states with the

�speed� � of the �shock�. In fact considering the scalar case, (1.13) is a single

equation and, for arbitrary u� 6= u+, we have

� =
f (u+)� f (u�)

u+ � u� ;

while for a n � n system of conservation laws, (1.13) is a system of n scalar

equations.

Example 10 Consider the Burgers equation

ut +

�
u2

2

�
x

= 0 (1.14)

with the initial condition

u0 (x) =

(
1� jxj ; if x 2 [�1; 1] ;
0; otherwise:

(1.15)

The corresponding characteristics are shown in Fig.1.3.Therefore for 0 � t < 1,

the function

u (t; x) =

8>><>>:
x+1
t+1 ; if �1 � x < t;
1�x
1�t ; if t < x �< 1;
0; otherwise;

is a classical solution to 1.14. In this case the Rankine-Hugoniot condition reduces

to

� =

�
(u+)

2

2

�
�
�
(u�)

2

2

�
u+ � u� =

u+ + u�

2
:

6
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Figure 1.4: Solution to Burgers equation.

If t � 1, then the function

u (t; x) =

(
x+1
t+1 ; if � 1 � x � �1 +

p
2 + 2t;

0; otherwise;

satis�es the Rankine-Hugoniot condition at each point of discontinuity and so a

weak solution to the Cauchy problem, given by (1.14) and (1.15), exists for each

positive time (as shown in Fig.1.4).

Example 11 Let the function u0 de�ned by

u0 (x) :=

(
1; if x � 0;
0; if x < 0:

For every 0 < � < 1, the function u� : [0;+1[� R! R de�ned by

u� :=

8>><>>:
0; if x < �t

2 ;

�; if �t
2 � x < (1+�)t

2 ;

1; if x � (1+�)t
2 ;

is a weak solution (shown in Fig.1.5) to the Burgers equation (1.14).

1.2 Admissibility conditions

As shown in the previous example, in presence of discontinuities, the de�nition

of weak solution does not guarantee uniqueness to the Cauchy problem. Therefore,

the notion of weak solution must be supplemented with admissibility conditions,

motivated by physical considerations.

7
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Figure 1.5: A solution u�

1.2.1 Admissibility Condition 1

De�nition 12 (Vanishing viscosity) A weak solution u = u (t; x) to the Cauchy

problem (
ut + f (u)x = 0;

u (0; x) = u0 (x) ;
(1.16)

is admissible if there exists a sequence of smooth solutions u" to

u"t +A (u
")u"x = "u"xx (A = Df) (1.17)

which converges to u in L1Loc as "! 0+.

Unfortunately, it is very di¢ cult to provide uniform estimates to the parabolic

system (1.17) and characterize the corresponding limits as " ! 0+. From the

above condition, however, it can be deduced other conditions which can be more

easily veri�ed in practice.

1.2.2 Admissibility Condition 2

Now, arising from physical considerations, we introduce the entropy-admissibility

condition.

De�nition 13 A C1 function � : Rn ! R is an entropy for (1.2) if it is convex
and there exists a C1 function q : Rn ! R such that

D� (u) �Df (u) = Dq (u) (1.18)

8
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for every u 2 Rn. The function q is said an �entropy �ux� for �. The pair (�; q)
is said �entropy-entropy �ux pair� for (1.2).

De�nition 14 (Entropy inequality) A weak solution u = u (t; x) to the Cauchy

problem (1.16) is said entropy admissible if, for every C1 function ' � 0 with

compact support in [0; T [ � R and for every �entropy-entropy �ux pair� (�; q), it
holds Z T

0

Z
R
( � (u)'t + q (u) 'x) dxdt � 0 (1.19)

We consider now an entropy admissible solution u and a sequence of entropy-

entropy �ux pairs (�� ; q�) such that �� ! � and q� ! q locally uniformly in

u 2 Rn. If ' � 0 is a C1 function with compact support in [0; T [� R, then

Z T

0

Z
R
( �� (u)'t + q� (u) 'x) dxdt � 0 (1.20)

for every � 2 N. Passing to the limit as � ! +1 in (1.20), we obtain that

Z T

0

Z
R
( � (u)'t + q (u) 'x) dxdt � 0 (1.21)

From this, we can call a C0 function � an entropy if there exists a sequence

of entropies �� converging to � locally uniformly. Moreover a C
0 function q an

entropy if there exists a sequence of entropies q� , entropy �ux of �� , converging to

q locally uniformly.

Remark 15 Consider the scalar Cauchy problem as in (1.16), where f : R ! R
is a C1 function. Then the relation between C1 entropy and entropy �ux is given

by

�0 (u) f 0 (u) = q0 (u) : (1.22)

Therefore if we take a C1 entropy �, every corresponding entropy �ux q has the

following expression

q (u) =

Z u

u0

�0 (s) f 0 (s) ds;

where u0 is an arbitrary element of R.

De�nition 16 A weak solution u = u (t; x) to the scalar Cauchy problem (1.16)

satis�es the Kruzkov entropy admissibility condition ifZ T

0

Z
R
fju� kj 't + sgn (u� k) (f (u)� f (k))'xg dxdt � 0

9
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Figure 1.6: The condition (1.23) in the case u� < u+.

for every k 2 R and every C1 function ' � 0 with compact support in [0; T [� R.

Theorem 17 Let u = u (t; x) be a piecewise C1 solution to the scalar equation

(1.16). Then u satis�es the Kruzkov entropy admissible condition if and only if

along every line of jump x = � (t) the following condition holds. For every � 2 [0; 1](
f (�u+ + (1� �)u�) � �f (u+) + (1� �) f (u�) ; if u� < u+;

f (�u+ + (1� �)u�) � �f (u+) + (1� �) f (u�) ; if u� > u+;
(1.23)

where u� := u (t; � (t)�) and u+ := u (t; � (t)+).

The (1.23) implies that, if u� < u+ (respectively u� > u+) then the graph

of f remains above (below) the segment connecting (u�; f (u�)) to (u+; f (u+)) as

shown in Fig.1.6 (Fig.1.7).

1.2.3 Admissibility Condition 3

De�nition 18 (Lax Condition) A bounded weak solution u = u (t; x) to the Cauchy

problem (1.16) is Lax admissible if, at every point of approximate jump, the speeds

corresponding to the left and right states u�, u+ satisfy

�i
�
u�
�
� �i

�
u�; u+

�
� �i

�
u+
�

(1.24)

for some i 2 f1; :::; ng.

10
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Figure 1.7: The condition (1.23) in the case u� > u+.

1.3 Riemann Problem

Let 
 � Rn be an open set, let f : 
 ! Rn a smooth �ux and consider the
system of conservation laws

ut + f (u)x = 0; (1.25)

supposed to be strictly hyperbolic.

De�nition 19 A Riemann problem for the system (1.25) is the Cauchy problem

for the initial datum (Heaviside)

u0 (x) =

(
u�; if x < 0;

u+; if x > 0;
(1.26)

where u�; u+ 2 
 � Rn.

To solve Cauchy problems, the solution of Riemann problem assumes a key

role. In fact, to prove existence we use the wave-front tracking method consisting

in the following steps:

1. approximate the initial condition with piecewise constant solutions;

2. at every point of discontinuity, solve the corresponding Riemann problem;

11
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3. approximate the exact solution to Riemann problems with piecewise constant

functions and piece them together to get a function de�ned until two wave

fronts interact together;

4. repeat inductively the previous construction, starting from the interaction

time;

5. prove that the functions so constructed converge to a limit function and

prove that this limit function is an entropy admissible solution.

Denote by A (u) the Jacobian matrix of the �ux f and with �1 (u) < � � � <
�n (u) the n eigenvalues of the matrix A (u). For strictly hyperbolic systems, one

can �nd bases of right and left eigenvectors, fr1 (u) ; ::::; rn (u)g and fl1 (u) ; ::::; ln (u)g
depending strictly on u, such that

1. jri (u)j � 1 for every u 2 
 and i 2 f1; :::; ng;

2. for every i; j 2 f1; :::; ng,

li � rj :=
(
1; if i = j;

0; if i 6= j:

We introduce the following notation. If i 2 f1; :::; ng, then the directional
derivative of �j (u) in the direction of ri (u) is given by

ri � �j (u) := lim
"!0

�j (u+ "ri (u))� �j (u)
"

:

De�nition 20 We say that the i-characteristic �eld, i 2 f1; :::; ng, is genuinely
nonlinear if

ri � �i (u) 6= 0 8u 2 
:

We say that the i-characteristic �eld, (i 2 f1; :::; ng) is linearly degenerate if

ri � �i (u) = 0 8u 2 
:

If the i-th characteristic �eld is genuinely nonlinear, then, for simplicity, we

assume that ri � �i (u) > 0 for every u 2 
.
We consider three cases.

12
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1. Centered rarefaction waves. For u� 2 
, i 2 f1; :::; ng and � > 0, we denote
by Ri (��) (u�) the solution to(

du
d� = ri (u) ;

u (0) = u�:
(1.27)

Let �� > 0. De�ne u+ = Ri (��) (u
�) for some i 2 f1; :::; ng. If the i-th

characteristic �eld is genuinely nonlinear, then the function

u (t; x) :=

8>><>>:
u�; if x < �i (u

�) t;

Ri (�) (u
�) ; if x = �i (Ri (�) (u

�)) t; � 2 [0; ��] ;
u+; if x > �i (u

+) t;

(1.28)

is an entropy admissible solution to the Riemann problem

ut + f (u)x = 0;

u (0; x) = u0 (x) ;

with u0 de�ned in (1.26). The function u (t; x) is called a centered rarefaction

wave.

2. Shock waves. Fix u� 2 
 and i 2 f1; :::; ng. For some �0, there exist smooth
functions Si (u�) = Si : [��0; �0]! 
 and �i : [��0; �0]! R such that:

(a) f (Si (�))� f (u�) = �i (�) (Si (�)� u�) for every � 2 [��0; �0];

(b)
���dSid� ��� � 1;

(c) Si (0) = u�, �i (0) = �i (u
�);

(d) dSi(�)
d� j�=0 = ri (u

�);

(e) d�i(�)
d� j�=0 = 1

2ri � �i (u
�);

(f) d2Si(�)
d�2

j�=0 = 1
2ri � ri (u

�).

Let �� < 0. De�ne u+ = Si (��). If the i-th characteristic �eld is genuinely

nonlinear, then the function

u (t; x) :=

(
u�; if x < �i (��) t;

u+; if x > �i (��) t;
(1.29)

is an entropy admissible solution to the Riemann problem(
ut + f (u)x = 0;

u (0; x) = u0 (x) ;

with u0 de�ned in (1.26). The function u (t; x) is called a shock wave.

13
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(a) Remark 21 If we consider �� < 0, then (1.29) is again a weak solution,

but it does not satisfy the entropy condition.

3. Contact discontinuities. Fix u� 2 
, i 2 f1; :::; ng and � 2 [��0; �0]. De�ne
u+ = Si (��). If the i-th characteristic �eld is linearly degenerate, then the

function

u (t; x) :=

(
u�; if x < �i (u

�) t;

u+; if x > �i (u
�) t;

(1.30)

is an entropy admissible solution to the Riemann problem(
ut + f (u)x = 0;

u (0; x) = u0 (x) ;

with u0 de�ned in (1.26). The function u (t; x) is called a contact disconti-

nuity.

Remark 22 If the i-th characteristic �eld is linearly degenerate, then

�i
�
u�
�
= �i

�
u+
�
= �i (�)

for every � 2 [��0; �0].

De�nition 23 The waves de�ned in (1.28), (1.29) and (1.30) are called waves of

the i-th family.

For each � 2 R and i 2 f1; :::; ng, let us consider the function

 i (�) (u0) :=

(
Ri (�) (u0) ; if � � 0;
Si (�) (u0) ; if � < 0;

(1.31)

where u0 2 
. The value � is called the strength of the wave of the i-th

family, connecting u0 to  i (�) (u0). It follows that  i (�) (u0) is a smooth function.
Moreover let us consider the composite function

	(�1; ::::; �n)
�
u�
�
:=  n (�n) � � � � �  1 (�1)

�
u�
�
; (1.32)

where u� 2 
 and (�1; ::::; �n) belongs to a neighborhood of 0 in Rn. It is
possible to calculate the Jacobian matrix of the function 	 and to prove that it is

invertible in a neighborhood of (0; :::; 0). Hence we can apply the Implicit Function

Theorem and prove the following result.

14
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Theorem 24 For every compact set K � 
, there exists � > 0 such that, for

every u� 2 K and for every u+ 2 
 with ju+ � u�j � � there exists a unique

(�1; ::::; �n) in a neighborhood of 0 2 Rn satisfying

	(�1; ::::; �n)
�
u�
�
= u+:

Moreover the Riemann problem connecting u� with u+ has an entropy admissible

solution, constructing by piecing together the solutions of n Riemann problems.

Example 25 The 2� 2 system of conservation laws

[u1]t +

�
u1

1 + u1 + u2

�
x

= 0; [u2]t +

�
u2

1 + u1 + u2

�
x

= 0; u1; u2 > 0: (1.33)

is justi�ed by the study of two components chromatography. Writing (1.33) in the

quasi linear form (1.3), the eigenvalues and the eigenvectors of the corresponding

2� 2 matrix A (u) are found to be

�1 (u) =
1

(1+u1+u2)
2 ; �2 (u) =

1
1+u1+u2

;

r1 (u) =
1p

u1+u2

 
�u1
�u2

!
; r2 (u) =

1p
2

 
�1
�1

!
:

The �rst characteristic �eld is genuinely nonlinear, the second is linearly degener-

ate. In this example, the two shock and rarefaction curves Si; Ri always coincide,

for i = 1; 2. Their computation is easy, because they are straight line (see Fig.1.8):

R1 (�) (u) = u+ �r1 (u) ; R2 (�) (u) = u+ �r2 (u) : (1.34)

Observe that the integral curves of the two vector �elds r1 and r2 are respectively

the rays through the origin and the lines with slope �1. Now consider two states
u� =

�
u�1 ; u

�
2

�
and u+ =

�
u+1 ; u

+
2

�
. To solve the Riemann problem (1.26) for the

system (1.25) we �rst compute an intermediate state u� such that u� = R1 (�) (u
�),

u+ = R1 (�) (u
�) for some �1, �2. By (1.34), the components of u� satisfy

u�1 + u
�
2 = u+1 + u

+
2 ; u�1u

�
2 = u�1 u

�
2:

The solution of the Riemann problem thus takes two di¤erent forms, depending on

the sign of

� =

q�
u�1
�2
+
�
u�2
�2 �q(u�1)2 + (u�2)2:
15



Riemann Problem

Figure 1.8: Shock and rarefaction curves.

Case 1: �1 > 0. Then, the solution consists of centered rarefaction waves of the

�rst family and of a constant discontinuity of the second family:

u (t; x) =

8>>>>><>>>>>:
u�; if x

t < �1 (u
�) ;

su� + (1� s)u�; if x
t = �1 (su

� + (1� s)u�) ;
u�; if �1 (u

�) < x
t < �2 (u

+) ;

u+; if x
t � �2 (u

+) ;

(1.35)

where s 2 [0; 1].
Case 2: �1 � 0. Then, the solution contains a compressive shock of the �rst family
(which vanishes if �1 = 0) and a contact discontinuity of the second family:

u (t; x) =

8>><>>:
u�; if x

t < �1 (u
�; u�) ;

u�; if �1 (u
�; u�) � x

t < �2 (u
+) ;

u�; if �1 (u
�) < x

t < �2 (u
+) ;

(1.36)

Observe that �2 (u�) = �2 (u
+) = (1 + u1 + u2)

�1, because the second characteris-

tic �eld is linearly degenerate. In this special case since the integral curves of r1

are straight lines, the shock speed in (1.36) can be computed as

�1
�
u�; u�

�
=

Z 1

0
�1
�
su� + (1� s)u�

�
ds =

=

Z 1

0

��
1 + s (u�1 + u

�
2) + (1� s)

�
u�1 + u

�
2

����2
ds =

=
1

(1 + u�1 + u
�
2)
�
1 + u�1 + u

�
2

� :
16
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Figure 1.9: Shock wave

1.3.1 The Non-Convex Scalar Case

Consider now the Riemann Problem (1.35)-(1.36) assuming f as uniformly

convex function and G = (f 0)�1.

Theorem 26 (Solution of Riemann�s problem)

� If u� > u+, the unique weak solution of the Riemann Problem is

u (t; x) =

(
u�; x

t < �;

u+; x
t > �;

(1.37)

where

� =
f (u+)� f (u�)

u+ � u� : (1.38)

� If u� < u+, the unique weak solution of the Riemann Problem is

u (t; x) =

8>><>>:
u�; x

t < f 0 (u�) ;

G
�
x
t

�
; f 0 (u�) < x

t < f 0 (u+) ;

u+; x
t > f 0 (u+) :

(1.39)

Remark 27 In the �rst case the states u�, u+ are separated by a shock wave with

constant speed �. In the second case the states u�, u+ are separated by a (centered)

rarefaction wave.

Remark 28 Assume f is uniformly concave. In this case, if u� > u+ (respectively

u� < u+) the unique weak solution of the Riemann Problem is a rarefaction wave

(a shock wave).
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Figure 1.10: Rarefaction waves.

In the scalar case, the construction of solutions to Riemann problems can be

done not only in the genuinely nonlinear case, i.e. for convex or concave �ux or

linearly degenerate case, i.e. a¢ ne �ux.

Then, consider a scalar conservation law:

ut + f (u)x = 0;

with f : R ! R smooth. Given (u�; u+) the solution to the corresponding

Riemann problem is done in the following way.

If u� < u+ we let ~f be the largest convex function such that for every u 2
[u�; u+], it holds:

~f(u) � f(u);

If u� > u+ we let ~f be the smallest concave function such that for every

u 2 [u+; u�], it holds:

~f(u) � f(u);

Both the cases are shown in Fig.1.11.

Then the solution to the Riemann problem with data (u�; u+) is the solution

for the �ux ~f to the same Riemann problem. As we can see in this case, the �ux ~f

is in general not strictly convex or concave but may contain some linear part. Then

the solution to the corresponding Riemann problems may contain combinations of

rarefactions and shocks.

18
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Figure 1.11: De�nition of ~f .

Figure 1.12: De�nition of �

For simplicity we will show the following special case.

Fix the scalar conservation law:

ut + (u
3)x = 0;

and u� > 0.

If u+ > u�, then ~f coincides with f and the solution to the corresponding

Riemann problem is given by a single rarefaction wave.

If u+ < u�, then we have to distinguish two cases. First, for every u de�ne

�(u) � u to be the point such that the secant from (�(u); f(�(u)) to (u; f(u)) is

tangent to the graph of f(u) = u3 at �(u) (Fig.1.12);
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Figure 1.13: Solution to the Riemann problem with u� > 0 and u+ < � (u).

In formulas:

f(u)� f(�(u))
u� �(u) = f 0(�(u));

then

u3 � �3(u)
u� �(u) = 3�2(u);

and one can easily get two solutions, i.e. the trivial one �(u) = u and �(u) =

�u
2 .

