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Summary

In the last decades, the theory of approximation has been enriched by a new
class of approaches, that is fuzzy approximation. How can be introduced this
class? Broadly speaking, any function, which is smooth enough, can be ap-
proximated arbitrarily closely on a compact set using a suitable fuzzy system.
Fuzzy transform (F-transform), a technique recently proposed by Perfilieva,
belongs to this class and it is the topic discussed in this thesis. As other well-
known transforms in literature (e.g. Laplace, Mellin), it consists of a direct
and an inverse formula. The main application of F-transform is in image com-
pression/processing, even though there are some minor applications (meaning
that there are just a few papers) in the field of scientific computing. Due to
the good performances in image compression/processing, it is reasonable to
wonder whether there are other fields where the use of F-transform may be
beneficial and/or under which conditions. The goal of this thesis is to inves-
tigate the use of F-transform in different application fields, by stating some
new properties. The whole work has been conceived in two parts: investigation
on the F-transform in rectangular domains, with applications, and investiga-
tion on the F-transform in computational schemes, with applications. All this
has been preceeded by a preliminary study on the approximation through
F-transform in one-dimensional domains. Indeed, the structure of this thesis
follows this conceptual subdivision. Hence, Chapter 1 is an introduction to F-
transform from different perspectives, with a slight advancement with respect
to the state-of-the-art and limited to one-dimensional domains.

Chapter 2 focuses on the F-transform in two-dimensional domains, by
introducing new theoretical results useful in the next three chapters, where
possible applications in rectangular domains are explored. In particular, the
so-called least-squares (LS) approach for the bivariate case is introduced, by
formally stating the conditions under which the performance of such approach
is expected to be the best with respect to a former approach in literature.
Cubic B-spline fuzzy transforms for the bivariate case are formally presented.
Conditions to ensure a competitive computational cost are also discussed.
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Chapter 3 is devoted to the use of F-transform for data compression in
Wireless Sensor Networks (WSNs). A comparative study is presented by using
publicly available environmental data. Numerical experiments show that by
means of the LS approach a higher data compression rate with a lower distor-
tion can be achieved, even when there is no data correlation. Cubic B-splines
fuzzy transforms allow even better results and they are used in a compres-
sion scheme integrated with an existing encryption algorithm, namely RC4,
in order to address security issues in WSNs.

In Chapter 4, the application of F-transform for data compression in Smart
Grids (SGs) is discussed. In particular, two F-transform based approaches
(here included the LS approach), presented in Chapter 2, are experimentally
tested on some typical SGs applications. Numerical experiments show that
the LS approximation outperforms state-of-the-art methods, by ensuring a
low distortion, which is an important issue to be addressed for the correct
interpretation of abrupt changes such as faults/disturbances.

In Chapter 5, the beneficial use of F-transform in a multi-agent system
(MAS) based monitoring of Smart Grids is analyzed. The MAS consists of
two classes of agents, that is the ones managing the typical elements of the
grid, such as power generation, active power, and the ones in charge of solving
an usual optimization problem in power systems, that is the Optimal Power
Flow (OPF). The latter ones use F–transform in order to get an approxi-
mate solution in a reduced domain with a low computational cost. The MAS
approach is the online stage in a two–stage computational paradigm. In the
offline stage, the F-transform is used for a different purpose, that is reducing
the cardinality of a knowledge–base, including the matrices of the historical
power system states and the corresponding OPF solutions. Some numerical
experiments will confirm the theoretical achievements.

Finally, in Chapter 6 and 7 the joint use of direct and inverse F-transform
in computational schemes, with two possible applications is discussed. More
precisely, Chapter 6 is devoted to a second-order multi-agent system with sam-
pled data: sampled position data are used through F-transform, over a certain
time interval, and the conditions under which quasi-consensus is achieved are
discussed. In Chapter 7, a class of delay differential equations is considered,
by using F-transform to approximate the delayed function in a Picard-like
scheme. The convergence is formally discussed.
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1

Approximating through fuzzy transform

In the last decades, many papers dealing with fuzzy approximation appeared
(e.g. [22], [67]). Fuzzy approximation uses a finite number of fuzzy rules in
order to approximate a function to any degree of accuracy. Fuzzy rules sub-
stantially defines patches, which in an additive form cover the graph of the
function, by averaging patches that overlap. Such rules are often fixed through
neural networks or genetic algorithms (e.g. [22],[16]).

Recently, a new fuzzy approximation technique was proposed by Perfilieva
[102], namely the fuzzy transform (F–transform). It can be regarded as as
an additive normal form [17]. Like other known transforms (e.g. Laplace,
Fourier), it passes through two phases, that is direct and inverse, but unlike
the other transforms, it uses a fuzzy partition of a universe. It is based on
a linear combination of basic functions in order to compute the approximate
solution by means of its inverse.

Since F–transform was introduced, several papers devoted to it appeared.
In particular, in [7] new types of F–transforms were presented, based on
B–splines, Shepard kernels, Bernstein basis polynomials and Favard-Szasz-
Mirakjan type operators for the univariate case. In [100] the relations between
the least–squares (LS) approximation techniques and the F–transform for the
univariate case were investigated. In [73],[72] some properties on the use of
F-transform through the LS approximation for the bivariate case were dis-
cussed. In [134], it was proved that the accuracy of the inverse F-transform
improves by making tighter the partition around a certain point. In [122]
the F-transform was investigated from a neural network (NN) perspective, in
order to find the best fuzzy partition for improving the accuracy.

In [71] the problem is considered from a different perspective: assumed a
certain number and type of basic functions, the error functional was minimized
(e.g. by non-linear programming techniques) with respect to the position of
the nodes of the partition.

In this chapter some basic notions on F-transform are introduced, as well
as some results for its application in univariate problems.
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1.1 Preliminaries

Some basic notions are briefly recalled.
Throughout, I = [x1, xn] will represent a nonempty and closed interval of

R. The points of I, denoted as xi for i = 1, . . . , n, with n ≥ 3, and such that
x1 < x2 < . . . < xn, are called nodes. Besides, let f : I → R be a bounded
function.

Definition 1.1. A fuzzy set A on I is defined by a membership function
A(x) : I → [0, 1], which is intended as the degree of membership of the element
x ∈ I in the fuzzy set A.

Definition 1.2. Let A be a fuzzy set on I. The support of A, denoted by
supp(A), is the set of all x ∈ I which have non-null membership grade in A:

supp(A) = {xǫI|A(x) > 0}. (1.1)

Definition 1.3. A fuzzy partition is defined as the sequence {A1, A2, . . . , An}
of fuzzy sets Ai(x), i = 1, . . . , n, satisfying the property (Ruspini)

n
∑

i=1

Ai(x) = 1, ∀xǫI. (1.2)

Remark 1.4. The fuzzy sets Ai satisfy convexity and normality. Convexity
ensures that the membership function has only one distinct peak, while due
to normality, one element in the set has the maximum degree of membership,
that is

Ai(xi) = 1, Ai(x) = 0, x /∈ (xi−1, xi+1). (1.3)

In general, h = max
i

|xi+1 − xi| is the norm of the partition. The fuzzy

sets {A1, A2, . . . , An} are called basic functions (or atoms of the partition)
and they form a uniform fuzzy partition if the nodes are equidistant, i.e.
h = (xn − x1)/(n− 1) and xj = x1 + (j − 1)h.

Typical basic functions are the hat functions

Aj(x) =











xj+1−x

(xj+1−xj)
, x ∈ [xj , xj+1]

x−xj−1

xj−xj−1
, x ∈ [xj−1, xj ]

0, otherwise

(1.4)

and the sinusoidal shaped basic functions

Aj(x) =















1
2

(

cos(π
x−xj

xj+1−xj
) + 1

)

, x ∈ [xj , xj+1]

1
2

(

cos(π
x−xj

xj−xj−1
) + 1

)

, x ∈ [xj−1, xj ]

0, otherwise

(1.5)
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Fig. 1.1. Uniform fuzzy partitions by hat basic functions (on the left), by sinusoidal
shaped basic functions (on the right)

Fig. 1.2. Non-uniform fuzzy partitions by hat basic functions (on the left), by
sinusoidal shaped basic functions (on the right)

Examples of uniform and non–uniform fuzzy partitions by the basic func-
tions above are depicted in Figure 1.1 and 1.2 respectively.

Other basic functions discussed in [7] are Bernstein basis polynomials and
B–splines; they are referred to fuzzy partitions with small support.

A fuzzy partition with small support has the additional property that there
exists an integer r ≥ 1 such that supp(Ai) ⊆ [xi, xi+r].

In Chapter 2, we will refer to cubic B–splines in explicit form (as in
[90],[89])

Aj(x) =































(x−xj−2)
3

h3 xǫ[xj−2, xj−1)
(x−xj−2)

3−4(x−xj−1)
3

h3 xǫ[xj−1, xj)
(xj+2−x)3−4(xj+1−x)3

h3 xǫ[xj , xj+1)
(xj+2−x)3

h3 xǫ[xj+1, xj+2)
0 otherwise

(1.6)

for j = 0, . . . , n.
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It should be pointed out that in order to apply B–splines some auxiliary
points are needed: for cubic B–splines two auxiliary points both on the left
and on the right of the considered interval are required.

The notion of fuzzy transform can now be introduced.

Definition 1.5. The fuzzy transform of a function f(x), continuous on
I, with respect to {A1, A2, . . . , An} is the m–tuple [F1, F2, . . . , Fn] of which
elements satisfy the equation

∫ xn

x1

(f(x)− Fi)Ai(x)dx = 0, (1.7)

that is

Fi =

∫ xn

x1
f(x)Ai(x)dx

∫ xn

x1
Ai(x)dx

. (1.8)

Definition 1.6. For a given n–tuple [F1, F2, . . . , Fn] of F–transform elements,
the inverse F–transform is defined as the function

f =
n
∑

i

FiAi(x), xǫI. (1.9)

The inverse F–transform approximates a given continuous function f on
I with arbitrary precision, as stated by Theorem 2 in [102].

In many real cases, the function f is known only at a given set of points
xj ∈ I, j = 1, . . . , p. So the following definition is introduced.

Definition 1.7. The discrete F–transform is given by

Fi =

∑p
j=1 f(xj)Ai(xj)
∑p

j=1 Ai(xj)
, i = 1, . . . , n. (1.10)

where the points xj ∈ I are such that for each i ∈ {1, . . . , n}, there exists
k ∈ {1, . . . , p}, with xk ∈ supp(Ai).

In order to get the discrete inverse F-transform, Eq. 1.9 is replaced by

f(xj) =
n
∑

i

FiAi(xj), j = 1, . . . , p. (1.11)

Formulas above can be expressed through a matrix notation as follows.
Let v and v denote the p-sized vectors of known data and the approximate
reconstruction through F-transform, then Eqs. 1.10 and 1.11 can be written
in compact form as follows:

F = S−1Av (1.12)

v = ATF (1.13)
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where A is the n× p matrix of which ijth entry is Ai(xj) as follows

A =











A1(x1) . . . A1(xp)
A2(x1) . . . A2(xp)

...
...

...
An(x1) . . . An(xp)











, (1.14)

S = diag(1TAT ) is an n × n diagonal matrix (being 1T the p-sized row
vector with all entries equal to 1), F is the n–sized vector of F-transform
components.

Figure 1.3 summarizes how the discrete F–transform works in one dimen-
sional domains.

Fig. 1.3. The discrete F-transform

1.2 Looking at weighted residual methods

Let us consider the simple problem
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L(1)(f(x))− q(x) = 0, x ∈ [x1, xn], (1.15)

where

L(1) =
d

dx
(1.16)

with suitable boundary conditions. By replacing f(x) into Eq. 1.15 with
the approximate solution f(x), one gets a residual R(x) = L(1)(f(x))− q(x).

The weighted residual methods aim at minimizing the residual R(x) by
multiplying by a weight W (x) and integrating over the domain, that is

R =

∫ xn

x1

R(x)W (x)dx = 0. (1.17)

By using the inverse F-transform in order to approximate f(x), with the
weight W (x) = Ai(x), it is clear that a Galerkin-like approach is found.

If the direct F-transform is used, a bound on the residual R(x) may be
found. To the end, let us assume a uniform partition. By recalling that F-
transform can be used to approximate the derivative through finite differences,
as proposed in [123], that is

F
(1)
i =

Fi+1 − Fi

h
, (1.18)

and by multiplying Eq. 1.15 by the weight W (x) = Ai(x), as well as by
integrating over the domain, one has

R =

∫ xn

x1

(f(x)−Fi+1)Ai(x)dx−
∫ xn

x1

(f(x)−Fi)Ai(x)dx+h

∫ xn

x1

q(x)Ai(x)dx

(1.19)
By definition, the second integral in the equation above is null (see Eq.

6.5). Hence, by recalling Lemma 4 in [102], then

|R(xi+1)| ≤ h|q(xi + h)|+O(h2) (1.20)

for any 0 < h < 1.

1.3 The least-squares approach

In this section, the LS approach for the univariate case, as introduced by [100],
is briefly recalled.

As illustrated in the previous sections, the elements of the discrete F-
transform of a function f with respect to {A1, . . . , An} are computed as the
weighted average of functional values in p points, where the weights are the
membership degrees Ai(xj), i = 1, . . . , n, j = 1, . . . , p (see Eq. 1.10).
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In the LS approach, the elements of the discrete F–transform of f with
respect to {A1, . . . , An} are obtained through reconstruction error minimiza-
tion, that is they are regarded as unknowns λi to be obtained by means of
the error vector E

E = v −ATΛ. (1.21)

By minimizing E with respect to the λi, we get

Λ = K−1Av (1.22)

where
K = AAT (1.23)

The discrete inverse F–transform is given by:

v = ATΛ (1.24)

Since K is a Gram matrix, it has full rank and it turns out to be positive
definite.

As stated in [100], the discrepancy error related to the LS approxmation
depends only on the given values v and the spectral properties of the Gram
matrix K.

Some comments on the computational cost of the approach are needed,
due to the inversion of the matrix K.

In the definitions above, membership functions which are linearly indepen-
dent were considered, though such condition is not restrictive. This condition
holds for triangular, sinusoidal and Gaussian membership functions.

Removing such condition may mean choosing basic functions generated
by a positive or semi-positive definite kernel [100]. If the membership func-
tions are generated by means of Gaussian or compactly-supported kernels, the
matrix K turns out to be sparse.

Even though there are good algorithms (e.g. [39], [79]) for the reduction
of sparse matrices, it is desiderable working with banded matrices. The com-
putational cost of the inversion of a symmetric banded matrix of order n can
be reduced to O(n) [149].

It is the case to point out that B–splines with order r − 1 ensure band
matrices with only r nonzero elements in each row [5].

