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Introduction  
 
 
In this PhD Thesis, I and my supervisor, Prof. Roberto De Luca, have analyzed some particular 
superconducting devices, the Josephson Junctions and the SQUIDs (Superconducting Quantum 
Interference Devices), from a semi-classical and quantum mechanical point of view. With the 
collaboration of some Russian professors, i. e. the Professors Larisa Zherikhina and Andrej 
Tshovrebov of the Lebedev Institute of RAS (Russian Academy of Sciences), in Moscow, Russia 
and the Prof. George Izmailov of the MAI (Moscow Aviation Institute), also in Moscow.  
Application of these devices (in particular of SQUIDs) as detectors of Dark Matter has been 
considered. 
 
We first describe our theoretical activity about Josephson Junctions and SQUIDs, and then we 
underline the role of SQUIDs as detectors of Dark Matter, in some particular applications that we 
have considered. 
 
We start with the microscopic analysis of a linear chain of N superconductors, for which we have 
considered interactions between first neighbouring sites. In the particular case of N = 2 coupled 
superconductors, so that they form a Josephson Junction, we have obtained the same relations 
characterizing the Feynman model, which describes, from a quantum mechanical point of view, this 
system. The results confirm the validity of Ohta’s semi-classical model, that represents the 
extension of Feynman’s model to a Josephson junction connected to an external f.e.m. source. 
 
We have then analysed the theoretical properties of the Double Barrier Josephson Junction (DBJJ) 
and the Triple Barrier Josephson Junction (TBJJ).  
 
For the DBJJ, a three layer superconducting system, in which the intermediate layer is considered as 
a pure quantum system, we have considered non-homogeneous couplings between the 
superconducting layers 1-2 and 2-3. The coupling constant between the superconducting layers 1-3 
is taken to be small compared to the first ones. 
 
For the TBJJ, a four layer superconducting system, in which the inner two superconducting layers 
are treated as pure quantum mechanical systems, the coupling constants between the layers 1-2, 2-3 
and 3-4 are different, so also in this case we have non-homogeneous couplings, and the coupling 
constants between 1-3 and 2-4 are considered smaller than the previous ones. For sake of simplicity, 
we take the superconducting phase difference of the inner layers 2 and 3 equal  to zero. Under these 
hypotheses, by using Ohta’s semi-classical model, we have obtained the current phase relation 
(CPR) for these systems. It is seen that these devices are different from the sinusoidal one, 
characterizing the simple Josephson Junction (SJJ), and is in good agreement both with the 
theoretical results obtained by Brinkmann, based on a microscopic approach, and also with the 
experimental results found by Nevirkovets et al. The latter results are based on the observation of 
the Shapiro steps, and the analysis of their amplitudes as a function of the applied voltage.  
 
The voltage- current characteristics of a TBJJ, with the previously considered properties, have been 
analytically and numerically studied, both in the case of homogeneous coupling between all the 
superconducting layers and also in the non-homogeneous one. In the homogeneous case, and 
considering also a constant bias of electric current, the voltage-current characteristic of a TBJJ has 
an analytic form very similar to the one of a SJJ, despite a TBJJ has a non-canonical CPR. Of 
course, in the case of a TBJJ, we have an opportune value of the constant of normalization for the 
current, which is different from the corresponding value for a SJJ. 
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However, in the case of inhomogeneous coupling between different layers in the TBJJ, we obtain a 
deviation from this behaviour. In the presence of a radio frequency radiation, integer and fractional 
Shapiro steps are predicted, whose amplitudes, calculated in the homogeneous case, are a clear 
indication of the non-canonical CPR of these systems. 
 
After these theoretical remarks about Josephson Junctions, we describe a mechanical analogy 
between a Josephson Junction and a simple pendulum, in the over-damped limit. This condition, in 
the case of a simple pendulum, indicates that the medium is characterized by a large value of the 
coefficient of viscosity, while, in the case of a Josephson Junction, denotes negligible capacitive 
effects between the two superconducting electrodes. In this situation, we have found that the 
dynamical equation of a simple pendulum is formally equivalent to the one of a Josephson Junction. 
This mechanical analogy can also be used for didactical purposes in order to grasp further 
information about the voltage- current relation of over-damping Josephson Junctions. 
 
A further topic treated in the present work has been the semi-classical and quantum analysis of one-
junction and two-junction quantum interference devices. These systems consist of a 
superconducting loop interrupted by one or two Josephson junctions. Starting from a review of the 
semi-classical and quantum  properties of one-junction interference devices, we have extended our 
analysis to two-junction interferometers. In particular, we have determined the Hamiltonian 
function for this system in the semi-classical limit, and the Hamiltonian operator in the 
corresponding quantum case limited to a Hilbert space spanned by the flux number kets  and . 
In the condition of a negligible value of the superconducting loop inductance, we have also 
calculated, in the quantum regime, the energy and the electric current for these two representative 
states. 
 
 
As for the second part of the PhD thesis accomplished with the collaboration of the Russian 
professors mentioned before, the application of superconductor devices, in particular of SQUIDs,  
as detectors of Dark Matter has been analysed. In this way, an introduction of the problem of Dark 
Matter in the modern cosmology has been given. In particular, two important experiments for the 
registration of Dark Matter particles, one based on Josephson Junctions and the other one based on 
the use of SQUID, have been analysed. The first experiment uses a multi-channel detector, made up 
by a set of weakly coupled superconductors, so that they form a system of Josephson Junctions, 
displaced in the geometrical form of a matrix. The second experiment is a system made up by a 
paramagnetic calorimeter connected with a SQUID, by which it is possible to register the rate of 
interaction of Dark Matter particles, and also the energy release with the atoms of the material. In 
fact, there are several modes of operation of this experimental apparatus, and in particular we have 
focused on the dual channel mode of operation, in order to reduce the lepton background noise 
corresponding to the registration process. 
 
After these considerations, we have dedicated to the analysis of the possible creation of a magnetic 
moment for Dark Matter particles: if they possess this magnetic moment they can 
electromagnetically interact with the common matter, and we have calculated that the cross section 
of this interaction is 9 orders of magnitude larger than the contact interaction with the atomic 
nucleus.  
 
We have also overviewed a theoretical model exploring the possibility that Dark Matter and Dark 
Energy are two aspects of the same Cosmological Essence, defined “Dark Substance”. According to 
this theoretical model, Dark Energy represents the unperturbed state of  Dark Substance, while Dark 
Matter particles play the role of swings or perturbations of it. These perturbations will be stable if 
all their decay channels are blocked, and also, more interestingly for our case, if they are in their 
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state of lowest relative energy minimum, where they coincide with the particles we can 
experimentally register. In fact, the potential energy of the perturbed state of Dark  Substance 
presents some positions of relative minimum, which act as traps for its metastable excited states. 
In these positions of relative minimum, the Dark matter particles are in an excited state, so instable, 
while in the lowest position of relative minimum they are stable, and so do not decay, according to 
the main property of Dark Matter particles. On the other hand, the position of absolute minimum is 
occupied by Dark Energy, as in this theoretical model Dark Energy represents the unperturbed state 
of Dark Substance. 
 
We have finally described two types of experimental systems, which are suitable for Dark Matter 
registration in the two cases considered above. In particular, for the registration of Dark Matter into 
the form of particles, we propose use of a SQUID-paramagnetic absorber, while for the registration 
of a flux of Dark Matter, or equivalently, according to the theoretical model of Dark Substance, of a 
corpuscular flux of Dark Energy, we propose use of a SQUID-magnetostrictor.   
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Chapter 1 
 
 

From microscopic to macroscopic description of 
Josephson dynamics 

 
 
In this chapter we consider a theoretical model, based on quantum mechanics, of the Josephson 
dynamics. In particular, we analyse an array of N coupled superconductors, in which we consider 
only the interaction between nearest neighbour sites. By using some properties of the quantum 
operators algebra, and the Heisenberg picture in quantum mechanics, we obtain a particular set of 
linear differential equations. With opportune considerations, we can adapt this description to only 
two coupled superconductors, and so we finally obtain two differential linear equations, which are 
similar to those derived by Feynman in his celebrated model for Josephson junctions. 
 
 

1.1  Introduction 
 
 
The dynamics of two weakly-coupled superconductors was first predicted by Josephson in 1963 [1]. 
Successively, a simple and celebrated model of a Josephson junction (JJ) was proposed by Feynman 
[2]. Even though Feynman’s description of a JJ is useful in considering a two-level quantum system 
in which the interacting condensates are not perturbed by an external classical system, the case in 
which an external voltage source is applied across the JJ has been fully taken into account by Ohta 
[3]. In this respect, an analysis taking from a microscopic Hamiltonian to the Feynman equations 
for a Josephson junction is still lacking. More recently, after the discovery of high-temperature 
superconductors [4], models of one-dimensional arrays of Josephson junctions [5-7] have been 
widely adopted in the study of the physical properties of granular superconducting systems.  
In the present chapter we perform a microscopic analysis of N coupled superconductors in which 
nearest-neighbour interactions are present. We define the dynamics of the order parameter of each 
superconducting element by recurring to the Heisenberg picture for fermionic operators. In this 
way, a set of coupled ordinary differential equations (ODEs) is obtained. When specializing this 
system of ODEs to only two coupled superconductors, Feynman’s model can be obtained. These 
results confirm the correspondence between the microscopic picture proposed in the present chapter 
and, by generalizing to a non-isolated JJ, the semi-classical analysis given by Ohta. In this way, 
further generalization of Ohta’s model to multi-barrier Josephson junctions [8] based on the semi-
classical analysis can be retained to agree with a strict microscopic description of these types of 
junctions, lately proposed for application in fabricating innovative quantum interference devices [9-
10].  
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1.2  Feynman’s model 
 
In this section, we consider Feynman’s model and Ohta’s semi-classical model [2], [3], for the 
description of the dynamics of a Josephson Junction JJ, (i.e. a system made up by two weakly 
coupled superconductors, 21 SandS ), that is  based on the Josephson’s equations: 
 

dt
dV

senII J






2
0

0,





                                               (1.1) 

 
where I is the superconducting current flowing through the insulating barrier, 0,JI  being its 
maximum value,  12    is the superconducting phase difference across the JJ, in which 1  and 

2  are the superconducting phases of the k-th electrode, V is the voltage drop through the JJ, and 

e
h
20   is the elementary flux quantum, expressed as the ratio of Planck’s constant h, and of the 

absolute value of the Cooper pair charge 2e. 
We start by noticing that the superconducting phases 1  and 2 are defined in the wave functions of 
the considered superconductors: 
 

21
2211 ;   ii eNeN   ,                  (1.2) 

 
where kN  is the number density of Cooper pairs. We can sketch a Josephson junction in the next 
figure 1.1. 
 

 
 
 
Figure 1.1. A Josephson junction. This device is made up by two pieces of superconducting 
materials, separated by a very thin insulating barrier.  
 
 
The Feynman’s model [2] is a pure quantum mechanics model, which is able [11] to derive only the 
first of the equations (1.1), the so called Current-Phase Relation (CPR), but it is not able to derive 
the second one, that is called Voltage-Frequency Relation (VFR). In fact, it does not provide a 
consistent account of the external bias circuit, which has a parallel connection with the JJ, as shown 
in figure 1.2. 
This drawback was solved by Ohta [2], [3], who introduced a semi-classical model based on a 
rigorous quantum derivation, in which an additional term, due to energy contribution of the external 
classical circuit biasing the JJ, is added. Let us consider, the analytic description of  these two 
models. 
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Starting with Feynman’s model, which is, as just said, a quantum mechanical model, we can 
describe [11] the dynamics of JJ by using the Schroedinger equation: 
 


0Ĥ

t
i 




 ,                                                               (1.3)   

 

where 









2

1




   and 1 and  2 have been defined in equation (1.2). 

 

 
 
 
Figure 1.2. A schematic representation of  Josephson junction with both electrodes connected to an 
external classical circuit.  
 
 
We can calculate the matrix expression of the Hamiltonian operator 0Ĥ ; it is made up by the 
summation of three terms:  
 

KHHHH ˆˆˆˆ
210  ,                                                     (1.4) 

 
where 1111

ˆ EH    is the Hamiltonian operator of the superconductor 1,  2222
ˆ EH   is 

the Hamiltonian operator of the superconductor 2, and )(ˆ
1221   KH K  is the 

Hamiltonian operator describing the interaction between the two superconductors. By considering 
that the vectors 1  and 2  constitute an orthonormal set, we know that: 
 









jifor
jifor

jiji 0
1

,                                                                       (1.5) 

 
So, if we calculate the matrix elements of the operator 0Ĥ :  
 









jiforK
jiforE

HH i
jiij  00

ˆ)ˆ(      
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we get: 
 














2

1
0

ˆ
EK

KE
H  .                                                                                    (1.6) 

 
By now substituting (1.6) in (1.3), and making the matrix product, we have: 
 
































2

1

2

1

2

1







EK
KE

t
i   

 


















122
2

211
1







KE
t

i

KE
t

i





                                                                              (1.7)                          

 
If we express the scalar wave functions as in (1.2), we get, from the first equation: 
 

2111
211

1
1

1

12
  iiii eNKeNE

dt
deNe

dt
dN

N
i   
  . 

 

If we now multiply both members by 
1

1

N
e i

, we obtain: 

 ie
N
NKE

dt
dN

N
i

dt
d 

1

2
1

1

1

1

2


  ,                                                          (1.8) 

 
where 12    is the superconducting phase difference. By doing the same for the second 

equation, in particular, by multiplying both members of the second equation by 
2

2

N
e i

, we obtain: 

 
 ie

N
NKE

dt
dN

N
i

dt
d

2

1
2

2

2

2

2



 .                                                         (1.9) 

 
By expressing  sincos iei  , from (1.8), we get: 
 


 sincos

2 1

2

1

2
1

1

1

1












N
NKi

N
NKE

dt
dN

N
i

dt
d 

 .                     (1.10) 

 
So, equating the real and the imaginary part of both members of this expression, we get: 
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



sin
2

cos

1

21

1

1

2
1

1

N
NK

dt
dN

N

N
NKE

dt
d









 

 
In the same way, from the expression: 
 


 sincos

2 2

1

2

1
2

2

2

2












N
NKi

N
NKE

dt
dN

N
i

dt
d 

                        (1.11) 

 
we get: 
 





sin
2

cos

2

12

2

2

1
2

2

N
NK

dt
dN

N

N
NKE

dt
d









 

 
Therefore, we obtain: 
 

dt
dNNNK

N
NKN

dt
dN 1

21
2

122 sin2sin2
 


. 

 

The relation  sin2
21

12 NNK
dt

dN
dt

dN


  satisfies the principle of charge conservation, since 

we can interpret the term ieN2  with i = 1, 2 as the electric charge density for unitary volume 
inside the i-th superconductor, and so the time variation of it represents the electric current flowing 
from a superconductor to the other one. Therefore, by multiplying the equation 

sin2
21

2 NNK
dt

dN


  by the term -2e in both members, we obtain: 

 
sin0,jII  , 

 

where 
dt
eNdI )2( 2

   which is the electric current, made up by Cooper pairs, flowing between the 

superconductors, and 210,
4 NNeKI J


 . 

In this way, we notice that, by using the Feynman model, we have obtained the first Josephson 
equation, i.e. the CPR. This means that the Feynman model is able to describe the CPR of a 
Josephson junction.  
 
As far as the second Josephson equation (i.e. the VFR) is concerned, we can consider that, by 

subtracting from the expression of 
dt

d 2   the one of 
dt

d 1  and by doing calculations, we get: 

 



 12

.cos)()(

coscos)(

1
2

2
1

1212

1
2

1
2
1

212





























N
N

N
NKEE

dt
d

N
NKE

N
NKE

dt
d





 

 
By taking  12     and  eVEE 212    we finally obtain: 
 

 cos2
1

2

2

1










N
N

N
NKeV

dt
d


.                                        (1.12) 

 
In order to obtain from this equation the VFR, we must have that 21 NN  ; this latter relation, 
however, is not consistent with conservation of electric charge 021  NN  . Therefore, we may 
conclude that the Feynman model does not provide a proof of the strict voltage-frequency 
Josephson relation (VFR). The importance of  Feynman model, however, rests in the fact that a 
single JJ can be considered, at least in first approximation, as an isolated quantum system, which 
verifies the current-phase relation (CPR). Furthermore, Feynman’s model can be applied to any 
weakly coupled two-level quantum system as long as it does not interact with the classical world. 
 
 

1.3  Ohta’s semi-classical model 
 
In his important work [3], Ohta stated that he had long been puzzled by the fact that one could not 
achieve a strict VFR by means of the Feynman model. He thus developed a rigorous semi-classical 
analysis which took into account the contribution due to the external circuit. We shall here give a 
simplified account [11] of the more complete analysis given by Ohta. 
Starting from quantum mechanical considerations, Ohta first recovered Feynman’s Hamiltonian. 
However, considering the classical nature of the problem (the system made up by the external 
circuit and the JJ), Ohta projected Feynman results onto the classical world. A way to do this is to 
consider the classically observable energy: 
 

 00 ĤH  .                                                                                           (1.13)  
 
Carrying out the calculations, we find: 
 

 

.
2

2
)()(

212211
)(

21
)(

21221121

21
2

22
2

112222121111
2

1

2

1
210

1212
1212








 





































ii
ii eeNNKNENEeNNKeNNKNENEK

KEEEKKE
EK

KE
H

 

 
So, we get: 
 

)cos(2 122122110   NNKNENEH .                                             (1.14) 
 
This is only one portion of the classical Hamiltonian related to the whole system in figure 1.2. The 
remaining portion is given by the energy provided by the circuit, which can be written as 
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 IVdtW , typical form of an electromagnetic energy. In this way, the classical complete 
Hamiltonian can be written as follows: 
 

WNNKNENEWHH  )cos(2 122122110  .                                            (1.15) 
 
The minus sign near the expression for W is due to the fact that it represents an energy transferred 
from the external environment to the system. 
The transition to the classical world is, in this way, complete so that a solution to the problem by 
classical mechanics can be found. First, let us note that k  and kN  are conjugate variables (angle-
action variables, for k = 1, 2). Hamilton’s equations thus give: 
 

k
k

HN



                                                                                                                      (1.16a) 

 

k
k N

H






 1                                                                                                                        (1.16b)  

 
for k = 1, 2, where the dot represents the time derivative. 
 
By now defining the coupling energy as )cos(2 1221   NNKEC , and by setting 
 

WEE CR  ,                                                                                                                      (1.17) 
 
we may rewrite the above equations as follows: 
 

k

R
k

EN



                                                                                                                        (1.18a) 

 

k

Rk
k N

EE






 1                                                                                                                 (1.18b) 

 
for k = 1, 2. Let us now consider the time derivative of RE ; by using the theorem of total 
differential we get: 
 




















2

1k
k

k

R
k

k

R
R

EN
N
EE 


 .                                                                                                 (1.19) 

 
By using the relations (1.18a) and (1.18b), we obtain: 
 

 
 




































2

1

2

1

2

1
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k k

k
k

k

k

k

R

k

Rk

k

R

k

R

k

R
R

ENEE
N
EEEE

N
EE








. 

 
So we get: 
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)()( 2211

2

1

NENEENE
k

kkR
 

 . 

If we set eVE 1  and eVE 2 , so that eVEE 212  , we find: 
 

  dtNNeVdtNENENENEdtEE RR )()()( 1222112211
  .                     (1.20) 

 
 
Let us now consider the Josephson Junction to be in a thermal bath, which is the condition 
indicating that the temperature is uniform and constant in all the thermodynamic system considered, 
so that 021  NN  . In this way, the charge conservation relation 021  NN   becomes a trivial 
identity and the function RE  is seen to be zero. We may also notice that, for constant values of 1E  
and 2E , the Hamiltonian H is a constant of motion, so that the energy of the system is conserved. 
By using these results, in particular the relation (1.18b), we have: 
 


 k

k
E

                                                                                                                                  (1.21) 

 
for k = 1, 2. This relation leads directly to the VFR, in fact, by knowing that 


 eVEE 212
12 


  and by denoting by 12    the difference between the 

superconducting phases of the electrodes in the Josephson Junction, we obtain:  
 




eV2
 .                                                                                                                               (1.22) 

 
The above expression is the strict form of the VFR sought. 
 
In addition, if we look in details at the condition of thermal bath, according to which 

00  RR EE  , we have: 
 

IVNNKWEC  )sin()(2 122112    
 
By using the relation (1.22) we get: 
 

sin4
21NNeKI


  .                                                                                                       (1.23) 

 
Equation(1.23) is just the CPR for a Josephson Junction, expressed in the relation (1.1). 
 
 
1.4   N coupled superconductors 

 
In order to prove that Feynman model indeed follows from a microscopic analysis of the 
superconducting system, we can start by considering [12] the Hamiltonian operator Ĥ  for an array 
of N nearest neighbour superconductors: 
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.).ˆˆ(.).ˆˆ(ˆˆˆ

,
,,11,,,

,
,, chccKchccccH

i
iiii

i
iii

i
iii   














 ,                 (1.24) 

 
where i = 1, 2, …, N is the index labelling the superconductors,  is the spin index, which assumes 
only the two values ,  (spin up and spin down), 1, iiK  is the coupling constant between the 
superconductors i and i+1, which describes the electromagnetic interaction between two electrons, 
each one in a different site (i or i +1), candc ˆˆ are the operators of destruction and creation, and 
h.c. stands for hermitian conjugate. For example, the hermitian conjugate of  the operator 



 ,, ˆˆ iii cc  

is the operator   ,,
* ˆˆ iii cc , in which, by the symbol * we denote the complex conjugate of a function 

or of a constant. In the same way, the hermitian conjugate of the operator  ,,11, ˆˆ iiii ccK 
  is the 

operator:   ,1,
*

1, ˆˆ 


 iiii ccK . In these expressions we have also considered the term i , defined in the 
following way :  
 

 i  ,, ˆˆ ii cc .                                                                                          (1.25) 

 
The quantity i is thus the time dependent expectation value of the product of two destruction 
operators.  This quantity can be identified with the order parameter, being it proportional to the 
numerical density of Cooper pairs.  
We can sketch this system, and the interactions among its superconductors in the next figure 1.3. 
 

 

 
Figure 1.3. Schematic representation of a one-dimensional array of weakly coupled 
superconducting islands. The coupling constant between the adjacent sites i and i+1 is denoted by 
Ki,i+1. 
 
 
The Hamiltonian operator written in (1.24), which can act on the superconducting wave function of 
a single electron on the site i, for i = 1,2, …, N, is made up by the sum of three terms (that are three 
summations).  
The first term, 0Ĥ  




,
,, ˆˆ

i
iii cc , as usual, describes the kinetic properties of electrons. The scalar 

quantity i  is  the energy of an electron; so the analytic expression of  0Ĥ  represents the total 
kinetic energy of the electrons present on the N superconductors.  
The second term, denoted as SĤ , describes the coupling potential energy of a single pair of 
electrons, both present on the same superconductor, represented by the index i, (it’s well known, in 
the theory of superconductivity, that these electrons, through their electromagnetic interaction with 
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the ions of lattice, become a Cooper pair). By carrying out the summation on all the N 
superconductors, we get all the possible interactions between the electrons present on each of these 
superconductors, as represented by the analytic expression of  SH . 

The third term, denoted as KĤ , describes the interaction potential energy between electrons on next 
neighbouring superconductors. In the analytic expression of KĤ , we notice that 1, iiK  is the 

coupling constant between two next neighbouring superconductors (i and i+1), the operator 
 ,1ˆic  

creates an electron on the superconductor i+1, and the operator ,ˆic  destroys an electron on the 
superconductor i; in the same way, the hermitian conjugated operator h.c., defined before in 
expression (1.24), destroys an electron on the site i+1 and creates it on the site i. So, an electron is 
induced to pass (or we may say to jump) from a superconductor to the next one, and for this reason, 
the term KĤ  can be defined “hopping term”. It is interesting to notice that one could arrive to a 
similar analytic expression of the Hamiltonian by considering a Fermi- Hubbard model with an 
attractive interaction [13], and also by a mean-field approximation giving the definition of the order 
parameter in (1.25). 

Once we have described [12] the analytic properties of the Hamiltonian operator Ĥ , let us 
consider the time evolution of the function i , which, as just considered, can be interpreted as the 
wave function i  of the superconducting state on the site i. In order to analyse the time evolution of 
this quantity, for which :  
 

 Hcc
t

i ii
ˆ,ˆˆ ,,  




 .                                                                                                                       (1.26) 

 

For sake of simplicity, we can denote the symbol 
t
  as t . 

 
The fermionic operators ,ˆic  obey to the following anti-commutation rules: 
 
      0ˆ,ˆ;ˆ,ˆ;0ˆ,ˆ '''' ,,,,,  

 
jiijjiji cccccc .                                                                   (1.27) 

 
So, we get: 
 

   HccicHciccii iiiiiitit
ˆ,ˆˆˆˆ,ˆˆˆ ,,,,,,     .                                                            (1.28) 

 
By using the relations (1.27), and the property: 
 
 
     CABCBACBA ˆ,ˆˆˆˆ,ˆˆˆ,ˆ                                                                      
 
we can calculate the two terms  Hci

ˆ,ˆ ,  and  Hci
ˆ,ˆ , . 

 
Therefore, knowing that KS HHHH ˆˆˆˆ

0    we get: 
 
        ,1,1,1,1,,,,,,,0, ˆˆˆ,ˆ;)ˆˆ(ˆ,ˆ;ˆˆ,ˆ 





  iiiiiiKiiiiSiiii cKcKHcccHccHc         (1.29) 
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where , . 
 
By using these results for the operators of commutation, and by doing all the calculations, inside 
(1.28), if we consider the operators    
 






  ,,,, ˆˆˆˆˆ iiiii ccccn                                                                                                                      (1.30) 

 
and the functions 
 

  ,,1,1, ˆˆˆˆ iiiii cccc                                                                                                          (1.31) 

 
 we get the equations: 
 

  iiiiiiiiiiit KKni   ,11,1ˆ212  .                                                                    (1.32) 
 
In all these expressions i = 1, 2,…, N. In order to define the complete dynamics of the system of the 
N differential equations in (1.32), we need to define the time evolution of the functions defined in 
(1.31), and so we calculate: 
 

       HcccHcHcccHci iiiiiiiit
ˆ,ˆˆˆˆ,ˆˆ,ˆˆˆˆ,ˆ ,,1,,1,1,,11,    .                               (1.33) 

 
By using the relations (1.29), and by getting out all the calculations, we obtain: 
 

11,2,11,1
*

1,1 )2()2()(   iiiiiiiiiiiiiiiiiit KKKMKMi                 (1.34) 
 
where we have defined the following functions: 
 




















,,1,,1
*

,1,,1,

ˆˆˆˆ

ˆˆˆˆ

iiiii

iiiii

ccccM

ccccM
                                                                                                      (1.35) 

 
and the function i  as follows: 
 

  ,1,1,1,1 ˆˆˆˆ iiiii cccc .                                                                                                 (1.36) 

 
According to our hypothesis of interactions only between first neighbouring sites, the next 
neighbouring sites are uncorrelated, and so we have 0 i . In this way, equations (1.20) and 
(1.22) suffice to describe the dynamics of the system of N coupled superconductors. 
In the following section we shall consider the application of these results to the case of 2 coupled 
superconductors, which form the so called Josephson Junction, and we solve, by using some 
approximations, the equations (1.20) and so also the equations (1.22). 
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1.5   Two coupled superconductors: a Josephson Junction 
 
In the case of only two coupled superconductors (N = 2), we may rewrite [12] equations (1.32) and 
(1.34) by considering  i = 1, 2. We can also show that the expectation value of the number operator 






  ,,,, ˆˆˆˆˆ iiii ccccn  is n  

2
1 . In fact, we can consider that electrons are fermions, so they obey to 

the Fermi-Dirac statistics, that is:  
Tk

E

Be
Ef 





1

1)( ; as the chemical potential  is very close to 

Fermi energy FE , and the most sensible electrons to the interaction with phonons (so that Cooper 
pairs are formed) are the ones whose energy is closest to the Fermi energy FE , we notice that, for 
these electrons: 
 

2
1)()(  FEfEf .                                                                                                  (1.37) 

 
It is known that the Fermi-Dirac statistics represents the number of fermions per unitary volume, in 

an unitary range of energy values, we notice that this number is 
2
1 . As the expectation value of the 

number operator equals to the number of particles which are present in a well defined state (0 or 1, 
according to Pauli Exclusion Principle), it can be considered equals to the number of electrons 

represented by the Fermi-Dirac statistics, 
2
1)( FEf . 

