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Introduction

Since their discovery, graphene and carbon nanotubes have been playing an important role in 

nanoscience and nanotechnology thanks to their extraordinary physical and chemical 

properties. 

Graphene, the two-dimensional layer of sp2 carbon atoms discovered in 2004 [1], is an 

excellent material for electronic devices for its linear dispersion relation with electrons behaving 

as massless Dirac fermions [2], high electron mobility [3], great electric current carrying 

capacity [4], capability of being tuned from p-type to n-type doping by the application of a 

gate voltage, high thermal conductivity [5], record mechanical strength [6], resilience to high 

temperatures [7] and humidity [8], structural flexibility, resistance to molecule diffusion and 

chemical stability. Because of these exceptional properties, graphene has stirred a lot of 

interest in the scientific community for basic science and for technological applications, and it 

is considered a potential breakthrough in terms of carbon-based nanoelectronics.  

With silicon-based electronics tending towards its scaling limits, the semiconductor 

industry is looking for the next switch which can replace the silicon field-effect transistor [9] 

and graphene can be a possible alternative for silicon. Graphene-based field-effect transistors 

(GFETs) [10] combine an ultra-thin body suitable for aggressive channel length scaling [11], 

with exceptional electronic properties [12]. However the development of graphene-based 

electronics is limited by the quality of contacts between the graphene and metal electrodes 

[13-15] that can significantly affect the electronic transport properties of the devices [16]. For 

such reason it becomes of fundamental importance to characterize metal/graphene interfaces 

at the contacts. 

Further, due to its important advantage of being naturally compatible with thin film 

processing,  graphene is easy to integrate into existing semiconductor device technologies. 

The graphene-silicon (Gr/Si) heterojunction is one of the simplest conceivable device in a 

hybrid graphene-semiconductor technology and it offers great opportunity to study the 

physics occurring at the interface between a 2D and a 3D material, as well as between a zero 

and a definite bandgap system, and can be a convenient platform to investigate electronic 

properties and transport mechanisms. Nonetheless, the Gr/Si junction has already been 

demonstrated as a rectifying or a barrier-variable device, a photovoltaic cell [17-19], a bias-

tunable photodetector [20-22], a chemical-biological sensor [23-25] and it is gaining interest 
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from the semiconductor industry also for the potentiality to replace ultra-shallow doped 

junctions in modern complementary-metal-oxide-semiconductor (CMOS) technologies.  

Carbon nanotubes (CNTs), for their very high aspect ratio (diameter in the nanometer scale 

and length of several microns), extremely small radius of curvature, unique electric properties, 

high chemical stability and important mechanical strength [26-29], have been considered 

extraordinary elements to realize field emission devices, since their discovery in 1991 [30]. 

Field emission (FE), which involves extraction of electrons from a conducting solid by an 

external electric field, is at the basis of several technological applications. Nowadays, CNT 

based field emitters are used in vacuum electronics to produce electron sources [31], flat 

panels [32], X-ray sources [23,24], and microwave amplifiers [35], exploiting a low-threshold 

electric field and large emission current density. As CNTs, also graphene has high potentiality 

for FE applications, due to its high aspect ratio (thickness to lateral size ratio) and a 

dramatically enhanced local electric field is expected at its edges.  

The aim of this PhD thesis was to study electronic properties and transport mechanisms of 

graphene and carbon nanotubes through an extensive electrical characterization of field-effect 

transistors, diodes and field emission devices based on these materials. 

The thesis is organized as follows.  

In the first chapter, we describe the physical and electronic structures of graphene and 

carbon nanotubes in order to understand the transport properties and performance of studied 

devices.  Moreover, we report a brief introduction to the optical properties of graphene and the 

field emission theory. 

In the second chapter,  we present the fabrication of graphene based field effect transistors 

in bottom and side gate configuration, and we perform an intense electrical characterization 

by measuring transfer and output characteristics. In particular, we study the physical effects 

due to the contact resistance between graphene and different metal electrodes.  We discuss the 

effects of room temperature vacuum degassing and of low-energy electron beam irradiation 

on GFETs. Finally, we study the side-gating effect, the gate leakage in all-graphene devices 

and the field emission from graphene. 

In the third chapter, we study a new-concept of Gr/Si photodiode made of a single-layer 

graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. Through an 

extensive characterization, we estimate the relevant junction parameters. In particular, we 

analyze the effect of the tip geometry on the Schottky barrier height and on the 

photoresponse.  
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In the fourth chapter, we describe the transport characteristics in a wide temperature range 

and the field emission properties of  buckypapers obtained  from aligned carbon nanotubes. 

We  report the study of the long-term stability of the field emission current and finally, we 

analyze the effect on the emitted current due to in plane applied currents in the buckypaper. 
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Chapter 1 

Graphene and carbon nanotubes: 

theoretical and experimental background 

1.1 Introduction  

Carbon is one of the most versatile elements in the periodic table in terms of the number of 

compounds it may create, mainly due to the types of bonds it may form (single, double, and 

triple bonds) and the number of different atoms it can join in bonding. It can form a broad 

variety of architectures in all dimensions, both at the macroscopic and nanoscopic scales.  

During the last 25 years, brave new forms of carbon have been unveiled. The family of 

carbon-based materials now extends from C60 to carbon nanotubes, and from old diamond and 

graphite to graphene. The properties of the new members of this carbon family are so 

impressive that they may even redefine our era. 

Under standard conditions (ordinary temperatures and pressures), the stable form of carbon 

is graphite. Graphite is a famous lubricant, an electrical (semimetal) and thermal conductor, 

and reflects visible light [1]. 

Graphite is a three-dimensional crystal made of stacked layers consisting of sp2 hybridized 

carbon atoms; each carbon atom is connected to another three making an angle of 120° with a 

bond length of 1.42 Å. This anisotropic structure clearly illustrates the presence of strong σ 

covalent bonds between carbon atoms in the plane, while the π bonds provide the weak 

interaction between adjacent layers in the graphitic structure. The σ-bonds, that have the 

electrons localized along the plane connecting carbon atoms, are responsible for the great 

strength and mechanical properties of graphene and carbon nanotubes [2,3], while the 2p 

electrons, that are weakly bound to the nuclei and hence relatively delocalized, are the ones 

responsible for the electronic properties of graphene and carbon nanotubes [1,4]. 

The objective of this chapter is to describe the physical and electronic structures of 

graphene and carbon nanotubes in order to understand the electronic properties and transport 

mechanisms in the studied electronic devices. Briefly, we report the optical properties of 
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graphene, that are important for the analysis of graphene-based optoelectronic devices. 

Finally, we introduce the field emission theory, whose properties and applications are 

currently the subject of a very active research field. 

1.2 Graphene 

Isolated graphene was discovered in 2004 by Geim and Novoselov [5,6], who made graphene 

accessible with a technique as simple as the mechanical exfoliation. 

Graphene is a one-atom thick, planar layer consisting of sp2 hybridized carbon atoms 

arranged in a 2D hexagonal honeycomb. The planar honeycomb structure of graphene has 

been observed experimentally and is shown in Fig. 1.1 [4]. 

 

FIGURE 1.1:  Remarkable transmission electron aberration-corrected microscope (TEAM) image of 
graphene vividly showing the carbon atoms and bonds in the honeycomb structure. 

Graphene can be considered the mother of three carbon allotropes. As illustrated in Fig. 1.2, 

wrapping graphene into a sphere produces buckyballs, folding into a cylinder produces 

nanotubes, and stacking several sheets of graphene leads to graphite [7]. 

 

FIGURE 1.2:  Two-dimensional graphene can be considered the building block of several carbon 
allotropes in all dimensions, including zero-dimensional buckyballs, 1D nanotubes, and 3D graphite. 
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1.2.1   The direct lattice  

Graphene has a honeycomb lattice shown in Fig. 1.3 using a ball-and-stick model [4]. The 

balls represent carbon atoms and the sticks symbolize the σ-bonds between atoms. The 

carbon–carbon bond length is approximately ac-c ≈ 1.42 Å.  

The honeycomb crystal can be mapped to a triangular Bravais lattice with a basis of two 

atoms, which can be considered as made of two interpenetrating triangular sub-lattices, indicated as 

A and B in Fig. 1.3.  These contribute a total of two π electrons per unit cell to the electronic 

properties of graphene. The primitive unit vectors as defined in Fig. 1.3 are:  

																																																					�� = �√3�2 , �2�,				�� = �√3�2 ,−	�2�,																																						(1.1) 
with |��| = |��| = � = √3���� = 2.46	Å . 

Each carbon atom is bonded to its three nearest neighbors and the vectors describing the 

separation between a type A atom and the nearest neighbor type B atoms as shown in Fig. 1.3 

are: 

				�� = � �√3 , 0� , 	�� = −�� + �� = �− �2√3 ,−�2� , 	�� = −�� + �� = �− �2√3 , �2�,				(1.2) 
with |��| = |��| = |��| = ����. 

 

FIGURE 1.3:  The honeycomb lattice of graphene. The primitive unit cell is the equilateral 
parallelogram (dashed lines) with a basis of two atoms denoted as A and B. 
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1.2.2   The reciprocal lattice  

The reciprocal lattice, that is the discrete Fourier transform of the direct lattice, satisfies the 

basic relation: 

																																																																													�� ·� = 1,																																																																		(1.3)    
where K is the set of wavevectors that determine the sites of the reciprocal lattice points and 

R is the Bravais lattice position vector [4].  

In two dimensions, the primitive vectors of the reciprocal lattice (b1 and b2) are determined 

from the primitive vectors of the direct lattice (a1 and a2): 

																																														"� = 2# $%&(��)'�((��, ��),				"� = 	2# $%&(−��)'�((��, ��),																																(1.4) 
 

where R90 is an operator that rotates the vector clockwise by 90° and det is the determinant, 

which geometrically is the area of the parallelogram formed by a1 and a2 and serves as a 

normalization factor. From the rotation operator, it is evident that the reciprocal lattice 

primitive vectors are either normal or parallel to the direct lattice primitive vectors, 

corresponding to ai ·  bj = 2πδij , where δij is the Kronecker delta function. 

The reciprocal lattice of graphene shown in Fig. 1.4 is also a hexagonal lattice, but rotated 

90° with respect to the direct lattice.  The reciprocal lattice vectors are (from eq. (1.4)): 

																																																			)� = � 2#√3� , 2#� �,				)� = � 2#√3� ,−	2#� �,																																				(1.5) 
with |)�| = |)�| = 4#/√3�.  

 

FIGURE 1.4:  The reciprocal lattice of graphene. The first Brillouin zone is the shaded hexagon with 
the high symmetry points labeled as Γ, M, and K. 
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In the Brillouin zone, which is illustrated as the shaded hexagon in Fig. 1.4, there are three 

key locations of high symmetry. In Fig. 1.4, these locations are identified by convention as 

the Γ-point (point located at the center of the hexagon), the M-point (midpoint of the side of 

the hexagon) and the K-point (corner of the hexagon). The vectors describing the location of 

the points M and K with respect to the zone center are: 

																																																						,- = 	� 2#√3� , 0� ,					, = 	 � 2#√3� , 2#3��.																																			(1.6) 
There are six K-points and six M-points within the Brillouin zone. Sometimes a distinction is 

made between the K-point and K'-point (Fig. 1.4), particularly in the discussion of intervalley 

or interband electron scattering by lattice vibrations, but  they are essentially equivalent for 

most purposes. The unique solutions for the energy bands of crystalline solids are found 

within the Brillouin zone and sometimes the dispersion is graphed along the high symmetry 

directions. 

1.2.3   Electronic properties 

The electronic band structure of graphene is of primary importance because it is the starting 

point for the understanding of graphene’s solid-state properties and analysis of graphene 

devices and it is also the starting point for the understanding and derivation of the band 

structure of CNTs. 

The band structure of graphene is shown in Fig. 1.5. This band structure was computed 

numerically from first principles and shows many energy branches resulting from all the π 

and σ electrons that form the outermost electrons of carbon [8]. 

There is a limiting technique for obtaining a satisfactory band structure, called the “tight-

binding model”, that is in good agreement with experimental measurements or more 

sophisticated numerical ab-initio band structure computations. This model assumes that the 

outermost electrons are localized (i.e. tightly bound) to their respective atomic cores.  

The assumptions belonging to the tight-binding formalism are [4]: 

- Nearest neighbor tight-binding (NNTB) model: the wavefunction of an electron in any 

primitive unit cell only overlaps with the wavefunctions of its nearest neighbours. The 

nearest neighbors of a type-A atom in the graphene lattice are three equivalent type-B 

atoms. 
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- Electron–hole symmetry: a close observation of the ab-initio dispersion in the 

neighborhood of the Fermi energy (E = 0 eV at the K-point in Fig. 1.5) reveals that the π 

and π* branches have similar structure, at least for energies close to the EF. Within this 

restricted range, the energy branches are approximately mirror images of each other. Since 

electrons are the mobile charges in the π* band and holes are the mobile charges in the π 

band, this approximation is called “the electron–hole symmetry”. 

 

FIGURE 1.5:  The ab-initio band structure of graphene, including the σ and π bands. The Fermi energy 
is set to 0 eV [8]. 

As a result of the NNTB stipulations, the dispersion relation E(k) is [4,9,10]: 

																															.(/)0 = 0121 + 4cos√3�2 67cos �2 68 + 49:;� �2 68,																														(1.7) 
where γ , including the nearest neighbor overlap energy,  is called “ the hopping energy” and 

it is often used as a fitting parameter to match ab-initio computations or experimental data. 

Commonly used values for γ range from about 2.7 eV to 3.3 eV. 

Comparison of the NNTB dispersion, eq. (1.7), with ab-initio computations for the π bands 

shows good agreement (Fig. 1.6) with the strongest agreement expectedly at low energies 

(range within ±1 eV is sometimes considered reasonable) [11]. Much of the exploration of 

graphene and derived nanostructures such as CNTs has been focused on the low-energy 

properties. 
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FIGURE 1.6:  Comparison of ab-initio and NNTB dispersions of graphene showing good agreement at 
low energies (energies about the K-point).  γ = 2.7 eV  is used [11]. 

Fig. 1.7 shows the 3D plot of the NNTB dispersion throughout the Brillouin zone. The upper 

half of the dispersion is the conduction (π*) band and the lower half is the valence (π) band. 

The highest occupied state housing the most energetic electrons are at the K-points, as 

identified earlier, and the corresponding energy is formally defined as the Fermi energy      

(EF = 0 eV). The properties of electrons around the Fermi energy often determine the 

characteristics of practical electronic devices.  

Owing to the absence of a bandgap at the Fermi energy, and the fact that the conduction 

and valence bands touch at EF, graphene is considered a semi-metal or zero-bandgap 

semiconductor, in contrast to a regular metal, where EF is typically in the conduction band, 

and a regular semiconductor, where EF is located inside a finite bandgap. Under non-

equilibrium conditions (applied electric or magnetic fields) or extrinsic conditions (presence 

of impurity atoms), the Fermi energy will depart from its equilibrium value of 0 eV.  

 

FIGURE 1.7:  The nearest neighbor tight-binding band structure of graphene: the π and π* bands are 
symmetric with respect to the valence and conduction bands. The hexagonal Brillouin zone is 
superimposed and touches the energy bands at the K-points. The linear dispersion relation close to the 
K' and K points of the first 2D Brillouin zone gives rise to the “Dirac cones” as shown on the right. 



  1.2.   Graphene          13 

 
 

Expanding eq. (1.7) for k in the vicinity of K (or K'), yields a linear dispersion for the π and 

π* bands near these six corners of the hexagonal 2D Brillouin zone [1,4,12]: 

																																																																						.(/)0 = 0ħ>?|/|,																																																								(1.8) 
where: 

																																																																											>? =	√31�2ħ ,																																																															(1.9) 
is the electronic group velocity, called “ the Fermi velocity”, and ħ is the reduced Planck’s 

constant. Graphene is thus highly peculiar for this linear energy-momentum relation and 

electron-hole symmetry. The electronic properties in the vicinity of these corners of the 2D 

Brillouin zone mimic those of massless Dirac fermions forming “Dirac cones” as illustrated in 

Fig. 1.7. The six points where the Dirac double cones touch are referred to as the Dirac points. 

The electronic group velocities close to those points are quite high  at ~ 106 m/s, and within 

the massless Dirac fermions analogy represent an effective “speed of light” (vF ~ c/300). This 

behavior is responsible for much of the research attention that graphene has been receiving as 

platform for investigating the properties of the Dirac fermions and for perspective high-speed 

electronic applications. 

Another important property of graphene is a special feature of the carrier wavefunction 

which leads to other unusual properties. Due to the two interpenetrating sub-lattices, A and B, 

carriers near the Dirac point K, can be described by a two component wavefunction [10]: 

																																																													B0, (/) = 1√2C�
��DE�
0��DE� F,																																																				(1.10) 

where θk = arctan(qx/qy) and q = k-K is the momentum measured from the Dirac point K. 

This wavefunction has some interesting implications. For example, electrons along + kx and    

- kx have orthogonal wavefunctions, so there is no probability of backscattering at 180 degrees 

which favors mobility and enables near ballistic transport at room temperature. The mobility 

µ, in cm2V-1s-1, is defined both in a diffusive or ballistic regime as the ratio between the 

conductivity σ and the carrier charge density and is commonly used to characterize the 

graphene structural quality: 

																																																																																			G = H�I.																																																																												(1.11) 
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The conductivity (which for a two-dimensional system coincides with the so called “sheet 

conductance”) and the mobility of graphene depend on the microscopic scattering processes 

that occur in graphene at a given temperature [13-15].  

The carrier density n sets the position of the Fermi level, EF, with respect to the Dirac 

point. For ideal neutral graphene without free carriers, EF  is located at the Dirac point, where 

n ≈ 0  (n = 0  at T = 0 K). Graphene becomes an n- or p-type conductor when the Fermi level 

shifts above or below the Dirac point and n corresponds to an excess of electrons or holes, 

respectively.  

The relation between n and EF can be easily derived considering that the density of states 

(DOS) in graphene depends linearly on the energy E. Formally, in two dimensions, the total 

number of states available between an energy E and an interval dE is given by the differential 

area in k-space dA divided by the area of one k-state (2π)2/Ω, where Ω is the area of the 

lattice. Mathematically, this is equivalent to [4,14]: 

																																																													J(.)d. = 2gM dN(2#)�/Ω,																																																		 (1.12) 
where the factor of two in the numerator is included for spin degeneracy and gz is the zone 

degeneracy. There are six equivalent K-points, and each K-point is shared by three hexagons; 

therefore, gz =6·1/3=2 for graphene. To determine dA, let us consider a circle of constant 

energy in k-space of radius k. The differential area obtained by an incremental increase of the 

radius by dk is 2πkdk. Therefore, the DOS, which is always a positive value or zero, is: 

																																														g(.) = J(.)Ω = 2π Q6 d6d.Q = 2π R6 �d.d6�
��R .																																			(1.13) 

Substituting from eq. (1.8) yields a linear DOS appropriate for low energies: 

																																																												g(.) = 2#(ħ>?)� |.| = ST|.|,																																												(1.14) 
where βg is a material constant, βg ≈ 1.5·106 eV-2µm-2 and the absolute value of E is necessary 

because energy can be either positive (electrons) or negative (holes). At the Fermi energy   

(EF = 0 eV), the DOS vanishes to zero even though there is no bandgap. This is the reason 

why graphene is considered a semi-metal in contrast to regular metals that have a large DOS 

at the Fermi energy. 

 



  1.2.   Graphene          15 

 
 

The equilibrium electron carrier density n is [4,12]: 

																																I = U g(.)V(.W∞

&
)d. = 2# �6XYħ>?� Z� � .?6XY� ≈ 1# � .?ħ>?�

� ,																								(1.15) 
where f(E) is the Fermi–Dirac distribution function: 

																																																										V(.) = 11 + �(\�\])/^_` ,																																																						(1.16) 
and F1(EF/kBT) is the so-called “Fermi-Dirac Integral” and the last expression rigorously 

holds at T = 0 K. Eq. (1.15) shows that the Fermi level changes as the square root of the 

carrier density: 

																																																																	.? = 0 ℎ2√# >?√I,																																																											(1.17) 
where the  + and - sign correspond to n and p-type graphene, respectively). 

The position of EF can be varied experimentally either by chemically doping the graphene 

[16] or by inducing an excess of carriers by means of an electric field generated by an applied 

bias or a gate [17]. The possibility of controlling the position of the Fermi energy, the sign of 

the excess carries and hence the conductivity by doping or by a bias/gate is a remarkable 

feature of graphene and opens the possibility of a new class of electronic devices.   

1.2.4   Graphene nanoribbons  

Graphene nanoribbons are narrow rectangles made from graphene sheets and have widths on 

the order of nanometers up to tens of nanometers [4]. The nanoribbons can have arbitrarily 

long length and, as a result of their high aspect ratio, they are considered quasi-1D 

nanomaterials. GNRs can have metallic or semiconducting character. GNRs show a departure 

from the electronic properties of graphene sheets, most notably the opening of a bandgap  due 

to the quantum confinement and edge effects. The opening of a bandgap is of great interest 

because it unlocks the potential of employing GNRs as transistors. 

The band structure of GNRs can be computed numerically using first principles or tight-

binding schemes [18]. A useful first-order semi-empirical equation capturing the width 

dependence of the bandgap Eg has a simple relation: 
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																																																																									.b = cd + d& ,																																																											(1.18) 
where w (nm) is the width of the nanoribbons and w0 (nm) and α (eV·nm) are fitting 

parameters. Experimentally extracted values of α range from 0.2 eV to about 1 eV [19,20]. 

Experimental and theoretical data suggest a w0 ≈ 1.5 nm. As the width of the nanoribbon 

increases and exceeds about 50 or 100 nm, Eg vanishes and the band structure of GNRs 

gradually returns to that of a 2D graphene sheet. Fig. 1.8 plots a set of experimentally 

extracted values for the bandgap confirming the inverse width dependence [19]. 

 

 
FIGURE 1.8:  Experimentally extracted bandgap versus width for GNRs [19]. 

