
UNIVERSITÀ DEGLI STUDI DI SALERNO

dottorato in
ECONOMIA E POLITICHE DEI MERCATI E DELLE IMPRESE

Curriculum
METODI STATISTICI

XXX ciclo
(A.A. 2016/2017)

tesi in

High-dimensional statistics
for complex data

Tutor
Prof. Francesco GIORDANO

Coordinatore
Prof. Sergio Pietro DESTEFANIS

Autore
Massimo PACELLA

DIPARTIMENTO DI SCIENZE ECONOMICHE E STATISTICHE





iii

Abstract
High dimensional data analysis has become a popular research topic in the
recent years, due to the emergence of various new applications in several fields
of sciences underscoring the need for analysing massive data sets.
One of the main challenge in analysing high dimensional data regards the
interpretability of estimated models as well as the computational efficiency of
procedures adopted. Such a purpose can be achieved through the identifica-
tion of relevant variables that really affect the phenomenon of interest, so that
effective models can be subsequently constructed and applied to solve practical
problems. The first two chapters of the thesis are devoted in studying high
dimensional statistics for variable selection. We firstly introduce a short but
exhaustive review on the main developed techniques for the general problem
of variable selection using nonparametric statistics. Lastly in chapter 3 we will
present our proposal regarding a feature screening approach for non additive
models developed by using of conditional information in the estimation proce-
dure.
Differently, the second part of the thesis focuses on the spatio-temporal models
in high dimensional contexts. Over the last decade, a particular class of spatio-
temporal models has been rapidly developed, the spatial dynamic panel data
models (SDPD). Several versions of the SDPD model have been proposed, based
on different assumptions on the spatial parameters and different properties
of the estimators. The standard version of the model assumes the spatial pa-
rameters constant over location, meanwhile another recently proposed version
assumes the spatial parameters are adaptive over location. The assumption
of different scalar coefficients is motivated by practical situations, in which
empirical evidence shows how considering constant effect for each location
can be limiting. While chapter 4 is devoted to introduce principal elements of
spatio-temporal models in statistical and econometric frameworks, in chapter
5 we propose a strategy for testing the particular structure of SDPD model,
by means of a multiple testing procedure that allows choosing between the
version of the model with adaptive spatial parameters and some specific ver-
sions derived from the general one by imposing particular constraints on the
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parameters. The multiple test is made in high dimensional setting by the Bon-
ferroni technique and the distribution of the multiple test statistic is derived by
a residual bootstrap resampling scheme.
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Part I

Nonparametric variable selection in
high-dimensions
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Introduction

Nowadays high dimensional data analysis has become increasingly important,
due to the emergence of various new applications in several fields of sciences,
such as genomics, bioinformatics, economics and finance. Many of them under-
score the need for analyzing massive data sets. For example, in genomics, using
microarray data set, there could be hundreds or thousands genes potential pre-
dictors of a particular disease. Otherwise, in a portfolio allocation problem the
amount of stocks to be included could be large enough to involve an intractable
parametrization of the variance covariance matrix. Other situations involving
high dimensional data sets are, for example, in high resolution image analysis,
e-commerce and behavioural finance studies, among others. One of the main
challenge in analyzing high dimensional data regards the interpretability of es-
timated models as well as the computational efficiency of procedures adopted.
A fundamental objective of statistical analysis with high dimensional data is
to identify relevant features, so that effective models can be subsequently con-
structed and applied to solve practical problems. Traditionally, there was two
major types of variable selection methods. The first one is known as the best
subset selection, which selects the best model among all possible combinations
of the predictors based on some specific selection criterion. Example of well-
known selection criteria include the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). All of these criteria consider a trade-off
between the goodness of fit of the model and its complexity. The second class
of methods is known to include such procedures that employed the selection of
a subset of predictors in a sequential order. One well-known example includes
the forward, backward and stepwise selection. The forward selection starts
from the model with no variables included, then adds variables sequentially
according to the most significant if its p-values is below some predetermined
level. Variables are added until none of the remaining variables are significant.
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In contrast, the backward selection works at the opposite direction, thus it be-
gins with the full model and least significant variables are excluded sequentially.
Finally, the stepwise method is a combination of the two above, as it allows
movement in either direction by adding or dropping variables at sequential
steps.
More recently, a third class, closely related to the class of sub-sequential proce-
dures, has been developed for linear and other parametric models. This class
includes the well-known LASSO of Tibshirani (1996) and Adaptive LASSO
(Zou (2006)), SCAD (Fan and Li 2001), Dantzig selector (Candes and Tao 2007),
among others. These procedures are commonly defined Regularization methods
because of the presence of one or more regularization parameters in estimation.
They allow selection of variables and estimates of parameters simultaneously
by solving high dimensional optimization problems. Most of them are based
on the well-known l1-penalization and for this reason are defined LASSO-type
(or LASSO variants) estimators. For a complete review on parametric statistics
in High dimensional see Bühlmann and Van De Geer (2011). Usually, in para-
metric regression the assumption of linearity could be very stringent in many
practical analysis. It has been found from our knowledge that the traditional
parametric linear model might not work well for detecting pattern when the
underlying true relationships is nonlinear. Nevertheless, parametric techniques
as the LASSO are limited in handling problems with a very large number of
covariates and can fail in presence of highly correlated structure of covariates.
For such reasons extension to nonparametric seems natural.
This part of the thesis is devoted to the context of nonparametric statistics for
variable selection, then first of all we will introduce a short but exhaustive
review on the main techniques developed for the general problem of variable
selection in high dimensions (or ultra-high dimension) using nonparametric
statistics, before presenting our research proposal. Particularly, in chapter 1 we
will focus on the major techniques developed for variable selection in contexts
of additive models. Most of the discussed methods adopt some type of regu-
larization to reach the general aim of variable selection, other are developed
in a different way and require, for instance, sequential estimation procedure.
We will concentrate on such methods developed for regression problems. Then,
in chapter 2 we will show the main results and technical details of variable
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selection methods for non additive models. Non additivity assumption is the
primary focus in our research purpose, thus we have regarded a full chapter in
order to present as briefly as possible the strengths and weaknesses of the main
techniques that allow for non additivity. Finally, in chapter 3 we will present
our proposal regarding a feature screening approach for non additive models
developed by using of conditional information in the estimation procedure.
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Chapter 1

Nonparametric variable selection
for additive models

1.1 Introduction

High dimensional data analysis has become a popular research topic in the
recent years. However, the nature of high dimensional data makes many
traditional statistical methods fail. Consequently, variable selection or dimen-
sionality reduction is often the first step in high dimensional data analysis.
In this chapter we examine the main nonparametric approaches of features
selection adopted in contexts of high dimensionality regression.
The chapter is organized as follows. First, we define more precisely the context
of interest, we give definitions of high dimensional and nonparametric settings,
and in addition, we briefly explain the meaning of sparsity. In section 1.3
we present the main selection techniques developed for additive models and
involving penalization in the procedure. Section 1.5 is devoted to the feature
screening methods firstly introduced by Fan and Lv (2008). The chapter ends
with a brief review of some technical results from such methods.

1.1.1 High-dimensional setting

From a statistical perspective, when the number of parameters p is greater
than the number of observations n, regression problems cannot be solved by
classical estimation procedures like the method of ordinary least squares. The
standard procedures rely on the assumption that X′X is nonsingular, otherwise
X′X cannot be inverted and the solution of the optimization problem is not
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unique. This, obviously, occurs when p > n, as the covariate matrix does not
have full column rank and this highly influences the estimation problem. Thus,
to perform regressions when p > n (or p � n), some kind of preselection or
regularization is needed. Typically, we define the situation where the number
of parameters increases with the number of observations as a problem of High
dimensions, while we refer to Ultra-high dimensions when p increases and is
exponentially in n.

Sparsity assumption

It is well-known that in many practical situations it is generally believed that
only a small number of features are related to the phenomenon of interest.
Such a point is primary justification to direct the analysis towards the aim of
dimensionality reduction. Moreover, dimensionality reduction allows both the
goals of constructing well interpretable models as well as to gain insight into
relationship between predictive variables and response variable for scientific
purposes. Most of the known methods developed to address the problem of
high dimensional regression via the dimensionality reduction, usually require
an assumption of sparseness. Given the general model (1.1), according to
the definition of sparsity only a few covariates are in the true model. For
instance, we regard that only q are relevant in explaining response variable,
and q� p. Sparsity is an important theoretical aspect to reduce the complexity
and the number of effective variables in the model. The intention of producing
more interpretable models is especially productive in the High dimensional
context. It is obviously easier and more convenient to interpret results from an
estimate which involves some preselection or regularization rather than a result
involving hundreds or thousands of covariates.

1.1.2 Nonparametric framework

Let {Xi, Yi}n
i=1 be a set of Rp+1 random vectors from the model

Y = m(X) + ε. (1.1)
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where Y represents the depended variable (or response variable) and X is the
Rp-valued covariates matrix. The function m : Rp → R is the regression func-
tion, commonly defined as multivariate conditional mean E(Y|X). The term ε

represent the usual additive noise.
There nowadays exist many methods for obtaining nonparametric regression
estimate of m. In nonparametric statistics there exists universally consistent
estimates, but it is impossible to obtain a non trivial rate of convergence for all
distributions of (X, Y). In other words, the estimator can converge very slowly.
In order to get non trivial rates of convergence, one has to restrict the class of
distributions, defining classes of such distributions where the corresponding
regression function satisfies some smoothness conditions (e.g. m is d contin-
uously differentiable or m is Lipschitz continuous). For classes of functions
where m is d times continuously differentiable, the optimal rate of convergence
is n−2d/(2d+p) (Györfi et al. (2006)). Thus, nonparametric regressions require a
sample size n exponential in p in order to approximate m.

1.2 Some definitions

Additive and non additive models

Model (1.1) is a pure non additive model as regression function is a joint function
of all p regressors. Instead, when m is expressed as linear combination of
marginal unknown functions

m(Xi) =
p

∑
j=1

mj(Xij). (1.2)

the model becomes additive. Assume linear combination of univariate functions
is less general than joint multivariate regression function in (1.1), but it is
actually very simple to estimate.
Differently, m can be expressed as function of linear combination of marginal
regression functions,

m(Xi) = g

(
p

∑
j=1

mj(Xij)

)
, (1.3)
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according to the function g(·), the corresponding model can be additive or
non additive. For instance, if g(·) = exp we have a nondditive model with
m(X) = exp

{
Xβ
}

. Such a class of models are defined Generalized additive models
(Hastie and Tibshirani (1990)).
The distinction between additive and non additive models is useful for our
purpose since it directly affects performance and theoretical aspects of selection
procedures. From a theoretical point of view, assuming regression functions
to be a linear combination of marginal functions makes consistency results
in variable selection as simple to prove as linear models, even though the
marginal functions are nonlinear. This is because any estimation involved
into selection procedure can be performed with the same difficulty of a single-
variable model, despite the dimension p is growing with n. Conversely when
the regression function is expressed as fully joint function of p regressors there is
no information about structure of regression in order to simplify the estimation
required for variable selection, thus asymptotics for increasing p becomes more
difficult to assessed.

Oracle property

Following the definition of Fan and Li (2001), as well as for the parametric case,
we say that a nonparametric estimator has the oracle property if it estimates
the regression function at the optimal nonparametric rate and, at the same time,
also selects the nonzero components with probability tending to one.

Sure screening property

In the context of screening it is usually said that a procedure holds the sure
screening property that is similar to the oracle property of variable selection tech-
niques. Formally, it means that the probability of a set of screened variables that
contains the true set of relevant variables, converges to one as n goes to infinity.

1.3 Variable selection in additive models

Additivity assumption is a primary way of relaxing the linear assumption
in order to account for nonlinearity in the regression. It is able to retain the
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interpretable additive form of linear regression models, even though it allows
for nonlinear marginal regression functions. More importantly, the additive
models are able to circumvent the problem of curse of dimensionality arising in
high dimensional regression problems, since they can be estimated at the same
optimal rate of convergence for univariate functions (Stone (1985)).
For such reasons, there have been a large part of literature involved in variable
selection for nonparametric additive models. Many authors treated this purpose
by spline estimators, as such a class of estimators is easy to analyse and to adapt
for variable selection. In the following we give a brief review of the most
common techniques in such a field.

1.3.1 Penalized spline estimators

A traditional smoothing splines estimator could be defined as the minimizer of

1
n

n

∑
i=1
{yi −m(xi)}2 + λ

p

∑
j=1

θ−1
j ‖P

(j)m‖2, (1.4)

where P(j)m denotes the orthogonal projection of m onto the j-th orthogonal
subspace of a reproducing kernel Hilbert space (RKHS). Lin and Zhang (2006)
proposed a penalized variant of smoothing splines estimator in (1.4).

