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Fatti non foste a viver come bruti
ma per seguir virtute e canoscenza

You were not born to live like brutes
but to follow virtue and knowledge

- Dante Alighieri, Inferno, Canto XXVI -

Il successo è l’abilità di passare da un fallimento
all’altro senza perdere l’entusiasmo

Success consists of going from failure
to failure without loss of enthusiasm

- Winston Churchill -
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Chapter 1

Introduction

1.1 Overview

The face is one of the most important parts of the human body,
since it has some distinctive physical and expressive features which
allow the identification of certain properties. For instance, by just
looking at faces, humans recognize the gender and the ethnicity
[1, 2], estimate the age [3], deduce the emotions and the state of
mind [4, 5], determine if the person has a familiar face or is a
stranger [6], and verify or recognize the identity of the individual
[7, 8, 9]. Although all faces consist of the same parts in a specific
spatial arrangement (the relative positions of the nose, eyes and
others), primates have enviable abilities to use the subtle features
and draw conclusions from faces in a remarkable and seemingly
effortless operation. As a matter of fact, there is a neurophysi-
ological evidence that the visual cortices of primates have single
neurons that are selective to faces [10]. This fact demonstrates
the importance that evolution gave to faces.
In recent years the variety and appeal of faces motivated several
researchers to work on the problem of automatic face analysis com-
ing from images. However, not a lot of studies have been produced
to deal with the additional problems related to faces extracted in
real life scenarios, when people are not aware of the presence of the
camera. Although most of the attention has been devoted to still
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images and not to videos, gender recognition is anyway considered
among the most challenging problems [11].

1.2 Common challenges on still images

Although gender recognition from face images may appear a sim-
ple task, it is important to note that even human beings may find
it challenging in certain situations. In fact, the study [12] demon-
strates that the performance of humans in such a task reaches an
accuracy lower than 95%.
In addition to the inherent difficulties of the topic, the automatic
detection and analysis of a face is further affected by different
problems. First of all, existing face detection algorithms achieve
reasonable performance on frontal faces, but the accuracy gradu-
ally decreases when the face is tilted horizontally or vertically with
respect to the camera.
Certain combinations of facial features also affect gender classifi-
cation, as shown in Figure 1.1. The most challenging aspects are
surely related to the pose variations and the partial occlusions of
the face, for example with scarves, hats and glasses. While the for-
mer can be solved to some extent by normalizing the pose of the
face using alignment algorithms [13], the latter is harder to solve
due to the variety of all the possible occlusions. Furthermore, it
has been demonstrated that the performance of gender recogni-
tion algorithms is strongly affected by the age of the people, as
well as by their race or expression [14]. For instance, the wrinkles
formed on elderly women may make their faces similar to elderly
men. Figure 1.1 shows also other challenges, such as variations in
the illumination and contrast.
In the last years, a great deal of literature has been produced with
methods attempting to solve gender recognition from still images
[11]. While significant progress has been observed, automatic sys-
tems have not yet reached the generalization capability needed to
achieve good performance even in presence of variations in age,
race, pose, illumination, and so on.
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Figure 1.1 Typical problems of gender recognition systems: (first row)
different expressions, ages or races; (second row) occlusions with wig, ski

mask, balaclava, and microphone; (third row) different poses and
illumination conditions.

1.3 Additional challenges in real life sce-

narios

The algorithms for the automatic classification of gender have a
lot of potential for commercial and security applications. Indeed,
information such as gender, age and race are desired features that
managers are eager to have for sophisticated market analysis. That
information helps them to acquire more insights about the needs
of customers with respect to the possible products that they can
offer.
Typical examples in the retail field are given by the smart bill-
boards or user interfaces which are able to modify their visual
display depending on the gender of the person interacting with
them. Another application could be tailored promotional mate-
rial on screens installed in front of the passengers in taxis, trains
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and planes. Moreover, retailers are nowadays considering to use
face analysis algorithms to improve the shopping experience using
cameras and customized web radios. Such smart systems will have
the capability to personalize the promotional messages transmit-
ted by the radio after recognizing the gender and the age group of
the customers (eg. makeup advertising for women, toys for chil-
dren). Figure 1.2(a-c) shows examples of some retail applications.

Another field where gender recognition algorithms can play an
important role is video-surveillance. Indeed, there is a great de-
mand for applications that are able to perform face recognition
of suspicious individuals by analyzing images captured by surveil-
lance cameras. The main challenge of these systems is the pro-
cessing time needed for searching a match between the input face
image and the thousands of samples stored in a reference database.
One way for reducing the search space is to first detect the gender
[15] and possibly the age group [16] and/or ethnicity [17] of the
given face and then compare it only with the images which share
the same properties in the database. Figure 1.2(d) depicts a high-
level architecture of such a system.

When moving to these kind of applications, the images are ac-
quired using traditional surveillance cameras and the algorithm
has to process them in real time [18]. It implies that the problem
of recognizing the gender of the persons becomes definitively more
challenging.
Indeed, the algorithm has to deal with the fact that a person is
not static but instead enters the scene, moves toward the camera
and finally exits the scene. In other words, (1) the faces have to
be found in real time, frame by frame, (2) even in presence of mo-
tion blur due to sudden movements of the persons or (3) in cases
of pose variations. Indeed, the person is not collaborative, in the
sense that he/she may be not aware of the presence of the camera
and thus may not look towards the camera. (4) Furthermore, the
movement of the person towards the camera implies that his/her
face has a strongly variable dimension. Finally, (5) for each face, a
single information concerning his/her gender has to be generated,
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(a) (b)

(c) (d)
Figure 1.2 Examples of gender recognition applications. (a) A chart that
shows the number of the daily visitors in a store, used to carry out market

analysis (from www.aitech.vision). (b) A woman who talks about smart
billboards. (c) Screens installed in front of the passengers in a plane, which

can be equipped with smart cameras so as to show tailored promotional
material. (d) The architecture of a system which performs a

pre-classification of the gender in order to reduce the search space in large
face databases.

thus the decision needs to be taken by discovering and then eval-
uating all the faces associated to a single person along the time
and not just a single face.
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1.4 The new trend of embedded vision

Although the above mentioned real-time processing constraint is
probably the most challenging requirement of the algorithms which
have to deal with image sequences acquired in real life scenarios,
the current literature in this field does not dedicate to this prob-
lem the attention it would deserve. Indeed, in most of the cases
the effort of the researchers is devoted to find the algorithm which
maximize the gender recognition accuracy without considering the
computational load required by the proposed method. The lack
of experiments in this direction results in the compelling need of
using very powerful processors to reduce the elaboration time of
real applications which require a response in a few milliseconds.
The use of architectures with ”unlimited” computing resources is
in contrast with the growing interest towards general purposes em-
bedded systems, able to strongly reduce the hardware cost of these
kinds of solutions [19]. Indeed, the usage of an embedded system,
especially if integrated directly on board of the cameras, strongly
reduces the bandwidth required for transferring the video stream
to an external server, as well as the energy consumption of the
whole system, since a powerful server is no more required.
Such modern architecture, named embedded vision, together with
the lower cost of the embedded system if compared with traditional
server, strongly reduces the costs of the hardware infrastructure,
making this kind of application more attractive for the retailers.
Furthermore, the embedded vision implies a high scalability of the
whole architecture: if the number of required cameras increases,
it is not necessary to buy a new expensive server but just a couple
of low cost embedded devices.
It is important to highlight that the design of an algorithm suited
for embedded systems is a very challenging task. Indeed, all the
efforts aimed at achieving a higher accuracy require also a greater
computational burden. For example, higher resolutions of the im-
ages, and then of the single faces, which obviously preserve more
details about the facial landmarks, require a higher processing
time. Or else, a high number of images per person, needed for in-
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creasing the reliability of the whole system as well as for extracting
additional information, such as the persistence time of a person in
front of the camera, requires a high frame rate.
So the research of a gender recognition solution suitable for embed-
ded systems leads to the absolutely not trivial problem of finding
out the best possible trade-off between the computational cost
(and the resources required for the elaboration, both in terms of
time and space) and the accuracy (the percentage of correct clas-
sifications) of the algorithm.

1.5 The lack of standard datasets

While in the last years several datasets have been proposed for
benchmarking gender recognition algorithms, to the best of our
knowledge there are no datasets which have become standards de
facto. Also, there is not a standard way for evaluating algorithms
on the existing datasets, as in most of the cases the partitioning
of training and test sets is not clearly defined.
The difficulty is mainly due to the fact that the face datasets are
generally collected for face recognition or verification. In recent
years FERET [20], LFW [21], Adience [18], MORPH [22], Youtube
Faces Database [23], PIE [24], Multi-PIE [25], AR [26], PUT [27],
FEI [28] have been used for several face analysis purposes. How-
ever, only for LFW and Adience the labels for gender and the
way for evaluating the algorithms are provided, but in most of
the scientific papers the protocol is not respected, so making hard
the comparison of the performance of a new algorithm with the
existing ones.
All the abovementioned datasets consist of still images (or face
images extracted from videos, as in the case of Youtube Faces
Database) captured with professional cameras or, anyway, in sit-
uations where the person is aware of the presence of the camera.
Such condition is very different from the video-surveillance scenar-
ios, where the quality of the images is very poor due to the use
of traditional surveillance cameras and to the wide range of vari-
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ations in the appearance of the face image of an unaware person.
ChokePoint [29], SCFace [30] and FR SURV VID [31] are com-
posed of face images acquired in video-surveillance environments
and have been used in the last years for face recognition purposes.
Nevertheless, no labels or experimentation protocols are provided
for gender recognition.

1.6 Contribution

This research has the purpose of investigating the possibility to
perform gender recognition on face images extracted from video
sequences acquired with surveillance cameras in real scenarios. As
discussed above, these constraints impose to deal with additional
challenges, such as real-time processing, high accuracy even in
presence of motion blur and pose or scale variations, and the de-
sign of a mechanism to track the person in the scene, in order to
provide a single classification of the gender, instead of one for each
face image.
As explained in Section 2.1 the convolutional neural networks
(CNNs) are able to achieve significant performance in terms of
gender recognition accuracy, but they require computational and
memory resources that are not available on low cost embedded
devices. Indeed, the most effective CNN for face analysis, namely
VGG-Face, requires more than 10 seconds for a single image on a
classic CPU (that is faster than a low cost CPU) and the trained
model is more than 500 MB. Also the SqueezeNet, which is op-
timized for embedded systems with GPU, is not able to process
images in real-time on classic CPUs and on low cost embedded
systems. Therefore, the CNNs are not suitable for the purposes of
this research work.
The challenge addressed in this thesis is the search of the best trade
off between gender recognition accuracy and processing speed, in
order to design an algorithm suitable for real-time elaboration on
low cost embedded devices. To this aim, the contribution of the
thesis is three-fold.
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First, an extensive evaluation of various type of classifiers for rec-
ognizing the gender on still images is provided. In particular, two
multi-experts have been proposed. The former relies upon a fusion
of handcrafted features and takes its decision by using information
about intensity, texture and shape of a human face. The latter is
based on a combination of classifiers fed with trainable shape fea-
tures and domain-specific descriptors extracted in correspondence
of facial landmarks. The multi-experts have been preferred to the
simple fusion of different feature vectors in order to reduce the
dimensionality, preventing the necessity to increase the amount of
data for avoiding over-specialization, and to exploit the comple-
mentarity of particular types of features.
All the experiments, aimed at evaluating the accuracy of the pro-
posed methods and at finding the best combination rule, are car-
ried out on standard benchmarks (GENDER-FERET [32] and
LFW [21]) with standard protocols. Such preliminary analysis
is performed with the goal of optimizing the performance on still
images, defining the strengths and the weaknesses of each classifier
and the computational load needed to recognize the gender.
Second, differently from the state of the art methodologies, classic
surveillance videos instead than high resolution still images have
been used for recognizing the gender of the persons. A new dataset
has been acquired in real environments and a part of it has been
made publicly available for research purposes. Such dataset has
been used for learning a classifier able to determine the gender of
a person even in presence of challenges such as motion blur, pose
variations and so on.
Third, an embedded vision system for real-time gender recogni-
tion based on a multi-sensors architecture has been proposed. The
choice of a multi-sensors architecture is the best trade-off between
accuracy and processing time needed for an embedded vision sys-
tem, as demonstrated in the experimental evaluation. Such ar-
chitecture consists of two smart cameras and a low cost embed-
ded system. On board of the first camera, mounted overhead,
an efficient and effective people counting algorithm provides the
information about the passage of one or more persons and the lo-



12 1. Introduction

cations where the faces can be detected. The information about
the position is crucial for reducing the size of the region where
the face detection is performed and, consequently, for speeding up
the gender recognition algorithm. The second camera, installed
in front of the people so that they move towards it, receives the
notifications by the previous one and provides the images associ-
ated to the passage, together with the information collected by the
people counting, to the low cost embedded system devoted to face
analysis. The gender recognition algorithm tracks the person in
the scene and associates a single classification for each individual,
making use of a multi-frame face tracking algorithm. Both the
people counting and the gender recognition algorithms are opti-
mized to process images in real-time with very limited resources,
thanks to the usage of SIMD instructions which exploit the paral-
lelism of the processor.

