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Introduction

The subject of this thesis is the analysis and development of new numerical methods
for Ordinary Differential Equations (ODEs). This studies are motivated by the
fundamental role that ODEs play in applied mathematics and applied sciences in
general. In particular, as is well known, ODEs are successfully used to describe
phenomena evolving in time, but it is often very difficult or even impossible to find
a solution in closed form, since a general formula for the exact solution has never
been found, apart from special cases. The most important cases in the applications
are systems of ODEs, whose exact solution is even harder to find; then the role played
by numerical integrators for ODEs is fundamental to many applied scientists. It is
probably impossible to count all the scientific papers that made use of numerical
integrators during the last century and this is enough to recognize the importance
of them in the progress of modern science. Moreover, in modern research, models
keep getting more complicated, in order to catch more and more peculiarities of
the physical systems they describe, thus it is crucial to keep improving numerical
integrator’s efficiency and accuracy.

The first, simpler and most famous numerical integrator was introduced by Euler
in 1768 and it is nowadays still used very often in many situations, especially in edu-
cational settings because of its immediacy, but also in the practical integration of
simple and well-behaved systems of ODEs. Since that time, many mathematicians
and applied scientists devoted their time to the research of new and more efficient
methods (in terms of accuracy and computational cost). The development of numer-
ical integrators followed both the scientific interests and the technological progress
of the ages during whom they were developed. In XIX century, when most of the cal-
culations were executed by hand or at most with mechanical calculators, Adams and
Bashfort introduced the first linear multistep methods (1855) and the first Runge-
Kutta methods appeared (1895-1905) due to the early works of Carl Runge and
Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible
amount of research and of great results, providing a great understanding of them
and making them very reliable in the numerical integration of a large number of
practical problems.

It was only with the advent of the first electronic computers that the computa-
tional cost started to be a less crucial problem and the research efforts started to
move towards the development of problem-oriented methods. It is probably possible
to say that the first class of problems that needed an ad-hoc numerical treatment was
that of stiff problems. These problems require highly stable numerical integrators
(see Section 1.7) or, in the worst cases, a reformulation of the problem itself.

Crucial contributions to the theory of numerical integrators for ODEs were given
in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta
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methods based on rooted trees and introduced the family of General Linear Methods
together with K. Burrage, that unified all the known families of methods for first
order ODEs under a single formulation. General Linear Methods are multistage-
multivalue methods that combine the characteristics of Runge-Kutta and Linear
Multistep integrators.

In recent times, the researchers started to develop new methods designed for the
efficient solution of particular problems, i.e. taking into account the specific expres-
sion and properties of the problem itself and paying attention to the preservation
of the intrinsic structures of the solutions in the numerical approximation. This is
for example the case of exponentially fitted methods, introduced by L. Gr. Ixaru,
which are especially designed for oscillatory or periodic problems. Another import-
ant example is that of geometric integrators, that are also one of the main topics
of the present thesis. The main idea behind such integration techniques is that of
preserving the geometric properties of the solution of an ODE system, such as the
presence of invariants or the belonging of the solution to a particular surface. This
is for example the case of conservative mechanical systems or of systems with space
constraints. It is obvious that the numerical solution of such problems must share
these properties of the exact one, or its practical usefulness would be poor and even
its significance would be lost. We can think for example to the motion of planets
of the Solar System, which move on closed planar trajectories (ellipses): we need
a numerical integrator to provide closed trajectories, or the approximation of the
motion would be completely useless.

The main result achieved in this thesis is the construction of four nearly-conservative
methods belonging to the family of General Linear Methods. In particular, two of
these methods proved to be very efficient also compared to classical methods both
in terms of computational cost and accuracy. We also studied some theoretical
aspects of these techniques, highlighting the presence of parasitic components in
the numerical approximation and finding a condition for their boundedness. Para-
sitic components arise in the application of General Linear Methods due to their
multivalue nature and they cannot be completely removed, but only controlled, in
order to avoid them to destroy the overall accuracy of the numerical scheme. We
found an algebraic condition under which the parasitic components give a bounded
contribution to the numerical solution and this is small enough to avoid the per-
turbation of the geometric properties that we aim to preserve. We also addressed
the question of which link exists between the accuracy of a numerical scheme and its
ability to preserve geometric invariants, providing a Theorem regarding the family
of non-parasitic B-series methods.

Another important class of problems that deserves a special treatment is that of
the special second order autonomous ODE presented in Section 2.2. For these prob-
lems, R. D’Ambrosio, E. Esposito and B. Paternoster introduced a general family
of numerical methods extending the ideas of General Linear Methods. This new
family is called the General Linear Nyström (GLN) methods family. The original
contribution to this theory that is presented in this thesis is the formulation of an
algebraic theory of the order based on a particular set of bi-colored rooted trees.
Since GLNs are multivalue methods, an initial approximation of the starting values
must be provided by the user. This can be avoided by forging our methods around
the so-called Nordsieck vector, i.e. requiring our method to approximate the solution
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and its derivatives, whose initial approximations can be computed exactly from the
initial value provided by the problem. We studied in deep this important subclass of
numerical integrators, exploiting the expression of the order conditions and proving
a theorem where the explicit expression of the local truncation error has been found.

The thesis is organized as follows: the first Chapter is devoted to basic defini-
tions and properties concerning ODEs and numerical methods. In particular, the
well-posedness problem is addressed and a few examples from the applications are
presented. We also introduce numerical methods and their basic properties, such as
order and stability. The methods presented in this Chapter are the classical Lin-
ear Multistep and Runge-Kutta families. Chapter 2 is devoted to General Linear
Methods, both for first and second order differential problems. In this Chapter we
introduce the theory of order for General Linear Nyström methods and the other
results discussed above. The discussion on geometric integration is performed in
Chapter 3, where we present more in detail the geometric properties of ODE sys-
tems and of numerical methods and introduce the concept of G-symplecticity, that
is the main conservation property we require General Linear Methods to possess.
The final Chapter concerns the topics studied by the author in two academic vis-
its to the Department of Computer Science of the University of Oxford, namely
the extraction on cardiac tissue structure information from a particular Magnetic
Resonance Imaging technique.
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Chapter 1

Ordinary Differential Equations:
Mathematical Background and
Introduction to Numerical
Integration

In this Chapter, we will give the basic definitions and concepts regarding the theory
of Ordinary Differential Equations (ODEs). In particular, we recall the general
formulation of a system of ODEs, we give a short classification of various types of
ODEs and a list of examples. The question of existence and uniqueness of a solution,
that is fundamental in Numerical Analysis, is answered by means of the classical
Cauchy’s Theorem and some basic stability and geometric properties are listed.

1.1 Introduction

An Ordinary Differential Equation (ODE) (compare [1, 2, 26, 77, 109]) of order n
is an equation of the form

F (y(n)(x), y(n−1)(x), · · · , y′(x), y(x), x) = 0, (1.1)

where F is defined in a subset of Rn+2 and takes values in R and the unknown
function is y : R −→ R. An ODE is said to be in normal form if in (1.1) it is
possible to isolate the maximum order derivative, i.e.

y(n)(x) = f(y(n−1)(x), · · · , y′(x), y(x), x), (1.2)

with f : Rn+1 −→ R. Notation (1.1) can be extended to systems of ODEs
F1(y

(n)
1 , y

(n)
2 , · · · , y(n)d , · · · · · · , y′1, y′2, · · · , y′d, y1, y2, · · · , yd, x) = 0

F2(y
(n)
1 , y

(n)
2 , · · · , y(n)d , · · · · · · , y′1, y′2, · · · , y′d, y1, y2, · · · , yd, x) = 0

...

Fd(y
(n)
1 , y

(n)
2 , · · · , y(n)d , · · · · · · , y′1, y′2, · · · , y′d, y1, y2, · · · , yd, x) = 0,

by considering F and the unknown function y taking values in Rd.
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A first result concerning systems of ODEs is that an equation of order n can
always be written as a system of n first order equations. In fact, if we consider an
order n equation (in normal form, to simplify the notations)

y(n)(x) = f(y(n−1)(x), · · · , y′(x), y(x), x),

defining 
z1 = y
z2 = y′

...
zn = y(n−1),

we obtain the first order system

z′1 = z2
z′2 = z3
...
z′n−1 = zn
z′n = f(zn, zn−1, · · · , z1, x).

Note that this procedure can be applied recursively to systems of d equations of
order n, thus obtaining a system of nd first order equations. It is then convenient
and exhaustive to introduce the following vector notation

y′ = f(x, y) (1.3)

with y : R −→ Rd and f : Rd+1 −→ Rd. A solution of (1.3) is a function ȳ : R −→ Rd

such that ȳ′ = f(x, ȳ).
Depending on the properties of the function f , equation (1.3) can be further

classified, e.g. if f is linear with respect to y, the equation is said to be linear, if f
do not depend explicitly on x, then the equation is called autonomous.

Example 1.1.1. The forced Van Der Pol oscillator [64] describes an electrical or
mechanical oscillator with non-linear attenuation{

y′1 = y2
y′2 = b(1− y21)y2 − ω2y1 + a cos(Ω ∗ x)

and is an example of first order system of two equations depending on four para-
meters a, b, ω,Ω.

We observe that a system (1.3) can always be written in the autonomous form,
just rewriting the unknown vector function y as a d+ 1-sized vector, being the new
component the identity function of x, i.e.

y′1 = f1(yd+1, y1, y2, · · · , yd)
y′2 = f2(yd+1, y1, y2, · · · , yd)
...
y′d = fd(yd+1, y1, y2, · · · , yd)
y′d+1 = 1.
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1.1.1 The Initial Value Problem

As observed in the Introduction, ODEs are a fundamental tool to model phenomena
evolving in time. In many practical applications, ODEs are given together with an
initial condition, describing the status of the system at a certain point in time. We
define then an Initial Value Problem (IVP) as a system of ODEs coupled with an
initial condition, i.e. {

y′ = f(x, y)
y(x0) = y0.

(1.4)

A solution of (1.4) is a solution ȳ of the ODE such that ȳ(x0) = y0. For the numerical
treatment that will follow in next Sections, it is fundamental to understand when
an IVP is a Hadamard well-posed problem, i.e. when

• there exist a solution;

• the solution is unique;

• the solution has a continuous dependency on the data.

In order to recall some results concerning well-posedness, we need the definition of
Lipschitz-continuous function.

Definition 1.1.1. A function f : [a, b] × Rd −→ Rd is Lipschitz-continuous with
respect to the second argument if there exist a real number L, called Lipschitz
constant, such that

∥f(x, y1)− f(x, y2)∥ ≤ L∥y1 − y2∥ (1.5)

for each x ∈ [a, b].

The first two points of well-posedness are answered by the classical [1, 2, 11, 26,
77, 109]

Theorem 1.1.1 (Cauchy’s Existence and Uniqueness). Given an IVP{
y′ = f(x, y)
y(x0) = y0

if f is continuous in an open neighborhood of the initial condition (x0, y0), uniformly
with respect to x and Lipschitz-continuous with respect to y, then there exist an
unique solution of the given IVP.

Under the same hypotheses it can be proved that the solution depends continu-
ously on the data, that is the third condition to be satisfied in order to have a well
posed problem.

Theorem 1.1.2. Given an IVP{
y′ = f(x, y)
y(x0) = y0

, x ∈ [x0, X], (1.6)

consider the perturbed problem{
y′ = f̃(x, y)
y(x0) = ỹ0

, x ∈ [x0, X], (1.7)
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being f, f̃ defined and continuous in [x0, X]× Rd.
Let y and ỹ be solutions respectively of (1.6)and of of (1.7). If there exists an

ϵ ∈ R such that
∥f(x, η)− f̃(x, η)∥ ≤ ϵ

for each x ∈ [x0, X] and for each η ∈ Rd and f is Lipschitz-continuous with Lipschitz
constant L, then

∥y(x)− ỹ(x)∥ ≤ ∥y0 − ỹ0∥eL(x−x0) +
ϵ

L
(eL(x−x0) − 1),

thus providing an upper bound for the normed difference between the solutions of
the given problems.

1.2 Examples

ODEs arise naturally as models in a large number of applied sciences. In this Section
some examples are collected and analysed.

1.2.1 Models from Life Sciences

Example 1.2.1 (Population Growth). Population growth models apply to a num-
ber of areas of applied and social sciences, such as Biology, Chemistry, Demography,
Economics, Immunology and Physics. Aiming to introduce a basic model, we con-
sider an isolated population, i.e. a population such that the only causes of variation
in the number of elements are birth and death. The Malthusian Model [41] describ-
ing the growth of such a population is the following ODE

N ′(t) = (λ− µ)N(t) (1.8)

where N(t) is the number of elements at time t and λ, µ are respectively the birth
and death rates. If we fix an initial condition N(0) = N0, the solution of (1.8) is an
exponential

N(t) = N0 exp
λ

µ
t.

Malthusian model provides an indefinitely growing solution for the number of indi-
viduals in a population, then it is not realistic for long time-spans. An improvement
can be introduced using the so called carrying capacity parameter K, i.e. a para-
meter controlling the growth of the solution and related to the environment where
the population is set. Such a modification leads to the logistic model [41]

N ′(t) =
λ

µ
N(t)

(
1− N

K

)
whose solution grows up to a certain level of saturation and then remains stable
asymptotically. More recent models take into account a larger number of factors
and are very specialized for each field of application. One can think for example
to a time-varying carrying capacity, to models embedding catastrophes or multiple
population, or to stochastic models [41].
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Next examples are taken from Immunology[116] [76].
Let v be the number of free viruses infecting a body and let x and y be the

number of uninfected and infected cells respectively. Uninfected cells are produced
at a rate λ and die at a rate d. Such new born cells are susceptible of infection if
they meet a virus and become infected with rate β. Infected cells die at a rate a.
The viruses population elements die at a rate u but each infected cell produces a
number of new viruses; let k be the rate of birth of the viruses in an infected cell.
Combining those information, we get to the following three-populations model [116]

x′ = λ− dx− βxv
y′ = βxv − ay
v′ = ky − uv.

Example 1.2.2. We present a recent model describing an infection of influenza A
virus. Its mathematical expression presents an embedding of ODEs and PDEs.
We denote respectively with T and I the number of uninfected and infected target
cells and with Ta and Ia their apoptotic 1 counterparts.

dT
dt

= µT − rInfT −KApo
T T,

∂I
∂t

+ ∂I
∂τ

= −
(
kApoT + kApot (τ)

)
I(t, τ),

dTa
dt

= hApoT T − rinfTa − kLysTa,
dIa
dT

=
∫∞
0

(
kApoT − kApoI (τ)

)
I(t, τ)dτ + rInfTa − kLysIa,

where

µ =

[
µmax
Tmax

(
Tmax − T −

∫ ∞

0

I(t, τ)dτ

)]
+

.

Here µ is the specific growth rate of uninfected cells and kApoT their apoptosys rate
(analogous notation is used for infected cells). The parameters rInf , Tmax and µmax
are respectively the infection rate, the maximum concentration of cells and the
maximum specific rate.
We observe that this model follows two time scales, the absolute time t and the cells
age τ .

Example 1.2.3. The FitzHugh-Nagumo model [112, 61]{
dv
dt

= c1v(v − a)(1− v)− c2w + iapp
dw
dt

= b(v − c3w)
(1.9)

contains an example of cubic equation. The variable v describes the transmembrane
potential in a living cell, while w is called recovery variable and was introduced
to improve the original model. The parameters a, b, c1, c2, c3 can be adjusted to
simulate different types of cell.

1.2.2 Models from Physics

Newton’s second law, connecting the force applied on a material point of mass m
with the acceleration it receives in an inertial system [70, 75], is a second order ODE

F = ma. (1.10)

1Apoptosys is the process which naturally leads living cells to die.
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Example 1.2.4. In a more rigorous fashion, let y(t) be the position of the material
point at time t in R3, equation (1.10) takes the form

y′′(t) = F (t, y, y′).

Some particular classical examples are the harmonic oscillator

y′′ = −ω2y,

and the motion of a body under the gravity force into the void

y′′ = −g.

Example 1.2.5. Another example of a second order ODE in Physics, in particular
in the field of electromagnetism [75], is

LI ′′ +RI ′ + C−1I = f(t)

describing the current I(t) in an LRC circuit with applied power f(t).

Example 1.2.6. The radial Schrödinger equation

y′′ + (E − V (x))y = 0 (1.11)

is a fundamental equation of quantum physics describing the behaviour of a particle
in a spherically symmetric potential V (x). E is the energy associated to the system
and the interest in this equation is generally twofold

• in its IVP formulation, it provides the trajectory followed by the particle;

• in its formulation as a boundary value problem it provides the admissible
values of the energy E, that are the eigenvalues.

1.2.3 Other Problems

Ill-Posed Problems
In Numerical Analysis, a problem is said to be ill-posed if it is not well-posed, i.e. if
one or more of the conditions of well-posedness are not satisfied (see Section 1.1.1).
In this Section, we will see an example of problem where the f function in (1.3) is
not continuous[55], failing to satisfy the hypotheses of Theorem 1.1.1.

Example 1.2.7. We consider the problem of modeling the flow of water through
a porous media in a realistic environment [55, 60], so that the flow of water is
controlled by atmospheric events and is then discontinuous. We condider a slab of
soil and let θ(t) ∈ [0, 1[ be the volumetric moisture content and L the thickness of
the slab. Then θ satisfies the following ODE

L
dθ

dt
= I(t)−D(t)

being D(t) the rate of drainage below the slab and I(t) the rate of infiltration,
respectively given by

D(t) =
1

B

(
Ψ(t) +

L

2

)
I(t) = min

{
Q(t),

−Psi(t)

A

}
.
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being Ψ the soil matric potential 2, A and B some caracteristic times and Q(t) the
discontinuous volumetric rainfall rate. For such a problem, neither Cauchy’s The-
orem and Theorem 1.1.2 hold, thus we can’t even tell if a solution exists. Numerical
integration is still possible for some discontinuous problems, see for example [55].

Large systems of ODEs
Large systems of ODEs may arise naturally for example in the analysis of circuits,
but here we introduce them as a discretization of a Partial Differential Equation
with the method of lines.

Example 1.2.8. Consider the linear advection equation

ut + vux = 0

and discretize the spatial derivative with a finite difference

ux ≈
ui − ui−1

h

being h the discretization step. The method of lines provides then the following
approximation

du

dt
= −v

ui − ui−1

h
, i = 1, . . . , N

which is a system of N ODEs.

1.3 Hamiltonian Systems

Hamiltonian systems are a class of ODEs mainly used in modeling mechanical sys-
tems. This Section is devoted to the description of the basic properties of such
systems. Some examples are shown.

1.3.1 History and Motivations

Mechanics is the branch of Physics studying the motion of bodies by means of
Differential Equations. The first equations of mechanics appeared in Galilei’s and
Newton’s works, in particular the former introduced the celebrated equation (1.10).
In 1788, Lagrange introduced his Analytical Mechanics, making the analysis of mech-
anical systems easier also in complex cases. The main simplification introduced by
Lagrange was the adoption of generalized coordinates (q1, q2, · · · , qd) to describe the
state of a system with d degrees of freedom. For example, a material point that is
bonded to move on a surface will have two degrees of freedom, so its motion can
be described using only two variables instead of the three required in Newtonian
Mechanics. Let T = T (q, q̇) be the kinetic energy of a system with d degrees of
freedom and U = U(q) its potential energy, we define the Lagrangian function of
the system as the difference

L = T − U .
2i.e. the energy per unit volume of water required to transfer an infinitesimal quantity of water

from a reference pool to the reference air pressure and temperature point.
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At each time point, the generalized coordinates of the system satisfy the so-called
Lagrange’s equations of motion

d

dt
(
∂L
∂q̇

) =
∂L
∂q

providing a system of d second order ODEs. W.R. Hamilton introduced a further
simplification adopting the so-called conjugate momenta

pk =
∂L
∂q̇

(q, q̇) k = 1, · · · , d (1.12)

in place of the generalized velocities q̇. The Lagrangian function can be rewritten
as the so-called Hamiltonian function

H(p, q) := pT q̇ − L(q, q̇),

where q̇ can be expressed in terms of p and q by means of equation(1.12). Hamilton’s
equations of motion [34, 57, 59, 63, 66, 97] are given by

ṗk = − ∂H
∂qk

q̇k =
∂H
∂pk

k = 1, · · · , d (1.13)

providing a system of 2d first order ODEs .

1.3.2 Examples

We provide a few examples of Hamiltonian systems. Other and more complex ex-
amples are given in Section 3.1

Example 1.3.1 (Harmonic Oscillator). A simple harmonic oscillator is a system
made by a material point (we assume here of unitary mass) linked to a spring. The
equations of motion are {

p′ = −q
q′ = p

with the Hamiltonian

H =
p2

2
+

q2

2
.

Example 1.3.2 (Simple Pendulum). A simple pendulum is a mechanical system
made by an unitary mass connected to an inextensible rope of negligible mass. If
we assume the gravity force to be unitary, the equations of motion are{

p′ = − sin q
q′ = p

and the Hamiltonian function is

H =
p2

2
− cos q.
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Example 1.3.3 (Kepler’s Problem). The following Hamiltonian system describes
the motion of a planet around the origin, where a fixed sun is supposed to lie

q′1 = p1
q′2 = p2
p′1 =

−q1
(q21+q

2
2)

3
2

p′2 =
−q2

(q21+q
2
2)

3
2
.

The Hamiltonian function has the form

H =
1

2
(p21 + p22)−

1√
q21 + q22

.

1.3.3 Geometric properties of Hamiltonian systems

Hamiltonian systems are widely studied in the field of geometric numerical integ-
ration, since they own two important conservation properties: energy conservation
and the symplecticity of the flow [59, 70]. Concerning the preservation of the total
energy, we observe that the Hamiltonian function of each Hamiltonian system is a
first integral of the system itself. This can be verified immediately just deriving H
with respect to the time variable

dH
dt

=
∑
i

∂H
∂pi

dpi
dt

+
∂H
∂qi

dqi
dt

(1.14)

evaluating (1.14) in a solution of the system we obtain

dH
dt

=
∑
i

dqi
dt

dpi
dt

− dpi
dt

dqi
dt

= 0.

We are not going into the mathematical details of symplecticity of the flow, since
such a treatment would require advanced mathematical tools that are beyond the
purposes of this work (for more details, see [70]).

We will give here a geometric idea of what symplecticity of the flow of an Hamilto-
nian system means. We first recall the definition of flow of a dynamical system as
the operator

Ψ (p(0), q(0)) 7→ (p(t), q(t)) .