Instead of the squared functional norm in the penalty, Lin and Zhang (2006)
proposed the following estimator (COSSO)

1
n

n

∑
i=1
{yi −m(xi)}2 + λ

p

∑
j=1
‖P(j)m‖, (1.5)

the penalty term ∑
p
j=1‖P

(j)m‖M involves the sum of the norms of order one of
the function components, thus it allows for shrinkage similar to the traditional
LASSO. The parameter λ is as well a tuning parameter that control the amount
of shrinkage.
In a similar way, the penalization term in (1.5) can be constructed by L2-norm
(Ravikumar et al. (2009)). In such a case the penalized spline estimator can be
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expressed as minimizer of

1
n

n

∑
i=1

{
yi −m(xi)

}2
+ λ

p

∑
j=1
‖P(j)m‖2. (1.6)

From a computational point of view, it is not easy to estimate model in (1.5)
ensuring sparsity, since it is not equivalent to the standard smoothing spline in
(1.4). In order to perform a proper estimates as solution of a smoothing spline
problem, a different formulation is needed

1
n

n

∑
i=1
{yi −m(xi)}2 + λ0

p

∑
j=1

θ−1
j ‖P

(j)m‖2 + λ
p

∑
j=1

θj. (1.7)

The (1.7) is minimized subject θj > 0, the constant λ0 can be take as any fixed
positive value, while parameter λ needs to be tuned.
When the penalization is as in (1.6), each marginal regression function is ap-
proximated by orthonormal basis with respect to L2[0, 1].
Differently from (1.5), the sparsity is taken into account by imposing penalty
on the L2 norm of the spline approximation to ensure identifiability. Thus the
estimation reduces to a standard optimisation problem as for spline estimator.
If we rewrite (1.6) in terms of basis function, we have

1
2n

∥∥∥∥∥Y−
p

∑
j=1

Φjβ j

∥∥∥∥∥
2

2

+
λ√
n

p

∑
j=1

√(
β′jΦ

′
jΦjβ j

)
, (1.8)

where Φj is the n× d matrix of the orthonormal basis. Lin and Zhang (2006)
gave an accurate analysis in the special case of a tensor product design with
an SS-ANOVA model built from the second order Sobolev spaces of periodic
functions.
They assumed the space M of functions m to be constructed by the tensor
product of p orthogonal subspaces where each subspace is itself a RKHS

M =
p⊗

j=1

Hj = {1} ⊕
{ p

∑
j=1
H̄j
}
⊕
{ p

∑
j=1

(H̄j ⊗ H̄k)
}
⊕ ... (1.9)

where eachHj = 1⊕H̄j, and H̄j is the RKHS of functions mj such that 〈mj, 1〉 =
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0. The right side of (1.9) shows the decomposition into the space of constant
functions, the main effects spaces H̄j, the two-way interaction spaces H̄j ⊗ H̄k

and so on and usually it is cut off to an order d. Instead, the second-order
Sobolev space of periodic functions can be expressed as

H̄j ={mj : mj(xj) =
∞

∑
k=1

ak
√

2 cos 2πkxj +
∞

∑
k=1

bk
√

2 sin 2πkxj,

∞

∑
k=1

(a2
k + b2

k)(2πk)4 < ∞}.
(1.10)

When the regression function is estimated by splines approximation, each
nonparametric component is expressed as linear combination of a specified
splines basis function, as in (1.10). Generally, it can be assumed that each
regression function belongs to

H̄j = {mj : mj(xj) =
∞

∑
k=0

β jkηjk(xj),
∞

∑
k=0

β2
jkk4 ≤ ∞}, (1.11)

where {ηjk, k = 0, 1, ...} defines a uniformly bounded orthonormal basis func-
tion.
Different from Lin and Zhang (2006), estimator of Ravikumar et al. (2009) allows
for the problem of component selection adopting penalization inside the L2

norm, thus it does not make use of Hilbert norm in order to obtain sparsity
among projections. In other words, the coefficients in the polynomial approxi-
mation of splines are shrunk, the idea of grouped LASSO of Yuan and Lin (2006)
is borrowed to take into account the grouping structure in the approximation,
thus the work of Ravikumar et al. (2009) can be thought as a functional version
of the grouped LASSO.

Adaptive variants

To achieve optimality in both estimation and selection, Storlie et al. (2011)
proposed a variant of the COSSO characterized by a two-step estimation proce-
dure where each individual norm in the penalty of equation (1.5) is adaptively
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weighted. Thus, the model at the second-stage becomes

1
n

n

∑
i=1
{yi −m(xi)}2 + λ

p

∑
j=1

wj‖P(j)m‖, (1.12)

each weight is constructed as wj = ‖P(j)m̃‖−γ
2 , where m̃ is the first-stage esti-

mate.
The proposal in Storlie et al. (2011) shares all features of the adaptive LASSO
(Zou (2006)). Naturally, it does not allow for overdetermined scenario with
p > n, where one cannot be able to do first stage estimates, unless using one es-
timator that also allows for dimensionality reduction. In a similar way, Huang,
Horowitz, and Wei (2010) proposed an adaptive version of penalized smoothing
spline of Ravikumar et al. (2009).

Spline with interaction terms

Despite the models in Lin and Zhang (2006) and Storlie et al. (2011) assume the
covariates space with interaction effects, they do not perform model selection
in the sense of considering interactions among the selectable features. In fact
interaction terms are provided in the approximation by the splines estimator,
but the whole estimation procedure is not able to distinguish between main
effects and interaction effects. A penalty function that account for interaction
terms was proposed by Radchenko and James (2010). It can be expressed as

λ

(
p

∑
j=1
‖P(j)m‖2 +

p

∑
j=1

p

∑
k=j+1

‖P(j,k)m‖2

)
(1.13)

where P(j,k)m denotes the orthogonal projection of m onto the (j, k)-th two di-
mensional subspace of RKHS. In (1.13) the interactions are not only considered
in the spline approximation, rather they act as covariates and allow in recognis-
ing covariates that jointly contribute to the response.
Nevertheless, single effects and interaction terms are treated similarly, in fact
an entry of an interaction generally adds more predictors and it is difficult to
interpret as well as to compute due to p2 different terms. For that reason the
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penalty term can be reformulated as

λ1

p

∑
j=1

(
‖P(j)m‖2 +

p

∑
k:k 6=j
‖P(j,k)m‖2

)1/2
+ λ2

p

∑
j=1

p

∑
k=j+1

‖P(j,k)m‖ (1.14)

where the L2 and L1 norms are considered separately for a better interpretation.
The main problem of such a variant is that when the covariates dimension is
high, the estimation still suffers from introduction of interactions. Just think
that, for one-to-one interactions without consider interactions between the same
covariate, the procedure involves p(p− 1) variables. When p is very large, i.g.
in ultra-high dimensional contexts, the procedure becomes computationally
hard.

1.4 Variable selection in nonadditive models

When we adopt nonparametric regression it is obviously to recall how the bias-
variance trade-off affects the estimation procedure. Generally speaking, since
linear regression model is more restrictive, it guarantees a lower variance of
estimates with respect to the nonparametric model (1.1). Extending linear model
to nonparametric one is in general a real problem, since nonparametric methods
usually suffer from variance that grows exponentially with the dimension p.
On the other hand, linear regression results in variance that increases linearly
with p, but its bias decreases quickly. This is why extension to nonparametric
by assuming additivity is someway straightforward, in fact it is able to mitigate
between strength of fully nonparametric model and easiness of parametric one.
That said, without any restriction, estimation becomes complicate, nevertheless
when the main purpose is variable selection, curse of dimensionality involved in
estimation could be treated in a different way. For instance, in Feature screening
techniques selection requires marginal estimation, in such a case flexibility and
generality of nonparametric model can be retained without involving very
complicated and hard estimation procedure.
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1.5 Feature Screening

We know that, when the number of explanatory variables grows with the
number of observations and its order is exponential, we are facing up to ultra-
high dimensional estimation problem. To be more specific, in such a situations
standard variable selection procedures are not unaffected due to the so called
curse of dimensionality. Motivated by this concerns, it has recently developed
a new research field, called Feature screening. It is a class of computational
approaches useful in preliminary analysis for preprocessing data to reduce the
scale of dimension to a less order.

1.5.1 Sure Independence Screening (SIS)

Originally, Fan and Lv (2008) introduced a simple screening method (Sure
Independence Screening or SIS). It relies on ranking estimations by measuring the
marginal contributions of explanatory variables in explaining the response.
Let the linear model

Yi =
p

∑
j=1

Xijβ j + εi , (1.15)

where Xij is the i-th row of the regressors matrix X corresponding to the j-th
covariate.
SIS uses componentwise regression to rank the importance of features according
to their marginal correlation with the response variable.
Marginal correlation of j-th predictor with the response variable can be com-
puted as

ωj =
n

∑
i=1

XijYi , j = 1, ..., p. (1.16)

The p marginal correlations obtained by (1.16) are sorted in a decreasing order
and, for a given γn ∈ (0, 1), the sub-model is defined by

M̂γn = {1 ≤ j ≤ p : |ωj| is among the first [γnn] largest of all}, (1.17)

where [γnn] denotes the integer part of γnn. By doing that, one is able to filter
out the features that have weak correlation with the response. Broadly speak-
ing, this method shrinks the full model down to a sub-model of less order by
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sorting the p marginal magnitudes in a decreasing order and then discarding
the components up to a fixed threshold.
As linear model with more than p > n parameters are not identifiable, SIS ap-
pears a suitable methods primarily useful when p is exponential in n. Although
it is proposed to reduce dimensionality to be below the sample size, it can be
applied for reduction to a dimension p̃ > n. It is obvious that larger p̃ assures
larger probability of including the true model in the final sub-model M̂.
Once the screening is carried out and the dimension is reduced, one of the
well-developed variable selection technique is adopted to estimate the vector
β in equation (1.15). For instance, LASSO type procedure or other variable
selection techniques (i.g. SCAD in Fan and Li (2001), Adaptive LASSO by Zou
(2006) and Dantzig selector in Candes and Tao (2007)) can be used.

1.5.2 Marginal spline estimator

Extension of SIS to generalized linear models was developed in Fan and Song
(2010). The conditional expectation in the regression is assumed from an ex-
ponential family. SIS procedure for both linear models and GLM focuses on
studying marginal contributions when the problem is strictly linear or at most
generalized linear. They can address some methodological challenges regard-
ing the missed joint information by adopting multistage or iterative versions,
nonetheless, they can be crude in reducing ultra-high dimensions even if the
linear model holds jointly. We could have that, when the joint distribution is
normal, the marginal contribution can be highly nonlinear. Such a situation can
be overcome throughout extensions to nonparametric statistics.
One way of extending ranking measures for screening to nonparametric frame-
work is to adopt additive nonparametric regression function in (1.2) and apply
some nonparametric estimator marginally.
Fan, Feng, and Song (2011) propose to estimate marginal nonparametric regres-
sions by spline estimators. Let Sn be a polynomial space of degree l ≥ 1, and let
{ηjk, k = 1, ..., dn} be a normalised B-spline basis with

∥∥ηjk
∥∥

∞ ≤ 1. Under some
proper conditions, each marginal regression function can be approximated as

mnj(x) =
dn

∑
k=1

β jkηjk(x), 1 ≤ j ≤ p for some coefficients β jk.
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The resulting marginal estimator can be expressed by

m̂nj = min
mnj∈Sn

En(Y−mnj(Xj))
2

and is equivalent to minimize minβ j∈Rdn En(Y− η′jβ j)
2.

Then, as for standard SIS, the set of selected variables can be obtained as

M̂γn = {1 ≤ j ≤ p :
∥∥∥ f̂nj

∥∥∥2

n
≥ γn}

for a predefined threshold value γn.

1.6 Some technical results

Technically, a marginal screening procedure requires that (i) if Xj contributes in
explaining the response variable, then the marginal measure used for ranking
takes non-negligible value; (ii) if Xj is not a relevant covariate, then the marginal
measure takes negligible value. Such a condition, named identification condition
(IC), ensures sure screening property of the method.
In the papers of Fan and Lv (2008) and Chang, Tang, and Wu (2013) for linear
model, IC is viewed as a requirement for a minimal signal strength, thus it is
ensured by the following inequality

min
j∈M
|E(XjY)| ≥ cn−k, for 0 ≤ k < 1/2,

assuming that Y has finite variance. Similarly, in Fan, Feng, and Song (2011) it
is ensured by

min
j∈M

E
[
mj(Xj)

2] ≥ dn−2k, for 0 < k < r/(2r + 1), (1.18)

where d is the number of basis in the truncation of spline approximation and r is
a non-negative constant related to the assumption about continuity of mj. Such
a type of assumptions are needed in order to guarantee a separation between
the set of relevant variables and the set of irrelevant ones. When the separation
is sufficiently large the two sets of variables can be easily identified.
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As concern the high dimensions, it is well understood that in parametric linear
regression when the design matrix satisfies some kind of irrepresentable con-
dition, consistent estimation of the true relevant variables set, also called the
sparsity pattern, is possible under the condition q log(p/q) = o(n) as n → ∞,
where q is the cardinality of the set of relevant covariates and p the number of all
the covariates. Furthermore, if the quantity (q log(p/q))/n does not converge
to zero when n→ ∞, but for instance is fixed or it remains bounded, then it is
impossible to consistently estimate the sparsity pattern (see Bühlmann and Van
De Geer (2011)).
Theoretical properties of Penalized Spline estimators of Lin and Zhang (2006)
are assessed only for fixed p and q. Thus, the estimator properties are not
provided for increasing dimensions, but its consistency in estimation of the
sparsity pattern is guaranteed for fixed scenarios. Similar in Ravikumar et al.
(2009), apart from some kind of incoherence condition on the design matrix in
term of orthogonal basis, consistency in sparsity estimation is guaranteed also
when log p = o(n), providing the number q of relevant variables remain at least
bounded and the tuning and truncation parameters increase according to some
specified orders (see Theorem 2 of Ravikumar et al. (2009) for details).
Otherwise, results on variable selection consistency in Lin and Zhang (2006)
require detailed investigation on the eigen-properties of the RKHS, which in
general is not straightforward. However, assumptions of m belonging to the
class of periodic function and tensor product design make the derivation more
tractable. Assuming observations from tensor product design means that the
design points are of the form xjk = j/nk, j = 1, ..., nk; k = 1, ..., d, for nk such
that the sample size is n = np

k . In such a case the estimator is shown to con-
verge at the optimal rate n−d/(2d+1) (where d is the order truncation in spline
approximation) if λ = O(n−2d/(2d+1)). Thus for d = 2, λ should be of order
O(n−4/5) to ensure proper selection.
Despite Lin and Zhang (2006) show that penalized spline for additive model
leads to consistent estimation of the true predictors and correct selection with
probability tending to one, they do not provide accurate demonstration of oracle
property. In fact, it is not clear how the order of tuning parameter λ should be,
taking in consideration results of Theorem 2, in order to ensure the optimal rate
estimation and correct selection, simultaneously.
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Meanwhile, Storlie et al. (2011) show that, if both λ’s in the first and second
step estimation are of the same order of n−4/5, the adaptive variant is oracle. In
particular, for m̃ being the traditional smoothing spline in equation (1.4) with
λ0 ∼ n−4/5, suppose that w−1

j = Op(1), for all j = 1, ..., p, and further that the
weights of the irrelevant variables do not vanish, i.e. wj = Op(1), γ ≥ 3/4 and
the second-stage tuning parameter λ ∼ Op(n−4/5), then procedure in Storlie et
al. (2011) is consistent at rate Op(n−2/5) and correctly selects the set of relevant
variables with probability tending to one.
Another point to deal with is the choice of tuning parameters. Both Lin and
Zhang (2006) and Ravikumar et al. (2009) proposed to choose tuning parameters
by estimated risk through generalized cross-validation (GCV) or a criterion Cp

based on the concept of generalized degree of freedom. Given a smoothing
matrix A of the smoothing spline, GCV can be defined as

GCV =
1
n ∑n

i=1{Yi −∑j m̂j(Xij)}2

{tr(I − A)/n}2

while, the estimated risk Cp is given by

Cp =
1
n

n

∑
i=1
{Yi −∑

j
m̂j(Xij)}2 +

2σ̂2

n ∑
j

tr(A)I(‖m̂‖ 6= 0).