1.7 Organization

This thesis consists of the following six chapters:

• Chapter 1 introduced the topic of gender recognition from
still images and videos, by analyzing the challenges and the
lack of standard benchmarks, and briefly highlighting the
novelties and the contribution of this research.

• Chapter 2 provides a survey of the state of the art methods,
by investigating the approaches recently proposed for recog-
nizing the gender on still images (Section 2.1) and videos
(Section 2.2). The chapter ends with Section (2.3), which
reports a review of the research in the field of embedded
vision.

• Chapter 3 describes the approaches proposed for gender
recognition on still images. In particular, Section 3.1 ex-
plains the procedure used for detecting and normalizing the
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face images. Section 3.2 describes a method based on the
combination of handcrafted features, which takes into ac-
count the pixels intensity, the texture and the shape of the
human face. Section 3.3 describes the multi-expert which
combines trainable COSFIRE filters, namely shape features
configured by using prototypes obtained from different parts
of the face, and domain-specific SURF-based descriptors,
and allows to maximize the gender recognition accuracy on
different datasets. Finally, Section 3.4 gives details about
the combination rules proposed to optimize the performance
of the multi-experts.

• Chapter 4 is devoted to analyze the multi-sensors architec-
ture proposed for recognizing the gender on real-time video
streams. Section 4.2 describes the people counting algorithm
used to detect the presence of persons in the scene. while
Section 4.3 details the fast and effective gender recognition
solution and the tracking algorithm used for associating a
single classification to each person. The chapter ends with
Section 4.4, where the code optimizations which allow to run
the algorithm on embedded systems with limited resources
in real-time are discussed.

• Chapter 5 analyzes the results obtained by the proposed
algorithms, both in terms of accuracy and processing speed.
Section 5.1 describes the datasets used for the experiments.
Sections 5.2 and 5.3 give details about the experimental eval-
uation of the accuracy achieved by the proposed methods on
still images and video sequences, respectively. The Chapter
ends with an extensive analysis (Section 5.4) of the process-
ing time required by the proposed approaches, which allows
to justify all the choices carried out for the usability of the
new architecture in real applications.

• Chapter 6 draws the conclusions, giving a brief summary
of the thesis in Section 6.1 and describing future directions
of the research in this field in Section 6.2.
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Chapter 2

State of the Art

2.1 Gender recognition on still images

Although it is not possible to define a taxonomy to partition the
methods for gender recognition from still images, two different
classes can be roughly recognized, depending on the type of fea-
tures used. Most of the approaches rely on handcrafted features,
which require expert knowledge for manually designing domain-
specific features. Other approaches are indeed trainable, in that
distinctive features can be automatically learned from training
data. The advantage of using handcrafted features is the pos-
sibility to exploit the domain knowledge to identify the elements
that distinguish the faces of men from those of women, such as
intensity, texture, shape and geometry. Indeed, trainable features
may capture aspects of the face that a human could not notice.
Moreover the procedure for the extraction of such features does
not rely upon domain knowledge.
The approaches belonging to the first category use various types
of features based on color [33] [34] [35], texture [36] [37] [38] and
shape [39] [40] [41] information. Almost all of them share a similar
architecture that consists of three steps: i) the detection and the
cropping of the face using the well known Viola-Jones algorithm
[42]; ii) the pre-processing of the image, in order to normalize the
face in terms of dimension, pose and illumination; iii) the extrac-
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tion of the features used to recognize the gender.
For example, in [33] Moghaddam et al. propose to use raw infor-
mation (the pixel intensity values of face images) to form vectors
and use them to train a SVM classifier with an RBF or a polyno-
mial kernel. Their main drawback is that they are not invariant
to translation. If the same face is shifted by just a few pixels,
the resulting feature vector may be completely different. Another
problem is the dimensionality of the obtained feature vector, which
increases with the resolution of the face image. In order to address
this problem, Yang et al. [34] compared the performance of various
dimensionality reduction techniques applied on the pixel intensity
values, such as principal component analysis (PCA), 2D principal
component analysis (2DPCA), independent component analysis
(ICA) and linear discriminant analysis (LDA). In [35] Baluja et
al. use the relationship between the intensities of the pixels in
face images. They consider ten types of a pixel comparison oper-
ator, which provide a binary decision, as weak classifiers to learn
a model using the Adaboost method [43].
Lian et al. [36] extract and concatenate local binary pattern (LBP)
histograms [44], from different regions of the face, in a single fea-
ture vector, and trained a SVM classifier for gender recognition.
The rationale of this approach is that a texture descriptor could
be able to capture the differences between the smoother skin of
a woman and the rougher skin of a man, especially in presence
of beard. Eidinger et al. [18] and Azarmehr et al. [19] use a
pair of different LBP variants, FBLBP and MSLBP respectively,
for the automatic recognition of gender and age. Dago-Casas et
al. [45] extract Gabor wavelets from a sparse uniform grid of face
points and compute a face descriptor combining them with LBP
histograms. Since not all the regions of the face are significant in
terms of texture, in [37] and [38] other researchers propose to use
Adaboost to carry out feature selection and to use only the LBP
histograms from the most discriminant parts of the faces.
In [39] Singh et al. propose the use of histograms of gradients
(HOG) [46] to represent the shape of a face and use it as a de-
scriptor for gender recognition. In [40] Guo et al. demonstrate that
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the performance of a gender classifier based on HOG features is af-
fected by age. This idea is further investigated in [41], where the
authors find dependencies among facial demographic attributes,
especially between gender, age and pose facial attributes. Other
researchers also try to combine several typologies of color, shape
and texture features, in order to improve the performance of their
gender classifiers [47] [48]. The rationale behind those approaches
is that color, texture and shape features can be complementary, in
the sense that they capture different aspects of human faces and
can improve gender recognition when used together.
Other domain specific approaches rely on the extraction of hand-
crafted features from specific points, known as fiducial points [49].
Brunelli et al. [50] propose a face descriptor that computes 18
fiducial distances between points representing the locations of the
eyes, nose, chin, mouth corners and others. El-Din et al. [51] ex-
tract SIFT [52] descriptors from these so-called facial landmarks
and used them to form a long feature vector.
As for the second category, the deep learning-based methods [53]
[54] [55] [56], which gained popularity in recent years, are the most
common trainable approaches. Levi et al. [53] perform automatic
age and gender classification using deep-convolutional neural net-
works (CNN) [57]. Van de Wolfshaar et al. [54] train a dropout-
SVM using the deep features selected by a CNN. Ranjan et al.
[55] propose a multi-task learning framework, called HyperFace,
for simultaneous face detection, landmark localization, pose esti-
mation and gender recognition using CNNs. Jia et al. [56] design
a method to generate a classifier using a mixture of face datasets
composed of four million images and about 60, 000 features.
Although the deep networks have the capability to achieve very
high gender recognition accuracy, they require the use of a GPU
and are not able to process images in real-time on classic CPUs,
much less on low cost embedded systems. Moreover, the CNN
trained model requires a lot of memory (more than 500 MB) that
is often not available on the most popular embedded devices for
computer vision, namely the smart cameras.
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2.2 Gender recognition on videos

The gender recognition algorithms proposed in the literature deal
with scenarios where the training and the test samples are ac-
quired in similar environmental conditions. In most of the cases
the environment is controlled and the quality of the images is
very high. Obviously such face images are very different from
the ones acquired with classic video-surveillance cameras. Experi-
ments performed in real environments [11] demonstrate that these
approaches fail to achieve an acceptable accuracy when dealing
with images acquired in different environmental conditions, be-
cause training and test samples differ in resolution, contrast and
sharpness. The drawbacks of these techniques are: i) the lack of
experiments with cameras installed in real scenarios and ii) the
inability to cope with the changes in the distributions of training
and testing conditions.
As for the first point, the most challenging datasets where the
recent approaches are achieving remarkable results are the LFW
[21], the Adience [18] and the YoutubeFaces [23]. However, both
the datasets are acquired with professional cameras or, anyway,
with devices which assure performance better than the classic
surveillance cameras. Datasets composed of images acquired in
real scenarios have not yet been acquired for gender recognition
purposes. Nevertheless, the benchmarks SCFace [30], ChokePoint
[29] and FR SURV V ID [31] have been used for addressing the
problem of face recognition in surveillance scenarios. The latter
problem is strictly related to the second point of the discussion,
since in most of the surveillance systems just a few face images of
the person (generally taken from ID card or driving license) are
available in a database and it is very hard to recognize or verify
the identity of a person by comparing the reference faces with the
video images captured with the surveillance cameras.
The challenge of the systems which aim to address this problem is
to find features that are invariant to the degradation of the image
quality and to the well known face variations in real environments.
Although the problem is very interesting and challenging also for
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gender recognition purposes, no researches have been conducted
in this field, but only for face recognition in surveillance scenarios.
The research in the field of face recognition in real environments
aims substantially at finding a suitable domain adaptation task,
able to minimize the discrepancy between the probability distri-
butions of the training and testing domains. Domain adaptation
is a fundamental problem in machine learning [58, 59, 60, 61, 62,
63, 64, 65] and has gained a lot of traction in natural language
processing, statistics, machine learning, and, most recently, in the
computer vision field [66, 67]. The most common usage of domain
adaptation in the field of face recognition with surveillance cam-
eras is to solve the single sample per person (SSPP) problem [68].
Indeed, in some specific scenarios (e.g. law enforcement, driver
license, passport and identification card) only one image per per-
son can be acquired for the training of face recognition systems, so
making even harder the estimation of the intra-class variation with
only a single training sample. To deal with such challenging prob-
lem, several pattern recognition based or data driven approaches
have been proposed.
The methods based on pattern recognition address the problem
by predicting all the possible face variations, in order to adapt the
model of the face to the real environment [69, 70, 71, 72, 73, 74].
The authors of the papers [69, 70, 71] concentrate their atten-
tion on the training step, proposing, respectively, the learning of
generic discriminant vectors, an adaptive linear regression and an
incremental learning. The authors of [72] construct a local gallery
dictionary by extracting the neighbouring patches from the gallery
dataset and an intra-class variation dictionary by using an ex-
ternal generic dataset for predicting the possible facial variations
(e.g., illuminations, pose, expressions and disguises). The algo-
rithm takes the advantages of patch based local representation
and generic variation representation to deal with SSPP. A similar
approach has been used in [73], where a sparse variation dictio-
nary learning has been proposed. In [74] a reference face graph
has been designed for addressing the SSPP problem.
The data driven approaches address the SSPP problem by pro-



20 2. State of the Art

ducing virtual training samples from the real samples. The idea
is that to learn the intra-class variation more samples are needed
and that additional face images of the same person may be ob-
tained as degraded versions of the original training sample with
geometric transformations [75, 76, 77] or specific image processing
[78, 79, 80, 81, 82]. In [75] the original face image is rotated using
bilinear interpolation to form more training faces for every per-
son. The authors of [76] propose sampled FLDA to partition the
single face into several sub-image by sampling interval in height
and width respectively. Similarly in [77] the training sample has
been divided transversely into several parts and a sparse repre-
sentation has been generated by combining original and virtual
samples. The authors in [78] use multi-directional orthogonal gra-
dient phase faces to handle illumination invariant single sample
face recognition. In order to constitute a variational feature rep-
resentation from single sample per person, in [79] a linear regres-
sion model to fit the variational information of a non-ideal probe
sample with respect to an ideal gallery sample has been proposed.
3D face reconstruction [80] has become an effective tool to deal
with SSPP in recent years. In [81] a personalized 3D face model is
firstly constructed from a single frontal 2D face image with neu-
tral expression and normal illumination and then realistic virtual
faces with different pose, illumination and expression are synthe-
sized. Finally, the authors in [82] use lower-upper decomposition
algorithm to decompose single sample into two basis images set
in order to reconstruct two approximation images from the two
basis.
Most of the above mentioned approaches aim at optimizing just
a single parameter, namely the recognition accuracy. However,
only a modest attention has been devoted to the computational
optimization of this kind of algorithms and to the analysis of the
required hardware resources which allow to use these systems in
real time and to apply them in real applications. Furthermore,
as confirmed in [83], only a few fast implementations of gender
recognition algorithms have been proposed in the recent years.
For instance in [19] an Enhanced Discriminant Analysis (EDA) is
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combined with a SVM classifier based on RBF kernel exploiting
a demography-based discriminative model. In [83] a Neural Net-
work based on a Gabor filter is implemented over a FPGA, while
in [84] the distances between facial features are evaluated over a
FPGA.
Other fast face analysis solutions have been proposed for face
recognition in real-time, by optimizing the software [85, 86] or
directly the hardware [87]. Since the most time requiring oper-
ation is the face detection, various approaches to speed up this
processing step have been also proposed [88, 89].
However, in all the above mentioned methods, no experimenta-
tions have been made over sequences of images acquired in real
scenarios.

