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Abstract

The search for similarities in large data sets has a relevant role in many

scientific fields. It permits to classify several types of data without an

explicit information about them. Unfortunately, the experimental data

contains noise and errors, and therefore the main task of mathemati-

cians is to find algorithms that permit to analyze this data with maximal

precision. In many cases researchers use methodologies such as cluster-

ing to classify data with respect to the patterns or conditions. But in the

last few years new analysis tool such as biclustering was proposed and

applied to many specific problems. My choice of biclustering methods is

motivated by the accuracy obtained in the results and the possibility to

find not only rows or columns that provide a dataset partition but also

rows and columns together.

In this work, two new biclustering algorithms, the Combinatorial Biclus-

tering Algorithm (CBA) and an improvement of the Possibilistic Biclus-

tering Algorithm, called Biclustering by resampling, are presented. The

first algorithm (that I call Combinatorial) is based on the direct defini-

tion of bicluster, that makes it clear and very easy to understand. My

algorithm permits to control the error of biclusters in each step, speci-
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fying the accepted value of the error and defining the dimensions of the

desired biclusters from the beginning. The comparison with other known

biclustering algorithms is shown.

The second algorithm is an improvement of the Possibilistic Biclustering

Algorithm (PBC). The PBC algorithm, proposed by M. Filippone et al.,

is based on the Possibilistic Clustering paradigm, and finds one bicluster

at a time, assigning a membership to the bicluster for each gene and for

each condition. PBC uses an objective function that maximizes a biclus-

ter cardinality and minimizes a residual error. The biclustering problem

is faced as the optimization of a proper functional. This algorithm ob-

tains a fast convergence and good quality of the solutions. Unfortunately,

PBC finds only one bicluster at a time. I propose an improved PBC algo-

rithm based on data resampling, specifically Bootstrap aggregation, and

Genetics algorithms. In such a way I can find all the possible biclusters

together and include overlapped solutions. I apply the algorithm to a syn-

thetic data and to the Yeast dataset and compare it with the original PBC

method.
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Prologue

“...Just as Kepler and Newton made these predictions and

discoveries by using mathematical frameworks to describe

trends in astronomical data, so future predictive power, dis-

covery, and control in biology and medicine will come from

the mathematical modeling of DNA microarray data, where

the mathematical variables and operations represent biolog-

ical reality. The variables, patterns uncovered in the data,

might correlate with activities of cellular elements, such as

regulators or transcription factors, that drive the measured

signals. The operations, such as data classification and re-

construction in subspaces of selected patterns, might simu-

late experimental observation of the correlations and possi-

bly also causal coordination of these activities. Such mod-

els were recently created from DNA Microarray data by us-

ing singular value decomposition (SVD) and generalized SVD

(GSVD), and their ability to predict previously unknown bio-

logical as well as physical principles was demonstrated...”

– Orly Alter.
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Chapter 1

Introduction

1.1 Introduction to Bioinformatics and ge-

nomics.

Look around and you can see, how beautiful is life in its diversity: from

the simple cells to mammals and humans. And it is strange, that this

diversity depends on a linear code inside small living cells. Following

the frequent rule of life: "Just a stroke of genius", like a binary code that

control the computers, four DNA basis control all complicity of the genetic

code. Very important discovery of the relationship between DNA and

proteins, their functions and properties cames in the twentieth century

and led to a revolution in the genetics understanding. Since that time

we discover all the days a new information about genome. This chaos if

material provides many difficulties in the analysis. One of the tasks of

biologists today is organize, study and make the conclusions from all this
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information. For all these problems a new Science such as Bioinformatics

was proposed. I use Bioinformatics to get a better understanding of living

systems. [1]

As it is known from Wikipedia, the term of “bioinformatics” was invented

by Paulien Hogeweg in 1979 for the study of informatics processes in

biological systems. And was widely used from the late 1980s in genomics

and genetics. Bioinformatics includes such fields as (See Wikipedia):

• Mathematical methods of the computing analysis of comparative ge-

nomics (genomic bioinformatics).

• Development of the algorithms and software for predicting the spa-

tial structure of proteins (structural bioinformatics).

• Researching of the strategies that correspond to computational method-

ologies as well as overall management of information complexity of

biological systems.

Genomics is one of the fields of Bioinformatics. According to the Oxford

Dictionary, Genomics is the branch of molecular biology concerned with

the structure, function, evolution, and mapping of genomes, in particular,

the suffix -ome means "all constituents considered collectively". An inter-

esting areas of the Genomics is detection and analysis of the nucleic acids

structures—deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).

DNA contains the coding ("coding" DNA) and non-coding areas. “Scien-

tists now estimate that humans have about 30,000 genes, located along
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threadlike, tightly coiled strands of DNA called chromosomes. However,

there are about three percent of genes in a human DNA; the rest consists

of a "noncoding" DNA. These noncoding regions of the genome contain the

information about an activity of a genes. For example, they determine in

which cell types and at what stages of an organism life genes are active.

Genomics is the study of the entire set of DNA sequences–both coding

and noncoding DNA”.[2]

1.2 Methods for gene analysis.

1.2.1 Clustering.

Follow I use the notes of [3]. Clustering is the unsupervised classifica-

tion of patterns (observations, data items, or feature vectors) into groups

(clusters). In other words, a cluster is a collection of objects which are

“similar” between them and are “dissimilar” to the objects belonging to

other clusters. Despite a simplicity of the definition, clustering is a dif-

ficult problem, used in many disciplines such that biology, psychiatry,

psychology, archeology, geology, geography, and marketing. So, the goal

of clustering is to determine groups in a set of unlabeled data. But how

to understand, what groups provide a good clustering? It can be shown

that there is no absolute criterion which would be independent of the

final aim of the clustering. Consequently, the different clustering algo-

rithm can provide absolutely different result. For example, it can be find

representatives for homogeneous groups (data reduction) or unusual data
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objects (outlier detection). Such, clustering involve a number of problems,

providing a production and development of a clustering algorithms.

Most common clustering algorithms for the genetical data canalization

are:

• K-means - an exclusive clustering algorithm [4]

• Fuzzy C-means - overlapping clustering algorithm [16]

• Hierarchical clustering [5]

Most clustering techniques identify clusters according to a distance be-

tween each pair of data points and therefore need a definition of this

distance measure 1.1. It influence the shape of the clusters, as some ele-

ments may be close to one another according to one distance and farther

away according to another. Common distance functions can be, for exam-

ple, Euclidean distance, Hamming distance and other.

Main steps of clustering can be defined as:

• data preparation (cleaning data, data transformations, selecting sub-

sets of records and - in case of data sets with large numbers of vari-

ables ("fields") performing some preliminary feature selection opera-

tions to bring the number of variables to a manageable range)

• background correction (adjustments to the data, removing of nonbi-

ological contributions "background" to the measured signal)

17



Figure 1.1: Clustering methods and Statistic.

• normalization (decomposing relations with anomalies in order to

produce smaller, well-structured relations)

• transformation (application of a deterministic mathematical func-

tion to each point in a data set)

Cluster analysis can be performed not only to identify genes whose ex-

pression levels change in similar ways, but also to identify samples that

have similar expression patterns. These samples could for example be

different organisms or different conditions, or a combination of the two.

The distance must be defined as a number, and therefore each gene or

sample in the experiment requires a set of quantitative parameters. [1]

As many algorithms, clustering has some limitations. First, it is based

on the assumption that related genes are similar for the most conditions.

18



But from studies of cellular processes, it is known that groups of genes

are co-regulated and coexpressed under certain experimental conditions,

and also behave almost independently under other conditions. Second,

clustering solutions often divide genes into disjoint sets, implying associ-

ation of each gene with a biological function or process that can simplify

the biological system. To solve these problems, Biclustering technique

was proposed and widely used in Bioinformatics.

1.2.2 Biclustering.

A Bicluster of a gene expression dataset is a subset of genes which shows

similar trends in terms of a subset of conditions. Biclustering techniques

find submatrices, which are closely regulated in accordance with some

scoring criterion. In practice, it is need to build a collection of submatrices

(biclusters) that fix every significant parts of gene expression data, and

differently from clusters these matrices can be overlapped or cover the

entire matrix.

The technique of biclustering was originally introduced by J.A. Hartigan

(1972) [6] and the term was firstly introduced by Mirkin (1996) [7] (later

by Cheng and Church [8] (2000) in gene expression analysis). Cheng

and Church introduced a similarity score called mean squared residue

as a measure of the rows coherence. They identify one bicluster at a

time, mask it with random numbers, and repeat the procedure in order

to eventually find other biclusters.

My choice of biclustering methods is motivated by the accuracy in the
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obtained results and the possibility to find not only rows or columns that

provide a partition of the dataset, but also rows and columns together.

1.3 Aim of the Thesis

In this thesis two new algorithms of biclustering Improved PBC (Pos-

sibilistic Biclustering algorithm) and CBA (Combinatorial Biclustering

Algorithm) are presented. Improved PBC is based on the Possibilistic ap-

proach to biclustering, supplemented by Bagging technique and Genetic

Algorithms. CBA, instead, is based on the variance of the bicluster en-

tries, analyzed by Bimax algorithm with applying of other techniques.

These new mathematical models generalize a good result and are vali-

dated by new techniques. The proposed algorithms solve a number of

Clustering problems. For example, they do not require a supervised defi-

nition of number of the clusters, separate the data with respect to a part

of columns and a part the rows, do not use concept of the distance. In ad-

dition, the new algorithms solve many biclustering problems, such that

data analysis, running speed and stability of results.

1.4 Structure of the thesis

In the 1st Chapter of the thesis I give main biological terms, make an in-

troduction to Bioinformatics and genomics in the simple therms, easy un-

derstandable to non-specialists. I also discus mathematical problems in
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Bioinformatics, such that, for example, classification of the data, and give

possible solution of these problems (Clustering and Biclustering tech-

niques).

In the 2d Chapter I introduce the Biological Basis, that includes the

structure and functions of DNA and RNA, their link with the central

dogma of molecular biology and gene expression analysis. I present a bi-

ological method of the data obtaining, such that Microarray technology

and discuss the main aim of gene expression analysis.

The 3d Chapter introduces better the biclustering technology. I begin this

chapter from the history of the biclustering, present some important per-

sons and their works (Cheng and Church, Lazzeroni, Kluger and many

others). Then I give a definition of Bicluster in terms of row mean, col-

umn mean and bicluster mean, that is based on the residue score and

MSR. And in the end of this chapter I define the main types of biclusters.

In the 4th Chapter I present the first result of my work – Combinato-

rial Biclustering Algorithm (CBA). This unsupervised method solves a

number of biclustering problems. It finds all biclusters together, gives

a possibility to define a minimal error, minimal number of the rows and

the columns. I apply different techniques to CBA, such that Biclique tech-

nique, Sorting & Deleting algorithm and Bimax Algorithm. I apply CBA

to many types of data, synthetic and real biological data. Comparison

with other methods and conclusion are presented.

In the Chapter 5 I present the second result of my work, such that Biclus-

tering by Resampling. Corresponding techniques of Fuzzy logic (Fuzzy
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Clustering technique and Possibilistic Clustering Paradigm) are discussed.

I also introduce the Possibilistic approach to biclustering and its improve-

ment, based on the Bootstrap aggregating and Genetic Algorithms. The

Biclustering by Resampling is tasted on the different types of the data.

Comparison with other methods and conclusion are presented.
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Chapter 2

Biological Basis

2.1 The Nucleic Acid World.

2.1.1 The Structure of DNA and RNA

Follow I use the definitions and explanations from [1]. The main role

of DNA (deoxyribonucleic acid) is the information storage. It is a ma-

terial that holds genetic instructions in all living cells, from unicellular

bacteria to multicolor plants and animals. Chemical structure of DNA

transmit these instructions from generation to generation, which creates

and supports new organisms. It is incredibly, that a very large amount

of information about complex organisms is stored in a relatively small

number of DNA molecules. This set of molecules is called the organism’s

genome. Humans have 46 DNA molecules in most cells, only one DNA

molecule is located in each chromosome. Each DNA molecule is copied
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Figure 2.1: The Central Dogma of molecular biology.

and its copies are distributed in the way that each daughter cell receives

a full set of genetic information (see 2.1).

Despite a complex role of the DNA, this molecule has a fairly simple

chemical structure. They are linear polymers of four different nucleotide

building blocks, whose differences are restricted to a substructure called

the base. There are four bases of DNA molecule: guanine (G), adeno-

sine (A), cytosine (C) and thymine (T). The three-dimensional structure

of DNA is also relatively simple, involving regular double helices.

RNA molecules are also linear polymers, but they are much smaller than

genomic DNA. Most RNA molecules also contain just four different base

types, such that adenine (A), cytosine (C), guanine (G), or uracil (U). RNA
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(A) DNA exists in cells mainly as a two-stranded coiled structure called
the double helix. (B) The two strands of the helix are held together by

hydrogen bonds (shown as red lines) between the bases; these bonds are
referred to as basepairing. The figure is taken from [1].

Figure 2.2: The double helical structure of DNA.

molecules tend to have a less-regular three-dimensional structure than

DNA. In most forms of RNA molecule there are also just four bases.

Each nucleic acid chain is a linear polymer of nucleotides linked together

by phosphodiester linkages through the phosphate on one nucleotide and

the hydroxyl group on the 3’ carbon on the sugar of another. The resulting

chain has one end with a free phosphate group, which is known as the 5’

end, and one end with a free 3’ hydroxyl group, which is known as the 3’

end (see 2.2).
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2.1.2 The Central Dogma of molecular biology.

The Central Dogma of molecular biology (see 2.1) was first articulated

by Francis Crick in 1958 and re-stated in a Nature paper published in

1970. It deals with the detailed residue-by-residue transfer of sequential

information. It states that information cannot be transferred back from

protein to either protein or nucleic acid. In other words, “once information

gets into protein, it can’t flow back to nucleic acid”.

The Central Dogma consists of 3 main position (See Wikipedia):

• DNA Replication. As a final step in the Central Dogma, the DNA

must be replicated faithfully, to transmit the genetic information be-

tween parents and progeny. Replication is carried out by a complex

group of proteins that unwinds the superhelix, unwinds the double-

stranded DNA helix, and, using DNA polymerase and its associated

proteins, copies or replicates the master template itself so the cycle

can repeat DNA to RNA to protein in a new generation of cells or

organisms.