In general, in both procedures tuning parameters are estimating through vali-
dation and it can lead to overfitting.

1.7 Conclusion

All the works presented in the chapter treat several techniques for variable
selection and feature screening making use of nonparametric estimators for
additive models. Some of them have been developed for linear models (see
for instance feature screening methods in Fan and Lv (2008) and Chang, Tang,
and Wu (2013)), others are suitable for treating nonlinearity through the less
restrictive assumption of nonlinear additivity (Lin and Zhang (2006) and Fan,
Feng, and Song (2011) among others). Estimation in additive models is actu-
ally very simple since it results in the same optimal rate of convergence for
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univariate case. Most of the literature for additive model has been focused on
smoothing splines estimator as primarily adaptation to Nonparametric since it
can well fulfil the purpose of such a context. Otherwise, extension of splines to
non additive models is not nearly as obvious, instead Kernel smoothing theory
provides good tools for non additive regression models. This is why most of
the proposed methods for non additive variable selection have been developed
by using Kernel regression. In the next chapter we will present some of the
most popular procedures belonging to this particular class.
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Chapter 2

Nonadditive variable selection
methods

Non additivity assumption is quite different and more general with respect to
the additive one, in fact it does not require any kind of definition of the regres-
sion structure, but it affects the estimator properties as well as the maximum
allowed number of covariates. Most of the main techniques for non additive
models are developed in the framework of local polynomial estimators (LPE).
Compared with the splines, LPE are however easier to program and to analyse
mathematically, meanwhile advantages of spline are their computational speed
and simplicity. Most of the bias-variance analysis for Kernel regression can be
done with basic calculus, instead the corresponding analysis for splines requires
working with Hilbert spaces, that are infinite-dimensional functional spaces.
The following chapter is organised as follows. In the first part we will introduce
some of the main techniques developed for non additive variable selection that
make use of LPE, the second part will be devoted to feature screening methods
that allows for non additivity and at the end we will discuss about the main
problems encountered in this specific context.

2.1 Local polynomial estimators (LPE)

Local Polynomial Estimator is a very useful and widespread nonparametric tool
whose properties have been deeply studied (see for instance Ruppert and Wand
(1994)). It corresponds to a locally weighted least squares fit of a polynomial
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function of order k. Thus estimate of regression function m can be expressed as

m̂(x) = arg min
β

n

∑
i=1

{
Yi − B(k)

β

}2
KH(Xi − x) (2.1)

where B(k)
β is the k-order polynomial of the form β0(x) + β′1(x)(Xi − x) + ... +

β′k(x)(Xi − x)k, the weights are given by function KH(x) = |H−1|K(H−1x),
where K(x) represents a p-variate Kernel function and H is a p× p matrix of
smoothing parameters. Usually smoothing parameters are also called band-
widths and their calibration is crucial in the estimation procedure.
For sake of simplicity we do not report more details on the matrix representation
of LPE and minimization solution of (2.1) (for more details we refer to Györfi
et al. (2006) among others). We only argue that when k = 1, the approximation
reduces to a linear function, thus Y is assumed locally linear. Instead, when
k = 0 we have a constant local approximation of response and the estimator
reduces to the so-called Nadaraya-Watson estimator in (2.11).
Over the last years, there have been many development on LPE for variable
selection, following we briefly introduce some of them.

2.1.1 A greedy method: RODEO

Lafferty and Wasserman (2008) proposed an innovative procedure named
RODEO. Instead of defining the whole fitting into a global convex optimization
problem, as in the lasso-type estimation, the greedy methods adopt iterative
algorithms locally. During each iteration, only a small number of variables are
actually involved in the model fitting so that the whole estimation only involves
low dimensional models. This is why they naturally arise suitable for high
dimensional regression problems.
The method proposed in Lafferty and Wasserman (2008) performs feature selec-
tion and estimation using LPE, thus without assuming any particular model
structure and allowing for non additivity. The main idea underlying their ap-
proach can be summed as follows.
Let x be a fixed point and mh(x) be a local estimator of the function m based on a
p-dimensional vector of smoothing parameters h. Let M(h) = E(mh(x)) denote
its expected value and assume that m0(x) = Y, this leads to m(x) = M(0) =
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E(Y). The authors assume h to be in a smooth path, say Ph = {h(t), 0 < t < 1}
with h(0) = 0 and h(1) = 1. In such a formulation, the regression function can
be express as

m(x) = E(m1(x))−
∫ 1

0

d M(h(s))
d s

ds

= M(1)−
∫ 1

0
< Z(h(s)), h

′
(s) > ds,

(2.2)

where Z(h) is the gradient of M(h), h
′
(s) the derivative of h(s) along the path

and the first equality is obtained by some algebra.
The key factor in the RODEO is that if the true regression function is sparse
in the sense that only some covariates are relevant in explaining the response,
there should be paths of h for which also Z(h) is sparse. Thus one can perform
variable selection taking advantage of sparseness into derivatives estimation.
The functional Z(h) can be estimated through LPE and the sparsity is then
reached by some threshold rule.
The idea of RODEO effectively helps in discriminating which covariates are
locally relevant, that is if x is irrelevant one should expect that a change in
the bandwidth causes only a small change in the estimation of functional
Z(h), while the opposite situation should happen when the covariate is locally
relevant. Such a method is similar to that of Ruppert (1997) where bandwidth
selection is performed by a greedy approach using nondecreasing sequence of
bandwidths and the optimal h is estimated by minimizing the mean square error.
Compared with Ruppert (1997) RODEO takes into account sparseness, thus it
implicitly performs variable selection in addition to the bandwidth selection.
Practically, it is done by replacing the continuum of bandwidths in Ph by a
discrete set Bh = {h0, βh0, β2h0, . . . }, for some 0 < β < 1. Thus, the smoothing
parameters are firstly inflated, then the estimation of Z(h) is done sequentially
for h ∈ Bh setting Zj(h) = 0 when hj < ĥ, with ĥ the first h such that |Ẑ| < λ.
This threshold implementation takes into account sparsity in the derivative
estimation. Such a sequential procedure results in shrunk bandwidths for
relevant variables while those corresponding to irrelevant variables are left
relatively large.



26 Chapter 2. Nonadditive variable selection methods

2.1.2 Penalized LPE

Bertin and Lecué (2008) suggested a penalized version of LPE. Their proposal
mixes the idea of l1-penalization with local polynomial estimation. The estima-
tor can be expressed as

m̂1(x) = arg min
θ∈Rp+1

[
1

nhp

n

∑
i=1

(
Yi −m

(
Xi − x

h

)
θ

)2

K
(

Xi − x
h

)
+ 2λ ‖θ‖1

]
.

(2.3)
Any minimizer of the above equation is a L1 penalized version of the classi-
cal LPE. Assuming that there exist mmax such that |m(x)| < mmax, they also
consider another form of estimator

m̂2(x) =

arg min
θ∈Rp+1

[
1

nhp

n

∑
i=1

(
Yi + mmax + Ch−m

(
Xi − x

h

)
θ

)2

K
(

Xi − x
h

)
+ 2λ ‖θ‖1

]
.

(2.4)
where constant C is as in Assumption 6 of Bertin and Lecué (2008).
Through (2.3) and (2.4), minimizing a localised version of the penalized L2-risk
by LPE, one should detect the set of relevant variables by the corresponding
local approximations. More precisely, this method provides LASSO-type pe-
nalization to the local polynomial approximation, in such a way the method
performs a LASSO selection locally. Once the set of relevant variable has been
selected, a standard LPE is constructed on this set to estimate the true regression
function.
Comparing with Lafferty and Wasserman (2008), weaker assumptions on the
regression function is required in Bertin and Lecué (2008), merely assuming m to
belong to the Holder class with smoother order strictly greater than one, while
in the RODEO the regression function is required continuously differentiable
and its derivatives to be bounded.

2.2 Feature screening for non additive models

In the first work on feature screening by Fan and Lv (2008), marginal magnitude
of each covariate was measured by marginal linear correlation. Although
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correlation measures a linear relationship, there have been some extensions to
nonparametric context that also adopt marginal correlation functions in order
to rank the variables in nonlinear models. Usually, such a measures are defined
marginal functional correlations.

2.2.1 Marginal functional correlation measures

Zhu et al. (2011) defined a screening procedure for a general model framework
where the conditional distribution function of Y given X satisfies

F(Y|X) = F0(Y|XMβ) (2.5)

where XM is the matrix composed by relevant regressors and F0(·|XMβ) an
unknown distribution function. Such a framework includes models with re-
gression function of the form (1.3) where Y depends on the relevant predictors
through some linear combinations given by q× d matrix β. Thus, depending
on the shape of the inverse function of F0(·|XMβ), the corresponding model
can be of non additive type.
Given the set of relevant predictors

A = {k : F(Y|X) functionally depends on Xk for some Y ∈ Y}, (2.6)

marginal magnitude for screening is measured by a standard functional correla-
tion between the conditional distribution of Y given X and each predictor Xk.
Functional correlation in Zhu et al. (2011) is expressed as

Ωk = E(XkF(Y|X))

and the marginal utility measured by ωk = E(Ω2
k). Such a correlation is able to

describe the relation between response and predictors without assuming any
model structure.
An estimates of Ωk is given by

Ω̂k(y) =
1
n

n

∑
i=1

Xik I(Yi < y) (2.7)
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Consequently, an estimates of ωk is can be obtained as ω̂k = 1/n ∑n
j=1 Ω̂k(yj).

Lin, Sun, and Zhu (2013) modified such an idea in order to project the marginal
measure of correlation into the local information flows "Xk < xk" (for ak < xk <

bk). Their estimator is computationally more expensive since it includes sample
counterpart of distribution of Xk, it is given by

Ω̂k(y) ={
1
n

n

∑
i=1

Xik I(Xik < xik)I(Yi < y)− 1
n

n

∑
i=1

Xik I(Xik < xik)
1
n

n

∑
i=1

I(Yi < y)

}
(2.8)

Through functional correlation measures one is able to describe the relation
between response and predictors in a very general nonparametric regression
framework.
In a closed manner, Li, Zhong, and Zhu (2012) suggested a screening procedure
without assuming any regression structure. As in Zhu et al. (2011) they define
only existence of a functional dependence of F(·|X) on the set of relevant
regressors. Differently, they use distance correlations for measuring marginal
magnitudes. Assuming finite first moments, distance correlation between two
random vector is defined as

w(u, v) =
ζ(u, v)√

ζ(u, u)ζ(v, v)
(2.9)

where ζ(u, v) is the distance covariance given by

ζ(u, v)2 =
∫

Rpu+pv
‖φu,v(t, s)− φu(t)φv(s)‖2 {cpu cpv ‖t‖

1+pu
pu
‖s‖1+pv

pv
}−1dtds.

with cp = π(1+p)/2/Γ{(1 + p)/2}, pu and pv the dimensions of vectors u and v
respectively; while φu(t) and φu,v(t, s) are the characteristic function of u and
the joint characteristic function of (u, v), respectively. Estimates of w(·, ·) is
used as marginal utility in order to rank the important of each predictor in
explaining the response. Then, the set of relevant predictors is defined through
a threshold rule, as usually.
Distance correlation is quite different from the functional correlation in Zhu
et al. (2011), nevertheless such a screening method encloses nonparametric non
additive models. Differently, it has some thigh requirement, in fact because the



2.2. Feature screening for non additive models 29

quantities involved in the marginal measurement are based on the moments
estimates, such a method needs response and predictors to be sub-exponential
tail in order to guarantee an increasing dimension exponential in n. Moreover,
it is required conditional independence of response with irrelevant variables,
that could be too stringent for feature screening problems.

