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Introduction 

 

After the discovering of the high critical temperature superconductors (HTS), many 

efforts have been dedicated to investigate their superconducting properties in order to 

understand the superconductivity mechanisms and to improve their electrical and 

magnetic properties for technological applications. Since HTS are type II 

superconductors, one of the most their crucial parameters in applications is the critical 

current density. In fact, magnetic flux penetrates this kind of superconducting materials in 

the form of quantized vortices which, in absence of impurities inside the material, form a 

periodic lattice. These vortices move in the presence of a current through the 

superconductor causing dissipation, and this limits the critical current density of the 

superconductor which is determined by the pinning of vortices.  

One largely investigated issue has been the electromagnetic granularity of HTS which 

are in general not a homogeneous continuum but rather consist of a network of 

superconducting grains with intergranular weak links. The investigation of both the 

mechanisms of current flowing in the regions between adjacent grains and of vortex 

pinning inside the sample is useful in order to understand whether the superconductivity 

is a bulk or granular phenomenon, to separate the effects of the external parameters on the 

superconducting properties and flux dynamics of both the inter- and intragranular 

components, and to improve the fabrication processes for the application perspectives of 

these materials.  

Two main families of materials belong to the class of high HTS, differing in some 

superconducting parameters and both exhibiting a layered crystal structure in which the 

superconductivity can become a two-dimensional phenomenon achieving high transition 

temperatures and unconventional order mechanisms. The first family of materials are the 

cuprate superconductors, whose crystal structure is composed by CuO2 planes and spacer 

layers, with 𝑇𝑐  as high as 134 K for the HgBa2Ca2Cu3O8 superconductor. The other 

popular group of layered HTS is family of the iron-based compounds, composed by a 

common block of FeX layers (where X = As, P, S, Se, or Te) and spacer layers, with 𝑇𝑐  as 

high as 56 K for the LnFeAsO1-xFx  superconductor. 

In particular, thermal fluctuations are very important in HTS due to the extreme 

material parameters characterizing these systems such as the large superconducting 

critical temperature 𝑇𝑐 , resistivity 𝜌, and penetration depth 𝜆, and the small coherence 

length 𝜉 and Fermi velocity 𝜐𝐹, in addition to the uniaxial anisotropy due to the layered 

structure which strongly depends on the stacking composition. In fact, all these 

parameters increase the strength of the thermal disorder (Ginzburg number 𝐺𝑖~10−2) and 

quantum disorder that oppose the quenched disorder potential producing the pinning. Due 
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to the thermal motion of vortices, the disorder potential is sampled over an extended 

region by the vortex normal core, and then it results averaged and smoothed. This thermal 

depinning produces the reduction of the critical currents density 𝑗𝑐  in the system, and 

affects both the field-temperature (𝐻-𝑇) phase diagram and the dynamical properties of 

vortices. 

In particular, the more recently Fe-based superconducting materials are potentially very 

useful for applications, especially since their properties induce large thermal fluctuations 

and depressed grain boundary superconductivity. On the other hand, their order parameter 

symmetry is supposed to be s-wave, which is not as detrimental to current flowing across 

grain boundaries. Moreover, due to a high degree of quenched disorder, which 

corresponds to a high density of pinning centers, in Fe-based superconductors the 

thermally activated processes are the leading mechanisms driving the dynamic relaxation 

of the magnetic flux.  

In this thesis, the investigation, by means of the magnetic complex susceptibility 

measurement, of the mechanisms of magnetic field penetration and the thermally 

activated flux dynamical regimes in Fe-based superconductors in presence of a time 

dependent magnetic field, will be treated. In fact, the inductive technique of AC 

susceptibility measurement is largely used to study the magnetic field distribution inside 

HTS and to investigate the flux dynamical regimes governing the AC magnetic response 

of these materials by accessing regions of the electrical field-current density characteristic 

which are not accessible by means of electrical transport measurements. 

Most commonly, the fundamental harmonic of the AC susceptibility is measured as 

function of the temperature and, by considering its variations due to the external 

parameters, several superconducting parameters are extracted. On the other hand, the 

study of the AC susceptibility higher harmonics, which there exist in the AC magnetic 

response of the sample in the case of nonlinear magnetic response, can be used to extract 

information about the actual flux dynamical regimes of superconducting vortices. In 

particular, the third harmonic components of the AC susceptibility are the most widely 

investigated since their intensity is the highest and easily detectable, even in the absence 

of a DC field, after the fundamental harmonic components.  

However, when considering granular superconducting systems, the magnetic 

interaction between the -inter and intragranular currents via demagnetizing effects could 

produce the existence of effective magnetic fields which are different from the applied 

field. This may affect the sample magnetic response and then the measured critical 

current density and pinning energy. Moreover, since in the AC magnetic response of a 

granular system is given by two contributions due to the superconducting grains and to 

the system of weak links interconnecting the grains, respectively, the investigation of 
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these two contributions is not always possible depending on their merging. In fact, some 

portions of the first and higher harmonics of the inter- and intragranular AC 

susceptibilities can be not accessible.  

In this context, it will be proposed in this thesis an approach for analyzing the AC 

magnetic response of superconducting granular systems, measured by means of the AC 

susceptibility technique, taking into account the existence of demagnetizing effects. Since 

this method give also the possibility of separate the inter- and intragranular magnetic 

contributions to the sample response and the corresponding AC susceptibilities, it will be 

used to analyze the inter- and intragranular AC susceptibilities and extract several 

superconducting properties and flux dynamics information.  

At this purpose, a description of the superconducting properties and vortex dynamics 

in the high-𝑇𝑐  superconductors will be first given in the Chapter I. Then, a detailed 

description of the complex susceptibility technique as tool for the investigation of the 

superconducting properties of HTS will be treated in the Chapter II. As an example, the 

method of estimation of the superconducting parameters and the extraction of flux 

dynamical information from the AC susceptibility of a homogeneous superconducting 

sample will be shown in the Chapter III. In particular, a bismuth-oxysulfide layered 

compound Bi4O4S3 will be considered, which exhibits some characteristics of 

superconductivity mechanisms similar to cuprates and Fe-based compounds and then  is 

designed to provide additional information for the comprehension of superconductivity in 

these compounds. 

Beyond this preliminary description, the case of a granular system will be introduced 

in the following chapters. In particular, in the Chapter IV we will introduce a model, 

which takes into account the existence of effective magnetic fields at the whole sample’s 

and grains’s surfaces due to the demagnetizing factors of both the sample and the grains 

geometry, for the description of the measured AC magnetic response of a granular sample 

in terms of the inter- and intragranular AC magnetic contributions. Moreover, we will 

formulate an analytical method, for analyzing the sample magnetic response, consisting in 

the solution of a system of self-consistent “magnetization-field” equations which 

determine the AC susceptibilities harmonics of the inter- and intragranular volume 

fractions starting from the harmonics of the measured whole sample magnetization. This 

method will be used to analyze the AC magnetic response of a FeSe0.5Te0.5 sample 

exhibiting electromagnetic granularity and to obtain the inter- and intragranular 

superconducting parameters and investigate the corresponding flux dynamics 

mechanisms.  

 

. 
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Chapter I 

Vortex dynamics in type II superconductors 

 

Two class of superconducting materials are distinguished as type-I and type II 

superconductors in terms of their magnetic and carrying-current properties. In fact, while 

the critical current density of the type-I superconductors is a consequence of the critical 

magnetic field 𝐻𝑐 , which is low and then gives likewise low critical current densities 𝑗𝑐 , 

the critical current is no longer simply related to the magnetic field in the type II 

superconductors. In fact, when a type II superconductor is in a magnetic field exceeding a 

value referred to as the lower critical field, 𝐻𝑐1, magnetic flux is able to penetrate in 

quantized units by forming cylindrically symmetric domains called vortices with 

elemental flux quantum 𝜙0. The flux tube diameter is approximately twice the coherence 

length, 𝜉 , and at the core of the flux tube the material has reverted back to its normal 

non-superconducting state. For much higher applied fields the vortices tend to overlap 

and the field inside the superconductor becomes strong everywhere causing the transition 

to the normal state above the upper critical field 𝐻𝑐2[1-3].  

The magnetic phase diagram for a conventional type II superconductor is shown in 

Fig.1a. In the mixed state the normal phase is confined to small local areas while it is still 

present a superconducting path through the material for the current to pass unimpeded as 

long as it does not disrupt the flux vortices. In fact, the mixed phase is still 

superconducting due to the existence of defects in the crystalline lattice which act as to 

pin the flux lines and prevent their motion. When the lattice starts to be free to deform, 

the flux lines are able to move then reducing the superconducting critical current density.  

The flux lines in conventional II superconductors are considered to be rigid tubes with a 

mutual repulsion which tends to keep them apart. As the applied field is increased, they 

are forced closer together, and the state that minimizes the total free energy of the system 

is called an Abrikosov lattice[4], consisting in a two-dimensional hexagonal close-packed 

lattice. However, the lattice remains relatively well pinned and the material exhibit good 

superconducting properties.  

On the other hand, different families of type II superconductors have been discovered 

and largely investigated, exhibiting a relatively high critical temperature and interesting 

superconducting properties. In fact, the magnetic phase diagram for these high-𝑇𝑐  

superconductors (HTS) differs from that for the conventional superconductors in the 

existence of a melting transition of the Abrikosov lattice into a flux liquid phase, as 

shown in the Fig. 1b. The transition line is also named irreversible line since on the lower 

side of this line the magnetic behavior of the superconductor is reversible while it
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Figure 1. Magnetic phase diagram of (a) conventional and (b) high-𝑇𝑐  type II superconductors. 

 

 

becomes irreversible above the line. Such melting transition is favorable in high-𝑇𝑐  

superconductors due to the higher temperature involved, and highly affects the critical 

current density. 

The first kind of discovered high-𝑇𝑐  superconducting materials were the Cu-oxide 

superconductors whose crystal structure is composed by CuO2 planes and spacer layers. 

These cuprate superconductors have the highest critical temperature 𝑇𝑐  observed up to 

now. In fact, after the discovery of the first high-𝑇𝑐  superconductors by Berdnoz and 

Muller in 1986, a large growth of the research and development activities in the field of 

the superconductivity started, which leaded to the highest critical temperature 

superconductivity observe for the HgBa2Ca2Cu3O8 compound[5-9]. In addition to the high 

values of the critical temperature 𝑇𝑐 , extreme material parameters characterize these 

systems such as the large resistivity 𝜌 and penetration depth 𝜆, and the small coherence 

length 𝜉 and Fermi velocity 𝜐𝐹, in addition to the uniaxial anisotropy due to their layered 

structure. In fact, all these parameters increase the strength of the thermal disorder 

(Ginzburg number 𝐺𝑖~10−2) and quantum disorder that oppose the quenched disorder 

potential producing the pinning[10]. Due to the thermal motion of vortices the disorder 

potential is sampled over an extended region by the vortex normal core resulting in an 

averaged potential and then in a smoothing of the disorder potential. This thermal 

depinning reduces the critical currents density 𝑗𝑐 , and affects both the field-temperature 

(𝐻-𝑇) phase diagram and the dynamical propertied of vortices.  

The other family of unconventional type II superconductors are the Iron-based 

superconductors, which are composed by a common block of FeX layers (where X = As, 

P, S, Se, or Te) and spacer layers, with 𝑇𝑐  as high as 56 K for the LnFeAsO1-xFx  

compound[11-19]. This new family of type II superconductors exhibits properties both of 

the conventional superconductors described by the Bardeen-Cooper-Schrieffer (BCS) 

theory[20], such as their lower critical temperature and anisotropy, and of the HTS such 
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as high upper critical field and low carrier density and effective mass, giving a 𝐺𝑖~10−4- 

10−2 due to thermal fluctuations which are the leading mechanism as in the cuprate 

superconductors[10]. Moreover, like the cuprate superconductors, the critical temperature 

𝑇𝑐  depends in particular on the on the composition of the stacking structure, which makes 

both the kinds of systems interesting to investigate for the complete understanding of 

their superconductivity mechanisms. 

As a peculiar common characteristic of both the cuprate and the Fe-based 

superconductors, thermal fluctuations influence the dynamics of the superconducting 

vortices in response to the external current density 𝑗 which lead the vortices to move with 

a finite velocity by opposing to the pinning force of the material. In particular, the 

phenomenology of the macroscopic magnetic response of these systems in presence of an 

external magnetic field varying in time can be studied in terms of the dynamical regimes 

of the virtices thermally activated around the critical state in which the vortex motion is 

hindered by the pinning force. Most commonly, the analysis of the AC magnetic response 

is made in terms of the complex magnetic susceptibility both in presence and in absence 

of a magnetic DC field superimposed to the AC field. In fact, measuring the complex 

susceptibility with varying the external parameters such as the temperature, the amplitude 

and the frequency of the AC field, and the strength of the DC field, allows one to obtain 

both several superconducting parameters and detailed information about the flux 

dynamical regimes governing the AC magnetic response[21-25]. 

This chapter is an attempt to systematize the theoretical background concerning the 

dynamics of the superconducting vortices of type II superconductors when they interact 

with an external magnetic field. This includes the expulsion of flux due to Meissner-

Ochsenfeld effect, the flux pinning by a surface barrier, the pinning of the flux entering 

the bulk of superconductor in the form of flux lines, the diffusion of these flux lines 

across the sample and the reversible motion of pinned flux lines in potential wells. In 

particular, the physical models of these mechanisms can be used to describe the 

corresponding complex susceptibility in order to relate the measured curves of the 

complex susceptibility to the actual electrodynamics inside the superconductors[22]. 

 

 

I.1 Type II superconductors in an alternate magnetic field:  

the diffusion equation 

In order to study the magnetization process of a type II superconductor in presence of 

an oscillating applied magnetic field, it may be necessary to study the nonlinear diffusion-

like equation which governs the spatial-temporal evolution of the local magnetic field 

𝐵[22], 
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𝜕2𝐵(𝑥,𝑡)

𝜕𝑥2 =
𝜇0

𝜌 𝐵,𝐸 

𝜕𝐵(𝑥,𝑡)

𝜕𝑡
=

1

𝐷 𝐵,𝐸 

𝜕𝐵(𝑥,𝑡)

𝜕𝑡
,   (I.1) 

 

where 𝜌 𝐵, 𝐸  is the electrical resistivity depending on both magnetic field 𝐵 and the 

electrical field 𝐸, together with the approximate current-voltage characteristic[26-28] 

 

𝑗 𝐵, 𝐸 = 𝑗𝑐 𝐵 
𝐸

 𝐸 
 
 𝐸 

𝐸𝑐
 

1

𝑛
.    (I.2) 

 

Here the index 𝑛 allows one to model the linear diffusion of the flux lines (𝑛 = 1), the 

critical state (𝑛 = ∞) and intermediate regime (𝑛 > 1). In the following, we will treat the 

solution of the diffusion equation in the different regimes of linearity.  

 

 

I.1.1 Critical state 

When the superconducting material is able to pin the flux lines into the pinning 

potential wells, the critical state is established. This state is obtained by setting 𝑛 = ∞ in 

the Eq. (I.2), for which the flux density gradient is given by 

 

𝜕𝐵

𝜕𝑥
= ∓𝜇0𝑗𝑐(𝐵),           (I.3) 

 

and then the material has the critical current 𝑗𝑐 . In fact, this regime is well described by 

different critical state models differing in the field dependence of the critical current 

density 𝑗𝑐(𝐵)..  

The Bean model[29,30] is the simplest critical state model, which assumes that wherever 

the current flows it has the critical value 𝑗𝑐  and the internal field is given by 𝛁 × 𝑩 = 𝜇0𝒋. 

For a slab geometry of Fig. I.2a, in the case of low field 𝐵0, one founds 

 

𝜕𝐵𝑧(𝑥)

𝜕𝑥
= 𝜇0𝑗𝑦(𝑥),     (I.4) 

 

with 

𝑗𝑦 𝑥 = 𝑗𝑐 ,   − 𝑎 ≤ 𝑥 ≤ −𝑎′,    (I.5a) 

 

𝑗𝑦 𝑥 = 0,   − 𝑎′ ≤ 𝑥 ≤ 𝑎′,    (I.5b) 

- 

𝑗𝑦 𝑥 = −𝑗𝑐 ,   𝑎′ ≤ 𝑥 ≤ 𝑎,    (I.5c) 
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where we have considered that there is a field- and current- free region  – 𝑎′ < 𝑥 < 𝑎′ . 

In this case, the boundary conditions for the field are  

 

𝐵𝑧 ±𝑎 = 𝐵0,     (I.6a) 

 

𝐵𝑧 ±𝑎′ = 0,      (I.6b) 

 

with 𝐵0 the applied field. Then, one obtains for the internal magnetic fields 

 

𝐵𝑧 𝑥 = 𝐵0  
𝑎 ′ +𝑥

𝑎 ′−𝑎
 , −𝑎 ≤ 𝑥 ≤ −𝑎′,   (I.7a) 

 

𝐵𝑧 𝑥 = 0, −𝑎′ ≤ 𝑥 ≤ 𝑎,    (I.7b) 

 

𝐵𝑧 𝑥 = 𝐵0  
𝑥−𝑎′

𝑎−𝑎′
 , −𝑎′ ≤ 𝑥 ≤ 𝑎,   (I.7c) 

 

and the critical current density is give by 

 

𝑗𝑐 =
𝐵0

𝜇0 𝑎−𝑎 ′ 
.     (I.8) 

 

In the study of the high field case one defines the characteristic field 𝐵∗ = 𝜇0𝑗𝑐𝑎 at which 

the field and current penetrate the center of the sample. In fact, the low field case 

discussed above corresponds to 𝐵0 < 𝐵∗. On the other hand, for high fields 𝐵0 > 𝐵∗, the 

currents and fields can be found  

 

𝑗𝑦 𝑥 = 𝑗𝑐 ,   − 𝑎 ≤ 𝑥 ≤ 0,    (I.9a) 

 

𝑗𝑦 𝑥 = −𝑗𝑐 ,   0 ≤ 𝑥 ≤ 𝑎,    (I.9b) 

 

𝐵𝑧 𝑥 = 𝐵0 − 𝐵∗  
𝑎+𝑥

𝑎
 , −𝑎 ≤ 𝑥 ≤ 0,      (I.10a) 

 

𝐵𝑧 𝑥 = 𝐵0 + 𝐵∗  
𝑥−𝑎

𝑎
 , 0≤ 𝑥 ≤ 𝑎.       (I.10b) 

 

The Fig. I.2b shows the variation of the field and current with varying the strength of the 

applied field starting at zero, increasing from to a maximum value and decreasing through 

zero to a negative maximum value as for an AC field cycle. 
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 ( a ) 

 

 

 ( b ) 

 

Figure I.2 (a) Superconducting slab of thickness 2𝑎 placed in the 𝑦, 𝑧 plane, in an external magnetic field 𝐵0 

applied parallel to the 𝑧 axis. This filed induces a shielding current 𝑗𝑦  flowing around the sample in the 𝑥, 𝑦 

plane. (b) Schematic diagram of the magnetic field penetration and current density profiles with varying the 

external field.  
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Table I.1 Current-field relationship for different critical state models. 

 

Unlike the Bean critical state model, more complex relationships between the internal 

field and the current density are assumed within the other critical state models. Typically, 

these relationships for the slab geometry are of the form 

 

𝑗𝑦 𝐵𝑧 =
𝑗𝑘

𝑓(𝐵𝑧)
,    (I.11) 

 

where 𝑗𝑘 is independent of the field and in most models corresponds to the critical value 

of the current density in the absence of the applied field, and 𝑓(𝐵𝑧) is a function of the 

magnetic field[3]. These relationships are reported in the Table I.1 for several critical 

state models. In fact, by substituting these current-field characteristics into Eq. (I.3) gives 

a differential equation whose solution is the corresponding spatial profile of the internal 

field 𝐵(𝑥). 

 

 

I.1.2 Intermediate state 

For finite values of 𝑛 greater than 1 into the Eq. (I.2), intermediate regimes occur in 

type II superconductors. An example of this behavior is the flux creep (fc) regime, which 

is especially found in HTS since high temperature and low pinning are involved. In fact, 

this regime is met when in the sample, originally into the critical state, the flux lines start 

to be hopping over the pinning wells to reach metastable states with lower energy. The 

creep phenomenon was introduced by Anderson and Kim[31], where it is assumed that 

flux creep occurs by bundles of flux lines with a jump rate taken of the form 

𝑗 = 𝑗𝑐  Bean 

𝑗 =
𝑗𝑐

 𝐵(𝑥) 𝐵𝑘 
 

Fixed 

Pinning 

𝑗 =
𝑗𝑐

 𝐵(𝑥) 𝐵𝑘  1 2 
 

Square Root 

𝑗 =
𝑗𝑐

1 +  𝐵(𝑥) 𝐵𝑘 
 

Kim 

𝑗 = 𝑗𝑐𝑒
− 𝐵(𝑥) 𝐵𝑘  Exponential 

𝑗 = 𝑗𝑐 − 𝑗𝑐 ′  𝐵(𝑥) 𝐵𝑘  Linear 

𝑗 =
𝑗𝑐

1 +   𝐵(𝑥) 𝐵𝑘  2
 

Quadratic 

𝑗 = 𝑗𝑐  1 −
 𝐵(𝑥) 

𝐵𝑘
 Θ  𝐵 − 𝐵𝑘   

Triangular 
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𝜈 = 𝜈0𝑒
− 

𝑈0
𝑘𝐵𝑇 ,                    (I.12) 

 

where 𝜈0 is an attempt frequency and 𝑈0 is the unperturbed pinning barrier energy. If the 

hopping rates are the same in both directions, there is no net motion of the flux lines. On 

the other hand, when a flux gradient is present an energy contribution 𝑈𝐿  due to the action 

of the Lorentz force has to be taken into account which makes the pinning potential a 

washboard potential. This produce two different hopping rates in the forward and 

backward directions, 

 

𝜈𝑓 = 𝜈0𝑒
−
𝑈0−𝑈𝐿
𝑘𝐵𝑇 ,                   (I.13c) 

 

𝜈𝑏 = 𝜈0𝑒
−
𝑈0+𝑈𝐿
𝑘𝐵𝑇 ,                   (I.13b) 

 

where  

𝑈𝐿 = 𝑓𝐿𝑉𝑐𝑟𝑝 ,        (I.14) 

 

with 𝑓𝐿 =  1 𝑐  𝑗𝐵 the Lorentz force density, 𝑉𝑐  the volume of the flux bundles moving 

independently from the other ones, 𝑟𝑝  the range of the pinning potential. 

Then, the net hopping rate is given by 

 

𝜈 = 𝜈𝑓 − 𝜈𝑏 = 2𝜈0𝑒
−

𝑈0
𝑘𝐵𝑇 sinh  

𝑈𝐿

𝑘𝐵𝑇
 ,         (I.15) 

 

Such creep phenomenon occur at low temperature where flux pinning plays an important 

role, i.e. 𝑈0 ≫ 𝑘𝐵𝑇 and 𝑈0 𝑗 𝑗𝑐  ≫ 𝑘𝐵𝑇.  In this case, a thermally activated very slow 

motion of the flux lines is established with a velocity from the Eq. (I.4) 

 

𝜈𝑓𝑐 = 𝜈0𝑒
−
𝑈0 1− 𝑗 𝑗𝑐0   

𝑘𝐵𝑇 ,       (I.16) 

 

where the effective flux creep barrier energy has been assumed to be of the form                

𝑈0 1 −  𝑗 𝑗𝑐    with 𝑗𝑐  the critical current density in absence of creep. On decreasing the 

exponent 𝑛 in the Eq. (I.2) one can model situations with increasing importance of the 

flux creep. 
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I.1.3 Linear diffusion 

Setting  𝑛 = 1 in the equation (I.2) yields the linear current-voltage characteristic 

 

𝑗 𝐵, 𝐸 = 𝑗𝑐 𝐵 
𝐸

 𝐸 
 
 𝐸 

𝐸𝑐
 .          (I.17) 

 

Inserting this linear current into the diffusion equation (I.1), converts it in a linear 

differential equation which solution is an AC magnetic flux profile decaying 

exponentially inside the superconductor, i.e. 

 

𝐵 𝑥 = 𝐵0exp⁡ −𝑥 𝛿  .         (I.18) 

 

Here the characteristic length scale is given by 

 

𝛿 =  2𝐷 𝜔  1 2 ,     (I.19) 

 

and then it depends on both the frequency 𝜔 of the AC magnetic field, and on the 

magnetic diffusivity 𝐷 of the material.  

Flux dynamical regimes belonging to this linear behavior are normal-state eddy currents, 

linear flux flow and thermally assisted flux flow, differing in the value of the linear 

resistivity. In fact, in the range of temperature near 𝑇𝑐  or for driving current densities well 

below the critical current density 𝑗𝑐 , the magnetic flux penetration in form of flux lines 

inside the sample is due to the thermally assisted flux flow (taff) regime. For 𝑗 ≪ 𝑗𝑐  and 

𝑈𝐿 ≪ 𝑘𝐵𝑇 in the Eq. (I.15), the taff velocity is given by 

 

𝜈𝑡𝑎𝑓𝑓 = 2𝜈0  
𝑈0

𝑘𝐵𝑇
  

𝑗

𝑗𝑐
 𝑒

−
𝑈0
𝑘𝐵𝑇 .             (I.20) 

 

When the Lorentz force density 𝑓𝐿 exceeds the pinning force 𝑓𝑝 , the flux lines lattice 

(FLL) starts to move as a whole with the flux-flow viscous velocity 

 

𝜈𝑓𝑓 = 𝜈𝑛
𝐵

𝐵𝑐2
       (I.21) 

 

where 𝜈𝑛  is the flux lines velocity in the normal state and 𝐵𝑐2 is the superconducting 

upper critical field . In the Eq. (I.21) a generalized temperature dependence of the high-

temperature limit velocity 𝜈𝑛  may be considered corresponding to the normal resistivity 

𝜌𝑛(𝑇) =  𝜌0 + 𝛼𝑇 + 𝛽𝑇2 , since a linear trend is typically observed at temperatures not 



13 
 

much higher than 𝑇𝑐 , while a faster dependence can occur at higher temperatures, both in 

high-Tc and Fe-based superconductors[33-36]. This vortex motion corresponds to the 

electrical field  𝑬 = 𝑩 × 𝝂𝒇𝒇  giving the finite resistivity 

 

𝜌𝑓𝑓 = 𝜌𝑛
𝐵

𝐵𝑐2
     (I.22) 

 

which is the normal state resistivity 𝜌𝑛  modulated by the ratio between the flux gradient 

and the upper critical field 𝐵𝑐2. In fact, the magnetic field tends to reach the upper critical 

field due both to the temperature decreasing of the upper critical field with increasing 

temperature and to the filed strength. Then, since 𝜌𝑛  corresponds to the high-temperature 

limit value of the resistivity, it follows that 𝜈0 =  𝜈𝑛  in the creep velocity (I.16) and taff 

velocity (I.20). 

 

 

I.2 Pinning mechanisms in type II superconductors 

In the previous paragraph we have analyzed the different solutions of the diffusion 

equation corresponding to the different regimes of flux dynamics. We have seen that 

motion of the flux lines in the mixed state of type II superconductors is hindered by the 

inhomogeneities of the material, which act as pinning centers since they change the 

energy of the flux lines. In fact, when this pinning force holds the flux lines in 

particularly favorable positions within the underlying material, the system is able to 

sustain the Lorentz force between the external magnetic field and the currents without 

flux motion and dissipation.  

However, since in HTS thermally activated depinning and flux motion are 

pronounced, the intrinsic pinning of the material is less efficient than in the classical 

superconductors. Then, it is very crucial to investigate the nature of the pinning 

mechanisms in order to improve to raise the pinning strength and the critical current 

density. 

In this paragraph we shall give a detailed description of the pinning mechanisms in type 

II-superconductors, with special reference to HTS. Most attention will be given to the 

collective pinning model of Larkin and Ovchinnikov[37-38], which is the most 

appropriate model for describing the pinning effects by randomly distributed weak point 

defects. However, also other pinning models will be treated which are appropriate to 

describe the effect of strong and correlated defects. 
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I.2.1 Larkin-Ovchinnikov theory of collective pinning 

Once one allows for the elasticity of the flux lines lattice, individual flux lines can 

deviate their path from the ideal Abrikosov lattice to lower their energy by passing 

through favorable pinning sites. However, this occurs at the expense of increasing the 

elastic energy of the flux lines due to their deformation, and the equilibrium configuration 

is established by minimizing the pinning and elastic energies.  

In order to obtain a prescription for estimating the critical current density resulting from a 

random distribution of weak point pinning centers in HTS, both the elastic properties and 

the thermal activated processes have to be taken into account. Although by definition, the 

activation energy for the flux motion has been taken 𝑈0 1 −  𝑗 𝑗𝑐   , such form is not 

always appropriate in the practice. In fact, the classical flux creep theory discussed in the 

previous paragraph may to be generalized by taking into account more carefully the 

current dependence of the activation energy.  

In this treatment we consider the case of flux density low enough and current density 

high enough to neglect the vortex-vortex interaction and to consider thermal activation of 

a single flux line, which is valid apply to the regime of small fields and temperature. One 

can start from the problem of a single vortex line of length 𝐿directed along the 𝑧 axis and 

in the presence of a weak random pinning potential 𝜀𝑝𝑖𝑛 . The vortex line is subject to the 

Lorentz force 𝑓𝐿 =  1 𝑐  𝒋 × 𝑩 and the free energy density of the vortex is given by[1,10] 

 

ℱ 𝒖 =  𝑑𝑧   
𝜀𝑙

2
  

𝜕𝒖

𝜕𝑥
 

2
+ 𝜀𝑝𝑖𝑛  𝑧, 𝒖 − 𝒇𝑳 ∙ 𝒖 ,       (I.23) 

 

where 𝒖(𝑧) is the displacement of the vortex and 𝜀𝑙  the vortex elasticity. A correlation 

function characterizing the random pinning potential can be introduced[1,10], 

 

 𝜀𝑝𝑖𝑛  𝑧, 𝒖  𝜀𝑝𝑖𝑛  𝑧′, 𝒖′  ,    (I.24) 

 

which depends on the nature of the disorder. In fact, for extended pinning centers the 

pinning potential is correlated over the defects size 𝑟𝑝  and the correlation function (I.24) 

decays along the 𝑟𝑝  scale. On the other hand, when considering pinning point defects 

which perturb the superconductivity on a scale smaller than the coherence length 𝜉, the 

scale length for the correlation function can be assumed to be zero along the vortex and 

the smallest transverse scale length is 𝑟𝑝~𝜉.  

The basic idea of the collective pinning theory is to describe the FLL as a system of 

c0rrelation volumes within which the vortex line are pinning independently. In fact, in 

type II superconductors pinning results from spatial variations of the                   
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Ginzburg-Landau (GL) coefficient due to both disorder in the transition temperature 𝑇, 

and/or from spatial variations in the charge carrier mean free path 𝑙 near lattice defects. 

These two kinds of pinning are usually called 𝛿𝑇𝑐  pinning and 𝛿𝑙 pinning. In fact, in 𝛿𝑇𝑐  

pinning spatial variations of 𝑇𝑐  produce spatial modulations of the linear and quadratic 

terms of the GL free energy 𝛼 𝜓 2 +  𝛽 2   𝜓 4, while in 𝛿𝑙 pinning variations in the 

free mean path influence the  ∇𝜓 2. Within both the two pinning regimes the average 

pinning energy can be expressed as[1,10] 

 

 𝜀𝑝𝑖𝑛
2 (𝐿) =  𝑑𝑧  𝑑𝑧′   𝜀𝑝𝑖𝑛  𝑧, 0 𝜀𝑝𝑖𝑛 (𝑧′ , 0) = 𝛾𝜉2𝐿,          (I.25) 

 

where 𝛾 is the disorder parameter which can be described in the Ginzburg-Landau model 

or determined from microscopic considerations. 

In order to obtain the collective pinning length above which the vortex displacement 

increased beyond 𝑟𝑝 , the following expression for the free energy density can be 

considered[1,10], 

 

 ℱ 𝒖, 𝐿 = 𝜀0
𝑢2

𝐿
− 𝛾𝜉2𝐿

1

2 − 𝑗
Φ0

𝑐
𝐿𝑢,           (I.26) 

 

where 𝜀0𝑢
2 𝐿  is the elastic energy due to the vortex distortion 𝒖, − 𝛾𝜉2𝐿 is the pinning 

energy gain, and 𝑗 Φ0 𝑐  𝐿𝑢 the Lorentz force contribution. By minimizing this energy 

density one obtains the collective pinning length and energy 

 

𝐿𝑐~ 
𝜀0𝜉

2

𝛾
 

1

3
,         (I.27a) 

 

𝑈𝑐~ 𝛾𝜉2𝐿 
1

3~𝑇𝑐  
1−𝑡

𝐺𝑖
 

1

2 𝜉

𝐿𝑐
,      (I.27b) 

 

where 𝐺𝑖 denotes the Ginzburg number measuring the importance of thermal fluctuations, 

 

𝐺𝑖 =
1

2
 

𝑇𝑐

𝐻𝑐
2 0 𝜉3(0)

 
2
,         (I.28) 

 

with 𝐻𝑐  the thermodynamic critical field. The results (I.27a) and (I.27b) apply to the case 

of isolated vortex, and each segment of length 𝐿𝑐  is pinned from the defects contained in 

the collective pinning volume 𝑉𝑐 = 𝐿𝑐𝜉 giving a pinning potential 𝑈𝑐 . The corresponding 

critical current density can be obtained by equating the pinning and Lorentz forces, thus
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giving 

𝑗𝑐 = 𝑗0  
𝜉

𝐿𝑐
 

2
.     (I.29) 

 

where 𝑗0 is the depairing current density. In terms of the critical current density, the 

collective pinning length 𝐿𝑐  and 𝑈𝑐  can be expressed as 

 

𝐿𝑐~𝜉  
𝑗0

𝑗𝑐
 

1

3
,      (I.30a) 

 

𝑈𝑐~𝐻𝑐
2𝜉3  

𝑗𝑐

𝑗0
 

1

3
~𝑇𝑐  

1−𝑡

𝐺𝑖
 

1

2
 
𝑗𝑐

𝑗0
 

1

3
,          (I.30b) 

 

In the absence of disorder, and consequently of pinning, the Eqs. (I.29), (I.30a) and 

(I.30b) lead to 𝑗𝑐 = 0, 𝑈𝑐 = 0 and 𝐿𝑐 = ∞. On the other hand, in the presence of pinning, 

for a current density near 𝑗𝑐  the condition that the energy gain due to the driving Lorentz 

force is equal to the deformation and pinning energies of the vortex is fulfilled for the 

neighbouring metastable state which is at a distance near to the coherence length 𝜉 away. 