• Transcription. Transcription is the process by which the informa-

tion contained in a section of DNA is transferred to a newly as-

sembled piece of messenger RNA (mRNA). It is facilitated by RNA

polymerase and transcription factors. In eukaryote cells the pri-

mary transcript (pre-mRNA) is often processed further via alterna-

tive splicing. In this process, blocks of mRNA are cut out and rear-

ranged, to produce different arrangements of the original sequence.
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• Translation. Eventually, this mature mRNA finds its way to a ri-

bosome, where it is translated. In prokaryotic cells, which have no

nuclear compartment, the process of transcription and translation

may be linked together. In eukaryotic cells, the site of transcrip-

tion (the cell nucleus) is usually separated from the site of transla-

tion (the cytoplasm), so the mRNA must be transported out of the

nucleus into the cytoplasm, where it can be bound by ribosomes.

The mRNA is read by the ribosome as triplet codons, usually be-

ginning with an AUG, or initiator methionine codon downstream of

the ribosome binding site. Complexes of initiation factors and elon-

gation factors bring aminoacylated transfer RNAs (tRNAs) into the

ribosome-mRNA complex, matching the codon in the mRNA to the

anti-codon in the tRNA, thereby adding the correct amino acid in

the sequence encoding the gene. As the amino acids are linked into

the growing peptide chain, they begin folding into the correct confor-

mation. This folding continues until the nascent polypeptide chains

are released from the ribosome as a mature protein. In some cases

the new polypeptide chain requires additional processing to make

a mature protein. The correct folding process is quite complex and

may require other proteins, called chaperon proteins. Occasionally,

proteins themselves can be further spliced; when this happens, the

inside "discarded" section is known as an intein.
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2.2 Gene Expression analysis.

Recently, different methods are used to produce biological databases, for

example, RNA interference (RNAi), different methods of gene expression

and protein expression analysis. In my work I use only common data

bases, such as Microarrays.

Materials of this section are taken from Wikipedia and [1].

Gene expression begins when the gene is transcribed into messenger

RNAs (mRNAs), which are then translated to produce proteins. One of

the evaluation of gene expression is the detection and quantification of

total RNA transcript using DNA Microarray technology (see 2.3). In this

case, a single experiment produces an enormous amount of the data.

DNA microarrays and chips are composed of short fragments of DNA at-

tached to a surface or synthesized directly on the surface, such as a glass

microscope slide, in a predetermined arrangement, so that the sequence

of the DNA fragment at any position is known. In the most basic form of

a Microarray experiment, the testing mRNAs in the sample are labeled

with fluorescent tags and mixed with the array. RNAs in the samples,

that are complementary to fragments on the array, will base-pair or hy-

bridize with the fragments. Unbound sample is washed away, and the

Microarray is scanned with a fluorescence imager. RNAs that have bound

their complementary array fragment are detected as fluorescent spots at

specific positions, which give their identities, while the intensity of the

fluorescence measures the level of the RNAs in the original sample. In
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practice, the sample mRNA is first converted to cDNA by reverse tran-

scription, and is also labeled in this reaction, or the RNA is amplified

by in vitro transcription and then labeled, and this labeled RNA is hy-

bridized to the array. For small-scale DNA arrays where high sensitivity

is required, sample RNA can also be directly labeled with a radioactive

tag without amplification.

A DNA array can contain from tens or hundreds to hundreds of thousands

of different sequences, depending on the purpose for which it is to be used.

Most gene expression microarray experiments are intended not only de-

tect the expressed genes at a given time, but also to detect differences in

gene expression under different conditions.

There are two basic approaches in microarray technology: a one-color

technique, where a single sample is hybridized to each microarray after

it has been labeled with a single fluorophore; and the two-color procedure,

where two samples are labeled with different fluorophores and hybridized

together on a single microarray, as described above.

The main aim of gene expression analysis is the identification of com-

mon patterns of gene expression; for example, which genes are being co-

expressed, and which genes have been downregulated or upregulated in

one sample compared to the other.
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Example of an approximately 40,000 probe spotted oligo microarray
with enlarged inset to show detail. This figure is taken from Wikipedia.

Figure 2.3: Example of an approximately 40,000 probe.
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Chapter 3

Biclustering: definition,

history, problems.

3.1 History of the Biclustering.

The emergence of DNA microarray technology has revolutionized exper-

imental studies of gene expression. Clustering is the most popular ap-

proach for the analysis of gene expression data, whose main objective is

the identification of genes with same functions or regulatory mechanisms.

As all algorithms, clustering has some limitations (that was discussed be-

fore).

A Bicluster of a gene expression dataset is a subset of genes which shows

similar trends in terms of a subset of conditions. It finds submatrices,

which are closely regulated in accordance with some scoring criterion. In

practice, one wants to build a collection of submatrices (biclusters) that
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fix every significant parts of gene expression data, and differently from

clusters these matrices can be overlapped or cover the entire matrix.

Cheng and Church [8] proposed the concept of bicluster, based on a high

similarity score as a measure of coherence of the genes and conditions

(mean squared residue). The mean squared residue (MSR) is the variance

of the set of all elements in the bicluster, plus the mean row variance and

the mean column variance. For a good bicluster the value of MSR must

be lower than a defined threshold. The method of Cheng and Church

finds one bicluster at a time and is based on the removing and adding

the rows and columns with a larger residue or a lower residue than a

threshold, respectively. After determining the first bicluster they fill it

by substituting the expression values with random numbers to find the

second bicluster by the same way. The algorithm of Cheng and Church

works well but makes impossible to find overlapped biclusters.

Based on the previous idea, Lazzeroni (2000) [9] presents the PLAID

models, in which the data matrix is described as a linear function of lay-

ers corresponding to its biclusters and shows how to estimate a model

using an iterative maximization process. Plaid models are a form of two-

sided cluster analysis that allows clusters to overlap; they also incorpo-

rate additive two way ANOVA models within the two-sided clusters.

PLAID [9] consists of a series of additive layers intended to capture the

underlying structure of a matrix. Each layer corresponds to a bicluster.

Each element of the data matrix aij is modeled by

aij=
∑K

k=0θijkρikκjk,
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where K is the number of biclusters, ρik and κjk are binary variables that

represent the membership of row i and column j in layer k. Plaid uses

the standard 2-way Anova decomposition for each layer k:

θijk = µk + αik + βjk

where a µk is introduced to serve as a general mean, αi is the membership

for the row i, βj is the membership for the columns j and θijk is the plaid

contribution for the element aij of the data matrix. Plaid is a form of

overlapping two-sided clustering with a good speed.

The SAMBA algorithm (Statistical-Algorithmic Method for Bicluster Anal-

ysis) [12, 13] searches the gene-properties graph for statistically signif-

icant subgraphs. It defines a bicluster as a subset of genes that jointly

respond across a subset of conditions. A gene respond to some condition if

its expression level changes significantly at that condition with respect to

its normal level. The input data is modeled as a bipartite graph with the

two parts corresponding to conditions and genes respectively and edges

for significant expression changes. Then the assignation of the weights

to the edges of the graph occurs following two statistical models defined

by the authors.

Prelic et al., (2006) [11], proposed a divide-and-conquer algorithm (BI-

MAX) for finding constant biclusters after discretizing the input expres-

sion matrix into a binary matrix. This discretization makes it harder to

determine coherent biclusters.

Spectral [14] is a method that simultaneously clusters genes and con-
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ditions, finding distinctive "checkerboard" patterns in matrices of gene

expression data. It finds checkerboard structures in matrices of expres-

sion data by using eigenvectors, corresponding to characteristic expres-

sion patterns across genes or conditions. These eigenvectors are identi-

fied by singular value decomposition (SVD). Spectral algorithm depends

much on the normalization over genes and conditions and existence of

checkerboard structure.

The Possibilistic Biclustering algorithm, proposed by M. Filippone et al.

[15], is based on the Possibilistic Clustering paradigm [16], and finds one

bicluster at a time, assigning a membership to the bicluster for each gene

and for each condition. The biclustering problem, in which one would

maximize the size of the bicluster and minimizing the residual, is faced

as the optimization of a proper functional. This algorithm obtains fast

convergence and good quality solutions. PBC finds only one bicluster at

time.

There are many other Biclustering techniques in literature. But no of

them can find perfect biclusters in definitive time. Many of these algo-

rithms find only one bicluster at a time, or being the graph technique,

use a lot of time for calculation. In my work I try to present novel algo-

rithms that finds better results than all known algorithms.
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3.2 Bicluster definition.

Following Cheng and Church [8] let me to give a definition of bicluster.

Let A be the expression matrix with elements aij, X be the set of genes

and Y - the set of conditions. Let I ⊆ X and J ⊆ Y be subsets of genes

and conditions. The pair (I, J) specifies a submatrix AIJ .

A bicluster with coherent values identifies a subset of the genes and a

subset of the conditions with coherent values on both rows and columns.

I consider the additive model to find biclusters, but it can be also changed

to the multiplicative one. In the case of the additive model, each element

aij can be uniquely defined by its row mean, aiJ , its column mean, aIj,

and the bicluster mean, aIJ . The difference aIj − aiJ is the relative bias

held by the column j with respect to the other columns in the bicluster.

The same reasoning applied to the rows leads to the definition that, in a

perfect bicluster, the value of an element, aij, is given by a row-mean plus

a column-mean minus the matrix mean:

aij = aiJ + aIj − aIJ .

In gene expression data, due to noise, biclusters may not always be per-

fect. The concept of residue was thus introduced to quantify the differ-

ence between the actual value of an element aij and its expected value

predicted from the corresponding row mean, column mean, and bicluster

mean. The residue score of an element aij in a submatrix AIJ is defined
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as:

RSIJ(i, j) = aij − aIj − aiJ + aIJ .

In order to assess the quality of a bicluster, the mean squared residue, H,

of a bicluster (I, J) is defined as the sum of the squared residues used to

measure the coherence of the rows and columns in the bicluster:

H(I, J) =
1

|I| × |J |
∑

i∈I,j∈J

RSIJ(i, j)
2 =

1

|I| × |J |
∑

i∈I,j∈J

(aij − aIj − aiJ + aIJ)
2,

where

aiJ =
1

|J |
∑
j∈J

aij, aIj =
1

|I|
∑
i∈I

aij, aIJ =
1

|I| × |J |
∑

j∈J,i∈I

aij.

A submatrix AIJ is called a δ-bicluster if H(I, J) ≤ δ for some δ ≥ 0.

The residue score of aij gives an idea of how the value aij fits into the data

in the surrounding matrix A. The mean squared residue score gives an

indication of how the data is correlated in the submatrix, whether it has

some coherence or it is random. A high value of H signifies that data is

uncorrelated.

Cheng and Church proved that the problem of finding the largest square

δ-bicluster (|I| = |J |) is NP-hard. Following the authors, I am thus inter-

ested in heuristics for finding a large δ-bicluster in the reasonable time.

Explanation of the MSR:
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In the case of the perfect bicluster, follow the definition I have:

aij = µ+ αi + βj.

So,

aiJ =
1

|J |
∑
j∈J

aij =
1

|J |
(|J | × µ+ |J | × αi +

∑
j∈J

βj) = µ+ αi +
1

|J |
∑
j∈J

βj =

= µ+ αi +
1

|J |
β,

aIj =
1

|I|
∑
i∈I

aij =
1

|I|
(|I| × µ+ |I| × βj +

∑
i∈I

αi) = µ+ βj +
1

|I|
∑
i∈I

αi =

= µ+ βj +
1

|I|
α,

aIJ =
1

|I| × |J |
∑

j∈J,i∈I

aij = µ+
1

|I| × |J |
|I|
∑
j∈J

βj +
1

|I| × |J |
|J |
∑
i∈I

αi =

= µ+
1

|J |
β +

1

|I|
α,

where α =
∑

i∈I αi is a constant and β =
∑

j∈J βj is a constant. Such that:

H(I, J) =
1

|I| × |J |
∑

i∈I,j∈J

(aij − aIj − aiJ + aIJ)
2 =

=
1

|I| × |J |
∑

i∈I,j∈J

((µ+ αi + βj)− (µ+ βj +
1

|I|
α)− (µ+ αi +

1

|J |
β)+

+(µ+
1

|J |
β +

1

|I|
α))2 = 0.
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In the case of the error εij I have:

aij = µ+ αi + βj + εij,

aiJ = µ+ αi +
1

|J |
β +

1

|J |
∑
j∈J

εij,

aIj = µ+ βj +
1

|I|
α +

1

|I|
∑
i∈I

εij,

aIJ = µ+
1

|J |
β +

1

|I|
α +

1

|I| × |J |
∑

j∈J,i∈I

εij.

In such case I have the value of MSR:

H(I, J) =
1

|I| × |J |
∑

i∈I,j∈J

(aij − aIj − aiJ + aIJ)
2 =

=
1

|I| × |J |
∑

i∈I,j∈J

(εij −
1

|I|
∑
i∈I

εij −
1

|J |
∑
j∈J

εij +
1

|I| × |J |
∑

j∈J,i∈I

εij)
2 =

=
1

|I| × |J |
∑

i∈I,j∈J

(εij −
1

|I|
εIj −

1

|J |
εiJ +

1

|I| × |J |
εIJ)

2.

My aim is to find biclusters with minimal value of MSR.

The model, proposed by Cheng and Church is an additive model of the

biclusters with coherent values. Generally, the biclusters of three major

classes can be bound (See Fig. 3.1):

• Bicluster with constant values (see 3.1 (a)), where aij = µ,

• Bicluster with constant values on rows (see 3.1 (b)), aij = µ + αi, or

columns (see 3.1 (c)), aij = µ+ βj,

• Bicluster with coherent values (see 3.1 (d, e)):
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a)Bicluster with constant values b-c) Bicluster with constant values on
rows/columns d-e) Bicluster with coherent values:

additive/multiplicative models.

Figure 3.1: Five different bicluster models.

G additive model: aij = µ+ αi + βj,

G multiplicative model: aij = µ× αi × βj,
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Chapter 4

The Combinatorial model

4.1 Definition of the Difference Matrix

The main idea of the combinatorial model comes from the definition of

perfect bicluster. So a perfect bicluster I × J is defined as a subset of

rows and a subset of columns, whose values aij are predicted using the

following expression:

aij = µ+ αi + βj

where µ is the typical value within the bicluster, αi is the adjustment for

row i and βj is the adjustment for row j.

Given the data matrix A, it can be defined a matrix G(k) as the difference

between the k-th row and all the others. In particular, an entry of such a

matrix reads gij(k) = akj − aij where k = 1, ..., N − 1, i > k and j = 1, ...,M .