2.3 Embedded vision

The Embedded Vision Alliance [90] defines the new discipline of
embedded vision as the practical use of computer vision in ma-
chines that understand their environment through visual means.
The terms embedded refers to the use of digital processing and
intelligent algorithms to interpret meaning from images or video
on low-cost and energy-efficient processors.
The research in the field of embedded vision aims substantially at
achieving two goals. On one hand, the finding of special purpose
hardware solutions which assure performance, in terms of process-
ing time, comparable with the general purpose architectures based
on graphic processing unit (GPU). On the other hand, the effort of
the researchers is concentrated on the design of algorithms which
are able to exploit the features of such architectures and to per-
form the specific computer vision task in real-time, by finding the
best trade-off between accuracy and processing time.
As for the hardware architectures, the best candidates are the Ap-
plication Specific Integrated Circuit (ASIC), Field Programmable
Gate Array (FPGA) and System on a Chip (SoC). The suitability
of FPGA for computer vision applications is discussed in [91]. In
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[92] it is shown that a special purpose FPGA network can achieve
a performance comparable with a GPU, but with a significantly
lower energy consumption. The performance of FPGA, CPU and
GPU are also compared on three different image processing appli-
cations in [93]. Some FPGA implementations of the Speeded Up
Robust Features (SURF) algorithm have been proposed [94, 95].
An improved version of the SURF algorithm, which combine the
use of FPGA and SoC, is described in [96]. Other researchers
proposed their own architectures based on domain specific accel-
erators [97], ultra-low power accelerators [98], parallel pipelined
heterogeneous SoC [99] and 3D cameras [100].
The SoC architectures are very interesting because generally con-
sists of an ARM-based CPU which can be extended with a FPGA,
a GPU or a Digital Signal Processor (DSP) in order to achieve
performance comparable with the ones obtained by the modern
processors, without increasing the cost and the energy consump-
tion. The smart cameras, which are probably the most used em-
bedded vision architectures, belong to this class. Most of the low
level algorithms have been optimized for such devices. In [101]
it is described a background subtraction method that does not
perform floating point operations and largely uses SIMD (Single
Input Multiple Data) instructions, thus exploiting the parallelism
of the vector processors and simultaneously processing more data.
Since integral images are largely used as preliminary operations
for various feature extraction techniques, efficient algorithms for
their computation on embedded vision systems are presented in
[102]. An optimized implementation of the HOG algorithm, suit-
able for embedded systems, is reported in [103].
The trend of embedded vision has led to a proliferation of indus-
trial, automotive, security and retail applications based on these
architectures. For example, a bio-inspired embedded vision system
for autonomous micro-robots is proposed in [104] to improve the
factory automation. A reconfigurable embedded vision system for
advanced driver assistance, which ensure that the driver remains
alert and awake while driving the vehicle, is presented in [105]. In
[106] an algorithm for detecting abandoned baggages or removed
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objects by using surveillance smart cameras in real-time is pro-
posed. In [107] an embedded vision method for fast notification
of vehicles parked in forbidden areas is described. A very fast and
effective method for counting people on real video sequences by
using an overhead smart camera is proposed in [108].
Although significant interest has been registered in the last years,
the research in this field is yet at the beginning. The challenge of
the researchers is the definition of algorithms as fast as accurate
by using the very limited resources available on smart cameras or
other embedded vision systems.
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Chapter 3

Gender recognition on still
images

Going back to the considerations about the pros and cons of using
domain-specific or trainable features for gender recognition, in this
research both the approaches have been investigated.
Up to now the efforts of the research community have been mainly
devoted to the definition of a representation of face able to dis-
criminate men from women in all the conditions. Considering the
amount of possible variations in terms of age, race, pose, illumina-
tion, occlusions and so on, a description which takes into account
all these situations inevitably leads to high dimensional feature
vectors.
How to manage high dimensional feature vectors is a well-known
problem in the communities of machine learning and pattern recog-
nition: in fact, as shown in [109], employing a high dimensional
feature vector would imply significant increase in the amount of
data required to train any classifier in order to avoid over-specialization
and to achieve good results. Furthermore, independently of the
particular features extracted, in most of the above mentioned
methods the high variability of faces, as well as the large amount
of noise in data acquired in real environments, prevent the systems
from the achievement of a high recognition rate. More generally, it
has been shown [110] that increasing the performance of a system
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based on the traditional combination feature vector - classifier is
often a very expensive operation. In fact, it may require to de-
sign a new set of features to represent the faces, to train again
the classifier, or to select a different classifier if the performance is
not sufficiently satisfactory. Moreover, this effort could be payed
back by only a slight improvement in the overall accuracy, so this
approach may prove not very convenient.
In order to overcome the above mentioned limitations, one of the
solutions coming from the literature [110] is to split the feature
vector and consequently to adopt a set of classifiers, each tailored
on a feature set and then trained to be an expert in a part of the
feature space. The main idea of this kind of paradigm, usually re-
ferred to as Multi Expert System (MES), is to make the decision
by combining the opinions of the different individual classifiers
(hereinafter experts), so as to consistently outperform the single
best classifier [111]. Such research explains on the basis of a the-
oretical framework why a MES can be expected to outperform
a single, monolithic classifier. In fact, most classifiers, given an
unlimited amount of training data, converge to an optimal classi-
fication decision (in a probabilistic sense); but on a finite training
set, their output is affected by an error (additional with respect
to the inherent error due to ambiguities in the input data), which
is either due to over-specialization or to the choice of reducing the
classifier complexity in order to avoid the loss of generalization
ability. The author of [111] shows that, under some assumptions
satisfied very often in practical cases, a suitably chosen benevolent
combining function can make the overall output of the MES less
sensitive to the errors of the individual classifiers. MESs have been
successfully applied in several application domains, ranging from
biomedical images analysis [112] [113] and face detection [114] to
movie segmentation [115] and handwriting recognition [110].
In the proposed gender recognition methods, which work on still
images, MESs are employed for improving the performance of the
single experts. It is evident that the successful implementation
of a MES requires both the adoption of complementary sets of
features feeding the different experts and the choice of a reliable
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Figure 3.1 Overview of the face detection and normalization algorithm.

combination rule.
Regarding the first aspect, two multi-experts have been proposed.
The former, described in Section 3.2, considers three different ex-
perts able to analyze the problem of gender recognition from face
images from different points of view, based on color intensity, on
texture and on shape, respectively. The latter, reported in Sec-
tion 3.3, combines a classifier tailored with trainable COSFIRE
filters, which allow to design a face descriptor able to automati-
cally capture particular facial features, with an expert based on
domain-specific SURF features extracted from specific facial land-
marks.
As for the second aspect, an experimental evaluation has been
performed to choose the best combination rule for the problem
at hand. In particular, a weighted voting rule has been used for
combining the decisions of the classifiers based on handcrafted fea-
tures, while a data driven stacked classification scheme has been
used for the combination of trainable and domain-specific features.

3.1 Face detection and normalization

Figure 3.1 illustrates the architecture of the proposed face detec-
tion and normalization algorithm.

Preliminarily, the Viola-Jones algorithm [42] is applied on the
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Figure 3.2 Representation of the proposed face alignment algorithm. The
51 red dots indicate the positions of the facial landmarks. The three blue

markers, from left to right, indicate the left eye center, the center of the line
that connects the two eyes, and the right eye center.

input image to detect the faces occurring in it. Then a face align-
ment algorithm is used to normalize the pose. For a given face
image, the method proposed in [116] is used to detect a set of 51
facial landmarks. The average location of each of the two sets of
eye-related landmarks is computed. This allows to determine the
orientation of the line which connects these two points, namely the
orientation of the face, and use that angle to horizontally align the
face image. In order to horizontally align the face, the image is
rotated around the center of the line that connects the two eyes.
Figure 3.2 depicts an example of a face image before and after
the alignment. In practice, in order to avoid having a black back-
ground in the rotated image, first the face image is cropped by
using a bounding box that is twice as large as the one determined
by the Viola-Jones algorithm. Then the image is rotated and the
Viola-Jones bounding box is used to crop the face in the rotated
image. Finally, each horizontally aligned face image is rescaled to
a fixed size of 128×128 pixels. Such resolution allows to maximize
the accuracy of the experts described in the following sections.
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Figure 3.3 Architecture of the method based on a fusion of handcrafted
features.

3.2 Gender recognition on still images

using a fusion of handcrafted fea-

tures

Figure 3.3 shows the architecture of the method which rely on
the fusion of raw, texture and shape features. The algorithm for
face detection and normalization has been described in Section
3.1. The experts based on handcrafted features are detailed in the
following subsections, while the weighted voting rule is described
in Section 3.4.

3.2.1 Raw-based classifier

As for the raw-based descriptor, the image is rescaled to 64 × 64
pixels and transformed into a (64 × 64 =) 4096-element feature
vector, dividing each element by 255 so that all dimensions have
the same range of [0,1]. Such descriptor has been used to feed an
SVM classifier with a linear kernel.

3.2.2 LBP-based classifier

The texture feature vector is obtained by applying the LBP de-
scriptor [44] to the entire image and comparing the intensity value
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of each pixel with a 3 × 3 neighbourhood. A spatial tiling of
3 × 3 is used to generate a 256-element L2-normalized histogram
for each tile. Finally, the nine histograms are merged so as to
form a (256×9 =) 2304-element vector for each image. The LBP
histogram-based descriptors are used as inputs of an SVM classi-
fier with a linear kernel.

3.2.3 HOG-based classifier

As to the shape descriptor, firstly the gradient and angle of ev-
ery pixel are computed by considering the responses of first-order
partial derivatives of a 2D Gaussian function with a σ = 1. Then
blocks of 32 × 32 pixels that overlap by 50% are sampled and
for each block a spatial tiling of 2 × 2 is used. For each tile the
L2-normalized weighted histogram of 9 bins (in intervals of 20 de-
grees) is computed, the normalized values are clipped at 0.2 and
all the values are normalized again. Considering that face images
of size 128× 128 pixels are used, the HOG descriptor results in a
(7 blocks × 7 blocks × 4 tiles × 9 bins = ) 1764-element vector.
Also in this case, an SVM classifier with a linear kernel has been
trained with the above mentioned shape features.

3.3 Gender recognition on still images

using a fusion of domain-specific

and trainable COSFIRE filters

The idea of this approach is to combine the domain-free and train-
able COSFIRE filters, configured using aligned face images, with
the handcrafted SURF features [117] extracted from 51 facial land-
marks related to eyes, nose and mouth. Hereinafter these methods
will be named COSFIRE-based and SURF-based, respectively.
The expectation is that such features are complementary since
they capture, in principle, different aspects of the human face.
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Figure 3.4 Architecture of the method based on the fusion of
domain-specific and trainable features.

The COSFIRE-based classifier should be able to find the differ-
ences in the shape of male and female faces, while the SURF-
based classifier should rely on the descriptors extracted from the
facial landmarks to discriminate the local differences between the
faces of men and women. For these reasons the proposed method
should increase the robustness to the aforementioned face vari-
ations. Moreover, the fusion of trainable and handcrafted fea-
tures should ensure a better tradeoff between generalization and
specificity. The proposed approach is the first one that combines
domain-independent features with domain-specific ones.

3.3.1 COSFIRE-based classifier

Trainable COSFIRE filters have been demonstrated to be effec-
tive in various computer vision applications, including object lo-
calization and recognition [118, 119, 120], vessel-like segmentation
[121, 122], and contour detection [123, 124].
A COSFIRE filter is trainable, in that its selectivity is determined
in a one-step configuration process that automatically analyzes
a given prototype pattern of interest. The resulting non-linear
COSFIRE filter can then be applied to images in order to localize



32 3. Gender recognition on still images

patterns that, to a certain extent, are similar to the prototype.
Below it is briefly described the required processing to configure
and apply COSFIRE filters, and subsequently use their responses
to form feature vectors.