1.2.5   Transport properties 

At the Dirac point, even at cryogenic temperatures when n and σ should tend to zero, the 

conductivity of graphene remains finite [12]. This is a consequence of the intrinsic properties 

of the 2D Dirac fermions, which set a limit on the minimum attainable conductivity. In short 

and wide strips ( width to length ratio W/L≫1 ) of ideal graphene, with no impurities or 

defects and for T → 0K, transport at the Dirac point is explained as propagation of charge 

carriers via evanescent waves (tunneling between the leads) [21]. Under these conditions, the 

minimum of conductivity can reach the universal minimum value:  

																																																																											Hf�gh� = 4��#ℎ ,																																																										(1.19) 
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regardless of the edges of the graphene strip. Experimental confirmation of the ballistic 

transport and the universal minimum conductivity in graphene was provided by low-

temperature transport spectroscopy on single-layers and bilayers [22] and  through 

measurements of shot noise at low frequency in field effect devices ( 200 nm long and with 

W/L = 24 ) at temperatures around 4.2 K [23]. When the effect of graphene edges cannot be 

neglected (W/L<3 ) or at the presence of disorder which locally affects the density of carriers, 

the evanescent states are accompanied by propagating states and the minimum conductivity 

rapidly increases [24]. Due to the fabrication process, graphene usually contains various 

sources of disorder, as defects, impurities, strong interaction with charges in surrounding 

dielectrics, phonons, etc. This disorder causes spatial inhomogeneities in the carrier density. 

Local accumulations of charge carriers, so called electron-hole puddles [25], produce 

percolation paths for carrier transport and prevent the transition to the ideal minimum 

conductivity state at the Dirac point. Hence, for real graphene the measured conductivity at 

cryogenic temperatures is much higher than the universal minimum value, changes from 

sample to sample and is typically in the range 2÷5 e2/h  on good quality samples [26-28].  

At higher carrier density, i.e. away from the Dirac point,  the mentioned disorder sources, 

acting as scattering centers, reduce the electron mean free path.  Two transport regimes are 

often considered depending on the mean free path length l with respect to the graphene length 

L. When l > L, transport is ballistic since carriers can travel through graphene at Fermi 

velocity vF without scattering. On the other hand, when l < L, transport is diffusive since 

carriers undergo elastic and inelastic collisions.  In both cases, transport can be described by 

the Landauer formalism [29] and the conductivity can be expressed as: 

																																														H = ij 2��ℎ U Y(.)k(.) �− lVl.�'.
m
& ,																																								(1.20) 

with T(E) the transmission function and M(E) the number of conducting channels.  

For ballistic transport: 

																																																																										Y(.) = 1,																																																																		(1.21) 
while for diffusive transport: 

																																																																				Y(.) = n(.)n(.) + i,																																																									(1.22) 
where L is the length of the sample and λ(E) is the energy-dependent scattering mean free 

path. 
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M(E) can be calculated [14] from the dispersion relation eq. (1.8), and, similarly to the density 

of states, has a linear dependence on the energy E:  

																																																																							k(.) = j 2|.|#ħ>? .																																																						(1.23) 
From eqs. (1.20)-(1.23), under the approximation that - ∂f/∂E ≈ δ(E-EF) valid for T → 0K, a 

simple expression of graphene conductivity can be easily obtained:    

																																																																			H = 2��ℎ � 2.?#ħ>?� n(.?).																																																(1.24) 
In eq. (1.24), λ = L, independent of the energy E in the ballistic regime, and: 

																																																																								n(.) = #2 >?o(.),																																																						(1.25) 
in the diffusive regime, where τ(E) is the momentum relaxation time, i.e. the average time 

between scattering events. 

Recalling eq. (1.11) and the EF vs. n relation of eq. (1.17), eq. (1.24) implies that H ∝ √I 

and G ∝ 1/√I in the ballistic regime. This dependence, which is sketched in Fig. 1.9, has 

been experimentally observed on clean graphene [30]. 

 

FIGURE 1.9:  Conductivity  vs. carrier density  (σ vs. n) for graphene. Acoustic phonons (short range) 
and ionized impurity (long range) scattering are considered [12]. 
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In the diffusive regime, λ(E) and τ(E) depend on the scattering mechanism. In graphene, three 

main scattering mechanisms are considered: Coulomb scattering by charged impurities (long 

range scattering), short-range scattering (defects, adsorbates), and electron-phonon scattering. 

Charged impurity scattering is a very important scattering mechanism [30]. It is caused by 

the presence of charged impurities close to the graphene sheet. These impurities can be 

trapped ions in the top or bottom dielectric or ions on the graphene surface.  Coulomb 

scattering is more relevant at low energies and the relaxation time corresponding to it varies 

linearly with energy,  τ(E) ∝ E [31,32]. According to eqs. (1.11), (1.17), (1.24) and (1.25),     

σ ∝ n and the mobility is independent of n. The observation of a linear σ vs. n plot (Fig. 1.9) 

is frequently taken as evidence for the presence of charged impurity scattering. 

Short range scattering potential is due to localized defects as vacancies and cracks [31,33]. 

The resulting scattering rate is proportional to the final density of states, so   1/τ(E)	∝ E, and is 

independent of temperature. Hence, for this scattering mechanism, the conductivity does not 

depend on n and µ	∝ 1/n. 

Deformation potential scattering by acoustic phonons [33-35] is another important 

scattering mechanism. Phonons can be considered an intrinsic scattering source since they 

limit the mobility at finite temperature even when there are no defects. Longitudinal acoustic 

(LA) phonons are known to have a higher electron-phonon scattering cross-section. The 

scattering of electrons by LA phonons can be considered quasi-elastic since the phonon 

energies  are negligible in comparison with the Fermi energy of electrons. Optical phonons in 

the graphene can also scatter carriers, especially at temperatures above 300 K, and  are 

believed to be responsible for the decrease in conductivity at high temperatures [36]. Phonon 

scattering is usually invoked to explain the  temperature dependence of σ  but it does not 

introduce any dependence on n (Fig. 1.9) . 

Other scattering mechanisms can affect the conductivity. Different scattering mechanisms 

add up to produce a total conductivity σTot given by: 

																																																																					 1H`qr = 1H� + 1H� +⋯,																																																			(1.26) 
where σi is the conductivity corresponding to a given scattering mechanism.  According to   

eq. (1.26), the smaller σi limits the total σTot. An example is given in Fig. 1.9 where acoustic 

phonons and charged impurities are considered. 
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1.2.6   Optical properties 

Graphene has remarkable optical properties. The gapless energy band enables charge carrier 

generation by light absorption over a very wide energy spectrum, unmatched by any other 

material [12]. This includes the ultraviolet, visible, infrared (IR) and terahertz (THz) spectral 

regimes. In the near-IR and visible, light transmittance T of graphene does not depend on 

frequency, being controlled by the fine structure constant α = e2/(4πε0ћ2c) [37] . At normal 

incidence, the transmittance can expressed as [38]: 

																																																			Y = (1 − 0.5#c)� ≈ 1 − #c ≈ 0.977.																																					(1.27) 
Considering the thickness of 0.334 nm, a single-layer of suspended graphene has an unusually 

high absorption of A = 1-T ≈ 2.3%, corresponding to an absorption coefficient about 50 times 

higher than for example the absorption of GaAs at λ = 1.55 µm and it demonstrates the strong 

coupling of light and graphene, which can be exploited for conversion of photons into 

electrical current or voltage [39,40]. Because graphene sheets behave as a 2-D electron gas, 

they are optically almost noninteracting in superposition, and the absorbance of few-layer 

graphene sheets is roughly proportional to the number of layers. The proportionality is 

gradually lost and the transparency remains quite high while adding further layers: graphene 

layers corresponding to a thickness of 1 µm still have a transparency of approximately 70%   

[41]. 

In addition, the reflectivity of graphene is very low: R = 0.25π2α2(1-A) = 1.3×10-4,  though 

it increases to 2% for 10 layers [42].

 

1.3 Carbon nanotubes 

Carbon nanotubes  (CNTs) are graphitic sheets curled up into seamless cylinders. There are 

two families of CNTs, namely single-wall CNTs (SWCNTs) and multi-wall CNTs 

(MWCNTs). A SWCNT (Fig. 1.10(a)) is a hollow cylindrical structure of carbon atoms with 

a diameter that ranges from about 0.5 to 5 nm and lengths of the order of micrometers to 

centimeters. An MWCNT (Fig. 1.10(b)) is similar in structure to a SWCNT but has multiple 

concentric cylindrical walls with the spacing between walls comparable to the interlayer 

spacing in graphite, approximately 0.34 nm [4].  
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FIGURE 1.10:   On   the  left:  ball-and-stick  models  of  a  SWCNT (a) and a MWCNT (b). The balls 
represent the carbon atoms and the sticks stand for the bonds between carbon atoms. On the right: 
high-resolution TEM images of single-wall and multi-wall CNTs observed by Sumio Iijima [44,45]. 

The large aspect ratio makes the nanotubes nearly ideal one-dimensional (1-D) objects. There 

are three types of  SWCNT: chiral CNTs, armchair CNTs, and zigzag CNTs, of which the 

latter two are achiral. Depending on the detailed arrangement of the carbon atoms the 

SWCNTs can be metallic or semiconducting [43]; instead the MWCNTs are usually metallic.  

MWCNTs were observed for the first time in transmission electron microscopy (TEM) 

studies by Iijima in 1991 [44], while SWCNTs were produced independently by Iijima [45] 

and Bethune [46] in 1993. Fig. 1.10(c) and Fig. 1.10(d) show the TEM images of single-wall  

and multi-wall CNTs observed by Sumio Iijima.  

1.3.1   The direct lattice  

To understand the origin of the different types of CNT, we start from the direct lattice of 

graphene and then define a mathematical construction which folds graphene’s lattice into a 

CNT. This construction directly leads to a precise determination of the primitive lattice of 

carbon nanotubes, which is required information in order to derive the CNT band structure.  

With reference to Fig. 1.11(a), that shows the honeycomb lattice of graphene, a single-wall 

CNT can be conceptually conceived by considering folding the dashed line containing 

primitive lattice points A and C with the dashed line containing primitive lattice points B and 

D such that point A coincides with B, and C with D to form the nanotube shown in             

Fig. 1.11(b) [4]. 
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FIGURE 1.11:   An  illustration  to  describe  the  conceptual  construction  of  a  CNT from  graphene. 
(a)Wrapping or folding the dashed line containing points A and C to the dashed line containing points 
B and D results in the (3,3) armchair carbon nanotube in (b). The CNT primitive unit cell is the 
cylinder formed by wrapping line AC onto BD and is also highlighted in (b). 

The CNT is characterized by three geometrical parameters, the chiral vector Ch, the 

translation vector T, and the chiral angle θ, as shown in Fig. 1.11(a). 

Ch is defined as the vector connecting any two primitive lattice points of graphene such 

that when folded into a nanotube these two points are coincidental or indistinguishable, and 

|Ch| is the CNT circumference. Ch is equivalent to: 

																																																																							tu = I�� +v��,																																																							(1.28) 
where a1 and a2 are the primitive lattice vectors defined by eq. (1.1), n and m are positive 

integers.  

The type of CNT can be deduced directly from the values of the chiral vector and it is 

described as an (n, m) CNT. The (n, n) CNTs are armchair nanotubes,  the (n, 0) CNTs are 

zigzag nanotubes and all other ( n, m) CNTs lead to chiral nanotubes. 

The other two geometrical parameters (T and θ) can be derived from the chiral vector.  

The chiral angle is the angle between the chiral vector and the primitive lattice vector a1: 

																																																																		9:;w = tu ∙ ��|tu||��|.																																																													(1.29) 
Unique values of the chiral angle are restricted to 0° ≤ θ ≤ 30°. All armchair nanotubes have a 

chiral angle of 30° and θ = 0° for all zigzag nanotubes. 
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The translation vector T defines the periodicity of the lattice along the tubular axis and it is 

the smallest graphene lattice vector perpendicular to Ch.  

Let T = t1a1 + t2a2, where t1 and t2 are integers. Therefore: 

																																																	tu ∙ y = (z(2I + v) + ({(2v + I) = 0.																																		(1.30) 
The acceptable solution for eq. (1.30) is: 

																																																												y = �2v + I|} , − 2I + v|} �,																																																(1.31) 
where gd is the greatest common divisor of 2m + n and 2n + m. 

The chiral and translation vectors define the primitive unit cell of the CNT, which is a 

cylinder with diameter 'r = |tu|/# and length |y| = √3|tu|/|} (Fig. 1.11(b). 

1.3.2   Brillouin zone 

The wavevectors defining the CNT first Brillouin zone are the reciprocals of the primitive 

unit cell vectors given by the reciprocity condition [4]:  

																																																																						��( ~W �)∙(t�Wy) = 1,																																																			(1.32) 
where Ka is the reciprocal lattice vector along the nanotube axis and Kc is along the 

circumferential direction, both given in terms of the reciprocal lattice basis vectors of 

graphene defined by eq. (1.5). Eq. (1.32) simplifies to: 

																												tu ∙  � = 2#,									y ∙  � = 0,									tu ∙  � = 0,									y ∙  � = 2#.												(1.33)    
By the periodic boundary conditions on the Bloch wave functions, the allowed wavevectors k 

within the Brillouin zone along the axial direction are: 

																																																							6 = 2#J��Y �,											� = 0,1, … ,J�� − 1,																																			(1.34) 
where Nuc is the number of unit cells in the nanotube of length Lt = NucT. The maximum 

integer value of l is determined from the requirement that unique solutions for k are restricted 

to the first Brillouin zone, i.e. maximum k < |Ka| = 2π/T. In the limit where the CNT is very 
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long, for instance Lt ≫T or Nuc ≫1, then the spacing between k-values vanishes and k can be 

considered a continuous variable along the axial direction: 

																																																																									6 = �−#Y , #Y�,																																																											(1.35) 
where the wavevector has been re-centered to be symmetric about zero consistent with 

standard Brillouin zone convention. 

Applying the periodic boundary conditions to determine the allowed wavevectors q along 

the circumferential direction yields: 

																																																		� = 2#�u � = �| �|,											� = 0,1, … ,J − 1,																																(1.36) 
where N is the number of hexagons per unit cell. 

We observe that the q-values are separated by a gap that is much greater than the spacing 

in k-values, i.e. 2π/Ch ≫ 2π/Lt for long CNTs with lengths Lt ≫ Ch. Therefore, the q variable 

is quantized or discretely spaced compared with the relatively continuous k variable, which 

implies that the allowed CNT wavevectors in the Brillouin zone are composed of a series of 

lines, as shown in Fig. 1.12. These lines are basically 1D cuts of graphene’s reciprocal lattice. 

 

FIGURE 1.12:   Brillouin zone of a (3, 3) armchair CNT (shaded rectangle) overlaid on the reciprocal 
lattice of graphene. The numbers refer to j = 0, 1, ... , 5 for a total of N = 6  1D bands in the CNT 
Brillouin zone. 

Finally, the expression for any arbitrary allowed wavevector within the Brillouin zone is: 

																												/ = 6  a2#/Y + � c ,				�� = 0,1,… ,J − 1				and				 − #Y � 6 � #Y		� ,																(1.37) 
where each value of  j corresponds to a line with wave vectors k  ranging from − π/T to  + π/T. 
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1.3.3   Electronic and transport properties 

The electronic structure and electrical properties of SWCNTs are usually discussed in terms 

of the electronic structure of graphene [4,47].  Fig. 1.15(a) shows the band structure and the 

hexagonal first Brillouin zone of graphene. The energy bands of CNTs are line cuts or cross-

sections of the bands of graphene and the entire Brillouin zone of CNTs can be folded into the 

first Brillouin zone of graphene. When these cuts pass through a Dirac point, the nanotube is 

metallic (Fig. 1.13(b)); in cases where no cut passes through a K point, the nanotubes are 

semiconducting (Fig. 1.13(c)). 

 
FIGURE 1.13:   (a)  Band  structure  of  a  graphene  sheet  (top)  and the first Brillouin zone (bottom).  
(b) Band structure of a metallic (3,3) CNT. (c) Band structure of a (4,2) semiconducting CNT. The 
allowed states in the nanotubes are cuts of the graphene bands indicated by the white lines. If the cut 
passes through a K point, the CNT is metallic; otherwise, the CNT is semiconducting. 

It can be shown that an (n,m) CNT is metallic when n = m and when n-m = 3i [48], where i is 

an integer, while CNTs with n-m≠3i are semiconducting [49,50]. 

The band structure of CNTs can be computed by inserting the allowed wavevectors, given 

by eq. (1.37) and  rewritten in terms of its �� and �� components. 

In general, for any (n, m) CNT, there will be N valence bands (E ≤ 0) and N conduction 

bands (E ≥ 0). Each one of the bands has 2Nuc allowed states, where the factor of 2 is due to 

spin  degeneracy. At equilibrium the valence bands will be fully occupied and the conduction 

bands empty with the Fermi energy EF = 0 eV.  

Fig. 1.14 shows the band structures for (10, 4) metallic and (10, 5) semiconducting chiral 

CNTs [4]. 
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FIGURE 1.14:   Band structures for (a) (10, 4) metallic CNT and (b) (10, 5) semiconducting CNT, 
within ±3 eV. The metallic CNT shows a band degeneracy at 0 eV and k = ±2π/3T. The 
semiconducting CNT has a bandgap of  ∼ 0.86 eV. 

Fig. 1.15 shows the band structure for an (8,8) armchair CNT, revealing an energy degeneracy 

at ka = ±2π/3, where the valence band touches the conduction band [4].  

 

FIGURE 1.15:   Band structure for (8, 8) armchair nanotube. For all armchair CNTs, the valence band 
touches the conduction band at ka = ±2π/3, which explains their metallic properties. 

In general, the energy degeneracy at 0 eV is common to all armchair CNTs and, hence, 

armchair CNTs are metallic.  

For armchair CNTs, the first subbands of the valence and conduction bands have a linear 

dispersion at low energies and to a good approximation can be approximated in a simple 

manner with a linear E−k relation independent of chirality. The linear dispersion for the right-

half of the Brillouin zone can be expressed as:  

																																													.(6)0 ≈ 0ћ>? Q6 − 2#3�Q,							� #3� � 6 � #��,																															(1.38) 
where ћ is the reduced Planck’s constant and vF is the Fermi velocity. 
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Fig. 1.16 shows the band structures for (12, 0) metallic and (13, 0) semiconducting zigzag 

CNTs [4]. 

 

FIGURE 1.16:   Band structures for (a) (12, 0) and (b) (13, 0) zigzag CNTs. The (12, 0) CNT is 
metallic, while the (13, 0) CNT is semiconducting due to the bandgap at k = 0. 

In general, when n is a multiple of 3, the zigzag CNT is metallic, otherwise it is 

semiconducting.  

For metallic zigzag CNTs, a simple linear E−k relation can accurately describe the first 

subband of the valence and conduction bands. Similar to graphene’s linear dispersion, the 

linear dispersion for the first subband of metallic zigzag CNTs can be expressed as:  

																																																																						.(6)0 ≈ 0ћ>?|6|.																																																					(1.39)	 
The bandgap for semiconducting CNTs is [4,49]: 

																																																																											.T ≈ 21 ����'r ,																																																									(1.40) 
where γ is the hopping energy, ac-c is the carbon–carbon bond length and dt is the diameter of 

the CNT. Numerically, Eg(eV) ∼ 0.9/dt (nm). 

The CNT electronic structure has many 1D subbands; as such, the total DOS gtot at a given 

energy is the sum of the contributions from the DOS of each subband [4]: 

																																																																		grqr(.) =�g(., �)�
���

.																																																			(1.41) 
where N is the number of subbands in the CNT band structure. 

In a 1D solid, the number of states between E and E + dE is the differential wave vector dk 

normalized to the length of one state: 
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																																																																		g(.)	d.	i = 2 d62#/i,																																																				(1.42) 
where L is the length of the 1D system and 2π/L is the length of one k-state; the factor of 2 in 

the numerator accounts for spin degeneracy. Hence, it follows that a general formula for the 

electron DOS in a 1D solid is: 

																																																																											g(.) = 1# d6d. .																																																										(1.43) 
For example, we report the DOS for zigzag (n, 0) nanotubes. Owing to mirror symmetry of 

the E−k relationship, the DOS for the negative branch of the wavevector is identical to the 

DOS for the positive branch and the complete DOS for the jth subband is [4]: 

																																							gMM(., �) = 4c√3c# |.|�(.� − .���� )(.���� − .�),																																			(1.44) 
where α accounts for the Brillouin zone mirror symmetry or degeneracy and Evhi (i = 1,2) is 

known as a van Hove singularity (VHS) [4]. Specifically, α = 1 if E is energy at the Brillouin 

zone center (since the Г-point center is common to both branches of the wavevector), 

otherwise α = 2.  

The DOS for semiconducting and metallic zigzag nanotubes are shown in Fig. 1.17.           

A noteworthy insight is that the square of the energy terms in the denominator of the 

expression for the DOS is due to the electron–hole symmetry present in the NNTB band 

structure of CNTs leading to mirror symmetry between the conduction and valence bands’ 

DOS visually evident in Fig. 1.17. 

The SWCNTs are 1-D objects and as such their two-terminal conductance is given by 

Landauer’s equation [50-52]: 

																																																																			� = �2��ℎ �� Y�
���	
�

,																																																									(1.45) 
where 2e2/h is the quantum of conductance, Ti  is the transmission of a contributing 

conduction channel (subband), and the sum involves all contributing conduction channels,   

i.e., channels whose energy lies between the electrochemical potentials of the left and right 

reservoirs to which the nanotube is connected. 
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FIGURE 1.17:   The electronic DOS for (a) metallic and (b) semiconducting zigzag nanotubes. For 
metallic (semiconducting) nanotubes, the DOS around 0 eV  is non-zero (zero). 

In the absence of any scattering, i.e., when all Ti = 1 , the resistance of a metallic SWCNT is 

(h/4e2) ≈ 6.5 kΩ, because for the lowest subband in metallic CNTs the number of degenerate 

subbands is Nch = 2 [4]. This quantum mechanical resistance is a contact resistance arising 

from the mismatch of the number of conduction channels in the CNT and the macroscopic 

metal leads. 