1.4 Using non uniform partitions

In the current literature, uniform partitions are usually adopted.
By fixing the type of basic function, for a given cardinality, and by con-

sidering the inverse F–transform as a parametric function with respect to the
partition nodes, a partition optimization problem can be stated as in [71].
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More precisely, if the MSE is adopted as the error functional for sum-
marizing the distances between v and v over the whole interval I, then the
optimization problem can be formulated as

min
x

eT (x)e(x) (1.25)

s.t. xi < xi+1, i = 1, . . . , n− 1 (1.26)

xi ∈ I, i = 1, . . . , n (1.27)

The solution of this problem can be found by means of well-known
quadratic programming (QP) algorithms, such as interior point methods and
sequential quadratic programming.

The resulting location of nodes x1, . . . , xn within the interval I describes
the partition made of basic functions A1, . . . , An. Once applied to Eq. 1.10,
the vector F = {F1, . . . , Fn} is obtained.

1.5 Numerical examples

In this section, some numerical examples are discussed. Such examples are
taken from the current literature.

The following error measures are considered in order to quantify the ac-
curacy

• root mean square error (RMSE)

RMSE =

√

∑

p

i=1
(vi−vi)2

p
,

• the maximum absolute error (MAE)

MAE = max
i

|vi − vi|.

1.5.1 First example

The first example is taken from [122]. The function to be approximated is

f1(x) = 2 exp−4(x− 0.5)− 1, x ∈ [0, 1] (1.28)

In [122], for p = 100, n = 10 and sinusoidal shaped basic functions an
error (by the simple normed least square criterion) equal to 0.462 for the
usual F-transform formulas and 0.457 in the best case scenario through the
NN approach was found.

For the same values of p and n, by means of the LS approach an error equal
to 0.173859 is obtained. Instead the solution obtained by means of optimal
non-uniform partition return an error of 0.1474 [71].
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The error related to the LS approach with sinusoidal shaped basic func-
tions for different values of p and n is given in Table 1.1. As one can see,
increasing the number of sampling points p is not beneficial. Instead, the
error decreases by incresing the number of basic functions n.

Table 1.1. Example 1: errors for different values of n and p

n p RMSE MAE

25 50 0.0465433 0.0827633

25 100 0.0640631 0.224315

40 50 0.00394424 0.0161644

40 100 0.0399686 0.150316

The reconstructed curves by the LS approach with sinusoidal shaped basic
functions for p = 50, n = 25 and n = 40 are depicted in Figure 1.4.a and 1.4.b
respectively.

In Figure 1.4c the reconstruction for p = 50 and n = 11 is showed. This
is similar to the one obtained through a non uniform partition, but with a
higher value of p, as reported in [71].

1.5.2 Second example

This example was considered in [7]:

f2(x) = 2 + sin 1/(x+ 0.15), x ∈ [0, 1]. (1.29)

In [7], the best approximation was achieved through B-spline based F-
transforms; no quantification of the error was presented.

Errors for different values of p and n by means of the LS approach with si-
nusoidal shaped basic function are tabled in Table 1.2. As in the first example,
the error decreases by increasing n.

Figure 1.6 shows the reconstruction by the LS approach with p = 50 and
n = 25 (a), n = 40 (b).

Instead, Figure 1.7 shows the reconstruction by uniform partition (LS
approach) and non uniform partition with sinusoidal shaped functions, for
p = 1001 and n = 21, as reported in [71]. As one can see, by increasing
significantly the number of sampling points, the LS approach does not work
well.

Besides, as pointed out in [71], by using a large number of sampling points,
sinusoidal functions accumulate more smaller errors, so that on the overall
interval they do not seem to provide better results than hat functions.
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Table 1.2. Example 2: errors for different values of n and p

n p RMSE MAE

9 50 0.166693 0.732012

9 100 0.152521 0.831176

25 50 0.0248078 0.108644

25 100 0.0267103 0.131687

40 50 0.00276559 0.0127459

40 100 0.015653 0.0896956

From results above one can conclude that the LS approach (with a uni-
form partition) provides good enough results in presence of a relatively small
number of sampling points, but with a comparable number of basic functions,
whereas the non uniform partition allow good results with a higher number
of sampling points, but a smaller number of basic functions.
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Fig. 1.4. Example 1: reconstruction by the LS approach with p = 50, (a) n = 25,
(b) n = 40 (c) n = 11 (continuous line - exact, dashed line - approximate)
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Fig. 1.5. Example 1: reconstruction for p = 1001 and n = 11 (thick line - non
uniform partition, continuous line - exact)
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(a)

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

f HxL

(b)

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

f HxL

Fig. 1.6. Example 2: reconstruction by the LS approach with p = 50, (a) n = 25,
(b) n = 40 (continuous line - exact, dashed line - approximate)
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Fig. 1.7. Example 2: reconstruction for p = 1001 and n = 21 (thick line - exact,
dashed line - uniform partition, continuous line - non uniform partition)



2

Fuzzy transform in bidimensional domains

In this chapter, the F-transform for the bivariate case is considered. The
matrix notation is used to formalize formulas and the LS approximation is
extended to the bivariate case. A typical application of F-transform in bidi-
mensional (or rectangular) domains discussed in the current literature is im-
ages processing/compression ([103],[24], [25], [138], [52], [26], [23]). In the next
chapters, the F-transform based compression in other fields will be discussed.
Some theoretical results useful to the end are herein presented.

2.1 Discrete F-transform in rectangular domains for
data compression

In this subsection, we formulate the problem of data compression by means
of F-transform. For the remainder of the chapter, D will denote an N × M
matrix.

Such matrix with its entries may be identified by a function f

f : JN,M → I, (2.1)

where JN,M is a finite rectangular domain given by JN,M = {1, 2, . . . , N}×
{1, 2, . . . ,M} and I ⊂ R.

Notice that one has to refer to the real intervals [1, N ] and [1,M ] in order
to get the related fuzzy partitions.

Before introducing the discrete F–transform of D, it is useful recalling the
definition of the F–transform in two variables. Let f(x, y) be a continuous
function on [a, b]× [c, d]. The F-transform of f(x, y), with respect to the fuzzy
partitions {A1, . . . , An} and {B1, . . . , Bm} of the intervals [a, b] and [c, d] re-
spectively, results in an n×m matrix, whose entries are computed as follows,
for any x ∈ [a, b] and y ∈ [c, d]:
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Fkl =

∫ d

c

∫ b

a
f(x, y)Ak(x)Bl(y)dxdy

∫ d

c

∫ b

a
Ak(x)Bl(y)dxdy

, k = 1, . . . , n, l = 1, . . . ,m. (2.2)

The inverse F-transform of f(x, y), with respect to the fuzzy partitions
{A1, . . . , An} and {B1, . . . , Bm} is the following function on [a, b]× [c, d]

fnm =

n
∑

k=1

m
∑

j=1

FklAk(x)Bl(y). (2.3)

The discrete F-transform of f(x, y) with respect to the above-mentioned
partitions is given by

Fkl =

∑M
j=1

∑N
i=1 f(xi, yj)Ak(xi)Bl(yj)

∑M
j=1

∑N
i=1 Ak(xi)Bl(yj)

, k = 1, . . . , n, l = 1, . . . ,m.

(2.4)
Hence, the discrete F–transform of D, with respect to the fuzzy partitions

{A1, . . . , An} and {B1, . . . , Bm} of the intervals [1, N ] and [1,M ] respectively,
with n < N and m < M , can be easily written as

Fkl =
Pkl

Qkl

k = 1 . . . , n l = 1, . . . ,m, (2.5)

being

P = ATDB, (2.6)

Q = AT IB, (2.7)

where A and B are the matrices with entries Ak(i) and Bl(j) respectively,
I is the N ×M matrix with all unit entries.

In particular, if {A1, . . . , An} and {B1, . . . , Bm} are two uniform fuzzy
partitions, with norm hA and hB respectively, the elements of the matrix Q
become for i = 2, . . . , n− 1 and j = 2, . . . ,m− 1 [121]

Qij = hAhB , (2.8)

Qi1 = Qim = Q1j = Qnj =
hAhB

2
, (2.9)

Q11 = Q1m = Qn1 = Qnm =
hAhB

4
. (2.10)

The decompression of the matrix F can be get by the discrete inverse
F–transform as follows

D = AFBT . (2.11)
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A compact notation is useful for presenting herein a property.
By introducing the matrix Q, of which entries are Qij = 1/Qij , then one

can get the compact form of Eq. 2.5

F = PoQ, (2.12)

where o denotes the Hadamard product.
In what follows, EF

p = ‖D−DF ‖p will be the p-norm of the error due to
the F–transform approximation. In particular, ‖.‖2 will denote the Euclidean
induced norm and σmax(M) and σmin(M) the maximum and the minimum
spectral value of a matrix M. The following Lemma is now stated.

Lemma 2.1. Let {A1, . . . , An} and {B1, . . . , Bm} be two fuzzy partitions of
the intervals [1, N ] and [1,M ] respectively, with n < N and m < M . Let A
and B be two matrices with entries Ak(i) and Bl(j) respectively. Then the
following error bound holds

EF
2 ≤

(

1 + σ2
max(A)σ2

max(B)σmax(Q)
)

‖D‖2 (2.13)

for any matrix D ∈ RN×M .

Proof. Since ‖PoQ‖2 ≤ ‖P‖2‖Q‖2 [49], one has

EF
2 ≤

(

‖D‖2 + ‖A‖22‖D‖2‖B‖22‖Q‖2
)

. (2.14)

So the conclusion readily holds.

It is the case to point out that similarly to what proposed in [24], theN×M
data matrix D may be subdivided in submatrices DS with dimension N(S)×
M(S), and each one compressed to a block FS of size n(S)×m(S) by means
of the discrete F–transform through the fuzzy partitions {A1, . . . , An(S)} and
{B1, . . . , Bm(S)}, with n(S) < N(S) and m(S) < M(S). All the formulas
above hold, by considering each time a single block. Obviously, the case of the
only one block is a particular case where no subdivision occurs. For the sake
of simplicity, in what follows we will refer to the approach illustrated in this
section as the blocks approach, even when there is no subdivision of the data
matrix.

2.2 Least–squares approximation for the bivariate case

As mentioned in Chapter 1, in the LS approach the components of the discrete
F–transform Fij are replaced by the unknowns λij and the discrete inverse
F–transform is obtained by minimizing the error functional with respect to
these unknowns. For the bivariate case, the error functional to be minimized
is
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E = D−AΛBT . (2.15)

As a result of the minimization of such functional with respect to λij , we
get

Λ = K−1GH−1, (2.16)

where

G = ATDB, (2.17)

K = ATA, H = BTB (2.18)

The discrete inverse F–transform is given by:

D = AΛBT . (2.19)

It should be pointed out that, since K and H are Gram matrices, they
have full rank and they are positive definite matrices.

In what follows, ELS
p = ‖D−D‖p will denote the p-norm of the error due

to the LS approximation. The following Lemma is now stated.

Lemma 2.2. Let {A1, . . . , An} and {B1, . . . , Bm} be two fuzzy partitions of
the intervals [1, N ] and [1,M ] respectively, with n < N and m < M . Let A
and B be two matrices with entries Ak(i) and Bl(j) respectively. Then the
following error bound holds

ELS
2 ≤

(

1 +
σ2
max(A)

σ2
min(A)

σ2
max(B)

σ2
min(B)

)

‖D‖2 (2.20)

for any matrix D ∈ RN×M .

Proof. Since

ELS
2 ≤

(

‖D‖2 + ‖K−1‖2‖A‖22‖D‖2‖B‖22‖H−1‖2
)

, (2.21)

and by recalling 2.18, the conclusion can be readily achieved.

Remark 2.3. By recalling Lemma 2.1 and Lemma 2.2, and with regard to the
same matrix D, one has ELS

2 < EF
2 when

1

σ2
min(A)σ2

min(B)
< σmax(R) (2.22)

This means that in such case, the performance of the LS approach is
expected to be the best.

Remark 2.4. Since EF
∞ ≤

√
MEF

2 the results in Lemma 6.1 and Lemma 2.2
can be easily generalized in terms of EF

∞ [72].
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2.3 Using fuzzy partitions with small supports

In this section, the use of B–spline is discussed, extending some results pre-
sented in [7].

By following [77] and [4], the modulus of smoothness for a bivariate func-
tion f : R2

+ → R is introduced as follows

ω(f, α, β) = sup{|f(u, v)−f(x, y)| : (u, v), (x, y)ǫR2
+, |u−x| ≤ α, |v−y| ≤ β}.

(2.23)
Let us recall the following properties for ω(f, α, β) [35]:
(i) ω(f, 0, 0)=0 and ω(f, α, β) is nondecreasing with respect to α and β;
(ii) ω(f, α1 + α2, β1 + β2) = ω(f, α1, β1) + ω(f, α2, β2).
With regard to the last property, since ω(f, 2α, 2β) = 2ω(f, α, β), if α1 =

α2 and β1 = β2, one can generalize as follows

ω(f, rα, rβ) = rω(f, α, β) (2.24)

with r ≥ 2. In what follows, fF
nm(x, y) will denote the composition of

the inverse and direct F–transform. By following Theorem 3.3 in [7] and by
considering both the bivariate smoothness modulus and Eq. 2.24, it is easy to
prove the following theorem stated in [73].

Theorem 2.5. Let f(x, y) be a function assigned over the set [a, b]×[c, d]. Let
{x1, . . . , xn}ǫ[a, b] and {y1, . . . , ym}ǫ[c, d] be the partitions, with norms α and
β, of the intervals [a, b] and [c, d] respectively. If A1, . . . , An and B1, . . . , Bm

are fuzzy partitions with small support, with regard to the same integer r, then
the following inequality holds:

|fF
nm(x, y)− f(x, y)| ≤ rω(f, α, β) (2.25)

According to the theorem above, if A1, . . . , An and B1, . . . , Bm are gener-
ated by means of B–splines with order r − 1, a good approximation can be
achieved for n,m ≫ r.

2.4 On the computational complexity

In this section the question of the computational cost is discussed.
With regard to the blocks approach, since two different matrix products

are involved, the computational cost is estimated to be O(N(S)M(S)(n(S)+
m(S)) + (N(S) +M(S))n(S)m(S)) for each block.

Instead, for the LS approach in general one has O(n3+m3+mn2+nm2).
This computational cost can be reduced in presence of band matrices.
It is well–known that a band matrix has nonzero entries only through a

band along the main diagonal and this is important with regard to the matrix
inversion and in general for the computational complexity.
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Remark 2.6. If the matrices A and B are pseudo–banded matrices, i.e. non–
square matrices which exhibit a band–like structure, then the matrices K and
H are symmetric band matrices.

For a symmetric banded matrix of order n the computational cost of the
inversion can be reduced to O(n) by using a simple algorithm as shown in
[149].

Remark 2.7. If the matrices A and B are band matrices, the computational
complexity of the LS approach is O(nm).