So, we may set  
 

2
1

21  nnn .                                                                                            (1.38) 

 
Thus, in the case of  N = 2 coupled superconductors, we have, from equations (1.32) and (1.34): 
 




















22,311222

21,2
*
112,111211

11,2001111

2

)2()2()(

)
2
121(2

KKi

KMKMi

KKi

t

t

t













 

 
As we are only considering two superconductors, we have: 02,3 K . We can also set 

KKK  1,22,1 , and make use of the simplifying hypothesis by which 1
*
1 MM  , so that 1M  is a 

real function of time. In this way, the previous set of differential equations can be simplified as 
follows: 
 
















1222

21
1

1211

1111

2

))(
2

(2)(

2







Ki

MKi

Ki

t

t

t







                                                    (1.39)  
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In order to solve [5] the two differential equations for 1  and 2 , we can solve the differential 
equation for 1 ; so, substituting the analytic expression obtained for 1  inside the differential 
equations for 1  and 2 , we can solve them. As for the solution of the differential equation for 1 , 
we can, first of all, set: 
 

eVeVMKK   21
1 ;;

2
~                                                         (1.40)  

 
So we have: 
 

  21 . 
 
In this way, the differential equation for 1  can be rewritten in the more simplified form: 
 

)(~22 2111   Ki t .                                                                       (1.41) 
 
Being it a linear differential equation, we know that its more general solution can be expressed as 
the sum of the solution of its homogeneous associated differential equation, and of a particular 
solution of (1.41). The associated homogeneous differential equation is: 
 

0)2( ,1  Hti  , 
 
its solution being: 
 

)2exp()0()( 1,1 titH


  .                                                                         (1.42) 

 
In order to find the particular solution of (1.41), we can use the method of Green function: 
 

 




 ''
2

'
1

'
,1 )()()(~2)( dtttttKtP                                                   (1.43) 

 
in which )(t  is the Green function, or also called the kernel function, and must satisfy this 
differential equation: 
 

)()()2( tti t                                                                                   (1.44) 
 
where )(t  is the Dirac distribution function, so defined: 
 









00
0

)(
tfor
tfor

t                                                                               (1.45) 

 
In fact, if we substitute the expression (1.43) in (1.41), and, by using the expression (1.32), we do 
all the calculations, we find this result: 
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 




 ))()((~2)()()(~2)2( 21
''

2
'

1
'

,1 ttKdtttttKi Pt  , 

 
where, in the latter equation, we have used the property (1.45) of Dirac distribution function. 
Having found that (1.43) is a particular solution of (1.41), we must determine the analytic 
expression of the function )(t ; it can be expressed in the factorized form: 
 

)()()( ttAt                                                                                     (1.46) 
 
where  )(t  is the Heaviside unitary step function, so defined: 
 









00
01

)(
tfor
tfor

t   

 
The reason why we use this function, inside the expression (1.46), is that )(t  represents the 
response of the system to an external interaction, represented by the function (1.45); in particular, 
this response starts at 0t , and it is zero before, i. e., for t < 0. Therefore, by inserting the 
expression (1.46) inside (1.44), and by doing the opportune calculations, we get: 
 

 
    )()0(1)(2)()(

)()()()()(2)()(
tAitAtAit

tttAitAttAit

t

tt











                      (1.47) 

 
In this expression we have used the result: 
 

)()( t
dt

td 
                                                                                   (1.48) 

 

so that )()()( ttAi
dt
dtAi 

  , and, by using the property of  (t) that, for 0t  is equals to 0, we 

have: 
 

)()0()()( tAittAi    . 
 
As )0(A  is an arbitrary constant, we can take:  
 



iA )0( . 

 
So, the equation (1.24) becomes: 
 
 

  0)(2)()(  tAtAit t   . 
 
Knowing that, for 1)(0  tt  , we get: 
 

0)()2(  tAi t                                                                     (1.49) 
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and its solution is: 
 

)2exp()( tiitA



  . 

 
Therefore: 
 





  )(2exp)()( ''' ttittitt




                                                      (1.50) 

 
and 
 









  '''

,1 )(2exp)(
~2)( dtttittKitP




 .                                              (1.51) 

 
As we have just said, the most general solution of (1.51) is given by the sum of the solution of the 
homogeneous associated differential equation, and of the particular solution considered: 
 

)()()( ,1,11 ttt PH   .                                                                                 (1.52) 
 
For ranges of time  t >> 0 we can consider negligible the term )(,1 tH , and so we can approximate 
the solution with )(,1 tP )()( ,11 tt P   for t >> 0. In order to simplify the expression (1.51), we 

can, first of all, notice that for '' 0 tttt   we have: 
 

1)( '  tt , 
 
while for 0'  tt  we have:  0)( '  tt . Therefore, we can rewrite the (1.51) in the following 
way: 
 

 






 

t

dtttittKit '''
2

'
11 )(2exp)()(

~2)(



 .                                   (1.53) 

 
To further simplify this expression, we can operate [12] the following change of variables: 
 

2
 i .                                                                                                 (1.54) 

 
So, in the expression of the exponential function, we get: 
 





 



 






  )(exp)(2exp)(2exp ''' ttttitti



 . 

 
In this way the expression (1.53) becomes: 
 

 






 



 

t

dtttttittKit ''''
2

'
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where we have considered    for sake of simplicity. The position (1.54) allows the introduction 
of a cut-off time *t  in the expression (1.55). In fact, for *t  sufficiently close to t, we may set: 
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where we can consider negligible the first integral, because for 't  comprised between   and *t  
we have: 
 

1)(exp ' 



  tt



  

 
so that the first integral tends towards zero.  

Assuming now that )(1 t  and  )(2 t  are slowly varying functions in the interval  tt ,* , we get: 
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In this way, we can calculate the integral considered in (1.56) as follows 
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In fact, as 't  is very close to *t , it is possible to approximate 'tt  with *tt   , and we can set: 
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The relation 


 A
  , with A a constant of order one, follows from the fact that   is the potential 

interaction energy between two electrons, one on the site i, and the other one on the site i +1, which 
decays in a characteristic time  . We can also consider that the interaction energy   is usually less 
than the energy  of an electron on the site i; in reality it happens that the electrons forming a 
Cooper pair, and belonging to different first neighbour sites, tend to pass on the same site, so to lead 
to the creation of Cooper pairs on the same superconductor site. In this way, we can say that 
expression (1.55) indicates the sum of the kinetic energy of the electron (represented by i ), plus 
the interaction energy   of the same electron with the external environment, that in this case is the 
next-neighbour superconductor, is the total energy of the electron. The factor 2 in (1.55) is taken in 
order to simplify the calculations in expression (1.56). 
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Coming back to the calculation of integral in (1.56), we may consider that the term 







Aexp  can 

be directly inserted inside the constant K~ . In this way, we can calculate the integral as follows: 
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By noticing that 1*  tt , we can approximate the exponential term as: 
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having considered the Taylor series expansion of  
2

1
2xxe x   valid for x << 1. In this way, 

considering the expression (1.56), we get: 
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If we substitute this expression obtained for  )(1 t  inside the two differential equations for 1  and  

2 , in the expression (1.39), we get for :1  
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By setting: 
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we get: 
 

21111 2   ti      )()()2( 2111 tti t   . 
 
In the same way, we get, for 2 : 
 

1222 )2(   ti . 
 
By now setting 
 

ii E2 ,      ( 2,1i )    
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where iE  can be interpreted as the energy of the Cooper pair ( so a system of two electrons) on the 
superconductor i, we obtain the following form for the differential equations: 
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                                                    (1.59) 

 
In order to obtain an Hamiltonian system, as in the case of Feynman’s celebrated model of 
Josephson Junctions, we can consider that in (1.58) there is a real part, defined as R , and an 

imaginary part, defined as I . In this respect, we notice that the quantity R = 2

2~2


 KK  is a real 

parameter, describing the interaction energy between two Cooper pairs on different superconducting 

sites. In fact, we know that R  is proportional to 


 1
 , where  , defined in expression (1.54), is, 

as just considered, the potential energy between two electrons on different first neighbour sites. By 
considering  the quantities Rkk EE ~ , which are the effective energies of a Cooper pair on the 
site k = 1, 2, we get: 
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These differential equations are similar to the ones obtained by Feynman in his celebrated model of 
a Josephson junction. At the end of this chapter we may notice that, in deriving equation (1.60), we 
have made use of a formal solution of 1  in terms of 1  and 2 , as expressed in relations (1.39). If 
we carry out the same kind of analysis for more than two coupled superconductors, we can obtain 
the extension of Feynman’s and Ohta’s models to multi-barrier Josephson junctions, already 
proposed by De Luca and Romeo in reference [14], which is, as just remarked in the introduction, in 
good agreement with a strict microscopic description of these types of devices. 
 
 

1.6  Conclusions 
 
We have considered a microscopic description of N coupled superconductors in which nearest-
neighbour interactions are present. Starting from the time evolution of the fermionic operators ĉ  
and ĉ  in the Heisenberg picture, we obtain a set of coupled ordinary differential equations for the 
order parameters i .  
Since the main aim of the present analysis is to show that Feynman’s model for a single Josephson 
junction can be justified by a microscopic model, we have specifically written the resulting system 
of differential equations in the case of two coupled superconductors. In this simple case Feynman’s 
model is obtained. In this way, one can argue that there exists a strict correspondence between the 
microscopic picture described in the present work and the semi-classical analysis proposed by 
Feynman and successively refined by Ohta. Therefore,  generalizations of Ohta’s model to multi-
barrier Josephson junctions [8] based on the semi-classical analysis developed by the latter authors 
can be retained to agree with a strict microscopic description of these systems.  
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Chapter 2 
 
 

Mechanical analogue of an over-damped Josephson 
junction 

An over-damped pendulum can be adopted as a mechanical analog of an over-damped Josephson 
junction. The basic equations leading to the driving torque versus the time average of the angular 
frequency are studied. The mechanical analog can be used to provide additional insight into the 
current-voltage characteristics of over-damped Josephson junctions.   
 
 
 

2.1  Introduction 
 
In 1973 B. D. Josephson received the Nobel Prize for having predicted the so called d. c. and a. c. 
Josephson effects [1] in a superconducting device that was named after him: the Josephson junction 
(JJ). A JJ consists of two weakly coupled superconductors. The dynamics of the superconducting 
phase difference   across the junction is described by the following equations [15]: 
 

sin0,JII                                              (2.1a)         



eV
dt
d 2


                                                (2.1b)                            

where I is the current flowing through the junction ( 0,JI being the maximum value that can flow      
inside the zero-voltage state), ħh, h being Planck’s constant, and V is the voltage across the 
two superconductors.  

In the d. c. Josephson effect a non-dissipative current can be seen to flow at zero voltage, as it can 
be shown by setting V=0 in (2.1b), so that  constant.  In this way, 0,JI  represents the maximum 
value of I flowing in the junction in the zero-voltage state.   

In the a. c. Josephson effect, the voltage across the JJ is kept at a fixed non-zero value V0. 
Integrating both sides of Eq. (2.1b) we obtain  (t)eħVt 0 where 0 is the constant of 
integration. Therefore the current I is seen to oscillate at a frequency J eħV.  

Alternative derivations of equations (2.1a-b) have been also proposed by Feynman [2] and by 
Ohta [3], as we have seen in the preceding chapter. In the Feynman model a JJ is described as a 
weakly coupled two-level quantum system. Ohta noticed that Feynman model did not include an 
additional term due to energy contribution of the external classical circuit biasing the Josephson 
junction. The latter author therefore introduced a semi-classical model based on a rigorous quantum 
derivation to attain full agreement between equations (2.1a-b) and the corresponding final equations 
obtained by means of his valuable semi-classical analysis.  

In order to describe the dynamics of the superconducting phase difference  in an over-damped 
JJ, a Resistively Shunted Junction model can be adopted [15]. 



 26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  Resistively Shunted Model for a Josephson  junction. The junction on the left is 
described by a parallel connection of a resistor with resistance R and an ideal Josephson element J. 
In  the latter a  current sin0,JII   can flow. 
 
 
In this model a purely superconducting element carrying a current I expressed in terms of  as in 
Eq. (2.1a) is placed in parallel with a resistor of resistance R, as shown in fig. 1. By injecting a 
current IB in the system and by invoking charge conservation, we may write:  

BJ II
R
V

 sin0,                   (2.2) 

where V is the voltage across the JJ. By expressing V in terms of   as in Eq. (1b) and by 

introducing the dimensionless quantities 
0,J

B
B I

Ii    and t
RI J

0

0,2





   we may rewrite equation 

(2.2) as follows:   

Bid
d

 

 sin  .                                      (2.3) 

The above equation also represents [16] the dynamics of an over-damped simple pendulum. 
Therefore, starting from this analogy [15], [2], [3], [17], we consider the static and dynamic 
solutions of Eq. (2.3) referred to a simple pendulum with a constant forcing term, trying to grasp 
some physical insight from these expressions. Successively, we derive [16] the curve of the driving 
torque versus the time average of the angular frequency. Finally, the analogy between the two 
systems is utilized to discuss the current-voltage characteristics of over-damped Josephson 
junctions. 
 
   
2.2  An over-damped pendulum 
 
Let us consider [16] the pendulum hinged in O and consisting of a massless rod of length l and a 
spherical body of mass m, as shown in fig. 2.2. Let us also assume that the sphere of mass m has 
radius R. This sphere is moving in a fluid of density F , so that it is subjected to the buoyance 

force of intensity FB gRF 

3

4 3

 , where g is the acceleration due to gravity. In addition, by 
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assuming validity of Stokes’ law, the sphere is taken to be subject to a viscous force, opposing its 

velocity and of intensity 
dt
dRlRFS
 )(6  ,  being the coefficient of viscosity of the medium, 

and, of course, 
dt
dRl )(  is the sphere velocity.  The spherical body is also subject to the tension in 

the massless rod of length l and to its weight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.  Schematic representation of a pendulum of mass m and length l displaced of an angle 
  with respect to the vertical direction. Under certain conditions, the pendulum can be considered 
over-damped. This system realizes a mechanical analogue of an over-damped Josephson junction. 
 
 
By taking moments about point O, we may write: 

)(sin)()( 02

2

0 tMRlgmRlF
dt
dI S   
 .                                     (2.4)                                 

where 0I  is the moment of inertia, 









Fm
Rmm 

3

41
3

is the effective mass of the sphere, when 

buoyancy is taken into account, and )(0 tM is the applied torque.  
The (2.4) follows from the theorem of angular moment, expressed, as it is well known, into the 

form exM
dt
dL

 , where 
dt
dIL 

0  is the angular moment, and exM  is the total moment of the 

external forces. Considering the finite dimensions of the sphere, the moment of inertia 0I  can be 
calculated by means of the parallel axes theorem [18], so that: 

22
0 )(

5
2 RlmmRI  .                                                                           (2.5)         

                     

By dividing [16] both members of Eq. (2.4) by )( Rlgm  , by defining t
RlR

gm
)(6 





  as a new 

dimensionless time variable, and by setting 
)(

)()( 0
0 Rlgm

Mm


 


 , we may write     
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We may consider that both   and )(0 m , being ratios of same dimensions quantities, are 
dimensionless. The proof of equation (2.6) is given in Appendix 2.1. We immediately notice that 
equation (2.6) is equivalent to equation (2.3) for very small values of the pre-factor of the second 

derivative in equation (2.6), i. e. for 1
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RlR
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. In this way, the dynamical 

equation of an over-damped pendulum becomes formally equal to equation (2.3), reading:   
 

)(sin 0 

 m

d
d

 .                                                                         (2.7)                               

 
Therefore, the analytic and experimental study of an over-damped pendulum allows us to derive 
important properties of an over-damped Josephson junction. Naturally, in performing experimental 
studies, one needs to have negligible values of the pre-factor of the second derivative in equation 
(2.6). This can be obtained, for example, by using a fluid with high enough values of the coefficient 
of viscosity . In the following sections we shall consider the forcing term as constant, obtaining a 
full analytic solution of the problem. 
   

 
2.3  Constant driving moment 

 
 
Let us take [16] a constant forcing term of the over- damped pendulum in fig. 2.2. In this case we 
can obtain analytic solutions for the differential equation (2.7). We start by noticing that, for 10 m , 
we obtain two constant solutions, one stable and one unstable, as it can be argued by means of the 
phase-plane analysis, shown in figure 2.3.  
 
 

 
Figure 2.3. Phase-plane analysis for the over-damped pendulum. The constant forcing term is 

0.00 m  (bottom curve), 75.00 m (middle curve), and 50.10 m (top curve). 
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The stable solution of the stationary form of equation 2.7, i.e. 0sin m , where, as just considered 

10 m , is given by:  

0
1sin m  ,                                                                                                 (2.8)     

while the unstable solution is:  
 

  .  
 

The stability regime changes as the angle crosses the value 
2
  , as it can be noticed by analyzing 

the sign of the derivative 



d
d  about these fixed points. For 10 m  we have an half-stable solution: 

the pendulum may swirl around O whenever an arbitrary small positive perturbation arises. In fact, 

for 10 m  we get: 
2

1sin 0
  m . Thus, in this condition, also an arbitrary small 

perturbation determines a displacement of the pendulum from its equilibrium position. 
 

We may finally notice that,  for 10 m , the function )(   is monotonically increasing, given 

that the curves in fig. 2.3 lie above the -axis and the derivative 



d
d  is always positive. In this 

“running state”, i.e. the situation in which 0



d
d (in this case 0




d
d ), we solve the ordinary 

differential equation (2.7) by the method of separation of variables, as done in reference [15], by 
writing: 
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where )0(0   . By the substitution 
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tanx , we can write [16] the integral in (2.9) as follows: 
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 ,                              (2.10) 

where we have completed the square in the denominator. The integral on the right hand side of Eq. 
(2.9) can now be solved. By substituting this solution into (2.9) and by defining  
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By finally extracting )(  from equation (2.11), we have: 
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where k is an integer. The above expression is represented in figure 2.4, as obtained from numerical 
solution of equation (2.7) with initial condition 00  , and for 5.10 m .  
 
 

 
 
Figure 2.4.  Normalized time dependence of the angular variable   of an over-damped pendulum 
(full-line curve). The constant forcing term is m0=1.5. The top and bottom dashed lines enclose the 
undulatory behavior of , whose oscillations take place  about the middle dashed line.  
 
 
 
We notice that the numerical solution is easier to report on a graph, given the necessity of 
combining different pieces of the solution (2.12), one for each 2  shift of the angular variable 

)( . We also notice that this function oscillates within the two lines of equation 
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2
02,12,1 1)(   m , 2,1  being the times in which the lines 

are tangent to the oscillating curve )(  in the interval [0, 2]. The quantities 2,1  can be found by 
a straightforward, but rather cumbersome, calculation. 

In order to determine 2,1  we impose the equality between the curve represented by equation 
(2.12) and the straight line considered before, of course for 2,1  . This condition of equality 
corresponds also to the equality of the first derivatives of the same functions, always for 2,1  . 
Thus, the latter condition is so expressed: 
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where in the first member we have the first derivative of the curve represented by equation (2.12), 
while in the second member there is the derivative of the straight line. With the position 
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, and by knowing that 
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In this way, we obtain: 
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By solving this algebraic equation, we get: 
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Once obtained the two values of  )()(tan 02,1 my , we can write:  )(tan)( 0
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Therefore, the curves of )(  are seen to oscillate about a central line AA m   )1()( 2

0 , 
whose intercept A  is the average value of  1  and 2 . The solution of Eq. (2.7) is represented in 
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figure 2.5, for various values of the constant forcing term 0m , along with the central lines )( A  
obtained by the procedure described above.    
  
 

 
 
Figure 2.5  Normalized time dependence of the angular variable  of an over-damped pendulum 
(full-line curves) represented together with the central dashed line about which oscillations take 
place. The constant forcing terms are as follows: m0=1.125 (lower curve), m0=1.200 (middle 
curve), m0=1.300 (upper curve).  
 
 
2.4   Time average of the angular frequency 
 

Let us study the time average 



d
d  of the angular frequency 




d
d  [16] as a function of the constant 

forcing term 0m . This analysis is important, given that the 0m  versus 



d
d  curves correspond to 

the normalized current Bi versus average voltage 



d
d  characteristics of an over-damped 

Josephson junction.  

We may start by considering the function 



d
d , represented in figure 2.6 for 5.10 m  along with 

the value of the slope 12
0 m  of the central line running through the solution as seen in details in 

figure 2.4. This slope corresponds to the average value of the curve in figure 2.6.  
We notice that this function is periodic with period equals to 

1
2

2
0 


m

T                                                                                        (2.14) 

as can be formally proven by calculating the derivative with respect to   of )(  in Eq. (2.12).  
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Figure 2.6.  Normalized time dependence of the angular frequency (full line) of an over-damped 
pendulum subject to a constant forcing equal to m0=1.50. Notice that the curve is periodic and the  
period is 

1
2

2
0 


m

T   . The dashed line represents the slope 12
0 m  of the central dashed line 

of the primitive curve in figure 2.4 and, at the same time, the average value of the full-line curve. 
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In order to determine the period T we can use the property for which the cosine squared and tangent 
functions are periodic with the same period  , and considering also that these functions have the 

same argument, i.e. 0

2
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, we get:   )()( T . In this way, we obtain: 
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Thus we have: 
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According to the above result, the slope of the central line can be written as 
T
2 . On the other hand, 

by recalling that the period of the function )( is 2 , the time-averaged value of 



d
d  can be 

calculated as follows: 
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so that it is proven that the average value of the angular frequency curves is 12
0 m . From equation 

(2.14) and (2.15) we can then argue that 
2

0 1



d
dm                                                                                      (2.16) 

 

The 0m  versus 



d
d curve is represented in figure 2.7.  

 

 
 
Figure 2.7  Normalized forcing term versus the time average of the angular frequency (full line) of 
an over-damped pendulum. Notice that the curve is anchored at null angular frequency if 10 m . 
On the other hand, for 10 m , the values of the curve tend toward the asymptote, given by the 
dashed line, as the abscissa increases.   
 
 
We soon notice the role played by the static solution in Eq. (2.8). In fact, for 10 m , the pendulum 

is in static equilibrium, so that 



d
d =0. In fact, for 10 m , we have the same number of negative 
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and positive values of 



d
d , so that the mean value of this quantity is negligible, a we can see in 

figure 2.3. The same happens in a Josephson junction: when the value of the normalized bias 
current iB is less than one, the junction is said to be in the superconducting or zero-voltage state. In 

fact, for 1Bi , we have from equation (2.3): 0sinsin  







d
d

d
d , so that we know 

that the average value of the trigonometric functions is zero. In this way, from the second Josephson 

equation, we get: 000
0

 V
RI
Vv

d
dv

 . Therefore, we notice that the electric 

current RI  flowing inside the resistor, in the RSJ model, is negligible, as we have: 0
R
VI R . On 

the other hand, inside the Josephson junction, according to the first Josephson equation, we have: 
sin0,jII  . This current is non zero, so that a superconducting or zero-voltage state is realized. In 

this state no current flows in the resistive branch of the RSJ model in figure 2.1, so that the curve 
climbs vertically from 0 to 1 just as shown in figure 2.7. 
 
When Bi  1, the resistive branch is activated and a finite voltage appears across the junction, in the 

way described in figure 2.7. In fact, in this case, we have 000  RIV
d
d

 , so that the 

resistive branch is not anymore inactive. We also notice that the 0m  versus 



d
d  curve presents 

the oblique asymptote 



d
dm 0 . In fact, for large enough values of 0m , this driving moment 

becomes predominant with respect to the nonlinear sine term in Eq. (2.7), thus justifying the 
observed asymptotic behavior. This consideration can be proven starting from equation (2.7), that in 
this case is approximated as follows: 
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Notice that the above equation is valid as long as 0m  is constant. 
 

 
2.5   The washboard potential 
 
Very useful physics [16] can be finally recovered by writing down the energy balance equation for 
the system.  
We start by noticing that energy is furnished from the externally applied moment at a rate 

dt
dMPex


0 . This analytic expression follows from the simple mechnicl properties. In fact, along a 

circular trajectory, i.e. the one followed by the simple pendulum during its motion, the applied force 
is tangential to this trajectory, and so to the infinitesime displacement of the pendulum, that is 

rdds  , where ds  is the arch of circumference, and so the considered infinitesime displacement, 
r  is the circumpherence radius, and d  is the angle insisting on this circumpherence arch. So, the 
infinitesime work of this force can be represented as follows:  dMFrdsdFdW 0


, where 
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0M  is the module of the torque acting on the considered particle. The externally supplied power is 

therefore given by: 
dt
dM

dt
dWPex


0 . This energy is in part dissipated because of the presence of 

the viscous force 
dt
dRlRFS
 )(6   at a rate 
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 , the minus sign meaning 

that energy is flowing out from the system. Therefore, the mechanical energy ME , being the sum of 

the kinetic energy 
2
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

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dt
dI  and of the potential energy )cos1)((  Rlgm , varies in time 

according to the following energy balance equation: 

exd
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                                                                          (2.17) 

By explicitly writing down all terms, we have:   
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where we have taken 0M constant and have included the external forcing term under the derivative 
operator on the left hand side. Of course, we can obtain the dynamical equations (2.4) from 
equation (2.18) by factoring out the angular frequency. In fact, if we calculate the derivative in the 
first member of the latter relation, we get: 
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After simplifying the term 
dt
d  in both members, we have: 
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that is just the relation (2.4). 

However, we are here interested in highlighting the role of the forcing term in the system. 
Therefore, we consider a normalized effective potential effu  defined as follows:    

 0cos1
)(

m
Rlgm

U
u eff

eff 


                                                                       (2.19) 

This normalized potential, called washboard potential because of its shape, is represented in fig. 2.8 
as a function of the variable   and for various values of the parameter 0m .  
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Figure 2.8.  Normalized effective potential as a function of the angle  for the following three 
values of the parameter 0m : 0.0 (dashed line); 0.75 (full line); 1.5 (dotted line). Notice that the 
parameter 0m  determines the degree of tilting and stretching of the undulating curves. 
 
 
Some comments on the origin [16] of the term “washboard potential” are in order. By looking at the 
tilted full-line curve in fig. 2.8, we have the impression to see the board used by our great-
grandmother to wash clothes, before the washing machine came into use. The above representation 
is useful, since it clarifies, once more, the crossover from static to dynamic solutions of the system. 
In fact, by looking at figure 2.8, we first notice that the parameter 0m  affects the degree of tilting 
and stretching of the washboard potential. This can be seen by starting from the dashed curve 
obtained for 0m  = 0.0 and by considering the remaining curves obtained for increasing values of 
this parameter. In the horizontal washboard all minima fall exactly at 2k, with k integer. The 
number of minima fitting in the graph shown in fig. 2.8 are three. The same number of minima, 
though their abscissa are slightly displaced with respect to the above specified positions, are still 
present in the stretched and tilted curve for 0m  = 0.75 (full line in figure 2.8). Therefore, a point-
like body could still be in static equilibrium in the angular positions corresponding to the minima 
and given by equation (2.8) in the interval [0, 2]. Static equilibrium is not anymore possible for 
point-like particles on the washboard potential for 0m  = 1.5 (dotted curve), because of excessive 
tilting and stretching.  In fact, for values of 0m  larger than one, the tilting of the curves become very 

high, as the slope of the straight line AA m   1)( 2
0  becomes higher, so that it does not 

allow the presence of minima of the potential effu , which are positions of stable equilibrium of the 
considered system. This property is due to the fact that by applying a very high momentum of force 
to our system, this external momentum is not compensated by the other terms present at the second 
member of relation (2.4), so it is not reached the condition of stable equilibrium.  