There is strong evidence that Ti = 1 in the case of metallic SWCNTs, so that these tubes 

behave as ballistic conductors [53–56]. This arises from the 1-D confinement of the electrons 

which allows motion in only two directions. This constraint along with the requirements for 

energy and momentum conservation severely reduces the phase space for scattering 

processes. However, in addition to the quantum mechanical contact resistance, there are other 

sources of contact resistance, such as those produced by the existence of metal-nanotube 

interface barriers, or poor coupling between the CNT and the leads. These types of resistance 

are very important and can dominate electrical transport in nanotubes [56]. 

Unlike SWCNTs, the electrical properties of MWCNTs have received less attention. This 

is due to their complex structure (every carbon shell can have different electronic character 

and chirality) and the presence of shell–shell interactions [57,58]. However, at low bias and 

temperatures, and when MWCNTs are side-bonded to metallic electrodes, transport is 

dominated by outer-shell conduction [59,60].  
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1.4 Theory of the field emission  

Controlled propagation of electrons in vacuum is at the basis of several technological 

applications, like CRT displays, vacuum electronics, electron microscopy, X-ray generation, 

electron beam lithography, etc. The most common technique to extract electron from matter is 

thermionic emission, where electrons are emitted from heated filaments (hot cathodes), which 

requires a source heated at high temperature(~1000 °C) and has several drawbacks. Field 

emission (FE), which involves extraction of electrons from a conducting solid (metal or 

highly doped semiconductor) by an external electric field, is becoming one of the best 

alternatives. Indeed, by this method, an extremely high current density with low energy 

spread of the emitted electrons and with negligible power consumption can be achieved [61-

63]. 

The phenomenon  of  field  emission  is  associated  with  a  quantum mechanical tunneling 

process   whereby   electrons  near  the  Fermi   level  tunnel  through  a  (material  dependent) 

potential  barrier, whose width  is reduced  by  the application of an external electric field, and 

escape to the vacuum level (Fig. 1.18)  [64]. 

 

 

FIGURE 1.18:   Potential-energy diagram illustrating the effect of an external electric field on the 
energy barrier for electrons at a metal surface [64]. 

For a parallel flat electrode configuration the field is off the order of 109 V/m. However, if the 

cathode surface has a high point or a protrusion, electrons may be extracted at a considerably 

lower applied field [62,65]. This is because the lines of force converge at the sharp point and 

the physical geometry of the tip provides a field enhancement. 

The emission current depends on the electric field at the emitter surface (referred as 

microscopic or local electric field), ES, and on the workfunction, Φ, i.e. the effective surface-
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vacuum barrier height. The Fowler–Nordheim model [66], derived for a flat metallic surface 

at 0 K and assuming a triangular potential barrier, predicts an exponential behaviour of the 

emitted current: 

																																																																� = � .��� � ∙ ��  �−"��/�.¡ �,																																										(1.46) 
where S is the emitting surface area, ES is the uniform electric field on that surface and a and 

b are constants. When S is expressed in cm2, Φ and ES respectively in eV and V/cm,                  

a = 1.54·10-6 A·eV·V-2 and b = 6.83·109 eV-3/2·V·m-1. 

In a parallel plate configuration, the field ES can be obtained from the applied potential V 

and the inter-electrode distance d as ES = V/d. If the cathode surface has a protrusion, a field 

enhancement factor, β, which takes into account the amplification occurring around the tip, 

has to be introduced and: 

																																																																															.¡ = S¢' .																																																														(1.47) 
According to eqs. (1.46) and (1.47), a Fowler–Nordheim plot of ln(I/V2) as a function of 1/V 

is a straight line, whose slope, m = bΦ3/2d/β, and interception, y0 = ln(aSβ2/Φd2), can, in 

principle, be used to estimate β and Φ. Although corrections [67,68] are required to describe 

effects of non-zero temperature, series resistance, extremely curved surfaces and non-uniform 

field enhancement factors or workfunctions, the basic FN theory has proven to be a good 

model to achieve a first-approximation understanding of the emission phenomena. For 

temperatures up to several hundred degree Celsius and fields in a large window,  F–N model 

provides a good fitting to the I–V characteristics of several kind of emitters.  
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Chapter 2 

Graphene-based field-effect transistors 

2.1 Introduction 

The Si-based electronics has severe physical limitations for further developments, in 

particular related to high power dissipation caused by leakage effects. This is especially 

dangerous when continuing the shrinkage of field effect transistor (FET) dimensions and 

oxide thicknesses [1,2].  

Graphene is a promising candidate for future nanoelectronics. Graphene-based field-effect 

transistors (GFETs) [3] combine an ultra-thin body suitable for aggressive channel length 

scaling [4], with excellent properties, as a linear dispersion relation with electrons behaving as 

massless Dirac fermions [5], a very high carrier mobility [6] and a superior current density capability 

[7]. In such devices, an electric current is injected/extracted from metallic electrodes 

(source/drain) through a graphene channel whose conductance is modulated by the electric 

field from a back- or top-gate. The linear energy dispersion, with zero bandgap and a double-

cone shape with intrinsic Fermi level at the vertex, gives symmetric valence and conduction 

bands; differently from most materials, current modulation by means of a gate in GFETs is 

possible even without a bandgap, due to the vanishing density of states at the vertex [5, 8]. 

However the development of graphene-based electronics is limited by the quality of the 

contacts between the graphene and the metal electrodes [9-11] which can significantly affect 

the electronic transport properties of the devices [12]. Despite this, the physics of graphene–

metal contacts remains still an open subject.  

Although the carrier mobility in the graphene is high, the very small DOS for graphene 

might suppress the current injection from the metal contacts to the graphene, thus resulting in 

high contact resistivity Rc [10,12]. In particular, a high Rc limits the total on-state current, and 

has a severe impact on transistor performance, negatively influencing the peak 

transconductance as well as the linearity of the current versus gate-voltage characteristic [13].  

The use of a four-point setup for electrical characterization is clearly suitable to prevent the 

problems related to contact resistance, but real electronic applications are based on two-
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terminal devices where the effect of contact resistance cannot be avoided. For such reason it 

becomes of fundamental importance to characterize the metal/graphene interfaces at the 

contacts. Moreover, current crowding occurs as the current transfers between the graphene 

and the metal contact over a finite length, leading to a non-uniform current density that is 

higher at the edge of the metal contact and decreases to zero deeper into the contact [10,14]. 

Up to now, a large range of Rc values is reported in literature, either as edge specific contact 

resistivity (RcW in Ωµm, with W the width of the contact), or area specific contact resistivity 

ρc (ρc= RcA in Ωµm2, with A the area of the contact). Experimentally, the use of Pd contacts 

on graphene has resulted in the lowest edge specific contact resistivity (230 ± 20 Ωµm [15]), 

while for Ti contacts a value of 0.8 kΩµm [16], and for Ni contacts an area specific contact 

resistivity of few kΩµm2 have been reported. Annealing treatments of the contacts in different 

gases (H2-Ar [10], O2 [17]) have been proposed in order to improve the specific contact 

resistivity.  

In section 2.2 we report the electrical characterization of graphene-based field-effect 

transistors and the physical effects due to the contact resistance on the graphene layers. The 

transistor transfer characteristics (source-drain conductance versus back-gate voltage) showed 

a clear double-dip feature that is discussed in terms of graphene doping under metal contacts 

[18-19] and a hysteresis that is attributed to charge trapping in silanol group at the SiO2 

surface [20, 21]. In order to analyze the effects of the metal contacts on the graphene, several 

parallel contacts (with Ti or Ni) were produced for each device to perform transfer length 

method (TLM) measurements, which evidenced a dependence of the contact resistance on the 

back-gate voltage for both metals [22]. 

Since the superconductor/graphene junction is the ideal platform to study the interaction of 

Cooper pairs and massless Dirac fermions, this is a research field that let envisage new 

fundamental physics as well as innovative device applications. The absence of a bandgap in 

graphene enables easy formation of ohmic contacts with most superconducting metals. 

Nonetheless, the band alignment and the vanishing density of states (DOS) of graphene 

around the Dirac point, as well as defects or chemical residues, may affect current injection 

and hinder the detection of exotic new phenomena at the superconducting transition. The 

understanding of the contact formed by a given superconductor with graphene is therefore an 

important prerequisite to any low temperature investigation.  

Heersche et al. [23] used back-gated graphene field effect transistors with Ti/Al contacts to 

demonstrate that graphene can support a supercurrent, which is carried either by electrons in 

the conduction band or by holes in the valence band, and that Josephson effect in graphene is 
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a robust phenomenon. Rickhaus et al. [24] fabricated superconductor-graphene-

superconductor (S-G-S) devices based on Niobium (Nb) contacts to study the integer quantum 

Hall effect and evidenced Andreev processes at the graphene-superconductor interface. Their 

devices were fabricated with exfoliated graphene on SiO2/p-Si substrate and, when tested as 

back-gated field effect transistors, exhibited asymmetric transfer characteristics with 

saturation in the p-branch and a field effect mobility around 3000 cm2V-1s-1. Since they 

observed an exponentially increasing contact resistance for decreasing temperature, to achieve 

transparent contacts to graphene they used a 4 nm Ti layer under Nb. Similarly, Komatsu et al. 

[25] fabricated S-G-S junctions with Nb to investigate the superconducting proximity effect 

through graphene. They found that the low transparency of the superconductor/graphene 

junction is a serious limitation and, only after using an intermediate thin Pd layer (4- to 8 nm 

thick), they were able to evidence a suppression of the critical current near the graphene 

charge neutrality point, which was attributed to specular reflection of Andreev pairs at the 

interface of charge puddles. Mizuno et al. [26] fabricated high-quality suspended monolayer 

graphene–Niobium nitride (NbN) Josephson junctions and measured a supercurrent at critical 

temperatures greater than 2 K. The production of highly transparent graphene–NbN contacts 

was identified as one of the major experimental challenges. A Ti/Pd intermediate layer was e-

beam evaporated on graphene prior to Ar/N2 plasma sputtering of Nb to reduce the damage 

from energetic ions and improve contact transparency.  

To date, Nb is the metal often chosen in the superconductor/graphene investigations for its 

high critical temperature (9.25 K) and well-known properties and deposition technology, 

although it does not seem to establish a good contact with graphene and a thin inter-layer is 

often added. If and how this extra layer impacts the physics at the superconducting transition 

is unclear. In this direction, a deeper understanding of the properties of the Nb/graphene 

interface and the assessment of its suitability for superconductor/graphene investigations is 

timely and necessary. 

In section 2.3 we report the electrical characterization of graphene field effect transistors at 

room temperature and decreasing pressure with the goal to elucidate specific features of the 

Nb/graphene contact. We find that gently sputtered Nb forms contacts with specific resistivity 

(~ 25 kΩµm) in the range of that reported for evaporated metals, as Ti or Cr (~ 1-100 kΩµm), 

and about an order of magnitude higher than the specific contact resistance achieved with 

strongly chemisorbed metals as Pd or Ni (~ 0.1-5 kΩµm)   [10,19, 27-29]. We distinguish the 

role of air adsorbates and process residues on the doping of the graphene channel from that of 

the supporting SiO2 and argue that strain of graphene under the contacts plays an important 
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role in increasing the contact resistance. Furthermore we show that Niobium acts as p-dopant 

on graphene and that depinning of the graphene Fermi level at the contact strongly suppresses 

the conductance of the transistor in the electron branch. As a byproduct, we estimate a lower 

limit for the workfunction of the Nb film as  ΦNb ≥ 4.7 eV [30]. 

From an experimental viewpoint, the use of scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), electron beam lithography (EBL) and focus ion 

beam (FIB) processing in ultra-high vacuum represents a necessary step for the fabrication 

and characterization of graphene-based devices. Consequently, graphene devices during 

fabrication or under test are necessarily exposed to high vacuum and electron irradiation, 

which may considerably affect their electronic properties.  

Several experiments have shown that the irradiation of energetic particles, such as 

electrons [31-35] and ions [36,37], can induce defects and damages in graphene and cause 

severe modifications of its properties. Raman spectroscopy has been largely used to study 

electron-beam induced structural modifications [38-40] or formation of nanocrystalline and 

amorphous carbon [37,41]. The shape and relative magnitude of a D peak, as well as the shift 

of the G peak, have been used to quantitatively evaluate the damage and the strain induced by 

a very low energy e-beam [42]. Raman and Auger electron spectroscopy have shown that e-

beam irradiation can selectively remove graphene layers and induce chemical reactions and 

structural transformations [39,40]. The interaction of an e-beam with water adsorbates on the 

graphene surface has been also proposed for the hydrogenation of graphene [43,44]. However, 

the Raman spectroscopy is unable to reveal all the effects of e-beam irradiation, and electrical 

measurements are needed to check for possible modifications of transport properties. Despite 

that, electronic transport properties of irradiated graphene devices have not yet been deeply 

investigated [45,46]. The negative shift of the Dirac point has been reported as an effect of e-

beam induced n-doping. The comparison with the case of suspended graphene has also 

evidenced the importance of the substrate [45]. It has been demonstrated in particular that e-

beam irradiation of graphene field effect transistors modifies the substrate band bending and 

results in localized n-doping of graphene, which creates graphene p-n junctions working as 

photovoltaic device [47]. 

In section 2.3, after the electrical characterization of graphene field effect transistors with 

Nb contacts at room temperature and decreasing pressure, we study the modification of 

electronic transport properties of GFETs upon exposure to electron beam irradiation for 

scanning electron microscopy imaging with acceleration energy up to 10 keV. Electron 

irradiation affects the transistor current drive capability by reducing the carrier mobility and 
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increasing the channel and contact resistance. We also show that, for low energy electron 

irradiation, the conditions of pristine devices are almost restored by successive gate voltage 

sweeps while measuring the channel conductance [48]. 

Since the discovery of graphene, the field effect modulation of the relativistic charge 

carriers in this material has largely been investigated in capacitive structures, whereby a 

highly doped substrate coated by an oxide dielectric was used as back-gate to apply a vertical 

electric field. Extra control was then added by including a top-gate, at the cost of process 

complexity and increased risk of device failure due to the top dielectric deposition  [49-52]. 

The use of side-gate(s) to limit interaction with dielectrics and avoid mobility degradation 

emerged soon after with side-gates formed by graphene [53-57] or metal leads [58]. All-

graphene devices, where graphene is used both as channel and side-gate, offer the further 

advantage of the fabrication of self-aligned structures in a single lithographic step, with 

optimized gate to source/drain overlapping.  

To date, research on side-gate devices has been dealing with the effect of the gate on the 

electrical transport properties of the graphene channel in terms of the modulation of 

conductance [53-54,58], penetration of the transversal field in the channel [53] or 

transconductance [55]. Different geometries with single and dual side-gate and various critical 

dimensions have been considered [56], and some progress has been made towards a process 

suitable for integration in the existing Si technology [57].  

The potentially high gate leakage caused by current flowing from gate to channel through 

the dielectric/air or dielectric/vacuum interface is one of the main weaknesses of graphene 

side-gated transistors [54].  Besides, the electron transport between horizontal graphene flakes 

at a nanometric distance and on a dielectric surface is by itself an interesting fundamental 

problem. Yet, it has received almost no attention. Although electron emission from the edge 

of a graphene flake has been largely investigated in connection to the quest for graphene field 

emission devices [59-65], the current between two graphene flakes separated by a nanogap 

has been rarely investigated. Wang et al. [66] patterned graphene sheets with 

crystallographically matching edges by divulsion, separated by a few hundred-nanometers 

distance on SiO2/Si and used them to measure the current-voltage (I-V) characteristics in a 

high-vacuum chamber. They found that I-V curves are governed by the space-charge-limited 

flow of current at low biases and by Fowler–Nordheim [67] tunneling in high voltage regime. 

A recent study on field emission between suspended graphene flakes also reported Fowler-

Nordheim field emission as a dominant microscopic mechanism and a current density as high 

as 10 nA/µm at modest voltages of tens of volts [68]. In particular, it was found that the 
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emission is stable in time and repeatable over large numbers of voltage cycles, and that the 

emission current follows a power law dependence on pressure, a feature that they suggest to 

exploit for sensing purposes.  

In section 2.4, we study the side-gating effect and the gate leakage in all-graphene devices. 

Side-gated all-graphene field-effect transistors have been fabricated by patterning exfoliated 

flakes on a SiO2/Si substrate. Channel and gate are formed by graphene with parallel edges, 

separated by 100 nm gap. Such configuration helps to build a uniform electrical field along 

the channel direction, which is suitable to study the planar gate-to-channel leakage 

mechanisms and the electron field emission from individual graphene flakes. We report 

rapidly growing leakage for an electric field higher than 150 V/µm and we clarify that the 

current is due to Frenkel-Poole transport through SiO2 until Fowler-Nordheim emission in 

vacuum between graphene flakes takes over and dominates with a current reaching a value as 

high as  1 µA/µm  at ~ 1 kV/µm.  This  study  offers  opportunities  for  both  fundamental  and  

applied research in vacuum nanoelectronics [69].

 

2.2 GFETs with Nickel and Titanium contacts   

2.2.1   Devices fabrication and measurement setup 

Graphene flakes, produced by mechanical exfoliation (scotch-tape method) from graphite, 

were transferred to Si substrates covered by a 300 nm thermal SiO2. The first identification of 

the graphene flakes was performed by optical microscopy and then confirmed by Raman 

spectroscopy and SEM imaging [70]. Larger flakes (between 20 µm and 50 µm in at least one 

dimension) were selected in order to produce multi-lead devices. Normally, four to six 

parallel leads were realized by electron beam lithography and a lift-off process. The scheme 

of the produced GFETs is shown in Fig. 2.1(a). Images of real devices acquired by a scanning 

electron microscope are also reported in Fig. 2.1: two devices with Ni contacts (Fig. 2.1(b) 

and Fig. 2.1(c)) in the following named as sample Ni#1 and sample Ni#2, and two devices 

with Ti contacts (sample Ti#1 in Fig. 2.1(d) and sample Ti#2 in Fig. 2.1(e)). The graphene 

flakes have been produced and transferred to Si substrates at IHP-Microelectronics in 

Frankfurt instead the metal electrodes have been grown at Georgetown University of 

Washington (DC). 
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In order to improve the quality of the interface between the graphene and the metal lead, the 

flakes are normally kept under a vacuum better than 10-5 mbar before depositing Ti (work 

function ≈ 4.33 eV) or Ni (work function ≈ 5.01 eV)  contacts by sputtering. 

 

FIGURE 2.1:  (a) Schematic representation of a GFET device. (b)-(e)  SEM images of typical devices 
produced for this experiment; (b) graphene monolayer contacted with Ni leads; (c) mono- and bi-layer 
contacted with Ni leads; (d)  bi-layer with Ti contacts (the bi-layer is further exfoliated to become a 
mono-layer under one lead); (e) mono- and bi-layer contacted with Ti leads. 

It was chosen a geometric configuration suitable for transfer length method (TLM) 

measurements with 200 nm-to-2 µm large leads with a separation of up to 15 µm from each 

other.  The Ni and Ti leads were 70 nm thick and were coated with a 50-70 nm Au layer to 

prevent oxidation and to favor good electrical connection to the probes. We observe that any 

couple of leads on the device is suitable to realize a FET configuration, the Si substrate being 

the back-gate, the two leads being source and drain, and the geometrical parameters of the 

transistor being the channel length (i.e. the separation between the two leads) and the width 

(i.e. the width of the flake delimited by the two leads).  

Electrical measurements were performed at room temperature under ambient conditions 

with a Keithley 4200 Semiconductor Parameter Analyzer interconnected to a probe station 

allowing micrometric movements of four metallic probes used to directly connect devices 

without any bonding process. The systematic measurement routine for each device consisted 

in recording transfer characteristics (drain current IDS vs. gate voltage VGS) and output 

characteristics (drain current IDS vs. drain bias VDS) for any transistor resulting from the 

permutation of any possible couple of leads deposited on the flake and the Si substrate fixed 

as back-gate on which it was possible to apply a bias sweep in the range ±80V.   
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2.2.2   Results and discussion 

2.2.2.1 Transfer characteristics 

Transfer characteristics of GFETs typically display a symmetric V-shape, with a hole 

dominated conductance (p-branch) at lower VGS and electron-type transport at more positive 

gate voltages (n-branch), separated by a valley corresponding to the charge neutrality 

condition (the Dirac point) with equal electron and hole concentrations. This V-shape reflects 

the energy distribution of the density of states (D(E) ∝ |E|), and a conductance dropping to 

zero at the Dirac point should be expected at low temperature; however, in actual devices, 

impurities and interaction with the surrounding dielectric introduce local fluctuations in the 

potential causing a finite density of states at the Dirac point; from the carrier viewpoint, these 

fluctuations result in localized puddles of electrons and holes which produce an appreciable 

conductance [71]. 

An example of measured transfer characteristics for a couple of leads for any device is 

reported in Fig. 2.2. The GFETs exhibit, in all cases, non-conventional transfer characteristics, 

with distortion in the positively gated region. In particular, a clear double-dip feature is 

measured for devices Ni#1 (Fig. 2.2(a)) and Ni#2 (Fig. 2.2(b)). For the devices of Fig. 2.2(c) 

and Fig. 2.2(d) (Ti#1 and Ti#2 respectively) the feature is probably appearing at voltage bias 

larger than our sweep range. 

The asymmetry between p- and n-branches was explained in terms of the metal/graphene 

interaction at the contacts [19, 72–74]. It has been found in particular that, even in the case of 

weak adhesion, as with Au, the metal electrodes cause the Fermi level EF to shift from the 

conical point in graphene bands, resulting in doping of graphene either with electrons or with 

holes. The amount of doping can be deduced from the difference of the metal and graphene 

work functions (ΦM − ΦG0) and from the potential step (∆V) due to the metal/graphene 

chemical interaction (EF = ΦM − ΦG0 −e∆V). Depending on the polarity of carriers in the bulk 

of the graphene channel, charge transfer between metal and graphene leads to p–p, n–n or p–n 

junctions in the vicinity of the contacts which can cause asymmetry.  

