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Abstract

In this dissertation we discuss several aspects of a two level system (qubit) in
the context of quantum mechanics and quantum �eld theory. The presence of
geometrical phases in the evolution of a qubit state is shown. We study geometric
structures, which are correlated to an unitary time evolution and its interesting
gauge structure. They can be very useful in quantum computational processes.

We illustrate the quantum �eld theoretical formulation of boson mixed �elds,
and oscillation formulas for neutral and charged �elds are found. We show that
the space for the mixed �elds is unitary inequivalent to the state space where the
unmixed �eld are de�ned, and we also derive the structure of the currents and
charges for the charged mixed �elds.

Phenomenological aspects of meson mixing in the presence of the decay are dis-
cussed. In particular, we show that the the e�ective Hamiltonian is non-Hermitian
and non-normal in the Wigner-Weisskopf approximation and we use the biorthonor-
mal basis formalism to diagonalize such an Hamiltonian. Finally, the presence of
CP and CPT violations in meson mixing is shown.
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Introduction

Quantum �eld theory is presented as an extension of quantum mechanics to the
relativistic domain. Sometimes it is referred to as "second quantization". Of course,
the reasons for that come from the historical developments in the formulation of the
quantum theory of elementary particle physics and solid state physics. However, a
closer view to the formalism of QFT shows that it is not necessarily related with the
relativistic domain and it is not simply a "second" quantization recipe subsequent
the quantization procedure in QM. For example, the QFT formalism is widely
used, with great success, in condensed matter physics, e.g. in the formulation of
superconductivity, of ferromagnetism, etc., where typically one does not refer to the
relativistic domain. On the other hand, in dealing with fermion �elds one cannot
rely on the quantization scheme adopted in QM for boson creation and annihilation
operators.

Quantum �eld theory (QFT) is quite di�erent from quantum mechanics (QM),
due to the well known von Neumann theorem, which characterizes in a crucial
way the structure of QM [1, 2]. In QM the von Neumann theorem states that for
systems with a �nite number of degrees of freedom all the representations of the
canonical commutation relations are unitarily equivalent. This means that they are
physically equivalent; namely, thevonneumann representations of the ccr are related
by unitary operators and, as well known, physical observables are invariant under
the action of unitary operators. Their value is therefore the same independently
of the representation one choses to work in. Such a choice is thus completely
arbitrary and does not a�ect the physics one is going to describe. The situation is
quite di�erent in QFT where the von Neumann theorem does not hold. Indeed, the
hypothesis of �nite number of degrees of freedom on which the theorem rests is not
satis�ed since �elds involve by de�nition in�nitely many degrees of freedom. As
a consequence, in�nitely many unitarily inequivalent representations of the ccr are
allowed to exist [3, 4, 5]. The existence of ui representations is thus a characterizing
feature of QFT and a full series of physically relevant consequences follows.

This Dissertation is organized as follows.

Part I is devoted to describing the unitary evolution of two level systems. In
particular, Chapter 1 contains a basic introduction to geometric phases and their
applications to the physical world: an adiabatic derivation of Berry phase and its
generalization to non�adiabatic one. In Chapter 2 we study the characterisation and
time evolution of a two level system and we show that it presents a Berry�like and an
Anandan�Aharonov phase. We obtain the general expression of covariant derivative
operator and it is associated to the free energy. The interesting phenomenon of
birefringence can be shown by gauge invariance of the time evolution of a two level
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xii Introduction

system. Aharonov�Anandan phase is related to the distance in projective Hilbert
space between the two independent quantum states.

In Part II we consider the non�unitary evolution of two level systems. Chapter
3 is devoted to describing the evolution of open systems in quantum theories: the
formalism of Kossakowski�Lindblad equation. The damped harmonic oscillator is
discussed as an simple model of open system and it was given a quantum �eld theory
description in term of a suitable free energy operator. The boson mixing in quantum
�eld theory is presented in Chapter 4, where we analyze the structure of currents
for mixed �elds and we derive the exact oscillation formula for complex and neutral
boson �elds. In Chapter 5 we study the meson mixing from the phenomenological
point of view and the fundamental aspect of their CP and CPT violations in the
Wigner�Weisskopf approximation.



Part I

Two level system: unitary evolution





CHAPTER 1

Geometric phases

In this chapter, we introduce a fascinating feature of quantum mechanics. In par-
ticular, we discuss the fundamental concept of geometric phase arising from time
evolution of a quantum mechanical state.

Geometric phases have been successfully investigated over the last decades and
they can be associated with a time evolution generator, which has a parametric
dependence. We observe a gauge�like structure relative to such systems, and which
may become manifest and characterizing for the physical system.

The aim of this chapter is to give a concise introduction into the mathematically
sound theory of geometic phase in quantum mechanics. In what follows we will show
the emergence of geometric phases in adiabatic evolution and their generalizations
to generic time evolution.

1.1. Introduction

From his studies on interference e�ects of polarised light beams, Pancharatnam
[6] introduced the important concept of geometric phase in quantum theory. This
geometrical phenomenon is well known in classical geometry, indeed Hannay [7]
found an analogue of the geometric phase for classical systems.

Moreover, Simon showed that the adiabatic evolution taken into account by
Berry can be seen as the so-called parallel transport of a vector state along a
curve in the parameter space. The Berry phase can have a elegant mathematical
interpretation as the holonomy of a suitable connection in the appropriate �bre
bundle.

In order to introduce such a fundamental concept, we can consider an intuitive
classic example [8], in which we take into account the parallel transport of a vector
around a closed loop on a smooth sphere. For simplicity, we can consider a unit
vector, which stays tangential to the geodesic at all times. It starts form the north
pole and is pointing in the direction of a meridian. Then you move the object
keeping it always parallel to its initial direction down the meridian until you reach
the equator and then move it parallel along the equator till another meridian which
keeps an angle of γ with the original one.

Then you move the vector back to the north pole along the new meridian
again keeping it always parallel. When you reach the north pole you observe that
the vector has turned around an angle γ, because it points in another direction.
Actually, it is linked to the intrinsic curvature of the sphere and it can demonstrate
that the rotation angle γ is proportional to the integral of the curvature on the
surface inside the closed loop. No such phenomenon would appear if vectors are
parallel�transported along a �at manifold.

3



4 1. Geometric phases

Figure 1.1. The parallel�transported vectors on the three�dimensional sphere
do not point in same direction because a non�null angle raises between them.

Such an example shows how the parallel transport of a vector along a closed
curve generates an interesting phenomenon, which is called a holonomy, i.e. some
variables, which describe the system, do not return to their initial value. Such an
e�ect was already known to Gauss and can be described by the so called Hannay
angles [9]. This concept plays a fundamental part in a variety of physical contexts
[10, 11, 12] These are all classical examples where a geometrical angles arises al-
though the system returns to its starting point. Nearly the same situation occurs
in quantum physics. Here a system picks up a geometrical phase which can be
identi�ed with a Hannay angle in the classical limit.

In the Pancharatnam paper [6] he de�nes the phase di�erence of two nonorthog-
onal states of polarization. Two states are in phase if the intensity of the superposed
state reaches a maximum. The phase di�erence between two beams can be speci�ed
as the phase change which has to be applied to one beam in order to maximize the
intensity of their superposition. It turns out that this phase has also geometrical
properties. One can think of this as the earliest appearance of a geometrical phase
de�nition in literature. This was pointed out by Ramaseshan and Nityananda [13]
in 1986. With this concept one is able to de�ne geometrical phases also for evo-
lutions that are not limited to the cyclic condition, as Samuel and Bhandari [14]
showed. The Pancharatnam phase has already been con�rmed in many experi-
ments. Independently, in molecular physics some aspects of geometric phases were
discussed by several authors [15, 16]. However it was Berry [17] who �rst realised
that the geometric phase is a generic feature of quantum mechanics. His approach
to the Abelian geometric phase was restricted to cyclic and adiabatic evolution of
non-degenerated pure quantum states, where the phase depends on the geometry
of the path the Hamiltonian traces out in parameter space. Subsequently Wilczek
and Zee [18] pointed out that adiabatic transport of a degenerate set of eigenstates
is associated with a non-Abelian geometric phase A non-abelian Wilczek and Zee
phase is a natural generalization of the Berry phase for systems described by an
Hamiltinian with degenerate spectra. Aharonov and Anandan [19] discovered the
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geometric phase for non-adiabatic evolutions where the phase depends on the ge-
ometry of the path in the state space. Later, Samuel and Bhandari [14] introduced
the notion of non-cyclic geometric phases.

1.2. Berry phase

A considerable understanding of the formal description of quantum mechanics has
been achieved after Berry's discovery of a geometric feature related to the motion
of a quantum system. In 1984 Berry printed a paper [17] in which he discovered the
geometric phase as a generic feature of quantum mechanics. Berry considered time
evolution of a quantum state with Hamiltonian H[z(t)] depending on adiabatically
and cyclic changing parameters z(t), and was able to show that a part of the total
phase acquired by the systems state vector during one period of z(t) depends only
on the geometric properties of the curve z(t) in the parameter space. As a matter of
fact, he found that an additional phase factor occurs in contrast to the well known
dynamical phase factor. Berry points out the geometrical character of this phase
which is not negligible because of its nonintegrable character. Berry shows that
this was not correct because the phase is gauge invariant and therefore can not be
gauged away. Since this much work has been done on this issue and the so called
Berry phase is now well established, theoretically as well as experimentally. In next
section we could provide a derivation of Berry phase in an adiabatic time evolution.

1.2.1. Derivation in adiabatic transformation

The adiabatic evolution of a quantum state vector |ψ(t)⟩ is governed by a param-

eter dependent Hamiltonian Ĥ[z(t)], which is depends on time exclusively via the

parameter zt ≡ z(t) and we suppose that for any zt the Hamiltonian Ĥ(zt) has a
purely discrete spectrum:

Ĥ(zt)|n(zt)⟩ = En(zt)|n(zt)⟩ (1.1)

with ⟨n(zt)|m(zt)⟩ = δnm and the state vector is an eigenstate of the Hamiltonian at
time t and that the parameters z(t) share varied along a closed path Γ in parameter
space. Let us assume that the nth eigenvalue En(zt) is nondegenerate and the

P̂n(zt) = |n(zt)⟩⟨n(zt)| is the corresponding one-dimensional projector onto the nth

eigenspace Hn(z), which we write Ĥn(zt) ≡ {β|n(zt)⟩|β ∈ C}. The eigenvectors
|n(zt)⟩ are not uniquely de�ned by Eq. (1.1). One may arbitrarily change its phase

|n(zt)⟩ → eiβn(zt)|n(zt)⟩ (1.2)

where βn(zt) ∈ R. Obviously, the phase transformation does not change P̂n(zt) Due
to the adiabatic theorem, ψ(t) stays in nth eigenspace of Ĥ(t) during the adiabatic
evolution, indeed if the time evolution is slow enough then the state vector remains
an eigenstate of the Hamiltonian for all time t > 0. Therefore, if the evolution is
cyclic, i.e. a curve Γ is closed (z(0) = z(t)), then |n(0)⟩ and ψ(T ) both belong to

Ĥn(z) and hence they may di�er only by a phase factor, that will have an additional
component that has a purely geometric origin. It depends upon the geometry of
manifold M and the circuit Γ itself. |ψ(t)⟩ and |n(zt)⟩ di�er by a time-dependent
phase factor:

|ψ(T )⟩ = eiγ(T )|ψ(0)⟩ (1.3)
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where |ψ(0)⟩ represents an eingenstate of Hamiltonian Ĥ(t), with

γ(T ) = − 1

h

∫ T

0

En(t)dt+ γn(Γ) (1.4)

after substitution of Eq. (1.3) in the Schrödinger equation and we can eliminate
exponential terms by applying ⟨ψ(t)| on left side

γ(T ) = −1

2

∫ T

0

En(t)dt+ i

∫ T

0

⟨n(zt)|
d

dt
|n(zt)⟩dt (1.5)

Thus, the total phase has to be supplement by the following geometric quantity
γn(Γ), named Berry phase

γn(Γ) = i

∫ T

0

⟨n(zt)|
d

dt
|n(zt)⟩dt (1.6)

and corresponding to cyclic adiabatic evolution along Γ.

1.3. Generalization: non-cylic phase

From the original de�nition of geometric phase given by Berry, many generalizations
have been proposed. In particular, it was soon recognized that there is no reason
for the evolution to be adiabatic. In fact, the adiabatic condition is never exactly
ful�lled in real processes. Furthermore, there are other generalisations of Berry
phase to complex valued geometric phases [20] for non-Hermitian Hamiltonians
and to o�-diagonal geometric phases [21], and also such as the Hannay angle, [9],
and the geometric phase for non-linear �elds [22]. The Hannay angle has also been
generalised to the non-adiabatic case [23]. In addiction, it is possible to de�ne and
measure Berry phases for arbitrary open paths, provided that the evolved state at
the end of the path is not orthogonal to the initial one. One may consider cyclic
evolutions that are not restricted by an adiabatic condition. This means that we
need no parameter space to describe the cyclic evolution of the Hamiltonian but
only the projective Hilbert space where the system traces out closed curves. Berry
phase is then a special case of this so called Aharonov�Anandan phase. This is
also the reason why Berry tried to remove the adiabatic condition by calculating
adiabatic correction terms [24]. Soon after the work of Aharonov and Anandan
several other generalizations occurred which are not treated in this work.

1.3.1. Aharonov�Anandan phase

In the original Berry paper the Berry phase was studied within the framework of
adiabatic approximation. However, as it was noticed by Aharonov and Anandan
[19], one can relax the assumption about the validity of adiabatic approximation still
retaining non-trivial phase factor called afterwards the Aharonov�Anandan phase.
Aharonov and Anandan realised that the notion of geometric phase is independent
of the adiabatic theorem. Even if the Hamiltonian is unknown and we only know
the path of the state, the total phase change of a state vector after a cyclic evolution
can be decomposed into a dynamical part, expressed in terms of the expectation
value of the Hamiltonian, and a geometric part. Consider a non-adiabatic evolution
of a state vector solution of the Schrödinger equation

i~
d

dt
ψ(t) = Ĥψ(t) (1.7)
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while de�nes a trajectory t→ ψ(t) in the Hilbert space H .
If the initial state vector ψ(0) ∈ S (H) ≡ {ψ ∈ H |⟨ψ|ψ⟩ = 1} then the

solution ψ(t) remains in S (H ) for any t. Such a trajectory on S (H ) projects
onto a trajectory in the quantum phase space. This de�nes a solution to the von
Neumann equation

i~
d

dt
P̂(t) = [Ĥ, P̂(t)] (1.8)

Suppose that a trajectory P̂(t) ≡ |ψ(t)⟩⟨ψ(t)| is closed. We call such an evolution

cyclic. We stress that we do not make any assumption about the Hamiltonian Ĥ of
the system. It is not even important whether or not it depends on time. Since ψ(t)
and ψ(0) de�ne the same physical state they may di�er by a phase factor only.