It worth stressing that in case of a perfect bicluster, all G(k) will have

constant rows.
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It is possible to combine all G(k) by rows into a new matrix T whose

entries tmj are defined as follows:

tmj ≡ akj − ahj (4.1)

where k = 1, ..., N − 1, m = l + i, h = k + i, i = 1, ..., N − k and

l =

 0 k = 1∑k−1
t=1 (N − t) k > 1

(4.2)

Explanation:

• k=1,. . . ,N-1

• h=k,. . . ,N = (1,. . . ,N-k)+k = i + k, i=1,. . . ,N-k

• k=1 => m=1,. . . ,N-1

• k=2 => m=(1,. . . ,N-2)+(N-1)

• k=3 => m=(1,. . . ,N-3)+(N-1)+(N-2)

• k=4 => m=(1,. . . ,N-4)+(N-1)+(N-2)+(N-3) => ...=> m=(1,. . . ,N-k)+
∑t=k−1

t=1 (N-

t)=i+
∑t=k−1

t=1 (N-t)

Of course, starting from the indexes of a particular entry tmj it is possible

to trace back the corresponding entries of A that yield such a difference.
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4.2 Analysis of the Difference Matrix

4.2.1 The pre-combinatorial matrix obtaining. Case

of the perfect biclusters.

Starting from the matrix T defined as above, I aim to construct a binary

matrix C which contains the information about the location of a certain

number of entries (≥ umin) belonging to the same row and sharing the

same value. For the time being, I assume two entries being equivalent

when they are exactly identical. As a further refinement of the algo-

rithm, I will later discuss the case when the equivalence is admitted also

for entries whose difference is smaller than a fixed error. This idea im-

plements the concept of noise affecting the experimental results reported

in the entries of the data matrix.

Let me consider the m-th row of T . There are three possible cases: (i) on

the row there are no umin entries with equivalent values; (ii) there are qm

groups, each of them with at least umin entries with equivalent values;

(iii) case of the overlapped biclusters. In the first case, to the row of T

corresponds one row in C only with all vanishing entries. In the second

case, to each set of entries sharing the same value corresponds a row in C

which has unitary values on the columns corresponding to the elements

of the group, and vanishing all the other entries. In this way, from the

single row of T one gets qm rows in C. This procedure is applied to all the

rows of T .

1. Case of non overlapped biclusters, simple case (see 4.1). For all the
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rows of the matrix T I find the constants with equal values. In this

case it is easy to see that for every difference of two rows it will be

only 1 group of the constants. I obtain matrix C , that have the

same dimension, as the matrix T . C has ones on the places of each

constant of T and zeros in the other cases.

The algorithm of this procedure can be seen following:

for i = 1 to end

for j = 1 to end

if T(i, j) = constant so Z(i, j) = 1

else Z(i, j) = 0

end end

2. Case of non overlapped biclusters, complex case (see 4.2). It is the

most difficult case. Again, for all the rows of the matrix T I find

all constants with equal values. In this case it can be qi groups of

constants in every row i of the matrix T . I obtain the matrix C,

with number of the rows larger than T . From every row of T with qi

groups of constants I create qi rows of C. Every of qi rows of C has

ones on the position of the specific group of the constants and 0 in

other case.

The algorithm of this procedure can be seen following:

for i = 1 to end

for j = 1 to end

find {ck}q(j)k=1 groups of constants
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Figure 4.1: Case of non overlapped biclusters, simple case

end_groups = 1

for k = 1 to q(j)

if T(i,j) = ck Z(end_groups+k - 1, j) = 1

else Z(end_groups+k - 1, j) = 0

end end

end_groups = end_groups+q(j)

end end

3. Case of overlapped biclusters (see 4.3). This case is similar to the

first one. For all the rows of the matrix T I find the constants with

equal values and obtain the matrix C , that have the same dimen-

sion, as the matrix T . Matrix C has ones on the places of the con-

stants of T and zeros in other cases.

The matrix CI name pre-Combinatorial.

To the binary matrix C it can be applied Bimax algorithm which allows to
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Figure 4.2: Case of non overlapped biclusters, complex case

Figure 4.3: Case of overlapped biclusters
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find submatrices of unitary entries[11]. Once such submatrices have been

determined, I can trace back for each of them the corresponding elements

of data matrix A. Such sets will provide the final desired biclusters.

So far, I considered the case where no noise affects the values of the en-

tries of A. Since this case can be unrealistic when dealing with experi-

mental data, I have to extend the definition of equivalence to the general

case where values are considered to be equal within an error defined as

follows.

4.2.2 Combinatorial matrix. Error definition and ini-

tial conditions.

For i = 2, ..., N and j = 2, ...,M (where N and M are the number of rows

and of columns of A, respectively), I randomly extract a set S of subma-

trices AsPQ where |P | = i and |Q| = j. Let

rsq ≡ max
p∈P

aspq −min
p∈P

aspq

be the range of the column q for each q ∈ Q and

rs ≡ max
q∈Q

rsq −min
q∈Q

rsq

the error of the random bicluster s. It is worth stressing that for a perfect

bicluster rs is vanishing. I consider as maximum tolerable error for a

bicluster of dimension i× j the extreme of this null random distribution,
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namely

εij ≡ min
s∈S

rs

In this step I also define the minimum number of columns umin and of

rows vmin for the biclusters.

The matrix, which meets all these requirements I call Combinatorial

Ccomb. The matrix Ccomb now can be analysed by different ways. So I

consider some of them.

4.2.3 Cost of the initialization

Let me fix the values P and Q and extract the matrix APQ. For every

of Q columns I find the value of εpq = maxp∈P (apq) − minp∈P (apq) of cost

O(Q × P ). I continue such a procedure for K random matrices AkPQ. So

the cost of such a calculation is O(K×Q×P ). Now I release the values of

P and Q, so: P = 1, . . . , N and Q = 1, . . . ,M and obtain the initialization

cost Ic:

Ic = O(
N∑
P=1

M∑
Q=1

K×P×Q) = O(K×
N∑
P=1

P×
M∑
Q=1

Q) = O(K×N(N + 1)

2
×M(M + 1)

2
).
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4.3 Part I.

4.3.1 Biclique

Definition: Given a bipartite graph B = (V1∪V2, E), a biclique C = U1∪U2

is a subset of the node set, such that U1 ⊆ V1, U2 ⊆ V2 and for every

u ∈ U1, v ∈ U2 the edge (u, v) ∈ E. In other words, a biclique is a complete

bipartite subgraph of B (See Fig. 4.1). Maximum edge cardinality biclique

(MBP) in B is a bicliquie C with a maximum number of edges. In ad

edge weighted bipartite graph B, there is a weight wuv associated with

each edge (u, v). A maximum edge weight (MWBP) biclique is a bicliquie

C, where the sum of the edge weights in the subgraph induced by C is

maximum.

Such, a biclique [17] is defined to be a sub-graph of the bipartite graph

where all the nodes are connected. A graph can have many bicliques,

however a maximal biclique is defined to be a biclique that cannot be

extend any further. In other words, that biclique cannot be a sub-graph

of an even larger biclique. The largest maximal biclique is the maximal

biclique with the largest number of nodes.

Some known results for related problems. The maximum node weight

bicliquie problem is polynomially solvable [25]. (In a node weighted bi-

partite graph B, there is a weight wv associated with each node v.) Hence,

the maximum node cardinality biclique problem is also polynomially solv-

able. A restricted version of these problems, where there is an additional
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Figure 4.4: Complete bipartite graph.

requirement that |U1| = |U2|, is called the maximum balanced node cardi-

nality bicliquie problem (MBBP). MBBP is shown to be NP-complete.

Theorem: MWBP is NP-complete [26].

Proof: Let G = (V,E) be a graph with node set V end edge set E. Create

a bipartite graph B(G) = (V1 ∪ V2, E
′) from G, such that V1 = V2 = V and

(i, j) ∈ E ′ (for i ∈ V1 and j ∈ V2) if and only if i = j or (i, j) ∈ E. Let

the edges (i, i) of B(G) have weight 1 and all the other edges have weight

zero.

With the edge weights as defined, there is a maximum weight biclique

U1 ∪ U2 in B(G), such that i ∈ U1 if and only if i ∈ U2 (i.e. |U1| = |U2|

and the biclique is "symmetric"). Such a maximum weight "symmetric"

biclique can be obtained easly by deleting the nodes i ∈ U1, i do not ∈ U2

and i ∈ U2, i do not ∈ U1 from a maximum weight biclique. It follows that

if C is a maximum clique in G, then U1 ∪ U2, where U1 = U2 = C, induces

a maximum weight biclique in B(G). Similarly, if U1 ∪ U2 is a symmetric

maximum weight biclique in B(C), then C = U1 = U2 is a masimum clique

in G.

The Maximal Biclique Generation Problem (MBGP) consistes in gener-

ating all the maximal bicliques of a given graph. The MBGP cannot be
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solved in polynomial time with respect to the input size, since the size of

the output can be exponentially large.

The consensus algorithm [18].

Definition:

Let G be a graph and let X, Y be two disjoint non-empty subsets of the

vertex set, with the property that every vertex in X is adjacent to every

vertex in Y . The biclique of G having the bipartition sets X and Y will

be denoted by (X, Y ). (Note that (X, Y ) = (Y,X)). Let B1 = (X1, Y1) and

B2 = (X2, Y2)be two bicliques of G. In such a case B1 absorbs or contains

B2 if X2 ⊆ X1 and Y2 ⊆ Y1, or if X2 ⊆ Y1 and Y2 ⊆ X1.

Definition:

If Y1 ∩ Y2 6= 0,Icall (X1 ∪X2, Y1 ∩ Y2) one of the consensuses of B1 and B2.

Similarly, each of those pairs of subsets (X1∩X2, Y1∪Y2), (Y1∪X2, X1∩Y2),

(X1∪Y2, Y1∩X2) which define bicliques (i.e. which involve two non-empty

subsets) are consensuses of B1 and B2. In this way, a pair of bicliques may

have 0, 1, 2, 3, or 4 consensuses.

A consensus approach to MBGP starts with a collection of C of bicliques

which covers the edge set of a graph G. Such a collection is easily avail-

able, for instance by simply considering all the individual edges of the

graph, viewed as bicliques. A similar straightforward way of obtaining C

is to define it as the collection of all the stars centered in the vertices of

the graph G.
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Using the above terminology I can now define a consensus algorithm as

a sequence of transformations on the collection C. The method applies

repeatedly two transformations, the absorprion and the consensus ad-

junction - described below - and stops when none of these steps can be

applied.

• Absorption: If the biclique B1 in C absorbs the biclique B2 in C, then

remove B2 from C.

• Consensus adjunction: For any two bicliques B1 and B2 in C, if any

of the consensuses of B1 and B2 exists and is not absorbed by a bi-

clique already in C, then add it to C.

Two trivial observations are in order. First, if the collection C covers the

edge set (i.e. every edge of G is contained in at least one of the bicliques

of C), then this property will be observed by both of the transformations

above will always produce collections consisting only of bicliques of G.

The validity of the consensus approach is based on the following result:

Theorem:

If C is a collection of bicliques of the graph G which covers the edge set

of G, and if C ′ is the collection of bicliques obtained from C by repeating

the transformations in the consensus algorithm described above as many

times as possible, then C ′ consists of all the maximal bicliques of G.

In this work the method of G. Alexe et al. [18], that generates all maximal

bicliques (i.e. complete bipartite, not necessarily induced subgraphs) of
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a graph was used. The algorithm is inspired by, and is quite similar to,

the consensus method used in propositional logic. The total complexity of

algorithm is polynomial in the input size, and only linear in the output

size.

In this step I have all possible biclusters and the final step is to find

biclusters that are different between them.

4.3.2 Sorting & Deleting algorithm

In this method I sort rows and columns such as in the left top of the ma-

trix I have the max possible number of ones, and delete the rows and

columns whose sum of ones is smaller than desired value. Then I con-

tinue this process until I have number of zeros greater than a threshold

(practically I want a submatrix with only ones).

4.3.3 Results

I apply these methods to two simulated data sets and one real NCI60

genome data (see 4.5):

• the simple matrix 7×6, that includes 2 biclusters 3×4 and 4×4

• the matrix 50×200, that contained 3 biclusters such that:

bicluster1(15× 100) =
j

100
, j=1:100;
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Figure 4.5: The data matrices.

bicluster2(14× 100) =
2j

300
, j=50:150;

bicluster3(10× 100) =
3j

600
, j=100:200;

• the real data set NCI60, that contains the processed version of cDNA

microarrays used to examine the variation in gene expression among

the 57 cell lines from the National Cancer Institute’s (NCI60) anti-

cancer drug screen. The matrix consists of 57 samples on 200 fea-

tures. The dataset has been standardized to mean zero and variance

1.

I analyze these three matrices by using the following algorithms: Lazze-

roni and Owen (Plaid), Bimax, Cheng and Church (CC), Spectral (all

these algorithms by using the package R) and my algorithm Combina-

torial. The validation of biclusters has been done by using 3 different

methods:

• The value of mse, that was described before.

• The a-priory information on the data or the GO term data base in-

formation which is useful to identify if some agglomeration of genes
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in a cluster is significant with respect to a specific annotation [19]. I

analyze the biclusters relatively to genes (rows), and consider them

as clusters. Specifically, to formalize this characteristic, I define the

indicator S as: for each annotation i, for each cluster j

Sij =
aij

aij + bij

Ai +Bi

Ai

where aij is the number of positive annotations in the cluster j, bij

is the number of negative annotations in the cluster j, Ai =
∑

j aij

and Bi =
∑

j bij.

• Fisher’s exact test is a statistical significance test used in the anal-

ysis of contingency tables where sample sizes are small [20]. The

hypergeometric distribution is used to model the probability of ob-

serving at least k objects from a cluster of n objects by chance in a

category containing f objects from a total database size of g objects.

The P -value is given by:

P =

f !
k!(f−k)!

(g−f)!
(n−k)!(g−f−n+k)!

g!
n!(g−n)!

.

a significant P -value for a cluster is smaller than 0.01.

The results are shown below.

• Matrix 7×6 How can be seen from the Table 4.1. the best separa-

tion is done by Combinatorial algorithm that gives 2 biclusters with

error that equals zero; Plaid algorithm does not give any result; Bi-

max algorithm finds one of the two biclusters; CC algorithm with
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δ=0.01 finds 25 biclusters, two of them are significant (mse equals

to 0 and 0.0073, respectively); Spectral algorithm finds 25 biclus-

ters with two significant ones with mse equals to 0.0043 and 0.017,

respectively .

• Matrix 50×200 random For Combinatorial model specify error equal

zero. So I find 3 perfect biclusters contained in my matrix. Plaid

algorithm finds only one perfect bicluster. Bimax algorithm finds 25

biclusters and two of them are perfect. CC algorithm does not give

any result. Spectral algorithm finds 25 biclusters, one of them is

perfect and 2 of them are significant (See Table 4.2.).

• NCI60 For NCI60 that contains 8 biclusters, Combinatorial algo-

rithm finds 5 perfect biclusters and one significant with a very small

P -value (0.0115); Plaid algorithm finds 3 perfect biclusters and one

significant with P -value 0.0008; Bimax finds two perfect clusters;

CC does not give any result; Spectral algorithm finds 2 biclusters

with P -value equals to 0.0082 and 0.0012, respectively (See Table

4.3.). In the Table 4.3. the value " - " shows that the bicluster was

not found.