As a concluding remark, it is the case to point out that by using B–splines,
a related square matrix is a band matrix with only r nonzero elements in each
row [5].

2.5 A simple example

In order to elucidate how F–transform works, a simple example is now pre-
sented. Figure 2.1 provides a graphical representation of the F-transform based
compression (that is the blocks approach with a single block) based on this
example.

Fig. 2.1. A graphical representation of the F-transform based compression

The LS approach is outlined in Figure 2.2.
In this example, an 11 × 5 data matrix D was generated by the function

(cos(i) sin(j)) /3, with i = 1, 1.5, . . . , 6 and j = 1, 1.5, . . . , 3. In what follows,
the F-transform compression rate ρ = (nm)/(NM) is considered and sinu-
soidal shaped basic functions have been used.
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Fig. 2.2. The LS approach

The data matrix

D =





































0.15155 0.17965 0.163765 0.107785 0.0254158
0.0198411 0.02352 0.0214404 0.0141114 0.00332748
−0.116725 −0.138368 −0.126134 −0.0830174 −0.0195755
−0.224713 −0.266379 −0.242826 −0.159821 −0.0376858
−0.277683 −0.329171 −0.300066 −0.197494 −0.0465692
−0.262667 −0.31137 −0.283839 −0.186814 −0.0440509
−0.183341 −0.217335 −0.198119 −0.130396 −0.0307474
−0.0591262 −0.0700893 −0.063892 −0.0420518 −0.00991583
0.0795645 0.0943172 0.0859778 0.056588 0.0133435
0.198775 0.235632 0.214797 0.141373 0.0333358
0.269318 0.319255 0.291027 0.191545 0.0451664





































(2.26)
is compressed to a 5× 3 block, with a rate ρ = 15/55 = 0.27, by means of

Eq. 2.12
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F =













0.0930685 0.0889188 0.0305796
−0.169004 −0.161468 −0.0555297
−0.25123 −0.240028 −0.0825467
0.0101165 0.00966541 0.00332398
0.246956 0.235944 0.0811423













. (2.27)

The block F is then decompressed to the 11× 5 block D (Eq. 2.11)

D =





































0.0930685 0.0909936 0.0889188 0.0597492 0.0305796
0.00252472 0.00246844 0.00241215 0.00162085 0.00082955
−0.143978 −0.140768 −0.137558 −0.0924327 −0.047307
−0.176856 −0.172913 −0.16897 −0.11354 −0.0581096
−0.222821 −0.217854 −0.212886 −0.143049 −0.0732125
−0.25123 −0.245629 −0.240028 −0.161287 −0.0825467
−0.160937 −0.157349 −0.153761 −0.10332 −0.0528791
−0.0148399 −0.014509 −0.0141782 −0.00952707 −0.00487594
0.0327326 0.0320029 0.0312731 0.021014 0.010755
0.16513 0.161448 0.157767 0.106012 0.0542567
0.246956 0.24145 0.235944 0.158543 0.0811423





































.

(2.28)
By using the LS approach with the same values of n and m, i.e. ρ = 0.27,

the following 5× 3 matrix Λ by Eq. 2.16 is obtained

Λ =













0.154446 0.169548 0.0279783
−0.197624 −0.216948 −0.0358002
−0.299053 −0.328295 −0.0541744
0.0143302 0.0157315 0.00259597
0.292705 0.321327 0.0530245













(2.29)

so, by substituting the matrix F with the matrix Λ in Eq. 2.11, one has

D =





































0.154446 0.161997 0.169548 0.0987632 0.0279783
0.0328086 0.0344127 0.0360168 0.0209801 0.00594339
−0.164004 −0.172023 −0.180041 −0.104876 −0.0297099
−0.207309 −0.217445 −0.227581 −0.132568 −0.0375548
−0.26401 −0.276918 −0.289826 −0.168826 −0.0478262
−0.299053 −0.313674 −0.328295 −0.191235 −0.0541744
−0.190781 −0.200109 −0.209437 −0.121999 −0.0345607
−0.0155952 −0.0163576 −0.0171201 −0.00997262 −0.00282511
0.0409127 0.042913 0.0449133 0.0261624 0.00741147
0.196529 0.206138 0.215747 0.125674 0.0356019
0.292705 0.307016 0.321327 0.187176 0.0530245





































(2.30)
Table 2.1 shows the better performance of the LS approach with respect

to the Block approach by means of mean square error (MSE) and MAE,
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computed over all the elements of the data matrix: by increasing the value
of the rate ρ, MSE and MAE decrease for both approaches, but the ones
obtained by the LS approach is lesser in any case.

Table 2.1. MSE and MAE for different values of ρ

Approach ρ MSE MAE

Block 0.27 0.00688795 0.111317

Block 0.44 0.00271846 0.0680456

Block 0.58 0.00135239 0.0472067

LS 0.27 0.00232928 0.0539075

LS 0.44 0.000461633 0.0294666

LS 0.58 0.000322692 0.0256662

A 3D plot (Figure 2.3) of the absolute errors eij between the original data
and the reconstructed data for both the approaches and different values of ρ
confirm the good performance of the LS approach.

By using cubic B-splines, the MSE can be further decreased on the average
of 10% about. More details and a further example about this can be retrieved
from [73].
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Fig. 2.3. The behaviour of the absolute error for the Block approach (blue) and
the LS approach (green) with (a) ρ = 0.27, (b) ρ = 0.44, (c) ρ = 0.58
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Fuzzy transform for data compression in
wireless sensor networks (WSNs)

In this chapter, the use of F-transform for data compression in wireless sensor
networks (WSNs) will be discussed, exploring also security issues. The main
references for the results herein illustrated are [33],[73].

Data compression in WSNs is a challanging task because of the charac-
teristics of a WSN. A WSN can be composed by many nodes. Each node can
collect data by its sensor suite, process them by an onboard microprocessor,
and share them with neighboring nodes using its radio. The nodes are required
to be relatively inexpensive, in terms of power supply, memory capacity, com-
munication bandwidth, and processor performance [3].Since a large part of
energy consumption is due to radio communication [105], reducing the num-
ber of bits to be transmitted by means of suitable compression schemes may
be beneficial on energy costs.

In this chapter, the two compression schemes based on fuzzy transform,
that is the block approach and the LS approach, as presented in Chapter 2, will
be experimentally tested. Since the approaches above are in the class of the
so-called transform–based methods, they will be compared firstly with a state-
of-the-art method in this class and then with other state-of-the-art methods.
Publicly available environmental data were used in the comparative study,
namely, the glacier monitoring deployments Patrouille des glacier (PDG) and
Plaine Morte glacier (PM), LUCE and Le Genepi [115]. These deployments are
characterized by a small number of nodes, but several kinds of data collected
by each node. Numerical experiments will show that by the LS approach a
higher data compression rate with a lower distortion can be achieved, even in
the case there is no data correlation. Besides, by using cubic B–splines as basic
functions in the LS approach, its performance can be even improved. Finally,
it will be shown that the LS approach is also suitable for data security, by
integrating it with an existing encryption algorithm, such as RC4. The RC4
algorithm turns out to be fast and secure for WSNs under certain conditions
[29]. Such a algorithm will be used to keep secure some parameters needed
to decompress data: even if one parameter were known, trying to reconstrut
data would cause a noticeable distortion.
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3.1 Data compression in WSNs

3.1.1 Basic notions

Let Yi denote an attribute (herein a scalar) observed by a node in the sensor
network, for instance an environmental property, such as temperature, that
was sensed by the node. The observed values of all the attributes Y1, . . . , Yn

can be collected in a very large vector, the so-called networked data vec-
tor. The networked data are periodically collected at the base station.. The
total energy required (mainly the communication energy) by the data col-
lection process has a cost which has to be minimized. The purpose in data
compression is optimizing this total cost, by changing an input data stream
into another one having fewer bits. Decentralized compression strategies can
be used, with the possibility that the correlations between data at different
nodes are known a priori.

Let Y t
i denote a random variable giving the value of Yi at time t and let

H(Y t
i ) denote the information entropy of Y t

i . Sensor network deployments
are tipically characterized by the fact that the data generated by the sensor
nodes are highly correlated both in time and in space, that is H(Y t+1

i |Y t
i ) ≪

H(Y t+1
i ) and H(Y t

1 , . . . , Y
t
n) ≪ H(Y t

1 ) + . . .+H(Y t
n).

Such correlations can be outlined through predictive models using either
prior domain knowledge or historical data traces. Unfortunately, in many ap-
plications, it is not possible to know a priori data correlations. Besides, cases
where there is no correlation between data are possible (e.g. in some deploy-
ments in outdoor environments).

Data correlation is listed as one of the typical features of compression for
WSNs [109]. The other features are:

• distortion, which occurs in lossy compression schemes, as mentioned be-
fore; the Mean Square Error (MSE) is a usual distortion metric;

• data aggregation, when only a summary of the sensor data is required,
e.g. in presence of statistical queries, such as MIN, AVG, MAX; in this
case, the original sample values cannot be reconstructed from the summa-
rized representation, even though a lower communication overhead can be
achieved;

• symmetry, allowing the computational complexity of compression and de-
compression to be similar; traditional schemes present higher computa-
tional complexity on the compression side, but in WSNs this is not desir-
able, since decompression is usually performed at the sink;

• adaptivity, when the compression operations and parameters can be mod-
ified for a better performance in presence of nonstationary data.

For more details on all the issues related to compression in WSNs, one can
refer to [109].
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3.1.2 Related works

A comprehensive survey on compression techniques available in WSNs is of-
fered by [109]. Briefly, one can think of two classes of data compression tech-
niques for WSNs, that is distributed, which exploit spatial correlation, and
local, which exploit temporal correlation. These approaches are mainly used
for dense and sparse networks respectively [120], though in dense networks,
due to spatio–temporal correlation both the distributed and local approaches
seem to be suitable (e.g. [13]). Distributed approaches works also well with
multivariate data [108]. As observed in [140], when the ratio between the num-
ber of nodes and the length of the time-series stored at each node is high, a
distributed approach is a proper choice. A well–known scheme, implemented
both as a distributed and a local approach, is the transform-based compression
[140],[109]. In such schemes, raw data are transformed into a set of coefficients
of basis functions (e.g. wavelet functions), which are used to reconstruct the
signal at the sink. Transform–based compression techniques can be transform
driven or routing driven. The latter seem to be more efficient for dense net-
works, since the transforms are computed as data are routed to the sink along
efficient routing paths. However, the transforms can be integrated with exist-
ing routing protocols, such as the SenZip compression tool [99]. It should be
pointed out that popular transform–based algorithms such as the discrete co-
sine transform (DCT) and the discrete wavelet transform (DWT) have a good
performance for spatially– and temporally–correlated data, as observed in in-
door environments. This could not be true for outdoor environments [109].
Even though compression techniques are aimed at reducing redundancy in
order to increase energy efficiency, a redundant deployment is necessary in
the case of node or link failure, that is to ensure robustness, especially for in
situ deployments in austere environments such as mountains, where failures
often occur.

Transform–based compression techniques are said lossy, because the re-
constructed data present a certain degree of approximation (distortion). This
means that a loss of information may happen, but usually a compression ratio
higher than the one by lossless compression schemes is achievable [109]. Loss-
less schemes do not involve any approximation in the reconstructed data. Re-
cently some lossless compression schemes for WSNs was proposed [68] , [62].
More precisely, in [68] an extension of the predictive coding–based scheme
LEC, called S–LEC, was proposed to improve the performance of LEC and
the dictionary–based scheme S–LZW. In [62], a lightweight block–based loss-
less adaptive compression scheme, called FELACS, was proposed with good
performances with respect to LEC and S–LZW.

In order to show the good performance of the approach herein proposed, a
comparison first with the popular DWT and then with the likely best lossless
scheme between [68] and [62] is discussed in terms of distortion and compres-
sion ratio.
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3.2 Numerical experiments

As first application examples, two SensorScope deployments were considered:
Patrouille des glacier (PDG), with 10 locations, and Plaine Morte glacier
(PM), with 13 locations [115]. Both data sets contain data from several sen-
sors, namely, ambient temperature (C), surface temperature (C), solar radia-
tion (W/m2), relative humidity (%), wind speed (m/s), wind direction (deg).
For not available data null values were adopted.

Both the blocks approach, without subdivision of the data matrix, and the
LS approach, by uniform fuzzy partitions, with sinusoidal [24] shaped basic
functions were used.

As a distortion measure, the mean square errors MSELS , MSEB , for the
LS approach and the blocks approach, was used, by considering two values
of the data compression rate (CR). The compression ratio (CR) is usually
defined as the ratio of the uncompressed data size to the compressed size. By
considering the F–transform, one can write CR = 1/ρ. Hence, the lower ρ
the higher data compression ratio. In local approaches, CR is a node–level
parameter [109].

The results obtained by the proposed approaches have been compared
against the ones by a multisignal DWT (MSEW ), by using two levels and
the Haar wavelet. By means of this wavelet–based compression one has CR =
1.33.

In order to emphasize the differences between the two classes of approach,
the ratios rB = MSEW /MSEB and rL = MSEW /MSELS were used. The
error values are referred to ambient temperature (AT), surface temperature
(ST), solar radiation (SR), relative humidity (RH), wind speed (WS), wind
direction (WD).

It is the case to point out that for a fixed network, the cost of communi-
cation energy in presence of compression scales according to (CR − 1) [109].
Hence, it is desirable having higher values of CR, but for classical transform–
based techniques such as DWT, the higher CR the higher distortion. The
examples discussed in this section show that the F–transform based schemes
allow a high enough value of CR with a lower distortion, compared to DWT.

Finally, some comments on the computational cost are needed. As men-
tioned in Chapter 2, the computational complexity for computing the compo-
nents of the discrete F–transform FS

kl in the blocks approach, is estimated to
be O(n(S)M(S)(N(S) +m(S))). By considering one block and N ≫ M (as
usual for WSNs applications), one has O(nMN).

Since the computational complexity of the (one level) DWT is bounded by
O(NM) [109], for a computational convenience one has to select n as small
as possible.

For the LS approach, considering N ≫ M , one has in general a computa-
tional complexity of O(n3), which is reasonably higher than the one for the
block approach. By working with band matrices, as discussed in Chapter 2,
the computational cost reduces to O(nm)
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3.2.1 Example 1: PDG deployment

In this example, 10 stations collected weather–related data every 2 mins
between April 16–20, 2008 and each node collected on average 3, 000 sam-
ples within the five–day period. In Figure 3.1 the ratios rB and rLS for
CR = 1.33 (that is the same CR allowed by the wavelet–based compres-
sion) and CR = 1.83 are presented. As one can desume, the MSEW is on
average higher than MSEB and MSELS for each type of measurement. It is
also possible to notice that, especially for higher values of CR, the differences
between the results by the blocks approach and the LS approach are not that
evident.

