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1. Introduction 

 

As the population lives longer, since the standard of living has improved, age and 

life-style related diseases, such as cardiovascular, neurodegenerative, and cancer 

pathologies, arise more frequently. Many studies have underlined that a correct and 

well-balanced diet is one of the best strategies to reduce the possible onset of 

chronic pathologies and improve or maintain the health status. From ancient times, 

it is widely accepted that an intake of fruits and vegetables has a direct impact on 

health. These effects are related to the high content of phytochemicals, that exert 

many biological activities. These substances, which are usually secondary 

metabolites in plants and fruits possess a drug-like effect, even if have less potency, 

but also less side effects. If these molecules are regularly assumed, in daily diet, 

can show a long term prevention. Driven by these observations the consumers 

demand for “healthy” foods is increasing. In this regard in the last years there was 

the appearance on the market of many products containing bioactive 

phytochemicals derived from plants or fruits, these products are sold in 

pharmaceutical form (such as tablets, pills, capsules) and incorporate 

phytochemical extracts. These products cannot be classified as food or drugs, but 

as a new entity called “Nutraceuticals”, which comprises the terms nutrition and 

pharmaceutical.  

 

2. Nutraceutical 

 

2.1 Definition 

 

The neologism "nutraceutical" was born from the union of "nutrition" and 

"pharmaceutical" coined for the first time by Dr. Stephen De Felice in 1989, in 

order to identify the study of those foods or parts of them that have a beneficial 
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effect on health human
[1,2]

. Such foods are mainly used to associate the nutritional 

components, such as high digestibility and hypoallergenic, and some healing 

properties of natural active ingredients extracted from plants of recognized 

effectiveness. The study of these combined characteristics - nutritional and 

pharmaceutical - specific foods that, through their properties, stand behind the 

demarcation line among "food" and "drug". In this way, food can be divided into 

two distinct categories: the real Nutraceuticals and Functional Foods
[3]

. The first 

refer to specific substances in foods with known medicinal properties; the latter, 

however, denote foods in the proper sense that exert beneficial properties for the 

human body through their introduction in the diet. The Nutraceuticals are not to be 

confused with nutritional supplements, because they identify with biological 

substances, usually concentrated, with therapeutic and protective characteristics; 

while functional foods, associated with nutritional factors, the pharmaceutical 

properties of natural active ingredients, which promote the food matrix enriching it 

by means of molecules capable of prevent possible diseases. In fact, it is not 

possible to make a very definite division between the two categories, so that often 

the terms can be used in a broader sense including nutraceutical foods or functional 

beverages and dietary supplements
[4,5]

. 

 

2.2 Nutraceuticals marketing 

 

The market in recent years saw the rapid spread of more and more foods enriched 

with beneficial molecules, such as milk and yogurt with added coenzyme Q10, 

Sterols, Omega 3 and vitamins, but also drinks, fruit juices, biscuits and breakfast 

cereals. Among the most important nutraceuticals, in addition to vitamins, 

minerals, caffeine, protein, were carnitine, lycopene, the essential polyunsaturated 

fatty acids, the anthocyanins and resveratrol. What is known is that nutraceuticals 

are used to improve the health, delay the aging process, prevent chronic disease and 
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increase life expectancy. For these reasons, these substances are used for the 

prevention of chronic diseases of aging and the maintenance of the typical 

functions of youth (beauty, energy, wellbeing) and could have a huge potential in 

terms of impact on public health. Therefore, the nutraceutical food can be 

considered a real therapeutic process "ongoing", used throughout life, with no risk 

of toxicity conceptually inherent to the use of "drugs". Since, then, the power 

supply is a real daily need for each individual, the use of diet and nutraceutical 

food, as a means of prevention and "wellness", or maybe anti-aging strategy, could 

have a decisive impact not only on health but also on the global market. In addition 

to the proposal of nutraceuticals is in rapid evolution and their application in the 

world, growing at 20% per year. The nutraceuticals represent a market that, despite 

the period of global crisis, registered a continuous growth, offering significant 

investment opportunities for both the pharmaceutical industry and for the food. 

(Figure 1). 

 

Figure 1: Trend of nutraceutical market 
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3. Polyphenols 

 

Among bioactive phytochemicals contained in these formulations, polyphenols are 

the most interesting molecules. Polyphenolic compounds originate from one of the 

main classes of secondary metabolites in plants derived from phenylalanine and, to 

a lesser extent in some plants, also from tyrosine
[6]

. Chemically, phenolics can be 

defined as substances possessing an aromatic ring bearing one or more hydroxyl 

groups, including their functional derivatives. Plants and foods contain a large 

variety of phenolic derivatives including simple phenols, phenylpropanoids, 

benzoic acid derivatives, flavonoids, stilbenes, tannins, lignans and lignins. In the 

last ten years flavonoids have gained attention, due to the extensive scientific 

literature concerning about their biological activity. Flavonoids are a large group of 

structurally related compounds with a chromane-type skeleton, with a phenyl 

substituent in the C2 or C3 position. The main flavonoid subclasses are depicted in 

Figure 2. 
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 Flavanone R1 R2 R3 MW 

1 Hesperetin OH OH OCH3 302 

2 Hesperidin 7-O-Rha-glu OH OCH3 610 

3 Naringin 7-O-Rha-glu H OH 580 

4 Naringenin OH H OH 272 

5 Eriocitrin 7-O-Rha-glu OH OH 596 

6 Eriodyctiol OH OH OH 288 

7 Isosakuramentin OH H OCH3 286 

 

 Flavone R1 R2 R3 MW 

8 Chrysoeriol OH OCH3 OH 300 

9 Chrysin OH H H 254 

10 Apigenin OH H OH 270 

11 Luteolin OH OH OH 286 

12 Acacetin OH H OCH3 284 

13 Genkwanin OCH3 H OH 284 

 

 Flavonol R1 R2 R3 R4 R5 MW 

14 Rutin 3-O-Rha-glu H OH OH H 610 

15 Kaempferol OH H H OH H 286 

16 Quercetin OH H OH OH H 302 

17 Morin OH OH H OH H 302 

18 Isorhamnetin OH H OCH3 OH H 316 

19 Myricetin OH H OH OH OH 318 

20 Fisetin OH H H OH OH 286 

 

 Isoflavone R1 R2 R3 MW 

21 Biochanin A OH OH OCH3 284 

22 Sissotrin OH 7-O-glu OCH3 446 

23 Genistein OH OH OH 270 

24 Genistin OH 7-O-glu OH 432 

25 Formomonetin H OH OCH3 268 

26 Omonin H 7-O-glu OCH3 430 

27 Daidzein H OH OH 254 

28 Daidzin H 7-O-glu OH 416 

 

Figure 2: Structures and molecular weights of the main flavonoid subclasses 

 

Flavonoids are often hydroxylated in positions 3, 5, 7, 3’, 4’ and/or 5’. Frequently, 

one or more of these hydroxyl groups are methylated, acetylated, prenylated or 

sulphated. In plants, flavonoids are often present as O- or C glycosides; O bonding 

in flavonoids occurs far more frequently than C bonding. The O-glycosides have 



Chapter I: Phytochemicals and health: the effect of polyphenols in the inflammation process 

 

- 7 - 
 

sugar substituents bound to a hydroxyl group of the aglycone, usually located at 

position 3 or 7, whereas the C-glycosides have sugar groups bound to a carbon of 

the aglycone, usually 6-C or 8-C. The most common carbohydrates are rhamnose, 

glucose, galactose and arabinose. Flavonoid-diglycosides are also frequently found. 

Two very common disaccharides contain glucose and rhamnose, 1→6 linked in 

neohesperidose and 1→ 2 linked in rutinose. The sugars are often further 

substituted by acyl residues such as malonate and acetate. Flavonoids are referred 

to as glycosides when they contain one or more sugar groups (or glucosides in case 

of a glucose moiety), and as aglycones when no sugar group is present. Given the 

above structural variety, it will come as no surprise that there is an extremely large 

number of flavonoids. Typical quotations include “>4000 known flavonoids 

comprising 12 subclasses”
[7]
, “more than 3000 flavones and more than 700 known 

isoflavones exist in plants”
[8]

 and “almost 6500 different flavonoids are known”
[9]

. 

Flavonoids are one of the largest groups of secondary metabolites, and they play an 

important role in plants as defence and signalling compounds in reproduction, 

pathogenesis and symbiosis
[10,11]

. Plant flavonoids are involved in response 

mechanisms against stress, as caused by elevated UV-B radiation
[12-15] 

infection by 

microorganisms
[16]

 or herbivore attack
[17]

. Flavonoids are one of the largest groups 

of secondary metabolites, and they play an important role in plants as defence and 

signalling compounds in reproduction, pathogenesis and symbiosis
[10,11]

. Plant 

flavonoids are involved in response mechanisms against stress, as caused by 

elevated UV-B radiation
[12-15]

, infection by microorganisms
[16]

 or herbivore 

attack
[17]

. Since the major part of nutraceuticals on the market are based on 

polyphenols such as anthocyanins, proanthocyanidins, flavonols, stilbenes, 

hydroxycinnamates, coumarins, ellagic acid (EA) and ellagitannins (ETs), etc. a 

great attention is focused on their natural sources. In this regard the food industry is 

not only interested in phytochemicals derived from plants, but also from by-
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products of food industry. The processing of plant foods results in the production 

of by-products that are rich sources of bioactive compounds, including phenolic 

compounds
[16]

. The citrus industry produces large quantities of peels and seed 

residue, which may account for up to 50 % of the total fruit weight
[19]

. Citrus 

industry by-products, if utilised optimally could be major sources of phenolic 

compounds as the peels, in particular, have been found to contain higher amounts 

of total phenolics compared to the edible portions. Gorinstein et al. (2001) found 

that the total phenolics content in peels of lemons, oranges, and grapefruit were 

15% higher than those in the peeled fruits
[20]

. The healthy properties of polyphenols 

are related to the chemical structure, for this reason the isolation, identification and 

quantitation of the polyphenolic compounds in natural sources has gained a lot of 

attention during the last years. Among analytical techniques for the analysis and 

characterization of polyphenols, the most widespread methods are based on high 

performance liquid chromatography (HPLC) coupled to mass spectrometry (MS). 

 

4. High Performance Liquid Chromatography (HPLC) 

 

4.1 Definition 

 

Liquid Chromatography (LC) is the oldest chromatographic method and one of the 

most widely used analytical technique. In liquid chromatography, separation is 

based on the selective distribution of analytes between a liquid mobile phase and a 

stationary phase. By using LC, it is possible to analyse an extensive range of 

compounds with various molecular weights, from hundreds to hundreds of 

thousands. It can be used in several applicational fields such as the pharmaceutical, 

clinical, biochemistry, food, drugs, several chemical industries and environmental. 

This method can be applied to trace analyses with detection limits in the ppb range 

and to preparative analyses when large quantities of compounds are analysed. The 
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inventors of modern liquid chromatography, Martin and Synge
[21]

, were aware that, 

in theory, the stationary phase requires very small particles and hence a high 

pressure is essential for forcing the mobile phase through the column. As a result, 

HPLC is sometimes referred to as high-pressure liquid chromatography. Otherwise 

the term high-performance liquid chromatography (HPLC) is used, but there is still 

not a general agreement on that term. High Performance Liquid Chromatography 

as compared with the classical liquid chromatographic techniques is characterized 

by: 

 small diameter (2-5 mm), reusable stainless steel columns; 

 column packings with very small (3, 5 and 10 μm) particles and the 

continual development of new substances to be used as stationary phases; 

 relatively high inlet pressures and controlled flow of the mobile phase; 

 precise sample introduction without the need for large samples; 

 special continuous flow detectors capable of handling small flow rates and 

detecting very small amounts; 

 automated standardized instruments; 

 rapid analysis; 

 high resolution. 

 

4.2 Fundamental principles 

 

A number of distinct separation modes are employed in liquid chromatography. It 

can be carried out in various systems depending on the physical form of stationary 

phase. Two common approaches are used to bring the mobile phase and stationary 

phase into contact: planar and column chromatography. In the first one, the 

stationary phase coats a flat glass, metal, or plastic plate and is placed in a 

developing chamber. A reservoir containing the mobile phase is placed in contact 
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with the stationary phase, and the mobile phase moves by capillary action. In the 

second one, the stationary phase is placed in a narrow column through which the 

mobile phase moves under the influence of gravity or pressure. The stationary 

phase is either a solid or a thin, liquid film coating on a solid particulate packing 

material or the column’s walls. There are many mechanisms by which the solutes 

can be separated in LC. Some more common ones are illustrated in Figure 3. In 

adsorption chromatography (Figure 3a), solutes are separated on the bases of their 

ability to adsorb to a solid stationary phase. In partition chromatography (Figure 

3b), a thin liquid film coating a solid support serves as the stationary phase. 

Separation is based on the difference in the equilibrium partitioning of solutes 

between the liquid stationary phase and the mobile phase. In ion-exchange 

chromatography (Figure 3c), stationary phases consisting of a solid support with 

covalently attached anionic (e.g., –SO3
–
) or cationic (e.g., – N(CH3)3

+
) functional 

groups are used. Ionic solutes are attached to the stationary phase by electrostatic 

forces. Ion-pair chromatography represents an alternative to the ion-exchange 

chromatography. An organic ionic substance is added to the mobile phase and 

forms an ion pair with a sample component of opposite charge. In size-exclusion 

(or gel-permeation) chromatography (Figure 3d), porous gels are used as stationary 

phases, and the separation is due to differences in the size of the solutes. Large 

solutes are unable to penetrate into the porous stationary phase and pass quickly 

through the column; smaller solutes enter into the porous stationary phase, 

increasing the time spent on the column. 
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Figure 3: Schematics showing the basis of separation in (a) adsorption 

chromatography, (b) partition chromatography, (c) ion-exchange chromatography, 

(d) size exclusion chromatography. For the separations the solute represented by 

the solid circle (•) is the more strongly retained. 

 

Today, most of HPLC separations are performed by liquid-solid chromatography 

(LSC), using a relatively non-polar hydrophobic sorbent as stationary phase and a 

polar mobile phase, referred to as reversed-phase LC (RPLC). A non-polar 

chemically modified (usually with octyl (C8) or octedecyl (C18) groups) silica gel 

is the most widespread stationary phase and aqueous organic solvents are 

commonly used. A solute molecule binds to an immobilized hydrophobic molecule 

in a polar solvent. This partitioning occurs as a result of the solute molecule 

tending to have hydrophobic patches at its surface, and binding via those patches to 

the matrix. An organic modifier is used to dissociate the bound molecule at a point 

at which the hydrophobic interaction between the exposed patches and the 

immobilized matrix is less favourable than the interaction between the bound 

molecule and the solvent. The molecule releases from the matrix and elutes. 

Reversed phase LC permits to separate components with different functionalities, 

of a polar and non-polar nature and has gained great popularity which is based on 

its exceptional range of applications, versatility and simplicity of operation. In 

terms of dimensions, HPLC columns with 2-5 mm (most often 4.6 mm) internal 

diameter (I.D.) are mostly used for analytical purposes. Wider columns are 

generally used for preparative work. On the other hand, the use of columns with 
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reduced I.D. has been one of the mainstreams of HPLC developments in recent 

years. Table 1 reports the classification of analytical HPLC columns according to 

their internal diameter
[22]

. 

 

Table 1. Classification of HPLC columns according to the internal diameter 

Column designation Typical I.D. (mm) 

Conventional HPLC 3-5 

Narrow-bore HPLC 2 

Micro LC 0.5-1 

Capillary LC 0.1-0.5 

Nano LC 0.01-0.1 

Open tubular LC 0.005-0.05 

 

Analytical HPLC columns are packed generally with micro particulate stationary 

phases (particle size 10 μm or less, most commonly 5 μm). If micro particulate 

stationary phases of 10 μm or less are used, the column length is 5, 10, 15 or 25 

cm. 

 

4.3 Chromatographic parameters 

 

4.3.1 Retention 

 

The goal of chromatography is to separate a sample into a series of 

chromatographic peaks, each representing a single component. The most important 

chromatographic parameters are described as follows. Retention volume VR for a 

specific component, is defined as 

 

[Eq. 1.1] 
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where tR is the retention time of the component and F is the mobile phase flow rate. 

The ratio of the amount of the compound in the stationary and mobile phase is 

defined as distribution coefficient K and can be calculated by: 

 

[Eq. 1.2] 

where Cs and Cm are the analyte concentrations in the stationary and mobile phase, 

respectively. The retention factor (formerly termed as capacity factor k´), k, is used. 

This can be calculated by 

 

[Eq. 1.3] 

where t0 is the void time, nS and nM are the number of moles of the compound in 

the stationary and mobile phase, respectively and VS and VM are the volumes of the 

stationary and mobile phase in the column, respectively. From the retention time of 

an unretained component (void time) tR0 and the column length L the average linear 

velocity u of the mobile phase can be calculated: 

 

[Eq. 1.4] 

Typical linear velocities in LC are in the range of 2-10 mm/s. The flow-rate F, 

which can easily be measured in LC, through a column with internal diameter dc is 

given by: 

 

[Eq. 1.5] 
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4.3.2 Separation 

 

Separation factor α (known also as relative retention) is a factor that is a measure of 

the selectivity of the chromatographic system. The separation factor for two 

components is calculated by: 

 

[Eq. 1.6] 

where k1 and k2 are the retention factors and tR1 and tR2 are the retention times of 

the two components. Resolution (R) is a quantitative measure of the degree of 

separation between two chromatographic peaks, A and B, and is defined as 

 

[Eq. 1.7] 

where w1 and w2 are the peak widths of the two compounds at the baseline. The 

degree of separation between two chromatographic peaks improves with an 

increase in R. Thus, resolution is a quantitative measure of the effectiveness of a 

separation process. 

 

4.3.3 Column efficiency 

 

To obtain optimal separations, sharp, symmetrical chromatographic peaks must be 

obtained; hence band broadening must be limited. It is also convenient to measure 

the efficiency of the column, which is defined by the number of theoretical plates, 

N, which is calculated by: 
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 [Eq. 1.8] 

where w1/2 is the peak width at half-height, hP peak height and A peak area. The 

equation 1.8 yields correct results only if the peak has a Gaussian shape. 

Approximate values for asymmetric peaks can be calculated by the following 

equation
[23]

: 

 

[Eq. 1.9] 

where w0.1 is the peak width at 10% of the peak height and T is the tailing factor 

(or peak asymmetry): 

 

[Eq. 1.10] 

where a0.1 and b0.1 are the sections (distances from the peak front to the maximum 

and from the maximum to peak end, respectively) of the peak width at 10% of the 

peak height. The number of theoretical plates depends on column length L: the 

longer the column, the higher the number of the plates. Therefore, another term has 

also been introduced relating the plate number to column length. This is the plate 

height H (HETP = height equivalent to a theoretical plate), which can be 

calculated: 

 
[Eq. 1.11] 

The width of a chromatographic peak is affected by a series of parameters, which 

are present in the van Deemter equation: 

 
[Eq. 1.12] 
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where A accounts for multiple paths (Hp), B/u for longitudinal diffusion (Hd), and 

Cu for solute mass transfer in the stationary and mobile phases (Hs and Hm), being 

the experimental factors contributing to the broadening of a solute’s 

chromatographic band; dp is the particle size, Dm diffusion coefficient of a solute 

in the mobile phase. Factor A (Eddy diffusion) accounts for the fact that the solute 

molecules, while passing through the column, take random paths between the 

stationary phase particles. These different paths with different lengths will cause 

broadening of the solute band. Factor B (longitudinal diffusion) is related to the 

fact that the concentration of the analyte is lower at the edges of the band with 

respect to the centre. Analyte diffuses out from the centre to the edges, causing also 

band broadening. The effect of this factor is decreased when the velocity of the 

mobile phase is high. The factor C (resistance to mass transfer) depends on the fact 

that the analyte takes a certain time to equilibrate between the stationary and 

mobile phase. If the velocity of the mobile phase is high and the analyte has a 

strong affinity for the stationary phase, then the analyte in the mobile phase will 

move ahead of the analyte in the stationary phase and the band is broadened. The 

higher the velocity of the mobile phase, the worse the broadening becomes. Figure 

4 represents the plot of the height of a theoretical plate as a function of mobile-

phase velocity, so-called van Deemter curve. The optimum flow rate and the 

contributions to the terms A, B/u, and Cu are also shown. 
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Figure 4:  Plot of the height of a theoretical plate as a function of mobilephase 

velocity (using the van Deemter equation). The contributions to the terms A, B/u, 

and Cu are also shown. 

 

The resolution R of two peaks is dependent on the separation factor, the column 

length, the plate height and the capacity ratio: 

 
[Eq. 1.13] 

The efficiency of a separation system is best demonstrated by its peak capacity, nc, 

which is the number of solutes that can theoretically be baseline resolved on a 

given column. An estimate of a column’s peak capacity for a retention time 

window from time t1 to t2 is given by: 

 
[Eq. 1.14] 

where Vmin and Vmax are the smallest and largest volumes of mobile phase in which 

a solute can be eluted and detected. This estimation is valid for isocratic elution. 

The peak capacity in gradient elution is generally higher and can be calculated by: 
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[Eq. 1.15] 

 

5. Optimization of an HPLC separation 

 

Quality of the HPLC analysis depends above all on the nature of the stationary 

phase, the dimensions of the column and the column packing material. 

Chromatographic separations are optimized by increasing the number of theoretical 

plates, the selectivity of the column, or the component’s capacity factors. 

 

5.1 Stationary phase particle size 

 

Improvement of column efficiency in terms of the number of theoretical plates 

realized by increasing column length often yields marginal increases in resolution, 

with a corresponding increase of analysis time to unacceptable levels. In order to 

increase the number of theoretical plates without increasing the length of the 

column, it is necessary to decrease one or more of the terms in equation 1.12. The 

easiest way to accomplish this is by adjusting the velocity of the mobile phase. At a 

low mobile-phase velocity, column efficiency is limited by longitudinal diffusion, 

whereas at higher velocities efficiency is limited by the two mass transfer terms. As 

shown in Figure 4 (which is interpreted in terms of equation 1.12), the optimum 

mobile-phase velocity corresponds to a minimum in a plot of H as a function of u. 

High linear velocity and very flat curves are characteristic of stationary phases 

consisting of non-porous particles. If the stationary phase is non-porous, the mass-

transfer component of band broadening (C-term in Eq. 1.12) disappears or becomes 

very small, because the diffusion within pores does not occur. The disadvantage is 

the reduced sample capacity: in order to maintain a certain sample capacity, it is 
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necessary to use smaller particles (with a diameter of 1-2 μm). The reduction of 

particle size can lead to better column efficiency on the basis of the smaller 

contribution of Eddy diffusion and mobile phase mass transfer (Aterm) and shorter 

diffusion paths in the stationary phase pores (C-term) as indicated in Eq. 1.12; 

hence the small microparticles in column packing are favoured. In order to obtain a 

higher plate number, it is usually better to use a packing with smaller particles than 

to lengthen the column: longer column increases the retention volume, thus 

decreasing the concentration of the peak in the eluate and impairing the detection 

limit. Smaller particles, instead, reduce the enlargement of the chromatographic 

band. The disadvantage of the micro particle columns is their relatively high back-

pressure which is reversely proportional to the square of the particle diameter. 

 

5.2 Columns with reduced dimensions 

 

Another possibility to improve the separation besides reducing the particle size is 

to reduce the column internal diameter: as the diameters of HPLC columns are 

reduced, peaks are eluted in smaller volumes, and there is a greater need to limit 

the dispersion (band broadening) caused by extra-column components, in order to 

prevent degradation of resolution. A reduction of the column diameter offers 

several advantages:  

- operation at small volumetric flow-rates; solvent consumption (retention volume 

VR) decreases with the square of the column diameter dc: 

 

- higher sensibility for concentration sensitive detectors; 

- they are essential for trace analyses if the amount of sample is limited. This, as a 

consequence of better signal height-to-sample mass ratio. The peak maximum 

concentration cmax is proportional to the inverse square of the column diameter dc:  
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- the dilution of the sample compounds during the separation process is reduced: 

the chromatographic dilution D increases proportionally with the square of the 

column radius  

 

[Eq. 1.15] 

where c0 is the initial compound concentration in a sample, cmax final compound 

concentration at the peak maximum, t ε is the column porosity, r is the column 

radius, k is the retention factor and V inj is the injected sample volume. 

- they offer higher theoretical plate numbers; 

- permit to use low eluent flow rates that are required, for example, in LCMS 

analyses. 

The main drawbacks of this technique are the lower sample capacity, which is 

directly proportional to the quantity of the stationary phase and the loss of detection 

sensitivity due to the small injection volumes or masses and the need for special, 

miniaturized, equipment
[24]

. However, the decrease of sensitivity deriving from the 

small injection volumes, can be diminished by sample “focusing” (described 

following). The number of theoretical plates obtainable by using a single column is 

about 10 000-25 000 in HPLC. This is due to the high pressure drop associated 

with small-sized packing materials; under the limitation of operating pressures of 

350-400 kg/cm
2
 with current instrumentation (back-pressure is reversely 

proportional to the square of the particle diameter)
[25]

. A compromise between 

desired column efficiency and the pressure drop is necessary. Outstanding high 

performances have been achieved recently in ultrahigh pressure LC (UHPLC). 

With pressures as high as 5000 bar, conventional columns must be replaced with 
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small I.D. columns, usually of fused silica and with internal diameters of 50 μm or 

smaller, which could withstand the high pressures. It has been demonstrated that 

with particle sizes down to 1 μm, very efficient high speed separations can be 

obtained
[26,27]

. Since ultra-high pressures require special pumps, special injectors, 

and special connectors, such systems are not for routine LC users
[28]

. Besides 

UHPLC, capillary electrochromatography (CEC)
[29]

 and open tube liquid 

chromatography
[30]

 have been used to overcome problems related with high 

pressure drop. Although CEC has been extensively studied and is known to provide 

high column efficiency in short times (up to 200,000 plates with 120 s column dead 

time
[31]

, CEC has not been widely used in routine applications due to practical 

difficulties including frit failure, or bubble formation. 

 

6. Mass spectrometric detectors 

 

6.1 Definition 

 

Mass spectrometry (MS) occupies an important place amongst the various 

spectrometric techniques for molecular analysis. Moreover, it has the potential to 

yield information on the relative molecular mass (Mr) and the structure of the 

analyte. At present, MS is the most sensitive method for molecular analysis
[32]

. The 

principle of MS is the production of ions, which are subsequently separated or 

filtered according to their mass-to-charge (m/z) ratio and detected. The resulting 

mass spectrum is a plot of the (relative) abundance of the generated ions as a 

function of the m/z ratio. A typical mass spectrometer for HPLC consists of three 

parts: the interface, where the eluate enters the MS and the ions are generated, the 

mass analyser, and the detector, an electron multiplier which determines the ion 

beam intensity. The ionization of the analytes can be performed in a number of 

ways. The available ionization techniques can be classified in four groups: electron 
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ionization, chemical ionization, desorption ionization and nebulization ionization. 

Today the most common ionization techniques used in HPLC-MS analyses are 

those carried out at atmospheric pressure: (atmospheric pressure) electrospray 

ionization (ESI or APESI) and atmospheric pressure chemical ionization (APCI). 

In ionization at atmospheric pressure the molecules are at first ionized at 

atmospheric pressure and then separated mechanically or electrostatically from 

neutral molecules. APCI is based on chemical ionization by ion-molecule electron-

capture reactions carried out in an ion source operated at atmospheric pressure (105 

Pa). The ions are generated by corona discharge (3-6 kV). In most cases it yields 

pseudo-molecular ions (M+H)
+
, but negative ionization is also possible.  

 

6.2 Atmospheric-pressure chemical ionization 

 

APCI is suitable for small or medium non-polar analytes, but is not suitable for 

thermally unstable analytes. However, the analytes need some volatility and proton 

affinity. With aqueous eluents, an additive can be necessary for efficient ionization. 

With non-aqueous eluents, additives are not necessary, because the reactions with 

the solvent are possible during ionization. APCI produces a mass-sensitive signal 

and low detection limits can be achieved due to the high efficiency of the ion 

molecule reactions under atmospheric pressure conditions, where longer ion 

lifetimes are achieved (ca. 10 ms in APCI compared to <10 μs in medium pressure 

chemical ionization)
[32,33]

 (Figure 5). 
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Figure 5 : HPLC-APCI-MS interface. 

 

6.3 Electrospray ionization 

 

In ESI (Figure 6), the ions are generated by ‘coulomb explosion’ (disintegration) of 

electrically charged droplets. It yields ions with single or multiple charges. In the 

latter case, spectra with many peaks are obtained, which must not be mixed up with 

classical spectra showing molecule fragments. ESI is suitable for thermally 

unstable analytes and macromolecules. It is suitable for small flow rates and 

therefore useful for micro HPLC. For positive ionization a pH of ca. 5 is suitable, 

additives are formic and acetic acid, sometimes together with ammonium acetate: 

Analyte + HA → AnalyteH
+
 + A

-
 

For negative ionization a pH of ca. 9 is suitable and the additives are ammonia, 

triethylamine and diethylamine, sometimes together with ammonium acetate: 

AnalyteH + B → Analyte- + HB
+ 

ESI produces a concentration-sensitive signal and is not dependent on the flow. 

After the production of ions, these are analysed according to their m/z ratio in the 

mass analyser, i.e. the ions are separated according to their m/z ratio in either time 
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or space, which can be achieved in number of ways. It must be emphasized that all 

mass analysers perform a separation of ions according to their m/z ratio. This 

means that a singly-charged molecule with molecular mass of 400 will give a peak 

at m/z 400, while a molecule carrying 40 charges and a molecular mass of 16,000 

will also give a peak at m/z 400. Five types of mass analysers are currently 

available: (magnetic) sector, quadrupole mass filter, quadrupole ion trap, time-

offlight and Fourier-transform ion-cyclotron resonance instruments. 

 

 

Figure 6: HPLC-ESI-MS interface. 
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7. Inflammation 

 

7.1 Definition 

 

Polyphenolic molecules are responsible for many biological activities including 

anti-inflammatory. Inflammation is a defense response that is triggered by different 

conditions, such as an infection or tissue damage
[34]

. The site in which the event 

begins, inflammatory cells exposed to insult produce a number of cytokines and 

chemokines that act on local vascular endothelium, causing dilatation of blood 

vessels, leakage and recruitment of neutrophils and monocytes from blood into 

tissue
[33]

. Briefly, the initial recognition of an infection or a tissue damage occur, 

among other cells, by resident macrophages, which in response to the stimulus 

produce a variety inflammation mediators, including chemokines (eg. MCP 1), 

cytokines (eg. TNF-α and IL-1β), vasoactive amines, prostaglandins
[36]

.  