ψ(T ) = eiϕψ(0), (1.9)

for some ϕ ∈ [0, 2π). Our task in this section is to �nd the phase shift ϕ knowing

the system Hamiltonian Ĥ and a closed trajectory P̂(t). First of all, let us note that

we may make certain changes to Ĥ without a�ecting P̂(t). It is evident from the
commutator structure of von Neumann equation that the following transformation:

Ĥf = Ĥ + f(t) (1.10)

where f(t) is any real function of time, leaves the solution invariant. The corre-
sponding solution to the Schröndiger equation changes as follows

ψf (t) = eiϕψ(0) (1.11)

with

ϕf = ϕ− 1

~

∫ T

0

f(t)dt (1.12)

Therefore by performing a trivial change of the Hamiltonian we may change the
corresponding phase ϕ completely arbitrarily. However, as was shown by Aharonov
and Anandan, the total phase is ϕ = ϕdyn + ϕgeo and the geometric part ϕgeo is
invariant under the transformation (1.10) and depends only on the closed curve

P̂(t) in quantum phase space. To see this let us take a function f = f(t). Note
that f(t) then satis�es

ϕ =
1

~

∫ T

0

f(t)dt (1.13)

where ϕ is de�ned in Eq. (1.9). The new function ψ(t) solves the Schrödinger
equation

i~
d

dt
ψ(t) = (Ĥ+ f(t))ψ(t)) (1.14)

and hence, taking a scalar product with ψ(t) and integrating over time from 0 to
T one obtains∫ T

0

⟨ψ(t)| d
dt
ψ(t)⟩dt = 1

~

∫ T

0

⟨ψ(t)|Ĥ|ψ(t)⟩dt+ 1

~

∫ T

0

f(t)dt (1.15)

Therefore, using (5.88), we �nd the following formula for the phase shift ϕ

ϕ =

∫ T

0

⟨ψ(t)| d
dt
ψ(t)⟩dt− 1

~

∫ T

0

⟨ψ(t)|Ĥ|ψ(t)⟩dt (1.16)
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1.4. Experiments and Applications

In this section, we shortly report some experimental applications on the interpreta-
tion, characterization and application of geometric phases especially in the context
of the quantum information. In any case, there are many di�erent physical appli-
cations and approaches for the geometrical phase in the physical world.

1.4.1. Aharonov�Bohm e�ect

In 1959 a famous experiment was performed by Yakir Aharonov and David Bohm
[25]. They showed the presence of a phase shift acquired by electron beams due to
their di�erent paths in space surrounded by a electromagnetic vector potential.

The electromagnetic vector potential Â has no physical signi�cance in quantum
theory, but it is useful to represent the electric and magnetic �elds. Futhermore, the
Schrödinger equation for charged particles is expressed also in terms of the vector
Â and Aharonov and Bohm pointed out that the potential Â have a signi�cance
in quantum mechanics. the gauge determines the phase of the wave function. This
phase is not itself measurable, but what is signi�cant is the interference between
di�erent paths between the same points. The interference dependes on the integral
of the vector potential around the loop made up of the two paths or equivalently
on the magnetic �ux passing through a surface bounded by the loop. This is
essentially the Aharonov�Bohm e�ect. The schematic experiment con�guration for
such a physical process is shown in Fig. (1.2)

Figure 1.2. The reduced scheme of Aharonov�Bohm experimental setup (see
ref. [25])

An electron beam is split into two coherent beams. They pass on opposite
sides of the solenoid and then interfere. Although there are not magnetic �elds
outside the solenoid (in the region in which the charged particles move) a relative
phase shift between the two waves can be observed as an interference pattern. The
corresponding phase shift ∆ϕ is given by the following formula

∆ϕ =
qΦ0

~c
=

q

~c

∮
Â · dl (1.17)

where the integral is carried out along a closed curve formed by the union of the
two paths. Although the magnetic �eld vanishes everywhere outside the solenoid,
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the vector potential Â cannot vanish there. This is because the loop integral of Â
around the solenoid is equal to the magnetic �ux

Φ0 =

∫
Σ

B · dS (1.18)

through the solenoid. Note that the interference pattern is invariant under

Φ0 → Φ0 + n
hc

q
(1.19)

since ∆ϕ → ∆ϕ − 2πn It is clear that the AB phase shift ∆ϕ may be interpreted
as a geometric Berry phase that a charged particle accumulates by circling around
a solenoid carrying a non-zero magnetic �ux. The common feature is that both
phases are non-integrable, i.e. independent of the initial and �nal value of the
integrand. But whereas the geometric phase is local due to dependence of local
changes of the physical state, the topological phase is non-local in the sense that
it cannot be de�ned at a point in space but only as a closed integral enclosing a
magnetic �ux or not, i.e. solely dependent upon a topological structure. This is
the reason why there is non-cyclic geometric phases, but no non-cyclic topological
phases [26]. It has been shown that one can formulate the non-cyclic geometric
phase in terms of a gauge-invariant reference section [27, 28] which also shows that
the geometric phase is local. Aharonov and Bohm also described a phase e�ect for
a charged particle due to an electric �eld, known as electric AB phase (EAB).

1.4.2. Geometric phase: experimental setups

Several experimental veri�cations have been performed to detect the geometric
phases in physical world as the measurements of the adiabatic geometric phase for
neutron spin [29], photons [30], nuclear magnetic resonance (NMR) [31], and nuclear
quadrupole resonance (NQR) [32]. Also the adiabatic geometric phase has been
observed for two entangled nuclear spin systems in NMR [33]. The non-adiabatic
geometric phase has been measured in NMR [34]. The adiabatic geometric phase
for a classical chemical oscillator [35] has been measured, as well as for molecular
systems [36]. Furthermore, the o�-diagonal geometric phase has been veri�ed in
neutron interferometry [37]. Interferometry is a technique familiar to all physicists
and can be carried out with any wave phenomenon. An incident beam of particles
with wavelength λ is split and then recombined, forming an interference pattern.
This interference pattern is sensitive to any change in the e�ective path length of
one (or both) leg(s) of the interferometer, and changing this "optical" path length
in a controlled manner allows the experimenter to probe the perturbing interaction
with extraordinary precision. One of �rst experiments was perform with photons,
because they are rather easy to generate and manipulate in lab.

An experimental evidence of geometric phase was found by Chiao, Wu and
Tomita [38, 39]. In their experiment, it was considered the spin of photons. In
particular, they considered the elicity of photons, which is the projection of the
photon's spin vector along the direction in which it is travelling, it can be easily
turned by changing the direction of travel in a coiled optical �bre. Chiao, Wu
and Tomita considered a linearly polarized photon propagating in the direction of
a wave vector K(t) by sending a light along an optical �bre. The optical �bre is
coiled such that the initial and �nal directions of extremities of the �bre coincide. we
can introduce for convenience a suitable basis {|ξ1, k⟩, |ξ2, k⟩} on a plane orthogonal
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Figure 1.3. Photon experimental setup (see ref. [39])

to tangential vector of optical �bre. We consider now linearly polarized light which
is a superposition of the helicity eigenstates

|ψ(0)⟩ = 1√
2
(|ξ1, k⟩+ |ξ2, k⟩) (1.20)

the initial linear polarization is a superposition of two polarized waves. The helicity
eigenstates acquire a geometric phase after passage through the optical �bre. The
�nal polarization state is then given by

|ψ(T )⟩ = 1√
2

(
e−

i
}E1T+iΩ|ξ1, k⟩+ e−

i
}E2T−iΩ|ξ2, k⟩

)
(1.21)

After propagation through the �bre at a time T each eigenstates picks up a dynam-
ical and a geometrical phase factor.

|ξσ, k⟩ → e−
i
}EσT−iΩ|ξσ, k⟩ (1.22)

where σ = 1, 2, thus the geometric phase that appears for circularly polarized
photons corresponds to rotation of the linear polarization vector |ψ(t)⟩ by angle Ω.

Neutrons are an another useful particles to use for diplaying the geometric
phase in physical world. They obey to Fermi�Dirac statistics and they are sensitive
to the four "basic" interactions. Thus, neutron interferometry provides a powerful
tool for investigations and testing fundamental physics concepts, especially in the
�eld of geometric phases. Indeed, the existence of the neutron interferometer stress
the wave�particle duality of quantum mechanics. the spinor rotation of a spin�1/2
particle can be described by assuming two bases namely "up" and "down" spin
eigenstates, and by assigning appropriate phase shifts due to the magnetic �eld. In
the spatial case the two�dimensional Hilbert space is spanned by the two possible
paths in the interferometer. It has been experimentally veri�ed that a geometric
phase for cyclic , as well as non�cyclic evolutions , can be induced. In the case of
spinor evolution, where the geometric phase is generated in spin subspace, the spinor
rotations are carried out independently in each sub-beam due to the macroscopic
separation of the partial beams in the interferometer. Geometric phase e�ects
are observed when the two sub-beams are recombined at the third plate of the
interferometer followed by a spin analysis. In 1996 an interesting interferometer
experiment with neutrons was performed by Hasegawa, Zawisky, Rauch and Io�e
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[40]. They use a two loop neutron interferometer which consists of loop A, where
the geometric phase is generated, and loop B, which is a reference beam for the
measurement of the phase. Various geometric phases can be generated by di�erent
combinations of a phase shifters (PS I) and an absorber. Another phase shifter (PS
II) in Loop B allows to measure the geometrical phase shift. In this experiment it
is possible to get rid of the dynamical phase by a certain choice of the experimental
setup. It is useful to compare the interferometer with a spin�1/2 system. The

Figure 1.4. Neutron interferometry setup (see ref. [40])

two basis states "up" and "down" are identi�ed with the two possible paths in
the interferometer. In each path the neutron gets a certain phase shift χi. The
recombined beam is said to be in phase with the initial one if the total phase shift
is an integer multiple of 2π

χI − χII = 2πn (1.23)

This gives the cyclicity condition for the system. The dynamical and the geometrical
phase are de�ned in total analogy to the spin�1/2 case. We get for the dynamical
phase

ϕdyn(T ) = −1

}

∫ T

0

⟨ψ(t)|Ĥ|ψ(t)⟩dt = 1

1 + T
[χI + TχII ] (1.24)

The geometrical phase is given by β(T ) = ϕtot(T ) − ψdyn(T ) where ϕ is the total
phase shift during the cyclic evolution. To observe only the geometrical phase
one has to set the change of the dynamical phase to zero. This is assured by the
following condition

∆χI − T∆χII = 0 (1.25)

where ∆χσ (σ = {I, II}) stands for the change of phase in the σ path and T is
the transmission probability of the absorber in path II. Then the observed total
phase shift is equal to the geometrical phase shift.

Berry phases can be conveniently demonstrated in an NMR experiment [41] by
working in a rotating frame. Zanardi and Rasetti [42] were the �rst to point out



12 1. Geometric phases

that Berry phases could be used for enabling quantum computation. Geometric
phases are proper candidates for realizing low noise quantum computing devices.
Because of the dependence only on the net area traced out in phase space the
geometric phase is an ideal construction for fault-tolerant quantum computation.

In the experiments a conditional geometric phase is applied, which means that
the state of one spin determines the geometric phase acquired by the other spin.
But the adiabatic geometric phase has also several drawbacks. First one is limited
in time by the adiabatic condition which has to be removed to take full advantage
of the short coherence time of the quantum computer. The second point is that one
wants to get rid of the dynamical phase. This is done by using the so called spin-
echo technique where the adiabatic evolution is applied twice in reversed direction.
But here additional errors can be produced if the second path is not exactly the
reversed of the �rst path and therefore the dynamical phase does not exactly cancel
out.

1.4.3. Holonomic quantum computation

Quantum computers are more powerful computational tools than Turing machines
and they can perform tasks which seem intractable for classical computers. Entan-
glement and quantum coherence are the main ingredients for quantum information
processing and any quantum computation can be build out of simple operations in-
volving only one or more quantum bits. From the Feynman idea [43], a �rst scheme
of a universal quantum computer and related quantum algorithm were suggested
by Deutsch in his famous paper [44]. In 1994 Shor [45] proposed an important
quantum algorithm, which can factor large numbers more faster than any classical
algorithm. Later, another quantum algorithm, discovered by Grover [46], makes
it possible to search in an unsorted database for an element and is faster when
compared to the classical algorithms by the square root of the number of elements
in the database.

Despite the impressive progress in quantum computation, quantum informa-
tion is extremely fragile, due to inevitable interactions between the system and its
environment and it is important to maintain the coherence in the system when we
increase the number of computational units. These interactions are main practical
obstacle and they cause the system to lose part of its quantum nature, a process
called decoherence. Deutsch [47] suggested the error correction method to overcome
the impurities in quantum systems [48]. This idea has been step by step improved,
e.g. by Palma et. al. who introduced decoherence free subspaces [49], and in partic-
ular by Shor [50] who proposed a quantum analog of classical error correcting codes,
which makes possible to use redundant encoding of qubits to correct quantum gate
errors due to interaction with the environment. Another method to reach coher-
ent quantum computing is to use geometric or topological quantum computation.
In other words, the fundamental topic is represented by the experimental realisa-
tion of the basic constituents of quantum information processing devices, namely
fault-tolerant quantum logic gates.

The idea is to exploit this inherent robustness provided by the topological prop-
erties of some quantum systems as a means of constructing built-in fault�tolerant
quantum logic gates. Various strategies have been proposed to reach this goal, some
of them making use of purely geometric evolutions, i.e. non-Abelian holonomies
[51, 52]. Others make use of hybrid strategies that combine together geometrical
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and dynamical evolutions [33], and others yet use more topological structures to
design quantum memories [53]. A quantum computer processes qubits by quantum
gates. Such operators represent unitary trasformations that act in Hilbert space.
The concept of topological invariance arises naturally in the study of fault tolerance.
Topological properties are those that remain invariant when we smoothly deform a
system, and a fault-tolerant quantum gate is one whose action on protected infor-
mation remains invariant (or nearly so) when we deform the implementation of the
gate by adding noise. To achieve fault tolerant quantum computation we can use
the geometric phase to implement quantum gates. Such phases are, as mentioned
before, fault tolerant to state space area preserving operations.

The advantages of using geometrical evolution are several. First of all, there
is no dynamical phase in the evolution. This is because we are using degenerate
states to encode information so that the dynamical phase is the same for both
states. Also, all the errors stemming from the dynamical phase are automatically
eliminated. Secondly, the states being degenerate do not su�er from any bit �ip
errors between the states. So, the evolution is protected against these errors as well.
Thirdly, the size of the error depends on the area covered and is therefore immune
to random noise in the �rst order in the driving of the evolution. This is because
the area is preserved under such a noise as formally proven by DeChiara end Palma
[54]. Also, by tuning the parameters of the driving �eld it may be possible to make
the phase independent of the area to a large extent and make it dependent only
on a singular topological feature - such as in the Aharonov�Bohm e�ect where the
�ux can be con�ned to a small area - and this would then make the phase resistant
under very general errors.