Now if u+ � �(u�) then again ~f coincides with f and the solution is given by

a single shock. Instead, if u+ < �(u�), the solution to the Riemann problem is

given by the function:

u (t; x) =

8>><>>:
u� ; if x < 3

4u� t;

�
p

x
3t ; if 3

4u� t � x � 3(u+)2 t;
u+ ; if x > 3(u+)

2 t:

which is formed by a shock followed by a rarefaction attached to it, as shown

in Fig.1.13.

In the case u� < 0, the construction is symmetric with respect to the case

u� > 0, while for u� = 0 the solution is always given by a rarefaction.

1.4 Functions with Bounded Variation

Now we give some basic notions about functions with bounded variation.
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If we consider an interval J � R and a function w : J ! R, the total variation
of w is de�ned by

Tot.Var. w = sup

8<:
NX
j=1

jw (xj)� w (xj�1)j

9=; ; (1.40)

where N � 1, the points xj belong to J for every j 2 f0; : : : ; Ng and satisfy
x0 < x1 < � � � < xN .

De�nition 29 We say that the function w : J ! R has bounded total variation if
Tot.Var. w < +1. We denote with BV (J) the set of all real functions w : J ! R
with bounded total variation.

The total variation of a function w is a positive number. Moreover if w is a

function with bounded total variation, this implies that it is a bounded function,

but the converse is false. The following Lemma and Theorems show important

properties of such functions.

Lemma 30 Let w : J ! R be a function with bounded total variation and �x be a
point in the interior of J . Then, the limits

lim
x!�x�

w(x); lim
x!�x+

w(x)

exist. Moreover, the function w has at most countably many points of discontinuity.

Theorem 31 (Helly) Consider a sequence of functions wn : J ! Rm. Assume
that there exist positive constants, C and M , such that:

1. Tot.Var. wn � C for every n 2 N;

2. jwn (x)j �M for every n 2 N and x 2 J .

Then there exist a function w : J ! Rm and a subsequence wnk such that

1. limk!+1wnk(x) = w(x) for every x 2 J ;

2. Tot.Var. w � C;

3. jw (x)j �M for every x 2 J .
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Theorem 32 Consider a sequence of functions wn : [0;+1[�J ! Rn. Assume
that there exist positive constants C, L and M such that:

1. Tot.Var. wn(t; �) � C for every n 2 N and t � 0;

2. jwn (t; x)j �M for every n 2 N and x 2 J and t � 0;

3.
R
J jwn (t; x)� wn (s; x)j dx � L jt� sj for every n 2 N and t; s � 0.

Then there exist a function w 2 L1loc([0;+1� J ;Rn) and a subsequence wnk
such that

1. wnk ! w in L1loc([0;+1� J ;Rn) as k ! +1;

2.
R
J jw (t; x)� w (s; x)j dx � L jt� sj for every t; s � 0.

Moreover the values of w can be uniquely determined by setting

w(t; x) = lim
y!x+

w(t; y)

for every t � 0 and x 2Int J . In this case we have

1. Tot.Var. w(t; �) � C for every t � 0;

2. jw (t; x)j �M for every x 2 J and t � 0.

1.5 BV Functions in Rn

Now, we describe brie�y the L1 theory for BV functions (CitaZion). Let 
 be

an open subset of Rn and consider w : 
! R. We denote with B(
) the �-algebra
of Borel sets of 
 and with Bc(
) the set

fB 2 B(
) : B compactly embedded in 
g : (1.41)

De�nition 33 We say that � : Bc(
) ! R is a Radon measure if it is countable
additive and �(;) = 0. We denote with M(
) the set of all Radon measures on 
.

The following theorem holds.
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Theorem 34 Fix a Radon measure � 2 M(
). There exist two positive and

unique Borel measures �+; �� : B(
)! [0;+1] such that

�(E) = �+(E)� ��(E) (1.42)

for every E 2 Bc(
).

De�nition 35 Fix a Radon measure � 2 M(
) and consider the total variation
of � de�ned by juj := �+ + ��. We say that � has bounded total variation if

juj (
) < +1 and we denote with Mb(
) the set of all Radon measures with

bounded total variation.

Remark 36 Notice that Mb(
) is a Banach space with respect to the norm

jjujj
Mb(
)

= juj (
):

De�nition 37 We say that w : 
! R has bounded total variation if

1. w 2 L1(
);

2. the i-th partial derivative Diw exists in the sense of distributions and belongs

to Mb(
), for every i = 1; : : : ; n.

The total variation of w is given by

nX
i=1

jDiwj (
):

We denote with BV (
) the set of all functions de�ned on 
 with bounded total

variation.

Remark 38 The space BV (
) is a Banach space with respect to the norm

jjwjjL1(
) +
nX
i=1

jDiwj (
):

Remark 39 Let w 2 L1(
). Then w 2 BV (
) if and only if there exists c 2
(0;+1) such that ����Z



w div'dx

���� � c sup
x2


j' (x)j

for every ' 2 C1c (
;Rn). In this case one can choose the constant c equal to the
total variation of w.
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Remark 40 If 
 is an interval of R, then the two descriptions of BV functions

are not completely equivalent. The most important di¤erence is that if we change

the values of a BV function w in a �nite set, then the total variation of w changes

but remain �nite if we consider the �rst description, while it does not vary in the

second case. Therefore, if we are interested only in the L1 equivalence class, then

we can assume that a BV function w is right continuous or left continuous.

1.6 Wave-Front Tracking and Existence of Solutions

This section deals with the existence of an entropy admissible solution to the

Cauchy problem (
ut + [f(u)]x = 0;

u(0; �) = �u(�);
(1.43)

where f : Rn ! Rn is a smooth �ux and �u 2 L1 (Rn) is bounded in total
variation. In order to prove existence, we construct a sequence of approximate

solutions using the method called wave-front tracking algorithm.

We start considering the scalar case, while, for the system case, we will give

some references.

1.6.1 The Scalar Case

We assume the following conditions:

(C1) f : R! R is a scalar smooth function;

(C2) the characteristic �eld is either genuinely nonlinear or linearly degenerate.

The construction starts at time t = 0 by choosing a sequence of piecewise

constant approximations (�u�)� of �u such that

Tot.Var. f�uvg � Tot.Var. f�ug ; (1.44)

jj�uvjjL1 � jj�ujjL1 (1.45)

and
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Wave-Front Tracking and Existence of Solutions

Figure 1.14: A piecewise constant approximation of the initial datum satisfying

(1.45) and (1.46).

jj�uv � �ujjL1 <
1

�
; (1.46)

for every � 2 N (see Fig.1.14).
Fix � 2 N. By (1.44), �uv has a �nite number of discontinuities, say x1 <

� � � < xN . For each i = 1; : : : ; N , we approximately solve the Riemann Problem

generated by the jump (�u�(xi�); �u�(xi+)) with piecewise constant functions of
the type '(x�xit ), where ' : R ! R. More precisely, if the Riemann Problem
generated by (�u�(xi�); �u�(xi+)) admits an exact solution containing just shocks
or contact discontinuities, then '(x�xit ) is the exact solution, while if a rarefaction

wave appears, then we split it in a centered rarefaction fan, containing a sequence of

jumps of size at most 1� , traveling with a speed between the characteristic speeds

of the states connected. In this way, we are able to construct an approximate

solution u�(t; x) until a time t1, where at least two wave fronts interact together

(see Fig.1.15).

Remark 41 In the scalar case, if the characteristic �eld is linearly degenerate,

then all the waves are contact discontinuities and travel at the same speed. There-

fore, the previous construction can be done for every positive time.

Remark 42 Notice that it is possible to avoid that three of more wave fronts

interact together at the same time slightly changing the speed of some wave fronts.

This may introduce a small error of the approximate solution with respect to the

exact one.
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Wave-Front Tracking and Existence of Solutions

Figure 1.15: The wave front tracking construction until �rst time of interaction.

At time t = t1, u�(t1; �) is clearly a piecewise constant function. So we can
repeat the previous construction until a second interaction time t = t2 and so on.

In order to prove that a wave-front tracking approximate solution exists for every

t 2 [0; T ], where T may be also +1, we need to estimate

1. the number of waves;

2. the number of interactions between waves;

3. the total variation of the approximate solution.

The �rst two estimates are concerned with the possibility to construct a piece-

wise constant approximate solution. The third estimate, instead, is concerned with

the convergence of the approximate solutions towards an exact solution.

Remark 43 The two �rst bounds are nontrivial for the vector case and it is nec-

essary to introduce simpli�ed solutions to Riemann problems and/or non-physical

waves.

The next lemma shows that the number of interactions is �nite.

Lemma 44 The number of wave fronts for the approximate solution u� is not

increasing with respect to the time and so u� is de�ned for every t � 0. Moreover
the number of interactions between waves is bounded by the number of wave fronts.

Lemma 45 The total variation of u�(t; �) is not increasing with respect the time.
Therefore for each t � 0

Tot.Var.u�(t; �) � Tot.Var. �u (1.47)
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The following theorem holds.

Theorem 46 Let f : R ! R be smooth and �u 2 L1 (R) with bounded variation.
Then there exists an entropy-admissible solution u(t; x) to the Cauchy problem

(1.43) de�ned for every t � 0. Moreover,

jj�u (t; �)jjL1 � jj�u (�)jjL1 (1.48)

for every t � 0.

1.6.2 The System Case

For systems, since more types of interaction may happen, the construction of

wave-front tracking approximations is more complex. In particular the bounds on

number of waves, interactions and BV norms are no more directly obtained.

In this case, in order to show the basic ideas for obtaining the needed bounds,

we start giving some total variations estimates for interaction of waves along a

wave-front tracking approximation.

The constants in the estimates depend on the total variation of the initial

datum, which is assumed to be su¢ ciently small.

Consider a wave of the i-th family of strength �i, i 6= j, and indicate by �0k
(k 2 f1; :::; ng) the strengths of the new waves produced by the interaction.

Then it holds

���i � �0i��+ ���j � �0j��+ X
k 6=i;j

���0k�� � C j�ij j�j j ; (1.49)

For the case i = j, let us indicate by �i;1 and �i;2 the strengths of the interacting

waves, then it holds

���i;1 + �i;2 � �0i��+X
k 6=i

���0k�� � C j�i;1j j�i;2j : (1.50)

It is possible now, �xing a parameter �v, to split rarefactions in rarefaction

fans with shocks of strength at most �v. Also, only if the product of interacting

waves is bigger than �v, at each interaction time, the new Riemann Problem can

be exactly solved eventually splitting the rarefaction waves in rarefaction fans.

Otherwise, the Riemann Problem is only solved with waves of the same families
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Wave-Front Tracking and Existence of Solutions

of the interacting ones, the error being transported along a non-physical wave,

traveling at a speed bigger than all waves. In this way, it is possible to control the

number of waves and interactions and then let �v go to zero [6].

Consider now a wave-front tracking approximate solution uv and let x� (t),

of family i� and strength ��, indicate the discontinuities of uv (t). We say two

discontinuities are interacting if x� < x� and either i� > i� or i� = i� and at least

one of the two waves is a shock. De�ne the Glimm functional computed at uv (t)

as:

Y (uv (t)) = Tot.Var. (uv (t)) + C1Q (uv (t)) ;

where C1 is a constant to be chosen suitably and

Q (uv (t)) =
X

j��j j��j

where the sum is over interacting waves. It can be proved that Y is equivalent

to the functional measuring the total variation. Clearly such functional changes

only at interaction times.

Using the interaction estimates (1.49) and (1.50), at an interaction time �t, we

get

jTot.Var. (uv (�t+))� Tot.Var. (uv (�t�))j � C j�ij j�j j ;

Q (uv (�t+))�Q (uv (�t�)) � �C1 j�ij j�j j+ C j�ij j�j jTot.Var. (uv (�t�)) :

Therefore

Y (uv (�t+))� Y (uv (�t�)) � j�ij j�j j [C � C1 + C Tot.Var.uv (�t�)] :

On the other side, for every t:

Tot.Var. (uv (t)) � Y (uv (t)) :

Then choosing C1 > C and assuming that Tot.Var.(uv (0)) is su¢ ciently small,

one has that Y is decreasing along a wave-front tracking approximate solution and

so the total variation is controlled.
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1.7 Uniqueness and Continuous Dependence

In this section it will show a method, based on a Riemannian type distance on

L1, to prove uniqueness and Lipschitz continuous dependence by initial data for

solutions to the Cauchy problem, controlling how their distance varies in time for

any two approximate solutions u, u0. For simplicity we only consider the scalar

case, while for the system case the approach is illustrated in [7]. By existing

various alternative methods, this one presented here is more suitable to be used

for networks.

The basic idea is to estimate the L1-distance viewing L1 as viewing L1 as a

Riemannian manifold. We consider the subspace of piecewise constant functions

and �generalized tangent vectors�consisting of two components (v; �), where v 2
L1 and � 2 Rn describe respectively the L1 in�nitesimal displacement and the
in�nitesimal displacement of discontinuities.

For example, take a family of piecewise constant functions � ! u�, � 2 [0; 1],
each of which has the same number of jumps, say at the points x�1 < ::::: < x�N .

Assume that the following functions are well de�ned (see Fig.1.16)

L1 3 v� (x) = lim
h!0

u�+h (x)� u� (x)
h

;

and also the numbers

��� = lim
h!0

x�+h� � x��
h

; � = 1; :::; N:

Then we say that 
 admits tangent vectors

�
v�; ��

�
2 Tu� _=L1 (R;Rn)� Rn:

In general such path � ! u� is not di¤erentiable w.r.t. the usual di¤erential

structure of L1, in fact if ��� 6= 0, as h ! 0 the ratio [
u�+h(x)�u�(x)]

h does not

converge to any limit in L1.

The L1-length of the path 
 : � ! u� can be computed in the following way:

jj
jjL1 =
Z 1

0

������v�������
L1
d� +

NX
�=1

Z 1

0

���u� (x�+)� u� (x��)��� ��������� d�: (1.51)
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Figure 1.16: Construction of �generalized tangent vectors�.

According to (1.51), in order to compute the L1-length of the path 
, we

integrate the norm of its tangent vector which is de�ned as follows:

jj(v; �)jj _= jjvjjL1 +
NX
�=1

j�u�j
������ ;

where �u� = u (x�+) � u (x��) is the jump across the discontinuity x�. Let
us introduce the following de�nition.

De�nition 47 We say that a continuous map 
 : � ! u� _=
 (�) from [0; 1] into

L1loc is a regular path if the following holds. All functions u
� are piecewise constant,

with the same number of jumps, say at x�1 < ::::: < x�N and coincide outside

some �xed interval ]�M;M [. Moreover, 
 admits a generalized tangent vector

D
 (�) =
�
v�; ��

�
2 T
(�) = L1 (R;Rn)� RN , continuously depending on �.

Let 
 (u; u0) the family of all regular paths 
 : [0; 1] ! 
 (t) with 
 (0) = u,


 (1) = u0, where u and u0 are two piecewise functions. The Riemannian distance

between u and u0 is given by

d
�
u; u0

�
_= inf

�
jj
jjL1 ; 
 2 


�
u; u0

�	
:

To de�ne d on all L1, for given u; u0 2 L1 we set
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d
�
u; u0

�
_= inf

�
jj
jjL1 + jju� ~ujjL1 +

����u0 � ~u0����
L1
:

~u; ~u0 piecewise constant functions, 
 2 

�
u; u0

�	
It is easy to check that this distance coincides with that one of L1. (For the

system case, see [7]).

Now, studying the evolution of norms of tangent vectors along wave-front

tracking approximations, let us estimate the L1 distance among solutions. Let


0 (�) = u� be a regular path joining u = u0 with u0 = u1, where u, u0 are piece-

wise constant functions. De�ne u� (t; x) to be a wave-front tracking approximate

solution with initial data u� and let 
t (�) = u� (t; �).
It is possible to check that 
t is a regular path for each regular path 
0 and

t � 0. If we can prove

jj
tjjL1 � jj
0jjL1 ; (1.52)

then for every t � 0

����u (t; �)� u0 (t; �)����
L1
� inf


t
jj
tjjL1 � inf
0 jj
0jjL1 =

����u (0; �)� u0 (0; �)����
L1
: (1.53)

To obtain (1.52), hence (1.53), it is enough to prove that, for every tangent

vector (v; �) (t) to any regular path 
t, one has:

jj(v; �) (t)jj � jj(v; �) (0)jj ; (1.54)

i.e. the norm of a tangent vector does not increase in time. Moreover, if (1.53)

is established, then uniqueness and Lipschitz continuous dependence of solutions

to Cauchy problems is straightforwardly achieved passing to the limit on the wave-

front tracking approximate solutions.

Let us now estimate the increase of the norm of a tangent vector. In order to

achieve (1.54), we �x a time �t and treat the following cases:

Case 1. no interaction of waves takes place at �t;

Case 2. two waves interact at �t;
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In Case 1, denote by x�, �� and ��, respectively, the positions, sizes and shifts

of the discontinuities of a wave-front tracking approximate solution. Following [7]

we get:

d

dt

8<:
Z
jv (t; x)j dx+

X
�

������ j�� j
9=; =

�

8<:X
�

�
�
�
��
�
� _x�

� ��v���+X
�

�
_x� � �

�
�+
�� ��v+��

9=;+
+
X
�

D�
�
��; �+

�
�
�
v�; v+

� �
sign��

�
j��j ;

where �� = �+ � ��, �� _=� (x��) and similarly for v�. If the waves respect
the Rankine-Hugoniot conditions, then

X
�

D�
�
��; �+

�
�
�
v�; v+

�
=
�
�
�
��
�
� _x�

� v�
j�� j

+
�
_x� � �

�
�+
�� v+
j��j

and

d

dt

8<:
Z
jv (t; x)j dx+

X
�

������ j��j
9=; � 0: (1.55)

In the wave-front tracking algorithm the Riemann-Hugoniot condition may be

violated for rarefaction fans. However, this results in an increase of the distance

which is controlled in terms of 1v (the size of a rarefaction shock) and tends to zero

when v !1.
For the Case 2, �rst, we have the following:

Lemma 48 Consider two waves, with speed �1 and �2 respectively, that interact

together at �t producing a wave with speed �3. If the �rst wave is shifted by �1 and

the second one by �2, then the shift of the resulting wave is given by

�3 =
�3 � �2
�1 � �2

�1 +
�1 � �3
�1 � �2

�2 (1.56)

Moreover we have that

��3�3 = ��1�1 +��2�2 (1.57)

where ��i are the signed strengths of the corresponding waves.
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Finally, we observe that from (1.57) it follows

j��3�3j = j��1j j�1j+ j��2j j�2j ;

from which

����(v; �) �t+����� � ����(v; �) �t������ : (1.58)
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Chapter 2

Macroscopic models for supply

chain and networks

In this chapter, starting by the Armbruster-Degond-Ringhofer model, we present

the Göttlich-Herty-Klar model and a continuum-discrete model for supply chains

and networks.

2.1 The Armbruster-Degond-Ringhofer model

Consider a production line formed byM suppliers S0; :::SM ; in which a certain

good is processed by each supplier and is fed in the next one.

Labeling the processed part by index n, we denote by � (m;n) the time at

which the part n passes from m�1 to m supplier. Then, in order to model generic

supply chain, the goal is to derive rules governing the evolution of each � (m;n).