With decreasing 𝑗 the Lorentz force is reduced and the next favorable metastable state 

becomes more distant. Then, the thermal motion of the vortex will involve longer 

hopping distances for larger segments in order to reach the next optimal low-energy state, 

and a quantitative analysis requires to know about the low lying metastable states for the 

vortex in the pinning environment. Within such kind of approach it has been found, when 

considering an elastic string, that competing metastable states differing on a length scale 

~𝐿 along the vortex are separated by a typical distance 

 

𝑢 𝐿 ~𝑢𝑐  
𝐿

𝐿𝑐
 
𝜁
, 𝐿 > 𝐿𝑐 ,    (I.31) 

 

and a typical energy barrier 

 

ℰ 𝐿 = 𝑈𝑐  
𝐿

𝐿𝑐
 

2𝜁−1
, 𝐿 > 𝐿𝑐 ,       (I.32) 

 

with 𝑈𝑐  denoting the scaling parameter for the energy. The free energy functional at low  

driving currents 𝑗 ≪ 𝑗𝑐  is given by 

 

ℱ 𝐿 ~𝑈𝑐  
𝐿

𝐿𝑐
 

2𝜁−1
− 𝑗

Φ0

𝑐
𝐿𝑐𝜉  

𝐿

𝐿𝑐
 
𝜁+1

,       (I.33) 
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where the second term is the energy gain from the Lorentz force 𝑗Φ0 𝑐 𝐿𝑢 of a vortex 

segment distorted with an amplitude 𝑢. Moreover, we have normalize the scaling laws 

(I.31) and (I.32) to take the values of the coherence length 𝜉 and 𝑈𝑐 , respectively, at 

𝐿~𝐿𝑐 , 𝑢(𝐿)~𝜉 𝐿 𝐿𝑐  𝜁  and ℰ 𝐿 ~𝑈𝑐 𝐿 𝐿𝑐  2𝜁−1. From the results (I.33) the energy of 

the displaced flux lines first increases and then decreases with increasing 𝐿. The 

maximum of ℱ 𝐿 , which is the barrier energy, occurs for 𝐿~𝐿𝑐 𝑗𝑐 𝑗  1 2−𝜁 . Inserting 

this results back into the Eq. (I.33) yields the minimum barrier energy for creep  

 

𝑈 𝑗 = 𝑈𝑐  
𝑗𝑐

𝑗
 
𝜇

,       (I.34) 

 

with 

𝜇 =
2𝜁−1

2−𝜁
.             (I.35) 

 

In fact, it has been found 𝜁 = 2 3  for 𝑛 = 1 (a vortex moving in a plane), 𝜁 = 3 5  for 

𝑛 = 2 (a vortex in three-dimensional space), corresponding to 𝜇 = 3 4  and 𝜇 = 1 7 , 

respectively. For more general models, it is thought that 𝜇 ≤ 1[1,10]. 

The current dependence (I.34) of 𝑈 on the current 𝑗 implies a nonlinear logarithmic time 

decay of the current density  

 

𝑗 𝑇 ~𝑗𝑐  1 −
𝑇

𝑈𝑐
ln  1 +

𝑡

𝑡0
  .              (I.36) 

 

with the microscopic time 𝑡0 = 𝜏0𝑇 𝑗𝑐  𝜕𝑗𝑈  . This result is not appropriate for 𝑗 ≪ 𝑗𝑐 , and 

a useful interpolation formula combining the two limit expressions (I.34) and (I.36) yields 

 

𝑗 𝑇 ~𝑗𝑐  1 +
𝜇𝑇

𝑈𝑐
ln  1 +

𝑡

𝑡0
  
−

1

𝜇
,            (I.37) 

 

which differs from the (I.36) in the barrier energy 𝑈𝑐 𝜇  with respect to 𝑈𝑐  at 𝑗 ≈ 𝑗𝑐 . 

 

 

I.2.2 The vortex-glass model 

The possible existence within the Larkin and Ovchinnikov theory of a vortex-glass 

phase transition from a vortex-fluid phase with linear resistance to a vortex-solid phase 

with zero resistance was proposed by Fisher et al.[39]. Such approach was made in terms 

of scaling arguments. In fact, a continuous glass transition at a temperature 𝑇𝑔  can be 
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assumed at which the vortex-glass correlation length and the characteristic correlation 

time both diverge as 

𝜉𝐺 =  𝑇 − 𝑇𝑔 
−𝜈

,      (I.38a) 

 

𝜏𝐺~𝜉𝐺
𝑧
,           (I.38b) 

 

with 𝜈 and 𝑧 the exponents describing the two divergences, respectively. In order to 

obtain a current-voltage characteristic at the transition, Fisher et al. started from the 

assumption of a hypothesis for the scaling behavior of the electric field and the current 

density. In fact, from the inverse length scale of the potential vector 𝐴, the electric field 

𝐸 = 𝜕𝑡𝐴 was expected to scale as 1 𝜉𝐺𝜏𝐺  .On the other hand, the current density 𝑗 = 𝜕𝑡ℱ 

was expected to scale as 𝑗𝜉𝐺
𝑑−1

 with 𝑑 the system dimension. Then, the scaling ansatz 

 

𝐸 ∝ 𝜉𝐺
− 𝑧+1 𝑒±𝑗𝜉𝐺

𝑑−1
,         (I.39) 

 

where 𝑒± are scaling functions for temperature above (+) and below (−) the glass 

temperature 𝑇𝑔 . Above 𝑇𝑔  one expects an ohmic behavior especially at low current 

densities. So the function 𝑒+(𝑥 ⟶ 0) vanishes linearly in 𝑥. On the other hand, below 𝑇𝑔  

a glassy response 𝑒−(𝑥 ⟶ 0)~𝑒−𝑐𝑜𝑛𝑠𝑡 𝜇  is expected at low current levels. Finally, 

exactly at 𝑇𝑔  Fisher et al. predicted to accomplished the divergence by means of scaling 

functions 𝑒±(𝑥 ⟶ ∞)~𝑥𝛼 , with 𝛼 =  𝑧 + 1  𝑑 − 1  . Then, the current-voltage 

characteristic near the glass temperature is given by 

 

𝐸 ∝ 𝑗 𝑧+1  𝑑−1  ,    (I.40) 

 

while one expects 

 

𝐸 ∝ 𝑗, for 𝑗 < 𝑗+, at  𝑇 > 𝑇𝑔 ,         (I.41a) 

 

 𝐸 ∝ 𝑒
− 

𝑗𝑇
𝑗
 
𝜇

, for 𝑗 < 𝑗− , at 𝑇 < 𝑇𝑔 ,   (I.41b) 

 

where 𝑗+ and 𝑗− are crossover current densities. In particular, the form (I.41b) goes to 

zero as 𝑗 ⟶ 0 with nonlinear resistance, consistently with the results (I.34). 
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I.2.3 Giant flux creep model 

Another kind of pinning model accounts of the existence of the “giant” flux creep 

phenomenon observed in HTS, especially in the yttrium-based materials, due to the 

relatively low pinning energies and the higher critical temperatures. Yeshrun and 

Malozemoff[40] used the early theory of flux creep of Anderson-Kim[31] to describe the 

irreversible line characterizing the HTS. The basic equation of their model described the 

magnetization relaxation. For a slab geometry in parallel field they found 

 

𝑑𝑀

𝑑 ln 𝑡 
=  

𝑎𝑗𝑐

4𝑐
  

𝑘𝐵𝑇

𝑈0
 ,        (I.42) 

 

where 𝑈0 is the unperturbed pinning potential. Here a phenomenological scaling form for 

the temperature dependence of the critical current density can be used, 

 

𝑗𝑐(𝑡) = 𝑗𝑐(0) 1 − 𝑡 𝑛 ,        (I.43) 

 

where the exponent 𝑛 typically takes the values from 1 to 5 2  in experiments.  

On the other hand, since many theories were developed to describe the field and 

temperature dependences of the pinning energy 𝑈0, a general scaling form was 

considered by Yeshrun and Malozemoff in order to describe the form of the irreversible 

line in HTS. In fact, near 𝑇𝑐  and for low fields, they use the Anderson-Kim form                  

𝑈0 = 𝐻𝑐
2𝜉3 8𝜋  with the clean limit Ginzburg-Landau expressions 

 

 𝐻𝑐~𝐻𝑐0(1 − 𝑡),    (I.43a) 

 

𝜉~𝜉0 1 − 𝑡 −1 2  ,    (I.43b) 

 

thus giving 

 

 𝑈0~ 1 − 𝑡 1 2 .     (I.44)  

 

While this usually comes out to several electronvolts for conventional type II 

superconductors, it was found 𝑈0~0.1 eV for the high-𝑇𝑐  yttrium-based materials, leading 

to the observed giant flux creep. In this case, the thermal activation was considered in the 

determination of the critical current density by considering the expression  

 

𝑗𝑐 = 𝑗𝑐 0  1 −
𝑘𝐵𝑇

𝑈0
ln

𝐵𝑙Ω

𝐸𝑐
 ,          (I.45) 
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where 𝐵 is the magnetic induction, 𝑙 is the lattice distance, Ω is some oscillation 

frequency of the pinned vortices, and 𝐸𝑐  is a minimum measurements voltage per meter. 

In fact, the logarithmic term in the Eq. (I.45) is small and thermal activation is negligible 

for conventional type II superconductors, while thermal activation has to be taken into 

account for HTS materials. Moreover, when the lattice spacing becomes smaller than the 

penetration depth 𝜆, a crossover to the collective pinning occurs at a field corresponding 

to the area of a unit cell of the flux lines lattice 𝑎0 = 𝑓𝜉, and one expects the following 

scaling law for the pinning energy 

 

𝑈0~𝐻𝑐
2𝑎0

2𝜉 8𝜋𝑓2 ~ 1 − 𝑡 3 2 .          (I.43) 

 

By substituting the results (I.46) in the Eq. (I.45) gives the condition for the irreversible 

line and it also yield 𝐵2 3 ~ 1 − 𝑡  which explain several experimental evidences. 

 

 

I.2.4 Strong pinning by sparse point defects 

Whereas weak point-like pinning centers produce what is called collective pinning 

within which vortices move with constraints from the interaction with their neighbors so 

that a relatively small number of pinning centers can restrain many nearby vortices, 

strong pinning due to extended defects can hold individual vortices independently from 

the weak interaction with from other vortices. Typical examples of these extended defects 

are one-dimensional screw dislocations and artificially produced columnar defect 

structures, or two-dimensional twin boundaries and layering in anisotropic 

compounds[1].  

In order to obtain a description of strong pinning by large point defects and the 

corresponding critical current density, one can start by evaluating the energy gain per unit 

length for a vortex at a distance 𝑅 from a cavity defect with radius 𝑟 and 𝑅 > 𝑟 . At lower 

temperatures, where each vortex is pinned by its own individual rod and  2𝜉 < 𝑟, the 

pinning energy gain is given by[1,10] 

 

𝜀𝑟 𝑅 ≈ −𝜀0 ln  1 −  
𝑟

𝑅
 

2
 ,          (I.47) 

 

from which, by equating the pinning force and the Lorenz force, one obtains for the 

critical current density 𝑗𝑐~𝑗0.  

At high temperatures, where 𝑟𝑟 <  2𝜉, the pinning energy gain can be calculated from
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the reduction in the order parameter as given in the 𝛿𝑇𝑐  pinning if one neglects the 

quasiparticle scattering probability, i.e.[1,10] 

 

𝜀𝑟 𝑅 ~
𝐻𝑐

2

8𝜋
𝜋𝑟2 1 −  𝜓 𝑅  2 ~

𝜀0

2

𝑟2

𝑅2+2𝜉2, 0 < 𝑅 < 𝜆,  (I.48) 

 

from which  

𝑗𝑐~ 
𝑟

2𝜉
 

2
𝑗0.      (I.49) 

 

The temperature dependence of 𝑗𝑐  reflects the temperature dependences of the depairing 

critical current density and the coherence length. In fact, although experimental evidence 

exists suggesting temperature dependences for HTS other than the Gorter-

Casimir[42,43]“two fluid model” this represents an useful starting point. In this case, the 

temperature dependence of the depairing current is given by 

 

𝑗0~
𝐻𝑐(𝑇)

𝜆(𝑇)
~

 1− 
𝑇

𝑇𝑐
 

2
 

 1− 
𝑇

𝑇𝑐
 

4
 
−

1
2

,          (I.50) 

 

where we have considered the two fluid model expressions of the critical field 

𝐻𝑐(𝑇)~ 1 −  𝑇 𝑇𝑐  2  and the London penetration depth 𝜆(𝑇)~ 1 −  𝑇 𝑇𝑐  4 −1 2 . 

Then, from the Eq. (I.47), and by considering the Pippard coherence length 𝜉~ 1 −

 𝑇 𝑇𝑐  2 −1 2 , one obtains the following results for the critical current density, 

 

𝑗𝑐~

 
  
 

  
  1− 

𝑇

𝑇𝑐
 

2
 

 1− 
𝑇

𝑇𝑐
 

4
 
−

1
2

, 𝑇 ≤ 𝑇𝑟𝜉

 1− 
𝑇

𝑇𝑐
 

2
 

2

 1− 
𝑇

𝑇𝑐
 

4
 
−

1
2

, 𝑇 > 𝑇𝑟𝜉

 ,          (I.51) 

 

where the crossover temperature 𝑇𝑟𝜉  between the two regimes is given by the condition  

 2𝜉 𝑇𝑟𝜉  = 𝑟, that is 𝑇𝑟𝜉 = 𝑇𝑐 1 − 2 𝜉2(0) 𝑟2  . Correspondingly, from the Eq. (I.48) 

the temperature dependence of the pinning potential derives from the temperature 

dependence of 𝜉~ 1 −  𝑇 𝑇𝑐  2 −1 2 . 
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I.2.5 The Generalize Inversion Schema (GIS) 

The temperature, magnetic field and current density dependence of the activation 

energy for thermally activated vortex motion can be determined by means of the so-called 

generalized inversion schema (GIS). The GIS assumes that 

 

𝑈 𝑗, 𝑇, 𝐵 = 𝑔 𝑇, 𝐵 𝑓(𝑗 𝑗𝑐  𝑇, 𝐵 , 𝐵),            (I.52) 

and  

 

𝑔 𝑇; 𝐵 =  
𝑗𝑐 𝑇,𝐵 

𝑗𝑐 0,𝐵 
 
𝑝
𝐺(𝑇).         (I.53) 

 

Moreover, since 𝑗𝑐 = 𝑗𝑐(𝑇, 𝐵) is defined by the condition 𝑈 𝑗𝑐 , 𝑇, 𝐵 = 0, one has 

𝑓 1, 𝐵 = 0. Finally, one can set arbitrarily 𝑔 0, 𝐵 = 1. Since from the GIS equation 

(I.52) it follows that 

 

𝑈𝑐 𝑗𝑐 , 𝑇, 𝐵 = 𝑔 𝑇, 𝐵 𝑓 1, 𝐵 = 𝑓 1, 𝐵 ,      (I.54) 

 

the function 𝑔 𝑇, 𝐵  can be also expressed as 

 

𝑈𝑐 𝑇,𝐵 

𝑈𝑐 0,𝐵 
=

𝑔 𝑇,𝐵 𝑓 1,𝐵 

𝑓 1,𝐵 
= 𝑔 𝑇, 𝐵 .             (I.55) 

 

Both the collective pinning energy and critical current density for a pinned single vortex 

can be calculated from the Eqs. (I.29) and (I.30) once a theoretical model has been chosen 

for the disorder parameter 𝛾, depending on the kind of pinning. In fact, for 𝛿𝑙 pinning the 

disorder parameter is 𝛾 = 𝜉−3 and one obtains from the Eqs. (I.29) and (I.30) 

 

𝑗𝑐 𝑡 = 𝑗𝑐 0  1 − 𝑡2 
5

2 1 + 𝑡2 −
1

2,   (I.56a) 

 

𝑔 𝑡 = 1 − 𝑡4.    (I.56b) 

 

On the other hand, for the 𝛿𝑇𝑐  pinning, with 𝛾~𝜉, one has 

 

𝑗𝑐 𝑡 = 𝑗𝑐 0  1 − 𝑡2 
7

6 1 + 𝑡2 
5

6 ,   (I.57a) 

 

𝑔 𝑡 =  1 − 𝑡2 
1

3 1 + 𝑡2 
5

3.    (I.57b) 
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Another kind of functional temperature dependences of the collective pinning energy 

and critical current density for a single pinned vortex (SV) can be considered by 

assuming the Ginzburg-Landau temperature dependences for the thermodynamic critical 

field, coherence length and penetration depth, i.e.[1,10] 

 

𝐵𝑐~(1 − 𝑡2),     (I.58a) 

 

𝜉~  
(1+𝑡2)

 1−𝑡2 
 

1

2
,     (I.58b) 

 

𝜆~ 1 − 𝑡4 −
1

2.    (I.58c) 

 

In this case, the pinning potential is estimated as the condensation energy density 𝐵𝑐
2(𝑡) 

times the volume 𝜉3, corresponding to a small pinning site of volume equal to the vortex 

core. Then, from the Eqs.(I.29) and (I.30) one has 

 

𝑗𝑐 𝑡 = 𝑗𝑐 0  1 − 𝑡2  1 + 𝑡2 ,   (I.59a) 

 

𝑔 𝑡 =  1 − 𝑡2 
1

2 1 + 𝑡2 −
1

2,    (I.59b) 

 

which have also been found to describe the behavior of yttrium-based compounds. 

 

 

I.3 Evidence of two-band superconductivity in high-𝑻𝒄 superconductors 

In the previous paragraph of this chapter the superconducting properties and vortex 

dynamics of type II superconductors have been reviewed starting from the description of 

the interaction of the superconductors with an external magnetic field in simple terms. 

This allowed one to deduce the temperature and field dependences of several 

superconducting parameters and to describe the dynamical regimes governing the flux 

penetration inside superconductors. 

In this paragraph we will briefly give attention on the microscopic theories of 

superconductivity, namely the Bardeen-Cooper-Schrioeffer (BCS) theory[20], in order to 

evidence some characteristic properties of high-𝑇𝑐  and Fe-based superconductors 

depending on the mechanisms of superconductivity. The BCS theory is based on the 

existence of an attractive interaction, mediated by the lattice vibrations, the phonons, 

between electrons above the Fermi sea which then becomes instable with respect to the 

creation of bound states of two electrons. These states, so called Cooper pairs, have 
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antisymmetric wafefunctions, i.e. they are bosons, with antysimmetric spin part (𝑠-wave 

superconductivity) and even orbital part, or symmetric spin part (𝑑-wave 

superconductivity) and odd orbital part. The new ground state is a superposition of states 

built up from these pairs, and an energy gap there exist in the excitation of a quasiparticle 

by breaking a Cooper pair. Then, this energy gap is the energy difference between the 

ground state of the superconductor and the energy of the lowest quasiparticle excitation.  

In general, the superconducting electrons originate from multiple bands crossing the 

Fermi surface with different superconducting. Usually, this is smeared out due to 

significant interband scattering and resulting in a single effective gap. However, if the 

superconducting gap for different bands differ significantly, multi-gap superconductivity 

becomes possible. This is experimentally evidenced in the result of measurements of  

different parameters, such as the magnetization, transport, heat capacity and magnetic 

penetration depth. In fact, for both high-𝑇𝑐  and Fe-based superconducting compounds 

these results have been found not to be explained by exclusively phonon-mediated 

mechanisms.  

In the following, a theory of magnetic properties of two-gap superconductors in the dirty 

limit based on a weak-coupling BCS model will be summed in order to obtain the 

equations for the upper critical field 𝐵𝑐2 which is one of the main experimental 

parameters evidencing the existence of multi-gap superconductivity mechanisms. 

 

 

I.3.1 Superconducting upper critical field  

By solving the linearized Gor’kov[44] equations in the case of a dirty one-gap 

superconductors with the assumption of a model of a superconductor in which electrons 

interact via the weal coupling BCS model potential with a spherical Fermi surface, the 

temperature behaviour of the upper critical field in conventional type II superconductors 

has been described by Werthamer, Helfand, and Hohenberg [45] (WHH theory). Here a 

simple universal relation there exists between the zero temperature-value 𝐻𝑐2 0 , the 

slope 𝐻𝑐2
′ = 𝑑𝐻𝑐2(𝑇) 𝑑𝑇  at the critical temperature 𝑇𝑐  and the normal state residual 

resistivity 𝜌𝑛 , i.e.[45, 46] 

 

𝐻𝑐2 0 = 0.69𝐻𝑐2
′ 𝑇𝑐 ,           (I.60a) 

 

𝐻𝑐2
′ =

4𝑒𝑐𝑘𝐵

𝜋
𝑁𝐹𝜌𝑛 ,          (I.60b) 

 

where 𝑁𝐹  is the density of states at the Fermi sea and 𝑒 is the electron charge. According 

to the Eqs. (I.60a) and (I.60b), adding nonmagnetic impurities can be used to increase 
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𝐻𝑐2. However, 𝐻𝑐2 0  in two-gap superconductors can be significantly much higher than 

what follows from the Eqs. (I.60a) and (I.60b). In fact, a theory o magnetic properties of 

the two-gap superconductors has developed by generalizing the well-known theory 

developed for dirty one-gap superconductors in describing the enhancement of 𝐻𝑐2 0 . In 

order to show this, we will consider a dirty two-gap anisotropic superconductor in the 

simplest case of two disconnected sheets 1 and 2, corresponding to two bands with 

constant values of the gap Δ1 and Δ2. 

When considering the case of negligible interband scattering rate, for which nonmagnetic 

impurity scattering does not affect 𝑇𝑐 , an equation for the upper critical field 𝐻𝑐2 applied 

parallel to the 𝑐 axis can be derived having the form[46] 

 

2𝑤

𝜆0
 ln  

𝑇𝑐
𝑇𝑐0

 + 𝑈 𝑕   ln  
𝑇𝑐
𝑇𝑐0

 + 𝑈  
𝐷2

𝐷1
𝑕  + 

+ 1 −
𝜆−

𝜆0
  ln  

𝑇𝑐

𝑇𝑐0
 + 𝑈  

𝐷2

𝐷1
𝑕  +  1 +

𝜆−

𝜆0
  ln  

𝑇𝑐

𝑇𝑐0
 + 𝑈(𝑕) = 0, (I.61) 

 

where, 𝐷1 and 𝐷2 are the intraband diffusivities, 𝑕 = 𝐻𝑐2𝐷1 2𝜙0𝑇  with 𝜙0 the flux 

quantum,, 𝜆± = 𝜆11 ± 𝜆22 quantify the intraband superconducting coupling (𝜆12 =

𝜆21 =0 for negligible interband scattering), 𝜆0 =  𝜆−
2 + 4𝜆12𝜆21 

1 2 
,                                

𝑇𝑐0 = 1.14𝜔𝐷 exp −  𝜆+ − 𝜆0 2𝑤   with 𝜔𝐷 frequency, 𝑤 = 𝜆11𝜆22 − 𝜆12𝜆21, and 

𝑈 𝑥 = 𝜓 1 2 + 𝑥 − 𝜓 1 2   with 𝜓(𝑥) the di-gamma function. For 𝑇~𝑇𝑐  the                      

Eq. (I.61) can be expanded in small terms ~𝑕, and then, solving for 𝐻𝑐2yields 

 

𝐻𝑐2 =
8𝜙0 𝑇𝑐−𝑇 

𝜋2 𝑎1𝐷1+𝑎2𝐷2 
,       (I.62) 

 

which reduces to the result of the one-band theory for 𝐷1 = 𝐷2.  

The zero-temperature value 𝐻𝑐2(0) can be obtained by using the asymptotic behavior of 

𝑈(𝑥) for 𝑕 → ∞. Then, the Eq. (I.61) reduces to 

 

𝐻𝑐2 0 =
𝜙0𝑇𝑐

2𝛾 𝐷1𝐷2
exp 

𝑔

2
 ,         (I.63a) 

 

𝑔 =  
𝜆0

2

𝑤2 + ln2  
𝐷2

𝐷1
 + 2

𝜆−

𝑤
ln  

𝐷2

𝐷1
  

1

2
−

𝜆0

𝑤
,  (I.63b) 

 

which predict a significant enhancement of 𝐻𝑐2 0  as compared to the Eqs. (I.60a) and 

(I.60b) for 𝐷1 = 𝐷2. 
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Chapter II 

Measurement of the AC magnetic susceptibility  

of type II superconductors  

 

Superconducting and magnetic properties of type II superconductors are often 

investigated by analyzing their AC magnetic response. In particular, the complex AC 

magnetic susceptibility technique is a very useful inductive method for characterizing the 

superconducting materials, especially high-𝑇𝐶and new Fe-based
 
superconductors, since it 

allows both to investigate the superconducting properties of the sample and to obtain 

information about the pinning mechanisms and the flux dynamical regimes governing the 

AC magnetic response[1-9].  

The AC magnetic susceptibility technique consists in applying a time dependent 

magnetic field on the sample, while acquiring, by the lock-in amplification technique, the 

in-phase and out-of-phase components of the sample AC magnetization which are 

directly related to the AC magnetic susceptibility. Although the same kind of 

investigation can be performed by using different methods such as direct AC transport 

measurements and mechanical oscillator measurements[10,11], the AC susceptibility 

technique is an inductive very highly sensitive method that gives the opportunity to 

estimate several superconducting parameters, to study the electromagnetic granularity of 

the sample, and to detect the changes in the flux dynamics, in particular from the higher 

harmonics, induced by the changes of the external parameters such as the frequency and 

the amplitude of the AC magnetic field, and the amplitude of a superimposed DC 

field[1,12-14]. 

 

II.1 The AC magnetic susceptibility 

The magnetic susceptibility is the quantity of interest in AC magnetic measurements 

where a small AC drive magnetic field 𝐻 𝑡 = 𝐻𝑎𝑐 sin 𝜔𝑡  is applied and the time-

dependent magnetization 𝑀(𝑡) of the sample, that is the magnetic moment 𝑚(𝑡) per unit 

volume, is acquired. The AC field induces shielding currents circulating in the outer 

sample surface and above the low temperature diamagnetic state the flux penetrates the 

sample in form of flux lines which are forced to move towards the interior of the sample 

by the shielding currents. Since the generation of these currents depends on the magnetic 

state of the sample, information about the magnetic and superconducting properties of the 

system can be extracted by measuring the magnetic moment 𝑚(𝑡) generated by the 

currents.The slope of the 𝑀(𝐻) curves is called the magnetic susceptibility 𝜒 = 𝑑𝑀 𝑑𝐻  

and, for applied magnetic field weak enough, it can be expressed as a power series 

expansion in the magnetic field, i.e.  
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𝑀 𝑡 =  Im 𝜇0𝜒𝑛𝐻(𝑡)𝑛  𝑛, ,     (II.1) 

 

 

where 𝑛 = 1,2,3,… and 𝜒𝑛  are the magnetic susceptibility nonlinear 𝑛-th order harmonics 

with dimension of  𝐻 −(𝑛−1) thus giving a dimensionless 𝜒.  

Since in general the sample magnetization is a nonlinear signal with respect to the 

external field, the magnetic susceptibility has to be taken as a complex function 𝜒 =

  𝜒𝑛
′ − 𝑖𝜒𝑛

′′  𝑛 . In fact, by substituting into the Eq.(II.1) yields 

 

𝑀 𝑡 =  𝑀𝑎𝑐 𝑛
sin 𝑛𝜔𝑡 + 𝜑𝑛  𝑛 ,      (II.2) 

  

where the amplitude 𝑀𝑎𝑐 𝑛
 and the phase shift 𝜑𝑛  of the 𝑛-th harmonic are given by 

 

𝑀𝑎𝑐 𝑛
=   𝜇0𝜒𝑛

′𝐻𝑎𝑐
𝑛 2 +  𝜇0𝜒𝑛

′′𝐻𝑎𝑐
𝑛 2,         (II.3a) 

 

 𝜑𝑛 = tan−1 𝜒𝑛
′′

𝜒𝑛
′  .       (II.3b) 

 

From the Eq. (II.2) the magnetization 𝑛-th harmonic has an in-phase component 

𝜇0𝜒𝑛
′𝐻𝑎𝑐

𝑛  and an out-of-phase component 𝜇0𝜒𝑛
′′𝐻𝑎𝑐

𝑛 . In fact, the Eq. (II.2) can be also 

expressed in the form 

 

𝑀 𝑡 =  𝜇0𝜒𝑛
′𝐻𝑎𝑐

𝑛 sin 𝑛𝜔𝑡 + 𝜇0𝜒𝑛
′′𝐻𝑎𝑐

𝑛 cos 𝑛𝜔𝑡 𝑛 ,        (II.4) 

 

and, from the comparison of the Eqs. (II.2) and (II.4) it follows that the in-phase and out-

of-phase components of the magnetization are related to the real and imaginary parts of 

the AC susceptibility harmonics, i.e. 

 

𝜒𝑛
′ = 𝑀𝑎𝑐 𝑛

cos𝜑𝑛 =
1

𝜋𝜇0𝐻𝑎𝑐
𝑛  𝑀 , 𝑡 sin 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,    (II.5a) 

 

𝜒𝑛
′′ = 𝑀𝑎𝑐 𝑛

sin𝜑𝑛 =
1

𝜋𝜇0𝐻𝑎𝑐
𝑛  𝑀 𝑡 cos 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,    (II.5b) 

 

In particular, even harmonics are expected to vanish due to the symmetry of the field-

magnetization (𝐻-𝑀) loop of the system. In fact, one has  

 

𝑀2𝑛
′  𝐻 = 𝜒2𝑛

′ 𝐻𝑎𝑐
2𝑛 sin 2𝑛𝜔𝑡 ,   (II.6a) 
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𝑀2𝑛
′  −𝐻 = 𝜒2𝑛

′ 𝐻𝑎𝑐
2𝑛 sin 2𝑛𝜔𝑡 ,        (II.6b) 

 

𝑀2𝑛
′′ (𝐻) = 𝜒2𝑛

′′ 𝐻𝑎𝑐
2𝑛 cos 2𝑛𝜔𝑡 ,         (II.6c) 

 

𝑀2𝑛
′′  −𝐻 = 𝜒2𝑛

′′ 𝐻𝑎𝑐
2𝑛 cos 2𝑛𝜔𝑡 ,        (II.6d) 

 

from which the symmetry 𝑀 𝐻 = −𝑀 −𝐻  implies 𝜒2𝑛
′ = 0 and 𝜒2𝑛

′′ = 0. The absence 

of even harmonics is expected in the Bean critical state model[15,16] where the critical 

current density 𝑗𝑐  is independent of the external magnetic field 𝐻. On the other hand, for 

field dependent critical current density, as in the Kim critical state model[17,18], nonzero 

even harmonics are expected if the 𝐻-𝑀 loop is no longer symmetric due to the 𝑗𝑐(𝐻) 

law. In fact, the existence of flux dynamical regimes producing nonlinear dissipation and 

governing the AC magnetic response of the sample can give asymmetric magnetization 

loops and then nonzero even harmonics of the AC susceptibility.  

 

 

II.2 Principle of measurements of the AC magnetic susceptibility 

The principle of measurement of the complex susceptibility involves the application of 

an alternate magnetic field, with or without a superimposed DC field, while a variation of 

the magnetic flux inside the sample is detected by means of the voltage induced in a pick-

up coil surrounding the sample.
 
The basic configuration of such kind of measurement 

system is shown in Fig. II.1, where the sample is represented in form of a rectangular 

prism with a time magnetization 𝑀(𝑡) corresponding to a time dependent magnetic flux 

through the turns of the pick-up coil. The time derivative of this magnetic flux induces a 

voltage in the pick-up coil which can be detected and is directly related to the sample 

magnetization. It is worth noting that the sample has to be much longer than the pick-up 

coil in order to neglect geometric edge effects on the acquired signal and to reduce the 

demagnetizing field effects. In fact, in such kind of geometry, demagnetizing fields, 

arising from the non-ellipsoidal shape and from the presence of sharp edges, can modify 

the effective magnetic field induction acting on the sample surface and governing the 

measured AC magnetic response. 

In presence of an alternate magnetic field 𝜇0𝐻𝑎𝑐 sin 𝜔𝑡 = Im 𝜇0𝐻𝑎𝑐𝑒
𝑖𝜔𝑡   the 

voltage induced in the pick-up coil of 𝑁 turns with area 𝑆 is given by 

 

𝑣 𝑡 = −𝑁𝑆
𝑑

𝑑𝑡
  𝜇0𝐻(𝑡) + 𝑀(𝑡) .    (II.7) 
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   ( a )           ( b ) 

 

Figure II.1 Schematic diagram of (a) the basic configuration with one pick-up sensing coil and (b) the two-

coils configuration for the measurement of the AC magnetic susceptibility. 

 

 

Here the signal contribution due to the flux of the external magnetic field 𝜇0𝐻(𝑡)could be 

high enough to cover the magnetic response 𝑀(𝑡) from the sample and then affecting the 

measurement. For this reason, several actual susceptometers are provided with a set of 

two identical pick-up coils connected in opposition, one of them surrounding the sample 

and then sensing (s) its magnetic response, the other one nulling (n) the external 

background, as shown in the Fig. 1b. In this case, the amplitude of the AC voltage 

induced in the peak-up coils is given by 

 

𝑣 𝑇, 𝑡 = −
1

𝛾

𝑑

𝑑𝑡
 Φ𝑠 𝑡 − Φ𝑛 𝑡  ,                  (II.8) 

 

where Φ𝑛 𝑡 = 𝑁𝑆𝜇0𝐻(𝑡) and Φ𝑠 𝑇, 𝑡 = 𝑁𝑆 𝜇0𝐻(𝑡) + 𝑀(𝑡) , and a calibration factor 

𝛾 has been also introduced. Then, the Eq. (II.27 becomes 

 

𝑣 𝑡 = −
1

𝛾

𝑑

𝑑𝑡
 Φ𝑠 𝑇, 𝑡 − Φ𝑛 𝑇, 𝑡  = −

1

𝛾

𝑑𝑀(𝑡)

𝑑𝑡
.   (II.9) 
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II.2.1 The Phase-Sensitive Detection (PSD)  

The fundamental and the higher harmonics of the AC magnetization are measured by 

mean of a lock-in amplifier which usually use a “phase-sensitive detection” technique to 

reveal the signal accompanied by the noise. In modern susceptometers two kinds of 

detection technique can be usually accomplished. The more standard one is named 

“correlating technique” and allows one to acquire separately the in-phase and the out-of-

phase components of the fundamental and higher harmonics of the magnetic response 

from the sample, corresponding to the real and imaginary part of the susceptibility 

harmonics according to the Eqs. (II.5a) and (II.5b). A band-pass filter can be set around 

the fundamental frequency in order to acquire only the fundamental complex 

susceptibility. 