The double dip feature has been already reported [18] for GFETs contacted with Cr/Au where 

a wide hysteresis between the forward and reverse sweep and a higher inter-electrode distance 

created a clearer double-dip. 
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FIGURE 2.2:  Transfer characteristics (IDS vs VGS) for the devices shown in Fig. 2.1(b)-(e). (a) Sample 
Ni#1 and (b) sample Ni#2 show a clear double-dip feature (indicated by arrows); (c) Sample Ti#1 and 
(d) sample Ti#2 show a first dip in the conductance curve and a slop that indicates the presence of a 
second dip at larger bias with respect our sweep range. The inset of figure (d) shows a  model to 
explain the double dip feature. 

The experimental observation can be interpreted as the effect of charge transfer and doping of 

the graphene layer under the contacts [19], which in long devices yield two conductance 

minima at the energies of the Dirac points of graphene in the clamped and channel regions. 

Indeed, electrons transfer from the graphene to the metal electrodes due to their different work 

functions, thus forming a gradient in the doping profile from the contacts to the bulk channel, 

and p-n junctions are spontaneously formed. The doping extends for 0.2–0.3 µm in the inner 

channel, making its effect barely detectable in shorter channel transistors. It has been proved 

[18]  that metal doping and charge trapping at SiO2/graphene interface, as well as partial 

pinning of the Fermi level at contacts, can fully explain the behavior of a whole IDS - VGS  loop 

and in particular, account for the double dip feature.  

We qualitatively summarize the key points of this model with the help of the inset of      

Fig. 2.2(d) that shows a simplified band diagram from source to drain for a device with Ti 
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leads, while forward sweeping the VGS voltage. The electron transfer from Ti to graphene, due 

to the work function mismatch (4.33 eV for Ti and 4.5 eV for graphene), makes graphene less 

p-doped underneath the contacts than in the channel. The application of the back-gate voltage 

moves the Fermi level in the graphene band diagrams, determining different conduction 

regions between source and drain. At VGS=-80V (point 1 in Fig. 2.2(d)), p-type conduction 

takes place everywhere, thus giving a high conductance p/p+/p structure (source/channel/drain 

graphene doping). While rising VGS to positive values, electrons are attracted to the channel 

and a charge neutrality condition is reached at the contacts, where the graphene is less p-

doped; a low conductance neutral/p/neutral structure is achieved, which corresponds to the 

first valley in the IDS - VGS  curve (point 2). A further increase  in VGS gradually reduces the p-

doping in the channel and increases the n-doping at contacts, until a charge neutrality condition 

is reached in the channel and a low conductance n/neutral/n structure is achieved, which 

corresponds to the second valley in the IDS - VGS curve that we presume might appear at 

voltage bias larger than our sweep range (point 3).  

With Ni leads a similar behavior is obtained with the difference that the graphene under the 

contacts is now more p-doped than that in the channel and a neutrality condition is first reached 

in the channel during the forward VGS, making the first minimum deeper than the second one.  

The hysteretic behavior between the forward and reverse sweeps in the transfer 

characteristics of Si/SiO2 supported GFETs has been attributed mainly to charge trapping in 

silanol groups (Si–OH) with surface-bound H2O molecules facilitating the process of charge 

transfer and trapping [75, 76]. Consequently the concentration, distribution and reactivity of 

the silanol groups of the underlying SiO2 play a decisive role in the transfer characteristics of 

a GFET. Thermal annealing or vacuum pumping can also help to reduce hysteresis [74]. The 

hysteresis, enhanced by a double dip, can conveniently be exploited to built graphene-based 

memory devices [18]. 

2.2.2.2 Contact resistance 

In order to characterize the contacts produced on each device, we measured the output 

characteristic (IDS vs VDS) for each couple of leads. In Fig. 2.3  we show as example a 

measurement for a selected couple of leads for any device introduced above. The drain 

voltage has been swept up to a maximum value of 20 mV while measuring the drain current, 

this for nine different values of the gate voltages between -80V and +80V with step of 20V. 

The output characteristics showed a linear behaviour for both Ni and Ti contacts, evidencing 
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that sufficiently good contact is established between the graphene and the metals. 

When measuring a resistance with  two probes, it is necessary to take into account the 

serial contribution of the channel resistance Rch and the contacts Rc1, Rc2. For a sample with 

irregular shape, we consider geometrical parameters due to different lengths of the leads on 

the graphene (d1 and d2), different widths (W1 and W2) and the channel length L (a scheme is 

drawn in  Fig. 2.4(a)). 

 

FIGURE 2.3:  Output characteristics IDS vs. VDS measured for different gate voltages for each device of  
Fig. 2.1. 

Comparing the contact length di with the transfer length '` = �£�/$¡�, i.e. the effective 

length contributing to the current flow [10], which is typically longer than 1 µm (Rsh is the 

sheet resistance of the graphene channel in Ω/□ and ρc=RcWd is the area specific contact 

resistivity), it results for our devices that di < Td and consequently we can characterize the 

contact resistance by evaluating ρc instead of the edge specific contact resistivity [10,75]. 

A generic graphene channel delimited by two parallel leads can be easily approximated as 

a trapezoid, and the total resistance for a two-probe measurement can be written as the sum of 

the channel resistance Rch and the contacts Rc1 , Rc1: 



46          Chapter  2.   Graphene-based field-effect transistors  
 

 

 

 

																																																																			$ = $�� + $�� + $��.																																																						(2.1) 
From the expression of the area specific contact resistivity we can write: 

$ = £�j�'� + £�j�'� + $¡�U '�
j� + (j� −j�)�i

=¤
&  

																																											= £�j�'� + £�j�'� + $¡� �I
(j�/j�)j� −j� i,																																																	(2.2) 

where we assumed that ρc has the same value for the two leads when the same metal is used.  

By defining: 

																																																												$¥¦¦ = $ � 1j�'� +	 1j�'��
�� ,																																													(2.3) 

we can obtain an equation in which the specific contact resistivity ρc can be evaluated as the 

intercept of a plot of Reff versus L for every couple of electrodes (TLM method): 

																																									$¥¦¦ = £� + $¡� � 1j�'� +	 1j�'��
�� �I(j�/j�)j� −j� i.																										(2.4) 

Reff has been obtained from the output characteristics measured at given back-gate voltages 

VGS for all two-lead combinations on a flake. In Fig. 2.4(a) and Fig. 2.4(b) we report the 

values of  Reff for two of our samples, Ni#1 (VGS = -80V)  and Ti#1 (VGS = +80V), 

respectively. The reduced number of experimental points for the Ni#1 sample is responsible 

for the relatively higher error in the estimation of the intercept value, being about 5% for Ni#1 

(7.0 ± 0.3 kΩµm2). 

By applying the TLM method, we can extract the ρc vs. VGS and we can compare it with the 

Reff (VGS) for a couple of leads for sample Ni#1 (Fig. 2.4(c)) and Ti#1 (Fig. 2.4(d)). The data 

are a clear experimental evidence that the specific contact resistivity is modulated by the 

back-gate voltage. Furthermore, they show that the specific contact resistivity dependence on 

the back-gate voltage has the same qualitative behaviour as the total source-to-drain 

resistance, with a peak around the Dirac point ( ≈ 20 - 40V) and a decrease when the channel 

is field-doped by the back gate.  A similar result has been reported for Pd-contacted GFETs 

[15] and confirms the gate modulation of the Fermi level relative to the energy at the Dirac 

point for the graphene underneath the metal [76]. 
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FIGURE 2.4:  (a) - (b) TLM plot of Reff (L) at a given VGS for sample Ni#1 (VGS = - 80V) and Ti#1               
(VGS = + 80V) respectively. The dashed lines represent linear fit of experimental data. The inset of    
plot (a) shows a scheme of a graphene device with varying channel width and with contacts of 
different lengths. (c) - (d) Contact resistivity ρc and effective resistance Reff as a function of the back-
gate voltage VGS for sample Ni#1 and Ti#1 respectively. 

From the comparison of ρc(VGS) and Reff(VGS) it is evident that the resistance of the TLM 

device is principally due to the contact resistance. The relatively high values measured for ρc 

(~ 7 kΩµm2 for Ni-contacted devices and ~30 kΩµm2 for Ti-contacted devices) could be a 

result of our fabrication procedure, in which we did not perform any treatment before metal 

sputtering or any annealing post fabrication. We also realized the metal electrodes by 

sputtering, a process that usually results in higher contact resistance with respect to  

evaporation technique [17]. Moreover, we cannot exclude the possibility that some oxidation 

took place at the contacts due to oxygen diffusion and that we have somehow overestimated 

the effective contact area.  

On sample Ti#1 (Fig. 2.1(d)) we have one electrode (the fourth contact from the left side) 

deposited on a monolayer graphene area. Consequently, we also had the opportunity to 

consider the case with both leads on bi-layer graphene (third and fifth contact, for example) 

and make a comparison with the case in which one lead is on a monolayer (third and fourth 

contacts). We experimentally measured Reff  at VGS = - 80 V in both cases and we found that 
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there are no significant differences, the Reff value being about 44 kΩµm2 for both electrodes on 

bi-layer  and  about  42 kΩµm2  for  one   electrode  on  monolayer,  thus  confirming  that  the  

contact resistance does not depend on the number of graphene layers [77].

 

2.3 GFETs with Niobium contacts   

2.3.1  Devices fabrication and measurement setup 

Graphene flakes were obtained from highly oriented pyrolytic graphite by scotch tape method 

and transferred onto SiO2/Si substrates. We used moderately doped p-Si (resistivity                

1-10 Ωcm) covered by 300 nm of thermally grown SiO2 to maximize the color contrast for 

optical identification of few-layer graphene [78]. A short dip (~ 60 s) in warm acetone was 

used to remove glue residuals. Graphene flakes have been produced and transferred to Si 

substrates at IHP-Microelectronics in Frankfurt. 

Monolayers and few layers graphene were identified optically and further confirmed by 

Raman spectroscopy and SEM imaging [79]. Selected graphene monolayer were contacted 

using electron beam lithography on poly(methyl methacrylate) (PMMA) to define suitable 

metal patterns, followed by a standard lift-off technique. The graphene flakes were contacted 

by Nb/Au metallic bilayer (25 nm Nb/75 nm Au) with niobium contacting the graphene and 

gold working as a cap layer to prevent Nb oxidation and favor electrical connection with the 

probe tips. The metal electrodes were fabricated by a three cathode RF magnetron sputtering 

system for in-situ multilayer deposition. To effectively remove physisorbed molecules and 

processing residues as PMMA, the sample was subjected to several hours vacuum degassing 

at ~ 3·10-7mbar before metal deposition. Metallic leads were sputtered at low power density      

(< 0.7 Wcm-2) and small deposition rates (0.3 nm/s for Nb and 1.2 nm/s for Au) to prevent 

graphene damages. The sputtering was made in 99.999% pure Argon at pressure of 4·10-

3mbar with substrate at room temperature. The target purity was 99.98% for Nb and 99.95% 

for Au. To ensure good purity of sputtered Nb, prior to the deposition, a quite energetic 

cathode pre-sputtering of 5 min at 3.5 Wcm-2 was performed. The metal electrodes Nb/Au 

have been grown at the University of Salerno. 

Fig. 2.5(a) shows a 20× magnification of few ribbon-shaped graphene monolayers that 

were contacted in a 2-point configuration. The SEM images of Fig. 2.5(b) and Fig. 2.5(c) 

show details of the pads and metal leads of the final device. The study presented here is 
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referred to the graphene flake between the leads labeled 1 and 6 in Fig. 2.5(c). The flake is 

19.91 µm long and 0.79 µm large. Similar results were found with the other graphene ribbons. 

 

FIGURE 2.5:  (a) Optical image of monolayer graphene ribbons under 20× magnification. (b) SEM 
image of Nb/Au pads and leads used to contact graphene ribbons of (a). (c) Zoom in the central part of 
(b) showing contacts on graphene ribbons. The graphene flake between leads 1 and 6 was used in this 
study. (d) Schematic of the transistor consisting of a layer of graphene used as channel with two Nb 
leads functioning as source and drain and the Si substrate acting as back-gate. The 3-terminal 
measurement consists in monitoring the source-to-drain current IDS under constant bias, VDS = 3 or 5 
mV, while the gate voltage VGS  ranges in the interval (−70 V, 70 V). 

Electrical measurements were performed at room temperature with the sample under 

controlled pressure inside a Janis Research ST-500 cryogenic probe station connected to a 

Keithley 4200 Semiconductor Characterization System (SCS) working in wide ranges of 

current (100 fA to 0.1 A) and voltage (10 µV to 200 V). The 3-terminal measurement setup is 

shown in Fig. 2.5(d), which shows also a schematic of the device under study consisting of a 

layer of graphene used as channel of a FET with two Nb leads functioning as source and 

drain, kept at constant bias VDS (= 3 or 5 mV). The Si substrate acts as the transistor back-gate 

and is swept in the voltage interval (−70 V, 70 V). Higher gate voltages were avoided to 

prevent oxide damage as stresses at |VGS| > 80 V systematically cause either gate leakage or 
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complete oxide breakdown. The electrical measurements were performed after the sample 

was kept for given time periods under controlled pressure (down to 2.7·10-4mbar). Prior, the 

sample had been subjected to other measurements which had the effect of stabilizing electric 

annealing.   

To study the effect of e-beam irradiation on transistors, the SCS was connected to a 

scanning electron microscope Zeiss LEO 1430 equipped with Kleindeik nanomanipulators 

MM3A, which allowed in-situ electrical measurements with the sample inside the high-

vacuum SEM chamber to prevent adsorbate contamination. 

2.3.2 Results and discussion 

2.3.2.1 Transfer characteristics 

Fig. 2.6(a) shows the IDS - VGS  transfer characteristics of the transistor 1-6 of Fig. 2.5, at 

decreasing pressures and at room temperature. These curves are the fixed drain-bias version 

of the IDS – VDS  output characteristics shown in Fig. 2.6(b), whose linear behavior confirms 

the ohmic nature of the contacts.  

Fig. 2.6(a) evidences a factor-two gate modulation of the current originating from the 

vanishing density of states of graphene around the Dirac point. In air, the device has a clear  

p-type behavior with a positive Dirac point corresponding to the conductance minimum 

beyond +50 V. The heavy p-type doping is expected for air exposed graphene and is caused 

by adsorbed moisture [80] and other chemical residues, such as PMMA not completely 

removed by acetone during the cleaning process. H2O, O2, NO2 molecules [81-83] and 

PMMA [84-85] are well known p-dopants. Keeping the sample for many hours in vacuum 

gradually removes physisorbed chemicals and residues [84,86] and has strong effects on the 

electrical characteristics of the device. Fig. 2.6(a) shows that vacuum degassing, even at room 

temperature, shifts the Dirac point towards negative VGS, which corresponds to a gradual 

transformation of the FET in a device with n-type channel [21]. In our long device, the 

desorption of acceptor impurities allow the SiO2 dielectric to take control of the channel 

doping, which is transformed in n-type. The n-doping is due to charge transfer from surface 

states in the SiO2 dielectric to the graphene sheet [87]. After 6 days at low pressure       

(~3·10-4mbar) the device reaches a stable configuration and no appreciable changes are 

observed over time even with a further lowering of the pressure, indicating that most 

adsorbates and residues have been removed. Remarkably, simple vacuum degassing at room 
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temperature causes an increase of the mobility (corresponding to steeper V-shaped curves) 

and a reduction of the minimum conductance. This has been emphasized in Fig. 2.6(c) 

showing the pressure dependence of the mobility and of the Dirac point (VGS, IDS). Long range 

scattering by charged impurities [71,88], such as those related to O2, H2O or PMMA residues, 

has a significant impact on carrier motion and on the effective residual carrier density of 

graphene, n0, which determines the Dirac point conductivity [89]. n0 is due to electron/hole 

puddles induced by the local potential variations of charged  impurities [90] rather than to 

thermal excitation of carrier above the Fermi level. Therefore, the removal of impurities leads 

to an increase of the carrier mobility for reduced scattering and to a lowering of n0, i.e. of the 

minimum conductivity. 

 

 
FIGURE 2.6:  Electrical characteristics of transistor 1-6 of Fig. 2.5(c).  (a) Transfer characteristics        
IDS – VGS at different pressures and room temperature. (b) Output characteristics IDS – VDS at        
3·10-4mbar. (c) Mobility and IDS – VGS of the Dirac point at different pressures. (d) Full loop          
IDS – VGS curves at different pressures showing a decreasing hysteresis with higher vacuum. 

Another effect of vacuum degassing is the decreased hysteresis of the IDS – VGS curves as can 

be observed in Fig. 2.6(d) where full loops with forward and reverse VGS sweeps are plotted. 
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As we explained before, hysteresis is known to be caused by charge trapping at the 

graphene/SiO2 interface and in the dielectric layer [91]. Removal of impurities, and in 

particular of H2O which plays a key role in the charge transfer during a VGS sweep [92], 

obviously results in reduced hysteresis. 

2.3.2.2 Contact resistance 

As already mentioned, with a two-point setup, the total resistance between source and drain of 

the graphene FET, calculated as Rtot=VDS/IDS, is the sum of the metal resistance (which is here 

negligible), the total contact resistance Rcon and the graphene channel resistance Rch (both Rcon 

and Rch can depend on VDS), Rtot = Rcon+ Rch. 

The measured Rtot  is shown in Fig. 2.7(a), where two main features can be noted: an 

asymmetry between the n and the p-branch and a resistance plateau in the n-branch, which 

does not have a counterpart in p-branch.  

The asymmetry can be characterized by introducing an “odd resistance” Rodd defined as: 

																																																							$q}} = $rqr(∆¢̈ �) − $rqr(−∆¢̈ �)2 ,																																								(2.5) 
for ∆VGS = VGS - VDirac > 0. Rodd, shown in Fig. 2.7(b), is positive and has a quadratic 

dependence on the gate voltage. As we will discuss in detail later, asymmetry is mainly 

caused by additional p-n junctions created by doping at the contacts [93-94]. Then, since Rodd  

is an effect of the contacts and is well fitted by a  2nd order polynomial, we admit a quadratic 

dependence of Rcon on VGS: 

																																											$�q© = $� + c(¢̈ � − ¢f�gh�) + S(¢̈ � − ¢f�gh�)�,																											(2.6) 

with Rc, α and β parameters that we experimentally determine. Such dependence can be easily 

justified considering the non-linear gate dependence and the spatial inhomogeneity of carrier 

density in the contact region [11]. We follow the model of Kim et al. [95] to write the 

conductivity of graphene in the channel as: 

																																																																													H�� = �IrqrG	,																																																										(2.7) 
where: 

																																																																							Irqr = ªI&� + I�	,																																																									(2.8) 
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																																																																		I = �q7(¢̈ � − ¢f�gh�)� 	.																																																			(2.9) 
ntot is the gate-dependent total carrier concentration, n0 is the carrier density at the Dirac point, 

n is the excess carrier induced by VGS,  µ  is the mobility (that, in graphene, should be the same 

for electrons and holes) and Cox=εSiO2/d=1.15·10-8F/cm2 is the capacitance per unit area of the 

SiO2 layer of thickness d. 

Using eqs. (2.6) - (2.9), we express the total resistance as: 

													$rqr = $� + c(¢̈ � − ¢f�gh�) + S(¢̈ � − ¢f�gh�)� + 

																																																							+ ij 1
�G�I&� + «(¢̈ � − ¢f�gh�) ∙ �q7/�¬� ,																													(2.10) 

where L and W are the channel length and width, respectively. The fit of (2.10) to the 

experimental data, shown in Fig. 2.7(a), yields Rc ≈ 60 kΩ (i.e. ~30 kΩ at each contact, 

corresponding to a specific contact resistivity ρc=RcW ≈ 24 kΩµm) with less than 10% 

variation due to the gate-dependent terms and a mobility µ ≈ 2600 cm2V-1s-1. The fit results 

quite accurate also in the plateau region at VGS > 35 V . 

Fig. 2.7(c) shows the channel conductivity obtained by eliminating Rcon (VGS), as expressed 

by eq. (2.6), from the total measured resistance: 

																																																															H�� = �IrqrG = 1$rqr − $�q© ij.																																			(2.11)	 
Following the common practice of using the slope of σch - VGS away from the Dirac point 

(where n0 < n) to estimate the mobility as: 

																																																																														G = 1�q7 'H��'¢̈ � ,																																																						(2.12) 
we obtain a hole mobility µh= 2850 cm2V-1s-1 higher than the electron one µe= 2350 cm2V-1s-1  

in the channel. The average mobility µavg=(µe + µh)/2 = 2602 cm2V-1s-1 is consistent with the 

value previously estimated. Although the difference µh - µe may be exaggerated by the method 

which does not take into account the carrier inhomogeneity along the channel (which can be 

particularly important in the n-branch where a p-n-p structure is formed, as we will see later), 

this results suggests that there is a mobility contribution to the n and p branch asymmetry. 

Higher hole mobility has often been measured in graphene transistors [91,96-97]; one 
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plausible explanation is the different scattering cross section for electrons and holes by 

charged impurities, according to which the massless carriers are scattered more strongly when 

they are attracted to a charged impurity than when they are repelled from it [98]. In the case 

under study, after desorption of chemicals and residues, the charged impurities are mainly the 

positive charges stored in SiO2 dielectric. 

 

 

FIGURE 2.7:  Electrical characteristics of transistor 1-6 of Fig. 2.5(c).  (a) Total resistance Rtot as a 

function of VGS  (at VDS =5 mV and P = 3.2·10-4mbar) and eq. (2.10) fit (solid line). (b) Rodd  vs VGS 

with 2nd order polynomial fit. (c) σch - VGS curve obtained by subtracting the contact resistance 
contribution and linear fit to estimate electron and hole mobilities. 

The relatively high specific contact resistance as compared to the benchmark of                      

ρc = 100 Ωµm  for good contacts can barely be ascribed to the roughness and grain size of the 

Nb film, which can be only a minor contributor (large grains and rough surface go in the 

direction of reducing the effective contact area and increasing the contact resistance). 

Although expected in minimal amounts, impurities non-removed by the vacuum degassing 

and trapped under the metal as well as defects created by the sputtering process are possible 

additional sources. Nb is an easily-oxidizable metal and could easily react with residuals O2 or 
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H2O molecules. Indeed we believe that an important source of resistance is the strain induced 

in graphene by Nb/Au leads. Tensile strain in graphene has been observed to weaken the C-C 

bond and lower the vibration frequency, thus causing a red shift of the 2D and G bands [99]. 