Such an operator is said to be symplectic if it preserves volumes. In particular, in
the case of a system with one degree of freedom, that will provide a two dimensional
domain for Ψ, the flow is symplectic if it preserves oriented areas.

1.3.4 Quadratic Invariants

Consider an homogeneous ODE
y′ = f(y). (1.15)

A quadratic function
I(y) = yTQy (1.16)

where Q is a symmetric matrix is an invariant for (1.15) if, and only if

yTQf(y) = 0.
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Example 1.3.4 (Inertial motion of a rigid body). Euler’s equations for the inertial
motion of a rigid body are 

ω̇x = ( Iyy−Izz
Ixx

)ωyωz
ω̇y = ( Izz−Ixx

Iyy
)ωzωx

ω̇z = ( Ixx−Iyy
Izz

)ωxωy

where ωx, ωy, ωz are the components of the angular speed along the principal axes
of inertia and Ixx, Iyy, Izz are the principal inertia momenta. This system possesses
two quadratic invariants, namely the kinetic energy K and the square norm of the
angular momentum A, i.e.

K =
1

2

[
ωx ωy ωz

]  Ixx 0 0
0 Iyy 0
0 0 Izz

 ωx
ωy
ωz

 ,

A =
[
ωx ωy ωz

]  I2xx 0 0
0 I2yy 0
0 0 I2zz

 ωx
ωy
ωz

 .

1.4 Introduction to Numerical Integration

The numerical integration of an IVP by means of classical integrators usually in-
volves working on a discretized version of the IVP itself, thus introducing an intrinsic
error, that is called Local Truncation Error (LTE). A numerical method is said to
be consistent if LTE tends to zero with the integration step going to zero.

1.4.1 Finite Differences

Before going into the details of numerical integrators, it is appropriate to recall a
classical method for the approximation of derivatives: finite differences.
By definition, the first derivative of a function f in a point x is given by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

if it exists. Neglecting the limit operator and taking a fixed value for h we obtain
an approximation of f ′(x)

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

involving the so-called first order forward difference [4, 106, 108]

∆h[f ](x) =
f(x+ h)− f(x)

h
. (1.17)

Another first order approximation of f ′(x) can be obtained using the first order
backward difference

∇h[f ](x) =
f(x)− f(x− h)

h
,
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while the central difference

δh[f ](x) =
f(x+ 1

2
h)− f(x− 1

2
h)

h

provides a second order approximation.
Hihger order finite differences, useful to approximate higher order derivatives, can

be obtained by means of recursive application of the first order ones. An example
that is widely used is the second order central difference

δ2h[f ](x) =
f(x+ h)− 2f(x) + f(x− h)

h2

providing an approximation of f ′′(x).

1.4.2 The Euler’s method

We consider an IVP {
y′ = f(x, y)
y(x0) = y0

, x ∈ [x0, X] (1.18)

and approximate the first derivative just with a first order difference (1.17). The
differential equation in (1.18) becomes

y(x0 + h)− y(x0) = hf(x0, y(x0)) +O(h).

Neglecting the O(h) term, we get one step of the Euler’s method.

y(x0 + h) ≈ y(x0) + hf(x0, y(x0)) (1.19)

and iterating on a fixed stepsize discretization of [x0, X]:

∆ = {x0 + nh, n = 0, 1, · · · , N} ,

we obtain the following approximation of the solution

yn+1 = yn + hf(xn, yn), n = 0, 1, · · · , N − 1. (1.20)

The numerical approximation of (1.18) is no more a differential equation, but a dis-
cretized version of it. Classical numerical integrators do not deal with the continuous
problem, but with a discretization of it, usually by means of a difference equation.
New problems then arise at this step: is the discretized problem well-posed? Is it a
good approximation to the original problem?

1.4.3 Difference Equations

A difference equation [56] is a recurrence relation, i.e. a relation involving the values
of a function in a discrete number of points, formally

F (yn, yn+1, · · · , yn+k) = 0, (1.21)

where k is the order of the equation. We are interested in finding a solution of
(1.21), that is a sequence of values that makes (1.21) an identity. Definitions of
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linearity, homogeneity and expression in normal form can be given and are analogous
to those given for ODEs.

Many numerical methods produce linear difference equation with constant coef-
ficients, namely of the form

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = gn, (1.22)

being gn the forcing term.

Example 1.4.1. The equation

yn+1 − yn = n− 2

is first-order, linear and constant coefficients with forcing term gn = n − 2. Given
the initial value of the solution, we can obtain the whole sequence just applying
recursively the equation. Another example is the Euler’s method formula (1.20).

Well-posedness of difference equations is crucial in the analysis of numerical
integrators. The following theorem is the analogous of Theorem 1.1.1 for equations
like (1.22)

Theorem 1.4.1. The linear difference equation of order k with constant coefficients

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = gn

has a unique solution for each k-uple of initial values.

The following result gives much insight in what can happen to the solutions of
(1.22)

Theorem 1.4.2. Consider the equation (1.22),

1. if gn = 0 and y0 = y1 = · · · = yk−1 = 0, then the only solution is a sequence of
zeros;

2. if {yn} and {zn} are solutions, then {Ayn+Bzn} is a solution for each A,B ∈ R;

A system of k linearly independent solutions3 of (1.22) is said fundamental
system of solutions. We now consider the homogeneous equation

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0 (1.23)

and search for its solutions of the form {yn} = {zn}, z ̸= 0. Substituting in (1.23),
we obtain

αkz
n+k + αk−1z

n+k−1 + · · ·+ α0z
n = 0

that is equivalent to
αkz

k + αk−1z
k−1 + · · ·+ α0 = 0. (1.24)

The polynomial at first member in (1.24) is called characteristic polynomial of eqre-
flinom and {zn} is a solution of (1.23) if and only if z is a root of the characteristic
polynomial, moreover, the following result holds

3The sequences {yn} and {zn} are said to be linearly independent in n = n0 if and only if the
only combination {Ayn +Bzn} = 0 is the one with A = 0, B = 0 for each n− n0 = 0, 1, · · · , k− 1.
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Theorem 1.4.3. Let z1, z2, · · · , zk be the roots of the characteristic polynomial of
equation (1.23), then

• if zi ̸= zj for each i ̸= j, then {{zn1 }, {zn2 }, · · · , {znk}} is a fundamental system
of solutions for (1.23);

• if zi is a multiple root of order l > 1, then {zni }, {nzni }, · · · , {nl−1zni } are
solutions and a fundamental system of solutions can be obtained just joining
this set of solutions with those related to the other roots.

In view of some observations concerning stability, it is important to analyze the
behavior of the solutions of a difference equation, in particular we distinguish tree
cases

1. z is a simple real root, then {zn} is a solution of (1.23) it diverges if |z| > 1,
while it goes to zero if |z| < 1 and is bounded if |z| = 1;

2. z is a complex root, then its conjugate z̄ is a root. If z = α+iβ, the correspond-
ing solutions are {zn} = {(α + iβ)n} and {z̄n} = {(α− iβ)n}, corresponding,
if z = ρ(cos θ + i sin θ), to the trigonometric form

{ρn sinnθ} , {ρn cosnθ},

thus oscillating in [−ρ, ρ];

3. z is a multiple root of order l: we obtain l solutions {zn}, {nzn}, . . . , {nl−1zn},
diverging if |z| ≥ 1 and going to zero if |z| < 1.

In numerical integration we obviously want our approximation to be bounded, so
we only consider as good those methods whose associated difference equation has a
characteristic polynomial with roots of modulus less or equal then one but being the
roots of modulus one simple. This is a first “raw“ definition of stability. Method
(1.20) is a linear first-order difference equation, whose characteristic polynomial is
z − 1.

1.5 Linear Multistep Methods

Consider an IVP {
y′ = f(x, y)
y(x0) = y0.

, x ∈ [x0, X] (1.25)

and a discretization {xi} of the interval [x0, X]. The general expression of a k-step
Linear Multistep Method (LMM) [11, 71, 86] is

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(tn+j, yn+j). (1.26)

Example 1.5.1. Integrating the ODE in (1.25) in a subinterval of the discretization
[xi, xi+1] we obtain

y(xi+1)− y(xi) =

∫ xi

xi+1

f(τ, y)dτ . (1.27)

Approximating the integral in (1.27) with different quadrature formulas gives rise
to different LMM, e.g.
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• using a trapezoidal formula and neglecting the associated error we obtain

yi+1 − yi =
h

2
(f(xi+1, yi+1) + f(xi, yi)) ,

called again trapezoidal rule;

• using as approximation the surface of a rectangle based in xi, xi+2 and of height
f(xi+1 we obtain the mid-point rule

yi+2 − yi = 2hf(ti+1, yi+1).

These two examples are useful to the purpose of introducing the issues that are
generally related to the application of LMM, in fact the mid-point rule is a two step
method, needing a starting value that is generally not provided by the problem.
Such a starting value is often obtained applying a one step method or using other
strategies. In trapezoidal rule the unknown value yi+1 appears as a variable of the
function f , giving rise to a generally non linear equation.

Definition 1.5.1. A LMM (1.26) is called explicit if αk = 0, otherwise it is called
implicit.

Remark 1.5.1. Implicit methods involve the solution of a non linear equation or
system of equations, that is generally effectively solved using fixed-point iterations.
In equation (1.26) it is possible to rescale the coefficients in such a way that αk = 1.
If we assume the method to be implicit, we can write

yn+k = −
k−1∑
j=0

αjyn+j + h

k∑
j=0

βjf(xn+j, yn+j). (1.28)

This can be viewed as a fixed point iteration x = g(x) and it can be numerically
solved by means of an iterative procedure

x(k+1) = g(x(k))

which is convergent e.g. if g is a contraction 4. In equation (1.28), if we collect in A
the terms independent from yn+k we have the following expression for g

g(y) = A+ hβkf(xn+k, y).

We want this function to be a contraction

|g(y1)− g(y2)| = |hβk (f(xn+k, y1)− f(xn+k, y2)) | ≤ |hβkL||y1 − y2|

where L is the Lipschitz constant of the function f .
The fixed point iteration is then convergent if h < 1

|βk|L
.

4A function g : R −→ R is a contraction if and only if |g(x)− g(y)| ≤ L|x− y|, with L < 1.

21



1.5.1 Consistency and Order Conditions of LMM

Associated to a LMM

k∑
j=0

αjyn+j = h
k∑
j=0

βjf(xn+j, yn+j),

is a difference operator [86]

L [y(x);h] =
k∑
j=0

αjy(x+ jh)− hβy′(x+ jh). (1.29)

The operator L, if evaluated in the solution y of an IVP, returns the residual of the
solution itself in the method, i.e. the LTE. We are interested in finding conditions
on the coefficients of the method for LTE being of a certain order. To do that, we
write the Taylor’s expansion of L in a neighborhood of x

L [y(x);h] =
k∑
j=0

αj

[
y(x) + jhy′(x) +

j2h2

2
y′′(x) + . . .+

jqhq

q!
y(q)(x) + . . .

]
−

− h
k∑
j=0

βj

[
y′(x) + jhy′′(x) +

j2h2

2
y′′′(x) + . . .+

jqhq

q!
y(q+1)(x) + . . .

]
and collect the coefficients of the derivatives of y

c0 =
k∑
j=0

(αj)

c1 =
k∑
j=0

(jαj − βj)

c2 =
k∑
j=0

(
j2αj

2
− jβj)

...

cq =
k∑
j=0

(
jqαj

q!
− jq−1βj

(q−1)!
)

(1.30)

Definition 1.5.2. A LMM has order p if its coefficients ci defined in (1.30), are
zero for each i less then or equal to p and cp+1 is not zero.
cp+1 is called main term of LTE.

Definition 1.5.3. A LMM is consistent if its order is at least one.

1.5.2 Zero-stability and Convergence

Zero-stability of a LMM is related to the stability of the underlying difference oper-
ator [11, 86].
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Definition 1.5.4. We consider a LMM (1.26). The polynomials

ρ(z) =
k∑
j=0

αjz
j

and

σ(z) =
k∑
j=0

βjz
j

are respectively called first and second characteristic polynomial of the method.

Applying the results shown in Section (1.4.3) we can give the following

Definition 1.5.5. A LMM is zero–stable if the roots of its first characteristic poly-
nomial are all less or equal to one in modulus and those whose modulus is equal to
one are simple.

Convergence, as we will see more in detail in next sections, is the property of a
method ensuring the numerical approximation to tend to the exact solution as the
stepsize goes to zero. In order to give a suitable definition of convergence for LMM,
we need to take into account the necessity of starting values that may affect the
overall integration process. Following [86], we define convergence of LMM as follows

Definition 1.5.6. Consider an IVP and let y be its solution and yn(h) the numerical
approximation provided by a k-step LMM method (1.26) with stepsize h. The LMM
is convergent if

lim
h → 0, n → +∞
nh = x− x0

yn(h) = y(x)

for each k-uple of starting values

yµ = ηµ(h), µ = 0, . . . , k − 1

such that
lim
h→0

ηµ(h) = y0. (1.31)

Condition (1.31) ensures that the starting values are close enough to the only
exact value of the solution that is given us, i.e. the initial value.

Definition 1.5.6 can be hard to verify. In practical construction processes, the
following equivalence is very useful.

Theorem 1.5.1. A Linear Multistep Method is convergent if and only if it is zero-
stable and consistent.

1.6 Runge-Kutta Methods

Runge-Kutta methods (RK) [11, 71, 86] are single-step multi-stage methods. Their
complexity relies on a higher number of function evaluation per step, making the
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maximum profit out of the given initial value. A Runge-Kutta method is defined by
the following procedure

Ki = f(tn + cih, yn + h
s∑
j=1

aijKj), i = 1, . . . , s

yn+1 = yn + h
s∑
i=1

biKi,
(1.32)

or, equivalently 
Yi = yn + h

s∑
j=1

aijf(tn + cjh, Yj), i = 1, . . . , s

yn+1 = yn + h
s∑
i=1

bif(tn + cih, Yi).

Each step of the computation is further divided into two phases

1. solving the nonlinear system in the first equation of (1.32) in order to compute
the values Ki, called inner stages of the method;

2. computing the approximation yn+1 using the second equation in (1.32).

Remark 1.6.1. The computation of the stages is the most computationally ex-
pensive task of each step, requiring the numerical solution of a nonlinear system.
The dimension of this system, usually denoted with s is the number of stages of the
method. A fixed point iteration procedure can be used in order to solve the system,
being it in a fixed point form already. In some cases, however, fixed point iterations
do not converge and Newton’s method can be used effectively.

RK methods are usually denoted with a tableaux

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs,

called Butcher’s tableaux or Butcher’s array [11, 71, 86]; using a matrix notation
A = (aij), c = (c1, . . . , cs), b = (b1, . . . , bs), it becomes

c A

bT

.

Coefficients bi are called weights of the method and ci are called abscissae or nodes.
A Runge-Kutta method is said explicit if its coefficient matrix A is strictly lower

triangular, otherwise we say that the method is implicit. Explicit methods require
a lower computational effort in the computation of the stages, since one can solve
the non-linear equations in (1.32) sequentially.
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Example 1.6.1. We can write the Euler’s method and the mid-point rule as RK
methods respectively as

0

1

,

0

1 1

1
2

1
2

.

The following methods have order 3 and 4 respectively [11]

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

,

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

Radau II method (order 3, 2 stages) has the tableaux [11]

1
3

1
3

0

1 1 0

3
4

1
4

.

The following methods are based on Gaussian nodes and have respectively order 4
and 6. Gauss methods achieve the maximal order with a fixed number of stages, i.e.
2s if s is the number of stages[11, 71, 70].

3−
√
3

6
1
4

1
4
−

√
3
6

3+
√
3

6
1
4
+

√
3
6

1
4

1
2

1
2

(1.33)

1
2
−

√
15
10

5
36

2
9
−

√
15
15

5
36

−
√
15
30

1
2

5
36

+
√
15
24

2
9

5
36

−
√
15
24

1
2
+

√
15
10

5
36

+
√
15
30

2
9
+

√
15
15

5
36

5
18

4
9

5
18
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1.6.1 Order Conditions

The theory we present in this Section was developed by Butcher, who found a link
between the order of a RK method and the elements of the set of rooted trees
(see [11]). This theory simplified a lot the study and construction of RK methods
and nowadays it is still actual and still many papers and new theories are based
on it. Starting from the ideas of this theory we developed an algebraic theory of
order for General Linear Nyström methods for second order ODEs in Section 2.2.1.
Many relevant and fundamental contributions have also been given by Hairer and
his co-authors (see for example [71, 70]) and by Chartier, Faou and Murua [23].

For the remainder of this Section, in order to simplify the notations, it will be
convenient to consider only autonomous initial value problems

y′(x) = f(y(x)), y(x0) = y0.

Butcher’s order theory is based on the observation that a biunivocal correspondence
can be found between the derivatives of such problem and the elements of the set of
rooted trees we will introduce later in this Section. In practice, the order conditions
will be found by comparison between the Taylor expansions of the exact solution
and the numerical one. In order to exploit this properties, we write the derivatives
of y up to order 3

y′(x)=f(y(x)) (1.34)

y′′(x)=f ′(y(x))y′(x) (1.35)

=f ′(y(x))f(y(x))) (1.36)

y′′′(x)=f ′′(y(x))(f(y(x)), y′(x)) + f ′(y(x))f ′(y(x))y′(x) (1.37)

=f ′′(y(x))(f(y(x)), f(y(x)))+f ′(y(x))f ′(y(x))f(y(x)). (1.38)

Note that we used the fact that y is a solution of the differential problem, thus
y′ = f(y) and we need to compute those derivatives essentially by means of Leibnitz’s
rule. Following Butcher (see [11]), we simplify the notations writing f = f(y(x)),
f′ = f ′(y(x)), f′′ = f ′′(y(x)), . . . , then we observe that these derivatives can be put
in correspondence with rooted trees following a simple set of rules

1. a derivative of order n corresponds to a tree with n nodes;

2. each occurrence of f becomes a vertex;

3. a first derivative f ′ becomes a vertex with one branch;

4. a k-th derivative f (k) becomes a vertex with k branches pointing upwards.

We then obtain Table 1.1 It is now time to introduce a few operators on the set of
rooted trees

T = { , , , , . . .} ,
namely, for a generic tree t ∈ T ,

• r(t) is the order of t, i.e. the number of vertices

• σ(t) is the symmetry of t, i.e. the order of the automorphism group of the set
of vertices of t
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y′(x) = f f

y′′(x) = f ’f f ’
f

y′′′(x) = f”(f, f) f”
f f

+ f’f ’f f ’
f ’
f

Table 1.1: Correspondence between derivatives and trees.

t
r(t) 1 2 3 3 4 4 4 4
σ(t) 1 1 2 1 6 1 2 1
γ(t) 1 2 3 6 4 8 12 24
α(t) 1 1 1 1 1 3 1 1
β(t) 1 2 3 6 4 24 12 24
F (t) f f′f f′′(f,f) f′f′f f(3)(f,f,f) f′′(f,f′f) f′f′′(f,f) f′f′f′f

Table 1.2: Operators on trees up to order 4.

• γ(t) is the density of t

• α(t) is the number of ways of labelling with an ordered set

• β(t) is the number of ways of labelling with an unordered set

• F (t)(y0) are the elementary differentials.

Elementary differentials are in practice the various differential terms which combin-
ation give the derivatives of y (for more rigorous definitions, see [11, 71]).It is now
easy to verify that the exact solution of the given problem y can be expanded in
Taylor series around x0 as follows

y(x0 + h) = y0 +
∑
t∈T

α(t)hr(t)

r(t)!
F (t)(y0) (1.39)

or, equivalently

y(x0 + h) = y0 +
∑
t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

Next step is to write the numerical approximation provided by a RK method as a
series of the form (1.39) and compare the corresponding terms between those two
series. We consider expression (1.32) of a Runge-Kutta method and, following [70],
we put gi = hki and write

gi = hf(ui), ui = yn +
∑
j

aijgj, yn+1 = yn +
∑
i

bigi. (1.40)
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Now we need to derive these expressions as functions of the stepsize h and evaluate
the derivatives in h = 0, since we are interested in the value in yn. Applying
Leibnitz’s rule, we obtain

g
(
iq) = h(f (q)(ui)) + q(f (q−1)(ui))

then, in h = 0,
g
(
iq) = q(f (q−1)(ui)).

In practice we have the same expression of the derivative of the exact solution
multiplied by a term q. This allows us to compute the gi’s derivatives using (1.34),
but we find them to depend on the derivative of the ui terms. These terms are easily
computed by linearity, due to the definition of ui (1.40). It is now easy to combine
all the terms and get the coefficients of the expansion of the numerical solution, that
are called elementary weights

Φ(t) =
s∑

i,j,k=1

biaijc
2
jaikc

2
k.

The formal series expansion for the numerical solution is then

y1 = y0 +
∑
t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)

and the order conditions are easily obtained by comparison with (1.39), obtaining
the following

Theorem 1.6.1. The Runge-Kutta method (1.32) has order p if and only if

Φ(t) =
1

γ(t)

for each tree t ∈ T such that ρ(t) ≤ p.

As anticipated in the introduction to this Section, we found a result analogous
to Theorem 1.6.1 for methods belonging to the family of General Linear Nyström
methods for second order problems and it is Proposition 2.2.1.

1.7 Linear Stability of Numerical Integrators

Stability is a fundamental property of numerical methods. A method is stable if it
is able to handle small errors without amplifying them. Small errors always occur
in numerical procedures, due basically to the representation of machine numbers.
Other errors are introduced by the numerical procedure, e.g. the LTE (see Section
1.4) in numerical integrators. A stable method is able to keep those perturbations
under control in order to avoid them to affect the overall accuracy.
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1.7.1 Introduction

In the numerical integration of initial value problems, stability is classically invest-
igated in the linear sense.
Consider an IVP (1.4) and let y and z be solutions respectively corresponding to the
initial values y0 and z0; let δy := z − y be the difference between the solutions. We
aim to find a relation connecting the initial values with the corresponding solutions.
We derive z using the definition of δ

z′ = y′ + (δy)′ = f(x, z) = f(x, y + δy), (1.41)

and write the Taylor series expansion of f(x, y+ δy) based in (x, y), then substitute
in (1.41)

y′ + (δy)′ = f(x, y) +
∂f

∂y
δy + o(||δy||2).