The second type of detection technique is named “integrating technique” and consists 

in the acquisition of the whole signal containing the sample magnetic response. This kind 

of measurement gives the so called “wide band susceptibility” which has a physical 

interpretation different from the susceptibility harmonics acquired by the standard 

acquisition. However, the two types of detection techniques can be also used together in 

the investigation of the magnetic properties of high-𝑇𝑐  superconductors. 

 

 

II.2.1.1 Correlating detection technique  

In this kind of detection technique the lock-in amplification consists in the 

multiplication of the magnetic signal 𝑣(𝑡) induced in the peak-up coil and a reference 

signal 𝑟 𝑡  which can be taken as 

 

𝑕 𝑡 = sin 𝜃𝑡 − 𝜙 ,    (II.10) 

 

where the reference frequency 𝜃 and phase 𝜙 can be tuned. In fact, by multiplying this 

reference signal and the signal 𝑣(𝑡) expressed from the Eq. (II.4), yields 

 

𝑣 𝑡 𝑕 𝑡 = −
1

𝛾
 

𝑑

𝑑𝑡
 𝜇0𝐻𝑎𝑐

𝑛 𝜒𝑛
′ sin 𝑛𝜔𝑡 + 𝜒𝑛

′′ cos 𝑛𝜔𝑡  sin 𝜃𝑡 − 𝜙  𝑛 . (II.11) 

 

After the time derivative of the Eq. (II.11) one obtains the product signal 

 

𝑣 𝑡 𝑕 𝑡 =
1

𝛾
 

𝑑

𝑑𝑡
𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛 −𝜒𝑛
′ cos 𝑛𝜔𝑡 + 𝜒𝑛

′′ sin 𝑛𝜔𝑡  𝑛 sin 𝜃𝑡 − 𝜙 ,  (II.12) 

 

which is averaged over a many cycle of the AC field thus giving an output  
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𝐾𝜃,𝜙 =
1

2𝜋𝐴
 𝑣 𝑡 𝑕 𝑡  𝑑𝜔𝑡

2𝜋

0

= 

1

2𝜋𝐴
 

1

𝛾
 𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛 −𝜒𝑛
′ cos 𝑛𝜔𝑡 + 𝜒𝑛

′′ sin 𝑛𝜔𝑡  𝑛 sin 𝜃𝑡 − 𝜙  𝑑𝜔𝑡
2𝜋

0
,   (II.13) 

 

where 𝐴 is a factor taking into account the preliminary amplification.  

When the frequency of the reference signal is different from the harmonic frequencies of 

the input signal 𝑣(𝑡), i.e. 𝑛𝜔 ≠ 𝜃, the functions cos 𝑛𝜔𝑡 sin 𝜃𝑡 − 𝜙  and 

sin 𝑛𝜔𝑡 sin 𝜃𝑡 − 𝜙  in the Eq. (II.13) oscillate in time with a zero average value and 

then 𝐾𝜃,𝜙 = 0. On the other hand, when 𝑛𝜔 = 𝜃𝑟  and for 𝜙 = 0, 𝜋 2 , the Eq. (II.13) 

reduces to 

 

𝐾𝜃,𝜙 =
𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛

2𝜋𝐴𝛾
 𝜒𝑛

′′  𝑇 sin 𝑛𝜔𝑡 2 𝑑𝜔𝑡
2𝜋

0
=

𝑛𝜔𝜇0𝐻𝑎𝑐
𝑛𝜒𝑛

′′  𝑇 

2𝐴𝛾
, 

𝜃 = 𝑛𝜔,𝜙 = 0,     (II.14a) 

 

𝐾𝜃,𝜙 =
𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛

2𝜋𝐴𝛾
 𝜒𝑛

′  𝑇 cos 𝑛𝜔𝑡 2 𝑑𝜔𝑡
2𝜋

0
=

𝑛𝜔𝜇0𝐻𝑎𝑐
𝑛𝜒𝑛

′  𝑇 

2𝐴𝛾
, 

 𝜃 = 𝑛𝜔,𝜙 =
𝜋

2
.    (II.14b) 

 

In fact, the measured quantities are given by 

 

𝜇0𝐻𝑎𝑐
𝑛𝜒𝑛

′ =
2𝐴𝛾

𝑛𝜔
𝐾𝜃=𝑛𝜔 ,𝜙=0,   (II.15a) 

 

𝜇0𝐻𝑎𝑐
𝑛𝜒𝑛

′′ =
2𝐴𝛾

𝑛𝜔
𝐾𝜃=𝑛𝜔 ,𝜙=

𝜋

2
,   (II.15b) 

 

𝜇0𝐻𝑎𝑐 𝜒𝑛
′ 2

+ 𝜒𝑛
′′ 2

=
2𝐴𝛾

𝑛𝜔
𝜇0𝐻𝑎𝑐

𝑛
 𝐾𝜃=𝑛𝜔 ,𝜙=0

2 + 𝐾𝜙=𝑛𝜔 ,𝜙=
𝜋

2

2, (II.15c) 

 

𝜑𝑛 = tan−1 𝜒𝑛
′′

𝜒𝑛
′ = tan−1

𝐾
𝜃=𝑛𝜔 ,𝜙=

𝜋
2

𝐾𝜃=𝑛𝜔 ,𝜙=0
.     (II.15d) 

 

It is worth noting that an alternative definition of the harmonic susceptibility is for an 

applied field 𝜇0𝐻𝑎𝑐 cos 𝜔𝑡 = Re 𝜇0𝐻𝑎𝑐𝑒
𝑖𝜔𝑡  . In this case the Eq. (II.1) becomes 

 

𝑀 𝑡 =  Re 𝜇0𝜒𝑛𝐻(𝑡)𝑛  𝑛 =  𝜇0𝐻𝑎𝑐
𝑛  𝜒𝑛

′ cos 𝑛𝜔𝑡 − 𝜒𝑛
′′ sin 𝑛𝜔𝑡  𝑛 ,     (II.16) 
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and then the susceptibility harmonics real and imaginary parts can be evaluated by 

 

𝜒𝑛
′ =

1

𝜋𝜇0𝐻𝑎𝑐
𝑛  𝑀 , 𝑡 cos 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,        (II.17a) 

 

𝜒𝑛
′′ = −

1

𝜋𝜇0𝐻𝑎𝑐
𝑛  𝑀 𝑡 sin 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,        (II.17b) 

 

Then, by taking the reference signal as  

 

𝑟 𝑡 = cos 𝜃𝑡 − 𝜙 ,    (II.18) 

 

the Eq. (II.13) becomes 

𝐾𝜃𝑟 ,𝜙𝑟 =
1

2𝜋𝐴
 𝑣 𝑡 cos 𝜃𝑡 − 𝜙  𝑑𝜔𝑡

2𝜋

0

= 

1

2𝜋𝐴
  𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛 𝜒𝑛
′ cos 𝑛𝜔𝑡 + 𝜒𝑛

′′ sin 𝑛𝜔𝑡  𝑛 cos 𝜃𝑡 − 𝜙  𝑑𝜔𝑡
2𝜋

0
,   (II.19) 

 

from which  

 

𝐾𝜃,𝜙 =
𝑛𝜔 𝜇0𝐻𝑎𝑐

𝑛

2𝜋𝐴𝛾
 𝜒𝑛

′′ sin 𝑛𝜔𝑡 2 𝑑𝜔𝑡
2𝜋

0
=

𝑛𝜔𝐻𝑎𝑐
𝑛𝜒𝑛

′′

2𝐴𝛾
, 

 𝜃 = 𝑛𝜔,𝜙 = 0,    (II.20a) 

 

𝐾𝜃,𝜙 =
𝑛𝜔 𝜇0𝐻𝑎𝑐

𝑛

2𝜋𝐴𝛾
 𝜒𝑛

′  𝑇 cos 𝑛𝜔𝑡 2 𝑑𝜔𝑡
2𝜋

0
=

𝑛𝜔𝐻𝑎𝑐
𝑛𝜒𝑛

′

2𝐴𝛾
, 

 𝜃 = 𝑛𝜔,𝜙 = 0,    (II.20b) 

 

which coincide with the results (II.5a) and (II.5b). However, for interlaboratory 

comparisons of the harmonic susceptibilities as for as theoretical calculations it is 

necessary to take into account the relations between the susceptibility harmonics parts 

expressed by the Eqs. (II.5) and (II.17) for the sine (s) and cosine (c) lock-in reference 

signal, respectively. One can relate them as[18] 

 

𝜒𝑠4𝑛−3
′ = 𝜒𝑐4𝑛−3

′ ,𝜒𝑠4𝑛−3
′′ = 𝜒𝑐4𝑛−3

′′ ,          (II.21a) 

 

𝜒𝑠4𝑛−2
′ = −𝜒𝑐4𝑛−2

′′ ,𝜒𝑠4𝑛−2
′′ = 𝜒𝑐4𝑛−2

′ ,           (II.21b) 
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𝜒𝑠4𝑛−1
′ = −𝜒𝑐4𝑛−1

′ ,𝜒𝑠4𝑛−1
′′ = −𝜒𝑐4𝑛−1

′′ ,               (II. 21c) 

 

𝜒𝑠4𝑛
′ = 𝜒𝑐4𝑛

′′ ,𝜒𝑠4𝑛
′′ = −𝜒𝑐4𝑛

′ .       (II. 21d) 

 

In fact, the use of the two different reference signals explains why the same harmonics 

parts from the samples measured on different equipments show difference in sign. 

Moreover, this is very crucial when considering the theoretical simulation of the magnetic 

response of granular superconductors, due to the composition of two contributions 

coming from the inter- and intragranular volume fractions.  

 

 

II.2.1.2 Integrating detection technique 

In this second type of detection technique a square wave is taken as lock-in reference 

signal, 𝑟 𝜔𝑡 − 𝜙 . Then, the output signal for the input field 𝜇0𝐻𝑎𝑐 sin 𝜔𝑡  can be 

expressed as 

 

𝑅𝜙 = −
1

2𝜋𝐴𝛾
  𝑛𝜔𝜇0𝐻𝑎𝑐

𝑛 −𝜒𝑛
′ cos 𝑛𝜔𝑡 + 𝜒𝑛

′′ sin 𝑛𝜔𝑡  𝑛
2𝜋

0
 𝑟 𝜔𝑡 − 𝜙  𝑑𝜔𝑡. (II.22)  

 

By considering the Fourier expansion of the square wave, 

 

𝑟 𝜔𝑡 =  
1

2𝑚+1
sin  2𝑚 + 1 𝜔𝑡 𝑚 , 𝜙 = 0,            (II.23a) 

 

𝑟  𝜔𝑡 −
𝜋

2
 =   

4(−1)𝑚

(2𝑚+1)𝜋
cos  2𝑚 + 1 𝜔𝑡 𝑚 , 𝜙 =

𝜋

2
,       (II.23a) 

 

it is easy to show that the Eqs. (II.22) reduces to 

 

𝑅𝜙 = −
2

𝜋𝐴𝛾
 𝜔𝜇0𝐻𝑎𝑐

2𝑛+1𝜒2𝑛+1
′′

𝑛 , 𝜙 = 0,    (II.24a)  

 

𝑅𝜙 =
2

𝜋𝐴𝛾
  −1 𝑛𝜔𝜇0𝐻𝑎𝑐

2𝑛+1𝜒2𝑛+1
′

𝑛 , 𝜙 =
𝜋

2
.      (II.24b) 

 

In particular, when the input signal 𝑣(𝑡) contains only the first harmonic, the Eqs. (II.24a) 

and (II.24b) reduce to 
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𝑅𝜙 = −
2

𝜋𝐴𝛾
𝜔𝜇0𝐻𝑎𝑐𝜒1

′′ = −
2𝜔

𝜋𝐴𝛾
𝑀𝑎𝑐 1

sin𝜑1 ∝ 𝑀𝑟(𝑇), 𝜙 = 0,        (II.25a)  

 

𝑅𝜙 = −
2

𝜋𝐴𝛾
𝜔𝜇0𝐻𝑎𝑐𝜒1

′ = −
2𝜔

𝜋𝐴𝛾
𝑀𝑎𝑐 1

cos𝜑1 ∝ 𝑀𝑎(𝑇),𝜙 =
𝜋

2
,  (II.25b) 

 

where 𝑀𝑟 𝑇 = 𝑀(𝑇,𝜔𝑡 = 0) and 𝑀𝑎 𝑇 = 𝑀(𝑇,𝜔𝑡 =
𝜋

2
) are the values of the sample 

magnetization when the external drive AC field has the values of zero and of its 

amplitude 𝐻𝑎𝑐 . If one defines the “remanent susceptibility” 𝜒𝑟  and the “amplitude 

susceptibility” 𝜒𝑎  as 

𝜒𝑟 =
𝑀𝑟 𝑇 

𝜇0𝐻𝑎𝑐
,    (II.26a) 

 

𝜒𝑎 =
𝑀𝑎  𝑇 

𝜇0𝐻𝑎𝑐
,    (II.26b) 

 

the measured quantities are given by 

 

𝜇0𝜒𝑟𝐻𝑎𝑐 = 𝑀𝑟 𝑇 = −
𝜋𝐴𝛾

2𝜔
𝑅𝜙=0,        (II.27a)  

 

𝜇0𝜒𝑎𝐻𝑎𝑐 = 𝑀𝑎 𝑇 = −
𝜋𝐴𝛾

2𝜔
𝑅𝜙=

𝜋

2
.    (II.27b) 

 

 

II.3 Demagnetizing effects on the measurement of the AC susceptibility 

Demagnetizing field arises from the non-ellipsoidal shape of the sample and from the 

presence of  sharp edges on its surface. In general, the effective magnetic field induction 

𝐵 acting on the sample corresponding to the external applied field 𝜇0𝐻(𝑡) is given by 

 

𝐵(𝑡) = 𝜇0 𝐻(𝑡) − 𝒟𝑀(𝑡) ,    (II.28) 

 

where 𝒟 is the demagnetizing factor  0 < 𝒟 < 1  and 𝑀(𝑡) is the sample magnetization. 

The demagnetizing factor is 𝒟 = 0 for thin films with plane parallel to the applied field 

while 𝒟 = 1 for thin films in a perpendicular field. Otherwise, experimental and 

theoretical works on demagnetizing factors for several shape of the sample can be found 

in literature which provide values of 𝒟. Since the demagnetizing field is not uniform, its 

value can be numerically calculated and averaged values of demagnetizing factors over 

the sample volume should be considered. In fact, two types of averaging can be used to 

determine the effective value of 𝒟[19]: the  "fluxmetric" average, which is an average 
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over the cylinder cross section located in the mid-plane of the sample, and the 

"magnetometric" average, which is an average over the entire cylinder volume.  

For a sinusoidal applied field 𝐻(𝑡) = 𝜇0𝐻𝑎𝑐 sin 𝜔𝑡  the effective magnetic field 

induction accounting of the demagnetizing effects is shown in the Fig. II.2a together with 

the curve of the measured magnetization amplitude as function of the applied field 

amplitude. The difference between the applied field and the effective field is the time 

dependent demagnetization field which is constant between the time of full penetration 

field 𝐵𝑓𝑝  and the time of maximum value of the applied field. Then, the Bean model of 

the critical state has to be modified as shown in the Fig. II.2b at a fixed temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

( a ) 

 

 

 

 

 

 

 

 

( b ) 

 

Figure II.2 (a) Schematic diagram of (left) time dependence of the effective AC field due to the applied field 

and the demagnetizing field corresponding to (right) the field-magnetization curve. (b) Schematic diagram of 

Bean model penetration of (dash line) the applied field and (solid line) the effective magnetic field 

corresponding to the curves in (a).  
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When demagnetizing effects have to be taken into account, the measured magnetic 

susceptibility 𝜒m  has to be converted into the true internal susceptibility 𝜒in .  The 

intrinsic susceptibility is obtained from the measured one as  

 

𝜒in =
1−𝒟𝜒m

𝜒m
.     (II.29) 

 

For the complex case, the real and imaginary parts of the 𝑛-th harmonic of the intrinsic 

susceptibility can be obtained as 

 

𝜒in 𝑛
′ =

𝜒m 𝑛
′ −𝒟  𝜒m 𝑛

′  
2

+ 𝜒m 𝑛
′′  

2
 

 1−𝒟𝜒m 𝑛
′  

2
+ 4𝒟𝜒m 𝑛

′′  
2 ,   (II.30a) 

𝜒in 𝑛
′′ =

𝜒m 𝑛
′′

 1−𝒟𝜒m 𝑛
′  

2
+ 4𝒟𝜒m 𝑛

′′  
2.        (II.30b) 

 

and in the following we will as 𝜒 to the intrinsic susceptibility. 

It is worth noting that a demagnetizing field correction by using the Eqs. (II.30a) and 

(II.30b) is not true correct in the case of a granular superconductor sample. In this case, 

two contributions to the magnetic response from the individual grains and the 

intergranular matrix, respectively, are expected, which should be separately corrected by 

applying the rules (II.30a) and (II.30b) with different demagnetizing factors for the 

shapes of the whole sample and of the individual grains, respectively. However, this is 

not always possible due both to the overlap of the inter- and intragranular contributions in 

the magnetic response and to the not known actual boundary conditions at grains’s 

surfaces. An alternative procedure of demagnetizing correction of the magnetic response 

from granular samples will be introduced in the following. 

 

 

II.4 Physical interpretation of the AC susceptibility 

II.4.1 Real and imaginary parts of the first harmonic 

The Eq. (II.4) is consistent with the physical meaning of the first harmonic of the 

complex magnetic susceptibility. In fact, according to Eq. (II.5a), there is a close 

connection between 𝜒1
′  and the time average of the magnetic energy stored in the volume 

of the sample which is given by 

 

𝑊𝑚 =
𝜒1
′ 𝜇0𝐻𝑎𝑐

2
.    (II.31) 
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Since 𝑊𝑚 < 0 in the superconducting state due to the field expulsion, it follows that 

𝜒1
′ < 0. On the other hand, according to the Eq. (II.5b), the energy converted into heat 

during a cycle of the AC field is 

 

𝑊𝑞 = −𝜋𝜒1
′′ 𝜇0𝐻𝑎𝑐

2,    (II.32) 

 

from which 𝜒1
′′ > 0 since 𝑊𝑞 < 0. 

Most commonly, the components of the AC susceptibility 𝜒 =   𝜒𝑛
′ − 𝑖𝜒𝑛

′′  𝑛  are 

measured as function of the temperature 𝑇. For example, the behavior of 𝜒1
′  and 𝜒1

′′  with 

varying the temperature, deduced from the Eqs. (II.5a) and (II.5b), is shown in the              

Fig. II.3a for the critical state.  

Since the phase 𝜑1(𝑇) represents the time lag in the flux penetration inside the 

superconducting sample as response to the external field due to different reasons such as 

the pinning, the flux viscosity and the geometric barriers, it is expected 𝜑1 = 0 both in 

the Meissner state where the flux does not penetrate  𝑀𝑎𝑐 1
= −𝜇0𝐻𝑎𝑐   and at 

temperature 𝑇 ≥ 𝑇𝑐  where the flux is not trapped in the superconductor  𝑀𝑎𝑐 1
= 0 . 

Then, from the Eq. (II.5a), it follows that 𝜒1
′  𝑇 = 𝑀𝑎𝑐 1

 𝑇 𝜇0𝐻𝑎𝑐 = −1 at 𝑇 = 0 and 

𝜒1
′  𝑇 = 𝑀𝑎𝑐 1

 𝑇 𝜇0𝐻𝑎𝑐 = 0 at 𝑇 ≥ 𝑇𝑐  (see the Fig. II.3a). In the intermediate region of 

temperature both 𝜑1(𝑇) and 𝑀𝑎𝑐 1
 𝑇  decrease as moving away from the 

superconducting transition and assume negative values. Correspondingly, 𝜒1
′  𝑇  is 

negative and decreases with decreasing temperature, with a minimum between the two 

extremes of the transition.  

On the other hand, from the Eq. (II.5b) 𝜒1
′′  𝑇 = 0  both in the Meissner state and at 

𝑇 ≥ 𝑇𝑐 , while in the intermediate region of temperature it assumes positive values and 

reaches a maximum in correspondence of the maximum value of sin𝜑1(𝑇), 

corresponding to the maximum dissipation inside the superconductor.  

There have been three main types of models suggested in literature for the description 

of AC susceptibility of high-𝑇𝑐  and more recently discovered Fe-based superconductors. 

The first model provides for the solution of the diffusion equation of the magnetic flux in 

the linear case, where the superconductor shows a linear resistivity corresponding to the 

frequency-dependent length scale 𝛿 (see the Fig. II.3b). For a slab of width 2𝑅 in a 

parallel magnetic field one finds[20]  

 

𝜒′ = 𝜒𝑎 = 𝑢
sinh  𝑢 +sin  𝑢 

cosh  𝑢 +cos  𝑢 
− 1,   (II.33a) 

𝜒′′ = 𝜒𝑟 = 𝑢
sinh  𝑢 +sin  𝑢 

cosh  𝑢 +cos  𝑢 
,   (II.33b) 
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( a ) 

 

 

( b ) 

 

 

( c ) 

 

Fig. II.3 Theoretical plots of 𝜒′and 𝜒′′for (a) the Bean critical state, (b) the diffusive and (c) the relaxational 

models for a slab geometry[9]. 

 

 

where 𝑢 = 𝛿 2𝑅   with 𝛿 the frequency-dependent length scale of the magnetic flux 

profile decaying exponentiallyinside the sample. This linear regime is dissipative and the 

peak in 𝜒′′  and 𝜒𝑟  is reached when 𝛿 ≈ 0.887 𝐿 for a cylinder and 𝛿 ≈ 0.556 𝐿 for a 

slab. Moreover, a model combining different mechanisms has been used, based on the 

penetration depth of the AC field[1,9,21,22] 
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𝜆 = 𝜆𝐿
2 + 𝜆𝑐

2 1+𝑖𝜔𝜏

1+𝑖𝜔𝜏0
,            (II.34) 

 

where 𝜆𝐿 is the London[21] penetration depth, 𝜆𝑐 =  𝑐2𝐵2 𝛼𝐿  1 2  is the Campbell[22] 

penetration depth with 𝛼𝐿 the elastic restoring force density on flux-lattice (the 

Labusch[22] parameter) defined in terms of a relaxation time 𝜏, which measures how fast 

the flux penetration approaches the equilibrium, as[23] 

 

𝜏 =
𝛼𝐿

𝜂𝑓𝑓
,     (II.35) 

 

where 𝜂𝑓𝑓  is the flux flow viscosity. 

However, many practical applications require the determination of the superconducting 

properties in the conditions of a strongly non-linear regime. An example of strongly non-

linear current-voltage equation is the critical state in which the superconducting material 

is able to pin the flux lines. In this case, higher harmonics appear in the pick-up coil 

voltage. Then, 𝜒𝑎  and 𝜒𝑟  are no longer equal to 𝜒′  and 𝜒′′ , respectively. The formulas for 

the fundamental susceptibilities of a slab are (see the Fig. II.3a)[24] 

 

𝜒′ =  

𝑦

2
− 1, 0 ≤ 𝑦 ≤ 1

1

𝜋
 
𝑦

2
− 1 

1

cos (1−2𝑦)
+  −1 +

4

3𝑦
−

4

3𝑦2 , 1 ≤ 𝑦
 ,  (II.36a) 

 

𝜒′′ =  

2𝑦

3𝜋
1

3𝜋
 
𝑦

2
− 1  

6

𝑦
−

4

𝑦2 , 1 ≤ 𝑦
 ,   (II.36b) 

 

with 𝑦 = 𝐻𝑎𝑐 (𝑗𝑐  𝑅) , while the components of the wide band susceptibility are given 

by[16] 

 

𝜒𝑎 =  

𝑦

2
− 1, 0 ≤ 𝑦 ≤ 1

−
1

2𝑦
, 1 ≤ 𝑦

 ,    (II.37a) 

 

𝜒𝑟 =

 
 
 

 
 

𝑦

4
, 0 ≤ 𝑦 ≤ 1

1 −
𝑦

4
−

1

2𝑦
, 1 ≤ 𝑦

1

2𝑦
, 2 ≤ 𝑦

 ≤ 2,   (II.37b) 
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The flux creep regime is often taken as a small perturbation in the pinning mechanism of 

the critical state by considering the value of 𝑗 corresponding to the general solution of the 

diffusion equation in place of the critical value 𝑗𝑐 . 

The third main type of model assumes a field and temperature relaxation time with a 

general expression of the AC susceptibility[9,25,26] 

 

𝜒 = 𝜒′ − 𝑖𝜒′′ = 𝜒∞ +
𝜒0−𝜒∞

 1+ 𝑖𝜔𝜏  𝛼  𝛽
 ,   (II.38) 

 

where 𝜒∞ = −1  and 𝜒0 = 0 are the values of the AC susceptibility in the high-frequency 

(full diamagnetic shielding) and low-frequency (full field penetration) limits, 

respectively. On the other hand, the two parameters 𝛼 and 𝛽 describe the distribution of 

the relaxation time 𝜏 around its spatial average value (nonlocality) and the asymmetry of 

the frequency spectrum as a nonlinear effect (nonlinearity), respectively. The formula 

(II.38) is called the Havriliak-Negami[25] (H-N) formula and it reduces to the standard 

Debye relaxation for 𝛼 = 𝛽 = 1, to the Cole–Cole form for 𝛼 ≠ 1 and 𝛽 = 1, and to the 

Davidson–Cole formula for 𝛼 = 1 and 𝛽 ≠ 1.In particular, at given frequency 𝜔 a peak in 

the imaginary part of the Eq. (II.38) is expected for 𝛼 and 𝛽 given by 

 

𝜏 = 𝑓(𝜈) =  
sin  

𝜋𝛼

2 𝛽+1 
 

sin  
𝜋𝛼 𝛽

2 𝛽+1 
 
 

1

𝛼

 2𝜋𝜈 −1.         (II.39) 

 

It is worth noting that since the magnetic flux diffusion time satisfies the relation  

𝜏~𝐿2 𝐷  , with 2𝐿 the characteristic specimen dimension, according to the Eq. (I.19) the 

function 𝑓(𝜈) in the Eq. (II.39) is related to the frequency dependent skin-depth of the 

taff regime 𝛿, i.e. 𝑓~𝛿−2. In particular, the case of 𝑓 =  2𝜋𝜈 −1 corresponds to the 

existence of a resonance between the frequency of the external exciting AC field and the 

hopping frequency of the flux lines inside a superconductor between pinning sites.  

Although this relaxational model has been found not appropriate
1
 to describe 

superconductors high-𝑇𝑐  superconductors with respect to the diffusive and Bean critical 

state models, it has been found to be adapt to describe the magnetic response of Fe-based 

superconductors[27-31]. 

Another model for the susceptibility first harmonic refers to the reversible screening 

regime, where the system passes through equilibrium states. Two typical examples of 

reversible vortex motion are the Campbell’s[32] reversible screening and the screening by 

Meissner currents. The reversible behavior corresponds to the absence of dissipation, i.e. 

𝜒′′ = 𝜒𝑟 = 0. Moreover, the signal does not contain higher harmonics and then 𝜒′ = 𝜒𝑎 . 
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This reversible motion of vortices is well described by using the London equation 

𝜵 × Λ𝒋 = −𝑩 with the penetration scale length. 

The Campbell regime occurs when the amplitude of the exciting field is small and the 

Abrikosov vortices are not displaced but they oscillate around their equilibrium positions 

producing a quasi-elastic response. The Campbell penetration depth is 𝜆𝑐
2 = 𝛼𝐿

−1𝐶𝑥𝑥 , with 

𝐶𝑥𝑥  is the relevant elastic modulus of the vortex lattice and 𝛼𝐿 the Labusch parameter 

defined above. On the other hand, in the Meissner state shielding currents try to expel the 

magnetic flux from the superconducting volume to reach thermodynamical equilibrium. 

The characteristic space scale is the London penetration depth 𝜆𝐿. The susceptibilities for 

a slab of width 2𝐿 in a parallel field are[22] 

 

𝜒′ = 𝜒𝑎 = − 1 −
𝜆

𝐿
tan

𝐿

𝜆
 ,   (II.40) 

 

Finally, the existence of barriers preventing the flux lines entering or leaving the 

sample has been considered in order to explain some experimental evidences. A model 

describing such kind of phenomenon is equivalent to the existence of a layer with 

thickness 𝛿𝑏  and high critical current density 𝑗𝑏  on the surface of the sample, producing 

the irreversible barrier[1] 

 

𝐵𝑏 = 𝜇0𝑗𝑏𝛿𝑏 .     (II.41) 

 

The susceptibilities are[33] 

 

𝜒′ =
1

𝜋
 Θ − sinΘ cosΘ ,           (II.42a) 

 

𝜒′′ =
4

𝐵𝑏
𝜇 0𝐻𝑎𝑐

𝜋(1−
𝐵𝑏

𝜇 0𝐻𝑎𝑐
)
,        (II.42b) 

 

with cosΘ = 1 − 2𝐵𝑏 𝜇0𝐻𝑎𝑐 . The corresponding wide band susceptibilities are[33] 

 

𝜒𝑎 =  
−1, 0 ≤ 𝜇0𝐻𝑎𝑐 ≤ 𝐵𝑏

1 −
𝐵𝑏

𝜇0𝐻𝑎𝑐
, 𝐵𝑏 ≤ 𝜇0𝐻𝑎𝑐

 ,                      (II.43a) 

 

𝜒𝑟 =

 
 

 
0, 0 ≤ 𝜇0𝐻𝑎𝑐 ≤ 𝐵𝑏

1 −
𝐵𝑏

𝜇0𝐻𝑎𝑐
, 𝐵𝑏 ≤ 𝜇0𝐻𝑎𝑐 ≤ 2𝐵𝑏

𝐵𝑏

𝜇0𝐻𝑎𝑐
, 2𝐵𝑏 ≤ 𝜇0𝐻𝑎𝑐

 ,           (II. 43b) 
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II.3.2 Real and imaginary parts of the third harmonic 

While the physical meaning of the real and imaginary parts of the fundamental 

susceptibility is well known, the interpretation of the higher harmonics is still object of 

discussion. In fact, the existence of higher harmonics, due to hysteretic losses, was first 

predicted by C.P. Bean[15,16] in his frequency independent critical state model. In 

particular, within this model, the critical current density is independent of the magnetic 

field giving zero even higher harmonics of the AC magnetic susceptibility. On the other 

hand, nonzero even higher harmonics are predicted in the Kim[17,18] critical state model 

within which a magnetic field dependent critical current density is considered. Moreover, 

the general shape of both the first and the higher AC magnetic susceptibility harmonics is 

independent of the AC field frequency.  

A combined analysis, based on the comparison of both the fundamental and higher 

harmonics of the AC magnetic susceptibility has been used to investigate the actual 

pinning mechanisms and geometric barriers to the flux motion, the flux dynamical 

regimes governing the magnetic response, and the phase of the vortex matter[13,14,34].  

In particular, the third harmonic components of the AC magnetic susceptibility were the 

most widely investigated since their intensity is the highest and easily detectable even in 

the absence of a DC field after the fundamental harmonic components. The strong 

differences in the shape of the third harmonic curves measured in different conditions 

have been largely investigated.  

In particular, The Bean results for the temperature dependence of the third harmonics 

critical state model for a slab geometry is reported in the Fig. II.4. The real part of the 

third harmonic 𝜒3
′ (𝑇) is zero below the 𝜒1

′′ (𝑇) peak temperature 𝑇𝑝 , and shows a positive 

peak above 𝑇𝑝 . On the other hand, the imaginary part 𝜒3
′′ (𝑇) shows an oscillatory 

behaviour displaying a positive peak at about 𝑇𝑝  and a negative one at higher 

temperatures[34]. In general, variation in the temperatures of the peak maxima of 𝜒1
′′ (𝑇) 

and |𝜒3(𝑇)| can be reproduced in a critical state model by considering a critical current 

density 𝑗𝑐(𝜈) that increases with the frequency 𝜈 of the AC field, corresponding to the 

existence of relaxation phenomena. Moreover, also non-zero even harmonics can be 

predicted when a magnetic field dependence of 𝑗𝑐  is considered, as in the Kim critical 

state model. However, the general shape of both the first and the higher ACS harmonics 

is independent of the frequency of the AC field in all the critical state models.  

Besides these variation induced by different AC frequencies that can be explained by 

modifying the critical state models, variations in the height of the 𝜒1
′′ (𝑇) and |𝜒3(𝑇)| 

peaks, and in the shape of the 𝜒3
′ (𝑇) and 𝜒3

′′ (𝑇) components, cannot be explained by 

using any critical state model, and they can be interpreted by means of the comparison
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Figure II.4. Temperature dependence of 𝜒3
′ (𝑇) and 𝜒3

′′(𝑇) calculated within the critical state model for a slab 

geometry[34]. 

 

 

with the numerically calculated by solving the diffusion equation of the magnetic field in 

the sample with for various flux dynamical regimes and pinning mechanisms. In fact, the 

frequency and temperature dependent curves of 𝜒3
′  𝑇  and 𝜒3

′′  𝑇  for the flux flow, taff, 

flux creep and creep-flow parallel regimes have been numerically calculate by solving the 

diffusion equation[34]. These curves are reported in the Fig. II.5a-h, respectively, 

together with the critical state results, within the collective pinning.  