CHAPTER 2

Two level system

2.1. Introduction

In Nature a wide range of physical systems can be modeled by using a simple two
level system. Indeed, the properties of these systems can be represented analytically
without any kind of approximation in a two-dimensional space. Such systems are
not only of academic interest, actually many interesting modern developments in
quantum theories and applications to the physical world involve systems, which are
described by two independent quantum states.

The classic example is the intrinsic spin of an subatomic particle, a purely
quantum mechanical observable that can take on only "up" and "down" values.
For instance we can take into account the general description of two state systems
using the ammonia molecule and there are several applications to nuclear magnetic
resonance, the ammonia maser, neutrino oscillations, and the physics of strange
particles (kaons).

Another signi�cant case of two-level system is displayed by the photon, which is
the quanta of electromagnetic �eld. It can have only two orthogonal polarizations.
The photons di�er from the spin- 12 particles because they are massless bosons with
spin-1. In this chapter we will report some results of references [55, 56]

2.2. General formalism in quantum mechanics

In quantum information, the elementary unit is called the "quantum bit" or qubit
and corrispondig to the bit, which is de�ned in classical information. A qubit can
be modelled with an atom, nuclear spin, or a polarised photon and it lives in the
smallest nontrivial Hilbert space, in which we may introduce an orthonormal basis
for a two-dimensional vector space as {|0⟩, |1⟩}. In such a space, the most general
normalized state can be written as

a|0⟩+ b|1⟩, (2.1)

where a and b in general are complex numbers and the global phase is physically
irrelevant. When we perform a measurement on the qubit, the measurement irre-
vocably disturbs the state, except in the cases a = 0 and b = 0. We can consider a
generic generator of phase transformation:

Ĥ = ω1|0⟩⟨0|+ ω2|1⟩⟨1| . (2.2)

The states |0⟩ and |1⟩ are eigenstates of Ĥ associated to the eigenvalues ω1 and ω2,
respectively:

Ĥ|0⟩ = ω1|0⟩ , Ĥ|1⟩ = ω2|1⟩ . (2.3)

15
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with non-degenerates eigenvalues ω1 and ω2 that can denote the values of a quantum
number (energy, or charge, or spin, etc.) characterizing the states |0⟩ and |1⟩,
respectively. In the following, we shall consider them as the energy eigenvalues in
natural units (} = c = 1). At time t = 0, we perfom a convenient rotation in the
plane {|0⟩, |1⟩}, so we obtain the superpositions:

|ϕ(0)⟩ = cos θ |0⟩ + sin θ |1⟩ , (2.4)

|ψ(0)⟩ = − sin θ |0⟩ + cos θ |1⟩ . (2.5)

The orthonormality conditions between the states |ψ⟩ and |ϕ⟩ require that the
complex parameters a and b have to satisfy the relations

|a|2 + |b|2 = 1 ,
(a∗)b− a(b∗) = 0 .

(2.6)

In other word, we set the coe�cients a = eiγ1 cos θ and b = eiγ2 sin θ and the
di�erence of phases is ∆γ ≡ γ1 − γ2 = nπ, n = 0, 1, 2....

In general, in the preparation process we have a limited control on the �uctu-
ations of the a and b coe�cients (the initialization problem [57, 58, 59]). However,
in some cases, such as in nuclear magnetic resonance and electron spin resonance
systems, a good precision may be reached in the control of the initialization prob-
lem [60]. Since t denotes the time parameter, Ĥ plays the role of the Hamilton-

ian operator and the time evolution operator is e−itĤ. Applying it to the states
Eqs. (2.4)(2.5) we obtain

|ϕ(t)⟩ = e−iĤt|ϕ(0)⟩ = e−iω1t(cos θ|0⟩+ e−i(ω2−ω1)t sin θ|1⟩) , (2.7)

|ψ(t)⟩ = e−iĤt|ψ(0)⟩ = e−iω1t(− sin θ|0⟩ + e−i(ω2−ω1)t cos θ|1⟩) . (2.8)

with ⟨ϕ(t)|ψ(t)⟩ = 0 and ⟨ψ(t)|ψ(t)⟩ = 1, ⟨ϕ(t)|ϕ(t)⟩ = 1, for all t. We note that the
states |ϕ(t)⟩ and |ψ(t)⟩, for all t and ω1 ̸= ω2, are not eigenstates of Hamiltonian.
If we consider the matrix element of the Hamiltonian on new basis {|ψ(t)⟩, |ϕ(t)⟩}
then we have

⟨ϕ(t)| Ĥ |ϕ(t)⟩ = ω1 cos2 θ + ω2 sin2 θ = ωϕϕ , (2.9)

⟨ψ(t)| Ĥ |ψ(t)⟩ = ω1 sin2 θ + ω2 cos2 θ = ωψψ , (2.10)

⟨ψ(t)| Ĥ |ϕ(t)⟩ = ⟨ϕ(t)|H|ψ(t)⟩ =
1

2
(ω2 − ω1) sin 2θ = ωϕψ , (2.11)

and ωϕψ = ωψϕ. Notice that the matrix elements of Ĥ in these equations are
time-independent. We can rewrite above relations as

ωϕϕ = ω1 + δω12 sin
2 θ, (2.12)

ωψψ = ω1 + δω12 cos
2 θ, (2.13)

ωϕψ = δω12 sin θ cos θ. (2.14)

and we also have

tg2θ =
2ωϕψ
δωϕψ

. (2.15)

where we introduce the notation

δωϕψ ≡ ωψψ − ωϕϕ (2.16)

δω12 ≡ ω2 − ω1. (2.17)
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We remark that the variance in the phase ∆ω is given by the o�-diagonal matrix
element of Ĥ, Eq. (2.11). Indeed, we �nd that

∆ω2 = ⟨ξ(t)|Ĥ2|ξ(t)⟩ − ⟨ξ(t)|Ĥ|ξ(t)⟩2 = ω2
ϕψ , (2.18)

with ξ = {ϕ, ψ} . We also remark that as far as γ1(t) = γ2(t) (i.e. ω1 = ω2) the

operator Ĥ is invariant under the rotation by θ in the plane {|0⟩, |1⟩} (cylindrical

symmetry under the U(1) phase transformation: Ĥ → Ĥ′ = Ĥ)

|0⟩ → |ϕ(0)⟩ = cos θ |0⟩ + sin θ |1⟩ , (2.19)

|1⟩ → |ψ(0)⟩ = − sin θ |0⟩ + cos θ |1⟩ , (2.20)

and for γ1(t) = γ2(t) these rotated states, |ϕ(0)⟩ and |ψ(0)⟩, are still eigenstates of
H.

However, such a cylindrical symmetry is broken due to any �uctuation in the
phases making them di�erent at any point of the quantum computation circuit
where ω2(t) − ω1(t) ̸= 0. In such cases, ∆ω ̸= 0 and nonvanishing o�-diagonal

matrix elements of Ĥ, Eq. (2.11), appear. Indeed, by using Eqs. (2.19), (2.20) and
Eq. (2.2), we obtain for any t:

Ĥ = ωϕϕ|ϕ(t)⟩⟨ϕ(t)|+ ωψψ|ψ(t)⟩⟨ψ(t)|+ ωϕψ(|ϕ(t)⟩⟨ψ(t)|+ |ψ(t)⟩⟨ϕ(t)|) , (2.21)

which immediately gives Eqs. (2.9)�(2.11) and shows that, when the degeneracy in

the phases is removed (i.e. δω12 ̸= 0), Ĥ acquires the ωϕψ �mixed term� responsible
for �oscillations� between the states |ϕ(t)⟩ and |ψ(t)⟩ (Same situation occurs in the
mixing of neutrinos and in general of particles with di�erent masses [61]).

These terms are known also to control the (linear) entropy associated to the
mixed states, whose density matrix is cos2 θ |0⟩⟨0|+ sin2 θ |1⟩⟨1| and whose proba-
bility of being in the state |0⟩ is cos2 θ and of being in the state |1⟩ is sin2 θ.

2.2.1. Geometric representation: Bloch sphere

In quantum mechanics, a very useful caratterization of a quantum mechanical sys-
tems is the formalism of density operator. A quantum state can be described by
a density operator ρ̂ = |χ⟩⟨χ| that acts on the Hilbert space and not contain any
information about the global phase associating with the relative state. It enables
to obtain all the physical predictions that can be calculated from |χ⟩.

Thus, we can rewrite the Eqs. (2.4) and (2.5) as

ρ̂ξ = |ξ⟩⟨ξ| (2.22)

where |ξ⟩ = {|ψ⟩, |ϕ⟩}, the ρξ operator is one-dimensional projector of pure state
|ξ⟩. the density operator is represented in {|0⟩, |1⟩} basis by a matrix called the
density matrix, whose elements are ρ = ⟨σ| ρ̂ξ |τ⟩, σ, τ ∈ {0, 1}. In our case, the
density matrix has four elements and can be expanded in the basis of Pauli matrices
{I, σ1, σ2, σ3}, so ρξ will be expressed as

ρξ =
1

2
(I +Σi aiσi) (2.23)

where {ai} are the components of the Bloch vector of the quantum state. Moreover,
The eigenvalues of ρξ matrix are given by

1

2
(1± |a|) (2.24)
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and Det [ρξ] =
1
4 (1 + |a|2). Where |a| ≤ 1, because the density operators must be

positive-semide�nite. The whole set of density matricies has a natural correspon-

Figure 2.1. The Bloch sphere

dence with the points of the unit three-dimensional solid sphere, which is generally
called the Bloch sphere. In fact, It can represent density matricies of spin�1/2,
which are also described as

1

2

(
1 + a b+ ic
b− ic 1− a

)
(2.25)

The boundary of the Bloch sphere contains the density matrices with vanishing
determinant, which stand for pure states because they are formed by simple pro-
jectors. Since Tr [ρξ] = 1, these density matrices must have eigenvalues 0 and 1.
The pure state of a single qubit is of the form |ψ(θ, ϕ)⟩ and can be envisioned as a
spin pointing in the (θ, ϕ) direction. Indeed using the property (n̂ · σ) = 1 where n̂
is a unit vector, we can easily verify that the pure-state density matrix

ρ(n̂) =
1

2
(1 + n̂ · σ) (2.26)

satises the property (n̂σ)ρ(n̂) = ρ(n̂)(n̂σ) = ρ(n̂) and, therefore is the projector
ρ(n̂) = |ψ(n̂)⟩⟨ψ(n̂)|, that is, n̂ is the direction along which the spin is pointing up.
we may compute directly that

ρ(n̂) =
1

2
(1 + n̂ · σ) (2.27)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). One good property of the Bloch parametriza-
tion of the pure states is that while |ψ(θ, ϕ)⟩ has an arbitrary overall phase that
has no physical signi�cance, there is no phase ambiguity in the density matrix
ρ(n̂) = |ψ(n̂)⟩⟨ψ(n̂)| and all the parameters in ρ have a physical meaning.
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2.3. Global phase in time evolution

The quantum state of a system is only determined up to a phase and they are
de�ned as equivalence classes of the vectors in Hilbert space H , which are called
the projective Hilbert space P. When a system evolves in time it is described by
the time dependent Schrödinger equation. The solution of this di�erential equation
is given by a phase factor times the initial state. This phase factor is called the
dynamical one, because it comes from the dynamics of the system. As we have seen
in the �rst chapter, also other additional phase factors can occur. The total phase
a system, that is gained during its evolution, will be the sum of the dynamical and
the geometrical phase.

2.3.1. Dynamical phase

The phase di�erence between the states at two times t1 and t2 called the total
phase, is given by

ϕt = arg⟨ψ(t1)|ψ(t2)⟩ (2.28)

the dynamical phase can be de�ned as

ϕd = −1

~

∫ t2

t1

⟨ψ(t)|H(t)|ψ(t)⟩dt (2.29)

If the Hamiltonian is time-independent and |ψ(0)⟩ is an eigenvalue En then the
dynamical phase is the same the total phase

ϕt = ϕd =
En(t1 − t2)

~
(2.30)

The state |ξ(t)⟩, apart from a phase factor, reproduces the original state at time
t = 0 after a period T = 2π

ω2−ω1
:

|ξ(T )⟩ = eiφ|ξ(0)⟩ , φ = − 2πω1

ω2 − ω1
, (2.31)

where it is essential that ω1 ̸= ω2. One thus recognizes that such a time evolution
does contain a purely geometric part, i.e. the Berry�like phase. The total phase
acquired during an evolution of a quantum system generally consists of two compo-
nents: the usual dynamical phase ϕd and the geometric phase ϕg. The dynamical
phase, which depends on the dynamical properties, such as energy or time, is given
by ϕd.

2.3.2. Geometric phase

As we have shown in previous sections the quantum state exhibits an additional
phase, when it performs a cyclic evolution and in particular it presents a purely
geometric phase. The peculiarity of the geometric phase lies in the fact that it does
not depend on the dynamics of the system, but purely on the evolution path of
the state. We observe that it is an easy matter to compute the Berry-like phase.
Indeed, one immediately gets the geometrical phase βϕ and βψ by adopting the



20 2. Two level system

standard method [17]:

βϕ = φ+

∫ T

0

⟨ϕ(t)| i∂t |ϕ(t)⟩ dt = 2π sin2 θ . (2.32)

βψ = φ+

∫ T

0

⟨ψ(t)| i∂t |ψ(t)⟩ dt = 2π cos2 θ . (2.33)

that phases are independent from the eigenvalues ωi's, i = 1, 2 and depend only
on the θ-parameter The sum of both phases βψ + βϕ = 2π for any θ, so we obtain
(2.31) as

|ξ(T )⟩ = eiβξe−iωϕϕT |ξ(0)⟩ . (2.34)

The meaning of Eqs. (2.32)-(2.34) can be better understood by noticing that, for
any t,

⟨ϕ(0)|ϕ(t)⟩ = e−iω1t cos2 θ + e−iω2t sin2 θ . (2.35)

Thus, as an e�ect of the non vanishing di�erence δω12 ̸= 0 of the phases, the
components |0⟩ and |1⟩ evolve with di�erent �weights� and the state |ϕ(t)⟩ �rotates�
as shown by Eq. (2.35). This is similar to what happens in the context of particle
mixing (see ref. [62]). In general, for t = T + τ , we have

⟨ϕ(0)|ϕ(t)⟩ = eiφ ⟨ϕ(0)|ϕ(τ)⟩
= ei2π sin2 θe−iωϕϕT

(
e−iω1τ cos2 θ + e−iω2τ sin2 θ

)
. (2.36)

Also notice that

⟨ψ(0)|ϕ(t)⟩ =
1

2
eiφe−iω1τ sin 2θ

(
e−i(ω2−ω1)τ − 1

)
, for t = T + τ , (2.37)

which is zero only at t = T . Eq. (2.37) expresses the fact that |ϕ(t)⟩ �oscillates�,
getting a component of the |ψ(0)⟩ state, besides getting the Berry-like phase. At
t = T , |ϕ(t)⟩ and |ψ(0)⟩ are again each other orthogonal states.