This feature can be also derived analytically from equation (2.19), by just taking the derivative 
with respect to  and by setting it to zero. Of course, this corresponds to finding the fixed point of 
the dynamical equation (2.7) and brings us to the same results as in Section 2.3). In fact we get: 
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So we obtain 0sin m , that is, we get the relation just found for the so-called fixed points, for 

which 0



d
d , as previously determined. 

  
  

2.6  Conclusions 
 
 
The properties of an over-damped Josephson junction have been analyzed by means of a 
mechanical analogue: an over-damped pendulum. The strict analogy between the dynamical 
equations of the two systems [15], [2], [3], [17], has been first reviewed. Being the physical 
properties of a simple pendulum more familiar to students, the Josephson junction dynamics in the 
over-damped limit may be derived by analogy. Therefore, we have analyzed [16] some interesting 
features of an over-damped Josephson junction, by means of the corresponding physical properties 
of the over-damped pendulum. As an example, we have noticed that the current-voltage 
characteristics of the superconducting device can be obtained by means of an analytical expression 
derived for the normalized driving moment as a function of the time average of the angular 
frequency. Finally, by considering the energy balance equation for the system, we have seen that it 
is possible to describe the effect of the driving moment on the pendulum through the tilting and 
stretching of the washboard potential. 

Apart from the analogy between the over-damped Josephson junction and the over-damped 
pendulum, this work can be adopted as a lecture for first-year college physics students, in order to 
integrate the usual description of the pendulum made by means of the small oscillations 
approximation. In addition, starting from a mechanical system devised in such a way that the pre-
factor of the second derivative in Eq. (2.6) is negligible, teachers may experiment on the effect of a 
constant applied torque on the pendulum, adding to direct observation the simple comment that 
similar response is expected in an over-damped Josephson junction. In the future, experimental 
work based on the present analysis will be performed, after a careful fabrication of the mechanical 
system. Extension of the present analysis to non-constant applied torque will also be sought. 

 
 

Appendix 2.1 
 

Proof of the relation 2.6 
 
Starting from the equation (2.14) and dividing both members for )( Rlgm  , we get: 
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where we have used the expression 
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By defining dt
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we get the following expression: 
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Therefore, by (2.1.1), we get the additional expression: 
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In this way, we may set: 
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that is just equation (2.6), which we have so proven.  
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Chapter 3 

 
 

Double and triple- barrier Josephson junctions 
 

 
 

A generalization of the semiclassical model describing the Josephson dynamics of trilayer 
superconducting systems is given by assuming a constant nonnull arbitrary superconducting phase 
for the inner electrode, and the presence of inhomogeneities in the superconducting coupling 
between electrodes. Extension of the model to triple-barrier Josephson junctions is proposed. 
 

3.1  Introduction 
Considering the simplicity and the efficacy of Feynman’s and Ohta’s models [2-3] in describing the 
dynamics of a Josephson junction (JJ), F. Romeo and R. De Luca have recently developed a 
semiclassical model for SISIS (S standing for Superconsutor and I for Insulator) trilayer 
superconducting systems [14]. Similar models had already been adopted by Carapella et al. [19] by 
considering a voltage bias across each one of the two Josephson junctions in the trilayer system. In 
the latter work, however, the trilayer system could not be seen as a single JJ across which a 
superconducting phase difference  is detected. Instead, three-layer systems in which an external 
electromotive force is applied only to the outer electrodes are denoted as Double-Barrier JJs 
(DBJJs). These systems have been experimentally investigated by Nevirkovets et al. [20, 21, 22]. 
Integer and fractional shapiro steps were detected by the latter authors, so that deviations from the 
simple sinusoidal dependence of the current-phase relation (CPR) can be hypothesized. In fact, the 
same authors introduced the idea of a modified CPR for the SISIS structure, to take account of the 
additional channel of Josephson tunnelling between the two outer electrodes. A microscopic theory 
of DBJJs confirming the existence of non-sinusoidal CPRs in DBJJs has been developed by 
Brinkmann et al. [23]. 
In reference [14], however, only the case of homogeneous JJ coupling and of zero values of the 
superconducting phase of the inner electrode was treated. In this way, the current I vs. 
superconducting phase  relation of the system can be shown to be given by: 
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II ,   (3.1) 

where I0 and  are proportional to the coupling energies between two adjacent electrodes and the 
two outermost electrodes in the JJ, respectively. In equation (3.1) we clearly see two contributions. 
In fact, the first addendum represents the weak Josephson coupling between the outermost 
electrodes. On the other hand, the second addendum takes into account the strong coupling (Kulik 
and Omel’yanchuk limit [24]) between the adjacent layers.  
In this way, we may say that the relation (3.1) is the superposition of two different simultaneously 
present contributions originated by the heterogeneous nature of the Josephson coupling [25]. In case 
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the maximum Josephson currents, I1 and I2, in the JJs of the trilayer system are different, we have 
[26]  
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where I0 is the average value of I1 and I2, and where 
0

12

2I
II 

 . 

In the present chapter we show that the choice of an arbitrary superconducting phase, supposed to 
be constant, for the inner electrode and the presence of inhomogeneities in the JJ coupling  leads to 
the same Current Phase Relation (CPR) found in ref. [26], here reported in Eq. (3.2). Therefore, in 
the absence of inhomogeneities in the JJ coupling, the CPR of the system can be shown to be the 
same as in espression (3.1), in the limit of ε = 0. We finally propose a generalization of the 
semiclassical model to triple-barrier JJs (TBJJs) arising from SISISIS structures. Therefore, the 
present chapter is organized as follows. 
We further release the assumption made in previous works, where a strictly null superconducting 
macroscopic phase was associated to the inner electrode. In this way, we consider the semiclassical 
Ohta’s analysis for a inhomogeneous three-layer system, obtaining a CPR for this system equal to 
Eq. (3.2). Successively, we propose an extension of this model to triple-barrier Josephson junctions, 
deriving the related CPR. The Shapiro steps for these systems are then calculated, as experimentally 
related quantities able to indirectly confirm the particular expression of the CPR derived. 

 

3.2  Semiclassical analysis of a inhomogeneous DBJJ 
First of all, let us consider a schematic representation [8] of this particular superconducting three-
layer system, where, taking into account the inhomogeneities in the couplings of the junctions, we 
may enumerate three coupling constants: 1K  and 2K  between the electrodes 2-1 and 2-3, and K~  
between 1 and 3. The system is schematically shown in figure 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Schematic representation of an inhomogeneous three-layer SISIS system, where the 
coupling constants for adjacent layers, 1K  and 2K  are assumed to be different. The constant K~ , 
on the other hand, couples the outermost layers to which a voltage V is applied. 
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We may start our analysis by considering the Hamiltonian function 0H  of the trilayer system, 
called the semiclassical Hamiltonian, that is the expectation value of the Hamiltonian operator 0H .  
In this way, we write: 
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In the above expression k and kE  (for k = 1, 2,3) are the wave function and the ground state 
energy of the k-th superconductor kS , respectively. Moreover, as shown in figure 3.1, 1K , 2K  are 
the coupling constants between adjacent layers, and K~  is the coupling constant between the two 
outer junction electrodes. In this way, we have: 
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The superconducting wave functions 1 , 2  and 3  may be written as follows: 
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332211 ;;   iii eNeNeN                                                                                 (3.5) 

 
where kN  is the numerical density of Cooper pairs, and k  is the superconducting phase of the k-th 
electrode (k = 1, 2, 3). We may now consider 0constant2  . By substituting the three 
definitions (3.5) in the relation (3.4), and by carrying out the calculations, we get: 
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or also: 
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where: 
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Let’s now introduce the energy extW  of the external circuit in the semiclassical Hamiltonian 0H : 
 

 VIdtWext ,                                                                                                                                 (3.9) 
 
where V is the voltage of the e.m.f. source, I is the electric current, and the integral is carried out 
over time t. In this way, we get the complete Hamiltonian H as follows: 
 

extWHH  0                                                                                                                               (3.10) 
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Following Ohta’s semiclassical model, we can now consider the Hamilton’s equations for the 
quantities k and kN , which are conjugated variables: 
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k N

H
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for k =1, 2, 3. 
 
In the above expressions the dot stands for the derivative with respect to time. Under the 
assumption of thermal bath, we get 0321  NNN  , because temperature is uniform and 
constant, and we can also consider that there is energy conservation of the whole thermodynamic 
system, because it is not dissipative. Under these hypotheses, we may thus write: 
 

0 extC WWH  .                                                                                                                    (3.13)  
 
By these assumptions, equation (3.11) becomes an identity and equation (3.12) gives: 
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 ,          (k =1, 2, 3).                                                                                                       (3.14) 

 
Knowing that avoltage difference V across the first and the third electrode is present, we may 

consider 


eVEeVE  31 ,   and 02 E , because .constant2   Therefore, by equation 

(3.14), we get: 
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If we now set 13   , we obtain: 
 



eV
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d 2


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The above equation is the strict Josephson voltage phase relation. 
 

 
 

3.3  Current Phase Relation 
 
In order to obtain the first Josephson equation [11], or CPR, for this particular superconducting 
three-layer system, we may make use of equation (3.13) and write: 
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By calculating CW  we have: 
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In this way, we obtain: 
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Considering that 13    and putting the term 


eV2  in evidence, we have: 
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It is more useful to represent the expressions (3.8) and (3.16) in terms of the following 
superconducting phases: 
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In order to determine A , we minimize CW , according to the principle of energy minimum. 
Therefore, we write: 
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By the aboe, we get: 
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In this way, the expression for the current I becomes: 
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Let us now set 
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~   A . With this position we have the more simplified expression: 
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We also can express CW  through ~  and   in this way: 
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We now set: 
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In this way, eq. (3.23) can be rewritten as follows: 
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By now taking: 
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where 
0

~

I
I

 . By now recalling basic trigonometric relations, we have: 
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In the same way, eq. (3.20), according to these positions, can be rewritten as follows: 
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Now we must find the relation between ~  and  , in order to express ~  in function of  , and so to 
obtain the expression of CW  in function of  , and the expression of  I in function of   (the latter 
being the CPR). By therefore considering equation (3.19), and by using the expressions of 1I  and 

2I , we have: 
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or also: 
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The above relation is equivalent to the following: 
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By now considering eq. (3.26), we can find 
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For the expression of 

~sin , we may use eq. (3.28), and we get: 
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Therefore eq. (3.23) now becomes: 
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According to the principle of minimum energy, we can take 1
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 , in order to minimize 

the expression of CW . 
 
We thus obtain: 
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Similarly, the electric current I in eq. (3.27) becomes: 
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Using the relation 1
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  considered above, we have: 
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In this way, we get: 
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If we consider the limit for 0  of this expression, which corresponds to the physical situation 

21 II   , where the electric current from 2 to 1 and from 2 to 3 are the same, we get: 
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We thus obtain: 
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This result agrees with the one found getting 02  , and also considering an homogeneous 
coupling, analysed, as just mentioned, by F. Romeo and R. De Luca [14]. 
 

 
3.4  Extensions of the model to triple barrier Josephson 
junctions 
 
We can now consider [8] a system made up by a triple barrier Josephson Junction, i.e., a four-layer 
superconducting system, with no phase difference between 2S and 3S . A schematic representation 
of this physical system is given in figure 3.2, where the coupling constants 1K , 2K  and 3K  
between electrodes 1-2, 2-3 and 3-4, respectively, are not taken to be equal. The remaining coupling 
constants 1

~K  and 2
~K  pertain to interactions between the superconducting layers 1-3 and 2-4, 

respectively. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3.2. Schematic representation of an inhomogeneous four-layer SISISIS system, where the 
coupling constants for adjacent layers 1K , 2K  and 3K  are assumed to be different. The constants 

1
~K  and 2

~K , on the other hand, couple the next nearest neighbour layers 31 SS   and 42 SS  ,           
respectively. A voltage V is applied to the outermost layers 1S  and 4S . 
 
 
As before, the latter parameters are taken to be small compared to the direct coupling parameters 

,, 21 KK and 3K . In what follows we shall consider the same steps illustrated in the previous 
section, with the hypothesis that the inner two layers 2S  and 3S  can be described by the same 
superconducting phase   which we assume to be zero. Therefore, we can write the analytical 
expressions of the macroscopic wave functions of the various superconductors as follows: 
 

1
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 ieN   ;   22 N   ;   4
4433 ;  ieNN   
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2
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Following Ohta’s semiclassical model we can first calculate the expectation value of the 
Hamiltonian operator 0Ĥ  of the four-layer superconducting system, and then, as usual, we add the 
energy contribution of the external e.m.f. source. By proceeding as in the prevoious section, we 
therefore get: 
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By straightforward calculations, we have: 
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Therefore, by inspection, we may see that: 
 

44224333221311211 cos)~(22cos)~(2  NNKNNKNNKNNKNNKWC  .    (3.32) 
 
Adding the  external energy contribution  VIdtWext   we have: 
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With the usual assumption of thermal bath, we may write: 04321  NNNN  , so that 

CextC WIVWW   0 . By now using the classical Hamilton’s equations for the conjugate 
variables k  and kN , we obtain: 
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From (3.34),  using the previous hypotheses, we get: 
 

032  EE . 
 
In this way, we may write: 
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Let now:  eVEeVE  41 ; ;  by substituting the latter expressions in (3.34), we have: 
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
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Equation (3.35) is the Josephson’s voltage- phase relation (VPR) for the whole four-layer system. In 

order to obtain the current-phase relation (CPR), we may again use the expression: 
V

WI C


  . With 

the thermal bath assumption considered above we have that the only quantities depending on time, 
in the expression of CW , are 1cos  and 4cos . In this way, by straightforward calculation, we get: 
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and so: 
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By now defining the following quantities:   
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we can rewrite I as follows: 
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By introducing the average current , we can define the additional following quantities:  
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Finally, we have: 
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and CW can thus be rewritten as follows: 
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We can simplify the latter expression by multiplying it by 


e2 , and by using the previous definitions 

of 1I  and 2I , so that: 
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According to the Minimum Energy Principle, we can consider that: 
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From this equation we obtain a very useful relation; in fact, we have: 
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By using (3.36), we can simplify the expression for I; in fact, we have: 
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We can now use equation (3.38) to obtain the expression of Acos  and of Asin  in function of   
and  . In this respect, we can first use the following basic trigonometric relations: 
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So that Eq. (3.38) can be rewritten as follows: 
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By now using the latter expression, we therefore have: 
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By considering the analytic expression of CW , and requiring that it must attain its minimum value, 

it can be shown that this condition is met when 1
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By now considering Eq. (3.39), and by using Eq. (3.40), we get: 
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Therefore, we finally obtain: 
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Eq. (3.41) is the CPR for this particular four-layer superconducting system. It can be represented as 
done in the figure 3.3. 
 
 

 
 
Figure 3.3. Current-phase relation of a TBJJ for 0.00, 0.15, 0.30 (dashed, blue, and red lines, 
respectively). Notice that the effect of an increasing inhomogeneity in the junction parameters gives 
curves with lower values of the maximum Josephson current. In fact, the maximum Josephson 
current MAXI  is found to vary according to the simple relation  0II MAX .  
 
 
If we consider the limit for   tending to zero, we have: 
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Therefore, under this condition, we have: 
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This CPR is similar to the one found for a simmetric trilayer homogeneous superconducting system, 

except for the remaining term, that is  sin0I , in which, as we know, 


2
0

~4 NNKe
I   , where K~  

is the coupling constant of the first neighbour electrodes, 2N  is the number of Cooper pairs in 
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electrode 2, and N is the number of Cooper pairs in electrodes 1, 3, and 
2

~ N
N

K
K

  gives the ratio 

between the coupling constants K and K~  of the second and the first neighbour electrodes. 
Therefore, in the limit 0 , the coupling between the second neighbour electrodes is negligible, 
and so we can consider the two superconducting layers 2S  and 3S  as a whole superconducting 
system, which interacts with 1S  and 4S ; we can also consider the interaction between the outermost 
electrodes. However, this is only a limiting behaviour for the CPR, because the true CPR for this 
particular four-layer superconducting system is given by the eq. (3.41). 

We can end this section by considering the effective potential for this particular quadrilayer 
superconducting system. Starting from the eq. (3.37), we can rewrite the expression of CW  as 
follows: 
 
















 






  32

2
00

4
2

cos)1(
2

cos)1(
2

NNeKII
e

W AAC


 



 .                      (3.42) 

 
In the above expression we notice that the latter term is independent from  , and so we can 
consider, in what it follows, only the first two terms. By using some trigonometric relations, we get: 
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By knowing that: 
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we may also write: 
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The effective potential, which can be derived from the expression of CW  in (3.43) by subtracting 
the constant term, is defined as follows: 
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In figure 3.4 we show the effective potential effU  for various values of  . 
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Figure 3.4. Normalized effective potential as a function of the superconducting phase difference 
across a TBJJ for 0.00, 0.15, 0.30 (dashed, blue, and red lines, respectively). Notice that 
minima and maxima in the effective potential appear at  k2min   and   12max  k , respectively, 
for k integer. 
 
 
From figure 3.4 we notice that minima and maxima in effU  appear at  k2min   and 

 )12(max  k , respectively, for k integer. The barrier height )()( minmax  effeff UUU  , can be 
seen to be: 
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3.5  Maximum Josephson current and Shapiro steps for the 
triple-barrier superconducting system 
 
In this section, we calculate [8] the maximum Josephson current and the Shapiro steps for the 
particular superconducting system considered in the previous section. Beginning with the 
calculation of the maximum Josephson current, we can consider the expression of the normalized 
CPR: 
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Then, we calculate the first derivative of )(f  and impose it equals zero, in order to get the 
maximum value of it. In this way, we have: 
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If we use the trigonometric expressions    
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If we consider the solution with the sign minus, that we can denote as  cos   we get: 
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We know that   11   for 0  (in this case 10   ). Therefore, we have: 
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Therefore, we can conclude that this solution is not admitable,, because it doesn’t agree with the 
definition of the cosine function. 
 
Instead, the solution with the sign +, is written as follows: 
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at the maximum value taken by the function )(f , we consider only the positive sign in the 
expression of sin . We can express the function )(f  in a more appropriate form for the 
maximization: 
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By substituting the values of   sin,cos  into the analytic expression of  the function )(f , we 
obtain the maximum value taken by this function, denoted as MAXf . In this way, we get: 
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So, we have obtained the important result that the maximum value of the function )(f  considered 
is: 
 

1MAXf .                                                                                                              (3.48) 
 
Therefore, the maximum value MAXI  of the Josephson current for this particular quadrilayer 
superconducting system is: 
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Let us now turn our attention to the Shapiro steps for this particular four-layer superconducting 
system. First of all, we can consider, as in the previous chapter about the three-layer 
superconducting system, that, also in this case, the whole four-layers superconducting system is 
driven by an external oscillating voltage of this form:   
 

)cos()( 10 twVVtV r ,                                                                                                (3.50)  
 
where 0V  is the dc component, and 1V  is the amplitude of the oscillating part, having angular 
frequency rw . If we normalize this voltage V to the quantity 0RI  , in which R is the overall 
resistance parameter of this quadrilayer superconducting system, and make a rescaling of the time 

variable, defining tRI
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In order to prove Eq. (3.51) we can start from the second Josephson equation: 
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If we consider the change of variable: 
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Considering that the new variable used is  , we notice that: 
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As a starting hypothesis, we set: 
 

)~cos()(
2

cos)()cos()( 10
0

0
1010 


 r

r
r wVVV

RI
w

VVVtwVVtV 






 
 , 

 

with 
0

0

2
~

RI
ww r

r 


 . 

 



 60

By now dividing the voltage V by 0RI , we get: 
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Therefore: 
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If we now set  
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rw
Va  , we get: 
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which is the expression (3.51), that we have so proven. 

In order to calculate the Shapiro steps, we could make a Fourier expansion of the analytic 
expression of the CPR function. However, its expression is rather complicated, so that we consider 
the same function in the limit of  0  , that we can denote as )(0 f . In this limit the normalized 
CPR becomes: 
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We can now make a Fourier expansion of this function, which has the same analytic expression of 
the function present inside the CPR for the particular trilayer superconducting system analysed in 
the previous paper. Therefore, we can consider that, for very small values of )1..(  ei  we can 
approximate  
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and we can expand this function in Fourier series for 
2
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same way for   comprised between   and  , so that:  
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We now notice that we already know [8] the Fourier expansion of the function )(0 f , because it 
has been calculated in the previous chapter. In particular, we therefore have: 
 







10

0
0 )sin(

)(
)(

k
k kxb

I
If 


 ,  

with  










dfbk sin)(1
0  = 

14
)1(8

2 



k

kk


 .                                        (3.56) 

 
So we have: 
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By using the expression (3.44), we obtain: 
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We can now use some properties of the Bessel functions. In particular, it can be shown [27] that:    
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By using this expression, we get: 
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As it is well known, the I-V characteristics of the Josephson junctions [8] show the so called 
Shapiro current steps, which are well defined values intervals of electric current I, having the 
property that they show a variation in I at a fixed voltage value. In particular, these steps can be 
obtained at well defined value 0VV   which is constant in time (d.c. voltage):   
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in which  Nn . In the expression (3.61), we note that h is the Planck constant, e is the absolute 
value of the electron charge, and   is the frequency of the oscillating part of the considered voltage 
signal. In this way, we get: 
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h
20   is the elementary magnetic flux quantum, or also called London 

fluxoid. If we divide the expression (3.62) by 0RI , we get: 
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Equation (3.63) expresses the values of voltage at which we may have Shapiro current steps. 
Therefore, considering our expression of )(0 I , we may have Shapiro steps when 0~

0  rwmkv , 
because, in this way, there is no dependence of this expression on V. So we have: 
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Therefore, the analytic expression of )(0 I  becomes: 
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and, by using the following property of Bessel functions: 
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The semiamplitude of Shapiro steps can be determined by calculating the maximum value of the 
function nI  with respect to 0 , which varies between 0 and 2 . In this way, the semiamplitude of 
the Shapiro steps is: 
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In particular, for n = 1, we get: 
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Taking only the first two terms in the sum considered, i.e. the terms for k = 1  and k = 2, because 
the other ones are always smaller, for the quantity 14 2 k  present at the denominator, we obtain: 
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In these expressions the maximum value of the function 
0

1

I
I  is just calculated on the interval 

  2,00  , as the other quantities, present in the expression of the function, are constant. So, we 
must determine the maximum value of the function: 
 

xBxAxf 2sinsin)(                                                          (3.69) 
 
in which the variable x is, in our case, represented by 0 , and the coefficients A and B are defined 
in the following way: 
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As we know, the maximum must satisfy the condition: 
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By solving this equation we obtain: 
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We can notice, in the latter expression, that the square-root term is larger than the first term; so, in 
order to maximize the function f(x), we can take only the positive values of xcos , and then 
substitute them inside the expression of f(x). In this way, we get: 
 

X
A
B

B
A

B
A

B
Ax 










 1321

82
1

648
cos 2

2

2

2

.  

 
Therefore, we can re-express the function f(x) in a more adequate form, in order to maximize it: 
 

)cos2(cos1)cos2(sincossin2sin)( 2 xBAxxBAxxxBxAxf   . 
 

In order to maximize f(x), we notice that, in the expression of xx 2cos1sin  , we may take only 

the positive solution, so that xx 2cos1sin  . In this way, by substituting X with xcos , and by 
taking the absolute value of the coefficients A and B, we obtain the maximum value of the function 
f(x), that we denote as MAXf : 
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Finally, we have: 
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Knowing now that  
0
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 , by taking into account the expression (3.68), we obtain: 
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In this expression we consider that: 
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Also, we notice that 1I  depends, through the coefficients A and B, on the quantity 
rw

Va
0

12



 . 

In the same way, we can calculate the maximum value of nI  , that we can denote as 2I , in the 
case of n = 2. Always starting from the expression (3.65), we get: 
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Also in this case, we can take only the first two terms of the sum, for k = 1, and k = 2, as the others 
are smaller because of the presence of the term at denominator. So we get: 
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As before, we must determine the maximum value of the following function: 
 

xDxCxf 2sinsin)(                                                                                    (3.74) 
 
in which: 
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So we obtain: 
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By now solving the above equation, we have: 
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In (3.69), we consider only the positive solution, in order to maximize the function f(x). 
 
So we have: 
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As before, we can re-express f(x) in the following way: 
 

 xDCxxDxCxf cos2cos12sinsin)( 2  ,                             (3.77) 
 
where, also in this case, we take only the positive solution of the sine function (i.e., 

xx 2cos1sin  ), in order to get a maximum for f(x). Finally, by substituting Y with cosx, and by 
taking, as before, the absolute value of the coefficients C and D, we get the maximum value, MAXf  , 
of the function f(x): 
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After the same calculations of the previous case, we therefore have: 
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In the above expression we recall that the quantities Y, C, and D are: 
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Therefore, knowing that MAXf
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2 , and taking into account the expression (3.66), we get: 
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We notice that also that the current step in Eq. (3.73) depends on the quantity 
rw

Va
0

12



 , through 

the coefficients C and D. 
 

Therefore, in figure 3.5a we show the profile of 
0

1

I
I  and  

0

2

I
I  as the quantity a varies, together 

with the numerical evaluation of the first twenty terms in the expressions of 1I  and 2I . We can 
notice a rather good agreement between the results obtained by the above analysis and by a 
computer-assisted numerical approach in which more terms in the summations in (3.67) and (3.73) 
are retained. 
 



 67

 
 

Figure 3.5a. Approximate analytical evaluation of 1I  and 2I  (blue and purple dashed lines, 
respectively)  calculated by retaining only the two leading addends in their expression. 
Numerical evaluation of 1I  and 2I  (blue and purple scattered points) utilizing the first twenty 
terms in their expression is also shown. 

 
 

We summarize our results saying that the quantities represented by 
0

1

I
I ,  

0

2

I
I  are, for n=1 and 

n=2,  the approximate normalized semiamplitudes of Shapiro current steps in the I-V characteristics 
of the Josephson Junctions devices (in this case we have a superconducting four-layer non 
homogeneous system, in which the phase angles are 032   ). In fact, as we have aòready said, 
in correspondence of the voltage values rn wnv ~

,0   we obtain an expression of nI  given by: 
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 represent the normalized 

(because they have been divided by 0I ) and approximate (because they have been calculated only 
considering the first two terms, in particular for k = 1, and k = 2) Shapiro current steps. We notice 

also that they depend also on 
rw
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
 , through the coefficients present in their expression, in 

particular through the argument of the Bessel function.  
In addition to integer Shapiro steps, we may also find fractional Shapiro steps, by considering the 

ratio q
k
m

 , where q is a positive rational number, if we analyse, as done before, only the positive 

voltage branch of the I-V characteristics. In this case, we may set: 
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where the summation on k is extended to all those integers for which the product qk  is an integer. 
As before, the semi-amplitude of the step can be written formally as follows: 
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In fig. 3.5b we show the numerical evaluation of qI , for  q=1/4, 1/3, 1/2, 2/3, for the first ten terms 
in the summation in (3.82). We may notice that the semi-amplitude of the half-integer Shapiro steps 
(q=1/2), while having lower peaks than 1I  and 2I , show larger peak values than  4/1I , 3/1I , and 

3/2I . 
 