In the case of flux creep (Fig. II.5a-b), the 𝜒3
′  𝑇  curves show large difference from 

the critical state prediction at lower temperature. In fact, while 𝜒3
′  𝑇  is expected to be 

always positive for the critical state, it can assume negative value at temperatures 𝑇 

smaller than the peak temperature in the corresponding 𝜒1
′′ 𝑇  curve. In particular, a 

negative peak appears and shift towards higher temperature with increasing frequency  

together with the following larger positive maximum. On the other hand, the 𝜒3
′′ 𝑇  curve 

is very similar to the critical state prediction with the presence of a positive maximum 

followed by a negative smaller peak which are shifted to higher temperatures with 

increasing frequency. 

For the taff (Fig. II.5c-d) and flux flow (Fig. II.5e-f) and regimes, the 𝜒3
′  𝑇  curves 

display negative values and bell-like shapes, with the peak temperatures increasing as the 

frequency increases. On the other hand, the 𝜒3
′′  𝑇  curves show an oscillatory behavior, 

displaying positive values on approaching 𝑇𝑐  and negative values at lower temperature. 

As the frequency increases, such behavior of  occurs closer and closer to 𝑇𝑐 . 

Finally, we discuss the curves of 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  for the parallel resistor model 

between the flux creep and the flux flow regime (Fig. II.5g-h). Here, the 𝜒3
′  𝑇  curve 

shows large deviation from the critical state prediction both at lower and higher 

temperature, and this occurs more with increasing frequency. In particular, a negative 

peak appears at lower temperature due to the flux creep contribution, while the flux flow 

contribution produces the lowering of the higher temperature positive maximum which 

tend to become a double negative peak with increasing frequency. Correspondingly, the 
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𝜒3
′′ 𝑇  curve deviates from the critical state prediction for the lowering of the lower 

temperature positive peak and the rising of the higher temperature positive peak near 𝑇𝑐 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. II.5 Plot of the curves of (up) 𝜒3
′ (𝑇) and (down) 𝜒3

′′(𝑇) numerically calculated for a YBCO 

slab by solving the diffusion equation where the flux  diffusivity has been determined by using the 

(a,b) flux creep, (c,d) taff, (e,f) flux flow and (g,h) creep-flow parallel resistivities, in absence of 

DC field (from Ref.[35]). These curves have been acquired with the cosine reference of the lock-

in. 
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Chapter III 

Analysis of the temperature dependent AC susceptibility harmonics 

of the Bi4O4S3 bulk sample 

 

In this chapter we will illustrate the method for analyzing the temperature dependent 

AC susceptibility harmonics and investigate the superconducting and magnetic properties 

of a superconducting sample. At this aim, we analyze the experimental curves of the first 

and third harmonics of the superconducting bismuth-oxysulfide layered compound 

Bi4O4S3[1]. This material has a layered crystal structure based on stacking layers of BiS2 

and Bi4O4(SO4)1-x, where x indicates the deficiency of SO4
2− ions at the interlayer sites[1-

4]. The 𝑇𝑐  of Bi4O4S3 was found to be around 4.5 K, and other compounds with a layered 

structure based on the BiS2 layer and ReO1_xFx (La, Ce, Pr, Nd) block layers have been 

discovered with 𝑇𝑐~10 K[6-11]. The doping mechanism in these systems is similar to 

those of cuprates and Fe-based pnictides, suggesting that the BiS2 plays the role of the 

CuO2 layer in the cuprates and of the FeX layer in the Fe-based pnictides. This explains 

the interest of investigate the BiS2-based superconductors which could be designed also 

to provide additional information for the comprehension of the superconductivity 

mechanisms in both cuprates and iron based superconductors. 

The temperature dependence of both the first and the third AC susceptibility 

harmonics have been measured on a Bi4O4S3 sample in form of a slab by using the AC 

insert of a 9 T Quantum Design PPMS. This sample was prepared by the solid state 

reaction method starting from Bi2S3, Bi2O3 powders and S grains and by using thermal 

treatments up to 510 °C[2]. The AC susceptibility measurements were performed by 

applying magnetic fields parallel to the sample surface, at different AC field frequencies 

(𝜈 = 107, 1077, 5385, 9693 Hz) and amplitudes (𝜇0𝐻𝑎𝑐 =  0.05, 0.1, 0.2, 0.4, 0.8, 1.2 

mT), both in absence and in presence of a DC field (𝜇0𝐻𝑑𝑐 = 2, 5, 10, 100 mT). 

 

 

III.1 Analysis of the temperature dependent AC susceptibility first harmonic 

The curves of 𝜒1
′  and 𝜒1

′′ as function of temperature are reported in the Figs.II.1a and 

II.1b in absence of a DC field with varying the amplitude of the AC field and at a fixed 

AC field amplitude with varying the superimposed DC field, respectively. The 

superconducting transition of the 𝜒1
′ (𝑇) curve broadens and its step-like transition 

becomes smoother as the AC field amplitude is increased, as expected in the critical state 

models due to the effect of the field which tends to destroy the superconductivity[14,15]. 

However, the broadening of the transition in the curve of 𝜒1
′ (𝑇) is accompanied by a shift  
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Figure. III.1 Experimental curves of the 𝜒1
′ (𝑇) and 𝜒1

′′(𝑇) curves of the Bi4O4S3 sample: (a), (b) plots show 

the 𝜇0𝐻𝑎𝑐  dependence of the real 𝜒1
′ (𝑇) and imaginary 𝜒1

′′(𝑇) part, respectively, in absence of DC field and at 

a fixed AC frequency with the vertical line indicating the critical temperature determined as the onset 

temperature of the transition in the 𝜒1
′ (𝑇) at the lowest value of 𝜇0𝐻𝑎𝑐 ; (c), (d) plots show the 𝜒1

′ (𝑇) and 

𝜒1
′′(𝑇) curves at fixed AC field amplitude and frequency, and with varying the superimposed DC field, with 

the horizontal line indicating the transition to the normal state[1].  

 

 

to lower temperature and a rise of the dissipation peak in the curve of 𝜒1
′′(𝑇). In fact, the 

peak is expected when the external field penetrates the center of the sample. Then, as the 

AC field is increased this can occur in correspondence to a stronger pinning that is at a 

lower temperature. This suggests the existence of nonlinear flux dynamical regimes 

governing the AC responses in both the intergranular links and the individual grains. The 

effect of the DC field is the further broadening of the superconducting transitions in the 

𝜒1
′ (𝑇) curves and the larger shift of both the 𝜒1

′ (𝑇) and 𝜒1
′′(𝑇) curves towards lower 

temperatures.  

 

 

III.1.1 Estimation of the superconducting critical temperature 𝑻𝒄 and field 𝑯𝒄 

First of all, information about the superconducting transition of the Bi4O4S3 sample 

can be extracted from the analysis of the temperature dependent real part of the 

susceptibility first harmonic. In fact, crossing the 𝐻𝑐1(𝑇) line towards higher temperature 

and fields destroy the full shielding of the Meissner state observed in absence of field. 

Then, it is expected  

 

𝜒1
′ = −1, 𝐻 ≤ 𝐻𝑐1(𝑇),        (III.1a) 

𝜒1
′ = −

𝐻𝑐1

𝐻𝑑𝑐
, 𝐻 ≥ 𝐻𝑐1(𝑇),       (III.1b) 

𝜒1
′′ = 0,             (III.1c) 
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where 𝐻 is the external magnetic field containing a static and an alternate field 

components. Then, according to the Eq. (II.5a), the superconducting transition is 

accompanied by a drop in the curve of the temperature dependence of 𝜒1
′ (𝑇) from the 

value -1 in the full shielding state to the zero value in the normal state with increasing 

temperature from 𝑇 = 0 towards 𝑇𝑐  and magnetic field from 𝐻 = 0. towards 𝐻𝑐1. On the 

other hand, since crossing 𝐻𝑐2 should be accompanied by a sharp change in the linear 

resistivity, 𝐻𝑐2 can be determined by analyzing the shift of the onset temperature in the 

linear regime (see the Figs. III.2a and III.2b).  

 

 

      ( a )      ( b ) 

Figure. III.2  Schematic diagram of the dependence of the first harmonics susceptibilities on (a) temperature 

and (b) the external DC field for determining the lower and upper critical fields.  

 

 

Although most precise superconducting critical temperature and the fields may be 

estimated from the AC susceptibility first harmonic measured as function of temperature 

and magnetic field, respectively, both them can be also estimated from the temperature 

dependent AC susceptibility. The critical temperature of the Bi4O4S3 sample has been 

taken 𝑇𝑐~4.5 K from the onset of the temperature derivative of the 𝜒1
′ (𝑇) in absence of 

DC field in the Fig. III.1a at the lowest amplitude of the applied AC field. Since 𝑇𝑐  

increases with increasing 𝐻𝑑𝑐  and 𝐻𝑎𝑐  the DC and AC 𝐻-𝑇 lines have been constructed 

from the Figs. I.1a and I.1c, respectively, by taking the values of 𝑇𝑐  from the curves of 

𝜒1
′ (𝑇) and the corresponding value of the AC and DC field amplitudes. The plot of 

𝜇0𝐻𝑑𝑐  𝑇𝑐  is reported in the Fig. III.3a and exhibits the negative rate expected for a type 

II superconductor described in the Chapter I. However, there is an upward curvature at 

lower temperatures in the plots of Fig. III.3a which cannot be described within neither the 

conventional power law expressions described nor the WHH theory[12] described in the 

Chapter II. On the other hand, such kind of enhanced upper critical field could be related 

to a two-gap superconductivity in the Bi4O4S3 compound which also exhibits some 

properties typical of nonconventional coupling mechanisms. In fact, the data of 

𝜇0𝐻𝑑𝑐  𝑇𝑐  in the Fig. II.3a have been  described within the dirty two-gap 
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superconductivity theory treated in the Chapter II, with parameters values 𝜂 ≈ 10−4, 

𝜆11 ≈ 𝜆22 ≈ 0, 𝜆12 ≈ 𝜆21 ≈ 0.8 [12,13]. 

It is worth noting that in absence of DC field the curves of 𝜇0𝐻𝑎𝑐  𝑇𝑐  have been taken as 

the effective AC field amplitudes determining the superconducting transition and so 

playing the role of effective upper critical fields[14]. The plot of  𝜇0𝐻𝑎𝑐  𝑇𝑐  for the 

Bi4O4S3 sample are reported in the Fig. III.3b and exhibits a double behavior which could 

indicate both the existence of two different phases in the superconducting sample 

consisting of strongly superconducting grains not completely coherent but joined by 

weakly superconducting links having a smaller critical field or a change in the flux 

dynamical regime governing the AC response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. III.3 The 𝐻-𝑇 lines constructed by taking the values of 𝑇𝑐  and the corresponding value of (a) 𝐻𝑑𝑐  and 

(b) 𝐻𝑎𝑐  in the curves of 𝜒1
′ (𝑇) of the Figs. II.1a and II.1c, respectively. The lines in (a) are the data fit within 

(dash) the dirty one-gap theory (WHH) model in the region near 𝑇𝑐  and (solid) the dirty two-gap theory, with 

an enlargement of this area reported in the inset. 

 

 

III.1.2. Estimation of the critical current density 𝒋𝒄 

When considering a constant current-carrying capability through the superconducting 

sample, a rough method to estimate the critical current density 𝑗𝑐  can be performed by 

analyzing the curves of the temperature dependent susceptibility first harmonic imaginary 

part 𝜒1
′′(𝑇) measured at different amplitudes of the AC field. In fact, within the Bean 

model[15,16] the dissipation peak in the 𝜒1
′′(𝑇) is expected to occur at a particular value 

of the AC field penetration depth, i.e. 
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𝜇0𝐻𝑎𝑐 =  2𝜇0𝑗𝑐𝐿,     (III.2) 

 

for a slab of width 2𝐿. Then, the temperature dependence of 𝑗𝑐  can be obtained by taking 

the temperature 𝑇𝑝  of the peak position in the 𝜒1
′′ (𝑇) curves measured at different AC 

field amplitudes, and the corresponding values of the AC field amplitude. As an example, 

the estimation of the 𝑗𝑐(𝑇) curve of the Bi4O4S3 sample, based on the analysis of the 

corresponding 𝜒1
′′ (𝑇) curves measured at different AC field amplitudes and shown in the 

Fig. III.1b, is reported in the Fig. III.4a for different DC fields. The 𝑗𝑐  decrease with 

increasing temperature as expected for a type II superconductor and described in the 

Chapter I. In particular, an exponential decay law has been found to describe the data 

rather than the different power law dependences described in the Chapter I. Moreover, by 

taking isothermal cuts of the 𝑗𝑐(𝑇) curves at different DC field amplitudes in the Fig. 

III.4a allowed us to construct the AC field dependence of the critical current density. 

These curve of 𝑗𝑐(𝐻𝑑𝑐 ) are reported in the Fig. III.4b for different temperatures and have 

been fitted with a power law 𝑗𝑐(𝐻𝑑𝑐 )~𝐻𝑑𝑐
−𝛽 . This is compatible with the existence of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. III.4 (a) Plot of 𝜇0𝑗𝑐  as function of the temperature at different DC fields, for the Bi4O4S3 sample, 

extracted from the curves of Fig. III.1b by taking the value of the temperature of the dissipation peak position 

and the value of the 𝑗𝑐  for the corresponding value of 𝐻𝑑𝑐  according to the Eq. (III.2). The line are the fit with 

an exponential decay. (b) Dependence of 𝑗𝑐  on the DC field obtained by performing isothermal cuts of the 

curves of the Fig. III.3a at different temperature. The lines are the fit with the power law 𝑗𝑐(𝐻𝑑𝑐 )~𝐻𝑑𝑐
−𝛽 [1]. 

 

 

 



54 
 

2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0
0,0

0,2

0,4

0,6

0,8

1,0

4 5 6 7 8 9 10
0,4
0,8
1,2
1,6
2,0
2,4
2,8

j
c
(T) = j

0
+ j

1 
e

-( T/T
0
)

107 Hz

 1077 Hz

 5385 Hz

  Hz

 

 

 0j c (1
010

 A
/m

2 )
T( K )


0
H

dc
 = 10 mT

T = 2 K

T = 2.2 K

T = 2.5 K

T = 2.8 K

T = 3 K

 

 

 0j c (1
010

 A
/m

2 )

ln  (Hz)

 

 

 

 

 

 

Figure. III.5 Plot of 𝜇0𝑗𝑐  as function of the temperature at different frequencies, for the Bi4O4S3 sample, 

constructed as in the Fig. III.4a at different AC field frequencies and at a fixed DC field. The lines are the fit 

with an exponential decay. Inset: Dependence of 𝑗𝑐  on ln 𝜈 obtained by taking isothermal cuts of the curves of 

𝑗𝑐(𝑇) at different temperatures. The lines are the fit with the Eq. (III.3)[1]. 

 

 

flux creep phenomena and the field dependence of the 𝜒1
′ (𝑇) and 𝜒1

′′ (𝑇) curves discussed 

above. Moreover, the existence of creep phenomena is confirmed from the frequency 

dependence of the critical current density obtained by taking isothermal cuts of the 𝑗𝑐(𝑇) 

curves constructed at different AC field frequencies and at a fixed DC field shown in the 

Fig. III.5. The curves of 𝑗𝑐 ln 𝜈  at different temperatures are reported in the inset of the 

Fig. III.5 and have been described with a collective creep law[17] 

 

𝑗𝑐 𝜈 = 𝑗𝑐 𝑇, 𝐻𝑑𝑐   
𝑘𝐵𝑇

𝑈 𝑇,𝐻𝑑𝑐  
ln

𝜈0

𝜈
 

1

𝜇
,              (III.3) 

 

with the exponent 𝜇 ≈ 0.6 as expected for the creep of large flux bundles[18].  

 

 

III.1.3. Vortex activation energy 𝑼𝒂 

Generally, an effective activation energy for thermally activated motion of vortices 

inside a superconducting sample is defined as 𝑈𝑎 = 𝑈𝑎 𝑇, 𝐻𝑑𝑐 , 𝑗 . In particular, it has 

been said in the Chapter I that in the linear thermally activated flux flow regime the 

magnetic flux inside the sample decays exponentially with a frequency-dependent length 

scale 𝛿(𝑇) =  2𝐷(𝑇) 𝜔  1 2 , where 𝐷(𝑇) is the magnetic diffusivity.
 
This produces the 

occurrence of a peak in the imaginary part of the temperature dependent AC susceptibility 

first harmonic 𝜒1
′′(𝑇) when 𝛿 matches the typical dimensions of the sample. Since the 

magnetic flux diffusion time satisfies the relation 𝜏~𝐿2 𝐷  , with 2𝐿 the characteristic 

specimen dimension, it turns out that the maximum in the 𝜒1
′′(𝑇) is reached at frequencies 

𝜏~𝜈−1 with 𝜈 the measuring frequency, that is the flux relaxation velocity of the form 

(I.12) matches the measured frequency. This gives the Arrhenius[18] law  
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𝜈 = 𝜈0𝑒
− 

𝑈𝑎
𝑘𝐵𝑇 .      (III.4) 

 

where 𝜈0 is a constant with dimension of frequency. In the case of taff regime, the 

activation energy 𝑈𝑎 meanly depends on the temperature. On the other hand, when flux 

creep phenomena are present, 𝑈𝑎  depends on both temperature, and magnetic field and 

driving current. In fact, the flux line are typically considered as a particle moving in a 

force field created by the potential wells at pinning sites, and the unperturbed pinning 

potential 𝑈0 becomes the effective activation energy 𝑈𝑎 = 𝑈0 1 − 𝑗 𝑗𝑐   due to the 

magnetic flux gradient. In this case, the creep velocity is considered to match the inverse 

of the AC field frequency in correspondence of the dissipation peaks in the 𝜒1
′′(𝑇) curves, 

thus giving the Arrhenius behavior of the Eq. (III.4). Although such resonance between 

the frequencies of the driving AC field and the microscopic vortices oscillation in the 

pinning wells reveals very useful for the extraction of the activation energy and flux 

dynamical information from the analysis of the AC susceptibility data by means of the 

Arrhenius law Eq. (III.6), it is worth noting that the oscillation frequencies of vortices in 

the wells of the pinning sites are very high thus requiring very high measuring 

frequencies of the external AC field.  

However, the Eq. (III.6) achieves a method for the estimation of 𝑈𝑎 , for the taff and flux 

creep regimes, from the analysis of the frequency behavior of the temperature dependent 

AC susceptibility first harmonic imaginary part. According to the Eq. (III.6), since the 

velocity is expected to match the AC field frequency at the temperature 𝑇𝑝  of the 

dissipation peak in the 𝜒1
′′ (𝑇) curves, the effective activation energy 𝑈𝑎  can be estimated 

from the slope of the Arrhenius plot of ln 𝜈  as function of 1/𝑇𝑝 . These plots can be 

constructed starting from the curves of 𝜒1
′′ (𝑇) measured at different AC field frequencies 

𝜈 by taking the temperature of the peak position 𝑇𝑝  and the corresponding value of ln 𝜈 .  

As example, the Arrhenius plots for the Bi4O4S3 sample at different DC fields are shown 

in the Fig. III.6. The DC field dependence of 𝑈𝑎 , constructed by taking slopes of the 

Arrhenius plots at different DC fields, is shown in the Fig. III.7a, for different values of 

the AC field amplitude. A power law dependence 𝑈𝑎~ 𝜇0𝐻𝑑𝑐  
−𝛼 , characteristic of the 

collective flux creep, is observed at higher AC and DC fields with 𝛼 ≈ 0.3-0.6, while an 

exponential decay law is observed in the lower AC and DC fields region. On the other 

hand, the intercept ln 𝜈  of the Arrhenius fits as function of 𝑈𝑎  at different values of the 

AC field amplitude 𝜇0𝐻𝑎𝑐 , are shown in the Fig. III.7b, where a linear dependence of  

ln 𝜈  on (𝑈𝑎) is clearly visible. According to the Eq. (III.6), this linear dependence 

implies a linear temperature dependence of 𝑈𝑎  with a law 𝑈𝑎 𝑇 ~1 − 𝑇 𝑇𝑐 . By 

considering the Arrhenius plots at different AC fields, the dependence of 𝑈𝑎  𝜇0𝐻𝑎𝑐  can 
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be also extracted. The curves of 𝑈𝑎(𝜇0𝐻𝑎𝑐 ) at different DC fields are reported in the Fig. 

III.8. The figure shows that 𝑈𝑎  decreases with increasing 𝜇0𝐻𝑎𝑐  with a power law 

𝑈𝑎~ 𝜇0
𝐻𝑎𝑐 

−𝜇
and 𝜇 = 0.4-0.6, expected in the collective flux creep of large flux bundles  

and in agreement with the previous results. 

 

 

 

 

 

 

 

 

 

Figure. III.6 Plot of ln 𝜈  as function of the inverse of the peak position temperature 𝑇𝑝  in the 𝜒1
′′ (𝑇) curves 

for the Bi4O4S3 sample. obtained from the curves at different frequencies by taking 𝑇𝑝  and the value of the 

frequency. The lines are the fit of the data to an Arrhenius[23] law of the Eq. (III.6) with slope 𝑈𝑎  and 

intercept ln 𝜈0 [1]. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure. III.7 (a) Dependence of the effective activation energy 𝑈𝑎  on 𝜇0𝐻𝑑𝑐 , for the Bi4O4S3 sample, obtained 

from the slopes of the Arrhenius plots at different 𝜇0𝐻𝑑𝑐values in the Fig. III.6, for different AC field 

amplitudes. The lines are the fit with (solid) a power law 𝑈𝑎~ 𝜇0𝐻𝑑𝑐  
−𝛼  with 𝛼 = 0.3-0.6 and (dashed) an 

exponential decay. (b) Variation of the intercept ln 𝜈0 of the Arrhenius fit lines with the slopes 𝑈𝑎 . The linear 

behaviour implies a linear dependence of 𝑈𝑎  with the temperature. Inset: zoom at low 𝑈𝑎  values[1]. 
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Figure. III.8 Dependence of the effective activation energy 𝑈𝑎  on 𝜇0𝐻𝑎𝑐 , for the Bi4O4S3 sample,  obtained 

from the slopes of the Arrhenius plots at different 𝜇0𝐻𝑎𝑐values. The data are fitted with a power 

law 𝑈𝑎~ 𝜇0𝐻𝑎𝑐  
−𝜇  with 𝜇 = 0.4-0.6[1].  

 

 

III.2 Analysis of the temperature dependent AC susceptibility third harmonic 

As discussed in the Chapter II, a combined analysis, based on the analysis of both the 

fundamental and higher harmonics of the AC magnetic susceptibility can be used to 

detect information about the pinning mechanisms, the existence of geometric barriers to 

the flux penetration, and the dynamical regimes, governing the magnetic response and the 

phase of the vortex matter of a type II superconducting sample [19-21]. In the following, 

the temperature dependent AC susceptibility third harmonic of the Bi4O4S3 sample will be 

analyzed in order to obtain information about the flux dynamics and pinning mechanisms 

governing the sample AC response by means of the comparison of the field and 

frequency behaviours of the measured third and first harmonics curves, and of the 

measured third harmonics curves with the theoretical curves of bulk samples reported in 

literature for different flux dynamical regimes[19]. 

First of all, we repeat that in the Bean[15,16] critical state mode, for a slab geometry, 

the real part of the third harmonic 𝜒3
′ (𝑇) is zero below the 𝜒1

′′ (𝑇) peak temperature 𝑇𝑝 , 

and shows a positive peak above 𝑇𝑝 , while the imaginary part 𝜒3
′′ (𝑇) shows an oscillatory 

behaviour displaying a positive peak at about 𝑇𝑝  and a negative one at higher 

temperatures[20] (see the Fig. II.4). Moreover, variations in the temperatures of the peak 

maxima of 𝜒1
′′ (𝑇) and |𝜒3(𝑇)| can be reproduced in the critical state model by 

considering a critical current density 𝑗𝑐(𝜈) that increases with the frequency 𝜈 of the AC 

field, due to the existence of relaxation phenomena. However, the general shape of both 

the first and the higher AC susceptibility harmonics is independent of the frequency of 

the AC field in all the critical state models. On the other hand, variations in the shape of 

the 𝜒3
′ (𝑇) and 𝜒3

′′ (𝑇) and in the height of 𝜒1
′′ (𝑇) and |𝜒3(𝑇)| components induced by 

varying the frequency can be interpreted by means of the comparison with the curves 



58 
 

numerically calculated by solving the diffusion equation of the magnetic field in the 

sample with for various flux dynamical regimes and pinning mechanisms (see the Figs. 

II.5a-h)[19-22]. 

  

 

III.2.1 Third harmonic at different AC amplitudes  

As an example, Figs. III.9a and III.9b show the curves of 𝜒3
′ (𝑇) and 𝜒3

′′(𝑇) for the 

Bi4O4S3 sample, respectively, measured in absence of DC field, at a fixed AC field 

frequency and with varying the amplitude 𝜇0𝐻𝑎𝑐 . It is worth noting that the sign of the 

measured curves have been inverted since in order to compare them with the theoretical 

curves reported in literature and according to the sign inversion rules for different 

acquisition lock-in reference signals discussed in the Chapter II (see the Eqs.(II.21a)-

(II.21d)).  

The curves of 𝜒3
′ (𝑇) and 𝜒3

′′(𝑇) of the Bi4O4S3 sample exhibit a noticeable dependence on 

𝜇0𝐻𝑎𝑐 .. In particular, non zero values are present in the 𝜒3
′ (𝑇) curves for 𝑇 < 𝑇𝑝 𝜒1

′′  , 

which indicates the existence of flux dynamical regimes governing the AC magnetic 

response. Moreover, the curves of 𝜒3
′  𝑇  exhibit a positive maximum closer to 𝑇𝑐  at 

lower 𝐻𝑎𝑐 . values, which shifts towards lower temperatures with increasing 𝐻𝑎𝑐  with a 

nonmonotonic variation of the peak height. Correspondingly, a minimum tends to emerge 

with at lower temperatures. This confirms the existence of flux dynamic effects in the AC 

magnetic response, together with the frequency dependence of the shape of the 𝜒3
′ (𝑇) and 

𝜒3
′′ 𝑇  curves which will be discussed later.  

On the other hand, the curves of 𝜒3
′′ 𝑇  exhibit a small negative minimum close to the 

temperature 𝑇𝑜𝑛  𝜒3
′   of the onset of 𝜒3

′ (𝑇), as it is expected from the Bean critical state 

model[20,21]. Then, more detailed information about the coexistence of the critical state 

and flux dynamical regimes has been obtained by analyzing the AC amplitude behavior 

of the 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  curves measured in presence of a DC field 𝐻𝑑𝑐 ≫ 𝐻𝑎𝑐 . In fact, 

since the taff and flux flow regimes are both linear (AC field independent) in presence of 

a DC field 𝐻𝑑𝑐 ≫ 𝐻𝑎𝑐 , the evidence of non linearity in the 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  curves in 

presence of strong DC field, when the field is almost constant, could suggest the 

exclusion of the two regimes effects in the AC magnetic response thus due only to the 

nonlinear creep regime and to hysteretic phenomena[17]. In fact, the curves of 𝜒3
′  𝑇  and 

𝜒3
′′ (𝑇) for the Bi4O4S3 sample are shown in the Figs. III.10a and III.10b, respectively, 

measured in presence of different strong DC fields, at fixed AC frequency and AC field 

amplitude. Both the 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  curves depend on the DC field confirming the 

existence of flux creep phenomena. It is worth noting that also a nonlinear contribution 
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due to the flux flow regime could contribute to the nonlinearity of the AC magnetic 

response by means of the interaction between vortices if the DC field is close to the upper 

critical field of the sample[22].  

 

 

 

 

 

 

 

 

 

Figure. III.9 Plot of the experimental curves of (a) 𝜒3
′ (𝑇) and (b) 𝜒3

′′(𝑇), for the Bi4O4S3 sample, measured in 

absence of DC field, at a fixed AC frequency with varying the AC amplitude 𝜇0𝐻𝑎𝑐 . The sign of the curves 

has been inverted in order to compare them with theoretical curves for a different acquisition reference signal 

according to the Eqs. (II.21a)-(II.21d). The vertical lines indicate the temperatures 𝑇𝑝of the peaks in the 

corresponding curves of 𝜒1
′′(𝑇) in the Fig. II.1b[1]. 

 

 

 

 

 

 

 

 

 

 

Figure. III.10 Plot of the experimental curves of (a) 𝜒3
′ 𝑇) and (b) 𝜒3

′′(𝑇), for the Bi4O4S3 sample, measured at 

fixed AC frequency and amplitude, in presence of a DC field 𝐻𝑑𝑐 ≫ 𝐻𝑎𝑐 . The sign of the curves has been 

inverted in order to compare them with theoretical curves for a different acquisition reference signal 

according to the Eqs. (II.21a)-(II-21d). The vertical lines indicate the temperatures 𝑇𝑝of the peaks in the 

corresponding curves of 𝜒1
′′(𝑇) in the Fig. II.1d[1]. 

 

 

III.2.2 Third harmonic at different ac frequencies  

In order to complete the study of the flux dynamical and pinning regimes governing 

the AC magnetic response of the Bi4O4S3sample from the third harmonic susceptibility 

curves, the AC field amplitude dependence of these curves can be usefully combined with 

the analysis of their frequency behavior. At this aim, the 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  curves for the 
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Bi4O4S3 sample in absence of DC field, at a fixed AC field amplitude with varying the AC 

field frequency are shown in the Figs. III. 11a and III.11b, respectively. The frequency 

behavior of these curves can be compared with the frequency dependence of the 

corresponding curves numerically calculated by solving the diffusion equation for 

different flux dynamical regimes. These curves for the flux flow, taff, flux creep and 

creep-flow parallel regimes have been discussed in detail in the Chapter II and are 

reported in the Figs. III.12a-h[19]. From the comparison of the curves of the Figs. (III.11) 

and (III.12) the evidence of the existence of a regime of parallel between the flux creep 

and flux flow inside the sample has been found. In fact, as observed in the theoretical 

curves, a negative peak occurs in the experimental 𝜒3
′  𝑇  and 𝜒3

′′ 𝑇  curves at lower 

temperatures, followed by a positive peak at the peak temperature of 𝜒1
′  𝑇 , with the 

negative peak height and position increasing and the positive peak height decreasing with 

increasing frequency. Accordingly, the shape and frequency behavior of the experimental 

𝜒3
′′ 𝑇  curve is very close to the theoretical prediction for the parallel model at the lower 

frequency. This result is also in good agreement with the results of the analysis AC 

susceptibility first harmonic discussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.11 Plot of the experimental curves of (a) 𝜒3
′ (𝑇) and (b) 𝜒3

′′(𝑇), for the Bi4O4S3 sample, measured in 

absence of DC field, at a fixed AC amplitude and with varying the AC frequency 𝜈. The sign of the curves 

has been inverted in order to compare them with theoretical curves for a different acquisition reference signal. 

The vertical lines indicate the temperatures 𝑇𝑝of the peaks in the corresponding curves of 𝜒1
′′(𝑇)[1]. 
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Figure. III.12 Plot of the curves of (up) 𝜒3
′ (𝑇) and (down) 𝜒3

′′(𝑇) numerically calculated for a YBCO slab by 

solving the diffusion equation where the flux  diffusivity has been determined by using the (a,b) flux creep, 

(c,d) taff,  (e,f) flux flow and (g,h) creep-flow parallel resistivities, in absence of DC field (from Ref.[19]). 

These curves have been acquired with the cosine reference of the lock-in. 
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Chapter IV 

The AC magnetic response of granular samples 

 

In the previous chapter the fundamental harmonic of the temperature dependent AC 

magnetic response of a superconducting homogeneous sample has been analyzed in order 

to extract several superconducting parameters of the sample and investigate these 

parameters with varying the external AC and DC fields. Moreover, detailed information 

about the flux dynamics and the pinning mechanisms which determine the AC magnetic 

response of the sample have been obtained from the combined analysis of the 

fundamental and third harmonics of the temperature dependent AC susceptibility and the 

comparison with the corresponding curves numerically calculated by solving the 

diffusion equation of the magnetic flux for different flux dynamical and pinning regimes. 

However, most high-𝑇𝐶  superconducting materials are in general not a homogeneous 

continuum but rather consist of a network of superconducting grains with intergranular 

weak links. In this case, the AC magnetic response of the sample, measured by means of 

the AC susceptibility technique, consists in the composition of two contributions due to 

the individual grains and the intergranular links, respectively. In fact, in the case of a 

sample consisting of superconducting grains representing elementary volumes of the 

phase coherence of the order parameter, interconnected by a system of weak links[1-4], 

two shielding currents flow in the plane perpendicular to the external field through paths 

around the whole sample via the intergranular links and paths around the individual 

grains, respectively. Then, two steps are expected in the curve of the temperature 

dependent real part of the AC susceptibility first 𝜒1
′ (𝑇) and two peaks in the curve of the 

corresponding imaginary part 𝜒1
′′ (𝑇), which can be ascribed to the inter. and intragranular 

magnetic responses, respectively. Since generally the intergranular critical current density 

is smaller than the intragranular critical current density and because of the smaller 

dimensions of grains with respect to the whole sample, the peak at lower temperature in 

the 𝜒1
′′(𝑇) curve has to ascribed to the penetration of the external magnetic field in the 

centre of the sample accompanied by a corresponding step in the 𝜒1
′ (𝑇) curve, while the 

field penetrates the centre of the grains in correspondence of the peak at higher 

temperature in the 𝜒1
′′(𝑇) accompanied by a corresponding step in the 𝜒1

′ (𝑇) curve.  

The calculation of the temperature dependent AC magnetic susceptibilities of the inter- 

and intragranular volume fractions from the whole sample’s magnetic response and the 

analysis of each of the two AC susceptibilities as described in the previous chapter could 

be useful in order to investigate whether the superconductivity is a bulk or granular 
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phenomenon and to separate the effects of the external parameters on the superconducting 

properties and flux dynamics of both the inter- and intragranular components.  

