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BIAS-CORRECTED INFERENCE FOR MULTIVARIATE

NONPARAMETRIC REGRESSION: MODEL SELECTION AND

ORACLE PROPERTY

Francesco Giordano∗ Maria Lucia Parrella†

Abstract. The local polynomial estimator is particularly affected by the curse of di-

mensionality. So, the potentialities of such a tool become ineffective for large dimensional

applications. Motivated by this, we propose a new estimation procedure based on the lo-

cal linear estimator and a nonlinearity sparseness condition, which focuses on the num-

ber of covariates for which the gradient is not constant. Our procedure, called BID for

Bias-Inflation-Deflation, is automatic and easily applicable to models with many covari-

ates without any additive assumption to the model. It simultaneously gives a consistent

estimation of a) the optimal bandwidth matrix, b) the multivariate regression function and

c) the multivariate, bias-corrected, confidence bands. Moreover, it automatically identify

the relevant covariates and it separates the nonlinear from the linear effects. We do not

need pilot bandwidths. Some theoretical properties of the method are discussed in the

paper. In particular, we show the nonparametric oracle property. For linear models, the

BID automatically reaches the optimal rate Op(n
−1/2), equivalent to the parametric case.

A simulation study shows a good performance of the BID procedure, compared with its

direct competitor.

Keywords: multivariate nonparametric regression, multivariate bandwidth selection, mul-

tivariate confidence bands.
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1. Introduction

Let (X1, Y1), . . . , (Xn, Yn) be a set of Rd+1-valued random vectors, where the Yi are the

dependent variables and the Xi are the R
d-valued covariates of the following model

Yi = m(Xi) + εi. (1)

∗DISES, Via Ponte Don Melillo, 84084, Fisciano (SA), Italy, giordano@unisa.it
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The function m(Xi) = E(Yi|Xi) : R
d → R is the multivariate conditional mean function.

The errors εi are assumed to be i.i.d. and independent of Xi. We use the notation Xi =
(Xi(1), . . . , Xi(d)) to refer to the covariates and x = (x1, . . . , xd) to denote the target

point at which we want to estimate m. We indicate with fX(x) the density function of

the covariate vector, having support supp(fX) ⊆ R
d and assumed to be positive. Besides,

fε(·) is the density function of the errors, assumed to be N(0, σ2
ε).

Our goal is to estimate the function m(x) = E(Y |X = x) at a point x ∈ supp(fX),
supposing that the parametric form of the function m is completely unknown without im-

posing any additive assumption. We assume that the number of covariates d is high but only

some covariates are relevant. The analysis of this framework raises the problem of the curse

of dimensionality, which usually concerns nonparametric estimators, and consequently the

problem of variable selection, which is necessary to pursue dimension reduction.

In the last years, many papers have studied this nonparametric framework. A good re-

view is given in Comminges and Dalalyan (2012). For variable selection, we mention the

penalty based methods for semiparametric models of Li and Liang (2008) and Dai and Ma

(2012); the neural network based method of La Rocca and Perna (2005); the empirical

based method of Variyath et al. (2010). Some other methods contextually perform variable

selection and estimate the multivariate regression function consistently. See, for example,

the COSSO of Lin and Zhang (2006), the ACOSSO of Storlie et al. (2011), the LAND of

Zhang et al. (2011) and the RODEO of Lafferty and Wasserman (2008). All these methods

are appealing for their approaches, but some typical drawbacks are: the difficulty to ana-

lyze theoretically the properties of the estimators; the computational burden; the difficulty

to implement the procedures, which generally depend crucially on some regularization pa-

rameters, quite difficult to set; the necessity of considering stringent assumptions on the

functional space (for example, imposing an additive model).

The aim of this paper is to propose a nonparametric multivariate regression method which

mediates among the following priorities: the need of being automatic, the need of scaling

to high dimension and the need of adapting to large classes of functions. In order to pur-

sue this, we work around the local linear estimator and its properties. Our work has been

inspired by the RODEO method of Lafferty and Wasserman (2008). As a consequence,

some of the theoretical results presented in Lafferty and Wasserman (2008) have repre-

sented the building blocks of our research. In particular, we borrow the idea of using an

iterative procedure in order to “adjust” the multivariate estimation one dimension at a time.

Anyway, the BID procedure substantially works differently from the RODEO, since they

have different targets. In the RODEO procedure, a technique is proposed in order to check

the relevance of the covariate, which is iteratively repeated along each relevant dimension

and along a grid of decreasing bandwidths, in order to find the correct order of the band-

width matrix. In this way, it performs (nonlinear) variable selection, bandwidth selection

and multivariate function estimation. However, it also leaves some unresolved issues. First

of all, it does not identify the relevant linear covariates. Moreover, it does not estimate the

optimal bandwidth matrix, so its final function estimation is not the optimal one. Finally, it

can be applied only with uniform covariates whereas our method can be extended to non-

uniform designs. In addition, we improve the rate of convergence of the final estimator, as

in Comminges and Dalalyan (2012) and Bertin and Lecué (2008)).

In particular, the contributions of this paper are described in the following.

• we propose a plug-in method for the estimation of the optimal bandwidth matrix
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which is completely automatic and easily applicable to models with many covariates.

It is based on the assumption that each covariate may have a different bandwidth

value. Note that the bandwidths have a central role in the proposed BID procedure,

since they are used to make variable selection and model selection as well;

• our method has the nonparametric oracle property, as defined in Storlie et al. (2011).

In particular, it selects the correct subset of predictors with probability tending to one,

and estimates the non-zero parameters as efficiently as if the set of relevant covariates

were known in advance. Moreover, it automatically separates the linearities from

the nonlinearities. We show that the rate of convergence of the final estimator is not

sensitive to the number of relevant linear covariates involved in the model (i.e., those

for which the partial derivative is constant with respect to the same covariate), even

when the model is not additive. As a consequence, the effective dimension of the

model can increase, without incurring in the curse of dimensionality, as long as the

number of nonlinear covariates (i.e., those whose partial derivative is not constant

with respect to the same covariate) is fixed;

• our procedure includes a consistent bias-corrected estimator for the multivariate re-

gression function, and also for its multivariate confidence bands. These can be used,

for example, to make model selection.

• the proposed method does not need any regularization parameter, contrary to LASSO

based techniques, and it does not use any additive assumption.

In the next section we introduce the notation. The BID algorithm is presented in sec-

tion 3. In section 4, we propose a method for the estimation of the optimal bandwidth

matrix, while section 5 presents the estimators of the functionals for the derivation of the

bias-corrected multivariate confidence bands. Section 6 contains the theoretical results. In

section 7 we show a way to remove the uniformity assumption for the design matrix. A

simulation study concludes the paper. The assumptions and the proofs are collected in the

appendix.

2. Fundamentals of the Local Linear estimators

The BID smoothing procedure is based on the use of the local linear estimator (LLE). The

last is a nonparametric tool whose properties have been deeply studied. See Ruppert and

Wand (1994), among others. It corresponds to perform a locally weighted least squares fit

of a linear function, equal to

argmin
β

n∑

i=1

{
Yi − β0(x)− βT

1 (x)(Xi − x)
}2

KH(Xi − x) (2)

where the function KH(u) = |H|−1K(H−1u) gives the local weights and K(u) is the

Kernel function, a d-variate probability density function. The d × d matrix H represents

the smoothing parameter, called the bandwidth matrix. It controls the variance of the Kernel

function and regulates the amount of local averaging on each dimension, and so the local

smoothness of the estimated regression function. Denote with β(x) = (β0(x),β
T
1 (x))

T

the vector of coefficients to estimate at point x. Using the matrix notation, the solution of

the minimization problem in (2) can be written in closed form

β̂(x;H) = (ΓT WΓ)−1 ΓT WΥ, (3)
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where β̂(x;H) = (β̂0(x;H), β̂
T
1 (x;H))T is the estimator of the vector β(x) and

Υ =




Y1
...

Yn


,Γ =




1 (X1 − x)T

...
...

1 (Xn − x)T


,W =




KH(X1 − x) . . . 0
...

. . .
...

0 . . . KH(Xn − x)


.

Let Dm(x) denote the gradient of m(x). Note from (2) that β̂(x;H) gives an estimation

of the function m(x) and its gradient. In particular,

β̂(x;H) =

(
β̂0(x;H)

β̂1(x;H)

)
≡
(

m̂(x;H)

D̂m(x;H)

)
. (4)

Despite its conceptual and computational simplicity, the practical implementation of the

LLE is not trivial in the multivariate case.

One of the difficulties of the LLE is given by the selection of the smoothing matrix

H, which crucially affects the properties of the local polynomial estimator. An optimal

bandwidth Hopt exists and can be obtained taking account of the bias-variance trade-off.