 
 
Figure 3.5b. Numerical evaluation of 4/1I , 3/1I , 2/1I , and 3/2I  (blue, purple, brown, orange 
scattered points) utilizing the first ten terms in their expression. 

 
 

3.6  Conclusions 
 
 
In this chapter, we have analysed two particular superconducting systems: an inhomogeneous three-
layer characterized by a constant non-null phase of the inner electrode, and an inhomogeneous four-
layer with null phases of the inner two electrodes.  
In the first case (inhomogeneous DBJJ), we have calculated the CPR, in terms of the inhomogeneity 
parameter  and of the parameter describing the coupling between the two outermost electrodes , 
obtaining an expression which reduces, for  =0, to the current-phase relation found by Romeo and 
De Luca for a homogeneous DBJJ in ref. [14].  
In the second case (inhomogeneous TBJJ), we have found that the term describing the interaction 
between the outermost electrodes is absent, so that the CPR is formally identical to the expression 
for the DBJJ, provided one sets  =0. In fact, when considering nearest and next nearest neighbour 
interactions, the two superconducting layers 2S  and 3S  in a TBJJ act as a single quantum system 
assumed to be described by the same superconducting phase. When sandwiched between 1S  and 4S , 
however, the intermediate layers 2S  and 3S  do not allow direct coupling between the outermost 
layers as it happens in a DBJJ, so that the sin  term disappears in the CPR of a TBJJ.  
We have noticed that the maximum Josephson current MAXI  in TBJJs depends on the inhomogeneity 
parameter  as follows: )1(0  II MAX , where 0I  is a constant which depends on the 
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superconducting properties of the four layers. Furthermore, by means of a Fourier expansion of the 
CPR, we have calculated the Shapiro steps for a homogeneous ( =0) TBJJ. In this respect, we have 
noticed appearance of integer and fractional Shapiro steps in the I-V characteristics of these 
systems. We were able to determine, by a standard analytic procedure, at least for the homogeneous 
case, the semi-amplitudes of these quantities, both for the case of integer and fractional Shapiro 
steps. 
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Chapter 4 
 
 

I-V characteristics of triple-barrier Josephson Junctions 
 
 
In this chapter, we start to consider the I-V characteristics of two particular kinds of Josephson 
junctions: the simple Josephson junction (SJJ), and the triple-barrier Josephson Junction (TBJJ), in 
this latter case with the simplification of 0 , both in the presence of  a constant bias current. The 
results obtained for these two particular devices are the same, i.e., the I-V characteristics is the same 
for both them. In particular, it takes the following analytic form: 
 

12
0  vII ,                                           

 
where 0I  is a constant with the dimension of an electric current, assuming different values for the 

two considered cases, and v  is the time mean value of ratio 
0RI

V , with V that is the voltage 

applied to the outermost junction electrodes, and R is the electric resistance of the overall 
considered device.  
In particular, in TBJJs, deviation from this behaviour is found for inhomogeneous Josephson 
coupling between different layers in the device, always considering a constant bias of electric 
current. Appearance of integer and fractional Shapiro steps is predicted in the presence of r.f. 
frequency radiation. The amplitudes of these steps are also calculated in the homogeneous case, as 
clear footprints of the non-canonical current-phase relation in these systems. 
 
 

4.1  Introduction 
 
 
Josephson junctions (JJs) have a great variety of applications [15]. The most diffuse use of these 
superconducting elements can probably  be recognized in the realization of quantum interference 
devices [28]. Usually the latter ultra-sensitive magnetic field sensors are fabricated utilizing 
conventional JJs. However, double or multi-barrier JJs have been also proposed as elements of 
Superconducting Quantum Interference Devices (SQUIDs) [9, 10]. It is therefore important to study 
the properties of the latter types of junctions and, in particular, the current-voltage (I-V) 
characteristics of triple-barrier Josephson junctions (TBJJs).  
In this chapter, we  begin to determine [29] the current-voltage (I-V) characteristic of a single-
barrier Josephson junction with negligible capacitive parameter, by using the Resistively Shunted 
Junction (RSJ) model. We next analyse the I-V characteristics of TBJJs, by starting with their 
current-phase relation (CPR) derived in the previous chapter. 
We first consider a homogeneous system ( 0 ) and analytically determine that, in this case, the I-
V characteristics of TBJJs are given by Eq. (3.1) in the presence of a constant current bias. For 
inhomogeneous Josephson coupling ( 0 ) numerical evaluation of I-V characteristics are made; 
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deviations of these curves from the analytically determined characteristics for 0  are seen to be 
compatible with the expression of maximum Josephson current   01 II MAX  . In the presence of a 
r. f. radiation integer and fractional Shapiro steps arise in the I-V characteristics. Expressions of the 
semi-amplitudes of these steps for 0  are determined by means of a semi-analytic approach. 
Numerical evaluation of I-V curves are performed.   
      
 

4.2  I-V characteristic for a simple Josephson junction 
 
 
Let us begin by considering [29] the case of the SJJ, and let us determine its I-V characteristics. 
From Josephso equations, the current-phase relation (CPR), and the voltage-phase relation (VPR) 
are: 
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In Eq. (4.1), 210,
4 NNeKI j


 , where K is the coupling constant between the two layers of the 

SSJ, 1N  is the numerical density of Cooper pairs in layer 1, 2N  in layer 2, and 
2
h

 , where h is 

the Planck’s constant. In Eq. (4.2), on the other hand, we consider the so called elementary quantum 

flux 
e

h
20  , where e is the electric charge of electron. 

 
Also, we know that relation (4.2) can be rewritten as: 
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Let us consider the  “Resistively Shunted Junction” (RSJ) model [15], that is a SJJ connected in 
parallel with a resistor, of electric resistance R, which can be so schematized: 
 

 
 
Figure 4.1. Resistively shunted model for a Josephson junction. The junction is described by a 
parallel connection of a resistor with resistance R and an ideal Josephson element J: this model 
can be adopted also for multi-barrier Josephson junctions. 
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From this figure [29] we notice that, by applying the first Kirchhoff’s law to the electric circuit 
considered in figure 4.1), we get: 
 

JRB III  ,                                         (4.3) 
 
where RI  is the electric current circulating inside resistor R, and JI  the one circulating inside SJJ, 
while BI  is the so called bias electric current, that is provided by the source of electromotive force, 

applied from outside to the same electric circuit. Knowing that 
R
VI R  , where V is the voltage 

applied to the two electrodes of the SJJ, and so also to the resistor, from (4.1) we get: 
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Now, by using (4.2), we have: 
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Dividing all by 0,JI , we get: 
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we get: 
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In order to solve Eq.(4.5), we can consider that: 
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Therefore, it is possible to integrate this relation, and so we get: 
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where 0  is the angle of initial phase difference, corresponding to time 0, and )(  corresponds to 
time  . We must thus calculate the integral at first member, by using the method of substitution. 
In particular, we can make the following change of variable: 
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Considering the positions: 
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In this way, we have determined the value of integral, that is: 
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Carrying out the calculations, we obtain: 
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Because the second addendum present at the first member is constant, it can be considered equal to 
a constant 0a , so that: 
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By applying the tangent function to both members, we get: 
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Recalling that   xx 1tantan , we get: 
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Since the tangent is a periodic function, of period equal to  , we get:  
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with Zk  , where Z is the set of integer relative numbers . From the above relation, we get: 
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Therefore, we have: 
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This result can also be expressed with the last term k2 being preceded by a sign + , according to 
the fact that k is an integer relative number. By this result, we obtain that the period in   is of 2 , 
that is: 
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Therefore, if we calculate [29] the average value of normalized voltage  
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we get: 



 76

 
T

T
T

d
d
d

T
dv

T
v

TT 






2)0()(11)(1

00

   

 
In this way, we may write: 
 

T
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We must now calculate the value of T. Knowing that the tangent is a periodic function, of period  , 
we have:  
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with Zk   (set of integer relative numbers). Therefore: 
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where, in the latter equation, we consider a second time  . We thus have: 
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By defining  T  , we finally obtain: 
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By substituting this value in (4.10), we get: 
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By squaring this expression, and doing some other algebraic steps, we get: 
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Knowing that 
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Equation (4.13) represents the I-V characteristic of a SJJ. The double sign   indicates the presence 
of two branches in the graph of BI  in function of V: one for 0BI , V < 0, in the third quadrant, 
and the other one for 0BI  and V > 0 in the first quadrant. In the next paragraph we will notice 
that the I-V characteristic of a SJJ is equal to the one of  a homogeneous TBJJ.   
 

 
 

4.3 I-V characteristic for a homogeneous triple-barrier 
Josephson junction in the presence of a constant current bias  

 
In this section, we consider [29] the I-V characteristic of a homogeneous Triple-Barrier Josephson 
Junction (TBJJ), for which we have 0 . Let us recall [8] that the CPR for a TBJJ is: 
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Therefore, in the particular case of 0 , we obtain [29]: 
 









2
cossgn

2
sin)0( 0


 II ,                                                                                  (4.15) 

 

where 






















.0
2

cos1

0
2

cos1

2
cossgn






if

if
  

 
If we consider the interval of values of   given by 
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we notice that, whithin this interval, 0
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In this way, we get: 
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Following now the same considerations of the previous section, in particular adopting the 
“Resistively Shunted Josephson model”, or also called, for simplicity, RSJ model, we describe the 
junction dynamics by the following equation: 
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where   is phase difference between the outermost superconductors of the TBJJ, and  
o

B
B I

Ii  , 

where BI  is the electric current flowing inside the considered superconductor device, and where 0I , 
in the case of a TBJJ, is defined as follows: 
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In Eq. (4.19) 1K  is the coupling constant between the electrodes 1 and 2,  1

~K  is the one between 
the electrodes 3 and 4, 2

~K  is the one between 2 and 4, and 4321 ,,, NNNN  are the numerical 
densities of the Cooper pairs inside the considered electrodes 1, 2, 3, 4. We can now solve Eq. 
(4.14) with the method of variable separation, and so we get: 
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where we take the integration interval  )(,0   inside the interval    ,  so that the relation 
(4.18) holds. In order to solve the integral on the left hand side of Eq. (4.18), we can make the 

following substitution: 
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By repeating the same considerations of the case of SSJ, we get: 
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The second addendum in the above expression is a constant, as it is made up by all constant 
quantities; therefore, it can be indicated as 0a , and so: 
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As we have shown, in relation (4.20), that the integral at first member equals  , we get: 
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By applying the tangent function to both members of the latter equation, we get: 
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Knowing that tan( 1tan  x)= x, we get: 
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As the tangent is a periodic function, of period of  , we get: 
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get: 
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In fact, as k is an integer relative number, this result  (4.23) can also be expressed with the positive 
sign in the term k4 . In this way, for k = 1, we obtain the term 4 , which represents the value of 
period for the phase difference angle  , in this case of TBJJ. Just like in the previous case, we can 
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In the latter equation, we have considered the periodicity in  , equals to 4 , as just previously 
considered. So, we have obtain: 
 

T
v 4
 .                                                                                                               (4.24)                   

 
We must now calculate the value of the period T. By using the property, according to which the 
tangent function is periodic, of period  , we obtain: 
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In this way, from the considered equation, we get: 
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We therefore obtain: 
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By now using the relation (4.24), we have: 
 

.111

1

1

4
44

22222

2

2

vivivi

i

i

T
v

BBB

B

B











 

 

Because 
0I

Ii B
B  ,  we finally get: 

 
2

0 1 vII B                                                                                            (4.26) 
 
The above relation is the I-V characteristic of a TBJJ, in the simplified case of 0 . We can notice 
that it is analytically equal to the I-V characteristics of the SJJ, expressed by the relation (4.13), with 
the value of 0I  which is obviously different, as it has been previously specified. 
 
 

4.4 I-V characteristics of an inhomogeneous TBJJ in the 
presence of a constant current bias 

 
When the case [29] of an inhomogeneous TBJJ, so with 0 , is considered, we can also use the 
RSJ model, just like the homogeneous case, and we obtain: 
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By using the second Josephson equation, and normalizing both members of the latter relation for 

0I , we get: 
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where   is defined as in the previous paragraphs. In order to solve the latter differential equation 
we recur to numerical analysis, and so, for 15.0 and, Bi = 0.9, 1.1, 1.3, 1.5 we obtain numerical 

solutions of  )(  and 



d
d . 
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The profiles of )(  and 



d
d  as functions of  , for these values of the parameters   and Bi , are 

represented in figures 4.2a and 4.2b respectively. 
 
 

 
 
Figure 4.2a. Numerical solution    of the dynamical equation of a TBJJ in the presence of a 
constant current bias Bi  for 0.15 and for 9.0Bi  (cyan curve), 1.1Bi  (blue curve), 3.1Bi (red 
curve), and 5.1Bi  (gray curve). 

 
 

 
 

Figure 4.2b. Time evolution of the derivative 



d
d  of the superconducting phase difference   in the 

presence of a constant current bias Bi  for 0.15 and for 9.0Bi  (cyan curve), 1.1Bi  (blue 
curve), 3.1Bi  (red curve), and 5.1Bi  (gray curve). 
 
 

Successively, for each value of Bi , a value of )(  is determined and, consequently, of 



d
d  by the 

numerical resolution of (4.28). Therefore, by knowing that 
T

d
d
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V characteristics of a inhomogeneous TBJJ, i.e. the profile of Bi  as a function of v . In figure 4.3 
we show the I-V characteristics for 15.0 along with the I-V characteristics for 0 . 
 
 

 
 
Figure 4.3.  Current-voltage characteristics of a TBJJ in the presence of a constant current bias for 
0.00 (red curve) and 0.15 (blue curve). Notice that the red curve shows a larger maximum 
Josephson current MAXI . In fact, it depends on  simply as follows: )1(0  II MAX , 0I  being the 
maximum possible value obtained at 0. 
 
 
In the latter figure, we notice that the 15.0  curve lies below the 0  curve. This feature can be 
understood by generalizing the zero voltage case to finite voltages. In fact, we may start by noticing 
that the maximum value MAXI  of the Josephson current for the TBJJ can be expressed as follows [8]: 
 

   )1(0  II MAX .    (4.29) 
    
Because of (4.29), the normalization of the bias current [29] should be made with respect to MAXI , if 
we were to perform analytic calculations also in this case. However, retaining the usual 
normalization with respect to 0I , we are left with a rescaling factor in (1) equal to )1(  . 
Therefore, the I-V curves obtained for 0  are affected by the rescaling of the non-linear term in 
Eq. (16) and thus differ from the corresponding curves obtained for 0 . 
 
 

4.5 I-V characteristics in the presence of r.f. radiation 
 

Let us now consider [29] the I-V characteristics of TBJJs in the presence of r.f. radiation, in such a 
way that the whole four-layer superconducting system is driven by an external oscillating voltage of 
the following form: 
 

)cos()( 10 tVVtV r ,                                                                                                    (4.30) 
 
where 0V  is the d.c. voltage component, and 1V  is the amplitude of the oscillating part. This 
analysis has already been performed, in the case of a homogeneouys TBJJ, in the previous chapter, 
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in particular in the paragraph 3.5). We have determined, by integrating [6] the Josephson voltage-

frequency relation 



d
dv   the analytic expression of )(  : 

 
)~sin()( 00  rav  ,                                                                                           (4.31) 

 
with the meaning of the symbols just expressed into the relation (3.51). In the case of homogeneous 
TBJJs we have determined integer Shapiro steps and their semi-amplitudes in relations (3.65) and 
(3.66), respectively. Fractional Shapiro steps and their semi-amplitudes have also been determined 
in relations (3.81) and (3.82), respectively. 

The I-V characteristics of a inhomogeneous device needs to be evaluated numerically, as in the 
previous paragraph 4.3), by means of the RSJ model, where the expression )~cos(~)( 0  rravv   
takes the place of the electric current Bi .The latter expression of )(v  can be determined by the 
relation (3.53), in which it can be shown that, according to the symbols in relation (3.51), the 

coefficient 
0

1

RI
V  is equal to ra~ . Therefore, we take [5] the average value of Bi  to correspond to 

0v , as we know that the mean value of the cosine function is zero. The average value v  can be 
obtained by means of the numerically determined solution )(  of the differential equation (4.28) 
and its first derivative. 

From (4.28) we may notice that v  depends on  , and from (4.31) that it also depends on the 

parameters a  and r~ . In this way, the graph of Bi  as a function of v , representing the I-V 
characteristics of a TBJJ in the presence of r.f. radiation, as in this case it is considered, will depend 
on the parameters  , a, and r~ . In figures 4.4a and 4.4b the I-V curves for 0 , and 15.0  (in 
both cases a = 0,6 and 1~ r ) are shown; in figure 4.4c, on the other hand, we show the I-V curve 
for the following choice of the parameters: 1~,2.1,0.0  ra  . 
 
 

 
 
Figure 4.4a.  Current-voltage characteristics of a TBJJ in the presence of an oscillating r.f. voltage 

)~cos(~
0  rrav  , obtained from (4.30) by normalizing all terms for 0RI , for the following values 

of the parameters: 1~,6.0,00.0  ra  . 
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Figure 4.4b. Current-voltage characteristics of a TBJJ in the presence of an oscillating r.f. voltage 

)~cos(~
0  rrav  , obtained from (4.30) by normalizing all terms for 0RI , for the following values 

of the parameters: 1~,6.0,15.0  ra  . 
 
 
   

 
 
Figure 4.4c. Current-voltage characteristics of a TBJJ in the presence of an oscillating r.f. voltage 

)~cos(~
0  rrav  , obtained from (4.30) by normalizing all terms for 0RI , for the following values 

of the parameters: 1~,2.1,00.0  ra  . 
 
 
In figure 4.5a a comparison [29] between the results reported in figures 4.4a and 4.4b is made. In 
this particular figure we notice that, apart from a displacement of the curve for 15.0 toward the 
bottom in comparison with the curve for ,00.0 the amplitude of the Shapiro steps appearing in 
these figures remain roughly unaltered. In figure 4.6b, on the other hand, we compare the curves in 
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figures 4.4a and 4.4c, considering that the amplitudes of the current steps vary by choosing different 
values of a. 
  
 

 

 
 

Figure 4.5a. Comparison between the curves in fig. 4.4a and fig. 4.4b in a restricted voltage 
interval: the 0.00 case (red curve) and the 0.15 case (blue curve) are both obtained for 

6.0a  and 0.1~ r . 

 
 

 
 

Figure 4.5b. Comparison between the curves in fig. 4.4a and fig. 4.4c in a restricted interval of 
v . Both the red curve ( 6.0a ) and the blue curve ( 2.1a ) are obtained for 0.00 and 

0.1~ r .  
 
 
With respect to the Shapiro steps analysed in Chapter 3, we show the numerical evaluation of 

1I  and 2I  for the first forty terms in the summation in relation (3.66). In this way, we get a 
more refined evaluation of these quantities. 
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Figure 4.6a. Numerical evaluation of 1I  and 2I  (blue and red curves, respectively) as a function 
of the parameter a for 0. The first forty terms in the summation in (3.66) are considered.  
 

We also show the numerical evaluation of qI , for q = 
3
2,

2
1,

3
1,

4
1 , for the first forty terms in the 

summation in relation (3.82). 
 
 
 

 
 
Figure 4.6b.  Numerical evaluation of qI , for  q=1/4, 1/3, 1/2, 2/3 (blue, purple, orange, and red 
curves, respectively) as a function of the parameter a for 0. The first forty terms in the 
summation in (25) are considered. We notice that the semi-amplitude of the half-integer Shapiro 
steps (q=1/2), while having lower peaks than 1I  and 2I , show much larger oscillations than 

4/1I , 3/1I , and 3/2I . 
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We can consider [29] that the semi-amplitude of Shapiro steps is calculated in a semi-analytical 
way, as the relations (3.66) and (3.82) have been analytically determined, while the maximum value 
in the summations expressed by these same relations has been calculated by using techniques of 
numerical analysis. Instead, figures 4.4a, 4.4b, 4.4c, and 4.5a, 4.5b have been represented only by 
means of numerical analysis, because they are connected with the numerical solution of (4.28). Let 
us now compare, at least qualitatively, the integer and fractional current step amplitudes, obtained, 
as just said, by numerical integration, with those obtained semi-analytically from equations (3.66) 
and (3.82). For example, by estimating from figure 4.5b the semi-amplitudes of the first integer step 

(n = 1) and of the rational step 
2
1

q , obtained for 1~ r  and 0 , and for a = 0.6  (red curve) 

and a = 1.2 (blue curve), we might see that the n = 1 step almost doubles and the 
2
1

q  step is left 

almost unaltered. This behaviour corresponds to an increase of 1I  (blue curve in fig. 4.6a) for 0.0 
< a < 2.0 and to a small variation of the value of 2/1I  (orange curve in fig. 4.6b)  when going from 
a = 0.6  to a = 1.2. In fact, we notice that for the quantity a comprised between 0.6 and 1.2 and with 
n = 1, 1I  shows a larger variation almost between 0.1 and 0.5, in comparison with the case of 

2
1I , that varies between 0.05 and 0.25 in the same range of the quantity a. This property agrees  

with the behaviour of the amplitude of Bi  as a function of a varying into the range 0.6-1.2, as it is 
shown in the numerically determined figure 4.5b, where, for n = 1, this amplitude practically 

doubles, while for 
2
1

q  remains almost unchanged. As we have noticed, for n = 1 the current Bi  

varies about between 0.8 and 1.6, while for 
2
1

q  the current Bi  only varies between 0.6 and 0.8, 

therefore confirming that the semi-analytical profiles of figure 4.6a and 4.6b agree with the 
numerical profile of figure 4.5b. 
 

 
4.6  Conclusions 

 
The I-V characteristics of triple-barrier Josephson junctions have been studied in the presence of a 
constant current bias and of a r. f. voltage radiation. 
In the case of constant current bias, we have first analysed the homogeneous case ( 0 ) in which 
the Josephson coupling between superconducting regions does not depend on the particular pair of 
layers considered. In this case we have been able to analytically determine the I-V characteristics of 
TBJJs in the presence of a constant current bias. Adopting the RSJ model, the analytically 
determined I-V curves are seen to be formally identical to the canonical ones derived for JJs. For 
inhomogeneous Josephson coupling ( 0 ), on the other hand, numerical evaluation of I-V shows 
that deviations of these curves from the analytically determined characteristics for 0  are seen to 
be compatible with the expression of maximum Josephson current   01 II MAX  . 
In the presence of a r. f. radiation the I-V characteristics show integer and fractional Shapiro steps. 
By a standard semi-analytic approach, expressions of the semi-amplitudes of these steps have been 
determined for 0 . Numerical evaluation of I-V curves, performed for 0 , shows persistence 
of integer and fractional Shapiro steps.   
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Chapter 5 
 

 
Semi-classical and quantum analysis of the one-junction 
and the two-junction Josephson interferometer 

 
 
Starting from the review of the classical and quantum physical properties of one-junction 
interferometers, the same type of analysis is extended to two-junction interferometers. By means of 
this approach, the Hamiltonian of the latter system is determined in terms of the average phase 
difference for the two Josephson junctions in the device. Under the hypothesis of negligible loop 
inductance, energy and current states in two-junction interferometers in the quantum regime are 
found. Possible extension of the present analysis to ternary quantum computing is discussed. 

 
 

5.1  Introduction 
 

The magnetic properties of a superconducting loop interrupted by one Josephson junction are well 
known and give rise to interesting applications in the realm of mesoscopic [15] and quantum 
physics [30-31]. In fact, r. f. Superconducting Quantum Interference Devices (r. f. SQUIDs) are 
nowadays useful instruments in experimental research [28]. As far as the field of quantum 
computing is concerned, a superconducting loop containing one Josephson junction (JJ) can be 
shown to be equivalent to a Cooper pair box [32-33]. The former device is thus denoted as “flux 
box”, which may be considered to be a promising candidate for elementary memory cells in 
quantum computing [34-39].  
Equally well known are the magnetic properties of two-junction quantum interferometers [15]. 
Similar widespread use of d. c. SQUIDs is made in various fields [28]. The two-junction quantum 
interferometer, on the other hand, is not isolated from external classical systems and its quantum 
extension does not result to be as immediate as in the case of a flux box. Moreover, the presence of 
two forcing terms in the latter device, namely, the applied magnetic flux and the bias current, 
provide additional features, giving the possibility of operating this superconducting system in 
different applicative contexts. For these reasons, even though the strict quantum regime of these 
types of superconducting elements, directly coupled to classical circuitry, could be more difficult to 
attain experimentally, the study of the magnetic response of their quantum states could give new 
hints in conceiving devices with two control parameters. Moreover, logic circuits utilizing 
Josephson junctions as fundamental elements for memory cells in ternary logic computing [40-41] 
have already been proposed in the literature. In this respect, extension of the quantum properties of 
the one-junction to the two-junction interferometer may provide a way to consider quantum 
computing based on qutrits, rather than qubits. 
According to these considerations, in this chapter, starting [42] from a semi-classical and quantum 
analysis of a single junction interferometer, whose main analytical properties are summarized, we 
extend these concepts to the analysis of the semiclassical and quantum properties of a two junction 
interferometer. In particular, by following a semiclassical analysis, we have considered the 
expression of the potential energy of a one-junction interferometer, called “parabolic washboard 
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potential”, recalling how the dynamical equation of the phase difference in the Josephson Junction 
can be derived. We have thus calculated the current states, showing the presence of a diamagnetic 
and a paramagnetic behaviour in two different states. We have also considered the quantum analysis 
of the same device, determining the expression of the Hamiltonian operator, calculating its 
eigevalues and the current states corresponding to them, showing that an alternating diamagnetic 
and paramagnetic behaviour still exists. 
The extension of semiclassical and quantum analysis to a two-junction interferometer has also been 
considered. By using a semiclassical analysis we have recalled, with the condition of negligible 
loop inductance, how the dynamical equation for the phase difference, taken as the mean value of 
the phase differences in the Josephson Junctions, can be derived. In addition, we have calculated the 
persistent current flowing inside this system, as a function of the external magnetic flux. 
Successively, just as in the previous case,  we have extended to the quantum analysis of a two-
junction interferometer, determining its Hamiltoninan operator, calculating its eigenvalues and the 
related expression of the current states.In the quantum regime we still notice the characteristic 
alternating occurrence of diamagnetic and paramagnetic states, in the same way they appear in their 
classical counterpart. The classical and quantum properties of the two-junction interferometer are 
compared and possible extension of these concepts to ternary or higher order computing are 
discussed. Some specific calculations, connected to the main arguments, have been reported in 
Appendixes 5.1, 5.2, 5.3, 5.4, 5.5. 
 
 

5.2  Semi-classical analysis of the one-junction interferometer 
 
The one-junction quantum interferometer [42] can be described, on semiclassical ground, by means 
of the following potential energy function: 
 

)cos-1(
22

)-(),( 00,
2










 jex I
L

E                             (5.1) 

 
where,   is the magnetic flux threading the superconducting loop, ex  is the applied flux, L is the 
loop inductance, 0,JI  is the maximum Josephson current, and   is the superconducting phase 
difference across the single Josephson junction considered. Equation (5.1) can be obtained 
considering that in the total potential energy we have two terms: the first one is the interaction 
energy between the superconducting loop and the external magnetic field, and the second one is the 
energy of the simple Josephson Junction (SJJ). In fact, the first term is a magnetic energy of the 
form: 
 

2

2
1

LIEM =                                                                        (5.2)  

 
where L is the loop inductance, and I is the electric current flowing in the loop, that can be 
expressed by using the relation: 
 

LIex +=   
L

I ex -
⇒ = .                                            (5.3) 

 
Substituting this expression in Eq. (5.2), we get: 
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L
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= ,                                                          (5.4) 

 
which gives the analytic expression of the first term. The energy associated to the SJJ can be 
obtained starting from the relation, that is proved in the theory of the Josephson Junctions:  
 

Vdt
dWI C 1

 , 

 
where I is the electric current made up by the Cooper pairs (Josephson current), CW  is the potential 
coupling energy between the two superconductors constituting the SJJ, and V is the voltage applied 
at the electrodes of the considered Josephson junction. By using the second Josephson equation 



eV
dt
d 2

=
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, we get: 
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In this way, identifying the variation of CW  with the variation of  the total energy  of the Josephson 
Junction )(JE , with varying  , we get: 
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0
 ,                                                                                                     (5.5)  

 

where  
e

h
20  , and h is the Planck’s constant. So, by integrating Eq. (5.4), we obtain: 

 

  )cos1(
2

cos
2

)(
2

)( 0,0
0

'0,0

0

''0 






















  Jj
J

II
dIE , 

 
where we have used the Current Phase Relation (CPR) of a Single Josephson Junction (SJJ): 
 

senII J 0, .  
 