Fig. 3.1. Example 1: rate r
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The highest values of the MSE are referred to node 6. With regard to
AT data, one has MSEB = 0.039, MSELS = 0.02, MSEW = 0.42 with
CR=1.33, and MSEB = 0.12, MSELS = 0.09 with CR=1.83. With regard
to WS data, one has MSEB = 2.43, MSELS = 1.42, MSEW = 7.45 with
CR=1.33, and MSEB = 4.15, MSELS = 3.67 with CR=1.83.

A sample of the reconstructed data from node 1 with CR=1.33 can be
found in figures 3.2–3.7
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Fig. 3.2. Example 1: a sample of reconstructed data for ambient temperature at
the first node (continuous line, blocks approach; dashed line, measured data)

As a final remark, these deployments were also considered in [124], but
only four sensor data were compressed, by using a version of the LZW al-
gorithm, which is a dictionary–based compression algorithm. By means of
such approach the authors did not found good results for the PDG surface
temperature.

3.2.2 Example 2: PM deployment

This example, 13 stations were deployed on the Plaine Morte glacier for a 5
day campaign, i.e. between March 12–16, 2007; for each node on average 6, 000
samples about were collected. The values of rB and rLS for CR = 1.33 and
CR = 1.83 are similar to the ones obtained for the Example 1. In particular,
the highest values of the MSE are now referred to nodes 7 (ST data) and
8 (RH data). With regard to ST data, one has MSEB = 1.37, MSELS =
0.93, MSEW = 5.03 with CR=1.33, and MSEB = 2.2, MSELS = 1.8 with
CR=1.83. With regard to RH data, one hasMSEB = 0.078,MSELS = 0.051,
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Fig. 3.3. Example 1: a sample of reconstructed data for surface temperature at the
first node (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.4. Example 1: a sample of reconstructed data for solar radiation at the first
node (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.5. Example 1: a sample of reconstructed data for relative humidity at the
first node (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.6. Example 1: a sample of reconstructed data for wind speed at the first
node (continuous line, blocks approach; dashed line, measured data)



3.3 Improving results by cubic B-splines: further numerical experiments 33

20 40 60 80 100
N

50

100

150

200

250

300

350

°

Fig. 3.7. Example 1: a sample of reconstructed data for wind direction at the first
node (continuous line, blocks approach; dashed line, measured data)

MSEW = 4.8 with CR=1.33, and MSEB = 1.43, MSELS = 1.15 with
CR=1.83.

The good approximation by the F–transform based approaches is con-
firmed, even for CR = 1.83. Figures 3.8–3.13 show a sample of the recon-
structed data by the blocks approach with CR = 1.83 for node 5. The best
approximation (and reconstruction) seems to be achieved for RH data.

3.3 Improving results by cubic B-splines: further
numerical experiments

In order to show the better approximation obtainable by means of cubic B–
splines, firstly the results so obtained are compared with the ones discussed in
the previous section relatively to the two SensorScope deployments: Patrouille
des glacier (PDG) and Plaine Morte glacier (PM) [115].

The distortion is evalutaed by means of the ratio rMAE = MAEC/MAES ,
where MAEC and MAES are the Mean Absolute Error for the LS approach
based on cubic B–splines and sinusoidal shaped basic functions respectively.
The ratio rMAE is useful to emphasize differences between the results obtained
by the basic functions mentioned above. Besides, for the sake of completeness,
the ratio rMSE = MSEC/MSES between the Mean Squared Error MSEC ,
MSES for the LS approach based on cubic B–splines and sinusoidal shaped
basic functions were also computed. The error values are computed with re-
gard to ambient temperature (AT), surface temperature (ST), solar radiation
(SR), relative humidity (RH), wind speed (WS), wind direction (WD).
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Fig. 3.8. Example 2: a sample of reconstructed data for ambient temperature at
node 5 (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.9. Example 2: a sample of reconstructed data for surface temperature at
node 5 (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.10. Example 2: a sample of reconstructed data for solar radiation at node 5
(continuous line, blocks approach; dashed line, measured data)
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Fig. 3.11. Example 2: a sample of reconstructed data for relative humidity at node
5 (continuous line, blocks approach; dashed line, measured data)
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Fig. 3.12. Example 2: a sample of reconstructed data for wind speed at node 5
(continuous line, blocks approach; dashed line, measured data)
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Fig. 3.13. Example 2: a sample of reconstructed data for wind direction at node 5
(continuous line, blocks approach; dashed line, measured data)
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Figures 3.14–3.19 show the rMAE rate for AT, ST, SR, RH, WS, WD with
regard to some nodes in the two deployments mentioned above (nodes 1, 9
and 16 are referred to PDG, the remaining are referred to PM). As one can
see, cubic B–splines provide a better approximation with respect to sinusoidal
shaped basic functions for both compression rates, being ρ = 0.3.

Fig. 3.14. rMAE rate for AT

Fig. 3.15. rMAE rate for ST
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Fig. 3.16. rMAE rate for SR

Fig. 3.17. rMAE rate for RH

This behavior is confirmed by the rMSE ratio, tabled in 3.1, for both the
deployments.

The results are also compared with the ones in [68], obtained by S–LEC
[68], a method which seems to have a better performance with respect to
another state-of-the-art approach, that is FELACS [62].
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Fig. 3.18. rMAE rate for WS

Fig. 3.19. rMAE rate for WD

Table 3.1. rMSE rate for the two deployments (ρ=0.3)

deployment AT ST SR RH WS WD

PM 7.21E-03 6.2E-04 5.0E-04 1.13E-03 7.2E-04 7.75E-01

PDG 3.3E-03 3.68E-03 3.78E-03 3.57E-03 1.46E-03 9.58E-01
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Hence, as done in [68], temperature and relative humidity measurements
from two other SensorScope deployments have been considered, that is LUCE
and Le Genepi [115]. For the LUCE deployment, node 20 with 21,523 samples
in the range September 4th, 2007–October 3th, 2007 were considered, whereas
for Le Genepi deployment, node 84 with 64,913 samples in the range November
23, 2006–December 17, 2006.

Table 3.2 shows the characteristics of the data, in terms of absolute maxi-
mum and minimum value, for the node 84 from the LUCE deployment (here
denoted as LU84) and for the node 20 from Le Genepi deployment (here
denoted as GE20).

Table 3.2. Absolute maximum and minimum values of the data (GE20 and LU84)

variable AT RH

min GE20 0 11.078

max GE20 13.13 93.877

min LU84 0 50.981

max LU84 17.36 98.315

In [73] even ST data were considered.
The computed CR values in [68] are referred to temperature (likely am-

bient temperature) and relative humidity measurements. With regard to the
deployment GE20, the CR by the present scheme is 1.18 and 1.27 higher than
the one by the S–LEC for AT and RH respectively; the MAE by the present
scheme is of order 10−2 and 10−3 respectively. Instead, with regard to the
deployment LU84, the CR by the present scheme is 1.14 and 1.29 higher than
the one by the S–LEC for AT and RH respectively; the MAE is of order 10−2

and 10−3 respectively. It is the case to point out that the MAE for S-LEC is
0, since it is a lossless technique. However, the values of MAE by the present
scheme are compatible with the minimum and maximum values of the original
data. In fact, a mean variation in ambient temperature less than 1/10 oC is
meaningless. The same consideration applies to the relative humidity. Values
of the MAE for different values of CR are tabled in Table 3.3;the lowest value
of CR here reported is the one referred to S–LEC [68]. Notice that herein it
is CR = 1− ρ.

As a remark: the values of CR achievable by the proposed approach is the
same for AT and RH, since unlike other approaches such as the lossless ones,
the compression is executed on the data matrix and not on its single columns.

Figures 3.20–3.21 show a sample of the reconstructed data for the GE20
case, with CR = 0.65.
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Fig. 3.20. GE20, ambient temperature: original data (thick line), reconstructed
data (dashed line). Source: [73]

Fig. 3.21. GE20, relative humidity: original data (thick line), reconstructed data
(dashed line). Source: [73]
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Table 3.3. MAE values for different CR values

CR variable AT RH

0.65 GE20 8.3E-02 5.9E-03

0.6 GE20 7.97E-02 5.11E-03

0.54 GE20 6.77E-02 4.42E-03

0.82 LU84 1.86E-02 2.03E-03

0.75 LU84 1.61E-02 1.83E-03

0.67 LU84 1.32E-02 1.35E-03

As a further remark, it is the case to report that the highest value of the
rMAE rate relatively to the GE20 and the LU84 cases (AT and RH data) is
0.582145. This confirm the better behaviour of cubic B–splines basic functions
with respect to sinusoidal shaped basic functions.

Finally, the computational cost of the present approach is compared with
the one of the S–LEC algorithm. Such algorithm has substantially the same
structure of the LEC, of which computational cost can be expressed in number
of instructions (NI) [86]. More precisely, for the LU84 case, LEC requires
44,784 NI for the temperature and 62,817 NI for the relative humidity.

In Chapter 2, it has been showed that the computational cost of the LS
approach is O(nm) by using B–splines. This means for the LU84 case, getting
O(17, 550× 2) = O(35, 100) for AT, ST and RH jointly considered.

3.4 Security issues in WSNs

Data compression is aimed at reducing the memory space or the transmission
time, especially in WSNs where energy saving is needed. Until few years ago,
data compression and cryptography were kept separated, that is data were
first compressed and then encrypted. But the rapid progress in computing
technology may lead to no longer secure encrypted data.

Joining compression and encryption may represent a solution, even by
using one of the existing cryptography techniques. Such a scheme has been
largely adopted for images. For instance, in [59] a wavelet based encoder with
an RC4 encryption algorithm was used: some important parameters for recov-
ering the image, such as initial threshold, scan order, size of the image were
encrypted.

A Quadtree image compression was instead used in [66]: the image was
divided into two parts and only the tree structure was encrypted by means of
the public–key algorithm RSA.
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In [85] the image was first compressed and then encrypted by rearranging
the bits of the compressed image through a set of scanning paths, which was
kept secret (encryption key).

In [80], the k–PCA was embedded into a compression–encryption scheme.
The image was first compressed and then the principal components and other
three parameters, necessary for recovering the original image, were encrypted
through the RC4 symmetric cipher.

As mentioned before, in WSNs the sensors have constraints such as storage
space and power supply. Hence, the traditional techniques are mostly not
suitable, since they require a certain amount of resources such as data memory,
code space and energy. This is mainly due to the fact that such techniques
are based on asymmetric cryptography, where there is a public key to encrypt
data and a private key to decrypt them. Asymmetric cryptography is known as
computationally expensive tool for the individual nodes in a sensor network,
even if in [44], [37], [51] it has been showed that it is feasible by choosing
the right algorithms. In general, symmetric cryptography is chosen when the
computational complexity of asymmetric cryptography cannot be afforded.
Symmetric schemes are based on a single shared key which is known only to
the two communicating hosts. The same key is used both for encrypting and
decrypting data. Well-known examples of symmetric schemes are RC5 and
AES [114].

3.5 A secure compression scheme

This section is devoted to present a compression–encryption scheme. This
scheme is depicted in Figure 3.22. As one can see, there is an encryption-
decription core processing N and M , that is the size of the data matrix D,
which are necessary for computing the inverse F–transform. The scheme is
based on the following procedure:

1. the matrix Λ, in Eq. (2.13), is generated by using cubic B–splines;
2. the values of N and M are kept secret;
3. once N and M are retrieved the inverse F–transform is computed by

Eq. (2.16).
In symmetric key cryptosystems, the same key is used for both encryption

and decryption. The result is a much faster scheme than public key cryptosys-
tems. The two major types of symmetric key systems are block ciphers and
stream ciphers. The first ones in general process the plaintext in relatively
large blocks at a time with the same key. The latter encrypt bits individually,
by adding a bit from a key stream to a plaintext bit [98].

Block ciphers can be used in WSNs [64], but stream ciphers are faster and
seem to be the most suitable for WSNs [29].

A well-known stream cipher is RC4. It was introduced in ’90s by Rivest
[111] as a pseudo–random number generator initialized by a secret key. The
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Fig. 3.22. The proposed compression–encryption scheme

RC4 algorithm turns out to be a secure cipher provided that some condi-
tions are ensured, that is pre–processing the base key, whose length should
be at least 128 bits, and any counter or initialization vector by means of a
hash function such as MD5 or by discarding the first 256 output bytes of the
pseudo–random generator before beginning encryption [29].

Unlike [80], here the RC4 algorithm with a 128 bits–base key is considered,
as suggested in [29]. In this way, in a brute force attack, one should try 2128

guesses to find the key and recover the encrypted parameters. Hence, if a 1000
MIPS computer were used, one should need 2128/(1000 × 106 × 3600 × 24 ×
365) > 1022 years.

With regard to a known–data attack, let us suppose that an illegal user
obtained some information, for instance the exact value of M . The encryp-
tion scheme is still secure, because even a small change in N would cause a
substantial distortion in the reconstructed data.

As an example, the data from the node 16 in the PDG deployment (for
short PDG16 in what follows) are considered with a compression ratio CR =
0.67, i.e. N = 3072, M = 6, n = 1260, m = 5.

An illegal user may try some incorrect values N > n to reconstruct the
data, even in a partial way if N < N .

In Figure 3.23, the distortion, measured by the MAE, of the reconstructed
data for different values of N = r × n, being r a positive real number, is
depicted. It is clear that the distortion has high values, especially for N =
3n > N . When the value of N approaches N , the distortion decreases but it
is not negligible.

In Figures 3.24–3.25, some samples of the reconstructed data obtained by
means of the incorrect values N are depicted.
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Fig. 3.23. PDG16: MAE for some incorrect values N

So it is possible to conclude that, in spite of the fact that cubic B–splines
require two auxiliary points both on the left and on the right of the considered
interval, this choice has the following advantages:

• high accuracy;
• low computational cost of the resulting LS approach;
• reliability of the compression-encryption scheme.
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Fig. 3.24. PDG16: reconstructed WS with (a) N = 1890, (b) N = 3024 (dashed
line: reconstructed data; thick line: original data)
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Fig. 3.25. PDG16: reconstructed WD with (a) N = 1890, (b) N = 3024 (dashed
line: reconstructed data; thick line: original data)





4

Fuzzy transform for data compression in Smart
Grids

This chapter is devoted to present F-transform based compression schemes in
the context of Smart Grids (SGs). The main reference for this chapter is [72].

This investigation was firstly motivated by the growing interest in large–
scale deployment of SGs (e.g. [74]). It is well-known that in the SGs context,
information and operational technologies are developed in order to offer ser-
vices to customers [129] and improved security [75], [70]. The availability of a
huge amount of data, motivated the development of some mathematical tools,
mostly based on digital signal processing techniques, aimed at extracting use-
ful information from measured data in order to get a reliable monitoring (e.g.
see [10], [11]). No need to mention that in this context, similarly to WSNs, the
compact representation of information provided by data compression schemes
allow an efficient use of channel communication bandwidth and a reduced
storage [126]. On the other hand, even the industry [19] recognized the bene-
ficial use of such techniques for storing and processing SGs data, reinforcing
the interest in the topic.