4.3.4 Conclusion

As shown by the experiments, Combinatorial algorithm gives always bet-

ter and more accurate results than the other algorithms, because it reaches

the maximal precision in the data sets analysis. In every experiment
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Table 4.1: Results of the analysis on Matrix 1 data.
Theoret Plaid Bimax CC Spectral CBA

num. of bicl 2 - 1 25 25 2
dim1 3× 4 - 3× 4 3× 3 5× 4 3× 4
dim2 4× 4 - - 6× 4 5×5 4× 4
msr1 0 - 0 0 0.004 0
msr2 0 - - 0.01 0.02 0

P-value1 0.03 - 0.03 0.11 0.57 0.03
P-value2 0.03 - - 0.57 0.57 0.03
Enrich1 2.33 - 2.33 1.75 1.05 2.33
Enrich2 1.75 - - 1.17 1.05 1.75

Table 4.2: Results of the analysis on Matrix 2 data.
Theoret Plaid Bimax CC Spectral CBA

N of bic 3 1 25 1 25 3
dim1 15× 100 15× 54 15× 60 50× 200 15× 44 15× 100
dim2 14× 100 - 11×80 - 18× 44 14× 100
dim3 10× 100 - - - 8× 44 10×100
msr1 0 0 0 0.07 0.05 0
msr2 0 - 0 - 0.07 0
msr3 0 - - - 0.05 0

P-value1 0 0 0 1 0 0
P-value2 0 - 0 - 0.0005 0
P-value3 0 - - - 0.01 0
Enrich1 2.73 3 2.72 - 2.73 2.73
Enrich2 2.73 - 3.73 - 1.88 2.73
Enrich3 3.73 - - - 2.32 3.73

I a-priori decided the maximal error and the minimal dimension of the

desired biclusters. In the case of NCI60 data set I used the half of the

conditions for separating the genes.

The next step (see Part II) of my research was to use this algorithm to

separate overlapped biclusters and to find the best methods to analyze

the Difference Matrix.
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4.4 Part II

As can be seen in Part I Combinatorial Algorithm permits to control the

error of biclusters in every step, specifying this error from the begin and

to define the dimensions of the desired biclusters. But it has some diffi-

culties: the possibility to find overlapped biclusters, analysis of the Dif-

ference Matrix and defining of the initial conditions. In this part I solve

these problems and then taste the algorithm in the real biological data:

Gastric cancers (GC) with defective mismatch repair (MMR) comprise

10–25\% of all GC. These tumors accumulate DNA replication errors at

short-repeat sequences that are identified by the presence of microsatel-

lite instability (MSI) [21]. The objective of my study was to determine

if and how MSI phenotype in GC could be distinguished from the mi-

crosatellite stable (MSS) phenotype using microarrays.

As first, I need some technique that permits to find submatrices of ones

for my matrix Combbin. In this part I use a Bimax algorithm. [11] After

finding the matrices of ones I turn to my initial matrix and extract the

rows and columns that give these submatrices of ones. In this step I have

final desired biclusters.

4.4.1 Reference method Bimax

Bimax uses a simple data model, reflecting the fundamental idea of bi-

clustering, and allows to determine all optimal biclusters in a reasonable

time [11].
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Model. The model assumes two possible expression levels for a gene:

without changes and with changes with respect to a control experiment.

Let a set of m experiments and n genes can be represented by a binary

matrix En×m, where a cell eij is 1 if a gene i responds to the condition j

and it is 0 otherwise it. A bicluster (G,C) corresponds to a subset of genes

G ⊆ 1, ..., n that jointly respond to a subset of conditions C ⊆ 1, ...,m. The

pair (G,C) defines a submatrix of E with all the elements equal to one. I

would like to find all maximal biclusters.

DEFINITION 1. The pair (G,C) ∈ 2{1,...,n}×2{1,...,m} is called an inclusion-

maximal bicluster if and only if (1) ∀i ∈ G, j ∈ C : eij = 1 and (2) do not

∃(G′, C ′) ∈ 2{1,...,n} × 2{1,...,m} with (a) ∀i′ ∈ G′, j′ ∈ C ′ : ei′j′ = 1 and (b)

G ⊆ G′ ∧ C ⊆ C ′ ∧ (G′, C ′) 6= (G,C).

Algorithm Bimax is a binary inclusion-maximal biclustering algorithm,

a fast divide-and-conquer approach, that requires much less memory re-

sources than many other algorithms. Its running-time complexity is (O(nmβ

min{n,m})), where β is the number of all inclusion-maximal biclusters in

data matrix,n and m are the binary matrix dimensions. This algorithm

provides a worst-case running-time complexity for matrices that contain

disjoint biclusters. The complete algorithm and the proof of the general

upper bound for the running-time complexity can be found in the Supple-

mentary Material [11].

Bimax tries to identify areas of E that contain only 0s and therefore can

be excluded from further inspection. The idea of Bimax algorithm, which

is illustrated in 4.6, is to divide E into three submatrices, one of which
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(1) divide the input matrix into two smaller, possibly overlapping
submatrices U and V ; (2) divide the set of columns into two subsets CU
and CV , by taking the first row as a template; (3) resort the rows of E :
first all genes that respond only to conditions given by CU , then those
genes that respond to conditions in CU and in CV and finally the genes

that respond to conditions in CV only. Figure is taken from [11].

Figure 4.6: Illustration of the Bimax algorithm.

contains only 0-cells and therefore can be disregarded. Then the algo-

rithm is applied to the remaining two submatrices U and V ; the recursion

ends if the current matrix represents a bicluster, i.e. contains only 1s. If

U and V do not share any rows and columns of E, i.e. GW is empty, the

two matrices can be processed independently from each other.

4.4.2 Final algorithm

The algorithm to be applied to A can be summarized as follows:

1. Define the initial conditions, namely umin, vmin and εij

2. Construct the difference matrix T
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Figure 4.7: The simulated data matrices

3. Transform T in the corresponding binary matrix C, using εvminumin

as error to define the equivalence between two entries

4. Analyze C with the Bimax algorithm

5. Trace back the resulting biclusters on A

6. Filter out all the biclusters of dimension i×j smaller than vmin×umin

or having an error greater than εij

4.4.3 Results

Simulated data, matrix 20×20

First, I apply the algorithms to a simulated data. I create a very simple

matrix 20×20 with random values from the interval (0, 1). The data

matrix has two biclusters 8×8 with constant values, that are 0.2 for the

first ( rows (13:20) and columns (13:20)) and 0.9 for the second (rows (1:8)

and columns (1:8)) (See Fig. 4.7 left).
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I apply Plaid and try to find the best parameters. After running Plaid

more than 200 times, I find the best parameters: row.release = 0.3, col.release

= 0.5. With these best values, Plaid algorithm finds one bicluster 6×5

with the value of MSR 0.0222 and Enrichment 1.6667.

I use Cheng and Church model with the following coefficients: δ = 0.001;

α = 1.5, number of biclusters = 2. And get two different biclusters with

cardinalities 6×6 and 7×8, values of MSR: 0 and 0, Enrichment: 2.5 and

2.5.

I apply the Spectral algorithm with the following values: number of eigen-

values = 3, min number of rows = 5, min number of columns = 5. I find

22 biclusters that can be classified into two groups with respect to the

rows. One of these groups finds the first bicluster, but no group finds the

second theoretical bicluster. The best result is the following: cardinality

9×9, MSR: 0.0423, Enrichment: 1.39.

SAMBA algorithm after many runs does not give any result. No parame-

ters for creating some bicluster were found. It can be concluded that for

little data sets SAMBA algorithm does not work well.

For CBA I use minimal number of rows and columns = 2, error threshold

= 0. And find two perfect biclusters.

It can be seen that for little matrices with two non-overlapped perfect bi-

clusters CBA works better than the other algorithms. Cheng and Church

algorithm gives a good result, Plaid and Spectral algorithms find only one

bicluster and SAMBA does not work at all (See Table 4.4).

61



Simulated data, matrix 100×100

Now I apply the algorithms to larger simulated data. I created a matrix

100×100 with random values from the interval (0, 1). The data matrix

has three overlapped biclusters 40×40, 41×41, 40×40 (See Fig. 4.7 right)

with constant values on rows or columns. The first bicluster has the rows

(1:40) and the columns (1:40) and its entries equal to 0.9. The second

bicluster has the rows (30:70) and the columns (30:70) and has constant

values for the rows. The third bicluster has the rows from (61:100) and

columns from (61:100) and has constant values for the columns.

As before, I apply Plaid and try to find the best parameters. I run Plaid

more than 50 times and find the best parameters: row.release = 0.4,

col.release = 0.6. Plaid algorithm finds 6 biclusters, three of them are

significant. As a result, Plaid model finds all 3 theoretical biclusters with

cardinalities: 40×40, 24×21, 28×30.

I use Cheng and Church model with the following coefficients: δ = 0.001;

α = 1.5, number of biclusters = 3. And it gets three different biclusters

with cardinalities 37×39, 30×30 and 40×40, values of MSR: 0 , 0 and 0,

Enrichment: 2.5, 2.44 and 2.5.

I apply the Spectral algorithm with the following values: number of eigen-

values = 1, min number of rows = 20, min number of columns = 20. I

find two good biclusters, which have the following features: cardinalities

40×40 and 42×22, MSR: 0 and 0.0133, Enrichment: 2.5 and 2.15.

I use SAMBA with the following parameters: minimal number of genes:
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Comparison of the results on the simulated 100×100 data of different
algorithms. White colour shows the found biclusters for every considered

algorithm.

Figure 4.8: Comparison of the results on the simulated 100×100 data.

6, minimal number of condition: 3. As a result five biclusters are found,

and two of them are significant.

For the CBA I use minimal number of rows and columns = 10, error

threshold = 0. And find three perfect biclusters.

It can be seen that also for larger matrices with three overlapped perfect

biclusters, CBA works better than the other algorithms, Plaid and Cheng

and Church algorithms find perfect biclusters with smaller cardinality,

Spectral and SAMBA find two biclusters (See Table 4.5 and Fig. 4.8).
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Figure 4.9: The heatmap of E.coli data matrix

Cellular Localization Sites of Proteins (E.coli)

I use Cellular Localization Sites of Proteins (E.coli) of Nakai and Kane-

hisa. This dataset contains 336 number of instances and 7 attributes (see

Fig. 4.9).

Class Distribution can be seen in the Table 4.6. There are 8 classes with

different number of elements. This data is available on

http://archive.ics.uci.edu/ml/machine-learning-databases/ecoli/

It can be seen that two classes are very small (of 2 elements), and they

can not be found by the biclustering techniques. That is why I cancel

them. As a result I have only 6 classes.

After running Plaid algorithm 50 times, I obtain the parameters: row.release
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= 0.4, col.release = 0.6. Plaid algorithm finds 2 biclusters with following

properties: cardinality 110×2 and 42×2, MSR is 0 and 0 - it is clear be-

cause the biclusters have only 2 columns. Plaid model finds the classes

of im+imU, om+pp. If I analyze their enrichment respect to 2 similar

theoretic classes im+imU, om+pp I have: 2.0933 and 1.958.

I apply Cheng and Church model with the follow coefficients: δ = 0.001; α

= 1.5, number of biclusters = 6. And get 6 different bicluster, but only

2 of them are significant with the cardinality 40×5 and 39×6, MSR:

0.0023 and 0.0034. Cheng and Church model finds the follow classes:

cp and im+imU, so the Enrichment respect to the same theoretic classes

is: 2.2825 and 2.2894.

I run Spectral algorithm with the follow values: number of eigenvalues

= 3, min number of rows = 2, min number of columns = 2. As a result, I

receive 4 biclusters, 2 of them are not overlapped, but only one is signif-

icant. It has the follow parameters: cardinality 12×5, MSR 0.0066, and

finds only part of class om with Enrichment 2.2.

I apply SAMBA algorithm many times with different conditions. As a re-

sult, SAMBA detect biclusters with only two conditions. The best initial

conditions are: permitted overlap between two biclusters: 0.1, minimal

number of genes: 10, minimal number of conditions: 1. I receive 9 bi-

clusters with all the MSR equal to 0 because of only 1 and 2 columns and

only 5 of them are significant. These biclusters separate 3 groups of the

genes: cp with the best Enrichment 1.9091, im with the best Enrichment

1.9636 and omL with Enrichment 33.6.
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For the CBA I use minimal number of rows = 10, minimal number of

columns = 6, error threshold = 0.3. In the first step I find 4500 biclusters,

but it can be seen that they are very overlapped and I can distinguish

five non much overlapped groups (see Fig. 4.10). In the Fig. 4.10 for

the abscissa I put the genes, for the ordinate biclusters. In this step

the algorithm merges biclusters: (1:144)×(1:833), (145:217)×(834:1988),

(224:260)×(1989:2773), (261:279)×(2774:3130) and (280:336)×(3100:4500).

As a result I find 5 classes, they are cp, im, imU, om, omL+pp with car-

dinalities 115×6, 56×6, 46×6, 16×6 and 48×6. It can be seen that the

Enrichment with respect to the theoretical classes is high, cardinality is

good. So I find a very good separation. The results for all the algorithms

are shown in Table 4.7.I note that the values of Enrichment for the biclus-

ters are calculated with respect to their own classes (see the row "names

bic").

Annotations

• C&C - Cheng and Church,

• Spect - Spectral

• CBA - Combinatorial

• Theor - description of the data matrix

• N of bic - total number of founded biclusters,

• no overl - number of biclusters, that are do not overlapped much

(less than 10% of overlap),
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This figure shows relation between the biclusters and rows of E.coli
data: for abscissa all rows of a data matrix are presented, for ordinate -

all biclusters, if a point of the heatmap is white so the row enter in
bicluster, if it is black - no.

Figure 4.10: Relation between the biclusters and rows of E.coli data.
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• the best - number of the best biclusters,

• En - Enrichment of the bicluster n (n=1:6),

• dimn - dimension of the bicluster n (n=1:6),

• bicn - name of the gene n (n=1:6),

• MSRn - MSR of the bicluster n (n=1:6),

• row/col.release - is a scalar in [0,1](with interval recommended [0.5-

0.7]) used as threshold to prune rows/columns in the layers depend-

ing on row homogeneity (it was used for the Plaid model)

• δ and α - are the maximum of accepted score and the scaling factor

for the C&C model.

Gastric Cancer data.