In general, the inter- and intragranular magnetic contributions could be extracted from the 

whole sample magnetization and normalized to the magnetic field in order to determine 

the corresponding AC susceptibilities. This separation is not always possible due to the 

overlap of the two magnetic response which are the close the more similar the curves of 

temperature dependent superconducting critical fields. In this case, the actual magnetic 

field inductions governing the inter- and intragranular magnetic responses may be 

considered in order to determine the corresponding AC susceptibilities. In fact, the 

magnetic interaction between the inter- and intragranular magnetizations due to the 

demagnetizing factors of both the whole sample and the grains give the existence of 

effective magnetic field inductions acting on the sample’s and grains’s surfaces which are 

different from the applied one. Then, the demagnetizing correction rules expressed from 

the Eqs. (II.30a) and (II.30b) are not still valid in order to determine the intrinsic 

magnetizations and AC susceptibilities of the inter- and intragranular volume fractions.  

In this chapter, a model will be developed for describing  the AC magnetic response of 

a granular sample in terms of the magnetic contributions due to the individual grains and 

the intergranular regions of the sample. In particular, such model will take into account 

the existence of effective magnetic field inductions governing the inter- and intragranular 

magnetic responses due to both the corresponding demagnetizing factors. This kind of 

approach will give the possibility of separate the actual inter- and intragranular magnetic 

contributions first and higher harmonics to the magnetic response measured by means of 

the AC susceptibility technique, and of determine the corresponding intrinsic 

susceptibilities.  

 

 

IV.1 Principle of measurement of the AC response of a granular sample 

Granular systems in presence of an external AC field, with and without a 

superimposed DC field, exhibit a magnetic response containing two contributions due to 

the individual grains and to the intergranular links, respectively. In fact, these magnetic 

contributions correspond to two currents shielding the external field, which flow the 

plane perpendicular to the external field through paths around the whole sample via the 

intergranular links and around the individual grains, respectively[1-4]. The sample 

magnetic response can be detected as a whole by means of the AC susceptibility 

technique described in the Chapter II and whose schematic diagram is reported in the    

Fig. IV.1a. Here we consider the interior of the sample consisting of an arrangement of 

rectangular prism-like grains, with the external magnetic field applied parallel to the 
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broader surface of the sample and of the grains. In this configuration demagnetizing 

effects on the measured magnetic response of the sample have been taken into account. In 

fact, due to the non-ellipsoidal shape of the both the sample and the individual grains and 

to the presence of sharp edges on their surfaces, demagnetizing fields produce a distortion 

of the applied magnetic field at the sample’s surface and grains’s surfaces, which can 

influence the sample AC magnetic response itself.  

 

 

IV.1.1 Demagnetizing effects on the inter- and intragranular magnetic responses 

In the Fig. IV.1a the magnetic field induction acting on the surface of the whole 

sample is given by 

 

𝐵𝑖 𝑡 = 𝜇0 𝐻 𝑡 + 𝐷𝑖𝑀(𝑡) ,             (IV.1) 

 

where the superscript 𝑖 indicates that this field is shielded by the intergranular currents, 

and 𝐷𝑖𝑀 𝑡  is the demagnetizing field due to the reversal of the sample magnetization 

𝑀 𝑡  with the demagnetizing factor 𝐷𝑖  characteristic of the sample geometry. Although 

this demagnetizing factor depends on position on the sample’s surface its average value 

on the sample’s surface can be taken thus giving an average value of the effective field 

𝐵𝑖 𝑡 [5,6].  

On the other hand, in the regions connecting adjacent grains the profile of flux 

penetration can be modified be the demagnetizing fields arising from adjacent grains due 

to their demagnetizing factors. In order to determine the effective field induction at the 

grains’s surfaces we consider the diagram of the right side of the Fig. IV.1b, showing a 

slab of the sample containing a single layer of rectangular prism like grains. The magnetic 

flux is expected to penetrate a finite depth of the slab due to the shielding currents 

flowing around the sample. Within this depth individual gains feel a nonzero magnetic 

field induction thus producing intragranular screening currents. The magnetic field 

induction acting on the surfaces of the grains around the position 𝒓 can be expressed as 

 

𝐵𝑔 𝑡, 𝒓 = 𝐵𝑖 𝑡 +
𝑚 𝑡,𝒓 

𝑉
,       (IV.2) 

 

where 𝑚 𝑡, 𝒓  is the total magnetic moment produced at position r by the currents 

flowing in the sample and shielding the external field, normalized to the sample volume 

𝑉. In absence of demagnetizing effects due to the shape of the grains, the total magnetic 

moment 𝑚 𝑡, 𝒓  can be taken as sum of the moments 𝑚𝑖 𝑡, 𝒓  produced by the 
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Figure IV.1 Figure 1. (a) Schematic diagram of the experimental set up for measuring the AC magnetization 

𝑴 of the sample, with 𝑩𝒊 the effective magnetic field inductions acting on the sample’s surface. An 

enlargement of a slab containing a single layer of grains is shown with the red and black lines indicating the 

inter- and intragranular shielding currents, respectively, and 𝑩𝒈 the effective  magnetic field inductions acting 

on the grains’s surfaces due to both the total intergranular magnetic moment 𝒎𝒊, and the intragranular 

magnetic moments 𝒎𝒈 via the demagnetizing fields arising from adjacent grains. (b) Schematic diagram of 

the critical state dependence on position of the effective field inside the sample slab.  

 

 

intergranular currents at r. On the other hand, when considering the demagnetizing effects 

due to the shape of the grains an additional term has to be considered by taking into 

account the demagnetizing fields coming from adjacent grains, contained inside both the 

considered slab and adjacent slabs, in the region between them at position r. This field 

can be taken as 

 

𝐵𝑑
𝑔 𝑡, 𝒓 = 𝑘𝑑

𝑚𝑔(𝑡,𝒓)

𝑉𝑔
,          (IV.3) 
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where 𝑘𝑑  is an effective demagnetizing factor, and 𝑚𝑔(𝑡, 𝒓) is the magnetic moment 

produced at position r by the intragranular currents of an individual grain around 𝒓, 

normalized to the volume of the grain 𝑉𝑔 . By using the Eq. (IV.3), the Eq. (IV.2) 

becomes 

 

𝐵𝑔 𝑡, 𝒓 = 𝐵𝑖 𝑡 +
𝑚 𝑖 𝑡,𝒓 +𝑘𝑑𝑛

𝑔𝑚𝑔(𝑡,𝒓)

𝑉
,       (IV.4) 

 

which corresponds to an effective total magnetic moment of the sample 𝑚𝑖 𝑡, 𝒓 +

𝑘𝑑𝑛
𝑔𝑚𝑔(𝑡, 𝒓) with 𝑛𝑔 = 𝑉 𝑉𝑔  .  

It is worth noting from the critical state profile of the magnetic flux inside the slab, shown 

in the Fig. IV.1b, that larger magnetic field inductions act on the outer grains with respect 

to their inner grains due to the effect of the intergranular shielding currents. Then, in a 

first approximation, one can consider the averaged value of the magnetic field induction 

expressed by the Eq. (IV.4) along the slab length in the 𝑥 and 𝑦 directions as the effective 

field governing the intragranular magnetic response. In this case, the Eq. (IV.4) can be 

written in the form 

 

𝐵𝑔 𝑡 = 𝐵𝑖 𝑡 + 𝑀𝑖(𝑡) + 𝑘𝑑𝑛
𝑔𝑀𝑔(𝑡),        (IV.5) 

 

where 𝑀𝑖(𝑡) and 𝑀𝑔 𝑡  are the mean values over the sample volume of the magnetic 

moments produced by the inter- and intragranular shielding currents on the grains’s 

surfaces, respectively, normalized to the volume 𝑉 of the sample. Then, since the 

difference between the internal effective field 𝐵𝑔 𝑡  and the external effective field 𝐵𝑖 𝑡  

is the stray field escaping from the sample and acquired by means of the inductive 

technique of the Fig. IV.1a, from the Eq. (IV.5) the measured magnetic signal is given by 

 

𝑀 𝑡 = 𝑀𝑖(𝑡) + 𝑘𝑑𝑛
𝑔𝑀𝑔(𝑡).           (IV.6) 

 

The Eqs. (IV.1), (IV.5) and (IV.6) indicate that both the fields 𝐵𝑖 𝑡  and 𝐵𝑔 𝑡  can be 

expressed in terms of the magnetization of the whole sample 𝑀(𝑇) as 

 

𝐵𝑖,𝑔 𝑡 = 𝜇0 𝐻 𝑡 + 𝐷𝑖,𝑔𝑀 𝑡  ,                          (IV.7) 

 

which reduces to the Eqs. (IV.1) and (IV.5) with the intragranular effective 

demagnetizing factor 𝐷𝑔  given by 𝐷𝑔 = 1 + 𝐷𝑖 .  
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According to the Eq. (IV.6), the harmonic voltage 𝑣(𝑡) detected by means of the AC 

susceptibility technique described in the Chapter II (see the Eq. (II.8)), in terms of the 

magnetizations of the inter- and intragranular volume fractions is given by 

 

𝑣 𝑡 = −
1

𝛾

𝑑

𝑑𝑡
 𝑀𝑖 𝑡 + 𝑘𝑑𝑛

𝑔𝑀𝑔 𝑡  .                    (IV.8) 

  

Here the inter- and intragranular magnetizations can be expressed in the form of the Eq. 

(II.4), 

𝑀𝑖,𝑔 𝑡 = Im   𝜒𝑖,𝑔𝑛
′
− 𝑖𝜒𝑖,𝑔𝑛

′′
  𝐵𝑖,𝑔(𝑡) 

𝑛
𝑛  ,  (IV.9) 

 

where we have introduced the inter- and intragranular nonlinear AC susceptibilities  

 

𝜒𝑖,𝑔 =  𝜒𝑖,𝑔𝑛𝑛 =   𝜒𝑖,𝑔𝑛
′
− 𝑖𝜒𝑖,𝑔𝑛

′′
 𝑛 .        (IV.10) 

 

Then, for 𝛾 = −𝑁𝑆𝑛𝜔 the Eq. (IV.8) reduces to  

 

𝑣 𝑡 =   𝑀𝑛
′ 𝑇 cos 𝑛𝜔𝑡 + 𝑀𝑛

′′ 𝑇 sin 𝑛𝜔𝑡  

𝑛

= 

Im 
  𝜒𝑖𝑛

′
− 𝑖𝜒𝑖𝑛

′′
  𝐵𝑖(𝑡) 

𝑛
𝑛

+𝑘𝑐𝑛
𝑔   𝜒𝑔𝑛

′
− 𝑖𝜒𝑔𝑛

′′
  𝐵𝑔(𝑡) 𝑛𝑛

 .               (IV.11) 

 

 

IV.1.1.1 The effective demagnetizing factor 𝒌𝒅 of grains 

In order to exploit the effective demagnetizing factor 𝑘𝑑  determining the 

demagnetizing field defined from the Eq. (IV.3) due to adjacent grains in the in the region 

between them, in the Fig. IV.2 we have assimilated individual grains to finite solenoids of 

width ~ 𝑎 − 𝜆𝑔  with 2𝑎 = 2𝑏 the dimensions of the grains in the plane perpendicular to 

external field and 𝜆𝑔  an effective penetration depth of the grains which has to be 

determined by correcting the critical state penetration depth[7-10]. In fact, these solenoids 

carry the shielding current of the grains 𝐼𝑔 = (2𝑐)𝑀𝑔(𝑡)  𝑁𝑔    with 2𝑐 the grains length 

and  𝑁𝑔  an effective average number of turns. 

It is easily to show that the magnetic field induction produced along the field direction 𝑧 

by one solenoid is given by 

 

𝐵𝑧 𝑧, 𝑇 =
𝜇0𝐼

𝑔
 𝑁𝑔 

 2𝑐 𝜆
𝑔  𝐵𝑧1

 𝑧 − 𝐵𝑧2
 𝑧  =

1

𝜆
𝑔  𝐵𝑧1

 𝑧 + 𝐵𝑧2
 𝑧  ,         (IV.12) 

 

where 
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𝐵𝑧1
 𝑧 =  𝑐 +

𝑐

2
 ln

𝑎+ 𝑎2+ 𝑐+
𝑐

2
 

2

 𝑎−𝜆𝑔 +  𝑎−𝜆𝑔 2+ 𝑧+𝑐 2
,   (IV.13a) 

 

 

𝐵𝑧2
 𝑧 =  𝑐 −

𝑐

2
 ln

𝑎+ 𝑎2+ 𝑐−
𝑐

2
 

2

 𝑎−𝜆𝑔   +  𝑎−𝜆𝑔   2+ 𝑐−
𝑐

2
 

2
.   (IV.14b) 

  

Then, the magnetic field induction acting in the region between adjacent grains at 

position r in the Fig. IV.1b can be taken as  

 

𝑘𝑑𝑛
𝑔𝑀𝑔(𝑡) =

𝜇0𝑀
𝑔

𝜆𝑔
 𝐵𝑧1  

𝑐

2
 + 𝐵𝑧2  

𝑐

2
  − 4𝑑𝑀𝑔 ,       (IV.15) 

 

where the first term is the sum of the magnetic field inductions with form of the Eq. 

(IV.8) generated at position r of a slab by the first two neighbor grains along z contained 

in the up and down adjacent slabs, and the second term is the demagnetizing field due to 

the first four neighbor grains in the 𝑥-𝑦 plane of a slab with 𝑑 the grain demagnetizing 

factor. The Eq. (IV.10) corresponds to an effective demagnetizing factor 

 

𝑘𝑑 =
𝜇0

𝑛𝑔𝜆𝑔
 𝐵𝑧1  

𝑐

2
 + 𝐵𝑧2  

𝑐

2
  − 4𝑑,                (IV.16) 

 

 

 

   

 

 

 

 

 

 

 

 

   ( a )                        ( b ) 

Figure IV.2. Schematic diagram of (a) a slab of the sample containing a single layer of grains of the Fig. IV.1, 

and (b) the composition of the magnetic field induction coming from first two neighbor horizontal grains in 

the x y plane and the first two neighbor vertical grains contained in the up and down adjacent slabs at r. 
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IV.2 Intermodulation Distortion (IMD) from demagnetizing fields 

When considering the effects of demagnetizing fields produced from the in-phase and 

the out-of-phase components of the fundamental and higher harmonics of the sample 

magnetization, the effective fields acting on the sample’s surface and on the grains’s 

surfaces defined from the Eq. (IV.7) are given by 

 

𝐵𝑖,𝑔 𝑡 = 𝜇0  𝐻𝑎𝑐 sin 𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′

𝑛 sin 𝑛𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′′

𝑛 sin  
𝜋

2
− 𝑛𝜔𝑡  .  (IV.17) 

 

In the following we will consider the effects of the demagnetizing fields arising from the 

first and third harmonics components 𝑀1
′ , 𝑀3

′  and 𝑀1
′′ , 𝑀3

′′  of the whole sample 

magnetization and of the inter- and intragranular first and third order nonlinear 

susceptibilities 𝜒𝑖,𝑔1, 𝜒𝑖,𝑔3. In this case, the contributions to the sample magnetization 

due to the inter- and intragranular fundamental susceptibilities 𝜒𝑖,𝑔1 are given by 

 

Im 𝜒𝑖,𝑔1𝐵
𝑖,𝑔 𝑡  = 

= Im

 
 
 

 
  𝜒𝑖,𝑔1

′
− 𝑖𝜒𝑖,𝑔1

′′
 ×

𝜇0  𝐻𝑎𝑐 sin 𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′

𝑛=1,3

sin 𝑛𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′′

𝑛=1,3

sin  
𝜋

2
− 𝑛𝜔𝑡  

 
 
 

 
 

= 

= 𝑀𝑖,𝑔
11
′

sin 𝜔𝑡 + 𝑀𝑖,𝑔
11
′′

cos 𝜔𝑡 + 𝑀𝑖,𝑔
13
′

sin 3𝜔𝑡 + 𝑀𝑖,𝑔
13
′′

cos 3𝜔𝑡 ,    (IV.18) 

 

with 

𝑀𝑖,𝑔
11
′

= 𝜇0 𝐻ac𝜒
𝑖,𝑔 ′

1 − 𝐷𝑖 ,𝑔𝑀′
1𝜒

𝑖,𝑔 ′

1 − 𝐷𝑖 ,𝑔𝑀′′
1𝜒

𝑖,𝑔 ′′

1 ,     (IV.19a) 

 

𝑀𝑖,𝑔
11
′′

= 𝜇0 −𝐷
𝑖 ,𝑔𝜒𝑖,𝑔

′

1
𝑀′′

1 + 𝐻ac𝜒
𝑖,𝑔 ′′

1
− 𝐷𝑖 ,𝑔𝑀′

1𝜒
𝑖,𝑔 ′′

1
 , (IV. 19b) 

 

𝑀𝑖,𝑔
13
′

= 𝜇0 −𝐷
𝑖 ,𝑔𝑀′

3𝜒
𝑖 ,𝑔 ′

1
− 𝐷𝑖 ,𝑔𝑀′′

3𝜒
𝑖 ,𝑔 ′′

1
 ,  (IV. 19c) 

 

𝑀𝑖,𝑔
13
′′

= 𝜇0 −𝐷
𝑖 ,𝑔𝜒𝑖,𝑔

′

1𝑀
′′

3 − 𝐷𝑖 ,𝑔𝑀′
3𝜒

𝑖 ,𝑔 ′′

1 .  (IV. 19d) 

 

For the 2-nd order nonlinear susceptibilities one obtains 

 

Im 𝜒𝑖,𝑔2𝐵
𝑖,𝑔 𝑡 2 = 

= Im

 
 
 
 
  𝜒𝑖,𝑔2

′
− 𝑖𝜒𝑖,𝑔2

′′
 ×

 𝜇0  𝐻𝑎𝑐 sin 𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′

𝑛=1,3

sin 𝑛𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′′

𝑛=1,3

sin  
𝜋

2
− 𝑛𝜔𝑡   

2

 
 
 
 
 
 

= 
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= 𝑀𝑖,𝑔
22
′

sin 2𝜔𝑡 + 𝑀𝑖,𝑔
22
′′

cos 2𝜔𝑡 + 𝑀𝑖,𝑔
24
′

sin 4𝜔𝑡 + 𝑀𝑖,𝑔
24
′′

cos 4𝜔𝑡 + 

+𝑀𝑖,𝑔
26
′

sin 6𝜔𝑡 + 𝑀𝑖,𝑔
26
′′

cos 6𝜔𝑡 ,       (IV.20), 

 

with 

 

𝑀𝑖,𝑔
22
′

= 𝜇0
2𝜒𝑖,𝑔

′

2  𝐻𝑎𝑐
2 − 2𝐷𝑖 ,𝑔𝐻ac𝑀

′
1 + 𝐷𝑖 ,𝑔2

𝑀′
1 + 𝐷𝑖 ,𝑔2

𝑀′′
1  + 

𝜇0
2𝜒𝑖,𝑔

′′

2  −2𝐷𝑖 ,𝑔2
𝑀′

3𝑀
′′

1 − 2𝐷𝑖 ,𝑔𝐻ac𝑀
′′

3 + 2𝐷𝑖 ,𝑔2
𝑀′

1𝑀
′′

3 ,           (IV.21a) 

 

𝑀𝑖 ,𝑔
22
′′

= 𝜇0
2𝜒𝑖 ,𝑔

′

2
 2𝐷𝑖 ,𝑔2

𝑀′
3𝑀

′′
1 − 2𝐷𝑖 ,𝑔𝐻ac𝑀

′′
3 + 2𝐷𝑖 ,𝑔2

𝑀′
1𝑀

′′
3  

+𝜇0
2𝜒𝑖,𝑔

′′

2
 𝐻𝑎𝑐 − 2𝐷𝑖 ,𝑔𝐻ac𝑀

′
1 + 𝐷𝑖 ,𝑔2

𝑀′
1 − 𝐷𝑖 ,𝑔2

𝑀′′
1  ,   (IV. 21b) 

 

𝑀𝑖,𝑔
24
′

= 𝜇0
2𝜒𝑖,𝑔

′

2  −2𝐷𝑖 ,𝑔𝐻𝑎𝑐𝑀
′
3 + 2𝐷𝑖 ,𝑔2

𝑀′
1𝑀

′
3 + 2𝐷𝑖 ,𝑔2

𝑀′′
1𝑀

′′
3 , (IV. 21c) 

 

𝑀𝑖,𝑔
24
′′

= 𝜇0
2𝜒𝑖,𝑔

′′

2  −2𝐷𝑖 ,𝑔𝐻𝑎𝑐𝑀
′
3 + 2𝐷𝑖 ,𝑔2

𝑀′
1𝑀

′
3 − 2𝐷𝑖 ,𝑔2

𝑀′′
1𝑀

′′
3 ,  (IV. 21d) 

 

𝑀𝑖,𝑔
26
′

= 𝜇0
2𝜒𝑖,𝑔

′

2  𝐷
𝑖 ,𝑔2

𝑀′
3

2
+ 𝐷𝑖 ,𝑔2

𝑀′′
3

2
 ,         (IV. 21e) 

 

𝑀𝑖,𝑔
26
′′

= 𝜇0
2𝜒𝑖,𝑔

′′

2  𝐷
𝑖 ,𝑔2

𝑀′
3

2
− 𝐷𝑖 ,𝑔2

𝑀′′
3

2
 ,                (IV. 21f) 

 
 

and 𝑀𝑖,𝑔
22
′(′′ )

= 𝑀𝑖,𝑔
24
′(′′ )

= 𝑀𝑖,𝑔
26
′(′′ )

= 0 since 𝜒𝑖,𝑔
′

2 = 𝜒𝑖,𝑔
′′

2 = 0. 

For the 3-rd order nonlinear susceptibilities one has 

 

 

Im 𝜒𝑖,𝑔3𝐵
𝑖,𝑔 𝑡 3 = 

= Im

 
 
 
 
  𝜒𝑖,𝑔3

′
− 𝑖𝜒𝑖,𝑔3

′′
 ×

 𝜇0  𝐻𝑎𝑐 sin 𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′

𝑛=1,3

sin 𝑛𝜔𝑡 +  𝐷𝑖,𝑔𝑀𝑛
′′

𝑛=1,3

sin  
𝜋

2
− 𝑛𝜔𝑡   

3

  
 
 
 
 
 

 

 

= 𝑀𝑖,𝑔
31
′

sin 𝜔𝑡 + 𝑀𝑖,𝑔
31
′′

cos 𝜔𝑡 + 𝑀𝑖,𝑔
33
′

sin 3𝜔𝑡 + 𝑀𝑖,𝑔
33
′′

cos 3𝜔𝑡 + 

+𝑀𝑖,𝑔
35
′

sin 5𝜔𝑡 + 𝑀𝑖,𝑔
35
′′

cos 5𝜔𝑡 + 𝑀𝑖,𝑔
37
′

sin 7𝜔𝑡 + 𝑀𝑖,𝑔
37
′′

cos 7𝜔𝑡 + 

𝑀𝑖,𝑔
39
′

sin 9𝜔𝑡 + 𝑀𝑖,𝑔
39
′′

cos 9𝜔𝑡 ,    (IV.22), 

 
with 

 

𝑀𝑖,𝑔
31
′

= 𝜇0
3𝜒𝑖,𝑔

′

3  
3𝐷𝑖 ,𝑔2

𝐻ac𝑀
′′

1
2
− 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′′
1

2

+3𝐷𝑖 ,𝑔3
𝑀′

3𝑀
′′

1
2
− 6𝐷𝑖 ,𝑔3

𝑀′
3𝑀

′′
1𝑀

′′
3

 + 

+𝜇0
3𝜒𝑖,𝑔

′′

3
 

3𝐷𝑖 ,𝑔𝐻ac𝑀
′′

1 − 6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
1𝑀

′′
1 + 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′′

1

−3𝐷𝑖 ,𝑔𝐻ac
2𝑀′′

3 + 6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
1𝑀

′′
3 − 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′′

3

−6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
3𝑀

′′
3 + 6𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3𝑀

′′
3

 ,   (IV.23a) 
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𝑀𝑖,𝑔
31
′′

= 𝜇0
3𝜒𝑖,𝑔

′

3
 

−3𝐷𝑖 ,𝑔𝐻ac
2𝑀′′

1 + 6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
1𝑀

′′
1 − 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′′

1

−3𝐷𝑖 ,𝑔𝐻ac
2𝑀′′

3 + 6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
1𝑀

′′
3 − 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′′

3

−3𝐷𝑖 ,𝑔3
𝑀′

1
2
𝑀′′

3 + 6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
3𝑀

′′
3 − 6𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3𝑀

′′
3

 + 

+𝜇0
3𝜒𝑖,𝑔

′′

3  
−3𝐷𝑖 ,𝑔2

𝐻ac𝑀
′′

1
2
𝜒′′

3
+ 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′′
1

2
𝜒′′

3

+3𝐷𝑖 ,𝑔3
𝑀′

3𝑀
′′

1
2
𝜒′′ 3 + +6𝐷𝑖 ,𝑔3

𝑀′
3𝑀

′′
1𝑀

′′
3𝜒

′′
3

 ,        (IV.23b) 

 

𝑀𝑖,𝑔
33
′

= 𝜇0
3𝜒𝑖,𝑔

′

3  
𝐻ac

3 − 3𝐷𝑖 ,𝑔𝐻ac
2𝑀′

1 + 3𝐷𝑖 ,𝑔2
𝐻ac𝑀

′
1

2
− 𝐷𝑖 ,𝑔3

𝑀′
1

3

+6𝐷𝑖 ,𝑔2
𝐻ac𝑀

′′
1𝑀

′′
3 − 6𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′′
1𝑀

′′
3 − 3𝐷𝑖 ,𝑔3

𝑀′
3𝑀

′′
3

2
 + 

+𝜇0
3𝜒𝑖,𝑔

′′

3
 
−6𝐷𝑖 ,𝑔2

𝐻ac𝑀
′
3𝑀

′′
1 + 6𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3𝑀

′′
1

+𝐷𝑖 ,𝑔3
𝑀′′

1
3

+ 3𝐷𝑖 ,𝑔3
𝑀′

1
2
𝑀′′

3

 ,  (IV.23c) 

 

𝑀𝑖 ,𝑔
33
′′

= 𝜇0
3𝜒𝑖 ,𝑔

′

3
 
6𝐷𝑖 ,𝑔2

𝐻ac𝑀
′
3𝑀

′′
1 − 6𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3𝑀

′′
1

+𝐷𝑖 ,𝑔3
𝑀′′

1
3
− 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′′

3

 + 

+𝜇0
3𝜒𝑖,𝑔

′′

3  

𝐻ac
3 − 3𝐷𝑖 ,𝑔𝐻ac

2𝑀′
1 + 3𝐷𝑖 ,𝑔2

𝐻ac𝑀
′
1

2

−𝐷𝑖 ,𝑔3
𝑀′

1
3
− 6𝐷𝑖 ,𝑔2

𝐻ac𝑀
′′

1𝑀
′′

3

+6𝐷𝑖 ,𝑔3
𝑀′

1𝑀
′′

1𝑀
′′

3 + 3𝐷𝑖 ,𝑔3
𝑀′

3𝑀
′′

3
2

 ,            (IV.23d) 

𝑀𝑖,𝑔
35
′

= 𝜇0
3𝜒𝑖,𝑔

′

3
 
−3𝐷𝑖 ,𝑔𝐻ac

2𝑀′
3 + 6𝐷𝑖 ,𝑔2

𝐻ac𝑀
′
1𝑀

′
3 − 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′

3

+3𝐷𝑖 ,𝑔2
𝐻ac𝑀

′′
3

2
− 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′′
3

2
 + 

𝜇0
3𝜒𝑖,𝑔

′′

3  3𝐷
𝑖 ,𝑔3

𝑀′
3

2
𝑀′′

1 + 3𝐷𝑖 ,𝑔3
𝑀′′

1
2
𝑀′′

3 ,     (IV.23e) 

 

𝑀𝑖,𝑔
35
′′

= 𝜇0
3𝜒𝑖,𝑔

′

3
 −3𝐷𝑖 ,𝑔3

𝑀′
3

2
𝑀′′

1 + 3𝐷𝑖 ,𝑔3
𝑀′′

1
2
𝑀′′

3 + 

𝜇0
3𝜒𝑖,𝑔

′′

3
 
−3𝐷𝑖 ,𝑔𝐻ac

2𝑀′
3 + 6𝐷𝑖 ,𝑔2

𝐻ac𝑀
′
1𝑀

′
3 − 3𝐷𝑖 ,𝑔3

𝑀′
1

2
𝑀′

3

−3𝐷𝑖 ,𝑔2
𝐻ac𝑀

′′
3

2
+ 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′′
3

2
 ,       (IV.23f) 

 

𝑀𝑖,𝑔
37
′

= 𝜇0
3𝜒𝑖,𝑔

′

3  3𝐷
𝑖 ,𝑔2

𝐻ac𝑀
′
3

2
− 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3

2
 + 3𝐷𝑖 ,𝑔3

𝜇0
3𝜒𝑖,𝑔

′′

3
𝑀′′

1𝑀
′′

3
2
, (IV.23g) 

 

𝑀𝑖,𝑔
37
′′

= 3𝐷𝑖 ,𝑔3
𝜇0

3𝜒𝑖 ,𝑔
′

3𝑀
′′

1𝑀
′′

3
2

+ 𝜇0
3𝜒𝑖 ,𝑔

′′

3  3𝐷
𝑖 ,𝑔2

𝐻ac𝑀
′
3

2
− 3𝐷𝑖 ,𝑔3

𝑀′
1𝑀

′
3

2
 , ( IV.23h) 

 

𝑀𝑖,𝑔
39
′

= −𝐷𝑖 ,𝑔3
𝜇0

3𝜒𝑖,𝑔
′

3
𝑀′

3
2

+ 𝐷𝑖 ,𝑔3
𝜇0

3𝜒𝑖 ,𝑔
′′

3
𝑀′′

3
2
,  (IV.23i) 

 

𝑀𝑖,𝑔
39
′′

= 𝐷𝑖 ,𝑔3
𝜇0

3𝜒𝑖,𝑔
′

3𝑀
′′

3
2
− 𝐷𝑖 ,𝑔3

𝜇0
3𝜒𝑖,𝑔

′′

3𝑀
′
3

2
.       (IV.23l) 

 

By considering the Eqs. (IV.18), (IV.20) and (IV.22), the inter- and intragranular 

magnetizations can be written as 

 

𝑀 𝑡 =  𝑀𝑖,𝑔
11
′

+ 𝑀𝑖,𝑔
31
′
 sin 𝜔𝑡 +  𝑀𝑖,𝑔

11
′′

+ 𝑀𝑖,𝑔
31
′′
 cos 𝜔𝑡 + 

+ 𝑀𝑖,𝑔
13
′

+ 𝑀𝑖,𝑔
33
′
 sin 3𝜔𝑡 +  𝑀𝑖,𝑔

13
′′

+ 𝑀𝑖,𝑔
33
′′
 cos 3𝜔𝑡 + 



73 
 

 𝑀𝑖,𝑔
35
′
 sin 5𝜔𝑡 + 𝑀𝑖,𝑔

35
′′

cos 5𝜔𝑡 + 𝑀𝑖,𝑔
37
′

sin 7𝜔𝑡 + 𝑀𝑖,𝑔
37
′′

cos 7𝜔𝑡 + 

𝑀𝑖,𝑔
39
′

sin 9𝜔𝑡 + 𝑀𝑖,𝑔
39
′′

cos 9𝜔𝑡 .    (IV.24) 

 

The Eq. (IV.24) indicates that demagnetizing fields from the first and third harmonics of 

the inter- and intragranular magnetic responses produce not only harmonics with 

frequencies 𝜔 and 3𝜔, but also additional harmonics with frequencies 5𝜔, 7𝜔 and 9𝜔. 

which are the result of the so called intermodulation distortion (IMD) phenomenon of the 

input demagnetizing fields. In general, these additional harmonics have to be taken into 

account in the analysis of the AC magnetic response.  

By generalizing the Eq. (IV.24) to the case of first 𝑁 2  (𝑁 even) odd magnetization 

harmonics as the response to the applied field and to the demagnetizing fields arising 

from the first  𝑁 − 𝑀 2  (𝑀 even) odd magnetization harmonics, one obtains 

 

𝑀 𝑡 =   𝑀𝑖
𝑛
′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′  sin 𝑛𝜔𝑡 +  𝑀𝑖

𝑛
′′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′′ cos 𝑛𝜔𝑡 𝑛=1,3,…,𝑁−1  ,  (IV.25) 

 

where the 𝑀𝑖,𝑔
𝑛
′

(𝑇) and 𝑀𝑖,𝑔
𝑛
′′

(𝑇) are the in-phase and out-of-phase components, 

respectively, of the inter- and intragranular magnetizations with respect to the external 

applied AC field, i.e.  

 

𝑀𝑛
𝑖,𝑔 ′

=
1

𝜋
 𝑀𝑖 𝑡 sin 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,         (IV.26a) 

 

𝑀𝑛
𝑖,𝑔 ′′

=
1

𝜋
 𝑀𝑔 𝑡 cos 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,          (IV.26b) 

 

and 

𝑀𝑖,𝑔 𝑡 = Im  𝜇0𝜒𝑛
𝑖,𝑔
 

𝐻𝑎𝑐 𝑒
𝑖𝜔𝑡 +

𝐷𝑖,𝑔   
𝑀𝑚

′ 𝑒𝑖𝑚𝜔𝑡 +

𝑖𝑀𝑚
′′ 𝑒−𝑖𝑚𝜔𝑡

 𝑚=1,3,..,,𝑁−1−𝑀
 

𝑛

𝑛=1,,3,…,,𝑁−1  .  (IV.27) 

 

IV.3 Separation of the inter- and intragranular AC susceptibilities: the 

“magnetization-field (M-H)” equations 

By equating like terms in both sides of the Eq. (IV.25) yields 

 

𝑀𝑛
′ =  𝑀𝑛

𝑖 ′(𝑇) + 𝑘𝑑𝑛
𝑔𝑀𝑛

𝑔 ′
(𝑇) , 𝑛 = 1, 3, … , 𝑁 − 1 − 𝑀,   (IV.28a) 

 

𝑀𝑛
′ = Δ𝑀𝑛

′ +  𝑀𝑛
𝑖 ′(𝑇) + 𝑘𝑑𝑛

𝑔𝑀𝑛
𝑔 ′

(𝑇) , 𝑛 = 𝑁 −𝑀 + 1,𝑁 − 𝑀 + 2,… ,𝑁 − 1, (IV.28b) 



74 
 

 

𝑀𝑛
′′ =  𝑀𝑛

𝑖 ′′ (𝑇) + 𝑘𝑑𝑛
𝑔𝑀𝑛

𝑔′′
(𝑇) , 𝑛 = 1, 3,… ,𝑁 − 1 −𝑀,           (IV.28c) 

 

𝑀𝑛
′ = Δ𝑀𝑛

′′ +  𝑀𝑛
𝑖 ′′ (𝑇) + 𝑘𝑑𝑛

𝑔𝑀𝑛
𝑔 ′′

(𝑇) , 𝑛 = 𝑁 −𝑀 + 1,𝑁 − 𝑀 + 2,… ,𝑁 − 1, (IV.28d) 

 

where we have included the additional contributions to the magnetization harmonics 

∆𝑀𝑛
′  𝑇  and ∆𝑀𝑛

′′  𝑇  for 𝑛 = 5,7,9 due to the intermodulation of the input fields.  