In this chapter, the two F–transform based approaches, as presented in
Chapter 2, will be experimentally tested on three typical SGs applications,
namely wind energy monitoring, dynamic power system modeling and power
flow analysis. From numerical experiments, one can conclude that the LS
approximation outperforms some state-of-the-art methods. In particular, it
seems able to address some important issues in SGs information processing
such as a low distortion. In fact, a low distortion is important in the correct
interpretation of abrupt changes in the electric field, that is fault/disturbance.

4.0.1 Related works

Several compression schemes have been appearing in the SG literature. In [19]
compression schemes based on arithmetic coding were discussed, whereas in
[94] a wavelet based data compression technique was proposed. The singular
value decomposition was considered in [143].
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Adaptive neuro fuzzy inference systems (ANFIS) were investigated in
[139], where sine-type waveforms were considered (not publicly available data);
numerical experiments required a large number of samples per cycle for the
training. It should be pointed out that in many real cases very irregular wave-
forms can be observed.

Principal Component Analysis (PCA) for data compression was firstly
proposed in [18]. Further investigations on PCA based compression schemes
were performed in [88]. From the papers mentioned above, it seems that PCA
is a suitable technique for handling data compression in SGs [18],[88]. Hence,
it has been assumed as benchmark herein.

It is useful recalling that PCA changes p–dimensional feature vectors into
q–dimensional feature vectors, with q < p. PCA is substantially equivalent to
the Karhunen-Loeve Transform (KLT)[38] and it is based on the eigenvalue
decomposition of the covariance matrix of the feature vectors. This decompo-
sition can be performed by means of the Cyclic Jacobi’s method, which has
a computational complexity O(p3 + p2N) [41], if N is the number of feature
vectors or samples used. Current research tries strategies for reducing the
computational cost [118].

On the other hand, several transform-based compression techniques have
been proposed for reducing the size of electric signals, such as the Discrete
Wavelet Transform (DWT), especially used for compressing electric distur-
bance signals [126], [15]. In particular, the DWT with the Daubechies four
coefficient filters is widely used, being able to capture several occurrences on
the signal such as the transients [126], [94]. Anyway, these techniques present a
certain distortion in the reconstructed signal, especially for high compression
rates or when data are not correlated [126].

In the next section, the two F-transform based compression schemes as
presented in Chapter 2 will be compared with PCA and DWT.

4.1 Numerical results

In this section, some numerical experiments are discussed via a comparison
against the most used techniques [126, 18].

It is the case to point out that the proposed formulation does not consider
quantization. Quantization may lead to efficient compression schemes. In par-
ticular, in transform based compression schemes, if each transform coefficient
conveys a certain type of information, one can assign differing numbers of bits
to each coefficient [113].

Anyway, it seems reasonable evaluating the performance of a new com-
pression scheme without quantization (e.g. see [45],[24]).

Besides, as discussed in [40], the quantization in F–transform based com-
pression schemes does not produce significant improvements in the reconstruc-
tion, i.e. distortion does not decrease significantly .



4.1 Numerical results 51

4.1.1 Experimental methodology

Three example applications were considered. The first one was referred to
historical wind power data. It should be pointed out that working on a re-
duced number of ”primitive” variables describing the evolution of the wind
energy production indexes is beneficial to lower the complexity of wind power
forecasting.

In the second case study, the dynamic trajectories of the power system
state variables (bus voltage magnitudes and angles) were considered. Reduc-
ing the cardinality of such signals leads to a more effective detection of critical
patterns, that is incipient faults, and a esier identification of the signal fea-
tures, such as low frequency oscillations.

The last example application deals with historical power flow data. In the
transformed domain, the cardinality of the power flow problem may be greatly
reduced, allowing a more efficient power flow solving procedure.

In all the numerical experiments, both the blocks approach (with and
without subdivision of the data matrix) and the LS approach, by using uniform
fuzzy partitions, with sinusoidal [24] shaped basic functions were considered.
In [72] non–uniform fuzzy partitions were also considered, but they did not
produce better results.

Results by the F-transform based compression schemes were compared
with the ones obtained by means of PCA, with different number of compo-
nents, and with the ones obtained by the DWT with order 2 and order 4
Daubechies four coefficients filters. The accuracy of the reconstructed signal
was measured by means of the mean error, that is the ratio between the sum
of all the L2 norms and the total number of points N ×M .

On the other hand, such kind of difference distortion measure is assumed
to have a general value [113].

In order to emphasize the differences between the different classes of ap-
proach, one can use some ratios r, defined as follows

rbWsB =
EbW

EsB

, rbWL =
EbW

ELS

(4.1)

to compare the block and the LS approach respectively with the order b
Daubechies wavelet-based approach and the ratios

rcPsB =
Ec

EsB

, rcPL =
Ec

ELS

(4.2)

to compare the blocks and the LS approach respectively with the PCA
with c components, being

• EbW the mean error related to the use the DWT with order b Daubechies
wavelets,

• Ec the mean error related to PCA, by using c components,
• EsB the mean error related to the blocks approach, with s × 1 blocks,

being s > 1, since when s = 1, one can write EB ,
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• ELS the mean error related to the LS approach.
Table 4.1 shows the maximum and the minimum values in the datasets

of the example applications. For a better understanding of the results, the
covariance matrices of some data matrices were examined. It should be pointed
out that PCA [56] can be conceived as a data exploration tool for converting
potentially correlated variables. Hence, when the entries of the covariance
matrix, that is the covariances between elements of the dataset, are close to
zero, the elements have no significant dependence and the PCA results are
expected not to be very accurate. A similar effect affects the DWT results
[109].

Table 4.1. Maximum and minimum values of the data (for the Example 3: A =
amplitude; P = phase; AP = active power; RP = reactive power)

dataset min max

Example 1 0 506

Example 2 -4.7864 4.362

Example 3 (A) 0.98629 1.1236

Example 3 (P) -36.267 4.0925

Example 3 (AP) -530.19 624.43

Example 3 (RP) -154.82 108.75

4.1.2 Example 1: wind energy monitoring

In this example, experimental data concerning the power of 20 wind turbines
sampled every 3 hours from 01/01/09 to 11/12/09 were considered. So, N =
2737 and M = 20. By means of several experiments, it has been observed for
the mean error in the range 0.73 ≤ ρ ≤ 0.89 that

• ELS varies almost linearly with a maximum value equal to 13.7 (close to
E2 = 13.5) and a minimum value equal to 4.7 (close to E10 = 4.8);

• EB and E3B have almost the same (linear) behavior with a maximum
value 18.3 and a minimum value 13.6 on the average (close to E2 = 13.5).

Figure 4.1 shows the ratios r for different approaches with ρ = 0.8 and
1.1ρ.

As one can see, the best results obtainable by means of the blocks approach
are comparable with the ones by the PCA with 2 components, in fact the rate
r is one about. Anyway, the LS approach for 1.1ρ seems to provide the lowest
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Fig. 4.1. Example 1: ratios r for different approaches

mean error, which is on turn comparable with the one obtained by the PCA
with 10 components. The results by means of order 2 and order 4 Daubechies
wavelets are similar to each other, but not so closest to the lowest mean error.

In figure 4.2 a sample of the reconstructed data by the LS approach for ρ
and 1.1ρ is depicted.

By examining the covariance matrix of the dataset for this example, it has
been possible to notice that its entries were no lesser than the value 1470.
Hence, the elements (that is the 20 turbines power values) show a degree of
dependence. In such cases, PCA behaves well enough even with a few compo-
nents. In fact, by looking at the results obtained through two components one
can observe that they are good enough, even though results by LS approach
outperform those ones; 10 components (i.e. M/2) are needed for getting similar
results by PCA.

4.1.3 Example 2: dynamic power system modeling

In this example, data are referred to the dynamic evolution of the state vari-
ables of the IEEE 30 Bus network, which was simulated by an advanced power
system simulator [136]. Here, N = 2407 and M = 94 were fixed. By using si-
nusoidal shaped basic functions, the resulting mean error for the different
approaches in the range 0.37 ≤ ρ ≤ 0.73 has the following behavior:

• ELS varies almost linearly with a maximum value 1.E − 03 about and a
minimum 4.92E − 04 (closest to E10);
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Fig. 4.2. Example 1: exact (solid line) and reconstructed data (dashed line) for the
turbine n. 9 with a) ρ and b) 1.1ρ. Source [72]

• EB and E3B have almost the same (linear) behavior with on the average
a maximum value 1.15E − 03 and a minimum value 5.1E − 04 (close to
E10).

In Figure 4.3 the ratios r for different approaches with ρ = 0.66 and 1.1ρ
are depicted. The lowest mean error is the one referred to the LS approach with
1.1ρ. A similar value was obtained by using the PCA with 10 components. It is



4.1 Numerical results 55

Fig. 4.3. Example 2: the ratios r

Fig. 4.4. Example 2: measured (solid line) and reconstructed data (dashed line)
with 1.1ρ. Source [72]

also possible to observe that the wavelet-based compression does not provide
better results.

Figure 4.4 shows a sample of the reconstructed data by the LS approach.
For this example, the entries of the dataset covariance matrix are in the

range [-0.0243482, 0.0263888]. Hence, there is not a significant degree of de-
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pendence. This is a typical situation where the LS approach outperforms the
PCA with a low number of components.

4.1.4 Example 3: power flow analysis

In this example, the state variables of the 2746–bus Polish power system dur-
ing winter 2003–04 were simulated by the power flow simulator MATPOWER
[87]. Here, M = 672 and N = 12520 were fixed. The latter was the result
of the sum of N1 = N2 = 2746, N3 = N4 = 3514, in the order referred to
amplitude (A), phase (P), active power (AP), reactive power (RP).

Several numerical experiments were performed for investigating the be-
haviour of the mean error for amplitude, phase, active power, reactive power.
Sinusoidal shaped basic functions were used, by subdividing the data matrix
into 4 submatrices, each one referred to amplitude, phase, active power, reac-
tive power. It has been possible to observe that in the ranges 0.45 ≤ ρA ≤ 0.66,
0.86 ≤ ρP ≤ 0.94, 0.45 ≤ ρAP , ρRP ≤ 0.74 (apexes are referred to the single
cases as explained before)

• EA
LS varies almost linearly with a maximum and a minimum value equal

to 6.0E− 05 V and 4.3E− 05 V respectively, which are in the order lesser
than EA

10 = 6.7E − 05 V and EA
50 = 5.6E − 05 V;

• EA
4B varies almost linearly with a maximum and a minimum value equal

to 6.5E− 05 V and 5.0E− 05 V respectively, which are again in the order
lesser than EA

10 = 6.7E − 05 V and EA
50 = 5.6E − 05 V;

• EP
LS varies almost linearly with a maximum and a minimum value equal

to 5.0E − 02 rad and 2.5E − 02 rad respectively, which are in the order
closest to EP

10 and EP
50;

• EP
4B varies almost linearly with a maximum and a minimum value equal

to 8.6E − 02 rad and 7.0E − 02 rad, which are higher than the values
reported at the previous item;

• EAP
LS varies almost linearly with a maximum and a minimum value equal

to 4.1E − 01 kW and 2.47E − 01 kW respectively, which are in the order
lesser than to EAP

10 = 4.4E − 01 kW and EAP
50 = 2.73E − 02 kW;

• EAP
4B varies almost linearly with a maximum and a minimum value equal

to 4.5E − 01 kW and 3.1E − 01 kW, which are closest to EAP
10 and EAP

50 ;
• ERP

LS varies almost linearly with a maximum and a minimum value equal
to 1.1E − 01 kW and 6.60E − 02 kW respectively, which are in the order
lesser than to ERP

10 = 1.25E − 01 kW and ERP
50 = 8.1E − 02 kW;

• ERP
4B varies almost linearly with a maximum and a minimum value equal

to 1.18E− 01 kW and 8.0E− 02 kW, which are closest to ERP
10 and ERP

50 .

Hence, it seems that the LS approach provides in general the best results.
This is also evident from Figures 4.5–4.8, showing the rate r for the single
cases. It is also true that for the amplitude, all the approaches provide good
enough results. Instead, for the phase, the best results are achievable by the
PCA with 50 components and the LS approach for ρ = 0.93, whereas the
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Fig. 4.5. Example 3: the ratios r for the amplitude

Fig. 4.6. Example 3: the ratios r for the phase

other approaches give worst results. Similar conclusions hold for the active
power and the reactive power.

One can refer to [72] for some samples of the reconstructed data by the
LS approach.

Now, some comments about the covariance matrix of the data matrices
are useful. The entries of the covariance matrix of the amplitude dataset are
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Fig. 4.7. Example 3: the ratios r for the active power

Fig. 4.8. Example 3: the ratios r for the reactive power

lesser than 0.0263888. This means that the 2746 elements do not have a degree
of dependence. As mentioned before, in such situation PCA is espected not
to work very well differently from the LS approach, which allow accurate
results, outperforming the PCA. Instead, the covariance matrix of the phase
dataset, with entries between 25.652 and -2.48846, exhibits a certain degree
of dependence. In this case, the PCA results are slightly better than the ones
by the LS approach. The covariance matrices for active power and reactive
power datasets are similar: their maximum values are 6505.63 and 659.907
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respectively, but many values are close to zero. For both cases, the results by
LS approach turn out to be more accurate than the ones by the PCA.

Definitely, the LS approach, compared to reference data compression tech-
niques in SGs, such as PCA and DWT, shows a higher accuracy with a rela-
tively low computational cost under certain conditions.
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Fuzzy transform for multi-agent based
monitoring of Smart Grids

Smart grids (SGs) and related issues have been briefly introduced in the pre-
vious chapter. Herein it is useful to recall that acquiring and processing the
available data describing the actual smart grid operation state is a complex
and time-consuming process, because, in addition to the analysis of the mas-
sive data generated by the grid sensors, the repetitive solution of large–scale
optimization problems is involved. A typical optimization problem widely used
for solving many complex power system operation issues (e.g. network recon-
figuration, optimal power dispatch, voltage control) is Optimal Power Flow
(OPF) analysis. OPF aims to minimize the total production costs of the en-
tire system to serve the load demand, ensuring the security of the system
operation.

In this chapter, by keeping in mind some SGs management issues via
OPF solutions, an approach which combines the Multi-Agent System (MAS)
technology with the approximation properties of fuzzy transform is discussed.