Theoretically, it has been pointed out that uniaxial and shear strains may move the Fermi level 

crossing away from the K points while preserving the cone-like energy dispersion [100]. 

Scanning tunneling microscopy (STM) studies on graphene have revealed a correlation 

between local strain and increased tunneling resistance [101]. Uniaxial tensile strain greater 

than 3% has been proven to cause a dramatic increase of the graphene resistance [102].          

A confirmation of stress in our Nb/Au film, which is transmitted to the graphene underneath, 

is the observation of metal peeling off which sometimes happened during the fabrication or 

the measurement process. The strain and the high contact resistance point towards a weak 

bonding between graphene and Nb, with a likely high Nb/graphene separation on the atomic 

scale ( > 3 Å). The weak bonding, which in the most severe case can pose practical adhesion 

problems, favors Fermi level depinning at the contact but preserves the conical electronic 

structure of graphene.  

As we mentioned before, another important fact to consider is the Nb-graphene 

workfunction mismatch. Such a mismatch provokes charge transfer across the interface, forms 

an interface dipole with an accompanying potential step ∆V and shifts the graphene Fermi 

level [19]. The transferred charge, which results in local doping of graphene, is not confined 

under the contacts but can extend hundreds nanometers in the channel [103] and  if the Fermi 

level is not pinned, the gate voltage is able to further tune the charge density of graphene in 

the contact region [18,104].  

A positive Rodd  is typically obtained when ∆Φ=ΦM − ΦG0 < 0  where ΦM and ΦG0 = 4.5eV 

are the workfunctions of the metal and of the intrinsic graphene, respectively [93]. Metals 

with a higher workfunction than graphene tend to subtract electrons from graphene, which 

becomes locally p-doped. Nb has a workfunction in the range 3.95 - 4.87 eV [105] and can 

behave both as acceptor and donor for graphene. According to Leblanc et al. [106] the 

electron workfunction of pure Nb highly depends on the crystal orientation, with the highest 

value belonging to the {1,1,0} orientations and the lowest one for the {001} orientations. An 

appreciable increase of a Nb film workfunction has also been reported for increasing oxygen 

content [107].  

For the measured device the positive Rodd and the shape of the transfer characteristic 

strongly indicates that graphene at the contacts is p-type. A Nb film with lower workfunction 

and donor behavior can be expected as well and would result in a y-axis specular transfer 
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characteristic with a resistance plateau in the p-branch. Actually, as already mentioned, Nb 

contacted graphene FETs with such characteristic have been reported by Rickhaus et al. [24]. 

We remark that the sign and amount of doping is a multi-factor effect. Metal-graphene 

spacing, as affected by strain or impurities and defects, structural modifications, wave 

function hybridization, etc. may contribute to doping other than workfunction difference. 

Based on density functional calculations, Giovannetti et al. [19] showed that the formation of 

the interfacial dipole (experimentally proven by Pi et al. [108]) promotes n-type doping for 

strongly chemisorbed metals (metal graphene separation ~ 2Å) with a workfunction of up to       

5.4 eV. The same model predicts that p-doping is dominant for most metals when a weak 

chemical interaction, corresponding to high metal-graphene separation ( > 3-4 Å), takes place. 

The latter is the situation that we have been depicting for the device under study. As a matter 

of fact, p-doping has been observed even with Ti contacts despite the strong donor character 

given to it by its low workfunction [12,109]. 

A qualitative model explaining the whole IDS - VGS  behavior of the device is presented in    

Fig. 2.8. It consider p-doping and Fermi level depinning as expected from the considerations 

made so far. For VGS < VDirac, the band alignment of graphene under the contacts and in the 

channel is that shown in the inset (1), corresponding to a p-p+-p structure.  

 

FIGURE 2.8:  Fermi level for graphene at the contacts and in the channel accounting for the current 
behavior as a function of VGS. It is assumed that the Fermi level is not pinned at the contacts, where   
p-doping occurs. 
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The p-type conductance of the device is strongly increased by the negative VGS which 

augments the available DOS both in the channel and under the metal. In the contact region, 

the metal-graphene workfunction difference and the screening effect of the metal make the 

gate control of the carrier concentration less effective than in the channel. A minimum of 

conductance is achieved when, increasing VGS, the graphene in the channel reaches the Dirac 

point, while the contact remains p-type for the effect of contact doping. A p-i-p structure 

(i=intrinsic) is formed as shown in inset (2). For VGS > VDirac, n-doping is induced in the 

channel and the device becomes a p-n-p structure. The appearance of more resistive p-n 

junctions [110] in the n-branch as opposed to the p-p+ counterparts in the p-branch is the 

origin of the observed asymmetry in the V-shaped transfer characteristics. The conductance is 

initially driven by the DOS of the channel, until the channel doping reaches a level 

comparable to that of the graphene near the contacts. From this point on, the limitation on the 

conductance is set by the contacts. The gate voltage tends to shift the Fermi level at the 

contacts upwards, that is to reduce the hole concentration and increase the contact resistance. 

The increasing contact resistance counter-balances the decreasing channel resistance and this 

compensation mechanism results in the observed plateau. In this interpretation, more push of 

the positive gate voltage would shift EF further up, to the Dirac point at the contacts, and 

create a second conductance minimum. A careful look at the curves of Fig. 2.6(a) shows a 

gradual drop of the current towards high positive VGS which seems to confirm this 

expectation. 

At the plateau, Rtot  ≈ 82 kΩ. Assuming that the total resistance is dominated by the 

contacts, using the measured electron mobility (µ e= 2350 cm2V-1s-1), we can estimate a carrier 

density in graphene of ~ 3.4·1012/cm2, which for n0 = 1.41·1012/cm2 and from eq. (2.8) 

corresponds to a gate induced excess electrons of 3.1·1012/cm2. Such a carrier concentration is 

obtained when the graphene Fermi level with respect to the conical point is: 

																																																																				.? = ħ>?√#I ≈ 0.21	�¢																																												(2.13) 
(here vF = 106 m/s is the Fermi velocity in graphene).  Considering ΦG0 = 4.5eV   this suggests 

a Nb workfunction ΦNb ≥ 4.7eV. The inequality originates from the fact that, according to 

Giovannetti et al. model [19], the metal workfunction would be ΦNb = ΦG0+EF+e∆V,  where 

the charge dipole voltage ∆V > 0 V is a decreasing function of the metal/graphene separation 

(and should be close to zero in the present device).   
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2.3.2.3 Effect of electron beam irradiation 

In the following, we consider the effect of electron beam irradiation on the transistor 1-6 of 

Fig. 2.5(c). In particular, we consider electron beam energy up to 10 keV, i.e. the energy range 

typically used for SEM imaging. Larger energy (about 30 keV) is normally used for e-beam 

lithography or imaging in STEM mode. The irradiation was performed on an area of              

20 µm × 20 µm, covering most of the graphene channel, with constant beam current            

Ibeam =  0.2 nA. We used an exposure time of 10 s, which resulted in an electron irradiation 

dose of about 30 e-/nm2. Differently from other works [45], we performed post-irradiation 

electrical measurements directly in the SEM chamber in high vacuum (10-7 mbar), thus 

avoiding the effects of air. 

 Results obtained in six successive electrical sweeps, after a 10 s electron irradiation at     

10 keV, are reported in Fig. 2.9(a). The complete (forward and backward) sweeping between   

0 V and -70 V evidences an important hysteresis that decreases with successive electrical 

sweeps.  

 

FIGURE 2.9:  Effect of electron irradiation on RDS vs. VGS  of the transistor 1-6 of Fig. 2.5(c). (a) Six 
successive sweeps recorded soon after the electron irradiation. Curves have been shifted for clarity.  
(b) Comparison of the sixth sweep after the 10 s e-beam exposure with that measured on unexposed 
device. (c) Forward sweep of selected measurements and relative fitting curves according to the model 
[95].(d) Summary of parameters extracted by fitting of the curves corresponding to forward sweeps. 
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The appearance of the hysteresis is easily explained by mobile electrons that are trapped in the 

gate oxide during e-beam exposure, which screen the gate voltage, while the hysteresis 

reduction can be caused by their withdrawal by the channel during the successive voltage 

sweeps [91,92]. By comparing the transfer characteristic before the electron irradiation to the 

sixth sweep measured after the 10 s exposure (Fig. 2.9(b)), we observe that the device has 

almost returned to its initial state apart a marginal shift of the Dirac point.  

To quantitatively analyze the evolution after e-beam exposure (see Fig. 2.9(c)), we used 

the model of Kim et al. [95] to  estimate the transport parameters, which are summarized in 

Fig. 2.9(d). The carrier mobility is reduced by the 10 s e-beam irradiation, from                 

4000 cm2V-1s-1 to about 3600 cm2V-1s-1 (as obtained from the first sweep measurement). The 

initial value is restored by the successive sweeps.  

A consistent behavior is shown by the total resistance, which is increased by the irradiation 

and recovers with increasing number of sweeps. The increase in total resistance, as a 

consequence of the e-beam irradiation, has also been observed on chemical vapor deposition 

(CVD) grown graphene [111]. Fig. 2.9(d) reports the effect of irradiation on the contact 

resistance that is increased by about 70% by the exposure and is smoothly restored by 

successive sweeps.  

Noticeably, the irradiation seems to have a negligible effect on the intrinsic carrier 

concentration n0.  

Mobility and resistance degradation can be explained as increased long-range coulomb 

scattering [88] by electrons stored in the gate oxide during e-beam exposure (damaging of 

graphene seems to have a minor contribution); such electrons are gradually removed by 

voltage application during successive sweeps and pristine conditions are partially recovered.

 

2.4 Side-gate  GFETs  

2.4.1  Devices fabrication and measurement setup 

Devices have been produced at Exeter University (UK).  They were fabricated by standard 

electron-beam lithography (EBL) on heavily p-doped Si substrates (resistivity is 0.001-            

-0.005 Ωcm) capped with a 290 nm thermally grown SiO2 layer. Single and bilayer graphene 

flakes were exfoliated from highly oriented pyrolytic graphite and identified under optical 

microscope using contrast analysis under green light [22-23]. The selected  graphene flakes 
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(Fig. 2.10(a)) were patterned in a single lithographic step to define channel and gate. 

Unwanted graphene was removed by O2 plasma etch (Fig. 2.10(b) and Fig. 2.10(c)). Metal 

contacts (20 nm Cr/90 nm Au) were defined in a successive EBL step by metal evaporation 

and lift-off (Fig. 2.10(d)). To achieve low contact resistance, metal was evaporated at a low 

rate (0.2-0.4 Å/s for the Cr adhesion layer and at 0.4-0.9 Å/s for the capping Au) and at a 

pressure of  4-8·10-6 Torr.  

 

FIGURE 2.10:  Optical image (under green light and magnification 50×) of an exfoliated graphene 
bilayer as deposited (a), covered by developed PMMA after e-beam exposure to define gate and 
source/drain regions (b), as patterned after O2 plasma exposure and PMMA removal (c), covered by 
developed PMMA after e-beam exposure for contact definition (d).    

The layout/schematic and the scanning electron microscope (SEM) image of a typical device 

are shown in Figs. 2.11(a) and 2.11(b). The device consists of two side-gated transistors on a 

Si substrate (back gate), connected in series by a metal line. The two side gates are controlled 

separately and can be biased to make the two transistors p- and n-type, respectively, thus 

enabling a CMOS graphene device.  

 

FIGURE 2.11:  (a) Layout and schematic of two side-gated graphene transistors (T1 and T2) 
connected in series. The transistors share the back-gate and are endowed with independent side-gates. 
(b) SEM image of the device in (a) showing electrically connected metal leads (darker lines; the gate 
G2 of T2 is floating, thus appears lighter in the SEM image).  
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The side-gate architecture offers easy control of the transistor dimensions, as the gate-to-

channel distance or the channel width, which are only limited by the resolution of the 

lithography/etching process. In our design, we enlarged the source/drain regions to reduce the 

external resistance. Furthermore, we shaped the gate to maximize its overlapping and prevent 

the formation of unwanted high resistive paths, often included in top-gated devices. To 

achieve devices for low-power applications working with biases below 1 V and maximize the 

modulation effect of the side-gate, we chose a gate-to-channel distance d = 100 nm and a 

channel width w = 500 nm.  

Electrical measurements were performed in a Janis probe station at a pressure of ~ 1 Torr. 

To desorb adsorbates and achieve a clean SiO2/vacuum interface as gate dielectric, we applied 

vacuum annealing at ~10-6 Torr and room temperature for more than 3 days in a nanoprobe-

equipped high-vacuum Zeiss SEM chamber. The gate leakage and field emission 

measurements were then performed in-situ. In both cases, we used a Keithley 4200 SCS as 

source-meter unit. 

2.4.2 Results and discussion 

2.4.2.1 Transfer characteristics 

Fig. 2.12 shows the effect of the side-gate, and of the back-gate for comparison, on the 

channel conductance of the transistor T1 of Fig. 2.11. The drain current-voltage relation    

(IDS-VDS curve, Fig. 2.12(a)), measured at different side-gate biases VGS and for grounded 

source and floating back-gate, shows a linear behavior. The minimum source-to-drain 

resistance, which includes the channel and the two contact resistances, is ~ 50 kΩ and is 

dominated by the channel. Measurements on test structures fabricated simultaneously and on 

the same chip of the device of Fig. 2.11 confirmed a contact resistance of the order of 1 

kΩ/µm, consistently with previous experiments [16-17,27-28,30]. The modulation of the 

graphene conductance G by the side-gate is shown by the transfer characteristic (G-VGS curve) 

displayed in Fig. 2.12(b), which shows a 35% variation on an interval of ~ 0.5 V.  As common 

for air and PMMA exposed graphene transistors [28], the neutrality (Dirac) point is located at 

positive VGS (~ 0.35 V), which indicates a p-channel device. The inset of the Fig. 2.12(b) 

shows the conductance behavior in a full loop of VGS values and shows a significant hysteresis 

between the forward and the reverse sweep.  We  characterize  the  hysteresis  by  the  ratio of  

the  forward-reverse  voltage shift δVGS to the width ∆VGS of the V-shaped curve, at a given G, 
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and find δVGS/∆VGS│G=15µS ≈ 20%. For comparison, Fig. 2.12(c) shows the transfer 

characteristic generated by the back-gate, with floating side-gate, and we observe a similar 

hysteretic behavior with higher δVGS/∆VGS│G=15µS ≈ 39% (see inset of Fig. 2.12(c)). As we 

stated many times, the hysteresis is attributed to charge transferred and stored in traps present 

in the gate dielectric as well as induced by polymer residues in the processing or by unwanted 

contamination, e.g. adsorbates or moisture [18,91-92]. Residues, adsorbates or moisture may 

result particularly dangerous for side-gate devices, especially if localized at the graphene 

edges or in the channel-gate spacing, since they can form dipoles, which disturb the local 

electrical field and deteriorate the gating effect, or contribute to the gate leakage current at 

higher electric fields. We performed measurements in vacuum and kept the side-gate bias low 

to prevent leakage, which was always below the floor noise of the experimental setup.  

 

FIGURE 2.12:  Electrical characteristics of the transistor T1 of Fig. 2.11. (a) Output characteristics 
(IDS-VDS curves) for floating back-gate. (b) Transfer characteristic (G-VGS curve) obtained at VDS =9 mV 
and floating back-gate. (c) Transfer characteristic as a function of the back-gate for floating side-gate. 
Insets of (b) and (c) show the transfer characteristics in a reverse-forward loop. (d) Side-gate and 
back-gate transconductance, normalized by channel width.  
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Fig. 2.12(d) shows the transconductance, Gm = dIDS/dVGS│VDS=9mV, normalized by channel 

width [55], for side- and back-gate. The transconductance is a useful parameter in the 

saturation regime, when a FET is used as an amplifier [114]. Here, saturation is not achieved; 

nonetheless, we use the transconductance to compare the side- and back-gate ability to 

convert a voltage to current. Fig. 2.12(d) shows that in the narrow interval |VG|<1V the side-

gate efficiency is 5 to 10 times higher than the back-gate on a 50 times larger voltage interval.  

The back-gate sweep (Fig. 2.12(c)) confirms the p-type behavior of graphene with a Dirac 

point at VGS ≈ 10 V and the wider sweeping range evidences a second Dirac point. As we 

stated many times, this feature has been explained in terms of graphene doping by the 

contacts and Fermi level de-pinning [15,18,22,115-118].  A careful comparison of the shape 

of the curves in the insets of Fig. 2.12(b) and Fig. 2.12(c), over the same current range, seems 

to exclude the appearance of a second dip in the side-gate transfer characteristics, and, in fact, 

we did not find any evidence of it over a sweep up to 3 V.  

2.4.2.2 Leakage current and field emission 

To gain insight on the side-gate voltage that the device can withstand and to investigate the 

dielectric rigidity of the SiO2/vacuum gate dielectric, we measured the planar current across 

the channel-gate gap till the appearance of a breakdown and beyond it. Such experiment was 

realized in high vacuum to remove surface moisture and adsorbates, which could provide 

extra leakage paths.  

We started checking the vertical leakage, which is the current between the channel or the 

side-gate and the Si substrate, and we found it below the noise limit of 100 pA of our setup for 

biases up to 50 V. We did not perform measurements at higher voltages to avoid long and 

aggressive electrical stresses, which could trigger SiO2 degradation mechanisms. For the same 

reason, to apply a higher voltage in the planar direction, between the channel and the side-

gate, we decided to bias the back-gate at 50 V and then ramp the drain voltage VDG up to      

100 V, while the side-gate was grounded (Fig. 2.13(a)). In such a way, the maximum vertical 

stress was never higher than 50 V; besides, the back gate bias made graphene n-type, a 

favorable condition for leakage and electron emission measurements.  

Fig. 2.13(b) shows the current in the planar direction measured across the 100 nm gap 

between the side-gate and channel. The current is below the noise floor of the experimental 

setup up to ~ 15 V and increases rapidly at higher VDG, while the back gate current keeps 

practically constant below 100 pA.  
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The curve labelled as 2nd sweep in Fig. 2.13(b) represents the first full sweep after a few 

stabilizing cycles at lower voltages. The current emerges from the noise floor and increases 

over 3 decades up to ~ 60 V, before going through a dramatic change with a steeper rise up to 

10 µA at 70 V. After that, a slow degradation happens. The appearance of a degradation 

mechanism is confirmed by the following sweep (3rd sweep), where the current appears at a 

higher voltage, VDG ~ 35 V, and increases steadily and at a similar rate of the first part of the 

2nd cycle without any significant change.  

 

FIGURE 2.13:  (a) Measurement schematic of the side gate-channel leakage current. Measurements 
were performed in a SEM chamber at high vacuum (10-6 Torr). (b) Planar current between channel and 
side-gate (IDG, left axis) and back-gate current (IBG, right axis) vs. drain bias (VDG) for the transistor T1 
of Fig. 2.11. The 2nd sweep shows two transport regimes, before a high current degradation, which 
occurs at VDG > 70 V and results in reduced current in the following 3rd sweep. 

The rapid increase of the current is typical of tunneling phenomena. However, the slower 

growing rate of the current below 60 V in the 2nd sweep, and after degradation in the 3rd cycle, 

seems to indicate that a different mechanism is taking place. We compared the experimental 

data of Fig. 2.13(b) to the predictions of different transport models, as thermionic, Fowler-

Nordheim (FN) and Frenkel-Poole (FP) emission or ohmic and space-charge-limited 

conduction [114,119].  

Differently from Wang et al. [66], who reported current-voltage characteristics governed 

by the space-charge limited flow of current at low biases, on a device with similar layout but 

different fabrication process, which can affect the SiO2 surface, we found that a far-better fit 

for VDG < 60 V is provided by the FP model [114]: 

																																																					�f¨ ∝	¢f¨ exp � �6Y °2��¢f¨ − �X±�,																																		(2.14) 
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where q is the electron charge, k is the Boltzmann constant, T the temperature,                     

� = ��/(4#²&²g')  is the Frenkel-Poole constant, εr the dielectric constant of SiO2, d the 

insulator thickens and ΦB is the trap barrier. The good fit is shown in the plot of ln(IDG/VDG) 

vs. �¢f¨ of Fig. 2.14, corresponding to a straight-line whose intercept can be used to evaluate 

ΦB ~ 0.8 eV, both when using the 2nd or the 3rd sweep. According to FP model, electrons can 

be injected in trap states in the bandgap of the SiO2, where they can move in a sequence of 

trapping and de-trapping events, facilitated by the electric field, which reduces the barrier on 

one side of the trap. For the FP conduction mechanism to occur, the trap must be neutral when 

filled with an electron, and positively charged when the electron is emitted, the interaction 

between positively charged trap and electron giving rise to a Coulombic barrier.  

 
FIGURE 2.14:  Fit of Frenkel-Poole model to data of Fig. 2.13(b). The model is in excellent 

agreement with experimental data in the range 15-60V for 2nd sweep and in the range 35-100 V for 3rd 

sweep. 

At higher voltages, VDG > 60 V, the FN emission in vacuum becomes the model giving the 

best description of the data. The FN current,  as already exposed in chapter 1, is described     

by [67]: 

																																																	�f¨ ∝ � 1� �S¢f¨' �� ��  �−"��/�'S¢f¨ �,																																								(2.15) 
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where a = 1.54·10-6 AeVV-2 and b = 6.83·109 eV-3/2Vm-1 are constants, Φ is the barrier height 

(graphene workfunction), d is the inter-electrode distance and β is the field enhancement 

factor on the sharp edge of graphene. According to eq. (2.15), a plot of ln(IDG/V 2DG) vs. 1/VDG  

(Fig. 2.15) is straight-line whose slope and intercept are related to β and Φ.  

 
FIGURE 2.15:  Fit of Fowler-Nordheim field emission model to the data of the 2nd sweep in the range 
60-70 V of Fig. 2.13(b).  