3.3.1.1 Configuration of a COSFIRE filter

The idea of a COSFIRE filter is to combine the responses of some
low-level detectors that are selective for simple features in order to
determine the selectivity for a more complex feature or a shape. In
[118], for instance, it was shown that by combining the responses
of orientation-selective Gabor filters at certain positions, one could
configure a COSFIRE filter that is selective for a complex shape,
such as a traffic sign. By simply changing the input low-level
detectors from Gabor filters to difference-of-Gaussians, one could
achieve very effective contour [123, 124] and vessel [121, 122] de-
tectors. These two types of COSFIRE filters are essentially shape
detectors and do not take colour into account. Recently, a new
type of COSFIRE filters were proposed which take input from
color blob detectors and have been found to be more effective
than Gabor-based COSFIRE filters in object recognition datasets
where colour plays an important role [120].
In this method the original Gabor-based type of COSFIRE filters
[118] are used, as colour is not considered to be a distinctive fea-
ture for gender recognition. In an automatic configuration process
a bank of Gabor filters with eight orientations and five scales is
firstly applied and their responses are superimposed. Then a num-
ber of concentric circles around a point of interest are considered
and the positions along these circles with local maxima Gabor re-
sponses are determined. For each such a point a tuple with four
parameters (λ, θ, ρ, φ) is formed, where λ nd θ denote the scale
and orientation, respectively, of the Gabor filter that achieves the
maximum response at that position, while ρ and φ, respectively,
denote the distance and polar angle with regards to the point of
interest. Finally, Sf = {(λi, θi, ρi, φi) | i ∈ 1 . . . n} denotes a set
that contains the 4-tuples that represent all n points at which lo-
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cal maximum Gabor responses are achieved.
The center point used in a given prototype is the position at which
the resulting COSFIRE filter will obtain the maximum response.
It can either be specified manually or selected automatically. For
the application at hand, such locations are chosen randomly in
the training face images and their surroundings are used as local
prototype patterns to configure COSFIRE filters. In this way, a
COSFIRE filter is selective for a small part of a face.
Figure 3.5 shows the configuration procedure of two COSFIRE fil-
ters by using parts of the eyebrows as prototype patterns selected
from a male and a female face images.

3.3.1.2 Response of a Gabor-based COSFIRE filter

The response of a Gabor-based COSFIRE filter is computed in
four simple steps, namely filter-blur-shift-multiply. In the first step
the unique pairs of the parameters (λ, θ) from the set Sf is deter-
mined and Gabor linear filtering in the Fourier domain with those
parameter values is applied. Secondly, in order to allow for some
tolerance with respect to the preferred positions, for the i−th tuple
the corresponding Gabor response map is blurred with a Gaussian
function whose standard deviation σi is a linear function of the
distance ρi. In practice, the linear function σi = σ0 + αρi, with
σ0 and α set to the default values (σ0 = 0.67, α = 0.1) proposed
in [118] is used. Thirdly, each blurred Gabor response is shifted
by the polar vector (ρi,−φi), so that all afferent Gabor responses
meet at the support center of the concerned COSFIRE filter. Fi-
nally, the geometric mean function, essentially multiplication, is
used to combine all blurred and shifted Gabor responses and come
to a scalar value in each position of a given image. Figure 3.5(d)
and Figure 3.5(h) show the response maps of the two COSFIRE
filters applied to the two images from which some local patterns
are used for their configuration. They respond in locations where
the local patterns are very similar to the eyebrow prototype parts.

In [118], it was also demonstrated how tolerance to rotation,
scale and reflection could be achieved by the manipulation of pa-
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.5 Configuration of two COSFIRE filters using (a-d) a training

male face image and (e-h) a training female face image, both of size
128× 128 pixels. (a,e) The encircled regions indicate the prototype patterns
of interest which are used to configure the two COSFIRE filters. (b,f) The
superposition of inverted response maps of a bank of Gabor filters with 16
orientations (θ = {0, π/8, . . . 15π/8}) and a single scale (λ = 4). (c,g) The

structures of the COSFIRE filters that are configured to be selective for the
prototype patterns indicated in (a) and (e). (d,h) The inverted response

maps of the concerned COSFIRE filters to the input face images in (a) and
(e). The darker the pixel the higher the response.

rameter values. These invariances are, however, not necessary for
this application.

3.3.1.3 Forming a feature descriptor and learning a clas-
sification model

By using k local patterns randomly selected from the training face
images, k COSFIRE filters that are selective for different parts of
male and female faces are configured. For a given face image
the collection of k COSFIRE filters is then applied and a spatial
pyramid of three levels from is used to take the COSFIRE filter
responses. In level zero, where there is only one tile, the global
maximum responses of all COSFIRE filters across the entire image
are taken. In level one and level two, each COSFIRE response map
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is divided, respectively, into (2× 2 =) 4 and (4× 4 =) 16 tiles and
the maximum response in each tile is taken. For k COSFIRE
filters and a spatial pyramid of (1 + 4 + 16 =) 21 tiles the face
image is described with a 21k−element feature vector. The set of
k COSFIRE filter maximum responses per tile is then normalized
to unit length. Figure 3.6 depicts the spatial pyramids of the two
above configured COSFIRE filters obtained from a test female face
image and a bar graph with the values of the resulting (21× 2 =)
42-elements descriptor.

The 21k−element feature vectors of all training images are used
to train a SVM classification model with the following chi-squared
kernel:

K(xi, yi) =
(xi − yj)2

1
2
(xi + yj) + ε

(3.1)

where xi and yj are the feature vectors of the i−th and the j−th
training images, while the parameter ε represents a very small
value and it is used to avoid numerical errors. This COSFIRE-
based descriptor is inspired by the concept of population coding
from neuroscience [125] as well as from the spatial pyramid match-
ing approach [126].

3.3.2 SURF-based classifier

All the pre-processing steps needed to detect and align the face
image are the same of that described in Section 3.1. In the SURF-
based classifier, the 51 facial landmarks belonging to the eyes, the
nose and the mouth are detected on the aligned face and the SURF
descriptors at the keypoints indicating the facial landmarks are
extracted. This approach results in a (51 × 128 =) 6528-element
feature vector for each face image. Finally, these vectors are used
to train a SVM classifier with a linear kernel.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j)
Figure 3.6 Application of the two COSFIRE filters to a test face image.
(b,f) Consideration of three-level spatial pyramids to the response maps of
the COSFIRE filters. (c,g) In level zero only one tile, which has the same

size of the given image, is considered. (d,h) In level one four tiles in a 2× 2
spatial arrangement are taken into account. (e,i) In level two16 tiles in a
4× 4 grid are considered. For each of the 21 tiles the circle indicates the

location of the maximum response. (j) The resulting face descriptor, which
consists of (21× 2 =) 42 values. The responses are normalized to unit length

for each tile.

3.4 Combination rules

As mentioned before, one of the main choices determining the
performance of a MES is the combination rule. Although several
strategies have been proposed in the last years [127], it has been
proved that one of the most robust to errors of the combined clas-
sifiers (both when combining classifiers based on the same features
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and when using different feature subsets in each classifier) is the
majority voting rule [111]. The idea is that each of the experts
should express its vote in terms of a pair of probabilities that a
given image has a male or a female face. In order to come up
with a decision the three male probabilities and the three female
probabilities should be summed and if the total male probability
is greater than the total female probability, then the given face
image is labelled to be a male otherwise a female.
A variation of the majority voting is the weighted voting rule [111],
where the votes of the experts are weighted proportionally to the
recognition rate achieved for each class on the training set. How-
ever, this technique assigns an absolute weight to each expert,
without considering particular situations where a classifier that is
generally less effective may be more reliable.
In order to learn from the data the best way to combine the clas-
sifiers, the decisions made by the experts proposed in this chapter
are combined using a stacked classification scheme. This technique
learns the combiner algorithm by training a new classifier with all
the predictions of the single experts. It can be considered a very
smart variation of the weighted voting rule [111]. The difference
is that, in case of the stacked classification scheme, the regions of
decision, instead of the weights, are learned during the training.
After an experimental evaluation (see Section 5.2.5 for more de-
tails), the best combination rule for the fusion of handcrafted
features is the majority voting. The same experimental analy-
sis points out that the more effective combination rule for the
COSFIRE- and the SURF-based classifiers is the stacked classi-
fication scheme. So, in this case, the output scores of the single
SVM classifiers achieved from the training images are used as fea-
ture vectors to learn another SVM with a linear kernel. The final
layer determines the classification of a given test image.
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Chapter 4

Gender recognition on
real-time video streams

In the previous Chapter various methods for gender recognition on
still images have been proposed. The purpose of that approaches
is to maximize the gender recognition accuracy, by finding the fea-
tures and the classifiers able to describe the human face in the best
way for recognizing the gender. Section 5.2 will demonstrate the
effectiveness of the proposed methods on the considered datasets.
However, as reported in the Introduction, additional challenges
have to be taken into account dealing with video sequences ac-
quired in real scenarios. Section 5.3 will show that the approach
described below is able to achieve a remarkable gender recognition
accuracy, thanks to a data-driven learning carried out with a new
dataset of images acquired in real scenarios which contains a wide
range of face variations. The most important contribution, never-
theless, is the solution provided for allowing the real-time gender
recognition on low cost embedded systems.
The proposed embedded vision architecture derives from an exten-
sive analysis of the computational load, provided in Section 5.4,
which gives essential insights for finding the best trade-off between
accuracy and processing speed. Indeed, three fundamental choices
have been performed after the computational requirements analy-
sis.
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PC-cam PC

GR

GR-cam

Figure 4.1 Overview of the proposed architecture. PC and GR are the
modules in charge of counting people and recognizing the gender of the

persons, respectively.

First, the face alignment algorithm is a very costly operation,
mainly due to computational effort required by the facial land-
marks detection. This step has been consequently removed from
the method described below.
Second, the HOG-based classifier has been selected as the best
trade-off between accuracy and processing speed. Indeed, the
SURF-based classifier can not be used for the same considera-
tions pointed out for the face alignment, while the COSFIRE-
based method requires more than one second for the computation
of the descriptor. The RAW-based classifier is not effective with
faces that are not aligned, since a small variation in the pose may
completely change the face descriptor and, consequently, the result
of the classification. Section 5.2 will highlight that the HOG-based
classifier is able to achieve the best accuracy if considered as single
expert and that the combination with the LBP-based expert does
not improve the accuracy.
Third, also performing the best optimization of the gender recog-
nition solution, it is not able alone to carry our real-time analysis
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(a) PC-cam (b) GR-cam
Figure 4.2 View of the two cameras, respectively PC-cam (a) and GR-cam

(b), with the counting sensor (a) and the area to analyze for the gender
recognition (b) overlapped on the images.

on a single low cost embedded system. For this reason, a multi-
sensor embedded vision architecture composed of a smart camera
devoted to people counting and a couple camera-low cost device
dedicated to gender recognition. The details about the proposed
architecture are provided in the following.

4.1 Overview

The proposed approach is based on a distributed and multi sen-
sors architecture; the main idea lies in the fact that one of the
most burdensome steps of gender recognition algorithms is the
face detection. However, it is not strictly necessary to perform
this step for each frame and in the whole image, but it could be
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Figure 4.3 Overview of the proposed gender recognition algorithm.

ideally performed only in those situations where there are surely
one or more persons taken by the camera and in the regions where
a face may be detected. Starting from these observations, the idea
is to combine a head-view people counting module with a gender
recognition one. An overview of the proposed approach is shown
in Figure 4.1. The system consists of two different modules: the
module in charge of counting people (hereinafter People Count-
ing module, PC ) which analyzes the video stream acquired by a
head-mounted camera (hereinafter PC-cam) and the module in
charge of recognizing the gender (hereinafter Gender Recognition
module, GR) of the persons moving towards a frontal-view camera
(hereinafter GR-cam). An example of images acquired by PC-cam
and GR-cam, respectively, are reported in Figure 4.2.

In more details, PC is always active and has the responsibility
to detect the passage of a person through a virtual line. As soon
as an event related to the passage of a person under the PC-cam
is detected by PC, a trigger to GR is sent and the search of faces
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can start in a limited set of images (namely N before and N after
the trigger). This search is not performed over the whole image,
but just over a limited portion of the scene, corresponding to the
area where the passage of the person has been detected.

The main advantage deriving from the proposed approach lies
in the fact that the computational burden of the gender recognition
module is strongly reduced since only a low percentage of frames
is processed. Such optimized architecture allows to run both the
algorithms (namely, PC and GR), over SoCs, thus strongly reduc-
ing the cost of the hardware infrastructure and making possible
its usage in real systems. It is important to highlight that the
computational improvement is not paid in terms of accuracy, as
shown in Chapter 5.

More details concerning the algorithms will be provided in the
following: in Section 4.2 the people counting algorithm will be pre-
sented, while in Section 4.3 a description of the proposed approach
for recognizing the gender will be detailed.