If we consider a generalization of Eq. (2.32) to n−cycles, we can rewritten it in
the following form

β
(n)
ϕ =

∫ nT

0

⟨ϕ(t)| i∂t − ω1 |ϕ(t)⟩ dt = 2π n sin2 θ , (2.38)

and Eq. (2.36) becomes

⟨ϕ(0)|ϕ(t)⟩ = einφ ⟨ϕ(0)|ϕ(τ)⟩ , for t = nT + τ . (2.39)

Similarly, in Eq. (2.37) one obtains the phase einφ instead of eiφ. Eq. (2.38)
shows that the Berry-like phase acts as a �counter� of |ϕ(t)⟩ oscillations, adding
up 2π sin2 θ to the phase of the |ϕ(t)⟩ state after each complete oscillation and in
similar way it adds up 2π cos2 θ to the phase of the |ψ(t)⟩ state.

2.4. Gauge structure in time evolution

2.4.1. Local gauge transformation

The generalized phases β
(n)
{ϕ,ψ} in Eq. (2.38) can be rewritten as

β
(n)
ϕ =

∫ nT

0

⟨ϕ(t)| U−1(t) i∂t

(
U(t) |ϕ(t)⟩

)
dt

=

∫ nT

0

⟨ϕ̃(t)| i∂t|ϕ̃(t)⟩ dt = 2π n sin2 θ , (2.40)
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β
(n)
ψ =

∫ nT

0

⟨ψ(t)| U−1(t) i∂t

(
U(t) |ψ(t)⟩

)
dt

=

∫ nT

0

⟨ψ̃(t)| i∂t|ψ̃(t)⟩ dt = 2π n cos2 θ , (2.41)

with a suitable function

U(t) = e−if(t) , f(t) = f(0)− ω1. (2.42)

the quantity f(0) is an arbitrary constant, and

|ϕ̃(t)⟩ ≡ U(t)|ϕ(t)⟩

= e−if(0)
(
cos θ |0⟩ + e−i(ω2−ω1)t sin θ |1⟩

)
. (2.43)

Moreover, we can regard

|ϕ(t)⟩ → U(t)|ϕ(t)⟩ = |ϕ̃(t)⟩ (2.44)

as a local (in time) gauge transformation of the state |ϕ(t)⟩. In contrast with the

state |ϕ(t)⟩, the gauge transformed state |ϕ̃(t)⟩ is not �tilted� in its time evolution:

⟨ϕ̃(0)|ϕ̃(t)⟩ = ⟨ϕ̃(0)|ϕ̃(τ)⟩ , for t = nT + τ , (2.45)

which has to be compared with Eq. (2.39). From Eq. (2.43) we see that time

evolution only a�ects the |1⟩ component of the state |ϕ̃(t)⟩.
The gauge transformation acts as a ��lter� freezing out time evolution of the

|0⟩ state component, so that we have

i∂t|ϕ̃(t)⟩ = (ω2 − ω1)e
−if(0)e−i(ω2−ω1)t sin θ|1⟩

= (H − ω1)e
−if(0)

(
cos θ |0⟩ + e−i(ω2−ω1)t sin θ |1⟩

)
= (H − ω1)|ϕ̃(t)⟩ , (2.46)

namely

− i(∂t + iH)|ϕ̃(t)⟩ = ω1|ϕ̃(t)⟩ . (2.47)

Eq. (2.41) actually provides an alternative way for de�ning the Berry�like phase

[17], which makes use of the state |ϕ̃(t)⟩ given in Eq. (2.43). Eq. (2.41) directly

gives us the geometric phase because the quantity i⟨ϕ̃(t)|(i∂t|ϕ̃(t)⟩ dt is the overlap
of |ϕ̃(t)⟩ with its �parallel transported� (i∂t|ϕ̃(t)⟩ dt) at t + dt. Similar results can
be obtain if we consider |ψ⟩ state.

2.4.2. Covariant derivative

Now, we will try to recast the Schrödinger equations in covariant form by introduc-
ing a suitable gauge potential. By applying the Eq. (2.21) to the states |ϕ(t)⟩ and
|ψ(t)⟩, we obtain the following equations

Ĥ|ϕ(t)⟩ = ωϕϕ |ϕ(t)⟩ + ωϕψ |ψ(t)⟩ (2.48)

Ĥ|ψ(t)⟩ = ωψψ |ψ(t)⟩ + ωϕψ |ϕ(t)⟩. (2.49)

On the other hand, since Ĥ|ϕ(t)⟩ = i ∂t |ϕ(t)⟩ and Ĥ|ψ(t)⟩ = i ∂t |ψ(t)⟩ (cf. Eqs. (2.7),
(2.8) and (2.2)), we get new form of the evolution equations

i ∂t |ξ(t)⟩ = ωd |ξ(t)⟩ + ωϕψ σ1 |ξ(t)⟩ , (2.50)
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where |ξ(t)⟩ = (|ϕ(t)⟩ , |ψ(t)⟩)T , ωd = diag(ωϕϕ, ωψψ) and σ1 denotes the Pauli
matrix. By using the notation

g ≡ tan 2θ =
2ωϕψ
δωϕψ

, ωϕψ =
1

2
g δωϕψ (2.51)

We also put A0 = A
(1)
0 σ1 = 1

2 δωϕψ σ1. Then we may write

Dt = ∂t + i ωϕψ σ1 = ∂t + i g A
(1)
0 σ1 , (2.52)

which acts as the covariant derivative, where g and A
(1)
0 play the role of the

coupling constant and the (non-abelian) gauge �eld, respectively (a similar situa-
tion occurs in the di�erent context of neutrino mixing, see ref.[63]). The motion
equations (2.50) now can be written as

iDt |ξ(t)⟩ = ωd |ξ(t)⟩ . (2.53)

It is easy to show that

iD′
t |ξ′(t)⟩ = ωd |ξ′(t)⟩ , (2.54)

with

D′
t = ∂t + i g (A

(1)
0 σ1 + ∂t λ(t)σ1), (2.55)

|ξ′(t)⟩ = e−ig λ(t)σ1 |ξ(t)⟩ , (2.56)

so that, de�ning U(t) ≡ e−ig λ(t)σ1 , it is

U(t) (iDt |ξ(t)⟩) = iD′
t U(t) |ξ(t)⟩ (2.57)

and

g A
(1)
0

′
σ1 = U(t) g A

(1)
0 σ1 U

−1(t) + i (∂t U(t))U−1(t) , (2.58)

as it should be indeed for a gauge �eld transformation (see Eq. (2.55)). We can
express the above result by saying that the time evolution of the vector doublet
|ξ(t)⟩ (our two level system or qubit) is controlled by its coupling with a non-abelian
gauge �eld background so to preserve the invariance of the dynamics against local in
time gauge transformations (phase �uctuations). We also note that since the only
non-vanishing component of Aµ is A0 and this is a constant (A0 ≡ 1

2 δωϕψ σ1), the
�eld strength Fµν is identically zero. This is a feature which, for example, occurs
in the case where the gauge potential is a pure gauge (with non-singular gauge
functions).

2.5. Other aspects of time evolution

2.5.1. Free energy and Fubini-Study metric

As we have seen in previous section, the Schrödinger equation can be rewritten in
a futher form, Eq. (2.53), where we used an non-abelian gauge potential Â, but
such a reformulation is more useful because it o�ers a new thermodynamical point
of view. In particular, we report Eqs. (2.50) as

(Ĥ − ωϕψ σ1) |ξ(t)⟩ = ωd |ξ(t)⟩ , (2.59)

with the covariant derivative denoted by Ĥ − ωϕψ σ1. Then the operator

F̂ = (Ĥ − ωϕψ σ1) (2.60)
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may be interpreted as the free energy operator, provided that one identi�es the term
ωϕψ σ1 = gA0 with the entropy term T Ŝ in the traditional free energy expression,

where the �temperature" is T = g and the entropy Ŝ = A0. We thus see that time
evolution is controlled by the free energy (2.60) where the gauge �eld plays the role

of the entropy. In terms of the states |ϕ(t)⟩ and |ψ(t)⟩, the term T Ŝ is written as:

T Ŝ = ωϕψ(|ϕ(t)⟩⟨ψ(t)|+ |ψ(t)⟩⟨ϕ(t)|) . (2.61)

In order to better understand this feature, it is convenient to consider the geometric
phases associated to the system evolution.

Another geometric invariant is the Anandan�Aharonov phase discussed in ref. [64]
(cf. Chapter 1). It has the advantage to be well de�ned also for systems with non-
cyclic evolution in the following form

s = 2

∫
∆ω(t)dt (2.62)

where ∆ω(t) is the variance given by

∆ω2 = ∆ω2
ϕϕ = ∆ω2

ψψ = ⟨ξ(t)|Ĥ2|ξ(t)⟩ − ⟨ξ(t)|Ĥ|ξ(t)⟩2 = ∆ω2
ϕψ = ω2

ϕψ , (2.63)

with ξ = {ϕ, ψ} . The relation between the entropy and the geometric invariant s
is obtained by considering that∫

⟨ξ(t)|TSσ1|ξ(t)⟩ dt =

∫
⟨ξ(t)|g A(1)

0 |ξ(t)⟩ dt

= 2

∫
ωϕψ dt = s. (2.64)

It is interesting to note that the relation between TS and the variance of the energy
∆ω = ωϕψ is through the non-diagonal elements of Ĥ, namely it is proportional
to the energy gap, ω2 − ω1, between the two levels (cf. Eq. (2.63) and (2.11)).

We also recognize that the integrand ⟨ξ(t)|g A(1)
0 |ξ(t)⟩ in Eq. (2.64) is related to

the adiabatic connection [18] emerging in the study of the non�abelian holonomy
(generalized Berry phase) [65]. Moreover, one can also show [61] that these connec-
tions are related with the parallel transport of the vectors in the parameter space,
as well known [65]. The invariant s in Eq. (2.64) can be interpreted in terms of the
distance between states in the Hilbert space. We consider the evolution of quantum
states |ξ(t)⟩ = {|ϕ(t)⟩, |ψ(t)⟩}, which is controlled by the Schrödinger equation

i ∂t|ξ(t)⟩ = Ĥ|ξ(t)⟩ , (2.65)

Expanding the state |ξ(t+ dt)⟩ up to the second order in dt , we obtain

⟨ξ(t)|ξ(t+ dt)⟩ = 1− idt ⟨ξ(t)|Ĥ|ξ(t)⟩ − dt2

2
⟨ξ(t)|Ĥ2|ξ(t)⟩+O(dt3) ,

and

|⟨ξ(t)|ξ(t+ dt)⟩|2 = 1− dt2
ω2
12

4
sin2 2θ + O(dt3) , (2.66)

where we have used Eqs.(2.9), (2.10) and (2.63) and

⟨ϕ(t)| Ĥ2 |ϕ(t)⟩ = ω2
1 cos2 θ + ω2

2 sin2 θ , (2.67)

⟨ψ(t)| Ĥ2 |ψ(t)⟩ = ω2
2 cos2 θ + ω2

1 sin2 θ . (2.68)
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We also have

|⟨ϕ(t)|ψ(t+ dt)⟩|2 = |⟨ψ(t)|ϕ(t+ dt)⟩|2 = dt2∆ω2
ϕψ + O(dt3) . (2.69)

The Fubini�Study metric [64] is de�ned as

ds2 = 2 gµν dZ
µ dZ̄ν = 4 (1 − |⟨ξ(t)|ξ(t+ dt)⟩|2) , (2.70)

where Zµ are coordinates in the projective Hilbert space P, which is the set of
rays of the Hilbert space H . From Eqs. (2.66), (2.69) and (2.70), we get the
in�nitesimal geodetic distance between the points Π(|ϕ(t)⟩) and Π(|ϕ(t + dt)⟩) in
the space P

ds = 2∆ωξξ dt = δω12 sin 2θ dt . (2.71)

The rate of change of this distance is

ds

dt
= δω12 sin 2θ = 2ωϕψ, (2.72)

with δω12 ≡ ω2 − ω1 ̸= 0. In the case of the above two level or qubit states,
the Fubini�Study metric coincides with the usual metric on a sphere of unitary
radius: ds2 = dΘ2 + sin2 Θ dφ2, with Θ = 2 θ (θ = mixing angle) and Θ ∈ [0, π].
Since θ is constant, we have ds = sin 2θ dφ and, by comparison with Eq. (2.71),
dφ = δω12 dt . We thus obtain

s =

∫
sin 2θ dφ = 2

∫
ωϕψ dt , (2.73)

which is the Anandan�Aharonov invariant (cf. Eq. (2.64)). Thus, the Anandan�
Aharonov invariant s represents the distance between evolution states, as measured
by the Fubini�Study metric, in the projective Hilbert space P.

2.5.2. Birefringence e�ect of the non-abelian gauge �eld

We now show that the time evolution described above can be interpreted in terms
of a birefringence phenomenon (the analogy with birefringence has been considered
for the case of neutrino mixing [66]). Let us assume now that the states |0⟩ and |1⟩
are degenerate states, namely their time evolution �in the vacuum" is given by

|σ(t)⟩ = e−iĤ
′t|σ⟩ = e−iωt|σ⟩, (2.74)

where σ = {0, 1} and ω = 2π ν. The propagation speed �in the vacuum" is v0 = λ ν.
Suppose then that the propagation occurs in a medium presenting di�erent

refraction indexes, n1 and n2 for |0⟩ and |1⟩, respectively, i.e. where the propagation
over a given path of length ℓ occurs in di�erent times, t1 and t2 for |0⟩ and |1⟩,
respectively:

tj =
ℓ

vj
=

ℓ nj
v0

= t nj j = 1, 2; (2.75)

where v1 and v2 are the propagation speeds in the medium for |0⟩ and |1⟩, re-
spectively, and t = ℓ

v0
. Time evolution is then described by the phase fac-

tors e−iω t1 = e−iω1t and e−iω t2 = e−iω2t for the two states, respectively, where
ω ti = ω ℓ

v0
ni = 2π ν t ni = 2π νi t = ωi t, i = 1, 2, has been used, together with

λi ν = vi, λi νi = v0 and ni = v0
vi

= νi
ν .
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If we now consider the mixed states |ϕ⟩ and |ψ⟩ given by Eqs. (2.4) and (2.5),
we have(

|ϕ(t)⟩

|ψ(t)⟩

)
= e−iω1t

(
cos θ e−i(ω2−ω1)t sin θ

− sin θ e−i(ω2−ω1)t cos θ

)(
|0⟩

|1⟩

)
, (2.76)

which is the time evolution generated by Ĥ given by Eq. (2.2) with ω1 ̸= ω2 (cf.
Eqs. (2.7) and (2.8) ).