In this way, considering )()(),(  JM EEE   we get the expression (5.1). 
By means of the fluxoid quantization condition: 
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 ,                                                                                        (5.6) 

 
with k integer, we can express the potential energy ),( E  exclusively in terms of the magnetic 
flux  . Therefore, we get: 
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where the trigonometric property: 



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
0

2cos22cos k  has been used. In order to make 

clear the link between this classical description and its quantum extension already at this stage, we 
can define the following quantities: 
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where n represents the number of trapped fluxons in the superconducting loop of the SQUID 
considered, and exn  the equivalent real value of applied fluxons. Let us now define: 
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E
E 0, , so that the expression of  PW  as a function of n, can be 

written as follows: 
 

 )2cos(1()()( 2 nnnEnW exLP   .                                       (5.8) 
 
We can report the profile of the parabolic washboard potential )(nWP , normalized to LE , as a 
function of n, in figure 5.1, where we have considered two different values of the applied external 

magnetic flux, namely 0ex  and 
2
0

ex , so that 0exn  and 
2
1

exn , both for  = 0.25, 

obtaining, for each of these values, a different shape of this potential.  
 
 

 
 
Figure 5.1.  Parabolic washboard potential of a one-junction quantum interferometer for 25.0  
and for normalized applied flux exn  equals to 0.0 (full line) and 0.5 (dashed line). 
 
 
We can extract useful information on the flux dynamics with two different methods: the Resistively 
Shunted Junction (RSJ) model, and the power balance relation. Let us first consider the RSJ model. 
The electric current I circulating in the loop, and flowing through the Josephson Junction (JJ) 
divides into the two branch currents: sin0,JJ II   flowing in the ideal Josephson element, and 

R
VI R   flowing in the shunt resistor of electric resistance R, when a nominal voltage V is present. 

Therefore, by using current conservation, we have: 
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RJ III   ,                                                                      (5.9) 

 

where I is expressed by the relation (5.3), and  
dt
dV 

2
0

  according to the second Josephson 

equation. In this way, we obtain: 
 

L
I

dt
d

R
ex

J








sin
2 0,

0 .                                      (5.10) 

 
The relation (5.10) expresses the phase difference dynamics. In order to obtain, from Eq. (5.10), the 
magnetic flux dynamics, we can use the fluxoid quantization condition (5.6), so that: 
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Knowing that 
00

2sin22sin











 k , and changing the sign in the first and second member 

in the relation (5.10), we write: 
 

L
I

dt
d

R
ex

J









0
0, 2sin1  .                             (5.11) 

 
Equation (5.11) expresses the magnetic flux dynamics connected with this one-junction 
interferometer considered. We notice that the first addendum on the left-hand side of equations 
(5.10) and (5.11) represents a dissipation in the system. In fact, the presence of the resistive term R, 
due to the insulating material present between the superconducting electrodes of the JJ, leads to 
energy dissipation of the electromotive force source, having considered our system insulated from 

the external environment. From relation (5.11) we can obtain the dinamycs for n =
0

  in Appendix 

5.1. 
 
The second method is based on the following power-balance relation: 
 

0)(2





dt

dW
R

V .                                                    (5.12) 

 

Equation (5.12) is obtained by using classical electrodynamics, namely the relations: 
R

VVIP
2

 , 

where P is the electric power, which represents the time variation of energy, in this case of the 
potential energy )(W . So we get: 
 

R
V

dt
dW 2)(


  ,                     

 
where the minus sign is due to the dissipation of energy on the resistor. By Eq. (5.12), we obtain: 
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By using the fluxoid quantization (5.6), and knowing that  sin)2sin( k , we have: 
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0, .                                                     (5.13) 

 

We can now express 
dt
d  in terms of 

dt
d  by using the relation (5.6), so that: 
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By replacing this term inside the expression (5.13), and by using the second Josephson equation, we 
obtain: 
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With the right simplifications, this expression becomes: 
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which is just equation (5.11).  

Purely superconducting states (S-states) are obtained by setting 0
dt
d , and thus correspond to the 

minima of ).(W  In fact, if we consider the second Josephson equation  


eV
dt
d 2


  we have:  

00  V
dt
d . 

Therefore, from equation (5.12) we get:  0)(



dt

dW , according to energy conservation of the 

system considered. The minima of )(W , on the other hand, are obtained by setting its first 
derivative to zero, since:  
 

0)()(









dt
d

d
dW

dt
dW .                                       

 
Now, knowing that the magnetic flux and its time derivative can be different from zero, we have: 
 

0)(





d
dW . The latter expression is the condition to obtain the minima of the function )(W  

considered, as we can notice in figure (5.1). Therefore, the states for which 0
dt
d  are the ones 
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corresponding to the minima of )(W . The superconducting state (or S state) is thus characterized 
by the minimum energy values of )(W . We may thus say that the superconducting states are 

obtained by the condition  0
dt
d . The above semiclassical description of a single- junction 

quantum interferometer allows us to predict the physical properties of a r.f. SQUID. However, we 
are here interested on one particular aspect of this system, namely, the realization of different 
current states (or flux states) for different values of ex . In particular, let us consider two 
metastable states: one realized in the well of the parabolic washboard  potential, near 0 , for 

0n , and the other one realized on the adjacent well to the right, approximtely at 0 , so for 

1n . By normalizing the electric current I to 
L

0 , where the latter quantity has the physical 

dimensions of an electric current, we may rewrite the expression of I as follows: 
 

)( exnni  .                                                   (5.14) 
 
The relation (5.14) follows from the expression:   
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exexex nni
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
000

. 

Therefore, according to the definitions (5.3) we obtain the relation (5.14). In this way, considering 

the 
2
1

exn  curve, we may see that we are in the presence of two current states, corresponding to 

the 0n  and 1n  minima, namely: 
 

2
1;

2
1

  ii  .                                      (5.15) 

 
We can show, in Appendix 5.2, that the 0n  well, in the parabolic washboard potential, represents 
a diamagnetic state, while the 1n  well represents a paramagnetic state. 
We would like to remark that the classical case is obtained for temperatures which are sufficiently 
low to maintain the superconducting state (in order to not overcome the critical temperature) but 
also sufficiently high for fluxons to overcome the barrier height separating two adjacent minima in 
the parabolic washboard potential. When temperatures are low enough to confine fluxons inside a 
single well, quantum tunnelling gives the appropriate description of the system dynamics. In fact, if 
the thermal energy TkB  is larger than, or at least equal to the potential barrier energy, which is of 
magnetic origin, we can have, from a classical point of view, the transition of fluxons from a 
minimum position in the parabolic washboard potential to another one. 
Instead, for TkB  smaller than the potential barrier energy, the passage of fluxons may hppen only 
by tunnel effect, that is a typical quantum phenomenon. We shall consider the quantum behaviour 
of this system in the following section. 
 

 
5.3  Quantum analysis of one-junction interferometers 

 
Let us now give a quantum description [42] of one-junction interferometers, starting from what 
stated in the previous section. We are going to show the strict parallelism between the classical and 
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quantum behaviour of the single junction interferometer. We thus start by giving the role of 

quantum operators to the conjugate variables   and 
0


n . These newly defined operators obey 

to the following commutation relation: 
 
  in ˆ,̂ ,                                                                            (5.16) 
 
where ̂  is the operator corresponding to the angular position, and n̂ (in which we have taken 

)1  is the operator corresponding to the action, which is the product of an energy for a time, and 
we have to consider, in the second member, the identity operator Î  multiplied by the imaginary 
unity i. Therefore, the relation (5.16) is the ordinary commutation relation between the angle-action 
variables. 
The Hamiltonian operator, which can be deduced directly from equation (5.1), is so defined: 
 

  ˆcos)ˆˆ(ˆ 2  InnEH exL .                                          (5.17) 
 

In the above expression, exn  and 
L

J

E
E 0,  must be considered c-numbers. This analytic expression 

of the Hamiltonian operator is obtained considering that the parabolic washboard potential, like all 
the forms of potential energy, is characterized by an arbitrary additive constant, which,in this case, 

is just the term  
2

00, jI
. Nevertheless, we can neglect this term when we pass from the parabolic 

washboard potential to the Hamiltonian operator, in order to obtain a simpler analytic expression of 
this quantum operator and of its matrix form. 
In order to express the Hamiltonian operator in matrix form, we start by defining the Hilbert space 
on which this operator acts. Therefore the two  states 0  and 1 , that constitutes an orthonormal 

set, i.e. 








jifor
jifor

ji ji 0
1

,  where i, j = 0, 1, are taken to span the entire Hilbert space. The 

physical meaning of the two states is as follows: the absence ( 0 ) or the presence ( 1 ) of a flux 
quantum in the superconducting loop interrupted by the Josephson junction. We can consider that 
the number operator n̂  on the kets n , counts the flux quanta in the superconducting loop; namely: 
 

nnnn ˆ . 
 
By using the commutation relation (5.16), it can be shown (we report this proof in Appendix 5.3) 
that: 
 

1ˆ  nne i .                                                                   (5.18) 
 
Therefore, it is possible to define the way the operator ̂cos  acts on the states 0  and 1 , since: 
 

2
ˆcos

ˆˆ 


ii ee 

 .                                                                                                         

 
By using these relations, and by knowing that 
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we get: 
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The relations (5.19) and (5.20) indicate that the kets 0  and 1  are not eigenkets (or eigenvectors) 

of the Hamiltonian operator Ĥ , as we have the presence of two more terms, in the second member 
which are not proportional to these kets. So, we can calculate: 
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In the third term, we have used the fundamental property taht a Hamiltonian operator needs to be 
hermitian. Therefore, we have: 
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Having found the matrix form of the Hamiltonian operator Ĥ , we can determine its eigenvalues 
through the relation: 
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where the matrix form of the identity operator, in this 2x2 case, is: 
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




10
01
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By carrying out the calculations, we get: 
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Therefore: 
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From the above expression, we obtain: 
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In this way, the eigenvalues E of the Hamiltonian operator Ĥ  can be written as follows: 
 

]])1([)1([
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The energy gap E  between  EandE  is: 
 

2222 ])1([   exexL nnEEEE . 

We notice that the gap E has a minimum at 
2
1

exn , its value being: 

0,min)
2
1( JLex EEEnE   . 

 
We report, in figure 5.2, the profile of these eigenvalues in function of exn , in the interval  1,0 , for 

25,0 . In this figure, the  EandE  eigenvalues are represented by the upper and lower full-line 
branches, respectively. The states  and   are eigenstates of Ĥ , so that: 
 

 EĤ . 
 
We may now look at the currents I  characterizing these same states. In particular, it is possible to 

show that these currents, in their normalized form to 
L

0 , satisfy this relation: 
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where 

L

Ii
0

 
 . 

 
 

 
 

Figure 5.2. Eigenvalues E and E  (upper and lower full line branch, respectively) of a one-
junction quantum interferometer for 25.0 as a function of the normalized applied flux exn . The 
dashed lines represent the left branch of the parabola 2

exn  and the right branch of the parabola 
2)1( exn , respectively. 

 
In fact, we can start from this relation: 
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whose form just follows from relation (5.5). So, we get: 
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By differentiating the fluxoid quantization condition, we have: 
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In this way, we obtain: 
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where the last equation is based on the fact that E  depends, for defined values of   and LE , only 
on exn . Therefore, by equation (5.28), we get: 
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1 ,    that is just the previous relation (5.26). 

 
By carrying out the appropriate calculations according to (5.26), as it is done in details in Appendix 
5.4, we get: 
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We report the profile of i  as a function of exn  in figure 5.3. 
 

 
 
Figure 5.3.  Normalized currents i and i (full line and dashed line, respectively) as a function of 
the applied flux number exn  circulating in a one-junction quntum interferometer with .25.0  
 
 
By looking at figure 5.3, where the quantities i  are reported as a function of exn , we may argue 
that, in the interval [0, 1], the role of the states  ,  interchange. In fact, the derivatives of the 

energy branches are of opposite sign in this interval, both attaining the null value at 
2
1

exn . By 

now using the expression (5.26), we may show the currents i  as in figure 5.3. We may notice that 

in the interval 





2
1,0 of exn  the state   is diamagnetic, while the state   is paramagnetic. On the 

other hand, in the interval 



 1,
2
1 , the magnetic character of these states is inverted, and at 

2
1

exn  

both these states are characterized by a null value of electric current. The proof of this alternating 
magnetic character is reported in Appendix 5.4. 
 
 
5.4  Semi-classical analysis of the two-junction interferometer 
 
As seen for the single junction interferometer, we can describe [42] the semi-classical behaviour of 
the two junction quantum interferometer, by means of an effective potential energy function. We 
giv a schematic sketch of this device in fig. 5.4. 
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Figure 5.4. Schematic representation of a two-junction quantum interferometer. The bias current 

BI  divides into two branch currents, 1I  and 2I . The applied magnetic field (not shown in the 
figure) is orthogonal to the plane in which the device lies. 
 
 
Considering identical JJs in the superconducting loop, so with the same value of maximum 
Josephson junctions and electric resistance, and neglecting the inductance of the superconducting 
loop, so that the flux of magnetic field   threading the hollow device is equal to the external 
applied flux ex  , we may show that: 
 

]
2

-coscos-1[2)( 0,  B
exJ

inEE   .                                                      (5.30) 

 

In this expression 
2

21 


+
= , where 1  and 2  are the superconducting phase differences across 

the first and the second JJ in the loop, respectively, and where Bi  is the bias current normalized to 

0,JI ,  i.e.  
0,J

B
B I

I
i = . In what follows all normalizations will be done with respect to the energy 0,JE  

and the electric current 0,JI , as it is usual in the literature. The washboard potential represented by 
the expression (5.30 ) is graphically shown in figure 5.5, for 0.0=Bi  and 5.0=Bi . 
 
 

 
 
Figure 5.5. Washboard potential of a two-junction quantum interferometer for 0.0exn  and for 
normalized bias current Bi  equal to 0.0 (full line) and 0.5 (dashed line). Notice that the degeneracy 
of the minima present at 0Bi  is removed by applying  finite bias current to the system. 
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In order to prove the analytical expression (5.30), we begin to consider that the total potential 
energy in a d. c. SQUID with 2 simple Josephson Junctions is represented by: 
 

BJJtot ELILIEEE -
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2
122,11, +++=  .                                    (5.31) 

 
In the above expression, we notice that )( 11, JE  and )( 22, JE  are the energies corresponding, 
respectively, to the first and to the second Josephson junction. By considering the two JJs to be 
identical, as already stated before, the same values of maximum Josephson electric current 0,JI  and 
of the electric resistance R can be adopted for both JJs. The term BE  in (5.31) is expressed with the 
minus sign, because it is an energy furnished by the external environment (the source of 
electromotive force) to the system (the particular SQUID considered). The analytic expression for 
this term can be obtained by using the electromagnetic relation: 
 

BB VIP = ,                                                                                             (5.32) 
 
where V is the voltage at the ends of the two branches of the d. c. SQUID, BP  is the electric power 
and BI is the bias electric current, both of them furnished by the electromotive force. By knowing 

that 
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=  , according to the second Josephson equation, we get: 

 

dt
dI

I
dt
d

P B
BB





 22

00 
== .                                                               (5.33) 

 

As the power can be considered as the time variation of energy, i.e. 
dt
dE

P = , in this case we get: 
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By assuming that the inductance of the superconducting loop is negligible, we notice that the two 
terms representing the magnetic energy, which are proportional to L, are also negligible. Therefore, 
the value of the total potential energy of this particular SQUID considered, which is made up by 
two simple and identical JJs, with BI is constant, and with negligible inductance, is represented by: 
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By using the following trigonometric relation: 
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and by adopting new variables: 
2
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+
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2
- 21 

 = , we have: 
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iEiEE  .             (5.34) 

 
Knowing that for a d. c. SQUID with 2 JJs the following relation holds: 
 

)-(- 2121 IILLILI extext  ,   
 
in the case of L=0, we may write: 
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Therefore, we get: 
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that is just the relation (5.30).  
It is interesting to consider that the potential energy in relation (5.30) is similar to the one of a single 
JJ, with a maximum Josephson current equal to )cos(2 0, exJ nI   in which a d.c. current Bi  is 
injected. In order to prove this result, we can consider that the potential energy of a single JJ is: 
 

)cos-1(
2

)( 0,0 


 J
J

I
E


= .  

 
If a d.c. electric current is furnished by the external environment, we have obtained that the 
associated electrostatic energy is: 
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So, the total energy of the single JJ is : 
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If the maximum Josephson electric current is )cos(2 0, extJI  , by making the substitution: 
 

)cos(2 0,0, extJJ II ⇔                                                                                                                  (5.35)  
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we obtain:  
 

)-cos-1(cos2)( 0,  BextJtot iEE = = ])cos(-cos)cos(-)[cos(2 0,  extBexexJ iE .   (5.36) 
 
If we compare this expression with the relation (5.30), we can notice that the first term is constant, 
being independent from  , so it can be considered an adding constant term in the expression of the 
potential energy, the second term is just equal to the one of (5.30), and the third term may be 

considered very near the expression of the term 
2
Bi  of the (5.30), if we consider the constant term 

)cos( ext  inside the other constant term 
2
Bi . So, the similarity between these two relations of  

potential energy has been proven. In this way, all the analytical results obtained for the latter device 
apply in our case, by simply considering this analogy. 
In order to determine the value of the circulating currents in the device, we may consider the time 
evolution of the superconducting average phase difference  , which can be derived, as in the case 
of the classical single-junction interferometer, by means of the RSJ model, or by using the power 
balance equation (5.11). In particular we can show, using the method of the power balance 
equation, that we obtain this relation: 
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In order to prove the (5.37), we can start by the electromagnetic relation: 
 

VIP = =
eqR

V 2

- , 

 
where the presence of minus sign is due to the energy dissipation on the equivalent resistance eqR  
considered. It is possible to show that if R is the electric resistance of each JJ, the equivalent 
resistance eqR  is given by the relation: 
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having considered that  RRR == 21 . 
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Since now  





 




 220
2

0 )()
2

(22
2 dt

d
RR

V
dt
dV 





, from the relation 

R
V

dt
dE 22

-= , knowing that  

2
0,0

0,
J

J

I
E


= ,  we get: 

 
 

 
So, we have obtained equation (5.37) considered before. We can also divide both members for the 
maximum Josephson current 0,JI , and we get: 
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If we want to determine the maxima and minima of the potential energy expressed by the relation 
(5.31), we can calculate its first derivative in  , and impose ti to be zero. 
 
Therefore, we get: 
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In the hypothesis in which 0Bi  and 0
2

cos)cos(
2
1


 exex nn 0)cos(  exn ,  we get: 

 








)12(
2

0sin0sin)cos(2 0, k
k

nE exJ


   with Zk  . 

 
For  k2 , replacing this value in )(totE  we obtain: 
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Having considered that, for hypothesis, 0Bi , we get: 
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As the maximum value of cos  equals 1, and we get it for  k2 , considering that this term has 
been expressed with the minus sign, we can notice that )2( kEtot  is minimum, so we have:  
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Instead, for  )12(  k , always considering that 0Bi , we get: 
 

max0,0, ))12(()cos1(2])12cos()cos(1[2))12(( EkEnEknEkE totexJexJtot   . 
 
In the case of 0Bi  but very small, and for 0exn , the position of the minima do not vary with k 
ranging in Z, and it leads to a value of 0min E . 

In order to connect the phase variable to the magnetic flux   threading the superconducting 
loop, we can write, as in the previous case of the single-junction interferometer, the fluxoid 
quantization relation: 
 

k 2-2 21
0
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
                                                         (5.39) 

 
where k is an integer. This relation, whose demonstration is given in [43], can be proven by using 
similar argumentations just used for the case of the fluxoid quantization of the single-junction 
interferometer. In this way the parallelism between the single-junction and the two-junction 
interferometer is established. 
A method for finding persistent currents (superconducting currents) in a two-junction interferometer 
for non negligible values of  inductance of the superconducting loop of the interferometer has been 
given by De Luca and Romeo [44]. HEre, we make some remarks about the determination of the 
superconducting currents in a two-junction interferometer in the semiclassical regime, in this case 
of negligible inductance of the superconducting loop. 
First of all, we can show that the maximum bias current which can be injected in the device at zero 
applied magnetic field, without destroying the superconducting state, is 0,2 JI . In fact we know that 
in the superconducting state V = 0 and thus, for the second Josephson equation: 
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Also we notice that, for zero applied magnetic field, also the external magnetic flux is zero, so  
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So from the (5.38) we get: 0,0, 2sin)0cos(2 jJB III   , since 1sin  . The normalized persistent 
currents can be expressed as follows: 
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where we have normalized the electric current for 0,JI , as it is usually done in literature. In fact, we 

know that the superconductive electric current satisfies this relation: 




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
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2 , and so, by using 
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the condition of fluxoid quantization, we get: 
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expression for 0,JI , we obtain: 
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where we have:  
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J
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
 . In order to find the persistent currents only in terms of the 

parameters Bi and exn , we may solve for the cos  term by choosing the stable fixed points of the 

expression (5.38), which correspond to the superconductive state V = 0 0
dt
d . From (5.38) we 

notice that the stable points, and so the superconducting state, can be present only for 
)cos(2 exB ni  . Therefore, by knowing that  2sin1cos   and also that, from (5.38), 
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where sign must be determined in such a way that the above expression gives a minimum  in the 
total energy expressed by (5.30). By knowing that the positions of minimum in the expression 
(5.30) must satisfy the relation: 
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Ed
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 , we obtain the condition: 

 
0)cos(cos exn .                                                       (5.42) 

 
So, we may notice that cos  and cos( )exn  have the same sign. In this way, the expression (5.40) 
can be represented as:   
 

)(cos4
1)sin()sgn(cos 2

2

ex

B
exexN n

inni


  ,          (5.43) 

 
where sgn(x) denotes the sign function. The normalized current Ni  is represented in figure 5.6 as a 
function of exn  for the values of Bi represented by 0.0, 0.25, 0.50. From this figure it is possible to 
notice that there is a point of discontinuity of the current at half integer values of exn . Also, we may 
notice that the electric superconductive current I is zero for )cos(2 exB ni  , and attains its 
maximum value of 2Bi  at integer values of exn . In fact, if the external bias electric current is 
larger than the maximum value of the superconductive electric current, also called critical current, i. 
e., if  )cos(2 exB ni  , we have a phase transition inside the considered material, from the 
superconducting to the normal state, so that the superconductive current is negligible.  
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As specified in the case of a one- junction interferometer, the system lies in a classical regime as 
long as it is not in the very-low temperature range, in which thermal activation of excited fluxon 
states is not possible. When these conditions are not satisfied, we need to give a quantum 
description of the system.  
 

 
 
Figure 5.6.  Normalized current Ni  represented in terms of exn  in a classical two-junction 
interferometer for the following values of Bi : 0.0 (dashed line), 0.25 (full line), 0.50 (dotted line). 
 
 
In the following section we shall therefore consider the quantum behaviour of the system described 
by the Hamiltonian operator obtained from the relation (5.30). 
 
 

5.5  Quantum analysis of the two-junction interferometer 
 
 
Let us now consider [42] the following Hamiltonian operator: 
 

]ˆ
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exJ
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obtained by promoting the variable   in (5.30) to the role of an operator ̂ , and by considering Bi  
and exn  as real numbers. We already know all about the operator ̂cos . So, we need to see how the 
operator ̂  acts on the single-particle Hilbert space, characterized by the states n . We can express 
the operator ̂  in terms of the following Fourier series: 
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where the Fourier coefficients nb  are calculated in this way: 
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These relations are proven in Appendix 5.5. So, by substituting the relation (5.46) in (5.45), and 
considering that the period 2T , we get: 
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In the summation (5.47) we may retain only the first term, as the term n is present at the 
denominator of this expression, and so, increasing n, ̂  decreases, so it can be considered negligible 
for n > 1. Therefore, we can express ̂  as follows: 
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Substituting this expression of ̂  inside the relation (5.44), we get: 
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By using the Euler’s relations: 
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By knowing that:  i
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We can limit our analysis to the Hilbert space spanned by the kets 0  and 1 , and so we can 

calculate the matrix form of the Hamiltonian operator Ĥ  on these two kets. We know, from 
Appendix 5.3, how the operator ̂ie  acts on the state n : 
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According to the above relation, and by knowing also that 
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From these relations we can notice that the kets 1,0  are not eigenkets of the operator Ĥ . So, we 
obtain:   
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So, the matrix expression of the Hamiltonian operator Ĥ  on the kets 10 and  is represented by: 
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We can determine the eigenvalues   of the Hamiltonian operator Ĥ  in (5.55), which are the 
energy values of the particles (Cooper pairs) in the particular SQUID considered, by solving this 
equation: 
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So, we get: 
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By carrying out the calculation, we obtain: 
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So, by the relation (5.56), we can obtain the eigenvalues of the Hamiltonian operator Ĥ , by solving 
the second order algebraic equation: 
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By knowing that  0
2

0,0
0, 


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
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E , we get: 
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0,0, exBJexBJJ niEniEE   . 
 
So, we obtain the two energy values E , which correspond to the eigenvalues of the Hamiltonian 
operator in this Hilbert space: 
 

))(cos2( 22
0, exBJ niEE  .                                                             (5.52) 

 
A graphical representation of the eigenvalues E  in terms of exn  is given in figure 5.7a. It can be 
shown  that the minimum energy gap occurs at semi-integer values of exn , and it is equals to Bi2 . In 
fact, from (5.58) we have: 
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The minimum value of this expression is reached for 0)(cos2 exn , thus for semi-integer values of 

exn . So we get: 
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Figure 5.7a. Energy states E  and E  normalized to 0,JE  (upper and lower branch, respectively) 
represented in terms of exn  for a two-junction interferometer in the quantum regime with 20.0Bi . 
 
As considered before, these eigenvalues correspond to the eigenvectors   such that:   
 

 EH  
 
Let us first consider the case of persistent currents at 0Bi . In this case, from relation (5.52), we 
have ))cos(2(0, exJ nEE  , so that the two energy branches take the same value of 0,2 JE  at 

2
12 


knex , with k integer, as we obtain 0)cos( exn  for these particular values of exn considered. 

The persistent currents, at any value of Bi , can be found by equation (5.26), so that: 
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Thus, we obtain: 
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For 0Bi , in particular, the persistent currents in the two junction-interferometer attains the 
following simple expression: 
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))(cos()sin(
2
1)( exexex nsignnni   .                    (5.55) 

 
These results are reported in figure 5.7b, for various values of Bi . In figure 5.7b, we may still notice 
the characteristic alternating occurrence of diamagnetic and paramagnetic states in the quantum 
system, in the same way they appear in their classical counterpart. 
 
 

 
 
Figure 5.7b. Normalized current i  plotted against exn  for the following values of Bi : 0.0 (dashed 
line), 0.25 (full line), 0.50 (dotted line). 
 