 

 

Figure 7 : Production of the main inflammatory mediators following the 

stimulation by pathogens 
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In response to these factors the local inflammatory exudate begins to form: plasma 

proteins and leukocytes (neutrophils and monocytes), leave the circle and access to 

the tissue at the infection site. Once in the damaged tissue, monocytes and 

neutrophils are activated, (through direct contact with the pathogen or through the 

action of cytokines secreted by the cells resident in the fabric) in an attempt to 

eliminate the invading agent, release toxic factors (reactive oxygen and nitrogen 

species, proteases, elastase, collagenase) (Figure 7). These factors, not 

discriminating between microbial targets and host tissues, causing tissue damage as 

a side effect of defense. It follows that, despite being an essential event for the 

defense and the integrity of the organism from external attacks, the inflammatory 

response requires tight control of its activation. During the development and 

resolution of inflammation
[37]

 are particularly important mononuclear phagocytes 

(both circulating monocytes, less mature cells that enter into the inflamed tissue in 

response to chemokines, the resident macrophages in the tissue, mature cells that 

monitor and control the tissue integrity). The macrophage activation occurs via two 

main types of programs: the classical inflammatory activation (or M1), stimulated 

by bacterial molecules (eg. LPS) and inflammatory cytokines (eg. IFN-γ), and the 

alternative activation (or M2), whose activating stimuli are anti-inflammatory 

cytokines (eg. IL-4 and IL-10, TGF-β), immune complexes or glucocorticoids. The 

initial inflammatory response active M1 macrophages polarization, which become 

able to eliminate invading microorganisms and promote the inflammatory 

response, while during the resolution phase of inflammation, macrophages are ri-

polarization in direction M2, losing responsiveness to inflammatory stimuli and 

assuming the ability to eliminate damaged cells and tissues, and promote 

angiogenesis and tissue remodeling. Failure regulation of inflammatory processes 

is the basis of chronic inflammatory and autoimmune diseases, such as rheumatoid 

arthritis, multiple sclerosis and systemic lupus
[38]

. 
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7.2 Mediators of the inflammatory process 

 

During the inflammatory process important chemical mediators are produced of 

plasma-derived and that coordinate cellular inflammation, with amplification or 

adjustment effect. The mediators of the inflammatory process can be either plasma-

derived that cells: 

 The plasma-derived mediators are produced by the liver are silent form and 

are activated by factor XII and the complement system. 

 The mediators of cellular origin, however, are divided into two subgroups, 

those preformed and those synthesized de novo. 

The preformed mediators are accumulated in secretory granules, are released after 

appropriate stimuli and are: histamine, serotonin, lysosomal enzymes. The 

histamine causes, in the immediate phase, the dilation of the arterioles and the 

increase of the permeability of venules.  

The mediators synthesized de novo are:  

 Prostaglandins, synthesized by the enzyme cyclo-oxygenase (COX) that 

converts the substrate (arachidonic acid) into prostaglandin, which in turn, 

through PGH2 generates Prostacyclin, substance-acting vasodilator and 

platelet aggregation inhibition. 

 Thromboxane A2, such as prostaglandins, is synthesized by action of COX, 

is vasoconstrictor and promoter of platelet aggregation. 

 Leukotrienes, synthesized by the action of lipoxygenase, damage 

vasoconstriction, increased permeability and chemotaxis. Leukotrienes, 

prostaglandins and thromboxane are all arachidonic acid derivatives. 

 Platelet-activating factors (PAF) have pro-inflammatory actions, such as 

increased vascular permeability, vasodilation, platelet activation and 

chemotaxis. 



Chapter I: Phytochemicals and health: the effect of polyphenols in the inflammation process 

 

- 28 - 
 

 Reactive oxygen species (ROS): O2 free radicals are released by white 

blood cells into the extracellular environment after exposure to chemotactic 

agents, immune complexes or during phagocytosis. Their release can cause 

damage to the host. 

 Nitrogen monoxide (NO): soluble gas produced by endothelial cells, 

macrophages and neurons, have short half-life and local action; causes 

vasodilation. 

 Cytokines: proteins produced by different cell types that modulate the 

function of other cells, are involved in immunity and inflammation, 

including interleukin (IL) and chemokines. 

 

7.2.1 Nitric oxide synthase (iNOS) 

 

Inflammation is classified on a temporal basis in acute and chronic inflammation. 

The first manifestation of acute inflammation is vasodilation, which involves the 

pre-capillary arterioles in the immediate proximity of the injured part. The start and 

maintenance of vasodilatation are due to the rapid release of mediators such as 

histamine (vasoactive amine) or prostaglandins and subsequently mediators lenses 

as IFN-γ, TNF-α, IL-1β, LPS and PAF (Figure 8). 
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Figure 8: iNOS activation during inflammatory process 

 

The mediators stimulate the expression of an enzyme, inducible nitric oxide 

synthase (iNOS) in vascular endothelial level, while histamine, through an increase 

in intracellular calcium, causes the rapid activation of the constitutive NO 

synthase
[39,40]

. Both isoforms, constitutive and inducible enzyme, are responsible 

for the synthesis of nitric oxide, a potent vasodilator, produced by the oxidation of 

L-arginine, is a mediator of the inflammatory process which participates triggering 

a nonspecific immune response. Contributes to tissue damage either directly for 

production of peroxynitrite (ONOO
-
), and indirectly, through the amplification of 

the inflammatory response
[41]

. Agents such as LPS increased the release of NO and 

activate the expression of iNOS enzymes. In the modulation of the inflammatory 

response, there are important interactions between the iNOS pathway enzyme and 

another enzyme triggered by LPS and involved in macrophage response, the 

isoform COX-2 enzyme whose expression is also influenced by the same NO
[42]

. 
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7.2.2 Cyclooxygenase 

 

Of particular importance is the system of cyclooxygenase, responsible for the 

synthesis of several inflammatory mediators, including prostaglandins and 

thromboxane whose effects are amplified cascade. It consists of two isoforms, 

COX-1 and COX-2(Figure 9). 

 

Figure 9: isoforms of cyclooxygenase 

 

The COX-1 isoform type is constitutive, usually expressed in various tissues, plays 

physiological and homeostatic functions, is not induced by cytokines
[43]

. The COX-

2 isoform of type inducible, is expressed at the site of inflammation only when it is 

induced by stimuli such as TNF, IL-1 and PAF, and physio-pathological role. The 

expression of these mediators of inflammation contributes to the maintenance and 

increase of the vascular caliber that promote, determines a slowing of the flow, 

which promotes leukocyte rolling, slows down the possible spread of pathogens 

and facilitates the adhesion and migration leukocyte. 
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7.2.3 Reactive Oxygen Species (ROS) 

 

The expression of ROS species, similar to that of the nitrogen monoxide NO, is 

induced at the site of inflammation as a defense mechanism, however, the levels of 

ROS (Figure 10), if not properly regulated, can lead to deleterious effects such as 

tissue damage or dysfunction of organs, as responsible for the formation of radical 

species that can promote oxidative stress
[44]

. 

 

 

Figure 10: Factors related to the production of ROS 

 

In addition, cells such as macrophages, to protect against oxidative damage and 

promote inflammatory activity of up-regulation of some defense mechanisms such 

as the expression of heme oxygenase-OH-1, limiting enzyme in 

heme
[44]

degradation. These enzyme species are normally expressed in various 

tissues, but is highly inducible by various stimuli such as LPS
[45]

. Although in 
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principle the inflammation is an essential response to eliminate pathogens, it is 

considered a double edged sword when the initial reaction is not limited, as over-

activation of the anti-inflammatory mechanisms, in which the macrophages play a 

primary role, can cause tissue damage that may be due to the release of lysosomal 

contents. The causes are various, including: premature degranulation, phagocytosis 

and exocytosis or is hampered by persistent activation too, all converge in the 

release of lysosomal enzymes, reactive oxygen species and products of arachidonic 

acid metabolism. In this case, the anti-inflammatory compounds are therapeutically 

useful. 

 

8. Aim of research 

 

Owing to the great variety of polyphenolic compounds in natural matrices and their 

rising importance as biomolecules able to prevent several diseases, we focused on 

the development of powerful analytical methods capable of identify and quantify a 

large number of compounds present in several product as Citrus derivatives and 

fruits. The application of ultra high performance liquid chromatography coupled to 

accurate mass spectrometry was highlighted, showing the superior efficiency with 

respect to conventional separation techniques. Moreover the antioxidant and anti-

inflammatory properties of these extract were evaluated by in vitro assays, with a 

special attention to the effects of these molecules against the inflammatory 

response and the release of pro-inflammatory mediators. 
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Abstract: In order to reduce the analysis time, during PhD with the aim to 

thoroughly characterize the flavonoids in Citrus bergamia juice a fast UHPLC IT-

TOF method was carried out for the analysis of flavonoids in Citrus bergamia 

juice. With respect to the typical methods for the analysis of these matrices, based 

on conventional HPLC techniques, a ten fold faster separation was attained. The 

use of a core shell particle column ensured high resolution, within the fast analysis 

time of only 5 minutes. Unambiguous determination of flavonoid identity was 

obtained by the employment of a hybrid IT-TOF mass spectrometer with high mass 

accuracy (average error 1.69 ppm). The system showed good retention time and 

peak area repeatibility, with maximum RSD% values of 0.36 and 3.86, 

respectively, as well as good linearity (R2 ≥ 0.99). Our results show that UHPLC 

can be a useful tool for ultra fast quali/quantitative analysis of flavonoid 

compounds in Citrus fruit juices. 

 

Keywords : Bergamot, Flavonoids, Core-Shell, Mass accuracy. 

 

1. Introduction 

 

Flavonoids (or bioflavonoids) are natural chemical compounds, common in higher 

plants and particularly known and appreciated for their health properties
[1,2]

 

especially for the large number of beneficial effects on human health, including 

antioxidant, cardioprotective, anticancer, hypolipidemic potential
[3-5]

. The class of 

flavonoids is quite wide know more than 5000 compounds and their therapeutic 

effect depends largely on the plant complex (all the chemicals contained in drugs or 

in food)
[1]

 Flavonoids are a large group of structurally related compounds with a 

chromane-type skeleton and a phenyl substituent in the C2 or C3 position. 

Flavonoids are referred as glycosides when they contain one or more sugar groups 

(or glucosides in case of a glucose moiety), and as aglycones when no sugar group 
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is present. In plants, flavonoids are often present as O- or C-glycosides; O- bonding 

occurs far more frequently than C bonding
[6]

. The O-glycosides have sugar 

substituents bound to a hydroxyl group of the aglycone, usually located at position 

3 or 7, whereas the C-glycosides have sugar groups bound to a carbon of the 

aglycone, usually on C6 or C8. The most common sugars are rhamnose, glucose, 

galactose and arabinose. Citrus plants are of great interest since their fruits and 

juices contain large amounts of flavonoids and are consumed in large quantities. 

Regarding the main flavonoid classes in Citrus juices, flavanones predominate, 

with flavones being present in smaller amounts. Among compounds found in citrus 

species, naringin, neohesperidin (neohesperidosides), narirutin, and hesperidin 

(rutinosides) are commonly present in major quantity
[7]

. During my PhD we 

focused the attention on bergamot juice (Citrus bergamia). Between Citrus fruits, 

Citrus bergamia shows a large content in flavonoids, even if it is not commonly 

consumed for its bitter taste. In this matrix the analysis of flavonoids can be a 

challenging task, since it contain compounds present in a wide concentration range 

and with different polarities. Among the various analytical methods, high 

performance liquid chromatography (HPLC) occupies a leading position for the 

analysis of flavonoids, especially when coupled to tandem mass spectrometry (MS-

MS). Until recently In the past years the flavonoids of bergamot juice were 

analyzed by C18 columns packed with conventional particles, with binary gradient 

of water and an organic modifier (acetonitrile or methanol)
[8-10]

 furthermore, a 

higher sensitivity can be obtained by using columns with reduced internal 

diameter
[11]

. In agreement with what indicated by previous authors for the analysis 

of phenolic compounds, all these approaches are generally characterized by 

analysis time of approximately 50 minutes
[12]

, and the detection is usually 

performed by both UV and MS or MS/MS on low resolution instruments such as 

ion trap or single quadrupole. On this matrix, high mass accuracy measurements as 

well as multiple MSn experiments appear to be limited in the literature, the 
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employment of hybrid mass spectrometers, such as IT-TOF instruments, capable of 

high mass accuracy, in both full scan and MSn stages, which are very informative 

for structure characterization especially for glycosidate compounds, has not been 

investigated yet, even if the potentialities of IT-TOF instrumentation for structure 

elucidation and accurate mass measurements of flavonoids
[13,14] 

and 

anthocyanins
[15,16] 

has been demonstrated previously. 

Analysis time is a crucial factor in HPLC techniques since it directly affects the 

number of samples analyzed per unit of time. The development of ultra-high 

pressure liquid chromatography (UHPLC) has opened up new possibilities in the 

analysis of complex matrices, such as foods and biological samples. Commercial 

UHPLC systems and sub-2 μm totally and partially porous packing materials have 

led to significant improvement in the resolution, speed and efficiency of separation 

with respect to conventional HPLC systems. The employment of ultra-high 

pressure conditions makes it possible to achieve 5- to 10-fold faster separations 

than what obtained with conventional HPLC systems, while maintaining or 

increasing resolution
[17,18]

.  During my PhD, we developed a fast UHPLC IT-TOF 

method for the fast characterization of flavonoids from bergamot (Citrus bergamia) 

juice based on the use of sub 2-μm core-shell particles columns. The main 

advantages over conventional methods include very short analysis time, good 

separation, and unambiguous determination of flavonoid identity. 
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2. Materials and methods 

 

2.1 Reagents and standards 

 

Ultra pure water (H2O) was obtained by a Milli-Q system (Millipore, Milan, Italy), 

acetonitrile (ACN) LC-MS grade and formic acid (HCOOH) were purchased by 

Sigma Aldrich (Milan, Italy). For the separation of flavonoids a Kinetex C18 100 x 

2.1 mm, 1.7 μm column (Phenomenex) was employed. Flavonoid standards caffeic 

acid, hesperidin, neoeriocitrin, diosmetin 6,8 di C-glucoside, rhoifolin, 

neohesperidin, eriocitrin, quercetin 3-O di-glucoside were purchased from Sigma 

Aldrich (Milan, Italy) 

 

2.2 Sample preparation 

 

In order to remove fibers, juice was centrifuged at 6000 rpm/min for 15 minutes, 

then lyophilized for 24 hours. From 80 mL of juice, 1.1 g of dry extract was 

obtained. Sample was stored at 5°C, then solubilized in methanol to a concentration 

of 1 mg/mL, subjected to ultrasonication and filtered prior to injection on 0.20 μm 

nylon membrane (Millipore). 

 

2.3 Instrumentation 

 

UHPLC analyses were performed on a Shimadzu Nexera UHPLC system, 

consisting of a CBM-20A controller, two LC-30AD dual-plunger parallel-flow 

pumps, a DGU-20 A5 degasser, an SPD-M20A photo diode array detector 

(equipped with a 2.5 μL detector flow cell volume), a CTO-20A column oven, a 

SIL-30AC autosampler. The UHPLC system was coupled online to an LCMS–IT-

TOF mass spectrometer through an ESI source (Shimadzu, Kyoto, Japan). LC-MS 
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data elaboration was performed by the LCMSsolution® software (Version 

3.50.346, Shimadzu). The extracolumn volume (ECV) was calculated by injecting 

toluene, and was estimated in 17 μL. 

 

2.4 UHPLC conditions 

 

The optimal mobile phase consisted of 0.1% HCOOH/H2O v/v (A) and 0.1% 

HCOOH/ACN v/v (B). Analysis was performed in gradient elution as follows: 0-

1.50 min, 0-20% B; 1.50-4.00 min, 20-25% B; 4-6.00 min, 25-30% B; 6-6.10, 30-

60% B. Flow rate was 0.7 mL/min. Column oven temperature was set to 45°C. 

Injection volume was 1 μL of juice extract, in a concentration of 1 mg mL-1. The 

following PDA parameters were applied: sampling rate, 40 Hz; detector time 

constant, 0.160 s; cell temperature, 40 °C. Data acquisition was set in the range 

190-400 nm and chromatograms were monitored at 280 and 330 nm at the 

maximum absorbance of the compounds of interest. 

 

2.5 ESI-IT-TOF-MS parameters 

 

UHPLC was coupled on-line to a hybrid IT-TOF-MS instrument, and the flow rate 

from LC was split 50:50 before the ESI source by means of a stainless steel Tee 

union (1/16 in., 0.15 mm bore, Valco HX, Texas, USA). The resolution, sensitivity, 

and mass number calibration of the IT and the TOF analyzer were tuned using a 

standard sample solution of sodium trifluoroacetate. After the calibrant had flowed, 

cleaning of the tube and ESI probe was made by flowing CAN (0.2 mL/min, 20 

min). MS detection was operated in negative ionization mode with the following 

parameters: detector voltage, 1.53 kV; CDL (curve desolvation line) temperature, 

200 °C; block heater temperature, 200 °C; nebulizing gas flow (N2), 1.5 L/min, 

drying gas pressure, 100 kPa. Full-scan MS data were acquired in the range of 
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150–1000 m/z, ion accumulation time, 40 ms; IT, repeat = 3. MS/MS experiments 

were conducted in data-dependent acquisition, precursor ions were acquired in the 

range 150–900 m/z; peak width, 3 Da; ion accumulation time, 45 ms; CID energy, 

50%; repeat = 1; execution trigger base peak intensity (BPC) at 95% stop level. 

Manual acquisition was performed for peaks 3, 8, 9, 10, 11, and 12 by applying the 

same parameters (exceptions: ion accumulation time, 60 ms; ion exclusion time, 

2.5 s). 

 

2.6 Scavenging of 1, 1 diphenyl-2-pycrylhydrazyl (DPPH) radicals 

 

0.1 mM solution of DPPH in methanol was prepared and 1.0 mL of this solution 

was added to 3.0 mL of extract solution in methanol at different concentration (1-

16 μg/mL). Thirty minutes later, the absorbance was measured at 517 nm. A blank 

was prepared without adding extract. Ascorbic acid at various concentrations (1 

to16 μg/mL) was used as standard. Lower the absorbance of the reaction mixture 

indicates higher free radical scavenging activity. The capability to scavenge the 

DPPH radical was calculated using the following equation: 

               ( )  
                  

           
      

Where A control is the absorbance of the control reaction and A test is the 

absorbance in the presence of the sample of the extracts. The antioxidant activity 

was expressed as IC50 and compared with standard. The IC50 value was defined as 

the concentration (in μg/ml) of extracts that inhibits the formation of DPPH 

radicals by 50
[19]

. 
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3. Results and discussion 

 

The bergamot juice despite being considered a waste product, is rich in 

polyphenolic molecules with different biological activities. The objective of this 

work was to develop a method for the rapid analysis of flavonoids present in Citrus 

bergamia juice by UHPLC IT-TOF. Compared to the conventional HPLC methods 

for the analysis of these matrices, a drastic reduction of analysis time was obtained, 

leading to the separation and identification of 17 compounds in less than 5 minutes 

with good resolution. 

 

3.1 Optimization of chromatographic parameters 

 

Chromatographic methods for the characterization of polyphenolic molecules of 

bergamot juice,
[8-10]

 usually consists of employing C18 columns packed with 

conventional particles and analysis times of 40–50 min
[20,21]

. Although the benefits 

derived from the use of UHPLC conditions have been highlighted for the analysis 

of flavonoids
[22,23]

, in beverages and mixtures of various Citrus extracts
[24,25]

, to the 

best of our knowledge, they have never been applied on this matrix so far. In this 

work, a 100 × 2.1 mm column packed with 1.7 μm core–shell particles was 

employed. The advantages of columns packed with these particles lie in the 

reduction of both the longitudinal diffusion (B term) and the eddy dispersion (A 

term), as well as a very low mass transfer resistance (C term) providing high 

efficiency and resolution also at high flow rates
[26-28]

. Polyphenolic molecules, such 

as flavonols and flavanones O-glycosides, present in the juice of bergamot, are 

difficult to characterize with classical analytical methods. In this regard, high-

resolution analysis and separation to the baseline are critical essential. For the 

separation, a gradient program starting with 100% concentration of the weaker 

solvent (water) was applied, providing a good peak shape especially for the first 
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eluting peaks. Then, a slow gradient ramp was set in order to elute compounds with 

very similar behavior. As it can be appreciated from the chromatogram in Figure 1, 

in the final part of the gradient program a fast ramp up to 60% of the stronger 

solvent (ACN) was run, to ensure the elution of all the compounds within the fast 

analysis time of only 5 min. In order to shorten retention times and reduce system 

backpressure, different column temperatures were investigated, ranging from 35 to 

55 °C. Finally, a temperature of 45 °C was selected, which was the best 

compromise between backpressure (maximum value of 680 bar, significantly 

below column and system limits) and resolution. 

 

 

Figure 1. UHPLC–PDA chromatogram of Citrus bergamia juice. Column: Kinetex 

C18 100 × 2.1 mm, 1.7 μm. Flow 0.7 μL/min, Oven 45 °C, injection volume 1 μL of 

juice extract, detection: PDA, λ: 280 nm. 
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Moreover, with respect to a conventional analysis performed with a 4.6 mm 

column
[9,10] 

, solvent consumption was decreased from 45 to 4.5 mL, as well as 

injection volume from 20 to 1μL. In order to evaluate the performance of the 

gradient separation, the peak capacity was calculated using the method defined by 

Neue
[29]

 [Eq. (1)]: 

 


n

g

c

wn

t
P

1
/1

1

 

 

in which tg is the time of the gradient run, n is the number of peaks selected for the 

calculation, and w is the average peak width. The presence of closely related peaks 

in the chromatogram hinders reliable calculation of the peak width over the 

spanning time scale
[30]

. For this reason, a mixture of four compounds (caffeic acid, 

eriocitrin, hesperidin, and naringin), providing a clear representation of the entire 

sample mixture due to their elution profile over the separation window, was 

analyzed under the same experimental conditions, and used for the estimation of 

the peak capacity. A value of 41 was attained. Triplicate analyses were run on the 

system and the repeatability of the retention times and areas was calculated (Table 

1). Retention time repeatability with maximum RSD% values of 0.36% and peak 

area values with RSD% below 3.9% further demonstrated the precision of the 

system employed. 
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Table 1: Repeatability and quantitative data calculated for the 17 flavonoids identified. 

 

Peak 
tr Area 

Regression Curve R2 
Quantity 

mg g
-1

 
RSD % 

LOD 

mg g
-1

 

LOQ 

mg g
-1

 Mean RSD % Mean RSD % 

1 2.61 0.22 11926.5 2.12 y = 1.27
-06

x - 1.83
-03

 0.9980 13.38 ± 0.77 0.834 1.232 

2 2.74 0.36 9446 1.41 y = 1.27
-06

x - 1.83
-03

 0.9980 11.33 ± 1.75 0.812 1.131 

3 3.05 0.33 10915 3.86 y = 1.27
-06

x – 6.30
-04

 0.9951 13.26 ± 0.54 0.850 0.989 

4 3.17 0.18 168060 0.37 y = 1.02
-06

x – 4.54
-03

 0.9993 166.62 ± 0.63 0.801 0.942 

5 3.29 0.18 10647 2.40 y = 2.19
-06

x + 1.81
-03

 0.9984 25.58 ± 0.37 1.017 1.045 

6 3.43 0.17 10710 0.07 y = 1.27
-06

x - 1.83
-03

 0.9980 11.74 ± 0.01 0.809 1.492 

7 3.59 0.16 183269 0.49 y = 1.02
-06

x – 4.54
-03

 0.9993 286.97 ± 1.41 0.811 0.925 

8 3.71 0.16 12312 2.21 y = 1.57
-06

x – 9.20
-04

 0.9968 20.82 ± 2.96 1.007 1.201 

9 3.76 0.15 23118 2.03 y = 1.40
-06

x – 4.57
-03

 0.9959 29.89 ± 5.92 0.805 1.324 

10 3.81 0.15 2986 1.71 y = 9.12
-07

x + 3.15
-03

 0.9991 2.04 ± 0.73 0.811 1.912 

11 3.85 0.15 164504.5 3.05 y = 1.57
-06

x – 9.20
-04

 0.9968 62.27   ± 10.95 0.831 0.987 

12 3.88 0.30 25731 3.46 y = 1.57
-06

x – 9.20
-04

 0.9968 12.77 ± 2.25 1.030 1.091 

13 3.92 0.26 19271.5 3.51 y = 1.03
-06

x – 4.39
-03

 0.9967 166.51 ± 6.90 1.024 1.720 

14 4.25 0.24 13274 2.41 y = 1.03
-06

x – 4.39
-03

 0.9959 13.03 ± 1.00 0.804 2.174 

15 4.40 0.26 30914 0.75 y = 1.03
-06

x – 4.39
-03

 0.9967 27.50 ± 0.24  0.827 1.150 

16 4.52 0.13 3579 2.73 y = 1.27
-06

x - 1.83
-03

 0.9980 2.09 ± 0.33 0.875 1.904 

17 4.78 0.21 110805.5 2.24 y = 1.03
-06

x – 4.39
-03

 0.9967 98.60 ± 7.23 0.810 1.264 
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3.2 Quantitative analysis of lyophilized juices 

 

For the quantification of flavonoids, seven compounds were selected as external 

standards: neoeriocitrin, diosmetin 6,8-di-C-glucoside, rhoifolin, neohesperidin, 

eriocitrin, quercetin 3β-diglucoside. Stock solutions (1 mg/mL) were prepared in 

methanol, for naringin, nehoesperidin, and neoeriocitrin, calibration curves were 

obtained in a concentration range of 50–300 μg/mL, while for other compounds, 

calibration curves were obtained in the range of 0.5–100 μg/mL, with seven 

concentration levels, triplicate injections of each level were run. Peak areas, 

relative to the wavelength of maximum absorbance, of each standard were plotted 

against the corresponding concentrations (μg/mL). The amount of the compounds 

in the sample was expressed as milligram per grams of lyophilized juice extract 

(Table 1). Linear regression was used to generate calibration curves, and the R2 

values were ≥ 0.995, showing good linearity. The instrumental intraday 

repeatability and the recovery were calculated for six replicate injections at three 

concentration levels. Concerning intraday repeatability, RSD% values less than 6% 

were obtained, while recovery values ranged from 83.3 to 103.4% (except for 

isoquercetin 68.2%), demonstrating satisfactory precision and accuracy. As can be 

seen from Table 1, the flavanones neoeriocitrin, naringin, and nehoesperidin are the 

compounds in the highest amount in the juice, in good agreement with several 

observations reported in the literature
[8-10] 

with slight differences due to production 

processes. Also abundant were the flavones neodiosmin, rhoifolin, and poncirin, 

while C-glucosidic compounds are present in a minor quantity. Particularly 

interesting was the presence in a relevant quantity of the two compounds melitidin 

and brutieridin, since they show important biological activities. 
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3.3 ESI-IT-TOF-MS elucidation of flavonoid profiles 

 

The identification of flavonoid compounds in the juice was carried out on the basis 

of diode array detection spectra, MS molecular ions, and MS/MS fragmentation 

patterns. The data obtained were compared with those in the literature. Molecular 

formulae were calculated by the Formula Predictor software (Shimadzu), setting a 

low tolerance (deviation from mass accuracy max: 5 ppm, MS/MS fragmentation 

data, nitrogen rule) so that most of the identified compounds were in position 1 in 

the list of the possible candidates. The results are shown in Table 2 in order of peak 

elution. Compounds 1 and 2 showed a typical fragmentation pattern of C-

glucosides
[10,31]

 along with the presence of two fragments at [M–H–120]
−
 (base 

peak) and [M–H–90]
−
, suggesting the loss of two hexose moieties. These 

compounds were identified as lucenin-2 and lucenin-2,4’-methylether. The diode 

array detection spectra of 4, 7, and 13 showed the flavanone nature of the aglycone. 

Both compounds 4 and 7 revealed a fragment at m/z 459 resulting from the loss of 

[M–H–136]
−
 and [M–H–120]

−
, respectively, as a consequence of 

retrocyclization
[32]

 and were identified as neoeriocitrin and naringin. Compound 13 

showed a fragment at [M–H–326]
−
 due to the loss of a sugar moiety, and was 

identified as neohesperidin. These three compounds were the most abundant in the 

sample, as mentioned above. Compound 5 showed two fragments at m/z 447 and 

285, due to the loss of one or both sugar residues, and was positively identified as 

poncirin.  
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Table 2: UHPLC-PDA-ESI-IT-TOF elucidation of flavonoids in bergamot juice. 