In order to simplify the analysis, often H is taken to be of simple form, such as H =
hId or H = diag(h1, . . . , hd), where Id is the identity matrix, but even in such cases

the estimation of the optimal H is difficult, because it is computationally cumbersome

and because it involves the estimation of some unknown functionals of the process. As

a consequence, few papers deal with this topic in the multivariate context (among which

Ruppert (1997) and Yang and Tschernig (1999)). One of the contributions of this paper is

to propose a novel method for the estimation of the multivariate optimal bandwidth which

can be efficiently implemented with many covariates. It is described in sections 4 and 5.

A second problem with the LLE is its bias. In particular, supposing that x is an interior

point and H = diag(h1, . . . , hd), we know from Theorem 2.1 in Ruppert and Wand (1994)

that the main terms in the asymptotic expansion of the bias and variance are

Abias{m̂(x;H)|X1, . . . ,Xn} =
1

2
µ2

d∑

j=1

∂2m(x)

∂xj∂xj
h2j (5)

Avar{m̂(x;H)|X1, . . . ,Xn} =
ρ0σ

2
ε

nfX(x)
∏d

j=1 hj
, (6)

where µ2 and ρ0 are moments of the Kernel function, defined as

µr =

∫
ur1K(u)du, ρr =

∫
ur1K

2(u)du, r = 0, 1, 2, . . . .

Note from (5) that the bias is influenced by the partial derivatives of m with respect to all

the regressors. So, for a finite n, there is a bias component which makes the tests and the

confidence intervals based on the LLE not centered around the true value of the function

m(x), even when the bandwidth matrix is the optimal one. As a consequence, some bias

correction should be considered in order to calibrate the nonparametric inference based on

the LLE, but this is difficult to obtain. There are few papers which consider some kind of

bias reduction of the multivariate LLE, among which Lin and Lin (2008) and Choi et al.

(2000). An interesting contribution of the BID procedure is that it produces a bias corrected

estimation of the multivariate function m(x) and its multivariate confidence bands. We

explain how in section 5.
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1. Define the bias-inflating bandwidth HU = diag(hU , . . . , hU ), where hU is a relatively

high value (for example, 0.9).

2. Initialise the sets of covariates C = {1, 2, . . . , d} and A = ∅.

3. For each covariate X(j), j ∈ C, do:

a) using HU , compute the statistic Zj and the threshold λj , by (7) and (8)
b) if |Zj | > λj then (nonlinear covariate):

– define the bias-deflating bandwidth matrix HL =
diag(hU , . . . , hL, . . . , hU ), which is equal to HU except for position

(j, j), where hL is a relatively small value (for example hL = hUd/n)

– using HU and HL, estimate the marginal bias b̂j(x,K) and the optimal

bandwidth h̃j , as shown in sections 4 and 5

else

– set h̃j = hU , b̂j(x,K) = 0 and move the covariate j from C to A

4. For each covariate X(j), j ∈ A, do:

a) using H̃ = diag(h̃1, . . . , h̃d), compute the statistic Nj and the threshold ωj , by

equations (9) and (10)
b) if |Nj | < ωj then (irrelevant covariate) remove the covariate j from A

5. Output:

a) the final estimated optimal bandwidth H̃ = diag(h̃1, . . . , h̃d)
b) the bias corrected estimate m̂(x; H̃)−∑d

j=1
b̂j(x,K)h̃2

j
c) the sets of nonlinear covariates C and linear covariates A.

Table 1: The basic BID smoothing algorithm

3. The BID method

The main idea of our procedure is to “explore” the multivariate regression function, search-

ing for relevant covariates. These are divided into: a) the set of nonlinear covariates and

b) the set of linear covariates. The covariates are defined linear/nonlinear, depending on

the marginal relation between the dependent variable and such covariates, measured by a

partial derivative which is constant/nonconstant with respect to the covariate itself.

The box in table 1 reports the steps of the basic algorithm used to analyse the case when

all the covariates follow a Uniform distribution, assuming the hypotheses (A1)-(A6) re-

ported in the appendix. In section 7 we extend the applicability of the procedure to those

setups where the covariates are not uniformly distributed.

The name BID is an acronym for Bias-Inflation-Deflation. The reason for this name to

the procedure is the following. The basic engine of the procedure is a double estimation for

each dimension, which is included in step 3b and described in detail in sections 4 and 5. In

the first estimation, of bias-inflation, we fix all the bandwidths equal to a large value hU ,

such that we oversmooth along all the directions (note that this is equivalent to estimating

locally an hyperplane). In the second estimation, of bias-deflation, we consider a second

estimation with a small bandwidth hL << hU , such that we undersmooth. The comparison

between the two estimations allows to determine the right degree of “peaks” and “valleys”

for the nonlinear directions, whereas the linear directions remain oversmoothed.
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Before describing the procedure in detail, some preliminary considerations are necessary.

First of all, it is known that the LLE are usually analyzed under the assumption that ∥H∥ →
0 when n → ∞ (so the bandwidths of all the covariates must tend to zero for n → ∞). This

is required in order to control the bias of m̂(x;H), so that it can be asymptotically zero.

Anyway, we show in Lemma 2 that the bias of m̂(x;H) does not depend on the bandwidths

of the linear covariates, because for such covariates the second partial derivative is zero (so

the sum in (5) is actually to be taken for j ∈ C). So, in order to gain efficiency, the BID

lets the bandwidths of the linear covariates to remain large, while only the bandwidths of

the nonlinear covariates tend to zero for n → ∞ (see Theorem 1).

The BID procedure performs variable selection through steps 3b and 4b. In particular,

step 3b concerns the identification of the nonlinear covariates, by means of the derivative

expectation statistic Zj proposed in Lafferty and Wasserman (2008). It is equal to

Zj =
∂m̂(x;H)

∂hj
= eT1 BLj(I− ΓB)Υ, (7)

where Lj = diag
(
∂ logK((X1j−xj)/hj)

∂hj
, . . . ,

∂ logK((Xnj−xj)/hj)
∂hj

)
, e1 is the unit vector

with a one in the first position and B = (ΓTWΓ)−1 ΓT W. The statistic in (7) reflects

the sensitivity of the estimator m̂(x;H) to the bandwidth of X(j), so it is expected to take

non-zero values for the nonlinear covariates and null value otherwise. Using the results

shown in Lafferty and Wasserman (2008), the threshold can be fixed to

λj =
√
σ̂2
εe

T
1 GjGT

j e12 log n, j = 1, . . . , d, (8)

where Gj = BLj(I− ΓB) and σ̂2
ε is some consistent estimator of σ2

ε . After step 3b, the

set A = C contains both the linear and irrelevant covariates. In order to separate them,

step 4b performs a threshold condition on the partial derivative coefficients, basing on

Nj ≡ D̂
(j)
m (x; H̃) = ej+1B̃Υ, j ∈ C, (9)

where B̃ is the same matrix as B replacing the bandwidth matrix H with the estimated one,

H̃.

Such a statistic is expected to be approximately equal to zero for irrelevant covariates.

The normal asymptotic distribution of the local polynomial estimator, shown in Lu (1996),

can be used to derive the threshold

ωj =
√

σ̂2
εe

T
j+1B̃B̃Tej+12 log n, (10)

The statistics in (9) and its distribution derive from well-established results. In particular,

the threshold (10) is based on the tail bounds for Normal distribution. One can show that

P (|Nj | > ωj) → 0 when n → ∞ if the covariate j is irrelevant. But note that such

tests are performed using the estimated bandwidth H̃, which does not satisfy the classic

assumption ∥H∥ → 0. A theoretical justification of our proposal is thus required and it

is given in Lemma 2 (see the appendix). In particular, we show that the bandwidths hj ,

when j is an irrelevant covariate, do not influence the bias of the estimator D̂
(j)
m (x; H̃),

under the assumptions (A1)-(A6). Therefore, such bandwidths can be fixed large, to gain

efficiency. This is what is done through the estimated matrix H̃ (see sections 4 and 5).

In the same way, for j a linear covariate, the bias of the estimator D̂
(j)
m (x; H̃), under the

assumptions (A1)-(A6), does not depend on hj . So we can also fix large the bandwidths

for linear covariates (see Lemma 2 and Corallary 1 in the appendix).
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4. The optimal bandwidth matrix

In this section we propose a methodology to estimate the multivariate optimal bandwidth,

when it is assumed to be of type H = diag(h1, . . . , hd). Here we assume, for simplicity,

that the nonlinear covariates are the first k regressors X(1), . . . , X(k).