A hierarchy of models is available for this purpose, but the focus is centralized

on the so called �uid models, which replace the individual parts by a continuum

and use rate equations for the �ow of product through a supplier (see [1], [5] for

an overview). For a large number of parts, these are computationally much less

expensive than discrete event simulation models, but they necessarily represent an

approximation to the actual situation.

Then we derive a �uid dynamic model, namely a conservation law for a partial

di¤erential equation, out of very simple principles governing the evolution of the

times � (m;n). Basically we assume that each supplier works as a single processor
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The Armbruster-Degond-Ringhofer model

characterized by its processing time T (m) as well as its maximal production rate

(capacity) � (m) and a bu¤er queue in front of it. The processing policy is supposed

to be ��rst come �rst served�; T (m) represents the time which is needed to produce

a single part while � (m) is de�ned as the maximal amount of parts per unit time

which can handled by each single processor m = 0; :::M � 1. In this model both
T (m) and � (m) are �xed.

We denote by an, n = 1; 2; ::, the time part number n arrives at the end of

queue and by bn the �release time�, i.e. the time part number n reaches the front

of the queue and is fed into the processor. If the queue is full, the interval between

two consecutive times bn will be given by the processing rate � (m), i.e.

bn = bn�1 +
1

� (m)

will hold as long as an � bn�1 +
1

�(m) holds, meaning that part number n has

already arrived when we want to feed it into the processor m. Instead, if the queue

is empty, we wait that part n arrives to the end of queue and immediately feed it

into the processor. In this case the condition an > bn�1+
1

�(m) will imply bn = an.

Then, combining the two previous, we obtain the relation:

bn = max

�
an; bn�1 +

1

� (m)

�
. (2.1)

If T (m) is the processing time to �nish the part, we denote by en = bn+T (m)

the time the part leaves the processor and enters the next queue. So, the (2.1) can

be re-write as:

en = max

�
an + T (m) ; en�1 +

1

� (m)

�
. (2.2)

which represents the basic relationship between the arrival times an and the

exit times en.

Referring now to the previous de�nition of � (m;n) and using the obvious

change of notation an ! � (m;n) and en ! � (m+ 1; n) we obtain from (2.2)

� (m+ 1; n) = max

�
� (m;n) + T (m) ; � (m+ 1; n� 1) + 1

� (m)

�
; (2.3)

n � 1, m = 0; ::;M � 1.
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The (2.3) needs initial and boundary conditions which are:

� (0; n) = �A (n) , n � 0, � (m; 0) = � I (m) , m = 0; :::M; (2.4)

where �A (n) simply denotes the arrival time of part n in the �rst processor

and � I (m) denotes the time the �rst part has arrived at supplier Sm. The (2.3)

and (2.4) de�ne completely a discrete event simulation model. So, � I (m+ 1) �
� I (m)� T (m) denotes the time the �rst part has waited in the bu¤er in front of
processor at Sm, while, assuming a constant service rate � in the past,

� (m; 0)
�
� I (m+ 1)� � I (m)� T (m)

�
would be the number of parts in the queue

at the time part number 0 arrives. This de�nition indicates that, for an actual

simulation, we have to start somewhere. But this issue will be resolved once the

problem is formulated in terms of a conservation law. Then, given the times

� (m;n), conservation of the number of parts is expressed via the introduction of

the Newell-curves (see [10], [24]), which describe how the information of (2.3) can

be organized to facilitate the computation of performance measures, e.g. the Work

in Progress (WIP ). In this context, the N-curve U (m; t) at supplier Sm is given

by the number of parts which have passed from processor Sm�1 to Sm at any time

t, i.e by

U (m; t) =

1X
n=0

H (t� � (m;n)) ; t > 0; (2.5)

where H is the Heavyside function, i.e.

H (y) =

(
0 if y < 0

1 if y � 0
:

The WIP W (m; t) of processor Sm, the total number of parts (including all

parts in the queue as well) actually produced at Sm at time t, is given by the

di¤erence of two consecutive N-curves:

W (m; t) = U (m; t)� U (m+ 1; t) +K (m) , m = 0; :::M; (2.6)

where the time independent constants K (m) are determinated by initial situ-

ation. If each of processors Sm has a given minimal processing time T (m) then
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� (m+ 1; n) � � (m;n) + T (m) will hold and this implies that W (m; t) can never

become negative.

Considering the �rst derivative of W (m; t) with respect to t, we obtain:

d

dt
W (m; t) =

d

dt
U (m; t)� d

dt
U (m+ 1; t) = (2.7)

1X
n=0

� (t� � (m;n))�
1X
n=0

� (t� � (m+ 1; n)) =

= F (m; t)� F (m+ 1; t) ;

where, by de�nition, the �ux F (m; t) from processor Sm�1 to Sm is given by

the �rst derivative of U (m; t) and it can be interpreted as a superposition of �-

distributions. To avoid this inconvenience, the (2.7) is replaced by a conservation

law with a simple constitutive relation between the density � and the �ux f ,

in which continuous averaged quantities are considered and the dependence on

individual parts is completely removed.

By a reformulation of the problem, necessary to prevent analytical di¢ culties,

it can be shown that the asymptotic limit leads to a partial di¤erential equation.

First, we map (2.7) onto a grid in an arti�cial spatial variable x, called the �Degree

of Completion�(DOC). We de�ne a mesh 0 = x0 < ::::: < xM = X and replace

F (m; t) by F (xm; t). So the parts enter and leave the supply chain respectively

at the DOC x = 0 and DOC x = X. Next, multiplying the �ux by an arbitrary

smooth test function  (t), the integral

Z 1

�I(m)
 (t)F (xm; t) dt =

1X
n=0

Z 1

�I(m)
 (t) � (t� � (m;n)) dt =

1X
n=0

 (� (m;n))

(2.8)

holds. Then we can rewrite the (2.8) into a Riemann sum as

Z 1

�I(m)
 (t)F (xm; t) dt =

1X
n=0

 (� (m;n))�n� (m;n) f (xm; � (m;n))

where the increment is given by the di¤erence of � (m;n) in the index n, i.e.

�n� (m;n) = � (m;n+ 1)� � (m;n), and, as consequence from (2.8), the function
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f (xm; � (m;n)) is provided by the inverse of �n� (m;n). For a �n� (m;n) small,

i.e. �n� (m;n)! 0, we obtain the approximate relation

Z 1

�I(m)
 (t)F (xm; t) dt �

Z 1

�I(m)
 (t) f (xm; t) dt

where the function f is the approximate �ux for t = � (m;n) and x = xm, i.e.

f (xm; � (m;n)) =
1

� (m;n+ 1)� � (m;n) ; n � 0; m = 0; :::;M: (2.9)

Assuming now that the arrival times � are continuously distributed, i.e. ex-

pressed in terms of continuous variables such as � (x; y), we rewrite the approxi-

mate �ux as f (x; � (x; y)) = 1
@y�(x;y)

. In the similar way, it is possible to �nd an

approximate of part density �.

We can observe that the N-function U (x; t), the antiderivative of the �ux,

satis�es the relations

(a)
d

dy
U (x; � (x; y)) = @tU (x; �) @y� = 1; (2.10)

(b)
d

dx
U (x; � (x; y)) = @xU (x; �) + @tU (x; �) @x� :

In analogy to (2.6) setting � (x; t) = K (x) � @xU (x; t), with K an arbitrary

function, and since @tU (x; �) = f (x; �), the (2.10) becomes

d

dx
U (x; � (x; y)) = K (x)� � (x; t) + f (x; �) @x� :

Moreover the (2.10-a) implies that d
dyU (x; � (x; y)) can be set to an arbitrary

chosen function K (x), since it is a function of the DOC variable x only. So for a

continuum � (x; y) we set � (x; t) = @x�
@y�
. � and f satisfy a conservation law of the

form @t�+ @xf = 0.

Thus, on a discrete level, the approximate density is given by

� (xm; � (m+ 1; n)) =
� (m+ 1; n+ 1)� � (m;n+ 1)

hm (� (m+ 1; n+ 1)� � (m+ 1; n)) (2.11)

with n � 0; m = 0; :::;M � 1, hm := xm+1 � xm.
The de�nitions in (2.9) and (2.11) allow to derive a simple constitutive relation

between �ux and density as shown in the following theorem.
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Theorem 49 Let the arrival times � (m;n) satisfy the time recursion (2.3) and

let the approximate density � and �ux f be de�ned by (2.11) and (2.9).Then the ap-

proximate �ux can be written in terms of the approximate density via a constitutive

relation of the form

f (xm; � (m;n)) = min

�
� (m� 1; n) ; hm�1� (xm�1; � (m;n))

T (m� 1)

�
;

with n � 0, m = 1; 2; :::.

Proof. The proof was done by Armbruster et al. and it can be found in [2].

Now, it will be shown that the approximate density � and �ux f , de�ned by

(2.11) and (2.9), satisfy a conservation law of the form @t�+ @xf = 0, asymptoti-

cally, i.e. for a large time and nodes scales (N;M !1). Moreover the asymptotic
validity can be divided into three parts: scaling, interpolation and weak formula-

tion.

2.1.1 Scaling and dimensionless formulation

We de�ne the average processing time T0 as

T0 =
1

M

M�1X
m=0

T (m) ;

and so MT0 describes the time a part spent to be processed in the empty

system without any waiting times. Then, T0 is used as a scale basis over all time

scales, and we denote all scaled variables and functions by the subindex s.

� (m;n) = MT0� s (m;n) ; T (m) = T0Ts(xm); � (m;n) = (2.12)

=
�s (xm; � s (m+ 1; n))

T0
:

Consider a regime where M >> 1 and set " = 1
M << 1. Inserting (2.12) into

(2.3), for n = 0; 1; :: and m = 0; ::M � 1 we get:

� s (m+ 1; n+ 1) = (2.13)

max

�
� s (m;n+ 1) + "Ts(xm); � s (m+ 1; n) +

"

�s (xm; � s (m+ 1; n))

�
;
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where the initial and boundary condition, respectively �As = � s (0; n) and � Is =

� s (m; 0), are scaled in the same way as � (m;n).

It is assumed that the di¤erences between two consecutive arrival times � are

of the same order as the average processing time T0. This is reasonable since

otherwise the total WIP would either go to zero or in�nity. So it is set

�n� (m;n) = � (m;n+ 1)� � (m;n) = T0�ns� s (m;n) ;

�m� (m;n) = � (m+ 1; n)� � (m;n) = T0�ms� s (m;n) ;

giving

� s (m+ 1; n) = � s (m;n) + "�ms� s (m;n) ;

� s (m;n+ 1) = � s (m;n) + "�ns� s (m;n) :

Then, scaling the density � (2.11) and the �ux f (2.9) we get

f (x; t) =
1

T0
fs

�
x;

t

MT0

�
;

� (x; t) =
M

X
�s

�
x;

t

MT0

�
;

where X is the length of the DOC interval. Finally

fs (xm; � s (m;n)) =
1

�ns�s(m;n)
; m = 0; ::;M; n = 0; 1; ::

�s (xm; � s (m+ 1; n)) = "X�ms�s(m;n+1)
hm�ns�s(m+1;n)

; m = 0; ::;M; n = 0; 1; :::
(2.14)

2.1.2 Interpolation and weak formulation

In this section, it will be show the asymptotic validity of a conservation law in

the regime situation, which is considered supposing M >> 1 or " = 1
M << 1. The

goal is an initial boundary value problem for the conservation law

@t�+ @xf = 0; f = min f� (x; t) ; �g ; f (0; t) = fA (t) ; (2.15)

together with some initial condition � (x; 0) = �0 (t).
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Several complications appear in this approach; in fact, the main di¢ culty aris-

ing from M ! 1, or equivalently " ! 0, is that the �ux function f can become

discontinuous due to the assumption of di¤erent maximal capacities. Consider the

following bottleneck scenario: if processor xm has a higher capacity than xm+1, i.e.

� (xm+1) < � (xm), a queue in front of xm+1 will grow. But, since mass still has to

be conserved, this discontinuity has to be compensated by a �-distribution in the

density � which, hence, will not be a classical function. To deal with this issue, an

asymptotic analysis for the Newell-curve U (m; t) (2.5) is performed. Denoting the

approximation of U by u, setting � (x; t) = �@xu (x; t) and integrating the (2.15)
once respect to x, we get

@tu (x; t)�min f� (x; t) ;�@xug ; lim
x!0�

u (x; t) = gA (t) ;
d

dt
gA (t) = fA (t)

(2.16)

The last equation allows for shock solutions appearing as a �-distribution in

u. In this case, although the x-derivative of u becomes unbounded, the �ux (i.e.

@tu (x; t)) will be bounded because of the min�function. It is possible to show
that, in the limit " ! 0, u satis�es the hyperbolic problem in (2.16) weakly in

space x and time t. First we have to de�ne the interpolants in the form of scaled

functions eus and efs. An e¤ective method towards a continuum is a piecewise

constant interpolation in space and time. Then, the next theorem will show that

the N-curve eus satis�es the (2.16) weakly in x and t as "! 0.

Theorem 50 Given the scaled density and �ux at the discrete points xm; � s (m;n),

as de�ned in (2.13). Let the scaled throughput times Ts (xm) stay uniformly bounded,

i.e. hm = O (") holds uniformly in m. Assume �nitely many bottlenecks for a �-

nite amount of time, i.e. let �m� s (m;n) be bounded for "! 0 expect for a certain

number of nodes m and a �nite number of parts n, which stays bounded as "! 0.

Then, for " ! 0, and maxhm ! 0 the interpolated N-function and �ux eus, efs
satisfy the initial boundary value problem

@teus = efs; efs = min f�;�@xeusg ; t > e� Is (x) ; 0 < x < X; (2.17)

eus �x;e� Is (x)� = 0; lim
x!0�

eus (x; t) = Z t

e�s(0;0) f
A (s) ds

in the limit "! 0, weakly in x and t.
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Proof. The proof was done by Armbruster et al. and it can be found in [2].

Then, through this theorem, it is proved the asymptotic validity of the inte-

grated conservation law (2.17), for any N-curve u and any �ux f , derived from an

arbitrary sequence � via the de�nitions (2.9) and (2.11) and the interpolants eus,efs.
Moreover, considering the unscaled variables, Theorem (50) implies that den-

sity � (x; t) can be approximately computed as � = �@xu.

2.2 The Göttlich-Herty-Klar model

In this section, we present a model for large queuing supply chain networks

based on the work of Armbruster, Degond and Ringhofer [2]. Mainly, we formulate

a PDE network problem and a separate modeling of the queues, taking advantage

of existence theory of the network problem.

First, we state the de�nition of a supply chain network describing the connec-

tion between it and the suppliers.

De�nition 51 . A supply chain network is a �nite, connected directed, simple

graph consisting of arcs J = f1; :::; Ng and vertices V = f1; :::; N � 1g. Each
supplier j is modeled by an arc j, which is again parameterized by an interval

[aj ; bj ]. We use a1 = �1 and bN = +1 for the �rst respectively the last supplier

in the supply chain.

First we consider the special case where each vertex is connected to exactly

two arcs. As shown in Fig.2.1, we conventionally assume that bj = aj�1. Then,

we state that a supplier j is de�ned by a processor and a queue in front of it, i.e.

at x = aj (for simplicity we assume that the �rst supplier consists of a processor

only).

Each processor j is characterized by a maximum processing capacity �j , its

length Lj and the processing time Tj . The rate
Lj
Tj
de�nes the processing velocity.

The evolution of parts inside the processor j is modeled by the function �j (x; t)

indicating the density of parts in j at point x and time t.
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Figure 2.1: Example of a simple network structure

Figure 2.2: Relation between �ow and density

The dynamics of each processor on an arc j are governed by an advection

equation as in ((the previous Section)):

8<: @t�j (x; t) + @xmin
n
�j ;

Lj
Tj
�j (x; t)

o
= 0; 8x 2 [aj ; bj ] ; t 2 R+

�j (x; 0) = �j;0 (x) ; 8x 2 [aj ; bj ]
(2.18)

Note that we use the �ux functions derived in ((the previous Section))

f : R+0 ! [0; �] ; f (�) = min

�
�;
L

T
�

�
; (2.19)

where the maximal rate for the processor is a positive constant �. Clearly, f

is Lipschitz with constant Lf = L
T .

Remark 52 Usually, an in�ow pro�le f1 (t) for the supply chain is given. This

pro�le can be translated into initial data �1 (x; 0) := �1;0 (b1 � t) = f1 (t) on arti�-

cial �rst arc, where it�s assumed �1 > max f1 and
L1
T1
= 1.
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Each queue is a time-dependent function t ! qj (t) and bu¤ered demands for

the generic processor j when the capacity of processor j � 1 is di¤erent from the

demand of processor j (in fact, in this case the queue qj increases or decreases its

bu¤er).

Mathematically, we require each queue qj to satisfy the following equation:

@tqj (t) = fj�1
�
�j�1 (bj�1; t)

�
� fj

�
�j (aj ; t)

�
; j = 2; :::; N (2.20)

Due to the advection, we can de�ne the �ux on the outgoing arc j as

fj
�
�j (aj ; t)

�
=

(
min

�
fj�1

�
�j�1 (bj�1; t)

�
; �j
	

qj (t) = 0

�j qj (t) > 0
(2.21)

where the �ux fj
�
�j (aj ; t)

�
is dependent on the capacity of the queue. The

(2.21) allows for the following interpretation: if the outgoing bu¤er is empty, we

process as many parts as possible but at most �j , while if it contains some parts,

then we process at maximal possible rate, i.e. again �j .

Finally, we have the following coupled system of partial and ordinary di¤eren-

tial equations on a network

@t�j (x; t) = �@xmin
�
�j ;

Lj
Tj
�j (x; t)

�
(2.22a)

�j (x; 0) = �j;0 (x) (2.22b)

@tqj (t) = fj�1
�
�j�1 (bj�1; t)

�
� fj

�
�j (aj ; t)

�
(2.22c)

qj (0) = qj;0 (2.22d)

fj
�
�j (aj ; t)

�
=

(
min

�
fj�1

�
�j�1 (bj�1; t)

�
; �j
	

qj (t) = 0

�j qj (t) > 0
(2.22e)

Consider the very special �ux function in (2.19), the Riemann problem for

(2.18) and (x; t) 2 R � R+ admits one of the following two solutions. Let the

initial data such as
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�j;0 (x) =

(
�l for x < 0

�r for x � 0
;

with �l; �r 2 R+0 . Then, for �l < �r the solution �j is given by

�j (x; t) =

(
�l �1 < x

t �
fj(�r)�fj(�l)

�r��l
�r

fj(�r)�fj(�l)
�r��l

< x
t <1

(2.23)

while for �r < �l, if �l � �j or �r � �j the solution is the same, i.e. (2.23).

Otherwise, in the case �r < �j < �l, the solution will be

� (x; t) =

8>>><>>>:
�l �1 < x

t �
fj(�l)��j
�l��j

�j
fj(�l)��j
�l��j

< x
t �

�j�fj(�r)
�j��r

�r
�j�fj(�r)
�j��r

< x
t <1

(2.24)

where it holds
�j�fj(�r)
�j��r

and
fj(�l)��j
�l��j

= 1.