 

Peak 
Molecular 

Formula 

[M-H]- 

observed 

[M-H]- 

calculated 

Error 

[ppm] 
MS2 m/z 

Polyphenol 

sub-class 
Compound 

1 C27H30O15 593.1496 593.1506 1,68 503,473,383,353 Flavone C-glucoside Apigenin 6,8 di C-glucoside 

2 C28H32O16 623.1618 623.1621 0.48 503.384 Flavone C-glucoside Diosmetin 6,8 di C-glucoside 

3 C27H32O15 595.1647 595.1662 2.52 287 Flavanone O-glycoside Eriodictyol 7-O-rutinoside 

4 C27H32O15 595.1654 595.1662 1.34 459,357,235 Flavanone O-glycoside Eriodictyol 7-O-neohesperidoside 

5 C28H34O14 593.1517 593.1512 2.19 285,447 Flavone O-glycoside 5,7-dihydroxy-4' methoxyflavone 7-O-rutinoside 

6 C22H22O11 461.1106 461.1089 -3.69 341,371 Flavone C-glucoside Diosmetin 8-C-glucoside 

7 C27H32O14 579.1711 579.1713 0.34 313,271,459 Flavanone O-glycoside Naringenin 7-O-neohesperidoside 

8 C27H30O14 577.1566 577.1557 -1.56 269,311 Flavone O-glycoside Apigenin 7-O-neohesperidoside 

9 C28H34O15 609.1831 609.1819 -1.97 301,459 Flavanon O-glycoside Hesperetin-7-O-rutinoside 

10 C21H20O12 463.1260 463.1246 -3.02 301 Flavonol O-glucoside Quercetin-3-β-glucopyranoside 

11 C28H32O15 607.1674 607.1662 -1.97 284,299,341,443 Flavone O-glycoside Diosmetin 7-O-neohesperidoside 

12 C33H40O19 739.2050 739.2032 -2.43 593 Flavone O-glycoside Apigenin 7-O-neohesperidoside-4’-glucoside 

13 C28H34O15 609.1810 609.1819 1.48 301,343,447,489 Flavanon O-glycoside Hesperetin-7-O-neohesperidoside 

14 C27H32O14 579.1711 579.1719 1.38 271,459,313 Flavanon O-glycoside Naringenin-7-O-rutinoside 

15 C33H40O18 723.2138 723.2142 0.55 579,271,677 Flavanone O-glycoside 
Naringenin 7-[2”-α-rhamnosyl-6”-[3””-hydroxy-3””-

methylglutaryl]-β-glucoside] 

16 C35H70O14 713.47 - - 677,451,225 Unknown C-glycoside - 

17 C34H42O19 753.2238 753.2241 0.39 609,301,651 Flavanone O-glycoside 
Hesperetin 7-[2”-α-rhamnosyl-6”-[3””-hydroxy-3””-

methylglutaryl]-β-glucoside] 
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Compound 6 also belongs to the C-glucosides; the fragment observed at m/z 341 

[M–H–120]
−
 is the product of the loss of the phenyl moiety in position 1, and was 

therefore identified as orientin-4’-methyl ether. Finally, for closely eluting peaks, 

such as compounds 3, 8, 9, 10, 11, and 12, the acquisition was switched from 

automatic to manual mode, in order to correctly select precursors and obtain pure 

MS/MS spectra. In this way, all compounds listed above were successfully 

identified. Compound 14 showed several fragments, particularly, at m/z 271 and 

459, corresponding to the loss of the disaccharide moiety and rearrangement of the 

aglycone, and was confirmed as narirutin. Figure 2 illustrates the structures and 

MS/MS spectra of compounds 15 and 17. They were assigned as melitidin and 

brutieridin; their fragmentation patterns showed ions at m/z 579 and 609, 

respectively, resulting from the loss of a 3-hydroxy-3-methylglutaril residue. These 

compounds are particularly interesting due to their statin-like structures
[33]

 and their 

hypolipidemic activity
[34]

. Finally, compound 16 was tentatively identified as a C-

glucoside compound
[35]

, MSn and NMR spectroscopic experiments are underway 

to confirm the structure. 
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Figure 2. Structure and MS/MS spectra for Melitidin (A) 

(C33H40O18, error 0.55 ppm) and Brutieridin (B) (C34H42O19, error 0.39 ppm) 

 

3.4 Antioxidant activity 

 

The scavenging activity of the juice of bergamot was assessed using the 

spectrophotometric assay DPPH (2,2-diphenyl-1-picrylhydrazyl), a commercial 

radical oxidant that in solution gives a characteristic color purple. The DPPH in the 

presence of antioxidants, is reduced to DPPH-H with consequent modification of 

the color, in fact, undergoes a color change from purple to yellow. The degree of 

discoloration is directly proportional to the antioxidant potential of the test sample. 

The antioxidant activity of the flavonoids of bergamot juice was expressed in terms 

of IC50 and compared with the standard (Figure 3). 
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Figure 3: Antioxidant activity of flavonoids bergamot juice measured by the DPPH 

assay: (▲) Flavonoids Bergamot (■) Ascorbic Acid 

 

In Figure 3 were compared the antioxidant capacity of the raw extract of flavonoids 

and ascorbic acid. Were used samples of the crude extract of bergamot juice at 

different concentrations, from 1 to 16 mg / mL.  

The same procedure was performed with the ascorbic acid used as a positive 

control. With increasing concentration of the sample, the methanolic solution of 

DPPH, initially purple in color, has undergone continuous modifications, until the 

attainment of a yellow color which highlighted the overcoming of the steady-state 

where the radicals present had been completely neutralized (Figure 4). 
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Figure 4: Colorimetric change of radical DPPH 

 

The results shown in Figure 3 have indicated that the activity of the flavonoids of 

the juice of bergamot, despite being lower than the standard used for the analysis, 

however, exerts a modest anti-radical action. IC50 values of flavonoids and ascorbic 

acid were respectively 10.3 µg / mL and 1.5 µg / mL (Table 3)
[36]

 The results of 

this assay gave a further confirmation of the antioxidant juice bergamot. 

 

Table 3: Antioxidant activity of flavonoids bergamot juice 

Tested Material 
Concentration 

(µg / mL) 

% DPPH 

Radical Scavenging 

IC50 

(µg / mL) 

 1 34.36  

 2 62.11  

Ascorbic Acid 4 96.47 1.5 (µg / mL) 

 8 96.91  

 16 98.68  

 1 3.00  

 2 8.50  

Citrus bergamia 4 16.73 10.30 (µg / mL) 

 8 42.91  

 16 62.66  
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4. Conclusions 

 

In this work, a UHPLC–IT-TOF-MS method for the fast analysis of flavonoids in 

bergamot juice was developed. A core–shell column was employed to obtain the 

separation of 17 compounds in less than 5 min, a tenfold reduction with respect to a 

conventional HPLC separation. Unambiguous determination of the flavonoid 

identities as well as high mass accuracy were attained. This method shows the 

potential of UHPLC as a tool for the rapid and accurate characterization of 

flavonoids that can be applied to other Citrus juices for qualitative/quantitative 

purposes, or to analyze large batches of samples. 
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CHAPTER III 

 

 

UHPLC profiling and effects on LPS-stimulated J774A.1 

macrophages of flavonoids from Citrus bergamia juice industry, an 

underestimated waste product with high anti-inflammatory 

potential 
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Abstract: Despite its high content of flavonoids, Citrus bergamot juice, is 

considered a waste product of the essential oil industry. In the present contribution, 

the potential of industrial bergamot juice against inflammation process is 

highlighted. This product differs from bergamot juice crude because it is subjected 

to continuous thermal stress. After a fast and accurate characterization, by a novel 

UHPLC-IT-TOF platform, we evaluated the in vitro effect of bergamot juice 

against inflammatory response induced by Escherichia coli lipopolysaccharide 

(LPS) in J774A.1 murine macrophages. Polyphenolic compounds present in 

bergamot juice reduced reactive oxygen species (ROS) release and other important 

pro-inflammatory mediators, such as nitric oxide (NO), inducible nitric oxide 

synthase (iNOS) and cycloxygenase-2 (COX-2) protein expression. Moreover, the 

cytoprotective haem-oxygenase-1 (OH-1) enzyme expression in LPS-stimulated 

J774A.1 macrophages was enhanced. Our results demonstrated that industrial 

bergamot juice acts as antioxidant and anti-inflammatory agent in LPS-treated 

J774A.1 macrophages. 

 

Keywords: Bergamot, Flavonoids, UHPLC, LPS, Inflammation. 

 

1. Introduction 

 

Among Citrus plants, Citrus bergamia is widely used in the cosmetic and essential 

oil industry, but its juice, characterized by a bitter taste, is considered a waste in the 

production process, although several studies
[1-3] 

have highlighted the large quantity 

of flavonoids contained in this fruit. Many studies have recently focused in the 

attention on the potential health effects of flavonoids from different natural 

sources, such as anticancer, and anti-inflammatory properties
[4]

, as well as the 

ability to reduce oxidative stress
[5-10]

. In this regard, macrophages play a major role 
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in host defense during inflammatory and immune response; however, excessive 

activation of these cells may cause extensive damage to tissues. In response to 

lipolysaccharide (LPS), a component of gram-negative bacterial cell walls, 

macrophages produce and release inflammatory mediators, including cytokines, 

pro-inflammatory enzymes, as inducible nitric oxide synthase (iNOS) and 

cycloxygenase-2 (COX-2), and highly reactive species, as nitric oxide (NO) and 

reactive oxygen species (ROS). Despite ROS has many physiological usefulness 

and protective role in human health their levels, if not properly regulated, could 

also lead to a number of deleterious effects
[11]

. The qualitative and quantitative 

characterization of the major biomolecules present in the industrial bergamot juice 

is usually carried out by standard HPLC–MS
[12]

 techniques, employing C18 

columns packed with conventional particles
[7,9,10]

. All these approaches are 

generally characterized by long analysis times of approximately 50 min, in 

agreement with the literature, for the analysis of phenolic compound
[13]

. Ultra-high 

pressure liquid chromatography (UHPLC) has opened up new possibilities in the 

analysis of complex matrices, such as foods and biological samples, achieving 5- to 

10-fold faster separations than what obtained with conventional HPLC systems, 

while maintaining or increasing resolution
[14]

. During my PhD, after a fast and 

accurate characterization of flavonoids through a novel UHPLC–MS-IT-TOF 

platform, we evaluated the anti-inflammatory potential of industrial bergamot juice 

on NO, iNOS, COX-2, ROS and heme oxygenase-1 (HO-1) expression in J774A.1 

murine macrophages stimulated with LPS. 
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2. Materials and methods 

 

2.1 Reagents and standards 

 

Ultra pure water (H2O) was obtained by a Milli-Q system (Millipore, Milan, Italy), 

acetonitrile (ACN) LC–MS grade and formic acid (HCOOH) were purchased by 

Sigma–Aldrich (Milan, Italy). For the separation a Kinetex C18 150 × 4.6 mm, 

2.6μm and a 150 × 2.1mm columns were employed (Phenomenex, Bologna, Italy). 

 

2.2 Sample preparation 

 

The industrial bergamot juice was subjected to centrifugation in order to remove 

the fibers. The centrifuge was set at 6000 rpm/min for 20 minutes, then lyophilized 

for 24 hours. From 80 mL of juice, 1.2 g of dry extract was obtained. Sample was 

stored at 5°C, then solubilized in methanol to a concentration of 1 mg/mL, 

subjected to ultrasonication and filtered prior to injection on 0.45 μm nylon 

membrane (Millipore). 

 

2.3 Instrumentation and UHPLC–MS/MS conditions 

 

UHPLC analyses were performed on a Shimadzu Nexera UHPLC system, The 

UHPLC system was coupled online to an LCMS–IT-TOF mass spectrometer 

through an ESI source (Shimadzu, Kyoto, Japan). The optimal mobile phase 

consisted of 0.1% (v/v) HCOOH/H2O (A) and 0.1% (v/v) HCOOH/ACN (B). 

Analysis was performed in gradient elution as follows: 0.01– 2.00 min, 10–15% B, 

2–10 min, 15–20% B, 10–15min, 20–35% B, 15–16 35–50% B. Flow rate was 1.8 

mL/min. Column oven temperature was set to 40 °C. Injection volume was 2 μL of 
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juice chromatograms were monitored at 280 and 330 nm at the maximum 

absorbance of the compounds of interest. MS detection was operated in negative 

ionization mode (ESI
-
), for LC–MS/MS analysis a 2.1 mm I.D column was used 

with the same parameters, except a flow rate of 0.5 mL/min. 

 

2.4 Cell culture 

 

Unless stated otherwise, all reagents and compounds were purchased from Sigma 

Chemicals Company (Sigma, Milan, Italy). J774A.1 murine monocyte/macrophage 

cell line (American Type Culture Collection, Rockville, MD, USA), was grown in 

adhesion on Petri dishes and maintained with Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% 

foetal calf serum (FCS), 25 mM HEPES, 2 mM glutamine, 100 μ/mL penicillin and 

100 mg/mL streptomycin at 37 °C in a 5% CO2 atmosphere. 

 

2.5 Antiproliferative activity 

 

Cells (3.5×10
4
/well) were plated on 96-well plates and allowed to adhere for 2 h. 

Thereafter, the medium was replaced with of fresh medium and of serial dilutions 

of Citrus bergamia juice (500–10 μg/mL) was added. Cells were incubated for 24, 

48 and 72 h. Cell viability was assessed through MTT assay as previously 

reported
[15]

. Macrophages viability, in response to treatment with Citrus bergamia 

juice, was calculated as: % dead cells = 100 × [(OD treated/OD control)]. 
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2.6 Measurement of intracellular reactive oxygen species (ROS) 

 

ROS formation was evaluated through the probe 2’,7’-dichlorofluorescin- diacetate 

(H2DCF-DA) as previously reported
[16]

. Briefly, J774A.1 cells were plated at a 

density of 3.0 × 10
4
 cells/well into 24-well plates and allowed to grow for 24 h. 

The medium was then replaced with fresh medium and cells were incubated Citrus 

bergamia juice (250–10 μg/mL) for 1 h and then co-exposed to lipopolysaccharide 

from Escherichia coli (LPS;1 μg/mL) for 24 h. Cells fluorescence was evaluated 

using a fluorescence-activated cell sorting (FACS-scan; Becton Dickinson) and 

elaborated with Cell Quest software. Data are then expressed as mean fluorescence 

intensity. 

 

2.7 Nitrite determination and Western blot analysis for iNOS, COX-2 and HO-1 

expression 

 

Macrophages J774A.1 were seeded in P60 plates (1.8 × 10
6
/P60) and allowed to 

adhere for 2 h. Thereafter, the medium was replaced with fresh medium and cells 

were pretreated with juice (250–10 μg/mL) for 1 h and then co-exposed to LPS (1 

μg/mL) for further 24 h. NO generation was measured as nitrite (NO
-
2 ; l μM), 

index of NO released by cells, in the culture edium, as previously reported
[17,18]

. 

iNOS, COX-2 and HO-1 expression was assessed by Western blot as previously 

reported
[16]

. Briefly after NO
-
2  determination cell pellet was lysed and protein 

concentration was estimated by the Bio-Rad protein assay using bovine serum 

albumin as standard. Equal amounts of protein (50 μg) were dissolved in 

Laemmli’s sample buffer, boiled, and run on a SDS polyacrylamide gel 

electrophoresis minigel and then transferred into 0.45 μm hybond polyvinylidene 

difluoride membrane. Membranes were probed with mouse monoclonal anti-iNOS, 
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anti-COX-2 (BD Laboratories), anti HO-1 or anti-tubulin antibody (Santa Cruz 

Biotechnologies, Santa Cruz, CA, USA). Blots were then incubated with 

horseradish peroxidase conjugated goat anti-mouse immunoglobulin (Ig)G 

(1:5.000) And then immunoreactive bands were visualized using 

electrochemiluminescence assay (ECL) detection system according to the 

manufacturer’s instructions and exposed to Kodak X-Omat film. The protein bands 

of iNOS, COX-2, HO-1 and tubulin on XOmat films were quantified by scanning 

densitometry (Imaging Densitometer GS-700 BIO-RAD, Hercules, CA, USA). 

Data are normalized with tubulin expression, used as reference protein, and 

expressed as arbitrary densitometric units as previously reported
[19]

. 

 

2.8 Data analysis 

 

Data are reported as mean ± standard error mean (s.e.m.) values of independent 

experiments, which were done at least three times, each time with three or more 

independent observations. Statistical analysis was performed by analysis of 

variance test, and multiple comparisons were made by Bonferroni’s test. A P-value 

less than 0.05 was considered significant. 

 

3. Results and discussion 

 

3.1 UHPLC–MS/MS quantitative and qualitative analysis of juice 

 

The classic methods reported for the analysis of flavonoids in Citrus bergamia 

juice
[7,9,10] 

and in other species of citrus
[20]

 usually consists in employing C18 

columns packed with conventional particles and analysis time of 40– 50 min. The 

benefits deriving from the use of UHPLC conditions have been highlighted for the 
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analysis of flavonoids
[21]

 in other matrices, but, to best of our knowledge, never on 

industrial bergamot juice. In this work, column packed with 2.6 μm core–shell 

particles was employed. As can be seen from Figure 1, despite a considerable 

reduction of analysis time with respect to conventional methods present in 

literature
[7,9,10]

, high resolution and baseline separation of compounds were 

obtained. The quantitative analysis was performed using the external standard 

method. For this reason were calculated different calibration curves using the 

following standard: neoeriocitrin, diosmetin 6,8 di C-glucoside, rhoifolin, 

neohesperidin, eriocitrin, quercetin 3-b di glucoside. Stock solution (1 mg mL
-
1) 

were prepared in methanol, for naringin, nehoesperidin, and neoeriocitrin 

calibration curves were obtained in a concentration range of 50–300 mg mL
-
1, 

while for other compounds in the range of 0.5–100 mg mL
-
1, with seven 

concentration levels, triplicate injection of each level were run.  

 

Fig.1 : UHPLC–PDA chromatogram of industrial bergamot juice 

 

The flavanones neoeriocitrin, naringin and nehoesperidin, whose inflammatory 

activity has been highlighted
[22]

, are the compounds in the highest amount in the 
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juice, in good agreement with several observation reported in literature, also 

abundant were the flavones compounds Neodiosmin, Rhoifolin, while C-glucosidic 

compounds are present in minor quantity (Table 1). Particulary interesting was the 

presence in significant quantity of the two compounds Melitidin and Brutieridin, 

since they show a hypolipidemic activity, due to their statin-like structure
[23]

. The 

quali/quantitative difference of Citrus bergamia juice compared to industrial juice 

crude, is represented exclusively by the presence of three compounds 7, 11 and 13. 

The formation of such molecules is attributed to thermal stress to which the juice is 

subjected during the machining process. In order to confirm the identity of the 

individual molecules, UV asborbance, MS molecular ions and MSMS 

fragmentation patterns were used. Results are shown in Table 2 in order of peak 

elution. UHPLC conditions allowed to halve analysis time, which is a crucial factor 

to analyze large batch of samples, furthermore obtaining high separation efficiency 

and low solvent consumption. Moreover high mass accuracy in both full scan and 

MS/MS stage led to an unambiguous identification of flavonoids. 
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Table 1: Repeatability and quantitative data calculated for the 17 compounds identified. 

 

Peak 
tr Area 

Regression Curve R2 
Quantity 

mg g-1 
RSD % 

LOD  

mg g-1 

LOQ 

mg g-1 Mean RSD % Mean RSD % 

1 3.23 0.37 10012 3.03 y = 667134.5971x + 971.6246 0.9984 9.04  ± 0.30 0.867 1.113 

2 4.52 2.91 8961.5 6.14 y = 667134.5971x + 971.6246 0.9984 12.80 ± 0.59 0.819 1.047 

3 4.83 0.32 7210.5 1.23 y = 901211.9240x + 2243.8768 0.9992 <LOQ ± 0.49 0.811 n.d 

4 5.94 0.38 54944 4.31 y = 901211.9240x + 2243.8768 0.9992 39.14 ± 0.52 0.765 0.981 

5 7.51 0.27 7562.5 1.19 y = 562603.1127x + 468.2642 0.9990 <LOQ - 0.890 n.d 

6 7.63 0.38 12578.5 3.32 y = 667134.5971x + 971.6246 0.9984 <LOQ - 0.892 n.d 

7 8.33 0.31 59727.5 1.96 y = 678612x – 401.21 0.9998 53.50  ± 0.29 0.841 0.957 

8 9.71 0.27 1532.5 2.06 y = 901211.9240x + 2243.8768 0.9992 1.81 ± 1.56 1.002 1.697 

9 9.35 0.28 7339 2.46 y = 562603.1127x + 468.2642 0.9990 10.56  ± 0.49 0.815 1.271 

10 10.14 0.27 2849.5 5.24 y = 901211.9240x + 2243.8768 0.9992 59.99  ± 0.77 0.801 0.997 

11 10.19 0.20 2849.5 2.67 y = 579042.9939x – 1819.9253 0.9984 <LOQ - 0.887 n.d 

12 10.55 0.27 4820.5 3.62 y = 562603.1127x + 468.2642 0.9990 2.32  ± 0.07 0.999 1.142 

13 10.64 0.27 1532.5 2.06 y = 901211.9240x + 2243.8768 0.9992 2.86  ± 0.22 1.002 1.697 

14 11.39 0.21 97504.5 1.95 y = 934280.4687x + 1841.4291 0.9947 <LOQ  ± 0.89 0.897 1.999 

15 11.51 1.04 81670.5 4.88 y = 667134.5971x + 971.6246 0.9984 2.57   ± 0.42 0.837 1.955 

16 12.14 0.23 5492 1.41 y = 678612x – 401.21 0.9998 6,29  ± 0.91  0.800 1.059 

17 13.16 0.09 9167 3.08 y = 678612x – 401.21 0.9998 19.86   ± 0.56 0.806 1.198 

18 14.87 0.08 87119.5 0.48 y = 678612x – 401.21 0.9998 56.74  ± 0.37 0.789 1.651 

19 15.62 0.06 87119.5 0.44 y = 901211.9240x + 2243.8768 0.9992 29.56  ± 0.27 0.987 1.987 

20 15.88 0.06 25726.5 2.30 y = 678612x – 401.21 0.9992 14.03  ± 0.52 0.953 1.424 
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Table 2: UHPLC–PDA-ESI-IT–TOF elucidation of flavonoids in industrial Citrus bergamia juice. 

 

Peak 
Molecular 

Formula 

[M-H]- 

observed 

[M-H]- 

calculated 

Error 

[ppm] 
MS2 m/z 

Polyphenol 

sub-class 
Compound 

1 C27H30O15 593.1496 593.1506 1,68 503,473,383,353 Flavone C-glucoside Apigenin 6,8 di C-glucoside 

2 C28H32O16 623.1618 623.1621 0.48 503.384 Flavone C-glucoside Diosmetin 6,8 di C-glucoside 

3 C27H32O15 595.1647 595.1662 2.52 287 Flavanone O-glycoside Eriodictyol 7-O-rutinoside 

4 C27H32O15 595.1654 595.1662 1.34 459,357,235 Flavanone O-glycoside Eriodictyol 7-O-neohesperidoside 

5 C28H34O14 593.1517 593.1512 2.19 285,447 Flavone O-glycoside 
5,7-dihydroxy-4' methoxyflavone 7-O-

rutinoside 

6 C22H22O11 461.1106 461.1089 -3.69 341,371 Flavone C-glucoside Diosmetin 8-C-glucoside 

7 C27H32O14 579.1711 579.1713 0.34 313,271,459 Flavanone O-glycoside Naringenin 7-O-neohesperidoside 

8 C28H34O15 609.1831 609.1819 -1.97 301,459 Flavanon O-glycoside Hesperetin-7-O-rutinoside 

9 C27H30O14 577.1566 577.1557 -1.56 269,311 Flavone O-glycoside Apigenin 7-O-neohesperidoside 

10 C21H20O12 463.1260 463.1246 -3.02 301 Flavonol O-glucoside Quercetin-3-β-glucopyranoside 

11 C28H34O15 609.1810 609.1819 1.48 301,343,447,489 Flavanon O-glycoside Hesperetin-7-O-neohesperidoside 

12 C33H40O19 739.2050 739.2032 -2.43 593 Flavone O-glycoside Apigenin 7-O-neohesperidoside-4’-glucoside 

13 C28H32O15 607.1674 607.1662 -1.97 284,299,341,443 Flavone O-glycoside Diosmetin 7-O-neohesperidoside 

14 C27H32O14 579.1711 579.1719 1.38 271,459,313 Flavanon O-glycoside Naringenin-7-O-rutinoside 

15 C35H70O14 713.47 - - 677,451,225 Unknown C-glycoside - 

16 C33H40O18 723.2138 723.2142 0.55 579,271,677 Flavanone O-glycoside 
Naringenin 7-[2”-α-rhamnosyl-6”-[3””-

hydroxy-3””-methylglutaryl]-β-glucoside] 

17 C34H42O19 753.2238 753.2241 0.39 609,301,651 Flavanone O-glycoside 
Hesperetin 7-[2”-α-rhamnosyl-6”-[3””-

hydroxy-3””-methylglutaryl]-β-glucoside] 

18 C15H12O5 271.0593 271.0879 0.14 227 Flavanon  

19 C16H14O6 301.0704 301.0790 0.29 268,227 Flavanon  

20 C16H12O6 299.0546 299.0587 1.15 284,256 Flavanon  
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3.2 Effect of industrial bergamot juice on LPS-stimulated macrophages 

 

Inflammation is a pathological condition that can be triggered by several factors, 

including lipopolysaccharides. LPS is an important structural component of the 

outer membrane of Gram negative bacteria and is known to modulate macrophage 

response during sepsis. LPS induces an inflammatory response that culminates in 

the release of pro-inflammatory mediators, such as NO, iNOS, COX-2, ROS and 

HO-1. NO is produced from the oxidation of L-arginine by NOS that occurs in two 

major classes: constitutive, and inducible. The iNOS may be expressed in different 

cell types (e.g. macrophages, smooth muscle cells, epithelia) by various pro-

inflammatory agents such as LPS. NO can be considered an immune modulator 

owing to its complex activity during host cellular defence
[19]

. When macrophages 

are activated by the endotoxin from the bacterial wall components LPS, or by IFN-

c, iNOS is significantly expressed, and massive amounts of NO are produced to 

exert a nonspecific immune response. Induced NO, in addition to being a final 

common mediator’ of inflammation, is essential for the up-regulation of the 

inflammatory response. Furthermore, NO contributes to tissue damage, both 

directly via the formation of peroxynitrite, and indirectly through the amplification 

of the inflammatory response. In our experiment, LPS induced in J774A.1 

macrophages a marked increase in NO release associated to an increase in iNOS 

expression. Industrial Citrus bergamia juice at concentrations of 250–50 μg/mL 

significantly reduced NO release (P < 0.01 vs. LPS alone; Figure 3), while higher 

concentrations (250–150 μg/mL) were necessary to obtain a still appreciable 

reduction in iNOS expression (P < 0.05 vs. LPS alone; Figure 4).  
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Figure 3: Effect of industrial Citrus bergamia juice (250–10 μg/mL) on NO 

release, evaluated as NO
-
2 (μM), by macrophages J774A.1 stimulated with LPS. 

Values are expressed as mean ± s.e.m of NO
-
2 (μM), of at least three independent 

experiments with three replicates each.  

 

 

Figure 4: Representative Western blot of inducible nitric oxide synthase (iNOS) 

expression (a). Densitometric analysis of the concentration dependent effect of 

industrial Citrus bergamia juice (250–10 μg/mL) on LPS-induced iNOS expression 

in J774.A1 macrophages (b). Values, mean ± s.e.m., are expressed as arbitrary 

densitometric units at least 3 independent experiments with three replicates each.  
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An interaction between NOS and COX pathway represents an important 

mechanism for the modulation of the inflammatory response
[24]

. COX-2 is a well 

known pro-inflammatory enzyme triggered by agents as LPS, it is involved in 

macrophage response and its expression is also influenced by NO
[25]

. Thus, we 

evaluated the effect of industrial Citrus bergamia juice on COX-2 expression. Our 

data showed that, similarly to NO and iNOS, also COX-2 protein expression 

resulted significantly inhibited by industrial juice (250–150 μg/mL, P < 0.01 vs. 

LPS alone; (Fig. 5) further contributing to the reduction of LPS induced 

inflammation in J774A.1 macrophages.  

 

 

 

Figure 5: Representative Western blot of cicloxygenase-2 (COX-2) expression (a). 

Densitometric analysis of the concentration dependent effect of industrial Citrus 

bergamia juice (250–10 μg/mL) on LPS-induced COX-2 expression in J774.A1 

macrophages (b). Values, mean ± s.e.m., are expressed as arbitrary densitometric 

units at least 3 independent experiments with three replicates each.  
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Figure 6: Effect of industrial Citrus bergamia juice (250–10 μg/mL) on ROS 

formation, evaluated by means of the probe 2’,7’ dichlorofluorescein-diacetate 

(H2DCF-DA), in LPSstimulated J774A.1 macrophages. Values, mean ± s.e.m., are 

expressed as arbitrary densitometric units at least 3 independent experiments with 

three replicates each.  

 

Cells, as macrophages, in order to protect themselves against inflammatory and 

oxidative injury up-regulate some defence mechanisms as HO-1 expression. HO-1, 

the rate limiting enzyme in heme degradation, catalyzes the oxidation of heme to 

generate several biologically active molecules carbon monoxide (CO), biliverdin, 

and ferrous ion
[26]

. This enzyme is normally expressed at low levels in most 

tissues/organs except for spleen; however, it is highly inducible in response to a 

variety of stimuli, as LPS, to protect cells against oxidative and inflammatory 

injury. Present in J774A.1 macrophages at low levels in basal condition, OH-1 

resulted significantly increased by LPS (P < 0.001 vs. control; Figure 7). Bergamot 

uice (250–50 μg/mL) significantly, and in a concentration related manner, further 

increased HO-1 enzyme expression in J774A.1 macrophages (P < 0.05 vs. LPS 

alone; Figure 7) resulting in a protective effect for cells in presence of LPS. HO-1 

can increase cellular anti-oxidant status by generating antioxidants such as 

bilirubin
[27]

, that can inhibit iNOS protein expression and suppress NO 
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production
[28]

. Moreover, carbon monoxide (CO), a major product of HO-1 

activity, was shown to inhibit COX-2 protein expression
[29]

. CO was also shown to 

inhibit iNOS enzymatic activity thus decreasing NO production
[30]

. Thus, 

considering the literature in the field, we can also hypothesize the important 

contribution of OH-1 expression in reducing inflammatory response associated to 

bergamot juice in LPS-stimulated J774A.1 macrophages. Moreover, MTT assay 

revealed that bergamot juice at all concentrations (10–500 μg/mL) and incubation 

times (24, 48 and 72 h) did not affect macrophage proliferation indicating its 

absence of toxic effects on macrophages and that the observed effects were not due 

to disruption of normal cellular function. 

 

 

Fig. 7: Representative Western blot of heme-oxygenase (HO-1) enzyme expression 

(a). Densitometric analysis of the concentration dependent effect of Citrus 

bergamia juice (250–10 μg/mL) on LPS-induced OH-1 expression in J774.A1 

macrophages (b). Values, mean ± s.e.m., are expressed as arbitrary densitometric 

units at least 3 independent experiments with three replicates each.  

The capacity of flavonoids of industrial bergamot juice to reduce the release and 

the expression of several inflammatory mediators, has been previously investigated 
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in the literature. Our results are in accordance with a previous study regarding the 

protective effect of a bergamot extract on keratinocytes in inflammatory conditions. 

In particular, it has been reported that the main flavonoids, such as neoeriocitrin, 

naringin and neohesperidin, occurring in bergamot extract, were protective against 

inflammatory injuries in human keratinocytes by reducing pro-inflammatory 

mediators as NO and iNOS
[31]

. Our data provided evidences that Citrus bergamia 

juice constituents could exert beneficial effects as antioxidants and inhibitors of 

inflammation process in LPS-stimulated J774A.1 macrophages. This effects could 

be addressed also to the presence of its flavanone constituents as neohesperidin, 

neoeriocitin and naringin, as previously reported. The antioxidant and anti-

inflammatory effects of naringin and neohesperidin in LPS-induced inflammation 

have been also studied
[32]

. As highlighted in the analytical characterization, the 

amount of flavonoids in juice is elevated, especially of flavanones compounds. 