The MAS is substantially structured into two classes of agents, that is
the ones managing the characterizing elements of the grid (e.g. load demand,
power generation, active power) and the ones in charge of solving the OPF
problem. The latter ones use F–transform in order to get a solution in a
reduced domain with a low computational cost. The MAS approach represents
the online stage in a two–stage computational paradigm. In the offline stage,
the F-transform is instead used for reducing the cardinality of a knowledge-
base, which includes the relevant matrices of the historical power system states
and the corresponding OPF solutions. Some numerical experiments confirm
the theoretical achievements.

The main reference for this chapter is [73].



62 5 Fuzzy transform for multi-agent based monitoring of Smart Grids

5.1 Literature review

5.1.1 Multiagent systems in Smart Grids

The multiagent system (MAS) approach seems to be a promising new paradigm
for power grid planning, design and operation [82, 83]. As observed in [145],
the MAS technology can satisfy the SGs requirements, here included control
issues [84].

In a MAS, several types of intelligent agents interact with each other and
their environment to achieve some goals. Agents can communicate with neigh-
bors, gather data from environment and can perform some computations [78].
MASs heve been used in many different contexts, e.g. for intelligent manu-
facturing systems [43], for the implementation of virtual enterprises [144], for
supply chains [76].

A MAS can be even used to solve OPF problems, though from different
perspectives [119], [82],[65]. Some details will be provided in the next subsec-
tion.

5.1.2 Optimal Power Flow solvers

Before presenting the state-of-the-art, a slight introduction on the Optimal
Power Flow (OPF) problem is needed.

OPF is substantially a non-linear and non-convex constrained optimization
problem for identifying the value of some decision variables, such as the control
and the state variables in a power system [42].

Let us consider an nb-bus power system. Let u denote the vector of the
control variables, x the vector of state variables, g(.) a q-dimensional objective
function vector, η(.) and µ(.) the p-dimensional and r-dimensional vectors
representing the problem constraints, respectively. Then the problem can be
formalized in a compact form as follows:

min
(x,u)

g(x,u)

s.t. η(x,u) = 0,

µ(x,u) < 0.
The objective functions g(.) in the equations above may be different ac-

cording to the specific application domain (e.g. the minimization of the pro-
duction costs, the minimization of the transmission line losses).

In the vector of state variables x are collected quantities such as the volt-
age magnitude at load buses and the reactive power. Similarly, the vector of
control variable u may be written in terms of some quantities, such as the
active power and the voltage magnitude at the generator buses.

Equality constraints are substantially the non-linear power flow equations,
considering as state variables the voltage magnitude and phase angle at load
buses, the voltage phase angle and the reactive power generated at the genera-
tion buses, as well as the active and reactive power generated at the slack bus.
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Instead, the inequality constraints express the network operating constraints,
here included the maximum allowable power flows for the power lines, the
minimum and maximum allowable limits for some control variables (e.g. gen-
erator voltages) and for some dependent variables (e.g. bus voltage limits).

It is the case to mention that an important problem in modern power sys-
tem operation is the power flow analysis, which can be regarded as a particular
instance of the OPF problem (see [104] for details).

The OPF problem can be solved by means of classical approaches such
as linear programming, non-linear programming, quadratic programming,
Newton-based techniques and interior point methods (IPMs) [92, 93].

The IPM seems to be one of the most effective techniques for solving the
OPF problem [91, 158].

As an alternative to traditional methods, several population-based tech-
niques, such as genetic algorithm [21], particle swarm optimization [1], dif-
ferential evolution [137], imperialist competitive algorithms (ICAs) [36], were
proposed in the last years. Anyway, such approaches need multiple trials and
the tuning of parameters involved.

Recently, some MAS-based approaches appeared, for solving OPF prob-
lems from a distributed intelligence perspective.

A MAS integrated with Differential Evolution (DE) was discussed in [119].
In that scheme, each agent was conceived as an individual in DE, i.e. a solution
vector of the OPF with its fitness value; the agent with the minimum fitness
value represents the winner. Two example applications were considered, that
is a 6-bus system and the IEEE 30-bus system, by obtaining the best values,
after 30 different runs.

In [95], a MAS was used for solving the PF problem in an unbalanced
distribution system. The MAS was based on two classes of agents, for shunt
components and series components in the radial distribution system. The
agents used the backward/forward sweep method for solving iteratively the
power flow in a distributed way. Three cases were discussed, showing a com-
puting time increasing with the dimension of the network. For the largest test
case, with 369 nodes, the computing time was 81.96 s.

The method in [95] was adapted in [154] for solving a different optimiza-
tion problem in distribution systems, that is the Volt/Var Control. In such
problem, the optimization objectives include maintaining the system volt-
age profile within a specified range, minimizing system loss and reducing the
switching of shunt capacitors. The considered case study was the modified
IEEE 34 node test feeder.

In [96], the PF problem was handled through a distributed version of
the shortest path and cost-scaling push-relabel algorithms; the application
examples consisted of 5-bus systems.

The PF problem was also solved in [135], by rewriting in a distributed
way the iterative approach presented in [128]. As a test case, the IEEE-18 bus
system was considered.
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In [65] the OPF problem was solved by using a MAS, based on six agent
types: four interacting with the grid elements (generators, transformer, etc),
one computing the OPF solution by means of an external Matlab function and
one coordinating all the agents. The standard IEEE 6-bus test power system
was considered in numerical simulations.

5.2 The proposed approach

In SGs, because of the impressive volume of datasets (someone mentions ”big
data” [50]), the data storage and processing are very complex and demanding
tasks. Hence, effective tools aimed at reducing the size of SGs historical data
may be really beneficial.

Herein, historical data are used for solving OPF problems in nb-bus power
systems. In such situation, each row of the historical database is composed
at least by 4nb variables, that is at least 2nb measured variables, such as
the active and reactive power injected at each bus, and the 2nb dependent
variables describing the OPF solution (bus voltage magnitude and angle at
each bus). It should be pointed out that a realistic number of buses nb may
have an order of several thousand, and considering the countinously increasing
number of rows of the historical database, the cardinality of the problem turns
out to be prohibitive.

Besides, the solution of OPF problems in SGs should respond to time
constraints. Hence an approximated solution, through a fast algorithm, is
often more useful than a rigorous one, which needs higher computation times.

The computational paradigm herein proposed is based on the approxima-
tion properties of the F-transform. The underlying principle is that usually
power system configurations over the time are very similar and solving OPF
problems in such configurations may be a redundant process. Thus, the idea
is to exploit historical OPF solutions for finding fast and accurate approxi-
mate solutions, without redundant computations for similar smart grid states.
Using F-transform allows a fast and reliable solution process. The features of
the proposed methodology are detailed in the following subsections.

5.2.1 On some properties of F–transform

Let us recall that, given n and m two integers so that n < N and m < M , the
discrete F–transform can be intended as a linear mapping from RM to Rm, in
the one–dimensional case, or from RN×M to Rn×m, in the two–dimensional
case. The usual distributive property holds for any α, γ ∈ R

F[αv + γw] = αF[v] + γF[w], (5.1)

with the vectors v,w ∈ RM or
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F[αD+ γT] = αF[D] + γF[T], (5.2)

with the matrices D,T ∈ RN×M .
By recalling also results in [102], one can write Fi = vk+ǫ, for any k ∈

[xi, xi+1) and arbitrarily small ǫ > 0 and i = 1, . . . ,m. Similar results hold on
for the two–dimensional case.

Now some properties are stated. In what follows, ‖(.)‖p and IN will denote
the p–norm and the identity matrix of order N respectively. Besides, S = S−1

(see Eq. (1.14)).

Lemma 5.1. Let v and c be two vectors of RM . If max
j

(Sjj) ≤ 1

m
with

m < M , then the following inequality holds

‖F[v]− F[c]‖2 ≤ 1

m
‖v − c‖2. (5.3)

Proof. Let σmax(B) denote the maximum singular value of the matrix B. One
has to consider that

‖F[v]−F[c]‖2 = ‖F[v−c]‖2 ≤ ‖v−c‖2‖B‖2‖S‖2 ≤≤ ‖v−c‖2σmax(B)‖S‖2,
and since σmax(B) < 1, the conclusion can be readily achieved.

Theorem 5.2. Let v, c1, c2 be three vectors of RM . Suppose the hypotesis
of Lemma 6.1. Besides, assume ‖F[v − c1]‖1 = ‖v − c1‖1 + ǫ, for any ǫ > 0,
then the inequality

‖F[v]− F[c1]‖2 ≤ ‖F[v]− F[c2]‖2 (5.4)

implies
‖v − c1‖2 ≤ ‖v − c2‖2. (5.5)

Proof. Thanks to Lemma 1, one has
1
m
‖v − c1‖2 ≤ 1

m
‖v − c1‖1 ≤ 1

m
‖F[v] − F[c1]‖1 ≤ 1√

m
‖F[v] − F[c1]‖1 ≤

‖F[v]− F[c1]‖2 ≤ ‖F[v]− F[c2]‖2 ≤ 1
m
‖v − c2‖2.

Let E be the finite set of the Euclidean distances of the vector v from the
vectors {c1, . . . , cNc

} and let E be the finite set of the Euclidean distances of
the transformed vector F[v] from the transformed vectors F[c1], . . . ,F[cNc

].
By means of Theorem 5.2, the following Corollary can be easily proved.

Corollary 5.3. [73] Suppose the condition of Theorem 5.2 satisfied. Let
‖F[v] − F[ck]‖2 be the minimum distance in E, with k ∈ {1, . . . , Nc}. Then
‖v − ck‖2 is the minimum distance in E.
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5.2.2 The offline stage

The offline stage (see Figure 5.1) is conceived for reducing the storage burden
through the compression of the historical data and for finding the approxi-
mating relations between some measurements and the optimal settings of the
problem defined in Section 5.1.2.

More formally, there is a dataset given by an N × M matrix X and an
N × P matrix Y.

The rows of X are the power system state vectors vT
j = (xj1, . . . , xjM ),

e.g. the active and reactive powers measured at each network bus, while the
rows of Y are the vectors of the corresponding OPF solutions.

Let C be an Nc×M matrix, of which rows are the vectors Ck representing
substantially the centers of the Nc clusters, and let YC be the Nc×P matrix,
of which rows are the vectors YC

k of the rigorous OPF solution related to the
input Ck.

Herein Nc ≪ N is the total number of clusters grouping similar state
vectors and no overlapping between clusters is assumed.

The off-line computational scheme is based on the following algorithm:

1. compute the discrete F-transform of the matrices X, Y, C, i.e. in the
order the n×m matrix F, the n×P matrix F and the Nc ×m matrix F,
with n < N and m < M ;

2. for each value k = 1, . . . , Nc

2.1) compute the Euclidean norm

d(FX
i ,FC

k ) = ‖FX
i − FC

k ‖2, (5.6)

for i = 1, . . . , n;
2.2) construct the set of r vectors, with r ≤ n/Nc

Y
(k)
F =

{

FY
i : 1 ≤ i ≤ n, d(FX

i ,FC
k ) ≤ ǫ

}

, (5.7)

with ǫ being a fixed though arbitrary small real number;

3. for F
Y,(k)
j ∈ Y

(k)
F , j = 1, . . . , r, find the mapping

Ỹk = β(F
Y,(k)
1 , . . . ,FY,(k)

r ), k = 1, . . . , Nc. (5.8)

where β is an unknown functional form obtained via a regression analysis,
i.e. by minimizing the deviations between Ỹk and the vector YC

k of the
rigorous OPF solution corresponding to the input Ck.

The set Y
(k)
F is actually the cluster with center FC

k .
The computational cost of the off–line stage is substantially the one of the

compression of the matrices X, Y and C by F-transform (see Chapter 2) and
to the clustering method adopted. For large datasets, k-means and k-medoids
clustering are assumed to be a proper choice with respect to hierarchical
clustering. However, k-medoids clustering is more robust than k-means in
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Fig. 5.1. The offline stage

presence of noise and outliers. Its cost for each iteration is O(K(Nd −K)2),
where K is the number of clusters, Nd the size of the dataset [58].

5.2.3 The online stage

The monitoring of the network represents the online stage. It is performed
through a MAS architecture (Fig. 5.2), which substantialluy consists of two
classes of agents, as detailed below

• Energy Agent (EA), which collects all the devices settled for the specific
power systems functions (load demand LA, power settings PA, reactive
power WA and transformers settings TA);

• Optimization Agent (OA), which is designed to solve the OPF problem in
order to find the optimal power system settings.

The agents above are supervised by the Management Agent (MA), which
communicates with all the agents, by coordinating their actions.

MA can perform two actions:

• action 1, it receives the load measurements, arranged in a vector v from
EA, and sends it to OA;

• action 2, it receive a solution (SOL) from OA and sends it to EA.

EA can perform two actions:

• action 1, it sends the vector v to MA;
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Fig. 5.2. The MAS architecture

• action 2, it receive a solution (SOL) from MA and, by using suitable for-
mulas convert it to the required settings.

With regard to the latter, it should be pointed out that, once the OPF
solution is found in terms of amplitude Vi and phase θi, it is possible to get

• the active power for the ith generator as
Pi =

∑N
k=1 ViVk(Gik cos θik +Bik sin θik),

• the reactive power for the ith compensator as
Pi =

∑N
k=1 ViVk(Gik sin θik −Bik cos θik),

with Gik and Bik being the real and immaginary parts of the ik entry of
the admittance matrix, and θik = θi − θk. The computed value Vi is directly
used for the ith transformer.

OA manages three agents:

• F-Transform Agent (FTA), which performs one action that is computing
the F-transform vector F of the state vector vT , received from OA, and
the Euclidean distance d(F,Fc) between F and the center of the cluster c,
Fc, for c = 1, . . . , Nc;

• Approximate solution Agent (AA), which is based on one action that is
invoking the approximating function related to the cluster c;

• Rigorous solution Agent (RA), which perfoms one action that is calling
an external function for the classical OPF solution; this solution, as well
as the vector v, is then used for the off–line update of the knowledge-base
by revising the cluster centers and consequently the local models.

OA performs three actions:

• action 1, it receives the vector v from MA and sends it to FTA;



5.2 The proposed approach 69

• action 2, it receives d(F,Fc) from FTA and checks whether d(F,Fc) < d,
for a fixed though arbitrary d; if so, it communicates to AA the corre-
sponding not null value of c, if not (that is no cluster is detected) RA is
invoked;

• action 3, it receives the approximate solution (AASOL) from AA and
checks whether it satisfies some constraints; if so, it sends AASOL to MA,
if not, it sends the vector v to RA in order for it to compute the rigorous
solution.

In Figures 5.3–5.5 three sequence diagrams are depicted: the first case is
referred to the case when a cluster c is individuated and the approximate
solution satisfy the given constraints; in the second case the approximate
solution does not satisfy the constraints; in the third case, the rigorous solution
is invoked since a cluster was not detected.