In conclusion, Eq. (2.76) shows that, provided that ω1 ̸= ω2, for θ ̸= π
4 + nπ

2 ,
the e�ect of time evolution through the refractive medium is equivalent to the e�ect
of the background gauge �eld

A
(1)
0 =

1

2
(ω2 − ω1) cos 2θ =

1

2
ω(n2 − n1) cos 2θ, (2.77)

which indeed disappears when propagation occurs in the vacuum, n1 = n2 = n0 =
1 (i.e. ω1 = ω = ω2).
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CHAPTER 3

Dissipative systems

In the previous chapter we have seen that inequivalent representation in QFT play
a relevant dynamical role. We further analyze their role in the present chapter
by focusing our attention on the physical process of dissipation, in the context
of quantum theories. We will examine some useful formalisms and prototypes to
achieve a good introduction to that signi�cant phenomena.

3.1. Introduction

The study of open quantum systems represents one of the most interesting issue
of quantum theories. Irreversibility is a fundamental aspect of the dissipative pro-
cesses and in fact such physical processes can evolve only in a preferred direction
in time. Hence, the description of such systems can be obtained in the framework
of quantum dynamical semigroups [67, 68] Lindblad [69] suggested the general
form of the generators of such semigroups as independently, it was done by Gorini,
Kossakowski and Sudarshan. That formalism has been studied for the damped
harmonic oscillator [70, 71] and applied to various physical phenomena.

For instance, the dissipative systems are most useful in high energy physics and
in early universe, as well as in many body theories, in phase transition phenomena
and in many practical applications of quantum �eld theory at non-zero temperature
and damping of collective modes in deep inelastic collisions in nuclear physics [72].
In a Hamiltonian system various physical properties of the system remain constant
in time and it can be conceived conservative. Therefore in such a system the initial
conditions are remembered during a process, so that the information is not lost but
merely reformulated. Most real systems are however not isolated, but interact with
their surroundings. In such a system energy is dissipated and information gets lost,
and the system is called dissipative. Unlike Hamiltonian systems, for a dissipative
system the phase space volume does not remain constant as the system develops in
time. Even if most systems in the world exhibit dissipation, many are nevertheless
nearly conservative, like for instance the solar system. The long-term behaviour of a
dissipative system can be largely independent of how the system is started up. The
possibility of exhibiting the gauge theory structure and topologically non-trivial
features underlying dissipative phenomena is very appealing and has a wide range
of possible applications. In this chapter we study the problem of the canonical
quantization of the damped harmonic oscillator in the operator algebra. It has
been intensively studied [73, 74, 75, 76, 77] from the results of Bateman and it
has been shown that the canonical quantization of the damped oscillator can be
properly obtained by doubling the phase-space degrees of freedom in the framework
of quantum �eld theory [73]. The space of the states has been shown to split

29
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into unitarily inequivalent representations of the canonical commutation relations,
and the non-unitary character of the irreversible time evolution is expressed as
tunneling among such inequivalent representations. The vacuum has been found to
have the structure of SU(1,1) time-dependent coherent state and its statistical and
thermodynamical properties have been recognized to be the ones of the thermal
vacuum in Thermo Field Dynamics [77].

3.2. Dissipation in quantum mechanics

3.2.1. The Kossakowski�Lindblad master equation

In quantum mechanics the unitary evolution of quantum state |ψu(t)⟩ can be de-
scribed via the Schrödinger equation for density operator ρ̂u(t) = |ψu(t)⟩⟨ψu(t)|

d

dt
ρ̂u(t) =

1

i}

[
Ĥ, ρ̂u(t)

]
(3.1)

and in unitary case, one introduces the time operator

Û(t2, t1) = exp{−iĤ(t2 − t1)}, (3.2)

which draws the time evolution form t1 to t2 and it is an unitary operator Û(t2, t1) =

Û†(t2, t1). In general, the evolution of an open system is quite di�erent from iso-
lated one. In fact a generalization of Schrödinger equation is not feasible and it
was derivated an extension, called Lindblad equation [69]. Now we consider the
evolution of an open system |ψn⟩ over a short time interval δt under two physical
condition: the timescale TS over the system changes should be greater than δt and
δt should also be large compared with the time TE over which the environment
`forgets' its information about the system. The main idea is to look for a suitable
quantum operation such that ρ̂n(t) = |ψn(t)⟩⟨ψn(t)| should be altered only to order
δt,

ρ̂n(δt) =
∑
k

Π̂kρ̂n(0)Π̂
†
k = ρ̂n(0) + O(δt). (3.3)

Thus it follows that one of the Kraus operators, Π̂0 say, must be 1̂+O(δt), and the

others must be O(
√
δt). Thus, let us write

Π̂0 = 1̂ +

(
Ŵ +

1

i~
Ĥ
)
δt, (3.4)

Π̂k = L̂k
√
δt, k ≥ 1, (3.5)

where Ŵ and Ĥ are Hermitian operators, but are otherwise arbitrary at this stage;
the operators L̂k are also arbitrary and are known as Lindblad operators However,

the normalization condition on the Kraus operators requires
∑
k Π̂

†
kΠ̂k = 1̂, thus

Ŵ = −1

2

∑
k

L̂†
kL̂k, (3.6)
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and therefore

ρ̂n(δt) =

[
1̂ +

(
Ŵ +

1

i~
Ĥ
)
δt

]
ρ̂n(0)

[
1̂ +

(
Ŵ − 1

i~
Ĥ
)
δt

]
+ δt

∑
k

L̂kρ̂n(0)L̂
†
k

= ρ̂n(0)−

{
i

~

[
Ĥ, ρ̂n(0)

]
+
∑
k

[
Lkρ̂n(0)L

†
k −

1

2

{
ρ̂n(0), L̂

†
kL̂k

}]}
δt+ ρ̂n(0)(δt)

2,

(3.7)

where
{
Â, B̂

}
represents the anti�commutator ÂB̂ + B̂Â. Taking the limit δt→ 0

we obtain the Kossakowski�Lindblad master equation:

d

dt
ρ̂n =

1

i}

[
Ĥ, ρ̂n(0)

]
+

1

2

{
ρ̂n(0), L̂

†
kL̂k

}
. (3.8)

Such an equation can be considered the most general kind of markovian master
equation describing non�unitary evolution of the density matrix ρ that is trace
preserving and completely positive for any initial condition. Note that Ĥ is not
necessarily equal to Ĥ†. It may also incorporate e�ective unitary dynamics arising
from the system-environment interaction.

3.3. Damped harmonic oscillator

As a prototype of dissipative system, we can consider a simple damped harmonic
oscillator (dho) [78, 79, 80]. It can be described by a classical equation

Mẍ+Rẋ+ κx = 0 , (3.9)

In order to perform the canonical quantization, we require to double the phase-
space dimensions in order to consider an isolated system. Thus, we introduce a
new equation, which describes an e�ective degree of freedom for the heat bath.

Mÿ −Rẏ + κy = 0 , (3.10)

which is the time reversed (R → −R) of Eq.(3.9). Dissipation enters our consider-
ations if there is a coupling to a thermal reservoir yielding a mechanical resistance.
The Lagrangian for the global system is (see [78] - [76, 81])

L =Mẋẏ +
1

2
R(xẏ − ẋy)− κxy . (3.11)

The system described by (3.11) is sometimes called Bateman's dual system [76, 81].
In the present case our system has been assumed to be coupled with a thermal source
and it has been necessary to obtain a closed system by including the reservoir.
Eq. (3.11) is indeed the closed system Lagrangian. The canonical momenta are
given by

px ≡ ∂L

∂ẋ
=Mẏ − 1

2
Ry (3.12)

py ≡ ∂L

∂ẏ
=Mẋ+

1

2
Rx. (3.13)

Canonical quantization is performed by introducing the commutators

[x, px] = i ~ = [y, py] , (3.14)

[x, y] = 0 = [px, py] , (3.15)
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with the following hamiltonian

Ĥ =
1

m
pxpy +

1

2m
γ(ypy − xpx) +

(
κ− γ2

4m

)
xy (3.16)

and the corresponding sets of annihilation operators

a ≡
(

1

2~Ω

) 1
2
(

px√
M

− i
√
MΩx

)
, (3.17)

b ≡
(

1

2~Ω

) 1
2
(

py√
M

− i
√
MΩy

)
, (3.18)

where we may set the frequency of the two oscillators Eq. (3.9) and Eq. (3.10) as

Ω ≡
[
1

M

(
κ− R2

4M

)] 1
2

. (3.19)

In case of non overdamping, we have Ω ∈ R and κ > R2

4M . By using the canonical
linear transformations

A ≡ 1√
2
(a+ b), (3.20)

B ≡ 1√
2
(a− b), (3.21)

the quantum Hamiltonian Ĥ can be recast [78, 79] in a new form

Ĥ = Ĥ0 + ĤI , (3.22)

Ĥ0 = ~Ω(A†A−B†B) , ĤI = i~Γ(A†B† −AB) , (3.23)

where the decay constant is Γ ≡ R
2M and we observe that the states generated

by B† represent the sink where the energy dissipated by the quantum damped
oscillator �ows: the B-oscillator represents the reservoir or heat bath coupled to
the A-oscillator.

The dynamical group structure associated with the system of coupled quantum
oscillators is that of SU(1, 1). The two mode realization of the algebra su(1, 1) is
indeed generated by

J+ = A†B†, J− = J†
+ = AB, J3 =

1

2
(A†A+B†B + 1), (3.24)

[J+, J−] = −2J3, [J3, J±] = ±J±. (3.25)

The Casimir operator C is de�ned as

C 2 ≡ 1

4
+ J2

3 − 1

2
(J+J−+ J−J+) (3.26)

=
1

4
(A†A−B†B)2. (3.27)
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3.3.1. QFT description of damped harmonic oscillator

The time evolution of the vacuum

|0⟩ ≡ |0⟩ ⊗ |0⟩ , (3.28)

(A ⊗ 1)|0⟩ ⊗ |0⟩ ≡ A |0⟩ = 0; (3.29)

(1 ⊗ B)|0⟩ ⊗ |0⟩ ≡ B |0⟩ = 0, (3.30)

is controlled by ĤI

|0(t)⟩ = exp

(
−itĤ

~

)
|0(t)⟩ = exp

(
−itĤI

~

)
|0(t)⟩

=
1

cosh (Γt)
exp

(
tanh (Γt)A†B†)|0(t)⟩ , (3.31)

⟨0(t)|0(t)⟩ = 1 ∀t , (3.32)

lim
t→∞

⟨0(t)|0(t)⟩ ∝ lim
t→∞

exp (−tΓ) = 0 . (3.33)

Notice that once one sets the initial condition of positiveness for the eigenvalues
of Ĥ0, such a condition is preserved by the time evolution since Ĥ0 is the Casimir
operator. In other words, there is no danger of dealing with energy spectrum
unbounded from below. Time evolution for annihilation operators is given by

A(t) = e−i
t
~ ĤIA ei

t
~ ĤI = A cosh (Γt)−B† sinh (Γt) , (3.34)

B(t) = e−i
t
~ ĤIB ei

t
~ ĤI = B cosh (Γt)−A† sinh (Γt) (3.35)

Eqs. (3.34) and (3.35) are Bogolubov transformations: they are canonical trans-
formations preserving the ccr. Eq. (3.33) expresses the instability (decay) of the

vacuum under the evolution operator exp
(
−it ĤI

~

)
. In other words, time evolution

leads out of the Hilbert space of the states. This means that the QM framework is
not suitable for the canonical quantization of the damped harmonic oscillator. A
way out from such a di�culty is provided by QFT [78]: the proper way to perform
the canonical quantization of the dho turns out to be working in the framework of
QFT. In fact, for many degrees of freedom the time evolution operator Û(t) and
the vacuum are formally (at �nite volume) given by

Û(t) =
∏
κ

exp
(
Γκt
(
A†
κB

†
κ −AκBκ

))
, (3.36)

|0(t)⟩ =
∏
κ

1

cosh (Γκt)
exp

(
tanh (Γκt)A

†
κB

†
κ

)
|0⟩ , (3.37)

with ⟨0(t)|0(t)⟩ = 1, ∀t . Using the continuous limit relation
∑
κ 7→ V

(2π)3

∫
d3κ, in

the in�nite-volume limit and
∫
d3κ Γκ �nite and positive we obtain

⟨0(t)|0⟩ → 0 as V → ∞ ∀ t , (3.38)

and in general, ⟨0(t)|0(t′)⟩ → 0 as V → ∞ ∀ t and t′, t′ ̸= t. At each time t a
representation {|0(t)⟩} of the ccr is de�ned and turns out to be unitary inequivalent
(ui) to any other representation {|0(t′)⟩, ∀t′ ̸= t} in the in�nite volume limit.
In such a way the quantum damped harmonic oscillator evolves in time through
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unitary inequivalent representations of ccr (tunneling). The vacuum |0(t)⟩ is a
two-mode time dependent generalized coherent state [82, 83] and we have

N̂Aκ(t) = ⟨0(t)|A†
κAκ|0(t)⟩ = sinh2 Γt , (3.39)

The Bogolubov transformations, Eqs. (3.34) and (3.35) can be implemented
for every κ as inner automorphism for the algebra su(1, 1)κ. At each time t one
has a copy {Aκ(t), A†

κ(t), Bκ(t), B
†
κ(t) ; |0(t)⟩ | ∀κ} of the original algebra induced

by the time evolution operator which can thus be thought of as a generator of
the group of automorphisms of

⊕
κ su(1, 1)κ parameterized by time t (we have a

realization of the operator algebra at each time t, which can be implemented by
Gel'fand-Naimark-Segal construction in the C*-algebra formalism [3, 84]). Notice
that the various copies become unitarily inequivalent in the in�nite-volume limit,
as shown by Eqs. (3.38): the space of the states splits into ui representations of
the ccr each one labeled by time parameter t. As usual, one works at �nite volume
and only at the end of the computations the limit V → ∞ is performed.