This observation, together with the antioxidant and the anti-inflammatory activity 

described above, focus the attention on this bio-product, that could be easily turned 

from a mere waste product to a possible nutraceutical. In this regard, through a 

spray-drying technique the juice can be converted in microparticulate powder, thus 

obtaining enhanced solubility and high dissolution rate in biological fluids, as well 

as major stability of polyphenolic compounds and better organoleptic 

characteristics (masking the bitter taste of Citrus bergamia juice). This process, 

currently under evaluation, is particularly suitable for the production of new oral 

formulations, as tablets, or other preparations for functional foods. 
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4. Conclusions 

 

Although the recent increasing interest in its health promoting properties
[10]

, 

industrial Citrus bergamia juice still remains an underestimated waste product of 

the essential oil industry. Our results showed that despite this matrix considered a 

by-product, is rich in polyphenolic molecules able to modulate, with excellent 

results, the release and the expression of numerous mediators responsible for the 

inflammatory conditions and oxidative stress process.  
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Abstract Citrus plants contain a large amount of flavonoids with beneficial effects 

on human health. This study reports on a detailed profiling of the major 

polyphenolic constituents of Citrus sinensis juice extract by UHPLC-MS/MS-IT-

TOF. Furthermore the nutraceutical potential of Citrus sinensis extract was 

evaluated in vitro, on J774A.1 murine macrophages and in human hepatoblastoma 

cells HepG2. Our results demonstrate that Citrus sinensis extract reduced nitric 

oxide, Tumor Necrosis Factor-α release and inducible nitric oxide synthase and 

cycloxygenase-2 expression in macrophages acting on nuclear transcription factor 

NF-kB activation. Moreover Citrus sinensis extract reduced reactive oxygen 

species release and increased heme-oxygenase-1 expression. Citrus sinensis extract 

significantly inhibited HepG2 cell proliferation and significantly decreased cellular 

glucose uptake. Our results provide evidence that the polyphenolic constituents of 

Citrus sinensis extract could have potential nutraceutical properties. 

 

Keywords: Citrus sinensis, Flavonoids, Anti-inflammatory, Antioxidant, 

Hypoglycemic. 

 

1. Introduction 

 

Plants rich in certain flavonoids have been traditionally used for their anti-

inflammatory properties and, recently, attention has been given to isolated 

flavonoids, including those in Citrus, as potential anti-inflammatory and as natural 

antioxidant agents. Citrus is one of the largest species among plants; it consists of 

40 types of which are distributed in all continents and its fruits, which are 

consumed mostly fresh, have been used as a herbal medicine or additive or food 

supplement
[1]

. Citrus is believed to possess bioactivities such as anticancer, 

antimicrobial, antioxidant and anti-inflammatory
[2]

.  
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Inflammation is a combined biological process, induced by microbial infection or 

tissue injury potentially leading to sepsis, multiple organ failure and death. 

Inflammatory response is essential to eliminate threats but can be deleterious when 

the initial reaction is not limited. In these cases, anti-inflammatory compounds are 

therapeutically useful and administered to control the inflammation response. 

Macrophages have an important role during inflammatory and immune response; 

however, their excessive activation may cause extensive tissue damage. 

Macrophages activation by bacterial cell wall components as Lipopolysaccharide 

(LPS), a component of gram-negative bacteria, promotes the synthesis and release 

of large amounts of pro-inflammatory mediators as cytokines, nitric oxide (NO), 

pro-inflammatory enzymes (e.g cycloxygenase-2; COX-2) and reactive oxygen 

species (ROS), all mediators involved in the inflammatory onset. NO synthesis 

during inflammation is mainly due to inducible nitric oxide synthase (iNOS) 

activity and drugs that inhibits iNOS have been proposed as anti-inflammatory 

agents
[3]

. During inflammatory responses transient activation of the nuclear 

transcription factor NF-kB constitutes an important step and plays a key role in the 

regulated expression of several pro-inflammatory mediators including cytokines 

and pro-inflammatory enzymes
[4]

. Because of this pivotal role, NF-kB is a relevant 

target for the pharmacological action of anti-inflammatory molecules activation in 

a variety of inflammatory conditions. Certain types of cells, such as macrophages, 

in order to protect themselves against inflammatory and oxidative injury up-

regulates some defence mechanisms as heme oxygenase-1 (HO-1) enzyme 

expression, also in response to LPS. Althought oxidative response regulates many 

physiological response in human health, as the inflammatory one, if not properly 

regulated it could also lead to a number of deleterious effects mediating many 

aspect of inflammatory-induced tissue damage and dysfunctions
[5]

. Nowadays, the 

study of oxygen-containing free radicals in humans and their role has been of 

growing interest among scientists. The most important and useful source for such 
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inhibitors, both with anti-inflammatory and anti-oxidant properties, is the area of 

natural products. Many studies report on the potential health effects of flavonoids 

from different natural sources, such as anticancer and antinflammatory properties 

as well as antioxidants
[6,7]

. During my PhD, in order to evaluate the molecular 

mechanism involved in these observations, after the characterization of the main 

flavonoid compounds present in Citrus sinensis juice extract, by a fast and accurate 

UHPLC-ESI-IT-TOF platform and in vitro bioavailability studies, we evaluated the 

nutraceutical potential of Citrus sinensis juice extract. The ant-iinflammatory effect 

of Citrus sinensis juice extract was evaluated on J774A.1 macrophage stimulated 

with LPS. In particular we have investigated the effect of Citrus sinensis juice 

extract on 1) NO production; 2) iNOS and COX-2 expression; 3) TNF-α release; 4) 

p65 NF-kB nuclear translocation; 5) ROS production and 6) HO-1 expression. 

Furthermore we have evaluated the effect of Citrus sinensis juice extract on cell 

proliferation, glucose uptake, free NO release and lipid peroxidation in hepatoma 

cell lines HepG2. 

 

2. Materials and methods 

 

2.1 Reagents and standards 

 

Ultra pure water (H2O) was obtained by a Milli-Q Direct 8 system (Millipore, 

Milan, Italy), acetonitrile (ACN) LC-MS grade and formic acid (HCOOH) were 

purchased by Sigma Aldrich (Milan, Italy). For the quantitative and qualitative 

analysis of flavonoids, two columns were employed respectively: a Kinetex C18 

150 × 4.6 mm (100 Å), length × internal diameter (L × I.D.), packed with 2.6 µm 

particles, and a Kinetex C18 150 × 2.1 mm, L × I.D., 2.6 µm column 

(Phenomenex, Bologna, Italy). Both columns were protected with C18 precolumns 

(Phenomenex). Flavonoids standards (diosmetin 6,8 di C-glucoside, neohesperidin, 
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eriocitrin, isoquercetin, narirutin, diosmetin, hesperetin) and polymethoxyflavones 

(tangeretin) were purchased from Sigma Aldrich (Milan, Italy). 

 

2.2 Sample preparation  

 

The flavonoid fraction of Citrus sinensis var. Tarocco was provided by the 

company “Agrumaria Corleone” (Palermo, Italy), which used fruits from plants 

cultivated in Sicily (Italy). The extract was stored at a temperature of -20 °C until 

its use. In order to remove fibers, the extract were centrifuged at 12000 rpm/min 

for 15 minutes, lyophilized for 24 hours and then stored in small aliquots at -20 °C. 

From 100 mL of juice, 400 mg of dry extract was obtained. For the chemical 

analysis, sample was solubilized in methanol to a concentration of 1 mg/mL, 

subjected to ultrasonication and filtered prior to injection on 0.45 µm nylon 

membrane (Millipore). 

 

2.3 Instrumentation  

 

UHPLC analysis were performed on a Shimadzu Nexera UHPLC system, 

consisting of a CBM-20A controller, two LC-30AD dual-plunger parallel-flow 

pumps, a DGU-20 A5R vacuum degasser, an SPD-M20A photo diode array 

detector (equipped with a 2.5 μL detector flow cell volume), a CTO-20AC column 

oven, a SIL-30AC autosampler. The UHPLC system was coupled online to an 

LCMS–IT-TOF mass spectrometer through an ESI source (Shimadzu, Kyoto, 

Japan). LC-MS data elaboration was performed by the LCMSsolution® software 

(Version 3.50.346, Shimadzu). 
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2.4 UHPLC-PDA Conditions 

 

The mobile phases A and B consisted of water (plus 0.1 % v/v HCOOH) and 

acetonitrile (plus 0.1 % v/v HCOOH). Analysis was performed in gradient elution 

as follows: 0.01-2.00 min, 10-15% B; 2.00-10.00 min, 15-20% B; 10.00-14.00 min, 

20-35% B; 14.00-18.00 min, 35-75% B. Separation was carried out at 40 °C with a 

flow rate 1.8 mL/min. Injection volume was 2 µL of Citrus sinensis extract. The 

following PDA parameters were applied: sampling rate, 40 Hz; detector time 

constant, 0.160 s; cell temperature, 40 °C. The chromatograms were monitored at 

280 and 330 nm. 

 

2.5 UHPLC-ESI-IT-TOF Conditions 

 

The optimal mobile phase consisted of 0.1% HCOOH/H2O v/v (A) and 0.1% 

HCOOH/ACN v/v (B). Analysis was performed in gradient elution as follows: 

0.01-2.50 min, 5-15% B, 2.50-10.00 min, 15-25% B, 10.00-12.00 min, 25-55% B, 

12.00-14.50 min, 55-65% B, 14.50-15.00 min, 65-70% B. Flow rate was 0.5 

mL/min. The column temperature was set at 40 °C. Injection volume was 2 µL of 

flavonoids extract. UHPLC system was coupled on-line to a hybrid IT-TOF 

instrument. MS detection was operated both positive and negative ionization mode 

with the following parameters: detector voltage, 1.55 kV; CDL (curve desolvation 

line) temperature, 200 °C; block heater temperature, 200 °C; nebulizing gas flow 

(N2), 1.5 L/min, drying gas pressure, 100 kPa. Full scan MS data were acquired in 

the range of 200-800 m/z (ion accumulation time, 40 ms; IT, (repeat=2). MS/MS 

experiments were conducted in data dependent acquisition, precursor ions were 

acquired in the range 150-800 m/z; peak width, 3 Da; ion accumulation time, 60 

ms; CID energy, 50%, collision gas 50%, repeat =1; execution trigger (BPC) 

intensity, at 95% stop level. 
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2.6 Cells and Reagents for cell culture 

 

Unless stated otherwise, all reagents and compounds were purchased from Sigma 

Chemicals Company (Sigma, Milan, Italy). J774A.1 murine monocyte macrophage 

cell line (American Type Culture Collection, Rockville, MD), was grown in 

adhesion on Petri dishes and maintained with Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% foetal calf serum (FCS), 25 mM 

HEPES, 2 mM glutamine, 100 u/mL penicillin and 100 mg/mL streptomycin at 37 

°C in a 5% CO2 atmosphere. Human hepatocellular liver carcinoma cells (HepG2) 

were obtained from American Type Culture Collection. Monolayers of cells were 

grown in DMEM medium (Dulbecco’s Modified Eagle’s Medium; Sigma 

Chemical Co., St. Louis, MO) supplemented with 10% (v/v) fetal bovine serum 

(FBS), 1% antibiotic/antimycotic solution (Gibco-Invitrogen, MountWaverley, 

Australia), 0.375% NaHCO3, and 20 mmol/L HEPES, pH 7.4, and incubated at 37 

°C in a humidified atmosphere of 5% CO2 in air. Assays were performed by 

incubating the HepG2 cells (72 h) with 0, (control) 0.5 and 1 µg of Citrus Sinensis 

juice extract. 

 

2.7 Antiproliferative assay 

 

Cells (5 x 10
4
/well) were seeded on 96-well multiwell and allowed to adhere for 4 

h at 37°C in a 5% CO2 atmosphere. The medium was then replaced with fresh 

medium and serial dilutions of Citrus sinensis extract (250-10 µg/mL) was added 

for 24 h. Cell viability was assessed through MTT assay as previously reported
[8]

. 

Briefly, 25 µL of MTT (5 mg/mL) were added to cells and, after 3 h, cells were 

lysed and the dark blue crystals solubilised with 100 µL of a solution containing 

50% (v/v) N,N dimethylformamide, 20% (w/v) SDS with an adjusted pH of 4.5. 

The optical density (OD) was measured with a microplate spectrophotometer 
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(Titertek Multiskan MCC/340) equipped with a 620 nm filter. Macrophage cell 

viability in response to treatment with Citrus sinensis juice extract was calculated 

as: % dead cells= 100 × [(OD treated/OD control) ×100]. 

 

2.8 Nitrite Determination and Western Blot Analysis for iNOS, COX-2 and HO-1 

Expression 

 

Macrophages J774A.1 were seeded in P60 plates (1.8 × 10
6
/P60) and allowed to 

adhere for 2 h. Thereafter, the medium was replaced with fresh medium and cells 

were pretreated with Citrus sinensis extract (250-10 μg/mL) for 1 h before and with 

LPS (1 μg/mL) for further 24 h. NO release was measured as nitrite (NO2
−
, μM), 

index of NO released by cells, in the culture medium 24 h after LPS stimulation, as 

previously reported
[9]
. Briefly, 100 μL of cell culture medium were mixed with 100 

μL of Griess reagent equal volumes of 1% (w/v) sulphanilamide in 5% (v/v) 

phosphoric acid and 0.1% (w/v) naphtylethylenediamine-HCl and incubated at 

room temperature for 10 min, and then the absorbance was measured at 550 nm in 

a microplate reader Titertek (Dasit, Cornaredo, Milan, Italy). The amount of NO2
-
 

as µM concentration, in the samples was calculated from a sodium nitrite standard 

curve. iNOS, COX-2 and HO-1 expression was assessed by Western blot, as 

previously reported
[10]

. Briefly after 24 h incubation cells were scraped off, washed 

with ice-cold PBS, and centrifugated at 5.000 g for 10 min at 4 °C. The cell pellet 

was lysed in a buffer containing 20 mM Tris hydrogen chloride (HCl; pH 7.5), 1 

mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 10 μg/mL 

leupeptin, 10 mM sodium fluoride, 150 mM sodium chloride, 10 mg/mL trypsin 

inhibitor, and 1% Tween-20. Bio-Rad protein assay using bovine serum albumin as 

standard was used to determine protein concentration. Equal amounts of protein 

(50 μg) were run on a SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

minigel (8% polyacrylamide) and then transferred for 40 min at 5 mA cm 2 into 
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0.45 μm hybond polyvinylidene difluoride membrane. Membranes were blocked 

for 40 min in PBS and 5% (w/v) nonfat milk and subsequently probed overnight at 

4 °C with mouse monoclonal anti-iNOS, anti-COX-2 antibody (BD Laboratories), 

anti HO-1 or anti-tubulin (Santa Cruz Biotechnologies) in PBS, 5% w/v non fat 

milk, and 0.1% Tween-20. Membranes were then incubated with horseradish 

peroxidase conjugated goat anti-mouse immunoglobulin (Ig)G (1:5.000) for 1 h at 

room temperature. Immunoreactive bands were visualized using 

electrochemiluminescence assay (ECL) detection system according to the 

manufacturer’s instructions and exposed to Kodak X-Omat film. The protein bands 

on XOmat films were quantified by scanning densitometry (Imaging Densitometer 

GS-700 BIO-RAD U.S.A.). Data are normalized with tubulin expression, used as 

reference protein, and expressed as arbitrary densitometric units as previously 

reported
[11]

. 

 

2.9 TNF-α Determination 

 

TNF-α concentrations in macrophage culture medium stimulated for 20 h with LPS 

(1 μg/mL) and Citrus sinensis juice extract (250-10 µg/mL) as previously described 

were assessed by an Enzyme-Linked Immuno Sorbent Assay (ELISA) assay by 

using a commercial kit, for murine TNF-α, according to manufacturer’s instruction 

(e-Biosciences, CA, USA). Results calculated as pg/mL and expressed as 

percentage inhibition vs TNF-α released by J774A.1 treated with LPS alone. 

 

2.10 Immunofluorescence Analysis with Confocal Microscopy 

 

For immunofluorescence assay, J774A.1 cells (1 × 10
6
 /well) were seeded in 12 

well plate and treated with Citrus sinensis extract at a medium concentration range 

(150-50 µg/mL) for 1 h and then simultaneously with LPS (1 μg/mL) for 20 min. 
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Cells then were fixed with  paraformaldehyde (4% in PBS) for 15 min and 

permeabilized for 15 min with saponin (0.1% in PBS). After 1 h of blocking (BSA 

plus PBS), cells were incubated with anti-phospho p65 antibody (Santa Cruz 

Biotechnologies) for 2 h at room temperature. The slides were then washed with 

PBS for three times and fluorescein-conjugated secondary antibody (FITC) were 

added for 1 h, DAPI was used for counterstaining of nuclei. The coverslips were 

washed and mounted on microscope slides. A total of 10-z-line scans with a step 

distance of 0.9 mm were collected and single planes or three-dimensional 

maximum intensity projections were performed with Zeiss LSM510 laser scanning 

confocal microscope (Carl Zeiss Microlmaging GmbH, Germany). Images were 

acquired in sequential scan mode by using the same acquisition parameters (laser 

intensities, gain photomultipliers, pinhole aperture, objective 63X, zoom 2) when 

comparing experimental and control material. For the production of figures, 

brightness and contrast of images were adjusted by taking care to leave a light 

cellular fluorescence background for visual appreciation of the lowest fluorescence 

intensity features and to help comparison among the different experimental groups. 

 

2.11 Measurement of Intracellular ROS 

 

The formation of ROS was evaluated by means of the probe 2’,7’-

dichlorofluorescin-diacetate (H2DCF-DA) as previously reported
[12,13]

. In the 

presence of intracellular ROS, H2DCF is rapidly oxidized to the highly fluorescent 

2’,7’-dichlorofluorescein. Briefly, J774A.1 cells were plated at a density of 3.0 × 

10
4
 cells/well into 24-well plates. Cells were allowed to grow for 24 h; the medium 

was then replaced with fresh medium and cells were stimulated with Citrus sinensis 

extract (250-10 µg/mL) for 1h before and simultaneously to LPS (1 μg/mL). After 

24 h cells were then collected, washed twice with PBS and then incubated in PBS 
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with H2DCF-DA (10 μM) at 37 °C. After 45 minutes, cells fluorescence was 

evaluated by a fluorescence-activated cell sorting (FACSscan; Becton Dickinson) 

and elaborated with Cell Quest software. 

 

2.12 Glucose uptake 

 

The Glucose uptake were performed in the medium of the HepG2 cell after 72h of 

treatment with 0, 0.5 and 1 µg of Citrus sinensis juice extract
[14]

. 

 

2.13 Lipid peroxidation assay 

 

Lipid peroxidation was evaluated using an analytical quantitative methodology. It 

relies upon the formation of a coloured adduct produced by the stechiometric 

reaction of aldehydes with thiobarbituric acid (TBA). The thiobarbituric acid 

reactive substances (TBARS) assay was performed on membranes extracted from 

cells, using an ice-cold lysis buffer (50 mM Tris, 150 mM NaCl, 10 mM EDTA, 

1% Triton) supplemented with a mixture of protease inhibitors. The chromogen 

(TBARS) was quantified by spectrophotometry at a wavelength of 532 nm. The 

amount of TBARS was expressed as mM⋅µg−1 proteins. All data are the mean ± 

SD of three experiments
[15]

. 

 

2.14 Digestion in vitro 

 

In order to assess the bioavailability following oral administration of the extract of 

Citrus sinensis, the following protocol was adopted: Salivary Phase: the sample 

was dissolved in 40 mL of H2O. Were added 6 mL of artificial saliva containing 3 

mg of α-amylase. The whole was placed on the plate at 37 °C under stirring for 3 

minutes. At the end of the phase of saliva were collected 10 mL of sample 
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(digested salivary) which were subsequently subjected to chromatographic 

analysis. Gastric phase: the remaining volume of the sample from step salivary was 

brought to an acid pH (pH = 2) by the addition of HCl 6 N. At the sample were 

added 10 mL of 0.1 N HCl in which they were previously dissolved 3 mg of 

pepsin. The whole was placed on the plate at 37 °C under stirring for 2 h. At the 

end of the gastric phase were collected 10 mL of sample (digested gastric) which 

were analyzed by HPLC. Intestinal phase: the residual volume of the sample 

coming from the gastric phase was added a dialysis membrane. The membrane was 

pre-washed internally and externally with a solution of 0.9% NaCl, and was then 

filled with 5.5 mL of 0.9% NaCl and with 5.5 mL of 0.5 M NaHCO3 it was left 

suspended in the solution of gastric digested for 20 minutes, at 37 °C on plate in 

agitation. Subsequently, by the addition of a few mL of a solution of 0.5 M 

NaHCO3, the solution pH was brought to 6.5 to reproduce the intestinal 

environment. Are added another 18 mL of 0.1N NaHCO3 in which were dissolved 

20 mg of pancreatin and 125 mg of bile salts. The whole was placed on the plate at 

37 °C under stirring for 2h. At the end of the intestinal phase were collected 10 mL 

of the sample solution from the intestinal phase (digested intestinal) and 10 mL 

from the dialysis membrane (fraction absorbed by the intestine) which were 

subsequently subjected to chromatographic analysis
[16]

. 

 

2.15 Statistical Analysis 

 

Data are reported as mean ± standard error mean (s.e.m.) values of at least three 

independent experiments, each in triplicate. Statistical analysis was performed by 

analysis of variance test, and multiple comparisons were made by Bonferroni’s test. 

A P-value less than 0.05 was considered as significant. 
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3. Results and discussions 

 

3.1 Identification of Flavonoids and Polymethoxyflavones 

 

Identification was carried out on the basis of standard retention time, UV spectra, 

and comparing MS/MS data with those present in literature
[17]

. Peaks 1 and 2 

showed a typical fragmentation pattern of C-glucosides along with the presence of 

two fragments at [M-H-120]
-
 (base peak) and [M-H-90]

-
 suggesting the loss of two 

hexose moieties (Figure 1). DAD spectra showed the flavanone nature of the 

aglycone of compounds 3 and 4, peak 3 showed a fragment at [M-H-326]
-
 due to 

the loss of sugar moiety, and was identified as neohesperidin, peak 4 showed a 

fragment with mass 287 and was recognized as eriocitrin, peak 5 and 6 were 

identified as isoquercitrin and narirutin, the latter with fragment at m/z 271 (base 

peak). Finally the most intense peak 8 was easily identified as hesperidin. Most 

retained compounds were identified as polymethoxyflavones, in this case positive 

electrospray ionization was performed. Most intense compounds were peaks 12-14-

17, showing fragments at m/z 312, 373 and 343, corresponding to the loss of 61 

amu [M+H-CH3-CO-H2O]
+
 and 30 amu [M+H-2CH3]

+
 respectively, and were 

identified as sinensetin and nobiletin and tangeretin. 
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Fig. 1: Chromatographic profile acquired by HPLC-DAD (280 nm) of flavonoids 

in Citrus sinensis extract. Peaks identified are: (1) vicenin-2; (2) lucenin-2 4’-

methyl ether; (3) neohesperidin; (4) eriocitrin; (5) isoquercitrin; (6) narirutin; (7) 

neodiosmin; (8) hesperidin; (9) didymin; (10) isosinensetin; (11) 

hexamethoxyflavone; (12) sinensetin; (13) hexamethoxyflavone (isomer); (14) 

nobiletin; (15) tetramethyl-o-isoscutellarein; (16) heptamethoxyflavone; (17) 

tangeretin; (18) hydroxypentamethoxyflavone; (19) 3-hydroxynobiletin. 

 

3.2 Quantitative Analysis of Citrus sinensis extract 

 

For the quantification of flavonoids, eight compounds were selected as external 

standards: diosmetin 6,8 di C-glucoside, neohesperidin, eriocitrin, isoquercetin, 

narirutin, diosmetin, hesperetin and tangeretin. Standard solutions (1 mg mL-1) 

were prepared in methanol, the calibration curves were obtained in a concentration 

range of 0.5-100 μg mL-1. The amount of the compounds in the sample was 

expressed as milligram per gram of extract (Table 1). 
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Table 1: Qualitative and quantitative profile of polyphenols from Citrus sinensis. 

 

       

Peak [M-H]- [M-H]+ MS2 m/z Regression Curve R2 
Citrus sinensis 

extract*  
Compound 

1 593.1518 − 353.0691 y = 1.2604E-06  x – 1.0047E-03  0.9981  49.11 ± 2.87 vicenin-2 

2 623.1628 − 383.0791 y = 1.2604E-06  x – 1.0047E-03 0.9981  32.77 ± 0.47 lucenin-2 4’-methyl ether 

3 609.1478 − 301.0382 y = 1.0012E-06  x – 2.2930E-03  0.9953  9.75 ± 2.97 neohesperidin 

4 595.1692 − 288.9530 y = 1.2657E-06   x – 2.3642 E-04  0.9962  5.86 ± 0.11 eriocitrin 

5 463.0890 − 301.0353 y = 8.9337E-07  x – 1.7211E-03  0.9983  4.06 ± 0.94 isoquercitrin 

6 579.1835 − 271.0636 y = 1.0043E-06  x – 3.2128E-04  0.9996  55.14 ± 1.97 narirutin 

7 607.1317 − 300.0320 y = 4.7437E-07  x + 1.5354E-04  0.9996  2.72 ± 0.62 neodiosmin 

8 609.1738 − 301.0736 y = 6.4061E-07  x – 1.9685E-03 0.9966  207.65 ± 1.77 hesperidin 

9 593.1895 − 285.0763 y = 6.4061E-07  x – 1.9685E-03 0.9966  3.55 ± 0.15 didymin 

10 − 373.1236 343.0805 y = 4.2086E-07  x + 9.9601E-04 0.9975  3.62 ± 1.25 isosinensetin 

11 − 403.1371 373.0918 y = 4.2086E-07  x + 9.9601E-04 0.9975  2.35 ± 0.97 hexamethoxyflavone 

12 − 373.1268 312.0990 y = 4.2086E-07  x + 9.9601E-04 0.9975  7.64 ± 0.99 sinensetin 

13 − 403.1362 373.0923 y = 4.2086E-07  x + 9.9601E-04 0.9975  2.66 ± 0.78 hexamethoxyflavone isomer 

14 − 403.1331 373.0936 y = 4.2086E-07  x + 9.9601E-04 0.9975  21.22 ± 1.15 nobiletin 

15 − 343.1166 282.0876 y = 4.2086E-07  x + 9.9601E-04 0.9975  2.82 ± 1.37 tetramethyl-o-isoscutellarein 

16 − 433.1472 403.1019 y = 4.2086E-07  x + 9.9601E-04 0.9975  4.06 ± 1.49 heptamethoxyflavone 

17 − 373.1238 343.0809 y = 4.2086E-07  x + 9.9601E-04 0.9975  5.54 ± 0.79 tangeretin 

18 − 389.1215 359.0741 y = 4.2086E-07  x + 9.9601E-04 0.9975  − hydroxypentamethoxyflavone 

19 − 419.1318 389.0866 y = 4.2086E-07  x + 9.9601E-04  0.9975  − 3-hydroxynobiletin 
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3.3 Citrus sinensis extract reduces LPS-induced NO, iNOS, COX-2 and TNF-α in 

J774A.1 macrophages 

 

To asses if Citrus sinensis influences NO production, we measured NO2
-
 release, a 

stable end-product of NO, in cellular medium of J774A.1 macrophage stimulated 

with Citrus sinensis extract (250-10 µg/mL) alone or in combination with LPS 

(1µg/ml). LPS induced in macrophages a marked increase in NO release; Citrus 

sinensis extract significantly reduced NO release (250-25 µg/mL; P<0.01 vs LPS 

alone; Figure 2 panel A). Interestingly, Citrus sinensis extract when added after 

LPS also inhibited NO release by J774.A1 macrophages indicating its inhibitory 

effect both on the iNOS enzyme expression and on its activity at the higher 

concentrations (250-150 µg/mL; P<0.001 vs LPS alone; Figure 2 panel B). In the 

same experimental conditions LPS induces also a significant iNOS and COX-2 

expression in J774.A1 macrophage. When Citrus sinensis extract (250-10 µg/mL) 

was added to J774.A1 macrophages, 1h before and simultaneously with LPS, a 

significant and concentration-dependent reduction in iNOS expression was 

observed (P<0.05 vs LPS alone; Figure 2 panel C). Moreover, we evaluated the 

effect of Citrus sinensis extract on COX-2 expression. Our data show that, as well 

as for NO and iNOS, also COX-2 protein expression was significantly inhibited by 

Citrus sinensis juice extract (250-50 µg/mL; P<0.05 vs LPS alone; Figure 2 panel 

D). 

 

 

 

 

 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 100 - 
 

 

Figure 2: Effect of Citrus sinensis extract on NO release, evaluated as NO2
−
 (µM), 

by J774A.1 macrophages stimulated with LPS. (panel A) Citrus sinensis extract 

(250–10 μg/mL) was added to J774A.1 macrophages 1 h before and simultaneously 

with LPS (1 μg/mL) challenge for 24 h. (panel B) In order to verify the effect on 

iNOS activity, Citrus sinensis extract (250–10 μg/mL) was added to J774A.1 

macrophages 24 h after with LPS challenge and then co-exposed together for 

further 24 h. Values are expressed as % inhibition vs J774A.1 treated with LPS 

alone, *** denotes P<0.001 versus LPS alone. 
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Figure 2: Representative Western blot of iNOS expression (upper panel C) and 

densitometric analysis of the concentration dependent effect of Citrus sinensis 

extract (250-10 μg/mL) on LPS-induced iNOS expression in J774.A1 macrophages 

(lower panel C). Citrus sinensis extract (250–10 μg/mL) was added to J774A.1 

macrophages 1 h before and simultaneously with LPS (1 μg/mL) challenge for 24 

h. Representative Western blot of COX-2 expression (upper panel D). 

Densitometric analysis of the concentration dependent effect of Citrus sinensis 

extract (250–100 μg/mL) on LPS-induced COX-2 expression in J774.A1 

macrophages (lower panel D). Citrus sinensis extract (250–10 μg/mL) was added 

to J774A.1 macrophages 1 h before and simultaneously with LPS challenge for 24 

h. Values, mean ± s.e.m., are expressed as arbitrary densitometric units, °°° 

denotes P<0.001 vs control;***, ** and * denote P<0.001, P<0.01, P<0.05 

respectively versus J774A.1 macrophages treated with LPS alone. 
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LPS induced a significant induction in TNF-α levels in J774A.1 macrophage. This 

release was significantly reduced by Citrus sinensis extract added to cells 1 h 

before and simultaneously with LPS (P<0.05 vs LPS alone; Figure 3). 