We can introduce the following de�nition:

De�nition 53 (Network solution) A family of functions
�
�j ; qj

	
j2J is called

an admissible solution for a network as in 2.1 if, for all j, �j is a weak entropic

solutions [22] to (2.18), qj is absolutely continuous and, in the sense of traces for

�js, equations (2.20) and (2.21) hold for a.e. t.

In particular, considering a single vertex v 2 V with incoming arc j = 1 and

outgoing arc j = 2 and constant initial data �j;0 (x) � �j , there exists an admissible

solution f�1; �2; q2g which has the form:

�1 (x; t) = �1;0 (2.25a)

�2 (x; t) =

8>>>>>>>><>>>>>>>>:

f1
�
�1;0
�
< �2

8>><>>:
�1;0 0 � x�t0

t < 1 =
f2(�2)�f2(�1;0)

�2��1;0
�2 1 � x�t0

t and x
t < 1

�2;0 1 � x
t <1

f1
�
�1;0
�
� �2

8<: �2 0 � x
t < 1 =

f2(�2)�f2(�2;0)
�2��2;0

�2;0 1 � x
t <1

(2.25b)
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Figure 2.3: Geometry of a vertex with multiple incoming and outcoming arcs

q2 (t) = q2;0 +

Z t

0
f1
�
�1;0
�
� f2 (�2 (a2+; �)) d� (2.25c)

where t0 =
q2;0

�2�f1(�1;0)
.

For a network as in Fig.2.1 with initial values qj (0) = 0 and initial data�
�j;0 (x)

	
j
where each �j;0 is a step function, there exists an admissible solution�

�j ; qj
	
j
to the network problem (2.22a) to (2.22e) whose construction is based

on wave-front tracking algorithm.

2.2.1 Modeling general networks

Consider now a generic number of vertices v 2 V with mv incoming and nv

outcoming arcs (as, for example, in Fig.2.3).

We denote by ��v and �+v the set of arc indexes of incoming and outcoming

arcs. If we have more than one outgoing arc, we need to de�ne and successively

to model the distribution of the goods from the incoming arcs. Assuming that

for each vertex v a matrix Av := A (�i;j) 2 Rmv�nv is given, hence, the total �ux

willing to go to arc j 2 �+v is given by

X
i2��v

�i;jfi (�i (bi�; t)) :

Moreover we assume that, for all i 2 ��v and j 2 �+v , the matrix A satis�es:

0 � �i;j � 1;

X
j2�+v

�i;j = 1:
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Then, the supply chain network is modeling by (2.18) and,for each junction

(vertex) v, by the following equation for the queues

8j 2 �+v : @tqj (t) =
X
i2��v

�i;jfi (�i (bi�; t))� fj
�
�j (aj+; t)

�
; (2.26)

and the boundary values 8j 2 �+v ,

fj
�
�j (aj+; t)

�
=

8<: min
nP

i2��v �i;jfi (�i (bi�; t)) ; �j
o

qj (t) = 0

�j qj (t) > 0
:

(2.27)

Starting by the empty queue, if the outgoing �ux is a percentage of the sum

of all incoming �uxes given by Av the queue remains empty, while if it is equal to

the maximal processing capacity, the queue increases. Finally if the queue is full,

it is always reduced with a capacity determined by Av and the capacities of the

connected arcs.

Note that due to the positive velocity of the occurring waves the boundary

conditions are well-de�ned. Moreover, due to (2.26) and the assumptions on A,

the total �ux at each vertex v is conserved for all times t > 0, i.e.

X
j2�+v

�
@tqj (t) + fj

�
�j (aj+; t)

��
=
X
i2��v

fi (�i (bi�; t)) :

The construction of a solution to the network problem given by (2.18), (2.26),

(2.27) is as before.

Now, let � = minj (bj � aj) be the minimum length of a supplier; since all

waves move at positive velocity at most equal to 1, two interactions with vertices

of the same wave can happen at most every � units of time. If N is the number of

suppliers, than there is at most a multiplication by N every � unit of time, thus

we can control the number of waves and interactions.

Therefore, for given piecewise constant initial data ��j;0 on a network, a solution�
��; q�

�
can be de�ned by the wave-tracking method up to any time T .

47



A continuum-discrete model for supply chain network

2.3 A continuum-discrete model for supply chain net-

work

In this section we introduce a supply chains model extending the Armbruster,

Degond and Ringhofer one presented in the section [2.1], in which each arc is

modeled by a conservation law for the good density � and an evolution equation

for the processing rate �.

Starting by the approach used in [12],once introduced the model, we discuss

about possible choices of solutions at nodes guaranteeing the conservation of �uxes

given by the general equation

�t + f" (�; �)x = 0;

where, for " > 0 the �ux f" is given by:

f" (�; �) =

(
m�; if � � �;

m�+ " (�� �) ; if � � �;

with m the processing velocity.

Keeping the analogy to Riemann problems, we call the latter Riemann Solver

at nodes. The �rst choice is to �x the rule:

SC1 The incoming density �ux is equal to the outgoing density �ux. So, if a

solution with only waves in the density � exists, then such solution is taken,

otherwise the minimal � wave is produced.

Rule SC1 corresponds to the case in which processing rate adjustments are

done only if necessary, while the density � can be regulated more freely. In par-

ticular, it is justi�ed in all situations in which processing rate adjustments require

re-building of the supply chain, while density adjustments are operated easily (e.g.

by stocking).

Even if rule SC1 is the most natural also from a geometric point of view, in

the space of Riemann data, it produces waves only to lower the value of � and this

involves, as consequence, that, in some cases, the value of the processing rate does

not increase and it is not possible to maximize the �ux.

In order to avoid this problem, two additional rules to solve dynamics at a

node are analyzed:
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SC2 The objects are processed in order to maximize the �ux with minimal value

of the processing rate.

SC3 The objects are processed in order to maximize the �ux. Then, if a solution

with only waves in the density � exists, then such solution is taken, otherwise

the minimal � wave is produced.

The Riemann Problems are solved �xing two "routing" algorithms:

RA1 Goods from an incoming arc are sent to outgoing ones according to their

�nal destination in order to maximize the �ux over incoming arcs. Goods

are processed ordered by arrival time (FIFO policy).

RA2 Goods are processed by arrival time (FIFO policy) and are sent to outgoing

arcs in order to maximize the �ux over incoming and outgoing arcs.

For both routing algorithms the �ux of goods is maximized considering one of

the two additional rules, SC2 and SC3.

In order to understand the mechanism of the two previous rules, a simple

example is shown.

Suppose to have a supply chain network for assembling orange and lemon fruit

juice bottles as in Fig.2.4-a

Bottles coming from the �rst arc are sterilized in node v1 and are re-direct

with a certain probability � to node v2 where some is �lled with lemon fruit juice

and with probability 1� � to node v3 where some is �lled with orange fruit juice.
Assume that lemon and orange fruit juice bottles have two di¤erent shapes. In

nodes v4 and v5, bottles are labeled as their own fruit juice. Finally in node v6,

produced bottles are corked. In this situation the dynamics at node v1 is solved

using the RA1 algorithm. In fact, the redirection of bottles in order to maximize

the production is not possible, since bottles have di¤erent shapes for any kind of

juice.

Consider now a supply network as shown in Fig.2.4-b in which the white cups

are addressed towards n arcs (or sub-chains) to be colored using di¤erent colors.

Since the aim is to maximize the cups production independently from the colors, a

mechanism is realized which addresses the cups on the outgoing sub-chains taking

into account their loads in such way as to maximize �ux on both incoming and
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Figure 2.4: Supply network

outgoing sub-chains. So, a model based on rule RA2 is realized to capture the

behavior of this network.

2.3.1 Basic De�nitions

We start from the conservation law model

�t + (min f� (t; x) ; �g)x = 0: (2.28)

To avoid problems of existence of solutions, we assume � piecewise constant

and an evolution equation of semi-linear type:

�t + �V �x = 0; (2.29)

where �V is some constant velocity. Taking �V = 0, it can be no solution to

a Riemann Problem for the system (2.28)-(2.29) with data (�l; �l) and (�r; �r) if

min f�l; �lg > �r. Since we expect the chain to in�uence backward the processing

rate we assume �V < 0 and for simplicity we set �V = �1.
A supply network consists of N + 1 sub-chains I1; ::::; IN+1, modeled by real

intervals
�
ak; bk

�
� R; k = 1; :::; N + 1; ak < bk, possible with either ak = �1 or
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bk = +1 and M suppliers or processors P1; :::; PM with certain throughput times

and capacity.

Each supplier processes a certain good, measured in units of parts. It is as-

sumed that a node P consists of a processor, which decides how to manage the

�ow among sub-chains, with a maximal processing rate �.

The evolution on each arc is given by (2.28)-(2.29), while at each nodes vertex

the evolution is given by solving Riemann Problems for the density equation (2.28)

with �s as parameters. Since such Riemann Problems may still admit no solution

keeping the values of �s constant, then we expect � waves to be generated following

equation (2.29). Moreover the vanishing of the characteristic velocity for (2.28),

in case � > �, can provoke resonances with the nodes (which can be presented

schematically as waves with zero velocities). Then, for this reason, the model is

modi�ed as follows.

Each sub-chain Ik is characterized by a maximum density �maxk , a maximum

processing rate �maxk and a �ux fk" . Then the dynamics is given by:(
�t + f

k
" (�; �)x = 0;

�t � �x = 0:
(2.30)

The �ux is de�ned as:

(F) fk" (�; �) =

(
�; 0 � � � �;

�+ " (�� �) ; � � � � �maxk ;

fk" (�; �) =

(
"�+ (1� ")�; 0 � � � �;

�; � � � � �maxk ;

as shown in (Fig.2.5)

The conservation law for the good density in (2.30) is a " perturbation of (2.28)

in the sense that jjf � f"jj1 � C" where f is the �ux of (2.30). The equation

has the advantage of producing waves with always strictly positive speed, thus

avoiding resonance with the �boundary�problems at each node.

From now on, �xing " > 0 and dropping the indices, the �ux will be indicated

by f (�; �).

Remark 54 It is possible to generalize all following de�nitions and results to the

case of di¤erent �uxes fk"k for each sub-chain Ik (also choosing " dependent on
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Figure 2.5: Flux (F): Left, f (��; �). Right, f (�; ��).

k). In fact, all statements are in terms of values of �uxes at endpoints of the

sub-chains, thus it is su¢ cient that the ranges of �uxes intersect. Moreover, we

can consider di¤erent slopes mk for each sub-chain Ik, considering the following

�ux

fk" (�; �) =

(
mk�; 0 � � � �;

mk�+ " (�� �) ; � � � � �maxk ;

where mk � 0 represents the velocity of each processor and is given by

mk =
Lk
Tk
;

with Lk and Tk, respectively, �xed length and processing time of processor k.

Assuming that the sub-chains are connected by some junction J , each of them

is given by a �nite number of incoming and outgoing sub-chains, then J is identi�ed

with ((i1; :::; in) ; (j1; :::; jm)) (see Fig.2.6) where the �rst n-tuple and the secondm-

tuple indicate respectively the set of incoming and outgoing sub-chains. Moreover,

each sub-chain can be incoming or outgoing at most for one junction. Hence, the

complete model is given by a couple (I; P ), where I = fIk : k = 1; :::; N + 1g is
the collection of sub-chains and P is the collection of junctions.

The supply network evolution is described by a �nite set of functions �k, �k
de�ned on [0;+1[ � Ik. On each sub-chain Ik, we say that Uk := (�k; �k) :

[0;+1[ � Ik ! R is a weak solution to (2.30) if, for every C1-function ' :

[0;+1[� Ik ! R2 with compact support in ]0;+1[� ]ak; bk[,
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Figure 2.6: A junction.

Z +1

0

Z bk

ak

�
Uk
@'

@t
+ f (Uk)

@'

@x

�
dxdt = 0;

where

f (Uk) =

 
f (�k; �k)

��k

!
;

is the �ux function of the system (2.30). For de�nition of entropic solution, see

at [6].

For a scalar conservation law, a Riemann Problem (RP) is a Cauchy problem

for an initial data of Heavyside type, that is a piecewise constant with only one

discontinuity. The solutions are formed by continuous waves called rarefactions

and by traveling discontinuities called shocks.

Analogously, we call Riemann problem for a junction the Cauchy problem

corresponding to an initial data which is constant on each supply sub-chain.

De�nition 55 A Riemann Solver (RS) for the junction P with n incoming sub-

chains and m outgoing ones consists in a map that associates to a Riemann data

(�0; �0) =
�
�1;0; �1;0; :::; �n;0; �n;0; �n+1;0; �n+1;0; :::; �n+m;0; �n+m;0

�
at P a vec-

tor (�̂0; �̂0) =
�
�̂1; �̂1; :::; �̂n; �̂n; �̂n+1; �̂n+1; :::; �̂n+m; �̂n+m

�
so that the solution

is given by the waves
�
�i;0; �̂i

�
and

�
�i;0; �̂i

�
on the sub-chain Ii, i = 1; :::; n and
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by the waves
�
�̂j ; �j;0

�
on the sub-chain Ij, j = n + 1; :::; n +m. We require the

consistency condition

(CC) RS (RS ((�0; �0))) = RS ((�0; �0)) :

Once a Riemann Solver is assigned, we can de�ne admissible solutions at P .

De�nition 56 Assume a Riemann Solver RS is assigned for the supplier P . Let

U = (U1; :::; Un+m) be such that U is of bounded variation for every t � 0. Then
U is an admissible weak solution of (2.30) related to RS at the junction P if and

only if the following property holds for almost every t. Setting

~Up (t) = (U1 (�; b1�) ; :::; Un (�; bn�) ; Un+1 (�; an+1+) ; :::; Un+m (�; an+m+))

we have RS
�
~Up (t)

�
= ~Up (t).

The aim is to solve the Cauchy problem on [0;+1[ for a given initial and
boundary data as in next de�nition.

De�nition 57 Given Uk : Ik ! [0; 1], k = 1; :::N + 1, measurable BV functions,

a collection of functions U = (U1; :::; UN+1), with Uk : [0;+1[ � Ik ! [0; 1] con-

tinuous as functions from [0;+1[ into L1loc and Uk (t; �) BV function for almost

every t, is an admissible solution to the Cauchy problem on the supply chain if Uk

is a weak entropic solution to (2.30) on Ik, Uk (0; x) = �Uk (x) a.e., and, at each

supplier Pk, U is an admissible weak solution.

2.3.2 Riemann Solvers for suppliers

Fixing a sub-chain Ik, we analyze system (2.30) as a system of conservation

laws in the variables U = (�; �):

Ut + F (U)x = 0; (2.31)

with �ux function given by F (U) = (f (�; �) ;��), thus the Jacobian matrix
of the �ux is:

DF (�; �) =

8>>>>><>>>>>:

 
1 0

0 �1

!
; if � < �; 

" 1� "
0 �1

!
; if � > �:
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Figure 2.7: First and second family curves

The eigenvalues and eigenvectors are given by:

�1 (�; �) � �1; r1 (�; �) =

8>>>>><>>>>>:

 
0

1

!
; if � < �; 

�1�"
1+"

1

!
; if � > �;

�2 (�; �) =

(
1 if � < �;

" if � > �;
r1 (�; �) �

 
0

1

!
:

Hence the Hugoniot curves for the �rst family are vertical lines above the secant

� = � and lines with slope close to �1
2 below the same secant. The Hugoniot

curves for the second family are just horizontal lines. Since we consider positive

and bounded values for the variables, we �x the invariant region (see Fig.2.7):

D = f(�; �) : 0 � � � �max; 0 � � � �max;

0 � (1 + ") �+ (1� ")� � (1 + ") �max = 2 (1� ")�maxg

Observe that

�max = �max
2

1 + "
: (2.32)

First, some results, widely proved for sequential supply chains in [12], are

reported.
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Proposition 58 Given (�0; �0), the minimal value of the �ux at points of the

curve of the �rst family passing through (�0; �0) is given by:

fmin ((�0; �0)) =

(
2"
1+"�0; if �0 � �0;

"�0 +
"(1�")
1+" �0; if �0 > �0:

Lemma 59 Given an initial datum (�0; �0), the maximum value of the density

of the curve of the second family passing through (�0; �0) and belonging to the

invariant region is given by

�M (�0) = �max � �0
�max � �max

�max
: (2.33)

Proof. From 2.7 the maximum value is obtained by the intersection of the

curve of the second family passing through (�0; �0) and the line connecting the

points (�max; 0) and (�max; �max):

�M (�0) = �max � �0
�max � �max

�max
:

From (2.32) we get

�M (�0) =
2

1 + "
�max �

(1� ")
1 + "

�0:

The following estimate holds [12]:

Proposition 60 Assume that a second family wave ((�l; �l) ; (�m; �m)) interacts

with a �rst family wave ((�m; �m) ; (�r; �r)). If �r < �m then the �ux variation

decreases.

Considering now a node P with n and m respectively incoming and outgoing

sub-chains and a Riemann initial datum
�
�1;0; �1;0; ::::; �n;0; �n;0

�
and�

�n+1;0; �n+1;0; ::::; �m+n;0; �m+n;0
�
, the following Lemma holds:

Lemma 61 On the incoming sub-chain, only waves of the �rst family may be

produced, while on the outgoing sub-chain only waves of the second family may be

produced.

From the last Lemma, assigned the initial datum, for each Riemann Solver it

follows that
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�̂i = ' (�̂i) ; i = 1; :::; n;

�̂j = �j;0; j = n+ 1; :::; n+m:
(2.34)

where the function ' (�) describes the �rst family curve
�
�i;0; �i;0

�
as function

of �̂i. The expression of such curve changes at a particular value ��i, given by:

��i =

(
�i;0; if �i;0 � �i;0;
1+"
2 �i;0 +

1�"
2 �i;0; if �i;0 > �i;0:

The case of sequential supply chain.

Considering a node Pk with one incoming arc k and one outgoing arc k + 1.

Let us now to discuss how �̂k+1 and �̂k (from 2.34 we set i = k and j = k+1) can

be chosen.

The conservation of �ux at the node can be written as

f (' (�̂k) ; �̂k) = f
�
�̂k+1; �k+1;0

�
: (2.35)

We have:

Case �): �k+1;0 < ��k;

Case �): ��k � �k+1;0.

In both cases ��k and �k+1;0 individuate in the plane
�
�̂k+1; �̂k

�
four regions so

de�ned:

A =
��
�̂k+1; �̂k

�
: 0 � �̂k+1 � �k+1;0; ��k � �̂k � �maxk

	
;

B =
��
�̂k+1; �̂k

�
: �k+1;0 � �̂k+1 � �Mk+1; ��k � �̂k � �maxk

	
;

A =
��
�̂k+1; �̂k

�
: 0 � �̂k+1 � �k+1;0; 0 � �̂k � ��

	
;

B =
��
�̂k+1; �̂k

�
: �k+1;0 � �̂k+1 � �Mk+1; 0 � �̂k � ��k

	
;

The (2.35) is satis�ed in case �) along the line depicted in Fig.2.9 and in case

�) (Fig.2.8) there are solutions, only under some conditions, along the dashed line.

For details, see [12].
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Figure 2.8: Case �)

Figure 2.9: Case �)
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Figure 2.10: An example of Riemann Solver: case �).