Since the coefficients 𝑀𝑛
𝑖,𝑔 ′

(𝑇) and 𝑀𝑛
𝑖,𝑔 ′′  𝑇 , defined from the Eqs. (IV.26a)-(IV.26b) 

and (IV.27), are function of the effective magnetic field inductions acting on the sample’s 

and grains’s surfaces, the Eqs. (IV.28a)-(IV.28d) achieve a system of field-magnetization 

equations which are 𝑁 linear equations for the set of variables given by the 2 𝑁 −𝑀  

susceptibilities harmonics parts 𝜒𝑖,𝑔1

′
, 𝜒𝑖,𝑔3

′
, … , 𝜒𝑖,𝑔𝑁−1−𝑀

′
 and 

𝜒𝑖,𝑔1

′′
, 𝜒𝑖,𝑔3

′′
, … , 𝜒𝑖,𝑔𝑁−1−𝑀

′′
, and the 𝑀 magnetization harmonics components 

Δ𝑀𝑁−𝑀+1
′ , Δ𝑀𝑁−𝑀+2

′ , … , Δ𝑀𝑁−1
′  and Δ𝑀𝑁−𝑀+1

′′ , Δ𝑀𝑁−𝑀+2
′′ , … . , Δ𝑀𝑁−1

′′  . 

Then, starting from these measured magnetization harmonics components 𝑀𝑛
′  and 𝑀𝑛

′′ , 

the harmonics of the inter- and intragranular nonlinear susceptibilities and the additional 

contributions to the magnetization harmonics due to the intermodulation of the input 

fields can be determined by solving the system of equations (IV.28a)-(IV.28d) if 

additional 𝑁 −𝑀 equations are considered. In fact, these additional 𝑁 −𝑀 equations can 

be given by the theoretical expressions of the components of the susceptibilities first 

harmonic parts 𝜒𝑖,𝑔1

′
 and 𝜒𝑖,𝑔1

′′
, for different flux dynamical regimes governing the 

penetration of magnetic flux inside the individual grains and the intergranular links. 

These expressions have been discussed in the chapter II for the main models describing 

the AC magnetic susceptibility of superconducting sample. In particular, the most general 

relaxational model can be considered which depends on the characteristic flux relaxation 

time 𝜏 and several dynamical and statistical parameters[11-16]. In fact, for the two 

processes of flux relaxation inside the intergranular contacts and the individual grains, 

respectively, the real and imaginary parts of the AC susceptibility first harmonics are 

given by  

 𝜒𝑖,𝑔1

′
= Im

 
 

 
−1 +

1

 1+ 𝑖𝜔𝜏𝑖,𝑔 
𝛼𝑖,𝑔

 

𝛽𝑖,𝑔

 
 

 
,        (IV.29a) 

𝜒𝑖,𝑔1

′′
= Re

 
 
 

 
 

1

 1+ 𝑖𝜔𝜏
𝜏𝑖,𝑔

 
𝛼𝑖,𝑔

 

𝛽𝑖,𝑔

 
 
 

 
 

,                  (IV.29b) 
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where 𝜏𝑖  and 𝜏𝑔  are the inter- and intragranular characteristic relaxation times, with 𝛼𝑖,𝑔  

and 𝛽𝑖,𝑔  (both varying in the range  0,1 ) describing the distribution of the times 𝜏𝑖,𝑔  

around their spatial average values (nonlocality) and the asymmetry of the frequency 

spectrum as a nonlinear effect (nonlinearity), respectively. From the Eq. (IV.29b) the 

imaginary parts of fundamental susceptibilities have a maximum at a given frequency 𝜈 

for 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔  given by 

 

𝜏𝑖,𝑔 =  
sin  

𝜋𝛼𝑖,𝑔

2 𝛽 𝑖,𝑔+1 
 

sin  
𝜋𝛼𝑖,𝑔𝛽 𝑖,𝑔

2 𝛽 𝑖,𝑔+1 
 

 

1

𝛼𝑖,𝑔

 2𝜋𝜈 −1.               (IV.30) 

 

As an example, we consider the case 𝑁 = 10, that is the case of the magnetic response 

containing the first 𝑁 2 = 5 odd in-phase harmonics 𝑀1
′ , 𝑀3

′ , 𝑀5
′ , 𝑀7

′ , 𝑀9
′  and out-of-

phase harmonics 𝑀1
′′ , 𝑀3

′′ , 𝑀5
′′ , 𝑀7

′′ , 𝑀9
′′ , as the response to the applied field and the 

demagnetizing fields arising from the first (𝑁 −𝑀) 2 = 2 (𝑀 = 6) magnetization 

harmonics components 𝑀1
′ , 𝑀3

′  and 𝑀1
′′ , 𝑀3

′′  governed by the nonlinear susceptibilities 

harmonics parts 𝜒𝑖,𝑔1

′
, 𝜒𝑖,𝑔3

′
 and 𝜒𝑖,𝑔1

′′
, 𝜒𝑖,𝑔3

′′
. In this case, the Eqs. (IV.28a)-(IV.28d) 

reduce to 

 

𝑀𝑛
′ =  𝑀𝑖

𝑛
′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′
 , 𝑛 = 1,3,     (IV.31a) 

 

𝑀𝑛
′ =  Δ𝑀𝑛

′ + 𝑀𝑖
𝑛
′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′
 ,  𝑛 = 5,7,9,           (IV.31b) 

 

𝑀𝑛
′′ = 𝑀𝑖

𝑛
′′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′′

, 𝑛 = 1,3,       (IV.31c) 

 

𝑀𝑛
′′ =  Δ𝑀𝑛

′′ + 𝑀𝑖
𝑛
′′

+ 𝑘𝑑𝑛
𝑔𝑀𝑔

𝑛
′′
 , 𝑛 = 5,7,9,             (IV.31d) 

 

with the coefficients 𝑀𝑖,𝑔
𝑛
′

 and 𝑀𝑖,𝑔
𝑛
′′

 given by the Eqs. (IV.26a)-(IV.26b) and (IV.27) in 

terms of the variables 𝜒𝑖1
′

, 𝜒𝑖3

′
, 𝜒𝑖1

′′
, 𝜒𝑖3

′′
, and 𝜒𝑔1

′ , 𝜒𝑔3
′ , 𝜒𝑔1

′′ , 𝜒𝑔3
′′

, and 

Δ𝑀5
′ , Δ𝑀7

′ , Δ𝑀9
′ , Δ𝑀5

′′ , Δ𝑀7
′′ , Δ𝑀9

′′ . The solution of the system of equations (IV.31a)- 

(IV.31d), together with the Eqs. (IV.29a) and (IV.29b) for 𝜒𝑖,𝑔1

′
 and 𝜒𝑖,𝑔1

′
, allows one to 

determine the intrinsic inter- and intragranular AC susceptibilities harmonics taking into 

account the demagnetizing effects.  
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IV.3.1 Quasi-linear approximation of the magnetization-field equations 

In general, the intermodulation distortion increases with the amplitude of the exciting 

effective fields and it eventually swamps the magnetic response. For sufficiently low 

amplitudes of the field one can neglect the effect of the intermodulation distortion with 

respect to the intrinsic magnetic response in the measured signal. In fact, this corresponds 

to neglect the mixed terms in the 𝑛-th power of the effective field in right-side of the Eq. 

(IV.27), which reduces to 

 

𝑀𝑖 𝑡 = Im  𝜇0𝜒𝑛
𝑖  

 𝐻𝑎𝑐 𝑒
𝑖𝜔𝑡  𝑛 +

  
 𝐷𝑖𝑀𝑚

′ 𝑒𝑖𝑚𝜔𝑡  𝑛 +

 𝑖𝐷𝑖𝑀𝑚
′′ 𝑒𝑖𝑚𝜔𝑡  𝑛

 𝑚=1,3,..,,𝑁−1−𝑀

 𝑛=1,,3,…,,𝑁−1  ,  (IV.32a) 

𝑀𝑔 𝑡 = Im  𝜇0𝜒𝑛
𝑔
 

 𝐻𝑎𝑐 𝑒
𝑖𝜔𝑡  𝑛 +

  
 𝐷𝑔𝑀𝑚

′ 𝑒𝑖𝑚𝜔𝑡  𝑛

+ 𝑖𝐷𝑔𝑀𝑚
′′ 𝑒𝑖𝑚𝜔𝑡  𝑛

 𝑚=1,3,..,,𝑁−1−𝑀

 𝑛=1,,3,…,,𝑁−1  .(IV.32b) 

 

By inserting the Eqs. (IV.32a) and (IV.32b) into the Eqs. (IV.26a) and (IV.26b) one can 

calculate the coefficients 𝑀𝑖,𝑔
𝑛
′

 and 𝑀𝑖,𝑔
𝑛
′′

 which enter the Eqs. (IV.28a)-(IV.28d).  

The Eqs. (IV.32a) and (IV.32b) correspond to consider the inter- and intragranular 

magnetization as additions of nonlinear magnetic responses to effective magnetic fields 

given by the sum of the applied field and the demagnetizing fields arising from the in-

phase and out-of-phase sample magnetization acting on the sample’s and grains’s 

surfaces, respectively. Since the superposition principle results partially applied, we refer 

to this situation as the “quasi-linear” approximation of the general calculation of the inter- 

and intragranular AC susceptibilities. 
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Chapter V 

Analysis of the temperature dependent AC magnetic response  

of the FeSe0.5Te0.5 granular sample  

 

In order to probe the method described in the previous chapter for the interpretation of 

the AC magnetic response of a superconducting granular system, the AC magnetization 

first and higher harmonics relative to a FeSe0.5Te0.5 granular sample acquired by means of 

the AC susceptibility technique have been analyzed[1]. In fact, Fe-based superconductors 

are very suitable for the investigation of the effects of the flux dynamical regimes in the 

AC magnetic response since, due to a high degree of quenched disorder which 

corresponds to a high density of pinning sites, the relaxation of magnetic flux is strongly 

affected by thermally activated depinning of vortices[2-4]. The existence of leading 

thermally activated mechanisms of flux motion produces a frequency dependence of the 

AC magnetic response of these materials, which can be powerfully investigated by means 

of the AC measurements[13-157]. Moreover, from an applicative point of view, these 

superconducting compounds are very interesting especially since their properties induce 

large thermal fluctuations and depressed grain boundary superconductivity and they 

exhibit several characteristics similar to cuprate high-𝑇𝑐 superconductors being very 

useful also for understanding the superconductivity mechanism and flux penetration 

inside cuprate compounds. 

FeX superconducting compounds, with X = As, P, S, Se, o Te, belong to the so-called 

11 family for the 1:1 ratio of the two elements. In particular, the Tellurium in the FeSe 

base compound has been found to improve the superconductivity. In fact, 𝑇𝑐  of               

FeSe1-xTex was found to be 14-20 K[1,5-12]. In this chapter we will analyze the 

temperature dependent AC magnetic response of a FeSe0.5Te0.5 granular sample in form of 

a slab acquired by using the AC insert of a 9 T Quantum Design PPMS. The sample was 

prepared by a multi-step process necessary to obtain dense polycrystals[6]. A preliminary 

magnetic characterization was also performed by means of hysteresis loops and 

temperature dependent magnetization measurements in DC field[1]. Then, the AC 

magnetic response fundamental and higher harmonics of the sample were measured by 

applying magnetic fields parallel to the sample’s broader surface, at different AC field 

frequencies (𝜈 = 107, 1077, 5385, 9693 Hz) and amplitudes 

(𝜇0𝐻𝑎𝑐 =  0.05, 0.1, 0.2, 0.4, 0.8, 1.2 mT), both in absence and in presence of a DC field 

(𝜇0𝐻𝑑𝑐 = 1,3,5,7,9 T). 

The results of AC measurements will be first analyzed by using the method described in
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the Chapter III. In fact, when the inter- and intragranular contributions to the temperature 

dependent magnetic response of a granular system are distinguishable, the method of 

analysis of the magnetic response of a homogeneous sample is typically used to interpret 

the two magnetic contributions. However, this kind of approach is not valid in presence 

magnetic interaction between the inter- and intragranular magnetic responses due to not 

negligible demagnetizing effects which produce effective magnetic fields acting on the 

sample’s and grains’s surfaces different from the applied one.  

Then, in second part of this chapter, the AC magnetic response of the FeSe0.5Te0.5 

granular sample will be analyzed by using the method of analysis introduced in the 

previous chapter, which takes into account the existence of demagnetizing effects and 

allows one to determine the intrinsic AC susceptibility of the intergranular links and of 

the grains in the whole range of measuring temperature, in order to extract the 

superconducting  parameters and flux regimes governing the AC response as function of 

the external field parameters for the inter- and intragranular volume fractions. 

 

 

V.1 Preliminary DC characterization of the FeSe0.5Te0.5 granular sample 

The DC magnetic characterization of the investigated FeSe0.5Te0.5 sample has been 

preliminarily performed in order to extract some information which can be useful for the 

analysis of the AC magnetic response of the sample. The DC magnetic characterization 

has been made by means of the same measurements system used for AC susceptibility 

acquisition and described in the Chapter II. In fact, by moving the sample relative to the 

pick-up coil in a constant DC field parallel to the sample’s broader surface, the 

temperature and field-dependent DC magnetization of the sample can be detected by the 

voltage induced in the pick-up coil due to the moving sample’s magnetic moment.  

Temperature dependent magnetization measurements were firstly performed in the zero-

field cooling (ZFC) mode, with a magnetic DC field 𝐻𝑑𝑐  applied parallel to the sample 

surface. In fact, this curve, reported in the Fig. V.1a for 𝜇0𝐻𝑑𝑐 = 10 mT, shows the 

characteristic behaviour of a superconducting sample with a transition from the 

diamagnetic state to the normal state with increasing temperature. The superconducting 

transition temperature 𝑇𝑐 ≈ 14 K was estimated as the temperature of the onset of the 

superconducting transition. This value of 𝑇𝑐  is in full agreement with those obtained by 

electrical resistivity measurements on polycrystalline samples and resistivity, magnetic 

susceptibility and heat-capacity measurements on single crystals of the same batch 

compound[6]. Moreover, the demagnetizing factor of the whole sample geometry has
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Figure V.1 (a) Experimental curves of the temperature dependent DC magnetization of the FeSe0.5Te05. 

sample measured in the zero-field cooling (ZFC) mode, and in parallel field, with the inset showing an 

enlargement of the superconducting transition and 𝑇𝑐~14 K. (b) Experimental curves of the magnetic 

hysteresis loop in parallel field at 𝑇 < 𝑇𝑐 , (□) due to the superconducting and ferromagnetic phase, and (○) to 

the superconducting phase only[1]. The inset shows the magnetic loop measured above 𝑇𝑐 . 

 

 

been estimated from the low temperature magnetization value. In fact, an excess of              

≈ 2 mT has been measured in the magnetic response at the lowest measured temperature 

𝑇 =  5 K, corresponding to a demagnetizing factor 𝐷 ≈ 0.2 according to the Eq. (II.29).  

This value of the demagnetizing factor results slightly smaller than the value reported in 

literature as calculated for the sample’s geometry[16,17]. This can be ascribed to the not-

fully completed diamagnetic transition at 𝑇 =  5 K. 

The DC characterization of the FeSe0.5Te0.5 sample was completed by measuring the 

magnetic hysteresis loops with the field applied parallel to the broader sample surface, at 

𝑇 < 𝑇𝑐  and 𝑇 > 𝑇𝑐 , reported in the Figure V.1b. This curve shows the superconducting 

hysteresis loop exhibiting the characteristic shape of a type II superconductor, with also a 

slight tilt suggesting the existence of a ferromagnetic phase along with the 

superconducting one as confirmed by the magnetic loop measured above 𝑇𝑐  and reported 

in the inset of the Fig. V.1b. Then, the ferromagnetic contribution has been subtracted by 

the 𝑀(𝐻) curve measured below 𝑇𝑐  in order to obtain the loop due to the superconducting 

phase only. From this loop, within the Bran critical state model, an estimation of the 

critical current density in the plane perpendicular to the magnetic applied field direction 

has been extracted as[18] 𝜇0𝑗𝑐  ~20∆𝑀(𝜇0𝐻𝑑𝑐 )/𝑡, where t is the sample thickness and 

∆𝑀(𝐻𝑑𝑐 ) is the difference between the volume magnetization in the upper 
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(demagnetization) and in the lower (magnetization) branches of the loop. The zero field 

value 𝜇0𝑗𝑐  ~3 × 103   A/cm
2
 obtained at 𝑇 =  4.4 K is consistent with the values 

typically found in FeSe0.5Te0.5 polycrystals by using transport measurements and 

corresponding to the intergranular contribution[6].  

 

 

V.2 Analysis of the temperature dependent AC magnetic response first 

harmonic 

The curves of the temperature dependent AC magnetization real part 𝑀′
1(𝑇) and 

imaginary part 𝑀′′
1(𝑇), measured on the FeSe0.5Te0.5 sample in absence of DC field, at a 

fixed AC field amplitude and different frequencies, are reported in the Fig. V.2a and 

V.2b, respectively. The corresponding curves measured at a fixed AC field amplitude and 

frequencies, with varying the DC field, are reported in the Figs. V.2c and V.2d. 

Although the curves of 𝑀′
1(𝑇) show a single step diamagnetic transition, their 

temperature derivatives, not shown here, exhibit two maximums at the inter- and 

intragranular transitions. In the corresponding curves of 𝑀′′
1(𝑇) two peaks appear  which 

are associated with the maximum dissipation inside the sample, confirming the 

electromagnetic granularity of the sample. As described in the previous chapter, the peak 

at higher temperature and the peak at lower temperature in the 𝑀′′
1(𝑇) curves can be 

associated to the maximum dissipation occurring when the magnetic flux reaches the 

center of the individual grains and of the intergranular links[19-22].  

The curves of the Figs. V.2a and V.2c exhibit a dependence on the AC and DC field 

amplitude, with both the inter- and intragranular steps to the diamagnetic transition in the 

𝑀′
1(𝑇) curve shifting towards lower temperatures and becoming broader with increasing 

the fields, as expected in the critical state models due to the effect of the magnetic field 

which tends to destroy the superconductivity[23-26]. However, this coincides with a shift 

towards lower temperatures and a raise of both peaks in the 𝑀′′
1(𝑇) curves in the Figs. 

V.2b and V.2d, indicating that full penetration of the field inside both the sample and the 

individual grains can occur in correspondence to stronger pinning that is at lower 

temperatures. This suggests the existence of nonlinear flux dynamical regimes governing 

the AC responses in both the intergranular links and the individual grains. Moreover, 

although the curves of 𝑀′
1(𝑇) are not dependent on the AC field frequency as shown in 

the Fig. V.3a, the existence of a frequency dependence is more evident in the curves of 

𝑀′′
1(𝑇) in the Fig. V.3b where both peaks move to higher temperature and raise with 

increasing frequency suggesting the existence of creep phenomena In fact, the existence  

of flux creep phenomena are compatible with the above AC field [26,27]. 
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Figure V.2 Experimental curves of the 𝑀′
1(𝑇) and 𝑀′′

1(𝑇) curves of the FeSe0.5Te0.5 sample: (a), (b) plots 

show the 𝜇0𝐻𝑎𝑐  dependence of 𝑀′
1(𝑇) and 𝑀′′

1(𝑇), respectively, in absence of DC field and at a fixed AC 

frequency with the vertical line indicating (a) the critical temperature determined as the onset temperature of 

the transition in the 𝑀′
1(𝑇) curves and (b) the (soild) intergranular and (dashed) intragranular temperatures of 

the peaks in the 𝑀′′
1(𝑇) curves; (c), (d) plots show the 𝑀′

1(𝑇) and 𝑀′′
1(𝑇) curves at fixed AC field 

amplitude and frequency, and with varying the superimposed DC field, with the horizontal line indicating the 

transition to the normal state[1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.3 Experimental curves of (a) 𝑀′
1(𝑇). and (b) 𝑀′′

1(𝑇) of the FeSe0.5Te0.5 sample in absence of a DC 

field and at a fixed AC field amplitude, with varying the frequency[1]. 
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V.2.1 Estimation of the superconducting critical temperatures 𝑻𝒄
𝒊,𝒈

and fields 𝑯𝒄
𝒊,𝒈

 

When cooling the sample the grains are expected to become superconducting first, 

while on cooling the sample further a change in the diminution rate of the sample 

magnetization is expected to occur when locking of the order parameter phases in 

different grains is reached[28]. Then, the inter- and intragranular critical temperatures 𝑇𝑐
𝑖  

and 𝑇𝑐
𝑔

 can be extracted from the onset and from the kink, respectively, of the 

temperature derivative of the 𝑀1
′ (𝑇) curve.  

These critical temperatures for the FeSe0.5Te0.5 sample have been obtained, with varying 

the AC field amplitude and the DC field, from the analysis of the 𝑀1
′ (𝑇) curve in the  

Figs. V.2a and V.2b, respectively. This allowed us to determine the 𝑇-𝐻 critical lines for 

both the inter- and intragranular volume fractions of the sample, shown in the Figs. V.4a 

and V.4b. Both the 𝜇0𝐻𝑎𝑐 (𝑇𝑐
𝑖,𝑔

) and 𝜇0𝐻𝑎𝑐 (𝑇𝑐
𝑖,𝑔

) curves exhibit an upward curvature at 

lower temperature which cannot be described neither within the dirty one-gap 

superconductors WHH[29] model nor by power law expressions summarized in the 

Chapter I. In fact, an enhancement of the upper critical field at low temperature has been 

observed in Fe-based superconductors[6,12,30-33] and in the bismuth-oxysulfide layered 

compound Bi4O4S3 analyzed in the Chapter III.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.4 Plot of the temperature dependence of the (black) inter- and (red) intragranular upper critical 

fields for the FeSe0.5Te05 sample, constructed by taking (a) the critical temperatures 𝑇𝑐
𝑖,𝑔

 and the 

corresponding value of 𝜇0𝐻𝑑𝑐  from the curves in the Fig. V.3c and (b) the critical temperatures 𝑇𝑐
𝑖,𝑔

 and the 

corresponding value of 𝜇0𝐻𝑎𝑐  from the curves in the Fig. V.3a. The lines indicate the fit of the data within the 

dirty two-gap theory. The inset show an enlargement at low temperature[1]. 
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As for such systems, the curves of 𝜇0𝐻𝑎𝑐 (𝑇𝑐
𝑖,𝑔

) and 𝜇0𝐻𝑑𝑐 (𝑇𝑐
𝑖,𝑔

) for the FeSe0.5Te0.5 

sample shown in the Fig. V.4 have been described within the theory of dirty two-gap 

superconductivity discussed in the Chapter II. In particular, we have found the diffusivity 

parameters 𝜂𝑖 ≈ 10−5, 𝜆𝑖11 ≈ 0.55, 𝜆𝑖22 ≈ 1, 𝜆𝑖12 ≈ 1, 𝜆𝑖21 ≈ 1.1 and 𝜂𝑔 ≈ 10−5, 

𝜆𝑔11 ≈ 𝜆𝑔22 ≈ 0.3, 𝜆𝑔12 ≈ 𝜆𝑔21 ≈ 0.8. It is worth noting that in absence of DC field the 

𝜇0𝐻𝑎𝑐 (𝑇𝑐
𝑖,𝑔

) curves can be taken as effective AC field amplitudes determining the 

superconducting transition and so playing the role of effective upper critical fields[1].  

 

 

V.2.2 Estimation of the superconducting critical current densities 𝒋𝒄
𝒊,𝒈

 

In first approximation the temperature dependence of the inter- and intragranular critical 

current densities 𝑗𝑐
𝑖,𝑔

 of a granular sample can be obtained by taking the temperature 𝑇𝑝
𝑖,𝑔

 

of the corresponding dissipation peaks in the 𝑀1
′ (𝑇) curves measured at different AC 

field amplitudes, and the values of the field amplitude. In fact, the plots of 𝐿𝜇0𝑗𝑐
𝑖 and 

𝑐𝜇0𝑗𝑐
𝑔

 as function of the temperature 𝑇𝑝
𝑖,𝑔

, with 2𝐿 the sample width and 2𝑐 the grains 

width, are reported in the Fig. V.5, as extracted from the plots of the Fig. V.4b. As 

expected, the critical current densities decrease with increasing temperature. In particular, 

the plots cannot be goodly described within the power laws discussed in the Chapter II 

and typically describing the temperature dependence of the critical current density for 

different pinning mechanisms in type II superconductors. On the other hand, as found for 

the Bi4O4S3 sample analyzed in the Chapter III, an exponential decay law has been found 

to better describe the temperature dependence of 𝑗𝑐
𝑖,𝑔

. It is worth underlining that, due to 

the effect of pinning, the value of 𝑗𝑐
𝑖,𝑔

 at low temperatures is expected to tend to be lower 

 

 

 

 

 

 

 

 

Figure V.5  Plot of the temperature dependence of (left scale) 𝐿𝜇0𝑗𝑐
𝑖  and (right scale) 𝑐𝜇0𝑗𝑐

𝑔
as function of the 

peak temperatures 𝑇𝑝
𝑖,𝑔

of the FeSe0.5Te05 sample, constructed from the curves of the Fig. V.2b by taking the 

peak temperature and the corresponding value of the AC field amplitude according with the Eq. (III.2). The 

lines are the fit of the data with an exponential decay. 
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than the prediction of the exponential decay. In particular, this trend is still valid at 

𝑇 = 4.5 K, since the value of the intergranular critical current density extrapolated at 

𝑇 = 4.5 K from the curves of 𝐿𝜇0𝑗𝑐
𝑖(𝑇𝑝

𝑖) in the Fig. V.5, 𝜇0𝑗𝑐
𝑖(𝑇) ≈ 2 × 107 A/m

2
, is in 

good agreement with the result obtained from the DC characterization of the FeSe0.5Te0.5 

sample reported above. 

 

 

V.2.3 Estimation of the vortex activation energies 𝑼𝒂
𝒊,𝒈

 

Since the field and frequency behaviours of the 𝑀1
′ (𝑇) and 𝑀1

′′(𝑇) of the FeSe0.5Te05 

sample shown in the Figs. V.2 and V.3 suggest the existence of flux creep phenomena 

governing the AC magnetic response of both the individual grains and the intergranular 

contacts, the Arrhenius law discussed in the Chapter III is expected to be valid[34], i.e. 

 

𝜈 = 𝜈0
𝑖,𝑔
𝑒
− 
𝑈𝑎
𝑖,𝑔

𝑘𝐵𝑇 .     (V.1) 

 

where the activation energy 𝑈𝑎
𝑖,𝑔

 depends on both temperature, and magnetic field and 

driving current, with 𝜈0
𝑖,𝑔

 a constant with dimensions of frequency. 

As described in the Chapter III, the activation energies 𝑈𝑎
𝑖,𝑔

 can be estimated from the 

analysis of the dissipation peaks in the 𝑀1
′′(𝑇) curves by assuming that these peaks occur 

when the relaxation times of the vortices inside the inter- and intragranular volume 

fractions match the inverse of the AC field frequency. In fact, according to the Eq. (V.1), 

the activation energies 𝑈𝑎
𝑖,𝑔

 can be estimated from the slope of the Arrhenius plots of 

ln 𝜈  as function of 1/𝑇𝑝
𝑖,𝑔

 with 𝑇𝑝
𝑖  and 𝑇𝑝

𝑔
 the temperatures of the inter- and 

intragranular peaks in the 𝑀1
′′(𝑇) curves measured at different frequencies. However, it is 

worth underlining that the hypothesis of resonance between the driving AC field and the 

microscopic oscillation of the vortices in the pinning wells requires very high measuring 

frequencies of the field and then it is not always valid. 

The Arrhenius plots for the FeSe0.5Te05 sample in absence of DC field and at different AC 

field amplitudes are shown in the Figs. V.6a and V.6b for the inter- and intragranular 

volume fractions, respectively, as extracted from the curves of 𝑀1
′′(𝑇) measured with 

varying the AC frequency at a fixed AC field amplitude, for different values of the AC 

field amplitude. From these plots, the temperature and AC field amplitude dependences 

of the activation energies have been extracted by taking the intercepts and the slopes of 

the Arrhenius fit lines, respectively. The plots of 𝑈𝑎
𝑖  𝜇0𝐻𝑎𝑐   and 𝑈𝑎

𝑔 𝜇0𝐻𝑎𝑐   are reported 

in the Fig. V.7a. As expected, both the inter- and intragranular energies show a global 
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negative rate with increasing the AC field amplitude due to larger Lorentz force 

governing the vortex motion. However, an anomalous hump appear  in the intermediate 

region of field amplitudes which will be discussed later after analyzing the 

electromagnetic granularity of the sample. Correspondingly, the plot of the intercepts of 

the Arrhenius plots at different AC field amplitudes as function of the slopes, shown in 

the Fig. V.7b, exhibit a possible linear trend. According to the Eq. (III.6), this linear 

dependence implies a linear temperature dependence of 𝑈𝑎  with a law 𝑈𝑎 𝑇 ~1 − 𝑇 𝑇𝑐 . 

y considering the Arrhenius plots at different AC fields, the dependence of 𝑈𝑎  on 𝜇0𝐻𝑎𝑐  

can be also extracted. The curves of 𝑈𝑎(𝜇0𝐻𝑎𝑐 ) at different DC fields are reported in the 

Fig. III.8. The figure shows that 𝑈𝑎  decreases with increasing 𝜇0𝐻𝑎𝑐  with a power law 

𝑈𝑎~ 𝜇0
𝐻𝑎𝑐 

−𝜇
and 𝜇 = 0.4-0.6, expected in the collective flux creep of large flux bundles 

and in agreement with the previous results. 

 

 

 

 

 

 

 

 

 

Figure V.6  The Arrhenius plots of the FeSe0.5Te05 sample ìn absence of DC field for (a) the inter- and (b) the 

intragranular volume fractions of the sample, constructed at different AC field amplitudes from the curves of 

𝑀1
′′(𝑇) measured with varying the AC frequency as in the Fig. V.3b, by taking the temperature of peaks  and 

the corresponding value of the frequency according with the Eq. (V.1). 

 

 

 

 

 

 

 

 

 

Figure V.7 (a) Plot of the activation energies as function of the AC field amplitude extracted as the slopes of 

the Arrhenius plots in the Figs. V.7a, for (black) the inter- and (red) the intragranular volume fractions. (b) 

Plot of the intercepts of the Arrhenius plots as function of the activation energies (slopes). 
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V.3 Analysis of the temperature dependent AC magnetic response third 

harmonic  

The first higher harmonics until the 10-th order of the temperature dependent AC 

magnetization of the FeSe0.5Te05 granular sample have been measured. In particular, since 

the third harmonic is typically investigated among the higher harmonics of the AC 

magnetic response of superconducting samples due to its highest signal intensity, the 

following discussion will concentrate on the analysis of the AC magnetization third 

harmonic of the FeSe0.5Te05 sample in order to extract detailed information about the flux 

dynamics inside the sample. The curves of 𝑀3
′ (𝑇) and 𝑀3

′′(𝑇) for the FeSe0.5Te05  sample 

are reported in the Figs. V.8a and V.8b, respectively, measured in absence of DC field, at 

a fixed AC field frequency and with varying the AC field amplitude, and exhibit a 

dependence on 𝐻𝑎𝑐 . Moreover, nonzero values are present in the curves of 𝑀3
′ (𝑇) for 

𝑇 < 𝑇𝑝 𝑀1
′′  , contrarily to the Bean critical state prediction reported in the Fig. II.4 for a 

slab geometry[35], confirming the existence of flux dynamical regimes governing the AC 

magnetic response[36,37]. 

Due to the electromagnetic granularity of the sample observed in the analysis of the 

magnetic response first harmonic, two contributions are expected to combine in the 

𝑀3
′ (𝑇) and 𝑀3

′′(𝑇) curves of the Figs. V.8a and V.8b. In fact, two large negative peaks are 

visible in the curves of 𝑀3
′  𝑇  in proximity of the temperatures 𝑇𝑝

𝑖,𝑔
 of the peaks in the 

corresponding 𝑀1
′  𝑇  curves. These peaks shift towards lower temperatures and their 

height increases, while a small positive peak tend to appear at lower temperature, with 

increasing the AC field amplitude. On the other hand two negative peaks are visible in the 

curves of 𝑀3
′′ 𝑇 . Moreover, from the analysis of the 𝑀3

′  𝑇  and 𝑀3
′′ 𝑇 curves measured 

in presence of a DC field 𝐻𝑑𝑐 ≫ 𝐻𝑎𝑐  and reported in the Fig. V.8c, the negative peak in 

the 𝑀3
′  𝑇  curve at lower temperature tend to become lower than the negative peak at 

higher temperature and the near positive peak tends to raise with increasing the DC field. 

The field dependence of the curves of both 𝑀3
′  𝑇  and 𝑀3

′′ 𝑇 indicates the existence of 

flux dynamical regimes governing the sample magnetic response, which are in particular 

nonlinear since give evidence also in presence of a DC field 𝐻𝑑𝑐 ≫ 𝐻𝑎𝑐   when the field is 

almost constant[38]. On the other hand, as found for the curves in absence of DC field, an 

evidence of critical state is present in the 𝑀3
′′ 𝑇  curves of the Fig. V.8d that is the raising 

of a small positive peak near the onset temperature of 𝑀3
′  𝑇 [35].  