When considering a given n, the optimal multivariate bandwidth Hopt must be chosen

taking account of the bias-variance trade-off. It is defined as

Hopt = argmin
H

[
Abias2{m̂(x;H)}+Avar{m̂(x;H)}

]
,

where, for simplicity, we omit the conditioning on X1, . . . ,Xn from the notation. It is

known that a simple solution is available if we assume that H = hId. It is given by

hopt =





dρ0σ
2
ε

nfX(x)
[
µ2
∑d

j=1
∂m(x)
∂xj∂xj

]2





1/(d+4)

. (11)

Clearly, the assumption of a common bandwidth for all the dimensions is unsatisfactory,

because some of the covariates are assumed to be irrelevant but also because we can observe

different curvatures of the function m(x) along the d directions. On the other side, the

assumption of a diagonal matrix H with different bandwidths for the covariates is more

realistic, but difficult to deal with when considering its estimation.

The bandwidth selection method proposed here is based on the idea of “marginalizing”

the AMSE. Let us reformulate (5) and (6) as functions of the bandwidth hj , conditioned to

the other bandwidths i ̸= j = 1, . . . , d. Denote with H(j) = (h1, . . . , hj−1, hj+1, . . . , hd)
the vector of the “given” bandwidths, for j = 1, . . . , d. For the asymptotic bias we have

Abias{hj |H(j)} =
1

2
µ2

d∑

i ̸=j

∂2m(x)

∂xi∂xi
h2i +

1

2
µ2

∂2m(x)

∂xj∂xj
h2j (12)

= a(x,K,H(j)) + bj(x,K)h2j (13)

where a(x,K,H(j)) =
∑d

i ̸=j bi(x,K)h2i represents the bias cumulated on the axes i ̸= j.

For the variance we have

Avar{hj |H(j)} =
ρ0σ

2
ε

f(x)
∏d

i ̸=j hi

1

nhj
= c(x,K,H(j))

1

nhj
, (14)

from which the definition of c(x,K,H(j)) can be clearly deduced. The behaviour of the

functions in (13) and (14) are shown in figure 1, plots (a) and (b). The marginal asymptotic

mean square error becomes

AMSE{hj |H(j)} =
[
a(x,K,H(j)) + bj(x,K)h2j

]2
+ c(x,K,H(j))

1

nhj
(15)

and the optimal value of the bandwidth hj is

hoptj = argmin
hj

AMSE{hj |H(j)}, j = 1, . . . , d.

There are three different cases, two of which have a trivial solution. The first one is when
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Figure 1: Asymptotic variance (a) and bias (b) of the local linear estimator m̂(x;H), as a function of the

marginal bandwidth hj . Plot (c) shows the BID mechanism, which derives from the comparison between the

LP estimations obtained with the two bandwidths hL
j << hU

j .

the covariate X(j) is a linear covariate, that is when ∂m(x)/∂xj = C1, for some value

C1 ̸= 0 not dependent on X(j). In such case bj(x,K) ≡ 0 and the (15) is minimized for

hj infinitely large. The second case is when the covariate X(j) is irrelevant. Note that an

irrelevant covariate is a special linear covariate, for which ∂m(x)/∂xj = C1 ≡ 0, so the

optimal bandwidth is again infinitely large. The last case is when the variable X(j) is a

nonlinear covariate, that is for j = 1, . . . , k. In such a case (and only in such a case), the

optimal bandwidth must be estimated by solving the following equation

∂ Abias2{hj |H(j)}
∂hj

= −
∂ Avar{hj |H(j)}

∂hj
. (16)

In order to solve the (16), we need to approximate in some way the asymptotic bias and

variance of the LLE. For example, the cross-validation methods approximate the mean

square error by estimating it on a grid of bandwidths and then find the optimal value by

minimizing such estimated curve with respect to H. This method is impracticable in mul-

tivariate regression, both theoretically and computationally. On the other side, we propose

a method which is easily applicable to high dimensional models.

First of all, consider the variance functional in (14). As a function of hj , its behaviour is

depicted in plot (a) of figure 1. Given the (14), we can approximate a generic point of the

curve by knowing the value of the function for a given bandwidth hj . In particular, if we

fix a low value of the bandwidth hL, the asymptotic variance will be

Avar{hL|H(j)} = c(x,K,H(j))
1

nhL
. (17)

From the (17) we can derive a value for c(x,K,H(j)) and reformulate the (14) as

Avar{hj |H(j)} = Avar{hL|H(j)}
hL

hj
= V L

j

hL

hj
. (18)

Now consider the bias functional in (13). As a function of hj , its behaviour is depicted in

plot (b) of figure 1. We follow the same arguments as before in order to approximate the

asymptotic bias function. Suppose to fix an upper value of the bandwidth hU >> hL and

to evaluate the function for the two values of bandwidths hL and hU . We have

Abias{hU |H(j)} −Abias{hL|H(j)} = bj(x,K)
[
(hU )2 − (hL)2

]
= BUL

j . (19)
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We can reformulate the (13) as follows

Abias{hj |H(j)} = a(x,K,H(j)) +
Abias{hU |H(j)} −Abias{hL|H(j)}

(hU )2 − (hL)2
h2j

= AL
j +

BUL
j

(hU )2 − (hL)2
h2j . (20)

From the (16), (18) and (20) we obtain

4

[
BUL

j

(hU )2 − (hL)2

]2
h5j +

4AL
j BUL

j

(hU )2 − (hL)2
h3j − V L

j hLj = 0 (21)

which represents the estimation equation for the optimal bandwidth hoptj . The following

Lemma is shown in the appendix.

Lemma 1 (Optimal bandwidth matrix). There is a unique real positive solution to the

following system of equations





4

[
BUL

1

(hU )2−(hL)2

]2
h51 +

4AL
1 BUL

1

(hU )2−(hL)2
h31 − V L

1 hL = 0

...

4

[
BUL

k

(hU )2−(hL)2

]2
h5k +

4AL
k

BUL
k

(hU )2−(hL)2
h3k − V L

k hL = 0

with respect to the variables h1, . . . , hk, where k < d is the number of nonlinear covariates

in model (1). Such a solution identifies the multivariate optimal bandwidth matrix Hopt =
diag(hopt1 , . . . , hoptk ).

5. Estimation of the bias-variance functionals

Following the idea of the plug-in method, we can estimate the marginal optimal bandwidth

plugging into the (21) an estimation of the unknown functionals, and then solving the equa-

tion with respect to hj . We can note that the unknown quantities, which are graphically

evidenced in figure 1, are

BUL
j = Abias{hU |H(j)} −Abias{hL|H(j)} (22)

AL
j = Abias{hL|H(j)} =

∑

i ̸=j

bi(x,K)h2i (23)

V L
j = Avar{hL|H(j)} (24)

and these functionals can also be used to derive the bias-corrected multivariate confidence

bands for the function m(x), using the asymptotic normality of the LLE shown in Lu

(1996). So, using our BID smoothing procedure, the estimation of the multivariate band-

width H and the estimation of the multivariate bias-corrected confidence bands of m(x)
have a common solution: the estimation of the functionals in (22)-(24).

Figure 1 explains the idea underlying our proposal for the estimation of these functionals.

Plots (a) and (b) show a typical behavior of the asymptotic mean square error of the local

linear estimator, for a given axis 1 ≤ j ≤ k. For a large value of the bandwidth (hj = hU ),

9



the variance is low but there is much bias (so this is a situation of bias-inflation). On the

other side, when the bandwidth is low (hj = hL), a large variance of the estimator is

compensated by its low bias (so this is a situation of bias-deflation). This is more clearly

evidenced by the two box-plots shown in plot (c) of Figure 1, which summarize the typ-

ical distributions of the local linear estimations of m(x) for a relevant number of Monte

Carlo replications, considering respectively the two bandwidths hL and hU . Note that the

difference between the medians of the two boxplots reflects the increment in the expected

value of the bias observed when increasing the bandwidth hj from hL to hU . Therefore it

is proportional to BUL
j . So, the comparison between the two estimations determines what

we call the Bias-Inflation-Deflation mechanism.

Following this idea, for the estimation of BUL
j we consider the two bandwidth matrices

HU = diag(hU , . . . , hU , . . . , hU )
HL

j = diag(hU , . . . , hL, . . . , hU )

which differ only for the value in position (j, j), with j ∈ C, respectively equal to hU and

hL. Given (19) and Lemma 2 (see the appendix), we can show that

E
[
m̂(x;HU )− m̂(x;HL

j )|X1, . . . ,Xn

]

= Abias{m̂(x;HU )} −Abias{m̂(x;HL
j )}+Op(n

−1/2)

≈ bj(x,K)
[
(hU )2 − (hL)2

]
= BUL

j

therefore we propose the following estimator of the bias bj(x,K) for the axis j

B̂UL
j = m̂(x;HU )− m̂(x;HL

j ), j = 1, . . . , k (25)

b̂j(x,K) =
B̂UL

j

[(hU )2 − (hL)2]
. (26)

Following the suggestion in Fan and Gijbels (1995), we use the following estimator of

the functional V L
j

V̂ L
j = σ̂2

εe
T
1 (Γ

T WL
j Γ)−1 ΓT WL

j W
L
j Γ(ΓT WL

j Γ)−1e1, j = 1, . . . , k (27)

where WL
j = diag

(
K

HL
j
(X1 − x), . . . ,K

HL
j
(Xn − x)

)
and σ̂2

ε is some consistent esti-

mator of σ2
ε (see, for example, the estimator proposed in Lafferty and Wasserman (2008)).