2.2.2 Marginal Empirical Likelihood

Differently from correlation measures, marginal magnitudes in screening pro-
cedure can be constructed also by empirical likelihood (EL). EL is a statistical
inference tool whose scope recently has been extended to high dimensional
problems. Generally, EL encounters substantial difficulty when data dimension-
ality is high. More specifically, data dimension p cannot exceed the sample size
n in the conventional construction.
In the feature screening purpose, Chang, Tang, and Wu (2013) and Chang, Tang,
and Wu (2016) proposed a novel idea. Since marginal contribution is assessed
one at time individually, thus only involving univariate optimization for each
regressor, EL approach may seem particularly useful to treat very general con-
texts of non additive model regression.
Let (Xi, Yi) be i.i.d. collected data from model (1.15). Chang, Tang, and Wu
(2013) define a marginal EL problem as

ELj(β) = sup
( n

∏
i=1

ωi : ωi ≥ 0,
n

∑
i=1

ωi = 1,
n

∑
i=1

ωigij(β) = 0
)

. (2.10)

where, in their context (i.e. linear model) gij(β) = XijYi − β.
As we are interested in methods for non additive models, we report some details
of Chang, Tang, and Wu (2016) since their work can be thought as extension of
Chang, Tang, and Wu (2013) to nonparametric non additive regression models.
Use of marginal EL in nonparametric regression problems requires a nonpara-
metric estimator. Chang, Tang, and Wu (2016) consider LPE with polynomials
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of order zero, thus mj(x) is estimated by the Nadaraya-Watson (NW) estimator

m̂j(x) =
1
n ∑n

i=1 Kh(Xij − x)Yi
1
n ∑n

i=1 Kh(Xij − x)
, (2.11)

where, as usual Kh is a weight function depending on bandwidth parameter h
and a Kernel function. For assessing mj(x) ≡ 0 at a given x, they suggest the
following EL problem

ELj(x, 0) = sup
( n

∏
i=1

ωi : ωi ≥ 0,
n

∑
i=1

ωi = 1,
n

∑
i=1

ωiKh(Xij − x)Yi = 0
)

.

(2.12)
Equation (2.12) is solved by Lagrange multiplier method and leads to the
empirical likelihood ratio

lj(x, 0) = 2
n

∑
i=1

log
(
1 + λKh(Xij − x)Yi

)
, (2.13)

where λ here is the Lagrange multiplier solving ∑n
i=1

Kh(Xij−x)Yi
1+λKh(Xij−x)Yi

= 0.
Because the denominator in the NW estimator converges to the density of
the j-th covariate evaluated in x, (2.13) can be used as a proxy of the local
contribution to the response. Large values of lj(x, 0) are taken as evidence of
significant contribution for testing locally whether or not the numerator in the
NW equation has zero mean.
The statistics adopted is self-studentized, and hence it incorporates the un-
certainties level that usually are taken into account by standard errors when
the ranking method is based on magnitudes of parametric estimators. This
clearly is a different way of considering marginal statistics for screening. Notice
that the mean constraint in the empirical likelihood (2.12) is nothing more that
the local correlation in x, between the smoothed version of Xj and Y. Such a
screening method does not require strict distributional assumptions such as
normally distributed error as in linear models or exponential family distributed
response in GLM.
Finally, it can be viewed as an interesting extension of the original proposal
in Fan and Lv (2008) and the additive version in Chang, Tang, and Wu (2013),
in fact it results appealing in general nonparametric contexts, as it uses an
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innovative way of measuring marginal magnitudes.

2.3 High-dimensional results for regression models

We are interested in a brief review about order of dimensions for non additive
procedures introduced in the previous sections. In particular we will distinguish
the case of fixed from increasing dimensions, with respect to the total number
of regressors and the number of the relevant ones.
We know that if the number of relevant predictors q is fixed, then the condition
that guarantees consistent estimation of the sparsity pattern is (log p)/n→ 0
in linear regression, whereas it is p = O(log n) in the general nonparametric
case. Probably, a justification to such an important gap between two conditions
above resides in the fact that nonparametric regression is much more complex
than the linear one. Results in Comminges and Dalalyan (2012) give a good
benchmark for our purpose. They show existence of consistent estimators
for recovering sparsity pattern in context of nonparametric regression models,
under two regimes. The first is when the sample size and the dimension p of
all covariates tend to infinity, but the dimension q of relevant ones is fixed; the
second is when also q diverges with the sample size n. Interesting results from
Comminges and Dalalyan (2012) are about second regime. They show that, in
the fixed regime case and for nonparametric models, it is possible to estimate
the sparsity pattern for q at the same order of the sample size (i.g. q = O(n1−ε) ,
for some ε > 0) if p is at most polynomially. In particular, it is possible under
condition

log p = O
(

c n
q

)
, (2.14)

for some constant c > 0.
The situation becomes worse when q → ∞. Consistent recovery of sparsity
pattern under regime of increasing dimensions requires together

q = o(log n)

and

log log
(

p
q

)
= o(log n)

(2.15)
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Work of Comminges and Dalalyan (2012) is devoted to show the possibility of
consistent estimation, rather than to provide a practical procedure for recover-
ing the sparsity pattern, for that reason we have not included it among methods
reviewed in previous sections.
Assumption of non additive regression function strongly affects the order of
high dimensions in variable selection procedures. Lafferty and Wasserman
(2008) and Bertin and Lecué (2008) proved the consistency of the proposed pro-
cedures under some more or less restrictive assumptions, moreover the former
does not allow the dimension of covariates increases too fast and thus turns
out to be sub-optimal, the latter is optimal in term of increasing dimensions
but it results unfeasible. Estimation in Lafferty and Wasserman (2008) assumes
the unknown regression function four times continuously differentiable with
bounded derivatives, and it seems to be a bit stringent. In spite of this, the
algorithm is shown to have good converge properties when the number of
covariates p is at most O(log n/ log log n) meanwhile the number of relevant
variables q does not increase with n.
On the contrary, Bertin and Lecué (2008) redefine the same problem of RODEO
in order to achieve a best treatable dimensionality. They show consistency when
q is still fixed, but p is allowed to be O(log n), up to a constant, giving a little
improvement in terms of high dimension orders. Apart from that, it remains
impractical due to unfeasible calibration procedure of penalization balance that
ensure a consistent selection.

Regarding the class of feature screening methods, we know that it has originally
proposed to treat situations where the high dimensions order is non-polynomial
in the sample size. All reviewed work for non additive models can handle non-
polynomial dimensionality. Differently from variable selection techniques, in
feature screening the required order of dimensionality is directly affected by
several quantities related to several assumptions (i.g. smoothness, minimum
signal, and so on) or by the class of adopted estimator. For instance, in Fan, Feng,
and Song (2011) the order of high dimension is log p = o(n1−4kd−3 + nd−3), it is
affected by truncation order d of spline estimator; also in Chang, Tang, and Wu
(2016) highest handleable dimension is exponential in n, nevertheless it actually
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depends on k that controls the order of the signal strength, on the smoothness or-
der r of regression functions and on tail probability distribution of the response.
If we compare the two results we notice that the former provides a handleable
faster diverging rate of p compared with the latter. Clearly, it is the price paid in
Chang, Tang, and Wu (2016) by allowing weaker requirement on the continuity
of projections mj as well as on the absence of bounds on regression function.
On the other hand, if we compare it with the work of Chang, Tang, and Wu
(2013), slow diverging rate of p is offset by a better performance in keeping
relevant covariates with weaker marginal contribution. Nevertheless, the idea
of Chang, Tang, and Wu (2016) shares some practical challenges. In fact, it
can be quite difficult to ensure proper rate of smoothing and other quantities
that control the probabilistic behaviour of the empirical likelihood ratio, in
order to achieve consistent screening. As to regard, it is sufficient to notice that
good performance in distinguish between the true contributing variables from
the false ones is achieved only under a correct estimation of the bandwidth
parameter h that has to be selected in the estimation procedure.

2.4 Estimation of tuning parameters

In feature screening a threshold is adopted in order to reduce the full model to a
sub-model of less order. The importance of the threshold is similar to the task of
tuning parameters in regularization methods for variable selection, thus it plays
a crucial rule in practical implementation. However, choosing the threshold is
difficult in practice. Usually, this issue is overcome by defining a prespecified
number of variables to be selected. This is one of the most important limits
of screening methods comparing with variable selection purpose. Clearly, it
is because it works marginally in order to perform reduction of large-scale
dimension to a less order.
In a different way, variable selection procedures involving tuning or smoothing
parameters require some data-driven criteria in order to select directly such
parameters.
In Lafferty and Wasserman (2008) bandwidth estimation and variable selection
can be performed simultaneously. Thus no calibration is needed since the
procedure requires computing infinitesimal change of estimator as function
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of the smoothing parameter h, and at the end selected variables automatically
result from estimation procedure. From a theoretical point of view procedure
in Lafferty and Wasserman (2008) does not require the smoothing parameter
h goes to zero when n tends to infinity. This unusual behaviour appears since
LPE are used for variable selection rather than estimation.
Similarly, Bertin and Lecué (2008) provide to use bandwidth h as in Lafferty
and Wasserman (2008). Since their estimator uses LASSO-type penalization, it
introduces a further regularization parameter λ that needs to be calibrated. Here
a proper selection is based on a sort of balance between λ and the smoothing
parameter h. In particular, it is required

0 < h <
µm

32(q0 + 1)LµMk
∧ η and λ = 8

√
3MkµMLh.

where q0 is an integer such that q < q0 and µm, µM, L, Mk are quantities
connected to the assumption on bounded derivative of the regression function
(see assumption 6 in Bertin and Lecué (2008) for more details). Since λ controls
the amount of shrinkage, this sort of connection between the two parameters
is crucial to guarantee, on one hand orthogonality of the design through the
restriction about h, on the other hand consistency in selection through λ. An
important aspect to remind is that such a method is inoperable in practice as no
calibration criteria is able to guarantee a proper balance for consistent selection.
Apart from threshold parameter, procedure in Chang, Tang, and Wu (2016)
also requires estimation of bandwidth h as it adopts LPE. From a theoretical
point of view, it is assumed h = O(n−δ) for some positive constant δ that is
directly connected to the order of smoothing of the regression function, Kernel
requirements and identification assumption. Such a requirement on the order
of h seems to be not compelling as the authors show that it can be satisfied
by the conventional optimal bandwidth h = O(n−1/5). In particular, if the
first derivative of the regression functions exists, then the optimal bandwidth
is shown to be O(n−k/r), where k controls the order of the minimum signal
strength and r ≥ 1 is the degree of smoothness of m. Conversely, if m is
infinitely differentiable, then r = ∞ and the order of optimal bandwidth for
sure screening is given by δ ∈ (0, 1). As concern the effects of choice of h in
practical implementation, differently from Lafferty and Wasserman (2008) here
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h needs to be estimated. It could be done by using the most common validation
criteria or plug-in estimation. However, a bad estimation of the bandwidth
parameter strongly affects the selection procedure, this is because selection
method is based on EL local testing of constrained means and, since h directly
control the bias-variance trade-off in LPE, inaccurate estimation can affect the
result of the test.

2.5 Selection with correlated predictors

Variable selection as well as feature screening are valid under some regularity
assumptions and some of them directly affect the magnitude of correlation
among regressors. As concern the main variable selection methods for non ad-
ditive models, we have that RODEO of Lafferty and Wasserman (2008) requires
the joint density function m(x), valued at local point x, to be uniform. Such a
condition makes theoretical proofs simpler, but clearly rules out any situation
of correlated regressors.
Bertin and Lecué (2008) use all the theory from L1 penalization in linear models
to show theoretical properties of their method. Thus, a proper selection is
ensured under some kind of irrepresentable condition on the design matrix
in the Kernel of X, and as usual, it involves bounds on the eigenvalues of the
matrix. For that reason, particular correlation structures in the regressors matrix
can affect the selection procedure in a similar way as for the standard LASSO.
As concern feature screening, linearity condition in Zhu et al. (2011) states that

E(X|X>β) = cov(X, X>)β{cov(X>β)}−1β>X (2.16)

Such a condition is always satisfied when the regressors are normal distributed
or, more generally, have an elliptical distribution. Nonetheless, it is weaker than
the assumption of normality since it is only required to hold for the true value
of q× d coefficients β. Furthermore, linearity condition holds asymptotically
if the number of regressors p diverges while the spanning dimension remains
fixed.
In addition, requirements in Zhu et al. (2011) also involve a bound on correlation
among the predictors (see condition C1). Let XM and XM̄ be the matrices of



36 Chapter 2. Nonadditive variable selection methods

true relevant and irrelevant predictors, respectively. For sure screening it is
required

d2λmax{cov(XM, X′M̄)cov(XM̄, X′M)}
λ2

min{cov(XM, X′M)}
<

mink∈M wk
λmax{!M}

. (2.17)

where here λmin{X} and λmax{X} denote minimum and maximum eigenval-
ues of matrix X, respectively; d is the spanning order as in (2.5). Under such
assumption, the method is suitable for characterising the conditional distri-
bution of the response given the full set of predictors X through a projection
of X onto a space of dimension q less than p and spanned by p× d matrix of
coefficients. Thus, (2.17) is the key assumption to ensure that the screening
procedure works properly. First, as the dimension of spanning coefficients
β increases, (2.17) becomes more stringent. Therefore, a model with a small
matrix β is favoured by such a procedure. Second, the numerator in the left
hand side of (2.17) measures the correlation between relevant predictors and
the irrelevant ones, while the denominator measures the correlation among
relevant predictors themselves. When the relevant and irrelevant groups are
uncorrelated, the assumption holds automatically. This condition rules out the
case in which there is strong collinearity between the two groups, or among
relevant predictors themselves.
Also in Lin, Sun, and Zhu (2013), similar to Zhu et al. (2011), a moment condi-
tion for predictors is required in order to guarantee a correct separation between
predictors. It should be ensured that the set of relevant predictors is weakly
correlated with irrelevant ones. Such a condition states that

max
k∈M̄

E2[Ck(XM)] <
1
4

min
k∈M

ωk (2.18)

where Ck(XM) = supxk
|E[Xk I(Xk < xk)|XM]−E[Xk I(Xk < xk)]| for k ∈ M̄.