Truncating and using the definition of y we obtain

(δy)′ = Jδy + o(||δy||2), (1.42)

being J = ∂f
∂y

the Jacobian of f .

For linear systems with constant coefficients [86]

y′ = Ay

good stability properties are achieved when the real part of the eigenvalues of A
are negative, since in such a case the corresponding solutions are decreasing. We
found that the difference δ between two solutions of an IVP satisfies (1.42), i.e. a
linear system with non-constant coefficients. It is useful anyway to consider as a
test equation

y′ = λy, λ ∈ C (1.43)

or its vector homologous
y′ = Λy

since this allows us to take advantage of the connection between stability and the
eigenvalues of Λ. This corresponds to assuming the Jacobian of f to be locally
constant, but this is not always coherent with the actual problem.

Example 1.7.1. Consider the system y′ = A(x)y, with

A =

[
0 1

− 1
16x2

− 1
2x

]
, x > 0.

A has the only eigenvalue: λ = − 1
4x
. If x > 0, λ is negative, so we expect the

solutions of the system to be decreasing, but we see that

y =

[
4x

1
4

x− 3
4

]
diverging with x → ∞.
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1.7.2 Linear Multistep Methods

Given a k step LMM (1.26), the global error satisfies the following difference equation

k∑
j=0

[αjI − hβjJ ]En+j = ϕ, (1.44)

being En+j the global error and ϕ the LTE in the grid-point xn+j and J the Jacobian
matrix of the system with respect to y. Based on the considerations made in the
previous paragraphs, we assume J and ϕ to be constant. Equation (1.44) then
becomes

k∑
j=0

[αj − hλβj]En+j = ϕ

whose characteristic polynomial

π(r, h̄) =
k∑
j=0

[αj − h̄βj]r
j, h̄ = hλ

is called stability polynomialof the method. Based on the considerations about the
stability of difference equations made in Section 1.4.3 we give the following

Definition 1.7.1. A linear multistep method is said absolutely stable for h̄ if and
only if all the roots of π(r, h̄) are less or equal then one in norm and those of norm
equal to one are simple. The set of all h̄ such that the method is absolutely stable
is called absolute stability region of the method.

Definition 1.7.2. A LMM is A-stable if its absolute stability region embeds the
left half plane of the complex numbers set.

1.7.3 Runge-Kutta methods

Applying the Runge-Kutta method (1.32) to the linear scalar test equation (1.43),
we get 

Yi = yn + ĥ
s∑
j=1

aijYj, i = 1, . . . , s, ĥ = hλ,

yn+1 = yn + ĥ
s∑
i=1

biYi.
(1.45)

We set
Y = (Y1, . . . , Ys)

T e = (1, 1, . . . , 1) ∈ Rs,

and (1.45) can be written as{
Y = yne+ ĥAY, i = 1, . . . , s,

yn+1 = yn + ĥbTY.
(1.46)

We derive a relation for the stages from the first equation in (1.46)

Y = yne
(
I − ĥA

)−1
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and, substituting it into the second, we obtain

yn+1 = yn

(
1 + ĥbTe

(
I − ĥA

)−1
)
.

The function

R(ĥ) =

(
1 + ĥbTe

(
I − ĥA

)−1
)

is called stability function of the method.
The solution to the test equation provided by a Runge-Kutta method is then

yn+1 = R(ĥ)yn

going to zero when |R(ĥ)| < 1.

Definition 1.7.3. A Runge-Kutta method is absolutely stable [11, 86] for ĥ if
|R(ĥ)| < 1. The set of all h̄ such that the method is absolutely stable is called
absolute stability region of the method.

Analogously to the definition given for LMM, a RK method is called A-stable if
and only if its absolute stability region embeds the left half plane of the complex
numbers set.

1.8 Nonlinear stability analysis

The present section is devoted to the analysis on non linear stability of numerical
integrators, that turns out to be fundamental in the treatment of problem with
invariants [70, 86]. We introduce here the definition of contractivity for the solutions
of a differential system and we will show how to extend it to the numerical ones.

Definition 1.8.1. Let y(x) and ỹ(x) be solutions of the differential system y′(x) =
f(x, y(x)), x ∈ [x0, X] corresponding to the initial values x0 e x̃0 respectively. Those
solutions are said to be contractive in [a, b] if and only if for each x1, x2 such that
a ≤ t1 ≤ t2 ≤ b, the following condition holds:

||y(x2)− ỹ(x2)|| ≤ ||y(x1)− ỹ(x1)||. (1.47)

Let {yn}, {ỹn} be the numerical approximations of the solution provided by a
k-step numerical method with different starting values. We define {Yn}, {Ỹn} ∈ Rmk

as
Yn := [yTn+k−1, . . . , y

T
n ]
T ,

Ỹn := [ỹTn+k−1, . . . , ỹ
T
n ]
T .

and give the following

Definition 1.8.2. The numerical approximations {yn}, {ỹn} are contractive for n ∈
[0, N ] if and only if

||Yn+1 − Ỹn+1|| ≤ ||Yn − Ỹn||.
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Figure 1.1: Contractivity of the solutions of y′ = −y.

Under a geometric point of view, if we consider a one-dimensional system of
one equation, we can say that if it has contractive solutions, then the solutions
themselves tend to be closer and closer as the independet variable grows. We observe
that contractivity is a more general property than the one analyzed in the case of
linear stability, in fact it holds for a linear system y′ = Ay with A having eigenvalues
with negative real part (fig. (1.1)). Significancy of contractivity is also evident in the
context of numerical stability, in fact, if a numerical method is able to preserve it, in
the integration of a contractive ODE system the small perturbations introduced by
round-off errors or inexact starting procedures do not cause the numerical solutions
to vary too much from the exact one.

In order to give a characterization of systems with contractive solutions, we
introduce the definition of one-sided Lipschitz condition in the Euclidean norm.

Definition 1.8.3. We say that a one-sided Lipschitz condition holds for the
function f(x, y) and for the problem y′ = f(x, y) if there exists a function ν(x)
defined in [x0, X] such that

⟨f(x, y)− f(x, ỹ), y − ỹ⟩2 ≤ ν(x)||y − ỹ||22 (1.48)

for each y, ỹ belonging to a convex region Mx containing the exact solution and for
each x ∈ [x0, X]. The function ν(x) is called one-sided Lipschitz constant.

Remark 1.8.1. Condition (1.48) is more general of the usual Lipschitz condition,
in fact, if f is Lipschitz with constant L, then (1.48) holds with ν(x) = cost = L,
due to the Scwartz inequality

⟨f(x, y)− f(x, ỹ), y − ỹ⟩ ≤ ||f(x, y)− f(x, ỹ)|| · ||y − ỹ|| ≤ L||y − ỹ||2.

Next is an example allowing us to make a few observations

Example 1.8.1. Consider the equations

1. y′ = y,
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2. y′ = −y;

whose f functions are Lipschitz with L = 1 and let’s compute their one-sided
Lipschitz constants. For the first equation

⟨f(x, y)− f(x, ỹ), y − ỹ⟩ = ⟨y − ỹ, y − ỹ⟩ = ||y − ỹ||2,

then ν1(x) = 1 = L, while for the other

⟨f(x, y)− f(x, ỹ), y − ỹ⟩ = −⟨y − ỹ, y − ỹ⟩ = −||y − ỹ||2,

thus ν2(x) = −1.
We observe that in the case of the second equation we could have chosen ν2(x) =

1 = L, while this was not possible for the first. The relevant consideration here
is that the first system has unbounded solutions, while the second’s are decreasing,
then contractive: we will show that the negativity of ν2 is a condition for contractiv-
ity.

Theorem 1.8.1. If the IVP{
y′ = f(x, y), x ∈ [x0, X]
y(x0) = η0

(1.49)

has a negative one-sided Lipschitz constant then its solutions are contractive in
[x0, X].

Proof. Let y(x), ỹ(x)be solutions of (1.49) corresponding to the initial values η, η̃.
Consider the function

Φ(x) = ||y(x)− ỹ(x)||2.
Its derivative reads

Φ′(x) =
d

dx
⟨y(x)− ỹ(x), y(x)− ỹ(x)⟩ = 2 ⟨y′(x)− ỹ′(x), y(x)− ỹ(x)⟩ =

= 2 ⟨f(x, y(x))− f(x, ỹ(x)), y(x)− ỹ(x)⟩ ≤ 2ν(x)Φ(x).

Then
Φ′(x)− 2ν(x)Φ(x) ≤ 0. (1.50)

Consider then the integrating factor η(x) = e−2
∫ x
0 ν(s)ds and multiply it for both

members of (1.50):
Φ′(x)η(x)− 2ν(x)η(x)Φ(x) ≤ 0,

thus Φ(x)η(x) is decreasing and

Φ(x2)η(x2) ≤ Φ(x1)η(x1) (1.51)

for each x1, x2 such that x0 ≤ x1 ≤ x2 ≤ X. From (1.51) and by hypothesis we
obtain

||y(x2)− ỹ(x2)||2 ≤ e
∫ x2
x1

ν(s)ds||y(x1)− ỹ(x1)||2 ≤ ||y(x1)− ỹ(x1)||2,

which proves the statement.

Theorem 1.8.1 holds in particular if ν(x) = 0, then we give the following

Definition 1.8.4. System y′ = f(x, y) is dissipative in [x0, X] if

⟨f(x, y)− f(x, ỹ), y − ỹ⟩ ≤ 0 (1.52)

for each y, ỹ ∈ Mx and each x ∈ [x0, X].
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1.8.1 Non–linear stability of implicit Runge–Kutta methods

In the remainder of this Section, we consider an s–stages Runge-Kutta method
having as Butcher tableaux

c A

bT

.

Definition 1.8.5. A Runge-Kutta method isB-stable [11] if it provides contractive
solutions whether applied to a dissipative autonomous system with any step-size.
The method is called BN-stable if it provides contractive solutions whether applied
to a dissipative non-autonomous system with any step-size.

Butcher [11] proved the following sufficient condition for the B-stability of a
method. Let B and Q be the s× s matrices

B :=


b1 0 · · · 0

0 b2
. . .

...
...

. . . . . . 0
0 · · · 0 bs

Q := BA−1 + A−TB − A−T bbTA−1, (1.53)

If B and Q are non-negative definite, then the method is B-stable.

Example 1.8.2. For the Radau IA method

0 1
4

−1
4

2
3

1
4

5
12

1
4

3
4

we have

B =

(
1
4

0
0 3

4

)
which is positive definite and

Q =

(
1 −1.11e− 16

−3.33e− 16 4.44e− 16

)
which is positive definite, having as eigenvalues

1, 4.44e− 16.

Thus the method is B-stable.
The Lobatto IIIC method

0 1
2

−1
2

1 1
2

1
2

1
2

1
2
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we have B = bI and

Q =

(
1 0
0 0

)
which is positive semi-definite, thus also Lobatto IIIC method is B-stable.

For methods whose A matrix is not invertible, as Radau II

1
3

1
3

0

1 1 0

3
4

1
4

it is useful to give another definition, involving the B matrix as before and the
matrix

M := BA+ ATB − bbT .

Definition 1.8.6. A Runge-Kutta method is algebraically stable if bi > 0 for
i = 1, . . . , s and the matrix M associated to the method is positive semi-definite.

The following Theorem states the connection between algebraic stability and
B-stability

Theorem 1.8.2. If a Runge-Kutta method is algebraically stable, then it is BN-
stable.

Example 1.8.3. Consider Radau II method

1
3

1
3

0

1 1 0

3
4

1
4

.

Matrices B and M assume the form

B =

(
3
4

0
0 1

4

)
,M =

(
−0.0625 0.0625
0.0625 −0.0625

)
and M is negative semi-definite, having eigenvalues −0, 125 and 0.

1.9 Symplectic Runge-Kutta Methods

We consider an IVP such that there exist a symmetric matrix Q (see Section 1.3.4)
such that

yTQf(y) = 0

or, equivalently
yTQy = c, (1.54)
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being c a constant. Such problems are said to possess a quadratic invariant. We aim
to find under which conditions an RK method preserves the invariant (1.54), so we
impose that its numerical counterpart is preserved, that is yTnQyn = c. In order to
achieve such a goal, we consider a RK method (1.32) and we write the expression
of the method after one step

y1 = y0 + h
s∑
i=1

bif(Yi)

Yi = y0 + h
s∑
j=1

aijf(Yj)
.

From this expression it follows that

yT1 Qy1 = yT1 Qy0 + h

s∑
i=1

biy
T
1 Qf(Yi) = yT0 Qy1 + h

s∑
i=1

bif(Yi)
TQy1 =

= yT0 Qy0 + 2h
s∑
i=1

biy
T
0 Qf(Yi) + h2

s∑
i,j=1

bibjf(Yi)
TQf(Yj).

Defining a matrix M as
M := BA+ ATB − bbT

and observing that

f(Yi)
TQy0 + h

s∑
j=1

aijf(Yi)
TQf(Yj) = 0,

we obtain

yT1 Qy1 = yT0 Qy0 − h2

s∑
i,j=1

mijf(Yi)
TQF (Yj). (1.55)

Equation (1.55) provides the preservation of the invariant(1.54) if M = 0. This
motivates the following

Definition 1.9.1. A Runge-Kutta method with coefficients (A, bT , c) is symplectic
if and only if

M = diag(b)A+ ATdiag(b)− bbT (1.56)

is the zero matrix. Symplectic RK methods are also often referred to as canonical
methods.

Remark 1.9.1. An interesting link holds between symplecticity and non-linear
stability of Runge-Kutta methods, in fact the matrix M defined in (1.56) is the so-
called algebraic stability matrix of the method, arising while studying the application
of RK methods to dissipative problems (see (1.8.6)).

An example of symplectic RK method is given by the family of Gauss-Legendre
RK methods (1.33).
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Chapter 2

General Linear Methods (GLMs)

The family of General Linear Methods (GLMs) or simply Multivalue methods was
introduced in [10] with the aim of giving an unifying theoretical framework embed-
ding all the existing methods. In the first part of this Chapter we will see how
the family of multivalue methods is defined and how one can formulate the existing
methods as GLMs. The topics of convergence and order are exploited and a linear
stability theory is presented. The second part of the Chapter is devoted to the fam-
ily of General Linear Methods for second order problems. Such methods have been
introduced recently in [45] and furtherly studied in [50].

2.1 GLMs for first order problems

General Linear Methods are multistage-multivalue methods [10, 11, 70]. Denoting by
s the number of stages and r the number of values that are carried out at each step,
we introduce a formulation that makes use of an abscissae vector c = [c1, c2, . . . , cs]
and four coefficient matrices

A ∈ Rs×s,U ∈ Rs×r,B ∈ Rr×s,V ∈ Rr×r,

collected in the (s+ r)× (s+ r) block matrix[
A U
B V

]
.

The component wise expression of a GLM (c,A,U,B,V) is
Y

[n]
i =

s∑
j=1

aijhF
[n]
j +

r∑
j=1

uijy
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i =

s∑
j=1

bijhF
[n]
j +

r∑
j=1

vijy
[n]
j , i = 1, 2, . . . , r,

(2.1)

where Y
[n]
i are denoted as the internal stages of the method and, together with the

other quantities appearing in (2.1), can be collected in three supervectors

y[n] =


y
[n]
1

y
[n]
2
...

y
[n]
r

 ∈ Rrd, Y [n] =


Y

[n]
1

Y
[n]
2
...

Y
[n]
s

 ∈ Rsd, F [n] =


f(xn + c1h, Y

[n]
1 )

f(xn + c2h, Y
[n]
2 )

...

f(xn + csh, Y
[n]
s )

 ∈ Rsd.
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Method (2.1) can thus be formulated in a tensor form{
Y [n] = h(A⊗ I)F + (U⊗ I)y[n],
y[n+1] = h(B⊗ I)F + (V ⊗ I)y[n],

being I the identity matrix in Rd×d and A⊗B the Kronecker tensor product:

A⊗B =


a11B a12B · · · a1sB
a21B a22B · · · a2sB
...

...
...

as1B as2B · · · assB

 .

Remark 2.1.1. As we will see more in detail in the following sections, the values
that are carried out from step to step, namely the components of the y[n] vector, can
assume a very wide range of expressions related to the solution, including the solution
itself, linear combinations of its derivatives, values of the solution in previous steps
etc, while the internal stages provide an approximation to the solution in intra-step
points given by xn + cih. Usually, the values in the y[n] vector are not provided by
the IVP data and need to be computed by means of a starting procedure.

2.1.1 Classical methods as GLMs

An s stages Runge-Kutta method having the Butcher’s tableaux

c A

bT

(2.2)

can be written as a GLM with the same number of stages and r = 1, since only an
approximation to the solution is carried out at each step. In particular, the matrix
representation of (2.2) as a GLM [11] is

[
A U
B V

]
=


A e

bT 1

 , (2.3)

being e = (1, · · · , 1)T ∈ Rs. Formula (2.3) can be easily obtained comparing the
componentwise expression of a RK (1.32) and a GLM (2.1).

A k-step Linear Multistep Method (1.26) can be formulated as a one-stage GLM
having the following matrix representation

β0 α1 · · · αk−1 αk β1 · · · βk−1 βk
β0 α1 · · · αk−1 αk β1 · · · βk−1 βk
0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0
1 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0

.
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2.1.2 Convergence Issues

In this Section, we analyse the problem of convergence for GLMs and we give a few
basic definitions concerning zero-stability and consistency. The first definition that
we need is the classical pre-consistency definition given in [11, 82]

Definition 2.1.1. A GLM (c,A,U,B,V) is said to be preconsistent if and only if
there exist a vector q0 ∈ Rr called preconsistency vector such that

Uq0 = e, Vq0 = q0, (2.4)

with e = [1, . . . , 1] ∈ Rr.

Definition 2.1.2. A preconsistent GLM (c,A,U,B,V) is called consistent if and
only if there exist a vector q1 ∈ Rr called consistency vector such that

Be+Vq1 = q0 + q1, (2.5)

with e = [1, . . . , 1] ∈ Rr. The method is called stage-consistent if

Ae+Uq1 = c, (2.6)

being e = [1, . . . , 1] ∈ Rs.

Formulas (2.4),(2.5) and (2.6) will find a rigorous justification in Section 2.2.1.
A crucial property of GLMs, as well as of all numerical integrators, is the property

of zero-stability.

Definition 2.1.3. A GLM (c,A,U,B,V) is zero-stable if and only if there exists
a scalar C such that

∥Vn∥ ≤ C,

for each n ≥ 0.

Condition expressed in Definition 2.1.3 is equivalent to requiring that all the
roots of the minimal polynomial of the matrix V to have modulus less or equal to
1 and those of modulus 1 to be simple.

Starting Procedures

As in the case of LMM, the definition of convegence is strictly related to the starting
procedure used and also the order of a GLM is defined with respect to a given starting
procedure, then it is worth spending a few words about the topic. Consider a GLM
(c,A,U,B,V) whose input vector is given by

y[n] =


y
[n]
1

y
[n]
2
...

y
[n]
r

 .
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Since we want the quantities y
[n]
i to be as general as possible, we consider for their

approximation r generalized Runge-Kutta methods of the form
Y

(i)
j = y

(i)
n + h

s∑
k=1

a
(i)
jkf(tn + c

(i)
k h, Y

(i)
k ), j = 1, 2, . . . , s,

y
(i)
n+1 = b

(i)
0 y

(i)
n + h

s∑
j=1

b
(i)
j f(tn + c

(i)
j h, Y

(i)
j ),

represented by the Butcher tableau

S(i) =

(
c(i) A(i)

b
(i)
0 b(i)

T

)
. (2.7)

To our purposes, we will always assume that the starting method is non-degenerate
(compare [11]), i.e. there exists an index i such that b

(i)
0 ̸= 0. A finishing procedure

is then needed at the end of the integration process to rebuild the solution from the
output of the method [70]. An example of starting procedure and technical details
on its construction are given in Section 3.6.1.

Aiming to give a definition of convergence for GLMs, we assume that, for small
values of the stepsize h, the starting method provides accurate approximations of

u1y(t0)
u2y(t0)

...
ury(t0)

 ,

with u being not zero in Rr, and that the successive approximations converge to
u1y(t̄)
u2y(t̄)

...
ury(t̄)

 . (2.8)

Let uy(t̄) be the vector in (2.8), following [11, 82], we give the following

Definition 2.1.4. A GLM (c,A,U,B,V) is convergent if and only if, for any
IVP (1.4) whose f function is Lipschitz continuous with ∥f(y)− f(z)∥ ≤ L∥y− z∥,
there exist a non-zero vector u ∈ Rr and a starting procedure ϕ : (0,∞) → Rr such
that for any i = 1, 2, . . . , r, lim

h→0
ϕi(h) = uiy(t0), and such that for each t̄ > t0, the

sequence y[n], computed after n steps of size h = (t̄ − t0)/n and using y[0] = ϕ(h),
converges to uy(t̄).

For GLMs, the Lax-Richtmyer Theorem holds, stating the equivalence between
convergence and zero stability plus consistency.

The starting method has a remarkable influence also on the accuracy of the nu-
merical approximation. Indeed, according to [11], we provide the following definition
of order.
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Definition 2.1.5. A GLM (A,U,B, V ) has order p if, and only if, there exists a
non-degenerate starting method S such that the numerical approximations obtained
via the GLM with starting method S differ from those obtained applying S to the
exact solution at the end of the same step by O(hp+1).

Following [11], a GLM (2.1) has order p if{
η(t) = AηD(t) + Uξ(t),

Eξ(t) = BηD(t) + V ξ(t),
(2.9)

for any t ∈ T , with ρ(t) ≤ p. As in [11], η represents the operator associated to
the stages, ηD the one associated to the stage-derivatives, ξ is the starting method
operator and E the exact solution one. The product of two operators is defined in
[11], §386.

2.2 GLMs for Second Order Problems

The family of GLMs for second order problems, also referred to as the family of Gen-
eral Linear Nyström methods (GLNs) has been introduced in [45] by R. D’Ambrosio,
E. Esposito and B. Paternoster for the numerical solution of the Hadamard well-
posed special second order problem

y′′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd,

y′(t0) = y′0 ∈ Rd.

(2.10)

These methods provide a natural generalization of GLMs (2.1) for first order prob-
lems. Their formulation involves three supervectors

y[n−1] =


y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

 ∈ Rrd, y′[n−1] =


y′

[n−1]
1

y′
[n−1]
2

...

y′
[n−1]
r′

 ∈ Rr′d, Y [n] =


Y

[n]
1

Y
[n]
2

...