A Riemann Solver according to rule SC1. Geometrically, in case �), we

can de�ne a Riemann Solver mapping every initial datum on the line �̂k = c to the

intersection of the same line with that drawn in Fig.2.9. While in case �), it may

happen that there is no admissible solution on a given line �̂k = c. Therefore, we

can use the same procedure if the line �̂k = c intersects the dashed line of Fig.2.8,

while mapping all other points to the admissible solution with the highest value

of �̂k. This Riemann Solver is shown in Fig.2.10 and Fig.2.11.

Remark 62 If �̂k+1 � �k+1;0, then the solution
�
�̂k+1; �k+1;0

�
is a contact discon-

tinuity. The same happens if �̂k+1 � �k+1;0 and �k+1;0 > �k+1;0. If �̂k+1 � �k+1;0

and �k+1;0 < �k+1;0, the solution consists of two discontinuities.

A Riemann Solver according to rule SC2. Rule SC2 identi�es a speci�c

Riemann Solver:

Theorem 63 Fix a node Pk. For every Riemann initial datum
�
�k;0; �k;0; �k+1;0; �k+1;0

�
at Pk there exists a unique vector

�
�̂k; �̂k; �̂k+1; �̂k+1

�
solution of the Riemann

Problem according to rule SC2.

Proof. Given the initial datum
�
�k;0; �k;0; �k+1;0; �k+1;0

�
, it holds

�̂k = ' (�̂k) ;

�̂k+1 = �k+1;0;
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Figure 2.11: An example of Riemann Solver: case �).

where ' (�̂k) has been de�ned by (2.34). We have to distinguish again two cases:

Case �): �k+1;0 < ��k. Let

�� =
��k � (1� ")�k+1;0

"
; (2.36)

we consider two subcases which correspond to the situation in which solutions

in region B exist or do not exist.

Case �1): �� � �M
�
�k+1;0

�
. Since �k+1;0 < ��k we get

�� =
��k
"
�
�
1

"
� 1
�
�k+1;0 >

��k
"
�
�
1

"
� 1
�
��k = ��k:

Considering the lines of Fig.2.8, to every � it corresponds a value of the

�ux. We claim the following:

Claim 64 If �� � �M the �ux increases with respect to � along the

dashed lines in region C,D and in B for �maxk � � � �� and, �nally, it

is constant along the dashed line in region B for �� � � � �maxk .

It holds

f (��; �) =

(
"�� + (1 + ")�; 0 � � � ��;

��; �� � � � �maxk ;
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whose derivative, with respect to �, is given by

@f (��; �)

@�
=

(
(1 + ") ; 0 � � � ��;

0; �� � � � �maxk :

It follows that for �� � � � �maxk the �ux is constant along the dashed

line in region B.

Let us now prove that the �ux is increasing with respect to � along the

dashed lines in regions C andD. The line connecting the points
�
2"
1+" ��k; 0

�
and

�
�k+1;0; �

�� with �� = 1+"
1�"

�
�̂k+1 � 2"

1+" ��k

�
has equation

�� 1

��

�
�k+1;0 �

2"

1 + "
��k

�
�� 2"

1 + "
��k = 0;

and a directional vector is given by

rC� =

� 1
��

�
�k+1;0 � 2"

1+" ��k

�
1

�
:

Therefore, the directional derivative of the �ux is equal to

rf (�; �) � rC� =

�
"

1� "

�� 1
��

�
�k+1;0 � 2"

1+" ��k

�
1

�
=

=
"

��

�
�k+1;0 �

2"

1 + "
��k

�
+ (1� ") > 0:

The latter inequality is ful�lled if �k+1;0 >
2"
1+" ��k, which is true when-

ever we have solutions in region C.

In region D a directional vector of the line connecting the points
�
�k+1;0; �

��
and (��; ��k) is the following

rD� =

�����k+1;0
��k���

1

�
:

It implies that

rf (�; �) � rD� =
�

"

1� "

������k+1;0
��k���

1

�
= "

�� � �k+1;0
��k � ��

+ (1 + ") > 0;

since �� > ��k > �k+1;0 and ��k � �� > 0.
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In order to respect rule SC2 we set

�k+1 = ��;

�̂k = min f�maxk ; ��g :

Case �2): If �� > �M
�
�k+1;0

�
, there are not solutions in region B and since

the �ux increases with respect to � in region D we set

�̂k+1 = �M ;

�̂k = ~�;

where ~� is obtained from

(1� ")�k+1;0 + "�̂k+1 = (1� ") �̂k + "�̂k;

setting �̂k+1 = �M , i.e.

~� =
" (1 + ")

1� " �M � 2"

1� " ��k + (1 + ")�k+1;0 =

=
2"

1� " (�
max
k � ��k) + �k+1;0:

Case �): ��k � �k+1;0. Consider the line of Fig.2.9. In this case the �ux is

constant with respect to � along the line in the region A and is an increasing

function along the line in region C.

In fact, since the line in region A is given by �̂k+1 = ��k, it follows that

f
�
�̂k+1; �

�
=

(
"��k + (1� ")�; 0 � � � ��k;
�; ��k � � � �maxk ;

from which

@f
�
�̂k+1; �

�
@�

=

(
(1� ") ; 0 � � � ��k;
0; ��k � � � �maxk :

In region C the line connecting the points
�
2"
1�" ��k; 0

�
and (��k; ��k) has equa-

tion

�� 1� "
1 + "

� 2"

1 + "
��k = 0;

and a directional vector is given by

rC� =

�1�"
1+"

1

�
:
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The directional derivative is the following

rf (�; �) � rC� =
�

"

1� "

��1�"
1+"

1

�
= "

1� "
1 + "

+ (1� ") > 0:

It follows that rule SC2 is satis�ed if we de�ne

�̂k+1 = ��k;

�̂k = ��k:

Finally the Riemann Solver is the following:

Case �): �k+1;0 < ��k

Case �1): �� � �M
�
�k+1;0

�
�̂k+1 = ��;

�̂k = min f�maxk ; ��g :

Case �2): �� > �M
�
�k+1;0

�
�̂k+1 = �M

�
�k+1;0

�
;

�̂k = ~�:

Case �): �k+1;0 � ��k
�̂k+1 = ��k;

�̂k = ��k:

The Riemann Solver is shown in Fig.2.12 and Fig.2.13. In case �) we can de�ne

a Riemann Solver mapping every initial datum to the circle or to the square point

if �� � �M and to the �lled point if �� > �M . In case �) we can de�ne a Riemann

Solver mapping every initial datum to the point (��k; ��k), indicated by the arrow.

A Riemann Solver according to rule SC3 Also with rule SC3, we have a

precise Riemann Solver.

Theorem 65 Fix a node Pk. For every Riemann initial datum
�
�k;0; �k;0; �k+1;0; �k+1;0

�
at Pk there exists a unique vector

�
�̂k; �̂k; �̂k+1; �̂k+1

�
solution of the Riemann

Problem according to rule SC3.
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Figure 2.12: Case �) for the Riemann Solver SC2.

Figure 2.13: Case �) for the Riemann Solver SC2.
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Proof. As for the Riemann Solver for rule SC2, given the initial datum�
�k;0; �k;0; �k+1;0; �k+1;0

�
, we have

�̂k = ' (�̂k) ;

�̂k+1 = �k+1;0;

We distinguish:

Case �): This case is splitted in two subcases:

Case �1): �� � �M
�
�k+1;0

�
. In theorem 64 it was proved that the �ux

increases with respect to � along the dashed lines in regions C, D and

B for �maxk � � � �� and, �nally, it is constant along the line in region

B for �� � � � �maxk . It follows that we have to consider two situations:

Case �11): �� > �maxk . According to rule SC3 we set

�̂k+1 = ��;

�̂k = �maxk :

Case �12): �� � �maxk . We set

�̂k+1 = ��;

�̂k = max
�
��; �k+1

	
:

Case �2): �� > �M
�
�k+1;0

�
. In this case, there are not solutions in region

B and since the �ux increases with respect to � in region D we set, as

for the Riemann Solver SC2,

�̂k+1 = �M
�
�k+1;0

�
;

�̂k = ~�:

Case �): The �ux is constant with respect to � along the line in the region A and

is an increasing function along the line in region C, then we set

�̂k+1 = ��k;

�̂k =

(
��k; if �k;0 < ��k;

�k;0; if �k;0 � ��k:
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Figure 2.14: Case �) and �) (namely �1) and �2)) for the Riemann Solver SC3.

The obtained Riemann Solver is shown in Fig.2.14: all points of the white

region are mapped horizontally and all points of the dark regions are mapped to

the point indicated by the arrows.

Analogously to the case of rule SC1, we can give conditions for solvability of

Riemann Problems, more precisely:

Lemma 66 Consider a supply chain on which the initial datum veri�es �k;0 =

�maxk , i.e. the production rate is at its maximum. A su¢ cient condition for the

solvability of all Riemann Problems, according to rule SC2 or SC3, on the supply

chain at every time is

�maxk+2 � �maxk ; 8k:

The case of a supply chain networks

Now, two di¤erent Riemann Solvers at junction are de�ned according to the

routing algorithms RA1 and RA2. For both these algorithms, the �ux of goods

can be maximized considering the two additional rules SC2 and SC3.

In order to de�ne Riemann problems according to RA1 and RA2 let us in-

troduce the notation:

fk = f (�k; �k) :

The maximum �ux obtainable by a wave solution on each production sub-chain:
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fmaxk =

(
��k; k = 1; :::; n;

�k;0 + "
�
�M
�
�k;0

�
� �k;0

�
; k = n+ 1; :::; n+m:

Since f̂i 2
�
fmini ; fmaxi = ��i

�
, i = 1; :::; n and

f̂j 2
h
0; fmaxj = �j;0 + "

�
�M
�
�j;0
�
� �j;0

�i
, j = n+ 1; :::; n+m it follows that if

nX
i=1

fmaxi >
n+mX
j=n+1

fmaxj

the Riemann Problem does not admit solution. For the solvability of the supply

network the following conditions hold:

Lemma 67 A necessary and su¢ cient condition for the solvability of the Riemann

Problem is that

nX
i=1

fmaxi �
n+mX
j=n+1

�j;0 + "
�
�M
�
�j;0
�
� �j;0

�
:

Lemma 68 A su¢ cient condition for the solvability of the Riemann Problems,

independent of the initial data, is the following

nX
i=1

�maxi �
n+mX
j=n+1

�maxj :

Proof. Since f̂i 2
�
fmini ; fmaxi

�
, i = 1; :::; n and f̂j 2

h
0; fmaxj

i
, j = n+1; :::; n+

m, the worst case to ful�ll the condition of Lemma XX(prec) happens when fmini

assumes the greatest value and fmaxj the lowest one

nX
i=1

"�maxi � "
n+mX
j=n+1

�maxj :

Now, considering a single junction P , we analyze two cases:

1. P with n� 1 incoming arcs and 1 outgoing arc (i.e. (n� 1)� 1 node);

2. P with 1 incoming arc and m� 1 outgoing arcs (i.e. 1� (m� 1) node).
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Figure 2.15: One outgoing sub-chain.

One outgoing sub-chain

In this case, since there is only one outgoing sub-chain, the algorithms RA1

and RA2 coincide.

Fixing a Riemann initial datum (�0; �0) =
�
�1;0; �1;0; ::::; �n�1;0; �n�1;0; �n;0; �n;0

�
,

let us denote the solution of the Riemann Problem with (�̂; �̂) =�
�̂1; �̂1; ::::; �̂n�1; �̂n�1; �̂n; �̂n

�
and introduce the priority parameters (q1; q2; :::; qn�1)

which determine a level of priority at the junction sub-chains (see Fig.2.15).

Let us de�ne

�inc =
n�1X
i=1

fmaxi ;

�out = fmaxn ;

and � = min f�inc;�outg.
For simplicity, we analyze a junction with n = 3, so we need only one priority

parameter q 2 ]0; 1[. Think, for example, of a �lling station for soda cans. The sub-
chain 3 �lls the cans, whereas sub-chains 1 and 2 produce plastic and aluminium

cans, respectively.

First, we compute f̂i i = 1; 2; 3 and then �̂i and �̂i, i = 1; 2; 3.

We have to distinguish two cases:

Case 1): � = �inc.

Case 2): � < �inc.
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Figure 2.16: P belongs to 
 and P is outside 


In the �rst case we set f̂i = fmaxi , i = 1; 2.

Instead, in the second case we have to use the priority parameter q. Since not

all objects can enters the junction, letting C be the amount of objects that can go

through, then qC and (1� q)C are the objects coming respectively from �rst and

second sub-chain.

Considering the space (f1; f2), we de�ne the following line:

rq : f2 =
1� q
q

f1;

r� : f1 + f2 = �:

De�ne P to be the point of intersection of the lines rq and r�. Recall that the

�nal �uxes should belong to the region (as in Fig.2.16):


 = f(f1; f2) : 0 � fi � fmaxi ; i = 1; 2g :

We distinguish two cases:

a) P belongs to 
,

b) P is outside 
.
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In the �rst case we set
�
f̂1; f̂2

�
= P , while in the second case we set

�
f̂1; f̂2

�
=

Q, with Q = proj
\r� (P ) where proj is the usual projection on a convex set

(Fig.2.16). Notice that f̂3 = �.

Remark 69 The same reasoning can be done also in the case of n � 1 incoming
sub-chains. In Rn�1 we get the line rq = tvq, t 2 R, with vq 2 �n�2 where

�n�2 =

(
(f1; :::; fn�1) : fi � 0; i = 1; :::; n� 1;

n�1X
i=1

fi = 1

)

is the (n� 2) dimensional simplex and

H� =

(
(f1; :::; fn�1) :

n�1X
i=1

fi = 1

)

is a hyperplane. Since vq 2 �n�2, there exists an unique point P = rq \ H�. If
P 2 
, then we set

�
f̂1; :::; f̂n�1

�
= P . If P =2 
, then we set

�
f̂1; :::; f̂n�1

�
= Q =

proj
\r� (P ), the projection over the subset 
 \ H�. Observe that the projection
is unique since 
 \H� is a closed convex subset of H�.

In order to compute �̂i and �̂i, i = 1; 2; 3, on the incoming sub-chains we have

to distinguish two subcases:

Case 2.1): f̂i = fmaxi . We set according to rules SC2 and SC3,

SC2 :
�̂i = ��i;

�̂i = ��i;
i = 1; 2;

SC3 :
�̂i = ��i;

�̂i = max
�
��i; �i;0

	
;

i = 1; 2:

In this case �̂i = ' (�̂i) = ��i, i = 1; 2.

Case 2.2): f̂i < fmaxi . There exists an unique �̂i such that �̂i + " (' (�̂i)� �̂i) =
f̂i. According to (2.34), we set �̂i = ' (�̂i), i = 1; 2.

On the outgoing sub-chain we have:

�̂3 = �3;0;

while �̂3 is the unique value such that f"
�
�3;0; �̂3

�
= f̂3.
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Figure 2.17: One incoming sub-chain

One incoming sub-chain

Fixing a node P with 1 incoming arc and m� 1 outgoing ones (see Fig.2.17),
and a Riemann initial datum (�0; �0) =

�
�1;0; �1;0; �2;0; �2;0; ::::; �m;0; �m;0

�
, let us

denote the solution of the Riemann Problem (�̂; �̂) = (�̂1; �̂1; �̂2; �̂2; ::::; �̂m; �̂m).

For this con�guration, we need to de�ne the distribution of goods from the in-

coming arc. Then, we introduce the �ux distribution parameters �j , j = 2; :::;m,

where

0 < �j < 1;
mX
j=2

�j = 1:

The coe¢ cient �j represents the percentage of objects addressed from the arc

1 to the sub-chain j. The �ux on the arc j is thus given by

fj = �jf1; j = 2; :::;m;

where f1 is the incoming �ux on the arc 1.

Let us de�ne

�inc = fmax1 ;

�out =

mX
j=2

fmaxj ;

and � = min f�inc;�outg.
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We have to determine �̂k and �̂k, k = 1; :::;m, for both algorithms RA1 and

RA2.

Riemann solver according to RA1 Analyze the general case with m sub-

chains. For example, we refer to the �lling station for orange and lemon fruit juice

bottles as shown in Fig.2.4-a, where the dynamics at node v1 is solved using the

algorithm we are going to describe.

Since fj � fmaxj it follows that

f1 �
fmaxj

�j
; j = 2; :::;m:

We set

f̂1 = min
n
fmax1 ;

fmaxj

�j

o
;

f̂j = �j f̂1;
j = 2; :::;m:

On the incoming sub-chain we have to distinguish two subcases:

Case 1): f̂1 = fmax1 . According to rule SC2 and SC3, respectively, we set:

SC2 :
�̂1 = ��1;

�̂1 = ��1;

SC3 :
�̂1 = ��1;

�̂1 = max
�
��1; �1;0

	
:

Case 2): f̂1 < fmax1 . In this case there exists an unique �̂1 such that �̂1 +

" (' (�̂1)� �̂1) = f̂1. According to (2.34), we set �̂1 = ' (�̂1).

On the outgoing sub-chain we have:

�̂j = �j;0; j = 2; 3; ::;m

while �̂i is the unique value such that f"
�
�j;0; �̂j

�
= f̂j , j = 2; 3; ::;m.

Riemann solver according to RA2 For simplicity let us consider a node with

m = 3 and in this case we need only one distribution parameter � 2 ]0; 1[ (referred
to the cups production as shown in Fig.2.4-b). The dynamics at the node is solved

according to the algorithm RA2. Compute f̂k, k = 1; 2; 3.

We have to distinguish two cases:
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Case 1): � = �out.

Case 2): � < �out.

In the �rst case we set f̂j = fmaxj , j = 2; 3, while in the second one we use the

priority parameter �.

Then, if we indicate with C the amount of objects that can go through the

junction, let �C and (1� �)C be the objects that respectively coming from the

�rst and second sub-chain. Considering the space (f2; f3), de�ne the following

lines:

r� : f3 =
1��
� f2;

r� : f2 + f3 = �:

De�ne P to be the point of intersection of the lines r� and r�. Recall that the

�nal �uxes should belong to the region:


 =
�
(f2; f3) : 0 � fj � fmaxj ; j = 2; 3

	
:

We distinguish two cases:

a) P belongs to 
,

b) P is outside 
.

In the �rst case we set
�
f̂2; f̂3

�
= P , while in the second case we set

�
f̂2; f̂3

�
=

Q, with Q = proj
\r� (P ) where proj is the usual projection on a convex set.

Notice that f̂1 = �.

Again, we can extend the reasoning to the case of m � 1 outgoing sub-chains
as for the incoming ones de�ning the hyperplane

H� =

8<:(f2; :::; fm) :
mX
j=2

fj = �

9=;
and choosing a vector v� 2 �m�2. Moreover, we compute �̂k and �̂k in the

same way described for the Riemann Solver RA1.