3.3.2. Thermodinamics and entropy in time evolution

Finally, in Refs. 2 and 3 it has been shown that the representation |0(t)⟩ is equiv-
alent to the TFD representation |0(β(t))⟩, thus recognizing the relation between
the dho states and the �nite temperature states. It is useful [78] to introduce the

functional F̂A for the A-modes

F̂A ≡ ⟨0(t)|
(
ĤA − 1

β
ŜA
)
|0(t)⟩ , (3.40)

where β is a non-zero c-number, ĤA is the part of Ĥ0 relative to A- modes only,
namely

ĤA =
∑
κ

~ΩκA†
κAκ, (3.41)

and the ŜA is given by

ŜA ≡ −
∑
κ

{
A†
κAκ ln sinh

2
(
Γκt
)
−AκA

†
κ ln cosh

2
(
Γκt
)}

. (3.42)

One then considers the extremal condition

∂F̂A
∂ϑκ

= 0 ∀κ , ϑκ ≡ Γκt (3.43)

to be satis�ed in each representation, and using the de�nition Eκ ≡ ~Ωκ, one �nds

N̂Aκ(t) = sinh2
(
Γκt
)
=

1

eβ(t)Eκ − 1
, (3.44)

which is the Bose distribution forAκ at time t, provided β(t) is the (time-dependent)

inverse temperature. Inspection of Eqs. (3.40) and (3.42) then suggests that F̂A
and ŜA can be interpreted as the free energy and the entropy, respectively. {|0(t)⟩}
is thus recognized to be a representation of the ccr at �nite temperature. Use of
Eq. (3.42) shows that

∂

∂t
|0(t)⟩ = −

(
1

2

∂Ŝ
∂t

)
|0(t)⟩ . (3.45)
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One thus see that i
(

1
2~

∂Ŝ
∂t

)
is the generator of time translations, namely time evo-

lution is controlled by the entropy variations [85]. It is remarkable that the same

dynamical variable Ŝ whose expectation value is formally the entropy also con-
trols time evolution: damping (or, more generally, dissipation) implies indeed the
choice of a privileged direction in time evolution (arrow of time) with a consequent
breaking of time-reversal invariance. One may also show that

dF̂A = dEA − 1

β
dŜA = 0 , (3.46)

which expresses the �rst principle of thermodynamics for a system coupled with
environment at constant temperature and in absence of mechanical work. As usual,
one may de�ne heat as dQ = 1

βdS and see that the change in time dN̂A of particles

condensed in the vacuum turns out into heat dissipation dQ:

dEA =
∑
κ

~Ωκ ˙NAκ(t)dt =
1

β
dS = dQ . (3.47)

Here
˙̂NAκ denotes the time derivative of N̂Aκ .





CHAPTER 4

Boson Mixing in quantum �eld theory

4.1. Introduction

A rich non�perturbative vacuum structure has been discovered to be associated with
the mixing of fermion �elds in the context of Quantum Field Theory [86, 87]. The
careful study of such a structure [88] has led to the determination of the exact QFT
formula for neutrino oscillations [61, 89, 90], exhibiting new features with respect
to the usual quantum mechanical Pontecorvo formula [91]. Actually, it turns out
[92, 93] that the non�trivial nature of the mixing transformations manifests itself
also in the case of the mixing of boson �elds. In the framework of the QFT analysis
of Refs. [94], a study of the meson mixing and oscillations has been carried out in
Ref.[95], where modi�cations to the usual oscillation formulas, connected with the
vacuum structure, have been presented.

4.2. Mixing transformations of neutral bosons

We consider the mixing of two spin zero neutral boson �elds [93, 96]. For instance
we could consider the η − η′ mixing, which is one of the most interesting systems
due to the large mass di�erence of the mixed components. Now we introduce the
following lagrangian [92, 94, 95] to describe such systems

LN (x) = ∂µΦ
T
f (x) ∂

µΦf (x) − ΦTf (x) M Φf (x) (4.1)

= ∂µΦ
T
m(x) ∂µΦm(x) − ΦTm(x) Md Φm(x) (4.2)

were the mass matrix M =

(
m2
A m2

AB

m2
BA m2

B

)
. the �avor �elds ΦTf = (ϕA, ϕB)

are associated to the free �elds ΦTm = (ϕ1, ϕ2). They have to satisfy the canonical
commutation relations:

[ϕi(x), πj(y)]x0=y0
= i δij δ

3(x− y) , (4.3)

The mass matrix Md =

(
m2

1 0
0 m2

2

)
is tranformed by a suitable rotation in mass

�eld space:

ϕA(x) = ϕ1(x) cos θ + ϕ2(x) sin θ (4.4)

ϕB(x) = −ϕ1(x) sin θ + ϕ2(x) cos θ (4.5)

37
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and a similar one for the conjugate momenta πi = ∂0ϕi. The Fourier expansion of
free �elds ϕi and the conjugate momenta πi = ∂0ϕi are given by

ϕi(x) =

∫
d3k

(2π)
3
2

1√
2ωk,i

(
ak,i e

−iωk,it + a†−k,i e
iωk,it

)
eikx (4.6)

πi(x) = −i
∫

d3k

(2π)
3
2

√
ωk,i
2

(
ak,i e

−iωk,it − a†−k,i e
iωk,it

)
eikx, (4.7)

with i = 1, 2 and ωk,i =
√

k2 +m2
i are the energies of the �elds. By using the

unitary operator Ĝθ(t), we can rewrite the Eqs.(4.4),(4.5) as:

ϕA,B(x) = Ĝ−1
θ (t) ϕ1,2(x) Ĝθ(t) (4.8)

πA,B(x) = Ĝ−1
θ (t) π1,2(x) Ĝθ(t) (4.9)

where the operator Ĝθ(t) is the generator of the mixing transformations Eqs.
(4.4),(4.5):

Ĝθ(t) = exp

[
−i θ

∫
d3x (π1(x)ϕ2(x)− π2(x)ϕ1(x))

]
, (4.10)

at �nite volume, the Ĝθ(t) is an unitary operator Ĝ−1
θ (t) = Ĝ−θ(t) = Ĝ†

θ(t), which
can be written as

Ĝθ(t) = exp{θŜ(t)} (4.11)

where Ŝ(t) is de�ned as

Ŝ(t) =

∫
d3k
(
U∗
k(t) a

†
k,1ak,2 − V ∗

k (t) a−k,1ak,2

+Vk(t) a
†
k,2a

†
−k,1 − Uk(t) a

†
k,2ak,1

)
(4.12)

The �avor �elds can be expanded as:

ϕσ(x) =

∫
d3k

(2π)
3
2

1√
2ωk,j

(
ak,σ(t) e

−iωk,jt + a†−k,σ(t) e
iωk,jt

)
eik·x (4.13)

πσ(x) = −i
∫

d3k

(2π)
3
2

√
ωk,j
2

(
ak,σ(t) e

−iωk,jt − a†−k,σ(t) e
iωk,jt

)
eik·x ,(4.14)

with (σ, j) = {(A, 1), (B, 2)} and the �avor annihilation operators are given by:

ak,A(t) ≡ G−1
θ (t) ak,1 Ĝθ(t) = cos θ ak,1 + sin θ

(
U∗
k(t) ak,2 + Vk(t) a

†
−k,2

)
,

(4.15)

ak,B(t) ≡ G−1
θ (t) ak,2 Ĝθ(t) = cos θ ak,2 − sin θ

(
Uk(t) ak,1 − Vk(t) a

†
−k,1

)
.

(4.16)

where the quantities Uk(t) and Vk(t) are Bogoliubov coe�cients given by

Uk(t) ≡
1

2

(√
ωk,1
ωk,2

+

√
ωk,2
ωk,1

)
ei(ωk,2−ωk,1)t (4.17)

Vk(t) ≡
1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
ei(ωk,1+ωk,2)t (4.18)
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They satisfy the following relation that is valid for the boson case:

|Uk|2 − |Vk|2 = 1 , (4.19)

The Ĝθ(t) generator induces an SU(2) coherent state structure on the vacuum
|0⟩1,2 for the �elds ϕi(x) [83], which is de�ned as ak,i|0⟩1,2 = 0, i = 1, 2. The �avor
vacuum is the state |0(θ, t)⟩A,B for neutral bosons

|0(θ, t)⟩
A,B

≡ Ĝ−1
θ (t) |0⟩1,2 , (4.20)

and the state for a mixed particle with ��avor� A and momentum k may be de�ned
as:

|ak,A(t)⟩ ≡ a†k,A(t)|0(t)⟩A,B
(4.21)

= Ĝ−1
θ (t)a†k,1|0⟩1,2 (4.22)

In the following we work in the Heisenberg picture, �avor states and vacuum will
be assumed at reference time t = 0. We may also set

|ak,A⟩ ≡ |ak,A(0)⟩, (4.23)

and consider the momentum operator, de�ned as the diagonal space part of the
energy-momentum tensor [97]:

P j =

∫
d3x∂0ϕ(x)∂j(x)ϕ− g0j

[
1

2
(∂ϕ)2 − 1

2
m2ϕ2

]
. j = {1, 2, 3} (4.24)

For the free �elds ϕi we get:

P̂i =

∫
d3x πi(x)∇ϕi(x) =

∫
d3k

k

2

(
a†k,iak,i − a†−k,ia−k,i

)
, (4.25)

with i = 1, 2. In a similar way we can de�ne the momentum operator for mixed
�elds:

P̂σ(t) =

∫
d3x [πσ(x)∇ϕσ(x)]

=

∫
d3k

k

2

[
a†k,σ(t)ak,σ(t) − a†−k,σ(t)a−k,σ(t)

]
, (4.26)

were σ = A,B. The two operators are obviously related: P̂σ(t) = Ĝ−1
θ (t) P̂i Ĝθ(t).

Note that the total momentum is conserved in time since commutes with the gen-
erator of mixing transformations (at any time):

P̂A(t) + P̂B(t) = P̂1 + P̂2 ≡ P̂ (4.27)[
P̂ , Ĝθ(t)

]
= 0 ,

[
P̂ , H

]
= 0 . (4.28)

Thus in the mixing of neutral �elds, the momentum operator plays an analogous
role to that of the charge for charged �elds. We will present it in the next section.

4.2.1. Oscillation formulas for neutral bosons

We now consider the expectation values of the momentum operator for �avor �elds
on the �avor state |ak,ϱ⟩ with de�nite momentum k. Obviously, this is an eigenstate

of P̂ϱ(t) at time t = 0:

P̂ϱ(0) |ak,A⟩ = k |ak,ϱ⟩ , (4.29)
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which follows from P̂1 |ak,1⟩ = k |ak,1⟩ by application of G−1
θ (0). At time t ̸= 0,

the expectation value of the momentum (normalized to the initial value) gives:

Pϱ
σ(t) ≡ ⟨ak,ϱ|P̂σ(t)|ak,ϱ⟩

⟨ak,ϱ|P̂σ(0)|ak,ϱ⟩
=
∣∣∣[ak,σ(t), a†k,ϱ(0)]∣∣∣2 −

∣∣∣[a†−k,σ(t), a
†
k,ϱ(0)

]∣∣∣2 ,
(4.30)

with σ = {A,B}, which is of the same form as the expression one obtains for the
charged �eld. One can explicitly check that the (�avor) vacuum expectation value

of the momentum operator P̂σ(t) does vanish at all times:

A,B
⟨0|P̂σ(t)|0⟩A,B

= 0 , σ = A,B (4.31)

which can be understood intuitively by realizing that the �avor vacuum |0⟩A,B does
not carry momentum since it is a condensate of pairs carrying zero total momentum
(like the BCS ground state, for example). The explicit calculation of the oscillating
quantities Pϱ

k,σ(t) gives:

Pϱ
k,A(t) = 1− sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
(4.32)

Pϱ
k,B(t) = sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
.

(4.33)

in complete agreement with the charged �eld case [92]. The Eqs. (4.64), (4.65)
are the �avor oscillation formulas for the neutral mesons, such as η − η′, ϕ − ω.
By de�nition of the momentum operator, the Eqs.(4.64), (4.65) are the relative
population densities of �avor particles in the beam.

4.3. Mixing transformations of charged bosons

The observed boson oscillations always involve particles with zero electrical charge.
In the case of K0 − K̄0, B0 − B̄0, D0 − D̄0, what oscillate are some other quantum
numbers such as the strangeness and the isospin. Therefore, in the study of boson
mixing, for these particles, we can consider [98] complex �elds. The charge in
question is some ��avor charge� (e.g. the strangeness) and thus the complex �elds
are ��avor charged� �elds, referred to as ��avor �elds� for simplicity. We introduce
the following lagrangian:

LC(x) = ∂µΦ
†
f (x) ∂

µΦf (x) − Φ†
f (x) M Φf (x) (4.34)

with ΦTf = (ϕA, ϕB) and the mass matrixM =

(
m2
A m2

AB

m2
BA m2

B

)
. The mass matrix

Md =

(
m2

1 0
0 m2

2

)
. is tranformed by a suitable rotation in mass �eld space: We

de�ne the mixing relations as:

ϕA(x) = ϕ1(x) cos θ + ϕ2(x) sin θ

ϕB(x) = −ϕ1(x) sin θ + ϕ2(x) cos θ (4.35)
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where generically we denote the mixed �elds with su�xes A and B. The �elds
ϕi(x) (i = 1, 2), are free complex �elds with de�nite masses, which diagonalize the
Lagrangian Eq. (4.34) in the following form

LC(x) = ∂µΦ
†
m(x) ∂µΦm(x) − Φ†

m(x) Md Φm(x) (4.36)

where Md = diag(m2
1,m

2
2). Their conjugate momenta are πi(x) = ∂0ϕ

†
i (x) and the

commutation relations are the usual ones:

[ϕi(x), πj(y)]t=t′ = iδ3(x− y) δij (4.37)[
ϕ†i (x), π

†
j (y)

]
t=t′

= iδ3(x− y) δij , i, j = 1, 2 . (4.38)

with the other equal�time commutators vanishing. The Fourier expansions of �elds
and momenta are:

ϕi(x) =

∫
d3k

(2π)
3
2

1√
2ωk,i

(
ak,i e

−iωk,it + b†−k,i e
iωk,it

)
eik·x (4.39)

πi(x) = i

∫
d3k

(2π)
3
2

√
ωk,i
2

(
a†k,i e

iωk,it − b−k,i e
−iωk,it

)
eik·x , (4.40)

where ωk,i =
√

k2 +m2
i and [ak,i, a

†
p,j ] = [bk,i, b

†
p,j ] = δ3(k−p)δij , with i, j = 1, 2

and the other commutators vanishing.
The �avor �elds and the corresponding momenta can be written in terms of

mass ones and are given by [92]:

ϕ{A,B}(x) = G−1
θ (t) ϕ{1,2}(x) Gθ(t) (4.41)

π{A,B}(x) = G−1
θ (t) π{1,2}(x) Gθ(t) (4.42)

The operator Gθ(t) realizes the mixing transformations expressed in Eq.(4.35):

Gθ(t) = exp{−i θ
∫
d3xπ1(x)ϕ2(x)− ϕ†1(x)π

†
2(x)

−π2(x)ϕ1(x) + ϕ†2(x)π
†
1(x) }, (4.43)

in the limit of a �nite volume, the Gθ(t) is an unitary operator G−1
θ (t) = G−θ(t) =

G†
θ(t). if we consider the vacuum |0⟩1,2 for the �elds ϕ1,2(x): ak,i|0⟩1,2 = 0, i = 1, 2

then we can show that the generator of the mixing transformations induces an
SU(2) coherent state structure on |0⟩1,2 [83]:

|0(θ, t)⟩A,B ≡ G−1
θ (t) |0⟩1,2 . (4.44)

From now on we will refer to the state |0(θ, t)⟩
A,B

as to the ��avor� vacuum for
bosons. The su�xes A and B label the �avor charge content of the state.