4.2 People Counting

In order to maximize the performance of the face detection, it is
important to capture all the images related to a passage, namely
all the frames that are good candidates for containing a face. For
this reason it has been adopted the people counting algorithm re-
cently proposed in [108], due to its efficiency and its robustness.
The main idea of this algorithm is to use the foreground mask,
extracted with a traditional background subtraction and updat-
ing algorithm, so as to feed a virtual sensor which works like an
incremental rotary encoder. The sensor, as shown in Figure 4.4, is
characterized by a rectangular area with a crossing direction. The
width W of the sensor is the side perpendicular to the crossing
direction, identified in the figure by the arrow on the right), while
the height of the sensor H is the side parallel to the crossing di-
rection. The sensor is partitioned into K different stripes Si, with
i = {1, ..., K}, each of one having a width equal to δ = W/K. The
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i-th stripe Si is composed by two adjacent cells Cij, with j = 1, 2.
A cell is active if a sufficient percentage pc of foreground pixels in
that cell F (Cij) with respect to the area of the cell Area(Cij) is
present. The state cij (being cij ∈ {0, 1}) of the cell Cij can be
computed as follows:

cij =

{
1, if F (Cij)/Area(Cij) > pc

0, otherwise
(4.1)

Anyway, the algorithm does not consider only the information
related to the current time instant and thus to the state activation
cij. Indeed, it also stores the previous state c′ij in order to evaluate
the activation of the corresponding stripe Si. In more details, Si

can be considered activated (then it is equal to 1) if the following
condition holds:

ci2 = 1 ∧ c′i1 = 1 ∧ c′i2 = 0 (4.2)

In order to identify the passage of a person, the algorithm veri-
fies the relative position of the stripes. For each set of L adja-
cent stripes, a person is counted. As evident, the different sets
of stripes accounting for a passage can not contain any common
stripe. Thus, the set of active stripes AS contributing to a count-
ing is the following:

AS =
⋃
i

Si, ..., Si+L (4.3)

with 1 ≤ i ≤ K.
In the experiments the parameters have been set as follows:

• L has been experimentally set to 3, as suggested in [108];
indeed, this value guarantees the best possible tradeoff be-
tween the accuracy that can be achieved by the proposed
approach and the required computational effort;

• the average size of the human shoulders has been approxi-
mated to hs = 60 centimeters;
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(a) (b)
Figure 4.4 (a) Virtual sensor designed for counting people crossing it in a
given direction (identified by the arrow on the right). Activated cells due to

the presence of the person are in blue. (b) The activation of the cells (in
blue) and of the stripes (in red) in two consecutive frames.

• the number of stripes, as well as their size δ, has been au-
tomatically computed by analyzing the real size Wr (in cen-
timeters) of the gate to be monitored (where the sensor is
put). In more details, the number of cells is computed as
follows:

K =

⌈
L ·Wr

hs

⌉
. (4.4)

• H has been set so as to include in each cell the whole per-
son. Note that a low H value would prevent the proposed
approach to correctly work in cases of a low frame rate, since
the risk is that the passage of a person is not detected in the
two cells belonging to the same stripe. On the other side, a
high H value would avoid to correctly detect the passage of
two persons walking close to each other in a row. setting H
as twice the depth of an average sized person represents a
good tradeoff between the above two opposite requirements,
as suggested in [108].

Thanks to these choices, the only parameters that the human op-
erator has to set during the configuration step is the real width
Wr of the gate, which can be easily obtained during the camera
installation procedure. As evident, the lower is the number of pa-
rameters to set up, the higher is the possibility to use the system in
real applications, where typically inexperienced human operators
are required to install and configure such systems.
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4.3 Gender Recognition

The module in charge of recognizing the gender can be partitioned
in the following three steps: (1) face detection, (2) person tracking,
(3) gender recognition. More details concerning each of the above
steps is reported in the following, while the whole architecture is
reported in Figure 4.3.

4.3.1 Face detection

Once a trigger from PC is received, the set of N images before
the trigger and N following the trigger is processed and the faces
are detected by the Viola Jones algorithm. This choice is due to
the fact that the size of the face is expected to grow up after the
trigger, while the person is walking towards the camera. In the
experimental analysis, it will be demonstrated that the higher is
the resolution of the face, the better the recognition performance
is. Thus, the faces of the persons are selected as larger as possible
(the images and thus the faces after the trigger). However, faces
close to the camera may be much more affected by the distortion of
the camera itself and by the motion blur, thus they could become
more difficult to be detected by the Viola Jones algorithm. For
this reason, the method keeps the images acquired both before
and after the trigger.
In order to reduce the area of the image where searching for, and
then the computational effort due to the detection step, the Viola
Jones is not performed on the whole image I but instead only over
a small region of the image, namely A(I). A(I) corresponds to the
projection of the stripes in the sets AS which contribute to the
counting of a person:

A(I) = projAS(I). (4.5)

An example is shown in Figure 4.2. On the left, the head view
image acquired by PC-cam, partitioned into five stripes (from S1

to S5), three of them in red since activated by the presence of the
person, is reported. On the right, the image acquired by GR-cam,
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together with the area of the scene corresponding to the activated
area A(i) (in red), is reported. Such area covers about one third
of the whole image, thus implying a strong improvement in terms
of performance.

4.3.2 Person Tracking

In order to identify the sequence of faces belonging to each person,
a one-to-one overlapping tracking algorithm is applied. Tracking
persons when dealing with videos instead than with still images is
required for two main reasons: (1) the system which collects data
extracted from video analytic systems should receive the gender of
each person (and not the gender of each face) in order to extract
useful statistics related for instance to the percentage of women
entering a shopping center; (2) the decision concerning the gender
of a person has to be taken by evaluating all the faces of that
person and not just by evaluating a single face of the person.

In more details, a similarity matrix S is computed; the generic
element S(i, j) represents the similarity between the j-th face de-
tected at the current frame and the i-th person detected until the
previous frame. The similarity is based on the euclidean distance
d between the position of the j-th detected face and the position
of the face associated to i-th person at the previous frame:

S(i, j) =

{
1− d

dmax
if d ≤ dmax

0 otherwise
(4.6)

being dmax the maximum displacement of a person between two
consecutive frames. An example is shown in Figure 4.5.

Given S, the maximum value at the generic position (m,n) is
computed and the association between the n-th detected face and
m-th the person is performed, so that the information related to
the person is updated with the new face. In cases a face can not
be associated to any person, then a new identifier is associated to
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Figure 4.5 The similarity matrix is computed: the detected face F1 is
associated to the person P1 (with a similarity value equal to 0.8), while the

face F2 is associated to the person P2 (with a similarity value equal to 0.7).

that face and the algorithm starts tracking this new person.

Note that, differently from traditional object tracking, this
problem is more simple since there are not any splits or merge
that need to be solved [128]. Indeed, the only problem is related
to the so called ghosts, namely to those objects (in our context
those persons) which disappear for one or more frames due to
some missing errors during the detection step.

In order to address this problem, the proposed algorithm does
not stop tracking a person immediately (that is as soon as the
association between a face and a person is performed) but only
after t seconds, being t set in the experiments to 1 second.

4.3.3 Gender recognition from face images

The classification is based on a shape descriptor, namely the HOG
descriptor. This choice can be considered a good trade-off between
the accuracy achievable by this kind of descriptor and the compu-
tational burden due to its calculation.
In more details, the face is resized to 128×128 pixels and the HOG
descriptor is extracted. Firstly the gradient magnitude and angle
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of every pixel is computed by considering the responses of first-
order partial derivatives of a 2D Gaussian function with a σ = 1.
Then blocks of 32 × 32 pixels that overlap by 50% are computed
and for each block a spatial tiling of 2 × 2 is used. For each tile
the L2-normalized weighted histogram of 9 bins is computed (in
intervals of 20 degrees), the normalized values clipped at 0.2 and
normalized again. Considering that the size of the face images is
128 × 128 pixels, the HOG descriptor results in a (7 blocks × 7
blocks × 4 tiles × 9 bins = ) 1764-element vector. The classifi-
cation is then performed by an SVM with a RBF kernel (having
C = 2 and γ = 0.1), which maximizes the performance in the
problem at hand.

Finally, in order to increase the overall reliability of the pro-
posed approach and to provide for each person (instead that for
each face) its gender, the whole sequence of |F | faces F = {f1, ..., f|F |}
associated to each person is evaluated. For each face fi, a class
ci ∈ {Male, Female} is computed. Given the set of |F | classes
C = {c1, ..., c|F |} a majority vote classifier is exploited. The main
idea lies in the fact that the generic class ci corresponds to a vote;
the class (Male or Female) which obtains the highest number of
votes is the winner and is thus associated to that person.

4.4 Implementation optimizations

Nowadays several commercial chips are available directly inte-
grated on the cameras: think, as an example, to Samsung Tech-
win, Axis, Hikvision or Texas Instruments, which make available
to third part developers an SDK for integrating directly on board
their video analysis applications. A common feature is that all of
them are based on SoC architectures, composed by general purpose
CPUs, DSP, Ethernet controllers, serial and parallel ports, USB
ports, flash memory, SDRAM, I/O processors. In more details,
(i) a floating point unit is not provided; (ii) the CPUs typically
provide SIMD instructions, allowing to process for each cycle at
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least four pixels.
In order to deal with the above constraints, as suggested in [101],
SIMD instructions are exploited by taking advantage of RAPP
[129], an ANSI C library optimized for running directly over SIMD
based CPU. The RAPP library is meant to provide an optimized
and reliable computational backend for low-level processing. The
interface is designed to allow hardware-accelerated implementa-
tions, while still being simple enough for easy deployment from
higher-level code. The main benefit deriving from this choice is
that all the pixelwise operations which need nested cycles are sub-
stituted with SIMD instructions. As experimentally proved in
[101], the average improvement in terms of processed pixels per
second by using this type of instructions is around one order of
magnitude.
The second optimization has the aim of avoiding floating point op-
erations in our algorithm, by substituting them with full integer
operations. In this case, as proved in [101], the average improve-
ment achieved is up to two orders of magnitude.
As for the people counting algorithm, the advantage of these op-
timizations is that all the pre-processing (gaussian filter), back-
ground updating (pixel by pixel), foreground extraction and post-
processing (morphological operators) are performed by using SIMD
instructions and full integer operations, making the algorithm very
fast. Moreover, the background is not updated every frame, but
with a temporal decimation defined at configuration time. The
gender recognition algorithm, instead, takes advantage of a fast
computation of the integral image, an optimized implementation
of the Viola-Jones algorithm and a very efficient coding of the
HOG descriptor.



Chapter 5

Experimental Results

5.1 Datasets

For the experimental analysis of the proposed approaches five dif-
ferent datasets have been used, namely GENDER-FERET, LFW,
UNISA-Public, UNISA-Private and SM-Private. GENDER-FERET
and LFW have been used for evaluating the methods on still im-
ages. while UNISA-Public, UNISA-Private and SM-Private have
been used for analyzing the performance in real-life scenarios.
More details about the composition of the datasets are reported
in the following subsections.

5.1.1 GENDER-FERET

In order to aim for some standardization, the GENDER-FERET
subset, created from the well known FERET [20] dataset and
already publicly available1, has been used for the experimental
analysis. The GENDER-FERET dataset has a balanced number
of male and female face images and it is pre-partitioned into 474
training (237 males and 237 females) and 472 test (236 males and
236 females) images. This dataset consists of frontal faces acquired
in controlled conditions with different illumination, background,

1The dataset is available under request at the following link:
http://mivia.unisa.it
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Figure 5.1 Examples of GENDER-FERET images

Figure 5.2 Number of training and test images, with details about male
and female faces, used for experiments on the GENDER-FERET dataset.

Dataset Training set Test set Total

GENDER-FERET
237 236 473 M
237 236 473 F
474 472 946 Total

age, expression and race. Moreover, it contains only one face for
each person, which can be present either in the training or in the
test set, but not in both. Figure 5.1 shows some examples of face
images from the GENDER-FERET dataset.

Table 5.2 reports the details of the GENDER-FERET dataset
in terms of number of training and test, male and female face im-
ages that we used for our experiments.

5.1.2 LFW

In order to test the proposed method on faces with more different
poses and in order to evaluate the impact of the face alignment
technique, also the Labeled Faces in the Wild (LFW) dataset [21]
has been considered for the experiments. LFW contains more than
13, 000 images of 5, 749 subjects designed to study the problem
of face recognition in uncontrolled conditions. The images show
famous people busy in different activities, such as recording an
interview, playing sports, doing a fashion show and others. In the
experiments the LFW face images have been aligned by using the
algorithm described in Section 3.1.
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Figure 5.3 Examples of LFW faces (first row) and the corresponding
aligned images (second row)

Figure 5.4 Number of training and test images, with details about male
and female faces, used for experiments on the LFW dataset.

Dataset Training set Test set Total

LFW
5976 1494 7470 M
1834 459 2293 F
7810 1953 9763 Total

Figure 5.3 shows four original LFW images and the corresponding
aligned faces. The Viola-Jones algorithm has been applied to all
the aligned LFW face images and the faces have been detected in
9,763 images. The groundtruth ha been generated by manually
labelling these images as males and females, accordingly2. Then,
for coherency with other methods like [45], [38] and [48], a 5-fold
cross validation has been performed and the average accuracy of
the proposed method has been computed.

Table 5.4 reports the details of the LFW dataset in terms of
number of training and test, male and female face images used for
our experiments.