Remark 70 In alternative, assuming that a tra¢ c distribution matrix A is as-

signed, then we can compute f̂1 and choose the vector v� 2 �m�2 by

v� = �m�2 \
n
tA
�
f̂1

�
: t 2 R

o
:
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Remark 71 The classical Kruzkov entropy inequalities at nodes [6] readX
inc

sgn (�� k) (f (�)� f (k)) �
X
out

sgn (�� k) (f (�)� f (k))

over the sums are respectively over incoming and outgoing sub-chains and k is

arbitrary. The �uxes are always monotone with respect to �, while the precise

values taken by �uxes and densities on the sub-chains may be di¤erent. Thus we

can not expect the inequality to hold in general.

2.3.3 Waves production

In this section let us discuss the waves production on an incoming and an

outgoing sub-chain with initial datum
�
�i;0; �i;0

�
and

�
�j;0; �j;0

�
respectively.

Since the load dynamic is described by a conservation law in � and an evolution

equation in �, we have �-waves and �-waves of two types:

� shocks waves which are discontinuities in � and/or � traveling at a constant
speed,

� contact discontinuities, which separate two constant states with the same
speed but di¤erent values.

The last one are contact discontinuities in � and � with speed � = �1 connect-
ing the states �i;0 and �̂i and �i;0 and �̂i.

On the outgoing sub-chain only �-waves of the second family can be produced.

Then we must consider two cases:

Case a): �j;0 � �j;0.

Case b): �j;0 > �j;0.

For the case a), two subcases have to be distinguished:

Case a.1): If �̂j 2
�
0; �j;0

�
then the solution of the Riemann Problem consists of

a contact discontinuity connecting �̂j and �i;0 with speed 1 (for t = 1);

Case a.2): If �̂j 2
i
�j;0; �

max
j

i
then the solution of the Riemann Problem consists

of two shocks: one connecting �̂j and �j;0 with speed " (for t = 1) followed

by another one connecting �j;0 and �j;0 traveling with speed 1 (for t = 1)

(see Fig.2.18).In the case b) we have to consider two subcases:

74



Equilibrium analysis

Figure 2.18: Waves production on an outgoing sub-chain: case a.2).

Case b.1): If �̂j 2
�
0; �j;0

�
then the solution of the Riemann Problem consists of

a shock wave connecting the states �̂j and �j;0 with speed (for t = 1) equal

to slope � of the line connecting the two states:

� =
�j;0 + "

�
�j;0 � �j;0

�
� �̂j

�j;0 � �̂j
:

Case b.2): If �̂j 2
i
�j;0; �

max
j

i
then the solution of the Riemann Problem consists

of a contact discontinuity connecting �̂j and �j;0 with speed " (for t = 1).

2.4 Equilibrium analysis

Fixing a node P and a Riemann initial datum (�0; �0), now we introduce some

notions about the equilibria at nodes.

De�nition 72 De�ne (�̂; �̂) = RS ((�0; �0)). The datum (�0; �0) is an equilibrium

if

(�̂; �̂) = RS ((�0; �0)) = (�0; �0) :

Distinguishing two types of nodes, (n� 1)� 1 and 1� (m� 1), and equilibria
with active and not active constraints for the maximization problem, we consider

generic equilibria for the Riemann Problem at a junction.
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Figure 2.19: The outgoing sub-chain is an active constraint and the incoming ones

are not active constraints.

2.4.1 A node with one outgoing sub-chain

If the n-th sub-chain is an active constraint then we have:

�n = �M (�n) ;

otherwise, if it is not an active constraint, we have:

�n < �M (�n) :

For the incoming sub-chains Ii, i = 1; :::; n� 1, it will be: if the i-th sub-chain
is an active constraint then

SC2 : �i = �i

SC3 : �i � �i
; i = 1; :::; n� 1;

otherwise

�i � �i:

In Fig.2.19 and Fig.2.20 the equilibria are shown. In the latter the equilibria

for the algorithm SC2 are depicted in bold, while for SC3 in bold and grey.

The �rst type of equilibria (Fig.2.19) represents the situation in which the

outgoing sub-chain exhibit the maximal production e¤ort, while the incoming ones

adjust accordingly their production �ows.
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Figure 2.20: The incoming sub-chains are active constraints and the outgoing one

is not an active constraint.

The second type (Fig.2.20) shows the situation in which the incoming sub-

chains have a low level of part densities and, consequently, the outgoing sub-chain

is not used at maximal level. In this case, then, since the whole plant is not used

suitably, a re-building is in order, in fact it can be considered either the incoming

sub-chains should be powered such that the production rate is improved or the

outgoing ones should be restricted such that the production costs would be lower.

2.4.2 A node with one incoming sub-chain

The equilibria for the two algorithms RA1 and RA2 coincide. In particular,

if the incoming sub-chain is an active constraint then

SC2 : �1 = �1;

SC3 : �1 � �1;

otherwise �1 � �1.

Considering the outgoing sub-chains Ij , j = 2; :::;m, if Ij is an active constraint

then �j = �M
�
�j
�
for both SC2 and SC3 algorithms, otherwise �j < �M

�
�j
�
.

For both algorithms RA1 and RA2, the case of incoming sub-chain as active

constraint should happen only with �1 = �1, in such a way that the goods �ll up

appropriately the sub-chain. Otherwise the incoming sub-chain should be powered.

For the outgoing sub-chains as active constraints, the situation is di¤erent. In fact,

the latter represents a projecting error for the algorithm RA1, while it may well
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happen for RA2.

2.4.3 Bullwhip e¤ect

The Bullwhip e¤ect is a well known oscillation phenomenon in supply chain

theory, see [11]. Since this e¤ect consists in oscillations moving backwards, the

most interesting case consists of nodes with n � 1 incoming sub-chains and one
outgoing sub-chain.

Then, to study the Bullwhip e¤ect, we have to compute the oscillations on

incoming sub-chains produced by the interaction with the node of a wave from

the outgoing one. Since the wave must have negative speed, it is a �rst family

wave. Fixing the notation, we denote with � and + the values before and after

the interaction, and with � the jump in the values from the left to the right along

waves traveling on sub-chains. Let (��; ��) be an equilibrium con�guration at the

node and ((��n ; �
�
n ) ; (~�n; ~�n)) the wave coming to the same node.

The e¤ect of the interaction of the wave is the production of n � 1 waves on
the incoming sub-chains.

The oscillation amplitude in the production rate before the interaction is given

by:

��� = ~�n � ��n :

The maximum �ux on the outgoing sub-chain as function of � is the following

fmaxn (�) = �
1� "
1 + "

+ "�maxn ;

thus it is an increasing function. The oscillation of the �ux after the interaction

is

�f+ =
1� "
1 + "

���:

Now, assuming �rst that the incoming sub-chains are not active constraints,

for both algorithms SC2 and SC3, we have ��i � ��i , i = 1; :::; n � 1. Then the
�rst family curve passing through

�
��i ; �

�
i

�
, belonging to the region � � �, is given

by
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� = ��i +
�
�� ��i

��
�1� "
1 + "

�
:

From which, for small oscillations we obtain

��+ = �1� "
1 + "

��+:

If the oscillation is not small the same relation holds with an inequality sign.

Observe that

�f+ = ��+ (1� ") + "��+ = 1� "
1 + "

��+;

from which

��+ =
1 + "

1� "�f
+;

and then

��+ = ���:

Assume now that the incoming sub-chains are active constraints, which means

that ��i = ��i and �
�
i = ��i respectively for SC2 and SC3 algorithm. Along the

curve of the �rst family belonging to the region � � � we have �f = 0, i.e. a

dumping e¤ect is possible, while in the region � � � we have

�f =
1� "
1 + "

��:

Considering the SC2 algorithm, if the �rst family wave from the outgoing road

increases the �ux, then it is re�ected as a second family wave. In the opposite case,

we get the same estimates as above.

Considering the SC3 algorithm, if the �rst family wave from the outgoing

road increases the �ux, then it is again re�ected as a second family wave. In the

opposite case, we get:

��+ = ��� +
�
��i � �

�
i

�
with an increase in the production rate oscillation.

In conclusion we get the following:
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Proposition 73 The algorithm SC3 may produce the Bullwhip e¤ect. On the

contrary, the algorithm SC2 conserves oscillations or produce a dumping e¤ect,

thus not permitting the Bullwhip e¤ect.
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Chapter 3

Numerical Schemes

In this chapter we present the numerical schemes for the Göttlich-Herty-Klar

model and the continuum-discrete model for supply chains.

3.1 Numerical methods for Göttlich-Herty-Klar model

Considering the system (2.22a)-(2.22e), we want to obtain numerical results

for parts dynamics inside a supply chain �nding, for each arc j, a suitable ap-

proximation for the density �j (x; t) and the queue qj (t), with 0 � x � Lj and

t 2 [0; T ]. In particular, we use the upwind scheme for densities (i.e referred to
PDE of the model) and the explicit Euler scheme for queues (i.e referred to ODE

of the model).

For each arc j 2 J , de�ne e numerical grid in [0; Lj ]� [0; T ] using the following
notations:

� �xj = Lj
Nj
is the space grid size, where Nj is the number of segments into

which we divide Lj (the length of j-th supplier);

� �tj = T
�j
is the time grid size, where �j is the number of segments into which

we divide the interval [0; T ];

� (xi; tn) = (i�xj ; n�tj), i = 0; :::; Nj , n = 0; :::; �j are the grid points.

For the density function �j de�ned on the grid, we set
j�ni as the approximation

of �j (xi; t
n),with j 2 J , i = 0; :::; Nj , n = 0; :::; �j . For the queue qj , q

n
j is the

approximation of qj (tn).
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Without loss of generality, we can assume that for each arc j, �xj = �x and

�tj = �t, with �x and �t �xed.

A numerical scheme to solve conservation laws at each arc is the upwind

method:

j�n+1i =j �ni �
�t

�x

Lj
Tj

�
j�ni �j �ni�1

�
; j 2 J; i = 0; :::; Nj ; n = 0; :::; �j : (3.1)

The evolution of queues is described by the explicit Euler method:

qn+1j = qnj +�t
�
fnj�1;out � fnj;inc

�
; j 2 J � f1g ; n = 0; :::; �j ; (3.2)

where fnj�1;out and fnj;inc are the approximation of fj�1
�
�j�1 (bj�1; t

n)
�
and

fj
�
�j (aj ; t

n)
�
, respectively, both depending on values of densities computed by

(3.1).

In order to consider boundary data, we refer to equation (3.1) for i = 0. We

proceed by inserting a ghost cell and de�ning

j�n+10 =j �n0 �
�t

�x

Lj
Tj

�
j�n0 �j un0

�
; j 2 J; n = 0; :::; �j ;

where jun0 takes the place of
j�n�1. Two di¤erent cases can occur:

1. if the arc j is the incoming one to the supply chain (namely aj = �1), and
in�ow pro�le ' (t) is assigned, and we set jun0 = ' (tn).

2. if the arc j is inside the supply chain, or aj 6= �1, we set jun0 =
Tj
Lj
fnj , where

fnj obeys equation (2.22e).

3.1.1 Correction of numerical �uxes in case of negative queues

The following lemma holds:

Lemma 74 Consider a supply chain evolution �j (xi; t), qj (t), i.e. a solution

of (2.22a)-(2.22e). Then for every j 2 J , t � 0 and x, it holds �j (xi; t) � 0,

qj (t) � 0.

Since the ODE numerical scheme does not necessarily maintain the positivity

proprieties of the Lemma 1, we have to modify the Euler scheme.
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Figure 3.1: Negative queue bu¤er occupancy at tn+1.

Consider the arc j of a supply chain and suppose that, in the time interval�
tn; tn+1

�
, �j (xi; t) is approximated by the constant value

j�ni . Then, from (3.2),

qj (t) has a linear shape (see Fig.3.1), namely

qj (t) =
qn+1j � qnj

�t
t+

qnj t
n+1 � qn+1j tn

�t
; t 2

�
tn; tn+1

�
: (3.3)

Assume that qnj > 0 and q
n+1
j < 0. Then, the queue vanishes at an instant of

time �t > tn, which is computed by (3.3):

�t = tn +�t0; �t0 =
qnj

qnj � q
n�1
j

�t =
qnj

�j � fnj�1;out
:

Forcing to zero the behaviour of qj (t), t 2
�
�t; tn+1

�
, the following numerical

correction for the entering �ux fnj;inc is needed:

fnj;inc =
1

�t

�
�t0�j �

�
�t��t0

�
fnj�1;out

�
(3.4)

This correction on the boundary incoming data for the arc j in�uences the

approximation of �j (x; t), with consequent e¤ects on dynamics for following arcs

and queues.
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3.1.2 Di¤erent space and time grid meshes

Considering the general case in which Lj have not rational ratios, we have to

consider the possibility of choosing di¤erent space and/or time grid meshes.

Di¤erent space meshes for di¤erent suppliers

For each supplier j 2 J , the numerical grid in [0; Lj ]� [0; T ] is de�ned choosing
a �xed grid mesh �t, then di¤erent space grid meshes are necessary and we set

�xj = vj�t, where vj :=
Lj
Tj
is the processing velocity. In this case, grid points

are (xi; tn)j = (i�xj ; n�t), i = 0; :::Nj , n = 0; :::; �j . Then the upwind scheme for

the parts density of the arc j now reads:

j�n+1i =j �ni �
�t

�xj
vj
�
j�ni �j �ni�1

�
; j 2 J; i = 0; :::; Nj ; n = 0; :::; �j : (3.5)

To respect CFL condition (see [23]) the time mesh satisfy:

�t � min fvj�xj : j 2 Jg : (3.6)

For queues we refer again to equation (3.2).

Di¤erent time meshes for di¤erent suppliers

Now, �x two consecutive arcs j � 1 and j. Then two di¤erent numerical grids
are de�ned, whose points are, respectively:

(xk; t
nj�1)j�1 = (k�x; nj�1�tj�1) ; k = 0; :::; Nj�1; nj�1 = 0; :::; �j�1;

�
jxk; t

n
�
= (k�x; nj�tj) ; k = 0; :::; Nj ; nj = 0; :::; �j :

For the queue bu¤er occupancy the explicit Euler is given by:

q
nj�1
j = q

nj
j +�tj

�
f
nj
j�1;out � f

nj
j;inc

�
; (3.7)

where
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Figure 3.2: Case �tj�1 < �tj . Left: not proportional case. Right: proportional

case.

f
nj
j;inc =

8<: min
n
fj�1

�
j�1�nNj�1

�
; �j

o
; qnj (t) = 0;

�j ; qnj (t) > 0;
(3.8)

while fnjj�1;out must be suitably de�ned. If �tj�1 < �tj (see Fig.3.2), we de�ne

m (nj) and M (nj) as:

m (nj) = sup fm : m�tj�1 � nj�tjg ;

M (nj) = inf fM :M�tj�1 � (nj + 1)�tjg ;

and set

f
nj
j�1;out =

M(nj)�m(nj)�1X
l=1

�tj�1fj�1
�
j�1�

m(nj)+l
Nj�1

�
+

+ [(m (nj) + 1)�tj�1 � nj�tj ] fj�1
�
j�1�

m(nj)
Nj�1

�
+

+ [(nj + 1)�tj � (M (nj)� 1)�tj�1] fj�1
�
j�1�

M(nj)�1
Nj�1

�
:

Notice that, in the special case �tj = 
�tj�1, 
 2 N� f1g, we simply have:
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Figure 3.3: Case �tj�1 > �tj :

f
nj
j�1;out =

M(nj)�m(nj)�1X
l=1

�tj�1fj�1
�
j�1�

m(nj)+l
Nj�1

�
= f

nj
j�1;out =

=


X
l=1

�tj�1fj�1
�
j�1�


nj+l
Nj�1

�
:

If, on the contrary, �tj�1 > �tj (see Fig.3.3), we set

f
nj
j�1;out = f

���� nj�tj�tj�1

����
j�1 ;

where j�j indicates the �oor function.
Finally, in this case, the approximation scheme for densities is the classical

upwind method.

Fluxes corrections

In case of negative values of queues, �ux corrections have to be considered also

for the variants of numerical method seen before.

For the modi�ed upwind scheme, �uxes corrections are the same as in the

previous section.
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Figure 3.4: Di¤erent time meshes for �uxes corrections.

Now, for the modi�ed Euler scheme for queue (3.7), we consider two consecutive

arcs, j � 1 and j, with approximation grids characterized by equal spatial meshes
�x and di¤erent temporal meshes �tj�1 and �tj .

Assuming qnjj > 0 and qnj+1j < 0, if �tj�1 < �tj (see 3.4 left, for an example),

more precisely �tj = N�tj�1, a possible correction for the �ux entering the arc j

is the following:

fBj;inc =

PN�1
k=0 f

k
j�1;out

N + 1
;

where fkj�1 and f
B
j are, respectively, the approximations of fj�1

�
�j�1

�
bj�2; tk

��
and fj

�
�j
�
aj ; t

B
��
. If �tj�1 > �tj (Fig.3.4 right), precisely �tj�1 = N�tj , we

indicate with �t the instant such that qj (�t) = 0.

Then if

tnum = �tj�; with � =

���� �t�tj
���� ;

is the numerical approximation of �t, a suitable correction for the �ux entering

the arc j can be
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fkj;inc =

(
�j ; if qj

�
tk
�
> 0;

�j(t
num=�tj�)+[(�+1)�tj�tnum]fj�1;out

�tj
; otherwise;

8k = 0; ::; N � 1

3.1.3 Convergence

According to study the convergence of the previously presented numerical

schemes, the main idea is to relate the solution to those produced by Wave Front

Tracking (WFT) and control the norm of generalized tangent vectors as in [21].

Consider the Cauchy problem of type (2.22a)-(2.22e), with initial conditions

�j;0 in the space of bounded variation functions BV . For simplicity, we consider the

case of equal processing velocity and equal space and time meshes for all suppliers;

the general case is similar.

Fix an initial space mesh �x0 and de�ne a sequence of approximate solutions
v;j�ni , generated sampling the initial datum �j;0 on grids of mesh �xv = 2

�v�x0

and using the time mesh:

�tv = v�xv = v2�v�x0; (3.9)

where v is the common velocity to all suppliers. More precisely:

v;j�0i = �j;0
��
aj + i2

�v�x
�
+
�

where (�+) indicates the limit from the right, which exists because of the as-

sumption of BV initial data.

We can de�ne a projection of the approximate solution over the space of piece-

wise constant functions by setting:

�PC
�
v;j�n

�
=

Lj

2�v�x�1v;jX
i=0

�n�[aj+i2�v�x;aj+(i+1)2�v�x[

where �[a;b] is the indicator function of the set [a; b]. Similarly we de�ne the

corresponding bu¤er occupancy approximations vqnj . We will also consider the

WFT solution j�WFT
v starting from the initial datum:

�PC
�
v;j�0

�
:

AWFT solution is given by:
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� Solve the Riemann problems corresponding to discontinuities of �PC
�
v;j�0i

�
,

replacing rarefactions by a set of small non entropic shocks of size 2�v;

� Use the piecewise constant solution obtained piecing together the solutions
to Riemann problems up to the �rst time of interaction of two shocks;

� Then solve a new Riemann problem created by interaction of waves and

prolong the solution up to next interaction time, and so on.

In order to ensure the existence of WFT solutions and their convergence, it

is enough to control the number of interactions, waves and the BV norm. In the

scalar case, this is easily done since both number of waves and the BV norm are

decreasing in time (for details [6]).