Y
[n]
s

 ∈ Rsd

respectively denoted as input vector of the external approximations, input vector of
the first derivative approximations and internal stage vector. The n-th step of a GLN
method characterised by the coefficient matrices A ∈ Rs×s, P ∈ Rs×r′ , U ∈ Rs×r,
C ∈ Rr′×s, R ∈ Rr′×r′ , W ∈ Rr′×r, B ∈ Rr×s, Q ∈ Rr×r′ , V ∈ Rr×r is expressed as
follows

Y
[n]
i = h2

s∑
j=1

aijf(Y
[n]
j ) + h

r′∑
j=1

pijy
′[n−1]
j +

r∑
j=1

uijy
[n−1]
j , i = 1, ..., s,

hy′
[n]
i = h2

s∑
j=1

cijf(Y
[n]
j ) + h

r′∑
j=1

rijy
′[n−1]
j +

r∑
j=1

wijy
[n−1]
j , i = 1, ..., r′, (2.11)

y
[n]
i = h2

s∑
j=1

bijf(Y
[n]
j ) + h

r′∑
j=1

qijy
′[n−1]
j +

r∑
j=1

vijy
[n−1]
j , i = 1, ..., r.
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The coefficient matrices involved in the formulation of the method can be collected
in the following partitioned (s+ r′ + r)× (s+ r′ + r) matrix A P U

C R W
B Q V

 , (2.12)

denoted as the Butcher tableau of the GLM. Using these notations, a GLM for
second order ODEs can then be expressed as follows:

Y [n] = h2(A⊗ I)F [n] + h(P⊗ I)y′[n−1] + (U⊗ I)y[n−1],

hy′[n] = h2(C⊗ I)F [n] + h(R⊗ I)y′[n−1] + (W ⊗ I)y[n−1], (2.13)

y[n] = h2(B⊗ I)F [n] + h(Q⊗ I)y′[n−1] + (V ⊗ I)y[n−1],

where ⊗ denotes the usual Kronecker tensor product, I is the identity matrix in
Rd×d and F [n] = [f(Y

[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s )]T. Analogously to the first order case,

the vector y[n−1] of the external stages contains all the informations transferred
advancing from the point tn−1 to the point tn of the grid. It is important to observe
that such a vector could also contain not only approximations to the solution of
the problem in the grid points inherited from the previous steps, but also other
informations computed in the past that we want to use in the integration process.
The vector y′[n−1], instead, contains previous approximations to the first derivative
of the solution computed in previous step points, while the values Y

[n−1]
j provide

an approximation to the solution in the internal points tn−1 + cjh, j = 1, 2, . . . , s,
where c = [c1, c2, . . . , cs] is denoted as the abscissae vector of the method.

Remark 2.2.1. A more compact representation of methods (2.11) can be given
embedding the first derivative-related quantities in the vector of external approxim-
ations. Such a simplification provides the reduced formula

Y [n] = h2(A⊗ I)F [n] + (U⊗ I)y[n−1],

y[n] = h2(B⊗ I)F [n] + (V ⊗ I)y[n−1].
(2.14)

A rigorous explanation of this procedure can be found in [45]. This simplified rep-
resentation is often very useful in the process of construction of new methods and
in the development of both order and stability conditions. In the following, we will
use this formulation to construct examples of methods belonging to the family of
GLNs.

2.2.1 Order Conditions

For second order equations, due to the presence of the derivative of the exact solu-
tion, we need a more general set of rooted trees, namely bi-coloured trees, defined
as follows (compare [71])

NT = { , , , , , , , , , , . . .} .

The vertices τ1 = and τ2 = are combined according to following the rules
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1. the root of t ∈ NT is always fat;

2. a meagre vertex has at most one son which has to be fat.

Following [27, 71], we adapt the theory of N-trees and of N-series introduced by
Hairer and Wanner in [73] to the special problem

y′′(x) = f(y(x)). (2.15)

By calculating the derivatives of the exact solution of problem (2.15)

y′′′ =
∂f

∂y
y′, y(iv) =

∂2f

∂y2
y′2 +

∂f

∂y
y′′, y(v) =

∂3f

∂y3
y′3 + 3

∂2f

∂y2
y′f +

∂f

∂y
y′′′, . . .

we observe that the terms including the derivative of f with respect to y′ disappear,
producing a smaller set of trees called Special N-trees (SNT) set [71]

SNT = { , , , , , . . .} .

By combining the formalisms introduced in [27, 73], a composition rule of special
Nyström trees is given according to the following scheme. We consider t1, . . . , tk ∈
SNT and a new root τ2. Then,

1. if ti ̸= τ1, then its root is connected to a new meagre node, linked to the new
root;

2. if ti = τ1, then it is connected to the new root via a new branch.

The resulting SN-tree is denoted as t = [t1, . . . , tk]. Inversely, cutting the branches
leaving from the root of a given t ∈ SNT , let u1, u2, . . ., uk be the resulting
subtrees. For any ui ̸= τ1, we cut off the branch leaving from its root τ1 and denote
the remaining part as ti. For the remaining ui, we set ti = τ1. Then, the tree is
decomposed as t = [t1, . . . , tk].

Given these rules, we can extend the definition of elementary differential given
in [11, 71] to the special problem (2.15). For a given t = [t1, . . . , tk] ∈ SNT , we
recursively define the elementary differentials as follows

F ( )(y, y′) = y′,

F ( )(y, y′) = y′′ = f,

F (t)(y, y′) = f (k) (F (t1)(y, y
′), . . . , F (tk)(y, y

′)) .

Moreover, for a given tree t = [tµ11 , tµ22 , . . . , tµkk ], we recursively define the following
useful functions ρ and α (compare [27, 73])

ρ( ) = 1, ρ( ) = 2, ρ(t) = 2 +
k∑
i=1

µiρ(ti),

α( ) = α( ) = 1, α(t) = (ρ(t)− 2)!
k∏
i=1

1

µi!

(
α(ti)

ρ(ti)

)µi
.
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ρ(t) t F (t) α(t)

1 y′ 1

2 f 1

3 f ′y′ 1

4 f ′′(y′, y′) 1

f ′f 1

5 f ′′′(y′, y′, y′) 1

f ′′(y′, f) 3

f ′f ′y′ 1

Table 2.1: Special Nyström trees up to order 5 and associated elementary differen-
tials
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Following [73], we define a SN-series as

SN(a, y, y′) =
∑
t∈SNT

hρ(t)

ρ(t)!
α(t)a(t)F (t)(y, y′). (2.16)

We observe that both the exact solution of (2.15) and its first derivative can be
formally written as SN-series, whose coefficients are calculated in next sections. The
following theorem, useful in the remainder of the paper, provides a representation
form for the composition of a SN-series with the function f in (2.15) (compare [73]).

Theorem 2.2.1. For a given map a : SNT 7→ R satisfying a(∅) = 1, we have

f(SN(a, y, y′)) =
∑
t∈SNT

hρ(t)−2

(ρ(t)− 2)!
α(t)a′′(t)F (t)(y, y′) (2.17)

with

a′′(t) =


0, if t = ∅, τ1,
1, if t = τ2,

a(t1) · · · a(tk), if t = [t1, . . . , tk].

(2.18)

We now employ the theory of SN-series above recalled, to derive a general set
of order conditions for the family of GLN methods (2.1). First of all, let us assume
that the input vector is a SN-series of the form

y
[0]
i =

∑
t∈SNT

hρ(t)

ρ(t)!
α(t)ξi(t)F (t)(y, y′), (2.19)

and, analogously, that

Y
[0]
i =

∑
t∈SNT

hρ(t)

ρ(t)!
α(t)ηi(t)F (t)(y, y′). (2.20)

We need to establish how terms like h2f(Yi) and hy′
[0]
i can be expressed as SN-series.

Theorem 2.2.1 allows us to write h2f(Yi) as SN-series (2.16) of coefficients

ηi(t) = η′′i(t) · ρ(t) · (ρ(t)− 1) , (2.21)

while, if y′
[0]
i is a formal series of the form

y′
[0]
i =

∑
t∈SNT

hρ(t)−1

(ρ(t)− 1)!
α(t)ξ′i(t)F (t)(y, y′), (2.22)

hy′
[0]
i is a SN-series (2.16) of coefficients

δi(t) = ξ′i(t) · ρ(t)

With abuse of notation, we have denoted the coefficients of the SN-series (2.22) by
ξ′i(t), even if they are not actually the first derivatives of ξi(t) in (2.19).
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We can now suitably extend the strategy proposed in [11], in order to develop an
algebraic theory of order for GLNs. To this purpose, we insert the derived SN-series
in the method formulation (2.13), obtaining

SN(ηi, y, y
′) =

s∑
j=1

aijSN(ηj, y, y
′) +

r′∑
j=1

pijSN(δj, y, y
′) +

r∑
j=1

uijSN(ξj, y, y
′),

i = 1, 2, . . . s, which leads to

SN(ηi, y, y
′) = SN

(
s∑
j=1

aijηj +
r′∑
j=1

pijδj +
r∑
j=1

uijξj, y, y
′

)
, i = 1, . . . s.

Thus,

ηi(t) =
s∑
j=1

aijηj(t) +
r′∑
j=1

pijδj(t) +
r∑
j=1

uijξj(t), i = 1, . . . s. (2.23)

In analogous way, we obtain the following equations for the external approximations

ξ̂i(t) =
s∑
j=1

bijηj(t) +
r′∑
j=1

qijδj(t) +
r∑
j=1

vijξj(t), i = 1, . . . r, (2.24)

δ̂i(t) =
s∑
j=1

cijηj(t) +
r′∑
j=1

rijδj(t) +
r∑
j=1

wijξj(t), i = 1, . . . r′. (2.25)

Collecting the left-hand sides of (2.23), (2.24) and (2.25) in the vectors η ∈ Rs,
ξ ∈ Rr and δ ∈ Rr′ , respectively, leads to the following matrix representation

η = Aη +Pδ +Uξ,

ξ̂ = Bη +Qδ +Vξ,

δ̂ = Cη +Rδ +Wξ.

(2.26)

As a consequence, the following result holds.

Proposition 2.2.1. If the operators ξ̂ and δ̂ in (2.26) of a given GLN (2.1) are such

that ξ̂i(t) and δ̂i(t) coincide with the correspoding coefficients Eξi(t) and Eδi(t) in

the Taylor series expansions of the exact values approximated by y
[n]
i and y′

[n]
i for

any t ∈ SNT of order ρ(t) ≤ p and ρ(t) ≤ p + 1 respectively, then the method has
order p, i.e. {

Eξ = Bη +Qδ +Vξ, ρ(t) ≤ p,

Eδ = Cη +Rδ +Wξ, ρ(t) ≤ p+ 1.
(2.27)

Moreover, the method has stage order q if the operators ηi(t), i = 1, . . . , s, in (2.26)
coincide with the coefficients Eηi of the Taylor series expansion of y(x0 + cih), for
any t ∈ SNT of order ρ(t) ≤ q + 1, i.e.

Eη = Aη +Pδ +Uξ. (2.28)
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t Eξ(t)
∅ ξ0

ξ0 + ξ1
ξ0 + 2ξ1 + ξ2

ξ0 + 3ξ1 + 3ξ2 + ξ3
...

...
t Tρ(t)Ξρ(t)

Table 2.2: Values of Eξ(t) in (2.27)

Remark 2.2.2. The elements of the vector Eξ(t) updated after one step only can
be easily computed by means of series expansions arguments. Indeed, let us consider
a specific component y

[n]
i of the external stages vector and let us assume that it can

be expanded in power series as follows:

yi(x) = ξ0yi(x)+hξ1y
′
i(x)+

h2

2
ξ2y

′′
i (x)+

h3

6
ξ3y

′′′
i (x)+ . . .+

hk

k!
ξky

(k)
i (x)+ . . . . (2.29)

Such an assumption is equivalent to considering a SN-series where all the coefficients
of hk have the same value. Expanding yi(x+ h) in Taylor series, we get

yi(x+ h) = yi(x) + hy′i(x) +
h2

2
y′′i (x) +

h3

6
y′′′i (x) + . . .+

hk

k!
y
(k)
i (x) + . . . . (2.30)

The values of y
(k)
i (x) in (2.30) can be obtained from (2.29). Substituting such values

in (2.30) and collecting the powers of h with the same exponent we obtain the
values for Eξ reported in Table 2.2, where Tk denotes the k-th row of the Tartaglia’s
triangle and Ξk a column vector whose components are ξ0, . . . ξk−1.

Exploiting Order Conditions for GLNs

By applying the result derived in Proposition 2.2.1, we derive the expressions of
the operators (2.27) and (2.28) in correspondence of the trees up to order 4 for
a GLN method (2.1). We observe that the algebraic conditions (2.27) and (2.28)
in Proposition 2.2.1 have to be solved recursively by means of the decomposition
rule given above, according to Theorem 2.2.1. We first consider (2.27) and (2.28)
corresponding to the trees ∅, τ1 and τ2, which provide the base case of the recursion,
obtaining

∅

ηi(∅) =
r∑
j=1

uijξj(∅), i = 1, . . . , s,

Eδi(∅) =
r∑
j=1

wijξj(∅), i = 1, . . . , r′,

Eξi(∅) =
r∑
j=1

vijξj(∅), i = 1, . . . , r,
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ηi( ) =
r′∑
j=1

pijξ
′
j( ) +

r∑
j=1

uijξj( ), i = 1, . . . , s,

Eδi( ) =
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) =
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

ηi( ) = 2
s∑
j=1

aijηj(∅) + 2
r′∑
j=1

pijξ
′
j( ) +

r∑
j=1

uijξj( ), i = 1, . . . , s,

Eδi( ) = 2
s∑
j=1

cijηj(∅) + 2
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 2
s∑
j=1

bijηj(∅) + 2
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r.

Once the base case is provided, the operators evaluated in the trees of order 2,
3 and 4 are recursively derived according to Theorem 2.2.1, leading to

Eδi( ) = 6
s∑
j=1

cijηj( ) + 3
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 6
s∑
j=1

bijηj( ) + 3
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

Eδi( ) = 12
s∑
j=1

cijηj( )2 + 4
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 12
s∑
j=1

bijηj( )2 + 4
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

Eδi( ) = 12
s∑
j=1

cijηj( ) + 4
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 12
s∑
j=1

bijηj( ) + 4
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

Eδi( ) = 20
s∑
j=1

cijηj( )3 + 5
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20
s∑
j=1

bijηj( )3 + 5
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,
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Eδi( ) = 20
s∑
j=1

cijηj( )ηj( ) + 5
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20
s∑
j=1

bijηj( )ηj( ) + 5
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

Eδi( ) = 20
s∑
j=1

cijηj( ) + 5
r′∑
j=1

rijξ
′
j( ) +

r∑
j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20
s∑
j=1

bijηj( ) + 5
r′∑
j=1

qijξ
′
j( ) +

r∑
j=1

vijξj( ), i = 1, . . . , r,

where ηi( ) = 6
s∑
j=1

aijηj( ) + 3
r′∑
j=1

pijξ
′
j( ) +

r∑
j=1

uijξj( ), i = 1, . . . , s.

2.2.2 Classical Methods as GLN and their Order Conditions

The family of GLN methods (2.1) properly contains many known classes of numer-
ical methods for (1.4). Analogously, the order conditions above derived are general,
hence it is possible to recover through them the order conditions of numerical meth-
ods already considered in the literature. To make this possible, we need to regard
these methods as GLN methods and specialize the operators Eδ and Eξ on the case
by case basis. This is clarified in the following examples.

RKN methods
Runge-Kutta-Nyström methods (see [71, 101])

Yi = yn−1 + cihy
′

n−1 + h2

s∑
j=1

aijf (Yj) , i = 1, ..., s,

hy
′

n = hy
′

n−1 + h2

s∑
j=1

b
′

jf (Yj) , (2.31)

yn = yn−1 + hy
′

n−1 + h2

s∑
j=1

bjf (Yj) ,

can be recasted as GLN methods (2.1) with r = r′ = 1, in correspondence to the
tableau (2.12) 

A P U

C R W

B Q V

 =

 A c e

b′T 1 0

bT 1 1

 ,
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where e is the unit vector in Rs, and the input vectors y[n−1] = [yn−1], y′[n−1] =
[y′n−1]. Correspondingly, the set of order and stage order conditions (2.27)-(2.28)
assumes the form 

Eη = Aη + cδ + eξ,

Eδ = b′Tη + δ,

Eξ = bTη + δ + ξ.

(2.32)

The values of Eη, Eδ and Eξ are reported in Table 2.3. We observe that these
conditions match the classical ones (compare [73, 71]).

tree Eξ(t) Eδ(t) Eηi(t)

∅ 1 0 1
1 1 ci
1 2 c2i
1 3 c3i

...
...

...
...

t 1 ρ(t) c
ρ(t)
i

Table 2.3: Values of Eηi, Eδ and Eξ for RKN methods regarded as GLN methods

Coleman hybrid methods
We now consider the following class of methods

Yi = (1 + ci)yn−1 − ciyn−2 + h2

s∑
j=1

aijf (Yj) , i = 1, ..., s, (2.33)

yn = 2yn−1 − yn−2 + h2

s∑
j=1

bjf (Yj) ,

introduced by Coleman in [27] (also compare [46, 43, 44, 42]), which are denoted as
two-step hybrid methods. Such methods (2.33) can be regarded as GLN methods
corresponding to the reduced tableau[

A U

B V

]
=

 A e+ c −c
bT 2 −1
0 1 0


obtained by assuming the remaining coefficient matrices in (2.12) equal to the
zero matrix. Such methods are characterized by the the input vector y[n−1] =
[yn−1 yn−2]

T. The corresponding set of order and stage order conditions (2.27)-
(2.28) takes the form 

Eη = Aη + e+ cξ1 − cξ2,

Eξ1 = bTη + 2ξ1 − ξ2,

Eξ2 = ξ1.

(2.34)

The coefficients for ξ1, ξ2 can be found in Table 2.4. We observe that the third
equation in (2.34) is trivial by the definition of ξ1.
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tree Eξ1(t) ξ1(t) ξ2(t)

∅ 1 1 1
1 0 -1
1 0 1
1 0 -1

...
...

...
...

t 1 0 (−1)ρ(t)

Table 2.4: Values of Eξ1, ξ1 and ξ2 for Coleman hybrid methods regarded as GLNs

Two-step Runge-Kutta-Nyström methods
Two-step Runge-Kutta-Nyström methods (TSRKN)

Y
[n−1]
i = yn−2 + hciy

′
n−2 + h2

s∑
j=1

aijf(Y
[n−1]
j ), i = 1, . . . , s,

Y
[n]
i = yn−1 + hciy

′
n−1 + h2

s∑
j=1

aijf(Y
[n]
j ), i = 1, . . . , s,

hy′n = (1− θ)hy′n−1 + θhy′n−2 + h2v′jf(Y
[n−1]
j ) + h2w′

jf(Y
[n]
j ),

yn = (1− θ)yn−1 + θyn−2 + h
s∑
j=1

v′jy
′
n−2 + h

s∑
j=1

w′
jy

′
n−1

+ h2

s∑
j=1

vjf(Y
[n−1]
j ) + h2

s∑
j=1

wjf(Y
[n]
j ),

have been introduced and analyzed by Paternoster in [102, 104]. Such methods
depend on two consecutive approximations to the solution and its first derivative in
the grid points, but also on two consecutive approximations to the stage values, in
line with the idea employed by Jackiewicz et al. (compare [14, 28, 31, 48, 40, 37,
39, 74, 82]) in the context of two-step Runge–Kutta methods for first order ODEs.
TSRKN methods can be represented as GLNs (2.1) with r = s + 2 and r′ = 2
through the tableau (2.12)


A P U

C R W

B Q V

 =



A c 0 e 0 0

w′T 1− θ θ 0 0 v′T

0 1 0 0 0 0

wT w′Te v′Te 1− θ θ vT

0 0 0 1 0 0
I 0 0 0 0 0


,

in correspondence of the input vectors y[n−1] = [yn−1 yn−2 h2f(Y [n−1])]T, y′[n−1] =
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[y′n−1 y′n−2]
T. The set of order conditions for these methods has the form

Eηi =
s∑
j=1

aijηj + ciδ1 + ξ1, i = 1, . . . , s,

Eδ1 =
s∑
j=1

w′
jηj + (1− θ)δ1 + θδ2 +

s∑
j=1

v′jξ3j,

Eδ2 = δ1,

Eξ1 =
s∑
j=1

wjηj +
s∑
j=1

w′
jδ1 +

s∑
j=1

v′jδ2 + (1− θ)ξ1 + θξ2 +
s∑
j=1

vjξ3j,

Eξ2 = ξ1,

Eξ3i = ηi i = 1, . . . , s,

(2.35)

whose coefficients Eξ1, Eδ1, ξ1, ξ2, δ1 and δ2 can be found in Table 2.5. We also
observe that in the system (2.35) there are automatically satisfied conditions, i.e.
the third, the fifth and the sixth.

tree Eξ1(t) Eδ1(t) ξ1(t) ξ2(t) δ1(t) δ2(t)

∅ 1 0 1 1 0 0
1 1 0 -1 1 1
1 2 0 1 0 -1
1 3 0 -1 0 1

...
...

...
...

...
...

...
t 1 ρ(t) 0 (−1)ρ(t) 0 (−1)ρ(t)−1

Table 2.5: Values of Eξ1, Eδ1, ξ1, ξ2, δ1 and δ2 for TSRKN methods regarded as
GLNs

2.2.3 Construction Issues

The algebraic order theory we developed in Section 2.2.1 can be effectively used
in the construction of new methods. In order to simplify the notations, without
loss of generality, we consider the hybrid formulation (2.14) and we observe that
Proposition 2.2.1 can be easily adapted to this case. To this purpose, we observe
that the system (2.26) can be rewritten as η = Aη +Uξ,

ξ̂ = Bη +Vξ,
(2.36)

where, using the same notation used in (2.26), we denote with η and ξ respectively
the operators associated to the stages and to the quantities approximated by the
method at each step. Due to the hybrid formulation, the approximations to the first
derivative are now embedded in the solution vector, thus also the operator δ is now
embedded in ξ. With this assumptions Proposition 2.2.1 assumes the form
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Proposition 2.2.2. If the operator ξ̂ in (2.36) of a given GLN (2.14) is such that

ξ̂i(t) coincide with the corresponding coefficients Eξi(t) in the Taylor series expan-

sions of the exact values approximated by y
[n]
i for any t ∈ SNT of order ρ(t) ≤ p+1,

then the method has order p, i.e.