Finally, we note from the (23) that the functional AL
j depends on the values of the band-

widths hi and the biases bi(x;K) generated on the axes i ̸= j. For this reason, we must

consider a preliminary step for the estimation of such values. These are obtained consider-

ing k univariate bandwidth estimation problems, setting AL
j = 0 in the (21)

0ĥ
opt
j =




V̂ L
j hL

4


(h

U )2 − (hL)2

B̂UL
j



2


1/5

j = 1, . . . , k.

Now we solve the system of equations in Lemma 1 after plugging the previous estimation

of BUL
j and V L

j proposed in (25) and (27), and the following estimation of AL
j

sÂL
j =

k∑

i ̸=j

s−1ĥ
2
i

B̂UL
i

(hU )2 − (hL)2
, s = 1, 2, . . . (28)

10



and then we iterate (increasing s) until convergence. This represents a numerical step which

does not require any further kernel estimations, so it is very fast. Our practical experience

from the simulation study shows that the convergence is reached in few steps. Note that

the component AL
j implies a correction of the optimal bandwidth, by means of the second

term in the (21), to take account of the interconnections among the variables. When this

component is equal to zero, the formula of the optimal bandwidth hoptj is equivalent to the

one derived in the univariate regression.

Remark 1: the bandwidth estimation procedure proposed here follows a marginalized ap-

proach. Anyway, note that the estimated bandwidths are consistent with the optimal mul-

tivariate bandwidth Hopt derived with no marginalization. In other words, the estimation

procedure, described in this section, is consistent in the sense that it gives the same solu-

tions as in Lemma 1 (see Theorem 1). Moreover, this procedure suggests a fast algorithm

to solve the non-linear system in Lemma 1.

6. Theoretical results

In this section we present the theoretical results which justify the BID procedure. In par-

ticular, Theorems 1 and 2 together with Remark 2, show the consistency and the rate of

convergence in the case of uniform covariates, while Theorems 3 and 4 (see section 7) will

consider the non-uniform case.

Considering model (1), let H̃ be the matrix with the final estimated bandwidths and H̃k

be the submatrix with the final estimated bandwidths for the nonlinear covariates, assumed

to be (for simplicity) the first k on the diagonal of H̃, that is H̃k = diag(h̃1, . . . , h̃k).
Moreover, assume that Hopt

k is the diagonal matrix with the optimal bandwidths for such k
nonlinear covariates. The following two Theorems hold.

Theorem 1 (consistency in selection). Assume that the assumptions (A1)-(A6), reported in

the appendix, hold with s = 4. Then we have

P
(
h̃j = hU , for all j > k

)
→ 1 n → ∞

(h̃1, . . . , h̃k) = Op

(
n−1/(4+k)

)
.

Furthermore, H̃k(H
opt
k )−1 p−→ Ik, where the convergence in probability is componentwise

with Ik the identity matrix of order k.

Remark 2: (Oracle property: consistency in selection) By Theorem 1 we have that P (Ĉ =
C) → 1 as n → ∞, with Ĉ and C the sets of estimated nonlinear covariates and true ones,

respectively. Using the same assumptions as in Theorem 1 with s = 5, it follows that

P (Â = A) → 1, n → ∞,

where Â and A are the sets of estimated linear covariates and true ones, respectively (see

Table 1, step 4b). This result follows straightforward by applying Lemma 2 and Corollary

1 and the same arguments as in the proofs of Lemmas 7.1, 7.4 and 7.5 in Lafferty and

Wasserman (2008). Therefore, Theorem 1 and this Remark lead to the first part of the

Oracle property (consistency in selection).

11



Theorem 2 (Oracle property: rate of convergence). Under the assumptions of Theorem (1),

we have [
m̂(x; H̃)−m(x)

]2
= Op

(
n−4/(4+k)

)
.

Note from Theorem 2 that only the nonlinear covariates in C have a strong influence on

the rate of convergence, since they represent the only dimensions for which the bandwidths

shrink the support of the local regression, reducing the number of usable observations. The

other bandwidths remain large, so the efficiency of the estimation procedure remarkably

improves. As a consequence, in order to avoid the curse of dimensionality, we must assume

that the number of nonlinear covariates k is fixed and relatively small, while the number of

relevant variables r can diverge. Note that if m(x) is a linear model (k = 0), then the BID

estimator reaches the rate Op(n
−1) which is equivalent to the parametric case. Moreover,

this result is valid for general models, including the mixed effect terms.

Remark 3: (diverging number of covariates) The proposed selection method as in Theorem

1 and Remark 2 can be extended to the case when the number of covariates, d → ∞.

Suppose that k = O(1), r ≤ d and d = O
(

logn
log logn

)
, the results of Theorem 1 and Remark

2 are still valid using the same arguments as in the proof of Lemma 7.1 in Lafferty and

Wasserman (2008). It implies that the number of linear covariates can diverge at the same

order as d.

7. Extension to non-uniform designs

The test used in step 3a is based on the fundamental assumption that the covariates are uni-

formly distributed. The reason why this assumption is so crucial can be understood from

Lemma 7.1 and Remark 7.2 in Lafferty and Wasserman (2008). In few words, the uni-

formity assumption simplifies the asymptotic analysis of the local linear estimator, which

is particularly hard if one takes into account the unusual assumption that, for some di-

mensions, the bandwidth may not tend to zero when n → ∞. In order to overcome this

problem, and to extend the applicability of both the BID and the RODEO procedures, we

propose to consider a transformation of model (1).

Let Fj denote the univariate marginal distribution function of X(j), let F−1
j be its inverse

and fj its density function. Consider the transformed vector of covariates Ui = FX(Xi),
where the function FX(Xi) : R

d → R
d is defined as follows

FX(Xi) = (F1(Xi(1)), . . . , Fd(Xi(d))).

Model (1) can be rewritten as

Yi = m(F−1
X (Ui)) + εi = g(Ui) + εi, (29)

where g = m · F−1
X and Ui is uniformly distributed on the unit cube. Consider the trans-

formed point of estimation u = FX(x) and note that

∂g(u)

∂uj
=

∂m(x)

∂xj

1

fj(uj)
, j = 1, . . . , d. (30)

Now, supposing that fj(uj) > 0, the partial derivatives in (30) are equal to zero if and

only if ∂m(x)/∂xj = 0, that is when the covariate X(j) is irrelevant for m in the point

12



x. So, g(u) ≡ m(x) and the function g depends on the same covariate as the function

m. Therefore, both the problems of multivariate function estimation and variable selection

can be solved equivalently using models (1) and (29), but the fundamental difference is

that model (29) satisfies the assumptions (A1)-(A6) reported in the appendix. So, the basic

BID procedure can be applied consistently replacing the covariates X(j) with U(j) =
Fj(X(j)), for j = 1, . . . , d, and considering model (29). We call the last case the general

BID procedure. There are some drawbacks to be taken into account. The first one is that

the transformed model (29) does not have the same structure as the original model, since,

for example, the linear covariates of model (1) generally become nonlinear covariates in

model (29). So the two models cannot be used equivalently for model selection. The other

drawback is that the distribution functions Fj , needed to transform model (1), are unknown.

We can estimate them through the corresponding empirical distribution functions F̂j , but

this introduces additional variability in the final estimations, due to the estimation error of

Fj . Now, we present the theoretical results that justify the generalised version of the BID

procedure.

Considering model (29), let H̃ be the matrix with the final estimated bandwidths and

H̃r be the diagonal matrix with the final estimated bandwidths for the relevant covariates,

assumed to be the first r on the diagonal of H̃, that is H̃r = diag(h̃1, . . . , h̃r). Finally,

assume that Hopt
r is the diagonal matrix with the optimal bandwidths for such r relevant

covariates. The following two Theorems hold.

Theorem 3 (consistency). Assume that the assumptions (A1)-(A5), reported in the ap-

pendix, hold with s = 5. Moreover, assume that the Kernel function has a bounded first

derivative and the density functions, fj(·), j = 1, . . . , d, have a bounded fourth derivative.