Data Definition

Biotinylated cRNA targets were synthesized from each sample and hy-

bridized to Affymetrix oligonucleotide chips (GeneChip HG-U133A/B) that

contain 45,000 probe sets (39,000 unique transcripts and 33,000 well-

substantiated human genes). The full data set was normalized according

to the invariant set method. The expression data are available at GEO

(Gene Expression Omnibus) public data bank http://www.ncbi.nlm.nih.gov/geo/.
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Analysis of the data.

The tissues were collected from a series of GC cases identified in an area

around Florence (Italy) characterized by high GC risk in the period 2000-

2005.I find different biclusters and validate them (see Methods for details

on data simulation ). After data selection I receive 82 genes, 31 normal

and 38 tumoral (19 MSS and 19 MSI) tissues.

Case of all data.

First, I analyze all data set that consist of 69 normal/tumor tissues and

try to find possible separation.

The Plaid algorithm I apply with the following data: row.release = 0.1,

col.release = 0.3. As a result I obtain 5 biclusters. Two of them are good

respect to the supervised separation of normal and tumoral tissues and

another is good respect to MSR, but this bicluster does not separate the

data. So I have the first bicluster of cardinality 20×16, MSR = 0.1243,

S(normal) = 2.0032, S(tumoral) = 0.1816, with 18 normal and 2 tumoral

tissues. It can be seen the value of enrichment S(normal) very high. The

second bicluster has the cardinality 22×13, MSR = 0.1202, S(normal) = 0,

S(tumoral) = 1.8158 with 0 normal and 22 tumoral tissues. The third has

the cardinality 19×10 and has a very small MSR = 0.0551 but does not

give a good separation of the data: it includes 14 normal and 5 tumoral

tissues. The other biclusters does not give the separation. The Cheng

and Church algorithm gives 10 biclusters and two of them separate good

a half of normal and tumoral tissues with very slow value of MSR for

the both biclusters. So we have the first bicluster of cardinality 17×15,
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MSR = 0.0486, S(normal) = 1.833, S(tumoral) = 0.3204 and includes 14

normal and 3 tumoral tissues. The second bicluster has the cardinality

13×26, MSR = 0.0477, S(normal) = 0, S(tumoral) = 1.8158 and includes 0

normal and 13 tumoral tissues. The other biclusters do not separate the

tissues. The Spectral algorithm gives 22 biclusters and only 3 of them are

not overlapped by rows. But no one gives a good separation of the tissues

and MSR. SAMBA gives 13 biclusters, the best separation is obtain in

two cases. The first is the bicluster of cardinality 23×8, MSR = 0.1221,

S(normal) = 1.6452, S(tumoral) = 0.4737 and includes 17 normal and 6

tumoral tissues. The second bicluster has the cardinality 25×5, MSR

= 0.497, S(normal) = 0.4452, S(tumoral) = 1.4526 and includes 5 normal

and 20 tumoral tissues. It can be seen that in the second case the value of

MSR is more high than in other algorithms and this bicluster can be ob-

tained from only unsupervised analysis. It can be seen that no algorithm

finds only two groups of biclustering for normal and tissues separation.

In all the cases at least one biclusters exists that contains normal and tu-

moral tissues together in quite equal proportion. Only Cheng and Church

algorithm finds biclusters with MSR less than 0.05 that suggests about

a high coherence of the found biclusters, but only one bicluster has good

separation of Tumoral tissues. Plaid finds a very good separation of nor-

mal and tumoral tissues in 2 cases, but the value of MSR is greater than

0.12, which indicates a high level of noise.

The comparison of the different biclustering techniques can be seen in

the Fig. 4.11 (left).

Let me now apply CBA algorithm to this case. In the Fig. 4.12 (left) can be

70



Comparison of the different biclustering techniques. GC case. Case of all
data (left), case of only tumoral data (right).

Figure 4.11: Comparison of the different biclustering techniques. GC
case.

seen the dependence of 3 functions: for abscissa I sign number of genes,

for ordinate I sign number of tissues, color of graph’s entry means the

value of error. The minimal number of tissues I choose 27. For different

number of genes I run the algorithm for low value of initial error. The

results can be seen in the Table 4.8. It can be seen that the value media

of enrichment S for the normal tissues is always more than 1.1 (except

two cases) and for the tumoral tissues it is less than 1. It means that for

all cases biclusters separate only normal tissues. And the tumoral tissues

don’t proved some class. It is clear because the normal tissues have the

high level of correlation, they are very ordered for any number of genes.

More accurate result can be seen for a large number of genes. Here I

avoid the possibility to find random little parts of the tissues, normal and

tumoral, that are seem to have the same properties due the small number

of genes.

For the Table 4.8. and Table 4.9. the following indication is done: Ng

- number of genes in the experiment, Err - the initial error, (Er1, Er2,

Er3) the minimal, medium and maximal errors for the resulting biclus-
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ters respectively, (Msr1, Msr2, Msr3) the minimal, medium and maximal

values of MSR for the resulting biclusters respectively, (Sn1, Sn2, Sn3) and

(Pn1, Pn2, Pn3) the minimal, medium and maximal values of enrichment

and p-value for normal tissues respectively, (St1, St2, St3) and (Pt1, Pt2, Pt3)

the minimal, medium and maximal values of enrichment and p-value for

tumoral tissues respectively, (Ss1, Ss2, Ss3) and (Ps1, Ps2, Ps3) the minimal,

medium and maximal values of enrichment and p-value for MSS respec-

tively, (Si1, Si2, Si3) and (Pi1, Pi2, Pi3) the minimal, medium and maximal

values of enrichment and p-value for MSI respectively, Rel - the relation

of number of the normal and tumoral tissues (Mss/Msi tissues) in the

bicluster with minimal error, N - number of biclusters that was find.

Case of tumoral data.

Now I cancel all normal tissues and analyze only tumoral.

Plaid algorithm finds in only one case bicluster that separate MSI tissues

and has the following characteristics: the cardinality 11×17, MSR 0.1027

and includes 0 MSS and 11 MSI tissues. Cheng and Church algorithm

finds 10 biclusters with low value of MSR (in media 0.0479) but does not

give a good separation of the tissues. SAMBA and Spectral algorithms do

not give a separation. MSS and MSI tissues have a large level of noise

so that it is more difficult to find their separation. From all considered

techniques only Plaid finds one bicluster of MSI with larger value of MSR

than 0.1. As in the first case, Cheng and Church algorithm finds biclus-

ters with low level of MSR (0.04). But in this case no good separation of

MSS and MSI is found. Samba and Spectral algorithms find biclusters

with a great value of MSR and no good separation of the data.
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(left) A dependence of 3 functions: for abscissa I sign number of genes,
for ordinate I sign number of tissues, color of graph’s entry means the

value of error for normal/tumoral tissues. (right) A dependence of 3
functions: for abscissa I sign number of genes, for ordinate I sign

number of tissues, color of graph’s entry means the value of error for
tumoral tissues.

Figure 4.12: Dependence of initial conditions

The comparison of the different biclustering techniques can be seen in

the Fig. 4.11 (right).

Like was describe first I construct Fig. 4.12 (right) to analyze the depen-

dence for number of genes, tissues and error. Minimal number of tissues

I assign 17. The result can be seen the Table 4.9. It can be seen that for

the low number of genes I always receive the separation of MSI (see value

of enrichment). For the large number of the biclusters of MSS. It can be

seen that MSS tissues form the biclusters for the large number of genes

and MSI tissues form the biclusters for small number of genes because of

different behavior of the disease in these tissues. In difference from MSI,

the tissues MSS are more stable and can be detected correctly for large

number of genes. MSI are very unstable and have the similar behavior

only for the small number of genes.
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Analysis of the overlap

I analyze 3 cases to understand the overlap of biclusters (the best cases

of unsupervised separation). They are:

1. all tissues, biclusters of 10 genes (see Fig. 4.13 cases 1.A,1.B,1.C),

2. all tissues, biclusters of 60 genes (see Fig. 4.13 cases 2.A,2.B,2.C),

3. tumoral tissues, biclusters of 30 genes (see Fig. 4.14).

I obtain three results for every case:

1. the matrix with entries that equal to a number of elements of in-

tersection of every pair of biclusters. This is symmetric matrix (Fig.

4.13 cases A);

2. for every element of a data matrix I calculate a number of biclus-

ters in which this element is contained. This result as a matrix is

presented (Fig. 4.13 cases B);

3. dimension of the biclusters (Fig. 4.13 cases C).

The resulting matrices can be seen in the Fig. 4.13 In the third case the

biclusters has a very high overlap. And can be considered as a unique

bicluster. The heatmap of intersection in the third case can be seen in a

Fig. 4.14.
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A. the matrix with entries that equal to a number of elements of
intersection of every pair of biclusters; B. for every element of a data
matrix, a number of biclusters in which this element is contained; C.
dimension of the biclusters; Case 1: all tissues, biclusters of 10 genes

Case 2: all tissues, biclusters of 60 genes.

Figure 4.13: Result for overlap
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The matrix with entries that equal to a number of elements of
intersection of every pair of biclusters, tumoral tissues, biclusters of 30

genes.

Figure 4.14: The heatmap of intersection
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Table 4.3: Results of the analysis on NCI60 data.
Theor Plaid Bimax CC Spectral CBA

N 8 8 82 100 9 6
dim1 8×200 5×45 - - - 7× 120
dim2 6×200 4×56 - - - 6× 106
dim3 7×200 10×36 6× 20 - - 10× 120
dim4 9×200 - - - 7× 42 5× 80
dim5 8×200 12× 44 9× 23 - 7× 42 9× 124
dim6 7×200 - - - - -
dim7 6×200 - - - - -
dim8 6×200 - - - - 5× 120
msr1 0.48 0.46 - - - 0.25
msr2 0.43 0.25 - - - 0.25
msr3 0.34 0.4 0.22 - - 0.38
msr4 0.7 - - - 0.81 0.3
msr5 0.36 0.32 0.16 - 0.65 0.3
msr6 0.72 - - - - -
msr7 0.59 - - - - -
msr8 0.47 - - - - 0.42

P-value1 0 0.001 - - - 0
P-value2 0 0 - - - 0
P-value3 0 0 0 - - 0
P-value4 0 - - - 0.01 0
P-value5 0 0 0 - 0.001 0
P-value6 0 - - - - -
P-value7 0 - - - - -
P-value8 0 - - - - 0.012
Enrich1 7 5.6 - - - 7.13
Enrich2 9.33 9.33 - - - 9.33
Enrich3 8 5.09 8 - - 5.6
Enrich4 6.22 - - - 3.56 6.22
Enrich5 7 4.08 5.44 - 5.33 5.44
Enrich6 8 - - - - -
Enrich7 11.2 - - - - -
Enrich1 9.33 - - - - 4.66
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Table 4.4: Results for the Matrix 20×20
Plaid C&C Spect SAMBA CBA Theor

N of bic 1 2 22 - 2 2
no overl 1 2 2 - 2 2
the best 1 2 1 - 2 2
MSR1 0.02 0 - - 0 0
MSR2 - 0 0.04 - 0 0

E1 1.67 2.5 - - 2.5 2.5
E2 - 2.5 1.39 - 2.5 2.5

dim1 6×6 8×7 9×9 - 8×8 8×8
dim2 - 7×8 - - 8×8 8×8

Table 4.5: Results for the Matrix 100× 100
Plaid C&C Spect SAMBA CBA Theor

N of bic 6 3 2 5 3 3
no overl 3 3 2 3 3 3
the best 3 3 2 2 3 3
MSR1 0 0 0 - 0 0
MSR2 0 0 - 0.005 0 0
MSR3 0 0 0.013 0.011 0 0

E1 2.5 2.5 2.5 - 2.5 2.5
E2 2.44 2.44 - 2.5 2.5 2.5
E3 2.5 2.5 2.15 2.5 2.5 2.5

dim1 40×40 37×39 40×40 - 40×40 40×40
dim2 28×30 30×30 - 16×11 41×41 41×41
dim3 24×21 40×40 42×22 6×3 40×40 40×40
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Table 4.6: Class Distribution of E.coli
class N of elements

cp (cytoplasm) 143
im (inner membrane without signal sequence) 77

pp (perisplasm) 52
imU (inner membrane, uncleavable signal sequence) 35

om (outer membrane) 20
omL (outer membrane lipoprotein) 5
imL (inner membrane lipoprotein) 2

imS (inner membrane, cleavable signal sequence) 2
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Table 4.7: Results for E.coli data
Plaid C&C Spect SAMBA CBA Theor

N of bic 2 6 4 9 4500 8
no overl 2 6 2 3 5 8
the best 2 2 1 3 5 6
MSR1 - 0.0023 - 0 0.005 0.006
MSR2 0 0.0034 - 0 0.007 0.01
MSR3 - - - - 0.006 0.006
MSR4 0 - 0.007 - 0.005 0.006
MSR5 - - - 0 0.005 0.002
MSR6 - - - - - 0.006

E1 - 2.28 - 1.91 2.15 2.4
E2 2.09 2.29 - 1.96 4.36 4.36
E3 - - - - 6.89 9.6
E4 1.96 - 2.2 - 16.8 16.8
E5 - - - 33.6 5.89 67.2
E6 - - - - - 6.46

bic1 - cp - cp cp cp
bic2 im+imU im - im im im
bic3 - - - - imU imU
bic4 om+pp - om - om om
bic5 - - - omL omL+pp omL
bic6 - - - - - pp
dim1 - 70×5 - 31×3 115×6 143×8
dim2 110×2 39×6 41×1 56×6 77×8
dim3 - - 12×5 - 46×6 35×8
dim4 42×2 - - - 16×6 20×8
dim5 - - - 10×2 48×6 5×8
dim6 - - - - - 52×8
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Table 4.8: Results of the analysis on normal/tissues data.
Ng 5 10 11 12 15 20 25 30 35 40 45 55 60 65
Err 0.6 0.71 0.75 0.8 0.88 0.98 1.1 1.2 1.28 1.4 1.53 1.8 2.0 2.2
Er1 0.14 0.36 0.39 0.49 0.48 0.78 0.77 0.91 0.85 1.02 1.17 1.45 1.68 1.84
Er2 0.43 0.57 0.58 0.69 0.72 0.83 1.01 1.07 1.05 1.17 1.34 1.64 1.87 1.93
Er3 0.59 0.7 0.75 0.79 0.87 0.97 1.09 1.19 1.15 1.38 1.42 1.78 1.93 2.12