Finally, we discuss the frequency dependence of the 𝑀3
′  𝑇  and 𝑀3

′′ 𝑇  curves 

measured in absence of DC field at a fixed AC field amplitude, and reported in the Figs. 

V.9a and V.9b, respectively. Here two negative peaks are visible both in the 𝑀3
′  𝑇  

curves at lower frequencies, whose height tends to increase with increasing frequency, 
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while the peak position is almost constant. However, a change in the frequency behavior 

is visible from the curves in the Figs. V.9a and V.9b at higher frequency. In fact, at 

frequency higher than 𝜈 = 1077 Hz the height of the negative peaks in the 𝑀3
′  𝑇  curves 

tend to decrease and the peaks become positive while tend towards higher temperatures 

with increasing frequency. A similar frequency behavior is exhibited by the 𝑀3
′′ 𝑇  curves 

where, however, the peaks remain negative even at the highest frequency. 

Although both the field and frequency behaviours of the curves of the temperature 

dependent sample magnetization third harmonic parts suggest the existence of nonlinear 

flux dynamical regimes governing the measured AC, due to the expected oscillating 

behavior of these curves and because of the electromagnetic granularity of the sample 

which produce temperature dependent effective magnetic fields on the sample’s and 

grains’s surfaces thus affecting the shape of the curves, it is not possible to identify inter- 

and intragranular contributions by using the procedure of comparison of the curves with 

the theoretical results discussed in the chapter II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. V.8 (Left) Plots of the experimental curves of (a) 𝑀3
′ (𝑇) and (b) 𝑀3

′′(𝑇) of the FeSe0.5Te05 sample 

measured in absence of DC field, at a fixed AC frequency with varying the AC amplitude, with the vertical 

lines indicating (a) the temperature of the (solid) intergranular and (dashed) intragranular peaks in the curves 

of 𝑀1
′′(𝑇) in the Figs. V.3b, and (b) the temperature of onset of the 𝑀3

′ (𝑇) curves. (Right) Plots of the 

experimental curves of (c) 𝑀3
′ (𝑇) and (d) 𝑀3

′′(𝑇) measured at fixed AC field amplitude and frequency, with 

varying a strong DC field. 
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Fig. V.9 Plots of the experimental curves of (a) 𝑀3
′ (𝑇) and (b) 𝑀3

′′(𝑇), for the FeSe0.5Te05 sample, measured 

in absence of DC field, at a fixed AC amplitude with varying the AC frequency.  

 

 

V.4 Influence of inter- and intragranular demagnetizing effects on the 

analysis of the AC magnetic response of the FeSe0.5Te05 granular sample 

In the previous analysis of the magnetic response of the FeSe0.5Te05 granular sample, 

demagnetizing effects arising from the geometry of the whole sample and of the 

individual grains have not been considered. Then, several superconducting parameters 

and information about the flux dynamics have been extracted from the analysis of the 

inter- and intragranular contributions to the temperature dependent magnetization of the 

whole sample considered as the response to the applied AC and DC fields. However, due 

to the existence of demagnetizing fields coming from the whole sample and from the 

grains and to their magnetic interaction, the magnetic field induction acting on the 

sample’s and grains’s surfaces may be distorted with respect to the applied fields. Since 

this may produce the existence of temperature dependent effective fields governing the 

magnetic responses of the inter- and intragranular volume fractions of the material, 

respectively, the corresponding temperature dependent actual AC susceptibilities 

harmonics parts, obtained after dividing the whole sample magnetization harmonics to the 

temperature dependent effective fields amplitudes, may be considered. In fact, these 

could be very different from the AC susceptibilities harmonics parts obtained by dividing 

the whole sample magnetization harmonics to the constant applied fields amplitudes. 

In the following the experimental curves of the magnetic response of the FeSe0.5Te05 

granular sample will be analyzed taking into account the existence of demagnetizing 

effects in order to extract the actual superconducting parameters and flux dynamical 

information, and investigate as demagnetizing fields affect their evaluation. At this aim, 
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in the chapter IV we have developed a model for describing the total magnetization of a 

superconducting granular system acquired by means of the AC susceptibility technique in 

terms of the inter- and intragranular magnetic responses together with a numerical 

method, consisting in the solution of the system of Eqs. (IV.28a)-(IV.28b), for 

determining the actual inter-and intragranular AC susceptibilities. 

 

 

V.4.1 Numerical demagnetizing correction of the sample AC magnetic 

response in absence of DC field 

In the following analysis, we will consider the application of the method described in 

the Chapter IV for the case of the sample magnetic response containing the first 𝑁 2 = 5 

odd in-phase harmonics 𝑀1
′ , 𝑀3

′ , 𝑀5
′ , 𝑀7

′ , 𝑀9
′  and out-of-phase harmonics 𝑀1

′′ , 𝑀3
′′ , 𝑀5

′′ , 

𝑀7
′′ , 𝑀9

′′ , as the response to the applied AC field and the demagnetizing fields arising 

from the first (𝑁 −𝑀) 2 = 2 (𝑀 = 6) magnetization harmonics components 𝑀1
′ , 

𝑀3
′  and 𝑀1

′′ , 𝑀3
′′ , governed by the nonlinear susceptibilities harmonics parts 𝜒𝑖,𝑔1

′
, 𝜒𝑖,𝑔3

′
 

and 𝜒𝑖,𝑔1

′′
, 𝜒𝑖,𝑔3

′′
. In this case, the Eqs. (IV.28a)-(IV.28d) reduce to the Eqs. (IV.31a)-

(IV.31d), that are 

 

𝑀𝑛
′ (𝑇) = 𝑀𝑖

𝑛
′

(𝑇) + 𝑘𝑑(𝑇)𝑛𝑔𝑀𝑔
𝑛
′ (𝑇), 𝑛 = 1,3,        (V.2a) 

 

𝑀𝑛
′ (𝑇) = Δ𝑀𝑛

′ (𝑇) + 𝑀𝑖
𝑛
′

(𝑇) + 𝑘𝑑(𝑇)𝑛𝑔𝑀𝑔
𝑛
′ (𝑇),  𝑛 = 5,7,9,    (V.2b) 

 

𝑀𝑛
′′ (𝑇) = 𝑀𝑖

𝑛
′′

(𝑇) + 𝑘𝑑(𝑇)𝑛𝑔𝑀𝑔
𝑛
′′ (𝑇), 𝑛 = 1,3,        (V.2c) 

 

𝑀𝑛
′′ (𝑇) = Δ𝑀𝑛

′′ (𝑇) + 𝑀𝑖
𝑛
′′

(𝑇) + 𝑘𝑑(𝑇)𝑛𝑔𝑀𝑔
𝑛
′′ (𝑇), 𝑛 = 5,7,9,      (V.2d) 

 

where we have considered the dependence on temperature. According to the                      

Eqs. (IV.26a) and (IV.26b), the coefficients 𝑀𝑖,𝑔
𝑛
′

(𝑇) and 𝑀𝑖,𝑔
𝑛
′′
 𝑇  are given by  

 

𝑀𝑛
𝑖,𝑔 ′ 𝑇 =

1

𝜋
 𝑀𝑖 𝑇, 𝑡 sin 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
,                   (V.3a) 

 

𝑀𝑛
𝑖,𝑔 ′′  𝑇 =

1

𝜋
 𝑀𝑔 𝑇, 𝑡 cos 𝑛𝜔𝑡  𝑑𝜔𝑡

2𝜋

0
.        (V.3b) 

 

with 
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𝑀𝑖,𝑔 𝑇, 𝑡 = Im  𝜇0𝜒𝑛
𝑖,𝑔

(𝑇)𝐵𝑖,𝑔 𝑇, 𝑡 𝑛𝑛=1,3  .    (V.4) 

 

 

Here, according to the Eq. (IV.27) the effective fields are given by 

 

𝐵𝑖,𝑔 𝑇, 𝑡 = 𝐻𝑎𝑐 𝑒
𝑖𝜔𝑡 + 𝐷𝑖,𝑔   𝑀𝑚

′ (𝑇)𝑒𝑖𝑚𝜔𝑡 + 𝑖𝑀𝑚
′′ (𝑇)𝑒−𝑖𝑚𝜔𝑡  𝑚=1,3 .    (V.5) 

 

where 𝐷𝑖 = −𝐷 and 𝐷𝑔 = 1 + 𝐷 with 𝐷 the demagnetizing factor of the whole sample 

geometry. Moreover, within the relaxational mode discussed in the Chapter IV, the 

expressions (IV.29a) and (IV.29b) can be used for the temperature dependent real and 

imaginary parts of the fundamental susceptibilities, respectively, i.e.[39-41] 

 

𝜒𝑖,𝑔1

′
 𝜔, 𝑇 = −1 +

1

 1+ 𝑖𝜔𝜏𝑖,𝑔(𝑇) 
𝛼𝑖,𝑔

 

𝛽𝑖,𝑔
,           (V.6a) 

 

𝜒𝑖,𝑔1

′′
(𝜔, 𝑇) =

1

 1+ 𝑖𝜔𝜏𝑖,𝑔(𝑇) 
𝛼𝑖,𝑔

 

𝛽𝑖,𝑔
,                      (V.6b) 

 

where the temperature dependence is given by the temperature dependence of the inter- 

and intragranular flux relaxation times 𝜏𝑖(𝑇) and 𝜏𝑔(𝑇), respectively. 

 

 

V.4.2Temperature dependence of the effective magnetic fields 

From the Eq. (V.5) the temperature dependence of the amplitude of the in-phase and 

out-of-phase components of the effective magnetic fields first and third harmonics are 

given by 

 

𝐵𝑎𝑐 1
𝑖,𝑔 ′ 𝑇 = 𝜇0 𝐻𝑎𝑐 + 𝐷𝑖,𝑔𝑀1

′  𝑇  , 𝐵𝑎𝑐 1
𝑖,𝑔 ′′  𝑇 = 𝐷𝑖,𝑔𝑀1

′′  𝑇  (V.7a) 

 

𝐵𝑎𝑐 3
𝑖,𝑔 ′ 𝑇 = 𝐷𝑖,𝑔𝑀3

′ (𝑇),   𝐵𝑎𝑐 3
𝑖,𝑔 ′′  𝑇 = 𝐷𝑖,𝑔𝑀3

′′  𝑇 .   (V.7b) 

 

These temperature dependences for the applied AC field amplitude 𝜇0𝐻𝑎𝑐 = 0.2 mT and 

frequency 𝜈 = 107 Hz are shown in the Figs. V.10a and V.10b, respectively, as 

calculated from the magnetization curves of the Figs. V.2a and V.8a. It is worth noting 

that the values of the in-phase field 𝐵𝑎𝑐 1
𝑖 ′ 𝑇  acting on the sample’s surface (left scale in 

the Fig. V.10a) are larger than the AC field amplitude 𝜇0𝐻𝑎𝑐  at lower temperature and
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Figure V.10 Temperature dependence of the in-phase and out-of-phase effective magnetic fields first and 

third harmonics amplitudes, acting (a,b) on the sample’s surface and (c,d) on the grains’s surfaces; the curves 

have been calculated with the Eqs. (V.7) and by using the components of the first and third harmonic of the 

sample magnetization 𝑀1
′ (𝑇), 𝑀1

′′ (𝑇) and 𝑀3
′ (𝑇), 𝑀3

′′ (𝑇) reported in the Figs. V.2a and V.8a, respectively, 

for 𝜇0𝐻𝑎𝑐 = 0.2 mT and 𝜈 = 107 Hz. The left scale and the right scale are the in-phase and the out-of-phase 

components of the fields, respectively. 

 

 

tend to 𝜇0𝐻𝑎𝑐  with increasing temperature due to the temperature dependence of the 

demagnetizing field arising from the whole sample in-phase magnetization 𝐷𝑖𝑀1
′  𝑇 . 

However, the values of the field 𝐵𝑎𝑐 1
𝑖 ′ 𝑇  are much larger than the values of the out-of-

phase field 𝐵𝑎𝑐 1
𝑖 ′′  𝑇  (right scale in the Fig. V.10a). Although the effect of this field on 

the in-phase component of the intergranular magnetization 𝑀1
′  𝑇  can be neglected, one 

can be seen from the Eqs. (IV.19) and (IV.23) that it produces a not negligible 

contribution to the out-of-phase component of the magnetization first harmonic 𝑀1
′′  𝑇  

and to both components of the magnetization third harmonic 𝑀3
′  𝑇  and 𝑀3

′′  𝑇 . These 

contributions add to the contributions due to the in-phase and out-of-phase third harmonic 

fields 𝐵𝑎𝑐 3
𝑖 ′ 𝑇  and 𝐵𝑎𝑐 3

𝑖 ′′  𝑇  shown in the Figs. V.10d. 

On the other hand, the values of the in-phase field 𝐵𝑎𝑐 1
𝑔′ 𝑇  acting on the grains’s 

surfaces (left scale in the Fig. V.2c) is zero at low temperature due to the shielding by the 

intergranular currents giving 𝐷𝑔𝑀1
′ = −𝜇0𝐻𝑎𝑐 , and it increases towards 𝜇0𝐻𝑎𝑐  with 

increasing temperature towards the superconducting transition of the sample due to the 
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increase of 𝑀1
′  𝑇 . Unlike the intergranular case, the value of the out-of-phase field 

𝐵𝑎𝑐 1
𝑔′′  𝑇  are not negligible with respect to the values of 𝐵𝑎𝑐 1

𝑔′ 𝑇  in the region of low 

temperature, where 𝐵𝑎𝑐 1
𝑔′ 𝑇 ≈ 0, thus producing not negligible effects on both the first 

and third harmonics of the sample magnetization. 

 

 

V.4.2.1 Temperature dependence of the effective upper critical field  

By taking the inter- and intragranular superconducting critical temperatures 𝑇𝑐
𝑖  and 𝑇𝑐

𝑔
 

estimated from the analysis of the whole sample magnetization first harmonic in the         

Fig. V.2a, and the values of the amplitudes of the effective fundamental AC magnetic 

fields in the Fig. V.10a and V.10c at the temperatures 𝑇𝑐
𝑖  and 𝑇𝑐

𝑔
, respectively, the curves 

𝐵𝑎𝑐 1
𝑖 ′ 𝑇𝑐

𝑖  and 𝐵𝑎𝑐 1
𝑔′ 𝑇𝑐

𝑔
  can be constructed, which play the role of the temperature 

dependent upper critical fields in absence of DC fields[1]. These curves at 𝜈 = 107 Hz 

are reported in the Fig. V.11. As found for the DC 𝐻-𝑇 lines obtained without 

considering demagnetizing effects in the previous analysis, the curves of 𝐵𝑎𝑐 1
𝑖 ′ 𝑇𝑐

𝑖  and 

𝐵𝑎𝑐 1
𝑔′ 𝑇𝑐

𝑔
  have been best described within the dirty two-gap theory of 

superconductivity discussed in the Chapter I[29]. In particular, the intra- and 

interband coefficients have been taken 𝜆12 ≈ 0.6, 𝜆21 ≈ 1 and 𝜆11 = 𝜆22 = 0, and the 

ratio between the hole-band diffusivity and the in-plane electron-band diffusivity 

has been taken 𝜂 ≈ 0.001. These values are different from the values obtained 

without considering demagnetizing effects, while they are more consistent with the 

results reported in literature for the description of the upper critical fields of Fe-

based superconductors especially for weak intraband coupling coefficient[42,43]. 

 

 

 

 

 

 

 

 

 

Figure V.11 Plots of the temperature dependence of the inter- and intragranular effective upper critical AC 

fields for the FeSe0.5Te05 sample in absence of DC fields constructed by taking the transition temperatures 𝑇𝑐
𝑖  

and 𝑇𝑐
𝑔

 from the curves of the Fig. V.2a and the values of the amplitude of the effective AC fields 𝐵𝑎𝑐 1
𝑖 ′ 𝑇𝑐

𝑖  

and 𝐵𝑎𝑐 1
𝑔 ′ 𝑇𝑐

𝑔
  from the Figs. V.10a and V.10c . The lines indicate the fit of the data with the dirty two-gap 

theory described in the Chapter I. The inset is an enlargement in the region of small field amplitudes[1]. 
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V.4.3 Temperature dependence of the flux relaxation times 𝝉𝒊,𝒈 

The first and third harmonics components of the effective magnetic fields governing 

the inter- and intragranular magnetic responses can give different channels of flux 

relaxation inside the intergranular links and the individual grains, respectively. In this 

case, the first order and third order relaxation processes can be detected by means of the 

maximum dissipation peaks in the temperature dependent imaginary parts of the first and 

third harmonics of the sample magnetization, respectively. However, here we are 

interested to the characteristic times 𝜏𝑖,𝑔(𝑇) of the first order process in order to calculate 

the corresponding AC susceptibility harmonics by means of the relaxational model 

expression (V.6a) and (V.6b).  

According to the Eq. (IV.29), the plots of 𝜏𝑖(𝑇) and 𝜏𝑔(𝑇) can be constructed in the 

region of temperatures of the dissipation peaks in the experimental curves of 𝑀1
′′ (𝑇) by 

taking the temperature of the peaks and the value of 𝜏𝑖,𝑔 =  𝑓 𝑖,𝑔 𝜈  with 

 

𝑓 𝑖,𝑔 𝜈 =  
sin 

𝜋𝛼𝑖,𝑔

2 𝛽 𝑖,𝑔+1 
 

sin 
𝜋𝛼𝑖,𝑔𝛽 𝑖,𝑔

2 𝛽 𝑖,𝑔+1 
 

 

1

𝛼𝑖,𝑔

 2𝜋𝜈 −1,       (V.8) 

 

where 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔  are parameters describing the distribution of the relaxation times 

around their spatial average value (nonlocality) and the asymmetry of the frequency 

spectrums as a nonlinear effect (nonlinearity), respectively, and can be taken in the 

interval[0,1][39-41]. Then, by taking the temperatures 𝑇𝑝
𝑖  and 𝑇𝑝

𝑔
 of the peaks in the 

𝑀1
′′ (𝑇) curves measured at different frequencies 𝜈 and the values of 𝑓 𝑖,𝑔 𝜈  for each 

curve, a family of plots 𝜏𝑖(𝑇𝑝
𝑖) and 𝜏𝑔(𝑇𝑝

𝑔
) can be constructed for different values of the 

parameters 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔 , i.e. 

 

𝜏𝑖,𝑔(𝑇𝑝
𝑖,𝑔

)  = 𝑓 𝑖,𝑔 𝜈  2𝜋𝜈 −1.          (V.9) 

 

On the other hand, an universal law can be considered to describe the temperature 

dependence of the times in presence of regimes of thermally activated flux motion. In 

fact, according to the Eq. (III.6), one can take
 

 

𝜏𝑖,𝑔(𝑇) = 𝜏0
𝑖,𝑔
𝑒
𝑈𝑎
𝑖,𝑔

𝑘𝐵𝑇 ,          (V.10) 

 

where 𝜏0
𝑖,𝑔

 are the high temperature limit times, and 𝑈𝑎
𝑖,𝑔

 are the activation energies 

depending on temperature, field and driving current due to the field. In absence of DC
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field, the activation energy can be taken as  

 

𝑈𝑎
𝑖,𝑔

= 𝑈0
𝑖,𝑔
 1 −

𝑇

𝑇𝑐
 
𝑞 𝑖,𝑔

 1 + 𝑝𝑖,𝑔
𝑇

𝑇𝑐−𝑇
  𝑗𝑖,𝑔 𝑗𝑐

𝑖,𝑔  
−𝜇 𝑖,𝑔

, (V.11) 

 

with 𝑈0
𝑖,𝑔

 are the unperturbed pinning energy at zero temperature, and 𝑞𝑖,𝑔  , 𝑝𝑖,𝑔  and 𝜇𝑖 ,𝑔   

characteristic exponents with describe the thermally activated flux flow (taff) and the flux 

creep(fc) regimes. In fact, for 𝑞𝑖,𝑔 = 2 − 𝑛 2 , with 0 < 𝑛 < 3 depending on the 

dimensionality, and 𝑝𝑖,𝑔 = 0, 𝜇𝑖,𝑔 ≈ 0 in the Eq. (V.11), the Eq. (V.10) gives the taff 

time  

𝜏𝑡𝑎𝑓𝑓
𝑖,𝑔

(𝑇) = 𝜏0
𝑖,𝑔
𝑒

𝑈0
𝑖,𝑔

 1−
𝑇
𝑇𝑐

 
𝑞𝑖,𝑔

𝑘𝐵𝑇 ,    (V.12) 

 

where there is not dependence on the driving current . 

On the other hand, for 𝑞𝑖,𝑔 = 𝑝𝑖,𝑔 = 2 − 𝑛 2  in the Eq. (V.10), the Eq. (V.11) gives the 

flux creep (fc) time  

 

𝜏𝑓𝑐
𝑖,𝑔

(𝑇) = 𝜏0
𝑖,𝑔
𝑒

𝑈0
𝑖,𝑔

 1−
𝑇
𝑇𝑐

 
𝑞𝑖,𝑔

 1+𝑞𝑖,𝑔
𝑇

𝑇𝑐−𝑇
  𝑗 𝑖,𝑔 𝑗𝑐

𝑖,𝑔
  

−𝜇 𝑖,𝑔

𝑘𝐵𝑇 ,  (V.13) 

 

Here the dependence on the current density  𝑗𝑖,𝑔 𝑗𝑐
𝑖,𝑔  

−𝜇 𝑖,𝑔

can be taken as 

 𝑗𝑖,𝑔 𝑗𝑐
𝑖,𝑔  

−𝜇 𝑖,𝑔

~ 𝐵𝑎𝑐
𝑖,𝑔

1

′
(𝑇) 

−𝜇 𝑖,𝑔

at 𝑇 = 𝑇𝑝
𝑖,𝑔

 within the Bean critical state model, since the 

maximums of the out-of-phase component of the 𝑀1
′′ (𝑇) curve are expected to occur 

when the field in the center of the sample and of the grains reaches the value of effective 

fields amplitude 𝐵𝑎𝑐
𝑖

1

′
(𝑇) and 𝐵𝑎𝑐

𝑔

1

′
(𝑇)1, respectively[19-21]. In particular, we expect that 

the out-of-phase components of the first harmonic and both components of the higher 

harmonics of the effective fields can be neglected for the calculation of the first order flux 

relaxation times.  

A crossover to the flux creep regime to the taff regime is expected with increasing 

temperature, with a time 

 

 𝜏𝑐𝑡
𝑖,𝑔

(𝑇) = 𝜏𝑓𝑐
𝑖,𝑔 𝑇 + 𝜃 𝑇 − 𝑇𝑐𝑡

∗  𝜏𝑡𝑎𝑓𝑓
𝑖,𝑔

(𝑇),         (V.14) 

 

where 𝜃 is a step-function and 𝑇𝑐𝑡
∗ 𝑖,𝑔  is a creep-taff (ct) crossover temperature. Moreover, 
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the existence of a flux flow regime in proximity of the superconducting transition can be  

also considered with a time 

 

𝜏𝑓𝑓
𝑖,𝑔

(𝑇) = 𝜏0
𝑖,𝑔 𝐵𝑎𝑐

𝑖,𝑔

1

′
(𝑇)

𝐵𝑐2
𝑖,𝑔

(𝑇)
,       (V.15) 

 

where, in absence of DC field, the temperature dependent upper critical fields 𝐵𝑐2
𝑖 (𝑇) and 

𝐵𝑐2
𝑔

(𝑇) can be taken from the effective upper critical AC fields 𝐵𝑐2
𝑖

1

′
(𝑇) and 𝐵𝑐2

𝑔
(𝑇)1

′  

reported in the Fig. V.11.  

Finally, the existence of a regime of parallel between the flux creep channel and the flux 

flow channel (cf) of relaxation can be taken into account by means of a time 

 

 𝜏𝑐𝑓
𝑖,𝑔 𝑇 = 𝜏𝑐𝑓

𝑖,𝑔 𝑇 + 𝜃 𝑇 − 𝑇𝑐𝑓
∗   𝜏𝑓𝑐

𝑖,𝑔
(𝑇)−1 + 𝜏𝑓𝑓

𝑖,𝑔
(𝑇)−1 

−1
,        (V.16) 

 

with 𝑇𝑐𝑓
∗ 𝑖,𝑔

 a creep-parallel crossover temperature.  

By means of a numerical programmed algorithm, the best fits of the plots of 𝜏𝑖(𝑇𝑝
𝑖) and 

𝜏𝑔 𝑇𝑝
𝑔
 , given by the Eq. (V.9), to the universal theoretical expression of the temperature 

dependent relaxation times given by the Eqs. (V.12)-(V.16) have been obtained for each 

couple of values of the parameters 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔  in the range [0,1]. In fact, the criterion of 

minimization of the least squares has been used to determine the values of 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔  

together with the values of dynamical parameters 𝑞𝑖,𝑔  and 𝜏0
𝑖,𝑔

. On the other hand, the 

other parameters 𝑈0
𝑖,𝑔

, 𝜇𝑖 ,𝑔  were preliminarily determined from the fit of the plot of the 

amplitudes of the in-phase components of the effective AC fields first harmonics 𝐵𝑎𝑐
𝑖,𝑔

1

′
 as 

function of the peak temperatures 𝑇𝑝
𝑖,𝑔

 constructed by taking the 𝑇𝑝
𝑖,𝑔

 in the 𝑀1
′′  𝑇  curves 

at different values of the AC field amplitude 𝜇0𝐻𝑎𝑐  in the Fig. V.2b and the values of the 

corresponding amplitudes of the effective AC field 𝐵𝑎𝑐
𝑖,𝑔

1

′
 at 𝑇𝑝

𝑖,𝑔
 in the Figs. V.10a and 

V.10c.  In fact, by inverting the flux creep temperature dependence of the time of the Eq. 

(V.13), yields 

𝐵𝑎𝑐
𝑖,𝑔

1

′
(𝑇𝑝

𝑖,𝑔
) =

 
 
 
 
 
 
𝑈0
𝑖,𝑔
 1−

𝑇𝑝
𝑖,𝑔

𝑇𝑐
 

𝑞𝑖,𝑔

 1+𝑝𝑖,𝑔
𝑇𝑝
𝑖,𝑔

𝑇𝑐−𝑇𝑝
𝑖,𝑔 

𝑘𝐵𝑇𝑝
𝑖,𝑔 ln 

𝜏𝑖,𝑔

𝜏
0
𝑖,𝑔 

 
 
 
 
 
 

1

𝜇𝑖,𝑔

.            (V.17) 

 

Then, by considering possible crossovers from the flux creep regime to the taff and 

parallel regimes with increasing temperature, the Eqs. (V.17) have been used to fit the 
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plot of 𝐵𝑎𝑐
𝑖

1

′
(𝑇𝑝

𝑖) and 𝐵𝑎𝑐
𝑔

1

′
(𝑇𝑝

𝑔
) at temperatures below the crossover temperatures 𝑇𝑐𝑡

∗  and 

𝑇𝑐𝑓
∗ , respectively. This has given the parameters 𝑈0

𝑖,𝑔
, 𝜇𝑖,𝑔  which have been used to fit the 

times plots with the Eqs. (V.12)-(V.16). 

It is worth noting that such kind of determination of all the involved parameters by means 

of independent fits of data has reduced the uncertainty of the fits results. Moreover, the 

parameters 𝑞𝑖,𝑔 , 𝜇𝑖,𝑔 , 𝛼𝑖,𝑔  and 𝛽𝑖,𝑔  can assume few fixed values and then have been 

varied among these quantized values, and this further reduced the uncertainty of the fits 

results. In fact, we have varied the dynamical parameters as 𝑞𝑖,𝑔 = 1 2 , 1, 3 2 , 2 related 

to the system dimensionality, 𝜇𝑖,𝑔 = 1 7 , 3 2 , 7 9  related to the dimensions of the 

creep flux bundles within the collective creep[38] and the relaxational parameters as 

𝛼𝑖,𝑔 = 0.25,0.5,0.75,1, 𝛽𝑖,𝑔 = 0.25,0.5,0.75,1. within the relaxational model. 

As an example, the curves of 𝜏𝑖(𝑇𝑝
𝑖) and 𝜏𝑔(𝑇𝑝

𝑔
) at 𝜇0𝐻𝑎𝑐 = 0.2 mT are shown in the 

Fig. V.12a together with the best fit among the Eqs. (V.12)-(V.16) which was found the 

crossover from the flux creep regime to the taff regime inside both the inter- and 

intragranular volume fractions of the sample. The corresponding plots of 𝐵𝑎𝑐
𝑖,𝑔

1

′
(𝑇𝑝

𝑖,𝑔
) are 

shown in the Fig. V.12b together with the fits to the Eqs. (V.17). The value of parameters 

obtained from all these fit are reported in the TableV.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure V.12 (a) Plots of the temperature dependence of the inter- and intragranular relaxation times for the 

FeSe0.5Te05 sample extracted from the analysis of the 𝑀1
′′ (𝑇) curves of the Fig. V.2b according to the Eq. 

(V.9) together with the fit to the temperature dependence of the time in the case of crossover from the flux 

creep to the taff regime. (b) Plots of the temperature dependence of the amplitude of the in-phase effective 

AC field first harmonic acting on the sample’s and grains’s surfaces extracted from the 𝑀1
′′ (𝑇) curves in the 

Figs. V.10a and V.10c, together with the fit to the Eq. (V.17). 
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Table V.1 Value of parameters involved in the Eqs. (V.10) and (V.12)-(V.16) obtained from the best fit with 

these equations of the plots of 𝜏𝑖(𝑇𝑝
𝑖) and 𝜏𝑔(𝑇𝑝

𝑔
) in the Fig. V.11a. 

 

 

V.4.4 Inter- and intragranular AC susceptibilities first harmonic 

The temperature dependence of the first and third harmonic real and imaginary parts  

of the inter- and intragranular AC susceptibilities have been numerically calculated by 

solving the system of equations (V.2a)-(V.2d), together with the Eqs. (V.3a) and (V.3b) 

for the real and imaginary parts of the fundamental susceptibilities, respectively. In these 

last equations the temperature dependences of the flux relaxation times, preliminarily 

calculated from the analysis discussed above of the experimental curves of 𝑀1
′′  𝑇 , have 

been used.  

The solution of the system of equations (V.2a)-(V.2d) has been performed by means 

of a numerical programmed algorithm. As an example, the curves of 𝜒𝑖,𝑔1

′
(𝑇), 𝜒𝑖,𝑔1

′′
(𝑇) 

and 𝜒𝑖,𝑔3

′
(𝑇), 𝜒𝑖,𝑔3

′′
(𝑇), obtained as solutions of the system at 𝜇0𝐻𝑎𝑐 = 0.2 mT and 

𝜈 = 107 Hz, are reported in the Figs. V.13. In particular, according with the Eqs. (V.3a) 

and (V.3b) are independent of the geometric profile of the grains. The influence of the 

grains geometry on the AC magnetic response will be discussed later. 

The first harmonics curves 𝜒𝑖,𝑔1

′
(𝑇) and 𝜒𝑖,𝑔1

′′
(𝑇), shown in the Figs. V.13a and V.13b, 

respectively, exhibit the typical behaviour expected for superconducting system and 

discussed in the Chapter II. In fact, the inter- and intragranular real parts 𝜒𝑖1
′

(𝑇) and 

𝜒𝑔1
′ (𝑇) exhibit two steps at lower and higher temperatures, respectively, which are the 

inter- and intragranular superconducting critical temperatures 𝑇𝑐
𝑖  and 𝑇𝑐

𝑔
. 

Correspondingly, two peaks appear in the imaginary parts 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) at the 

lower and higher temperatures 𝑇𝑝
𝑖  and 𝑇𝑝

𝑔
, respectively. 

 

 

 

 

Parameter Intergranular Intragranular 

𝑞 3 2  3 2  

𝜇 1 7  1 7  

𝑇𝑐𝑡
∗  11.2 K 12 K 

𝛼 0.25 0.75 

𝛽 0.25 0.75 
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Figure V.13 Temperature dependence of the inter- and intragranular susceptibilities first harmonics (a) real 

and (b) imaginary parts of the FeSe0.5Te05 sample for 𝑎 = 𝑏 and 𝑐 𝑎 = 5 , as obtained by solving the system 

of Eqs. (V.2a)-(V.2d) for the flux dynamical regime of crossover from the flux creep to the taff as found from 

the fit of the plots of 𝜏𝑖(𝑇𝑝
𝑖) and 𝜏𝑔 𝑇𝑝

𝑔
  in the Fig. V.12a, and 𝐵𝑎𝑐

𝑖
1

′
(𝑇𝑝

𝑖) and 𝐵𝑎𝑐
𝑔

1

′
(𝑇𝑝

𝑔
) in the Fig. V.12b. The 

left and right scales refer to inter- and intragranular susceptibilities, respectively. The vertical lines indicate 

the peak temperatures in the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇). 

 

 

4.4.4.1 Temperature dependence of the effective demagnetizing factor 𝒌𝒅 of grains 

The curves of the temperature dependences of the effective demagnetizing factor 𝑘𝑑  

and of the effective penetration depth of the grains 𝜆𝑔 , have been obtained from the 

curves of the intragranular AC susceptibility first harmonic determined by solving the 

system of equations (V.2a)-(V.2d) and shown in the Figs. V.13a and V.13b. In fact, an 

effective penetration depth of the grains as correction of the critical state has been 

calculated from the curves of 𝜒𝑔1
′ (𝑇) and 𝜒𝑔1

′′ (𝑇) as[43-46] 

 

 
𝜆𝑔(𝑇)

𝑎
= 1 −

𝜒𝑔1
′

(𝑇) +
15𝜋

32
𝜒𝑔1

′′
(𝑇)

𝜒𝑔1
′ (0)+

15𝜋

32
𝜒𝑔1

′′ (0)
,         (V.18) 

 

where 2𝑎 is the grains width in the plane perpendicular to the magnetic field direction 

(see the Figs. IV.1 and IV.2). This effective penetration depth has been used to calculate 

the effective demagnetizing factor 𝑘𝑑(𝑇) of the grains introduced in the Chapter IV and 

quantifying the demagnetizing field in the intergranular region due demagnetizing fields. 