Even though eq. (2.15) is typically used, it has been suggested that the pre-factor V 2DG should 

be replaced by V 3/2
DG for graphene [120]. We checked FN model against other possible 

mechanisms and, despite the low statistics, we found that eq. (2.15), both in the original or 

modified version, is the closest to the experimental behavior. Hence, we concluded that FN 

injection in vacuum is the main leakage mechanism at high fields. The field enhancement 

factor at the edge of graphene, obtained from eq. (2.15) with Φ = 4.5 eV, is ∼ 4.  

Despite the atomically sharp edge only a modest amplification factor is achieved in our 

configuration, as confirmed also by a finite-element simulation of the field (MAXWELL 

software), shown in Fig. 2.16(a). The low value of β is caused by the non-favorable  edge-to-

edge configuration of the two graphene flakes on the substrate and is affected by the small 

channel-to-gate distance, since the field enhancement factor  is known to grow with the 

spacing between the anode and the cathode [121-122].  

As shown in Fig. 2.16, the electric field between the gate and channel lowers the 

graphene/SiO2 and the graphene/vacuum barrier and enables two parallel paths for current 
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flow (Fig. 2.13(a)). As sketched in the band diagrams of Fig. 2.16(b), at lower biases, 

electrons can be injected in local trap energy levels of the SiO2 forbidden bandgap, and move 

through SiO2 in a sequence of trapping and de-trapping events. Traps are due to structural 

defects or stored charges. At higher biases, the additional Fowler-Nordheim tunneling in 

vacuum can take place (Fig. 2.16(c)) and become the dominating leakage mechanism, since 

electrons travel in vacuum from a graphene layer to the other without the capture and 

emission or any other scattering process limiting the current flow in the quasi-conduction 

band of SiO2.  

 

FIGURE 2.16:  (a) Electric field between the graphene flakes forming channel and side-gate. A 
modest amplification factor (β ∼ 4) is achieved at the graphene edge (the thickness of the graphene 
layers is set to 3 nm by software limitation). (b) Frenkel-Poole transport at lower bias (< 60 V).          
(c) Fowler-Nordheim  tunneling  and   transport   in   vacuum,  which   dominates  over  Frenkel-Poole 
 transport, at higher bias.
 

Considering the electric power dissipated at VDG  > 70 V and the area where tunneling occurs, 

a peak heat flux density around 80 kW/cm2 can be estimated. This joule heating can cause 

desorption of remaining adsorbates (on graphene as well as on SiO2 surface) and sublimation 

of carbon atoms, similarly to what has been reported for carbon nanotubes [122-123] and for 

graphene at high bias [124]. This modification results in enhanced spacing and suppression of 

the field emission, which makes the leakage current to return to the FP regime. 
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2.5 Conclusions 

We characterized Ni- and Ti-contacted GFETs in order to analyze the channel conductance 

and the contact resistance due to the metal/graphene interface [22]. We measured the area 

specific contact resistivity and we demonstrated that, for untreated graphene, it is modulated 

by the back-gate voltage, showing the same dependence as the channel resistance. We also 

discussed distorted transfer characteristics presenting a double-dip feature in the positively 

gated region, systematically observed for long transistors. This feature is explained as 

corresponding to the two minima in the density of states of graphene, in the channel and under 

the metal respectively, which are different because of the metal doping induced by the metal-

graphene interaction.  

We studied the electric properties of graphene FETs with sputtered Nb contacts [30]. We 

clarified the role of adsorbates, PMMA residues and underlying SiO2 on the channel doping 

and distinguished it from the doping at the contacts. We found that Nb acts as p-dopant but 

we clarified that graphene/Nb separation, controlled by stress or other factors, may turn Nb 

into a donor for graphene. We showed that the asymmetry observed in the transfer 

characteristics is naturally explained in terms of doping gradient from contact to channel 

which gives rise to a p-p+-p structure in the p-branch and to a more resistive p-n-p structure in 

the n-branch. We discussed how Fermi level depinning at the contact can limit electron 

conductance and create a resistance plateau in the n-branch. We set a lower limit to the 

workfunction of Nb as ΦNb ≥ 4.7eV. We showed that Nb deposited with a low power 

sputtering forms contacts with graphene of resistivity (ρc ≈ 25 kΩµm) comparable to that 

achieved with evaporated metals such as Ti or Cr and about an order of magnitude higher than 

that typically achieved with Ni or Pd. We speculated that a non-negligible contribution to the 

contact resistance arises from strain. Our finding suggests that further reduction of the 

Nb/graphene contact resistance is achievable with a careful pre-deposition cleaning, a stress-

free design of the metal leads as well as a more gentle deposition, such as that of electron 

beam evaporation. Further improvements, such as those needed for the search of new physics 

or new devices from the superconductor/graphene interface, can be envisaged by using 

contact resistance reducing techniques, such as O2 or ozone treatment or pitting/cutting of 

graphene, which have been successful in reducing the ρc of metals as Ni and Pd below the 

limit of 100 Ωµm. The effect of 10 keV electron irradiation, with dose of 30 e-/nm2, on the 

transport properties has been reported evidencing a significant reduction in carrier mobility 

and an increase in contact resistance. We showed that, for low energy irradiation, the pristine 



     2.5.   Conclusions          69 

 
 

conditions are almost restored after several electrical sweeps, which we explained as gradual 

removal of electrons piled up in the gate oxide during e-beam exposure [48]. 

We characterized side-gated all-graphene field effect transistors with gate-to-channel 

distance of 100 nm and channel width of 500 nm on SiO2/Si substrates [69]. We showed that 

the side-gate is far more efficient than the back gate in modulating the channel conductance, 

with a 35% conductance swing over 0.5 V. We studied the current leakage along the 

SiO2/vacuum gap between the channel and the side-gate, and found that a rapidly increasing 

current appears for VDG > 15 V. We clarified that the leakage current is caused by Frenkel-

Poole transport at the SiO2 surface at lower biases and becomes dominated by electron field 

emission in vacuum at higher bias.  This study clarifies aspects of the side-gate approach, 

which is recently becoming popular for graphene nanoribbon transistors with high on-off 

ratio. It further provides background for the development of easy-to-fabricate planar field-

emission devices for vacuum nanoelectronics.  
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Chapter 3 

Graphene/Si-nanotip Schottky diode 

3.1 Introduction 

Graphene/silicon (Gr/Si) heterojunctions are key elements of many graphene-based devices 

such as photodetectors [1-3], solar cells [4-6], chemical-biological sensors [7-9], and high 

frequency transistors [10-14]. Such heterostructures are gaining interest from the 

semiconductor industry also for the potentiality to replace ultra-shallow doped junctions in 

modern complementary-metal-oxide-semiconductor (CMOS) technologies.  

The zero-bandgap and linear energy-momentum relationship of graphene, which result in 

finite density of states (DOS), have been shown to enable energy Fermi level tuning and 

hence Schottky barrier height control by a single anode-cathode bias [15]. Adding an 

electrostatic gate can further improve the barrier control in a three-terminal barristor (variable 

barrier device) [11]. 

In this chapter, we perform the electrical characterization of a new-concept of Gr/Si 

photodiode with graphene on nano-patterned Si surfaces and we demonstrate that this device 

is more performant than their large area, planar counterparts. In our approach, the coexistence 

on the same graphene layer of junction areas with much bigger graphene regions exposed to 

the field of the substrate, which acts as well-coupled back-gate especially near the tips, 

enables improved control of the Schottky barrier height by a single applied bias. This 

peculiarity makes the device an effective two-terminal barristor with linear control of the 

barrier height. More importantly, while preserving the barrier uniformity, the nano-textured 

surface enhances light collection due to multiple reflections and the tip-enhanced field favors 

photo-charge separation with internal gain due to impact ionization. These features result in 

record responsivity, which is one to two orders of magnitude higher than in planar Gr/Si 

junctions [1] and about one order of magnitude better than in commercial semiconductor 

photodetectors.  This  work  [16]  represents  a  significant  advance   in   the   realization   and  

characterization of graphene/Si Schottky devices for optoelectronic applications.  
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3.2 Device fabrication and measurement setup 

The device has been produced at IHP-Microelectronics in Frankfurt. Si-tip arrays (Fig. 3.1(a)) 

were prepared on degenerately doped (~ 1018 cm-3) n-type Si wafers. Fabrication of the Si-tip 

array includes a SiO2 or Si3N4 hardmask with photo-resist patterned by lithography, reactive 

ion etching (RIE) of Si, plasma-enhanced chemical vapor deposition (PECVD) of a thick SiO2 

layer completely covering the formed Si-tips, and a chemical-mechanical planarization step to 

reduce the SiO2 thickness till revealing circular Si-tips surface of given diameter. Further 

details on the fabrication process can be found elsewhere [17]. Just before the graphene 

transfer, the Si-tip substrates were dipped in a 0.5% hydrofluoric acid solution for 10 seconds 

to remove only the native SiO2 on Si-tips [18-19] and enable formation of clean Gr/Si 

junctions. Graphene was transferred from commercially available Cu foils using a wet transfer 

process [20]. Immersion in deionized water and subsequent dry process by nitrogen-gas 

blowing helped in H-passivating the surface dangling bonds.  

 

FIGURE 3.1:  (a) Photograph of a single chip with a 2.5×2.5 mm2 Si-tip array covered by a monolayer 
graphene transferred from Cu. (b) SEM top view of the tips emerging from the SiO2 insulating layer 
and covered by graphene. The diameter of the emerging tips is ~ 50 nm. Graphene wrinkles 
characteristic of graphene transferred from Cu are visible. (c) SEM cross-section image showing one 
of the Si-tips embedded in SiO2 and covered by graphene. The tip pitch size is 1.41 µm and the tip 
height is ~ 0.5 µm. 

Fig. 3.1(b) shows a scanning electron microscopy (SEM) image taken after graphene transfer: 

Five Si-tips with a diameter of about 50 nm are seen underneath the graphene layer and 

wrinkles, characteristic of CVD graphene grown on Cu, can be clearly identified. Fig. 3.1(c) 

shows a SEM cross-section of one of the Si-tips with graphene. 

To evaluate the quality of graphene, Raman spectroscopy measurements with a 514 nm 

laser source (spot size ~ 600 nm) were performed. Fig. 3.2(a) shows a representative spectrum 

taken from the area between the Si-tips. Beside the characteristic 2D and G bands, a typical 
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feature of monolayer graphene, a very small D peak related to defects is seen at about        

1350 cm-1. As shown by peak intensity mapping measurements presented in Fig. 3.2(b), the 

intensity of the D peak does not correlate with the positions of the Si-tips. The observed local 

increase in the D band intensity is most probably related to the presence of multilayer 

graphene islands [21]. Similarly, no particular correlation between the 2D/G peak intensity 

ratio and the positions of the Si-tips was revealed  (Fig. 3.2(c)). Another small peak appears at 

2450 cm-1, generally indicated as D+D”, and interpreted as a combination of D and D” 

phonons, the latter belonging to the in-plane longitudinal acoustic branch [22]. 

 

 

FIGURE 3.2:  (a) Representative µRaman spectrum taken after graphene transfer. (b) D band intensity 
distribution extracted from Raman mapping measurement on an area of 12×12 µm2 overlaid on optical 
image. (c) 2D/G intensity map taken from the same 12×12 µm2 area indicated in (b).

Sheet resistance of the graphene layer measured using 4-point technique beyond the Si-tip 

array was ~ 0.9 kΩ/� , a value in the range typically reported for CVD graphene on Cu [23]. 

The setup used for electrical measurements of the Gr/Si heterojunction is illustrated in      

Fig. 3.3(a). The top graphene layer was contacted with evaporated Au, while ohmic contact 

with the scratched bottom Si substrate was made with Ag paste. Electrical measurements were 

performed in a Janis probe station with pressure and temperature control. The top-injection 

configuration was adopted, with the biasing lead on graphene and the Ag electrode grounded. 

The measurements were carried out at atmospheric pressure. 
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3.3 Results and discussion 

3.3.1 Schottky barrier 

The dark I-V characteristics of the Gr/Si-tip heterojunction in the temperature range            

120-390 K are shown in Fig. 3.3(b). The device exhibits a rectifying behavior with the 

forward current at positive bias, as expected for p-type graphene on n-Si. The p-type doping is 

usually observed in air-exposed graphene [10,24]. The current for a given voltage increases 

with rising temperature, which is typical of thermionic emission in this kind of devices.        

At modest positive bias, the room and higher temperature forward I-V curves show an almost 

ideal diode behavior. At lower temperatures, namely T < 250 K, a new feature appears in the 

lower bias part of the forward I-V curves, where the current is dominated by a leakage 

component that adds non-linearity to the semi-log I-V plot. This leakage component is usually 

attributed to generation and recombination of carriers in the charge space region, field 

emission and thermionic field emission or surface/edge effects that may lead to local barrier 

lowering [25-26]. Such component becomes relevant when the low-temperature suppresses 

the thermionic emission, e.g. at T = 121 K, where it manifests on the interval 0 < V < 0.25 V.   

    To gain insight into carrier transport across the Gr/Si-tip device, we focus on the I-V curve 

at T = 300 K. Fig. 3.3(c) shows the measured data together with the best fitting curve as 

predicted by the Schottky model [27-29], which is described by the following I-V relation: 

																																																																� = �&³�´(µ�¶·¸) ©^`⁄ − 1º,																																																	(3.1)        
with: 

																																																																					�& = NN∗Y���¼½ ^`⁄ ,																																																						(3.2)     
where I0 is the reverse saturation current, N	the contact area, A*= 4πqm*k2/h3 the effective 

Richardson constant with m* the electron effective mass, T the absolute temperature, ΦB  the 

Schottky barrier height, k the Boltzmann constant, q the electronic charge, n the ideality factor 

that takes into accounts deviations from the pure thermionic regime, and Rs the series 

resistance. More specifically, Rs is the lump sum of bulk Si, graphene, metal leads and contact 

resistances, and is dominated by graphene. The equivalent circuit, consisting of the series of a 

diode with ideality factor n and a resistor Rs, is shown in the inset of Fig. 3.3(c).   
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FIGURE 3.3:  (a) Layout and measurement setup of the Gr/nSi-tip device. (b) I-V characteristics in the 
temperature range 120 - 390 K and in steps of ~ 30 K measured in dark and at atmospheric pressure. 
(c) I-V curve measured at T = 300 K (black squares) and fit of the Schottky diode model of eq. (3.1) 
(red line). In flat-band condition, that is for V  >  0.5 V , the I-V curve is better described by a SCLC 
model, I ~ V 2 (cyan line). The inset shows the equivalent circuit consisting of a diode with ideality 
factor n and a series resistance Rs. (d) Numerical simulation (by COMSOL software) of the electric 
field in the region between two Si-tips for the device under reverse bias (-1V), showing field 
amplification (cyan to reddish color) near the tip edge, where the gating effect of the substrate is more 
effective. Field arrows (red) are shown in logarithmic scale. In the simulation, graphene is considered 
as a metal contact with 4.6 eV workfunction and at -1V bias with respect to the bottom n-Si substrate, 
which is grounded; the Gr/Si-tip junctions are assumed as Schottky junctions with Schottky barrier 
height of 0.36 eV. 

As seen in Fig. 3.3(c), eq. (3.1) provides a perfect fit in the range 0 < V < 0.5 V; at higher bias, 

the Gr/Si-tip diode enters a high injection regime, where the voltage drop across the series 

resistance strongly limits the exponential increase of the current, until the barrier reaches the 

flat-band condition and the I-V characteristic is dominated by the series resistance. In this 

region, henceforth referred as flat-band, the current is better described by a quadratic relation, 

I ~ V 2, typical of space charge limited conduction (SCLC). The gating effect of the substrate 

increases the p-doping of graphene when V > 0 V and this is the origin of the quadratic 

dependence. Indeed, in flat-band condition, V ≈ RsI, and the graphene-dominated Rs is 
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proportional to the inverse bias (Rs ~ (qnq)-1 ~ (CV)-1) (where nq is the graphene carrier density 

and C the gate capacitance per unit area), which makes the current to scale as V 2.  The gating 

effect of the substrate is particularly effective around the tips, where the electric field is 

stronger, as shown in Fig. 3.3(d).  

Fig. 3.3(c) also evidences that, in reverse bias (V < 0 V), the current dramatically deviates 

from the constant behavior predicted by eq. (3.1), implying that it is not the usual saturation 

current of a diode. Since lnI increases linearly with ǀVǀ, the common modeling by a simple 

shunt resistance seems not appropriate in this case. A better explanation is provided by a bias 

dependence of the Schottky barrier, due to a combination of image force lowering and low 

density of states of graphene in the absence of Fermi level pinning, as we will discuss in the 

following. 

Fig. 3.4 shows the rectification factor r, the series resistance  Rs and the ideality factor n 

over the explored temperature range. The rectification factor r is here defined as the ratio of 

the on/off current at V = ± VFB, I(VFB)/I(-VFB), where VFB is the voltage corresponding to the 

onset of the flat-band region (that is the region to the right of the dashed-black line in          

Fig. 3.3(b). Both r and VFB decrease with increasing temperature. In particular, r, which is 

~120 at room temperature, has a monotonic behavior with two possible regimes crossing at    

T ~ 260 K. Below this temperature, there is a reduced rate dr/dT, likely correlated with the 

deviation from the pure thermionic emission. VFB linearly decreases with temperature with a 

slope ǀdVFB/dTǀ ≈ 1 mV/K, a behavior similar to the forward voltage drop of a typical            

pn-diode. As the temperature increases, the flat-band condition, V ≈ RsI, is reached at lower 

bias due to the strong I(T) dependence, as described by eq. (3.2). Indeed, the linear behavior 

of VFB implies a strongly decreasing Rs(T) to counterbalance the exponential growth of I(T) 

with temperature. 

We used I-V data below and around VFB, and followed the Cheung method [30-31] to 

extract Rs and n at a given temperature from the slope and the intercept of the corresponding 

dV/d(lnI) vs. I  plot, since:  

																																																																				 '¢'(�I�) = 	I6Y� + $¡�.																																																					(3.3) 
Rs and n were also obtained from (dI/dV)/I vs. dI/dV plots (Werner method [32]), considering 

that:  

																																																														'�/'¢� = �I6Y ¾1 − $¡ �'�'¢�¿.																																												(3.4) 
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Both eqs. (3.3) and (3.4) are valid in the limit of V ≥ 3nkT/q. The consistent results are shown 

in Fig. 3.4(b) and 3.4(c). Remarkably, Rs exhibits the expected exponential decrease with T  

(Rs ~ exp(-αT)), that is a semiconductor behavior with negative temperature coefficient of 

resistance, dRs/dT. Neither Si [33,34] nor metals or ohmic contacts [35] can account for the 

negative dRs/dT in the temperature range under investigation. The semiconductor behavior 

can only originate from graphene. Indeed, the resistivity of graphene, especially at the lower 

carrier density close to the Dirac point and in the presence of defects or impurities, has been 

reported to decrease with rising temperature on exfoliated or CVD monolayer graphene, both 

suspended [36] or deposited on substrate [37-39]. A semiconductor behavior has been 

reported also for bilayer and few layer graphene on substrate over a wide temperature range 

[40-42]. The negative temperature coefficient in graphene is the result of competing 

mechanisms, with the thermally activated transport through inhomogeneous electron-hole 

puddles as the main recognized cause [39].  CVD graphene is more vulnerable to impurities 

or charged defects during the transfer process, and is particularly prone to develop electron-

holes puddles that tend to produce a negative dRs/dT. 

The ideality factor was further estimated from the slope of straight-line fitting the 

thermionic part of the ln(I) vs. V plot (i.e. the part between 0 and ~ VFB, after excluding the 

leaky portion at lower biases), which according to eq. (3.1) and for leaky V » RsI is described 

by: 

																																																																							�I� = �I�& + �I6Y ¢.																																																			(3.5)		 
While the temperature dependence of n is the same (Fig. 3.4(c)), eq. (3.5) provides values 

which are 10% to 20% higher than those obtained with Cheung and Werner methods. The 

slope of a fitting straight line is usually more accurate than the intercept for the estimation of 

diode parameters, so the method based on eq. (3.5) is considered more reliable. n decreases 

with increasing temperature (n = c + T0/T, with c and T0 constants, as shown in the inset of   

Fig. 3.4(c)) and approaches the ideal value of 1 at the highest temperatures. This behavior 

confirms that the thermionic emission is the dominant carrier conduction process at high 

temperatures. On the contrary, at lower temperatures, the growing n indicates that other 

transport phenomena, as generation-recombination in the space charge region or thermionic 

field emission, add to thermionic emission. Furthermore, the observed temperature 

dependence of the ideality factor is a signature of Schottky barrier spatial inhomogeneity and 

of deformation of the barrier when a bias voltage is applied [43].  
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FIGURE 3.4:  (a) Rectification factor r	and flat-band voltage VFB (in reverse scale) as a function of 
temperature T. The ideality factor is defined as r = I(VFB)/I(-VFB), where VFB is the voltage 
corresponding to the flat-band condition. (b) Series resistance Rs  (right scale) and lnRs (left scale) as a 
function of the temperature T, obtained from Cheung and Werner methods. (c) Comparison of the 
temperature dependence of the diode ideality factor n extracted from eq. (3.1) (full circles), Cheung 
(empty squares) and Werner (empty circles) methods. The inset shows the linear dependence of n on  
T -1. 