Since the absolute value of E[Ck(XM)] for k ∈ M̄ can measure the correlation
between the relevant and irrelevant predictors, it is representative of constraint
on magnitude of correlation among covariates. Then, it effectively rules out
some cases of strong correlation.
Correlation problem in Chang, Tang, and Wu (2016) is not directly determinate
by some kind of assumption. This is why by EL one would marginally test
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constrained mean given by some function of nonparametric smoother where
bandwidth h controls bias-variance trade-off. Therefore h plays a key rule in
the selection procedure since its wrong choice can directly affect testing result,
but its calibration is not directly affected by correlation problems. Conversely,
identification condition on minimal signal strength of relevant variables can
be difficult to ensure in presence of highly correlated variables. When it is
required that the smallest uniform norm of each relevant predictors is not
too weak, i.e. minj∈M

∥∥mj
∥∥

∞ ≥ c n−k, for some k > 0, technically it is to
guarantee sure screening property. On the contrary, maximum signal strength
of irrelevant variable should vanish at a faster rate. Since the probability of
the size of recruited set of variables is normally affected by the order at which
irrelevant signal strength vanishes, proper result in distinguish between true
contributing variables from false ones can be ensured when there is a proper
separation between the group of relevant variables and the group of irrelevant
ones. In spite of this, when the irrelevant covariates are strongly correlated
with the relevant ones such a decreasing rate of signal strength could not be
faster enough to ensure consistent screening. That is because screening method,
although working marginally, suffers in recruiting the true set of variables
in such a situation of strong correlation, as it can retain irrelevant variables
confounded as relevant.





39

Chapter 3

Conditional local independence
feature screening for nonadditive
models

3.1 Introduction

Screening methods are appealing and innovative, nevertheless, success of any
screening procedure depends on how well the marginal utility, correlation
coefficient between the response and each individual predictor, captures the
importance of the predictors in a joint model. A variable may be retained
by the screening procedure when it is marginally important but not jointly
important, resulting in false positive, or a variable that is jointly important but
not marginally important can be screened out, resulting in a false negative.
False negatives have two potentially serious consequences. First, important
covariates may be screened out and they will not be reinstated by the second-
stage analysis. Second, the false negatives can lead to bias in subsequent
inference. As an illustrative example, we consider the following model from
Chang, Tang, and Wu (2016), Y = 2X1 + 2X2 + 2X3 − 3

√
2X4 + ε, where ε

has standard normal distribution. The covariates vector (X1, ..., Xp)′ is jointly
normal distributed such that E(Xj) = 0 and var(Xj) = 1 for all j, and its
covariance matrix is constructed such that the relevant variable X4 results
marginally uncorrelated with the response even if it has largest coefficient. In
such a situation we expect that screening procedure will give little priority to
X4, as also confirmed by simulation study in paragraph 3.4.
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Fan and Lv (2008) tried to partial overcome these issues by proposing an
iterative version of the SIS, which allows using more quite the joint information
rather than just the marginal information. An iterative version basically works
as follows. First, perform feature screening procedure resulting in a subset A1

of retained variables, then one effectively selects among them a subset ofM1

of variables. As said, such a selection step can be done by one of the standard
selection procedures (i.e. LASSO, COSSO, etc.). Then, a vector of residuals is
obtained regressing the response over theM1 variables. In the next step, the
residuals vector is treated as response variable and the same screening method
is applied to the X/{M1} variables, which results in a set of A2 variables.
Considering that the residuals from the first stage are uncorrelated with the
selected variables, the priority associated to one irrelevant predictor highly
correlated with the response can significantly reduced. The screening is doing
iteratively until k disjoint subsets of variables are obtained and such that their
union has prespecified dimension p̃ < n. It should be noted that iterations
cannot help to avoid the issue of discarding relevant predictors marginally
unrelated.

In addition to the false positive and false negative issues, measuring the
importance of features marginally can also yield wrong results in situations of
high correlated covariates. In fact, due to the correlation among the covariates,
marginal screening can recruit those variables who have strong marginal rele-
vance but are jointly independent with the response variable. Such a situation,
concerning with collinearity among predictors, introduces a further issue in
feature screening.
To well understand how correlation affects a selection procedure, consider that
in linear model one of the real difficulties of high dimensional data is that
the matrix of regressors X is rectangular and the corresponding X′X matrix is
singular. Even in nonlinear or more general contexts, this means that maximum
spurious correlation between a covariate and the response can be very large
because of irrelevant predictors that are highly correlated with the response
owing to the presence of relevant predictors associated with them. This is the
situation in which, for instance, LASSO type methods or marginal screening
techniques fail to correctly select the true set of relevant variables. In fact, some
irrelevant predictors that are highly correlated with relevant predictors can
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have higher priority of being selected than other relevant predictors that are
relatively weakly marginal related to the response. Such situations can add
difficulties in performing a proper selection.

3.2 Conditional screening

It is well-known that in many applications researchers often know in advance a
set of certain predictors are related to the response variable. This is because of
previous investigation and/or experience about phenomenon of study or, for
instance it is the result of some previous screening procedure that returns a set
of some relevant variables. Information from a known set of relevant variables
can be used in order to reduce the correlation among predictors, solve problems
of false positive/negative and, thus improve results from screening. This
is why, instead of adopting iterative residual-based approach to circumvent
the issue of classical screening methods, Barut, Fan, and Verhasselt (2016)
proposed a conditional version in order to handle the situation in which relevant
variables are marginally unrelated to the response and there is strong correlation
among predictors. The idea is that conditioning upon a set C of variables
regarded as significant by a prior knowledge on the problem, one can disclose
variables that were hidden by collinearity or because marginally unrelated.
Through conditional screening marginal magnitude of each variable Xj (j /∈ C)
is evaluated by taking in consideration predictors in C. The work of Barut, Fan,
and Verhasselt (2016) is the original proposal for conditional screening and it is
assessed for linear models with normal distributed errors. Hu and Lin (2017)
extended the idea to the generalized linear models. Moreover, the properties of
both methods in Barut, Fan, and Verhasselt (2016) and Hu and Lin (2017) are
assessed in the frameworks of linear and generalized linear models only. In
the following, we introduce a conditional screening procedure for non additive
models.



42 Chapter 3. Conditional local independence feature screening

3.3 Conditional local marginal empirical likelihood

Suppose that we have a random sample {Xi, Yi}n
i=1 from the model

Y = m(X) + ε, (3.1)

where X = (X1, ..., Xp)′ and ε is i.i.d. error term with E(ε|X) = 0.
We assume that the predictors Xj are standardized such that E(Xj) = 0 and
E(X2

j ) = 1, for all j = 1, ..., p.
No specification of regression function m(X) is required, apart from that the
true model is sparse in the sense that only a small subset of covariates is con-
tributing to the response variable Y. We call this set of relevant covariates
M∗ = {1 ≤ j ≤ p : E(Y|Xj) 6= 0}. As mentioned in introduction, in many
practical application, researchers have already known certain predictors are
important for the response by some previous investigations and experiences,
which means that a set of relevant predictors has been determined in advance.
For instance, such a situation can happen in presence of hidden relevant predic-
tors that have no marginal strength and could be missed by standard feature
screening techniques.
There exist several screening methods for the ranking of marginal magnitudes in
non additive models, see Li, Zhong, and Zhu (2012), Zhu et al. (2011), Lin, Sun,
and Zhu (2013), Hu and Lin (2017) and Chang, Tang, and Wu (2016), among
others. Comparing to the other methods, Chang, Tang, and Wu (2016) adopt the
idea of marginal hypothesis testing to handle feature screening problem, while
the other methods all deal such a problem by marginal estimation. In particular,
they used marginal empirical likelihood approach with local polynomial estima-
tion (LPE), this makes the method appealing since it requires a less restrictive
distributional assumption. Empirical likelihood ratio evaluated at zero can
be used to against the null hypothesis that the marginal effect is negligible.
Moreover, it only involves univariate optimisation problem, thus it provides an
appealing device for both theoretical analysis and practical implementation.
In order to investigate the marginal contribution from each covariate in ex-
plaining Y, it can be adopted the standard marginal nonparametric regression
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problem
min

mj∈M2
E
{[

Y−mj(Xj)
]2}, j = 1, ..., p. (3.2)

whereM2 denotes the class of square integrable functions. The solution to the
above minimization problem is E(Y|Xj) and Chang, Tang, and Wu (2016) use
Nadaraya-Watson estimate of mj(x) = E(Y|Xj = x) as building block to test
marginal contribution of jth covariate locally. This is because mj(x) = 0, for all
x ∈ X , if Xj is not relevant to explain Y.
Since our purpose is to introduce conditional information into such a marginal
regression problem, let us to consider, without loss of generality, that the condi-
tioning set of relevant known predictors is composed by the first c components
X1, ..., Xc of X. Thus let us partition the regressors matrix as X = {XC , XD} with
XC = (X1, ..., Xc)′ and XD = (Xc+1, ..., Xp)′.
To include conditional information into the local marginal regression, we first
consider, as in Hu and Lin (2017), the following key quantity

E
{[

Xj −E(Xj|XC)
][

Y−E(Y|XC , Xj)
]}

, ∀j ∈ D. (3.3)

where XC is the matrix of conditioning variables, meanwhile E(Xj|XC) and
E(Y|XC , Xj) are the conditional expectations of Xj given XC , and Y given
(XC , Xj), respectively. Moment condition (3.3) allows to include conditional
information about XC into marginal evaluation of covariate Xj. In particular
E(Xj|XC) incorporates the conditional information from XC with respect to Xj,
while E(Y|XC , Xj) measures the strength of conditional contribution to Y of Xj

given the conditional set.
If we thought of Xj −E(Xj|XC) as a centralized version of the jth variable, we
can define the following nonparametric regression problem

min
mC,j∈M2

E
{

ω(C,j)
[
Y−mC,j(XC , Xj)

]2}, j ∈ D. (3.4)

where ω(C,j) = Xj − E(Xj|XC). Function mC,j(XC , Xj) = E(Y|Xj, XC) sum-
marises the impact of jth variable jointly with the conditioning set C.
In order to evaluate locally the magnitude for the jth variable in a conditional
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screening problem, we solve (3.4) by Kernel smoothing estimation. Thus, as-
suming constant locally approximation for the regression function mC,j, mini-
mization problem (3.4) is equivalent to

min
mc

n

∑
i=1

{
Yi −mc

}2
ωi(C,j)KH

(
Xi(C,j) − x

)
. (3.5)

where Xi(C,j) is the ith observations of matrix XC,j = {XC , Xj}, meanwhile
function KH(·) is such that KH(x) = |H|−1K(H−1x) with K(·) a (c + 1)-variate
Kernel and H is a (c + 1)× (c + 1) matrix of bandwidths.
A solution of the above equation is given by the weighted Nadaraya-Watson
estimator of the form

m̂C,j(x) =
∑n

i=1 ωi(C,j)KH
(
Xi(C,j) − x

)
Yi

∑n
i=1 ωi(C,j)KH

(
Xi(C,j) − x

) . (3.6)

where each weight ωi(C,j) needs to be estimated.
This setting results similar to the one in Chang, Tang, and Wu (2016) but now
conditional information is introduced in the estimation procedure. Unfortu-
nately, statistics (3.6) cannot help in discriminating relevant predictors when
some conditional information is introduced in the estimation. Thus it is not
useful to evaluate if the jth covariate is marginal contributing in explaining Y
conditionally to the known set C. In fact, it happens that, also when the jth
covariate is conditionally irrelevant, mC,j(x) could not be equal to zero.
Furthermore, notice that also in the simplest case of conditioning set C com-
posed by one variable (i.e. |C| = 1), a bivariate Kernel estimation is involved
with 2-dimensional Kernel function and the bandwidth H a 2× 2 matrix that
can be taken by imposing some restriction, for instance diagonal positive defi-
nite restriction or by assuming a single common bandwidth.
In order to avoid multivariate estimations even in the simplest case of univari-
ate conditioning set, instead of (3.3) we consider the following quantities from
Barut, Fan, and Verhasselt (2016)

X∗j = Xj −E(Xj|XC) , Y∗ = Y−E(Y|XC) ∀j ∈ D. (3.7)
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Define Ê(Xj|XC) as an estimator for the conditional expectation E(Xj|XC) in
(3.7), moreover we estimate the conditional expectation E(Y|XC) = mC(x) by
local polynomial estimator m̂C(x). It can be obtained as

arg min
β

n

∑
i=1

{
Yi − β0(x) + β′1(x)(XiC − x) + ... + β′k(x)(XiC − x)k

}2
KH
(
XiC − x

)
where the weights are given by function KH(x) = |H−1|K(H−1x), K(x) repre-
sents a c-variate Kernel function and H is a c× c matrix of smoothing parame-
ters.
If we assume constant local approximation (k = 0) for the regression function,
m̂j reduces to the marginal Nadaraya-Watson estimator

m̂C(x) =
∑n

i=1 KH
(
XiC − x

)
Yi

∑n
i=1 KH

(
XiC − x

) . (3.8)