 

 

 

Figure 3. Effect of Citrus sinensis juice extract on LPS–induced TNF-α production 

in J774A.1 macrophages. TNF-α production was measured in the medium of 

J774A.1 cells treated with Citrus sinensis juice extract (250–10 μg/mL) and LPS (1 

µg/mL) for 18 h by means of ELISA. Results are expressed as mean ± s.e.m., °°° 

denotes P<0.001 versus control; ***, ** and * denote P<0.001, P<0.01 and 

P<0.05 versus LPS alone. 

 

3.4 Citrus sinensis extract inhibits p65 NF-kB nuclear translocation in LPS-treated 

macrophages 

 

Following p65 phosphorylation, the free NF-κB dimers translocate into the nucleus 

and bind to specific sequences to regulate the downstream genes expression
[18]

. So 

we labelled p65 with a green fluorescence to track the influence of Citrus sinensis 

tested at two medium concentrations of Citrus sinensis extract (150-50 μg/mL) and 
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added 1h before LPS (1 μg/mL) on NF-κB translocation. As shown in Figure 4, 

NF-kB p65 nuclear translocation was increased after 15 minutes by LPS and was 

reduced by Citrus sinensis extract in J774A.1 treated macrophages compared to 

LPS alone. 

 

 

 

Figure 4: Effect of Citrus sinensis extract on LPS-induced p65 nuclear 

translocation in J774A.1 macrophages. Cells were treated with Citrus sinensis 

extract (150–50 μg/mL) for 1 h and then co-exposed to LPS (1 µg/mL) for 20 min 

and nuclear translocation of NF-kB p65 subunit was detected using 

immunofluorescence assay at confocal microscopy. Scale bar, 10µm. A 

representative image of three experiments was shown (panel A). Three-dimensional 

projection of Citrus sinensis extract on LPS-induced p65 nuclear translocation. 

Blue and green fluorescences indicate localization of nucleus (DAPI) and p65 

respectively (panel B). Analysis was performed by confocal laser scanning 

microscopy. 
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3.5 Antioxidant activity of Citrus sinensis juice extract 

 

To verify the effect of Citrus sinensis on ROS release in LPS-stimulated 

macrophages we evaluated intracellular ROS by incubating J774A.1 with Citrus 

sinensis extract (250-10 μg/mL), 1h before and simultaneously with LPS. After 24 

h LPS induced a significant increase of ROS release. Treatment with Citrus 

sinensis extract (250-10 μg/mL), reduced ROS production in macrophages 

(P<0.001 vs LPS alone; Figure 5 panel A).  

 

 

 

Figure 5: ROS formation was evaluated by means of the probe 2’,7’ 

dichlorofluorescein-diacetate (H2DCF-DA) in J774A.1 macrophages (panel A). 

Citrus sinensis extract (250–10 μg/mL) was added to J774A.1 macrophages 1 h 

before and simultaneously with LPS (1 μg/mL) stimulation for 24 h. Values, mean ± 

s.e.m., are expressed as mean fluorescence intensity; °°° denotes P<0.001 vs 

control;*** denotes P<0.001 respectively versus LPS-treated macrophages. 

3.6. Citrus sinensis juice extract induces the cytoprotective enzyme HO-1 in LPS-

treated J774A.1 macrophages 
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Considering the beneficial role of OH-1 in controlling various inflammatory 

mediators, we evaluated whether its expression was influenced by Citrus sinensis 

extract. OH-1 is expressed in J774A.1 macrophages at low levels in basal condition 

and was increased by LPS. Citrus sinensis extract further increased HO-1 enzyme 

expression in J774A.1 macrophages respect to LPS alone (P<0.01 vs LPS; Figure 5 

panel B). Moreover, MTT assay revealed that Citrus sinensis extract at all 

concentrations and time tested (24, 48 and 72 h) did not affect J774A.1 

macrophage viability. 

 

Figure 5: Representative Western blot of HO-1 enzyme expression (upper panel B). 

Densitometric analysis of the concentration dependent effect of Citrus sinensis 

extract (250–10 μg/mL) on LPS-induced OH-1 expression in J774.A1 macrophages 

(lower panel B). Citrus sinensis extract (250–10 μg/mL) was added to J774A.1 

macrophages 1 h before and simultaneously with LPS (1 μg/mL) stimulation for 24 

h.  
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3.7 Citrus sinensis induced antiproliferative effect of HepG2 cell lines 

 

The influence of Citrus sinensis juice extract on cell proliferation, oxidative stress 

and metabolism was evaluated in HepG2 hepatoma cells, a model system 

frequently used for metabolic study
[19]

. All experiments above were of the duration 

of 72 h. Citrus sinensis juice extract significantly inhibited proliferation of HepG2 

cell lines between 0.25-0.5 µg/mL range (Figure 6 panel A) and was not cytotoxic 

to the cells compared to the control (untreated cells). The antiproliferative activity 

exhibited by Citrus sinensis juice extract was not due to necrosis, since the amount 

of lactate dehydrogenase (LDH) released from cells incubated with the juices was 

not significantly different from that released from the control cells. The ability of 

Citrus sinensis juice extract to inhibit glucose uptake on HepG2 cell lines was 

tested. The results indicated that Citrus sinensis juice extract treatment of HepG2 

cells caused (Figure 6 panel B) a reduction of glucose uptake when compared with 

the control. The Citrus sinensis juice extract-treated HepG2 cell saw an almost 

fivefold increased in NO concentration compared to untreated cells (Figure 6 panel 

C), without the increase of iNOS expression, this results confirmed the antioxidant 

capacity of juice. Cells treated with with Citrus sinensis juice extract showed a 

twofold increase of lipid peroxide level (thiobarbituric acid-reactive substances, 

TBARS) compared to the untreated cells (Figure 6 panel D). 
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Figure 6. Effect of Citrus sinensis extract on HepG2 proliferation, glucose uptake, 

lipid peroxidation and Nitric Oxide. All evaluation were conducted after 72 h of 

Citrus sinensis extract treatment of Hepg2 cells. 

 

4. Discussion 

 

Citrus plants contain a large amount of flavonoids which, in recent years, has 

gained considerable attention especially for the large number of beneficial effects 

on human health including its anticancer, cardioprotective and anti-inflammatory 

properties
[20]

. Data showed that the mixture of phenolic compounds in Citrus 

sinensis juice extract has anti-inflammatory and antioxidant effects. In particular, 

our results provides evidence that Citrus sinensis extract reduces (1) NO release; 

(2) iNOS and COX-2 expression; (3) TNF-α release, (4) NF-κB nuclear 

translocation, (5) ROS release and (6) induce the cytoprotective HO-1 enzyme 

expression. Moreover Citrus sinensis extract induced antiproliferative effect of 

HepG2 cell lines. Macrophages activation by LPS triggers an inflammatory 

response, releasing pro-inflammatory mediators such as NO, iNOS, COX-2 and 
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ROS associated to mechanisms aimed to protect cell, as HO-1 enzyme expression. 

NO is a pleiotropic mediator that acts in a variety of physiological and 

pathophysiological processes. During inflammation, iNOS is significantly induced, 

and high amounts of NO are released to induce a non-specific immune response by 

macrophages. During inflammation NO, in addition to being a ‘final common 

mediator’ of this process, is essential for inflammatory response up-regulation. In 

our experiments, LPS induced in J774A.1 macrophages a marked increase both in 

NO release and in iNOS expression; Citrus sinensis extract significantly reduced 

NO release and iNOS expression. Interestingly, also when the extract was added 

after LPS, it inhibited NO release by J774.A1 macrophages indicating its inhibitory 

effect both on the iNOS enzyme expression and on its activity. An interaction 

between iNOS and COX pathway modulates inflammatory response. COX-2 is a 

well known pro-inflammatory enzyme triggered by LPS, it regulates macrophage 

response during inflammation and its expression was also influenced by NO
[21]

. 

The risults show that, as for NO and iNOS, also COX-2 expression was 

significantly inhibited by Citrus sinensis extract, thus further contributing to the 

reduction of LPS inflammatory response in J774A.1 macrophages. TNF-α is a 

cytokine elevated in sepsis and its production is tightly dependent both on NF-kB 

activation and ROS levels. Moreover, TNF-α itself induces iNOS expression and 

large amounts of NO production
[22]

. In our experimental model Citrus sinensis 

juice extract significantly reduced TNF-α release, thus contributing to the reduction 

of inflammatory response also by pro-inflammatory cytokine release inhibition. 

LPS is known to activate the pro-inflammatory transcription factor NF-kB, also 

regulated via a number of second messengers, including ROS
[23]

. NF-kB regulates 

immune responses, also with pro-inflammatory enzyme production (e.g. iNOS, 

COX-2), antigen presentation, pattern recognition and phagocytosis. After p65 NF-

kB subunit phosphorylation, the free NF-κB dimers translocate into the nucleus and 

bind to specific sequences to regulate the downstream genes expression
[18]

. Our 
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evidence indicates that in the presence of LPS Citrus sinensis juice inhibits the 

phosphorylation and p65 subunits nuclear translocation, thus reducing NF-kB 

activity in J774A.1 macrophages. These results indicate an activity of Citrus 

sinensis on the early steps of inflammatory response. As NO, ROS generation in 

the inflammatory response is induced as a defensive reaction intended to clear 

infectious stimulus. On the other hand, ROS activation could also have an adverse 

effect on abnormal inflammatory disease. Treatment with Citrus sinensis reduced 

ROS production in macrophages, thus indicating its antioxidant effects. In order to 

protect themselves against inflammatory and oxidative injury, cells such as 

macrophages, up-regulates some defence mechanisms as HO-1 expression. HO-1 is 

the rate-limiting enzyme in heme degradation and catalyzes heme oxidation to 

generate several biologically active molecules (e.g. carbon monoxide (CO), 

biliverdin, and ferrous ion;
[24]

. HO-1 generates antioxidants such as bilirubin, 

which can inhibit iNOS protein induction and suppress NO production, can also 

contribute to increase the cellular anti-oxidant status
[25]

. In addition CO, a major 

product of HO-1 activity, was shown to inhibit COX-2 expression and iNOS 

enzymatic activity, thus contributing to the reduction of inflammatory state
[26]

. HO-

1 is generally low expressed in most tissues/organs. Despite this, HO-1 is highly 

inducible in response to a variety of stimuli, as LPS, to protect cells against 

oxidative and inflammatory injury
[24]

. Considering the beneficial role of OH-1 in 

controlling various inflammatory mediators, we evaluated whether its expression 

was modulated by Citrus sinensis extract. Expressed in J774A.1 macrophages at 

low levels in basal condition OH-1 resulted increased by LPS and Citrus sinensis 

extract further increased HO-1 enzyme expression in J774A.1 macrophages. Thus, 

during LPS-induced inflammation in macrophages Citrus sinensis juice if on the 

one hand inhibits pro-inflammatory mediators, on the other stimulates a 

cytoprotective response. Flavonoids have been found to possess beneficial effects 

on health and have drawn attention because of their safety and increasing evidence 
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of their antidiabetic effects in animals and humans
[27]

. The liver plays a critical role 

in maintaining blood glucose concentration both through its ability to supply 

glucose to the circulation via glycogenolysis and gluconeogenesis in the post-

absorptive state and to remove glucose from the circulation after meal ingestion
[28]

. 

Malignant cells have been shown to have high levels of glucose transporters 

associated to an enhanced rate of glycolysis. Glucose depletion decreased NO level 

and the presence of a NO donor protected against glucose depletion–induced 

cytotoxicity by modulation of mitochondrial biogenesis and function in hepatoma 

cells. In our experimental condition we showed that the antioxidant activity of 

Citrus sinensis juice increases the levels of free NO and protects against 

cytotoxicity induced by glucose deprivation. Under the glucose depletion 

condition, cancer cells can obtain energy supply using alternative energy substrates 

such as fatty acids for β-oxidation. The increase of lipid peroxidation in the Citrus 

sinensis juice extract-treated cells is probably due to the increase in fatty acid β-

oxidation. Among the major Citrus sinensis juice constituents were flavonones as 

hesperidin, narirutin, vicenin-2 and polymethoxyflavones as nobiletin. Previous 

studies reported the anti-inflammatory and antioxidant activity of hesperidin and of 

narirutin in macrophage
[29,30] 

and also nobiletin has been reported to have anti-

inflammatory activity and to suppress gene expression of IL-1, TNF-α in mouse 

J774A.1 macrophages
[31]

. Moreover, nobiletin also suppressed the expression of 

COX-2, NF-κB dependent transcription
[32]

. The presence of these compounds and 

their potential additive/synergic pharmacological activity in Citrus sinensis juice 

highlights its antinflammatory, antioxidant and hypoglycaemic potential. 
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4.1 Simulated digestion of the extract of Citrus sinensis 

 

Figures 7-10 show the different chromatographic profiles flavonoid extract juice 

Citrus sinensis, respectively digestion salivary, gastric, intestinal and dialysis. From 

the simple comparison of the retention times of the four chromatograms, it denotes 

an identical qualitative profile of polyphenols, emphasizing resistance to hydrolytic 

processes that the matrix undergoes after oral administration. 

 

 

Figure 7: Salivary phase flavonoid extract of Citrus sinensis. 
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Figure 8: Gastric phase flavonoid extract of Citrus sinensis. 

 

 

 

Figure 9: Intestinal phase flavonoid extract of Citrus sinensis. 

 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 113 - 
 

 

Figure 10: Dialysis phase flavonoid extract of Citrus sinensis. 

 

Table 2 shows the concentration of the different analytes identified in the extract of 

Citrus sinensis, in the different steps of the simulated digestion. 

 

Table 2: Quantitative analysis of the extract of Citrus sinensis flavonoid following 

simulated digestion in vitro. 

  

Salivary Gastric Intestinal Dialysis Compound 

36.86 ± 0.42 34.38 ± 0.20 8.01 ± 0.13 2.53 ± 0.01 Vicenin-2 

26.24 ± 0.80 24.58 ± 0.29 4.65 ± 0.12 1.71 ± 0.02 Lucenin-2 4’-methyl ether 

8.31 ± 0.88 7.81 ± 0.04 1.98 ± 0.10 0.95 ± 0.08 Neohesperidin 

5.27 ± 0.07 4.98 ± 0.12 1.31 ± 0.12 0.57 ± 0.02 Eriocitrin 

4.02 ± 0.45 3.57 ± 0.08 0.76 ± 0.09 0.36 ± 0.01 Isoquercitrin 

43.01 ± 0.93 40.25 ± 0.55 13.34 ± 1.62 2.93 ± 0.09 Narirutin 

2.26 ± 0.24 2.15 ± 0.05 0.55 ± 0.02 0.26 ± 0.03 Neodiosmin 

184.81 ± 2.76 176.51 ± 1.05 30.94 ± 3.49 10.73 ± 0.07 Hesperidin 
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3.37 ± 0.07 3.12 ± 0.20 0.71 ± 0.13 0.31 ± 0.03 Didymin 

2.79 ± 0.21 2.64 ± 0.03 1.81 ± 0.13 1.64 ± 0.02 Isosinensetin 

0.96 ± 0.09 − − − Hexamethoxyflavon 

6.42 ± 0.60 6.03 ± 0.28 3.96 ± 0.23 3.57 ± 0.04 Sinensetin 

− − − − Hexametoxyflavon isomer 

21.04 ± 0.31 20.12 ± 0.71 11.51 ± 0.72 9.42 ± 0.05 Nobiletin 

2.40 ± 0.10 1.98 ± 0.03 − − Tetramethyl-o-isoscutellarein 

3.75 ± 0.54 2.24  ± 0.06 0.85± 0.04 − Heptamethoxyflavon 

4.26 ± 0.66 2.93 ± 0.01 0.74 ± 0.04 − Tangeretin 

− − − − Hydroxypentamethoxyflavon 

− − − − 3-hydroxynobiletin 

 

The data shows a gradual decrease in the concentration of flavonoids present in the 

extract of sweet orange. On average, the concentrations of flavonoids extract of 

Citrus sinensis during digestion salivary
[33]

 were found to be between 75.1% and 

99.2% compared to the extract as received, indicating good stability of the analytes 

to the biochemical conditions of oral cavity (Table 2). The oral mucosa can 

promote the bioavailability of a wide range of both polar and hydrophobic 

compounds, allowing to quickly reach the blood circulation by-passing the 

gastrointestinal system. Also, since most of the nutrients are gastro-sensitive and 

are poorly absorbed in the intestinal tract, salivary extraction and absorption 

through the epithelium of the oral mucosa would allow to target bioactive 

compounds to specific tissues and organs without being degraded by digestion 

gastrointestinal or be excreted in the feces. The gastric phase
[34]

 (Table 2) revealed 

a good stability of the flavonoids at the acidic pH of the stomach. The flavonoid 

glycoside were quite resistant to acid hydrolysis and thus are able to reach the gut 

in intact form without generating the corresponding aglyconic molecules
[35]

. The 

experimental results obtained have confirmed that the degradation of flavonoids 
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occurs especially in the intestine
[36]

. On average, there was a loss of 48.2% and 

85.8% of native flavonoid pattern after digestion pancreatic
[37]

 (Figure 11). The 

bioavailability of flavonoids of the extract of Citrus sinensis was assessed using 

monolayers of Caco-2 cells as a model of absorption of the small intestine
[37,38]

. 

The data reported in Table 2 showed a bioavailability in the range of 5.17 to 9.78% 

for the Neohesperidine, Eriocitrin, Narirutin, Neodiosmina, Hesperidin and 

Didymin. Instead, for the glycosidic flavonoids, such as Vicenin-2, Lucenina-2,4'-

methyl ether and Isoquercetrin, the bioavailability was determined respectively 

5.16%, 5.18% and 8.94%. 

 

 

 

Figure 11: Comparison quantity flavonoids extract of Citrus sinensis following 

simulated digestion in vitro. 
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5. Conclusions 

 

Although further studies will be necessary to evaluate the specific contribute of 

single flavonols to the antioxidant and antinflammatory effects of Citrus sinensis 

juice on J774A.1 macrophages, we should consider the potential additive/synergic 

pharmacological activity of its constituents due to the contemporary presence of all 

of them together. Since the evaluated parameters in this study are critical mediators 

in inflammation and oxidative stress our evidences supported that the mixture of 

compounds contained in Citrus sinensis juice might have beneficial implication in 

the reduction of inflammatory conditions. The results obtained following the 

gastrointestinal digestion indicate a moderate permeation of flavonoids of the sweet 

and consequently an accumulation of intestinal polyphenols. Such molecules may 

exert an important local action by protecting the intestine by the action of oxidizing 

agents responsible for the onset of various pathological conditions (inflammation 

and tumors). 

 

6. References 

 

[1]
 Manthey, J.A., Grohmann, K., & Guthrie, N. Biological properties of citrus 

flavonoids pertaining to cancer and inflammation, Current Medicinal Chemistry, 

2001, 8, 135-153. 

[2]
 Benavente-Garcia, O., Castillo, J., Sabater, F., & Del Rio, J.A. Characterization 

of a S-adenosyl-L-methionine: Eriodictyol 4'-O-methyltransferase from Citrus 

aurantium. Developmental- Changes in the Levels of 4'-O-Methoxyflavonoids and 

S-Adenosyl- L-Methionine  Eriodictyol 4'-O-Methyltransferase Activity, Plant 

Physiology Biochemistry, 1995, 33, 263-271. 

[3]
 Shiloh, M.U., Macmicking, J.D., Nicholson, S., Brause, J.E., Potter, S., Marino, 

M., Fang, F., Dinauer, M., & Nathan, C. Phenotype of mice and macrophages 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 117 - 
 

deficient in both phagocyte oxidase and inducible nitric oxide synthase, Immunity, 

1999, 10, 29-38. 

[4]
 Baeuerle, P.A. IkappaB-NF-kappaB structures: at the interface of inflammation 

control, Cell, 1998, 95, 729-731. 

[5]
 Popolo, A., Autore, G., Pinto, A., & Marzocco, S. Oxidative stress in patients 

with cardiovascular disease and chronic renal failure, Free Radical Research, 2013, 

47(5), 346–356. 

[6]
 Braca, A., Dal Piaz, F., Marzocco, S., Autore, G., Vassallo, A., & De Tommasi, 

N. Triterpene derivatives as inhibitors of protein involved in the inflammatory 

process: Molecules interfering with phospholipase A(2), cycloxygenase, and 

lipoxygenase, Current Drug Targets, 2011, 12(3), 302–321. 

[7]
 Huang, M., Lu, J. J., Huang, M. Q., Bao, J. L., Chen, X. P., & Wang, Y.T. 

Terpenoids: Natural products for cancer therapy, Expert Opinion on Investigational 

Drugs, 2012, 21(12), 1801–1818. 

[8]
 Ben Jemia, M., Kchouk, M.E., Senatore, F., Autore, G., Marzocco, S., De Feo, 

V., & Bruno, M. Antiproliferative activity of hexane extract from Tunisian Cistus 

libanotis, Cistus monspeliensis and Cistus villosus, Chemistry Central Journal, 

2013, 7, 47. 

[9]
 Adesso, S., Popolo, A., Bianco, G., Sorrentino, R., Pinto, A., Autore, G., & 

Marzocco, S. The uremic toxin indoxyl sulphate enhances macrophage response to 

LPS, PLoS One, 2013, 8(9), 776–778. 

[10]
 Marzocco, S., Russo, R., Bianco, G., Autore, G., & Severino, L. Pro-apoptotic 

effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine 

macrophages, Toxicology Letters, 2009, 189 21-26. 

[11]
 Cianchi, F., Cuzzocrea, S., Vinci, M.C., Messerini, L., Comin, C.E., Navarra, 

G., Perigli, G., Centorrino, T., Marzocco, S., Lenzi, E., Battisti, N., Trallori, G., & 

Masini, E. Heterogeneous expression of cyclooxygenase-2 and inducible nitric 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 118 - 
 

oxide synthase within colorectal tumors: correlation with tumor angiogenesis, 

Digestive and Liver Disease, 2010, 42, 20-27. 

[12]
 Sommella, E., Pepe, G., Pagano, F., Tenore, G.C., Marzocco, S., Manfra, M., 

Calabrese, G., Aquino, R.P., & Campiglia, P. UHPLC profiling and effects on 

LPS-stimulated J774A.1 macrophages of flavonoids from bergamot (Citrus 

bergamia) juice, an underestimated waste product with high anti-inflammatory 

potential, Journal of Functional Foods, 2014, 7, 641-649. 

[13]
 Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G.C., Scopa, A., 

Sofo, A., Marzocco, S., Adesso, S., Novellino, T., & Campiglia, P. Evaluation of 

anti-inflammatory activity and fast UHPLC–DAD–IT-TOF profiling of 

polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. 

Maravilla de Verano), Food Chemistry, 2015, 16, 153-161. 

[14]
 Tenore, G.C., Campiglia, P., Stiuso, P., Ritieni, A., & Novellino, E. 

Nutraceutical potential of polyphenolic fractions from Annurca apple (M. pumila 

Miller cv Annurca), Food Chemistry, 2013, 140, 614-622. 

[15]
 Gomez-Monterrey, I., Campiglia, P., Bertamino, A., Aquino, C., Sala, M., 

Grieco, P., Dicitore, A., Vanacore, D., Porta, A., Maresca, B., Novellino, E., & 

Stiuso, P. A novel quinone-based derivative (DTNQ-Pro) induces apoptotic death 

via modulation of heat shock protein expression in Caco-2 cells, British Journal 

Pharmacology, 2010, 160, 931-940. 

[16]
 Raiola, A., Meca, G., Mañes, J., & Ritieni, A. Bioaccessibility of 

Deoxynivalenol and its natural co-occurrence with Ochratoxin A and Aflatoxin B1 

in Italian commercial pasta, Food and Chemical Toxicology, 2012, 50, 280–287. 

[17]
 Kwang-Il, P., Hyeon-Soo, P., Mun-Ki, K., Gyeong-Eun, H., Arulkumar, N., 

Ho-Jeong, L., Silvia, Y., Won-Sup, L., Chung-Kil, W., Sung-Chul, S., & Gon-Sup, 

K. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell 

Lung Cancer growth in vivo and in vitro, Journal of Functional Foods, 2014, 7, 

287-297. 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 119 - 
 

[18]
 Tak, P.P., & Firestein, G.S. NF-kappaB: a key role in inflammatory diseases, 

Journal of Clinical Investigation, 2001, 107, 7-11. 

[19]
 Brandon, E.F., Bosch, T.M., Deenen, M.J., Levink, R., van der Wal, E., van 

Meerveld, J.B., Bijl, M., Beijnen, J.H., Schellens, J.H., & Meijerman, I. Validation 

of in vitro cell models used in drug metabolism and transport studies: genotyping 

of cytochrome P450, phase II enzymes and drug transporters polymorphisms in the 

human hepatoma (HepG2), ovarian carcinoma (IGROV- 1) and colon carcinoma 

(CaCo-2, LS180) cell lines, Toxicology and Applied Pharmacology, 2006, 211, 1-

10. 

[20] 
Li, X., & Kushad, M.M. Correlation of glucosinolates content to myrosinase 

activity in horseradish (Armoracia rusticana), Jounal of Agricultural and Food 

Chemistry, 2004, 52, 6950-6955. 

[21] 
Ahmad, N., Chen, L.C., Gordon, M.A., Laskin, J.D., & Laskin, D.L. Regulation 

of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute 

endotoxemia, Journal of Leukocyte Biology, 2002, 71, 1005-1011. 

[22]
 Thiemermann, C., Wu, C.C., Szabó, C., Perretti, M., & Vane, J.R. Role of 

tumour necrosis factor in the induction of nitric oxide synthase in a rat model of 

endotoxin shock, British Journal of Pharmacology, 1993, 110, 177-182. 

[23]
 Brown, D.M., Donaldson, K., Borm, P.J., Schins, R.P., Dehnhardt, M., 

Gilmour, P., Jimenez, L.A., & Stone, V. Calcium and ROS-mediated activation of 

transcription factors and TNF-alpha cytokine gene expression in macrophages 

exposed to ultrafine particles, American Journal of Physiology - Lung Cellular and 

Molecular Physiology, 2004, 286, 344-353. 

[24] 
Wu, M.L., Ho, Y.C., Lin, C.Y., & Yet, S.F. Heme oxygenase-1 in inflammation 

and cardiovascular disease, American Journal of Cardiovascular Disease, 2011, 1, 

150-158. 

[25]
 Wang, W.W., Smith, D.L., & Zucker, S.D. Bilirubin inhibits iNOS expression 

and NO production in response to endotoxin in rats, Hepatology 2004, 40, 424-433. 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 120 - 
 

[26]
 Thorup, C., Jones, C.L., Gross, S.S., Moore, L.C., & Goligorsky, M.S. Carbon 

monoxide induces vasodilation and nitric oxide release but suppresses endothelial 

NOS, American Journal of Physiology, 1999, 277, F882-889. 

[27]
 Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., 

Mykkänen, H., & Poutanen, K. Impact of dietary polyphenols on carbohydrate 

metabolism, International Journal of Molecular Sciences, 2010, 11, 1365-1402. 

[28]
 Klover, P.J., & Mooney, R.A. Hepatocytes: critical for glucose homeostasis, 

The International Journal of Biochemistry & Cell Biology, 2004, 36, 753-758. 

[29]
 Ha, S.K., Park, H.Y., Eom, H., Lim, Y., & Choi, I. Narirutin fraction from 

citrus peels attenuates LPS-stimulated inflammatory response through inhibition of 

NF-κB and MAPKs activation, Food and Chemical Toxicology, 2012, 50, 3498-

3504. 

[30]
 Hirata, A., Murakam, Y., Shoji, M., Kadoma, Y., & Fujisawa, S. Kinetics of 

radical-scavenging activity of hesperetin and hesperidin and their inhibitory 

activity on COX-2 expression, Anticancer Research, 2005, 25, 3367-3374. 

[31]
 Lin, N., Sato, T., Takayama, Y., Mimaki, Y., Sashida, Y., Yano, M., & Ito, A. 

Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on 

human synovial fibroblasts and mouse macrophages, Biochemical Pharmacology, 

2003, 65, 2065-2071. 

[32]
 Harada, S., Tominari, T., Matsumoto, C., Hirata, M., Takita, M., Inada, M., & 

Miyaura, C. Nobiletin, a polymethoxy flavonoid, suppresses bone resorption by 

inhibiting NFκB-dependent prostaglandin E synthesis in osteoblasts and prevents 

bone loss due to estrogen deficiency, Journal of Pharmacological Sciences, 2011, 

115, 89-93. 

[33]
 Gonçalves, R., Mateus, N., & de Freitas, V. Inhibition of a-amylase activity by 

condensed tannins, Food Chemistry, 2011, 125, 665–672. 



Chapter IV: Flavonoids from Citrus sinensis extract: anti-inflammatory and hypoglycemic 

evaluation 

 

- 121 - 
 

[34]
 Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. Polyphenols: 

Food sources and bioavailability, American Journal of Clinical Nutrition, 2004, 79, 

727–747. 

[35]
 Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. Bioaccessible and 

dialysable polyphenols in selected apple varieties following in vitro digestion vs. 

their native patterns, Food Chemistry, 2012, 131, 1466–1472. 

[36]
 Zhu, Q. Y., Holt, R. R., Lazarus, S. A., Ensunsa, J. L., Hammerstone, J. F., 

Schmitz, H. H., et al. Stability of the flavan-3-ols epicatechin and catechin and 

related dimeric procyanidins derived from cocoa, Journal of Agricultural and Food 

Chemistry, 2002, 50, 1700–1705. 

[37]
 Bouayed, J., Hoffmann, L., & Bohn, T. Total phenolics, flavonoids, 

anthocyanins and antioxidant activity following simulated gastro-intestinal 

digestion and dialysis of apple varieties: Bioaccessibility and potential uptake, 

Food Chemistry, 2011, 128, 14–21. 

[38]
 Déprez, S., Mila, I., Huneau, J.-F., Tomé, D., & Scalbert, A. Transport of 

proanthocyanidin dimer, trimer and polymer across monolayers of human intestinal 

epithelial Caco-2 cells, Antioxidants and Redox Signaling, 2001, 3, 957–967. 