We can de�ne annihilation operators for the vacuum |0(t)⟩
A,B

as

ak,{A,B}(θ, t) ≡ G−1
θ (t) ak,{1,2} Gθ(t), (4.45)

b−k,{A,B}(θ, t) ≡ G−1
θ (t) b−k,{1,2} Gθ(t), (4.46)
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with ak,A(θ, t)|0(t)⟩A,B
= 0. For simplicity we will use the notation ak,A(t) ≡

ak,A(θ, t). Explicitly, we have:

ak,A(t) = cos θ ak,1 + sin θ
(
U∗
k(t) ak,2 + Vk(t) b

†
−k,2

)
, (4.47)

ak,B(t) = cos θ ak,2 − sin θ
(
Uk(t) ak,1 − Vk(t) b

†
−k,1

)
, (4.48)

b−k,A(t) = cos θ b−k,1 + sin θ
(
U∗
k(t) b−k,2 + Vk(t) a

†
k,2

)
, (4.49)

b−k,B(t) = cos θ b−k,2 − sin θ
(
Uk(t) b−k,1 − Vk(t) a

†
k,1

)
. (4.50)

As for the case of the fermion mixing, the structure of the generator Eq.(4.43) is
recognized to be the one of a rotation combined with a Bogoliubov transformation.
In Eqs.(4.47)-(4.50) the Bogoliubov coe�cients are de�ned as

Uk(t) ≡ 1

2

(√
ωk,1
ωk,2

+

√
ωk,2
ωk,1

)
ei(ωk,2−ωk,1)t, (4.51)

Vk(t) ≡ 1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
ei(ωk,1+ωk,2)t (4.52)

and satisfy the relation

|Uk|2 − |Vk|2 = 1 , (4.53)

At equal times, these operators satisfy the canonical commutation relations. In
their expressions the Bogoliubov transformation part is evidently characterized by
the terms with the U and V coe�cients. The condensation density of the �avor
vacuum is given for any t by

A,B
⟨0(t)|a†k,iak,i|0(t)⟩A,B

=
A,B

⟨0(t)|b†−k,ib−k,i|0(t)⟩A,B
= sin2 θ |Vk|2, (4.54)

with i = 1, 2.

4.3.1. Oscillation formulas for charged bosons

The Lagrangian LC is invarian under the global U(1) phase transformation and we
have the conservation of the Noether charge Q =

∫
I0(x) d3x, which is the total

charge of the system. We now perform the SU(2) transformation on the �avor
doublet Φf

Φf = eiαjτjΦf (4.55)

and we obtain the following current by substitution the above equation in the
Lagrangian LC

Jµj,f (x) = iΦ†
j,f (x)τj∂

µΦj,f (x), j = 1, 2, 3 (4.56)

The relative charges Q̂j,f (t) =
∫
d3xJ0

j,f (0) close the SU(2) algebra at each time

t and the Casimir operator is Ĉf . Due to the mixing terms in the mass matrix,

Q̂3,f (t) is time�dependent and we may set

Q̂A(t) ≡ 1

2
Q̂+ Q̂3,f (t) , (4.57)

Q̂A(t) ≡ 1

2
Q̂ − Q̂3,f (t) , (4.58)
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with Q̂A(t)+Q̂B(t) = Q̂. We can recast in term of annihilator and creator operators

Q̂σ(t) =

∫
d3k

(
a†k,σ(t)ak,σ(t)− b†k,σ(t)bk,σ(t)

)
σ = A,B (4.59)

The observable quantities are the expectation values of the �avor charges on the
�avor states: the oscillation formulas thus obtained do not depend on the arbitrary
mass parameters. In the following, we will work in the Heisenberg picture: this
is particularly convenient in the present context since special care has to be taken
with the time dependence of �avor states [61, 89]. Let us now de�ne the state of
the aA particle as

|ak,A⟩A,B ≡ a†k,A(0)|0⟩A,B (4.60)

and consider the expectation values of the �avor charges Eq.(4.59) on it (analogous
results follow if one considers |ak,B⟩A,B ). We obtain:

QA
k,σ(t) ≡

A,B
⟨ak,A|Q̂σ(t)|ak,A⟩A,B

=
∣∣∣[ak,σ(t), a†k,A(0)]∣∣∣2 −

∣∣∣[b†−k,σ(t), a
†
k,A(0)

]∣∣∣2 , (4.61)

with σ = A,B. We also have
A,B

⟨0|Q̂k,σ(t)|0⟩A,B
= 0 and Q̂A

k,A(t) + Q̂A
k,B(t) = 1̂.

A straightforward direct calculation shows that the above quantities do not
depend on µA and µB , i.e.:

A,B
⟨ak,A|Q̂k,σ(t)|ak,A⟩A,B

=
A,B

⟨ak,A|Q̂k,σ(t)|ak,A⟩A,B
, σ = {A,B} , (4.62)

and similar one for the expectation values on |ak,B⟩A,B
. Eq.(4.62) is a central result

of this chapter [92]: it con�rms that the only physically relevant quantities are the
above expectation values of �avor charges. Note that expectation values of the
number operator, of the kind

A,B ⟨ak,A|N̂σ(t)|ak,A⟩A,B =
∣∣∣[ak,σ(t), a†k,A(0)]∣∣∣2 (4.63)

and similar ones, do indeed depend on the arbitrary mass parameters, although the
�avor states are properly de�ned (i.e. on the �avor Hilbert space). The cancellation
of these parameters happens only when considering the combination of squared
modula of commutators of the form Eq.(4.61) One may think it could make sense
to take the expectation value of the �avor charges on states de�ned on the mass
Hilbert space. A direct calculation however shows that this is not the case and
these expectation values depends on the mass parameters: the conclusion is that
one must use the �avor Hilbert space. A similar cancellation occurs for fermions
[90] with the sum of the squared modula of anticommutators. Finally, the explicit
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calculation [92] gives

QA
k,A(t) =

∣∣∣[ak,A(t), a†k,A(0)]∣∣∣2 −
∣∣∣[b†−k,A(t), a

†
k,A(0)

]∣∣∣2
= 1− sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
,

(4.64)

QA
k,B(t) =

∣∣∣[ak,B(t), a†k,A(0)]∣∣∣2 −
∣∣∣[b†−k,B(t), a

†
k,A(0)

]∣∣∣2
= sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)
− |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)]
.(4.65)

Notice the negative sign in front of the |Vk|2 terms in these formulas, in contrast
with the fermion case [61, 89, 90]: the boson �avor charge can assume also negative
values. This fact points to the statistical nature of the phenomenon: it means that
when dealing with mixed �elds, one intrinsically deals with a many�particle system,
i.e. a genuine �eld theory phenomenon. This situation has a strong analogy with
Thermal Field Theory (i.e. QFT at �nite temperature) [5], where quasi�particle
states are ill de�ned and only statistical averages make sense.

The above formulas are obviously di�erent from the usual quantum mechani-
cal oscillation formulas, which however are recovered in the relativistic limit (i.e.

for |k|2 ≫ m2
1+m

2
2

2 ). Apart from the extra oscillating term (the one proportional

to |Vk|2) and the momentum dependent amplitudes, the QFT formulas carry the
remarkable information about the statistics of the oscillating particles: for bosons
and fermions the amplitudes (Bogoliubov coe�cients) are drastically di�erent ac-
cording to the two di�erent statistics (|Uk| and |Vk| are circular functions in the
fermion case and hyperbolic functions in the boson case). This fact also �ts with
the above mentioned statistical nature of the oscillation phenomenon in QFT. Note
also that our treatment is essentially non�perturbative [92].

4.4. Remark on Fourier expansion of �avor �elds

Above we have expanded the mixed �elds ϕA,B in the same basis as the free �elds
ϕ1,2. However, this is not the most general possibility [88]. Indeed, one could as
well expand the �avor �elds in a basis of �elds with arbitrary masses. Of course,
these arbitrary mass parameters should not appear in the physically observable
quantities. A consistent treatment of the �avor oscillation for bosons in QFT can
be given which does not exhibit the above pathological dependence on arbitrary
parameters [92].



CHAPTER 5

Phenomenology of strange meson particles

We consider the quantum mechanics formulation of meson mixing and obtain the
oscillation formula in the presence of the decay. We analyze phenomenological
aspects of this e�ect.

5.1. Introduction

Quark mixing and meson mixing are widely studied and veri�ed [99]. However,
many features of the physics of mixing are still obscure, for example the issue
related to its origin in the context of Standard Model and the related problem of
the generation of masses. The problem of the boson mixing is known since 1955
when Gell-Mann and Pais predicted the existence of two neutral kaons [100]: K0

of strangeness S = 1 and K̄0 of strangeness S = −1.
These are particle and antiparticle, and are connected by the process of charge

conjugation, which involves a reversal of values of I3 and a change of strangeness
∆S = 2. Strong interactions conserve I3 and S, so that as far as production is
concerned, the separate neutral-kaon eigenstates are K0 − K̄0. Now suppose K0

and K̄0 particles propagate through empty space. Since both are neutral, both
can decay to pions by weak interaction, with ∆S = 1. Thus, mixing can occur via
(virtual) intermediate pion states:

K0 � 2π � K̄0

K0 � 3π � K̄0 (5.1)

These transitions are ∆S = 2 and thus second order weak interactions. Although
extremely weak, this implies that if one has a pure K0-state at t = 0, at any later
time t > 0 one will have a superposition of both K0 and K̄0, so that the state can
be written

|K(t)⟩ = α(t)|K0⟩+ β(t)|K̄0⟩. (5.2)

The phenomena has been explained by realizing that what we observe is the mixture
of two mass and mean life eigenstates KS and KL expressed by

|KS⟩ =
1√

2(1 + |ε|2)
[(1 + ε)|K0⟩+ (1− ε)|K̄0⟩] = 1√

(1 + |ε|2)
(|K1⟩+ ε|K2⟩),

|KL⟩ =
1√

2(1 + |ε|2)
[(1 + ε)|K0⟩ − (1− ε)|K̄0⟩] = 1√

(1 + |ε|2)
(|K2⟩+ ε|K1⟩),

(5.3)
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where ε is a small, complex parameter responsible for CP symmetry breaking and
K1, K2 are CP eigenstates:

|K1⟩ =
1√
2
(|K0⟩+ |K̄0⟩) CP |K1⟩ = |K1⟩,

|K2⟩ =
1√
2
(|K0⟩ − |K̄0⟩) CP |K2⟩ = −|K2⟩ (5.4)

with the convention

CP |K0⟩ = |K̄0⟩
CP |K̄0⟩ = |K0⟩. (5.5)

Unlike K0 and K̄0, distinguished by their mode of production (the K0 can be
produced by nonstrange particles in association with a hyperon and K̄0 can be
produced only in association with a kaon or antihyperon, of strangeness S = 1),
KS and KL are distinguished by their mode of decay. Consider 2π and 3π decay
modes. Since pions have no spin, angular momentum conservation requires that
the two pions resulting from K0 −→ 2π decay carry relative angular momentum
equal to the spin of the kaon. A neutral 2π state with speci�ed angular momentum
l is an eigenstate of C with eigenvalue C = (−1)l, since the action of C is just to
exchange the two pions.

Being K0 a spinless particle, Gell-Mann e Pais concluded that only the com-
ponent K1, CP eigenstate with eigenvalue 1, would be capable of 2π decay; while
K2 would only decay in 3π state with CP = −1. But, in 1964 Christenson, Cronin,
Fitch and Turlay [101] demonstrate that the K2 state could also decay to π+π−

with a branching ratio of order 10−3. Then there is a CP violation in the K0 decay
and the physical component of K0 are KS (short lived component) and KL (long
lived component), where KS consists principally of a CP = +1 amplitude, but with
a little CP = −1, and KL vice versa. Experimentally the mean lives of KS and KL

are τS = (0.8934∓ 0.0008)× 10−10 sec, τL = (5.17∓ 0.04)× 10−8 sec respectively.
An important phenomenon is the K0 regeneration [102]. Suppose we produce a

pure K0 beam and let it travel in vacuo for the order of 100KS mean lives, so that
all the KS component has decayed and we are left with KL only. Now let the KL

beam traverse a slab of material and interact. Immediately, the strong interactions
will pick out the strangeness S = +1 and S = −1 components of the beam.

Thus, of the original K0 beam intensity, about 50% has disappeared by KS

decay. The remainder, KL upon traversing a slab where its nuclear interaction can
be observed, should consist of 50% K0 and 50% K̄0.

The K0 and K̄0 must be absorbed di�erently; K0 particles can only undergo
elastic and charge exchange scattering, while K̄0 particles can also undergo strange-
ness exchange giving hyperons:

K0 + p→ K+ + n (5.6)

K0 + n→ K0 + n (5.7)

and

K̄0 + p→

 Λ0 + π+

Σ+ + π0

p+K+ +K−
(5.8)

K̄0 + n→ Λ0 + π0. (5.9)
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With more strong channels open, the K̄0 is therefore absorbed more strongly
than K0. After emerging from the slab, we shall therefore have a K0 amplitude
f |K0⟩ and a K̄0 amplitude f̄ |K̄0⟩, where f̄ < f < 1. If we neglect the CP symmetry
breaking, the emergent beam will be

1

2
(f |K0⟩ − f̄ |K̄0⟩) =

f + f̄

2
√
2
(|K0⟩ − |K̄0⟩) + f − f̄

2
√
2
(|K0⟩+ |K̄0⟩)

=
1

2
(f + f̄)|KL⟩+

1

2
(f − f̄)|KS⟩. (5.10)

Since f ̸= f̄ , it follows that some of the KS state has been regenerated. The
main prediction of the particle mixture hypothesis is the possibility of observing
the KS −KL interference. If we make the assumption of exponential decay, each
component will have a time dependence of the form e−(Γi/2}+iEi/})t where Ei is
the total energy of the particle i = L, S and Γi = }/τi is the width of the state, τi
being the mean life in the frame in which the energy Ei is de�ned.