Eξ = Bη +Vξ. (2.37)

Moreover, the method has stage order q if the operators ηi(t), i = 1, . . . , s, in (2.36)
coincide with the coefficients Eηi of the Taylor series expansion of y(x0 + cih), for
any t ∈ SNT of order less or equal to q + 1, i.e.

Eη = Aη +Uξ. (2.38)

We can use this result together with other basic conditions to construct new
methods. As in the case of first order general linear methods, however, starting
procedures are necessary (compare Section 3.6) and they are characterized by the
operator ξ. We can treat this point in two ways: we can leave the values of ξ as free
parameters and use them along the construction process but then we will need to
construct and implement the starting procedures, or we can fix them at the beginning
on known values and we will have less free parameters but a significant simplification
in the implementation phase. In the present Section we show a construction process
where we fix those values of the ξ operator that correspond to the solution, i.e. we
consider as input vector

y[n] ≈


y(xn)

y
[n]
2 (xn)
...

y
[n]
r (xn)

 , (2.39)

we fix the number of stages to s = 1 and the number of approximations to r = 2,
then we write the operators ξ on the SN-trees up to order 5 (see Table 2.6) assuming
that they assume the same value on all the trees of a fixed order (thus we can use
Remark 2.2.2). Imposing order conditions up to the trees of order 4, we obtain the
following example of one-stage explicit method of order 3.

[
A U
B V

]
=


0 1 0

1 1 1
2

2 0 1

 . (2.40)

To obtain a method of order 4, we consider a 2-stages, 3-values procedure and, as
input vector, we consider

y[n] ≈

 y(xn)
hy′(xn)

y
[n]
3 (xn)

 , (2.41)

thus inserting an approximation of the first derivative and leaving the third com-
ponent as variable. In this case the coefficients used in the procedure are reported
in Table 2.7, aways assuming that they assume the same value on all the trees of a
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ρ(t) t ξ(t) Eξ

0 ∅ (1, ξ02) (1, ξ02)
1 (1, ξ12) (1, ξ02 + ξ12)

2 (0, ξ22) (1, ξ02 + 2ξ12ξ22)

3 (0, ξ32) (1, ξ02 + 3ξ12 + 3 ∗ ξ22 + ξ32)

4 (0, ξ42) (1, ξ02 + 4ξ12 + 6ξ22 + 4ξ32 + ξ42)

Table 2.6: Values assumed by the operators ξ and Eξ.

ρ(t) t ξ(t) Eξ

0 ∅ (1, 0, ξ03) (1, 0, ξ03)
1 (0, 1, ξ13) (1, 1, ξ03 + ξ13)

2 (0, 0, ξ23) (1, 2, ξ03 + 2ξ13 + ξ23)

3 (0, 0, ξ33) (1, 3, ξ03 + 3ξ13 + 3ξ23 + ξ33)

4 (0, 0, ξ43) (1, 4, ξ03 + 4ξ13 + 6 ∗ ξ23 + 4ξ33 + ξ43)

5 (0, 0, ξ53) (1, 5, ξ03 + 5ξ13 + 10 ∗ ξ23 + 10ξ33 + 5ξ43 + ξ53)

Table 2.7: Values assumed by the operators ξ and Eξ.
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fixed order. Applying the order conditions up to the trees of order 4, we obtain the
structure for a method of order 3 reported in Table 2.8 The eigenvalues of the V
matrix are{

1, 1,
6c1c2ξ23 − 6c1ξ23 − 2c1ξ33 − 6c2ξ23 − 2c2ξ33 + 6ξ23 + 4ξ33 + ξ43

6c1c2ξ23 − 2c1ξ33 − 2c2ξ33 + ξ43

}
and the abscissae are still not assigned. We have to impose order 4 and zero-
stability, i.e. the third eigenvalue of V being strictly less than 1 in modulus, that
are 4 conditions and we have 10 free parameters left. We can use the remaining
free parameters to impose, for example, a structure to matrix A and a particular
expression for the abscissae. Imposing order 4 we find that the abscissae must satisfy

c1 =
30c22 −

√
6
√
50c42 − 100c32 + 64c22 − 14c2 + 1− 32c2 + 6

10 (6c22 − 6c2 + 1)

and imposing 0 < c1 < c2 < 1 we find that c2 is allowed to vary in the interval
[6+

√
6

10
, 1]. Choosing c2 = 1, we find c1 = 4−

√
6

10
. Before applying the other conditions

for order 4 we want to find the simplest possible expression for matrix A. It can
be first reduced to a diagonal matrix imposing a12 = a21 = 0 and then we can

impose a11 = 0 and find that ξ23 =
10(4

√
6ξ33−11ξ33)

27
√
6−68

, but this condition results to be
not compatible with the zero-stability. Imposing only the conditions for A to be a
diagonal matrix, we find that V has automatically two eigenvalues equal to 1 and
zero-stability is given by reducing the third eigenvalue to be between −1 and 1 in
modulus. Combining this condition with the remaining equations for order 4 we
obtain the family of methods whose coefficient matrices are reported in Table 2.9
with the above given abscissae and the condition

ξ23 > 0 ∧ 21849
√
6ξ23 − 53648ξ23

11230
√
6− 27464

< ξ33 <
24351

√
6ξ23 − 59874ξ23

25020
√
6− 62260

.

Since we have no bounds on the values of ξ03 and ξ13 we choose them as zero and
we also fix the values of ξ23 and ξ33 respectively to 1 and 0 obtaining the method

[
A U
B V

]
=



1
600

(
−4 +

√
6
)2

0 1 1
10

(
4−

√
6
)

1
150

(
−4 +

√
6
)2

0 1
6

1 1 2
3

65
144−21

√
6

1
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(
3 + 13

√
6
)

1 1 1
67

(
−3− 13

√
6
)

45
48−7

√
6

1
67

(
11 + 3

√
6
)

0 1 1
67

(
−32− 27

√
6
)

1
402

(
48 + 7

√
6
)

1
201

(
93 +

√
6
)

0 0 1
−11+3

√
6


.

The final values for the third component of the operator ξ related to such method
are (

0, 0, 1, 0,−1

5
,
2

5

)
.

A less general but easier construction technique leading to a very highly stable
method is shown in Section 2.2.6.
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Eξ(∅) Eξ( ) Eξ( ) . . . Eξ(t)

1 1 1 . . . 1
0 1 2 . . . ρ(t)
0 0 2 . . . ρ(t)(ρ(t)− 1)
0 0 0 . . . ρ(t)(ρ(t)− 1)(ρ(t)− 2)
...

...
...

...
...

0 0 0 . . . ρ(t)!

Table 2.10: Values of Eξ(t) in (2.27) for Nordsieck methods

2.2.4 GLNs in Nordsieck Form

This Section is focused on the family of hybrid GLN methods (2.14) in Nordsieck
form, i.e. such that the vector of external approximations satisfies

y[n] ≈


y(xn)
hy′(xn)
h2y′′(xn)

...
hry(r)(xn)

 , (2.42)

that is an approximation to the Nordsieck vector [20, 71, 82, 99]. The motivation
behind such a choice is that in such a way we don’t need a starting procedure for
our methods. Moreover, as we will see in detail, for the Nordsieck vector order
conditions are simplified.

For GLN methods (2.14) depending on input vectors of the form (2.42), the
values of the entries of ξ(t) can be easily computed as follows

ξi(t) = ρ(t)!δρ(t),i−1, i = 1, . . . , r, (2.43)

being t ∈ SNT and δi,j the usual Kronecker delta. This formula can be obtained by
SN -series arguments: indeed, looking for a SN -representation of the input vector

y
[n−1]
i = SN(ξi, y, y

′),

and taking into account that y
[n−1]
i ≈ hi−1y(i−1)(xn−1), we have

hi−1y(i−1)(xn−1) = SN(ξi, y, y
′)

= 0 · y(xn−1) + 0 · hy′(xn−1) + . . .+
hi−1

(i− 1)!
ξiy

(i−1)(xn−1) + . . .

Thus, by comparison of the left and right-hand sides, we get (2.43).
The values of Eξ(t) can be again computed by means of Taylor series expansion

and are reported in Table 2.10. Such values are useful in order to provide order
conditions specialized to the Nordsieck case [20, 71, 82, 99], i.e.

e1 + 3e2 + 6e3 + 6e4 = 6(Bc+Ve4)
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for order 2,

e1 + 4e2 + 12e3 + 24e4 + 24e5 = 12(Bη( ) + 2Ve5)

for order 3,

e1 + 5e2 + 20e3 + 60e4 + 120e5 + 120e6 = 20(Bη( ) + 6Ve6)

for order 4, with

η( ) = 2(Ae+Ue3),

η( ) = 6(Ac+Ue4),

being e the vector of ones in Rs.
The notions of consistency for GLN methods (2.14) can be given in terms of

operators of rooted trees.

Definition 2.2.1. A GLN method (2.1) is consistent if

Uξ(∅) = e, Vξ(∅) = Eξ(∅),
Uξ( ) = c, Vξ( ) = Eξ( ), (2.44)

2Be+Vξ( ) = Eξ( ).

2.2.5 Error Analysis for GLNs in Nordsieck Form

Following the lines drawn in [21, 22, 11, 82] for the first order case, we now analyze
the local discretization error associated to GLN methods (2.14), whose vector of
external stages is given by the Nordsieck vector (2.42). Correspondingly, denoted
by ej = [ei,j]

r
i=1, j = 1, . . . , r, the vectors of the canonical basis in Rr. Since we are

approximating the Nordsieck at each step, we define the vectors ỹ[n−1], ỹ[n] ∈ Rrd of
the local solutions by

ỹ
[n−1]
i = ei,0y(xn−1) + ei,1hy

′(xn−1) + . . .+ ei,ph
py(p)(xn−1),

ỹ
[n]
i = ei,0y(xn) + ei,1hy

′(xn) + . . .+ ei,ph
py(p)(xn).

Thus, the local discretization error associated to the i− th external stage of (2.14)
is given by

lei(xn) = ỹ
[n]
i − h2

s∑
j=1

bijf(Ỹ
[n]
j )−

r∑
j=1

vij ỹ
[n−1]
j , i = 1, 2, . . . , r, (2.45)

being

Ỹ
[n]
i = h2

s∑
j=1

aijf(Ỹ
[n]
j )−

r∑
j=1

uij ỹ
[n−1]
j , i = 1, 2, . . . , s. (2.46)

The following result holds.
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Theorem 2.2.2. For the numerical solution of the (2.10), with f globally Lipschitz,
consider a GLN method (2.1) of order p and stage order q. Denoted by I the identity
matrix in Rr×r, the local truncation error associated to the grid point xn is given by

le(xn) = (ϕp ⊗ I)hp+1y(p+1)(xn−1) +O(hp+2), (2.47)

if q = p or q = p− 1where

ϕp =

p+1∑
k=1

ep+1−k

k!
− Bcp−1

(p− 1)!
.

Proof. We observe that, due to the fact that the method (2.1) has stage order q,

y(xn−1 + cih) = h2

s∑
j=1

aijf(y(xn−1 + cjh)) +
r∑
j=1

uij ỹ
[n−1]
j + ζi(h), (2.48)

where

ζi(h) =

{
O(hp+1), if q = p,

O(hp), if q = p− 1.
(2.49)

Subtracting (2.48) from (2.46), we obtain

Ỹ
[n]
i −y(xn−1+cih) = h2

s∑
j=1

aij

(
f
(
Ỹ

[n]
i

)
− f (y(xn−1 + cih))

)
−ζi(h), i = 1, . . . , s.

Supposing that L > 0 is the Lipschitz constant of f , we have∥∥∥Ỹ [n] − y(xn−1 + ch)
∥∥∥ ≤ h2L ∥A∥

∥∥∥Ỹ [n] − y(xn−1 + ch)
∥∥∥+ ∥ζ(h)∥,

i.e.
(1− h2L ∥A∥)

∥∥∥Ỹ [n] − y(xn−1 + ch)
∥∥∥ ≤ ∥ζ(h)∥,

where y(xn−1 + ch) = [y(xn−1 + cih)]
s
i=1. We assume that h0 is a real number such

that
h0L∥A∥ < 1.

Hence, for any h2 ≤ h0,∥∥∥Ỹ [n] − y(xn−1 + ch)
∥∥∥ ≤ ∥ζ(h)∥

1− h0L∥A∥
.

Consequently, for (2.49),∥∥∥Ỹ [n] − y(xn−1 + ch)
∥∥∥ =

{
O(hp+1), if q = p,

O(hp), if q = p− 1.

In the case q = p, inserting Ỹ [n] = y(xn−1 + cih) +O(hp+1) into (2.45), we obtain

p∑
k=0

ei,kh
ky(k)(xn) = h2

s∑
j=1

bijy
′′(xn−1 + cjh) +

r∑
j=1

p∑
k=0

vijejkh
ky(k)(xn−1)− lei(xn).
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Expanding y(k)(xn) and y′′(xn−1 + cjh) in Taylor series around xn−1 and collecting
in powers of h, we get

p∑
k=0

(
k∑
l=0

k!

l!
ei,k−l −

s∑
j=1

(k(k − 1))bijc
k−2
j −

r∑
j=1

k!vijejk

)
hk

k!
y(k)(xn−1)+

+

(
p+1∑
l=1

ei,p+1−l

l!
−

s∑
j=1

bijc
p−1
j

(p− 1)!

)
hp+1y(p+1)(xn−1) = lei(xn) +O(hp+2).

If q = p or q = p − 1, all the terms up to order O(hp) vanish (compare [49]), and
the local truncation error takes the form

lei(xn) =

(
p+1∑
l=1

ei,p+1−l

l!
−

s∑
j=1

bijc
p−1
j

(p− 1)!

)
hp+1y(p+1)(xn−1) +O(hp+2),

that is equivalent to (2.47).

An alternative proof of Theorem 2.2.2 can be given using SN series (2.16) and is
reported here

Proof. The expression of le(xn) given in (2.45) is equivalent to (compare Theorem
2.2.1)

le(xn) = ỹ(xn)−y[n] = SN(Eξ, y, y′)−SN(Bη̄+Vξ, y, y′) = SN(Eξ−Bη̄−Vξ, y, y′).

Exploiting the series expression we obtain

le(xn) =
∑
t∈SNT

hρ(t)

ρ(t)!
α(t)

(
Eξ(t)−B ¯η(t)−Vξ(t)

)
F (t)(y, y′)

and due to the hypothesis of order p, all the terms corresponding to the trees of
order less or equal to p disappear, providing

le(xn) =
∑

ρ(t)=p+1

hρ(t)

ρ(t)!
α(t)

(
Eξ(t)−B ¯η(t)−Vξ(t)

)
F (t)(y, y′) +O(hp+2). (2.50)

The coefficients E(ξ)(t) and ξ(t) depend only on ρ(t) = p+1 and not on the specific
considered tree (compare (2.43) and Table 2.10). We observe that also ¯η(t) enjoy
this property, since, assuming that t = [t1, t2, . . . , tk] (see [51])

¯η(t) = ρ(t)(ρ(t)− 1)η(t1)η(t2) . . . , η(tk),

and being ρ(tj) ≤ p−1, j = 1, . . . , k, due to the high stage order hypothesis we have

¯η(t) = ρ(t)(ρ(t)− 1)cρ(t1)cρ(t2) . . . , cρ(tk) = p(p+ 1)cp−1.

Substituting this expression in (2.50) we obtain

le(xn) =
hp+1

(p+ 1)!

(
Eξ(tp+1)−Bp(p+ 1)cp−1 − (p+ 1)!Vep+1

)
∑

ρ(t)=p+1

α(t)F (t)(y, y′) +O(hp+2)

which is equivalent to the thesis if r = p+ 1.

61



2.2.6 Highly-stable GLNs

In [49], the authors constructed an example of P-stable GLN method of order 3 and
stage-order 2 with a reduced computational cost with respect to the corresponding
traditional methods, proving the efficacy of this numerical schemes and their useful-
ness not only as a general theoretical framework, but also in the practical solution
of problems. P-stable methods can be effectively used in the numerical approach
to periodic-stiff problems (see [49] and references therein), that are characterized
by periodic solutions with low short and large frequencies requiring a very small
integration stepsize if approached with generic integrators. P-stable methods, by
their definition, are able to overcome this limitation, since the choice of the stepsize
is independent from the values of the frequencies, but it only depends on the desired
accuracy.

We recall here the definition of P-stability (see [49]), also if in the following
we won’t directly apply it, but we will use a strategy to overcome it. In order to
provide the definition of P-stability, we need to introduce the basic concepts of linear
stability analysis, starting from the stability matrix

M(z2) = V − z2BΛU, (2.51)

with Λ = (I+ z2A)
−1
, which is obtained following the canonical procedure, i.e.

applying the GLN method (2.14) to the scalar linear test equation (compare [87])

y′′ = −λ2y.

We also consider the characteristic polynomial p(ω, z2) of (2.51) also referred to as
the stability polynomial of (2.14).

We get to the definition of P-stable GLN through a few steps

Definition 2.2.2. (0, β2) is a stability interval for the GLN (2.14) if, ∀z2 ∈ (0, β2),
the spectral radius ρ(M(z2)) of the matrix M(z2) satisfies

ρ(M(z2)) < 1.

Definition 2.2.3. A GLN is A - stable if (0, β2) = (0,+∞).

If the eigenvalues of the stability matrix (or, equivalently, the roots of the stability
polynomial) are on the unit circle, then the interval of stability becomes an interval
of periodicity, according to the following

Definition 2.2.4. (0, H2
0 ) is a periodicity interval for the method (2.14) if, ∀z2 ∈

(0, H2
0 ), the stability polynomial p(ω, z2) has two complex conjugate roots of mod-

ulus 1, while all the others have modulus less than 1.

Definition 2.2.5. A GLN is P - stable if its periodicity interval is (0,+∞).

We introduce the method whose matrices of coefficients are

[
A U
B V

]
=



1
4

1 2−
√
2

2
1−

√
2

2
1−

√
2

6

3+2
√
2

6
1 1 −

√
2
3

−
√
12
12

5+3
√
2

6
0 1 1−3

√
2

6
2−

√
2

12
2+2

√
2

2
0 0 −

√
2
2

1
2

1 0 0 −1
√
2
2


, (2.52)
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with c = 2−
√
2

2
and we briefly review here the technique used for its construction.

The first step is to show the general form of a convergent hybrid GLN method (2.14)
in Nordsieck form. To this purpose, we recall the definition of zero-stability given
in [45]

Definition 2.2.6. A GLN method (2.1) is zero-stable if the roots of the minimal
polynomial of the V matrix lie on or within the unit circle and the multiplicity of
the zeros on the unit circle is at most two.

The following convergence result holds.

Theorem 2.2.3. A GLN method (2.14) with input vector y[n] defined as in (2.42)
is convergent if it has the form[

A e c c2

2
−Ae Ũ

B e1 e1 + e2
e1
2
+ e2 + e3 −Be Ṽ

]
(2.53)

with Ũ ∈ Rs×(r−3), Ṽ ∈ Rr×(r−3) and all the eigenvalues of V have modulus strictly
less than 1, where V is obtained by the matrix V removing its first two rows and
columns.

Proof. We are allowed to study the convergence of GLN methods by consistency
and zero-stability analysis (compare [45]). Due to the nature (2.42) of the input
vectors, we have

ξ(∅) = e1, ξ( ) = e2, ξ( ) = 2e3,

where e1, e2 and e3 are the first three vectors of the canonical basis in Rr. The
vectors Eξ(∅), Eξ( ) and Eξ( ) respectively assume the form e1, e1+e2, e1+2e2+
2e3. Taking into account these expressions of the mentioned vectors, the consistency
conditions (2.44) give the expression (2.53) of the Butcher tableau. Correspondingly,
the matrix V assumes the form

V =



1 1
1

2
−

s∑
i=1

b1i ṽ1

0 1 1−
s∑
i=1

b2i ṽ2

0 00 0
...

... V
0 0


,

where ṽ1 and ṽ2 are the first two rows of the matrix Ṽ . Hence, the matrix V is block
upper triangular, with a 2× 2 block having eigenvalues 1 with multiplicity 2. As a
consequence, the method is zero-stable if the eigenvalues of V have moduli strictly
less than 1, which completes the proof.

Theorem 2.2.3 gives us a starting framework to construct convergent methods in
Nordsieck form. The further steps that are necessary to obtain method (2.52) are

• to impose the order and stage-order conditions up to order 3 and 2 respectively;
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• to require the method being P-stable.

We consider the stability polynomial of the RK Nyström one-stage collocation
method of Gauss-Legendre, that is

q(ω, z2) = ω2 +
−8 + 2z2

4 + z2
ω + 1

and, being p the stability polynomial of the GLN we intoduced above, we impose
that

p(ω, z2) = q(ω, z2) ∗ r(ω, z2)
in such a way that p has the same roots of q plus the roots of r. Requiring the roots
of r to be strictly less than 1 in modulus, we achieve the desired property.

2.3 A note on the Parallel Solution of the Radial

Schrödinger Equation

This Section deals with the parallel implementation of a family of methods, namely
the family of Constant Piecewise (CP) methods, specifically designed for the numer-
ical solution of the radial Schrödinger equation (1.11)

y′′ + (E − V (x))y = 0.

These methods have been introduced by L. Gr. Ixaru (compare [79, 80, 81]) and
further studied by V. Ledoux, M. Van Daele and G. Vanden Berghe (see [91, 92, 92,
94]). The idea behind CP methods is to use the perturbation technique to construct
the numerical approximation of the solution of (1.11), whose importance in modern
physics has already been discussed.

The novelty we propose in this Section is a parallel implementation of such
methods. Parallel computing is an established and important reality in modern
science, allowing to solve computationally expensive problems in shorter time, thus
also saving the money needed to keep the supercomputers working. In recent times,
this research stream obtained new lymph with the advent of multicore technology,
which proved to be cheaper and more efficient than traditional parallel computing
environments.

2.3.1 Methods Review

We focus our attention on the initial value problem for the radial Schrödinger equa-
tion 

y′′(x) + (E − V (x))y(x) = 0, x ∈ [a, b]
y(a) = y0
y′(a) = y′0.

(2.54)

The function V is called potential of the problem, while the constant value E is
known as the energy.