Fig. 5.3. A first case sequence diagram: approximate solution satisfying the con-
straints

It is the case to point out that OA, through FTA, finds the cluster c
corresponding to the minimum Euclidean distance in the transformed domain.
This minimum, under the condition of Corollary 3, finds correspondence into
the original domain, that is the values range is different in the two domains,
but the minimum is found for the same cluster c.

As mentioned in Section 2, in the last years several MAS–based distributed
schemes appeared in order to overcome the shortcomings of classical ap-
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Fig. 5.4. A second case sequence diagram: approximate solution satisfying no con-
straints

proaches based on centralized computing paradigms. In the latter, a central
fusion unit acquiring and processing all the grids measurements is needed. In
the next years, centralized control architecture will be gradually left, because
of the increasing data acquisition for SGs. On the other hand, distributed
approaches may have a certain computational cost (e.g. see [95]). In such a
context, the computing scheme herein illustrated can be regarded as a decen-
tralized approach, where several local devices perform observations, without
communicating to each other, but sending the needed information to a super-
visor, in charge of making a global decision.

Decentralized approaches are at an intermediate level between the central-
ized and distributed ones, but it is reasonable looking for a computing scheme
allowing an acceptable trade-off between a cost-effective solution and better
management, higher performance and reliability.

As a final remark, one has to mention that the proposed computing frame-
work has been conceived to be deployed by a hybrid control environment
such as DICE [63], which allows interfacing with external software. Require-
ments such as scalability, reliability, resource optimization and soft-real-time
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Fig. 5.5. A third case sequence diagram: invoking rigorous solution

modelling are pursued by allowing for the dynamics of agents on a network
of computers, provided that the plug-in (DICE) component is on the ma-
chine. The resulting agents infrastructure can support the communication of
control-based components of a larger systems, considered as a unified Java-
based environment. In this way, an effective monitoring of the agent network
is possible.

5.3 Simulation results

In this section, the results obtained by means of the proposed methodology
are discussed, by also presenting the data range and the covariance matrix of
the input data.

The number of clusters was found through the Gap statistics, which usually
outperforms other methods [130]. Anyhow, an assessment through the well-
known Silhouette criterion [112] is also discussed. One should recall that the
Silhouette index is based on the pairwise difference of between and within-
cluster distances; the optimal cluster number is found through the maximum
value of such index.

Instead, the Gap test performs a comparison between the dispersion of
clusters generated from the data and the one derived from a sample of null
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hypothesis sets, on the basis of a certain sensitivity or tolerance (the higher the
tolerance the fewer the number of clusters). The optimal number of clusters
corresponds to the solution exhibiting the largest local or global gap value
within a tolerance range.

With regard to the running times, they were compared to the ones obtained
by means of Matpower [159]. Matpower is based on IPM, which is assumed
to be of the most efficient methods for solving OPF problems, as mentioned
in Section 2. In [127] several IPM based solvers were compared, confirming
Matpower as the best solver for large networks, that is for a number of nodes
higher than 100; for a smaller number of nodes, its computation time is still
competitive, though in a not so evident way. Hence, Matpower can be assumed
as a good reference for a comparison.

Finally, it is the case to mention that in [73] two example applications
were discussed, that is the OPF problem for the IEEE 30-bus test system and
the the constrained power flow analysis of the 2383-bus Polish power system.
Herein a medium size problem is presented, as detailed below

5.3.1 An example application

The example application deals with the solution of the OPF problem for
the IEEE 300–bus test system. This system contains 69 generators and 304
transmission lines.

The dataset is composed by a 1343×600 matrix (X matrix) of input state
variable values at 1343 instants and a 1343×600 matrix (Y matrix), of which
rows represent the OPF solutions for the corresponding 600 state variables
vectors.

The maximum and minimum values of matrices X and Y are tabled in
Table 5.1.

Table 5.1. Minimum and maximum values of the data for the example application

dataset min max

X -99.899 823.17

Y -231.29 363.04

Figure 5.6 shows a graphical plot of the covariance matrix of the input
data X. All the values are in the range [1137.41, 7406.7], that is there is a
degree of dependence between the elements.

By means of the Gap criterion, with the usual settings, that is the di-
mension of null hypothesis sets equal to 5 and the tolerance equal to 1, the
optimal number of clusters is 13. By means of the Silhouette index, an optimal
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Fig. 5.6. Covariance matrix of the input data

value equal to 3 was found. A similar value can be obtained through the Gap
criterion by fixing a higher value of the tolerance.

The dataset is then organized in 13 different sized clusters, from which
total 260 sampling cases are randomly extracted, in order to be used in the
online stage simulation. The resulting X and Y matrices have 983 rows.

In the offline stage, the discrete F–transform is applied to:

• the matricesX andY, reducing their cardinality to [500, 400] and [500, 600];
• to the matrix of centroids C, by reducing its cardinality from [13, 400] to

[13, 600].

The computed errors for the validation of the offline stage, that is the
difference between the computed approximate solution for each cluster and
the reference OPF solution related to the centroid, revealed a maximum value
equal to 1.78E+01, which is an acceptable value, by considering the data range
of the matrix Y.

With regard to the online stage, that is a MAS running cycle:

• for the generic input vector vT , with size M = 600, the invoked F-
transform action produced a reduced size m = 400;

• the distance between the transformed vector and the transformed centroid
of each cluster was computed for finding the reference cluster;

• the approximating function for the detected cluster was retrieved.
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In Figure 5.7 the maximum absolute error and the mean error are depicted.
These errors vary according to the Euclidean distance to be fixed (last graph
from the top in Figure 5.7). For instance, if such value is 5 then the maximum
error and the mean error are respectively 1.2E-00 about and 2.6E-01.

Finally, Figure 5.8 shows the running time for computing the approximate
and the rigorous solution in the online stage. As one can In any case, the
running time for the rigorous solution is higher.

Finally, it is the case to observe that in [36], in order to solve the simpler
OPF case in an IEEE 57-bus test system by means of several variants of ICAs,
the mean CPU time varies between 53 s and 63 s, by using MATLAB 7.6 and
a CPU clocking in at 2.50 GHz. By means of a CPU with similar performances
(i.e. 2.40 GHz), the mean CPU time for the approximate OPF solutions by the
approach inherein proposed in the 2383-bus Polish power system considered
in [73] is 1.50 s.
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Fig. 5.7. From the top: maximum errors, mean errors, Euclidean distances in the
online stage
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Fig. 5.8. Running time (thick line, rigorous solution; continuous line, approximate
solution)
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Combining direct and inverse fuzzy transform
in numerical solvers - Part I

Second order multi-agent systems with sampled data - In this chapter
and the next one, the joint use of direct and inverse fuzzy transform in different
problems will be discussed. In this chapter a simple numerical scheme (finite
differences-like) will be used to handle the problem of second order multi-agent
systems with sampled data.

Sampled position data are used through F–transform, over a certain time
interval, which can be in general larger than the single sampling period, usu-
ally considered in the current literature (e.g. [153]).

There are many approximation techniques in the fuzzy context (e.g.
[54],[55] ), but herein a fuzzy approximation technique is used in a non fuzzy
context for handling the problem of sampling data in multi-agent systems.

In particular, introducing the F–transform approximation changes the au-
tonomous dynamical system herein considered in a nonautonomous one. So
the discussion will be turned towards the boundedness of the long–term solu-
tion. Such condition can be intended as a quasi–consensus condition.

A simple numerical example is discussed in order to support the theoretical
achievements.

6.1 A literature review

Much work has been done in the multi-agent systems field. In particular,
second–order multi-agent systems are attracting higher attention (e.g. see
[150],[151],[106],[153],[81]) , due to the fact that in many real–world appli-
cations the dynamics of the agents has to be described by both position and
velocity.

Considering models where the velocity is taken into account, produced
also some additional questions. For instance, the velocity states of agents are
often unavailable or require expensive sensors ([153],[110], [47]). A way out of
such situation is represented by sampled data.
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The idea of using sampled data was derived from the fact that the in-
formation transmission among agents can be regarded as discrete, because
of geographical constraints (such as for sensors) or unreliable communication
channels in many artificial networks [147]. It is also to be pointed out that,
due to the need of energy–saving approaches to respond to the communication
burden, sampled data control is becoming a promising and effective control
strategy [31, 142].

On the other hand, as observed in [46], the larger sampling interval (that
is less sampling data), the lesser energy consumed. A sampling scheme with
less signals sampled sounds as more efficient.

The usefulness of sampled data has been discussed even in presence of
communication delay. In [146], it has been shown that the effect of delay on
the agents state can be neglected if the network topology is known and every
agent transmits historical data to the neighbors.

In [155], the problem of second–order multi–agent system with commu-
nication delay in the context of sampled data was handled. In such context,
each agent updated its control input at the kth time by using its own and
its neighbors kth sampled data; the agents dynamics was represented by a
continuous system with piecewise constant input.

It is well–known that multi-agent systems are governed by control laws,
allowing each agent to use only local information from its neighbors, so that
all agents achieve a certain behavior of common interest. This is the so–called
consensus problem (e.g. see [12]).

The concept of quasi–consensus was introduced in [152] and [144]. Quasi–
consensus can be intended as a degree of approximation deriving from the
differences in the final relative position among agents, depending on the initial
conditions and the stored delayed position information.

6.2 Methodology and properties

In this section some useful basic notions will be recalled, before introducing
the proposed methodology.

6.2.1 Basic graph theory and notations

Let G = (V,W) be a weighted graph, where V = (v1, . . . , vN ) is the nonempty
set of nodes/agents, and W is the N × N (symmetric) weight matrix, with
entries wij ≥ 0 if i 6= j and wii = 0 otherwise.

The underlying graph of G is the undirected graph (V,E), being E ⊆ V ×V
the set of edges/arcs. In such context, (vi, vj) ∈ E means that there is an edge
from node i to node j.

The matrix W can be regarded as a generalized adjacency matrix A, since
the latter represents the case where wij ∈ {0, 1}.
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The adjacency matrix A substantially defines the topology of the graph,
with elements aij > 0 if (vj , vi) ∈ E, otherwise aij = 0.

In what follows, the topology is fixed, that is A is time-invariant.
For each node, vi ∈ V , the degree di of vi is the sum of the weights of the

edges adjacent to vi, that is di =
∑N

j=1 wij . Besides, D = diag(d1, . . . , dN )
is the N ×N degree matrix. The graph Laplacian matrix is L = D −W. It
satisfies the diffusion property

∑N
j=1 Lij = 0.

The set of neighbors of node i is denoted as Ni = {j|(vj , vi) ∈ E}. The
cardinality of the set Ni represents the degree of the node i. If node j is a
neighbor of node i, then node i can get information from node j, but not
necessarily vice versa for directed graph (digraph). For undirected graphs, the
neighbor is in mutual relation.

A path between nodes vi and vj is a sequence of edges with distinct nodes.
If there is a path between any pair of distinct nodes in it, then an undirected
graph G is connected.

Now a well–known Lemma [49] is recalled.

Lemma 6.1. Let G be a graph on N vertices with Laplacian L. Let λ1, . . . , λN

be the eigenvalues of L, satisfying λ1 ≤ . . . ≤ λN . Then λ1 = 0 and the N -
sized vector 1 = [1, . . . , 1]T its eigenvector. Besides, if G is connected λ2 > 0.

Remark 6.2. If q is a vector with all elements equal to a real constant, then
Lq = 0, in force of the diffusion property.

6.2.2 Problem formulation

The second–order linear consensus protocol in multi–agent dynamical systems
is usually described as follows (e.g. [151])

ẋi = vi (6.1)

v̇i = −α
N
∑

j=1

Lijxj − β
N
∑

j=1

Lijvj (6.2)

which substantially expresses the dynamics of coupled oscillators, and
where xi ∈ Rn, α and β are real constants.

For the sake of simplicity, n = 1 will be assumed. The case n > 1 can be
readily obtained by means of the Kronecker product, as presented in [133].

In what follows, β = cα (e.g. [106]) is assumed, with c ∈ R.
As mentioned before, in real situations, agents usually communicate with

each other at discrete time. This is the reason why one can think of using
sampled data instead of the current data, remembering that utilizing less
information means saving energy (e.g. in presence of digital sensors).
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Let T be a time interval with m discrete values t1 < . . . < tm. We consider
the sampled position data x(tk), with k = 1, . . . ,m.

Since vj(tk) = [xj(tk + 1)− xj(tk)]/h, one has

v̇i(t) = −α
N
∑

j=1

Lijxj − c
α

h

N
∑

j=1

Lij

p
∑

l=1

γl

m−1
∑

k=1

Al(tk)dj(tk)Al(t) (6.3)

with γl = (
∑m−1

k=1 Al(tk))
−1 and dj = xj(tk + 1)− xj(tk).

For the remainder of this work, Is will denote the s× s identity matrix.
So, in compact form one has:

ẋ = v (6.4)

v̇ = −αLx− c
α

h
u(t) (6.5)

where

u(t) = LDAΓA(t) (6.6)

beingD theN×(m−1) matrix, of which the ith row is (di(t1), . . . , di(tm−1)),
A is the (m− 1)× p matrix of which the ith row is (A1(ti), . . . , A1(ti)), Γ is
the diagonal matrix with p non-null elements γl, A(t) the vector of the basic
functions Al(t). Note that p < m (see Section II).

Definition 6.3. The multi-agent system is said to achieve quasi-consensus if
for any initial condition

lim
t→∞

‖xi − xj‖ = cij (6.7)

lim
t→∞

‖vi − vj‖ = 0 (6.8)

for any i, j = 1, . . . , N , with i 6= j, and where cij are constants. If cij = 0,
then the quasi-consensus is called consensus.

Let x(t) = 1
N

∑N
i=1 xi(t), v(t) = 1

N

∑N
i=1 vi(t) be the average consensus

states of position and velocity, respectively.
In order to express the distance between the generic xi and x, and similarly

between vi and v, we introduce the following error vectors

χ = Mx, η = Mv (6.9)

where M = IN +Mc, being Mc the N ×N matrix with all elements equal
to −1/N .

So in concise notation, Eqs. 6.5 become (see Remark 6.2)
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ė = He− c
α

h
w(t) (6.10)

where eT = [χ, η]
T
, wT (t) = [0,Mu(t)]

T
and

H =

(

0 IN
−αL 0

)

. (6.11)

In the next subsection the properties of the error dynamics system above
will be stated.

6.2.3 Properties

The theoretical achievements discussed in this section follow the ones pre-
sented in [133] in the more general context of n > 1.

Assumption 6.4 The matrix H is nonsingular.

Remark 6.5. If the graph is connected, then the assumption 6.4 holds true.
Since as a consequence of Lemma 6.1, the matrix L has full column–rank
[48], then according to Theorem 2.1 in [6] the matrix H is nonsingular.