For queues we use the exact solutions to (2.22c) which are indicate by vqWFT
j .

BV estimates for complete set of ODE -PDE model (2.22a)-(2.22e) are proved in

[21].

We have:

Lemma 75 Assume that all suppliers have the common velocity v, �j;0 are BV

functions, �j;0 (x) � �j for every x and (3.9) holds true. Then:�����PC �v;j�n��j �WFT
v (n�tv)

����
L1
+
X
j

��vqnj �v qWFT
j (n�tv)

�� � C2�v�x0
X
j

TV
�
�j;0
�

where C > 0 and TV (�) indicates the total variation.

As in [21], we de�ne generalized tangent vectors (v; �; �) to WFT solutions.

As proved in the Lemma 2.7 of [21], the norms of tangent are decreasing along

WFT solutions.

Now, we de�ne the convergence error as:

Ev (n) =
X
j

X
i

2�v�x0
��v;j�ni �v+1;j �ni ��+X

j

��vqnj �v+1 qnj �� = (3.10)

=
X
j

�����PC �v;j�ni �� �PC �v+1;j�ni �����L1 +X
j

��vqnj �v+1 qnj �� :
Moreover, we have:
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Ev (0) =
����j�WFT

v (0)�j �WFT
v+1 (0)

����
L1
� 2�(v+1)�x0

X
j

TV
�
�j;0
�
: (3.11)

We can notice that the initial datum �PC
�
v+1;j�0i

�
can be obtained from

�PC
�
v;j�0i

�
by possible shifting waves with tangent vectors of the 2v+1�x, in fact

both functions are obtained sampling the same BV function on di¤erent subgrids.

Then, again by the Lemma 2.7 of [21], we can control the distance writing:

����j�WFT
v (t)�j �WFT

v+1 (t)
����
L1
+
X
j

��vqWFT
j (t)�v+1 qWFT

j (t)
�� � ����j�WFT

v (0)�j �WFT
v+1 (0)

����
L1
:

By the Lemma 75 and (3.11) we get:

Ev (n) =
����j�WFT

v (n�tv)�j �WFT
v+1 (n�tv)

����
L1
+
X
j

��vqWFT
j (n�tv)�v+1 qWFT

j (n�tv)
��

+C
�
2�v + 2�(v+1)

�
�x0

X
j

TV
�
�j;0
�

�
����j�WFT

v (0)�j �WFT
v+1 (0)

����
L1
+ C

�
2�v + 2�(v+1)

�
�x0

X
j

TV
�
�j;0
�

� 2�(v+1)�x0
X
j

TV
�
�j;0
�
+ C

�
2�v + 2�(v+1)

�
�x0

X
j

TV
�
�j;0
�
:

Finally we get the following:

Theorem 76 Assume that all suppliers have the common velocity v, �j;0 are BV

functions, �j;0 (x) � �j for every x and (3.9) holds true. Then the convergence

error Ev (n) (de�ned in (3.10)) tends to zero uniformly in n with linear convergence

rate in �xv = 2�v�x0.

3.2 Godunov scheme for 2� 2 systems

In order to describe Godunov numerical method as applied to the system (2.30),

we rewrite it as the 2� 2 hyperbolic system (2.31).

The Godunov scheme is based on the construction of the Riemann problem for

(2.31), [UL; UR], which is the initial value problem for initial data given by a jump

discontinuity
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U (0; x) =

(
UL; x < 0;

UR; x > 0;
(3.12)

and it has a unique entropy solution

U (t; x) = UR

�x
t
;UL; UR

�
: (3.13)

We discretize [0;+1)�R by a time and spatial mesh length, respectively, �t
and �x, and we let tn = n�t and xj = j�x, so that

�
tn; x

j
�
denotes the mesh

points of the approximate solution v� (t; x) = vjn. Starting by the approximation

vn =
�
vjn
�
j2Z

of U (tn; �), with v a column vector of R2, an approximation vjn+1,
with j 2 Z, of U (tn+1; �) can be de�ned as follows:

� extension of the sequence vn as a piecewise constant function v� (t; �):

v� (t; �) = vjn; xj�
1
2 < x < xj+

1
2 ; (3.14)

solution of the Cauchy problem(
Ut + F (U)x = 0; x 2 R; t > 0;
U (0; x) = v� (tn; �) ;

(3.15)

in the cell (tn; tn+1)�
�
xj�1; xj

�
;

� computation of the solution as the average value of the preceding solution
in the interval

�
xj�

1
2 ; xj+

1
2

�
obtained projecting U (�t; �) onto the piecewise

constant functions:

vjn+1 =
1

�x

Z xj+
1
2

xj�
1
2

U (�t; x) dx: (3.16)

To avoid the interaction of waves in two neighbouring cells before time �t, we

impose a CFL(Courent-Friedrichs-Lewy) condition as:

�t

�x
max fj�0j ; j�1jg �

1

2
; (3.17)

where �0 and �1 are the eigenvalues. Since, in this case, we have that j�0j = 1
and j�1j � 1, the CFL condition reads as:
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�t

�x
� 1

2
:

The solution of (3.15) is obtained by solving a sequence of neighbouring Rie-

mann problems and we have

U (t; x) = UR

 
x� xj+ 1

2

�t
; vjn; v

j+1
n

!
; xj < x < xj+1; j 2 Z: (3.18)

Then, a more explicit expression of the scheme can be obtained integrating the

equation (3.15) over the rectangle (0;�t) �
�
xj�

1
2 ; xj+

1
2

�
. Since the function is

piecewise smooth, we get:

Z xj+
1
2

xj�
1
2

(U (�t; 0)� U (0; x)) dx+

+

Z �t

0

�
F
�
U
�
t; xj+

1
2 � 0

��
� F

�
U
�
t; xj�

1
2 + 0

���
dt = 0:

Now, using (3.14) and projecting the solution on piecewise constant functions

we obtain:

�x
�
vjn+1 � vjn

�
+

Z �t

0

�
F
�
U
�
t; xj+

1
2 � 0

��
� F

�
U
�
t; xj�

1
2 + 0

���
dt = 0

(3.19)

and, recalling (3.18), we derive:

vjn+1 = vjn �
�t

�x

�
F
�
UR
�
0�; vjn; vj+1n

��
� F

�
UR
�
0+; vj�1n ; vjn

��	
: (3.20)

Since the function � ! F (UR (�;UL; UR)) is continuous at the origin due to

the Rankine-Hugoniot conditions (see [16]), Godunov scheme can be written in

the form:

vjn+1 = vjn �
�t

�x

�
F
�
UR
�
0; vjn; v

j+1
n

��
� F

�
UR
�
0; vj�1n ; vjn

��	
; (3.21)

and the numerical �ux computed in V = (v1; v2) and W = (w1; w2), is
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G (V;W ) = F (UR (0;V;W )) : (3.22)

The numerical �ux can be written in a general form as:

G (V;W ) =

(
minz12[v1;w1] F (Z) if v1 � w1

maxz12[v1;w1] F (Z) if v1 � w1

where the second variable z2 in Z = (z1; z2) is assumed to be �xed. The �nal

expression of Godunov scheme for the problem (3.15) is:

vjn+1 = vjn �
�t

�x

�
G
�
vjn; v

j+1
n

�
�G

�
vj�1n ; vjn

��
: (3.23)

More precisely, for the system (2.31), the scheme reads as:8<: �jn+1 = �jn � �t
�x

�
g
�
�jn; �

j+1
n

�
� g

�
�j�1n ; �jn

��
;

�jn+1 = �jn � �t
�x

�
�jn+1 � �

j
n

�
;

(3.24)

where the approximate values of � (x; t) and � (x; t) on the numerical grid is

indicated as, respectively, �jn and �
j
n for j = 0; :::; L and n = 0; :::;M � 1. In the

(3.24) we can observe that the Godunov scheme for the second equation reduces

to forward upwind scheme.

3.2.1 Fast Godunov for 2� 2 system

In order to �nd a simpli�ed expression for the numerical �ux of Godunov

scheme, considering as numerical �ux the function F (U) with f (�; �) de�ned in

(2.30), we solve Riemann problems between the two states:
�
��; ��

�
on the left

and
�
�+; �+

�
on the right. In particular, referring to relation (3.22), we compute

the value of F (U) in the separation point between waves of di¤erent speed.

Theorem 77 The numerical �ux function G (V;W ) = F (UR (0;V;W )) is

G
�
��; ��; �+; �+

�
=

8>>>>><>>>>>:

�
��;��+

�
if �� < �� _ �� � �+;�

1�"
1+"�+ +

2"
1+"��;��+

�
if �� < �� _ �� > �+;�

1+"
2 �� +

1�"
2 ��;��+

�
if �� � �� _ �+ > ~�;�

1�"
1+"

�
�+ + "��

�
+ "��;��+

�
if �� � �� _ �+ � ~�;

(3.25)
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with

~� = �� +
1 + "

2

�
�� � ��

�
: (3.26)

Proof. Let P be the intersection point between the �rst family curve pass-

ing through
�
��; ��

�
and the line � = �, namely P =

 
��

��

!
. The second

family curve passing through P splits the invariant region into two regions A =�
(�; �) : � > ��

	
and B =

�
(�; �) : � � ��

	
as shown in Fig.3.5 and Fig.3.6. Each

Riemann problem solution presents waves traveling with two velocities, namely

�0 = �1 and 0 < " � �1 � 1. If (��; ��) is the intermediate state (see Fig.3.7),

we compute the numerical �ux function G
�
��; �+

�
given by (f (��; ��) ; ��). We

distinguish two di¤erent cases:

Case1: �� < ��. In this case, if
�
�+; �+

�
2 A then (��; ��) =

�
��; �+

�
. If�

�+; �+
�
2 B, the needed value of �ux is that corresponding to

�
f
�
��; �+

�
;��+

�
(see Fig.3.5). We have

(��; ��) =
�
��; �+

�
=

 
��

��

!
+ t

 
�1�"
1+"

��

!
(3.27)

and �� is computed as:

�� = �� +
�
�� � �+

� 1� "
1 + "

: (3.28)

Finally, since �� > �� > �+ we get the expression in the second line of (3.25).

Case 2: �� � ��. In this case, if
�
�+; �+

�
2 A then (��; ��) =

�
~�; �+

�
, where

~� =
1 + "

2
�� +

1� "
2

�� (3.29)

is obtained as follows. The point (~�; ~�) is:

(~�; ~�) =

 
��

��

!
+ t

 
�1�"
1+"

1

!
;

and, using that ~� = ~�, it is possible to get (3.29). Assuming
�
�+; �+

�
2 B,

the value of �ux we need is f
�
��; �+

�
with �� given by

(��; ��) =
�
��; �+

�
=

 
��

��

!
+ t

 
�1�"
1+"

1

!
; (3.30)
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Figure 3.5: Case 1, with
�
�+; �+

�
2 B.

and, making simple computations, one gets:

�� = �� +
�
�� � �+

� 1� "
1 + "

: (3.31)

Taking into account that �� > �+, we obtain the expression of �ux as in the

last line of (3.25).

3.3 Numerics for Riemann Solvers

In this sub-section, in order to describe the numerical framework for the so-

lution of Riemann problems at junctions, we refer to the general Riemann solver

called SC1 [12] and to SC2 and SC3.

For simplicity, we focus on a single supplier ve, and on two consecutive sub-

chains, e and e+ 1.

Let us introduce the following notations:

� �e;Ln ,�e;Ln are the approximate values, respectively, of density and processing

rate at time tn at the outgoing endpoint xL = L�x of sub-chain e;

� �e;0n ,�e;0n are the approximate values, respectively, of density and processing

rate at time tn at the incoming endpoint x0 = 0 of sub-chain e+ 1;
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Figure 3.6: Case 2, with
�
�+; �+

�
2 A.

Figure 3.7: Intermediate state between the two waves.
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3.3.1 Discretization of the Riemann Solver SC1

Setting

� 
̂ = f
�
�e;Ln ; �e;Ln

�
;

� 
e+1max = f
�
�emax; �

e+1;0
n

�
;

we consider two cases:

Case �) If 
̂ � 
e+1max:

�e;L+1n = �e;Ln ;

�e;L+1n = �e;Ln ;

�e+1;�1n =

8<: f
�
�e;Ln ; �e;Ln

�
if f

�
�e;Ln ; �e;Ln

�
� �e+1;0n ;

f(�e;Ln ;�e;Ln )��e+1;0n

" � �e+1;0n otherwise;

�e+1;�1n = �e+1;0n ;

Case �) If 
̂ > 
e+1max:

�e;L+1n = �e;Ln ;

�e;L+1n =

e+1max � "�

e;L
n

1� " ;

�e+1;�1n = �emax;

�e+1;�1n = �e+1;0n :

3.3.2 Discretization of the Riemann Solver SC2

Case �) We have two subcases:

�1) if �� < �M , we set:

�e;L+1n = �e;Ln ;

�e;L+1n = min f��; �emaxg ;

�e+1;�1n = ��;

�e+1;�1n = �e+1;0n ;
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�2) if �� � �M , the new values are:

�e;L+1n = �e;Ln ;

�e;L+1n = "
1 + "

1� "~��
2"

1� " ��
e + (1 + ")�e+1;0n ;

�e+1;�1n = ~�;

�e+1;�1n = �e+1;0n ;

Case �)

�e;L+1n = �e;Ln ;

�e;L+1n = ��e;

�e+1;�1n = ��e;

�e+1;�1n = �e+1;0n :

3.3.3 Discretization of the Riemann Solver SC3

Case �) two subcases occur:

�1) if �� < �M , we set:

�e;L+1n = �e;Ln ;

�e;L+1n = max
�
��; �e;Ln

	
;

�e+1;�1n = ��;

�e+1;�1n = �e+1;0n ;

�2) if �� � �M , we compute the new values as in SC2:

�e;L+1n = �e;Ln ;

�e;L+1n = "
1 + "

1� "~��
2"

1� " ��
e + (1 + ")�e+1;0n ;

�e+1;�1n = ~�;

�e+1;�1n = �e+1;0n ;

Case �)

�e;L+1n = �e;Ln ;
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�1) if �
e;L+1
n � ��e, we set:

�e;L+1n = �e;Ln ;

�2) otherwise, we assign:

�e;L+1n = ��e;

�e+1;�1n = ��e;

�e+1;�1n = �e+1;0n :
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Chapter 4

Simulations and Optimization

In this section, �rst, we report some numerical results analyzing the use of

the Klar model and the continuum-discrete model for supply chain. Then we will

compare, via simulations, performances between the two previous model showing

some di¤erences.

Moreover, we show the behaviour of a supply chain network based on both

models.

Finally we discuss about some optimization techniques related to Klar model

for supply chain.

4.1 Numerical results

4.1.1 Example of Göttlich-Herty-Klar model for supply chain

Consider a supply chain with four arcs, i.e. N = 4, consisting of three proces-

sors with queues characterized by length Lj , capacity �j , and processing time Tj ,

for i = 1; 2; 3; 4 and an in�ow arc. Then we summarize these quantities for each

processor in the following table:

Processor j �j Tj Lj

1 25 1 1

2 15 1 0:2

3 10 3 0:6

4 15 1 0:2
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Figure 4.1: In�ow pro�le f1 (t) prescribed as initial data on the �rst arc.

We suppose that at time t = 0, all arcs are empty, i.e. �j;0 = 0 8x 2 [0; Lj ] and
the queues are assumed zero, i.e. qj;0 = 0, j = 2; 3; 4. The initial in�ow pro�le

f1 (t) =

8>><>>:
18
35 t; 0 � t � T

4 ;

36� 18
35 t;

T
4 < t < T

2 ;

0; T
2 � t � T:

(4.1)

is such that it exceeds the maximum capacity of processor (see Fig.4.1).

Assuming a total simulation time T = 140 and discretization spatial and time

step constants for each arc, respectively �x = 0:0125 and �t = 0:5�x = 0:00625

(such that the CFL condition is satis�ed), we get the numerical solution to the

ordinary (i.e. without considering di¤erent space meshes and time mesh) supply

chain model (as shown in Fig.4.2 and Fig.4.3).

In 4.2 we observe that queue q4 remains empty, since the maximal capacity is

such that �4 > �3, while in the queues q2 and q3 it is evident the bu¤ering of an

exceeding demand.

4.3 shows the behaviour of the �nal density in which the density �2 of processor

two corresponds to the strip 0 � x � 10; t > 0, �3 for processor three to 10 � x �
40; t > 0 and �4 for processor four to the remaining part of the plot.

Now, if we consider the supply chain model with di¤erent spatial steps and

di¤erent time steps choosing, respectively, �x = 0:0125 and �x = 0:0125, we can

notice that, for the same parameters con�guration, di¤erent numerical approxi-

mations give rise to very similar results. In the Fig.4.4 the comparison between
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Figure 4.2: Behaviour of queues

Figure 4.3: Behaviour of �nal density
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Numerical results

Figure 4.4: Comparison between ordinary and other methods for q2.

ordinary and other methods of the queue bu¤er occupancy q2 (t) is shown.

4.1.2 Example of continuum-discrete model for supply chain

In order to compare the continuum-discrete model and the Klar model, we

refer to the previous example, considering the �ux function with di¤erent slopes

mk (see Remark 54). The expression of numerical �ux G
�
��; ��; �+; �+

�
of fast

Godunov scheme for supplier Ik is:

G =

8>>>>><>>>>>:

�
mk��;��+

�
if �� < �� _ �� � �+;��

mk � 2"
1+"

�
�+ +

2"
1+"��;��+

�
if �� < �� _ �� > �+;�

mk

�
1+"
2 �� +

1�"
2 ��

�
;��+

�
if �� � �� _ �+ > ~�;��

mk � 2"
1+"

�
�+ +

1�"
1+""�� + "��;��+

�
if �� � �� _ �+ � ~�;

(4.2)

with ~� as in (3.26). Then, we have N = 4 processors described by the following

table:

Processor k �k mk Lk

1 25 1 1

2 15 0:2 0:2

3 10 0:2 0:6

4 15 0:2 0:2

Let us assume the initial data as �1 (t; x) = �2 (t; x) = �3 (t; x) = �4 (t; x) = 0

and the boundary data is given by

103



Numerical results

Figure 4.5: Evolution of �ux f , density �, and processing rate �, on processors 2,

3, 4, with Riemann Solver SC1 and " = 0:1.

�1 (t; 0) =

8>><>>:
18
35 t; 0 � t � T

4 ;

36� 18
35 t;

T
4 < t < T

2 ;

0; T
2 � t � T:

The simulation time is assumed to be T = 140, with �x = 0:02 and �t = 0:01.

On each processor the initial datum � (0; x) is the value �k with k = 1; 2; 3; 4.

The evolution in time of �ux, density and processing rate on processors 2, 3, 4,

considering the Riemann Solver SC1 for " = 0:1 is shown in Fig.4.5. In particular,

in this case we can observe that the processing rate is minimized and the �ux and

density are considerably lowered on processors 3 and 4.

Instead, in case of the Riemann Solver SC2 with " = 0:1, shown in Fig.4.6,

the �ux and the density are correctly developed on processors 2, 3, 4, due to the

behaviour of the processing rate �, which assumes the minimum possible value in

order to maximize the �ux.