2The dataset is available under request at the following link:
http://mivia.unisa.it
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5.1.3 UNISA-Public, UNISA-Private and SM-
Private

The LFW images are unconstrained pictures and are taken with
professional cameras. So the dataset consists of high resolution
faces without motion blur, which is in contrast with real videos
that are characterized by lower resolution and motion blur. For
this reason, other types of unconstrained videos are needed for the
evaluation of the algorithms in real scenarios.
Currently there are not any datasets available in the literature
composed by videos (and not by still images) acquired in real en-
vironments. Indeed, most of the datasets are only composed by a
set of images (of course more images for each person, but not nec-
essarily extracted from consecutive frames). Often, these frames
mainly contain a single face, which typically covers more than
one half of the whole image, thus they are very different from a
frame that could be instead acquired in a real environment. Fur-
thermore, there are not any datasets that combine synchronized
images acquired by two different cameras mounted in frontal view
(for gender recognition) and head view (for people counting), re-
spectively.

For this reason, a new dataset has been acquired; in more de-
tails, a Samsung SND-6084 (with a 3mm focal length) has been
used as PC-cam and a pinhole Samsung SNB-6010 as GR-cam.
Images from PC-cam have been acquired with a 1CIF resolution
(320x240), at a frame rate of 25 frames per second. An higher
resolution (1080x1920) has been used for acquiring images from
GR-cam, but a lower frame rate (5 fps). This choice is justified
by the fact that in case of gender recognition, the resolution has
a high priority if compared with the frame rate. Furthermore, in
order to reduce the motion blur in the acquisition of the faces,
that typically makes worse the performance of gender recognition
systems, the shutter time has been set to 5 ms.

The dataset has been acquired in three environments: (1) in
two different gates of the University of Salerno, namely the Engi-
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(a) UNISA-Public (b) UNISA-Private (c) SM-Private
Figure 5.5 The same person acquired in the UNISA-Public,

UNISA-Private and SM-Private datasets

neering faculty and the Humanistic faculty, so as to have a balance
between males (more frequent in the Engineering faculty) and and
females (more frequent in the Humanistic faculty). In both the
scenarios, the images have been acquired with different illumina-
tion conditions, in overexposed environments close to entrance or
exiting doors and underexposed spaces like dark corridors. As
expected in a context like a university, most of the persons are
young people (in the range 18-30). We will refer hereinafter to
this dataset as UNISA dataset. Note that, due to some privacy
issues, only a part of this dataset can be made available 3. Thus,
in order to allow future benchmarking, the dataset has been parti-
tioned into two different parts: UNISA-public refers to the part of
the dataset that we have made publicly available, while UNISA-
private refers to the remaining part. (2) The other environment
where the dataset has been acquired is a supermarket in Salerno,
where most of the people are adults or elders (in the range 40-70).

3The dataset is available under request at the following link:
http://mivia.unisa.it
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Figure 5.6 Description of the UNISA-Public, UNISA-Private and
SM-Private datasets. M-F in the second and third columns refer to the

number of males and females, respectively.
Name # Persons (M-F) # Faces (M-F)

UNISA-public 60(43− 17) 430(300− 130)
UNISA-private 693(367− 326) 3775(1797− 1978)

SM-private 147(71− 76) 1627(751− 876)

Note that, due to some privacy issues, even this dataset can not
be made publicly available, and it is called SM-private. More de-
tails concerning the datasets are provided in Table 5.6, while an
example for each dataset is provided in Figure 5.5. In the whole,
more than 5600 faces have been acquired from about 900 different
persons. The dataset is very challenging, since the faces exhibit
all the possible variations of a face captured by a camera. People
often do not look at the camera and their faces are detected with
different poses and expressions. For the same reason, the persons
make sudden movements that cause motion blur on the image,
or involuntarily occlude their faces with hands, handkerchiefs and
smartphones. Furthermore, people are recorded at different dis-
tances from the camera (ranging from half a meter to 4 meters),
so the face images have different resolutions.

5.2 Experiments on still images

In this section, the effectiveness of the gender recognition methods
on the GENDER-FERET and the LFW datasets is evaluated.
First, the results of the fusion of handcrafted features are reported.
Then, the results of the combination of trainable COSFIRE filters
and the SURF-based methods are reported. Finally, the results
are compared between them and with other scientific methods and
commercial libraries.
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Figure 5.7 Experimental results with a fusion of handcrafted features. The
last two columns report the accuracy rate achieved on the two datasets.

Raw LBP HOG GENDER-FERET LFW
X 89.6 96.6

X 89.6 93.6
X 90.0 97.2

X X 91.9 97.5
X X 92.6 98.4

X X 91.5 97.1
X X X 93.0 98.4

5.2.1 Results with a fusion of handcrafted fea-
tures

As shown in Table 5.7, the accuracy of the methods based on hand-
crafted features is above 89% using any combination of feature or
classifier. On the GENDER-FERET dataset the classifiers that
relies on only raw pixel values and LBP histograms achieve 89.6%
of accuracy, which is a little bit worse than the HOG-based clas-
sifier, that achieves 90.0% of accuracy. Performance significantly
increases when the decisions of different classifiers are combined.
The best performance, equal to 93.0%, is achieved combining all
the classifiers.
The same trend can be observed by evaluating the results on the
LFW dataset. The single expert with the best performance is still
the HOG-based classifier, that achieves 97.2% of accuracy. On this
dataset the LBP-based expert is not very effective like the other
two and this result is evident even evaluating the performance of
the MESs. Indeed, the combination of the raw- and the HOG-
based classifiers (98.4%) outperforms the two multi-experts which
rely on the LBP classifier (97.5% and 97.1%) and achieve the same
accuracy of the multi-expert which combine all the decisions.
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5.2.2 Choosing the optimum number of COS-
FIRE filters

For the experiments with the COSFIRE-based method, the GENDER-
FERET has been preliminarily used to find the optimum number
of COSFIRE filters needed to describe the face. First, five training
faces of men and five training faces of women have been chosen.
Then, for each randomly picked face a random region of size 19×19
pixels has been chosen and used as a prototype to configure a COS-
FIRE filter. If the selected prototype resulted in a COSFIRE with
less than 5 tuples, it was considered as not enough salient and a
new one was chosen. The filters were configured with the default
parameters t1 = 0.1, t2 = 0.75, σ0 = 0.67 and α = 0.1 as proposed
in [118]. In the configuration of the filters were considered Gabor
filter responses along three concentric circles and the center point:
ρ = {0, 3, 6, 9}. The sizes of the prototype patterns together with
the number and radii of the concentric circles were determined
empirically on the training set. Then further experiments have
been executed by incrementing the set of COSFIRE filters by 10
at a time up to 250. In Figure 5.8 the accuracy rate as a function
of the number of filters used is plotted. For each set of COS-
FIRE filters two values are depicted, one of which is the training
accuracy rate that is achieved by 10-fold cross validation on the
training set, and the other one is the accuracy rate obtained on
the test set. With only 10 filters that result in a feature vector of
(21× 10 =) 210 elements we achieved 83.79% and 81.4% accuracy
rates on the training and test sets, respectively. The accuracy
increased rapidly up to 60 filters and then increased slowly until
it reached a plateau. The maximum accuracy rate was achieved
with 180 COSFIRE filters. By using the same 180 filters 94.1% of
accuracy was achieved on the test set.
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Figure 5.8 Experimental results in the form of accuracy rate as a function

of the number of COSFIRE filters used. The square markers indicate the
accuracy rate on the training set with a 10-fold cross validation while the
circles indicate the accuracy rates on the test set. The solid square marker
indicates the maximum accuracy rate on the training set, which is achieved
with 180 filters.

5.2.3 Results with the fusion of COSFIRE- and
SURF- based classifiers

As described above, for the experiments with trainable features 90
COSFIRE filters from randomly selected male face training images
and 90 from randomly selected female face training images have
been configured both for the GENDER-FERET and the LFW
datasets. The SURF-based algorithm, instead, does not require
the configuration of any parameters.
Table 5.9 shows the results of the COSFIRE-based and of the
SURF-based methods on the GENDER-FERET and the LFW
benchmark datasets. The first one consistently outperforms the
domain-specific method that uses the SURF descriptor for the
fiducial landmarks. In particular, it achieves an accuracy of 94.1%
on the GENDER-FERET dataset and a remarkable accuracy of
99.3% on the LFW dataset. Indeed the SURF-based approach
achieves a high accuracy rate on the LFW dataset (96.1%), but a



60 5. Experimental Results

Figure 5.9 Results of the COSFIRE- and SURF-based methods on the
GENDER-FERET and the LFW datasets.

Dataset Method Accuracy (%)

GENDER-FERET
COSFIRE-based 94.1

SURF-based 89.2
COSFIRE+SURF 94.7

LFW
COSFIRE-based 99.3

SURF-based 96.1
COSFIRE+SURF 99.4

Figure 5.10 Accuracy achievable by fusing COSFIRE- and SURF-based
classifiers.

moderate performance on the GENDER-FERET (89.2%). In both
the cases the stacked classification scheme, which combines the
decisions of the two experts, is able to improve the accuracy of the
single experts. So the best performance of the proposed method
is 94.7% on the GENDER-FERET and 99.4% on the LFW.

5.2.4 Evaluating the complementarity of COSFIRE-
and SURF-based classifiers

In this section the complementarity of the trainable COSFIRE-
and the domain-specific SURF-based approaches is analysed. In-
deed, the potential of the multi-expert has to be firstly evaluated,
since in this case the features are not clearly complementary like
the raw, texture and shape features. In particular, Figure 5.10
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gives an idea of the performance achievable by combining the de-
cisions of the proposed classifiers over the two considered datasets.
The ideal fusion technique would be the one that is able to take
the right decision when at least one of the methods classifies the
gender correctly. This happens in two situations: (1) both the de-
cisions are correct (in blue in the figure); (2) only one of the two
decisions is correct (in red in the figure). Such experiment proves
the complementarity of the COSFIRE- and the SURF-based fea-
tures, since the fusion may achieve more than 99% of accuracy
both on the GENDER-FERET and the LFW datasets.

5.2.5 Evaluating the effectiveness of the com-
bination rules

In order to justify the choice of the weighted voting rule for the fu-
sion of handcrafted features and the stacked classification scheme
for the combination of trainable and domain-specific classifiers,
the performance of the different combination techniques have been
evaluated on the two considered datasets.
For each face image, the application of the majority voting rule
results in the sum of the male and female probabilities and in the
evaluation of the total probabilities. If the total male probability
is greater than the total female probability, then the given face
image is labelled to be a male otherwise a female. The probability
of a decision taken by a classifier is computed with a sigmoid func-
tion, by using the SVM score returned by the classifier (increasing
the distance from the margin, the probability increases and other
way around). For the weighted voting rule, such probabilities are
multiplied with the prior probabilities (namely the accuracies) on
the training sets achieved by the single classifiers on the male and
female classes and then summed. The classifier which yields the
highest absolute weighted score is entrusted. As for the stacked
classification scheme, a linear SVM with C = 1 has been used to
learn the final classification level from the decisions taken by the
classifiers on the training set.
Table 5.11 reports the results achieved on the two datasets using
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Figure 5.11 Results with three fusion techniques on the
GENDER-FERET and the LFW datasets. In the second column, MV

indicates the majority voting, WV the weighted voting and SC the stacked
classification rules. In the third and in the fourth columns, respectively,

RLH represents the accuracy rate achieved by the fusion of raw-, LBP- and
HOG-based classifiers, while CS indicates the results obtained by the

combination of COSFIRE- and SURF-based experts.

Dataset Rule RLH CS

GENDER-FERET
MV 93.0 94.5
WV 93.0 94.3
SC 92.6 94.7

LFW
MV 98.3 99.0
WV 98.4 99.0
SC 97.9 99.4

the three different fusion methods. The experiment points out
that the fusion of handcrafted features is able to achieve the best
performance when the decisions are combined with the weighted
voting rule. Substantially, both the majority and the weighted
voting achieve an higher accuracy than the stacked classification
with these sets of features. On the other hand, the fusion of train-
able and domain-specific classifiers is more effective by using the
stacked classification scheme, even if it is not able to achieve the
ideal performance depicted in Figure 5.10. In this case, the ma-
jority voting and the weighted voting schemes obtain almost the
same performance and, even, achieve lower accuracies results than
that of the COSFIRE-based method on the LFW dataset.

5.2.6 Comparison with other methods

In order to prove the effectiveness of the proposed approaches with
respect to other methodologies, a comparative analysis has been
performed. Table 5.12 shows the performance comparison on the
GENDER-FERET dataset. The comparison has been performed
between the proposed approaches and two commercial libraries,
namely Face++ [130] and Luxand [131]. Face++ is a well-known
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Figure 5.12 Comparison of the results on the GENDER-FERET dataset.