For the numerical solution of (2.54), we consider a partition of the interval [a, b],
namely we fix K grid-points

x0 = a,< x1 < x2 < . . . < xK = b
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and denote with Ik the sub-interval [xk−1, xk]. Following [79, 80], in the generic
subinterval, which we will denote with I = [X,X + h], we advance the solution by
means of the so-called propagation matrix algorithm[

y(X + h)
y′(X + h)

]
=

[
u(h) v(h)
u′(h) v′(h)

] [
y(X)
y′(X)

]
(2.55)

where the functions u and v are the solutions of the local problem

y′′(δ) + (E − V (δ))y(δ) = 0

respectively with initial values y(0) = 1, y′(0) = 0 and y(0) = 0, y′(0) = 1.
The perturbation technique plays its role in the approximation of the u and v

functions, since we approximate the original potential V as

V (X + δ) = V̄ +∆V (δ)

where

V̄ =
1

h

∫ h

0

V (X + δ)dδ (2.56)

and
∆V (δ) = V (X + δ)− V̄ .

At this step, we consider V̄ , that is a constant, as the reference potential and ∆V (δ)
as a perturbation. We show the construction of the approximations of the u function
with this technique, since it is analogous for v. We aim to write u as a perturbation
series

u(δ) = u0(δ) + u1(δ) + u2(δ) + . . .

where u0 is the solution of

u′′(δ) + (E − V̄ )u(δ) = 0 (2.57)

with initial values u(0) = 1, u′(0) = 0 and the so-called correction terms ui, i =
1, 2, . . . are obtained as the solution of the refined problem

u′′
i (δ) + (E − V̄ )ui(δ) + ∆V (δ)ui−1 = 0, ui(0) = u′

i(0) = 0 (2.58)

In practice each term is the solution to a perturbed problem that is closer and closer
to the original one. Problems (2.57) and (2.58) can be solved analytically (compare
[79, 80, 91]) but are found to depend on repeated integrals of the potential V eval-
uated in X + δ. At this step, in order to simplify the calculations, we approximate
the potential with an opportunely truncated series of shifted Legendre polynomials
P ∗
n(

δ
h
), namely

V (X + h) =
∑
n=0

Vnh
nP ∗

n(
δ

h
) (2.59)

being V0 = V̄ and

Vi = 2(i+ 1)h

∫ h

0

V (X + δ)P ∗
i (

δ

h
)dδ i = 1, 2, . . . . (2.60)

The terms are then recombined to construct the approximation of the u and v
functions and the (2.55) formula is used to advance the solution.
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2.3.2 Parallel Implementation
of the CP method

We report an algorithmic scheme for CP methods

• the integrals (2.59) and (2.60) are computed on each subinterval Ik by means
of a Gauss quadrature formula;

• the integrals are then combined in order to obtain the approximations of u
and v (compare [79, 92]);

• the matrix propagation algorithm (2.55) is used to advance the solution.

In practice, the huge part of the calculations is the computation of the integrals
(2.59) and (2.60) that must be done on each interval, but it has only to be done
at the beginning of the integration process, since each value is independent from
the others and depends only on the potential and the Legendre polynomials, that
are known. This part can be easily parallelized by opportunely splitting the work
between various workers and, for example, we implemented such a strategy both in
CUDA and OPENMP.

66



Chapter 3

Geometric Integration of First
Order Problems

This Chapter deals with the numerical integration of ODEs which possess invariants
and other geometric properties, such as symplecticity of the flow and symmetry. This
topic attracted many researchers in recent times and a large amount of literature
has been produced. In the early works of Cooper, Lasagni, Suris and Sanz-Serna
[33, 88, 110, 113] a connection between the non-linear stability of Runge-Kutta
methods and their ability to preserve quadratic invariants of ODEs has been found
and the definition of symplectic RK method was given. Such methods found as
a natural field of application the integration of Hamiltonian systems (1.13) and
recently Sanz-Serna [111] found some new and interesting applications to other fields
of Applied Mathematics. This Chapter begins with a brief introduction on some
test problems, then the concept of G-symplecticity is introduced and applied to the
construction of new and efficient GLMs. The last Section presents numerical results
and comparison with existing methods.

3.1 A short collection of test problems

The main category of problems that are addressed in this Chapter is that of Hamilto-
nian systems, already introduced in Section 1.3. For the reader’s ease, we report
here the general form of an Hamiltonian problem

ṗ(t) = − ∂

∂q
H(p(t), q(t)),

q̇(t) =
∂

∂p
H(p(t), q(t)),

(3.1)

where H : R2d → R is the Hamiltonian of the system, p(t), q(t) ∈ Rd are generalized
momenta and coordinates, respectively. In this Section we report a short collection
of test problems that will be useful throughout the Chapter, both for examples and
for numerical experiments.
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• the simple pendulum problem
ṗ(t) = − sin q(t), t ∈ [0, 50]

q̇(t) = p(t),

p(0) = 0, q(0) = 2.3,

(3.2)

whose Hamiltonian exhibits the form

H(p(t), q(t)) =
p2(t)

2
− cos q(t);

• the Kepler problem [70]

ṗ1(t) = − q1(t)

(q21(t) + q22(t))
3
2

,

ṗ2(t) = − q2(t)

(q21(t) + q22(t))
3
2

,

q̇i(t) = pi(t), i = 1, 2,

p1(0) = 0, p2(0) =
√

1+e
1−e , q1(0) = 1− e, q2(0) = 0,

(3.3)

where the value of the eccentricity e ∈ [0, 1[ is fixed to 1
2
. The Hamiltonian of

this problem is

H(p(t), q(t)) =
1

2
(p21 + p22)−

1√
q21 + q22

;

• the Hènon-Heiles Problem [70]
ṗ1(t) = −q1(t)(1 + 2q2(t)), t ∈ [0, 50]

ṗ2(t) = −(q2(t) + q21(t)− q22(t)),

q̇i(t) = pi(t), i = 1, 2,

p1(0) =
√
0.3185, p2(0) = q1(0) = q2(0) = 0,

(3.4)

with Hamiltonian

H(p(t), q(t)) =
1

2
(p21 + p22 + q21 + q22) + q21q2 −

1

3
q32.

;

• the planar three-body problem
ṗi(t) =

∑
j ̸=i

qi − qj
r3ij

, i = 1, 2, 3,

q̇i(t) = pi(t), i = 1, 2, 3,
(3.5)
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with rij = ∥qi − qj∥2, describing the motion of three coplanar bodies having
unitary mass under a Newtonian gravitational force field. The Hamiltonian of
this problem assumes the form

H(p(t), q(t)) =
3∑
i=1

1

2
pT

i pi −
∑
i<j

1

rij
.

We consider the initial conditions computed by Carles Simó (compare [25])

p1(0) = [ 0.46620368, 0.43236573 ]T, q1(0) = [ 0.97000436, −0.24308753 ]T,

p2(0) = [ 0.46620368, 0.43236573 ]T, q2(0) = [ −0.97000436, 0.24308753 ]T,

p3(0) = [−0.93240737, −0.86473146 ]T, q3(0) = [ 0, 0 ]T,

which provides a figure-of-eight orbit;

• the non-separable problem whose Hamiltonian is given by

H(p(t), q(t)) =
p2

2(1 + U ′(q)2)
+U(q), U(q) = 0.1(q(q−2))2+0.008q3, (3.6)

with initial values
p(0) = 0.49, q(0) = 0,

describing the path of a particle of unit mass moving on a wire of shape U(q)
[3];

• the non-reversible problem [58]
ṗ(t) = −q(t)5

5
− q(t)3 + q(t)2,

q̇(t) = p(t)2 − 1

2
,

p(0) = 1, q(0) = 0,

(3.7)

whose Hamiltonian function is

H(p(t), q(t)) =
p(t)3

3
− p(t)

2
+

q(t)6

30
+

q(t)4

4
− q(t)3

3
+

1

6
.

3.2 G-symplecticity

Canonical methods are designed to preserve quadratic invariants exactly up to the
round-off error, but this nice property is a privilege of RK methods: in fact Butcher
and Hewitt [13] proved that if a GLM is symplectic, than it can be reduced to a
canonical RK method (see also [114] for LMM). In order to analyze the geometric
properties of GLMs, a weaker condition of preservation needs to be considered. The
following definition was introduced by Hairer (see for example the monograph [70])

Definition 3.2.1. A GLM (c,A,U,B,V) is G-symplectic if and only if there
exist a symmetric semi-positive definite r× r matrix G and a diagonal s× s matrix
D such that 

G = VTGV
DU = BTGV
DA+ATD = BTGB.

(3.8)
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This definition is motivated by the following [67]

Theorem 3.2.1. A G-symplectic GLM satisfies

∥y[n]∥G = ∥y[n−1]∥G + 2h
s∑
i=1

di ⟨Yi, Fi⟩ (3.9)

where the norm in (3.9) is defined as

∥y∥2G =
r∑
i=1

r∑
j=1

gijy
T
i yj. (3.10)

Proof. We prove that, for a G-symplectic method

⟨
y[n], y[n]

⟩
G
−
⟨
y[n−1], y[n−1]

⟩
G
− 2h

s∑
i=1

di ⟨Yi, Fi⟩ = 0. (3.11)

Considering the expressions of y[n] and y[n−1] given by a GLM, (3.11) becomes

r∑
i,j=1

gij

⟨
BhFi +Vy

[n−1]
i ,BhFj +Vy

[n−1]
j

⟩
−

−
r∑

i,j=1

gij

⟨
y
[n−1]
i , y

[n−1]
j

⟩
−

−2h
s∑
i=1

di

⟨
AhFi +Uy

[n−1]
i , Fi

⟩
and using the properties of the scalar product

−
[
G−VTGV

] ⟨
y
[n−1]
i , y

[n−1]
j

⟩
−

−
[
DU−BTGV

] ⟨
y
[n−1]
i , hFj

⟩
−

−
[
DA+ATD−BTGB

]
⟨hFi, hFj⟩

that is zero.

This Theorem provides that a G-symplectic GLM preserves the invariants of a
problem in the G-norm, in fact if we consider a problem such that

⟨y, f(y)⟩ = 0,

(3.9) provides
∥y[n]∥G = ∥y[n−1]∥G.

Remark 3.2.1. We observe that, as shown in [11], the G-simplecticity conditions
given above are obtained considering the algebraic stability matrix of the GLM and
imposing it to be zero, imitating the profile revealed while studying the geometric
properties of RK methods introduced in Section 1.9.
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An example of G-symplectic method was given in [11]

[
A U
B V

]
=



3+
√
3

6
0 1 −3+2

√
3

3

−
√
3
3

3+
√
3

6
1 3+2

√
3

3

1
2

1
2

1 0

1
2

−1
2

0 −1


(3.12)

that is G-symplectic with

G =

(
1 0

10 1 + 2
3

√
3

)
, D =

(
1
2

0
0 1

2

)
.

3.2.1 Parasitism

It is known from the literature (compare [12, 70]) that the long-term behaviour of
multistep and/or multivalue methods is corrupted by parasitic components intro-
duced in the numerical solution. The presence of these components is mainly due to
the fact that such methods are notoriously not self-starting, thus they require the
employ of starting procedures to recover the missing initial values.

Hairer et al. (compare [70] and references therein) analyzed this phenomenon for
multistep methods. This study subsequently led them to retain that the numerical
solution of a GLM admits the representation (compare [70], §XV.8.3)

y[n] = ỹ(tn) +
∑
ℓ∈I∗

ζnℓ zℓ(tn),

where ỹ(t), z(t) are smooth functions and I∗ is an index set (see [69]). In this
representation, the numerical solution is expressed as summation of two terms: the
first summand is the exact solution of the associated modified equation (compare
[68, 69]), while the second one is the actual parasitic part of the numerical solution.
Such a parasitic part is equal to zero for canonical Runge–Kutta methods, while it
does not annihilate for non-symplectic methods and it is responsible of their non-
conservative behaviour. Maintaining such parasitic terms bounded is then the first
necessary task for the derivation of multistep or multivalue methods with a reliable
long-term behaviour (compare [12, 36, 67, 70]).

Butcher (compare [12] and references therein) proposes two different approaches
for the control of the parasitic components. The first one, for GLMs with r = 2 and
V = diag(1,−1), assures the boundedness of the parasitic components by imposing
an algebraic constraint on the coefficients of the method, i.e. µ = (BU)22 = 0. In the
second approach, a reduction of the effects of parasitism is obtained by composing
two G-symplectic methods N and P, both having µ ̸= 0: the numerical scheme
computes m steps of the method N and one single step of P, in such a way that,
after m+ 1 steps, the sum of the scaled values of µ is exactly cancelled.

We now extend the result reported in [12] (also compare [67]), connected to
the first approach by Butcher above discussed, by providing a general algebraic
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constraint on the coefficients of a GLM in order to make the parasitic components
in the numerical approximation bounded. In the following, we will always denote
by Ẋ, the matrix obtained by removing the first row and the first column of X.

Theorem 3.2.2. The parasitic components of a GLM (2.1) are bounded if V̇ is
power-bounded and ḂU̇ is the zero matrix.

Proof. We assume, without loss of generality, that the first component of the vector
y[n] is an approximation to y(tn). Then, we introduce on the external approximation

y
[n]
i , i = 2, . . . , r, the perturbation (−1)nλ

[n]
i and analyze how it propagates along

the overall numerical scheme.
We first analyze the influence of the propagations on the internal stages

Yi + δYi = h

s∑
j=1

aijF
[n]
j + ui1y

[n]
1 +

r∑
j=2

uij

(
y
[n]
j + (−1)nλ

[n]
j

)
,

obtaining

δYi = (−1)n
r∑
j=2

uijλ
[n]
j .

Similarly, for the stage derivatives Fi

Fi + δFi = f(Yi + δYi) ≈ f(Yi) + δYi
∂f

∂y
,

we obtain

δFi = δYi
∂f

∂y
= (−1)n

r∑
j=2

uijλ
[n]
j

∂f

∂y
.

Thus, we get from (2.1) the difference equation

λ[n+1] = −V̇ λ[n] + hḂU̇
∂f

∂y
λ[n], (3.13)

where λ = [λ2, . . . , λr]
T. Due to the hypothesis, the solution of (3.13) is bounded

and the result is given.

As a consequence, GLMs (2.1) with r = 2 produce bounded parasitic components
if they satisfy the further constraint

µ =
2∑
i=1

b2iui2 = 0, (3.14)

that recovers the result obtained in [12, 67].

3.3 Near conservation of invariants by

B-series methods

One natural question that arises when studying geometric integration is the follow-
ing: up to which accuracy does a non canonical method preserve geometric properties
of ODEs? This Section gives a partial answer.
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Let us consider the set of forests (compare [23] and references therein)

F = {∅, , , , , , , , . . .} ,

where a forest u = t1 · · · tn ∈ F is given by the commutative juxtaposition of the
rooted trees t1, . . . , tn.

Definition 3.3.1. Given a forest u ∈ F and denoted with D the set C∞ (Rn,Rm),
we define the following differential operator

X(u) : D → D,

g 7→ X(u)[g] = g(k)(F (t1), . . . , F (tk)).

The role of the operator X is crucial in the theorem contained in the following
section, together with the composition rule (compare [23])

g ◦B(a, y) =
∑
u∈F

hρ(u)

σ(u)
α(u)X(u)[g],

where g ∈ D, and

α(∅) = 1, α(t1 · · · tn) =
n∏
i=1

a(ti).

3.3.1 Accuracy of invariant conservation
by non-parasitic B-series methods

The following theorem clarifies the role of the order of accuracy in the numerical
conservation of the Hamiltonian of (3.1) by a B-series method with annihilated
parasitic components, which is the case of Runge-Kutta methods. In the remainder
of this section, with a slight abuse of notation, we denote the Hamiltonian of (3.1)
by H(y(t)), where

y(t) =

[
p(t)

q(t)

]
.

Theorem 3.3.1. Consider an Hamiltonian problem (3.1) whose Hamiltonian func-
tion H belongs to C∞(R2d,R) and a B-series method of order p, with coefficients
b(t) and annihilated parasitic components. Then,

H(y1) = H(y(t0)) +O(hp+1).

Proof. We consider the action of the map H on the B-series of the exact solution
y(t1) and the numerical one y1, i.e.

H(y(t1)) = H(y(t0)) +
∑
ρ(u)≥1

hρ(u)

σ(u)
α(u)X(u) [H], (3.15)

H(y1) = H(y(t0)) +
∑
ρ(u)≥1

hρ(u)

σ(u)
β(u)X(u) [H]. (3.16)
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In (3.15), since the Hamiltonian is constant along the exact solution of (3.1), we
have ∑

ρ(u)≥1

hρ(u)

σ(u)
α(u)X(u) [H] = 0.

Hence, ∑
1≤ρ(u)≤p

hρ(u)

σ(u)
α(u)X(u) [H] = −

∑
ρ(u)>p

hρ(u)

σ(u)
α(u)X(u) [H]. (3.17)

The method has order p, so α(u) = β(u) for all forests u such that ρ(u) ≤ p. Then,
combining (3.16), (3.17) and the hypothesis of parasitism absence, we obtain

H(y1)−H(y(t0)) =
∑

1≤ρ(u)≤p

hρ(u)

σ(u)
β(u)X(u) [H] +

∑
ρ(u)>p

hρ(u)

σ(u)
β(u)X(u) [H]

= −
∑
ρ(u)>p

hρ(u)

σ(u)
α(u)X(u) [H] +

∑
ρ(u)>p

hρ(u)

σ(u)
β(u)X(u) [H]

= O(hp+1),

(3.18)

that proves the statement.

Remark 3.3.1. We observe that the hypothesis of being the method non-parasitic
is crucial in the proof of Theorem 3.3.1, because we notice in (3.18) the absence
of further terms corrupting the accuracy of the Hamiltonian conservation. In other
words, if a B-series method has order p and its parasitic components are annihilated,
then the Hamiltonian is preserved up to order p.

3.3.2 The case of GLMs with bounded parasitic components

Section 3.3.1 deals with the ideal case of B-series methods free from parasitism,
which is actually not the case of GLMs with bounded parasitic components. We
now aim to check up to which order the Hamiltonian of problem (3.1) is preserved
by a GLM of order p with bounded parasitic components, i.e. we are interested in
determining the integer value α such that

∥eHn ∥ = O(hα), (3.19)

where
eHn = H(pn, qn)−H(p0, q0) (3.20)

is the Hamiltonian deviation observed in the n-th step point.
In order to address this issue, we derive the following three-stage symmetric and

non G-symplectic GLM (2.1) of order 4

[
A U

B V

]
=



− 41
150

19
50

−11
25

1 1
12

83
1100

11
25

− 17
1100

1 1
12

1
2

1
2

1
3

1 1
12

11
600

289
300

11
600

1 1
6

1
2

−1 1
2

0 −1


(3.21)
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with abscissa vector c =
[
−1

3
, 1

2
, 4

3

]T
and having bounded parasitic com-

ponents, because it satisfies the hypothesis of Theorem 3.2.2. We report in Tables
3.1 and 3.2 the numerical evidence obtained by comparing the observed values of α
for the two-stage Gauss RK method (1.33) (which is a symplectic and symmetric
(see Section 3.5) method of order 4), the three-stage Lobatto IIIA method (which
is a symmetric method of order 4, but non-symplectic) and the GLM (3.21), when
applied to the simple pendulum problem (3.2) and the Hènon-Heiles Problem (3.4)

Table 3.1: Observed values of α in (3.19) for the simple pendulum problem (3.2)

Gauss Lobatto IIIA Symmetric GLM

h = 1/23

h = 1/24 4.0016 4.0015 3.2903
h = 1/25 4.0004 4.0004 3.0328
h = 1/26 4.0001 4.0001 2.9843
h = 1/27 4.0025 3.9991 2.9843
h = 1/28 4.0124 4.0414 2.9905

Table 3.2: Observed values of α in (3.19) for the Hènon-Heiles problem (3.4)

Gauss Lobatto IIIA Symmetric GLM

h = 1/23

h = 1/24 3.9978 3.9978 4.3132
h = 1/25 3.9995 3.9995 3.8951
h = 1/26 3.9998 3.9998 3.5158
h = 1/27 3.9996 4.0008 3.2666
h = 1/28 4.0033 4.0067 3.1322

The result stated in Theorem 3.3.1 is confirmed by the numerical evidence in the
case of Runge-Kutta methods, that are non-parasitic, i.e. α is equal to the order p of
convergence of the methods. In the case of GLM (3.21), we notice that the observed
value of α is no more equal to the order of convergence of the method, but it reduces
to α = p−1, due to the fact that the parasitic components in the numerical solution
are bounded but not completely removed, as suggested by Theorem 3.2.2.

3.4 Construction of G-symplectic GLMs

In this Section, a first experiment of construction of G-symplectic GLMs is reported.
The methods constructed here present the advantage of not needing a starting pro-
cedure, since exact starting values can be computed by hand starting from the initial
data provided by the problem. Together with minimal requirements of accuracy and
stability, we enforce our methods to attain a certain order of convergence. In order
to achieve this goal, we review the order conditions for GLMs (2.1) reported in [82],
that provide a great simplification with respect to the order conditions depending
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on trees given in (2.9), but have stronger requirements. We consider a GLM (2.1),
whose input vector at the n-th step satisfies the condition

y
[n]
i =

p∑
k=0

qikh
ky(k)(tn) +O(hp+1), i = 1, 2, . . . , r, (3.22)

being qik real parameters, i = 1, 2, . . . , r, k = 0, 1, . . . , p. Then, we also require the
internal stages Y

[n]
i to be approximations of order q ≥ p − 1 of the solution in the

points tn + cih, i.e.

Y
[n]
i = y(tn + cih) +O(hq+1), i = 1, 2, . . . , r. (3.23)

We impose a condition similar to (3.22) also to the output approximations

y
[n+1]
i =

p∑
k=0

qikh
ky(k)(tn+1) +O(hp+1), i = 1, 2, . . . , r, (3.24)

so that the integers p and q are respectively the order and stage-order of the method
(compare Section 2.2.1). We denote by

qk =
[
q1k q2k · · · qrk

]T ∈ Rr, k = 0, 1, . . . , p,

the vectors containing all the parameters qik appearing in (3.22) and (3.24). The
following theorem holds (compare [82]).

Theorem 3.4.1. The GLM (c,A,U,B,V) whose input vectors y
[n]
i satisfy (3.22)

has order p and stage-order q = p if and only if

k∑
l=0

qk−l
l!