According to eq. (3.2), a plot of ln(I0/T 2) vs. 1/T  (Richardson plot) is a straight line, whose 

slope and intercept are used to evaluate the Schottky barrier height ΦB and ln(AA*) at a given 

bias: 

																																																															�I � �&Y�� = �I(NN∗) − �X6 1Y	.																																													(3.6) 
In reverse bias, when e q(V-RsI)/nkT « 1, I0(T) is directly measured on the curves of Fig. 3.3(b). At 

zero bias, I0 is extrapolated to V = 0 V as the intercept of the straight line fitting the thermionic 

part of the forward I-V characteristics. In forward bias, when e qV/nkT » 1 and V » RsI, eqs. (3.1) 

and (3.2) combine to yield a slightly modified Richardson equation, that requires n to estimate 

the Schottky barrier height: 

																																																					�I � �Y�� = �I(NN∗) − (�X − �¢ ⁄ I)6 1Y.																																			(3.7) 
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Examples of Richardson plots for a subset of applied biases are shown in Fig. 3.5(a), while a 

more complete set of measured ΦB(V) is summarized in Fig. 3.5(b). Remarkably, ΦB(V) 

exhibits a linear increase with V, and has the value ΦB(V) ≈ 0.36 eV at zero bias. Fig. 3.5(b) 

depicts ln(AA*) with a very weak dependence on V. Considering the average value        

ln(AA*) ≈ - 16 and an effective junction area of 6.079 × 10-5 cm2  (estimated from the number 

of tips and conservatively assuming a circular junction area with mean radius of 25 nm and no 

micro-areas with missing graphene), the Richardson constant results  A* = 0.002 A/(K2cm2), a 

value significantly lower than the theoretical 112 A/(K2cm2) for electrons in Si. Similar low 

values, ranging from 10-3 to 10-1A/(K2cm2) have been reported for Gr/Si planar heterojunction 

[44-46] and revised Schottky diode equations, based on Landauer formalism [45] or including 

the massless Dirac fermion nature of carriers in graphene [47-48], have been proposed to 

explain this anomaly.   

The low value of A*, the temperature dependence of n, the linear bias dependence of ΦB as 

well as the deviation from linearity of the Richardson plot at low temperatures, can be 

ascribed to spatial inhomogeneities in the Schottky barrier height [43], as already mentioned. 

Since the Gr/Si-tip device under study is made of more than 3×106  nanojunctions, minimal 

tip-to-tip variation could result in significant barrier height fluctuations. Hills and valleys in 

the barrier height distribution can be caused e.g. by local effective barrier lowering due to 

field emission from tips with narrower radius of curvature, by inadvertent interfacial layers, 

by electron-hole puddles in graphene, or by surface defects or contaminates, possibly 

introduced during the fabrication process. An applied bias deforms the lower and higher 

barrier patches, causing ΦB(V) dependence [43]. Indeed, a major disadvantage of the tip 

approach could be the limited shape control. Rather than a simple Si(001) plateau facet 

region, a tip could be a multi-facetted round shape Si structure. Different Si facets might have 

different work function values and further contribute to Schottky barrier inhomogeneities. 

Hence, to check the Schottky barrier spatial distribution, we calculated ΦB(V) using eq. (3.2) 

with the extrapolated values of  I0(T) at zero bias, and studied its temperature dependence 

(Fig. 3.5(c)).  

The decreasing barrier height with lowering temperature is easily understood considering 

that the current becomes gradually dominated by electrons able to surmount the lower barrier 

patches, and this gives a reduced apparent barrier height. Assuming a Gaussian spatial 

distribution for ΦB, with mean ΦBm and the standard deviation σB, the temperature dependence 

of the measured (apparent) barrier height ΦB at zero applied bias is expected to follow the 

relation [43]:   
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																																																																�X = �XÀ − �HX�26Y	.																																																													(3.8) 
The standard deviation σB is a measure of the inhomogeneity of the Schottky barrier height 

(the lower σB the more uniform is ΦB), and, according to eq. (3.8), can be extracted from the 

plot of ΦB vs. 1/2kT, as shown in the inset of Fig. 3.5(c). 

 

 

FIGURE 3.5:  (a) Plot of ln(I0/T 2) vs. 1000/T (Richardson plot) with linear fit to extract the Schottky 
barrier height ΦB at different bias V. Richardson plots show non-linearity at low temperature due to 
Schottky barrier inhomogeneities and deviation from the pure thermionic emission theory; 
accordingly, to estimate ΦB, the two lowest temperature points were excluded from the fit.                
(b) Dependence of Schottky barrier height ΦB  and ln(AA*) on V. (c) ΦB at zero bias as a function of 
temperature; the inset shows the fit of eq. (3.8) from which a value of the Schottky barrier 
inhomogeneity σB ≈ 74 meV is obtained. (d) Modified Richardson plot according to the Gaussian 
distribution of the Schottky barrier height (eq. (3.9)).  

As already mentioned, the Schottky barrier distribution can be deformed by the applied bias. 

In particular, Werner et al. [43] have demonstrated that a linear ΦB(V) implies a voltage 

independent ideality factor and that a linear n vs. 1/T results from the narrowing of the 

Gaussian barrier distribution (i.e. of σB) with forward bias, meaning that the application of a 
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forward bias homogenizes the barrier fluctuations. The value of σB ~ 74 meV at zero bias is in 

agreement or below what has been reported for planar Gr/semiconductor heterojunctions 

[44,46,49]. This lead to the remarkable result that the tip-geometry and the transfer process do 

not introduce extra-inhomogeneity. However, we point out that the measured σB, despite its 

low value, is still enough to affect the low temperature part of the I-V characteristics and the 

Richardson plots. 

As consistency check, we notice that ΦBm = 0.47 eV extracted from eq. (3.8) is within      

1.5 σB from the apparent ΦB at high temperature estimated using eq. (3.2). Together, eqs. (3.2) 

and (3.8), give: 

																																													Á ≡ �I � �&Y�� − ��HX�26�Y� = �I(NN∗) − ��XÀ6Y ,																																			(3.9) 
which suggests a modified Richardson plot of H vs. 1000/T (Fig. 3.5(d)) from which a more 

accurate and higher value of A* = 0.015 A/(K2cm2) can be estimated, while ΦBm = 0.48 eV 

remains practically unaffected. We remark here that A*  is possibly underestimated, given our 

conservative assumption of constant full-contact area between Gr and Si-tips; we also 

underline that ΦBm  is consistent with other reported evaluations [11,50-51] and, as we discuss 

in the following, matches the prediction of Schottky-Mott theory. 

The Schottky barrier height depends on the graphene work function, the Si electron affinity 

as well as on the interface states density and on the thickness of an inadvertent interfacial 

layer of atomic dimension, often due to native oxide, that is transparent to electrons but able 

to withstand a potential drop [27,29,52]: 

																																																																			�X = �¨g − Ã�� − �∆,																																																(3.10)		 
where ΦGr = 4.5÷4.6 eV is the work function of graphene [53-54], XSi = 4.05 eV is the electron 

affinity of Si and ∆ is the potential drop across the interfacial layer. High density of interface 

states at a given energy in the Si bandgap usually leads to pinning of the Fermi level and can 

result in a significant discrepancy from eq. (3.10). However, due to negligible interaction with 

chemically inert graphene, the formation of interface states is suppressed in graphene-

semiconductor junctions if the Si-surface is defects-free and with saturated dangling bonds 

[55]. An ideal, trap free interface would result in unpinned Fermi level and yield a Schottky 

barrier height: 

																																																																								�X = �¨g − Ã��,																																																							(3.11) 
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(Schottky-Mott relation) in the range 0.45÷0.55 eV  for undoped graphene. The Fermi level 

unpinning enables easy modulation of the Schottky barrier, a feature that can be exploited to 

tune Gr/Si devices to match specific performance requests [11,56]. Deviations from the 

Schottky-Mott prediction are mainly due to image force lowering [57] or hot electrons barrier 

lowering [58-59]. Neglecting the field enhancement by the tip (values of the field up to       

107 V/cm can be achieved, as shown in Fig. 3.3(d)), the maximum built-in electric field at the 

Gr/Si junction [29], is:  

																																														.À = �(2�J|Ä�	|	) ²��⁄ ≈ 3 × 10Æ 	¢ 9v⁄ ,																																	(3.12) 
(N = 1018 cm-3 is the Si doping density, φi ≈ 0.3 V is the built-in potential and εSi = 12ε0  is the 

dielectric constant of Si) which corresponds to a Schottky barrier lowering by image force:  

																						Ç�X̧ = ���.À (4#²��)⁄ = �	ª��J|Ä�| °8#�²��� ±⁄È ≈ 0.06	�¢.																						(3.13) 
When a bias is applied to the junction, ǀφi ǀ  is replaced by ǀφi – V/mǀ  in eqs. (3.12) and (3.13) 

(m is an ideality factor, see the following), and ∆ΦI
B is increased (decreased) by a reverse 

(forward) bias, as depicted in Fig. 3.6(a). At zero bias, adding ∆ΦI
B from eq. (3.13) to the 

measured ΦB ≈ 0.36 eV brings the Schottky barrier height close to the ideal Schottky-Mott 

value. This result confirms the good quality of the Gr/Si-tip interfaces in the device under 

study.  

A good quality interface also excludes the chance of Fermi level pinning. In graphene, the 

Fermi energy, EF, at room temperature, is approximately related to the free carrier density nq  

by a quadratic relation: 

																																																															I´ ≈ I´& + .?� (#ℏ�>?�)⁄ ,																																																(3.14) 
(nq0 is the intrinsic carrier density and vF ≈ 106 m/s is the Fermi velocity of graphene).          

Eq. (3.14) enables fine tuning of EF via nq, which can be easily controlled by an electric field 

(electrostatic doping). In heterojunctions with unpinned Fermi level, EF modifies the graphene 

work function and hence the Schottky barrier height. p-doping of graphene increases ΦB  and 

n-doping decreases it, as displayed in Fig. 3.6(a) for graphene on n-type Si. The electrostatic 

Schottky barrier variation, ∆ΦE
B = - EF, adds to the image force barrier lowering ∆ΦI

B, to set 

ΦB (Fig. 3.6(a)). Noteworthy, in the device under study, EF modulation by electrostatic doping 

is achieved via the electric field (Fig. 3.3(d)) generated by the same voltage used to bias the 

junction. 
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FIGURE 3.6:  (a) Band diagrams of the Gr/Si-tip junction in forward and reverse bias. XSi, ΦGr and EF  
designate the Si electron affinity, the graphene work function and Fermi level, respectively; EC/EV are 
the bottom/top of the conduction/valence band and EFS  the Fermi level of Si (the dashed blue line 
represents the Fermi level at zero-bias, with an assumed graphene low p-doping). φi is the built-in 
potential and ¢ the applied bias. In forward (reverse) bias the change of the graphene Fermi level leads 
to an increase (decrease) of the Schottky barrier height (∆ΦE

B = - EF). The graphene Fermi level shift, 
which is required to allocate more and more charge to mirror the bias-dependent immobile charge of 
the semiconductor depletion layer, is due to the low DOS of graphene around the Dirac point. Also 
shown is the variation of Schottky barrier height,  ∆ΦI

B, caused by image force. (b) Fitting of             
eq. (3.19) to the I-V data measured at T=300 K. The left inset displays the I-V data in linear scale. The 
right inset shows the equivalent circuit, consisting of two opposite diodes with ideal factors m  and γ -1 
respectively, in parallel to each other and in series with the resistance Rs  (we notice that the value of γ  
here is slightly lower that the one obtained in Fig. 3.5(b), where we did not take into account the effect 
of RsI). 

Both ∆ΦI
B and ∆ΦE

B introduce a sublinear dependence on the applied bias V in the Schottky 

barrier height (roughly as the �|¢|È   from eq. (3.13) and �|¢| from eq. (3.14), respectively, 

since  |Ç�X\| = |.?|~��I~√¢ ), which can be written as:    
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																																																													�X(¢) = �X& + Ç�X(¢).																																																			(3.15) 
∆ΦB(V)  is positive in forward bias and negative in reverse bias.  

The effect of electrostatic doping, ∆ΦE
B was first included in the diode eqs. (3.1) and (3.2) 

by Tongay et al. [15] who obtained a reverse saturation current I0 depending on the 

exponential of �|¢|. A similar behavior was proposed with different approaches also by 

Sinha et al. [45] and Liang et al. [47-48]. However, for the Gr/Si-tip device under study, the 

measured barrier height of Fig. 3.5(b) shows that ΦB(V) is better described by a linear 

relation. Accordingly, we write: 

 																																																											Ç�X(¢) = 1	�(¢ − $¡�),																																																				(3.16)  
with 1 a dimensionless constant, and the reverse saturation current as: 

																																				�	Ì & = NN∗Y���«¼½ÍWÎ´(µ�¶·¸)¬ ^`⁄ = �&��Î´(µ�¶·¸) ^`⁄ .																							(3.17) 
By re-defining the ideality factor as: 

																																																												 1v ≡ 1I − 1 = 1I − 1�	 l�Xl(¢ − $¡�),																																					(3.18) 
eqs. (3.1) and (3.17) can be combined to obtain: 

� = �&�´(µ�¶·¸) À^`⁄ ³1 − ��´(µ�¶·¸)(� À⁄ WÎ) ^`⁄ º = 

																																										= �&³�´(µ�¶·¸) À^`⁄ − 1º − �&³��´(µ�¶·¸)Î ^`⁄ − 1º,																								(3.19) 
which includes an ideality factor for both the forward and reverse current. From a circuital 

viewpoint, eq. (3.19) corresponds to the parallel of two opposite diodes, with ideal factors m  

and γ -1 respectively, in series with the resistance Rs, as shown in the inset of Fig. 3.6(b). In 

forward bias, the current originates mostly from electrons injected from Si into graphene, and 

is controlled by the Si band-bending barrier, q(φi – V/m) (Fig. 3.6(a)). The ideality factor m 

(which the fit of Fig. 3.6(b) shows to be ≈ n) is predominantly caused by inadvertent interface 

layers and other deviations from pure thermionic emission. In reverse bias, the Schottky 

barrier is significantly lowered by the applied voltage because of the limited DOS of graphene 

(Fig. 3.6(a)). This causes an exponential increase of the electrons flowing from graphene into 

Si, i.e. of the reverse current, which is modeled by a diode of ideality factor γ -1, which 

obviously takes into account the strong bias dependence of the  Schottky barrier height. 
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Fig. 3.6(b) shows that eq. (3.19) provides an excellent fit to the measured data at 300 K over 

the whole bias range (the flat-band regime obeys a quadratic law, as explained before). The 

dependence of I0 as the exponential of a linear rather than a sub-liner function of ǀVǀ is likely 

due to the effect of Si substrate which, especially in the vicinity of the tips (Fig. 3.3(d)), acts 

as strongly-coupled gate that would linearly shift EF. Consequently, the Gr/Si-tip device 

behaves as a barristor, with linear control of the Schottky barrier height as for the device of 

Yang et al. [11], but without the need of a third gate electrode.    

Another important effect which can lead to a stronger V-dependence of the reverse current 

is the Schottky barrier lowering caused by hot electrons [58-59] that might originate even a 

quadratic ∆ΦB(V). In this scenario, the gating effect induces abrupt band bending around the 

Schottky barrier that increases the lateral field, which in turn produces significant 

enhancement of hot carriers.  

3.3.2 Photoresponse 

We also studied the photoresponse of the Gr/Si-tip device by shining light from the top, on 

the graphene layer.  

Fig. 3.7(a) compares the I-V curves obtained in darkness and under  3 mV/cm2 white LED 

light; it shows clear photocurrent in reverse bias, and photovoltaic effect with 60 nA short 

circuit current (a factor ~ 50  higher than the dark current at zero bias) and  70 mV open 

circuit voltage. In reverse bias, the Gr/Si-tip device can be used as a photodetector: the 

electron-hole pairs generated by incident photons in the Si space-charge region and, in minor 

part, in the Si quasi-neutral region or in graphene are separated by the strong tip-enhanced 

electric field, leading to a photocurrent [19]. The inset of Fig. 3.7(a) shows the stable 

photoresponse when the light is switched on and off, at a bias of - 0.5 V, corresponding to a 

responsivity: 

 																																												$Ï� = �Ï� Ð& = °�Ñ�br� − �}hg^± Ð&⁄ ≈ 3	N/j⁄ ,																									(3.20)  
where Iph is the photocurrent and P0 the incident optical power.  

Fig. 3.7(b) shows the photoresponse, at the same bias of - 0.5 V, to the near IR radiation 

produced by a 880 nm LED. The Gr/Si-tip device is expected to show high sensitivity around 

this wavelength, since Si has an absorption peak  at ~ 930 nm [3]. The current plateaus of        

Fig. 3.7(b) and of its top inset are the response of the Gr/Si-tip device to stepwise changes of  

electrical power fed into the irradiating diode: the photocurrent displays a monotonic growth 



     3.3.   Results and discussion           91 

 
 

with IR intensity (as seen also in the bottom insets of the figure). The radiation intensity in 

W/cm2 reaching the Gr/Si-tip junction was measured to be ≤ 1% of the IR diode supply power. 

Hence, Fig. 3.7(b) shows that the minimum detectable IR intensity by the Gr/Si-tip 

heterojunction is less than 100 µW/cm2 and its responsivity is Rph ≥ 0.3 A/W at intensity         

< 1 mW/cm2. The measured responsivity is one or two orders of magnitude higher than the 

values reported to date for graphene/Si planar-junctions [3,60-63] (with maximum of 225 

mA/W at 488 nm) [1].  

The graphene/Si-tip device appears also competitive when compared to semiconductor 

photodiodes on the market, whose typical responsivity is around 0.5 A/W, both for visible and 

near IR light.  

 

FIGURE 3.7:  (a) I-V characteristics of the graphene/Si-tip device in dark and under white LED 
illumination. The inset show the current at V = -0.5 V in a sequence of light on/off cycles. (b) Reverse 
current at V = -0.5 V under 880 nm IR irradiation, increased in time by stepwise changes of the input 
electrical power to the emitting diode (OD880F). The top inset displays the monotonic increase of the 
photocurrent of the graphene/Si-tip device while the IR diode input power is changed in smaller steps. 
The bottom inset shows the current of the graphene/Si-tip vs. the IR diode input electrical power.  

The high substrate doping reduces the space-charge region where most of the photoexcitation 

takes place and this should suppress the responsivity. This loss can be counterbalanced by the 

textured surface, which on the contrary favors multiple reflections and light absorption [64].  

However, the high value of responsivity is rather a result of the peculiar device 

geometry. The tip-enhanced electric field, other than facilitating their separation, can provide 

photogenerated electron-hole pairs with enough kinetic energy to cause impact ionization and 

initiate charge multiplication, thus enabling device internal gain. The exponential increase of 

the photocurrent with reverse bias can be taken as signature of internal gain since smoother 
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rise is usually observed when the photocurrent is due only to increased photon absorption in 

the bias-widened depletion layer. Augmented photocharge separation and multiplication is 

also expected in graphene, especially in the areas near the tips.  

We notice that very high responsivity of 107 A/W  have been reported by Liu et al. [51] in 

more complex three-terminal Gr/Si devices with quantum gain due to photocarriers borrowed 

into graphene and reinvested several times in the external circuit during their lifetime. 

However, these devices require more complex circuitry than our multi-purpose two-terminal 

photodiode.

 

3.4 Conclusions 

We characterized extensively a novel Gr/Si heterojunction obtained by CVD graphene 

transfer over a nanotip patterned Si-substrate. We measured the relevant junction parameters 

and showed better performance of the Gr/Si-tip device with respect to its planar counterpart. 

Without adding barrier inhomogeneity, the tip geometry enables linear tuning of the Schottky 

barrier height, hence of the diode current, by a single applied bias, thus implementing a two 

terminal barristor. The textured surface improves light absorption and photocharge collection 

and enables internal gain through impact ionization leading to higher responsivity.  

This study represents a step forward toward the integration of graphene into existing Si 

technology for new generation optoelectronic devices. 
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Chapter 4 

Transport and field emission properties of CNTs 

4.1 Introduction 

Since their discovery, carbon nanotubes (CNTs) [1] have been considered exceptional 

elements to realize field emission devices, due to their very high aspect ratio, excellent 

electrical conductivity and important mechanical strength. Nowadays, CNT-based field 

emitters are used in vacuum electronics to produce electron sources [2], flat panels [3], X-ray 

sources [4,5], and microwave amplifiers [6], exploiting a low-threshold electric field and large 

emission current density. To increase the extracted current, CNT arrays are usually 

implemented [7,8] as free-standing well-aligned CNTs [9-11] or paper-like sheet of randomly 

oriented CNTs, named buckypaper [12,13].  

Several reports focus on oriented samples grown on particular substrates to improve the 

control on dimension and spacing of CNT emitters and to get stable emitted current [14-16]. 

However, growth of oriented nanostructures needs carefully controlled fabrication process. 

The development of buckypaper field emitters is motivated by the extreme simplicity of 

fabrication process especially for large scale as well as ease to use. Buckypapers have a 

laminar structure with networks of CNTs held together by van der Waals forces. The CNTs 

are randomly oriented in the plane unless special techniques, as the application of electric and 

magnetic fields, are adopted [17] to obtain preferential alignment in one direction. The 

material results a good candidate for large scale emitters for the possibility to emit electrons 

from the whole length of the tubes [18]. Recently, buckypapers have been applied to develop 

supercapacitors [19,20], chemical sensors [21], flexible fibers [22] and actuators [23]. 

Enhancement of field emission in buckypaper has been also reported due to acid 

functionalization of nanotubes [24] and surface plasma treatment [19].  

In this chapter, we study the field emission properties of 120 µm thick buckypaper 

obtained by pressing aligned CNTs whose original length was up to 200 µm. The temperature 

dependence of the buckypaper conductance was measured in the wide temperature range     

4.2 K – 430 K evidencing the presence of thermal fluctuation induced tunneling contribution 
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as well as a linear contribution to the total conductance. The field emission characteristics are 

locally measured by using a piezoelectric driven metallic probe tip, with curvature radius of 

about 30 nm, in order to collect electrons emitted from areas as small as 1 µm2 of the 

buckypaper. We analyze the turn-on field, the emission current intensity and its time stability 

as well as the possibility to modify the FE current by applying an additional planar current in 

the sample [25]. 

4.2 Samples fabrication and measurement setup 

Samples have been produced at the University of Salerno. The chemical vapor deposition 

(CVD) method was used to grow CNTs on a quartz wafer in a two-step process consisting of 

a catalyst preparation followed by the actual synthesis of the CNTs. The quartz wafer cut into 

appropriate size was first heated in a furnace at 500 °C for about 10 minutes. It was then 

cooled down to the room temperature and dipped in catalyst. The catalyst was basically a 

solution of ethanol and Fe-Mo in mole ratio of 10:1. The quartz substrate thus dipped in 

catalyst was then placed in a quartz tube in a tube furnace. The deposited Fe catalyst was then 

reduced at 800 °C by passing hydrogen and argon gas. Finally, the substrate was subjected to 

source of carbon by passing ethylene gas which caused the decomposition of carbon and 

resulted in the synthesis of CNTs. As can be seen from the scanning electron microscope 

(SEM) images shown in Fig. 4.1(a), the CNTs produced with this procedure are aligned, with 

length ranging from several micrometers to about 200 µm with a narrow diameter distribution 

around 10 nm. Raman spectroscopy shows that the obtained aligned CNTs are a mixture of 

single and multiwalled carbon nanotubes (Fig. 4.1(b)). Subsequent steps were carried out to 

press the sample between two parallel plates to make the film denser and to separate it from 

the substrate in the form of buckypaper of about 120 µm thick  (Fig. 4.1(c)) 

Even though this process is focused on making 100% multi-walled carbon nanotubes 

(MWCNTs) it produced a mixture of single-walled carbon nanotubes (SWCNTs) as well. 