 
In the latter figure, we may also notice the disappearance of the discontinuities present in figure 5.6, 
where a critical electric current must be taken into account as a discriminant of a real-valued 
circulating electric current. In fact, in the classical case, we consider the presence of an electric 
resistance between the two superconducting layers of the Josephson junction present inside the 
interferometer, and so a dissipation of the lectric current is created. Instead, in the quantum case, 
there are no dissiptions of electric current, since the Hamiltonian operator is made up by constant 
terms. So the energy, which is represented by its eigenvalues E , is time independent, and 

consequently also the superconductive electric current 
exJ n

E
E

i



 


0,2
1


 is time invariant, thus the 

electric current is time independent. Consequently, in the quantum case, the superconductive 
electric current has no discontinuities, as there is no dissipation. 
We can also remark that in expression (5.43) we have purposely retained only the first term, in 
order to limit our analysis to the Hilbert space spanned by the quantum states 0 and 1 . However, 
the present analysis can be adopted to consider spaces with higher dimensions. This extended 
analysis can be implemented, for instance, when seeking a quantum system able to process numbers 
expressed in a ternary or higher order numeral system. For example, in the case of ternary logic, the 
quantum states 2,1,0 , can be denoted as quantum trits or qutrits [40], which are the quantum 
analog of the persistent currents in semi-classical ternary systems. 
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5.6  Conclusions 
 

 
The classical and quantum behaviour of one (Josephson) junction and two-junctions interferometers 
have been considered. While the classical behaviour of both systems is already well known, we 
have proposed a unifying approach to the study of their electrodynamic properties, suggesting an 
equally unified analysis in the quantum regime. Therefore, starting from the analytic expression of 
the washboard potential, the 2 x 2 quantum Hamiltonian acting on the quantum states 1,0  is 
obtained by promoting the classical variables, in the classical potential, to the role of operators. The 
persistent electric currents in the quantum regime are seen to follow closely the qualitative 
behaviour of the homologous quantities in the classical system, showing alternating occurrence of 
diamagnetic and paramagnetic states for increments of exn  equals to 1/2.  
It is important to notice that the present analysis can be immediately extended to Hilbert spaces 
spanned by more than two quantum states. In fact, in the present analysis, we have noticed that 
multi-valued logic states can be obtained in the quantum regime, by generalizing the well-known 
classical properties of a two-junctions interferometer. In this way, quantum computing based on 
qutrits, rather than qubits, could be implemented by considering the properties of a two Josephson 
junctions interferometer, whose quantum states are generated by the orthogonal kets .2and,1,0   
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Appendix 5.1 
 

Determination of the time dynamics for the normalized 
magnetic flux n 

 
In this Appendix we represent the expression (5.11) as a dynamical relation for 

0
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n . We can 

start [42] by re-expressing equation (5.10)  
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where, in the latter relation, 
0


n . By dividing both members for 

L
0 , we obtain:  

 

ex
J

ex
J nnn

L

I
dt
dn

R
Lnnn

L

I
dt
dn

L
R

















 )2sin(

2
2

)2sin(1
2
0

0,0

0

0,

0

0 



 .              (5.1.1) 

 

where, in the latter relation, we have multiplied and divided by 
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We may therefore notice that the latter relation represents the time dynamics for n. We can also 
obtain the same relation by using the Power Balance Equation:  
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In fact, by using the second Josephson equation 
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From the relation (5.8):   )2cos(1()()( 2 nnnEnW exLP   , we notice that: 
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So, by the Power Balance Equation, we get: 
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From this relation, by doing the opportune semplifications, we obtain: 
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Therefore, from the latter relation, we obtain: 
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which is just the equation for the dynamics of n that we have previously determined.  
 
 

 
 
 
 
 

Appendix 5.2 
 

 Diamagnetic and Paramagnetic states 
 
 
We can show that, in the Washboard potential [42], the n 0 well represents a diamagnetic state, 
while the n  1 well represents a paramagnetic state. First of all we notice that:    

2
1;

2
1

  ii , so that: 

          
 0;0   ii .                                  (5.2.1) 
 
Then, we can consider that the diamagnetic state is characterized by a negative value of magnetic 

susceptibility, 0




H
M , so the magnetization M


, which is a magnetic field created inside the 

system, is opposed to the external magnetic field H


 (i.e. the response of the system, represented by 
the magnetization, is opposed to the excitation, represented by the external magnetic field), while 

the paramagnetic state is characterized by a positive value of magnetic susceptibility, 0




H
M  

so the magnetization and the external magnetic field have the same sign (are concordant). In 
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practice, 0
22
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2
1

0
0






e

hn ext
ext

ex ; as we assume that the magnetic field is 

uniform on the surface of the superconducting loop, we have:  0000  HHSext  . By 
knowing that the magnetization M


 is generated by the electric current I circulating inside the 

system (which in turn is created by applying the external magnetic field), we may see that M


 and I, 
according to the right hand rule, have the same sign. So, for n = 0, we have 00,   JIiI  and so M 
< 0. On the other hand, for n = 1 we have 00,   JIiI  and so M  > 0. As the external magnetic 
field  H  is positive  both for n = 0 and for n =1, we can see that for n = 0 we have a negative 
magnetic susceptibility, and so a diamagnetic state, while for n = 1 we have a positive magnetic 
susceptibility and so a paramagnetic state. In this way, we have showed that the n  0 well 
represents a diamagnetic state, while the n  1 well represents a paramagnetic state. 
 
 

 
Appendix 5.3 

 
Proof of the relations satisfied by the exponential operator  

 
 
We want to show [42] that, for a generic n : 
 

1;1 ˆˆ   nnenne ii  . 
 
Let us begin with the first relation: 
 

1ˆ  nne i .  
 
Let us also consider the action of the number operator n̂  on the ket ne i̂ : 
 











00

ˆ

!
)ˆ(ˆ

!
)ˆ(ˆ)(ˆ

k

k

k

k
i n

k
inn

k
innen    where we have used the Taylor’s expansion of the  

 

exponential function 





0 !n

n
x

n
xe , and the linearity of the number operator. 

 
By knowing that   nnn kkk ˆˆˆ,ˆˆˆ   ,  where   nnn kkk ˆˆˆˆˆ,ˆ    is the commutation operator of 
the two operators n̂  and k̂ , we get: 
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We can now show that:     1ˆˆ,ˆ  kk ikn                   (5.3.2)  
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by using the commutation relation:      inin   ˆ,ˆˆ,ˆ , where ̂  is the angular position 
operator, and n̂  is the operator representing the number of fluxons. In fact, we have: 
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The second term  1ˆ,ˆ kn   can be represented, in a similar way, as follows: 
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Going on in this way, we reach the value of k, for which we have: 
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In this expression, Î represents the identity operator, which acts on a ket   as follows: 
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Going back to the relation (5.46), we have: 
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where we have considered the action of the number operator n̂  on a ket n  so defined: 
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So we get: 
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If we compare this relation with:  1)1(1ˆ  nnnn ,  we can consider that: 
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So, we have proven this relation. In order to prove the relation: 
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Considering the action of the number operator, we have: 
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where we have factored out the term n from the summation, as it is independent from the 

summation index. By now knowing that:   
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In the first addendum, we may make the following variable change: 
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So, we get: 
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Since now: 
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by comparing these two expressions, we obtain: 
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Therefore, we have shown these two results: 
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There is also a different way to prove these relations. In fact, we can start by using the commutation 
relation:    in ˆ,̂ , from which we can show that: 
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This commutation relation can be proven to be true from what follows: 
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where we have used the property:   ˆ , so that the operator ̂  is purely multiplicative. If we 
now apply the commutation operator   n̂,ˆ   to the wave function  , we get: 
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Given that the two commutation relations lead to the same result, we may identify the number 

operator n̂  with 



i
1 , so we get: 

 





i

n ˆ  .                                                    (5.3.14) 

 
If we apply the commutation operator  nf ˆ),ˆ(  , where )ˆ(f  is a generic function of the operator 
̂ , to the wave function  , we get: 
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In this way, we have: 
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where we have used  the property: 
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
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n
naf  , with the coefficients na  constant, and again the 

property according to which that the operator ̂  is purely multiplicative. 
The relation (5.54) is valid for each wave function  = )(  or, in the same way, for each ket  , 
and also for each function of operators )ˆ(f , which can be expanded in Taylor’s series of linear 
operators. 
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considering that 12 i . So, we obtain: 
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In fact we have: 
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If we compare this result with 1)1(1ˆ  nnnn , we can consider that: 
 

1ˆ  nne i ,  so we have proven the relations considered. 
 
 
 

Appendix 5.4 
 

The alternating diamagnetic and paramagnetic character for 
the eigenstates of the Hamiltonin operator of a one-junction 

interferometer  
 
 
In order to analytically determine [42] the alternating magnetic character of the states   and  , 
we can consider the behaviour of the electric superconductive currents, starting from relation (5.25). 
By taking the derivative of this expression in exn , we obtain: 
 

   
 

 
  



































 

2222

22

2222

22

)1(

)1(2)12(2
2

)1(2

)1(2)1)(1(22
)1)(1(22

2





exex

exex
ex

L

exex

exexexex
exex

L

ex

nn

nnnE

nn

nnnnnnE
n
E

 























 

22)12(

)12(2
)12(2

2 ex

ex
ex

L
ex n

n
nE

n
E .                         (5.4.1) 

 
From (5.29) we also obtain the analytic expression of the superconducting currents i : 
 

.
)21(

11
2
21

)12(

11
2

12

)1-2(

)1-2(2)1-2(2
4
1-

)12(

)12(2)1-2(2
22

1-
∂

∂

2
1-

2222

2222


















































































 







ex

ex

ex

ex

ex

ex
ex

ex

ex
ex

L
LexL

n

n

n

n

n

nn
n

nnE
En

E
E

i

 

 
So we have proven that: 
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where 
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E 0,  as considered before. Therefore, we see that: 
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We notice that for 
2
10  exn 012  exn , and so the terms inside the square brackets are 

negative, so that i  is positive. Summarizing, we have: 
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In the same way, for 1
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 exn 012  exn , we have that all the terms inside the square brackets 

are positive, so we have: 
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We can also notice that the profile of i  with exn  is parabolic, being proportional to 2)12( exn . 
 
In the same way, for i  we obtain:  
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For 01-2 ⇒
2
1

0 <<< exex nn , so the first addendum inside the square brackets is negative, while 

the second one is positive, for the presence of the minus sign. Considering the expression: 
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We have to show that: 
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Knowing that  
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we notice that the quantity inside the square brackets is positive, and finally:  
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we can consider the algebraic sign of the various terms present inside the square brackets.  
 
We notice that 01-2 >exn . By knowing that 1<exn  we get: 1)1-2(⇒11-2⇒22 2 <<< exexex nnn ; 
we also have:   
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Considering that the term representing the denominator is always positive, that the above condition 
implies that the numerator is negative, so that: 
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=exn , in particular, we have: 
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according to the analytical expression (5.26). 
 
So, we have analytically justified the graphical behaviour of  )( exnii ±± = . 

 
 

 
Appendix 5.5 

 
 

Calculation of Fourier coefficients  
 
We want to prove [42] that the operator ̂  can be expanded in Fourier series as: 
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where the Fourier coefficients nb  are calculated in this way: 
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In order to prove these relations, we can start by the Fourier expansion of a periodic function 
 f = f(x): 
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If we consider the function f(x) = x which is an odd function (f(-x)=-f(x)), knowing that the integral 
of an odd function between –a and a, with a real number, is equals zero, we get: 
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In fact, the term 0ka , because it is obtained by the integral of the function kxxf cos)( , which is 
odd, as it is the product of the function f(x), odd for definition, times the function cosine, even for 
definition. In this case, we have: 
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By considering that the trigonometric functions sine and cosine are periodic of  period 2T , we 

notice that 
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We can calculate this integral for parts, and so, choosing x as finite factor and 
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differential factor, we obtain: 
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By knowing that, for T = 2 : 
 

k
k
k

kTk
T

)1(
oddfor1
evenfor1

)cos(
2

2cos 











            (5.5.3) 

 
and also that:  cos( )cos()  kk  = k)1( , we obtain: 
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Since  Zkkk  0)sin()sin(  , we notice that the second term in the previous expression is 
0. Therefore, we have: 
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thus proving the relation (5.5.1). 
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Chapter 6 
 

  Search for a Dark Matter component 
 
 
In this chapter, after reviewing some of the most important concepts about Dark Matter (DM) and 
methods of its registration, in particular by using SQUIDs, we focus on two main problems. First, 
the possible mechanism of magnetic moment origin for DM particles, in the form of neutralino, is 
discussed: the presence of a magnetic moment means the existence of a new kind of interaction, 
whose corresponding cross section is estimated. Second, a simple uniform model for DM and Dark 
Energy (DE) is proposed. Two types of devices based on SQUID, in particular the SQUID-
paramagnetic absorber and the SQUID-magnetostrictor systems, both suitable for investigations of 
above problems, are considered. 
 
 
 

6.1 Introduction 
 
 
The nature of DM is one of the big challenges in modern physics, and although there are 
astronomical evidences for its existence, it is very hard to catch its particles.  

In this chapter we start with an introduction about DM and the methods for registering its 
particles: since interactions between DM and baryonic particles have a very weak intensity, precise 
methods of registration are needed. At the same time, super-precise experimental measurements can 
be fulfilled by using interferometric methods, based on superconductor devices and 
Superconducting Quantum Interference Devices (SQUIDs). Therefore, we outline the main 
experimental operations and ultimate sensitivities of these devices, discuss some schemes for DM 
particles registration, and remark the advantages of using superconductor devices and SQUIDs. 
Furthermore, we consider the possible magnetic interactions of DM particles with ordinary matter 
and calculate the cross section of magnetic interaction, that we find to be 9 orders of magnitude 
larger than the conventional interactions, based on nuclear scattering. In the last part of this chapter 
we outline a theoretical model dealing with the unification of DM and DE, which are considered as 
two different manifestations of the same cosmological essence, called Dark Substance. 

The detailed description of  two experimental devices, one connected with DM particles 
detection and the other one with the registration of the pressure exerted by the flux of DM, in the 
theoretical model about unification DE-DM, is provided, and their results are remarked. 

We also outline, in Appendix 6.1, the main features of two particular experiments, one based on 
Josephson junctions, the other on SQUIDs, which are able to register DM particles and their 
interaction with ordinary matter (working substance) of the detectors.                    
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6.2 The problem of Dark Matter in modern cosmology 
 

The enigma of DM (i.e. non-luminous and non-light absorbing matter) is one of the major open 

problems of modern science. Swiss astronomer Zwicky was the first to suggest, in 1933, the 

existence of DM on the basis of observation of the velocity dispersion of eight galaxies in the Coma 

Cluster [45]. We here show a picture of the Coma cluster of galaxies. 

 

 
 

Figure 6.1. The Coma cluster of galaxies. 

Credit: Springel et al., Virgo Consortium, Max-Planck-Institute for Astrophysics 

 

In the following years other cosmological observations [46], [47], [48], [49] confirmed the 

existence of DM at various scales of distance from the solar system: 

- The rotation curve of the spiral (and also of the elliptical) galaxies, i.e. the profile of their rotation 

velocity as a function of their radius; 

- The ratio mass-luminosity of very far (1 Mpc) cosmic objects from the solar system; 

- The comparison between the mass density of a clump of galaxies and the one of all the galaxies 

present in such a clump. 

We also insert pictures of the rotational curves of spiral and elliptical galaxies, and of the profile of 

the stellar velocities as a function of their distance from the Solar System. 

The discovery of DM [49] played about the same role, in cosmology, as the discovery of 

radioactivity phenomena by A. A. Becquerel, at the very end of the 19th century, had played in 

nuclear physics. In fact, as very soon after the first registrations of nuclear radiation it became clear 

that the well-known electromagnetic forces (actually described in the frame of Special Theory of 

Relativity) appeared to be much smaller than the forces of nuclear nature, in the same way the DM 

existence, according to modern ideas, demonstrates that the effect of gravitational curvature in 
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Universe, described within the General Theory of Relativity, is negligible in comparison with 

interactions manifested by DM.  

 

 
 

Figure 6.2. The rotational curves of spiral and elliptical galaxies. 

Credit: M. Cappellari and the Sloan Digital Sky Survey. 

 

 

 
 

Figure 6.3. The profile of stellar velocities as a function of distance from the Solar System. 

Credit: M. Cappellari and the SLUGGS team 

 

The nature of DM is yet obscure, but since it does not radiate light and can gravitationally interact 

with other celestial bodies, its elementary particles must be massive, with no electric charge, and 

also considering the weakness by whom they interact with common matter, with no colour charge. 
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At this point, we can open a parenthesis about the properties of our Universe, in order to define 

the role of DM. In fact, we may say that in recent years the satellite experiments WMAP 

(Wilkinson Microwave Anisotropy Probe) [50], SDSS (Sloan Digital Sky Survey) [51], and COBE 

(Cosmic Background Explorer) [52] have provided a striking picture of Universe: 

- It is spatially flat; 

- It is characterized by an accelerated expansion; 

- It consists for 68.3% by DE, for 26.8% by DM and only for the remaining 4.9% by the ordinary 

luminous matter (called in cosmology baryonic matter). We can represent the contents of our 

Universe as in fig. 6.4. 

 

 
 

Figure 6.4. The contents of our Universe. We notice that the yellow part represents the neutrinos, 

the red and the cyan parts are the visible matter (called also baryonic matter), and the Dark 

Matter, respectively, and the blue part is the Dark Energy.     

Courtesy of Moscow State University (MSTU) for the conference PIRT (Physical Interpretation of 

Relativity Theory), 29 VI- 02 VII 2015, Bauman State University (BST), Moscow, Russia.  

 

One of the most important challenges in modern cosmology is the problem of cosmic acceleration, 

which is strictly connected with the comprehension of the nature of DE, the main component of our 

universe, which could drive the accelerated expansion. In fact, the role of the repulsive (antigravity) 

component is intimately related to the universal cosmological constant problem, initially appeared 

in the theory of general relativity (the Λ term in Einstein’s equations) and currently discussed in the 

Superstring Theory framework [53]. Three main cosmological theories, about the problem of 

cosmic acceleration, have been developed: 
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- The CDM model (also called the Concordance Model) [54], and its extension to QCDM model 

[55], which are two cosmological fluids models (DE and DM); 

- The UDE (or UDM) models [56], where we consider only one cosmological fluid, with an energy 

density varying in time, which behaves as Radiation, Matter, Dark Energy in the different 

cosmological eras, giving rise to the cosmic acceleration [57, 58]; 

- An alternative approach has been proposed, based on the possibility that the cosmic acceleration is 

created by a fluid of curvature present inside the ordinary matter [59], so without considering the 

presence of exotic ingredients (DE and DM) in the cosmic pie; the analytic description of this 

phenomenon requires a modification of Einstein’s general theory of relativity, and some theoretical 

models have been considered [60, 61].    

After this brief description about the Universe, we can return to our main argument of DM. 

According to important cosmological measurements [54], [55], [56], for the constitution of DM the 

following results have been found: 

- Only the 1% of DM is of baryonic kind (black holes, neutron stars, big planets); 

- Almost the 30% is represented by Hot Dark Matter (HDM) [62], made up by relativistic particles, 

with mass smaller than 30 eV, so they cannot clump; 

- The remaining 69% is represented by the so called Cold Dark Matter (CDM) [63], made up by 

non-relativistic particles, with masses comprised between GeV and TeV, so that they can clump, 

forming Large Scale Structure (LSS), and can be revealed by gravitational effects. Different forms 

of DM are shown in fig. 6.5  and in fig. 6.6.  

Modern theoretical models offer a broad assortment of particles which could constitute DM (see, 

for example [46-49]). In any case, for its larger abundance and its non-negligible gravitational 

effects, the CDM is the part of DM more analyzed in the modern theoretical and experimental 

physical research.  

 
 

Figure 6.5. An example of the strong gravitational lensing by the Red Galaxy LRG 3-757.  

Credit: ESA / Hubble & NASA. 

The most popular CDM candidates are particles generally called WIMPs (Weakly Interacting 

Massive Particles) with masses from a few tens of GeV to several TeV, i.e. 10-5000 times the 
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proton mass, speed of about 65 1010   m/sec and cross section W  of about 24410 cm , typical of the 

weak interaction processes, with no electric and colour charge.(In the context of DM, hypothetical 

light particles (ALPs) with masses much smaller than 1 GeV, forming a hot component of DM, are 

also currently considered. However, only the registration of cold nonrelativistic DM components 

will be discussed below. 

 
 

Figure 6.6. A bridge of hot matter, “shining” in X rays, connects the galaxy clusters Abell 222 and 

Abell 223, and so reveals part of the missing baryonic matter in the Universe. The filamentary 

connection between those two galaxy clusters also supports the theory that visible matter is 

distributed along universal filaments of Dark Matter. The mass in the filament is between 13105.6   

and 13108.9   times the mass of the Sun. Credit: XMM- Newton X-ray telescope.   

 

In table 6.1 we present a schematic representation for WIMP parameters and some DM particle 

candidates: 

MASS                          WM  10 – 5000 GeV/ 2c   (~ 10 – 
5000 pm ) 

VELOCITY                 WV  510  - 610 m/s 

DENSITY                    W  
 

0,3 (GeV/ 2c )/ 3cm  

CROSS-SECTION         
W  

< 1010 pbarn (~ 4410 2cm ) 

FLUX                          W  ~ 5 410  1/( 2cm s) 

Table 6.1. Some significant parameters for WIMP particles. Courtesy of Moscow State University 

(MSTU) for the conference PIRT (Physical Interpretation of Relativity Theory), 29 VI- 02 VII 

2015, Bauman State University (BST), Moscow, Russia.  
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Some DM particle candidates 

NEUTRINO                           <30eV/ 2c  

AXION                                     10 eV/ 2c  

NEUTRALINO                      > 20 GeV/ 2c  

MAJORANA FERMION      > 20 GeV/ 2c  

FAST NEUTRONS               > 1 MeV/ 2c  
 

Table 6.2. Some possible candidate DM particles, with their corresponding mass values. 

Courtesy of Moscow State University (MSTU) for the conference PIRT (Physical Interpretation of 

Relativity Theory), 29 VI- 02 VII 2015, Bauman State University (BST), Moscow, Russia.  

 

The two kinds of particles which best fit these parameters are: 

- The heavy neutralinos, described in the Theory of Supersymmetry (SUSY) [64], which postulates 

the existence of supersymmetric partners (or also called superpartners) of ordinary particles, i.e. 

new particles whose spins differ by ½; 

- The lightest Kaluza-Klein particles (LKP), described in the String Theory [65], which postulates 

the existence of extra-spatial and temporal dimensions in Universe, inside whom these Kaluza-

Klein particles (KK) exist as massive excited states, and the lightest of them is the appealing 

candidate for DM, with mass values between 40-1200 GeV. Of course, if this theoretical model of 

LKP is verified, we can consider a new version of Universe with extra dimensions (the so-called 

Multiverse) [66]. In the Minimal Supersymmetric Standard Model (MSSM) [67], the lightest 

neutralinos (linear combinations of four neutral fermions: Wino, Bino, and a pair of Higgsinos) are 

appropriate candidates. 
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6.3 A survey of the experiments for Dark Matter particles 

registration 
 

All experimental studies on the search for DM particles can be conditionally divided into three main 

areas [49]:  

1) experiments on colliders; 

2) indirect registration of Dark Matter particles by their annihilation products in cosmic rays; 

3) direct detection of Dark Matter particles of cosmic origin. 

We shall here briefly describe the experimental methods adopted in each area. 

1) In the colliders, the decay products of different kinds of heavy particles, created [68] in 

the nuclear collisions of accelerated heavy ions, are registered. Such accelerator experiments 

(Tevatron, LHC), may give certain results only on the basis of full kinematic analysis of 

visible products of p-p interaction, allowing to recover the value of the energy-impulse 

“spent” at the birth of the unknown DM particles. It is estimated [69] that only a small part 

(about 10%) of the total energy of p-p collisions is spent for the creation of supersymmetric 

particles, which limits the effectiveness of the experiment. So the eventual formation of a 

100 GeV WIMP is supposed to be implemented with energy not less than 2 TeV. However, 

until now, no particles as WIMPs have been revealed in accelerator experiments. We report 

a picture of the LHC, and of the CMS (Compact Muon Solenoid) experiment [69] in figures 

6.7, 6.8 and 6.9. 

2) In the indirect methods of registration we search: 

a) Particles created by the annihilation of WIMPs in the galactic halo, where we consider the 

presence of DM clumps: usually we may register electrons, positrons and photons through 

space satellite experiments, in order to avoid problems of attenuation by the terrestrial 

atmosphere, and deviation of charged particles by the terrestrial magnetic field.  
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Figure 6.7. A schematical representation of LHC. 

From: J. G. Ellis, G. Giudice, M. L. Mangano, Review of the safety of LHC collisions, Journal of    

Physics C, Nuclear and Particle physics, 2008. 

 

 
 

 

Figure 6.8. A picture of CMS experiment, showing collisions of heavy accelerated particles. 

From: S. Chatrchyan, G. Hmyakyan, W. Adam, T. Bauer et al., The CMS experiment at CERN,  

JINST, S08004.   
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Figure 6.9. A section of the CMS experiment.  

Credit: http:// home.cern/topics/large-hadron-collider. 

 

One of the most recent experiments of this kind is the PAMELA (Paylod for Antimatter-

Matter Exploration and Light-nuclei Astrophysics) experiment [70]. We give a sketch of 

PAMELA experiment in the next figure 6.10. We should say that the registered 

experimental photon and lepton energy spectrum can give us information about the mass and 

the cross section of DM particles [71]. However it is very difficult to distinguish these 

photons and leptons from the ones created by other cosmic sources (for example pulsars and 

so on). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. A sketch of the PAMELA experiment, showing its detectors. 

From: W. Menn, O. Adriani, et al., The PAMELA space experiment, Advances in Space Research, 

51, pp. 209-218, 2013. 

http://
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b) Neutrinos, arising as final products of WIMP annihilation in the Sun or in the Earth: the 

registration [72] of these particles, however, is possible only in low-background 

underground or underwater observatories, that require very important cares and a lot of 

money for their handling. We have to outline [68] that indirect registration of DM particles, 

by their annihilation products in cosmic rays, requires the detection of TeV gamma rays 

(photons). However, as it is well known [73, 74], such a quantum creates in the Earth's 

atmosphere a wide (a few kilometers) electromagnetic air shower of secondary particles, 

that significantly complicates the determination of the total energy of the original photon. 

Among the projects for registration of 1÷15TeV gamma rays in space-based experiments, it 

should be noted the project GAMMA-400, developed in P. N. Lebedev Institute [75, 76], as 

one of the most competitive (energy resolution of 1%, angle resolution 0.01°). This gamma-

ray telescope is a stack of silicon strips and scintillation plates, and a TeV quantum, passing 

through it, practically loses all its energy. The system of photomultipliers allows not only to 

determine the initial energy of the quantum, by summing photo responses, but also to 

identify the point of conversion and the direction of the incident photon with the help of 

fiber-optic cabling. 

 



 139

 
Figure 6.9. Physical scheme of GAMMA-400 gamma telescope. All presented dimensions (in mm) 

are reference. From Galper, Topchiev et al., Status of the GAMMA-400 Project, Advances in Space 

Research 51, pp. 296-300, (2013).  