 



 



 

 

- 122 - 
 

 

 

 

 

 

 

 

 

 

CHAPTER V  

 

 

Beyond the skin of Annurca apple: An in depth analytical 

investigation of polyphenolic fingerprint 

 

 

 

 

 

 

 

 

 

 

 

 



 



Chapter V: Beyond the skin of Annurca apple: An in depth analytical investigation of polyphenolic 

fingerprint 

 

- 123 - 
 

Abstract Annurca apple, a Southern Italian cultivar, possesses not only a particular 

taste and flavor, different from other types of apple, but also several healthy 

properties. With the aim to thoroughly elucidate the polyphenolic profile of this 

variety, listed as Protected Geographical Indication product, an extensive 

qualitative profiling of Annurca apple polyphenolic extract was carried out, by 

employing a combination of ultra high performance reversed phase (RP-UHPLC) 

and hydrophilic liquid chromatography (HILIC) coupled to ion trap-time of flight 

(IT-TOF) mass spectrometry. A total of 67 compounds were tentatively identified, 

some not reported so far, comprising of dihydrochalcones, hydroxycinnamic acids, 

flavonols, anthocyanins and procyanidins. Furthermore, thanks to the different 

selectivity obtained with the HILIC, in combination with accurate mass 

measurements, an improved separation and detection of procyanidins, was 

obtained. The presence of oligomers above degree of polimerization six, up to ten, 

was highlighted in detail for the first time in this kind. 

 

Keywords : Annurca, profiling, HILIC, IT-TOF, Polyphenols 

 

1. Introduction 

 

There is an increasing interest in polyphenolic compounds, due to their claimed 

healthy activity, such as anticancer
[1]

, antioxidant, anti-inflammatory
[2]

 and 

hypoglycaemic effects
[3]

. These compounds are more often included in 

nutraceutical formulations and functional foods, which are usually based on fruits 

or vegetables extracts, characterized by high polyphenolic content. Among widely 

consumed fruits, apple is one of the most important source of polyphenols in diet, 

and historically is considered a “healthy” food, since his regular consumption has 

been associated with lower onset of cardiovascular diseases
[4]

 and different type of 

cancer
[5]

. Apples contain a wide variety of polyphenolic classes: hydroxycinnamic 
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acids, dihydrochalcones, flavonols, anthocyanins, and flavan-3-ols. Usually the 

peel contains the highest concentration of these bioactive compounds, with respect 

to flesh and core
[6]
. Within the different classes of apples, “Annurca” is a typical 

cultivar of Southern Italy, in particular of Campania region, and has been listed as a 

Protected Geographical Indication (IGP) product from the European Council 

[Commission Regulation (EC) No. 417/2006]. It is characterized from a crispy 

flesh and a fragrant flavor
[7]

, the high acid/sugar ratio gives a different taste from 

other types of apples. This cultivar is subjected to a particular reddening treatment, 

with controlled exposure to sun and temperature
[8]

. Many biological activities have 

been reported for the “Annurca” polyphenolic extract, such as: antioxidant
[9]

 

anticancer
[10]

 and hypoglycaemic
[11]

. Since apple extracts are often employed in 

nutraceutical products, it is important to possess a deep knowledge of their 

polyphenolic profile. In this regard, from an analytical perspective, the most 

popular technique to elucidate polyphenolic profile in natural products is high 

performance liquid chromatography (HPLC) coupled with diode array detection 

(DAD), and especially with mass spectrometry (MS)
[12]

. Very recently, ultra high 

performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight 

(Q-TOF) mass spectrometry have been reported for polyphenolic profiling of apple 

pomace and juices
[13]

 showing superior resolution with respect to conventional 

HPLC methods, and leading to the identification of 52 compounds in a very short 

run. Regarding the composition of Annurca apple, few methods have been 

reported
[14,15]

 carried out by employing C18 columns packed with conventional 

particles, coupled to low resolution MS instrumentations, such as ion trap (IT) and 

triple quadrupole (QqQ), and recently UHPLC with diode array detector 

(DAD)
[16]

.The employment of high resolution mass spectrometers, capable of 

higher mass accuracy in both MS and tandem MS (MS/MS) stages is very helpful, 

for structure elucidation and identification of polyphenols
[17,18]

. Furthermore, in 

these matrices, particularly challenging is the separation of condensed tannins or 
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proanthocyanidins, a class of phenols composed of flavan-3-ol monomeric units 

joined through interflavanoid linkages, divided into various subclasses with 

procyanidins, based on (epi)catechin units, and prodelphinidins, comprising 

(epi)gallocatechin units. Monomers are frequently linked through C4→C6 or C4→

C8 bonds (B-type), or, more rarely, a second bond can occurs from oxidative 

coupling of C2→ O7 to form A-type oligomers. This class of compounds, 

especially those with high degree of polymerization (DP), tend co-elute in reversed 

phase liquid chromatography (RP-LC) in an unresolved “hump”
[19]

 which hamper 

their resolution and detection. Although UHPLC conditions, using sub-2 μm 

particle C18 columns, improve the resolution of procyanidins
[20]

, the separation of 

complex mixtures, containing both polymerized procyanidins and other 

polyphenolic molecules, still remains a challenge. A valid option, for procyanidins 

separation, is represented by normal phase liquid chromatography (NP-LC)
[19]

, and 

recently, by hydrophilic liquid chromatography (HILIC) as reported for cocoa 

procyanidins
[21,22]

, even if these techniques are not capable of resolve isomers. In 

HILIC, a polar stationary phase is used in combination with aqueous mobile phase 

in order to separate analytes according to polarity. The probable retention 

mechanism involve partitioning of analytes between the mobile phase and a water-

layer immobilized on the stationary phase
[23]

. During my PhD focused on a 

combined approach, based on ultra high performance reversed phase and 

hydrophilic liquid chromatography, has been developed for the detailed qualitative 

profiling of Annurca apple polyphenols. Both separation techniques were 

hyphenated with diode array detection (DAD) and with a hybrid ion trap-time of 

flight (IT-TOF) mass spectrometer. Good separation of flavonols, 

hydroxycinnamic acids and dihydrochalcones, was obtained in reversed phase, 

furthermore HILIC separation improved the resolution and detection of 

procyanidins, thanks to a different separation mechanism, and to the increased 
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sensitivity of electrospray (ESI) detection, due to the highly organic mobile phases 

used in HILIC. In this way the presence of oligomers above DP 6 up to DP 10 was 

described in detail for the first time in the Annurca extract. Was carried out a first 

comprehensive qualitative profiling of Annurca apple polyphenols, a total of 67 

compounds were tentatively identified, marking an improvement in comparison 

with respect to previous observations, and representing a valid tool for the 

polyphenolic fingerprinting of apple extracts. 

 

2. Materials and methods 

 

2.1 Chemicals 

 

Ultra pure water (H2O) was obtained by a Milli-Q system (Millipore, Milan, Italy). 

The following chemicals have been all purchased from Sigma Aldrich (Milan, 

Italy) acetonitrile (ACN), and acetic acid LC-MS grade (CH3COOH), methanol 

and hydrochloric acid (HCl). Unless stated otherwise all other reagents employed 

in the experimental sections below have been purchased from Sigma Aldrich. Two 

different columns were employed in this work: a Kinetex C18 150 × 2.1 mm, 2.6 

μm (Phenomenex, Bologna, Italy) for the RP-UHPLC analysis, and a Luna HILIC 

150 × 2.0 mm, 3.0 μm (Phenomenex), for the HILIC analysis. 

 

2.2 Fruit collection and sample preparation 

 

Annurca (Malus pumila Miller cv Annurca) apple fruits were acquired in a local 

store in Fisciano (SA, Campania, Italy). Fresh peels and flesh (10 g) of apple 

samples were homogenized by using an IKA Ultra-Turrax T-25 tissue homogenizer 

(IKA works Inc., Wilmington, NC, USA) and extracted in 30 mL methanol/water 

(80:20) with 0.1% HCOOH for 1 h at room temperature to extract phenolic 
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compounds. The mixture was centrifuged and the supernatants collected and 

filtered through 0.45 µm nylon membrane filters and injected for LC-MS analysis. 

 

2.3 Instrumentation  

 

RP-UHPLC and HILIC analyses were both performed on a Shimadzu Nexera 

UHPLC system (Shimadzu, Milano, Italy), consisting of a CBM-20A controller, 

four LC-30AD dual-plunger parallel-flow pumps, a DGU-20 A5 degasser, an SPD-

M20A photo diode array detector (equipped with a semi-micro flow cell of 2.5 μL), 

a CTO-20A column oven, a SIL-30AC autosampler. The UHPLC system was 

coupled online to an LCMS–IT-TOF hybrid mass spectrometer through an ESI 

source (Shimadzu, Kyoto, Japan). LC-MS data elaboration was performed by the 

LCMSsolution® software (Version 3.50.346, Shimadzu). 

 

2.4 RP-UHPLC and HILIC-PDA-ESI-IT-TOF conditions 

 

For reversed phase ultra high performance liquid chromatography analyses the 

mobile phase employed was (A): 0.1% CH3COOH in water v/v, (B) 0.1% 

CH3COOH in ACN v/v, analysis was performed in gradient elution as follows: 0-5 

min, 0-10 % B, 5-20 min, 10-20% B, 20-25 min, 20-50 % B, 25-26 min, 50-70 % 

B, 26-27 min, 70-95 % B. Flow rate was set at 0.5 mL/min. Column oven 

temperature was set to 40 °C. 2 μL of Annurca extract were injected. For the 

HILIC analyses the mobile phase employed was: (A) 0.1% CH3COOH in 

water/ACN: 80W/20ACN, (B) ACN plus 0.1% CH3COOH, analysis was 

performed in gradient elution as follows: 0-4 min, isocratic at 100% B, 4-60 min, 

100-40 % B. Column oven temperature was set to 25 °C. 1 μL of extract was 

injected. The following PDA parameters were applied: sampling rate, 12.5 Hz; 

detector time constant, 0.160 s; cell temperature, 40 °C. Data acquisition was set in 
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the range 190-500 nm and chromatograms were monitored at 280 and 320 nm at 

the maximum absorbance of the compounds of interest. UHPLC system was 

coupled on-line to a hybrid IT-TOF instrument, in RP-UHPLC flow rate from LC 

was split 50:50 prior of the electrospray (ESI) source by means of a stainless steel 

Tee union (1/16 in., 0.15 mm bore, Valco HX, Texas U.S). Resolution, sensitivity, 

and mass number calibration of the ion trap and the TOF analyzer were tuned using 

a standard sample solution of sodium trifluoroacetate. MS detection was operated 

in negative ionization mode with the following parameters: detector voltage: 1.57 

kV, Interface voltage: -3.5 kV, CDL (curve desolvation line) temperature: 250 °C, 

block heater temperature: 200 °C, nebulizing gas flow (N2): 1.5 L/min, drying gas 

pressure: 100 kPa. Full scan MS data were acquired in the range of 200-1600 m/z, 

ion accumulation time: 25 ms, Ion trap repeat: 3. MS/MS experiments were 

conducted in data dependent acquisition, precursor ions were acquired in the range 

300-1600 m/z; peak width, 3 Da; ion accumulation time: 50 ms, collision induced 

dissociation (CID) energy: 50%, collision gas: 50%, ion trap repeat: 1; execution 

trigger (BPC) intensity at 95% stop level. For the prediction of molecular formula 

the “Formula Predictor” software (Shimadzu) was used with the following settings: 

maximum deviation from mass accuracy: 5 ppm, fragment ion information, 

nitrogen rule.  
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3. Results and discussion 

 

Annurca is an apple cultivar native to Southern Italy and its disciplinary of 

production identifies 137 municipalities in Campania region as the only places of 

production of the so called “Melannurca Campana” IGP
[24]

. Beyond his particular 

taste and flavor, several observations have demonstrated that Annurca polyphenolic 

extracts reduce cholesterol accumulation
[3]

 and protect gastric cells against 

oxidative stress more than common apple cultivars
[25]

. In this work we report a 

detailed qualitative profiling of Annurca polyphenols by a combination of RP-

UHPLC and HILIC coupled with accurate MS detection. 

 

3.1 RP-UHPLC-DAD-ESI-IT-TOF profiling of polyphenolic extract 

 

As can be seen in figure 1 the entire separation was completed in less than 25 

minutes, the chromatograms were recorded at 280 and 320 nm.  

 

Figure 1: RP-UHPLC chromatogram recorded at 280 nm of Annurca extract. 

Column Kinetex C18 150 × 2.1 mm, 2.6 μm. Flow rate 0.5 mL/min. Column oven: 

40°C. 
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Several parameters were investigated to obtain satisfactory resolution, such as flow 

rate, temperature, mobile phases. A flow rate of 0.5 mL/min and a column 

temperature of 40 °C gave the best results in terms of analysis time and peak 

overlap. Acetonitrile was used as organic modifier instead of methanol, resulting in 

lower backpressure, and acetic acid provided the better ionization efficiency 

compared to formic. MS ionization was operated in negative mode, since provided 

the highest sensitivity. The list of tentatively identified compounds by RP-UHPLC 

is reported in table 1. The compounds marked with a double asterisk are reported 

for the first time in the Annurca extract. 

 

3.1.1 Hydroxycinnamic acids 

 

Hydroxycinnamic acids eluted from 4 to 7.5 minutes, first eluting compound (tr 

4.45) was tentatively identified as 4-hydroxybenzoic acid-4-O-glucoside m/z 299, 

as evident from the loss of glucose moiety [M-H-C6H12O6-H2O]
-
 in MS2 spectrum. 

Compound 2 (tr 5.16) was identified as 3-p-coumarylquinic acid, characterized 

from the fragment 191 m/z, typical of quinic acid moiety, the same fragmentation 

was observed for his isomer, compound 16, eluted at tr 7.34 and identified as 4-p-

coumarylquinic acid. Also characterized from the loss of quinic acid and from 

fragment at m/z 173, resulting from loss of water, were compounds 6 and 13 (tr 

5.97, 6.94), possessing strong absorbance at 320 nm, identified as 5’ caffeoylquinic 

acid (chlorogenic acid) and his 3’ isomer. A fragment at 163 m/z was observed in 

the MS2 spectrum of compound 8 (tr 6.28), as result of loss of glucose, and was 

identified as 5-p-coumaroyl hexoside. 
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Table 1: List of polyphenolic compounds detected by RP-UHPLC-ESI-IT-TOF  

*Detected as [M−2H]
2− 

; ** Reported for the first time in Annurca apple extract 

 

Peak 

Molecular 

Formula 

[M-H]
-
 [MS/MS] 

Error 

(ppm) 

Compound 

1 C13H16O8 299.0758  // -4.68 4-Hydroxybenzoic acid-4-O-glucoside ** 

2 C16H18O8 337.1122  191/163 -5.34 3-p-Coumaroylquinic acid ** 

6 C16H18O9 353.0873  191/173 -0.85 Chlorogenic Acid 

8 C15H18O8 325.0924  183/163 -1.54 5-p-Coumaroyl hexoside ** 

13 C16H18O9 353.0846  191/173 -4.16 Chlorogenic Acid (isomer I) 

17 C16H18O8 337.0942  191/173/163 -1.19 4-p-Cumaroylquinic acid b ** 

37 C26H32O15 583.1652  289/271/203 -2.23 3-Hydroxyphloretin-2-O-xylosyl-glucoside ** 

42 C27H34O15 597.1802  302/273 -1.51 Phloretin-dihexoside ** 
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50 C26H32O14 567.1738 273 1.94 Phloretin-2’-O-xylosyl-glucoside 

53 C26H32O14 567.1736 273 1.94 Phloretin-pentosyl-hexoside (isomer I) 

59 C21H24O10 435.1311 273/167 2.76 Phloridzin 

60 C25H26O14 549.1222  435/273 -5.10 Unknown Phloridzin derivate ** 

3 C21H22O12 465.1055 285/241/199 3.66 Cyanidin-3-O-galactoside 

10 C21H22O12 465.1060  285/199 3.66 Cyanidin-3-O-glucoside ** 

14 C21H22O12 465.1047  285/199 2.58 Cyanidin-3-O-hexoside isomer ** 

22 C24H38O12 517.2329  223/205 3.09 Vomifoliol-9-[xylosyl-(1->6)-glucoside] ** 

4 C21H24O11 451.1256  289/203 -5.01 Catechin-3-O-glucoside ** 

7 C15H14O6 289.0702  245 -4.57 [+]-Catechin  

18 C15H14O6 289.0719  245 -4.57 [-]-Epicatechin 

45 C25H26O15 565.1167  451/289/271 -3.19 Catechin-3-O-glucoside derivate ** 

35 C21H22O10 433.1128  271/177/151 -2.77 Naringin-4-O-glucoside ** 
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33 C26H28O16 595.1308  301/271/255 0.50 Quercetin-3-O-glucosyl xyloside ** 

34 C26H28O16 595.1297  301/271/255 -1.34 Quercetin-3-O-glucosyl xyloside (isomer I) ** 

38 C21H20O11 463.0897 301/271/179 3.24 Quercetin-3-O-galactoside (Hyperoside) 

39 C27H30O16 609.1465 301/271  -1.15 Rutin 

41 C21H20O11 463.0890 301/271 1.73 Quercetin-3-O-glucoside (Isoquercetin) 

44 C24H22O15 549.0884  505/463/301 -0.36 Quercetin-3-O-(6"-malonyl-glucoside) ** 

46 C20H18O11 433.0773 301/271 1.85 Quercetin-3-O-xyloside (Reynoutrin)  

47 C20H18O11 433.0770 301/271 1.88 Quercetin-3-O-arabinopyranoside (Guajaverin) 

48 C23H22O13 505.1003  301/271/179 2.38 

Quercetin-3-O-β-D-Glucopyranosil-6” acetate 

** 

49 C20H18O11 433.0894 301/271/179 0.01 Quercetin-3-O-arabinofuranoside (Avicularin) 

51 C27H28O16 607.1286 545/505/463/301 -3.13 

Quercetin-3-[6”-(3-hydroxy-3-methylglutaryl)] 

galactoside ** 
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52 C20H18O11 433.0769  301/255/179 -1.62 Quercetin-3-O-pentoside 

54 C21H20O11 447.0931 301/255/179 1.94 Quercetin-3-O-rhamnoside (Quercitrin) 

55 C21H20O11 447.0937  301/271 -0.45 Quercetin-3-β-glucopyranoside (Isoquercitrin)** 

56 C22H22O12 477.1049  315/300/271 2.31 Isorhamnetin-3-O-galactoside ** 

57 C28H32O16 623.1612  315/300/271 -3.37 Isorhamnetin-3-O-rutinoside (Narcissin) ** 

58 C22H22O12 477.1047  315/300/271 2.30 Isorhamnetin-3-O-glucoside 

61 C23H22O12 489.1052  285/199 1.02 Luteolin-3-O-acetyl glucoside ** 

62 C20H18O10 417.0841  285/255/183 0.01 Luteolin-3-O-xyloside ** 

63 C28H30O16 621.1465  519/477/315/301 -0.97 

Isorhamnetin-3-[6”-(3-hydroxy-3-

methylglutaryl)] galactoside ** 

64 C21H20O11 447.0934  315/300/271 0.22 Isorhamnetin-3-O-arafuranoside ** 

65 C28H30O16 621.1465  477/315/300/271 -0.95 

Isorhamnetin-3-[6”-(3-hydroxy-3-

methylglutaryl)] glucoside ** 
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66 C21H20O11 447.0930  315/300/285/271 -0.67 Isorhamnetin-3-O-arafuranoside (isomer I) ** 

67 C22H22O11 461.1103 315/300/285/271 1.52 Isorhamnetin-3-O-rhamnoside 

5 C30H26O12 577.1352 559/407/289 -0.69 Procyanidin B1 

9 C45H38O18 865.1967 739/695/577/407/287  -1.39 Epicatechin trimer (EC-3) 

11 C60H50O24 576.1231* 865/863/739/695/407/289  -5.55 Epicatechin tetramer (EC-4) 

12 C60H50O24  576.1241* 865/863/739/695/407/289  -5.55 Epicatechin tetramer (EC-4) (isomer I) 

15 C30H26O12 577.1357 559/407/289 0.87 Procyanidin B1 (isomer I) 

16 C45H38O18 865.1985 739/695/577/575/407/287  0.01 Epicatechin trimer (EC-3) (isomer II) 

19 C75H62O30  720.1570* 

1153/865/863/739/577/575/ 

407/287  

2.22 Epicatechin pentamer (EC-5) 

20 C60H50O24  576.1235* 865/863/739/695/407/289  -5.21 Epicatechin tetramer (EC-4) (isomer II) 

21 C60H50O24  576.1243* 865/863/739/695/407/289  -4.69 Epicatechin tetramer (EC-4) (isomer III) 
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23 C75H62O30 720.1568* 1153/865/863739/577/575/407/287  2.20 Epicatechin pentamer (EC-5) (isomer I) 

24 C45H38O18 865.1968 739/695/577/407/289/287 -1.96 Epicatechin trimer (EC-3) (isomer III) 

25 C79H78O44 864.1890* 1153/695/577/575/407/287  3.74 Epicatechin esamer (EC-6) 

26 C75H62O30  720.1571* 

1153/865/863/739/577/575/ 

407/287  

2.62 Epicatechin pentamer (EC-5) (isomer II) 

27 C105H86O42 1008.2226* 1153/865/739/575/407 -1.37 Epicatechin heptamer (EC-7) ** 

28 C30H26O12 577.1345 559/407/289 -1.21 Procyanidin B1 (isomer II) 

29 C60H50O24  576.1240* 865/863/739/695/407/289  3.22 Epicatechin tetramer (EC-4) (isomer IV) 

30 C45H38O18 865.1967  

739/695/577/575/407/289/ 

287  

-2.54 Epicatechin trimer (EC-3) (isomer IV) 

31 C75H62O30  720.1573* 

1153/865/863/739/577/575/ 

407/289  

2.36 Epicatechin pentamer (EC-5) (isomer III) 
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32 C75H62O30  720.1574* 1153/865/863/739/577/575/407/287  2.64 Epicatechin pentamer (EC-5) (isomer IV) 

36 C79H78O44 864.1892* 1151/695/575/407/287  3.70 Epicatechin esamer (EC-6) (isomer I) 

40 C30H26O12 577.1338 407/289/205 -2.43 Procyanidin B1 (isomer III) 

43 C45H38O18 865.1955* 695/577/407/289/287  0.12 Epicatechin trimer (EC-3) (isomer V) 
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3.1.2 Dihydrochalcones 

 

Compound 37 (tr 12.36) showed MS2 fragments at 289 and 271 m/z, the first 

deriving from the consequential loss of an hexose and a pentose moiety, while m/z 

271 denotes the possible loss of an hydroxyl group, and was tentatively assigned as 

3-hydroxyphloretin-2-O-xylosyl-glucoside this observation is in accordance with 

previous Q-TOF data on apple extracts
[13]

. Also detected was compound 42 (tr 

13.77) identified as phloretin-di-hexoside, with a fragment at 273 m/z of the 

aglycone phloretin (C15H14O5). An intense MS signal and absorbance at 280 nm 

was observed for compound 50 (tr 15.31), again, the aglycone at 273 m/z was the 

dominant fragment in MS2 spectrum, generated as for peak 37, from the cleavage 

of two sugar moieties, and was identified as phloretin-2’-O-xylosyl-glucoside, his 

isomer, peak 53, was detected at tr 15.72. Last compounds of this class, 59+60, co-

eluted in an intense peak (tr 17.39), the compound with [M-H]
-
 435, was easily 

identified as phloridzin, the loss of 162 amu represents the presence of glucose, this 

compound represents one of the most abundant compounds apples
[26]

. The co-

eluted compound, with [M-H]
-
 549, shows in the MS2 spectrum both the phloridzin 

m/z 435 (C21H24O10) and the phloretin m/z 273 signals, thus it is probably a 

phloridzin derivate, NMR and MSn experiments are necessary to confirm the 

structure. 

 

3.1.3 Anthocyanins 

 

Three anthocyanins were detected, even in a not suitable pH range for the 

separation of these compounds. Peaks 3 and 10 (tr 5.27, 6.54) showed a typical 

ionization profile of anthocyanins in negative mode, with the ions at 465 and 447 

m/z corresponding to [M-2H]
-
 and [M-2H+H2O]

-[27]
. The fragment ion at 285 m/z 

[M-H-180]
-
 represents the aglycone cyanidin (C15H11O6), and assumes the loss of 
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an hexose, finally leading to their identification as cyanidin-3-O-galactoside and 

cyanidin 3-O-glucoside, respectively. Peak 14 possesses the same precursor and 

fragment ion, and was recognized as a possible cyanidin-3-O-hexoside isomer. 

 

3.1.4 Flavonols 

 

A large number of flavonol glycosides were detected, as clearly visible from 

chromatograms recorded at 320 nm (Figure 2). Compounds 33 and 34 ([M-H]
-
 at 

m/z 595) (tr 11.23, 11.44) possessed same fragment ion at m/z 301, typical of the 

sequential loss of a pentose and an hexose, and were tentatively assigned as 

quercetin-3-O-glucosyl xyloside. Peak 38 (tr 12.75) was the most intense in the 

profile, his fragment ion, again at m/z 301, points out the quercetin structure, and is 

the same observed for compound 41. These compounds were identified as 

quercetin-3-O-galactoside and quercetin-3-O-glucoside respectively, with the 

galactoside form that elutes first
[21]

. The cleavage of a disaccharide [M-H-

C12H22O10]
-
 was observed for peak 39 (tr 12.93) and was recognized as rutin. An in 

source fragmentation occurred for peak 44 (tr 13.99), with an ion at m/z 463, and a 

MS2 signal at m/z 301.  
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Figure 2: RP-UHPLC chromatogram recorded at 320 nm of Annurca extract. 

Column Kinetex C18 150 × 2.1 mm, 2.6 μm. Flow rate 0.5 mL/min. Column oven: 

40 °C. 

 

The mass difference (-87 amu) evidenced the cleavage of a malonyl residue 

followed by loss of glucose, and was proposed as quercetin 3-O-(6"-malonyl-

glucoside). Compounds 46-47-49 (tr 14.25, 14.44, 15.18) were all characterized by 

same mass and fragmentation, hence, based on previous observation, regarding the 

elution order of quercetin glycosides in reversed phase
[28]

 they were identified as 

quercetin-3-O-xyloside, 3-O arabinopyranoside, and 3-O-arabinofuranoside 

respectively. Peak 48 (tr 14.78) gave two MS2 signals at 463 and 301 m/z, 

corresponding to the loss of an acetate group [M-H-42]
-
, and an hexose 

respectively, and was recognized as quercetin-3-O-β-D-Glucopyranosil-6” acetate. 

A complex structure was hypothesized for peak 51 (tr 15.49) (Figure 3). 

In this case the fragment at 463 m/z can be attributed to loss of a methylglutaryl 

moiety [M-H-144]
-
, while the ion at 505 m/z to a possible rearrangement into a 6” 
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acetate form, these information led to the tentative assignment as Quercetin-3-[6”-

(3-hydroxy-3-methylglutaryl)] galactoside (C27H28O16).  

 

 

Figure 3: ESI-IT-TOF full scan MS and MS2 spectra for compound 51 (Quercetin-

3-[6”-(3-hydroxy-3-methylglutaryl)] galactoside) and proposed structure and 

fragmentation pattern. 

 

The difference of 150 amu of the fragment ion, suggests a pentose cleavage for 

peak 52 (tr 15.62). A loss of 146 amu was observed in the MS2 spectrum for peak 

54 (tr 15.96), corresponding to a cleavage of rhamnose, and leading to 

identification of quercetin-3-O-rhamnoside, while peak 55 (tr 16.11) which 

possessed similar fragmentation pattern, was proposed as isoquercitrin. Peak 56 

and 58 (tr 16.22, 16.81) exhibited the same precursor ion, and their main fragment 

ion, m/z 315, with molecular formula C16H12O7, belongs to the aglycone 

isorhamnetin, hence they were finally identified as 3-O-galactoside and 3-O-
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glucoside forms respectively. Peak 57 (tr 16.44) showed, in a similar manner to 

rutine, the loss of two sugar moieties, [M-H-146-162]
-
, identifying the compound 

as isorhamnetin-3-O-rutinoside. Fragment ions of compound 61-62 (tr 18.07, 

18.18), 285 m/z, revealed the presence of a luteoline aglycone (C15H10O6), and 

were tentatively identified as luteolin-3-O-acetyl-glucoside and luteolin-3-O-

xyloside. MS
2
 spectra of peaks 63 and 65 (tr 18.53, 19.44) revealed a similar 

structure to compound 51, with a loss of methylglutaryl [M-H-144]
-
 group, but in 

this case the ion at 315 m/z suggested the isorhamnetin structure, thus they were 

proposed as isorhamnetin-3-[6”-(3-hydroxy-3-methylglutaryl)] galactoside and 

glucoside respectively. The cleavage of a pentose (tr 18.97, 19.60) was observed 

for peaks 64 and 66, leading to their tentative identification as isorhamnetin-3-O-

arafuranoside, and his isomer, respectively. As for peak 54, the loss of rhamnose, 

was observed, and last eluting peak, 67 (tr 20.22), was finally identified as 

isorhamnetin-3-O-rhamnoside. 

 

3.1.5 Flavanones 

 

One flavanone-glycoside was detected, peak 35 (tr 11.78), his main fragment ion, 

at 271 m/z, having molecular formula C15H12O5, and was tentatively assigned as 

naringin-4-O-glucoside. 

 

3.1.6 Flavan-3-ols 

 

Peaks 7 and 18 (tr 6.01, 7.46) having same molecular formula (C15H14O6) and 

fragments were identified as (+)-catechin and (-)-epicatechin. Peak 4 and 45 (tr 

5.45, 14.08) both showed a fragment at 289 m/z with molecular formula C15H14O6, 

evidencing the presence of catechin, and were recognized as catechin-3-O-

glucoside, and his unknown derivate. 
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3.1.7 Other compounds 

 

A non-polyphenolic compound was detected, peak 22 (tr 8.15). MS/MS data were 

in accordance with previous literature on apples extracts (cv. Jonathan), the 

compound, with formula C24H38O12 was tentatively identified as vomifoliol-9-

[xylosyl-(1>6)-glucoside]
[29]

. 