Then we have

P
(
h̃j = hU , for all j > r

)
→ 1 n → ∞

(h̃1, . . . , h̃r) = Op

(
n−1/(4+r)

)
.

Furthermore, H̃r(H
opt
r )−1 p−→ Ir, where the convergence in probability is componentwise

with Ir the identity matrix of order r.

Theorem 4 (rate of convergence). Under the assumptions of Theorem (3), we have

[
m̂(x; H̃)−m(x)

]2
= Op

(
n−4/(4+r)

)
.

Remark 4: The conditions in Theorem 3 for the first derivative of the Kernel function to

be bounded and the assumption (A4) for s = 5 are only sufficient, to simplify the proof.

It is possible to relax these conditions with the assumption for the Kernel function to be

Holder-continuous and assumption (A4) with s = 4.

Remark 5: Looking at the proof of Theorem 3, we can still use the BID algorithm with the

same threshold λj , j = 1 . . . , d, as in (8), in the case of non-uniform covariates.

8. Results from a simulation study

In this section we investigate the empirical performance of the BID procedure. In the first

example, we generate datasets from six different models.
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Figure 2: Results for model 1, when d = 10 and n = 750. On the top: (left) the final estimates of

m(x) obtained using the RODEO, the BID and the bias-corrected BID methods, respectively; (center) for

each covariate, the percentage of times that the nonlinearity threshold is exceeded (only the covariates 8 and 9

are nonlinear); (right) the percentage of times that the relevance threshold is exceeded (only the covariates 8

and 9 are relevant). On the bottom: results of the final bandwidths, estimated by the RODEO method (left) and

the BID method (center); the box-plots of the ratios between the BID estimated bandwidths and the RODEO

estimated bandwidths, for increasing values of n (right).

Model m(x) r k Model m(x) r k

1 5x28x
2
9 2 2 4 2x10x1x2x3x4 + 5x28x

2
9 7 2

2 2x10 + 5x28x
2
9 3 2 5 2x10x1 + x2x3x4 + 5x28x

2
9 7 2

3 2x10x2 + 5x28x
2
9 4 2 6 5x28x

2
9 + 2x210x1 4 3

Model 1 has been used by Lafferty and Wasserman (2008), and it is considered here for

comparison with the RODEO results. The other models are variants of the first one, with the

addition of some mixed effect terms. We simulate 200 Monte Carlo replications for each

model, considering different configurations of settings: the number of covariates equal

to d = (10, 15, 20, 25) and the number of observations equal to n = (500, 750, 1000).
The number of relevant covariates varies from r = 2 to r = 7. The remaining d − r
covariates are irrelevant, so they are generated independently from Y . Note that the linear,

the nonlinear and the irrelevant covariates are not sequentially sorted, but they are inserted

randomly in the models. Finally, all the covariates are uniformly distributed, fX ∼ U(0, 1),
and the errors are normally distributed, fε ∼ N(0, 0.52).

We implement the basic BID procedure. For comparison, we implement the RODEO

method as well, using the same settings as in Lafferty and Wasserman (2008). In particular,

we use the same value for the β parameter and the same Kernel function K(u) = (5 −
u2)I(|u| <

√
5). The point of estimation is x = (1/2, 1/2, . . . , 1/2).

Figures 2 and 3 show the results of the estimations, for model 1 and 3 respectively, when

d = 10 and n = 750. The plot on the top-left reports three box-plots, which summarize the

200 final estimates of the regression function m(x) obtained using the RODEO method, the

BID method and the bias-corrected BID method, respectively. Remember that the RODEO

method does not estimate the bias of the LLE, so only the first two box-plots are directly
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Figure 3: As in figure 2, but for model 3 (for this model, only the covariates 2, 8, 9, and 10 are relevant,

among which the covariates 8 and 9 are nonlinear).

comparable. The third box-plot, which shows the final bias-corrected estimations obtained

with our BID procedure, is reported for completeness. It is evident from these results that

the BID method produces better estimations, because it uses an unbiased estimation of

the optimal bandwidth matrix, contrary to the RODEO method, which only identifies the

correct order of such bandwidth. Moreover, it is evident from the third box-plot, that the

bias correction stage is determinant in order to produce good inferential results. The other

two plots on the top of each figure show, for each one of the 10 covariates, the percentage of

times that the nonlinearity threshold and the relevance threshold are exceeded (steps 3b and

4b of the algorithm, respectively). Note that, for the hard-threshold linearity test (on the

top-center of the figures), we desire to hit the one line in the case of nonlinear covariates

(denoted with the + symbol), and the zero line in the opposite case. So this test works

satisfactorily, since it correctly identifies the covariates 8 and 9 as nonlinear. On the other

side, for the relevance test (on the top-right of the figures), we desire to hit the one line in

the case of relevant covariates (which include the nonlinear covariates, denoted with the +
symbol, and the linear covariates, denoted with the × symbol), and the zero line otherwise.

An important difference between the RODEO and the BID algorithms, which influences

the computing time of the two procedures, concerns the total number of iterations. The

RODEO method works through a double cycle, since it iterates along the d covariates and

then, for each nonlinear covariate, along a grid of bandwidths. The width of the grid

depends on the parameter β = O(log n) of the RODEO procedure. So, the total number of

iterations depends on n and d. On the other side, the BID method iterates only along the d
covariates, so the number of iterations depends only on d. As a result, the BID procedure is

faster than the RODEO procedure. A comparison between the number of iterations of the

two procedures is made in the bottom of figures 2 and 3. Here we compare the results of the

final bandwidths estimated with the RODEO method (on the left) and the BID method (in

the center). The grid of bandwidths used by RODEO, which is determined by the parameter

β, is evidenced by means of the light dashed lines in the plot on the bottom-left (note that

such a grid has been fixed as in the paper of Lafferty and Wasserman (2008)). On the other
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side, the BID method does not use any grid (the two light dashed lines in the central plot

indicate the bandwidths hL and hU used in the BID mechanism). So, the average number

of iterations is different for the two methods: they are reported in the main title of the

respective plots.

Finally, the plot on the bottom-right of figures 2 and 3 shows the box-plots of the ratios

between the BID bandwidths and the RODEO bandwidths, for increasing values of n. As

n → ∞, the ratio tends to a constant value less than one, showing that the order of the two

estimated bandwidths is the same, although their values are systematically different. There

is an intuitive explanation for this: the BID procedure guarantees an unbiased estimation

of the optimal bandwidth matrix, while the RODEO procedure does not have such an ob-

jective. So the RODEO estimated bandwidths do not include the constant of optimality but

only the order of the optimal bandwidth matrix.

Table 2 reports the mean square error (multiplied by 10), for models 1-6, obtained with

the RODEO, the BID and the bias corrected BID methods, for different values of n and d.

The results in the table show the consistence of the BID procedure and give evidence of the

advantage of bias-correction, especially for small datasets.

RODEO BID BID-corrected

Model d = 10 15 20 25 10 15 20 25 10 15 20 25
1 n = 500 .117 .148 .143 .145 .062 .100 .135 .210 .057 .085 .111 .177

n = 750 .091 .087 .094 .102 .050 .041 .044 .057 .048 .040 .039 .048

n = 1000 .074 .073 .074 .082 .036 .029 .036 .041 .035 .027 .036 .037

2 n = 500 .119 .147 .142 .143 .062 .100 .135 .210 .057 .085 .111 .177

n = 750 .088 .085 .089 .097 .050 .041 .044 .057 .048 .040 .039 .048

n = 1000 .072 .069 .075 .079 .036 .029 .036 .041 .035 .027 .036 .037

3 n = 500 .124 .152 .147 .144 .071 .102 .136 .209 .065 .087 .112 .179

n = 750 .089 .084 .095 .100 .055 .046 .054 .065 .052 .045 .048 .057

n = 1000 .073 .070 .075 .081 .037 .033 .041 .043 .035 .031 .042 .038

4 n = 500 .118 .148 .141 .142 .068 .099 .131 .209 .062 .085 .107 .177

n = 750 .088 .084 .091 .098 .051 .038 .046 .060 .051 .036 .040 .051

n = 1000 .071 .069 .075 .079 .037 .030 .036 .041 .037 .027 .035 .036

5 n = 500 .117 .159 .143 .144 .075 .106 .142 .212 .072 .093 .119 .182

n = 750 .090 .085 .093 .010 .056 .046 .055 .064 .055 .046 .051 .056

n = 1000 .071 .071 .075 .079 .042 .039 .042 .042 .042 .037 .042 .039

6 n = 500 .300 .348 .332 .332 .195 .227 .301 .428 .169 .188 .259 .374

n = 750 .224 .222 .245 .260 1.140 .146 .140 .155 1.109 .133 .114 .127

n = 1000 .202 .186 .200 .210 .129 .120 .185 .106 .120 .110 .176 .089

Table 2: Mean square error (×10), for models 1-6, for different values of n and d.