 

3)  About the direct methods of registration [77], we may say that, as WIMPs interact with 

nuclear collisions, the induced effects by the process of nuclear recoil (elastic WIMP-

nucleus scattering) are registered. In fact, it is possible to show [77], by using the classical 

theory of scattering (as WIMPs are non-relativistic particles) that the momentum and the 

kinetik energy exchanged during their interaction with a particle, that we can call a, are: 

W

Wa
a m

PmP 2
                         (6.1a) 

W

Wa
a m

EmE 4
                                (6.1b) 

where aaa EPm ,,  are the mass, impulse and kinetik energy of the particle a, while 

WWW EPm ,,  are the corresponding quantities of the WIMP particle. As the previous 

expressions are characterized by the ratio 
W

a

m
m , which is usually strictly smaller than 1, we 
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may conclude that there is significant exchange of momentum and kinetik energy only for 

particles with big masses (for example nuclei closed to iron), and so we can neglect WIMP-

electron interactions. The nuclear recoil energy, that is of about 40 eV, can induce effects of: 

I) atomic ionization, or the release of an electric charge in the semiconductors; 

II) scintillation phenomena (i.e. photon emission)in some liquids and solids; 

III) excitation of phonons (ion vibration quanta) in lattices.     

The main drawback of these experimental activities is to reject all the electrons induced by 

photon or lepton interactions with atomic or free electrons (also called recoil electrons) of 

the working substance of the detector. The rejection of background events is a very 

challenging and important task, because they persist despite the use of underground 

laboratories, protection shields and super-high pure materials. Usually, the difficulties of 

direct methods of registration are based on these factors: 

a) A very small WIMP-nucleus scattering cross section ( 610 pb), necessitating a large 

sensitive detector mass. In fact, according to the Fermi Golden Rule: 

V
v

NNW


21 ,                                (6.2)  

where W  is the rate of WIMP-nucleus interactions, 1N  is the number of particles of external 

beam, 2N  is the number of particles of the working substance, V is the volume, and v is 

the mean value, over WIMP velocities relative to the detector, of the product of WIMP 

scattering cross section   times its velocity v , we can notice that W increases by increasing 

the detector mass; 

b) The low efficiency of small nuclear recoil energy measurements (of about 10-100 KeV), so 

it is needed to use detectors with several KeV threshold; 

c) The location of detectors in underground or underwater laboratories, and the use of 

protective shields or material free from radioactive elements in order to eliminate, or at least 

minimize, the background noise.      

Thus, the experiments [68] for direct registration of DM particles of space origin are carried 

out in laboratories with deep depression of cosmic background (the radiation weakening in 

the tunnel of Gran Sasso is characterized by the water equivalent of about 3600 m). By 

comparing the characteristic energy spectrum of recoil nuclei with the corresponding 

spectrum of known weakly interacting particles (for instance, neutrinos), also able to go 

through very thick defense shields, one can reach the same conclusion about detection of 

WIMPs. For the registration of recoil nucleus energy, a wide range of detectors is used in 

these experiments [49]: ionization, scintillation, phonon, heat detectors and Josephson 
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junction, based on the first order phase transition (such as bubble chambers or superheated 

superconducting microgranules) and so on. We may also consider [77] that the ratio between 

ionization and phonon emission have discrimination power!  In fact, if there are more events 

of ionization, with the emission of atomic electrons, we know that they are created by the 

interaction of leptons and photons with ordinary atoms. On the other hand, if we register the 

emission of phonons, as they come from the de-excitation of nucleus, we notice that 

interactions with atomic nuclei occur, which are due to heavy particles, such as DM 

particles, according also to (6.1). In the DAMA NaI project [78], for instance, there are 9 

scintillating amplitude detectors (crystals of NaI (TI), each one of 9.7 kg, so justifying the 

name DAMA NaI, where DAMA stays for Dark Matter) with energy resolution of about 2 

keV. This project should be especially mentioned. In fact, during its seven-year-long 

observation period, it really fixed for the first (and in practice for the last) time the annual 

cycles of decreasing and increasing character of the registration rate of events. In practice, it 

provided clear comprehension of the coinciding/anticoinciding (June/December) direction of 

the velocity vector of galactic streams of Dark Matter particles with the travel line through 

solar system. There is now a new version of this experiment, called DAMA LIBRA (Large 

Iodium Bulk for Rare processes), using 25 scintillators of the same kind [79]. We report a 

schematical picture of DAMA NaI in the next figure 6.10. 

 
Figure 6.10.  A simplified scheme of  DAMA NaI. The numbers inside the figure indicate the 

different parts of the experiment: 1) NaI crystals (Sodium Iodide); 2) box of copper, kept in an 

atmosphere of super-pure nitrogen; 3) copper; 4) lead; 5) cadmium plate of 1.5 mm;  

6) poliethilene; 7) box in plexiglass, kept in an atmosphere of super-pure nitrogen; 8) about one 

meter of cement. From R. Bernabei et al., Searching for WIMPs by the annual modulation 

signature, Int. J. Mod. Phys. D 13, pp. 2128-2160, 2004.     
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6.4 Focus on superconductors and SQUIDs as detectors of 

Dark Matter 
 

Let us consider the processes occurring when an interaction WIMP-nucleus of an atom of a 

superconductor device (of first kind, so with well defined values of critical magnetic field and 

critical temperature) occurs: 

- A number N of phonons are emitted in a region  near the position of interaction, whose 

extension as it is possible to show [77] is: 

 3
1

aNd   ,                                               (6.3)  

 

where a  is the lattice constant, whose typical value is about 0.5 nm, and N  can be expressed 

as: 
PH

W

E
EN  , with WE 410  eV is the WIMP kinetic energy and PHE 310 eV is the phonon 

energy, so that a numerical estimation of (6.3) is of about 0.8 nm or 0.8 910 meters. 

- These phonons lead to a local disruption of Cooper pairs, and the electrons so formed tend to 

re-arrange in new Cooper pairs, as they represent the state of minimum energy (or ground 

state), in a time interval typical of the electron relaxation time spin-spin, that is of about 
910 seconds. 

 - The atomic nucleus, excited by the energy absorption due to the WIMP interaction, de-

excites by emitting phonons, thermal waves, and so on, also for small values of energy, equal 

or smaller than 1 KeV. 

Therefore, a superconducting detector has very good time response (of about 910 seconds), space 

resolution (of about 0.8 nm), and energy resolution (smaller than 1 KeV, also around some dozen of 

eV).  

A SQUID (Superconducting Quantum Interference Device), whose main properties have been 

just presented in the previous chapter, can be used as detector of Dark Matter [80], usually in 

connection with another experimental device (for example a calorimeter, a thermoresistor, and so 

on), because it can register also very small variation in the magnetic flux (we have a resolution of 

0
610  , where 15

0 1008.2   Weber is the quantum elementary flux) threading the experimental 

device with whom it is connected. Therefore, a SQUID can give very good information [80, 81] 

about the rate of interaction and the energy resolution of DM. We may also use SQUIDs as 
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amplifiers of signals (usually of electric current) [82] in the service electronics connected to the 

experimental apparatus. The two advantages of SQUID amplifiers are: 

- No loss of signal, because there is no dissipation of electric current in a superconducting device; 

- A reduction of the thermal and electric noise in comparison with the semiconductors, which made 

up the transistors.        

We could say [68] that modern methods for Dark Matter particles direct detection make 

extensive use of cryogenic techniques. The evident lowering of thermal noise, along with the 

drifting of input stages of used electronics, allows to engage, in numerous cases, fundamentally new 

effects (the low-temperature phase transitions of the first order, SQUIDs, Josephson arrays [12,77], 

multi-barrier Josephson junctions [8], etc.) in order to increase the sensitivity of the registration 

process itself [49]. Recording circuitries, where the amplitude measurements of detector response 

are registered by means of SQUIDs [81-82], based on Josephson effect [1], have ow a widespread 

use. The sensitivity of a modern commercial DC-SQUID (without superconducting flux 

transformer) reaches the level of 10-6 ÷ 10-7 Ф0/√Hz (here we have the flux quantum 

Ф0
151008.2 

e
 Wb). The sensitivity of SQUIDs has allowed to apply these devices for taking 

such ultra-precise measurements as gravitational wave detection [83, 84] or contactless examination 

of bio-magnetic brain activity [83, 85]. According to the physical principles of its work, the 

quantum interferometer measures the magnetic flux. By using Stokes flux theorem, we can 

determine the interference phase difference in superconducting circuit, where Josephson junctions 

are included [80, 81]. However, in experiments for DM particles search, these devices are usually 

used merely as low-frequency picovoltmeters, registering the response of cryogenic thermoresistors. 

In this way, in the two-segment detectors (the project of CRESST-II [86]), the coincidence of light 

and thermal responses of absorber (300g of CaWO4) on recoil nucleus are fixed. Two identical 

vanadic thermoresistors, being at a temperature near the superconducting transition, together with 

two DC-SQUIDs, are used as scintillating and heat recording channels of Dark Matter particles. 

However, alike schemes of quantum interferometer utilization, when the signal is converted 

according to the chain IδR → δU → δi = δU/r → δΦ = Lδi, i. e. at first it turns into the variance of 

magnetic flux taken by the interferometer, and then it is directly applied at the SQUID entry, 

happen to be inefficient due to unavoidable losses in the conversions chain. However, two research 

groups [87, 88] have proposed schemes, that did not need any conversion of signal. Actually the 

heat response, arising in absorbers due to the interaction of a particle with matter, was transmitted 

directly on the signal input. In ref. [87] the possibility to measure the magnetic response of 

paramagnetic thermometer, by means of DC-SQUID, was tested. The signal appears here due to the 
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dependence of thermal sensor magnetic susceptibility according to Curie-Weiss law. In this case the 

sensor should be magnetized by a small magnetic field (~10 mT).  

We have proposed [88] another type of scheme, where the magnetic response, registered by a 

SQUID, corresponds to an enhancement of the spin system entropy rather than to the change of 

paramagnetic absorber temperature. The operating principle of the experiment is the following. At 

the beginning the paramagnetic absorber is self-cooled during the process of adiabatic 

demagnetization [89]. After the external magnetic field is lowered down to zero, the SQUID 

measures the reduction of residual magnetization of the paramagnetic absorber. The latter step 

corresponds to the measurement of the entropy increase due to the release of energy caused by the 

interaction between a particle and the paramagnetic absorber. Various modes of operation of the 

SQUID-paramagnetic absorber system are discussed in details in the following works. In reference 

[90] direct measurement of the entropy growth using the method of adiabatic demagnetization is 

considered. In reference [91] the measurement sensitivity is increased by replacing atom 

paramagnetism by nuclear one, with cooling produced by a dissolution refrigerator He3 - He4. In 

reference [92] a dual-channel mode is adopted to eliminate lepton processes. In reference [93] an 

estimate of the sensitivity in the case of strong fields saturation using asymptotic methods of 

statistical mechanics is performed. Finally, in reference [94] resonance registration of THz radiation 

with a wavelength of about 10 mm is illustrated.  

It should be noted that, among all thermal methods of Dark Matter particles registration, the 

magnetic ones have two essential advantages. In fact, in order to increase the probability of 

registration of elementary particles, which weakly interact with matter (small cross-section of 

interaction, approximately one event per kg per day), it is necessary to enlarge the mass of the 

absorber. As a consequence, the mass of real detectors of Dark Matter particles evolved from the 

initial value of 100 g to 100 kg [95, 96] in a short time period [49]. In common (nonmagnetic) 

thermal detectors [49] the enhancement of the absorber mass automatically leads to the 

enhancement of its thermal capacity and hence to a sufficient reduction of the thermal response. On 

the contrary, in cryomagnetic systems the enhancement of heat capacity is compensated by the 

simultaneous increase of the total number of spin-carrying particles contributing to the system’s 

magnetic response. Another useful property of magnetic thermal detectors is connected with the 

growth of the magnetic part of heat capacity as the temperature decreases: cm~T-2. This fact seems 

paradoxical at first glance, since it may appear inconsistent with the third law of thermodynamics. 

However, this dependence is true until either the total ordering due to ferromagnetic transition or 

the local ordering due to casual residual fields take place. We also consider that in the case a little 

magnetic sensor with a large magnetic heat capacity is attached to a big nonmagnetic absorber, 
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characterized by a small heat capacity, the whole energy released in the latter can be gathered in the 

former device. In fact we will see an application of this property in the second part of Appendix 6.1, 

where we analyse a particular version of the experimental device SQUID-paramagnetic absorber 

system. We also propose a second type of experimental device, the SQUID-magnetostrictor system, 

in order to register DM fluxes. In addition, a model of unified DE-DM providing definition of this 

flux is given. 

 

6.5  Cross section estimate of the magnetic interaction of DM 
particles for SQUID registration  
 

 

In this section we consider [68] the possible magnetic interaction of DM particles with common 

matter. We shall deal with a new kind of interaction, different from the conventional WIMP-nucleus 

scattering. In fact, this interaction is an action at distance, and its analysis is very interesting in 

trying to open new horizons on DM search. One of the most recent experiment, Xenon 100 [98], 

performed in the underground laboratory of Gran Sasso, has excluded hidden WIMP-electrons 

interactions. In reference [98] the sharp difference between values of cross sections for spin 

dependent (SD) interactions and spin independent (SI) ones (the former are nine orders of 

magnitude bigger than the latter), is remarked. It is noted that an adequate model of such SD 

interaction for DM detection is still needed. 

We start by considering that one of the most realistic candidate particle for CDM is the lightest 

supersymmetric particle, the so called neutralino [64], whose wave function is a linear combination 

of fermionic super-partners of photon, of W-neutral boson and of Higgs boson. This wave function 

can be thus denoted as 0
24,1

0
13,132,11,1

ˆˆˆˆ HNHNWNBN  , where 1,1N 4,13,13,12,1 ,,, NNNN  are 

some opportune constants (being the lightest supersymmetric particle, neutralino should be stable). 

Of course, being "neutral in all respects", neutralino has no electric charge; however, electro-neutral 

elementary particles can possess a magnetic moment [99]. In general, a magnetic moment might 

occur for two main reasons: first, because of the reversible virtual transformation of the original 

"non-magnetic" particle (in its ground state) to one particle of the multiplet partners with an electric 

charge (SU(2) baryons with isospin ½: i.e. a neutron n into a proton p); second, because of the 

existence of a cloud of virtual charged quanta of the interaction field, involving "naked 

nonmagnetic" particles. According to these modern concepts, the neutron magnetic moment is 

(approximately) analogously formed. 
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Similarly, a very weak magnetic moment of the neutrino ( B
1310 ) should occur [100] due to 

the electroweak processes illustrated by Feynman diagrams represented in Figure 6.11. 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 6.11. Cross section of neutrino scattering on electron:  1 - weak interaction (the Weinberg’s 
angle agrees with 23.0sin 2 W );  2 - magnetic interaction ( B

1310 )  [98]. In the inset, 
Feynman diagrams, illustrating the creation of anomalous magnetic moment of Dirac (massive) 
neutrino ν(D), are given. From: A. B. Balantekin, Neutrino magnetic moment, arXiv: hep-ph, 13 
January 2006. 
 

In the framework of Weinberg-Salam [101] electroweak interactions (Standard Model), electron 

neutrino νe has some non-zero probability to decay into an electron and a W+ boson and then 

through a time interval Δt≈ћ/(mWc2) these virtual particles annihilate, turning into another helicity 

neutrino. During the short (≈2×10-27sec) existence of electrically charged particles e- and W+, they 

can interact with an external electromagnetic field, which is symbolized in the diagram by a photon 

γ. Therefore, the part of the radiative corrections, which determines the energy shift, is interpreted 

as the interaction energy of the neutrino magnetic moment with the magnetic field. On the other 

side, some astrophysical estimates [102, 103] lead to the hypothesis about a significantly larger 

neutrino moment value than the one given by the Standard Model. In the 90’s, the search for such 

anomalous magnetic moment of neutrinos was engaged, in particular, by B. S. Neganov (the one 

who invented the dilution cryostat He3-He4 for obtaining temperatures below 100 mK without 

magnetic field) at JINR in Dubna. In his experiments [104] an attempt to observe the growth of the 

interaction cross section e-/ν predicted for the "magnetic" neutrinos in the region of small energy 

was undertaken. A low-temperature calorimetric detector and a H3 source of neutrinos were used. 

Similar assumptions can be considered about the presence of a magnetic moment for DM particles, 

also if they are beyond the Standard Model. One of the channels [105] is the reversible annihilation 
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of the neutralino into a pair of electrically charged gauge bosons W-type, as we can see in figure 

6.12.  

 
 

Figure 6.12.  A diagram illustration of the process showing that two branches of virtual oppositely 

charged W and W  form a ring current 0WI ,whose corresponding boson loop has the uniform 

charge (and effective area of 0WS ). From: D. A. Vasquez, P. Richardson et al., Neutralino DM in 

the MSSM, Phys. Rev. D 86, 2012. 

 

In this figure, we may notice [68] that the two diagrams are equivalent, in the sense that the motion 

of the W  boson in one direction is equivalent to the motion of the W boson in the opposite 

direction. In this way, the corresponding ring electric current of W bosons is formed inside the 

considered loop. We can express the magnetic moment of the boson loop as 00 WW IS , which is 

identified as the magnetic moment of a neutralino. (It should be noted that the specificity of 

magnetic interaction of DM particles with common matter is in its “tangential character”, because 

we have an interaction with the orbital magnetic field induced by the atomic electrons, as opposed 

to the conventional “nuclear head on” type, that is a contact interaction WIMP-nucleus). 

In order to obtain an analytic expression for it, we may consider the analytic expressions for the 

effective area and the ring electric current. The effective area can be represented through the square 

value of the Compton wavelength 2

2

)(0 cm
S

W
W


 , which is the minimum possible value, as the 

speed of light c  is the maximum value for velocities. The loop electric current can be estimated as 



2

0

cemeI W

W
W 


,                                                            (6.4)  

where W  is the minimum value for the time interval, according to Heisenberg’s uncertainty 

principle, and so 0WI is the maximum possible value for the considered loop of electric current. So 

the final expression W
W

WW m
eIS 


00  is an adequate analytic representation for the neutralino 

magnetic moment.  



 148

This analytic expression coincides with the structure of the standard formula of Bohr magneton 

B   and differs from the latter by replacing of the electron mass em  with Wm  em5106.1  . 

Accordingly, W  is approximately 5 orders of magnitude smaller than μB. This means that the 

magnetic interaction energy orbW BE    of W with the magnetic induction field orbB 10 T 

(typical value of the field for spin-orbit effects) is about eV9104  . The probability of interaction 

between an atom in the absorber, whose atomic orbital current induces a magnetic field, with the 

magnetic moment of the boson loop, occurring during the reversible decay of neutralino, can be 

estimated by squaring the corresponding variation 0W  of the amplitude of the unperturbed boson 

loop, defined according to the following expression [106]: 

  

)0(

0

)0()0(
'

' '


 
 W

W W

orbW
WWWW EE

B



 

 
 .                (6.5)  

Thus, the required probability [68] for a typical value of the energy, eventually lost by neutralino of 

around 40 eV (energy quantity transferred to the absorber in case of a reliable registration), is 

estimated as 20

2

10













E
BorbW .  Therefore, the probability sought for a typical value of energy, 

eventually lost by a neutralino, and coinciding with E  40 eV (that is roughly transferred to the 

absorber in a reliable registration), is estimated by squaring the ratio between the corresponding 

variation and the amplitude of the unperturbed boson loop, so we get: 20

2

10













E
BorbW . 

Considering a linear chain of 1020 absorber atoms, and adding up all the probabilities of magnetic 

interaction with all atoms, as all the events of interaction are independent from one another, and 

also characterized by the same probability,  we get the level of confidence: 110
2010

1

20   . According 

to this expression, we have almost the certainty that a magnetic interaction event occurs between the 

neutralino and one of the atoms of the considered linear chain, having a length of a 2010  where a is 

the lattice constant, which assumes a value of about 0.3 nm.  

Let us "build" a hypothetical absorber with a large number of such chains and let its square surface 

area be S0. Then the cross section of the magnetic interaction neutralino-absorber will be 

35
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20
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


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BWB nanaS
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orborb
  cm2,  where 3223 103   cmanA  cm-3 
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is the concentration of atoms in the absorber. Moreover, this implies that the less is the registered 

energy, the more such events should occur, and hence the higher is the estimated cross section. 

This estimated «magnetic cross section» is at the level of 10-35 cm2 and it happens to be noticeably 

higher than typical values at level of 10-44 cm2 for the conventional interaction WIMP-nucleus.  

 

 

6.6 The experimental system SQUID-paramagnetic 

calorimeter 
 

In this section [68], we consider some features of optimal experimental design for search of DM 

particles such as the neutralino.  

A calorimeter with a possibly low energy detection threshold (not higher than 40 eV) is required. In 

addition, a solid-state absorber made up of atoms with strong spin-orbital effect, indicating the 

presence of a large (not lower than Borb ≈ 10 T) orbital magnetism, is needed. The only candidate for 

the role of calorimetric detector with energy threshold of the order of δE ≈ 40 eV is the SQUID-

paramagnetic absorber system [87, 88]. This cryogenic system (Figure 6.13) consists of a 

paramagnetic absorber, demagnetizing as a consequence of the heat transferred by the energy δE of 

the detected radiation, and of a quantum interferometer, measuring the corresponding decrease of 

the magnetic moment absm of the absorber. 

At sufficiently low temperatures (T ≈ 1 K), the contribution of the atomic paramagnetism [89] to 

the heat capacity prevails on the phonon contribution, so the following relation holds: absmBE    

(where B depends on the mode of operation of the system, and it may be either the induction of the 

external magnetizing field [87] or the residual paramagnetic field [88]). The magnetic flux 

variation, directly registered by the SQUID, is 
hB

E
h
mabs  00  , where h is the absorber 

length (the height of the paramagnetic cylinder), and 7
0 104   H/m. 

The Superconducting Quantum Interference Device (SQUID) [80-82]), due to the sensitivity of 

its Josephson junctions, to the difference between the Cooper condensates quantum phases [1] and 

to the detected magnetic field flux inside the superconducting ring, fixes flux variations as a fraction 

of the basic period, that is the flux quantum 15
0 1008.2 

e
 Wb (which corresponds to a 

phase change δφ = 2π). At the same time [68] a good, but not record sensitivity, of the modern 

interferometer is considered to attain the value δΦ ≈ 10-6Φ0/√Hz. This value corresponds to the 
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energy resolution 
0
 


hBE  2×10-18J/Hz ≈ 15eV/Hz , if  h ≈ 0.1 m and B ≈ 0.01 T, that makes 

it possible to fix E  ≈ 40 eV, with maximal frequency nearly 10 events per second.  

However, real conditions of experiment on the Earth correspond to the density of DM particle 

flux at the level of no more than 200 km/s × 1500 particles/m3=3×108 s-1m-2 with respect to the 

absorber. If we use as an absorber a paramagnetic material with strong atomic orbital magnetism 

with volume h×S≈0.1m×0.01m2, it would contain approximately 0.15 kmole ≈1026 atoms. With the 

optimistic assumption of a cross section of magnetic interaction of σ ≈ 10-35cm2, by using the Fermi 

Golden Rule, just mentioned in section 6.3, we get a maximum registration rate of  
5103  events/s 

≈ 4 events/day. Therefore, the margin of recording rate of about 6 orders of magnitude (10/3×10-5) 

can be used to compensate the loss of sensitivity of the system, associated with a low transmission 

coefficient of the superconducting flux transformer (K < 1, depending on the design [82]). This 

transformer provides [68] communication between the macroscopic working body of the absorber 

with the microscopic phase-sensitive ring of the SQUID, where the Josephson junctions are 

allocated (such compensation is possible up to the level of K ≈ (3×10-5/10)½ ≈ 0.0017). In fact, we 

should notice that, considering the size difference between the macroscopic calorimeter and the 

microscopic SQUID, a part of the magnetic flux is lost during the passage along the flux 

transformer. 

Therefore, if we define the coefficient K
ABS

SQUID









, where SQUID  is the variation of the 

magnetic flux registered by the SQUID, and ABS  is the variation of the magnetic flux inside the 

paramagnetic calorimeter, we notice that 1K . The numerical value of this coefficient can be 

obtained by following these considerations: 

- The real signal measured by the experimental apparatus is just the intensity of electric current, 

corresponding to the variation of magnetic flux registered by the SQUID; 

- The intensity of electric current is proportional to the square of the amplitude of magnetic flux, 

and so also to its variation; 

- The experimental quantity measured is, in reality, the squared value of the coefficient K . 

According to these considerations, in order to calculate the considered coefficient, we can impose 

this relation of proportionality:  

10:1031: 52 K . 

In fact, all these quantities can be directly registered by the experimental device. Therefore, we get:  
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2
16 )103( K  as it has been previously considered. We present a sketch of the SQUID-

paramagnetic absorber in figure 6.13.  

  

 

 
 

Figure 6.13 Scheme [68] of the SQUID-paramagnetic absorber system: 1) – the superconducting 

solenoid magnetization; 2) the paramagnetic absorber; 3) current generators; 4) narrow–band 

low-frequency amplifier. 

 
 

6.7 Non-corpuscular “ether wind” and possible registration of its 
pressure by the SQUID-magnetostrictor system 

 

 

In this section, we consider [68] a new approach for DM description, based on the possibility that 

DM and DE (the latter, as we have just noticed in section 6.2, could be responsible for the 

additional relative acceleration in the Hubble law of galaxies recession), can be considered as two 

different aspects of the same cosmological essence, named “Dark Substance”.  

According to this model DE, with its density of about 300 TeV/m3, represents the unperturbed 

state of “Dark Substance", while its swings or perturbations play the role of elementary DM 

particles. These particles will be stable if all their decay channels into any combination of other 
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particles are blocked, or also, in our case, if their potential will have local minima, i.e., local traps 

providing metastable excited states. The Hamiltonian with metastable traps can be represented, for 

example, as follows:  

 

 *cos*
2
1

2
1 2

2

2
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













tcx
= H                                     (6.6) 

  

The nonlinear wave equation, corresponding to this Hamiltonian, and describing the dynamics of 

perturbations to Dark Substance will be similar to the "quasi-sine-Gordon” equation, having the 

following analytic expression: 

  

0*sin*
2
1*1

2

2

22

2







 

tcx
.                                         (6.7) 

 

Moreover, the nonlinear potential  *cos*)(Π =  appearing here, has the analytic 

structure very similar to the “parabolic washboard potential” [81] used to describe metastable states 

in the superconducting ring of a SQUID with one Josephson junction, namely:  

 





o

oCI
L

E=  2cos
2
1)(cos)(Π 22 ,                    (6.8) 

 

 where  is the magnetic flux threading the superconducting ring and L is the inductance of the loop 

itself. We represent the profile [68] of the washboard potential in figure 6.14. Some comments 

about this figure are needed. For small ς (when the disturbance has not yet reached the first trap) 

swings of the Dark Substance have a quasi-harmonic character, and their quanta will have a mass 

22  
c

m=  . 

In order to prove this relation, we consider equation (6.7), in the limit of  very small value of the 

perturbation. Therefore, for 1 , we can express the last addendum in (6.7) as follows: 

)sin(
2
1 


 





 

 2

2
1

2
1  

where we have used the property  sin , valid for 1 , as it follows from Taylor’s expansion 

of sine function. Therefore, from equation (6.7), we get: 
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By carrying out the opportune calculations in this expression, we obtain: 
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                           (6.9) 

 

If we compare the (6.9) with the Klein-Gordon equation, that can be expressed as follows: 
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we may consider this relation:  
2

2 22  







 mc


, so that:  

2
2 2 


c

m  22  
c
 .                       (6.11) 

 

Equation (6.11) is thus the analytic expression for the mass of these perturbations, that so coincides 

with the mass of DM particles for the lowest relative minimum of their energy, for which they are 

stable.  