Msr1 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.08 0.1
Msr2 0.02 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.07 0.08 0.09 0.12
Msr3 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.08 0.09 0.12 0.12
Sn1 0.83 1.15 0.95 1.07 1.07 1.03 0.99 0.95 0.99 0.99 0.82 0.91 0.91 1.07
Sn2 1.25 1.41 1.38 1.43 1.4 1.22 1.28 1.06 1.13 1.13 0.99 1.17 1.37 1.24
Sn3 1.6 1.73 1.73 1.73 1.65 1.57 1.57 1.32 1.32 1.24 1.24 1.27 1.57 1.46
Pn1 0.79 0.12 0.43 0.25 0.25 0.25 0.43 0.43 0.43 0.43 0.79 0.62 0.62 0.25
Pn2 0.05 0.00 0.00 0.00 0.00 0.05 0.02 0.25 0.12 0.12 0.43 0.12 0.00 0.05
Pn3 1−4 1−6 1−6 1−6 1−6 1−6 1−6 0.02 0.02 0.05 0.05 0.05 1−4 7−4

St1 0.4 0.4 0.4 0.4 0.47 0.54 0.54 0.74 0.74 0.81 0.81 0.78 0.54 0.63
St2 0.76 0.67 0.69 0.65 0.67 0.82 0.77 0.95 0.89 0.89 1.01 0.87 0.7 0.81
St3 0.92 0.87 1.03 0.94 0.94 0.97 1.01 1.03 1.01 1.01 1.14 1.07 1.07 0.94
Pt1 1 1 1 1 1 0.99 0.99 0.95 0.95 0.88 0.88 0.88 0.99 0.99
Pt2 0.95 0.99 0.98 0.98 0.98 0.88 0.95 0.57 0.75 0.75 0.38 0.75 0.98 0.88
Pt3 0.57 0.75 0.38 0.57 0.57 0.57 0.38 0.38 0.38 0.38 0.09 0.21 0.21 0.38
Rel 20

9
22
5

17
10

21
6

15
12

16
11

14
18

14
13

14
13

14
13

13
14

15
12

18
9

15
12

N 187 89 163 24 168 35 59 25 98 54 36 7 97 44

Table 4.9: Results of the analysis on MSS(s)/MSI(i) data.
Ng 10 15 20 25 30 35 40 45 50 55 60 65 70 19t70g
Err 0.85 0.95 1.05 1.15 1.21 1.35 1.45 1.55 1.65 1.95 2.1 2.35 2.45 2.6
Er1 0.37 0.57 0.79 0.75 0.73 0.98 0.82 1.05 1 1.09 1.18 1.27 1.61 1.48
Er2 0.58 0.83 0.93 0.93 0.86 1.04 1.14 1.16 1.2 1.72 1.62 1.75 1.65 2.05
Er3 0.84 0.91 1.04 1.12 0.96 1.14 1.44 1.55 1.52 1.92 2.05 2.33 1.67 2.53

Msr1 0.02 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.11 0.12 0.13
Msr2 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.08 0.08 0.09 0.11 0.12 0.13 0.14
Msr3 0.05 0.05 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.12 0.13 0.14 0.13 0.14
Ss1 0.47 0.59 0.47 0.47 0.35 0.82 0.59 0.82 0.82 0.71 0.94 0.82 1.38 1.06
Ss2 0.92 0.75 0.75 0.64 0.52 0.96 0.86 1.01 1.08 1.02 1.27 1.17 1.46 1.49
Ss3 1.29 0.94 0.94 1.06 0.71 1.06 1.18 1.18 1.29 1.53 1.53 1.53 1.5 1.58
Ps1 0.99 0.99 0.99 0.99 1 0.74 0.99 0.74 0.74 0.9 0.74 0.74 0.02 0.5
Ps2 0.74 0.9 0.9 0.98 0.99 0.5 0.74 0.5 0.26 0.5 0.09 0.26 0.00 0.00
Ps3 0.09 0.74 0.74 0.26 0.9 0.26 0.09 0.09 0.09 0.00 0.00 0.00 0.00 0.00
Si1 0.71 1.06 1.06 0.94 1.29 0.94 0.82 0.82 0.71 0.47 0.47 0.47 0.5 0.42
Si2 1.08 1.25 1.25 1.36 1.48 1.04 1.14 0.99 0.92 0.97 0.73 0.83 0.54 0.52
Si3 1.53 1.41 1.53 1.53 1.65 1.18 1.41 1.18 1.17 1.29 1.05 1.17 0.62 0.94
Pi1 0.9 0.26 0.26 0.74 0.09 0.74 0.74 0.74 0.9 0.99 0.99 0.99 0.02 0.5
Pi2 0.26 0.09 0.09 0.02 0.00 0.5 0.26 0.5 0.74 0.5 0.9 0.74 0.00 0.00
Pi3 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.09 0.25 0.09 0.26 0.26 0.00 0.00
Rel 7

11
8
9

6
12

4
13

4
14

8
9

7
10

10
9

9
10

11
8

12
5

10
7

13
5

15
5

N 34 10 38 77 29 11 74 83 79 146 89 124 3 21
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Chapter 5

Biclustering by Resampling

5.1 Fuzzy clustering.

The popularity of fuzzy set methods in fields such as control and rule-

based reasoning is due to the fact that they are able to represent ill-

defined classes and concepts in a natural way [16]. In Zadeh’s formula-

tion of fuzzy set theory, the representation of such ill-defined classes or

concepts is achieved by means of membership functions defined over the

appropriate domain of discourse [27]. These memberships are absolute,

and denote degrees of belonging or typically. Zimmermann and Zysno

shown [28] that a good model for membership function that model vague

concepts or classes is:

u(x) = 1
1+d(x,x0)

,

where d(x, x0) is the distance of a point x in the domain of discourse from
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the prototypical member x0 of the class. In other words, in this formula-

tion, membership values are solely a function of the “distance” of a point

from a prototypical member [28]. The FCM algorithm and its derivates

are not really suitable for generating such membership functions from

training data, since they do not generate memberships that can be inter-

preted as degree of compatibility. Many other researches was made for

the best definition of the memberships and objective functions.I follow by

[16].

Let U denote a fuzzy partition matrix generated by the FCM algorithm.

Then the elements uijof U satisfy the following conditions [29]:

uij ∈ [0, 1] for all i and j,

0 <
∑N

j=1 uij < N for all i, (1)

∑C
j=1 uij = 1 for all j.

Here, uijis the grade of membership of the feature point xj in cluster βi,

C is the number of classes, and N is the total number of feature points.

It follows that the symbol βi will be used to denote the i-th cluster and its

prototype, since the prototype contains the parameters that characterize

the cluster.

The last condition confines the memberships to lie on the hyperplane de-

fined by
∑C

j=1 uij = 1.

The original FCM formulation minimizes the objective function given by
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J(L,U) =
∑C

i=1

∑N
j=1(uij)

md2
ij subject to

∑C
i=1 uij = 1 for all j,

where L = (β1, ..., βC) is a C-tuple of prototypes d2
ij is the distance of fea-

ture point xj to prototype βi, N is the total number of feature vectors, C

is the number of classes and U = [uij] is a C ×N matrix, call es the fuzzy

C-partition matrix, satisfying the conditions in (1). Here, uij is the grade

of membership of the feature point xj in cluster βi, and m ∈ [1,∞) is a

weighting exponent called the fuzzifier.

5.2 Possibilistic Clustering Paradigm

For PCM the obtained evaluations of membership to clusters are inter-

pretable as a degree of typicality. The possibilistic approach to clustering

proposed by Keller and Krishnapuram [22], assumes that the member-

ship function of a data point in a fuzzy set (or cluster) is absolute, i.e. it is

an evaluation of a degree of typicality not depending on the membership

values of the same point in other clusters.

uij ∈ [0, 1],∀i, j;

0 <
∑
j∈C

uij < nc,∀i;

∨
i

uij > 0,∀j.

The task of the objective function is to find the highest memberships for

representative feature points, while unrepresentative points should have
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low membership in all clusters. In the following function the distance

from the features to prototypes is made as low as possible while uij is as

large as possible.

J(L,U) =
∑N

j=1(uij)
md2

ij + ηi
∑N

j=1(1− uij)m.

where L = (β1, ..., βC) is a C-tuple of prototypes d2
ij is the distance of fea-

ture point xj to prototype βi, N is the total number of feature vectors,

C is the number of classes and U = [uij] is a C × N matrix, call es the

fuzzy C-partition matrix, satisfying the conditions in (1). Here, uij is the

grade of membership of the feature point xj in cluster βi, and m ∈ [1,∞)

is a weighting exponent called the fuzzifier. The parameter η (that the

authors term scale) depends on the average size of the k-th cluster, and

must be assigned before the clustering procedure starts and η ∼ d2
ij.

Keller and Krishnapuram proposed a theorem.

Theorem: suppose that X = x1, x2, ..., xN is a set of feature vectors, L =

(β1, ..., βC) is a C-tuple of prototypes, d2
ij is the distance of feature point

xj to the cluster prototype βij(i = 1, ..., C; j = 1, ..., ng), and U = [uij] is a

C×N matrix of possibilistic membership values. Then U may be a global

minimum for J(L,U) only if:

upq = [1 + (d2
pq/ηp)

1
m−1 ]−1.

Proof:
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In order to derive the necessary conditions and the membership up grat-

ing equations, it can be noted that the rows and columns of U are inde-

pendent of each other. Hence, minimizing Jm(L,U) with respect to U is

equivalent to minimizing the following individual objective function with

respect to each of the uij(provided that the resulting solution lies in the

interval [0,1]):

J ijm(βi, uij) = umijd
m
ij + ηi(1− uij)m. (2)

Differentiating (2) with respect to uijand setting it to 0 leads to the equa-

tion

uij = 1

1+(
d2
ij
ηi

)
1

m−1

. (3)

It is obvious from (3) that uijlies in the desired range.

Solving the equation for d2 in terms of uij from (3), can be obtained:

d2
ij = ηi(

1−uij
uij

)m−1. (4)

It can be now eliminated d2
ij from the objective function using (4):

J(L,U) = ηi
∑N

j=1(1− uij)m−1.

For a given value of ηi, minimizing J(L,U) is equivalent to maximizing

J ′(L,U) = ηi
∑N

j=1(1− (1− uij)m−1) = ηi
∑N

j=1 u
′
ij, (5)
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where u′ij = 1− (1−uij)m−1 can be interpreted as a modified membership.

It is to be noted that u′ij is obtained from uij via a monotonic mapping

since

d
duij

u′ij = (m− 1)(1− uij)m−2 > 0 for m > 1.

Hence, u′ij varies the same way as uij, i.e. uij = 0⇒ u′ij = 0; uij = 1 ⇒

u′ij = 1; both are monotonically decreasing functions of d2
ij. Furthermore,

for the special case of m = 2, (5) reduces to

J ′(L,U) = ηi
∑N

j=1 uij. (6)

From (5) and (6), It can be seen that for a given value of ηi, each of the

C-subobjective functions is maximized by choosing the prototype location

such that the sum of the (modified) memberships is maximized. This is

achieved if the prototype is located in a dense region since the (modi-

fied) membership is a monotonically decreasing function of the distance

to the prototype. If there are indeed C-dense regions in feature space (cor-

responding to C-distinct clusters), then, with proper initialization, each

prototype will converge to a dense region. In such a situation, even if all

ηi are equal (and, hence, all subobjective functions become identical) each

of them will still have C-distinct minima corresponding to the C-dense

regions.
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5.2.1 The meaning of the scale parameter η and the

fuzzifier parameter m

Krishnapuram et al. [22] in their work described the choice of the pa-

rameters η and m. They noted that that η determines the relative degree

to which the second term in the objective function is important compared

with the first. If the two term are to be weighted roughly equally, then η

should be of the order of d2
ij. And give the definition:

ηp = Q

∑K
q=1 u

m
pqd

2
pq∑K

q=1 u
m
pq

.

Typically Q is chosen to be 1. In this Thesis following Krishnapuram et

al. I use the same definition of the scale parameter with some coefficients,

depending from the dimension of the biclusters that I want to find. The

authors assume that the "fuzzifier" m, determines the rate of decay of

the membership value. When m = 1, the memberships are crisp, i.e., all

points with d2(xj, βi) greater than ηi will have zero memberships. When

m → ∞, the membership function does not decay to zero at all. Note

that a good choice for the value of the fuzzifier m for the PCM seems

to be around 1.5. Then the authors eliminate m altogether by choosing

alternative formulations of the PCM and define:

J(U, Y ) =
∑
p∈K

∑
q∈c

upqE
2
pq +

∑
p∈K

1

βp

∑
p∈c

(upq log upq − upq),

where Epq = ||kq − yp||2 is the squared Euclidean distance, and the pa-

rameter βp (that I can term scale) depends on the average size of the p-th
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cluster, and must be assigned before the clustering procedure. Note that

(upq log upq − upq) is a monotonically decreasing function in [0,1], similar

to (1 − upq)
m. Thanks to the regularizing term, points with a high de-

gree of typicality have high upq values, and points not very representative

have low upq values in all the clusters. Note that if I take βp → ∞ ∀p

(i.e., the second term of Jm(U, Y ) is omitted), I obtain a trivial solution of

the minimization of the remaining cost function (i.e., upq = 0 ∀p, q), as no

probabilistic constraint is assumed.

The pair (U, Y ) minimizes Jm, under my constraints only if:

upq = e−Epq/βp ,∀p, q,

and

yp =

∑r
q=1 xqupq∑r
q=1 upq

,∀p.

These conditions can be interpreted as formulas for recalculating the

membership functions and the cluster centers (Picard iteration technique),

as shown, e.g., in [23].

A good initialization of centroids must be performed before applying PCM

(using, e.g., Fuzzy C-Means [16], [22], or Capture Effect Neural Network

[23]). The PCM works as a refinement algorithm, allowing us to interpret

the membership to clusters as cluster typicality degree, moreover PCM

shows a high outliers rejection capability as it makes their membership

very low.
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5.3 The possibilistic approach to bicluster-

ing

In this section following Filippone et al. [23]I represent the concept

of biclustering in a fuzzy set theoretical approach. For each bicluster

they assign two vectors of membership, one for the rows and one for the

columns, denoting them a and b respectively. Such that if ai and bj equal

to one(zero) then row i and column j belong(or not) to the bicluster. For

an element xij of XI assign its membership uij such that:

uij = and(ai, bj).

The cardinality of the bicluster is then defined as:

n =
∑
i

∑
j

uij.

The membership uij can be obtained like:

uij = aibj, (product)

or

uij =
ai + bj

2
, (average).

So the equations:
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H(I, J) =
1

|I||J |
∑

i∈I,j∈J

RSIJ(i, j)
2 =

1

|I||J |
∑

i∈I,j∈J

(aij − aIj − aiJ + aIJ)
2,

and

aiJ =
1

|J |
∑
j∈J

aij, aIj =
1

|I|
∑
i∈I

aij, aIJ =
1

|I||J |
∑

j∈J,i∈I

aij

can be generalized as:

d2
ij =

(xij + xIJ − xiJ − xIj)2

n
,

where:

xIJ =

∑
i

∑
j uijxij∑

i

∑
j uij

, xiJ =

∑
j uijxij∑
j uij

,

xIj =

∑
i uijxij∑
i uij

, G =
∑
i

∑
j

uijd
2
ij.