The Riemann Solver SC3 is shown in Fig.4.7 and Fig.4.8, respectively with

" = 0:1 and " = 0:01.
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Figure 4.6: Evolution of �ux f , density �, and processing rate �, on processors 2,

3, 4, with Riemann Solver SC2 and " = 0:1.

Figure 4.7: Evolution of �ux f , density �, and processing rate �, on processors 2,

3, 4, with Riemann Solver SC3 and " = 0:1.
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Figure 4.8: Evolution of �ux f , density �, and processing rate �, on processors 2,

3, 4, with Riemann Solver SC3 and " = 0:01.

As we can see by the last two graphs, di¤erent values of " determines di¤erent

behaviour of the quantities f , � and �; in particular for " ! 0, the maximum

values assumed by the �ux and density decrease.

Finally, if we compare the behaviour of the density for Riemann Solver SC3

with that one of the example for Klar model shown in Fig.4.3, we can observe that

the two modellistic approach are in accordance as we expect.

4.1.3 Example of Klar model for supply chain network

Consider a supply chain network with N = 16 arcs and V = 10 processors (i.e.

nodes) as shown in Fig.4.9.

In the following table we report the characteristics of each arc, i.e. length Lj ,

capacity �j , processing time Tj and the distribution coe¢ cient �j .
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Figure 4.9: Supply chain network with 16 arcs and 10 nodes.

Processor j �j Tj Lj �j

s1 0:0005 1 1 1

s2 0:01 1 1 0:6

s3 0:015 1 1 0:4

s4 0:02 1 1 0:5

s5 0:008 1 1 0:3

s6 0:02 1 1 0:4

s7 0:0005 1 1 0:2

s8 0:01 1 1 0:5

s9 0:017 1 1 0:7

s10 0:01 1 1 0:6

s11 0:012 1 1 0:8

s12 0:001 1 1 0:7

s13 0:0005 1 1 0:3

s14 0:0001 1 1 1

We assume that for each arc the initial data and the queue are equal to zero,

and the boundary data is given by
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Figure 4.10: Queue on the last processor with �12 = 0:7 and �12 = 0:3.

�1 (t; 0) =

(
18
35 t; 0 � t � T

2 ;

36� 18
35 t;

T
2 < t < T;

with total simulation time T = 70. Moreover we set the spatial and time

discretization step are, respectively, �x = 0:0125 and �t = 0:0125.

In the Fig.4.10 the behaviour of queue on the last processor (node 10) is shown.

If we reverse the distribution coe¢ cients of the arc s12 and s13, i.e. �12 = 0:3 and

�12 = 0:7, we obtain the value of the same queue is lower that the previous case

(as shown in Fig.4.11). Then, we can observe that the behaviour of the network

can be managed through the control of few parameters such as the distribution

coe¢ cients.

4.1.4 Example of continuum-discrete model for supply chain net-

works

Now we report the densities and production rates at t = 0 and after some

times (at t = 1) for di¤erent initial data using di¤erent routing algorithms. Since
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Figure 4.11: Queue on the last processor with �12 = 0:3 and �12 = 0:7.

a constant state is an equilibrium for the single line model, a modi�cation of the

state may only appear initially at the junction.

Assuming a node of type 1 � 2 with " = 0:2, �maxi = 1, i = 1; 2; 3, � = 0:8,�
�1;0; �2;0; �3;0

�
= (0:7; 0:1; 0),

�
�1;0; �2;0; �3;0

�
= (1; 0:2; 1) we report the corre-

sponding Riemann Solver (shown in Fig.4.12 - Fig.4.13).

We can observe that the algorithmRA2 redirects the goods, in fact taking into

account the initial loads of the outgoing sub-chains, the number of goods processed

by the sub-chain with density �3;0 = 0 increases.

In the case of a node of type 2� 1, assuming " = 0:2, �maxi = 1, i = 1; 2; 3, q =

0:6,
�
�1;0; �2;0; �3;0

�
= (0:3; 0:7; 0:8),

�
�1;0; �2;0; �3;0

�
= (0:8; 0:7; 0:4), the numerical

results are shown in Fig.4.14 and Fig.4.15.

4.1.5 Simulation of a simple supply network using both models

Consider a supply network formed by two junctions (nodes) and �ve processors

(arcs) linked as in Fig.4.16

We suppose that at time t = 0 all processors are empty and the queues are
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Figure 4.12: A Riemann Problem for the RA2-SC3 algorithm: the initial density

and the density after some times.

Figure 4.13: A Riemann Problem for the RA2-SC3 algorithm: the initial pro-

duction rate and the production rate after some times.
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Figure 4.14: A Riemann Problem for the SC2 algorithm: the initial density and

the density after some times.

Figure 4.15: A Riemann Problem for the SC2 algorithm: the initial production

rate and the production rate after some times.
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Figure 4.16: aaaaa

assumed zero. Moreover we use an initial in�ow pro�le as:

�1 (t; 0) =

8>><>>:
18
35 t; 0 � t � T

4 ;

36� 18
35 t;

T
4 < t < T

2 ;

0; T
2 � t � T:

((4.3))

Each processor is characterized by the parameters shown in the following table:

Processor j �j Tj Lj �j

Arc_1 15 10 10 1

Arc_2 10 50 30 1

Arc_3 10 50 10 0:3

Arc_4 20 50 10 0:2

Arc_5 8 50 10 0:5

Then, using the Klar model, the results for the densities versus time and space

for each outgoing processor are in Fig.4.17.

Fig. 4.18 show the evolution of densities for the entire supply networks.

Now, if we consider the continuum-discrete model using the routing algorithm

RA1 in combination with the rule SC2 and the in�ow pro�le as in (4.3), and we

set the boundary conditions for the processing rate of each arc as in the following

table:

Processor j �j_IN �j_OUT �j_MAX Tj Lj �j

Arc_1 10 10 15 10 10 1

Arc_2 7 8 10 50 30 1

Arc_3 7 7 10 50 10 0:3

Arc_4 15 16 20 50 10 0:2

Arc_5 5 6 8 50 10 0:5
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Figure 4.17: Results for Klar model. Case(a): density for the �rst processors;

Case(b): density for the second processors; Case(c): density for the third proces-

sors.

Figure 4.18: Behaviour of the �nal density: �1 for 0 � x � 10; t > 0, �2 for

10 � x � 40; t > 0, and �3; �4; �5 for 40 � x � 50; t > 0.
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Figure 4.19: Results for the continuum-discrete model. Case(a): density for the

�rst processors; Case(b): density for the second processors; Case(c): density for

the third processors.

The results for densities of each outgoing arc and evolution of densities for the

entire supply networks are respectively shown in Fig. 4.19 and Fig 4.20.

4.2 Optimization of Klar model

According to consider the optimization problem for the Klar �uid dynamic

model for supply chain, the aim is to adjust the production in order to minimize

queues length and to obtain an expected pre-assigned out�ow. The optimization

is realized by minimizing a cost functional which takes into account the �nal �ux

of production and the queues representing the stores.

Since this functional is not linear, it is very di¢ cult to determine its mini-

mum, so to solve this problem, we use the tangent vector method as optimization

technique.

Considering a supply chain with N arcs, and N�1 vertices, the cost functional
is de�ned as:

J
�
�j ; qj

�
=
X
j

Z T

0
qj (t) dt+

Z T

0
[fN (�N (t; bN ))� ' (t)]2 dt
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Figure 4.20: Behaviour of the �nal density: �1 for 0 � x � 10; t > 0, �2 for

10 � x � 40; t > 0, and �3; �4; �5 for 40 � x � 50; t > 0.

Figure 4.21: Pro�le of input �ow with displacement of discontinuities

with j = 1; ::; N and where each arc is represent by intervals [aj ; bj ], qj is the

queue between the arc (j � 1) and j, fN (�N (t; bN )) is the �nal �ux of production
on the last arc N , ' (t) is the pre-assigned output �ux and T is the total time of

observation. In order to optimize the production costs, we want to �nd

min
f2L2

�
J
�
�j ; qj

��
:

We choose the space L2 because the de�nition of functional considers the dis-

tance in this space.

In order to compute this minimum, in what it follows, we show the tangent vec-

tor method. We consider an initial input �ux f0 as a piecewise constant function,

where tk are the discontinuity points (see Fig.4.21)

Let �k be the in�nitesimal displacement of discontinuities tk :Each �k produces
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a recon�guration of the function f0 and changing the system, whose e¤ect are

visible both on �uxes and on the queues. Therefore time shifts on the processors

and shifts on the queues are produced. In particular those shifts are generated

by the interactions occurring at di¤erent times in the system as result of initial

in�nitesimal variations. We consider two kinds of interactions:

a) interaction of a wave �ow with queue;

b) emptying of the queue.

The interaction time is denoted by �t. The time shift generated by the in�ni-

tesimal displacement �k on the processor Ij is denoted by
k�j , while the shifts on

the queue qj are, respectively before and after the interaction, k��j and
k�+j .

For the case a), we distinguish two sub-cases:

1. qj (�t) = 0;

2. qj (�t) > 0.

Let us consider the case 1.a). For t < �t, for t su¢ ciently close to �t, qj (t) = 0

and _qj (t) = 0. Since _qj (t) = f
�
�j�11

�
� fout = 0, where �j�11 is the density on arc

j � 1 before the interaction time, fout = �j�11 , but if fout := �j1, then �
j�1
1 = �j1,

i.e. the incoming �ux are equal to outgoing �ux before the interaction. For t > �t

it can be:

i) �j�12 < �j�11 ; in this case the �ux is decreasing and the queue still remains

empty. Since qj (t) = 0 for t > �t, we have �j�12 = �j2 (see Fig.4.22)A wave�
�j2; �

j
1

�
is produced on arc j. The time shifts do not change on arc j � 1

and j, i.e.

�+ = ��:

There is no shift for the queue, so �+j = ��j = 0.

ii) �j�12 > �j . Then, fout = min
n
f
�
�j�12

�
; �j

o
= �j and _qj (t) = f

�
�j�12

�
�

�j > 0, i.e. the queue increases and a wave
�
�j ; �

j
1

�
is produced on arc

j. The time shifts are equal on arcs j � 1 and j, i.e. �+ = �� (as shown

in Fig.4.23).Moreover a shift for the queue j is produced; in particular it

is ��j = 0 (before interaction there is no shift), while for t > �t we have

�+j =
�
�t+ �� � �t

� �
�j�12 � �j

�
= ��

�
�j�12 � �j

�
, as shown in Fig.4.24.
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Figure 4.22: �j�12 < �j�11 :

Figure 4.23: �j�12 > �j .

Figure 4.24: Shift of the queue j.
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Figure 4.25: qj (�t) > 0:

Figure 4.26: Shift of the queue qj .

Consider the case 2.a). For t < �t, for t su¢ ciently close to �t, qj (t) > 0, so

fout = �j and _qj (t) = f
�
�j�11

�
� �j . For t > �t, since the queue is still not empty,

we have that fout = �j and _qj (t) = f
�
�j�12

�
��j . In this case no wave is produced

on arc j and �+ = 0 (see Fig.4.25).

A shift for the queue is produced,

i.e. �+j =
�
�t+ �� � �t

� �
_q+j � _q�j

�
= ��

�
f
�
�j�12

�
� f

�
�j�11

��
, as shown in Fig.4.26.

Finally, let us consider the case b), in which the queue is decreasing so qj (�t) = 0.

For t < �t, qj (t) < 0 and _qj (t) < 0, then fout = �j and _qj (t) = f
�
�j�11

�
� �j .

While for t > �t, with t su¢ ciently close to �t, we have qj (t) = 0 and fout =

min
n
f
�
�j�11

�
; �j

o
= �j�11 (see Fig.4.27).

We can observe that �+j = 0, while �
� = 0 and �+ = � ��j

�j�11 ��j
(see Fig.4.28).

Now, for the cost functional we can write
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Figure 4.27: qj (�t) = 0:

Figure 4.28: qj (�t) = 0:
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Figure 4.29: case 1).

J
�
�j ; qj

�
=
X
j

Z T

0
qj (t) dt+

Z T

0
[fN (�N (t; bN ))� ' (t)]2 dt = J1 + J2;

where J1 =
P
j J1;j =

P
j

R T
0 qj (t) dt. Starting from an empty chain, if we

indicate with � the time of emptying of the queue, ��t the time shift at �t and ��
the time shift at � , four cases regarding to the signs of the tangent vectors ��t and

�j can be discussed.

1. sgn
�
�j
�
= sgn (��t) = 1. In this case qj (�t) > 0 and

�J1;j = �j (� � �t� ��t) +
���j
2

+K

where �� =
�j

�j��
j�1
1

and K is the area shown in Fig.4.29.

Remark 78 If qj (�t) = 0 then sgn
�
�j
�
= �sgn (��t).

We are considering a situation in which for t > �t, the queue is decreasing,

so if t� and t+ are the left and right neighbourhoods of �t respectively, then

_q (t�) > _q (t+), where _q (t�) = f
�
�j�11

�
� �j , _q (t

+) = f
�
�j�12

�
� �j . Then

K = (��t)
2

2

�
f
�
�j�11

�
� f

�
�j�12

��
, and

�J1;j = �j (� � �t� ��t) +
���j
2

+
(��t)

2

2

�
f
�
�j�11

�
� f

�
�j�12

��
:
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Figure 4.30: case 2).

2. sgn
�
�j
�
= �1, sgn (��t) = 1.

�J1;j = �j (� + �� � �t� ��t)�
���j
2

+
(��t)

2

2

�
f
�
�j�11

�
� f

�
�j�12

��
:

3. sgn
�
�j
�
= 1, sgn (��t) = �1.

�J1;j = �j (� � �t) +
���j
2

+
(��t)

2

2

�
f
�
�j�11

�
� f

�
�j�12

��
:

Remark 79 If f
�
�j�11

�
> f

�
�j�12

�
then sgn

�
�j
�
= sgn (��t). If f

�
�j�11

�
<

f
�
�j�12

�
then sgn

�
�j
�
= �sgn (��t).

4. sgn
�
�j
�
= sgn (��t) = �1.

�J1;j = �j (� + �� � �t)�
���j
2

�
��t�j
2
:

We can see that �J1;j has the same value in each case, or

�J1;j = �j

�
� � �t+ �� � ��t

2

�
:
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Figure 4.31: case 3).

Figure 4.32: case 4).
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Since �� =
�j

�j��
j
1

, �J1;j assumes the following expression:

�J1;j = �j (� � �t)�
�2j
2

0@ 1

�j � �
j
1

+
1

f
�
�j�12

�
� f

�
�j�11

�
1A = �jc1 (�) + �

2
jc2 (�) ;

where � is the solution.

Finally the variation of J1;j is

@J1;j
@�0

=
@�j
@�0

c1 (�) :

For the variation of J2, calling �N the generic N -th shift, we have:

�J2 =

Z �t+�N

�t

��
�N1 � ' (t)

�
�
�
�N2 � ' (t)

��
dt:

If f 2 C0, then �N is su¢ ciently small and it results that

�J2 = �N

h�
�N1 � ' (t)

�2 � ��N2 � ' (t)�2i+ o (�N ) :
The variation of J2 is

@J2
@�0

=
@�N
@�0

cN (�) :

4.3 Numerical method

Some numerical methods for the evolution of the tangent vectors � and �, and

for the functional J , are necessary to obtain simulative results. In particular, since

for each arc there are two distinct equations, i.e. a conservation law (for density)

and an ordinary di¤erential equation (for the queue), two numerical methods have

to be used. Starting by the numerical methods for the discretization of Klar model

shown in subsection 3.1, now we consider the numerics for tangent vectors. Let

fn0 be the discrete version of the input function f0(t) e let tk be its discontinuity

points. For a generic arc j and tk, k;j�ni is the approximation of vector
k�j (xi; t

n),

while k;j�n approximates the vector k�j (t
n). Shift starting values are zero, i.e.

k;j�0i =
k;j �0 = 0. In the ghost cell of the �rst arc I1, if n�t = tk then k;j�n1 = 1.

In the inner arc, instead, we have that

k;j�n+1i =k;j �ni�1:
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Based on the analytical results in the previous section, we have the following

four cases:

a-1.i) (
k;j�n+1 = 0

k;j�n+11 =k;j�1 �nNj�1

a-1.ii) 8<: k;j�n+11 =k;j�1 �nNj�1
k;j�n+1 =k;j�1 �nNj�1

�
j�1�n+1Nj�1

� �j
�

a-2) 8<: k;j�n+11 = 0

k;j�n+1 =k;j�1 �nNj�1

�
j�1�n+1Nj�1

�j�1 �nNj�1
�
+k;j �n

b) 8>>><>>>:
k;j�1�nNj�1 = 0
k;j�n+1 = 0

k;j�n+11 = �
k;j�n

j�1�nNj�1
��j

Now, in order to consider the numerics related to the variation of the cost

functional, from J =
P
j J1;j + J2, we have that

@J

@�k
=
X
j

@J1;j
@�k

+
@J2
@�k

:

We indicate the numerical approximations @J1;j
@�k

and @J2
@�k
, respectively, with

k;jY n1 and
kY n2 .

If qn+1j > 0 then
k;jY n+11 =k;j Y n1 +

k;j �n�t:

If qn+1j = 0 we have two cases:

1. if qnj = 0 then
k;jY n+11 =k;j Y n1 ;

2. if qnj > 0 then

k;jY n+11 =k;j Y n1 +
1

2

k;j

�n+11
k;j�n:
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For kY n2 we have that:

kY n+12 =k Y n2 +
k;N �nNN

��
N�nNN � '

n
�2 � �N�n+1NN

� 'n
�2�

where 'n is the numerical approximation of ' (t).

We can observe that through the tangent vector method, we are able to de-

termine the numerical �rst derivative of functionals J1 and J2. Then using the

Steepest Descent algorithm, we can �nd the optimum con�guration of the dis-

continuities of input �ow that minimizes the entire functional J ; in formula we

have:

tn+1 = tn + h
@J

@t
;

where h is a pre-�xed scalar quantity, which represents the step of this algo-

rithm.

The following example shows the use of this optimization technique. Consider

a supply chain with two arcs, each of them characterized respectively by maximal

processing times �1 = 200, �2 = 75 and lengths and processing times of each

processor equal to 1. We assume that arcs and queues are empty at t = 0, the

total simulation time is T = 20 and spatial and time discretization steps are

equal, i.e. �x = �t = 0:02. For the input �ow we consider three di¤erent levels,

�1 = 100, �2 = 80, �3 = 50, and two discontinuities, whose starting values are

t1 = 6 and t2 = 13. The aim is to minimize the queue handling a pre-assigned

piecewise constant out�ow '(t) de�ned as follows:

'(t) =

(
100; 0 � t � 10;
50; 10 � t < T:

The results, obtained via simulation, are presented in the following �gures. In

particular Fig. 4.33 shows the values assumed by J at each iteration step of the

steepest descent algorithm, while in the Fig. 4.34 it is shown the "path", point

to point, followed by the algorithm in the plane (t1; t2). As shown in Fig. 4.33 J

is decreasing until reaching its minimum (its value is equal to zero) in the point

(t1; t2) = (0; 0).
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Figure 4.33: J versus Steepest Descent.

Figure 4.34: Evolution of points (t1; t2).
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