The second experiment considers the case when the covariates are not uniformly dis-

tributed. We use the following model

m(x) =
1

20
x28x

2
9, X(j) ∼ Exp(2) j = 1, . . . , d (31)

which is equivalent to model 1, but with the covariates exponentially distributed. We re-

place the coefficient 5 of model 1 with 1/20 in order to have the same signal/error ratio and

so to make the results comparable with those of model 1. For model (31), the hard-threshold

linearity test of Lafferty and Wasserman (2008) is not consistent. For such a model, table

3 shows the percentage of times that the nonlinearity threshold is exceeded, for different

values of n. The three rows on the top refer to the application of the test to the original

model in (31), using the non-uniform covariates X(j) and the basic BID procedure, for

n = 500, 750, 1000 respectively. The three rows on the bottom refer to the application of

the test to the transformed model g(u) = m(F−1
X (u)) obtained from (31) as explained in

section 7. Note that only the covariates 8 and 9 are nonlinear. The hard-threshold nonlin-

earity test misses the detection of such nonlinearities for the original model, as expected,
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Original model n = 500 0 0 0 0 0 0 0 0.005 0.000 0

n = 750 0 0 0 0 0 0 0 0.000 0.005 0

n = 1000 0 0 0 0 0 0 0 0.000 0.005 0

Transformed model n = 500 0 0 0 0 0 0 0 0.705 0.750 0

n = 750 0 0 0 0 0 0 0 0.860 0.875 0

n = 1000 0 0 0 0 0 0 0 0.915 0.935 0

Table 3: Percentages of rejection of the linearity hypothesis in the hard-threshold test of Lafferty and Wasser-

man (2008), for model (31). The rows on the top refer to the original model in (31), with non-uniform covariates

X(j). The rows on the bottom refer to the transformed model, with uniform covariates Û(j).

while it correctly identifies the nonlinearities for the transformed model. Of course, the

percentages for covariates 8th and 9th are lower than those observed in figure 2, since the

transformed model is obtained by estimating the distribution function, so an additional es-

timation error is involved. The other results, for the estimation of the bandwidths and the

regression function, are equivalent to those reported in figure 2.

A. Assumptions and proofs

(A1) The bandwidth H is a diagonal and strictly positive definite matrix.

(A2) The multivariate Kernel function K(u) is a product kernel, based on a univariate

kernel function K(u) with compact support, which is non negative, symmetric and

bounded; this implies that all the moments of the Kernel exist and that the odd-

ordered moments of K and K2 are zero, that is

∫
ui11 u

i2
2 · · ·uidd K l(u)d(u) = 0 if some ij is odd, for l = 1, 2. (32)

(A3) The second derivatives of m(x) are |mjj(x)| > 0, for each j = 1, . . . , k.

(A4) All derivatives of m(·) are bounded up to and including order s.

(A5) (hU , . . . , hU ) ∈ B ⊂ R
d and (hL, . . . , hL) ∈ B ⊂ R

d with hU > hL > 0.

(A6) The density function fX(x) of (X1, . . . , Xd) is Uniform on the unit cube.

Proof of Theorem 1. The first part of Theorem 1, P (hj = hU ) → 1 for j > k, follows

straightforward by using Lemmas 3 and 4 and the same arguments as in the proof of Lemma

7.5 in Lafferty and Wasserman (2008).

Now, we suppose that j ≤ k (nonlinear covariate), for which we have to estimate the

optimal multivariate bandwidth. By (17) and (18) we have that V L
j = O(n−1), ∀j. More-

over, by Lemma 1, there exists one and only one multivariate optimal bandwidth, say

{h∗1, . . . , h∗k}. It can be shown that h∗i = O (n−α), i = 1, . . . , k, with α > 0. But {h∗i },

i = 1, . . . , k, is the solution of the system in Lemma 1. So, we have to satisfy the following

condition

O(n−5α) +O(n−5α) = O(n−1+(k−1)α).

Note that V L
j hL contains only k− 1 bandwidths which tend to zero. In this way, α = 1

k+4 .
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Without loss of generality, we can write h∗Uj = hUj n
−α and h∗Lj = hLj n

−α, with some

hUj > hLj > 0, j = 1, . . . , k. By Lemma 3,

E

(
B̂UL

j

)
= BUL

j +O(n−2α), j ≤ k.

Since the solutions of the system in Lemma 1 are continuous functions of B̂UL
j and V̂ L

j ,

we have that h̃j = Op(n
−1/(4+k)), j = 1, . . . , k. Since P (j is nonlinear) → 1, ∀j ≤ k,

when n → ∞, the result follows. ✷

Proof of Theorem 2. The proof follows the same lines as in Corollary 5.2 in Lafferty and

Wasserman (2008) using the results of Theorem 1. ✷

Proof of Theorem 3. Let Ui := FX(Xi) := (F1(Xi(1)), . . . , Fd(Xi(d))), where Fj(·)
is the univariate marginal distribution function, j = 1, . . . , d. Let Ûi := F̂X(Xi) :=(
F̂1(Xi(1)), . . . , F̂d(Xi(d))

)
=
(
Ûi1, . . . , Ûid

)
, where F̂j(·) is the empirical distribution

function, j = 1, . . . , d.

We use the idea of Choi et al. (2000). Let Wi :=
∏d

j=1
1
hj
K
(
xj−Uij

hj

)
as in (7.21) of

Lafferty and Wasserman (2008) and Ŵi :=
∏d

j=1
1
hj
K
(
xj−Ûij

hj

)
.

Now we consider the first element in the matrix (7.20a) of Lafferty and Wasserman

(2008). Using the Taylor’s expansion about Ui, we have

1

n

n∑

i=1

Ŵi =
1

n

n∑

i=1

Wi +
1

n

n∑

i=1

(W̃′
i)
T (Ûi −Ui)

where (W̃′
i) is a d dimension vector of the first derivatives of Wi with respect to Uij ,

j = 1, . . . , d evaluated in a point, say ηi, which belongs to a neighborhood of Ui such that

∥ηi∥ ≤ ∥Ûi −Ui∥, with ∥ · ∥ the Euclidean norm.

Let Â11 :=
1
n

∑n
i=1 Ŵi and A11 :=

1
n

∑n
i=1Wi. It follows that

P
(∣∣∣Â11 − E(A11)

∣∣∣ > ϵsj(h)
)
≤ P (|A11 − E(A11)| > ϵsj(h)/2) + (I)

+P

(∣∣∣∣∣
1

n

n∑

i=1

(W̃′
i)
T (Ûi −Ui)

∣∣∣∣∣ > ϵsj(h)/2

)
(II),

where s2j (h) = C
nh2

j

∏d
i=1

1
hi

as in Lemma 7.1 of Lafferty and Wasserman (2008). The

constant C is defined in (7.10) of Lafferty and Wasserman (2008). We put ϵ =
√
δ log n

as in Lemma 3. For the part (I), using the proof of Lemma 7.1 in Lafferty and Wasserman

(2008), we have that

P (|A11 − E(A11)| > ϵsj(h)/2) ≤
(
1

n

)c1

where 0 < c1 < ∞ and it is independent of n.
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For the second expression in (II), since the dimension of vectors is finite, d, it is sufficient

to bound a component of position j, that is

1

n

n∑

i=1

W̃ ′
ij(Ûij − Uij) ≤ sup

x∈R

∣∣∣F̂j(x)− Fj(x)
∣∣∣ 1
n

n∑

i=1

∣∣∣W̃ ′
ij

∣∣∣ .

Since the Kernel function is defined on a compact set and its first derivative is bounded, it

follows that 1
n

∑n
i=1

∣∣∣W̃ ′
ij

∣∣∣ = Op(1), j = 1, . . . , d. Using the Hoeffding’s inequality we

have that

P

(
sup
x∈R

∣∣∣F̂j(x)− Fj(x)
∣∣∣ > ϵsj(h)

)
≤ n−c2 j = 1, . . . , d,

where 0 < c2 < ∞ and it is independent of n.

Put c := min{c1, c2}. Finally, it follows that I + II ≤ n−c. So, we have the same kind

of bound as in Lafferty and Wasserman (2008) and Lemma 3.

Using the arguments above, we can show that the other elements of the matrices in

(7.20a), (7.35) and (7.39) of Lafferty and Wasserman (2008) have the same order of con-

vergence as in Lemma 7.1 of Lafferty and Wasserman (2008) and Lemma 3. The results of

Lemma 7.4 in Lafferty and Wasserman (2008) and Lemma 4 hold again.

Using the assumptions of this Theorem we can write m(Xi) = m · F−1
X (Ui) := g(Ui).