 

3.1.8 Procyanidins 

 

As can be observed from retention times in Table 1, the elution order of oligomeric 

procyanidins in reversed phase is not related on molecular mass. Multiple isomers 

were detected, in particular: four dimeric, five trimeric, five tetrameric, five 

pentameric, two esameric and one eptameric isomers were detected. Many isomers 

were not clearly visible in the UV profile, in this regard, fluorescence detection is 

more sensitive and commonly employed
[30]

. Furthermore some compounds of this 

class are not fully resolved in these conditions. Several techniques have been 

developed for the analysis of procyanidins, such as matrix assisted laser desorption 

ionization (MALDI-TOF), which is a powerful technique but needs time 

consuming pre-fractionation of the extract prior analysis
[31]

. Also commonly 

employed is thiolysis-RPLC, which provide information on the average degree of 

polymerization and type of constitutive units of procyanidins, but cannot provide 

any structural information for individual procyanidins molecules
[32]

. For complex 

matrices, even RP-UHPLC does not possess an adequate resolving power, 

furthermore, exact structure elucidation of isomers up to dimer is difficult without 

suitable standards
[33]

. As stated before the analysis of these molecules still remains 

a challenge. 
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3.1.9 HILIC-DAD-ESI-IT-TOF profiling of Annurca procyanidins 

 

In the last years HILIC chromatography has been proposed as a valid alternative to 

RP for procyanidins separation
[34]

. A variety of HILIC stationary phases are 

commercially available, an important application of this technique was the 

separation of cocoa and apple (Red Stark variety) procyanidins by off-line 

comprehensive two dimensional chromatography
[21]

, in which the authors used a 

diol stationary phase in the first dimension. Based on these observation we 

employed a HILIC column with cross-linked diol stationary phase. As well as for 

RP-UHPLC, several parameters, reported in section 2.4, were optimized in order to 

reach a satisfactory resolution. The HILIC chromatogram is reported in figure 4, 

non-procyanidins compound, like flavonols, hydroxycinnamic acids and 

dihydrochalcones were not well retained under these conditions, and tend to elute 

earlier in broad peaks. 

 

Figure 4: Expansion of HILIC chromatogram recorded at 280 nm of Annurca 

extract showing the separation of procyanidin oligomers from DP 2 to 10. Column 

HILIC 150 × 2.0 mm, 3 m. Flow rate 0.3 mL/min. Column oven: 25 °C. 
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In contrast, an efficient separation of procyanidins from dimer to decamer was 

obtained. It is clearly visible that procyanidins are separated according to molecular 

weight under these conditions. With respect to the RP analysis, the separation and 

detection, by ESI-MS, of oligomers starting from degree of polymerization four 

(DP 4) is enhanced. The identification was based on MS spectra and comparison 

with literature data
[33]

. As can be observed from Table 2, singly charged molecular 

ions [M-H]
-
 were detected for oligomers with DP 2 to 4, whereas doubly charged 

ions [M-2H]
2-

 where detected for DP 5 to 10. With respect to RP approach, the 

detection of oligomers with DP 6 and 7 was improved. In particular, from MS 

spectra in Figures 5a,b, can be appreciated how hexamers signals were covered by 

co-elutions in RPLC-MS (Figure 5a), but fully resolved and clearly detected with 

higher intensity in the HILIC-MS (Figure 5b).  
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Table 2: Oligomeric procyanidins detected by HILIC-ESI-IT-TOF 

** Oligomers described for the first time in Annurca apple extract 

 

DP 
Molecular 

formula 
HRMW [M-H]

-
 [M-2H]

2-
 [MS/MS] 

Error 

(ppm) 
Compound 

2 C30H26O12 578.1336 577.1331 - 407/289/205 -3.64 Epicatechin Dimer (Procyanidin B2) 

3 C45H38O18 866.2058 865.1984 - 739/695/577/575/407/287  -0.12 Epicatechin trimer 

4 C60H50O24 1154.2692 1153.2652 - 865/739/577/575/449 -1.47 Epicatechin tetramer 

5 C75H62O30 1442.3284 - 720.1569 1151/865/577/575/407/287  -2.08 Epicatechin pentamer 

6 C90H74O36 1730.3960 - 864.1870 1153/695/577/575/407/287  -2.55 Epicatechin hexamer 

7 C105H86O42 2018.4594 - 1008.2226  1153/865/739/575/407 -1.39 Epicatechin eptamer ** 

8 C120H98O48 2306.5096  - 1152.2507  1008/865/768/695/577/575/407 -4.34 Epicatechin octamer ** 

9 C135H110O54 2594.5892 - 1296.2945  - 4.90 Epicatechin nonamer ** 

10 C150H122O60 2882.6568 - 1440.3191  - 5.00 Epicatechin decamer ** 
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Figure 5 a,b: Comparison of full scan MS intensities for RP-UHPLC (5a) and 

HILIC (5b) in the detection of epicatechin examer. 

 

 

 

Figure 6: Full scan MS and MS2 spectra for epicatechin octamer (DP 8) detected 

only by HILIC-MS. 
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This is not only due to a better separation of these analytes, but also to the gain in 

ionization efficiency, since the highly organic mobile phase used enhanced the ESI 

sensitivity, as previously observed
[35,36]

. Although present in traces, oligomers with 

DP 8 to 10, were detected only using HILIC-MS, as can be seen from Figure 6, 

showing MS and MS/MS spectra of the octamer. The resolution and detection 

decreases with increasing DP, and for highly molecular weight oligomers, with DP 

9-10, extracted ion chromatogram were necessary for their identification, since 

these last eluting compound were present in very low concentration. Only B type 

procyanidins were detected in this variety of Annurca. Procyanidins are very 

interesting molecules for human health, but often overlooked
[37]

, thus it is 

important to extend the knowledge about their natural sources, even if their 

concentration can be low. In this regard the presence of oligomers over DP 6 has 

been only mentioned in Annurca
[38]

. Furthermore, as reported previously
[39]

 DP of 

procyanidins can be directly related the taste and quality of apple ciders. To the 

best of our knowledge this is the first detailed description of procyanidins with DP 

> 6 in the Annurca extract. 

 

4 Conclusions 

 

The present research describes an extensive qualitative profiling of polyphenols in 

an Annurca apple extract, a typical cultivar of Southern Italy. The employment of 

two different separation techniques, such as RPLC and HILIC, in combination with 

a hybrid IT-TOF mass spectrometer, led to the tentative identification of 67 

compounds, some not reported so far, which represent an improvement with 

respect to the previous observations. RP-UHPLC-MS was suitable for the analysis 

of dihydrochalcones, hydroxycinnamic acids, flavonols and anthocyanins, but not 

satisfactory for procyanidins. In this regard the employment of HILIC-MS 

improved the separation and detection of oligomeric procyanidins, and the presence 
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of oligomers with DP > 6 was described in detail for the first time in this apple 

variety. The proposed approach is a valid tool for polyphenolic fingerprinting and 

could be applied to other Annurca apple extracts, from different soils, to highlight 

the difference between different apple varieties, as well as in nutraceuticals based 

on Apple extracts. 
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Abstract Red grapes are rich in phenolics, flavonoids, anthocyanins and 

resveratrol, all substances which have been suggested as having nutraceutical and 

health benefits. The berry skin and wine of grape cultivar Vitis vinifera L. (cv. 

Aglianico), grown in Basilicata (Southern Italy) were examined to determinate the 

presence of the above mentioned compounds as well as to establish the inorganic 

cation profile. HPLC analysis coupled with LC–ESI/MS/MS detected high contents 

of total flavonols and anthocyanins in grape juice, berry skin and wine. The wine 

made with the same grape used for berry skin assays showed a notable presence of 

quercetin-3-O-glucoside (39.4% of total flavonols), and malvidin and petunidin 

derivatives (63.9% and 10.8% of total anthocyanins, respectively). The processed 

grape juice processed (lioRGJ) was tested on cardiac-derived H9C2 myocytes to 

ascertain its effects on reactive oxygen species(ROS) generation and caspase-3 

activity incubating cardiomyocytes with lioRGJ at increasing doses (0.01−1 μg). 

The strong antioxidant ROS-scavenging activity, determined by both DPPH and 

FRAP assays, and the high resveratrol content confer high sensory characteristics 

resulted to be associated with positive nutraceutical properties of these grapes and 

wine. The level of cis-resveratrol was lower than trans-resveratrol in both berry 

skin and wine reaching 44.1 mg/kg and 0.3 mg/l, respectively. The cation profile 

presents low levels of Ca, Cu, K, Fe, Zn and Cd compared to numerous, important 

red wines, such as Monastrell and Tempranillo. 

 

Keywords: Aglianico Antioxidant activity, Anthocyanins, Flavonoids, Resveratrol, 

Multi-element analysis, Red grape juice, Lyophilization, Cardiomyocytes, Radical-

scavenging activity. 
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1. Introduction 

 

An increasing body of experimental evidence has shown the health benefits of 

polyphenols, a large family of natural compounds widely distributed in dietary 

plants which need phenolic compounds for pigmentation, growth, reproduction, 

and for many other functions, such as radical scavenging, signalling and defence 

from pathogen and parasitic attack. In grapes, four classes of flavonoids are 

commonly detected: flavonols, anthocyanins, flavan-3-ols and their polymeric 

forms, and condensed tannins
[1]

. They are often leached out by grapes during the 

maceration period of wine makingand endow characteristics to grape varieties and 

wines. While anthocyanins are water-soluble pigments located in grape skins and 

seeds, which appear red, purple or blue, according to pH, flavonols are yellow 

pigments generally considered to act as UV protectants and free-radical 

scavengers
[2]

. Resveratrol (3,5,4’-triidrossistilbene), the main stilbene synthesised 

in grape skin cells, is a non-flavonoid polyphenol that acts as a phytoalexin, being 

part of plant’s defence system. Indeed, it is produced in plants in response to 

invading fungus, stress, injury, infection, or UV irradiation. Red wines contain high 

levels of resveratrol, as do grapes, raspberries, peanuts, and other plants
[3]

. Wine 

flavonoids show beneficial effects on coronary heart disease, atherosclerosis, and 

some metabolic disorders, and they can inhibit carcinogenesis due to their 

antioxidant capacity
[4]

. Generally, it has been established that an oxidation process 

is involved in the initial development steps of these disease, since an excess of 

reactive oxygen species (ROS) naturally formed during normal metabolism can 

damage biological macromolecules, such as proteins, lipids and nucleic acids
[5]

. 

Resveratrol has also been shown to reduce tumour incidence in animals by 

affecting one or more stages of cancer development. The strong antioxidant and 

radical-scavenging properties of resveratrol and flavonols, such as of quercetin, 

have been intensively studied in both grapes and wines
[6]

. This wide range of 
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health-promoting compounds suggests that several different and interrelated 

mechanisms of action are involved in the enhancement of the total antioxidant 

effects of the polyphenol family present in grape and wine. Recently, grape seed 

proanthocyanidins, a group of polyphenolic bioflavonoids ubiquitously found in 

the lignified portions of grape clusters, were found to possess cardioprotective 

abilities by acting as in vivo antioxidants and by their ability to directly scavenge 

ROS including hydroxyl and peroxyl radicals
[7-9]

. However, their pro-oxidant 

toxicity at higher doses (100−500 μg/mL) was also reported, particularly their 

ability to cause apoptosis in cardiomyocytes induced by ROS generation
[10-12]

. The 

effects on cardiomyocytes by directly testing the whole grape juice are unknown. 

The study of the components present in wine and in grapes, as flavonols and 

anthocyanins, may also contribute to wine grape taxonomic characterisation and for 

certifying wine quality and origin
[13]

. Grape and wine ionome, which describes the 

content of all mineral nutrients and trace elements, is today a poorly studied sector. 

The minerals, taken up by the grape and wine from the soil usually make up 

approximately 0.2–0.6% of the fresh weight of the fruit. K mineral cations, 

including, Na and Fe, are essential to the human organism and, together with Ca, 

Co, Cu, Fe, Mn, Se, Zn, play a crucial role for their nutraceutical properties. 

Consumption of wine in moderate quantities may significantly cover metal 

physiological needs. Numerous of these inorganic cations, naturally present in must 

and wine at non-toxic concentrations (e.g., K, Fe and Cu), play a major role both in 

winemaking and wine quality. Heavy metals as Pb, Hg and Cd, naturally present as 

sulphides in trace concentrations in the fruit, usually precipitate during 

fermentation, and their presence is important for grape and wine toxicology 

purposes. On the bases of these study, during my PhD we investigated the presence 

of the above cited compounds in the berry skins and wine of Aglianico (Vitis 

vinifera L.). The antioxidant profile of a commercial red grape juice was studied 

before (RGJ) and after lyophilization (lioRGJ) to evaluate its stability to 
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processing; to test the processed sample on cardiomyocytes to ascertain its effects 

on the physiological and doxorubicin-induced oxidative stress. 

 

2. Materials and methods 

 

2.1 Reagents and standards 

 

All chemicals and reagents were analytical-reagent at HPLC grade. DPPH(1,1-

diphenyl-2-picrilhydrazyl), 2,4,6-tris-2,4, 6-tripiridyl-2-triazine (TPTZ), iron (III) 

chloride (dry), 6-hydroxy- 2,5, 7,8-tetramethylchroman-2-carboxylic acid (Trolox), 

(+)-catechin hydrate, gallic acid monohydrate, aluminium chloride (dry), malvin 

(malvidin-3-O-glucoside) chloride, resveratrol (cis/trans isomers), Folin & 

Ciocalteu’s phenol reagent, were purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). Methyl alcohol (RPE) was purchased from Carlo Erba (Milano, Italy). 

HNO3 (Suprapur grade) and multielemental standard stock solutions (1000 mg/L) 

were purchased from Merck (Darmstadt, Germany). Tris-HCl buffer, sodium 

dodecyl sulfate, diethylenetriaminepentaacetic acid, catalase, nitroblue tetrazolium, 

xanthine, bathocuproinedisulfonic acid, and bovine serum albumin (BSA) were 

purchased from Sigma Chemical Co. (St. Louis, MO, USA). Syringetin-3-O-

galactoside was purchased from Extrasynthese (Lyon, France). Dulbecco’s 

modified Eagle’s medium (DMEM), penicillin, streptomycin, fetal bovine serum, 

and Dulbecco’s phosphate-buffered saline (PBS) were purchased from Gibco-

Invitrogen (Carlsbad, CA, USA). Tissue culture flasks and 24-well tissue culture 

plates were purchased from Corning (Corning, NY, USA). 

 

 

 

 



Chapter VI: Vitis vinifera (cv. Aglianico): healthy properties and polyphenolic profile of berry skin, 

wine and grape juices 

 

160 
 

2.2 Experimental vineyard, plant material, grapes and grape juice 

 

The experiment was carried out in 2008 on a 5-year-old vineyard of Aglianico 

(VCR11) grafted onto 1103 Paulsen and locate in Montegiordano Marina 

(42°02’N, 16°35’E; Southern Italy). All juices were manufactured during the same 

year. Purple juices were heat-extracted (approximately 50 °C) using pulp, seeds, 

and skin, with a subsequent pressing, and then submitted to pasteurization (at 85 

°C). The juice was packaged and stored at 4 °C until the beginning of the analyses. 

According to the Winkler classification, this production area fall within climatic 

region 5, very hot. During the experiment, the temperature ranged between 0 and 

38.5 °C, while cumulative rainfall of the period was 245 mm. The experimental 

plot, of about 0.30 ha, consisted of ten rows of spur-pruned vines to a permanent 

horizontal unilateral cordon. Each vine, decked at 0.60 m above the ground, was 

characterised by about 8 spurs of 2 to 3 buds each. The distance between the vines 

was of 2.5 × 1.0 m, with a final plant density of 4000 vines ha
–1

. Rows were north–

south oriented. The rows were oriented in a north–south direction. The soil was 

classified as a clay–loam. The plants were irrigated weekly from 9 June to 1 

August (from fruit set to veraison) using a water amount equal to 100% of cultural 

evapotranspiration (ETc). The value of ETc was calculated using ETo × Kc, where 

ETo is the reference evapotranspiration calculate according to Hargreaves method, 

and Kc is the cultural coefficient during the experimental period, equal to 0.6 for 

grapevine
[14]

. The seasonal irrigation volume was of 960 m
3
 ha

–1
 (240 L plant

–1
). 

Each vine was irrigated by two drip emitter per plant discharging 4 L h
–1

 each. 
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2.3 Lyophilization  

 

A 10 mL aliquot of each RGJ of the four batches was lyophilized for 24 h 

(Edwards High Vacuum, West Sussex, UK). The residue (2.5 g) was stored in 

anhydrous atmosphere, at 4 °C in the dark, until the beginning of the analyses. 

Then, the sample was diluted to 10 mL with ultrapure water. 

 

2.4 Total Phenolic Content 

 

An aliquot (20 μL) of RGJ, lioRGJ, and calibration solutions of gallic acid (20, 40, 

60, 80, and 100 mg/L) was added to a 25 volumetric flask containing 9 mL of 

ultrapure water (ddH2O)
[15]

. A reagent blank using ddH2O was prepared. One 

milliliter of Folin−Ciocalteu’s phenol reagent was added to the mixture and shaken. 

After 5 min, 10 mL of Na2CO3 aqueous solution (7 g/100 mL) was added with 

mixing. The solution was then immediately diluted to volume with ddH2O and 

mixed thoroughly. After incubation for 90 min at 23 °C, the absorbance versus 

prepared blank was read at 765 nm. Total phenolic content was expressed as 

milligrams of gallic acid equivalents (GAE) per 100 mL. 

 

2.5 Total Flavonol Content 

 

50 μL aliquot of RGJ, lioRGJ, and calibration solutions of quercetin-3-O-glucoside 

(20, 40, 60, 80, and 100 mg/L) was added to a 5 mL volumetric flask containing 2 

mL of ddH2O
[16]

. At zero time, 0.15 mL of NaNO2 aqueous solution (5 g/100 mL) 

was added to the flask. After 5 min, 0.15 mL of AlCl3 aqueous solution (10 g/100 

mL) was added. At 6 min, 1 mL of 1 M NaOH was added to the mixture. 

Immediately, the reaction flask was diluted to volume with the addition of 1.2 mL 

of ddH2O and thoroughly mixed. Absorbance of the mixture, pink in color, was 
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determined at 510 nm versus prepared water blank. Total flavonol content was 

expressed as milligrams of quercetin-3-O-glucoside equivalents (QE)/ per 100 mL. 

 

2.6 Total Monomeric Anthocyanin 

 

An aliquot of 1 mL of RGJ, lioRGJ, and calibration solutions of malvin (0.1−10 

mg/100 mL) was added to two vials containing 10 mL of acetate buffer (pH 3.6) 

and 1 N HCl, respectively
[17]

. The difference between the absorbances read at 530 

nm was calculated. Total anthocyanin content was expressed as milligrams of 

malvin equivalents (ME) per 100 mL. 

 

2.7 Flavonol and anthocyanin extractions from berry skin and wine of Aglianico 

grapes 

 

At harvest, on 27 September 2008, three clusters per plant were randomly sampled 

in the central and well-irradiated area of the canopy of five plants (n = 5) located in 

the central part of the row, where microclimatic conditions and soil physic-

chemical characteristics were similar. From the clusters of each plant (n = 5), the 

berries were immediately detached, weighted and pooled together, and immediately 

stored at 4 °C in sterile plastic bags. Immediately after the transportation in the 

laboratory, the berries with a weight between 0.60 and 1.25 g (the most abundant 

and representative weight class) were rapidly stored at -80 °C in sterile 

polyethylene containers before the following analyses. Successively, frozen berries 

were peeled with a scalpel and the skins collected. This operation was carried out 

in an efficient way, as at low temperature the skin is easily removed by the rest of 

the berry. From each sample (n = 5), five grams of berry skin were placed in a 100 

mL methanol–HCl 0.75% (w/w) solution at room temperature. The extraction was 

monitored for 24 h. Furthermore, the wine coming from nine chosen plants located 
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in the central part of the row (nine samples of one-year-old wine; n = 9) was 

bottled in glass bottles previously purged with gaseous nitrogen. The bottles were 

closed with corks and stored in the dark at 15 °C until analyses. 

 

2.8 Identification and quantification of flavonols and anthocyanins 

 

Separation of the flavonols and anthocyanins from berry skin, wine and grape juice 

(RGJ) was performed by high performance liquid chromatography (HPLC) and the 

analysis of crude extracts was performed after filtration with nylon filters of 0.45 

mm (Teknokroma, Barcelona, Spain) to remove any solid residue. The structural 

identification was carried out by comparison of UV and retention times of our 

samples with authentic commercial samples according to a methodology reported 

in a previous paper
[2]

. These data were validated by the LC–ESI/MS/MS analysis. 

The HPLC analysis were carried out by a Finnigan HPLC system (Thermo 

Electron Corporation, San Jose, CA, USA), a photodiode array detector (DAD). 

For detection of compounds, the chromatograms were recorded at 260, 353 and 

520 nm in the photodiode detector. The different phenol compounds analysed were 

tentatively identified according to their order of elution, retention times of standard 

pure compounds, characteristics of the UV–Vis or fluorescence spectra, and by 

comparison with a bibliographic data. A complete UV–Vis spectrum database of 

all extracts and wine components was build and used to assess peak identification. 

Elution conditions consisted in 10% formic acid in water (Solvent A) and 10% 

formic acid in methanol (Solvent B) gradient at a flow rate of 1.0 mL/min. The 

column used was a C-18 Zorbax (150 mm × 4.6 mm, 5 μm packing; Agilent, USA) 

protected by an Agilent C-18 guard column. The elution conditions were: 0 min, 

18% B; 14 min, 29% B; 16 min, 32% B; 18 min, 41% B; 18.1 min, 30% B; 29 min, 

41% B; 32 min, 50% B; 34.5 min, 100% B; 35–38 min, 18% B. Calibration curves 

consisted in 0.001–1 mg/mL catechin and 0.05–1 mg/mL malvidin-3-glucoside 
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standard solutions. The identification of anthocyanins and flavonols was confirmed 

by a liquid chromatography electrospray ionization tandem mass spectrometry 

(LC–ESI/MS/MS) analysis using a HP1100 HPLC system (Agilent Technologies 

Inc., CA, USA) coupled to PE-Sciex API-2000 triple-quadrupole mass 

spectrometer (Warrington, Cheshire, UK) equipped with a Turbospray (TSI) 

source. MS detection was carried out in positive ion mode for anthocyanins and 

negative ion mode for flavonols at unit resolution using a mass range of 150–1500 

m/z and a mass peak width of 0.7 ± 0.1. Selected ion monitoring (SIM) 

experiments were carried out using the following operational parameters: 

vaporiser, 350 °C; heated capillary, 150–200 °C; carrier gas, nitrogen, at a sheath 

pressure of 70 psi; auxiliary gas, nitrogen, to assist in nebulisation, at a pressure of 

30 psi; de-clustering potential, 44.0 eV; focusing potential, 340.0 eV; entrance 

potential, 10.0 eV; collision energy, 33.0 eV for ion decomposition in the collision 

cell at 0.8 mTorr. 

 

2.9 Determination of cis- and trans-resveratrol 

 

The quantification of cis- and trans-resveratrol in skin extracts and wine samples 

was carried out on the Finnigan HPLC equipment reported above. Separation was 

achieved using a Zorbax C-8 column (150 × 4.6 mm, 5 μm packing; Agilent, USA) 

and a mobile phase of 0.1% aqueous formic acid (solvent A) and acetonitrile 

(solvent B) delivered in isocratic elution mode at 25% B (v/v) at a flow rate of 1 

mL/min. Calibration curves were plotted from 0.005 to 10 mg/mL. Wine samples 

(20 μl) were directly injected after filtration through a 0.45 μm membrane filter. A 

photodiode array detector was used, and quantification was done at 285 nm for cis- 

and trans-resveratrol. 
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2.10 Total antioxidant capacity 

 

For each antioxidant assay, a Trolox aliquot was used to develop a 50–500 μmol/L 

standard curve. All data were expressed as Trolox Equivalents (μmol TE/100 mL). 

Spectrophotometric analyses were performed using a Jasco V-530 UV–vis 

spectrophotometer (Tokyo, Japan) set at appropriate wavelengths to each assay. 

The ability of the berry skin, wine and red grape juice (RGJ and lioRGJ) samples to 

scavenge the DPPH radical was measured
[18]

. Aliquots (20 μL) of samples were 

added to 3 mL of DPPH solution (6 × 10
-5

 mol/L) and the absorbance was 

determined at λ 515 nm every 5 min until the steady state. The anti-oxidant 

potential of berry skin extracts, wines and RGJ was also determined using a FRAP 

assay, Ferric Reducing Ability of Plasma, as a measure of antioxidant power. A 

solution of 10 mmol/L TPTZ in 40 mmol/L HCl and 12 mmol/L FeCl2 was diluted 

in 300 mmol/L sodium acetate buffer (pH 3.6) at a ratio of 1:1:10. Aliquots (20 μL) 

of samples were added to 3 mL of the FRAP solution and the absorbance was 

determined at 593 nm every 5 min until the steady state was reached. 

 

2.11 Metal determination 

 

Determination of the main metals in both berry skin extracts and wine samples was 

performed by quadrupole based inductively coupled plasma mass spectrometry, 

ICP-QMS (Elan DRC II, Perkin- Elmer SCIEX, CT, USA). Operational parameters 

were the following: sample uptake rate, 1 mL/min; sample introduction, Meinhard 

nebulizer with cyclonic spray chamber; gas flow rates (L min–1): plasma, 15; 

auxiliary, 1.0; nebuliser, 0.85; dwell time, 50 ms; No. of replicate, 5; interface, Pt 

cones; extraction lens voltage, optimized for maximum I (56Fe). High purity He 

(99.9999% He) and H2 (99.9995% H2) were used, in order to minimise the 

potential problems caused by unidentified reactive contaminant species in the cell. 
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The high radio frequency power (1500 W) helped to maintain stable plasma in the 

presence of ethanol. Before use, all glassware and plastic containers were cleaned 

by washing with 10% ultrapure grade HNO3 for at least 24 h, and then rinsed with 

copious quantities of ultra-pure water obtained with a Milli-Q purification system 

(Millipore Inc., Bedford, MA, USA). The wine samples were collected from the 

glass bottles by cautiously removing the corks, conditioning the necks by 5% 

HNO3, and then aspirating the liquid with no contaminating pipettes. The plasma 

instability, related to the ethanol content in wine
[19]

, were minimised by a simple 

1:5 dilution with 1% HNO3. A 2.5% ethanol matrix for standards and blanks was 

used to approximate the 1:5 diluted wine matrixes. The calibration solutions were 

prepared from multi-elemental standard stock solutions of 1000 mg/L. The 

calibration curves were obtained by using at least 6 calibration solutions. Reagent 

blanks containing ultra-pure water were additionally analysed in order to control 

the purity of reagents and laboratory equipment. Standards and blanks were 

subjected to the same treatment as the wine samples. 

 

2.12 Cell Culture and Viability Test 

 

Cell Culture and Viability Test. Rat cardiac H9C2 cells (ATCC, Manassas, VA, 

USA) were cultured in DMEM supplemented with 10% fetal bovine serum, 100 

U/mL of penicillin, and 100 μg/mL of streptomycin in 150 cm
2
 tissue culture flasks 

at 37 °C in a humidified atmosphere of 5% CO2. The cells were fed every 2−3 days 

and subcultured once they reached 70−80% confluence. Cell viability and 

proliferation were assessed by incubating the culture with lioRGJ (0.01−1 μg) and 

1 μM doxorubicin for 72 h. 
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2.13 Preparation of Cell Extract  

 

Cardiac H9C2 cells were collected by centrifugation and then resuspended in ice-

cold 50 mM potassium phosphate buffer (pH 7.4), containing 2 mM EDTA. The 

cells were sonicated, followed by centrifugation at 13000g for 10 min at 4 °C. The 

resulting supernatants were collected and kept on ice for immediate measurements.  

 

2.14 Measurement of Intracellular ROS Accumulation 

 

2’,7’- Dichlorodihydrofluorescein diacetate (DCF-DA, 5 μM) was used to detect 

intracellular ROS levels in H9C2 cells
[20]

 DCF-DA is cell membrane permeable. 

Once inside the cells, DCF-DA is hydrolyzed by cellular esterases to form DCF, 

which is trapped intracellularly due to its membrane impermeability. DCF then 

reacts with intracellular ROS to form the fluorescent product, 2’,7’-

dichlorofluoroscein. Then, the cells were washed once with PBS and lysed in 3 mL 

of ice-cold 10 mM Tris-HCl buffer (pH 7.4) containing 0.2% sodium dodecyl 

sulfate. The cell lysates were collected and centrifuged at 2000g for 5 min at 4 °C. 

The fluorescence of the supernatants was measured using a Perkin- Elmer 

luminescence spectrometer (LS50B) at an excitation wavelength of 495 nm and an 

emission wavelength of 525 nm. 
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2.15 Measurement of Cellular Superoxide Dismutase (SOD) 

 

A reaction mixture contained 50 mM potassium phosphate buffer (pH 7.8), 1.33 

mM diethylenetriaminepentaacetic acid, 1.0 U/ mL catalase, 70 μM nitroblue 

tetrazolium, 0.2 mM xanthine, 50 μM bathocuproinedisulfonic acid, and 0.13 

mg/mL BSA
[21]

. A 0.8 mL aliquot of the reaction mixture was added to each 

cuvette, followed by the addition of 100 μL of lysate. The cuvettes were 

prewarmed at 37 °C for 3 min. The formation of formazan blue was monitored at 

560 nm and 37 °C for 5 min. The sample total SOD activity was calculated using a 

concurrently run SOD (Sigma) standard curve and expressed as units per milligram 

of cellular protein. Cellular protein content was quantified with Bio-Rad protein 

assay dye (Hercules, CA, USA) on the basis of the method that makes use of BSA 

as the standard. 

 

2.16 Measurement of Caspase-3 Activity 

 

Caspase-3 activity was measured using the BD ApoAlert Caspase-3 Fluorogenic 

Assay (BD Biosciences Clontech, Palo Alto, CA, USA). Briefly, protein lysates 

were collected from cells that had been incubated with lioRGJ (0.01−1 μg) for 8 h, 

as per protocol. Activity was measured using a fluorescent microplate reader 

(PerSeptive Biosystems, Farmington, MA, USA). 

 

2.17 Statistics 

 

Unless otherwise stated, all of the experimental results were expressed as mean ± 

standard deviation of measurements from independent samples (n = 5 for berry 

skin and n = 9 for wine). A one-way ANOVA was performed on the means to 
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determine whether they differed significantly. Significant differences were 

determined at P ≤ 0.05, according to Fisher’s LSD test. 