− Bck−1

(k − 1)!
−Vqk = 0, k = 0, 1, . . . , p, (3.25)

and
ck

k!
− Ack−1

(k − 1)!
−Uqk = 0, k = 0, 1, . . . , q. (3.26)

We observe that, for k = 0, 1, we recover conditions of preconsistency, consistency
and stage-consistency. It is also easy to verify that these conditions can be recovered
from (2.9) with the hypotheses that were made in this Section.

Remark 3.4.1. A similar result can be proved (compare [82]) also when the stage
order is equal to q = p − 1: indeed, GLMs of order p and stage-order q = p − 1
satisfy the set of algebraic conditions

k∑
l=0

qk−l
l!

− Bck−1

(k − 1)!
−Vqk = 0, k = 0, 1, . . . , p,

ck

k!
− Ack−1

(k − 1)!
−Uqk = 0, k = 0, 1, . . . , p− 1.

High stage order is a desirable property since it avoids the effects of the order
reduction phenomenon which typically arises in the numerical treatment of stiff
problems via Runge-Kutta methods [11].
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Remark 3.4.2. For a cheap solution of the nonlinear system in the internal stages to
be computed at each step, we derive here methods with lower triangular or diagonal
coefficient matrix A. In fact (compare, for instance, [11, 72] and references therein),
the integration of a d-dimensional system (1.4) via an implicit s stage GLM (2.1)
requires the solution of a nonlinear system of equations of dimension sd at each
time step. A lower triangular matrix allows to split the sd-dimensional nonlinear
system in s successive subsystems of dimension d. Moreover, if all the elements on
the diagonal are equal, in solving the nonlinear systems by means of Newton-type
iterations, the stored LU factorization of the Jacobian can repeatedly be used.

We neglect the case s = r = 2 since, as proved in [67], such methods cannot be
free from parasitism. So, we consider the case s = 3, r = 2 and assume that the
external stage vector y[n] is an approximation to the Nordsieck vector (2.42)[

y(tn)

hy′(tn)

]
.

Correspondingly, the preconsistency and consistency vectors q0 and q1 assume the
forms

q0 =

[
1
0

]
, q1 =

[
0
1

]
.

Under these assumptions, the preconsistency conditions (2.4) imply that the matrices
U and V have the form

U =

[
1 u12

1 u22

]
, V =

[
1 v12
0 v22

]
.

We observe that the matrix V satisfies the zero-stability requirement if and only if
−1 ≤ v22 < 1.

In the remainder, without loss of generality, we assume g11 = 1: this choice
is consequence of the fact that the above form of the matrix V makes the first
condition in (3.8) a linear system of two equations in three unknowns. Thus, its
vector solution depends on a free parameter and, in order to avoid affecting the
positive definiteness, we choose g11 as parameter and fix its value to 1.

We next solve the first G-symplecticity condition in (3.8) with respect to g12 and
g22, obtaining

g12 = − v12
−1 + v22

, g22 =
v212

(1− v22)2
.

We next consider the second condition in (3.8): by comparing the first column of
the matrix DU with that of the matrix BTGV we obtain the following values for
the entries of the matrix D

d11 =
(b11 + b21v12 − b11v22)

(1− v22)
, d22 =

(b12 + b22v12 − b12v22)

(1− v22)
,

d33 =
(b13 + b23v12 − b13v22)

(1− v22)
,

and solving the remaining three equations with respect to b21, v12 and b13 we get

b13 = −b23u22, b21 =
b11 (−1 + v22)

v12
, v12 = u22 (−1 + v22) .
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By solving the first equation in (2.5), we find the following values of b11 and b22

b11 = 1− b12 − u22 + b23u22 + u22v22, b22 = −−1 + b12
u22

,

while parasitism is removed by solving condition (3.14) with respect to v22, obtaining

v22 = 1− b12 + b23u32 + (−1 + b12 − u22(−1 + b23 + v22))
u12

u22

.

By imposing the second consistency condition (2.5) we get

u12 = c1 − a11, u22 = c2 − a22 − a21, u32 = c3 − a31 − a32 − a33,

while the last condition in (3.8) provides

a21 = 0, a22 =
1

2
.

Imposing order and stage-order 2 we finally come to the matrices

A =


c1
2

0 0

0
1

2
0

c3 (−2a33 + c3)

2c1
a32 a33

 , U =


1

c1
2

1 −1

2

1
c3
2



B =


1− b23c3

2c1

3

2

b23
2

1− b23c3
c1

1 b23

 , V =

 1 −1 + c1 + b23c1 − b23c3
2c1

0
−1− b23c1 + b23c3

c1

 .

We choose a33 = c3
2
and a32 = 0 to enforce the diagonal structure of the matrix A

and, in correspondence of the values c1 = −1
2
, c3 =

1
2
, b23 =

4
3
we obtain the method

[
A U
B V

]
=



−1
4

0 0 1 − 1
4

0 1
2

0 1 − 1
2

0 0 1
4

1 1
4

−1
3

3
2

2
3

1 − 5
6

−2
3

1 4
3

0 − 2
3


(3.27)

with abscissa vector
cT =

[
−1

2
0 1

2

]
and

G =

[
1 − 1

2

−1
2

1
4

]
, D =

 0 0 0

0 1 0

0 0 0

 .
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Performing an analogous construction by assuming

y[n] ≈

[
y(tn)

h2y′′(tn)

]

and imposing order 2 and stage order 2 of convergence, we get the diagonally implicit
GLM

[
A U
B V

]
=



1
6

0 0 1 − 1
24

1
3

1
6

0 1 − 1
24

1
3

1
3

1
6

1 − 1
24

−1
4

5
4

0 1 − 1
12

−14 22 −8 0 − 1


(3.28)

with abscissa vector
cT =

[
1
6
, 1

2
, 5

6

]
and

G =

[
1 − 1

24

− 1
24

1
576

]
, D =


1
3

0 0

0 1
3

0

0 0 1
3

 .

3.4.1 Numerical Experiments

We now show the numerical results arising from the comparison of the derived GLMs
(3.27) and (3.28) with the G-symplectic method (3.12) [11] of order 4 and stage order
2. The computations have been done on a node with CPU Intel Xeon 6 core X5690
3,46GHz, belonging to the E4 multi-GPU cluster of Mathematics Department of
Salerno University.

Concerning the problem (3.2), we observe from Fig. 3.1 that, even if the method
(3.12) is G-symplectic, it does not provide an accurate numerical conservation of the
Hamiltonian: this is due to the presence of parasitic components in the numerical
solution which destroy the overall accuracy. Such a behaviour is not advisable on
our methods (3.27) and (3.28), as shown in Fig. 3.2 and 3.3, since they are free from
parasitism, i.e. they satisfy the condition for the removal of the parasitic components
in the numerical solution. Hence, we advise an accurate numerical conservation of
the Hamiltonian for one million step points. A similar analysis can be carried out
for problem (3.3), as reported in Fig. 3.4, 3.5, and 3.6: also in this case, method
(3.12) fails in accurately preserving the numerical Hamiltonian, while our methods
are able conserving it over one million points.

Figures 3.2 - 3.3 and 3.5 - 3.6 reveal the presence of a threshold on the accuracy
gained in the numerical conservation of the Hamiltonian by G-symplectic methods
(3.27) and (3.28).

For the simple pendulum problem (3.2), the constant α (3.19) assumes the form

α =
∥∥∥|p(tn)|+ | sin(q(tn))|

∥∥∥
∞
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Figure 3.1: Hamiltonian deviation eH(t) associated to method (3.12) applied to
problem (3.2) with stepsize 10−2
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Figure 3.2: Hamiltonian deviation eH(t) associated to method (3.28) applied to
problem (3.2) with stepsize 10−2
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Figure 3.3: Hamiltonian deviation eH(t) associated to method (3.27) applied to
problem (3.2) with stepsize 10−2

and its observed values in correspondence of methods (3.27) and (3.28) are both
2.39. In the case of Kepler problem (3.3), α takes the form

α =

∥∥∥∥∥p(tn)∥1 + ∥q(tn)∥1
∥q(tn)∥32

∥∥∥∥
∞

and the numerically observed values for methods (3.27) and (3.28) are 6.37 and 5.69,
respectively.
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Figure 3.4: Hamiltonian deviation eH(t) associated to method (3.12) applied to
problem (3.3) with stepsize 10−2
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Figure 3.5: Hamiltonian deviation eH(t) associated to method (3.28) applied to
problem (3.3) with stepsize 10−2
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Figure 3.6: Hamiltonian deviation eH(t) associated to method (3.27) applied to
problem (3.3) with stepsize 10−2

3.5 Symmetric Integration

For conservative mechanical systems and, in particular, Hamiltonian systems, a
property of time reversibility holds: in practice, this means that inverting the dir-
ection of the velocity for a fixed initial point does not change the trajectory of the
motion, but only its direction. In particular, by reversing the direction of the flow,
the invariants are still preserved. Thus, a desirable property for numerical methods
applied to such problems is that of providing a reversible numerical flow. In the
context of RK methods, this property is related to that of symmetry, i.e. that of
coincidence between the numerical method and its adjoint [70]. We briefly recall
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here these concepts. It is useful at this point to recall the definition of flow of a
differential system

Definition 3.5.1. Given an ODE y′ = f(x, y), we define its flow [70] over point
x as the operator which associates at each initial value y0 the solution of the ODE
evalueted in x. Denoting the flow with ϕx, we have

ϕx(y0) = y(x)

being y the solution of the IVP associated to the given ODE and the initial value
y0.

Many propeties of ODE systems can be studied by means of their flow, thus it
is useful to define a numerical couterpart of this operator. In particular, we define
the numerical flow [70] of a method as the h-dependent operator

Φh : yn 7→ yn+1

advancing the solution from step to step by means of the method’s formula. In prac-
tice it is equivalent to talk about methods and their associated flow. Time reversal
symmetry can be formulated in terms of flow, namely the flow of an autonomous
system always satisfy

ϕ−x = ϕ−1
x

or, equivalently
ϕ−1
−x = ϕx.

In general, this property is not shared by numerical integrators, the following defin-
ition introduces a crucial operator

Definition 3.5.2. The adjoint method of a method Φh is the inverse map of the
original method with step −h, i.e.

Φ∗
h := Φ−1

−h.

A numerical method is symmetric if it coincides with its adjoint.

In practice, to obtain the adjoint of a method it suffices to invert, when possible,
the expression of the method itself with step −h. We will see an example of this
procedure in the Section 3.5.1. A fundamental result concerning adjoint methods is
summarized in the following Theorem (compare [70])

Theorem 3.5.1. Let Φh be a one-step method of order p satisfying

Φh(y0) = ϕh(y0) + C(y0)h
p+1 +O(hp+2),

then its adjoint satisfies

Φ∗
h(y0) = ϕh(y0) + (−1)pC(y0)h

p+1 +O(hp+2).

If the method its symmetric, then its maximal order is even.
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As shown in [70], the methods belonging to the family of Gauss-Legendre Runge-
Kutta methods are symmetric. A concept of symmetry for GLMs has been defined
in [67, 70] as follows.

Theorem 3.5.2. Let L ∈ Rr×r be an involution matrix and P ∈ Rs×s a permutation
matrix. If the method (2.1) satisfies

P−1AP = UV −1B − A, P−1UL = UV −1,

L−1BP = B, L−1V L = V −1,
(3.29)

then it is symmetric.

3.5.1 Symmetric GLNs

In this Section, we construct the adjoint of a GLN method (2.14) in the hybrid form.
The same procedure can be applied in the general form with trivial variations. We
assume the adjoint of method (2.14) to have the expression

Ỹ = h2Ãf(Ỹ ) + Ũỹn

ỹn−1 = h2B̃f(Ỹ ) + Ṽỹn.

Assuming there exist a permutation matrix P and an invertible matrix L such that

Ỹ = PY

ỹ = Ly

the adjoint assumes the form

PY = h2ÃPf(Y ) + ŨLyn (3.30)

Lyn−1 = h2B̃Pf(Y ) + ṼLyn

since f(PY ) = Pf(y).
We can obtain expressions for Y and yn−1 from (2.14)

Y = h2(A−UV−1B)F (Y ) +UV−1yn)

yn−1 = −h2V−1BF (Y ) +V−1yn

and substituting in (3.30)

PY = h2(PAP−1 −PUV−1BP−1) ∗PF (Y ) +PUV−1L−1Lyn)

Lyn−1 = −h2LV−1BP−1PF (Y ) + LV−1L−1Lyn

we find the following expression for the matrices of the adjoint method.

Ã = PAP−1 −PUV−1BP−1

Ũ = PUV−1L−1

B̃ = −LV−1BP−1

Ṽ = LV−1L−1
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Table 3.3: Values of ξi(t) and Eξi(t), i = 1, 2, up to order p = 4

ξ1 ξ2 Eξ1 Eξ2

∅ 1 0 1 0

τ 0 θ1 1 θ1

[τ ] 0 θ2
1
2

θ1 + θ2

[τ 2] 0 θ3
1
3

θ1 + 2θ2 + θ3

[[τ ]] 0 θ4
1
6

1
2
θ1 + θ2 + θ4

[τ 3] 0 θ5
1
4

θ1 + 3θ2 + 3θ3 + θ5

[τ [τ ]] 0 θ6
1
8

1
2
θ1 +

3
2
θ2 + θ3 + θ4 + θ6

[τ [τ 2]] 0 θ7
1
12

1
3
θ1 + θ2 + 2θ4 + θ7

[τ 4] 0 θ8
1
24

1
6
θ1 +

1
2
θ2 + θ4 + θ8

Theorem 3.5.3. Let P be an s× s permutation matrix and L an r × r invertible
matrix. A GLN method (2.14) is symmetric if and only if its coefficient matrices
are such that

A = PAP−1 −PUV−1BP−1

U = PUV−1L−1

B = −LV−1BP−1

V = LV−1L−1.

3.6 A Symmetric G-symplectic GLM

We derive a two-value and three-stage GLM (i.e. r = 2, s = 3), assuming that the
first component of the numerical solution approximates the exact one, so we do not
need any finishing method. The initial value for the second component is computed
by means of a generalized 8-stage RK method with elementary weights

{0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8},

which are left as free parameters. The values of ξi(t) and Eξi(t), i = 1, 2, corres-
ponding to trees up to order 4 and depending on such parameters are reported in
Table 3.3.

To obtain a basic consistency condition, we solve the second equation in (2.9)
for the empty tree, observing that ηD(∅) = 0 by definition. This leads to{

Eξ1(∅) = v11ξ1(∅) + v12ξ2(∅),
Eξ2(∅) = v21ξ1(∅) + v22ξ2(∅),

(3.31)

and, by taking into account the values in Table 3.3, we obtain

v11 = 1, v21 = 0.
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As a consequence, the matrix V of a preconsistent GLM (2.1) with r = 2 has
always the form

V =

[
1 v12

0 v22

]
. (3.32)

At this point, it is worth assuming v22 = −1. In fact (compare [70], §XV.8.3),
in order to limit as much as possible the effects of parasitism, the eigenvalues of the
matrix V have to be the r-th roots of unity. Moreover, this choice automatically
leads to zero-stable methods (compare [11, 82]).

The first vector equation in (2.9) with t = ∅, leads to
η1(∅) = u11,

η2(∅) = u21,

η3(∅) = u31,

(3.33)

and, since ηi(∅) = 1, we get

u11 = 1, u21 = 1, u31 = 1.

Thus, by imposing preconsistency, G-symplecticity, symmetry and condition (3.14)
to bound the parasitic components, we obtain the GLM

[
A U

B V

]
=



1
2
α 0 0 1 u32

α 1
2
β 0 1 u32

α β 1
2
α 1 u32

b13 b12 b13 1 2u32

b23 −2b23 b23 0 −1


(3.34)

where α = b13+ b23u32 and β = b12−2b23u32, and the system (2.9) assumes the form

η1(t) = 1
2
αη1D(t) + ξ1(t) + u32ξ2(t),

η2(t) = αη1D(t) + 1
2
βη2D(t) + ξ1(t) + u32ξ2(t),

η3(t) = αη1D(t) + βη2D(t) + 1
2
η3D(t) + ξ1(t) + u32ξ2(t),

Eξ1(t) = b13η1D(t) + b12η2D(t) + b13η3D(t) + ξ1(t) + 2u32ξ2(t),

Eξ2(t) = b23η1D(t)− 2b23η2D(t) + b23η3D(t)− ξ2(t).

(3.35)

Due to symmetry, we imposed order conditions associated to odd order trees only.
This led to

[
A U

B V

]
=



1
6
γ 0 0 1 1

24

1
3
γ −1

6
δ 0 1 1

24

1
3
γ 1

6
δ 1

6
γ 1 1

24

1
6
φ −1

4
− 2 3√2

3
−

3√4
3

1
6
φ 1 1

12

1 −2 1 0 −1


, (3.36)
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Table 3.4: Elementary weights of the starting procedure for the computation of y
[0]
2

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

0 0 1
24

(
2− 3

√
2
)

− 1
24

(
3
√
2 + 3

√
4
)

0 0 0 0

being γ = 2 +
3√4
2

+ 3
√
2, δ =

(
1 + 3

√
2
)2
, φ = 15

4
+ 2 3

√
2 + 3

√
4, and with abscissa

vector
c =

[
1
6
γ, 1

2
, − 1

12

(
3
√
2− 2

) (
4 + 3

√
2
) ]T

.

This method is G-symplectic with respect to the matrices

G =

[
1 1

24

1
24

1
576

]
, D =


1
3
γ 0 0

0 −1
3
δ 0

0 0 1
3
γ

 ,

and symmetric with L = I and

P =

 0 0 1

0 1 0

1 0 0

 .

3.6.1 Starting procedure

As announced, we derive as starting method for the initial value of the second
external approximation y

[0]
2 the generalized Runge-Kutta method with elementary

weights 0, θ1, . . . , θ8 given in Table 3.4.
We introduce the following eight-stage generalized RK method with

A =



0 0 0 0 0 0 0 0

1
6

0 0 0 0 0 0 0

1
4

−1
2

0 0 0 0 0 0

5
6

−8
3

5
2

0 0 0 0 0

−8
5

3
5

1 1
5

0 0 0 0

0 0 1
4

1
2

−1
4

0 0 0

−1 0 1 −1
6

1
2

0 0 0

0 −1
5

3
5

0 0 0 2
5

0


,
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c =



0

1
6

−1
4

2
3

1
5

1
2

1
3

4
5


,

and weights obtained by solving the linear system

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 = 0

10b2 − 15b3 + 40b4 + 12b5 + 30b6 + 20b7 + 48b8 = 0

b2
36

+ b3
16

+ 4b4
9

+ b5
25

+ b6
4
+ b7

9
+ 16b8

25
+ 1

24

(
−2 + 3

√
2
)
= 0

−60b3 − 770b4 − 12b5 + 159b6 − 188b7 − 36b8 + 30
(

3
√
2 + 3

√
4
)
= 0

b2
216

− b3
64

+ 8b4
27

+ b5
125

+ b6
8
+ b7

27
+ 64b8

125
= 0

450b3 − 15400b4 − 72b5 + 2385b6 − 1880b7 − 864b8 = 0

−600b3 + 3550b4 + 7260b5 + 9843b6 + 364b7 + 3300b8 = 0

−2250b4 − 3210b5 − 5955b6 + 935b7 − 1668b8 = 0

Remark 3.6.1. The linearity of this system is due to the fact that the number
of employed internal stages in the starting procedure (eight) equals the number of
order conditions to impose to gain order 4 in the approximation of the starting value
y
[0]
2 .

3.6.2 Minimizing the Error Constant

For a method of order p, it is easy to extract the leading term of the error

∑
ρ(t)=p+1

hρ(t)

σ(t)
ξ̂(t)F (t)(y(x0)) = hp+1

∑
ρ(t)=p+1

1

σ(t)
(BηD(t) + V ξ(t))F (t)(y(x0)),

(3.37)
which we will next aim to minimize.

We consider as a starting point method (3.36). We consider the quantities ξ̂(t)
appearing in (3.37) for t ∈ T, ρ(t) = 5 and we minimize the sum of their absolute
values by employing the Mathematica intrinsic routine Minimize. We perform a
constrained minimization process depending on the following constraints

0 < u32 <
1

4
0 < b23 ≤ 1,

and achieve u32 = 1
8
and b23 = 1

2
. These values lead to the following coefficient
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matrices

A =


1
6

(
2 + 1

3√2
+ 3

√
2
)

0 0

1
3

(
2 + 1

3√2
+ 3

√
2
)

−1
6

(
1 + 3

√
2
)2

0

1
3

(
2 + 1

3√2
+ 3

√
2
)

−1
3

(
1 + 3

√
2
)2 1

6

(
2 + 1

3√2
+ 3

√
2
)
 ,

B =

[
1
6

(
29
8
+ 2 3

√
2 + 22/3

)
1
24

(
−5− 16 3

√
2− 8 22/3

)
1
6

(
29
8
+ 2 3

√
2 + 22/3

)
1
2

−1 1
2

]
,

U =

 1 1
8

1 1
8

1 1
8

 , V =

[
1 1

4

0 −1

]
.

We also observe that, for such method, ξ̂(t) is zero for all trees of order 5 except
[[[[τ ]]]] (compare [11]), whose value is approximately equal to 0.17.

3.6.3 Numerical Experiments

We now provide some numerical experiments comparing the GLM (3.36) with the
partitioned RK method [100, 107]

A
b

=

0 0 0 0 0 0

1
3

0 0 0 0 0

1
3

−1
3

0 0 0 0

1
3

−1
3

1 0 0 0

1
3

−1
3

1 −1
3

0 0

1
3

−1
3

1 −1
3

1
3

0

1
3

−1
3

1 −1
3

1
3

0

(3.38)

A
b

=

7
48

0 0 0 0 0

7
48

3
8

0 0 0 0

7
48

3
8

− 1
48

0 0 0

7
48

3
8

− 1
48

− 1
48

0 0

7
48

3
8

− 1
48

− 1
48

3
8

0

7
48

3
8

− 1
48

− 1
48

3
8

7
48

7
48

3
8

− 1
48

− 1
48

3
8

7
48

which originates by coupling a diagonally implicit method with an explicit one,
thus leading to an overall explicit scheme in case of separable Hamiltonians. Such
partitioned pairs are indeed of practical interest only for separable Hamiltonian
problems (compare, for instance, [70] and references therein). Both methods, i.e. our
GLM (3.36) and the partioned RK (3.38) are symmetric and of order 4. Moreover,
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Table 3.5: Numerical comparison of the partitioned RK method (3.38) with respect
to the G-symplectic GLM (3.36)

PRK GLM

Simple pendulum ∥eH∥∞ = 9.51e− 14 ∥eH∥∞ = 1.28e− 13
fe = 12000000 fe = 10697133

Kepler problem ∥eH∥∞ = 5.73e− 14 ∥eH∥∞ = 1.88e− 13
fe = 12000000 fe = 11017887

Hènon-Heiles problem ∥eH∥∞ = 1.48e− 14 ∥eH∥∞ = 5.02e− 14
fe = 12000000 fe = 9088029

3-body problem ∥eH∥∞ = 2.43e− 13 ∥eH∥∞ = 7.48e− 13
fe = 12000000 fe = 11988456

Bead on wire non-separable ∥eH∥∞ = 1.11e− 14
fe = 8999952

Non-reversible problem ∥eH∥∞ = 3.64e− 14 ∥eH∥∞ = 4.59e− 013
fe = 12000000 fe = 8999871

the GLM is G-symplectic with zero growth parameter for the parasitic components,
while the RK method is symplectic.