Set } = c = 1, and measure all times in the rest frame, so that τi is the proper
lifetime and Ei = mi, the particle rest mass, then the time dependence became
e−(Γi/2+imi)t. The neutral K0 − K̄0 boson system is not the only one where the
quantum mechanical mass mixing can be considered. We can expect to observe
the same phenomenon in other neutral boson systems: D0 − D̄0, B0 − B̄0 and
η − η′. Generally, �avor oscillations of particles can occur when states produced
and detected in a given experiment, are superpositions of two or more eigenstates
with di�erent masses. The mesons oscillations has been used to place stringent
constraints on physics beyond the Standard Model. It has been shown that the
geometric phases for mixed meson systems could permit the direct determination
of the CP violating parameter.

5.2. Symmetry violations in meson mixing

5.2.1. The Wigner�Weisskopf approximation

The time evolution of neutral bosons, like kaons, can be described by the Wigner-
Weisskopf approximations [103]. The time evolution is thus determined by the
Schrodinger equation

i
d

dt
|Φ(t)⟩ = H|Φ(t)⟩, Φ = {M0,M

0} (5.11)

where the e�ective HamiltonianH =

(
H11 H12

H21 H22

)
of the system is non-Hermitian

and can be written as H =M − iΓ2 with M and Γ Hermitian matrices.
The biorthonormal basis formalism [104, 105] will be used to describe the time

evolution of mixed mesons in the presence of CP violation. In particular, the
general discussion of Ref. [105] is applied to the particular case of meson mixing.
Let λj = mj−iΓj/2, with j = L,H, be the eigenvalues of Hamiltonian H with |Mj⟩
the corresponding eigenvectors (L denotes the light mass state and H the heavy
mass state. For K mesons, usually the mass eigenstates are de�ned according to
their lifetimes: KS is the short lived and KL is the long lived. In this system KL

is the heavier state):

H|Mj⟩ = λj |Mj⟩ , (5.12)
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We denote with εj and |M̃j⟩, (j = a, b) the eigenvalues and the eigenvectors of H†:

H†|M̃j⟩ = εj |M̃j⟩ . Such an equation can be recast in the form

⟨M̃j |H = ⟨M̃j |ε∗j . (5.13)

By projecting Eq.(5.13) on the state |Mj⟩ we have

⟨M̃j |H|Mj⟩ = ⟨M̃j |ε∗j |Mj⟩ = ⟨M̃j |λj |Mj⟩ , (5.14)

then ε∗j = λj . Moreover we have ⟨M̃i|H|Mj⟩ = ⟨M̃i|ε∗i |Mj⟩ = ⟨M̃i|λj |Mj⟩ , hence:
(λj − ε∗i )⟨M̃j |Mi⟩ = 0 . This last relation together with Eqs.(5.14) implies

⟨M̃j |Mi⟩ = ⟨Mi|M̃j⟩ = δij , (5.15)

(in contrast to ⟨Mj |Mi ̸=j⟩ ̸= 0 ). Thus the eigenvalues of H are the complex conju-
gate of those of H† and the relative eigenvectors are biorthogonal each other. Note
also that the state vector |ψ(t)⟩ describing the neutral boson system (without its de-

cay products) can be expressed as |ψ(t)⟩ =
∑
j=1,2 aj(t)|Mj⟩ =

∑
j=1,2 ãj(t)|M̃j⟩ ,

with aj(t) = ⟨M̃j |ψ(t)⟩ and ãj(t) = ⟨Mj |ψ(t)⟩ , i.e. |ψ(t)⟩ =
∑
j=1,2 |Mj⟩⟨M̃j |ψ(t)⟩ =∑

j=1,2 |M̃j⟩⟨Mj |ψ(t)⟩ . This equation implies the completeness relations∑
j

|Mj⟩⟨M̃j | =
∑
j

|M̃j⟩⟨Mj | = 1 . (5.16)

Summarizing, since H is non-Hermitian and non-normal, the conjugate states

⟨M̃j |† ≡ |M̃j⟩ are not isomorphic to |Mj⟩, i.e. |M̃j⟩ ̸= |Mj⟩ and similar for |Mj⟩† ≡
⟨Mj |: ⟨Mj | ̸= ⟨M̃j |. The right and left eigenvectors of the Hamiltonian H in
Eq.(5.11) are (pL, qL)

T , (pH ,−qH)T and 1
qLpH+qHpL

(qH , pH), 1
qLpH+qHpL

(qL,−pL)
respectively, and also introduce

q

p
=

√
qLqH
pLpH

=

√
H21

H12
. (5.17)

The existence of a complete biorthonormal set of eigenvector of H implies that H
is diagonalizable. Indeed this is equivalent to say that the matrix V exists such
that V −1HV = diag(λL, λH) with

V =

(
pL pH
qL −qH

)
, V −1 =

1

Det [V ]

(
qH pH
qL −pL

)
. (5.18)

The mass eigenstates |ML⟩ and |MH⟩ are then written in terms of |M0⟩, |M̄0⟩ as

|ML⟩ = pL |M0⟩ + qL |M̄0⟩ , (5.19)

|MH⟩ = pH |M0⟩ − qH |M̄0⟩ , (5.20)

and, in a similar way, ⟨M̃L| and ⟨M̃H | are expressed as

⟨M̃L| =
1

qLpH + qHpL

[
qH ⟨M̃0| + pH ⟨˜̄M0

|
]
, (5.21)

⟨M̃H | =
1

qLpH + qHpL

[
qL ⟨M̃0| − pL ⟨˜̄M0

|
]
. (5.22)

Since the time evolution operator associated with H: U(t) = e−iHt is not unitary,

then we introduce the time evolution operator of H†: Ũ(t) = e−iH
†t such that
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UŨ† = Ũ†U = 1. The spectral form of the Hamiltonian and of the operators U(t)

and Ũ(t) are then given by

H =
∑
j

λj |Mj⟩⟨M̃j | ,

U(t) =
∑
j

e−iλj |Mj⟩⟨M̃j | , Ũ(t) =
∑
j

e−iλ
∗
j |M̃j⟩⟨Mj | , (5.23)

respectively. Thus, the expressions of the states |M0(t)⟩ and |M̄0(t)⟩ in terms of
|ML⟩ and |MH⟩ are obtained by Eqs.(5.19)-(5.23):

|M0(t)⟩ =
1

qLpH + qHpL

[
qH |ML⟩ e−iλLt + qL |MH⟩ e−iλHt

]
, (5.24)

|M̄0(t)⟩ =
1

qLpH + qHpL

[
pH |ML⟩ e−iλLt − pL |MH⟩ e−iλHt

]
, (5.25)

⟨M̃0(t)| = pL ⟨M̃L| eiλLt + pH ⟨M̃H | eiλHt , (5.26)

⟨˜̄M0(t)| = qL ⟨M̃L| eiλLt − qH ⟨M̃H | eiλHt . (5.27)

The states in Eqs.(5.24)�(5.27) are the correct ones to be used to derive the expres-
sions of the asymmetries describing the violations of CP and CPT invariance. The
constrains on H imposed by CP and T invariance suggest to adopt the following
CP and T violation parameter:

ε =
|pH/qH | − |qL/pL|
|pH/qH |+ |qL/pL|

=
|p/q| − |q/p|
|p/q|+ |q/p|

=
|H12| − |H21|
|H12|+ |H21|

. (5.28)

Moreover, the CPT invariance imposes the equality of the diagonal elements of the
Hamiltonian H in Eq.(5.11): H11 = H22, thus such invariance can be tested by
checking that the di�erence H22 −H11 is equal to zero. The CPT violation can be
described conveniently by the phase convention independent quantity

z =

qL
pL

− qH
pH

qL
pL

+ qH
pH

=
(H22 −H11)

λL − λH
. (5.29)

Note that in the case of CPT invariance: p/q = pL/qL = pH/qH and z = 0. By
using Eq.(5.29), the states (5.24)-(5.27) can be also expressed as

|M0(t)⟩ =
1

2p

[√
1− z |ML⟩ e−iλLt +

√
1 + z |MH⟩ e−iλHt

]
, (5.30)

|M̄0(t)⟩ =
1

2q

[√
1 + z |ML⟩ e−iλLt −

√
1− z |MH⟩ e−iλHt

]
, (5.31)

⟨M̃0(t)| = p
[√

1− z ⟨M̃L| eiλLt +
√
1 + z ⟨M̃H | eiλHt

]
, (5.32)

⟨˜̄M0(t)| = q
[√

1 + z ⟨M̃L| eiλLt −
√
1− z ⟨M̃H | eiλHt

]
, (5.33)

5.2.2. CP violation in meson mixing

The violation of time-reversal invariance can be reveled by the comparison between
the probability of transition from M̄0 to M0: PM̄0→M0 and the probability of
transition from M0 to M̄0 : PM0→M̄0 in the asymmetry:

AT (∆t) =
PM̄0→M0(∆t)− PM0→M̄0(∆t)

PM̄0→M0(∆t) + PM0→M̄0(∆t)
(5.34)
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with ∆t = tf − ti denoting the time interval between the initial ti and the �nal
time tf . The transition amplitudes AM̄0→M0(∆t) and AM0→M̄0(∆t) are given
respectively by

AM̄0→M0(∆t) = ⟨M̃0(tf )|M̄0(ti)⟩ =
1

2

q

p

√
1− z2

(
e−iλL∆t − e−iλH∆t

)
, (5.35)

AM0→M̄0(∆t) = ⟨˜̄M0(tf )|M0(ti)⟩ =
1

2

p

q

√
1− z2

(
e−iλL∆t − e−iλH∆t

)
. (5.36)

To derive the results in Eqs.(5.35)�(5.36) the unitary operator |ML⟩⟨M̃L|+|MH⟩⟨M̃H | =
1 has been introduced on the right side of the operator e−iH∆t. The corresponding
transition probabilities are then

PM̄0→M0(∆t) =
1

2

∣∣∣∣qp
∣∣∣∣2 ∣∣∣√1− z2

∣∣∣2 e−Γ
2 ∆t

[
cosh

(
∆Γ∆t

2

)
− cos(∆m∆t)

]
,

(5.37)

PM0→M̄0(∆t) =
1

2

∣∣∣∣pq
∣∣∣∣2 ∣∣∣√1− z2

∣∣∣2 e−Γ
2 ∆t

[
cosh

(
∆Γ∆t

2

)
− cos(∆m∆t)

]
,

(5.38)

where ∆m = mH −mL, ∆Γ = ΓH − ΓL and Γ = ΓL + ΓH ; in the following it is
also introduced m to denote m = mL +mH . Note that the sign of ∆Γ is not yet
established for B and Bs mesons, ∆Γ < 0 for K mesons and ∆Γ > 0 for D mesons.
The asymmetry AT is time independent and it is given by

AT =
1−

∣∣∣ qp ∣∣∣4
1 +

∣∣∣ qp ∣∣∣4 . (5.39)

A value di�erent from zero of the quantity in Eq(5.39) indicates a direct T violation
independent from CPT violation.

5.2.3. CPT violation in meson mixing

On the other hand, the violation of CPT invariance can be reveled by the com-
parison between the probability of transition from M̄0 to M̄0: PM̄0→M̄0 and the
probability of transition from M0 to M̄0 : PM0→M0 in the asymmetry:

ACPT (∆t) =
PM0→M0(∆t)− PM̄0→M̄0(∆t)

PM0→M0(∆t) + PM̄0→M̄0(∆t)
. (5.40)

The transition amplitudes AM0→M0(∆t) and AM̄0→M̄0(∆t) are given respectively
by

AM0→M0(∆t) = ⟨M̃0(tf )|M0(ti)⟩ =

(
1 + z

2

)
e−iλH∆t +

(
1− z

2

)
e−iλL∆t,(5.41)

AM̄0→M̄0(∆t) = ⟨˜̄M0(tf )|M̄0(ti)⟩ =

(
1− z

2

)
e−iλH∆t +

(
1 + z

2

)
e−iλL∆t,(5.42)
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where again the relation |ML⟩⟨M̃L| + |MH⟩⟨M̃H | = 1 has been introduced on the
right side of e−iH∆t. The corresponding transition probabilities are then

PM0→M0(∆t) = e−
Γ
2 ∆t
[(1 + |z|2

2

)
cosh

(
∆Γ∆t

2

)
−ℜz sinh

(
∆Γ∆t

2

)
+

(
1− |z|2

2

)
cos(∆m∆t) + ℑz sin(∆m∆t)

]
,

(5.43)

PM̄0→M̄0(∆t) = e−
Γ
2 ∆t
[(1 + |z|2

2

)
cosh

(
∆Γ∆t

2

)
+ℜz sinh

(
∆Γ∆t

2

)
+

(
1− |z|2

2

)
cos(∆m∆t)−ℑz sin(∆m∆t)

]
.

(5.44)

The asymmetry ACPT is thus given by

ACPT (∆t) =
−2ℜz sinh

(
∆Γ∆t

2

)
+ 2ℑz sin(∆m∆t)

(1 + |z|2) cosh
(
∆Γ∆t

2

)
+ (1− |z|2) cos(∆m∆t)

. (5.45)

Omitting second order terms in z and making the approximation sinh
(
∆Γ∆t

2

)
≃

∆Γ∆t
2 which is valid in the range |∆t| < 15ps used in the experimental analysis

[106], [107], one has

ACPT (∆t) ≃ −ℜz∆Γ∆t + 2ℑz sin(∆m∆t)

cosh
(
∆Γ∆t

2

)
+ cos(∆m∆t)

, (5.46)

which coincide with Eq.(6) of Ref.[107]. In the case of CPT invariance, z = 0 and
ACPT = 0.





Conclusion

In conclusion, we have shown the presence of geometric phases in the evolution of a
two level system and studied its gauge structure. We have computed the covariant
derivative and pointed out that it acts as the free energy with the gauge �eld
acting as the entropy. In such a picture time evolution is thus controlled by the free
energy. When applied to a qubit state, these results may be of interest in quantum
computing studies. we have shown that time evolution of a two level system or
qubit is controlled by a covariant derivative accounting for the coupling of the state
with a (non-abelian) gauge �eld background so to preserve the invariance of the
dynamics against local in time gauge transformations. We have shown that the
e�ect of the gauge �eld background can be depicted as the e�ect of a birefringence
phenomenon, the gauge �eld background acting as the analogous of the refractive
medium. We have also shown that the covariant derivative plays the role of the
free energy with the gauge �eld acting as the entropy. In such a picture time
evolution is controlled by the free energy. Finally, the relation of our result with
the geometric phase and the so-called adiabatic connection has been pointed out.
We have also shown that the distance in the projective Hilbert space between two
level or qubit evolution states is measured by the Fubini�Study metric in terms of
the Anandan�Aharonov geometric invariant.

We have studied the structure of the currents and charges for the charged mixed
�elds and we have shown that the e�ective Hamiltonian of mixed neutral meson
systems is non-Hermitian and non-normal and it can be studied in the Wigner�
Weisskopf approximation. The asymmetries describing the T and CPT violations
are computed using the biorthonormal basis formalism.
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