 

3. Results and discussion 

 

3.1 Flavonols and anthocyanins 

 

The data of flavonols present in berry skin,wine, RGJ and lioRGJ of Aglianico 

grapes, are reported in Tables 1-4, respectively. The flavonol content of berry skins 

(1036.7 mg/kg fresh weight) was 15-fold higher than in the corresponding wine 

(69.5 mg/l). Our sample showed a higher concentration of flavonols than other 

more widely consumed red grape juices and wines. Among the nine flavonols 

detected in Aglianico grape and wine, quercetin-3-O-glucoside and, to a lesser 

extent, quercetin-3-O-glucuronide, were the most abundant flavonols both in berry 

skin and wine, in agreement with previous works
[22]

. These compounds are 

involved in the longterm colour stability of red wines and in the improvement of 

organoleptic properties. It has long been known that the increased biosynthesis of 

polyphenols, especially flavonols, is greatly influenced by sunlight exposure and 

temperature, so it is expected that the grapes which are grown in warmer, sunnier 

areas have a higher level of flavonols. In addition, industrial processing in which 

the juice is submitted to a heat treatment to obtain a product characterized by much 

better conditions for storage, transport, and preservation can increase the flavonol 

content due to more exhaustive extraction processes and digestion 

mechanisms
[23]

.Moreover, they are associated to numerous positive nutraceutical 

properties and health benefits. Myricetin-3-O-glucoside, largely present in berry 

skin and grape juice, decreased in wine, indicating a lowering of its bioavailability 

during the winemaking process. Generally, wine samples have shown an important 

peak corresponding to free myricetin suggesting that this flavonol seems to be 
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easily hydrolysed
[24]

. Isorhamnetin-3-O-glucoside and kaempferol-3-O-caffeoylate 

reverse the common flavonol content by doubling their presence in the wine when 

compared to the berry skin. Isorhamnetin inhibits adipogenesis through down-

regulation of PPAR-gamma and C/EBP-alpha in 3T3-L1 Cells
[25]

. Kaempferol 

seems to prevent arteriosclerosis by inhibiting the oxidation of low density 

lipoprotein and the formation of platelets in the blood. Current evidence indicates 

that kaempferol not only protects LDL from oxidation but also prevents 

atherogenesis through suppressing macrophage uptake of oxLDL.  

 

Table 1: Flavonol content (± standard deviation) of berry skin (n = 5) and wine (n 

= 9) of Aglianico grapes.  

 

Compound 

Berry skin Wine 

(mg/kg fresh weight) % (mg/L) % 

Myricetin-3-O-glucoside 142.1 ± 1.2 13.7 7.70 ± 0.9 11.1 

Quercetin-3-O-glucuronide 170.6 ± 1.1 16.5 9.07 ± 0.8 13.1 

Quercetin-3-O-glucoside 441.3 ± 7.4 42.6 27.39 ± 1.5 39.4 

Laricitrin-3-O-galactoside 38.7 ± 0.9 3.7 2.14 ± 0.8 3.1 

Kaempferol-3-O-glucoside 27.2 ± 1.1 2.6 1.40 ± 0.7 2.0 

Laricitrin-3-O-rhamnose-7-O-

trihydroxycinnamic acid 

56.1 ± 0.7 5.4 3.90 ± 0.3 5.6 

Kaempferol-3-O-caffeoylate 46.5 ± 0.9 4.5 5.44 ± 0.6 7.8 

Isorhamnetin-3-O-glucoside 67.0 ± 0.8 6.5 8.69 ± 0.5 12.5 

Syringetin-3-O-galactoside 47.2 ± 0.4 4.6 3.74 ± 0.4 5.4 

Total 1036.7  69.47  
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Table 2: Mass chromatogram and mass spectrometry data of the flavonols detected 

in Aglianico berry skin and wine. 

 

Peak Compound m/z [M-

H]- 

MS2a MS3a MS4a 

1 Myricetin-3-O-glucoside 479 316/317 242, 270/271, 

287 

171, 199, 227 

2 Quercetin-3-O-glucuronide 477 301 151, 179,193, 

257, 273 

151 

3 Quercetin-3-O-glucoside 463 301 151, 179,193, 

257, 273 

151 

4 Laricitrin-3-O-galactoside 493 330, 331 151, 179,193, 

316, 317 

151, 164, 179, 219, 

244, 270/271,287/288 

5 Kaempferol-3-O-glucoside 447 255, 284/285, 

327, 401, 419, 

429 

227, 239, 

255/256 

212, 227 

6 Laricitrin-3-O-rhamnose-7- 

O-trihydroxycinnamic acid 

655 303, 314, 329, 

347, 475, 501, 

509 

314 299 

7 Kaempferol-3-Ocaffeoylate 447 284/285 227, 239, 

255/256 

212, 227 

8 Isorhamnetin-3-O-glucoside 477 271, 285, 

314/315, 357 

243, 257, 

271, 285/286, 

299/300 

241/270 

9 Syringetin-3-O-galactoside 507 344/345, 387, 
479, 489 

330  

a Base peak (100%) is underlined    
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Table 3: LC/MS data of  flavonols in Vitis vinifera L. cv. Aglianico N. red grape 

juice before (RGJ) and after lyophilization (lioRGJ) and their quantitative analysis 

using DAD at 353 nm. 

 

Numerous studies showed kaempferol may have health benefits for people at risk 

of cancer
[26]

. Wine content of laricitrin-3-O-rhamnose, laricitrin-3-O-galactoside, 

syringetin-3-O-galactoside and kaempferol-3-O glucoside retain proportionality 

with the total flavonoid content in berry skin. The main flavonol glycosides in red 

grape juices and wines are derivatives of myricetin and quercetin
[27,28]

 namely, 

myricetin-3-O-glucoside, quercetin-3-O-glucoside, and quercetin-3-O-glucuronide 

(Table 3). In contrast to the literature, low levels of kaempferol derivatives were 

found. During the ripening of the grapes, flavonols are accumulated in the berry 

skin and their absolute and relative content can be influenced by many abiotic 

factors, including water availability and temperature
[2]

. Considering that water 

 

   

Name R3  

Kaempferol H  

Quercetin H  

Isorhamnetin H  

Myricetin OH  

Laricitrin OH  

Syringetin OCH3  

   

 

Peak Compound mg QE/100 mL* m/z [M-H]
-
 MS

2a
 

  GJ lioGJ    

1 Myricetin-3-O-glucoside 93.1 ± 0.3 91.7 ± 0.2  479 316/317 

2 Quercetin-3-O-glucuronide 75.6 ± 0.2 73.5 ± 0.3  477 301 

3 Quercetin-3-O-glucoside 79.8 ± 0.07 78.4 ± 0.08  463 301 

4 Laricitrin-3-O-galactoside 13.3 ± 0.08 11.9 ± 0.06  493 330, 331 

5 Kaempferol-3-O-glucoside 5.6 ± 0.02 5.6 ± 0.01  447 255, 284/285, 327, 

401, 419, 429 

6 Laricitrin-3-O-rhamnose-7- 

O-trihydroxycinnamic 

acid 

18.2 ± 0.1 16.8 ± 0.2  655 303, 314, 329, 347, 

475, 501, 509 

7 Kaempferol-3-O-caffeoylate 16.8 ± 0.02 16.8 ± 0.02  447 284/285 

8 Isorhamnetin-3-O-glucoside 24.5 ± 0.03 23.1 ± 0.04  477 271, 285, 314/315, 

357 

9 Syringetin-3-O-galactoside 19.6 ± 0.05 20.3 ± 0.03  507 344/345, 387, 479, 

489 
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supplies in this experiment were not a limiting factor, we compared the levels of 

flavonols and anthocyanins with those found in grapevines grown under similar 

cultivation and environmental conditions. From this comparison, it appears that 

total quercetin content detected in Aglianico berry skin (441.3 and 170.6 mg/kg for 

quercetin-3-O-glucuronide and quercetin-3-O-glucoside, respectively), as well as 

the levels of other flavonols detected, are higher than those found in some of the 

most important red grape varieties
[29]

. The same difference was found considering 

wines, where Aglianico ranks at the first places for quercetin derivatives and total 

flavonols, with levels comparable to wines produced from high-quality red wine 

varieties such as Cabernet Sauvignon, Sangiovese, Primitivo, Merlot, and 

Zinfandel. The anthocyanin levels and the mass spectrometry parameters of the 

berry skin, wine and grape juice samples are shown in Tables 4, 5, 6 , respectively. 

Among the fruits and vegetables commonly consumed, grapes and their associated 

products are regarded as the most important source of our dietary anthocyanins. 

These compounds have been shown to contribute to the strong protection of the red 

grape and wine against low-density lipoprotein oxidation
[30]

. Recent studies have 

demonstrated that the long-term intake of anthocyanins, which were administered 

as food matrix or enriched fractions, changed the markers for the oxidative status in 

some tissues and affected antioxidant enzyme expression levels and activities when 

compared with animals that did not receive polyphenols in the diet
[31]

. Thus, 

considering the dietary intake of anthocyanins (approximately 100 mg/die) and 

their potential health benefits, the grape and wine samples could be regarded as a 

valuable anthocyanin source suitable for use as dietary supplement. Malvidin-3-O-

glucoside was found to be the main anthocyanin present along with its coumaroyl 

derivative, accounting for 87% and 59% of total content in berry skin and wine, 

respectively (Table 4). 
 

Malvidin-3-O-glucoside is found to be the most abundant compound both before 

and after lyophilization (Table 6). Besides the malvidin-3-O-glucoside and trans 
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malvidin-3-(6-O-coumaroyl)-glucoside, differences between anthocyanin present 

in berry skin, wine and RGJ were found for peonidin derivatives, malvidin-3-O-

acetyl-glucoside and trans petunidin-3-(6-O-coumaroyl)-glucoside, with 

percentages significantly higher in wine than in berry skin and RGJ (Table 4). 

Total anthocyanin content in berry skin was approximately 14-fold of the 

corresponding value found in wine (9996.1 mg/kg and 716.3 mg/L, respectively), a 

proportion not differing greatly from that found in Spanish variety Jumilla-

Monastrell
[32]

. Generally, Aglianico wine appeared to have a high anthocyanin 

content (716.3mg/L) in comparison with the profiles of other high-quality red 

wines
[33]

. Furthermore, the concentration of malvidin and petunidin derivatives 

(63.9% and 10.8% of total anthocyanins, respectively), in Aglianico wine, is 

comparable with their presence in other well-known red wines, such as 

Tempranillo
[34]

, Cabernet Sauvignon
[32]

, Monastrell-J, Shiraz, and Pinot Noir and 

Muscat Rouge
[35]

. In particular, the high levels of acetylated anthocyanins detected 

in Aglianico wine (e.g., peonidin-3-O-acetylglucoside and petunidin-3-O-

acetylglucoside), represent another positive sensory parameter as they confer a 

deep red colour and organoleptic attributes
[36]

. 
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Table 4: Anthocyanin content (±standard deviation) of the berry skin (n = 5) and wine (n = 9) of Aglianico grapes. ND 

= not detected. 

 

Compound 

Berry skin  Wine  

(mg/kg fresh 

weight) 
% (mg/L) % 

Delphinidin-3-O-glucoside 369.5 ± 6.2 3.7 40.8 ± 1.6 5.7 

Cyanidin-3-O-glucoside 353.8 ± 3.2 3.5 37.3 ± 0.9 5.2 

Petunidin-3-O-glucoside 504.6 ± 1.1 5.0 27.7 ± 1.2 3.9 

Peonidin-3-O-glucoside 33.5 ± 0.9 0.3 21.2 ± 0.6 3.0 

Malvidin-3-O-glucoside 5613.7 ± 9.1 56.2 344.2 ± 1.5 48.1 

Delphinidin-3-O-acetyl-glucoside 222.5 ± 2.1 2.2 2.1 ± 0.8 0.3 

Cyanidin-3-O-acetyl-glucoside 173.2 ± 1.2 1.7 0.9 ± 0.7 0.1 

Petunidin-3-O-acetyl-glucoside 84.4 ± 0.7 0.8 19.9 ± 0.9 2.8 

Peonidin-3-O-acetyl-glucoside 140.7 ± 2.2 1.4 54.6 ± 1.2 7.6 

Petunidin-(6-O-caffeoyl)-glucoside 34.2 ± 0.6 0.3 ND ND 

Malvidin-3-O-acetyl-glucoside 57.0 ± 0.8 0.6 34.6 ± 0.7 4.8 

Malvidin-(6-O-caffeoyl)-glucoside 112.6 ± 1.9 1.1 0.7 ± 0.2 0.1 

Cyanidin-3-(6-O-coumaroyl)-glucoside (trans isomer) 63.8 ± 0.8 0.6 0.4 ± 0.1 0.0 

Petunidin-3-(6-O-coumaroyl)-glucoside (trans isomer) 140.9 ± 0.7 1.4 29.2 ± 1.2 4.1 

Peonidin-3-(6-O-coumaroyl)-glucoside (trans isomer) 106.5 ± 1.2 1.1 24.6 ± 0.9 3.4 

Malvidin-3-(6-O-coumaroyl)-glucoside (trans isomer) 1985.2 ± 8.5 19.9 78.1 ± 0.8 10.9 

Total 9996.1  716.3  
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Table 5: Mass spectrometry data of anthocyanins detected in Aglianico berry skin and wine. 

 

Peak Compound m/z [M+H]+ MS2a MS3a MS4a 

1 Delphinidin-3-O-glucoside 465 303 229, 257, 303 229, 257 

2 Cyanidin-3-O-glucoside 449 287 213, 231, 241, 259, 287 213, 231, 241, 259, 287 

3 Petunidin-3-O-glucoside 479 317 257, 274, 302, 317 218, 228, 246, 274 

4 Peonidin-3-O-glucoside 463 301 286 230, 258, 268 

5 Malvidin-3-O-glucoside 493 331 179, 242, 270, 287, 299, 

315/316 

213, 257, 285, 287, 313, 

315 

6 Delphinidin-3-O-acetyl-glucoside 507 303 229, 257, 303 229, 257, 303 

7 Cyanidin-3-O-acetyl-glucoside 491 287 213, 231, 259, 287 213, 231, 259, 287 

8 Petunidin-3-O- acetyl-glucoside 521 302, 317 218, 228, 246, 256, 274 135, 149, 153, 163, 181 

9 Peonidin-3-O- acetyl-glucoside 505 301 286 230, 258, 268 

10 Petunidin-(6-O-caffeoyl)-glucoside 641 317 302 218, 228, 246, 274 

11 Malvidin-3-O-acetyl-glucoside 535 331 179, 242, 270, 299, 

315, 331 

257, 285, 287, 313, 315 

12 Malvidin-(6-O-caffeoyl)-glucoside 655 331 179, 242, 270, 287, 299, 
315/316, 331 

257, 285, 287, 313, 315 

13 Cyanidin-3-(6-O-coumaroyl)-glucoside 

(trans isomer) 

595 287 213, 231, 259, 287 213, 231, 259, 287 

14 Petunidin-3-(6-O-coumaroyl)-glucoside 
(trans isomer) 

625 317 274, 302 218, 228, 246, 274 

15 Peonidin-3-(6-O-coumaroyl)-glucoside 

(trans isomer) 

609 301 286 230, 258, 268 

16 Malvidin-3-(6-O-coumaroyl)-glucoside 
(trans isomer) 

639 331 179, 242, 270, 287, 299, 
315/316, 331 

225, 253, 281, 299 

a Base peak (100%) is underlined.    



 

 

177 
 

Table 6: LC/MS data of tentatively identified anthocyanins in Vitis vinifera L. cv. Aglianico N. red grape juice before 

(RGJ) and after lyophilization (lioRGJ) and their quantitative analysis using DAD at 520 nm. 

 

 

   

Name R1 R2 

Cyanidin OH H 

Peonidin OCH3 H 

Delphinidin OH OH 

Petunidin OCH3 OH 

Malvidin OCH3 OCH3 

   

Peak Compound mg ME/100 mL* m/z [M+H]+ MS2a 

  GJ lioGJ   

1 Delphinidin-3-O-glucoside 34.78 ± 1.1 34.87 ± 1.3  465 303 

2 Cyanidin-3-O-glucoside 21.63 ± 1.2 21.63 ± 1.1  449 287 

3 Petunidin-3-O-glucoside 25.63 ± 1.4 25.68 ± 1.0  479 317 

4 Peonidin-3-O-glucoside 31.24 ± 1.0 31.15 ± 0.9  463 301 

5 Malvidin-3-O-glucoside 114.63 ± 1.9 114.50 ± 1.7  493 331 

6 Delphinidin-3-O-acetylglucoside 10.38 ± 1.5 10.40 ± 0.3  507 303 

7 Cyanidin-3-O-acetylglucoside 5.08 ± 0.9 5.01 ± 0.4  491 287 

8 Malvidin-3-(6-O-coumaroyl)glucoside 

(cis isomer) 

12.38 ± 0.8 12.21 ± 0.4  639 331 

9 Malvidin-(6-O-caffeoyl)glucoside 52.99 ± 1.2 53.00 ± 0.6  655 331 

10 Peonidin-3-(6-O-coumaroyl)glucoside 
(trans isomer) 

4.32 ± 1.0 4.32 ± 0.2  609 301 

11 Malvidin-3-(6-O-coumaroyl)glucoside 

(trans isomer) 

14.66 ± 0.8 14.35 ± 0.1  639 331 
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3.2 Resveratrol and total antioxidant capacity 

 

The content of trans-resveratrol in wine was significantly higher than that of cis-

resveratrol
[37]

 (Table 7) and lower in wine than in berry skin because of the scarce 

stability of stilbenes during winemaking processes
[38]

. The wine total resveratrol 

presence (5.88 mg/L) was higher than that found in many red wines usually 

assessed as 1.9 ± 1.7 mg/L and comparable to the level found in some wines, Pinot 

Nero and Merlot, famous for the high concentration of the trans isomer. The results 

show that resveratrol was present in Aglianico wine at higher concentrations than 

in the common red wines.  

 

Table 7: trans- and cis-Resveratrol content (± standard deviation) of the berry skin 

(n = 5) and wine (n = 9) from Aglianico grapes. 

 

Samples 
Berry skin  

(mg/kg fresh weight) 

Wine 

(mg/L) 

trans-resveratrol 441.41 ± 2.1 3.79 ± 0.9 

cis-resveratrol 163.63 ± 1.6 2.09 ± 1.1 

 

3.3 Polyphenolic composition and antioxidant capacity 

 

The results obtained for RGJ polyphenolic composition (Figure 1) were generally 

higher than those reported elsewhere for other commercial samples
[39]

. It has been 

shown that sun-exposed grapes can contain up to 10 times more total phenolics 

than grapes cultivated in the shade
[40]

. Moreover, thermal treatments employed 

during grape processing for grape juice production may be responsible for a more 

exhaustive extraction of polyphenols
[30]

. Particularly, RGJ high flavonol levels may 

be ascribed to hydrolysis processes, which would increase the monomeric 

compound content in the final product
[23]

.  
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Figure 1: Polyphenolic contents in Aglianico red grape juice before (RGJ) and 

after lyophilization (lioRGJ). Phenol contents are expressed as mg GAE/100 mL ± 

SD; Flavonol contents are expressed as mg QE/100 mL ± SD; Anthocyanin 

contents are expressed as mg ME/100 mL ± SD 

 

This method, based on complex formation with aluminum chloride
[16]

, is rather 

specific to flavonols, because the aluminum complexation requires a 4-keto group 

and at least one neighboring (3- or 5-) hydroxyl group, which are common features 

of flavonols. Interestingly, the almost identical RGJ and lioRGJ polyphenolic 

contents indicated a good stability of the juice to the lyophilization process
[41]

. 

These samples have a variety of bioactivity related to its antioxidant properties, 

such as cardioprotective, anti-cancer, anti-inflammation, anti-ageing and anti 

microbial activities. Moreover, some studies supported Sinclair’s hypothesis that 

the effects of resveratrol are indeed due to the activation of the Sirtuin 1 gene 

which is involved in life extension
[42]

. Owing to the complex reactivity of 

phytochemicals, the antioxidant activities of food and food extracts cannot be 

evaluated by only a single method, but at least two test systems have been 

recommended for the determination of antioxidant activity to establish 

authenticity
[43]

. For this reason, the antioxidant activity was determined by two 
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spectrophotometric methods, DPPH and FRAP tests, and expressed as trolox 

equivalents (TEs). The reduction of DPPH absorption is indicative of the capacity 

of the samples to scavenge free radicals, while the FRAP method is used to 

determine the capacity of reductants in a sample. The total antioxidant capacity, 

evaluated by FRAP and DPPH tests, was higher for wine than for berry skin 

exctracts (about 2- to 4-fold) (Table 8), due to the increased presence of malvidin, 

peonidin, cyanidin, delphidin and petunidin derivatives in wine
[44]

. RGJ and lioRGJ 

showed quite comparable antioxidant activities when tested by both assays. These 

results confirmed that the quali-quantitative polyphenolic composition of the 

freeze-dried sample remained almost unchanged. Results revealed for the juice 

samples a good antioxidant activity when compared with that of authentic 

standards chosen as widely employed food preservatives and strong hydrophilic or 

lipophilic antioxidants (Figure 2). 

 

 

Figure 2: Reducing capacity (FRAP test) and radical-scavenging activity (DPPH 

test) of Aglianico red grape juice (RGJ and lioRGJ) versus antioxidant standards. 

Values are expressed ± SD (P < 0.001). 
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Table 8: Total antioxidant capacity expressed as Trolox of the extracts from the 

berry skin (n = 5) and wine (n = 9) of Aglianico grapes determined by DPPH
.
 and 

FRAP assays at the steady state (DPPH
.
, 45 min; FRAP, 55 min). 

 

 Assay method 

Sample DPPH
●
 FRAP 

 (µmol/L) 

Berry skin 443.6 1095.7 

Wine 1550.0 2200.0 

 

3.4 Effects of grape juice after lyophilization on Cardiomyocytes. 

 

We examined the effect on free radical and manganese superoxide dismutase levels 

in cardiac-derived H9C2 myocytes exposed to increasing doses (0.01−1 μg) of 

lioRGJ (Table 9). The data demonstrated that antioxidants in the juice sample at a 

maximum sample dose of 0.01 μg were able to directly scavenge free radicals (with 

the exception of RNS) without interfering with cell antioxidant defensive system 

involving enzymes and proteins for cardioprotection. Nevertheless, exposure to 

increasing concentrations of lioRGJ resulted in pro-oxidant effects as demonstrated 

by the increase in ROS, RNS, and antioxidant enzyme levels at a sample dose of 

0.05 μg (Table 9).  
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Table 9: Effect of lyophilized Aglianico red grape juice on free radicals generated and manganese superoxide 

dismutase activity in lysate of H9C2 cardiomyocytes. 

 

 

 

lioRGJ: lyophilized red grape juice 

Dox: doxorubicin 

TBARS: Thiobarbituric Acid Reactive Substances 

MnSOD: manganese superoxide dismutase 

 

Control 0.01 μg lioRGJ 
0.05 μg 

lioRGJ 

Dox 1 

μM 

Dox 1 μM + 0.01 

μg lioRGJ 

Dox 1 μM + 0.05  

μg lioRGJ 

TBARS μM/μg protein 0.0043 0.0035 0.0047 0.0068 0.0021 0.005 

NO2
-
 nmol/μg protein 0.0010 0.0039 0.008 0.0065 0.0052 0.024 

MnSOD U/μg protein 0.01 0.010 0.018 0.008 0.008 0.035 
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Figure 3: (A) Effect of increasing doses (0.01-1 µg) of lyophilized Vitis vinifera L. 

cv. Aglianico N. red grape juice before (lioRGJ) on proliferation of H9C2 

cardiomyocytes. (B) Effect of lyophilized Vitis vinifera L. cv. Aglianico N. red 

grape juice before (lioRGJ) on caspase-3 activity in lysate of H9C2 

cardiomyocytes. (C) Effect of lyophilized Vitis vinifera L. cv. Aglianico N. red 

grape juice before (lioRGJ), doxorubicin (Dox) and their combination on 

proliferation of H9C2 cardiomyocytes. 
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These results would suggest what has already been stated in the literature for grape 

seed proanthocyanidin extrac that higher doses of antioxidants occurring in the 

juice sample may cause apoptotic cell injury via effector caspase-3 activation and 

subsequent induction of ROS and RNS generation
[10-12]

. To confirm such a 

hypothesis, the influence of lioRGJ on caspase-3 activity in cardiac-derived H9C2 

myocytes was tested (Figure 3). Among the many known regulators and effectors 

of apoptosis, caspases are a family of cytoplasmic proteases that play an important 

role in the execution phase of apoptosis. Cells were incubated with lioRGJ (0.01−1 

μg) in medium for 8 h and then lysed to measure caspase-3 activity using a 

fluorogenic assay. The best result was achieved with a dose of 0.01 μg that made 

the caspase-3 activity decrease by about 47% (Figure 3). An increase in lioRGJ 

dose (from 0.01 to 0.05 μg) exposure to cardiomyocytes seemed to be less effective 

in reducing caspase-3 activity. Collectively, these data suggested that higher doses 

of lioRGJ caused cell death via the caspase-3- mediated apoptotic pathway. To 

ascertain the potential effects of lioRGJ on the doxorubicin-induced oxidative 

stress in cardiac cells, H9C2 cardiomyocytes were exposed to 1 μM doxorubicin 

and a combination of doxorubicin and different doses of lioRGJ for 72 h (Table 

10)
[45]

. A sample aliquot of 0.01 μg provided an appreciable radical-scavenging 

activity as indicated by the decrease in the free radical levels (especially ROS 

species, about 31%) and the unchanged antioxidant defense system activity (Table 

10). Interestingly, the association of doxorubicin with higher lioRGJ doses (from 

0.01 to 0.05 μg) led to the enhancement of cardiac cell oxidative stress, probably 

due to sample pro-oxidant effects, as indicated mainly by the increase in RNS and 

antioxidant enzyme levels (Table 10).  
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Table 10: 
a
Values are expressed as means ± SD of at least three experiments (P < 

0.001 compared to the control). lioRGJ, lyophilized red grape juice; Dox, 

doxorubicin; TBARS, thiobarbituric acid reactive substances; MnSOD, manganese 

superoxide dismutase; control, untreated cell lines. 

 

 Control 1 μM Dox 
1 μM Dox + 

0.01 μg of lio RGJ 

1 μM Dox + 

0.05 μg of lio RGJ 

TBARS μM/μg protein 0.0043 ± 0.05 0.0068 ± 0.09 0.0021 ± 0.02 0.0050 ± 0.05 

NO2
-nmol/μg protein 0.0010 ± 0.02 0.0065 ± 0.08 0.0052 ± 0.07 0.0240 ± 0.21 

MnSOD, U/μg protein 0.0100 ± 0.12 0.0080 ± 0.05 0.0080 ± 0.10 0.0350 ± 0.35 

 

To confirm such a hypothesis, the influence of 1 μM doxorubicin and a 

combination of doxorubicin with different doses of lioRGJ on caspase-3 activity in 

cardiomyocytes was assayed (Figure 3). Data showed that doxorubicin 

significantly up-regulated caspase-3 activity, whereas its combination with 

maximum sample aliquot of 0.01 μg seemed to effectively depress (by about 60%) 

the activity of this apoptotic factor. The means of the results from all of the above 

experiments were different at a significance level of P < 0.001. In conclusion, our 

results showed a good antioxidant stability of the juice sample to lyophilization that 

may be reasonably regarded as a suitable process for the formulation of food 

supplements. In vitro experiments on cardiomyocyte cell culture indicated that low 

doses of lioRGJ were able to confer protection against both physiological reactive 

oxygen species (ROS) and doxorubicin-induced oxidant injury. It would be 

difficult to draw direct comparisons of our in vitro study, in which cardiomyocytes 

were directly exposed to lioRGJ, with animal models. Our data suggest for the 

juice sample the possibility to be employed as a food supplement with prospective 

cardioprotective benefits, although further studies are needed to optimize its 

dosages to avoid harmful pro-oxidant effects. 
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3.5 Metals 

 

Excess of Fe and Cu cations in wine, determines turbidity and causes significant 

instability owing to catalysing oxidative reactions which modify taste 

characteristics. Furthermore, wine haziness induction (commonly called ‘casse’) is 

due to unstable colloid formation arising from reaction between Fe, Cu, proteins 

and other wine components. For all these reasons, a high level of these minerals is 

undesirable as is the presence of poorly soluble Ca which contributes to colloid 

flocculation and salt precipitation. If compared to the mean values of Fe, Cu and 

Ca detected in a broad range of Southern Italian red wines
[46]

 and American red 

wines
[47]

, the Aglianico wine samples presented low levels of these three elements 

(190.51, 1.60 and 8.34 mg/L for Fe, Cu and Ca, respectively) (Table 11). While the 

mean value of K concentration in wine is approximately 1 mg/L
[48]

, Aglianico wine 

samples resulted to have a mean concentration of 0.691 mg/L (Table 11). This is a 

positive feature, as a high K level negatively affects wine quality, colour, stability 

and taste, depending on potassium bitartrate formation. Some of the heavy metals 

present into the wine, such as Cd, Pb and Zn may be derived from soil 

contaminants, fungicidal residues, or winery equipments, and could represent a 

danger for human health if present in high concentrations. In our wine samples, the 

levels of Cd and Zn (0.20 and 4.55 lg/L, respectively) were markedly low if 

compared to the levels usually detected in red wines
[46]

. The Pb concentration 

(61.96 lg/L), under the limit fixed by the Organization Internationale de la Vigne et 

du Vin
[49]

 is not negligible. Among heavy metals, Mn was present at a low level 

(17.34 lg/L) in wine (Table 11), and this could be related to its greater presence in 

grape seeds than in berry skin
[48]

. Finally, the optimal balance of macro- and micro-

elements in Aglianico grape and wine can give a definitive contribution to defining 
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the organoleptic and nutraceutical profile of this important but poorly studied grape 

variety. 

 

Table 11: Macro- and micro-element content of berry skin (n = 5) and wine (n = 

9) from Aglianico grapes. ND = not detected. 

 

Elemen

t 

Berry skin  

(mg/kg dry weight) 

Wine  

(μg/L) 

Ag 0.22 ± 0.04 2.16 ± 0.95 

Al 8.10 ± 0.94 176.51 ± 0.02 

Ca 332.99 ± 1.12 8.34 ± 0.15
a
 

Cd 0.02 ± 0.06 0.20 ± 0.01 

Co 0.51 ±0.07 9.42 ± 0.85 

Cu 23.82 ± 0.79 1.60 ± 0.90
a
 

Fe 28.59 ± 0.73 190.51 ± 0.91 

Ga 0.15 ± 0.05 9.35 ± 1.05 

K 62.40 ± 0.21 691.00 ± 0.05 

Mg 60.40 ± 2.53 6.12 ± 0.03 

Mn 0.81 ± 0.03 17.34 ± 0.22 

Mo 0.77 ± 0.02 17.75 ± 0.85 

Na 1.16 ± 0.91 9.31 ± 0.20 

Pb 1.76 ± 0.09 61.96 ± 0.96 

Pt 0.01 ± 0.002 0.32 ± 0.04 

Ru 3.67 ± 0.91 50.71 ± 1.23 

Se 0.58 ± 0.09 ND 

Sn 1.27 ± 0.75 16.27 ± 1.12 

V 1.74 ± 0.87 29.94 ± 1.12 

Zn 47.11 ± 1.11 4.55 ± 0.95 
a
 concentration in (mg/l). 
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