The reported tests have been carried out on a node with CPU Intel Xeon 6 core
X5690 3,46GHz, belonging to the E4 multi-GPU cluster of Mathematics Department
of Salerno University. In particular, it is our aim to show the accuracy gained in
the numerical conservation of the Hamiltonian of the following dynamical systems:

We perform one million steps of the mentioned numerical methods and compute
the Hamiltonian deviation (3.20). The values of the observed Hamiltonian deviations
and the number of function evaluations (fe in Table 3.5) required by the overall
integration schemes are reported in Table 3.5. We observe that the accuracy gained
in preserving the Hamiltonian of the above dynamical systems is essentially the
same for both the RK method and the GLM. However the main novelty here is that
the derived GLM requires a lower computational effort, due to the lower number
of stages: each step of the GLM requires 3 internal stages, while the RK method
involves 12 stages.

It is also worth observing that the hypothesis of bounded parasitic components
is absolutely crucial: parasitic methods, such as the G-symplectic GLM presented
in [11], fail in preserving the Hamiltonian over suitably long time intervals and,
moreover, completely destroy the symplecticity of the phase space. This is also
visible from the orbit patterns, reported in Figures 3.7, 3.8 and 3.9.
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Figure 3.7: Orbit patterns for problem (3.2), gained by the G-symplectic method
presented in [11] (BUT), the symplectic PRK method (3.38) and the GLM (3.36)
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Figure 3.8: Orbit patterns for problem (3.3), gained by the G-symplectic method
presented in [11] (BUT), the symplectic PRK method (3.38) and the GLM (3.36)
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Figure 3.9: Orbit patterns for problem (3.6), gained by the G-symplectic method
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presented in [11] (BUT), the symplectic PRK method (3.38) and the GLM (3.36)
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Part II
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Chapter 4

Cardiac Tissue Structure
Information from DTMRI Images

The topics described in this Chapter concern two periods of study the author spent at
the departement of Computer Science at the Oxford University under the supervision
of professor Kevin Burrage.

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an imaging tech-
nique finalized to the extraction of information about the living tissues. Such tech-
nique has been successfully used in the analysis of the human brain. In order to
investigate on the structure of the heart, we analyzed a set of DT-MRI images of
an ex-vivo rat heart by means of a recently proposed model.

Figure 4.1: A scheme of the operations performed

4.1 Diffusion

The classical diffusion equation

∂C

∂t
= k∆C (4.1)
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is used to describe the phenomenon of molecular diffusion, i.e. the transport of
molecules in a given media. Here C represents the concentration of molecules and k
is called diffusion coefficient. In this description of the phenomenon, it is implicitly
assumed that molecules can diffuse in all the directions freely with the same coeffi-
cient k. In some media this is not realistic, as the structure of the media itself could
affect the motion of the particles, and equation (4.1) has to be modified in order to
take such informations into account. In particular, we consider the equation

∂C

∂t
= ∇ · (D∇C) (4.2)

where D is a symmetric tensor called the diffusion tensor. The tensor D can be
used in many ways to extract information on the underlying media. In particular,
D can be diagonalized as

D = QTΛQ (4.3)

where Q is an orthogonal matrix whose columns are the eigenvectors (v1, v2, v3) of D
and Λ is a diagonal matrix whose diagonal elements (λ1, λ2, λ3) are the eigenvalues
of D. We can think to the vi as being the principal directions of diffusion and to
the λi as being weights relative to such directions. A very common measure of the
anisotropy is given by the so-called fractional anisotropy (FA) coefficient, that is
defined in terms of the λi as

FA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

. (4.4)

4.2 Principles of Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging technique used in medicine. It
is based on the fact that living tissues contain a big quantity of molecules of water.
The tissue to scan is put in a strong (static) magnetic field, so that the spins of
most of the hydrogen protons contained in water tend to align with the applied
field. The magnetization vector M of a portion of tissue (defined as the sum of
the magnetic moments of the atoms composing the portion) is measured at this
step and gives a value M0. The tissue is then briefly exposed to a Radio Frequency
(RF) current having the right frequency to flip the spins of the proton. After such
impulse, the spins tend to recover the orientation given by the static magnetic field
(relaxation) and such process is ”recorded” by means of receiving coils that measure
M in the plane perpendicular to the static magnetic field. The relaxation phase is
characterized by two time constants:

1. T1 is called the spin-lattice relaxation time, i.e. a quantity in relation with the
component of the magnetization along the direction of the applied field;

2. T2 is called the spin-spin relaxation time and is related to the interactions
between the proton being analyzed and its neighbors.
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This phenomenon can be described in mathematical terms with the Bloch equa-
tions

dMx

dt
= γ(MyBz −MzBy)−

Mx

T2

(4.5)

dMy

dt
= γ(MzBx −MxBz)−

My

T2

(4.6)

dMz

dt
= γ(MxBy −MyBx)−

Mz −M0

T1

(4.7)

being M the magnetization or magnetic polarization, M0 the initial magnetization,
γ the gyromagnetic ratio of the water proton and B the applied gradient field.

4.2.1 dMRI

Diffusion MRI (dMRI), also referred as Diffusion Tensor MRI (DTMRI), is an
evolved technique of MRI based on the observation that water molecules in liv-
ing tissues are not static, but they are diffusing into the media. The measurement
of such diffusion can be used to extract information on the structure of the tissues.
For example, for the human brain, many studies have proved that the diffusion of
water in white matter is different from diffusion in gray matter (see, for example,
[62, 89, 90]). This is mainly due to the fact that white matter is composed of axons
(see fig. 4.2) where the diffusion has a privileged direction, that is the direction of
the myelin sheath. Those results can be very useful in the analysis of altered tissues.

Figure 4.2: An Axon.

DT-MRI experiments can be modeled my means of the the so called Bloch-
Torrey equation, that is obtained by the Bloch equations introducing the diffusion
term introduced in (4.2)

dM

dt
= γ(M×B)− Mxe1 +Mye2

T2

− (Mz −M0)e3
T1

+∇ · (D∇M). (4.8)
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Usually, both the Bloch-Torrey and the Bloch equations are simplified by neglecting
the z component of the magnetization vector. This can be done because the applied
field is directed in the z direction. In these cases, we only consider an equation for
Mxy = Mx + iMy, i.e. the transverse components of M , that can be easily obtained
from (4.9) and has the form, using a complex notation and neglecting relaxation

∂Mxy

∂t
= −iγ(r ·G)Mxy(r, t) +∇ · (D∇Mxy(r, t)). (4.9)

Equation (4.9) can be used to derive a model for the attenuation of the signal, that is
the quantity recorded during MRI experiments. In particular, we assume a solution
for (4.9) in the form

Mxy(r, t) = S0S(t) exp

(
−iγr ·

∫ t

0

f(s)ds

)
(4.10)

where f(t) describes the applied gradient field and S0 = M0. The time derivative of
this solution is

∂Mxy

∂t
= S0S

′(t) exp

(
−iγr ·

∫ t

0

f(s)ds

)
− iγr

d
∫ t
0
f(s)ds

dt
Mxy

and substituting into equation (4.9) we obtain the following first order ODE for S(t)

S ′(t) = −S(t)

[(∫ t

0

f(s)ds

)
·D ·

(∫ t

0

f(s)ds

)]
(4.11)

that has solution

S(t) = exp

(
−
[(∫ t

0

f(s)ds

)
·D ·

(∫ t

0

f(s)ds

)])
. (4.12)

For the following particular choice of f , that has been proposed by Stejskal and
Tanner

f(t) =


1 0 < t < δ
−1 ∆ < t < δ +∆
0 elsewhere

(4.13)

it is easy to prove that the expression of the signal (4.12) simplifies to

S(t) = S0 exp

(
− (γGδ)2

(
∆− δ

3

)
gTDg

)
(4.14)

where G is the intensity of the applied gradient field and g is its direction. The
quantity (γGδ)2

(
∆− δ

3

)
is referred to as b-value, leading to the final expression of

the attenuation
S(t) = S0 exp

(
−bgTDg

)
. (4.15)

It is worth observing that the signal is measured at a final time TE, often called
echo time, that is the time elapsing between the starting of the RF pulse and the
maximum value of the signal.
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4.3 Estimation of the diffusion tensor

Given a set of measurements for the signal S and the initial measurement S0, equa-
tion (4.15) can be used to estimate the coefficients of the diffusion tensor (compare
[98]). In particular, the usual approach consists in manipulating (4.15) in order to
obtain an over-dimensioned linear system that is solved by means of a least squares
approximation. We consider a set of measurements {Si}i=1,...,m obtained in corres-
pondence to a set of directions {gi}i=1,...,m and b-values {bi}i=1,...,m such that m ≥ 6
and there are at least six different directions between the gi’s. These assumptions
are necessary because, in order to estimate the diffusion tensor, we need to estimate
six components (as the tensor is symmetric). In particular, denoting

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


we obtain from (4.15)

log
Si
S0

= −big
T
i Dgi i = 1, . . . ,m.

The explicit expression for gT
i Dgi is the quadratic form

g2ixDxx + g2iyDyy + g2izDzz + 2gixgiyDxy + 2gixgizDxz + 2giygizDyz

that can be written as the product
kiD̄

where

ki =
[
g2ix g2iy g2iz 2gixgiy 2gixgiz 2giygiz

]
, D̄ =


Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


Denoted with K the matrix whose rows are the vectors ki and with B the vector

whose elements are

(
−

log
Si
S0

bi

)
, we can estimate the coefficients of the diffusion tensor

solving the m× 6 linear system
KD̄ = B.

4.4 The fractional approach

Living tissues on a microscopic scale are highly heterogeneous media, made of chan-
nels, membranes and areas of different viscosity. All these factors affect the diffusion
of the water molecules into the tissues making it different from that predicted by
the diffusion equations (4.1) and (4.2). It is easy to verify that a solution of (4.1)
is the classical Gaussian PDF, so molecular diffusion in the standard case happens
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Figure 4.3: Example of trajectory of a random walker according to the laws of
Brownian Motion.

according to the law of Brownian motion (fig 4.3). In particular, if we consider a 1D
case, the mean squared distance traveled by a random walker can be described as

E[∆x2] = 2kt

where k has the same meaning as (4.1). Such a law is generalized as

E[∆x2] = 2kt2H ,

and we talk of sub-diffusion if H < 1
2
and of super-diffusion if H > 1

2
. This gener-

alization is obtained introducing fractional derivatives with respect to time and/or
space in the standard diffusion equation, providing

∂αC

∂tα
= k′∆

β
2C. (4.16)

where k′ is a generalized diffusion coefficient with units modified to recover the
identities and 0 < α ≤ 1, 1 < β ≤ 2. Fractional derivatives can be defined in several
ways. For space-fractional derivatives, we consider the Riesz formulation

RZD
βf(x) = Γ(1 + β)

sin πβ
2

π

∫ ∞

0

f(x+ t)− 2f(x) + f(x− t)

tβ+1
dt (4.17)

while for time-fractional derivatives we introduce the Caputo definition

C
aD

αf(t) =
1

Γ(1− α)

∫ t

a

f(τ)dτ

t− τα
. (4.18)

It is worth observing that the stochastic description of the motion of a random walker
generated by a space-fractional generalization of the diffusion equation by means of
Riesz derivatives gives rise to a stochastic process that is called Lévy Flight, i.e. a
process governed by heavy tailed distributions (fig. 4.4).

4.4.1 Fractional extensions of the Bloch-Torrey equation

Following [95], we present two possible fractional generalizations of the Bloch-Torrey
equation, considering the simple case in which D is a scalar.
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Figure 4.4: Example of trajectory of a random walker according to the laws of a
Lévy Flight.

• A space-fractional generalization:

∂Mxy

∂t
= −iγ(r ·G)Mxy(r, t) +Dµ2(β−1)∆2β(Mxy(r, t)). (4.19)

where 1
2
< β ≤ 1 and being µ a parameter used to regularize the units.

Performing for the signal an analysis similar to that made for (4.9), we obtain

S = S0 exp

(
−Dµ2(β−1)(γGδ)2β

(
∆− δ

2β − 1

2β + 1

))
.

• A time-fractional generalization:

τα−1
0

C
0 D

t
αMxy = −iγ(r ·G)Mxy(r, t) +∇ · (D∇Mxy(r, t)). (4.20)

leads, in the case of an applied gradient field of magnitude G in the z direction,
to the following expression for the signal

S = S0Eα (−iγGzτ(t/τ)α) exp
(
−B(t/τ)3α

)
where Eα is the single parameter Mittag-Leffler function and B is defined as
follows

B =
2Γ(2− α)Dγ2G2τ 3

3α2Γ(2α + 1)
.

A further generalization has been recently introduced in [62], considering a space
fractional BT equation in the general case where D is the diffusion tensor. Consider
the decomposition of D given in (4.3). Let

{
Vθ,Vϕ,Vψ

}
be the columns of Q, i.e.

the eigenvectors of D ordered in the sense of increasing eigenvalues. The matrix Q
induces on the tridimensional space a coordinate change: let r′,G′ be respectively
the position vector and the applied gradient field in the new coordinate system. A
fractional in space generalization of equation (4.9) can be written as

∂Mxy

∂t
= −iγ(r′ ·G′)Mxy(r, t) +∇ · (µβD∇Mxy(r, t)), (4.21)
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where the gradient operator is now to be understood in the r′ coordinate system.
Such an equation provides the following model for the signal

S = S0 exp

(
−
∑

h=θ,ϕ,ψ

µ2βh−2
h λh|γδGTVh|2βh

(
∆− δ

2βh − 1

2βh + 1

))
. (4.22)

4.5 Numerical Experiments

We considered a set of MRI images of an ex-vivo rat heart. While, in the case of
brain, images can be obtained in-vivo, with the heart it is more difficult due to the
fact that the heart is moving and deforming. The dataset contained 514 images
obtained by varying both the direction of the applied gradient field and the b-value
plus a non-weighted image. The maximum applied gradient field was 99.3G/cm
corresponding to a b-value of 4000s/mm2. The times δ and ∆ were chosen as 3ms
and 7ms respectively. Each image consists of a grid of resolution 96 × 96 points
in the xy coordinates and of 22 slices in the axial direction. An example of non-

Table 4.1: Information on the dataset

value number of directions

1 160 6
2 320 12
3 480 8
4 640 6
5 800 24
6 960 24
7 1280 12
8 1440 30
9 1600 24
10 1760 24
11 1920 8
12 2080 24
13 2240 48
14 2560 6
15 2720 48
16 2880 36
17 3040 24
18 3200 24
19 3360 48
20 3520 24
21 3840 24
22 4000 30

weighted image for a slice is shown in figure 4.5, while figure 4.6 shows an acquisition
for the same slice at a certain b-value and a certain direction. As it can be seen
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Figure 4.5: Non-weighted image

Figure 4.6: An example of signal acquisition
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from figures, the images have to be preprocessed in order to remove those points
where actually there is no tissue. Numerical experiments have been performed in
order to fit the µ and the β parameters in the model (4.22). An estimation of such
parameters can give us insights on the structure of the heart, opening the road to
new possible diagnostic techniques. In order to do that, we followed two strategies,
comparing the results.

• at first, we followed the same approach proposed in [62]: we considered a
restricted set of measures, obtained in correspondence of a fixed b-value (in
particular b = 1440) in order to estimate the coefficients of the diffusion tensor
with model (4.15) and then we ran a minimization routine on the whole data-
set. It is worth observing that that the procedure used to estimate the diffu-
sion tensor coefficient is not the one described in Section 3, in fact, as observed
also in [85], a better approach is that of setting the problem as a non linear
minimization problem, i.e. by minimizing the squared norm of the residuals.

• An alternative approach consists in solving a minimization problem with the
coefficients of the diffusion tensor as variables, in order to obtain a better
fitting of the measured signal.

The minimization problem turned out in both cases to be very sensitive, in fact, the
numerical results show an high dependance on the starting approximations provided
to the routine. In particular, the first approach described above is very sensitive on
the choice of the b-value subset used in the approximation of the diffusion tensor
(compare Table 4.2). The results obtained following the first approach reflect those
in [62], showing that the β coefficient in the direction of the third eigenvector of D
has a lower value compared to the other two (compare fig. 4.7). The second approach

Figure 4.7: computed values of beta

turned out to be more effective in the approximation of the signal (compare figures
4.10 4.11 and 4.12). In order to provide good starting values for the minimization
routine, which depends strongly on them, we ran the two approaches in sequence, i.e.
we computed approximations toD, µ and β with the first approach and then we used
these values as starting approximations for the solution of the second minimization
problem. The values for µ and β computed with such an approach are shown in
fig. 4.8. The results are consistent with the ones shown in fig. 4.7, showing just a
little reduction of the standard deviation. Fig. 4.9 shows a comparison between the
fractional anisotropies computed with the two different approaches.
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Table 4.2: Influence of the initial data on the results with the first approach

initial b-value eigenvectors eigenvalues(
0.5403 0.7881 −0.2949

)
0.0010

800
(
−0.0525 0.3814 0.9229

)
0.0012(

0.8399 −0.4831 0.2474
)

0.0017(
0.5945 0.6026 −0.5324

)
0.0010

960
(
−0.0878 0.7068 0.7019

)
0.0012(

0.7993 −0.3705 0.4731
)

0.0016(
0.5673 0.4316 −0.7014

)
0.0009

1440
(
0.0485 −0.8677 −0.4947

)
0.0011(

−0.8221 0.2466 −0.5132
)

0.0014(
0.4891 0.6741 −0.5535

)
0.0008

2240
(
0.1576 −0.6924 −0.7041

)
0.0010(

−0.8579 0.2572 −0.4449
)

0.0012(
0.4911 0.8618 −0.1272

)
0.0008

2720
(
−0.5045 0.4004 0.7649

)
0.0009(

0.7101 −0.3115 0.6314
)

0.0012(
−0.2933 0.3691 0.8819

)
0.0007

2880
(
0.4177 0.8792 −0.2291

)
0.0008(

0.8600 −0.3012 0.4120
)

0.0011(
−0.3397 −0.8634 0.3732

)
0.0006

3360
(
−0.1886 0.4512 0.8723

)
0.0008(

0.9214 −0.2259 0.3161
)

0.0009(
0.1842 0.9581 0.2196

)
0.0005

4000
(
0.1587 −0.2494 0.9553

)
0.0007(

−0.9700 0.1411 0.1980
)

0.0008

Figure 4.8: Computed values of beta with the second approach

104



Figure 4.9: Comparison of Fractional Anisotropies

Figure 4.10: Numerical and measured signal for b = 1440 with the full-fractional
model

Figure 4.11: Numerical and measured signal for b = 1440 with the fractional model

Figure 4.12: Numerical and measured signal for b = 1440 with the standard model
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Conclusions and Future
Perspectives

This thesis is based mainly on three topics

1. the analysis and development of new numerical schemes for second order
Ordinary Differential Equations belonging to the family of General Linear
Nyström methods, treated in the second part of Chapter 2;

2. the geometric integration of Hamiltonian systems of Ordinary Differential
Equations, discussed in Chapter 3;

3. the analysis of Diffusion Tensor Magnetic Resonance heart images finalized to
the extraction of structural tissue information, which is presented in Chapter
4.

Concerning the numerical integration of second order problems, we developed an
algebraic theory of order for General Linear Nyström methods, which is extremely
useful in the construction of new methods. We also gave a few examples of construc-
tion techniques, exploiting the effectiveness of our theory and shown how to produce
starting methods for such algorithms. The theory of General Linear Nyström meth-
ods is very young and still much work can be done to expand it; in particular, in a
future perspective, efforts must be put in the construction of highly stable methods,
in order to improve the results presented in Section 2.2.6, that are highly encour-
aging, since the constructed method is much more effective then the corresponding
RK scheme. Another possible direction in the future research on this topic regards
the investigation of geometric properties of General Linear Nyström methods. In
this view, we already developed time reversal symmetry conditions, presented in
Section 3.5.1. The results above discussed are published in [51] and in another
recently submitted paper.

Conversely, the theory of General Linear Methods for first order problems is solid
and well established, but still much work can be done. In particular, the geometric
properties of these methods can be investigated more in detail, since recent works
show that the conditions of G-syplecticity can probably be weakened, thus opening
the road to the research of new methods that are computationally less expensive
then the ones presented here. For example, it would be of great interest to develop
explicit G-symplectic methods. In this thesis, we dealt with the issues related to the
construction of new G-symplectic General Linear Methods. The main issue, as it
was widely discussed in Chapter 4, is that of parasitism, that have been successfully
solved, thus allowing to construct four new methods with very good conservation
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properties. We also investigated the relation between the order of a method and
its ability to preserve invariants also if it does not possess particular geometric
properties and finally we characterized the order of accuracy of the Hamiltonian
deviation as a measure of the invariants preserving ability of a method. Another
possible scenario for a future work on the subject of General Linear Methods for
first order Ordinary Differential Equations is that of developing collocation based
General Linear Methods, possessing high-stability properties and allowing to provide
a continuous approximation of the solution. Our results on this topic are published
in [36, 52] and a third paper has been recently submitted.

The work on the analysis of Diffusion Tensor Magnetic Resonance heart images
is still in progress, it has wide possibilities for future developments and it is of great
scientific relevance. It is crucial at this step to perform a statistical analysis on as
many data sets as possible, in order to reinforce the conclusions shown here and also
to deeply analyze all the possible implications of these results, in order to find new
fields of application.

107



Ringraziamenti
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