To maximize the bicluster cardinality n and minimize the residual G us-

ing the fuzzy possibilistic paradigm Filippone et al. make the following

assumptions:

• one bicluster at a time is considered;

• the fuzzy memberships ai and bj are interpreted as typicality de-

grees of gene i and condition j with respect to the bicluster;

• the membership uij is computed.

All these requirements are fulfilled by minimizing the following func-
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tional JB with respect to a and b:

JB =
∑
i

∑
j

(
ai + bj

2
)d2
ij + λ

∑
i

(ai ln(ai)− ai) + µ
∑
j

(bj ln(bj)− bj).

As in the Possibilistic C-means model, the parameters λ and µ control

the size of the bicluster by penalizing too small values of the member-

ships. Their values can be estimated by simple statistics over the training

set, and then possibly hand-tuned, for instanced to incorporate a-priory

knowledge.

Setting the derivatives of JB with respect to the memberships ai and bj to

zero:
∂J

∂ai
=
∑
j

d2
ij

2
+ λ ln(ai) = 0,

∂J

∂bj
=
∑
i

d2
ij

2
+ µ ln(bj) = 0,

the following solutions can be obtained:

ai = exp

(
−
∑

j d
2
ij

2λ

)
, bj = exp

(
−
∑

i d
2
ij

2µ

)
.

5.3.1 The Possibilistic Biclustering (PBC) algorithm

• Initialize the memberships a and b

• Compute d2
ij for all i, j

• Update ai for all i

• Update bj for all j
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• If ||a′ − a|| < ε and ||b′ − b|| < ε then stop

• else jump to step 2.

The parameter ε is a threshold controlling the convergence of the algo-

rithm. The memberships initialization can be made randomly or using

some a priory information about relevant genes and conditions.

5.3.2 Bootstrap aggregating (Bagging)

In this section I follow to L. Breiman [24] and explain the Bootstrap ag-

gregating (Bagging) technique. A learning set L consists of data (yn,xn), n = 1, ..., N

where the y’s are either class labels or a numerical response. There is a

procedure for using this learning set to form a predictor (in my case a

bicluster) ϕ(x, L) - if the input is xit can be predicted y by ϕ(x, L). Now,

suppose that there is a sequence of learning sets Lk each consisting of

N independent observations from the same underlying distribution as L.

The aim is to use the Lk to get a better predictor then the single learning

set predictor ϕ(x, L). The restriction is that it is allowed to work with the

sequence of predictors ϕ(x, Lk).

If y is numerical, an obvious procedure is to replace ϕ(x, L) by the average

of ϕ(x, Lk) over k. i.e. by ϕA(x) = ELϕ(x, L) where EL denotes the expec-

tation over L, and the subscript A in ϕA denotes aggregation. If ϕ(x, L)

predicts a class j ∈ 1, ..., J , then one method of aggregating the ϕ(x, Lk) is

by voting.
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If there is a single learning set L without the luxury of replicates of L,

an imitation of the process leading to ϕA can be done. Taking repeated

bootstrap samples L(B) from L form a ϕ(x, L(B)). Breiman [24] call this

procedure "bootstrap aggregating" or bagging.

L(B) forms replicate data sets, each consisting of N cases, drawn at ran-

dom, but with replacement, from L. Each (yn,xn) may appear repeated

some times or not at all in any particular L(B). The L(B) is a replicate data

set drawn from the bootstrap distribution approximating the distribution

underlying L.

5.4 Improved Possibilistic Clustering Algo-

rithm

As shown in [15], the PBC algorithm finds the larger bicluster of the data

matrix with small MSR, when compared with other methods.

Different runs of the PCB algorithm on the same data matrix find very

similar biclusters with high overlapping.

In order to find further biclusters, in this paper I study the effect of re-

sampling techniques. In particular, I use Bootstrap for generating new

versions of a data matrix and after that I apply the PBC model. The new

multiple versions of data matrix are obtained by making bootstrap repli-

cates of the biclustering set. In such a way all possible biclusters I can

found.
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5.4.1 Applying Bootstrap aggregating to a PBC model

Let X be the data matrix M × N with elements xij, i ∈ M , j ∈ N . As

first step, following the Bootstrap aggregating [24], I create l new data

matrices Mbag. Every matrix Mbag has a random number of column copies

from X, such that the dimension of the matrices Mbag is M ×N .

Then, for every Bagging matrix I apply the PBC algorithm and analyze

the result by F , MSR, and the value of enrichment S, that can be seen

follow, i.e. the a-priori information on the data or the GO term data base

information which is useful to identify if some agglomeration of genes in

a cluster is significant with respect to a specific annotation [19]. I analyze

the biclusters relatively to genes (rows), and consider them as clusters.

5.4.2 Results

The analysis of the synthetic data matrix

First, I apply my algorithm to the synthetic data matrix X M × N , that

consists of 100×50 whose elements values are from 1 to 10 (5.1 A) . There

are two biclusters A and B of size 30× 18 each one. The MSR value of the

matrix M is 6.8. I choose the value of the coefficients λ and µ such that:

λ =

∑N
i=1 λi

N × 1.5
, and µ =

∑N
i=1 µi

N × 1.3

The threshold ε is defined as 0.001.
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A) The synthetic data matrix X. B) Number of the elements from A on
the ordinate respect to number of the elements from B on the abscissa.
C) Number of the elements from B on the ordinate respect to number of

the elements from A on the abscissa.

Figure 5.1: Result for a synthetic data matrix

PBC. I apply the PBC method for separating my data. As the result I find

one bicluster (49× 37) that contains (25× 17) elements from the bicluster

A and (22× 16) elements from B, MSR = 3.8198.

PBC Bagging algorithm.I run this algorithm 200 times and find 200

Bagging Matrices Mbag; then I apply PBC to these matrices and find the

MSR and the value of S for every bicluster. After that I cancel all bi-

clusters that have the MSR value more than 3.39 (half of the MSR of the

data matrix X). Then for the remaining biclusters I analyze their ma-

trix F (the first and the second columns of this matrix show how many

elements from the biclusters A and B, respectively, enter in the current

bicluster). As a result I obtain in many cases the separation to the biclus-

ters as in the first case (PBC).

However, I also obtain separated biclusters A and B. For separating the

bicluster A I choose the biclusters with rows that have a value in the first

column of F greater than the value of the rows in the second column (size
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of A > size of B). And viceversa for the bicluster B. In 5.1 B. I have on

the abscissa I have the number of elements from B that can be accepted

in the bicluster with elements from A, while on the ordinate the number

of elements from A. In 5.1 C. viceversa.

In the both cases I choose only biclusters that have large size. I can see

from the graphics that in the first case the jump of the size values is from

189 to 299 while in the second case the jump is from 182 to 252. So I take

all the biclusters with entry size of A greater than 299 in the first case

and with entry size of B greater than 252 in the second case. As a result

I have:

• I found two best cases of the separation of the bicluster A (5.2 A, B):

G MSR = 3.2401 size = 920 (40 × 23), 330 elements from A, 156

elements from B;

G MSR = 2.4048 size = 546 (42 × 13), 300 elements from A, 30

elements from B;

• Two best cases for the separation of the bicluster B (5.2 C, D):

G MSR = 2.9643 size = 644 (46 × 14), 252 elements from B, 75

elements from A;

G MSR = 2.8298 size = 891 (33 × 27), 432 elements from B, 81

elements from A;
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The Heatmaps of the result of the separation of the biclusters A and B

Figure 5.2: The Heatmaps of the result.

Analysis with the PBC bagging method of the real data (Yeast)

I consider the real data set Yeast (5.3 A), created by Kenta Nakai, Insti-

tute of Molecular and Cellular Biology, Japan http://archive.ics.uci.edu/ml/datasets/Yeast.

This data matrix consists of 8 attributes and 1484 instances (see Table

10).

Table 10. Yeast data.

The matrix has a MSR = 0.0089. There are 10 classes with number of

rows of (463, 5, 35, 44, 51, 163, 244, 429, 20, 30 respectively); for the PBC

and PBC Bagging analysis I consider the initial conditions:

λ =

∑N
i=1 λi

N × 3
, and µ =

∑N
i=1 µi
N

.
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The Heatmaps of A) data matrix Yeast B-D) some resulting biclusters.

Figure 5.3: The Heatmaps of Yeast and some results.

For each of these four cases for PBC Bagging I made 300 runs and built

F . I also made an analysis by calculating the enrichment S. For every

bicluster I kept the cases with S ≥ 1.1.

I have the follow results (see Table 11):

• PBC MSR = 0.0019, size: 631×6, I found the good separation of the

first bicluster.

• PBC Bagging The next three classes were found(results for the

average for all the cases):

G Msr = 0.0024, size: 612×6 - the separation of the bicluster 1.

G MSR = 0.0029, size: 276×5 - the separation of the Bicluster 6.

G MSR = 0.0015, size: 269×5 - the separation of the Bicluster 8.

Together with this results the biclusters that contain some classes

together were found. Some of them are:

G MSR = 0.0028, size: 239×5 - the separation of the Biclusters 1

and 6 together.
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G MSR = 0.0034, size: 622×6 - the separation of the Biclusters 1,

6 and 10 together.

The results for the average of enrichment (e) and the matrix F (in %) can

be seen in the Table 11. Heatmaps of some biclusters can bee seen in the

5.3 (B, C, D).

Table 11. Results of the analysis on Yeast data.

5.4.3 Conclusion

In this Chapter I presented a new method for the biclustering analysis.

My PBC Bagging algorithm is a very fast algorithm, gives a good separa-

tion of the data set with respect to the value of MSR and enrichment and

permits to find all the possible biclusters of the desired size (overlapped

or not), that can be seen from the results. I decided to calculate the λ and

µ values as the mean of the values in the method of Krishnapuram [22],
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and found a very good separation. Finally, further analysis and biological

validation of the obtained results is under study.

5.5 Improving by the Genetic Algorithms.

I noted, that Genetic Algorithm (GA), applied directly to the data set,

does not solve a problem of the multi-solution, but gives a good improve-

ment to the solutions obtained previously. Following I explain the GA

technique and its initialization by the Bagging technique.

The GA technique was firstly proposed by John Henry Holland [30] and

permits the analysis of the multi-objective functions. GA is based on

the evolutionary ideas of a natural selection and genetics. Algorithm is

started with a set of solutions (represented by chromosomes), called pop-

ulation. Solutions from one population are taken and used to form a new

population. It is supposed that a new population will be better than the

old one. Solutions which are selected to form new solutions (offspring)

are selected according to their fitness. Offspring is more suitable and has

more chances to being reproduced. The algorithm consists of the follow-

ing steps:

1. Randomly generate an initial population M(0)

2. For each individual m of the current population M(t) compute and

obtain the fitness functionsf(m)

3. For each individual m in M(t) define selecting probabilities p(m), so

that p(m) is proportionally to f(m)
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4. Use a probabilistic selection of the individuals from M(t) to produce

offspring via genetic operators and generate M(t+ 1),

5. Repeat step 2 until satisfying solution is obtained.

Single-objective GA are very important in the optimization problems, but

most real search typically involve multiple objectives. The MOEA (Multi-

Objective Evolutionary Algorithms) tries to optimize more then one con-

flicting characteristics represented by fitness function by generating a set

of Pareto-optimal solutions [31]. I will use MOEA in my case.

As can be seen, the first step includes random generating of the initial

population. The result obtained in such a way can be evidently improved

by the definite initialization, that can be seen in the final algorithm.

So the final algorithm will be following:

1. create a new bagging matrix L(B)

2. apply the technique of [22] to initialize the values of µ and λ for

PBC algorithm

3. apply PBC algorithm and obtain the vectors a and b

4. create the vector c = [ab] and use it as initial population for GA

5. apply MOEA with the following parameters:

f1 =
∑
i

∑
j

uijd
2
ij, (5.1)
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Figure 5.4: The simulated Data Matrix

f2 =
∑
ij

(1− uij), (5.2)

The function (5.2) maximizes the bicluster cardinality and the func-

tion (5.1) minimizes the bicluster error. So I solve the task of the

parameters λ and µ initialization.

6. repeat the steps 1-5 q times.

5.5.1 Results

Simulated data set

First, I analyze simulated data set. I apply PBC, PBC with Bagging and

my algorithm to simulated data matrix 100 × 50, with two biclusters.

The data matrix has values from 0 to 100 see Fig. 5.4

I run PBC with following threshold: for a = 0.5, for b = 0.6 and find one

bicluster of a cardinality 60 × 25 and MSR 559.1255. It can be seen that
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Figure 5.5: PBC algorithm. Heatmap of the resulting bicluster.

resulting bicluster of PBC contains both theoretical biclusters and does

not separate them. Heatmap of the result can be seen in the Figure 5.5.

Now I apply PBC with Bagging. I run this algorithm 100 times with the

thresholds for a = 0.5, b = 0.6 and ε = 0.001. Then I get the biclusters

with overlap less than 70\%. As a result 41 bicluster remind. Now I

sort biclusters respect to the number of elements and save those with a

better MSR. Such, I get 5 overlapped bicluster that describe only one of

the theoretical biclusters, see Fig.5.6 and Fig.5.7

I run my algorithm 100 times with the following parameters: ε = 0.001,

threshold for memberships b = 0.6, threshold for membership a = 0.5.

The crossover and mutation probabilities I select as 0.75 and 0.03. In

such case I obtain 72 biclusters with more than 30 elements. Then I sort

biclusters with respect to the number of elements. Resulting number of
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Number of elements (left), MSR (right) for the biclusters after sorting,
PBC with Bagging

Figure 5.6: Result for PBC with Bagging

Figure 5.7: PBC with Bagging. Resulting bicluster.
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Number of elements (left), MSR (right) of the biclusters after sorting

Figure 5.8: Result of PBC with Resempling

elements and MSR can be seen in the Fig.5.8.

As a result, I obtain 9 significant biclusters with MSR less than 280. It

can be seen from the Fig.5.8 (left) that cardinality has a jump on the point

(58; 546) (it is shown by a vertical line on the figure). From the first 58

bicluster I choose the best one with respect to MSR. These biclusters have

the value of overlap less than 70\%. As a result two biclusters with the

following parameters are found: for the first one number of elements is

324, MSR = 258.4387; for the second one number of elements is 408, MSR

= 280.6964, see Fig.5.9.

Yeast data

I analyze Yeast microarray data, available on [8]

It can be seen that Yeast data is a collection of 2884 genes (attributes) un-

der 17 conditions (time points), with three pairs of equal rows. The data

have 34 null entries with -1 indicating the missing values. All entries are
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Result for the first (left), and second (right) biclusters. Simulated data
matrix.