Nevertheless, these particles may be unstable, and the rate of decay from classical positions will 

correspond to the viscosity of the Dark Substance [107, 108].  At large amplitudes [68] of ς, the 

disturbance at some moment will "catch" the lowest energy trap. The trajectory of the oscillation ς 

will now be a circle in the plane {ς, ς*}, corresponding to a local minimum of the potential. The 

rotation around the circumference of a local minimum is similar to the mechanism of occurrence of 

massless Goldstone bosons in Weinberg-Salam’s model. However, in this example, the mass of 

excitations ("zero energy") is determined by the height of the bottom of the trap with respect to the 

main vacuum state ς=0 ς*=0, and will be non-zero. The stability of such excitations, playing (in this 

example) the role of DM particles, is guaranteed by the height of the wall of the potential well, 

occurring in the vicinity of the local potential minimum.  
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Fig 6.14. On the right, the washboard potential [68], characterized by local minimum positions, 
which are the metastable states of DM particles, is shown. The lower local minimum is  associated 
with a light (or also hot) component of DM, and the top one with a heavy (or also cold) component 
of DM. The absolute minimum lies in the region of negative energies and is associated with 
antigravitational properties of DE. On the left (for comparison) [68] the potential used in models of 
spontaneous symmetry breaking is displayed. 
 
 
According to these considerations we can do a comparison between the properties of these 
excitations, playing the role of DM particles, and the ones of Goldstone boson, described in the 
Standard Model of Particle Physics. In fact, also in the case of the Golstone boson, we have a 
position of stable equilibrium, coinciding with a minimum in the energy of this particle. However, it 
is a position of absolute minimum, where the Goldstone boson, with zero mass, is absolutely stable. 
Instead, the excitations (and so the DM particles) occupy positions of relative minimum of their 

energy, while the position of energy absolute minimum is occupied by the DE, that, according to 

the theoretical model we are describing, is the unperturbed state of the Dark Substance. So the 

mass, different from zero, of DM particles, is represented by the difference in energy between the 

state of energy relative minimum, where they are present, and the state of absolute minimum, 

occupied, according to our theoretical model, by DE. 
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If we provide an outside excitation to the system, the energy and so also the mass of these 

perturbations increase: in the lowest relative minimum these perturbations are stable, and coincide 

with the DM particles that we can directly register. 

Therefore, the search [68] of DM particles, as stable moving excitations of Dark Substance, may 

be intimately connected with the research of the action of the DE non-corpuscular flux on the 

ordinary matter. By knowing that the free mean path is connected to the cross section of interaction 

by the relation ℓ* ≈ 1/(σnA), we may say that DE transfers to a slab of material, consisting of 

ordinary atoms of concentration An , with area S and "maximum depth" 
An

l


1
 , a momentum 

v
Sl

v
Eq DEDE 

 , where DEE  is just the DE energy and v  is the speed of DM particles relative to 

the substance, or equivalently, the velocity of the same material relative to DE, which is, as just 

considered, the unperturbed state of Dark Substance. In this way, Dark Substance exerts the 

pressure   Sv
l

v
Sl

S
Fp DE

DE
1

 





    on the slab, where we have expressed  the force F as the 

ratio between the momentum q  and the time occuring in the slab crossing, i.e. 
v
l 

 . As we are 

interested to the pressure drop on finite distance l , we can recur to the condition of mechanical 

equilibrium, according to which the pressure density is constant inside this slab of material, and so 

we get: 
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where we have assumed a uniform section S  throughout the material. Therefore, the effective 

pressure drop across the length ℓ is estimated as ADEDEDE nll
lpp  

 . 

In accordance with the generally accepted value of the average density of Dark Energy DE  ≈ 

300 TeV/m3, taking into account the above-obtained "optimistic" estimation of the interaction cross 

section   ≈ 10-35 cm2, the pressure drop across a one-meter barrier, having a concentration of atoms 

An ≈ 3×1022 cm-3, will be of the order of )1( mlpDM  ≈ 7×10-16 Pa, where we have used the well-

known conversion factor: Joule.106.11 19eV  By considering a material of cilindrical form, of 

dimensions Sxl = 215.01 mxm   with  surface area 215.0 mS  , the force corresponding to this 

pressure is so represented:  
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N101015.014 16216   mPaSpF DE .                    (6.13) 

 

The above expression represents the value of the force exerted by the flux of DM particles, or 

equivalently, by the corresponding flux of DE.  

 

6.8 The SQUID-magnetostrictor system 
 

In this section we propose a second type of experimental device, the SQUID-magnetostrictor 

system, in order to register DM fluxes.  

We start by noticing that, in order to register the pressure, and thus the force, exerted by DE or 

DM flux on a material, a dynamometer capable to fix the strength of 10-16 N at the end of the 

cylinder, with dimensions Sxl  ≈ 1m×0.15m2, is required. Apparently, the only candidate for the 

role of the ultra-high-sensitivity dynamometer is the SQUID-magnetostrictor system [84, 109, 110]. 

This experimental system has been previously supposed to be used in projects for the detection of 

gravitational waves (Figure 6.15). 

 

 
 
Figure 6.15. Schematic view [68] of the SQUID-magnetostrictor system for the detection of 
gravitational waves (the magnetostrictive cylinder is represented in grey) [110]. 
 
Ultra-high sensitivity is achieved by means of this system. In fact, high strain-gauge effectiveness 
of the sensor can be achieved, since it operates on the principle of the reverse magnetostrictive 
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effect, generated, in its turn, by collective quantum solid-state effects [110]. On the other hand [68], 
the high ("quantum scale" level) sensitivity of SQUID systems, used as measuring instruments, 
allows accurate registration of events. The physical quantity [68] describing the reverse 
magnetostrictive effect (discovered by Emilio Villari in 1865, and thus called Villari Effect) in a 
particular material is the ratio of the internal magnetic induction field to the growth of its outside 
pressure, i.e.,  

P
B

1 .                                                 (6.14) 

For example, an alloy made up of 54% Pt and 46% Fe, with the coefficient of magnetic 

permeability μ ≈14000, will have 1  ≈ 10-4T / Pa (which is basically not a record value). Thus the 

magnetic response, measured by the SQUID, is related to the force action δF by this expression: 

 

 F 1 .                                           (6.15) 

 

Equation (6.15) can be interpreted as the relation between the external excitation, represented by the 

force F , and the response of the system, represented by the variation of the magnetic flux  . In 

fact, as a consequence of the force (or also of the pressure) exerted by the flux of DE (or of DM 

particles), there is a variation in the dimensions of the material, which determines, according to the 

Villari Effect, a variation in the magnetization, and so in the induction magnetic field, of the 

considered material, as we may notice from equation (6.14).     

Accordingly, the capability to register the pressure of non-corpuscular Dark Matter flow, estimated 

above for σ ≈ 23510 cm  at δF ≈ 10-16 N,  requires an "absolute" (not reduced to the time of the signal 

accumulation) SQUID sensitivity for the magnetic flux of the order of magnitude of 10-20 Wb ≈ 

5×10-6 Φ0.   

In fact, by using the equation (6.15), for 
Pa
T41 10  , and 1610F N, we get a value of 

2010 Wb 0
6105   , which is independent from the time of signal accumulation. The actual 

value of sensitivity of a good DC-SQUID is of about δΦ ≈ 10-6Φ0/√Hz, which provides the desired 

sensitivity with a margin of approximately 2 orders of magnitude (at least) due to the possibility of 

a 3-hour signal accumulation. In order to compare the numerical value of the SQUID sensitivity, 

which is time dependent, with the numerical value of  0
6105   , which is, instead, time 

independent, we can multiply the value of SQUID sensitivity for the square root of the frequency. 

In this way, considering a time of three hours, we obtain a value of frequency 

HzHz
T

24 1010
sec33600

11  


  , and so we get: 0
8206 101010 

  Hz
Hz

, 
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which, as just considered, provides the desired sensitivity with a margin of approximately two 

orders of magnitude. 

 

6.9  Conclusions 
 

In this chapter, starting from an introduction [68] about DM and its cosmological properties, we 

have focused our attention on the possible creation of neutralino magnetic moment, the estimation 

of its magnetic interaction cross section, and a brief description of a model unifying DE and DM.  

In particular, we have found magnetic moments for neutralino to be 5 orders of magnitude 

smaller than the one for electrons, and a magnetic interaction cross section that is 9 orders of 

magnitude larger than the one corresponding to the conventional interaction WIMP-nucleus. The 

specificity of this magnetic-type interaction is in its “tangential character”, as it is an interaction at 

distance with the magnetic field induced by the orbital motion of atomic electrons. So, there is a 

remarkable difference with the conventional DM scattering, in which only the atomic nucleus is 

concerned and the electron contribution is negligible. We have described the SQUID-paramagnetic 

absorber experimental system that, having an energy resolution of 15 eV, is very suitable for the 

registration of DM particles and their interactions. Technical details about this system are discussed, 

and several modes of its operation are briefly mentioned.  

In the context of "unifying" trend, clearly dominant in the modern elementary particle physics, 

we have also proposed a simple model, where we try to consider the corpuscular Dark Matter and 

non-corpuscular Dark Energy from uniform position. In this proposed model, the Dark Energy is an 

absolutely continuous substance, playing the role of vacuum for metastable excitations, which can 

be identified as Dark Matter particles. Estimates, carried out in the framework of this model, 

indicate the possibility of experimental detection of the "ether wind" pressure, created by the non-

corpuscular incoming flow, corresponding to the galactic orbital motion of the Earth. It is argued 

that these types of investigations could be performed by using the SQUID-magnetostrictor 

experimental system.  
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Appendix 6.1 

 

Two particular experimental devices using superconducting 

detectors   

 
In this appendix we consider two particular experimental devices, one that is a planar array of 

superconductors [77], and the other one which is the two-channel mode SQUID paramagnetic 

absorber system [92]. 

Let us begin to describe the first experimental device. A planar array of superconductors consists 

of  several superconducting islands [77], displaced in a matrix geometrical planar form, where each 

superconductor is weakly coupled to the next one and so all this device constitutes a multi-channel 

detector of Josephson junctions. We give a sketch of this experimental device in the next figure. 

     

 
Figure 6.1.1. Schematic representation of a detector of particles of DM. In the picture Ui is the 
potential on a plate of a type I superconductor; the wavy lines denote a weak coupling between 
plates. From G. N. Izmailov, Superconductors as detectors of particles of Dark Matter, 
Measurement Techniques, Vol. 51, No. 11, 2008. 

 

Each couple of superconductors is connected with an electro-motive force (e. m. f. ) source. The 

interaction of  a WIMP particle on this device determines the effects just considered in the 

beginning of section 6.4. In this case, however, we have also the presence of the e. m. f. source, 

which creates a potential difference U between superconductors, and so an electric current, made up 

by the electrons generated by the local breaking of Cooper pairs, can flow between the two coupled 
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superconductors if it is realized the condition eU , i.e. if the electrostatic energy, determined by 

the e. m. f., is larger than the energy gap   associated to the superconducting state. This electric 

current is registered by using a galvanometer G. Just for sake of completeness, we may consider 

that this energy gap of a superconducting material is defined as the energy difference between the 

ground state and the Fermi level of energy, as only the electrons whose energy coincides with the 

Fermi level of energy can form the Cooper pairs, through the interaction of phonons [111]. When 

the electrons [77] arrive from the first to the second superconducting platform, they re-arrange in 

new Cooper pairs, because it is well known that the superconducting state is characterized by a 

value of energy which is lower than the one of the normal state [111]. In this process phonons are 

emitted from the second platform, as a consequence of  the energy transition from the normal to the 

superconducting state, and they are registered by using a particular bolometer. We represent a 

sketch of a couple of superconductors of this planar structure, with the connected galvanometer and 

the emission of phonons in figure 6.1.2.  

 
Figure 6.1.2. Schematic depiction of a detector cell. G is the galvanometer to record the current. 
From G. N. Izmailov, Superconductors as detectors of particles of Dark Matter, Measurement 
Techniques, Vol. 51, No. 11, 2008. 
 

Thus, as we can also see from the figure, we have three trials at our disposal in order to register the 

WIMP interaction on this device: 

- The passage of an electric current between two of the superconducting platforms, registered by 

the galvanometer G; 

- The emission of phonons from one of the platform, registered by the bolometer; 

- The occurrence of these events only from one of the superconductors of this planar structure, 

that is a phenomenon due both to the rarity of WIMP interactions, and also to the particular 

geometrical form of all the experimental apparatus.  

For sake of completeness, we can consider [77] that by using bolometers, it is possible to register 

the variation of a typical physical quantity with varying temperature. In fact, the interaction of a 

particle on a bolometer determines an increase in temperature, and consequently a variation of a 
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typical observable quantity, temperature depending, such as the electric resistance, the magnetic 

susceptibility, and so on. In this way, it is possible to determine the rate of particle interactions, also 

if we cannot determine the identity of the considered particle. 

Let us now consider the second experimental device [92]. It is a particular version of the 

SQUID-paramagnetic calorimeter system, that is based on a dual channel mode in order to 

eliminate, or at least to reduce, the lepton and photon processes. As it was seen in section 6.6, we 

have two devices, namely the magnetic calorimeter, that can be of cylindrical form, with radius R 

and height H, and the SQUID. In section 6.6 we have described the properties of this experimental 

apparatus, and also the consequences of a WIMP interaction on it. Here, we outline [92] the original 

experimental two channel scheme, by which it is possible to try to eliminate, or at least minimize, 

the electron recoil background, i.e. the lepton and photon processes of interaction on this device. 

In fact, in the process of WIMP-nucleus scattering, we have to consider the two times 1  and 2 : 

- 1  is the nuclear relaxation time spin-spin, in which the set of nuclear spins reaches the 

equilibrium condition, after being perturbed by the local absorption of the energy E , and it 

is of about 310 seconds; 

- 2  is the relaxation time spin-phonon, in which the energy E  that is absorbed by nuclei, is 

transferred, in the form of phonons, to the crystal lattice and to the electrons, and it is of 

about 10 seconds. 

We can notice that 12   . A schematic representation of this device is shown in figure 6.1.3. By 
using SQUIDs it is possible to register the ratio of the mean demagnetization rates before the 

condition of thermal equilibrium, that is 
1

1)(


 t , and after this condition, that is 
2

2 )(


 t . 

Each of these terms is the mean value of the magnetic flux variation in a well-defined time interval, 
that is 1  or 2 , calculated on the local surface area of the calorimeter, interested by such energy 
variation E . So, we get the mean demagnetization rate: 
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WIMP .                                            (6.1.1) 

By carrying out the opportune calculations, reported in reference [92], one obtains: 
 

1

22



R
H

WIMP  .                                                   (6.1.2) 

 
By taking opportune values of radius R and height H of the magnetic calorimeter, we may set:  
 

12 
R
H . 



 162

 
Therefore, for 3

1 10 seconds and 102  seconds (typical values for  sample of copper), we 
obtain 410WIMP . 

 
 
Figure 6.1.3. The basic elements [92] of the apparatus: 1 - DC SQUID (Josephson junction are 
marked by crosses); 2 - superconducting flux transformer; 3 - absorber with a nuclear spin system; 
4 - superconducting solenoid with a valve for the magnetic field "freezing"; 5 - superconducting 
screen; 6 - cryostat with liquid helium-4; 7 - current source for controlling the superconducting 
valve; 8 - power supply for superconducting solenoid. Components of the SQUID electronics: 9 - 
current source for the DC- SQUID operating- point shift above the overall critical current for the 
first and second Josephson junctions; 10 - alternative current generator (f =100 kHz); 11 - selective 
amplifier; 12 - phase detector; 13 - integrator with a variable time constant; 14 - biasing coil of the 
SQUID autocompensation system; analysis of the bias rate is perceived to be done by a computer 
after the analog-digital conversion of the output signal; analog blocks 9, 10, 12 and 13 may be also 
replaced by digital systems DAC and ADC under general computer control. Refrigerator for 
helium-3 solution in helium-4: 15 - solution chamber; 16 - counter heat exchanger; 17 - heater of 
the evaporation chamber; 18 - evaporation chamber ( lines of the helium-3). 

 
In the case of leptons and photons, as they can significantly interact [77] only with the atomic or 
free electrons of the working substance of the considered detector, there is not a direct WIMP 
scattering on electrons, and consequently we only have the relaxation time spin-phonon 2 . 
Therefore, one can set: 
 

R
H

e




2
 .                                                        (6.1.3) 
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Notice that e  is 
1

2


  times smaller than WIMP . These results can be used in order to distinguish 

WIMP scattering from the background events, as, if we register, by using SQUIDs, a value of 
410 , it is the sought signl for WIMPs, otherwise, if we have 1 , it is the signal of electron 

recoil. Therefore, we have described the dual channel mode of the experimental system SQUID-
paramagnetic absorber. 

We can also consider another version of this experimental device, which is presented in the next 
figure. In this device, instead having a single absorber, with a single SQUID, we consider a set of 
metal cylindrical absorbers, each one directly connected to a small paramagnetic concentrator, in 
turn connected to a SQUID through a superconducting flux transformer. This experimental 
apparatus registers WIMPs by using the anticoincidence technique among the various absorbers. 
In fact we notice that the rate of interaction of WIMP particles is very small (around 4 events per 
day [33, 68]) as a consequence of their very small values of cross section (of about 23544 1010 cm   
[64, 68]), and so there is not multiple scattering on the various absorbers of our device, but only one 
of the absorbers is hired. On the contrary, in the case of electrically neutral and massive particles, 
for example neutrons, which are hadrons, we may have multiple scattering, due to their higher 
values of cross section (in the range of 22026 1010 cm  in the range of energy of eV81 1010  ) and 
so to their higher rates of interaction than the ones of WIMPs [92]. Therefore, by using the 
technique of anticoincidence [68], in which only one of the absorbers is hired, we have the 
possibility to distinguish  between DM particles and electrically neutral and massive hadrons. We 
show this experimental apparatus in figure 6.1.4. 
        

 
 
Figure 6.1.4. The scheme [92] of magnetic multi-channel calorimeter with SQUID, destined to 
search DM particles, where the veto system operates at anticoincidence concept in adjacent 
channels: gray cylinders - separate blocks of metallic absorbers; the black cylinders - the 
paramagnetic concentrators of heat micro release, each concentrator is connected with separate 
SQUID by means of superconducting flux transformer; crosses - Josephson junctions included in 
SQUID. 
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It is also interesting to consider [92] the structure of one of the cylindrical calorimeter in our 
experimental array. In fact, we notice that each calorimeter is made up by a metallic absorber and a 
paramagnetic concentrator, directly connected between them. The metallic absorber has bigger 
dimensions than the ones of the paramagnetic concentrator, in order to improve the rate of 
interaction of DM particles, as it has been remarked in section 6.3, so we just consider the DM 
interactions on this part of the calorimeter. The paramagnetic concentrator, as the same name 
suggests, is made up by a paramagnetic material, and it is maintained at very small temperature (of 
about 1 K), so that we can follow all arguments outlined in section 6.6, and so it is possible to 
register the variation of the magnetic flux corresponding to DM particles energy release, as it has 
been just considered in section 6.6. In order to minimize the magnetic flux losses during the passage 
along the flux transformer, connecting the paramagnetic concentrator and the SQUID, the variation 
in the magnetic flux, registered by the latter, is just coming from the paramagnetic concentrator. 
This device has the very important property to collect all the heat transferred to the absorber by the 
DM particles interactions. In fact, it is well known that the specific heat (and so the thermal 
capacity) of a metallic material, for values of temperature T tending to zero, is directly proportional 
to temperature, while for a paramagnetic material, as just outlined in section 6.4, is inversely 
proportional to the squared value of temperature. Therefore, considering the condition of thermal 
equilibrium inside all the calorimeter, we get: 
 

 
conc

conc
conc C

QT
C
QT 




  .              (6.1.4) 

 
Also, we have considered that  concconcabs CCCC  , and so we obtain: 
 

concQQ  .                                  (6.1.5) 
 
 
In this way, we have proven that all the heat can be transferred to the paramagnetic concentrator. 
This device, having smaller dimensions than the metallic absorber, can also minimize [92] the 
magnetic flux losses in the passage through the flux transformer to the SQUID, so that this latter 
can operate with improved resolution in magnetic flux registration.                    
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Concluding remarks 
 

This PhD thesis consists of six chapters: the first four chapters describe theoretical properties of 
Josephson junctions; chapter 5 deals with one junction and two junction interferometers, analyzed 
from classical and also quantum positions; finally, chapter 6 is concerned with the application of 
superconductors and SQUIDs as detectors of Dark Matter. Let us analyse each chapter in further 
details.  

In chapter 1 we have considered a microscopic description of N coupled superconductors in 
which nearest-neighbour interactions are present. Starting from the time evolution of the fermionic 
operators ĉ  and ĉ  in the Heisenberg picture, we obtain a set of coupled ordinary differential 
equations for the order parameters i . Since the main aim of this chapter is to show that Feynman’s 
model for a single Josephson junction can be justified by a microscopic analysis, we have 
specifically written the resulting system of differential equations in the case of two coupled 
superconductors. In this simple case Feynman’s model is obtained. In this way, one can argue that it 
must exist a strict correspondence between the microscopic picture described in the present chapter 
and the semi-classical analysis proposed by Feynman and successively refined by Ohta. Therefore, 
generalizations of Ohta’s model to multi-barrier Josephson junctions [8] based on the semi-classical 
analysis developed by the latter authors can be retained to agree with a strict microscopic 
description of these systems.  

In chapter 2, the properties of an over-damped Josephson junction have been analyzed by means 
of a mechanical analogue: an over-damped pendulum. The strict analogy between the dynamical 
equations of the two systems [15], [2], [3], [17], has been first reviewed. Being the physical 
properties of a simple pendulum very well known, the Josephson junction dynamics in the over-
damped limit may be derived by analogy. Therefore, we have analyzed [16] some interesting 
features of an over-damped Josephson junction, by means of the corresponding physical properties 
of the over-damped pendulum. As an example, we have noticed that the current-voltage 
characteristics of the superconducting device can be obtained by means of an analytical expression 
derived for the normalized driving moment as a function of the time average of the angular 
frequency. Finally, by considering the energy balance equation for the system, we have seen that it 
is possible to describe the effect of the driving moment on the pendulum through the tilting and 
stretching of the washboard potential.  

In chapter 3, we have analysed two particular superconducting systems: an inhomogeneous 
three-layer characterized by a constant non-null phase of the inner electrode, and an inhomogeneous 
four-layer with null phases of the inner two electrodes. In the first case (inhomogeneous DBJJ), we 
have calculated the CPR, in terms of the inhomogeneity parameter  and of the parameter 
describing the coupling between the two outermost electrodes , obtaining an expression which 
reduces, for  =0, to the current-phase relation found by Romeo and De Luca for a homogeneous 
DBJJ in ref. [14]. In the second case (inhomogeneous TBJJ), we have found that the term 
describing the interaction between the outermost electrodes is absent, so that the CPR is formally 
identical to the expression for the DBJJ, provided one sets  =0. In fact, when considering nearest 
and next nearest neighbour interactions, the two superconducting layers 2S  and 3S  in a TBJJ act as 
a single quantum system assumed to be described by the same superconducting phase. When 
sandwiched between 1S  and 4S , however, the intermediate layers 2S  and 3S  do not allow direct 
coupling between the outermost layers as it happens in a DBJJ, so that the sin  term disappears in 
the CPR of a TBJJ. We have noticed that the maximum Josephson current MAXI  in TBJJs depends 
on the inhomogeneity parameter  as follows: )1(0  II MAX , where 0I  is a constant which depends 
on the superconducting properties of the four layers. Furthermore, by means of a Fourier expansion 
of the CPR found in the present work, we have calculated the Shapiro steps for a homogeneous ( 



 166

=0) TBJJ. In this respect, we have noticed appearance of integer and fractional Shapiro steps in the 
I-V characteristics of these systems. We were able to determine, by a standard analytic procedure, at 
least for the homogeneous case, the semi-amplitudes of these quantities, both for the case of integer 
and fractional Shapiro steps. 

In chapter 4 the I-V characteristics of triple-barrier Josephson junctions have been studied in the 
presence of a constant current bias and of a r. f. voltage radiation. In the case of constant current 
bias, we have first analysed the homogeneous case ( 0 ), in which the Josephson coupling 
between superconducting regions does not depend on the particular pair of layers considered. In this 
case we have been able to analytically determine the I-V characteristics of TBJJs in the presence of 
a constant current bias. Adopting the RSJ model, the analytically determined I-V curves are seen to 
be formally identical to the canonical ones derived for JJs. For inhomogeneous Josephson coupling 
( 0 ), on the other hand, numerical evaluation of I-V shows that deviations of these curves from 
the analytically determined characteristics for 0  are seen to be compatible with the expression 
of maximum Josephson current   01 II MAX  . In the presence of a r. f. radiation the I-V 
characteristics show integer and fractional Shapiro steps. By a standard semi-analytic approach, 
expressions of the semi-amplitudes of these steps have been determined for 0 . Numerical 
evaluation of I-V curves, performed for 0 , shows persistence of integer and fractional Shapiro 
steps. 

In chapter 5 the classical and quantum behaviour of one-junction and two-junction 
interferometers have been considered. While the classical behaviour of both systems is already well 
known, we have proposed a unifying approach to the study of their electrodynamic properties, 
suggesting an equally unified analysis in the quantum regime. Therefore, starting from the analytic 
expression of the washboard potential, the 2 x 2 quantum Hamiltonian acting on the quantum states 

1,0  is obtained by promoting the classical variables, in the classical potential, to the role of 
operators. The persistent electric currents in the quantum regime are seen to follow closely the 
qualitative behaviour of the homologous quantities in the classical system, showing alternating 
occurrence of diamagnetic and paramagnetic states for increments of exn  equals to 1/2. It is 
important to notice that the present analysis can be immediately extended to Hilbert spaces spanned 
by more than two quantum states. Therefore, in the present analysis, we have noticed that multi-
valued logic states can be obtained in the quantum regime, by generalizing the well-known classical 
properties of a two-junctions interferometer. In this way, quantum computing based on qutrits, 
rather than qubits, could be implemented by considering the properties of a two Josephson junctions 
interferometer, whose quantum states are generated by the orthogonal kets .2and,1,0  

In chapter 6 we have analyzed the experimental techniques for the registration of Dark Matter 
based on superconductors and SQUIDs. Starting from an introduction [68] about DM and its 
cosmological properties, we have focused our attention on the possible creation of neutralino 
magnetic moment, the estimation of its magnetic interaction cross section, and a brief description of 
a model unifying DE and DM. In particular, we have found magnetic moments for neutralino to be 
5 orders of magnitude smaller than the one for electrons, and a magnetic interaction cross section 
that is 9 orders of magnitude larger than the one corresponding to the conventional interaction 
WIMP-nucleus. The specificity of this magnetic-type interaction is in its “tangential character”, 
since it is an interaction at distance with the magnetic field induced by the orbital motion of atomic 
electrons. A remarkable difference thus exists between this type of interaction and the conventional 
DM scattering, in which only the atomic nucleus is concerned and the electron contribution is 
negligible. We have described the SQUID-paramagnetic absorber experimental system that, having 
an energy resolution of 15 eV, is very suitable for the registration of DM particles and their 
interactions. Technical details about this system are discussed, and several modes of its operation 
are briefly mentioned. In the context of "unifying" trend, clearly dominant in the modern 
elementary particle physics, we have also proposed a simple model, where we try to consider the 
corpuscular Dark Matter and non-corpuscular Dark Energy from uniform position. In this proposed 
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model, the Dark Energy is an absolutely continuous substance, playing the role of vacuum for 
metastable excitations, which can be identified as Dark Matter particles. Estimates, carried out in 
the framework of this model, indicate the possibility of experimental detection of the "ether wind" 
pressure, created by the non-corpuscular incoming flow, corresponding to the galactic orbital 
motion of the Earth. It is argued that these types of investigations could be performed by using the 
SQUID-magnetostrictor experimental system.  
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