Considering a conditioning set C composed by only one known relevant covari-
ate, m̂C(x) can be obtained as solution of marginal regression problem in (3.2)
with the covariate replaced by the conditioning variable, that is

m̂C(x) = ∑n
i=1 Kh(XiC − x)Yi

∑n
i=1 Kh(XiC − x)

, (3.9)

where Kh(x) = h−1K(x/h) and K(·) is a univariate Kernel function and h is
the bandwidth.
By estimators in (3.8) or (3.9) we can build the transformation Y∗ = Y− m̂C(x)
of the response variable that takes into account conditional information. We
use this new response variable to investigate the marginal contribution from
each centralized jth covariate X∗j = Xj − Ê(Xj|XC).
Notice that in order to use both the rebuilded variables for constructing a
statistics, we first need to estimate the conditional expectation E(Xj|XC) for
obtaining variables X∗j .
We follow Hu and Lin (2017) that propose to estimate E(Xj|XiC) in the following
way. Let σC j = cov(Xj, XC) be the covariance between conditioning variables
and jth covariate. Estimators for σC j and E(XCX′C) can be obtained respectively
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as

σ̂C j =
1
n

n

∑
i=1

XijX′iC ,

Ê(XCX′C) =
1
n

n

∑
i=1

XiCX′iC .
(3.10)

Hence, an estimator for E(Xj|XiC) is given by

Ê(Xj|XiC) =
1
n

n

∑
k=1

XkjX′kC

{
1
n

n

∑
k=1

XkCX′kC

}−1

XiC , (3.11)

and the centralized X∗j variable can be obtained as

X∗ij = Xij −
n

∑
k=1

XkjX′kC

{
n

∑
k=1

XkCX′kC

}−1

XiC , i = 1, ..., n (3.12)

If E(XCX′C) = IC then X∗j can be rewritten as

X∗ij = Xij − n−1( n

∑
k=1

XkjX′kC
)
XiC , i = 1, ..., n. (3.13)

To apply local marginal screening with conditional information we need to
define some discriminating rule in order to assessing whether the jth covariate
is marginal relevant or irrelevant without any distributional assumption. For
such a purpose we will adopt marginal empirical likelihood as in Chang, Tang,
and Wu (2016) and define it for conditional screening problem.
Second stage estimation involves marginal nonparametric regression problem

min
m∗j ∈M2

E
{[

Y∗ −m∗j (x)
]2}, j ∈ D. (3.14)

As in Chang, Tang, and Wu (2016) we consider the Nadaraya-Watson estimator
for m∗j

m̂∗j (x) =
∑n

i=1 Kh(X∗ij − x)Y∗i
∑n

i=1 Kh(X∗ij − x)
, (3.15)
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For assessing m∗j (x) ≡ 0 at a given x without distributional assumptions, we
adopt marginal local empirical likelihood problem defined as

ELj(x, 0) = sup
( n

∏
i=1

πi : πi ≥ 0,
n

∑
i=1

πi = 1,
n

∑
i=1

πi gij(x) = 0
)

. (3.16)

estimator (3.15) takes into account conditional information in empirical likeli-
hood. We set the constrain function gij(x) as

gij(x) = Kh(X∗ij − x)Y∗i (3.17)

since m̂∗j (x) ≡ 0 means that jth covariate is not relevant. The corresponding
empirical likelihood ratio is given by

lj(x; 0) = 2
n

∑
i=1

log
(
1 + λ gij(x)

)
, (3.18)

where λ is the Lagrange multiplier satisfying ∑n
i=1

gij(x)
1+λ gij(x) = 0.

Intuitively, lj(x; 0) should be small for all x in the corresponding support, if
given the conditioning set C, Xj does not contribute to Y.
For such a reason, conditional empirical likelihood ratio (3.18) can be viewed
as device for feature screening in the context of nonparametric nonadditive
models. More specifically, large value of lj(x; 0) is taken as evidence of relevant
contribution of jth covariates given the conditional set C. We select the set M̂
of explanatory variables as usual by

D ∩Mγn = {j ∈ D : lj(0) ≥ γn}, (3.19)

where Mγn is the set of selected predictors depending on threshold γn and
lj(0) = supx∈supp(X) lj(x; 0).
We call this empirical likelihood problem for feature screening as conditional
local empirical likelihood (CEL).
Since generally feature screening serves as a preliminary dimensionality reduc-
tion procedure, and it is often followed by a conventional variable selection
procedure, feature screening is more concerned with recruiting all the truly



48 Chapter 3. Conditional local independence feature screening

important covariates. Furthermore, conditional screening approach is non-
iterative and has much less computational cost compared with the iterative
one.

3.3.1 Theoretical properties

Following, we assume some regular conditions for Kernel regression.

(A.0) Suppose that XC is additive with respect to XR. Then, Y = m1(XC) +
m2(XR) + ε, where XR is the set of relevant covariates without the set
of the conditional ones, XC . Without loss of generality, we assume that
E [m2(XR)] = 0.

(A.1) The marginal projections {mj}j=1,...,p belong to Cr(X ). Where Cr(X ) de-
notes the class of all continuous functions defined over X that are r times
differentiable.
If r = 0, mj’s satisfy the Lipschitz condition with order α ∈ (0, 1], that is
|mj(x) − mj(z)| ≤ C1|x − z|α for any x, z ∈ X , where C1 is a positive
constant uniformly for any j = 1, ..., p.
In addiction, there exists a constant C2 such that |m(r)

j (x)| ≤ C2 for any
x ∈ X and j = 1, ..., p.

(A.2) The marginal density function f j of Xj satisfies 0 < C3 ≤ f j(x) < C4 < ∞,
∀x ∈ X and j = 1, ..., p. In addiction, we assume that each f j belongs

to Cr(X ) for the r given in (A.1) and | f (r)j (x)| ≤ C5 for any x ∈ X and
j = 1, ..., p.

(A.3) For r specified in (A.1), if r ≥ 1, the Kernel function K(·) is of order r, that
is,
∫
K(u)du = 1,

∫
ukK(u)du = 0 for k = 1, ..., r− 1 and

∫
urK(u)du > 0.

If r = 0, the Kernel function satisfies K(u) > 0 and
∫
K(u)du = 1.

(A.4) The marginal projections {m∗j }j∈D satisfy condition (A.1) and there exist

non negative constants c1 > 0 and k ∈
[
0, min

(
max(r,α)

2 max(r,α)+2 , max(r,α)
2 max(r,α)+dC

) )
such that
minj∈{D∩M∗}‖m∗j ‖∞ ≥ c1n−k, where r and α are specified in (A.1) and
dC = |C|.
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(A.5) Let ‖Xn‖ be the largest length of the intervals in the partition Xn, there
exists some positive constant η such that ‖Xn‖ = n−η.

(A.6) There exist positive constants C6, C7 and γ1 such that P(|Y∗| ≥ z) ≤
C6 exp (−C7zγ1) for any z > 0, where Ỹ∗ = m2(XR) + ε.

Assumption (A.0) is only made to simplify the proof of the following Proposi-
tion. Assumption (A.1) is about smoothness of functions m in the regression
problem. Assumption (A.2) is standard in nonparametric regression and en-
sures that density of each covariate is bounded. Assumption (A.3) is a standard
requirement for the Kernel function that ensures the bias of smoothing is not
dominating. Assumptions (A.4) and (A.5) are from Chang, Tang, and Wu (2016).
The former is a sort of identification condition that ensure correct separation for
relevant covariates, while the latter requires that the partition of the support of
each covariate has size at least O(nη). For sake of simplicity we take the same
support X = [a, b] for all the covariates. Assumption (A.6) is again from Chang,
Tang, and Wu (2016).

Proposition 1. Suppose that the assumptions (A.0) - (A.6) hold. If Xj and XC are in-
dependent then the results of Chang, Tang, and Wu (2016), for the screening procedure
with marginal Empirical Likelihood, still hold using X̂∗j and Ŷ∗, ∀j ∈ D.

Proof. First, we consider the true quantities X∗j and Y∗, ∀j ∈ D. Since Xj and
XC are independent, it follows that X∗j = Xj, ∀j ∈ D. Moreover, by assumption
(A.0) we have that Y∗ = m2(XR) + ε. So, the results in Chang, Tang, and Wu
(2016) hold.

Now, we consider X̂∗j = Xj − Ê
(
Xj|XC

)
= Xj + Op(n−1/2) by using the

consistency results for Ê
(
Xj|XC

)
as in Hu and Lin (2017). Therefore, we can

find n∗ such that ∀n > n∗, the marginal density function of X∗j , say f ∗j (·),
satisfies assumption (A.2) since assumption (A.2) is true for Xj, ∀j ∈ D.

Now we write Ŷ = Y − m̂1(XC) = Y∗ + [m1(XC)− m̂1(XC)]. By using the
optimal Kernel smoothing estimation, we have that

E|m̂1(x)−m1(x)| = O(n−k1),
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where k1 = max(r,α)
2 max(r,α)+dC

. By assumption (A.4) k < min(k1, max(r,α)
2 max(r,α)+2) is suffi-

cient to assure that Proposition 2 of Chang, Tang, and Wu (2016) holds. So, the
proof is complete.

Remark. The assumption that Xj and XC are independent, ∀j ∈ XD, is
made to simplify the proof of Proposition 1. In fact, we always have that
|Ê
(
Xj|XC

)
− E

(
Xj|XC

)
| = Op(n−1/2).

3.4 Simulation study

In the following we study the problems related to feature screening by some
simulation examples. Since we are interested in procedures that allow for
non additive models, we compare our proposal (CEL) with method in Chang,
Tang, and Wu (2016) (EL) and its iterative version. The results are obtained on
R = 100 simulation replications, and we vary the sample size from 100 to 300
for different scenarios and the number of variables from 500 to 1000.
The bandwidth h is selected by cross-validation and the spherical Epanechnikov
Kernel K(x) ∝ (1− x′x)I(|x′x| ≤ 1) is used. If the conditioning set has cardinal-
ity one the Kernel function reduces to the univariate K(u) = 3

4(1− u2)I(|u| ≤
1).
We adopt the first four examples in Chang, Tang, and Wu (2016) and also define
some alternative cases of equicorrelated covariates with common ρ varying
from 0.5 to 0.8.
We compare the different alternatives according to the number of times when
each relevant predictor is included by the screening and when the true model
is retained (all the active variables are retained apart from conditioning ones)
on 100 replications. The data from first example are generated from nonlin-
ear additive model with the first four covariates being relevant and the rest
irrelevant. The marginal regression functions for the active predictors are
m1(x) = x, m2(x) = (2x− 1)2, m3(x) = sin(2πx)/(2− sin(2πx)) and m4(x) =
0.1 sin(2πx)+ 0.2 cos(2πx)+ 0.3 sin2(2πx)+ 0.4 cos3(2πx)+ 0.5 sin3(2πx). All
covariates are generate from U(0, 1) and the error term is standard normal dis-
tributed.
Table 3.1 reports the results for example 1 with {n, p} = {200, 500} and the
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Example 1

S.1 X1 X2 X3 X4 all

EL 90 98 68 100 59
iterative 100 100 93 100 93
CEL (C={1}) x 100 100 100 100

S.2 X1 X2 X3 X4 all

EL 98 1 53 2 0
iterative 100 100 100 100 100
CEL (C={1}) x 100 100 100 100

TABLE 3.1: Simulation results on R = 100 replications from Example 1 with {n, p} =
{200, 500}. In S.1 results for example 1; meanwhile in S.2 the covariates are all equicorre-

lated with ρ = 0.8.

covariates generated from independent uniform distribution. Each column
shows the number of times when each relevant predictor is retained on 100
replications, while the last column ("all") shows the number of times when the
true model is retained (in the conditional case the true model is taken without
considering the conditioning variables). The second part of table (S.2) refers
to the case of high correlated covariates. It is to illustrate that conditional
screening procedure has much better performance when there are irrelevant
variables that are correlated with relevant ones, in such a case all the covariates
are equicorrelated with ρ = 0.8.
Results from first example show how conditional version of proposed screening
has good performances when the conditioning set is composed by the first of
relevant covariates, it still works well when there is high correlation among pre-
dictors. In example 2 the model is again nonlinear and additive with first four
covariates being relevant with marginal regression functions, m1(x) = (2x− 1)2,
m2(x) = cos(2πx)/(2 + sin(2πx)), m3(x) = cos(2πx)/(2 − cos(2πx)) and
m4(x) = cos(π(2x − 1)). Covariates are generated from uniform over [0, 1],
while we use normal distributed heteroskedastic error term with heterogeneous
conditional variance generated as var(ε) = 4/(x2

1 + x2
2 + x2

3 + x2
4). As for the

first example we consider the first relevant covariate known in advance as con-
ditioning information. The goal of Example 3 is to show how our conditional
screening procedure can make it possible to retain hidden relevant predictors.
In such a particular case the fourth relevant variables shows small marginal
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Example 2

Homogeneous variance Heterogeneous variance

S.1 X1 X2 X3 X4 all X1 X2 X3 X4 all

EL 16 100 12 47 3 40 94 44 40 13
CEL(C={1}) x 13 86 88 1 x 14 80 89 11

S.2 X1 X2 X3 X4 all X1 X2 X3 X4 all

EL 9 62 83 100 4 44 67 88 88 24
CEL(C={1}) x 13 66 65 8 x 30 57 66 15

TABLE 3.2: Simulation results on R = 100 replications from Example 2 with {n, p} =
{100, 1000}. In S.2 the covariates are all equicorrelated with ρ = 0.6.