In order to establish boundedness for the vector error function e(t), Eq.
6.10 is rewritten in a discretized form by means of finite differences. In this
way, one has

ei+1 = Pei − cαwi (6.12)

where P = I2N + hH.
In what follows, e∞ will denote the error for t → ∞ and e0 the error at

t = 0.
Throughout the paper, ρ(P) will denote the spectral radius of the ma-

trix P. Besides, in what follows regarding inequalities, the component–wise
convention is assumed.

Theorem 6.6. Let 0 < h < 1. If ρ(P) < 1, then the following error bound
holds true:

e∞ ≤ e0 + c
α

h
H−1∆ (6.13)

where ∆ = MLDAΓ.

Proof. From Eq. 6.12, it follows that

ei+1 = Pi+1e0 − cα

i
∑

k=1

Pkwi−k ≤ Pi+1e0 − cα

i
∑

k=1

Pk∆ (6.14)
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where ∆ represents the upper bound for wi, since the maximum value of
the basic functions Aj(ti) is 1 for any i.

Note that on the right-hand side of Eq. 6.14 there is a geometric series of
matrices. Hence, the sum appearing there becomes (I2N − P)−1 for i → ∞.
Besides, since 0 < h < 1, the conclusion can be easily achieved.

Let c be a vector of real constants.

Remark 6.7. If ‖e∞‖ = ‖c‖, then quasi–consensus is achieved.

The following Theorem is now stated.

Theorem 6.8. Suppose that the hypotheses of Theorem 6.6 are satisfied.
Quasi–consensus is a sufficient condition for

|cα| ≤ h
σ(H)

‖∆‖ ‖e0‖ (6.15)

with σ(H) being the maximum singular value of the matrix H.

Proof. By assuming

e0 + c
α

h
H−1∆ = c (6.16)

one has

|cα|‖∆‖ ≤ h‖H(e0 − c)‖ (6.17)

so the conclusion is readily achieved.

6.3 A numerical experiment

In this section a numerical example is discussed. For more numerical examples,
even with n > 1 one can refer to [133].

A case with N = 4, and m = 25, p = 12 in a unit time interval, is
considered. Besides, cα/h = 0.00075. Sinusoidal shaped basic functions were
used. The Laplacian matrix for the undirected graph herein considered is

L =









0.5 −0.5 0 0
−0.5 1.5 −0.3 −0.7
0 −0.3 0.9 −0.6
0 −0.7 −0.6 1.3









. (6.18)

Under the hypothesis of Theorem 6.6 (i.e. ρ(D) ≤ 1), one can observe from
Figure 6.1 that both position and velocity errors are bounded.
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Fig. 6.1. Numerical example: (a) position errors, (b) velocity errors
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Combining direct and inverse fuzzy transform
in numerical solvers - Part II

Delay differential equations - In this chapter the joint use of direct and
inverse F–transform in a Picard-like scheme for solving a class of delay differ-
ential equations (DDEs) is discussed. The main reference for this chapter is
[132].

DDEs can be regarded as a modelling tool in many cases, e.g. growth
processes and epidemiology [2, 14], electrodynamics [30, 97], traffic models
[20] and control systems [32, 8]. Especially in the last case, linearized models,
such as the one herein discussed, are concretely used.

Several numerical techniques for solving DDEs were proposed (e.g. [28, 57,
30, 9, 148, 116, 53, 107, 156, 157, 27]).

Let us consider the following problem

y′(x) =

Q
∑

i=0

pi(x)y(x− ηi(x)) + g(x), x ∈ [x1, xm], (7.1)

under the condition y(x1) = y1 and where pi are continuous functions, as
well as the delay ηi(x) > 0, ∀x > x1, is a continuous function and x− ηi(x) is
strictly increasing for x > x1. There are many examples of first-order DDEs in
several fields [9], just to mention, such model was used to explain bursting in
neurons by delays. In particular, if ηi(x) = χix for any χi ∈ R+, then Eq. 7.1
becomes the so-called pantograph equation, which is a functional differential
equation with proportional delay [30]. In such case, for Q = 2, Eq. 7.1 can be
rewritten as

y′(x) = p0(x)y(x)+p1(x)y(χ1x)+p2(x)y(χ2x)+g(x), x ∈ [x1, xm] (7.2)

which is the problem herein considered.
This kind of problem was investigated in [117] and [69]: in [117] the Taylor

method was proposed, whereas in [69] θ–methods were discussed.
As one can be easily noticed, for p1(x) = p2(x) = 0, the problem 7.2

becomes a simple Cauchy problem. This problem was solved by means of fuzzy
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transform (F–transform) firstly in [101], where a generalization of the Euler
method was proposed, and more recently in [60], dealing with an alternative
approach to second-order Runge–Kutta methods.

Here, a new approach based on F-transform is proposed. Differently from
other approaches used to solve DDEs (e.g. [53, 27]), such approach is able to
reproduce exactly the initial condition.

Besides, for linear cases and under a certain condition, it becomes a non
recursive scheme, in terms of operational matrices.

Properties of the proposed method are formally discussed and a numerical
study, with a comparison against the cases existing in literature, presented.

7.1 Methodology and properties

Let us consider Eq. (7.2). Besides, let us consider m nodes xi ∈ I with the
fuzzy partition {A1, A2, . . . , Am} and n points xj ∈ I such that for each
i ∈ {1, . . . ,m}, there exists k ∈ {1, . . . , n}, with xk ∈ supp(Ai).

By applying the inverse operator L−1
x =

∫ x

x1
(·)dx to both sides of Eq. (7.2)

and by using the composition between direct and inverse discrete F-transform,
one has

y = y(x1) +

∫ x

x1

m
∑

i=1

Bi(x)

n
∑

j=1

y(xj)
Ai(xj)

pi
+

∫ x

x1

g(x)dx, (7.3)

where

Bi(x) = p0(x)Ai(x) + p1(x)Ai(χ1x) + p2(x)Ai(χ2x), (7.4)

pi =
n
∑

j=1

Ai(xj). (7.5)

By means of successive approximations, the solution y(x) can be written
as as

y(x) =
∞
∑

k=0

yk(x), (7.6)

by determining yk(x) recursively through the formulas

y0(x) = y(x1) +
m
∑

l=1

Cl(x)g(xl), (7.7)

yk+1 =
m
∑

l=1

Cl(x)
m
∑

i=1

Bi(xl)
n
∑

j=1

Ai(xj)

pi
yj,k, (7.8)

where Cl(x) are the coefficients of numerical integration
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Cl(x) =

∫ x

x1

ll(s)ds, (7.9)

with ll(x) being the Lagrange polynomial at the point xl.
By means of a coincise notation, one has

yk+1 = C(x)BPATyk, (7.10)

where C(x) is the m-sized row vector of the coefficients Cl(x), B is the ma-
trix with orderm, of which ijth entry is Bij = p0(xi)Ai(xj)+p1(xi)Ai(χ1xj)+
p2(xi)Ai(χ2xj), A is the n×m matrix whose ith row is (A1(xi), . . . , Am(xi)),
P is the diagonal matrix of which non-null ith entry is 1/pi and yk is the
n-sized vector of which jth element is yk(xj).

If one considers the truncated series

y[s] =

s−1
∑

k=0

yk = y0 +C(x)BPAT

s−1
∑

k=0

yk, (7.11)

and that

yk = Dyk−1 = Dky0, (7.12)

withD = CBPAT , beingC the matrix of which ith row is {C1(xi) . . . Cm(xi)},
then one has

y[s] =
s−1
∑

k=0

yk = y0 +C(x)BPAT

s−1
∑

k=0

Dky0. (7.13)

For the remainder of this chapter, ‖D‖ and ρ(D) will denote the matrix
norm and the spectral radius of the matrix D respectively. Besides, In will
denote the identity matrix with order n. In what follows, a uniform partition
is considered.

Lemma 7.1. Suppose that ‖D‖ < 1. Then the solution y(x) in Eq.7.13 is
given by

y(x) = y0 +C(x)BPAT (In −D)−1y0. (7.14)

Proof. Since in Eq. 7.13 there is a geometric series of matrices, by recalling the
hypothesis and that for any matrix norm ρ(D) ≤ ‖D‖, then the conclusion
easily follows for s → ∞.

In what follows, ej will denote the error at abscissa xj . Besides, x1 = 0
will be assumed. The following theorem is stated.
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Theorem 7.2. Suppose y′′(x) is a bounded function on I and let M =
sup
x∈I

|y′′(x)|. Suppose the hypothesis of Lemma 7.1 is satisfied. Then, for any

integer 1 ≤ j ≤ n, the following error bound holds true

|ej | ≤ |f(0, y(0))(j−1)h−C((j−1)h)
[

g +BPAT (In −D)−1y0

]

|+M
(j − 1)2h2

2
,

(7.15)
where f(0, y(0)) = [p0(0) + p1(0) + p2(0)] y(0)+g(0) and gT = (g(x1), . . . , g(xm)).

Proof. By means of the Taylor expansion of y(x)

y(x) = y(0) + y′(0)x+ y′′(ζ)
x2

2
, (7.16)

with ζ ∈ I, the error at xj can be written as

ej = y′(0)xj −C(xj)
[

g +BPAT (In −D)−1y0

]

+ y′′(ζ)
(xj)

2

2
. (7.17)

Thanks to Eq. 7.2 and with xj = (j − 1)h (since x1 = 0), the conclusion
is readily derived.

Since the elements of the vector C(x) are polynomials, Theorem 7.2 can
make evidence of convergence.

7.2 Numerical experiments

In this section, some numerical examples are provided. More example can be
found in [132].

For all the examples herein discussed, the hypothesis of Lemma 1 is satis-
fied.

7.2.1 Example 1

Because of comparative purposes, a simple Cauchy problem is first discussed.
This example was considered [101] and [60].

Here, p0(x) = −1, p1(x) = p2(x) = 0, g(x) = x2, y1 = 1, xm = 2.
By using the coordinate change x = x/2, the problem domain becomes

I = [0, 1], with r(x) = −2, g(x) = 8x2. The exact solution for this problem is:
y(x) = exp(−2x)

(

−1 + 2 exp(2x)− 4 exp(2x)x+ 4 exp(2x)x2
)

.
The absolute errors for the approximate solution at x = 1 are tabled in

Table 7.1: results by using sinusoidal shaped (sin) and Bernstein (bern) basic
functions are compared against known results in literature.

The best result is achieved by using sinusoidal shaped basic functions with
m = 9, which allow a maximum absolute error equal to 4.4E−03 at x = 0.91,
confirming the stability of the method.
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Table 7.1. Example 1: bsolute error for the approximate solution at x = 1

Euler-FT [101] Mid-FT [60] sin n = 15, m = 7 sin n = 15, m = 9 bern n = 15, m = 9

7.28 × 10−4 1.00 × 10−3 8.52 × 10−2 1.00 × 10−3 1.57 × 10−2

7.2.2 Example 2

This example was considered in [69] (where the errors were not tabled) and
in [117]. The latter will be used for a comparison.

It is: y1 = 1, χ1 = 1/2, χ2 = 1/4, p0(x) = −1, p1(x) = − exp(−x/2) sin(x/2),
p2(x) = −2 exp(−3x/4) cos(x/2) sin(x/4), g(x) = 0, xm = 1.
The exact solution is y(x) = exp(−x)cos(x).
The absolute error behavior is depicted in Figure 7.1: the dashed line is

referred to Bernstein basic functions with m = 19 and n = 24, the tick line
is referred to the Taylor method. The proposed approach gives higher error
than the Taylor method for x < 0.92, then the error decreases, confirming the
stability of the method. Instead, by the Taylor method, the error seems to be
increasing.

0.2 0.4 0.6 0.8 1.0
x

0.002

0.004

0.006

0.008

e

Fig. 7.1. Example 2: absolute errors by the Taylor method (thick line) and the
proposed method (dashed line)

7.2.3 Example 3

As a last example, the following case is considered: p0(x) = −1/5, p1(x) =
−1/5 exp(−3/4x), p2(x) = −3/5 exp(−1/2x), g(x) = 0, χ1 = 1/4, χ2 = 1/2,
y1 = 1, xm = 1.
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The exact solution is y(x) = exp(−x). Figure 7.2 shows the exact and
the approximate solution obtained by using Bernstein basic functions with
m = 20 and n = 22. The maximum error is 8.9× 10−3 at x = 0.6. At x = 1,
the error is 6.7× 10−3, confirming again the stability of the method.

0.2 0.4 0.6 0.8 1.0
x

0.5

0.6

0.7

0.8

0.9

1.0

y

Fig. 7.2. Example 3: graphs of the exact (thick line) and approximate (dashed line)
solutions
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Conclusions and future work

Fuzzy transform, F-transform for short, is a promising approximation tech-
nique introduced by Perfilieva, mainly applied to image compression/processing.
It is based on a linear combination of basic functions, giving a fuzzy partition
of the reference domain.

This work focused on:

• F-transform in rectangular domains,
• F-transform in computational schemes.

In particular, with regard to the first item, the least-squares (LS) approach
has been extended to the bivariate case and the main theoretical results can
be summarized as follows (see Chapter 2):

• by adopting B-spline basic functions with order r − 1 to generate fuzzy
partitions of the rectangular domain, a good approximation is achieved if
the dimensions of fuzzy partitions are much higher than r;

• in general, if the matrices generated through the adopted basic functions
are pseudo-banded matrices, the order of the computational cost depends
only on the dimension of the fuzzy partitions;

• by using the spectral properties of the above mentioned matrices, it is
possible stating the condition under which the error by the LS approach
is lesser than the one by a former F–transform based method.

Two possible applications in rectangular domains have been investigated,
that is compression (even addressing security issues) in Wireless Sensor Net-
works and Smart Grids. The numerical results by the proposed approach
outperfom the ones by state-of-the-art methods.

With regard to the use of F-transform in computational schemes, the fol-
lowing problems have been considered:

• multi-agent system based monitoring of Smart Grids,
• second-order multi-agent system with sampled data,
• delay differential equations (pantograph-type).
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The related teoretical results aimed at proving the quality of the approxi-
mation and the convergence.

In the following, a sketch of current and future work.
A local weighted regression model based on Lazy Learning, where the data

used for the learning process are compressed through fuzzy transforms is under
investigation, due to the promising first numerical results. The application
is short term wind power forecasting. Similarly to the application for the
monitoring of Smart Grids, F-transform is used to limit both the storage
occupancy due to large historical datasets and the running times of machine
learning algorithms.

A two-neuron system, where the delayed function is approximated by F-
transform, has been studied through a linear stability analysis, with a first
investigation on the Hopf bifurcation. Introducing the F-transform approxi-
mation seems to make easier to handle the system, which is converted into an
equivalent planar map, allowing to sketch the dynamics of it. Thanks to the
approximation properties of F-transform, it is reasonable assuming that the
approximate solution through F-transform belongs to the same topology of
the exact solution. Hence, the new system should exhibit similar dynamical
properties with respect to the original one.
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