So that, the assumption (A6) is still valid. Moreover, the arguments above show that we

can use the approximation g(Ûi). In general, when we consider a linear covariate with

Fj which is not uniform, the function g(·) becomes non linear. In this way, we can apply

Theorem 1 with r non linear covariates. The result follows. ✷

Proof of Theorem 4. It is sufficient to apply Theorem 2 replacing Theorem 1 with Theorem

3. ✷

B. Lemmas and Corollaries

To be simple, we arrange the covariates as follows: nonlinear covariates for j = 1, . . . , k,

linear covariates for j = k + 1, . . . , r and irrelevant variables for j = r + 1, . . . , d.

Moreover, the set of linear covariates A can be further partitioned into two disjoint subsets:

the covariates from k + 1 to k + sc belong to the subset Ac, which includes those linear

covariates which are multiplied to other nonlinear covariates, introducing nonlinear mixed

effects in model (1); the covariates from k + sc + 1 to r belong to the subset Au, which

includes those linear covariates which have a linear additive relation in model (1) or which

are multiplied to other linear covariates, introducing linear mixed effects in model (1).

Therefore, A = Ac ∪Au and C ∪A ∪ U = {1, . . . , d}. In such a framework, the gradient

and the Hessian matrix of the function m become

Dm(x) =




D
C
m(x)

D
Ac
m (x)

D
Au
m (x)
0


 Hm(x) =




H
C
m(x) H

CAc
m (x) 0 0

H
CAc
m (x)T H

Ac
m (x) 0 0

0 0 H
Au
m (x) 0

0 0 0 0




(33)
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where 0 is a vector or matrix with all elements equal to zero. Note that the matrices HC
m(x),

H
Ac
m (x) and H

Au
m (x) are symmetric, whereas the matrix H

CAc
m (x) is not. Moreover, for

additive models without mixed effects, all the sub-matrices in Hm(x) are zero, except for

H
C
m(x), which is diagonal.

In our analysis, it is also necessary to take account of those terms in the Taylor’s expan-

sion of m(x) involving the partial derivatives of order 3 (see the proof of Lemma 2 for the

details). To this end, we define the following matrix

Gm(x) =




∂3m(x)
∂x3

1

∂3m(x)
∂x1∂x2

2
. . . ∂3m(x)

∂x1∂x2
d

∂3m(x)
∂x2∂x2

1

∂3m(x)
∂x3

2
. . . ∂3m(x)

∂x2∂x2
d

...
...

. . .
...

∂3m(x)
∂xd∂x

2
1

∂3m(x)
∂xd∂x

2
2

. . . ∂3m(x)
∂x3

d




=




G
C
m(x) 0 0 0

G
AcC
m (x) 0 0 0
0 0 0 0
0 0 0 0


 . (34)

Note that the matrix Gm(x) is not symmetric. Note also that, for additive models, matrix

G
AcC
m (x) is null while matrix G

C
m(x) is diagonal.

In the same way, let the bandwidth matrix be H = diag(HC ,HAc
,HAu

,HU ). Remem-

ber that ∥HC∥ → 0 for n → ∞.

Lemma 2. Under model (1) and assumptions (A1)-(A6), with s = 5, the conditional bias

of the local linear estimator given by (4) is equal to

E








m̂(x;H)

D̂
C
m(x;H)

D̂
Ac
m (x;H)

D̂
Au
m (x;H)

D̂
U
m(x;H)




−




m(x)
D
C
m(x)

D
Ac
m (x)

D
Au
m (x)
0




∣∣∣∣∣∣∣∣∣∣∣

X1, . . . ,Xn





= Bm(x,HC) +Op

(
n−1/2

)
,

where

Bm(x,HC) =
1

2
µ2




tr{HC
m(x)H2

C}+ ν1(H
4

C
)

G
C
m(x)H2

C1+
(

µ4

3µ2
2
− 1
)
diag{GC

m(x)H2
C}1+ ν2(H

4

C
)

G
AcC
m (x)H2

C1+ ν3(H
4

C
)

0
0




,

where the functions ν1(·) : Rk → R, ν2(·) : Rk → R
k and ν3(·) : Rk → R

sc are such that

ν1(0) = 0, ν2(0) = 0 and ν2(0) = 0.

Proof: In general, we follow the classic approach used in Ruppert and Wand (1994) and Lu

(1996), a part from one substantial difference, i.e. we do not assume that the bandwidths

tend to zero for n → ∞. This implies that we must bound all the terms of the Taylor

expansion with respect to m(x) and with respect to fX(x), given that the size of the interval

around the point x does not vanish with n → ∞. Anyway, assumption (A6) imply that the

Taylor expansion is exact with respect to fX . This simplifies remarkably the proof.

The conditional bias of the LLE is given by

E(β̂(x;H)|X1, . . . ,Xn)− β(x) = (ΓT WΓ)−1 ΓT W(M− Γβ(x))

= diag(1,H−1)S−1
n Rn (35)
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where M = (m(X1), . . . ,m(Xn)) and, given ut = H−1(Xt − x), we have

Sn =
1

n

n∑

t=1

(
1 uT

t

ut utu
T
t

)
|H|−1K(ut)

Rn =
1

n

n∑

t=1

(
1
ut

)[
m(Xt)−m(x)− D

T
m(x)Hut

]
|H|−1K(ut).

For Sn, using Taylor’s expansion and assumptions (A2) and (A6), we have

Sn =

∫ (
1 uT

u uuT

)
K(u)fX(x+Hu)du+Op(n

−1/2)

=

∫ (
1 uT

u uuT

)
K(u) +Op(n

−1/2) =

(
1 0
0 µ2Id

)
+Op(n

−1/2). (36)

For the analysis of Rn, we need to introduce some further notation. Suppose that the

function m(x) has at least up to order 3 continuous partial derivatives in an open neighbor-

hood of x = (x1, . . . , xd)
T . Let define the kth-order differential Dk

m(x;y) as

Dk
m(x,y) =

∑

i1,...,id

k!

i1!× . . .× id!

∂km(x)

∂xi11 . . . ∂xidd
yi11 × . . .× yidd ,

where the summation is over all distinct nonnegative integers i1, . . . , id such that i1+ . . .+
id = k. Using the Taylor’s expansion to approximate the function m(Xt), and assumption

(A6), we can write

Rn =
1

n

n∑

t=1

(
1
ut

)[
1

2!
D2

m(x,Hut) +
1

3!
D3

m(x,Hut)

]
|H|−1K(ut) +R∗

n

=

∫ (
1
u

)[
1

2!
D2

m(x,Hu) +
1

3!
D3

m(x,Hu)

]
K(u)fX(x+Hu)du+R∗

n

+ Op(n
−1/2)

=

∫ (
1
u

)[
1

2!
D2

m(x,Hu) +
1

3!
D3

m(x,Hu)

]
K(u)du+R∗

n +Op(n
−1/2)

where R∗
n represents the residual term, which depends on higher order derivatives of the

function m(x). Now, given assumption (A2), some of the terms in the k-th order differen-

tials cancel. We have

Rn =

∫ ( 1
2!D

2
m(x,Hu)

1
3!uD

3
m(x,Hu)

)
K(u)du+R∗

n +Op(n
−1/2)

=

(
r1 + r∗1
r2 + r∗2

)
+Op(n

−1/2), (37)

where the terms r∗1 and r∗2 comes from R∗
n. Solving the integrals and applying the properties

of the Kernel function we have

r1 =

∫
1

2
D2

m(x,Hu)K(u)du =
1

2

d∑

i=1

d∑

j=1

∂2m(x)

∂xi∂xj
hihj

∫
uiujK(u)du

=
1

2
µ2

k∑

i=1

∂2m(x)

∂xi∂xi
h2i =

1

2
µ2 tr{HC

m(x)H2
C};
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in the same way, the element of position j of the vector r2 is

r
(j)
2 =

∫
1

6
urD

3
m(x,Hu)K(u)du

=
∑

i1,...,id

hi11 · · ·hidd
i1!× . . .× id!

∂3m(x)

∂xi11 · · · ∂xidd

∫
ui11 · · ·uir+1

r · · ·uidd K(u)du

=


∑

s̸=r

1

2
µ2
2

∂3m(x)

∂xr∂x2s
hrh

2
s +

1

6
µ4

∂3m(x)

∂x3r
h3r


 ,

while the whole vector r2 is equal to

r2 =
1

2
µ2
2

[
HGm(x)H2 +

(
µ4

3µ2
2

− 1

)
diag{HGm(x)H2}

]
1.