Example 3

S.1 X1 X2 X3 X4 all

EL 84 80 91 0 0
iterative 100 100 100 98 98
CEL (C={1}) x 100 85 86 76
CEL (C={1,2}) x x 100 100 100

S.2 X1 X2 X3 X4 all

EL 89 28 55 0 0
iterative 100 100 100 36 36
CEL (C={1}) x 56 88 43 37
CEL (C={1,2,3}) x x x 100 100

TABLE 3.3: Simulation results on R = 100 replications from Example 3 with {n, p} =

{100, 500}. In S.1 β4 = −3
√

2 is greater than the correlation between X4 and other
covariates; meanwhile in S.2 all the covariates are equicorrelated with ρ = 0.6 and β4 =

1/3, so that coefficient of hidden covariate is less than the correlation.

relevance with the response, thus it is not recruited by canonical screening
procedures.
Data are generated from a linear model with independent normal distributed
errors and true coefficients β1 = β2 = β3 = 2, β4 = −3

√
2 and β j = 0 for j > 4.

The covariates are such that cov(Xj, Xk) = 0.5 for j 6= k ∈ {1, ..., p}/{4} and
cov(Xj, X4) = 1/

√
2 for j 6= 4. In such a case covariate X4 shows null marginal

correlation with the response through although it has coefficient β4 greater than
other relevant covariates.
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First part (S.1) of Table 3.3 reports the simulation results for example 3 in Chang,
Tang, and Wu (2016) while second part (S.2) is setting such that all covariates are
equicorrelated with ρ = 0.6 and β4 = 1/3, so that the coefficient of the hidden
variable X4 is smaller than the correlation exhibits by the the variable with the
rest of covariates. Example 4 shows the case of non additive model. Regression
function m(X) is generated from exp {−0.5(β1X2

1 + β2X2
2 + β3X2

3 + β4X2
4)}

with β = (1/0.82, 1/0.92, 1, 1/1.12)′ and β j = 0 for j > 4. Corresponding results
are shown in table 3.4. Simulation results show how standard screening per-

Example 4

X1 X2 X3 X4 all

EL 97 75 77 64 39
iterative 87 76 83 91 58
CEL (C={1}) x 97 66 67 46
CEL (C={1,2}) x x 100 100 100

TABLE 3.4: Simulation results on R = 100 replications from Example 4 with {n, p} =
{100, 500}.

forms poorly when there exist a hidden predictor in the model. However both
the iterative procedure and CEL have excellent performances, moreover CEL
has less computational cost. Analysing the number of iterations on the total of
simulation runs for the iterative version, we have detected that it variates from
2 to a maximum of 55 with the median at 4 and the third percentile at 9. That is,
in 50% of the cases the iterative screening requires at least 4 iterations while our
CEL is always computed in two steps.

3.5 Discussion

In this chapter we proposed a variant of screening procedure for non additive
models, making use of conditional information in estimation process. Condi-
tional feature screening for linear models was firstly proposed by Barut, Fan,
and Verhasselt (2016) and, compared with the iterative screening approaches,
it is able to circumvent the issue of hidden relevant predictors. Furthermore,
it has the advantage of less computational cost since can be performed in few
steps. Our proposal makes use of LPE for measuring the marginal contribution,
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similarly to the work of Chang, Tang, and Wu (2016). In addition, we introduced
information from a known set of relevant predictors and provided an extension
to the standard procedure by two-steps estimation. Through a simulation study
we showed how such a strategy works as well as the iterative-based approaches,
and it results useful in situations where the standard screening approaches fail.
Moreover, it also has the advantage of a computational cost comparable to the
one of standard feature screening methods.
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Part II

High Dimensional Spatio-temporal
Models
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Chapter 1

Spatio-temporal Models

The main purpose of first chapter is to briefly introduce principal elements of
spatio-temporal models in statistical and econometric frameworks. At begin-
ning of the chapter, we report some notion in spatial econometrics analysis,
while in the second part, we widely review spatio-temporal models and in
particular the class of spatio-temporal panel data models, the focus of interest
of this part. Together with the presentation of the models and the distinction
between static and dynamic types, also the main estimation techniques are
discussed. At the end of the chapter, we argue about the theoretical advantage
and disadvantage of considering such models in high dimensional settings.

1.1 Spatial Econometrics

The Spatio-temporal models belongs to the more general class of spatial econo-
metrics techniques and represent one of the most recent developments in such
topic. Following Anselin’s definition, we can consider the Spatial Econometric as
’the field of spatial econometrics to consist of those methods and techniques that,
based on a formal representation of the structure of spatial dependence and
spatial heterogeneity, provide the means to carry out the proper specification,
estimation, hypothesis testing and prediction for models in regional science’
(see Anselin (2013), pag.10). The definition of regional science models has to be
understood as those specifications that incorporate explicitly spatial interactions
among individuals. The term spatial is not only referred to geographical space,
it may have several understanding (i.g. economics meaning, among others).
The spatial econometrics has been recently extend to panel data modelling. The
advantage of panel data is that by using information about inter-temporal and
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individual dynamics, it is possible to control for the effects of unobserved or
missing variables. In spatial panel data models, the data analysis has to take
into account of spatial dependence among different locations, but also that the
observations at each location typically are not independent but present serial
dependence. Broadly speaking, one must take into account of temporal (auto-)
correlations as well as spatial (cross-) correlations.
Following, we shortly give some useful definitions in spatial econometrics, par-
ticularly we focus on the main definition of spatial effects, spatial weights, lags
and spatial errors. Section 1.2 is devoted to introduce spatio-temporal models,
while in section 1.3 the main estimation procedures for dynamic spatio-temporal
models are presented.

1.1.1 Spatial effects

When the data are collected and organized by spatial units, the definition of
some spatial dependence represent a crucial problem. Spatial dependence can
be viewed as the functional relationship existing between one point in the space
and everything elsewhere. Instead, spatial heterogeneity can be though as
the ’set’ of different aspects of each unity in the space coming from several
factors related to the concept of space. That said, spatial econometrics deals
with the incorporation of effects (spatial effects) that result from the above
concepts in econometric modelling. Thus, spatial effects may results from
spatial dependence or spatial heterogeneity, alternatively. In the first case
the dependence structure is somehow related to the concept of location and
distance, both in geographical sense or in a more general sense (economics,
social, etc.). The second case, spatial heterogeneity, is meaning as a special case
of the observed or unobserved heterogeneity among unities treated in panel
data econometrics. It became spatial when the variability across two distinct
units i and j is driven by spatial variables, such as distance or region (Anselin
(2013)).

1.1.2 Neighbourhood and nearest neighbours

The notion of spatial dependence implies the determination of some functional
relationship between units in the space, namely which unity has influence on
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another one and vice versa. Formally, this is expressed through the definition
of Neighbourhood and Neighbour in topological field.
The original notion of set of neighbours comes from the literature on Geostatistics
and lattice processes. Historically, the former is considered the traditional
approach to spatial analysis and it pertains with theory of stochastic processes
indexed over continuous space of spatial locations, the latter assumes the
stochastic process being indexed over sets of countable collection of locations.
Since a lattice recalls a regularly spaced points set, it is thought as the spatial
analogue of time series.
Considering a spatial process of the form {Z(s) : s ∈ D}, where D is the set
of all the locations, a set J of neighbours for a spatial unit i can be thought as
collection of those locations that are in the conditional probability of the process
at i, formally

J = {j : P(z(i)) 6= P(z(i)|z(j))}, ∀i ∈ D. (1.1)

Moreover, considering some distance metric d, the set of neighbours can be
expressed more generally as

J = {j : P(z(i)) 6= P(z(i)|z(j)), dij < εi}, ∀i ∈ D (1.2)

where dij measures the distance between i and j in a properly structured space
and εi is a cut-off point for the spatial unit i. This definition of neighbourhood
combines the notion of statistical dependence, shared by conditional probabil-
ity, and notion of spatial dependence thorough the distance measure dij. More
precisely, when a location j meets the distance criterion and the conditional
influence together, it is said to be nearest neighbour. Conversely, when some
location j does not meet the distance criterion it is considered as higher order
neighbour.
The resulting set of neighbours of each location i can be represented in several
ways, for instance graph or network structure. For our purpose it is useful to re-
fer to the concept of spatial weights matrix as representation of neighbourhood.
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1.1.3 Spatial weights

The spatial weights matrix W is a p× p positive matrix in which each element
wij represent the interaction and/or relationship between cross-sectional units
i and j. Originally, spatial dependencies were measured by binary contiguity
between units. It is refer to the simplest case where the weights in the matrix
are binary, so wij = 1 when i and j are neighbours, and wij = 0 when they are
not. By convention, the diagonal elements are 0 to exclude self-neighbours.
To increase the interpretation of the spatial variables and for computational
purpose, the weights are almost always standardized such that row-elements
of the matrix sum to 1. Often the weights matrix is symmetric, while in the so
called row-standardized form is no longer, gives further computational complica-
tions. To extend their use in panel data econometric, the weights are assumed
to remain constant over time.

Estimation of spatial weights matrix

The choice of spatial matrix W is crucial in spatial modelling as the weights
share part of the structure of spatial dependence. The literature about adequate
formulation and choice of the spatial weights shows a huge amount of works
where the spatial weights matrix is assumed exogenous. In such a situation,
the choice is typically driven by distance or geographic criteria while, gen-
eralizations of distance that include economic notions are only recently and
increasingly used. Under exogeneity of spatial dependence, consistency and
asymptotic normality of the estimation methods for the spatial models are
well established in literature (see paragraph 1.3). When the spatial structure is
assumed endogenous, W need to be estimated in some way.
As concern the estimation of matrix W, Meen (1996) proposed a procedure
consisting of two-stage regression where the second stage provides that the
residuals of ordinary least squares (OLS) for each location are regressed on
residuals of all other locations. Formally

(1st) yt = Xtβ0 + εt,

ε̂t = yt − Xt β̂,

(2nd) ε̂tk = ρk ∑
j 6=k

wjk ε̂tk + ηtk

(1.3)
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In first-stage estimation ε̂t are computed, then they are used for estimating
the weights. Second-stage regression produces inconsistent estimates of the
regression coefficients wjk, which are then used to construct the spatial weights
matrix. Moreover, if the dimension p exceed the length T of time series there
are no degree of freedom to estimate W.
Bhattacharjee and Jensen-Butler (2013) proposed a method for estimating W
from the autocovariance of the process and showed that the matrix W is only
partially identified by the autocovariance matrix E(εε′), thus additional struc-
tural assumption are needed to uniquely identified W by covariance matrix. In
particular, the spatial weights matrix is fully identified if it is assumed symmet-
ric.
Kelejian and Piras (2014) adopt the IV technique to estimate endogenous
weights matrix. Qu and Lee (2015) try to explicitly model the source of en-
dogeneity of spatial structure by two sets of equation, one that define the
outcome for each unit linked to the outcome of all other units, and one that
models random variable from which the spatial weights depend. The estima-
tion is a two-stage procedure and it makes using of IVs.
Ahrens and Bhattacharjee (2015) propose a lasso-type procedure again devel-
oped in two-stages for dimension reduction in IV estimation. It results useful
when the number of endogenous regressors and the number of IVs are larger
than the number of observations.

1.1.4 Spatial lags

In spatial econometrics, spatial lags are constructed by weighted average of the
neighbouring observation with the specified weights matrix W. Using spatial
lags produces new variables that can be included into a model specification.
Spatial lag operator can be applied to dependent variable, explanatory variables
or error terms. It corresponds to matrix operation Wy, in the case of dependent
variable, in which the p × p weights matrix is post-multiplied by the p × 1
vector of cross-sectional observations. Introducing this type of lags into the
model results in a spatial lag model

yt = λWyt + εt, t = 1, . . . , n (1.4)
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where the spatial lag term typically gives the interpretation of the spatial interac-
tion process in which each value of the dependent variable is jointly determined
by that of the neighbouring units.
The main problem encountered in estimation of models including spatial lags
is endogeneity. The presence of spatial lags introduces joint dependence be-
tween Wy and ε at each cross-section. In model estimation, this simultaneity
must be accounted, usually through instrumental variables (IV) or by assuming
distributional model, as in maximum likelihood estimation. Another way of
dealing with spatial lag is to detrend data by some spatial filter, thus a new
dependent variable is obtained and the effect of spatial autocorrelation has been
eliminated.

1.1.5 Spatial errors

A spatial error specification does not require any theoretical representation of
spatial interaction among units, instead, it consists of specifying a parsimo-
nious covariance structure in order to account for spatiality in the residuals. A
standard representation of the spatial error model is

yt = Xtβ0 + εt,

εt = ρWεt + ηt.
(1.5)

Cliff and Ord (1973) defined the above model as spatial autoregressive (SAR),
since it is a spatial specification analogous to the well-known Box-Jenkins’
approach for time series analysis. The spatial structure is driven by the spatial
weights matrix and the autocorrelation parameter ρ.
Alternatively, the error can be modelled as spatial moving average process SMA
(Anselin (1988))

εt = Wζt + ζt (1.6)

where ζt is a vector of independently distributed random terms.
As an alternative to the SAR and SMA, Kelejian and Robinson (1995) suggest a
spatial error components specification in which the error term is decomposed
into a local and a spillover effect.
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1.1.6 Temporal and Spatial Heterogeneity

Both temporal and spatial heterogeneities are treated in a familiar way as in
panel data analysis, by considering fixed or random effects. In the general case,
the fixed effects treatment is attained by introduction of time-specific intercept
and/or slopes, while the random effects treatment provides incorporation
of a random type factor. Usually temporal heterogeneity as well as spatial
heterogeneity is evidence for lack of uniformity in the effects space. While
the temporal one consist in non constant error variances through time, spatial
heterogeneity is related to the lack of uniformity of the effects for the different
locations due to spatial dependence. Usually, in econometric analysis this
lack can be carries out by considering explicitly varying parameters, random
coefficients of other various form of structural change. Apart from the lack of
structural stability over the space, generally in spatial phenomena all units of
observation are far from homogeneity.