Method Description Accuracy (%)
RAW Intensity 89.6
LBP Texture 89.6
HOG Shape 90.0

RAW LBP Intensity Texture 91.9
RAW HOG Intensity Shape 92.6
LBP HOG Texture Shape 91.5

RAW LBP HOG Handcrafted fusion 93.0
COSFIRE Trainable shape 94.1

SURF Facial landmarks 89.2
COSFIRE SURF Trainable and handcrafted 94.7

Face++ [130] 89.6
Luxand [131] 89.2

and widely adopted library based on a deep learning approach.
On the other side, Luxand is based on geometric features: indeed,
70 facial features which describe the position of salient points of
the face are used.
The trainable COSFIRE-based approach outperforms the method
which exploits the use of pixel intensity values, texture and shape
features. Moreover, the fusion with the SURF-based method fur-
ther improves the results. Most of the proposed descriptors are
able to outperform the commercial libraries, especially the HOG-
and the COSFIRE-based classifiers. This result suggests that the
shape features are able to better discriminate between men and
women. However, the best result is achieved by the combination
of trainable COSFIRE filters and SURF descriptors.

In Table 5.13 the results have been compared with existing ap-
proaches on the LFW dataset. Most of the proposed methods are
more effective than the approaches proposed by Dago-Casas et al.
[45] and Shan et al. [38], while only the fusion of handcrafted fea-
tures and trainable and SURF features outperform the approach
proposed by Tapia and Perez [48]. It is worth to note that the
best performance is achieved by the combination of trainable and
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Figure 5.13 Comparison of the results on the LFW dataset.

Method Description Accuracy (%)
RAW Intensity 96.6
LBP Texture 93.6
HOG Shape 97.2

RAW LBP Intensity Texture 97.5
RAW HOG Intensity Shape 98.4
LBP HOG Texture Shape 97.1

RAW LBP HOG Handcrafted fusion 98.4
COSFIRE Trainable shape 99.3

SURF Facial landmarks 96.1
COSFIRE SURF Trainable and handcrafted 99.4

Dago-Casas et al. [45] Gabor 94.0
Shan et al. [38] Boosted LBP 94.8

Tapia and Perez [48] LBP 98.0

handcrafted features extracted from facial landmarks, even if the
most important contribution is provided by the COSFIRE-based
classifier.
As shown in the table, all the methods use SVM classifiers. Thus,
the main improvement is due to the combination of the chosen de-
scriptors, which proved to be very representative for the problem
at hand.

5.3 Experiments on images extracted

from real video sequences

In this Section the results obtained by the proposed architecture
on images extracted from real video sequences are reported. The
tests have been conducted by using two SoC platforms. As for
the gender recognition module the ARMv8 Cortex-A53 1.2 GHz
equipped by the Raspberry Pi3 has been adopted. On the other
hand, the people counting module has been evaluated by installing
the application directly on board of the Samsung Wisenet III DSP
provided by the SND-6084 camera used for the acquisition.
In order to confirm the effectiveness of the proposed architecture
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Figure 5.14 Experiment 1: accuracy obtained for both single faces and
persons over the images of UNISA-Public dataset triggered by the people

counting algorithm. The training has been performed by using the
UNISA-Private and the SM-Private datasets. M , F and Tot. refer to the

accuracy for Male, Female and to the overall accuracy, respectively.
Acc. per face (%) Acc. per person (%)

M 92.3 93.0
F 78.5 76.5

Tot. 84.5 88.3

as well as the reliability of the proposed gender recognition mod-
ule, various experiments have been performed. Note that for each
experiment the results achieved by analyzing both the faces and
the persons are reported. In the case of accuracy per face, only
spatial information are exploited. It means that each face is an-
alyzed independently on the other belonging to the same person
and the obtained accuracy, normalized with respect to the num-
ber of faces in each dataset, is reported. On the other hand, the
accuracy per person is computed by evaluating spatio-temporal
information, including the tracking step and the majority voting
classifier. In this way, for each person only a single vote (male or
female) is given, and not one vote for each frame in which the per-
son is framed. Of course, the accuracy in this case is normalized
with respect to the number of persons and not to the number of
faces.

5.3.1 Generalization capabilities

In the first experiment the proposed approach has been evalu-
ated over the UNISA-Public dataset, while face images from both
UNISA-Private and SM-Private have been used for training, so
as to verify the capability of the proposed approach to general-
ize in different scenarios. In more details, only the set of images
triggered by the people counting algorithm have been considered
(thus by considering 11 images per person, namely 5 before the
trigger, 1 in the time instant of the trigger and 5 after the trigger).
In this way, the proposed architecture has been tested in terms of
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reliability. To this concern, the evaluation took into account: (i)
the accuracy of the considered people counting algorithm; (ii) the
accuracy in the recognition of the faces; (iii) the accuracy in the
recognition of the gender of the persons.
(i) As for the first point, 100% of the passages has been cor-
rectly found, without any miss, confirming the effectiveness of the
adopted people counting algorithm even if used over an embedded
architecture.
(ii) Second, the faces have been found in 95% of the cases, using
the Viola-Jones algorithm fully implemented with RAPP library
(by porting over RAPP the OpenCV implementation), so as to
obtain the maximum optimization over embedded architecture.
Viola-Jones has been configured so as to search faces with a reso-
lution in the range 80×80 and 220×220 pixels. In order to reduce
the number of false positives, the so called min neighbors parame-
ter, corresponding to the neighbors that each candidate rectangle
should have in order to retain it, has been set to 7 and the scal-
ing factor to 1.1. However, considering that our evaluation is not
based on a single face but instead on the whole sequence of faces
associated to each person, the results have been analysed also in
terms of recognition of the person, which in turn correspond to
recognize each person for at least one frame. In the experiments,
100% of the persons has been correctly detected for at least one
frame.
(iii) Finally the performance over all the detected faces (and per-
sons) has been evaluated. The accuracy is reported both in terms
of faces and persons, by considering a majority voting approach
for all the faces found for that person.
The results are reported in Table 5.14. The accuracy in the recog-
nition of males is higher than the ones of females (92.3% vs 78.5%).
It is mainly due to the lower number of images available in the
test set for females (130 for females vs 300 for males). However
the overall accuracy obtained by the proposed architecture is very
promising (88.3%) considering how challenging the dataset is.
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Figure 5.15 Experiment 2: accuracy obtained for both single faces and
persons over the videos available in the UNISA-Public dataset.

Acc. per face (%) Acc. per person (%)
M 88.4 88.1
F 77.5 82.3

Tot. 85.6 86.4

5.3.2 Experiments on the UNISA-Public video
sequences

In order to confirm the usability of the proposed architecture on
video sequences and to give the possibility to other researchers
to compare the results, the gender recognition algorithm has been
evaluated over the whole set of images of the UNISA-Public dataset
(instead than just over the 11 images triggered by the people
counting algorithm). The accuracy achieved is reported in Table
5.15. It is important to highlight that by testing over the whole
video instead than over a few images the ideal condition is simu-
lated, but not the real situation. Indeed, the frame rate reached
over the considered SoC architecture with a full resolution is less
than 1 frame per seconds, which is lower than the 5 frames per
second of the video. In order to verify the possibility to further op-
timize the proposed algorithm, the time required by the different
steps of the gender recognition algorithm is also analysed. How-
ever about 85% of the time is spent during the detection step (by
the Viola-Jones algorithm). It implies that the time can not be
further optimized, thus justifying the introduction of the proposed
multi-sensor architecture.

5.3.3 Impact of resolution on the accuracy

In order to confirm that a high resolution of the faces is required to
achieve a high accuracy in both face detection and gender recog-
nition, an evaluation about how the accuracy scales with respect
to the resolution of the images is reported. In particular, three
resolutions have been considered: 1080x1920 (which is the full
resolution of the video), 480x640 (4CIF) and 240x320 (1CIF).



68 5. Experimental Results

Figure 5.16 Experiment 3: accuracy obtained for both single faces and
persons by varying the resolution of the images. Det. refers to the

percentage of faces detected using the Viola Jones algorithm.
Acc. per face (%) Acc. per person (%)

FULL 4CIF 1CIF FULL 4CIF 1CIF

Det. 72.2 71.7 24.9 95.0 91.7 63.3

M 88.4 85.6 75.0 88.1 83.3 52.4
F 77.5 82.1 87.5 82.3 76.5 41.2

Tot. 85.6 84.7 78.1 86.4 81.4 49.1

The Viola-Jones algorithm has been configured as in the first ex-
periment, scaling the range of the face size by a factor 2 on the
4CIF images and 4 on the 1CIF images. The obtained results,
reported in terms of accuracy computed by evaluating both single
faces and persons, are shown in Table 5.16. The first important
result (first row of the table, Det.) is related to the percentage of
detected faces, which strongly drops by decreasing the resolution
(from 72.2% with a full resolution to 24.9% with 1CIF images).
It implies that with low resolution images (1CIF), about 40% of
the persons is completely missed, while with full resolution images
only 5% of the persons is not detected.
The importance in processing high resolutions images is also con-
firmed by analyzing the results in terms of gender recognition rate.
The gender of less than one half of the persons is correctly recog-
nized (49.1% of accuracy) by using 1CIF images, while more than
86% by analyzing the face extracted by full resolution images.
This very impressive result confirms the importance of analyzing
high resolution images.

5.3.4 Experiments on the whole dataset

The tests performed up to now are also based on the UNISA-Public
dataset, which is publicly available. It allows to compare any
other algorithm with the proposed approach. However, in order
to confirm the effectiveness of the proposed approach, it has been
also tested with the two private datasets, namely UNISA-Private
and SM-Private. Each dataset has been partitioned in training
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Figure 5.17 Experiment 4: Accuracy for face and for person obtained over
UNISA-Public (UPub), UNISA-Private (UPri) and SM-Private (SPriv).

Acc. per face (%) Acc. per person (%)
UPub UPriv SPriv UPub UPriv SPriv

M 93.2 91.9 87.3 95.2 92.0 80.3
F 98.4 95.0 78.1 100.0 95.8 82.9

Tot. 94.7 93.0 82.4 96.5 93.9 81.6

Overall 90.2 90.5

Figure 5.18 Comparison of the proposed approach with state of the art.
Method Reference Accuracy (%)

Face++ [130] 75.4
Luxand [131] 77.1

Beta Face [132] 77.8
Kairos [133] 81.7

Microsoft Face API [134] 85.7
Proposed method - 90.2

(50%) and test (50%) set, by avoiding that the same person is
both in the training and in the test set, even if in different places
or in different poses and illumination conditions. The achieved
results are reported in Table 5.17. The overall accuracy in the
three datasets is higher than 80% (from 81.6 to 96.5), and in the
whole it is equal to 90.5%, so confirming the effectiveness and thus
the applicability of the proposed approach in different scenarios.

5.3.5 Comparison with other methods

In order to further confirm the effectiveness of the proposed ap-
proach, a comparative analysis with available commercial libraries
(such as Face++, Luxand, BetaFace, Kairos, Microsoft Face API)
has been performed. For Kairos, Microsoft Face API and Beta
Face the details about the algorithms are not available, while
Face++ and Luxand have been described above.
Table 5.18 shows that the proposed method is able to outperform
both these approaches of more than 10%. In general, the proposed
approach overcomes the best method of more than 5%, confirming
its effectiveness and usability in real scenarios.
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Figure 5.19 Processing time and frame rate of RAW-, LBP-, and
HOG-based classifiers on 640× 480 video sequences executed on an Intel(R)

Core(TM) i7-3770S CPU @ 3.10 GHz 4GB RAM.
RAW (ms) LBP (ms) HOG (ms)

Loading image 8.5
Detection 53.1
Alignment 177.4

Resize 0.2
Description 2.4 16.1 4.2

Classification 12.6 11.1 8.7
Total (ms) 254.2 266.4 252.1

5.4 Evaluating the processing time

In this section an extensive analysis of the processing time required
by some of the proposed classifiers is provided. Such evaluation
explains the rationale behind the choice of the multi-sensor archi-
tecture.
Table 5.19 reports the computational requirement of the RAW-,
LBP- and the HOG-based classifiers on an Intel(R) Core(TM) i7-
3770S CPU @ 3.10 GHz 4GB RAM with 640×480 video sequences.
The results point out that the most costly processing steps are the
face detection and alignment. The latter requires about 177 mil-
liseconds, more than three times the amount required by the de-
tection, which is an essential step. For this reason, in the method
proposed for the analysis of video sequences the face alignment
step has been removed.
The Table also allows to compare the performance of the different
face descriptors. The raw features (2.4ms), obviously, are faster
than the LBP (16.1ms) and the HOG (4.2ms) ones. However,
they requires more time in the classification step (12.6 vs 11.6 and
8.7 milliseconds) since the descriptor has an higher dimensionality
(4096 vs 2304 and 1764 elements). In general, the HOG-based
classifier is the fastest and it has been chosen for gender recog-
nition on video sequences. The SURF-and the COSFIRE-based
classifiers have not been considered in this analysis, since they re-
quire, respectively, 150 milliseconds and more than one second for
the computation of a single face descriptor.
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Figure 5.20 Processing time and frame rate with and without face
alignment of the HOG-based classifier on video sequences at different

resolutions executed on an Intel(R) Core(TM) i7-3770S CPU @ 3.10 GHz
4GB RAM.