Figure 5.9: PBC with resempling. Simulated data matrix.

integers lying in the range of 0 to 600. The missing values are replaced

by random number between 0 and 800. For my algorithm I use following

parameters: number of runs = 50, ε = 0.001, threshold for membership

b = 0.6, and analyze the cases with a threshold of membership a equal

to 0.8, 0.85 and 0.9. The crossover and mutation probabilities I select as

0.75 and 0.03, but it was noticed that these parameters had insignificant

effect on the results. For every run I find one bicluster with some value

of overlap and save the biclusters with the value of overlap less than

70%. For that biclusters I find all IDs that have known name of the genes

and obtain new reduced biclusters. I analyze them by using DAVID tool,

that is available on http://david.abcc.ncifcrf.gov/. DAVID provides typi-

cal batch annotation and gene-GO term enrichment analysis to highlight

the most relevant GO terms associated with a given gene list. For every

bicluster I make Functional Annotation Chart Report, that lists annota-

tion terms and their associated genes, with the minimal number of genes

equal to 10 and threshold for Fisher Exact P-Value 0.05. Next I obtain

results for such term: Category, Term, Count (number of genes that en-
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ter to GO class), PValue, Genes List, Fold Enrichment, Benjamini. From

these results I save the biclusters with values of Benjamini less than 0.05.

Results for any threshold can be seen following.

Threshold 0.8

After the first running I obtain 34 biclusters with the value of overlap less

than 70%. The number of known genes vary in the interval from 23 to 141

for every bicluster. DAVID tool discovers 22 significant GO classes with

Benjamini<= 0.05. From the biclusters that define the same GO class

I get those with the smallest value of Benjamini. And obtain 8 different

biclusters that describe 22 significant GO classes. The results can be seen

in the Table 5.1. To visualize the Arbitrary GO Graphs containing the

imputed GO terms and their closure to the root I use AmiGO tool, that is

able on http://www.geneontology.org/. The Graphic for the threshold 0.8

is presented in the

Fig. 5.11.

Threshold 0.85

First, I obtain 31 biclusters with the value of overlap less than 70%. The

number of known genes vary in the interval from 6 to 52. DAVID tool

discovers 8 significant GO classes with Benjamini <= 0.05. From the bi-

clusters that define the same GO class I get those with the smallest value

of Benjamini. And obtain 5 different biclusters that describe 8 significant
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GO classes. The results can be seen in the Table 5.2. The Graphic for the

threshold 0.85 is presented in the

Fig. 5.12.

Threshold 0.9

After running of the algorithm I obtain 21 biclusters with the value of

overlap less than 70%. The number of known genes vary in the interval

from 2 to 24. DAVID tool discovers 4 significant GO classes with Ben-

jamini <= 0.05. From the biclusters that define the same GO class I get

those with the smallest value of Benjamini. And obtain 2 different biclus-

ters that describe 4 significant GO classes. The results can be seen in the

Table 5.3. The Graphic for the threshold 0.9 is presented in the

Fig. 5.13.

As can be seen, the threshold 0.8 gives the better result and discover

more significant classes. In the Fig.5.10 two random biclusters from the

22 discovered are shown by plots of biclusters and plots of best significant

GO class values.

Comparison with other methods

I compare my methods with two algorithms: PBC [15] and PBC with

Bagging to see a good improvement.

109



Two random biclusters from the Yeast data: plots of biclusters (left),
plots of best significant GO class values (right)

Figure 5.10: Two random biclusters from the Yeast data

PBC algorithm is good to find one bicluster of large cardinality and small

MSR. I run this algorithm 50 times with the following parameters: thresh-

old for a is 0.8 and threshold for b is 0.6. Overlap of all the biclusters is

more than 70% so as a result I obtain only one bicluster of 542 genes.

This bicluster contains 17 GO classes with Benjamini value less than

0.05. The larger of them is GO:0050789 regulation of biological process

that contains 179 elements of my bicluster with Benjamini 0.041. It can

be seen that PBC obtains the same six groups as my algorithm, but the

values of Enrichment of PBC are always smaller. Results can be seen in

the Table.5.4 and

Fig.5.14.

I run PBC with Bagging algorithm 50 times with the following parame-
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ters: threshold a 0.8 and threshold of b 0.6. After 70% overlap controlling

only 17 biclusters remind. Number of genes in these biclusters are in the

interval from 67 to 208. I apply DAVID and get all the resulting groups

with Benjamini less than 0.05. As a result I obtain 9 biclusters that de-

scribe 17 GO classes. 14 of these GO classes are the same that in my

algorithm, but have always a smaller value of Enrichment. Results can

be seen in the Table.5.5 and Fig.5.15.

5.5.2 Conclusion

I introduced a new algorithm, based on the PBC, GA and Bagging tech-

niques. My algorithm is able to solve many biclustering problems, such

that, for example, multi-biclustering solutions and initialization. It also

helps to find the biclusters of appreciable dimension and high correlation.

I can choose the values of a and b threshold to change the dimension of

biclusters in all the cases after running the algorithm. It gives us the

chance to select biclusters of desired cardinality. As can be seen, in the

case of Simulated data with two biclusters I find both biclusters with lit-

tle error. In the case of Yeast data the best result is found in the case of

the 0.8 threshold of a. In such case I discover 22 significant GO classes.

My algorithm finds biclusters better than PBC and PBC with Bagging,

because it better avoids a blocking in local minimum and such permits to

find biclusters of smaller dimension.
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Table 5.1: Results for the threshold 0.8. Where SPK - SP PIR KEY-
WORDS, GC2 - GOTERM CC 2, USF - UP SEQ FEATURE, KP - KEGG
PATHWAY, Enr - Fold Enrichment, Bon - Bonferroni, Ben - Benjamini,
Cat - Category, N - Count, P - PValue.

Cat Term N P Enr Bon Ben
SPK atp-binding 24 2e-5 2.6 3e-3 3e-3
GC2 0005622 intracellular 89 4e-3 1.1 0.1 0.035
GC2 0044424 intracellular part 89 3e-3 1.1 0.07 0.03
USF nucleotide phosphate-binding region:ATP 18 3e-5 3.2 9e-3 9e-3
SPK nucleotide-binding 26 2e-5 2.5 4e-3 2e-3
GC2 0044422 organelle part 25 5e-5 1.8 1e-3 1e-3
GC2 0044446 intracellular organelle part 25 5e-5 1.8 1e-3 1e-3
GC2 0043227 membrane-bounded organelle 30 3e-3 1.3 0.05 0.02
GC2 0043233 organelle lumen 11 9e-3 2.4 0.17 0.04
GC2 0030529 ribonucleoprotein complex 15 5e-4 2.8 9e-3 3e-3
GC2 0043229 intracellular organelle 46 3e-3 1.2 0.06 0.015
GC2 0030427 site of polarized growth 13 6e-3 2.5 0.14 0.05
SPK activator 12 1e-3 3.3 0.17 0.05
SPK transcription regulation 21 1e-3 2.2 0.19 0.04
SPK nucleus 34 2e-4 1.8 0.03 0.01
SPK Transcription 16 5e-4 2.7 0.07 0.03
GC2 0043234 protein complex 45 6e-5 1.7 2e-3 2e-3
SPK protein biosynthesis 15 1e-4 3.4 0.02 7e-3
SPK ribosomal protein 12 5e-4 3.5 0.08 0.02
SPK ribosome 12 7e-5 4.4 0.01 6e-3
KP sce03010:Ribosome 10 1e-3 3.4 0.04 0.04

GC2 0043228 non-membrane-bounded organelle 37 7e-4 1.7 0.02 6e-3
SPK phosphoprotein 69 8e-6 1.52 1e-3 1e-3
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Figure 5.11: Arbitrary GO Graph for the case 0.8

Table 5.2: Results for the threshold 0.85. Where SPK - SP PIR KEY-
WORDS, GC2 - GOTERM CC 2, USF - UP SEQ FEATURE, KP - KEGG
PATHWAY, Enr - Fold Enrichment, Bon - Bonferroni, Ben - Benjamini,
Cat - Category, N - Count, P - PValue.

Cat Term N P Enr Bon Ben
SPK nucleus 23 2e-4 2.1 0.02 9e-3
GC2 0043234 protein complex 16 1e-4 2.6 3e-3 3e-3
SPK phosphoprotein 20 3e-4 1.9 0.03 0.03
GC2 0044422 organelle part 19 8e-5 1.99 2e-3 2e-3
GC2 0044446 intracellular organelle part 19 8e-5 1.99 2e-3 2e-3
GC2 0043227 membrane-bounded organelle 22 2e-3 1.4 0.04 0.02
GC2 0043229 intracellular organelle 23 1e-3 1.4 0.02 0.02
SPK Transcription 10 5e-4 3.9 0.045 0.045
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Figure 5.12: Arbitrary GO Graph for the case 0.85

Table 5.3: Results for the threshold 0.9. Where SPK - SP PIR KEY-
WORDS, GC2 - GOTERM CC 2, USF - UP SEQ FEATURE, KP - KEGG
PATHWAY, Enr - Fold Enrichment, Bon - Bonferroni, Ben - Benjamini,
Cat - Category, N - Count, P - PValue.

Cat Term N P Enr Bon Ben
SPK phosphoprotein 13 7e-4 2.13 0.04 0.04
GC2 0043234 protein complex 12 3e-3 2.39 0.05 0.03
GC2 0044422 organelle part 17 9e-4 1.86 0.02 0.02
GC2 0044446 intracellular organelle part 17 9e-4 1.86 0.02 0.02
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Figure 5.13: Arbitrary GO Graph for the case 0.9
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Table 5.4: Results for the PBC method with the threshold 0.8. Where
SPK - SP PIR KEYWORDS, GM2 - GOTERM MF 2, GC2 - GOTERM CC
2, GOTERM BP 2 - GB2, USF - UP SEQ FEATURE,Enr - Fold Enrich-
ment, Ben - Benjamini, Cat - Category, N - Count, P - PValue.

Cat Term N P Enr Ben
SPK acetylation 28 1e-4 2.21 0.003
SPK ATP 36 2e-4 1.93 0.004
SPK dna-binding 45 0.002 1.57 0.045
SPK dna-directed rna polymerase 11 2e-4 4.19 0.004
GM2 GO:0000166 nucleotide binding 112 0.002 1.3 0.035
GC2 GO:0005933 cellular bud 30 0.002 1.78 0.008
GB2 GO:0022613 ribonuc. complex biogenesis 60 7e-6 1.52 0.02
GC2 GO:0030427 site of polarized growth 34 0.003 1.66 0.01
GC2 GO:0043233 organelle lumen 94 6e-4 1.38 0.002
GB2 GO:0050789 regulation of bio. process 179 0.002 1.2 0.04
GB2 GO:0051236 establishment of RNA localization 24 5e-4 2.16 0.03
USF mutagenesis site 86 3e-5 1.54 0.02
USF nucleotide phosphate-binding region:ATP 51 2e-4 1.7 0.04
SPK nucleotidyltransferase 19 0.001 2.32 0.02
SPK nucleus 165 4e-5 1.3 0.001
SPK Transcription 63 2e-4 1.59 0.005
SPK transferase 70 0.002 1.42 0.035

Figure 5.14: Arbitrary GO Graph for the PBC case
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Table 5.5: Results for the PBC with Bagging. Where SPK - SP PIR KEY-
WORDS, GC2 - GOTERM CC 2, GM2 - GOTERM MF 2, Enr - Fold En-
richment, Bon - Bonferroni, Ben - Benjamini, Cat - Category, N - Count,
P - PValue.

Cat Term N P Enr Ben
SPK atp-binding 28 1e-5 2.4 0.003
GC2 GO:0005622 intracellular 85 0.002 1.01 0.012
GC2 GO:0043229 intracellular organelle 78 3e-4 1.21 0.004
SPK nucleus 61 6e-5 1.58 0.006
GC2 GO:0030529 ribonucleoprotein complex 29 1e-4 2.13 0.001
GC2 GO:0043234 protein complex 51 8e-5 1.66 0.001
SPK protein biosynthesis 16 2e-4 3.02 0.014
GM2 GO:0003735 struct. constituent of ribosome 15 0.001 2.67 0.04
SPK ribonucleoprotein 20 2e-5 3.13 0.001
SPK ribosome 13 2e-4 3.66 0.007
GC2 GO:0043228 non-membrane-bounded organelle 44 1e-4 1.62 0.001
SPK nucleotide-binding 29 7e-5 2.19 0.006
SPK phosphoprotein 84 7e-6 1.46 0.001
GC2 GO:0044422 organelle part 63 5e-5 1.47 0.001
GC2 GO:0044446 intracellular organelle part 63 5e-5 1.47 0.001
SPK cytoplasm 59 0.002 1.43 0.047
GC2 GO:0044424 intracellular part 174 0.002 1.08 0.01
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Figure 5.15: Arbitrary GO Graph for the PBC with Bagging
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Chapter 6

Conclusion

In the last years a large amount of information about genomes was dis-

covered, increasing the complexity of analysis. Therefore the most ad-

vanced techniques and algorithms are required. In many cases researchers

use unsupervised clustering. But the inability of clustering to solve a

number of tasks requires new algorithms. So, recently, scientists turned

their attention to the biclustering techniques.

In this thesis I propose two novel biclustering techniques such that Com-

binatorial Biclustering Algorithm (CBA) and Improved PBC.

CBA permits to solve the following problems: 1) classification of data with

respect to rows and columns together; 2) discovering of the overlapped bi-

clusters; 3) definition of the minimal number of rows and columns in bi-

clusters; 4) finding all biclusters together. I apply this model to synthetic

and real biological data sets and show the results. CBA is an accurate

technique that permits to find, in all examined cases, a good classifica-
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tion of data. This algorithm reaches the maximal precision in the data

sets analysis. In every experiment I a-priory decided the maximal error

and the minimal dimension of the desired biclusters.

In the case of Improved PBC my aim was to find some method that per-

mits to separate microarray data and requires low number of initial con-

ditions. As a base of my algorithm I used a PBC algorithm, proposed in

[15]. PBC finds one bicluster at a time, assigning a membership to a bi-

cluster for each gene and condition. Filippone et al. try to maximize the

size of a bicluster and minimize the residual. This algorithm blocks in the

local minimum and for this reason does not give a multi-biclustering so-

lutions. In this thesis I try to merge the Genetic Algorithms and Bagging

techniques to solve the cited problems. In my case I choose an accept-

able multi-objective functions to avoid the initialization of λ and µ. And

use the GAs to variate the PBC bagging solutions. I apply my technique

to synthetic and Yeast data and make the comparison with other tech-

niques. It can be seen, that in all examined cases, Improved PBC shows

a better results than an other algorithms.
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