The plot of 𝑘𝑑(𝑇) calculated with the Eq. (IV.16) from the curves of the Fig. V.13a and 

V.13b for different values of the 𝑐 𝑎  ratio determining the geometric profile of the grains 

with 𝑎 = 𝑏, are reported in the Fig. V.14a. The corresponding plots of 𝜆𝑔(𝑇) is shown in 
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Figure V.14 Temperature dependence of (a) the effective demagnetizing factor for 𝑎 = 𝑏 and with varying 

the 𝑐 𝑎  ratio, (b) the intragranular effective penetration depth (not depending on the grains geometry) for 

𝑐 𝑎 = 5, (c) the in-phase demagnetizing field 𝑘𝑑 𝑇 𝑛
𝑔𝑀𝑔

1
′ (𝑇) and (d) the out-of-phase demagnetizing field 

𝑘𝑑 𝑇 𝑛
𝑔𝑀𝑔

1
′′ (𝑇) for 𝑎 = 𝑏 and with varying the 𝑐 𝑎  ratio, as obtained from the curves of 𝜒𝑔1

′ (𝑇) and 

𝜒𝑔1
′′ (𝑇) in the Figs. V.13a and V.13b for the FeSe0.5Te05 sample. The insets show enlargements for the  

𝑐 𝑎 = 5 curve together with (dashed lines) the effective field  amplitudes. 

 

 

the Fig. V.14b.  

Although the AC susceptibility first harmonic curve is independent of the grains 

geometry, the curve of 𝑘𝑑(𝑇) is strongly dependent on the 𝑐 𝑎  ratio, as the curves of the 

temperature dependence of the corresponding demagnetizing fields coming from the 

grains in the intergranular region defined in the Eq. (IV.15). The in-phase and out-of-

phase components of the first harmonic of this field, 𝑘𝑑 𝑇 𝑛
𝑔𝑀𝑔

1
′

(𝑇) and 

𝑘𝑑 𝑇 𝑛
𝑔𝑀𝑔

1
′′ (𝑇), are shown in the Figs. V.14c and V.19d, respectively, for different 

values of the 𝑐 𝑎  ratio. From these curves a focusing of the magnetic field induction is 

evident, of amount depending on the grains geometric profile. In particular, the absolute 

values both of 𝑘𝑑 𝑇  and of 𝑘𝑑 𝑇 𝑛
𝑔𝑀𝑔

1
′ (𝑇) and 𝑘𝑑 𝑇 𝑛

𝑔𝑀𝑔
1
′′ (𝑇) decrease with 

increasing the height of the granular rectangular prism with respect to the area of base. 

This is expected since, with the elongation of the prism in the field direction, the 

contribution to the magnetic field induction outside the grains produced by both the 

intragranular shielding currents and the shape of the grains by means of stray fields 

decrease. The smallest absolute values of the in-phase and out-of-phase demagnetizing 

fields are ≈ 0.6 mT and ≈ 0.08 mT at 𝑐 𝑎 = 5, respectively.The effect of the magnetic 
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flux focusing is to increase the actual amplitude of the magnetic field induction at the 

grains’s surfaces, which corresponds to the temperature dependent effective fields 

amplitudes 𝐵𝑎𝑐
𝑔

1

′
(𝑇) and 𝐵𝑎𝑐

𝑔

1

′′
(𝑇) of the Figs. V.10c-d. Since this gives an effective 

magnetic response by the grains it also influence the whole sample measured 

magnetization and then the intergranular magnetic response via the corresponding 

effective magnetic field induction. In fact, the effects of the existence of demagnetizing 

effects have been analyzed on both the first and third harmonics of the inter- and 

intragranular AC susceptibilities. The curves of the 𝜒𝑖,𝑔1

′
(𝑇)and 𝜒𝑖,𝑔1

′′
(𝑇) calculated at 

different values of the 𝑐 𝑎  ratio of the grains geometric profile (not reported here) have 

been found not depending on the grains geometric profile. On the other hand, a 

considerable dependence on the grains prism 𝑐 𝑎  ratio has been found for the 𝜒𝑖,𝑔3

′
(𝑇) 

and 𝜒𝑖,𝑔3

′′
(𝑇) curves, as will be discussed later.   

 

 

V.5 Analysis of the inter- and intragranular AC susceptibilities first 

harmonics 

In the following, the curves of 𝜒𝑖,𝑔1

′
(𝑇) and 𝜒𝑖,𝑔1

′′
(𝑇), numerically calculated by solving 

the system of equations (V.2a)-(V.2d), will be analyzed in order to extract the 

superconducting parameters and flux dynamical information of the individual grains and 

of the intergranular contacts. In fact, it has been shown in the Chapter III as the analysis 

of the dissipation peaks in the curves of the temperature dependent imaginary part of the 

AC susceptibility of a homogeneous system can be used to estimate the temperature 

dependence of the superconducting critical current densities and of the activation energy 

governing the process of flux relaxation inside the system. Then, beyond the same kind of 

analysis performed in the initial part of this Chapter on the curves of the whole sample 

magnetization without considering demagnetizing effect, in the following we will analyze 

separately the inter- and intragranular intrinsic susceptibilities which have been 

determined taking into account the existence of effective magnetic fields due to 

demagnetizing effects. 

At this aim the curves of 𝜒𝑖,𝑔1

′
 𝑇  and 𝜒𝑖,𝑔1

′′
 𝑇  for different values of the applied AC 

field amplitude and at a fixed AC frequency have been numerically calculated by means 

of the solution of the system of equations (V.2a)-(V.2d), after determining the actual flux 

dynamical regime governing the AC responses of the grains and of the intergranular 

contacts, and are shown in the Fig. V.15a and V.15b, respectively, for a fixed geometric 

profile of the grains. As expected, the 𝜒𝑖,𝑔1

′
 𝑇  curves exhibit a shift of the
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Figure V.15 Temperature dependence of (a) the real and (b) the imaginary parts of the intergranular 

susceptibility first harmonics and (c) the real and (d) the imaginary parts of the intragranular susceptibility 

first harmonics, for the FeSe0.5Te05 sample with 𝑎 = 𝑏 and 𝑐 𝑎 = 5 , as obtained by solving the system of 

Eqs. (V.2a)-(V.2d). The vertical lines indicate the peak temperatures in the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) curves (solid) 

with and (dashed) without the demagnetizing effects.  

 

 

superconducting transition towards lower temperature with increasing the AC field 

amplitude which oppose the superconductivity. In particular, a change in the aspect of the 

transition occurs with varying the AC field amplitude, which could be further 

investigated in relation with the flux dynamics governing the magnetic responses.  

Moreover, the dissipation peaks in the 𝜒𝑖,𝑔1

′′
 𝑇  are move towards lower temperature with 
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increasing the field amplitude as found in the curves of the out-of-phase component of the 

whole sample magnetization (see the Fig. V.8b). However, these peaks are slightly 

shifted with respect to the peaks observed in the corresponding curves of the whole 

sample magnetization without considering the demagnetizing effects, especially for the 

intragranular magnetic response. This may affect the estimation of the effective critical 

current densities as it will be discussed in the following.  

 

 

V.5.1 Estimation of the superconducting critical current densities 𝒋𝒄
𝒊,𝒈

 

According to the Eq.(III.2) the temperature dependence of the inter- and intragranular 

critical current densities of a granular superconducting system can be extracted from the 

analysis of the temperature dependent imaginary parts of the first harmonics of the  inter- 

and intragranular AC susceptibilities. In fact, the peaks in 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′

(𝑇) are 

expected when the field at the centre of the sample and of the gains, respectively, reaches 

the value of applied AC field amplitude. Then, when considering the existence of 

effective magnetic field inductions 𝐵𝑎𝑐
𝑖

1

′
 and 𝐵𝑎𝑐

𝑔

1

′
 due to demagnetizing effects, the plots 

of the temperature dependent critical current densities can be constructed by taking the 

peak temperatures 𝑇𝑝
𝑖,𝑔

in the 𝜒𝑖,𝑔1

′′
(𝑇) curves and the values of 𝐵𝑎𝑐

𝑖
1

′
 𝑇𝑝

𝑖  and 𝐵𝑎𝑐
𝑔

1

′
 𝑇𝑝

𝑔
 . 

The figs. V.16a and V.16b show, respectively, the plots of 𝐿𝜇0𝑗𝑐
𝑖 𝑇𝑝

𝑖  and 𝑐𝜇0𝑗𝑐
𝑔
 𝑇𝑝

𝑔
 , 

with 2𝐿 and 2𝑐 the width of the sample and of the grains, respectively, obtained from the 

analysis of the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) curves in the Fig. V.3b and of the curves of  𝐵𝑎𝑐

𝑖
1

′
 𝑇  

and 𝐵𝑎𝑐
𝑔

1

′
 𝑇  in the Figs. V.10a and V.10c. The plots of 𝐿𝜇0𝑗𝑐

𝑖 𝑇𝑝
𝑖  and 𝑐𝜇0𝑗𝑐

𝑔
 𝑇𝑝

𝑔
  

obtained without consider the existence of demagnetizing effects from the analysis of the 

curves of the out-of-phase whole sample magnetization 𝑀1
′′ (𝑇) (see the Fig. V.5) have 

been also reported for a comparison, and all the plots are fitted with an exponential decay.  

In fact, a raise and a drop appear in the 𝐿𝜇0𝑗𝑐
𝑖 𝑇𝑝

𝑖   and 𝑐𝜇0𝑗𝑐
𝑔
 𝑇𝑝

𝑔
  curves, respectively, 

in the region of the dissipation peaks in the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) curves when considering 

the demagnetizing effects. This is due to both the existence of effective magnetic field 

inductions 𝐵𝑎𝑐
𝑖

1

′
 𝑇𝑝

𝑖  and 𝐵𝑎𝑐
𝑔

1

′
 𝑇𝑝

𝑔
  different from the applied field which produce also a 

shift of the dissipation peaks in the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) Then, the inter- and intragranular 

critical current densities result under- and overestimated, respectively, in the region of 

intermediate temperature, when the existence of demagnetizing effects is neglected.  

Related with the inter- and intragranular critical current densities it is very crucial for the 

application to known the AC losses inside both the inter- and intragranular volume
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Figure V.16 Plots of the temperature dependence of (a, closed symbols) 𝐿𝜇0𝑗𝑐
𝑖  and (b, closed symbols) 

𝑐𝜇0𝑗𝑐
𝑔

as function of the temperature of the FeSe0.5Te05 sample, constructed according to the Eq. (III.2) by 

taking the peak temperatures 𝑇𝑝
𝑖,𝑔

 in the curves of the Figs. V.3b and the value of 𝐵𝑎𝑐
𝑖,𝑔

1

′
 𝑇𝑝

𝑖,𝑔
  in the 

Figs.V.10a and V.10c. The open symbols are the results obtained without considering the demagnetizing 

effects (see the Fig. V.5). The lines are the fit of the data with an exponential decay. 

 

 

fractions of the sample. According to the Eq. (II.32), the energy converted into heat 

during a cycle of the AC field per unit volume of the inter- and intragranular fraction of 

the sample can be obtained from the analysis of the inter- and intragranular dissipation 

peaks height in the 𝜒𝑖1
′′
 𝑇  and 𝜒𝑔1

′′ 𝑇  curves, respectively. In fact, these heat losses are 

given by 

𝑊𝑖,𝑔
𝑞 = −𝜋𝜒𝑖,𝑔1

′′
 𝑇𝑝

𝑖,𝑔
 
𝐵𝑎𝑐
𝑖,𝑔

1

′ 2

𝜇0
.              (V.19) 

 

The plots of 𝑊𝑖
𝑞  and 𝑊𝑔

𝑞  as function of the amplitude of the applied AC field amplitude 

𝜇0𝐻𝑎𝑐  are shown in the Fig. V.17, as extracted from the curves of the Fig. V.2b. The 

plots of 𝑊𝑖
𝑞  and 𝑊𝑔

𝑞  as function of 𝜇0𝐻𝑎𝑐  obtained, without considering the existence 

of demagnetizing effects, from the analysis of the curve of the out-of-phase whole sample 

magnetization 𝑀1
′′ (𝑇), are also reported for a comparison. The difference between the 

curves obtained with and without taking into account the existence of effective magnetic 

fields due to the demagnetizing effects indicates that on the peaks height and then on the 

estimation of the inter- and intragranular losses. 
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Figure V.17 Plots of the inter- and intragranular dissipations 𝑊𝑖,𝑔
𝑞  as function of the amplitude of the applied 

field of the of the FeSe0.5Te05 sample (closed symbols, solid lines) with and (open symbols, dash lines) 

without considering the existence of demagnetizing effects, constructed from the curves of the Fig. V.2b 

according to the Eq. (V.19).  

 

 

V.5.2 Estimation of the vortex activation energies 𝑼𝒊,𝒈 

The temperature and field dependences of the activation energies, governing the 

relaxation of magnetic flux inside the inter- and intragranular volume fractions of the 

sample in presence of thermally activated flux dynamical regimes, have been extracted 

previously from the analysis of the experimental curves of the temperature dependent out-

of-phase component of the whole sample magnetization 𝑀1
′′ (𝑇) (see the Fig. V.7). In fact, 

the activation energies 𝑈𝑎
𝑖,𝑔

 at a fixed amplitude of the AC field have been obtained as the 

slope of the Arrhenius plot of the ln 𝜈 , with 𝜈 the measuring frequency, as function of 

the inverse of the peak temperatures in the 𝑀1
′′ (𝑇) curves. However, it is worth underline 

that the existence of temperature dependent effective magnetic field inductions governing 

the inter- and intragranular magnetic responses due to demagnetizing effects may 

influence the actual positions of the dissipation peaks in the inter- and intragranular AC 

susceptibility first harmonics imaginary parts. In this case, the estimation of the activation 

energies from the slopes of the Arrhenius plots is expected to be influenced. 

In the current analysis the field and temperature dependences of the inter- and 

intragranular activation energies obtained from the curves of 𝜒𝑖1
′′
 𝑇  and 𝜒𝑔1

′′ 𝑇  

calculated in presence of effective magnetic field inductions due to demagnetizing effect, 

will be discussed. In this case, the activation energies of the inter- and intragranular 

volume fractions are obtained as results of the fit of the temperature dependent relaxation 

times giving the actual flux dynamical regime governing the magnetic flux relaxation 

processes. The existence of temperature dependent effective magnetic field inductions is 

taken into account by means of the actual current dependence of the activation energy in 

the universal expression of the Eq. (V.11). In fact, from the time equation (V.10) the 

activation energies 𝑈𝑎
𝑖,𝑔

 are given by 
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𝑈𝑎
𝑖,𝑔

(𝑇, 𝐵𝑎𝑐
𝑖,𝑔

1

′
) = 𝑘𝐵𝑇 ln  

𝜏𝑖,𝑔(𝑇,𝐵𝑎𝑐
𝑖,𝑔

1

′
)

𝜏0
𝑖,𝑔  ,        (V.20) 

 

where 𝜏𝑖,𝑔(𝑇) 𝜏0
𝑖,𝑔

   is given by the result of the fits of the relaxation times plots in the 

Figs. V.12a which determined the actual flux dynamical regimes governing the inter- and 

intragranular AC responses. The plot of 𝑈𝑎
𝑖 (𝑇, 𝐵𝑎𝑐

𝑖,𝑔

1

′
) and 𝑈𝑎

𝑔
(𝑇, 𝐵𝑎𝑐

𝑖,𝑔

1

′
) calculated with 

the Eq. (V.20) at different amplitudes of the AC fields are shown in the Figs.V.18a and 

V.18b, respectively. Both energies decrease with increasing temperature in the region of 

temperatures between the full diamagnetic shielding and the superconducting transitions, 

as expected for thermally activated motion regimes. In particular, the obtained 

temperature behaviors are expected within the Anderson-Kim theory of flux creep 

discussed in the previous chapters[25,26] and they have been found in several high-𝑇𝑐  and 

Fe-based superconductors, where a power law temperature dependence have been 

considered[11,47-51]. Although similar results were found from the analysis of the whole 

sample magnetization without considering demagnetizing effects (see the Fig. V.7b), the 

current results are valid for the whole continue range of temperatures and for different 

AC fields amplitudes.  

Moreover, with varying the amplitude of the AC field, the curves of 𝑈𝑎
𝑖 (𝑇) in the Fig. 

V.18a exhibit opposite nonmonotonic variations. In fact, the curves of 𝑈𝑎
𝑖 (𝑇) tend to low 

and to raise at lower and higher fields amplitudes, respectively, while the curves of 

𝑈𝑎
𝑔

(𝑇) exhibit a contrary behavior, with increasing the AC field amplitude. These trends 

are confirmed from the plots of 𝑈𝑎
𝑖 (𝜇0𝐻𝑎𝑐 ) and 𝑈𝑎

𝑔
(𝜇0𝐻𝑎𝑐 ) at different temperatures, 

shown in the Figs. V.18c and V.18d, respectively, obtained by performing isothermal cuts 

at different temperatures of the curves in the Fig. V.18a and V.18b. It is well known that 

the field dependence of the activation energy of a superconducting system is typically 

described with a power law with a negative exponent depending on the pinning 

mechanism[14,38,47-51]. In fact, low absolute values of the exponent correspond to a 

strong single vortex pinning while higher absolute values correspond to a weak collective 

pinning. However, the results of the Fig. V.18a-d indicate a power law decay at lower 

temperature for the intergranular energy 𝑈𝑎
𝑖 , while an anomalous increase of this energy 

with the field amplitude occurs at higher field amplitudes. On the other hand, the 

intragranular energy 𝑈𝑎
𝑔

 has been found to be almost constant at small AC field 

amplitudes, while at higher amplitudes it increases with the field up to a maximum 

followed by a diminution. It is worth noting that the same anomalous behaviours of both 

𝑈𝑎
𝑖  and 𝑈𝑎

𝑔
 with varying the AC field amplitude were also found from the analysis of the
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Figure V.18 (Up) Plots of the inter- and intragranular activation energies 𝑈𝑎
𝑖,𝑔

 as function of the temperature 

for the FeSe0.5Te05 sample calculated with the Eq. (V.20) after determining the temperature dependence of the 

relaxation times 𝜏𝑖,𝑔  for the actual flux dynamical regimes. (Down) Plots of 𝑈𝑎
𝑖,𝑔

 as function of the applied 

AC field amplitude obtained from isothermal cuts of the 𝑈𝑎
𝑖,𝑔 𝑇  curves. The dashed lines and open symbols 

are the results obtained without considering the demagnetizing effects (see the Fig. V.7a). 

 

 

Arrhenius plots without considering the demagnetizing effects in the initial part of this 

chapter. Beyond the need to investigate this kind of behaviors which could be related to 

the flux dynamics and system dimensionality[52-54], we found considerable deviations 

of the energies values with and without considering the existence of demagnetizing 

effects, as shown from the comparison of the curves obtained in the two kinds of analysis 

and shown in the Figs. V.18c and V.18d. In particular, one couple of curves of 

𝑈𝑎
𝑖 (𝜇0𝐻𝑎𝑐 ) and 𝑈𝑎

𝑔
(𝜇0𝐻𝑎𝑐 ) there exist from the Arrhenius plots due to the way to 

perform these plots where the temperature is a variable.  

 

 

V.6 Analysis of the inter- and intragranular AC susceptibilities third 

harmonics 

The third harmonic curves of 𝜒𝑖,𝑔3

′
(𝑇) and 𝜒𝑖,𝑔3

′′
(𝑇), obtained as solution of the 

system of Eqs. V.2a)-(V.2d) by using the Eqs. (V.3a) and (V.3b) for the real and 

imaginary parts of the fundamental susceptibilities with the temperature dependences of 

the flux relaxation times preliminarily calculated from the analysis of the experimental 

curves of  𝑀1
′′  𝑇 , are shown in the Figs. V.19a and V.19b. These curves can be  
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Figure V.19 Temperature dependence of the inter- and intragranular susceptibilities third harmonics (a) real 

and (b) imaginary parts of the FeSe0.5Te05 sample for 𝑎 = 𝑏 and 𝑐 𝑎 = 5 , as obtained by solving the system 

of Eqs. (V.2a)-(V.2d) for the flux dynamical regime of crossover from the flux creep to the taff with 

increasing temperature as found from the fit of the plots of 𝜏𝑖(𝑇𝑝
𝑖) and 𝜏𝑔 𝑇𝑝

𝑔
  in the Fig. V.12a, and 

𝐵𝑎𝑐
𝑖

1

′
(𝑇𝑝

𝑖) and 𝐵𝑎𝑐
𝑔

1

′
(𝑇𝑝

𝑔
) in the Fig. V.12b. The left and right scales refer to inter- and intragranular 

susceptibilities, respectively. The vertical lines indicate the peak temperatures in the 𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇) of 

the Figs. V.13b. 

 

 

interpreted in relation to the same curves theoretically predicted by solving the equation 

of diffusion of the magnetic flux for a homogeneous superconducting system discussed in 

detail in the Chapter II. In fact, a negative peak at a lower temperature and a positive peak 

at a higher temperature appear both in the intergranular real part 𝜒𝑖 3

′
(𝑇) and in the 

intragranular real part 𝜒𝑔3
′ (𝑇). In particular, the intergranular negative peak appears at 

the peak temperature 𝑇𝑝
𝑖  of the 𝜒𝑖1

′′
(𝑇) curve, while the intragranular negative peak 

appears at a temperature lower than the peak temperature 𝑇𝑝
𝑔

 of the 𝜒𝑔1
′′

(𝑇) curve. From 

the comparison of these features with the curves numerically calculated for a 

homogeneous sample by solving the diffusion equation and shown in the Figs. II.5a-h, the 

shapes of 𝜒𝑖,𝑔3

′
 𝑇  in the Fig. V.19a are compatible with the existence of a crossover 

from the flux creep regime to the taff regime with increasing temperature as found from 

the fit of the temperature dependent relaxation times discussed above. In fact, a negative 

peak is predicted at lower temperature due to the flux creep regime and at higher 

temperature due to the taff regime, as observed in the 𝜒𝑖 3

′
(𝑇) and 𝜒𝑔3

′ (𝑇) curves of the 

Fig. V.13a. Moreover, a positive peak is predicted at lower temperature due to the flux 

creep regime and at higher temperature due to the taff regime, which are compatible with 

the presence of the large positive peaks in the 𝜒𝑖 3

′′
 𝑇  and 𝜒𝑔3

′′  𝑇  curves in the Fig. 
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V.13b. It is worth noting that the intragranular curves 𝜒𝑔3
′

(𝑇) and 𝜒𝑔3
′′

(𝑇) appear more 

distant from the peak temperature of the corresponding 𝜒𝑔1
′′

(𝑇) curve, with respect to the 

intergranular curves 𝜒𝑖 3

′
(𝑇) and 𝜒𝑖 3

′′
(𝑇) from the peak temperature of the 𝜒𝑖1

′′
(𝑇) curve. 

Since it is typically observed a shift towards lower temperatures, with increasing the AC 

field amplitude, of the temperature dependent third harmonic real and imaginary parts of 

the AC susceptibility of a superconducting system in presence of flux dynamical 

nonlinear regimes[36,37], it is useful to analyze the effect of the magnetic flux focusing 

in the intergranular region found from the Figs. V.14a-d on the 𝜒𝑖,𝑔3

′
(𝑇) and 𝜒𝑖,𝑔3

′′
(𝑇) 

curves of the FeSe0.5Te05 sample. 

In fact, although the first harmonic curves have been found not depending on the 

geometric profile of the grains determining the effective demagnetizing factor of the 

grains, a considerable dependence on the grains prism 𝑐 𝑎  ratio has been found for the 

𝜒𝑖,𝑔3

′
(𝑇) and 𝜒𝑖,𝑔3

′′
(𝑇) curves, as shown in the Figs. V.20a-d. In particular, the negative 

peak in the 𝜒𝑖3

′
 𝑇  and 𝜒𝑔3

′ (𝑇) curves in the regions of lower temperature tend to 

disappear while the positive peak at higher temperature tend to rise with increasing the 

𝑐 𝑎  ratio (see the Figs. V.20a and V.20b), and an increase of the single positive peak 

occurs in the corresponding imaginary parts (see the Figs. V.20c and V.20d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.20 Temperature dependence of (left) (a) the real and (b) the imaginary part of the intergranular 

susceptibility third harmonic and (right) (c) the real and (d) the imaginary part of the intragranular 

susceptibility third harmonic, calculated at different values of the 𝑐 𝑎  ratio by solving the system of Eqs. 

(V.2a)-(V.2d) for the FeSe0.5Te05 sample. 
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This can be considered as fingerprint of change in the flux dynamical regime, since it is  

well known that the third harmonic of the complex susceptibility is more sensitive than 

the first one to the variations in the flux dynamical regime governing the AC magnetic 

response of a superconducting system due to variations in the exciting field. In fact, 

variations in the effective magnetic field inductions acting on the grains’s surfaces occur 

due to the focusing effect of the magnetic flux in the intergranular region deduced from 

the Figs. V.14c and V.14d. Since this influence the sample magnetization, it affects also 

the effective magnetic field acting on the sample’s surface and governing the 

intergranular magnetic response. 

Then, it is interesting to investigate the dependences of both the inter- and 

intragranular third harmonic curves on the amplitude of the applied AC field. In fact, the 

curves of 𝜒𝑖,𝑔3

′
(𝑇) and 𝜒𝑖,𝑔3

′′
(𝑇) calculated by solving the system of equations (V.2a)-

(V.2d) at different AC field amplitudes are shown in the Figs. V.21a and V.21b, 

respectively. All the curves move towards lower temperature with increasing the AC field  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.21 Temperature dependence of (a) the real and (b) the imaginary parts of the intergranular 

susceptibility third harmonics and (c) the real and (d) the imaginary parts of the intragranular susceptibility 

third harmonics, for the FeSe0.5Te05 sample with 𝑎 = 𝑏 and 𝑐 𝑎 = 5 , as obtained by solving the system of 

Eqs. (V.2a)-(V.2d) at different AC field amplitudes. The vertical lines indicate the peak temperatures in the 

𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇). 

 

amplitude. Moreover, in the both the real part 𝜒𝑖3

′
(𝑇) and 𝜒𝑔3

′ (𝑇) the negative peak at 

lower temperature is almost constant while the positive peak at higher temperature tend to 
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Figure V.22 Temperature dependence of (a) the real and (b) the imaginary parts of the intergranular 

susceptibility third harmonics and (c) the real and (d) the imaginary parts of the intragranular susceptibility 

third harmonics, for the FeSe0.5Te05 sample with 𝑎 = 𝑏 and 𝑐 𝑎 = 5 , as obtained by solving the system of 

Eqs. (V.2a)-(V.2d) at different AC field frequencies. The vertical lines indicate the peak temperatures in the 

𝜒𝑖1
′′

(𝑇) and 𝜒𝑔1
′′ (𝑇). 

 

 

low as the peak in the corresponding imaginary parts 𝜒𝑖 3

′′
(𝑇) and 𝜒𝑔3

′′ (𝑇) with the 

increase of the AC field amplitude. We mention that from the calculation of the 

temperature dependence of the flux relaxation time in both the inter- and intragranular 

volume fractions the positive peak at higher temperature in the curves of 𝜒𝑖 3

′
(𝑇) and 

𝜒𝑔3
′ (𝑇) is expected to be governed by taff regime. In fact, the field behaviour of the 

higher temperature peak in the 𝜒𝑖,𝑔3

′
(𝑇) and 𝜒𝑖,𝑔3

′′
(𝑇) curves is compatible with the field 

dependence of the taff regime in absence of DC field. 

Finally, in order to look for a confirmation of the existence of the regime of crossover 

between the flux creep and taff from the frequency behaviour of the inter- and 

intragranular AC susceptibilities third harmonics, we report the curves of 𝜒𝑖,𝑔3

′
(𝑇) and 

𝜒𝑖,𝑔3

′′
(𝑇) at different AC frequencies and fixed AC field amplitude in the Figs. V.22a and 

V.22b, respectively, as calculated by solving the system of equations (V.2a)-(V.2d). All 

the curves exhibit a change of behaviour at 𝜈 = 1077 Hz, as observed in the curves of the 

AC magnetic response third harmonic of the whole sample (see the Figs. V.9a and V.9b). 

In particular, above this frequency the motion of the curves towards higher temperature 

and their rise with increasing frequency are compatible with a crossover regime from the 
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flux creep to the taff. In fact, as expected, the negative peak in the real parts 𝜒𝑖3

′
(𝑇) and 

𝜒𝑔3
′

(𝑇) rise and slightly move due to the flux creep behaviour, while the following 

positive peak in the same curves rise and move towards higher temperatures, with 

increasing frequency (see the Figs. III.12a-h)[57]. Moreover, in the imaginary parts 

𝜒𝑖3

′′
(𝑇) and 𝜒𝑔3

′′ (𝑇) a double positive peak tends to emerge with increasing frequency, 

that could be due to the predominance of the positive peak expected for the taff with 

respect to the positive peak expected for the flux creep at higher and lower temperatures, 

respectively (see the Figs. III.12a-h). 
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Conclusions 

 

In this thesis, the development of a method for the analysis of the temperature 

dependent harmonics of the nonlinear AC magnetic response of a granular 

superconducting system, acquired by means of the AC susceptibility technique, has been 

presented. In fact, although the analysis of the AC magnetic response measured on a 

homogeneous type II superconducting system is most commonly used for the 

investigation of the superconducting properties and flux dynamics, particular attention 

may be given to the effects of demagnetizing fields in the case of superconducting 

granular systems. Since typically the temperature dependent fundamental and higher 

harmonics of the AC magnetic susceptibility of a superconducting sample are given by 

dividing the measured magnetization by the amplitudes of the applied field, deviations 

from the actual susceptibility  may occur due to the existence of an effective temperature 

dependent magnetic field governing the magnetic response of the sample. In fact, this can 

occur both for a homogenous superconductor due to the demagnetizing factor of the 

sample and for granular systems due to the demagnetizing factors both of the whole 

sample and of the grains. This also results in the measurement of a field dependent 

critical current density which can influence the analysis.  

That being said, we have first reviewed the principle of measurement of the AC 

magnetic susceptibility on homogeneous superconducting systems. In this cases, the 

existence of demagnetizing effects can be taken into account by applying a 

demagnetizing correction on the curves of the AC measured magnetization. In fact, after 

correcting the measured magnetization curves of type II superconductors, the curves can 

be analyzed within different models describing the mixed state of the materials in terms 

of thermally activated flux motion inside them. In particular, the analysis of the first 

harmonic curves of the AC susceptibility measured as function of temperature allows one 

to extract several superconducting parameters such as the critical current density, the 

superconducting upper critical fields and the activation energy over pinning barriers of 

vortices penetrating the sample. Moreover, when regarding the third harmonic curves of 

the AC susceptibility, detailed information about the actual flux dynamical regimes 

governing the sample magnetic response can be obtained by means of the comparison of 

the experimental curves with theoretical curves obtained for bulk samples and evidencing 

particular features related to the different flux dynamical regimes.  

High-𝑇𝑐  and Fe-based superconducting materials reveal very adapt to be investigated by 

this kind of approach since their magnetic response is particularly leaded by thermally 

activated mechanisms. However, we have shown the results of the analysis of the AC 

magnetic response of a polycrystalline sample of the bismuth-oxysulfide layered 
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compound Bi4O4S3 which exhibits several properties similar to the more recently 

discovered Fe-based superconductors due to their common layered crystal structure. In 

particular, we concentrate our first investigation on the Bi4O4S3 sample since it also 

exhibits a high quality in terms of electromagnetic granularity.  

In the second part of this dissertation we focused our attention on the development of 

a model for describing the magnetic response of a granular system, measured by means of 

the AC susceptibility technique, in terms of the magnetic contributions from the 

individual grains and from the intergranular contacts. This has been made by taking into 

account the existence of demagnetizing fields arising from both the whole sample and the 

grains, and the magnetic interaction between such fields. This may produce effective 

magnetic field inductions governing the inter- and intragranular magnetic responses and 

determined by the whole sample magnetization itself through the sample and grains 

demagnetizing factors. In particular, we found that the focusing of the magnetic field 

induction in the intergranular regions occurs due to the demagnetizing fields arising from 

the grains and depending on their geometric profile which determines the amount of stray 

fields outside the grains. This influences the magnetic response of the grains which 

contributes to the magnetization of the whole sample and then also affects the effective 

magnetic field induction on the sample’s surface via the demagnetizing field. 

All this allowed us to formulate a self consistent system of equations which can be 

solved by assuming different flux dynamical regimes governing the inter- and 

intragranular responses to the corresponding effective fields. The solutions of this system 

are the real and imaginary parts of the intrinsic AC susceptibilities first and higher 

harmonics of the two volume fractions. As an example, this kind of calculation has been 

performed starting from the magnetization measured on a FeSe0.5Te05 granular sample, 

whose intrinsic AC susceptibilities of the inter- and intragranular volume fractions have 

been determined together with the actual temperature dependences of the corresponding 

effective magnetic field inductions. Moreover, the temperature dependence of the flux 

relaxation times inside the sample given by both the effect of thermal activation and of 

the Lorentz force of the effective fields have been determined and give the actual flux 

dynamical regimes governing the inter- and intragranular magnetic responses.  

All the calculations have been performed by means of a numerical programmed 

algorithm. The determination of the inter- and intragranular AC susceptibilities taking 

into account the existence of demagnetizing effects allowed us to the extract the actual 

superconducting parameters and flux dynamical information from the analysis of both the 

first and third harmonics, and to evaluate the demagnetizing fields effects on such 

estimations. In fact, within the developed method of analysis and the corresponding 

numerical algorithm, the critical current densities, upper critical fields and activation 
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energies for the inter- and intragranular volume fractions have been determined. From the 

comparison of these results with the results of the analysis performed without considering 

the existence of demagnetizing effects and then without separating the intrinsic magnetic 

contributions of the grains and of the intergranular regions in the whole sample 

magnetization, we found noteworthy deviations even for the grains geometry producing 

the least focusing of magnetic field in the intergranular regions. Moreover, we were able 

to exploit the superconducting properties of the grains and of the intergranular contacts 

separately which is not always possible starting from the total magnetic response and is 

very useful to investigate when the superconductivity is a bulk or granular mechanism. 

This suggests that demagnetizing fields can considerably affect the extraction of the 

superconducting and magnetic properties and flux dynamics information from the 

analysis of the AC magnetic response of a superconducting granular system, and that the 

proposed method could be used to both take these effects into account and to usefully 

separate the inter- and intragranular contributions to the magnetic response and their AC 

susceptibilities for a more detailed characterization. 
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