1920× 1080 640× 480 320× 240
HOG ms fps ms fps ms fps

With alignment 425.5 2.3 252.1 3.96 203.1 4.9
Without alignment 214.6 4.7 74.7 13.4 36.9 27.1

Figure 5.21 Processing frame rate of people counting and gender
recognition algorithms on video sequences at different resolutions executed

respectively on a ARMv7 with 1CPU 600 MHz 0.8GB RAM and on an
ARMv8 Cortex-A53 1.2 GHz.

1920× 1080 640× 480 320× 240
Multi-sensor ms fps ms fps ms fps

People counting 256.4 3.9 61.0 16.4 15.5 64.5
Gender recognition 2017.2 0.5 709.6 1.4 348.7 2.9

Table 5.20 shows the improvement of the performance in terms
of processing speed removing the face alignment step. On 640×480
the frame rate increases from about 4 fps to more than 13, so al-
lowing almost to carry out real-time gender recognition. The ideal
real-time speed is achieved on 320 × 240 images, since the algo-
rithm is able to analyze about 27 fps. Also the performance on
1920×1080 is notable, considering that the proposed method pro-
cesses almost 5 high definition frames per second. So the approach
is definitely suitable for server side elaboration and, in principle,
it would not need the help of the people counting algorithm. How-
ever, the computation capabilities of an embedded system are in
general lower than a powerful server devoted to video analysis.

Table 5.21 reports the processing time required by the people
counting and the gender recognition algorithms on the two consid-
ered platforms, namely the ARMv7 with 1CPU 600 MHz 0.8GB
RAM equipped by the smart camera and the ARMv8 Cortex-A53
1.2 GHz processor of the Raspberry Pi3. As published in [108], the
proposed people counting is able to process 320 × 240 images in
real-time, without paying a lot in terms of accuracy. The gender
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recognition method, instead, points out a significant performance
drop on such low cost embedded platform. This result means that
real-time face analysis is not achievable on the considered device,
since most of the time is spent for face detection (more than 70%),
which can not be removed or further optimized without the help
of other sensors.
Such experimental evaluation justifies the choice of the multi-
sensors architecture. Indeed, the people counting algorithm allows
to reduce the region where the faces are detected, so increasing the
processing speed of this step, and to enable the elaboration only
when a person is going towards the camera. The two optimiza-
tions makes the gender recognition algorithm capable to collect
and process more images for each person, to analyze, if necessary,
high resolution faces and to reduce false positives in face detection.
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Conclusions

6.1 Summary of the thesis

This research work has been produced with the aim of perform-
ing gender recognition in real-time on face images extracted from
real video sequences. The task may appear easy for a human,
but it is not so simple for a computer vision algorithm. Even on
still images, the gender recognition classifiers have to deal with
challenging problems mainly due to the possible face variations,
in terms of age, ethnicity, pose, scale, occlusions and so on. Ad-
ditional challenges have to be taken into account when the face
analysis is performed on images acquired in real scenarios with
traditional surveillance cameras. Indeed, the people are unaware
of the presence of the camera and their sudden movements, to-
gether with the low quality of the images, further stress the noise
on the faces, which are affected by motion blur, different orienta-
tions and various scales. Moreover, the need of providing a single
classification of a person (and not for each face image) in real-
time imposes to design a fast gender recognition algorithm, able
to track a person in different frames and to give the information
about the gender quickly. The real-time constraint acquires even
more relevance considering that one of the goals of this research
work is to design an algorithm suitable for an embedded vision
architecture. Such necessity excludes the use of CNNs, since they
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require computational and memory resources that are not avail-
able on smart cameras and low cost embedded devices. Finally, the
task becomes even more challenging since there are not standard
benchmarks and protocols for the evaluation of gender recognition
algorithms.
In this thesis the attention has been firstly concentrated on the
analysis of still images, in order to understand which are the most
effective features for gender recognition. To this aim, a face align-
ment algorithm has been applied to the face images so as to nor-
malize the pose and optimize the performance of the subsequent
processing steps. Then two methods have been proposed for gen-
der recognition on still images.
First, a multi-expert which combines the decisions of classifiers
fed with handcrafted features has been evaluated. The pixel in-
tensity values of face images, namely the raw features, the LBP
histograms and the HOG features have been used to train three
experts which takes their decision by taking into account, respec-
tively, the information about color, texture and shape of a human
face. The decisions of the single linear SVMs have been combined
with a weighted voting rule, which demonstrated to be the most
effective for the problem at hand.
Second, a SVM classifier with a chi-squared kernel based on train-
able COSFIRE filters has been fused with an expert which rely on
SURF features extracted in correspondence of certain facial land-
marks. The complementarity of the two experts has been demon-
strated and the decisions have been combined with a stacked clas-
sification scheme.
An experimental evaluation of all the methods has been carried out
on the GENDER-FERET and the LFW datasets with a standard
protocol, so allowing the possibility to perform a fair comparison
of the results. Such evaluation proved that the couple COSFIRE-
SURF is the one which achieves the best accuracy in all the cases,
even compared with other state of the art methods. Anyway, the
performance achieved by the multi-expert which rely on the fusion
of RAW, LBP and HOG classifiers can also be considered very sat-
isfying.
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After the preliminary analysis carried out on still images, the
research has been focused on video sequences. A new dataset,
namely the UNISA-dataset, has been acquired in different real en-
vironments (university and supermarket) with classic surveillance
cameras and a part of it has been made publicly available. In these
video sequences people are unaware to be framed, so the face im-
ages are significantly more challenging than the ones available in
the standard datasets.
Such benchmark has been used firstly for an extensive analysis
of the processing time required by the above-mentioned gender
recognition algorithms. The profiling activity demonstrated that
the face alignment algorithm is very costly and it is not suitable
for real-time elaboration, as well as the impossibility to use SURF
and COSFIRE features. Considering that the pixel intensity val-
ues are not reliable with face images not aligned, the analysis also
allowed to choose the HOG expert for gender recognition on video
sequences, since it is more efficient and effective than the LBP
one. Finally, the analysis shows that, although the HOG-based
classifier is able to process images in real-time on classic server
side architectures, it is not fast enough for embedded vision sys-
tems.
Starting from these observations, a multi-sensor architecture has
been proposed. It consists of a smart camera dedicated to people
counting, of a classic camera installed to capture the faces and of
a low cost embedded device used for gender recognition. The idea
is that the people counting camera sends a notification when a
passage of at least one person is detected, indicating the position
where the passage occurred. In this way, the gender recognition
algorithm can be applied only on a subregion of the images where
at least one face is present. Such architecture allows to process
more high resolution images, so obtaining in parallel the possibil-
ity to maximize the accuracy and to recognize the gender of the
persons in real-time on low cost devices. Moreover, the tempo-
ral coherency has been taken into account to associate the same
identity to a person captured in different frames. An extensive
experimental evaluation proved the effectiveness of the proposed
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method and its suitability for gender recognition in real-time.

6.2 Future works

Although the proposed multi-sensor architecture demonstrated its
effectiveness and efficiency, it would be better to achieve the same
results with a single device or, at least, with a single camera. Such
constraint would suggest to perform further optimizations on the
gender recognition algorithm. An interesting idea to investigate
would be the use of a background subtraction algorithm, which is
able to detect pixels belonging to moving objects with fixed cam-
eras. In this way, the notification about the position of the persons
who are moving towards the camera is provided by the foreground
mask and not by the people counting camera. The face detection
can be consequently applied only on moving regions, so as to re-
duce the computational burden. However, extensive analysis have
to be performed in order to check if the optimization is sufficient
to process images in real-time on low-cost devices, preserving the
performance in terms of accuracy.
So far as the optimization of the algorithm does not allow to
achieve the desired result on low cost devices, an alternative would
be the search of more powerful embedded systems. Technology in
this field is growing exponentially and the market currently offers
various solutions which permits to use several GPU cores for em-
bedded vision applications. The most famous examples are Intel
Movidius Neural Compute Stick and the NVIDIA Jetson TK1.
Such powerful devices would allow to evaluate the possibility to
use deep networks for gender recognition in real-time, which are
obviously not suitable for the elaboration on classic CPUs and,
above all, on low cost devices. The CNNs have not been consid-
ered in this thesis, due to their significant computational burden.
Nevertheless, it is worth to carry out an experimental evaluation
of deep networks on these modern devices, which may allow to
achieve remarkable performance both in terms of accuracy and
processing speed.
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Finally, the research may be extended to other face analysis prob-
lem. For example, the same face descriptors, or other that are
considered promising, can be applied to problems like age estima-
tion, ethnicity classification, expression and sentiment analysis,
face recognition, re-identification and verification. The experi-
mental analysis proved that most of the time is spent for face
detection. So on powerful platforms the computation of efficient
descriptors or the classification of different facial features may not
add a significant computational load.
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reconfigurable embedded vision system for advanced driver assis-
tance,” Journal of Real-Time Image Processing, vol. 10, no. 4,
pp. 725–739, 2015.

[106] P. Foggia, A. Greco, A. Saggese, and M. Vento, “A method for
detecting long term left baggage based on heat map.” in VISAPP
(2), 2015, pp. 385–391.

[107] V. Carletti, P. Foggia, A. Greco, A. Saggese, and M. Vento, “Au-
tomatic detection of long term parked cars,” in Advanced Video
and Signal Based Surveillance (AVSS), 2015 12th IEEE Interna-
tional Conference on. IEEE, 2015, pp. 1–6.

[108] L. DelPizzo, P. Foggia, A. Greco, G. Percannella, and M. Vento,
“Counting people by {RGB} or depth overhead cameras,” Pat-
tern Recognition Letters, vol. 81, pp. 41 – 50, 2016.

[109] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
transactions on neural networks, vol. 10, no. 5, pp. 988–999, 1999.

[110] L. Lam and C. Y. Suen, “Optimal combinations of pattern clas-
sifiers,” Pattern Recognition Letters, vol. 16, no. 9, pp. 945–954,
1995.

[111] J. Kittler, “Combining classifiers: A theoretical framework,” Pat-
tern analysis and Applications, vol. 1, no. 1, pp. 18–27, 1998.



92 BIBLIOGRAPHY

[112] P. Soda, G. Iannello, and M. Vento, “A multiple expert system
for classifying fluorescent intensity in antinuclear autoantibodies
analysis,” Pattern Analysis and Applications, vol. 12, no. 3, p.
215, 2009.

[113] M. De Santo, M. Molinara, F. Tortorella, and M. Vento, “Auto-
matic classification of clustered microcalcifications by a multiple
expert system,” Pattern Recognition, vol. 36, no. 7, pp. 1467–
1477, 2003.

[114] L.-L. Huang and A. Shimizu, “A multi-expert approach for robust
face detection,” Pattern Recognition, vol. 39, no. 9, pp. 1695–
1703, 2006.

[115] L. P. Cordella, M. De Santo, G. Percannella, C. Sansone, and
M. Vento, “A multi-expert system for movie segmentation,” Lec-
ture notes in computer science, pp. 304–313, 2002.

[116] M. Uricár, V. Franc, and V. Hlavác, “Facial landmark tracking
by tree-based deformable part model based detector,” in Proceed-
ings of the IEEE International Conference on Computer Vision
Workshops, 2015, pp. 10–17.

[117] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up
robust features,” in European conference on computer vision.
Springer, 2006, pp. 404–417.

[118] G. Azzopardi and N. Petkov, “Trainable COSFIRE filters for
keypoint detection and pattern recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp.
490–503, 2013.

[119] ——, “Ventral-stream-like shape representation: from
pixel intensity values to trainable object-selective cos-
fire models,” Front Comput Neurosci, vol. 8, p. 80,
2014. [Online]. Available: http://www.biomedsearch.com/nih/
Ventral-stream-like-shape-representation/25126068.html

[120] B. Gecer, G. Azzopardi, and N. Petkov, “Color-blob-based
COSFIRE filters for object recognition,” Image and Vision

http://www.biomedsearch.com/nih/Ventral-stream-like-shape-representation/25126068.html
http://www.biomedsearch.com/nih/Ventral-stream-like-shape-representation/25126068.html


BIBLIOGRAPHY 93

Computing, vol. 57, pp. 165 – 174, 2017. [Online]. Available: //
www.sciencedirect.com/science/article/pii/S0262885616301895

[121] G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov,
“Trainable cosfire filters for vessel delineation with application
to retinal images,” Medical Image Analysis, vol. 19, no. 1, p.
46?57, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1361841514001364

[122] N. Strisciuglio, G. Azzopardi, M. Vento, and N. Petkov,
“Supervised vessel delineation in retinal fundus images with
the automatic selection of B-COSFIRE filters,” Machine
Vision and Applications, p. 1?13, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00138-016-0781-7

[123] G. Azzopardi and N. Petkov, “A CORF computational model
of a simple cell that relies on lgn input outperforms the
gabor function model,” Biological Cybernetics, vol. 106, pp.
177–189, 2012, 10.1007/s00422-012-0486-6. [Online]. Available:
http://dx.doi.org/10.1007/s00422-012-0486-6
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