This is shown by the 200 cm-1 peak in the Raman spectrum reported in Fig. 4.1(b). This peak 

corresponds to the Radial Breathing Mode (RBM), which is usually located between 75 and 

300 cm-1 [26]. The D mode (located between 1330-1360 cm-1) and the G mode, which 

corresponds to the stretching mode in the graphite plane, are typical of good quality 

MWCNTs [27]. 
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FIGURE 4.1:  (a) SEM images of aligned carbon nanotubes on quartz substrate. (b) Raman spectrum 
of vertically aligned CNTs with peak at 200 cm-1 corresponding to RBM of single walled CNTs.  The 
D mode (located between 1330-1360 cm-1) and the G mode are typical of good quality MWCNTs.    
(c) SEM image of the surface of as pressed 120 µm thick CNT buckypaper. 

A standard four-probe method was applied to perform the electrical characterization of the 

produced samples by means of Janis ST-500 Cryogenic probe station working in the 

temperature range from 4.2 K to 450 K and in vacuum (pressure range from 10-6 mbar to 

ambient atmosphere). A semiconductor parameter analyzer (Keithley 4200-SCS) with four 

source-measurement units was connected to the probe station via triaxial cabling to perform 

current biased measurements, while controlling/monitoring the sample temperature.  

To study field emission properties, we connected the Keithley 4200-SCS to a nanoprobe 

system manufactured by Kleindeik Company (nanomanipulators MM3A), with two 

piezoelectric driven arms, installed inside a Zeiss LEO 1430 SEM, allowing electrical 

measurements in situ by means of nanometric metallic probes (tungsten tips with 30 nm 

curvature radius). To perform field emission characterization, current–voltage characteristics 

are measured by sweeping the voltage bias from 0 to 120 V. Larger bias was not applied to 

prevent damages to the nanomanipulator circuitry. The emitted current was measured  with  

an  accuracy  better  than  0.1  pA.  All  the  field  emission measurements were performed in a  

high vacuum (< 10-6 mbar) at room temperature.

 

Wavenu
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4.3 Results and discussion 

4.3.1  The temperature dependence of the conductance  

We measured the temperature dependence of the resistance R(T) for several samples 

(randomly cut from the same source sample), and we observed a negative temperature 

coefficient of the resistance (dR/dT < 0) in the whole temperature range (4.2 - 300 K in      

Fig. 4.2(a) and 100 - 430 K in Fig. 4.2(b)). Measurements were performed by forcing a low 

constant current (0.5 mA) to prevent sample self-heating. For MWCNT bundles [28,29] or 

film [30] the temperature dependence of resistivity usually remains non metallic, dR/dT < 0, 

for the whole temperature range. A crossover temperature from metallic to non metallic has 

been reported in MWCNT buckypaper [31]. Differently, for SWCNTs a crossover 

temperature has been often observed with values varying from 35 K for a single well-ordered 

rope to 250 K for a rope with tangled regions [32]. It appears difficult to establish a consistent 

scenario for the MWCNTs also considering that below 20 K, both sharp increases in 

resistivity [28,33] and plateaus [29,34] have been reported for bundles and individual tubes.  

From a theoretical viewpoint, for homogeneous disordered systems, the non metallic 

temperature dependence of the conductivity is explained in terms of variable range hopping 

(VRH) conduction [35], with: 

																																																											H(Y) = H& ∙ ��  Ò− � Í̀̀� ÓÓÔÕÖ,																																																	(4.1)  
where d is the dimension of the system.  

Alternatively, according to the thermal fluctuation induced tunneling (FIT) model [36], the 

conductivity is: 

 																																																												H(Y) = H& ∙ ��  ×− Ó̀`W Í̀Ø,																																																					(4.2)  
where σ0 is the conductance at room temperature, T1 denotes the temperature below which the 

conduction is dominated by the charge carrier tunneling through the barrier and T0 the 

temperature above which the thermally activated conduction over the barrier begins to occur. 

FIT model has been developed for disordered heterogeneous systems such as 

conductor/insulator composites, granular metals, and disordered semiconductors, 

characterized by large conductive filaments interconnected via small insulating gaps. Due to 
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small sizes of tunnel junction, thermal voltage fluctuation influences the electron tunneling 

probability through the barrier. 

Electronic transport characterization measurements have sometimes shown that both VHR 

and FIT can give both reasonable fits; in real situations, it can be difficult to determine the 

dominant mechanism responsible for the observed electrical conduction. 

By fitting the experimental data reported in Fig. 4.2(a), we found out that the best fit over 

the largest temperature range (T ≥ 20 K) is obtained by the FIT model. For our system, the 

tunneling barriers originate from the inter-tubular contacts and the buckypaper can be 

considered a heterogeneously disordered system. For this reason, the FIT was used for 

describing the temperature dependence of conductivity of SWCNTs fibers [37] and networks 

[38] as well as for MWCNTs [39]. 

However, when considering our experimental data in the whole interval from 4.2 to  300 K, 

neither FIT nor VRH are able to reproduce the complete behavior.   

To explain temperature dependence measured down to 4.2 K on CNT mats [40,41], a 

further negative linear term has been sometimes introduced [42]. A linear conductance has 

also been observed in gas-desorbed CVD-grown MWCNTs at high temperature, and it has 

been explained using a thermal activation picture of conduction channels. Moreover, such a 

linear dependence could imply a very short mean free path due to large number of defects 

[43]. Hence, to observe such a linear dependence, “dirty” MWCNTs with mean free path of 

few nanometers are necessary. Larger values up to two order of magnitude more can be 

obtained in “clean” MWCNTs, characterized by limited numbers of defect scatterers [44-46]. 

By considering a further linear contribution, we can express the total conductance as: 

 																																																										�(Y) = �& ∙ ��  ×− Ó̀`W Í̀Ø + ��Y,																																										(4.3)  
obtaining a perfect fit of the experimental data in the whole temperature range from 4.2 to   

300 K (inset of Fig. 4.2(a)). 

The fitting parameters T1 and T0 are defined as: 

																																																																	Y� =	 16	²&ħN¢&�/�#	��6X(2v¥)�	d� ,																																																	(4.4) 

																																																																									Y& =	8	²&N¢&�	��6Xd ,																																																												(4.5) 
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where ε0 is the vacuum permittivity, ħ the reduced Planck constant, A the junction area, V0 the 

height of the barrier, w the width of the tunnel junction, e the electronic charge, me the 

electron mass and kB the Boltzmann constant. The linear correction to the total conductance is 

not used to fit the experimental data measured in the range (100 – 430 K) for another sample 

(Fig. 4.2(b),). By assuming a junction area A ≈ d2 with d ≈ 10 nm the average MWCNT 

diameter, from the fitting parameters, we can estimate a junction width w ≈ 3.0 nm and          

V0 ≈ 24 meV. V0 is the tunnel barrier that electrons have to overcome to move from one 

nanotube to another one, and the tunnel probability depends on it as well as on the local 

density of states of each side of the junction. The effective barrier height depends on the bias 

current and on the temperature [47,48]. Small V0 values have been reported when, at low 

temperatures, current bias above 100 µA are applied [49]. 

 

 

FIGURE 4.2:  (a) Resistance vs. temperature for a MWCNT buckypaper measured in the temperature 
range from 4.2 to 300 K. Solid line (white and yellow) is the best fit by fluctuation induced tunneling 
model for data in the range 20 - 300 K. Inset: the whole set of data is plotted as G = 1/R and is fitted by 
adding to the model a linear term G1⋅T. Solid (green) line represents the best fit. (b) Resistance vs. 
temperature for another MWCNT buckypaper measured in the temperature range from 100 to 430 K. 
Solid line (green) is the best fit by fluctuation induced tunneling model. (c) Current-Voltage 
characteristics measured at room temperature and at 4.2 K. 
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We also measured the current-voltage characteristics at different temperatures. For both 

samples, we always found a linear ohmic dependence, except for low temperatures. We report 

in Fig. 4.2(c) the curve measured at low temperature (4.2 K) for the first sample, and it is 

compared to the room temperature characteristic. Such non-ohmic behavior of the I-V 

characteristic has been observed at low temperature in SWCNT network [38,50,51] and 

explained by developing an electrical model that considers series-parallel connections of 

junctions existing in the CNT bundles [51]. 

4.3.2 Field emission  

In Fig. 4.3(a) we show the current-voltage characteristic of the buckypaper, measured by 

landing the two nanoprobes on macroscopic silver paint pads to favor very stable and low 

resistance contacts. This curve is compared to the case in which one contact is realized by 

pressing the metallic tip directly on the buckypaper. The experimental data confirm that silver 

paint is useful to reduce the contact resistance. This is not relevant for four-contact 

measurements (as for temperature dependence measurements of the resistance previously 

reported), but it is important for the two terminal measurements, discussed in this section.  

The circuit configuration for field emission characterization is easily obtained by retracting 

one of the probes and adjusting its distance d from the buckypaper surface (far from the Ag 

pad). A schematic of the circuit is shown in Fig. 4.3(b). The piezoelectric control of the probe 

tips allows fine tuning of the cathode (buckypaper)-anode (metallic tip) distance with spatial 

resolution down to 5 nm.  

 

FIGURE 4.3:  (a) Two-probe measurement of the Current–Voltage characteristics of the buckypaper 
inside the SEM chamber by means of nanoprobes. Solid circles refer to configuration in which both 
metallic tips contact the sample on silver pads; empty squares refer to the case of one tip in direct 
contact with the buckypaper surface. (b) Schematic of the experimental setup. 
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The use of a metallic tip as collector of the emitted electrons is a well established technique 

[9,10,12] that allows to get local information about the field emission properties, the electrons 

being emitted from a reduced area (of the order of 1 µm2) with respect the standard parallel 

plate setup (generally probing areas up to several mm2).  

In Fig. 4.4(a) we report two successively measured FE current-voltage characteristics, in 

the voltage bias range from 0 to 120 V, under a vacuum better than 10-6 mbar at room 

temperature. As standard procedure, we typically perform at least two successive sweeps in 

order to verify the repeatability of the measurement that gives information about the 

robustness of the device against the electrical stress induced modifications. The experimental 

data of Fig. 4.4(a) show a current starting to flow around 50 V and exponentially growing for 

about eight order of magnitudes (up to several µA) from the setup floor noise of about 10-13 A.  

To confirm the FE nature of the measured current, we analyze the data according to the 

Fowler-Nordheim (FN) theory [52], which, as already exposed in chapter 1, expresses the 

emitted current as:  

																																																													� = � .��� � ∙ ��  �−"��/�.¡ �,																																															(4.6) 
where Φ is the work function of the CNTs, S is the emitting area, a = 1.54·10-6 A·eV·V-2 and   

b = 6.83·109 eV-3/2·V·m-1 are constants, and ES is the applied electric field that depends on the 

emitter geometry trough the field enhancement factor β as: 

																																																																																.¡ = S¢' ,																																																																(4.7) 
V being the applied bias voltage. The factor β represents the ratio between the local electric 

field on the sample surface and the applied field.  

According to FN theory, for FE device we expect a linear relation in the so-called FN plot, 

ln(I/V2) versus 1/V, whose slope m = keffbΦ3/2d/β, can used to estimate β. In the last 

expression, the tip correction factor keff takes into account the shape of the collector electrode 

[10,53]. The inset of Fig. 4.4(a) shows the FN plot for the second sweep reported in the 

figure. The clear linear dependence demonstrates the FE nature of the recorded current. From 

the linear fitting, we extract the field enhancement factor β ≈ 30 by considering keff  ≈ 1.6 [10]. 

Consequently the turn-on field (ETurn-ON , here defined as the applied field necessary to extract 

a current of 10-11 A) can be evaluated as ETurn-ON = 140 V/µm, a value significantly lower or 

comparable to what has been observed for other structures, such as aligned MWCNTs [10], 
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graphene flakes [54] or nanoparticles [55]. 

In Fig. 4.4(b) we report other FE current versus bias voltage characteristics measured for 

different values of the tip-sample distance d. As expected, increasing the distance,                   

d = 550 nm, the FE starts at higher applied voltages (∼ 65 V), while for reduced distance,        

d = 250 nm, the FE starts at lower applied voltages (∼ 40 V). The inset of Fig. 4.4(b) shows 

the values of the turn-on field evaluated for each distance. We notice that for d = 250 nm the 

FE characteristics follow the usual exponential growth up to a voltage of about 60 V. Above 

this voltage, the current is strongly limited despite the increasing bias voltage. This is 

probably caused by the presence of a series resistance in the circuit causing a significant 

voltage drop that reduces the applied field when a significant current is flowing.  

 

 

FIGURE 4.4:  (a) FE current vs. voltage bias characteristics measured at a tip-sample distance of     
400 nm. Two successive sweeps are compared. Inset: FN-plot for the second sweep and its linear 
fitting. (b) FE curves measured for different values of the tip-sample distance d. Dashed line 
represents the current values considered for the evaluation of the turn-on field. Inset: Values of the 
turn-on field vs. distance, evaluated for each curve of figure 4b. (c) Time stability of the FE current 
intensity, at fixed bias 90 V. Inset: histogram of the measured values with a rate of 1 point each         
12 seconds. (d) Comparison of the FE curves measured before and after the stability test. The gray 
band identifies the region in which the two curves are different.
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To study the FE current stability, we used the configuration with d = 550 nm and applied 

constant voltage bias of 90 V for measuring the FE current intensity versus time. The result is 

shown in Fig. 4.4(c). The current has been monitored for more than 12 hours (at a rate of        

1 point each 12 seconds) without significant degradation with respect to the average value of 

0.14 µA, demonstrating the high stability of the buckypaper with respect to the long duration 

current emission. After the stability experiment, we repeated the complete voltage sweep 

(from 0 to 120 V) to compare (see Fig. 4.4(d)) the FE characteristics before and after the 

continuous operation of the device for more than 12 hours.  The curve measured after the 

current annealing was not affected by the long term emission almost in all the bias range. 

Only near the turn-on bias we observe a peak indicating an anticipated switch on of the 

emission process probably due to a light morphological modification, such as an elongated 

CNT out from the buckypaper, induced by the long exposition at high bias during the stability 

test. However, the high current density may burn it restoring the previous conditions. This 

demonstrates also the robustness and stability of buckypapers against local modifications 

during its operation, also better than the case of aligned CNTs, grown on Si wafer. Indeed, for 

aligned nanotubes, a more pronounced instability is due to the protrusion of tubes of different 

lengths, allowing higher current but provoking several modifications due to burning of single 

tubes. This is the reason why with aligned CNTs it is often necessary to perform longer 

electrical annealing to stabilize the emission [9, 10]. 

According to the theoretical prediction [56] for graphene-based field effect transistors    

[57-61], in the presence of a wedge tip, enhanced local electrical field can sensibly increase 

the probability of electron field emission from graphene toward top gate depending on the 

channel current. Experimentally, a possible effect of channel current on graphene field 

emission [56,62] has been also reported. For this reason, we tested the possibility to tune the 

emitted current from the buckypaper by applying an in-plane current in the sample. The 

schematic of the device is reported in the inset of figure Fig. 4.5(b).   

We initially forced a current flowing in the buckypaper, along the alignment direction, in 

the range 0 – 100 µA by successive raising steps, while monitoring the FE current obtained at 

fixed bias of 85 V, as done for the usual stability experiment. In Fig. 4.5(a) we observe that 

the FE current remains insensible to the steps of the in-plane current. Moreover, we tried to 

apply higher currents (in the mA range) without significant modifications. We also compared 

the complete FE I-V characteristics measured with and without forced in-plane current in 

order to check whether only limited bias regions could be affected by the presence of the in-
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plane current. However, experimental data reported in Fig. 4.5(b) show reproducible 

characteristics that confirm the absence of relevant effects of in-plane current on the spectra.  

 

FIGURE 4.5:  (a) Time stability of the FE current for voltage bias of 85 V. The right axis (red) refers 
to the applied in-plane current. The measurement starts with zero in-plane current and is raised up to 
100 µA in three successive steps. Inset: histogram gives statistic information about the FE current 
values recorded during the measurement. (b) Comparison of FE curves measured with (30 mA) and 
without in-plane current flowing in the buckypaper. Inset: schematic of the circuit to apply in-plane 
current during FE experiment. 

4.4 Conclusions 

We performed a deep experimental characterization of the transport and field emission 

properties of buckypapers obtained from aligned carbon nanotubes. The temperature 

dependence of the conductance is described within the fluctuation induced tunneling model, 

but a further linear contribution is necessary in order to explain the behavior in the wide 

temperature range from 4.2 to 430 K. We demonstrated that our buckypapers are extremely 

stable emitters with emitted current almost unaffected after half day operating time, reporting 

also turn-on fields as low as 140 V/µm at distance below 1 µm. We finally tested the 

possibility of FE tuning by forcing in-plane currents up to several mA in the buckypaper. 
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Conclusions 

The present thesis work concerned the electrical characterization of different devices like 

field-effect transistors, diodes and field emission devices based on graphene and carbon 

nanotubes. The objective of this research was to study electronic properties and transport 

mechanisms of graphene and carbon nanotubes in these devices. 

We presented the fabrication of graphene based field effect transistors (GFETs) with Ti, 

Ni, Nb and Cr contacts, in bottom and side gate configuration, and we performed their 

electrical characterization by measuring transfer and output characteristics in order to analyze 

the channel conductance and to study the physical effects due to the contact resistance 

between graphene and the metal electrode. We measured an area specific contact resistivity of  

~ 7 kΩµm2 and ~ 30 kΩµm2 for Ni and Ti, respectively, and an edge specific contact 

resistivity of ~ 25 kΩµm for Nb. We showed that the contact resistance is a significant 

contributor to the total source-to-drain resistance and we proved that it is modulated by the 

back-gate voltage. We clearly observed the presence of a double-dip feature in the 

conductance curve for long transistors in bottom gate configuration. This feature is due to the 

two minima of the density of states of graphene respectively in the channel and under the 

metal, which are different because of the metal doping induced by the metal-graphene 

interaction. The transistor transfer characteristics showed a hysteresis that is attributed to 

charge trapping in silanol group at the gate oxide surface. 

We also studied the effects of room temperature vacuum degassing and electron 

bombardment on the electric properties of graphene FETs with Nb contacts. We clarified the 

role of adsorbates, PMMA residues and underlying SiO2 on the channel doping and 

distinguished it from the doping at the contacts. We showed that weakly chemisorbed Nb acts 

as p-dopant on graphene and that the asymmetry observed in the transfer characteristics is 

explained in terms of doping gradient from contact to channel. We discussed how Fermi level 

depinning at the contact can limit electron conductance and create a resistance plateau in the 

n-branch. We demonstrated that low energy irradiation is detrimental on the transistor current 

capability, resulting in an increase of the contact resistance and a reduction of the carrier 

mobility even at electron doses as low as 30 e-/nm2. We also showed that the irradiated 

devices recover by returning to their pristine state after few repeated electrical measurements, 
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which we explained as gradual removal of electrons piled up in the gate oxide during e-beam 

exposure. 

Moreover, we characterized side-gated all-graphene field effect transistors with gate-to-

channel distance of 100 nm and channel width of 500 nm on SiO2/Si substrates. We 

demonstrated that the side-gate is far more efficient than the back gate in modulating the 

channel conductance, with a 35% conductance swing over 0.5 V and transconductance up to 

0.5 mS/mm at 10 mV drain bias. We measured the planar leakage along the SiO2/vacuum gate 

dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We 

unveiled the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through 

SiO2 up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant 

at high voltages. We reported a field-emission current density as high as 1 µA/µm between 

graphene flakes. These findings are essential for the miniaturization of atomically thin 

devices. 

The research activity about diodes focused on the study of a new-concept of Gr/Si 

photodiode made of a single-layer CVD graphene transferred onto a matrix of nanotips 

patterned on n-type Si wafer. Through an extensive characterization, we demonstrated tunable 

Schottky barrier height and record photo-responsivity, and we proved that the multi-junction 

approach does not add extra-inhomogeneity to the Schottky barrier height distribution. The 

original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas 

exposed to the electric field of the Si substrate, which acts both as diode cathode and 

transistor gate, results in a two-terminal barristor with single-bias control of the Schottky 

barrier. The nanotip patterning favors light absorption, and the enhancement of the electric 

field at the tip apex improves photo-charge separation and enables internal gain by impact 

ionization. These features render the device a photodetector with responsivity (3 A/W for 

white LED light at 3 mW/cm2  intensity) almost an order of magnitude higher than commercial 

photodiodes. This study represents a step forward toward the integration of graphene into 

existing Si technology for new generation optoelectronic devices. 

The research activity related to the carbon nanotubes concerned a deep experimental 

characterization of the transport and field emission properties of buckypapers obtained from 

aligned carbon nanotubes. Transport characteristics evidence ohmic behavior in a wide 

temperature range, non linearity appearing only close to 4.2 K. The temperature dependence 

of the conductance shows that transport is mostly due to thermal fluctuation induced 

tunneling, although to explain the whole temperature range from 4.2 K to 430 K a further 

linear contribution is necessary. The field emission properties were analyzed by means of a 
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nanocontrolled metallic tip as collector electrode to access local information about 

buckypaper properties from areas as small as 1 µm2. Emitted current up to 10-5A and turn-on 

field of about 140 V/µm are recorded. We demonstrated that our buckypapers are extremely 

stable emitters with emitted current almost unaffected after half day operating time, and thus 

they can be considered excellent candidates for the realization of field emission devices.  
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