Following the same arguments, it is easy to show that r∗1 = ν1(H
4
C). Combining the (35),

(36) and (37), we obtain

E(β̂(x;H)|X1, . . . ,Xn)− β(x) = diag{1,H−1}S−1
n Rn

=

(
r1 + r∗1

1
µ2
H−1(r2 + r∗2)

)
+Op(n

−1/2)

≈
(

1
2µ2 tr(H

C
mH2

C) + ν1(H
4
C)

1
2µ2GmH21+

(
µ4

6µ2
− 1

2µ2

)
diag(GmH2)1+ 1

µ2
H−1r∗2

)
.

The result follows after some algebra and splitting the last row in four components, C, Ac,

Au and U , respectively. ✷

Corollary 1. Under the assumptions (A1)-(A6), with s = 5, the conditional asymptotic

bias and the asymptotic variance of the partial derivative estimators D̂
(j)
m (x;H), defined in

(4), are

Abias{D̂(j)
m (x;H)} = ν4(H

2
C), Avar{D̂(j)

m (x;H)} =
σ2
ερ2

n|H|h2j

for j ∈ C ∪AC , with ν4(·) : Rk → R, ν4(0) = 0 and

Abias{D̂(j)
m (x;H)} = 0, Avar{D̂(j)

m (x;H)} =
σ2
ερ2

n|H|h2j

for j ∈ C ∪AC .

Proof: It is a direct consequence of Lemma 2, using (33) and (34). In fact, using assump-

tions (A1)-(A6), with s = 5, the asymptotic conditional covariance matrix is

Cov








D̂
C
m(x;H)

D̂
Ac
m (x;H)

D̂
Au
m (x;H)

D̂
U
m(x;H)




∣∣∣∣∣∣∣∣∣
X1, .., Xn





=
σ2
ερ2

n|H|




H−2
C 0 0 0

0 H−2
Ac

0 0

0 0 H−2
Au

0

0 0 0 H−2
U


(1+op(1)).
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✷

Proof of Lemma 1. Define dj :=
BUL

j

(hU )2−(hL)2
, Aj (h) :=

∑k
i ̸=j dih

2
i and Vj := V L

j hL,

j = 1, . . . , k. In this way we can rewrite the equations of Lemma 1 as

4d2jh
5
j + 4Aj

(
h(0)

)
djh

3
j − Vj = 0, j = 1, . . . , k,

for some initial vector h(0). Fix a j. It is easy to verify that the function fj(hj) := 4d2jh
5
j +

4Aj

(
h(0)

)
djh

3
j − Vj has one and only one real positive solution, that is h

(1)
j such that

fj(h
(1)
j ) = 0. Considering j ∈ {1, . . . , k}, we can build the vector h(1) with the elements

h
(1)
j , given the vector h(0). So, there exist continuously differentiable functions, gj , such

that h
(v)
j = gj(h

(v−1)), j = 1, . . . , k, v ∈ N. Now, using Dini’s Theorem, we have

∂h
(v)
j

∂h
(v−1)
i

=
−2dih

(v−1)
i h

(v)
j

5dj(h
(v)
j )2 + 3Aj(h

(v−1))
i ̸= j.

Note that
∂h

(v)
j

∂h
(v−1)
i

= 0 for i = j. But, for increasing values of v ∈ N, {h(v)} forms a

sequence in a compact space of Rk, say S. So, we can extract a subsequence from {h(v)}
which is convergent in S, that is limn→∞ h(vn) = h∗ ∈ S, with vn → ∞ when n → ∞.

Without loss of generality, we can consider S = {h : ∥h∥ = 1} where ∥ · ∥ is the

Euclidean norm. Consider the sign(x) function, equal to 1 for positive x and to -1 for

negative x. If sign(djAj(·)) > 0 then 5dj(h
(v)
j )2 +3Aj(h

(v−1)) has a minimum at h
(v)
j =

0. It follows that
∣∣∣∣∣

k∑

i=1

∂h
(v)
j

∂h
(v−1)
i

h
(v−1)
i

∣∣∣∣∣ =
∣∣∣∣∣

−2h
(v)
j Aj(h

(v−1))

5dj(h
(v)
j )2 + 3Aj(h

(v−1))

∣∣∣∣∣ ≤
2

3
.

If sign(djAj(·)) < 0, using h
(v)
j >

√
−3Aj(·)/(5dj), we obtain

k∑

i=1

∂h
(v)
j

∂h
(v−1)
i

h
(v−1)
i =

−2h
(v)
j Aj(h

(v−1))

5dj(h
(v)
j )2 + 3Aj(h

(v−1))
> 0 ∀v.

So, in this case, {h(v)j } is a monotone sequence with respect to v. Since limn→∞ h
(vn)
j =

h∗j , a component of the vector h∗, it follows that limv→∞ h
(v)
j = h∗j . Using these argu-

ments, we can conclude that there exists one and only one solution, h∗. ✷

We have to state some technical lemmas to prove the Theorems 1 and 2. First of all,

we introduce the following quantities. Consider a vector h = (h1, . . . , hk). Let q(h) :=∑k
j=1 pjh

2
j and q(h; yi) :=

∑k
j ̸=i pjh

2
j + piy

2
i , for some k < d and 0 < pj < ∞, ∀j. Let

Rt(K) :=
∫
K(u)K(wtu)du, with w0 = 1 and w1 = hL/hU . Define

s21(h
U ) :=

1

n(hU )d
σ2
ϵR0(K), s22(h

U ;hL) := s21(h
U )/w1, s

2
3(h

U ;hL) := s21(h
U )

R1(K)

R0(K)
.

23



Lemma 3. For every hU = (hU , . . . , hU ) ∈ B and hL = (hL, . . . , hL) ∈ B, vectors of

dimension d, if the assumptions (A1)-(A6) hold, with s = 4, then

E

(
B̂UL

j

)
= BUL

j +O
(
q(hU )(hU )2 − q(hU ;hL)(hL)2

)
j ≤ k,

E

(
B̂UL

j

)
= 0 j > k.

Moreover, ∀δ > 0

P




∣∣∣∣∣∣∣∣

B̂UL
j − E

(
B̂UL

j

)

sB(h
U ;hL)

∣∣∣∣∣∣∣∣
>
√

δ log n


 ≤ 2n−δσ2

ϵ /(16c
2),

where s2B(h
U ;hL) := s21(h

U ) + s22(h
U ;hL) − 2s23(h

U ;hL) and c2 := max{c21; c22} with

c21 := s21(h
U )/s2B(h

U ;hL) and c22 := s22(h
U ;hL)/s2B(h

U ;hL).

Proof of Lemma 3. Using the assumptions and Lemma (7.1) in Lafferty and Wasserman

(2008), E

(
B̂UL

j

)
can be easily derived. Note that pj in the quantities q(hU ) and q(hU ;hL)

depend on the fourth order derivatives of the function m(·).

Now, we can write

B̂UL
j − E

(
B̂UL

j

)

sB(h
U ;hL)

=

=
m̂
(
x;HU

)
− E

(
m̂
(
x;HU

))

s1(h
U )

c1 −
m̂
(
x;HL

j

)
− E

(
m̂
(
x;HL

j

))

s2(h
U ;hL)

c2.

So, we have that

P




∣∣∣∣∣∣∣∣

B̂UL
j − E

(
B̂UL

j

)

sB(h
U ;hL)

∣∣∣∣∣∣∣∣
>
√

δ log n




≤ P

(∣∣∣∣∣
m̂
(
x;HU

)
− E

(
m̂
(
x;HU

))

s1(h
U )

∣∣∣∣∣ >
√

δ log n

4c21

)
+

+P



∣∣∣∣∣∣

m̂
(
x;HL

j

)
− E

(
m̂
(
x;HL

j

))

s2(hU ;hLj )

∣∣∣∣∣∣
>

√
δ logn

4c22


 .

Using the Bernstein’s inequality as in the proof of Lemma 7.1 in Lafferty and Wasserman

(2008), the result follows. ✷

Now we consider the estimator in (27), for j = 1, . . . , d, as

V̂ L
j = σ2

ϵe
T
1 (Γ

T WL
j Γ)−1 ΓT WL

j W
L
j Γ(ΓT WL

j Γ)−1e1.
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Lemma 4. For every hU = (hU , . . . , hU ) ∈ B and hL = (hL, . . . , hL) ∈ B, vectors of

dimension d, if the assumptions (A1)-(A6) hold, with s = 4, then ∀ϵ > 0

P



∣∣∣∣∣∣

V̂ L
j

s22(h
U ;hL)

− 1

∣∣∣∣∣∣
> ϵ


→ 0 n → ∞.

Proof of Lemma 4. The result follows by means of Theorem 2.1 in Ruppert and Wand

(1994) and Lemma 7.4 in Lafferty and Wasserman (2008). It is sufficient to use Lemma

7.4 in Lafferty and Wasserman (2008) without taking the derivative with respect to the

bandwidth hj . ✷
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