1.2 Spatio-temporal models

Spatio-temporal models allows for dependencies in both time and space dimen-
sions. Under such specification, there is additional order of difficulty, e.g. in
identification of the pn× (pn− 1)/2 elements of covariance matrix. The class
of spatial panel data models has affected a very rapid development of research
over the last decade. Classical representations of spatio-temporal models can
be fund in Baltagi, Song, and Koh (2003) and Baltagi et al. (2007) and Kapoor,
Kelejian, and Prucha (2007).

1.2.1 Spatial Static Panel Data models

Spatial panel data models can be specified in both static and dynamic cases.
The former does not incorporate any temporal dependency of the dependent
variable, meanwhile, the latter usually provides the lags of the dependent vari-
ables as explanatory variables in order to take into account serial dependence
of the dependent variable. Following Lee and Yu (2010c) we can define a static
spatial panel data model (SSPD) as
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yt = λ1W1yt + Xtβ0 + µ + εt, t = 1, . . . , n

µ = λ3W3µ + c0,

εt = λ2W2εt + ηt t = 1, . . . , n

(1.7)

where yt is a p× 1 column vector of observations of each locations at time t,
εt is p× 1 vector of error terms and ηt has elements i.i.d. across i and t, zero mean
and finite variance. Wj, j = 1, 2, 3 represent the spatial weights matrices, Xt is an
p× k matrix of regressors, µ denotes the unobserved individual time-invariant
effects. The spatial weights matrices Wj are p× p and positive. Each nonzero
element of such matrices indicates whether two locations are neighbours. Hence,
each element indicates the intensity of the relationship between cross sectional
units, meanwhile diagonal elements are set to zero to exclude self-neighbours.
The model in (1.7) is a general representation of SSPD that accounts for spatial
lags and regression through the terms λ1W1yt and Xtβ0, respectively. In practice,
panel data analysis deals with the choice between fixed effects or random
effects specification. In the former, each location would have its own functional
specification, whereas in the latter, all locations are assumed to obey the same
encompassing model and individual characteristics are specified as random
deviations from the overall mean. The general model in (1.7) can assume both
of the above specifications of spatial effects, accordingly if the elements of µ

are treated as fixed or random. In practice, fixed effects can be estimated by a
direct approach or indirectly by eliminate individual effects before estimation.
The first approach yields consistent estimations except for the residual variance,
when the time series length n is small. The second approach uses methods
of conditional likelihood when a sufficient statistic of the fixed effects can be
found and follows a data transformation in order to eliminate fixed effects
before estimation of the model.

Models in Baltagi, Song, and Koh (2003) and Baltagi et al. (2007) are special
cases of (1.7) with λ1 = 0, i.e. without spatial lags. They formulate a representa-
tion which take into account spatial correlations in both individual (µ) and error
terms (ε) assuming different parametrization (i.e. W3 6= W2). In particular, the
model in Baltagi, Song, and Koh (2003) is a pure spatial error model allowing
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for spatial dependence in the error term

yt = Xtβ0 + εt,

εt = µ + λWεt + ηt, t = 1, . . . , n
(1.8)

while Baltagi et al. (2007), in addition, allows for serial correlation in the error
terms

yt = Xtβ0 + εt,

εt = µ + λWεt + ηt

ηt = ρηt−1 + et, t = 1, . . . , n

(1.9)

Kapoor, Kelejian, and Prucha (2007) consider a different specification where the
individual components are accounted into the error term. This specification
results in the same parametrization of spatial correlations for both individual
and error components. It is equivalent to model (1.7) with W3 = W2 and
λ3 = λ2.

yt = Xtβ0 + εt,

εt = λWεt + ηt, t = 1, . . . , n
(1.10)

Under fixed effects specification, both of the above models reduce to the same
representation.
As concern the random effects specification, the estimation will be more efficient
if the individual (random) effects are independent of the exogenous regressors.
In fact, assumption of independence between individual effects and the regres-
sors in Xt is crucial to achieve efficient estimation of regression parameters.
In addition to the individual effects, SSPD can also include the time fixed effects
from panel data. For instance, when n is short, they can be treated as regressors
in the model. Similar to the individual effects, the time effects can be directly
estimated or indirectly treated before estimation, when they are assumed fixed.
As will be discussed later, even when both p and n are large such that both
individual and time fixed effects can be consistently estimated, a permanent
bias occurs in the MLE of common parameters. Hence, it is desirable to treat
and eliminate the effects before estimation.
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1.2.2 Spatial Dynamic Panel Data models (SDPD)

Differently from SSPD, Spatial Dynamic Panel Data models (SDPD) can take into
account dynamic (time) effects. In other words, this kind of models are useful
when the dependent variable depends on its own past realizations. One way to
take into account dynamic effects is to use time lag terms of dependent variables
as explanatory variable. Following Anselin (2013), SDPD can be divided in four
categories. If the time dependence pertains only to neighbouring locations we
obtain the pure space recursive model

yt = λ0Wyt−1 + Xtβ0 + εt, t = 1, . . . , n (1.11)

where yt = (y1t, y2t, ...ypt, )′, εt = (ε1t, ε2t, ..., εpt)′ are p× 1 column vector of
response observations and error terms at time t, respectively, λ0 is the regression
parameter capturing the time-spatial effect, β0 is a (k× 1) vector of parameters
and Xt a (p× k) matrix of exogenous regressors.
If the time dependence is related to both the location itself, as well as its neigh-
bours at previous periods, we have the time-space recursive model

yt = λ0yt−1 + λ1Wyt−1 + Xtβ0 + εt, (1.12)

with λ0 capturing the relation between different locations over time.
When an individual time lag and a contemporaneous spatial lag are included
we obtain the time-space simultaneous model

yt = λ0yt−1 + λ1Wyt + Xtβ0 + εt. (1.13)

Instead, the general SDPD model is obtained when all type of lags are included
(Lee and Yu (2010c))

yt = λ0Wyt + ut−1 + Xtβ0 + µ + αt I + εt

ut−1 = λ1yt−1 + λ2Wyt−1.
(1.14)

The εit are i.i.d. across i and t with zero mean and constant variance σ2 (hypoth-
esis of homoskedasticity and independence across time and cross-section in
the error term). The spatial weight matrix W is known and determines spatial
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dependence between units, µ = (µ1, µ2, ..., µp)′ is the vector of fixed individual
effects and αt I, with I p× p identity matrix, accounts for time effects. The model
in 1.14 includes spatial lags and exogenous regressors, as in the SSPD model,
and in addition takes into account dynamic effects throughout components
λ1yt−1 and λ2Wyt−1. More precisely, λ1 captures the pure dynamic effect, while
λ2 captures the spatial-time effect.

Lee and Yu (2010c) classify the above SDPD model into different cases de-
pending on the structure of eigenvalues of matrix A from the following reduced
form

yt = Ayt−1 + S−1Xtβ0 + S−1c0 + αtS−1 I + S−1εt (1.15)

with S = (I − λ0W) and A = S−1(λ1 I + λ2W).
The stable case occurs when all the eigenvalues of A are smaller than 1, when
some of the eigenvalues of A are equal to 1 we have the spatial cointegration case,
meanwhile the explosive case occurs when some of them are greater than 1.

1.3 Estimation of SDPD

Estimation of spatio-temporal models in the dynamic case, can be done by
maximum likelihood (ML) or generalized method of moments (GMM). Since
the model incorporate lags of dependent variable, the individual effects µ and
the dependent variable yt are not independent. Furthermore, due to the lag
of dependent variable endogeneity must be deal with. Direct estimation of
fixed effects introduces a problem of incidental parameters, this is because the
introduction of fixed effects increases the number of parameters to be estimated.
Thus, direct estimation of individual effects produces biased and inconsistent
QML estimate when the temporal dimension n is fixed. As an alternative,
individual effects can be ruled out by data transformation or GMM estimation
by instrumental variables can be adopted in order to achieve consistent but
biased estimation. The incidental parameters issue becomes less severe in MLE
when both p and n go to infinity, in fact in scenarios of time increasing, MLE
are consistent but remain biased.
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1.3.1 GMM and IV

Probably the most common used estimation approach in practice is the GMM
with instrumental variables (IV). Such a method yields consistent estimation
for the SDPD model. Basically it uses lagged values and exogenous variables in
order to construct the moment conditions. Once the entire transformed system
is obtained, the error terms result uncorrelated across i and t. However, as the
SDPD model allows for lags of the response variable, the lagged terms on the
right side of (1.14) (yt−1 and Wyt−1 transformed) still remain correlated with
disturbance. Thus, a set of IV is needed. After introduction of instruments,
the moment conditions are used for a generalized two-stage least squares
estimation.

Anderson and Hsiao (1981) showed that IV method can improve the effi-
ciency of estimator in dynamic models. They first eliminate fixed effects by
data transformation and then construct a new system by instrumental variables.
When n is fixed, IV technique improves the efficiency of estimation. However, if
the number of instruments is too large, the asymptotic bias, due to IV introduc-
tion, increases. Moreover, contrary to the ML estimation that requires larger n,
GMM can be adopted when n is small, because after elimination of individual
effects it does not suffer from bias of order O(1/n) (Arellano and Bond (1991)).

1.3.2 MLE

Consider the simple dynamic model (1.14) as in Lee and Yu (2010c), the log-
likelihood function can be expressed as

l(θ, µ) = − pn
2

log 2π − pn
2

log σ2 + n log |S| − 1
2σ2

n

∑
t=1

V′tVt, (1.16)

where θ = (δ′, λ0, σ2), δ = (λ1, λ2), S = I − λ0W and Vt = (Syt − ztδ − µ),
with zt = (yt−1, Wyt−1).
For the stable case (i.e. when λ0 + λ1 + λ2 < 1), QMLE θ̂ and µ̂ are derived
from the optimization of the above equation.
When the number of parameters tends to infinity, it is convenient to concentrate
µ using the first order condition and focus on the likelihood function for the
parameter θ. In this way, the parameters space does not change with p and n,
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as in the standard model the regression parameters are assumed constant.
Given the first order condition l(θ,µ)

µ = 1
σ2 ∑t Vt and µ̂ = 1

n ∑t(Syt − zδ), the
concentrate estimator of µ given θ, the concentrate log-likelihood function for θ

is

l(θ) = − pn
2

log 2π − pn
2

log σ2 + n log |S| − 1
2σ2

n

∑
t=1

Ṽ′tṼt, (1.17)

where Ṽ = Sỹt − z̃tδ. The asymptotic analysis in Yu, De Jong, and Lee (2008)
requires the following assumptions

1. W is constant with wii = 0, i = 1, ..., p;

2. εit are i.i.d. across i and t, zero mean, variance σ2 and E|εit|4+η < ∞ for
some η > 0;

3. S is invertible for all λ0 ∈ Λ, and Λ is compact and the true parameter is
an interior point of it;

4. the regressors in X are nonstochastic, uniformly bounded and the limit of
1/np ∑t X′X exists and is nonsingular;

5. W and S−1 are uniformly bounded in row and column sums in absolute
value (UB);

6. ∑∞
h=1|Ah| is UB, where A is as in the reduced form (1.15);

7. p is nondecreasing in n and n goes to infinity.

The first four assumptions are quite standard in spatial modelling. Assump-
tion 5 limits the spatial correlations through the spatial weights in order to
make the asymptotics handleable. Assumption 6 is of more interest, it relies on
the absolute summability in row and column of the matrix A in the reduced
equation (1.15). Essentially, this assumption limits the dependence between
serial correlation and cross sectional units. In practice, imposing limited depen-
dence across locations or time series effectively rules out some special cases.
For instance, the required assumption is not checked in the aforementioned
spatial cointegration case, instead it only occurs in stable case. Motivated by this,
Yu, Jong, and Lee (2012) extend the previous results to the spatial cointegration
case.
Yu, Jong, and Lee (2012) also show the GMM estimator and its properties for
dynamic models. GMM estimates for SDPD are consistent and asymptotically
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normal. Compared with MLE, GMM does not suffer from asymptotic bias.
However, when n is large so that the bias of MLE vanishes, the asymptotic
variance of MLE is smaller that that of GMM.

1.3.3 ML and individual effects estimation

Lee and Yu (2010b) investigate the asymptotic properties of QMLE for models
with spatial lags and fixed effects specification. The model is (1.14) with ut−1

and αt equal to zero and εt following a SAR process in (1.5). They compare the
asymptotics of the estimation including fixed effects (direct approach) and those
of estimation after elimination of the fixed effects (transformation approach).
The estimates of the parameters λ0 and ρ, are properly centred at their true
values, but the estimate of variance in direct approach may not be centred at
0, even though both n and p tend to infinity, unless p/n goes to zero. For the
transformation approach, the estimated variance is unbiased even with finite n
and growing p.
In addition, they study the properties when also time effects are included
(αt 6= 0). The direct and transformation approaches do not yield the same
estimate for λ0 and γ, even though they are both consistent. For the direct
approach, consistency is achieved even when p is fixed, while the estimate of
variance requires both p and n goes to infinity. For the transformation approach,
all the estimates are consistent when n is small. Also Elhorst (2005) considers
estimation of model as in Lee and Yu (2010b), but only focusing on the case
of n fixed and treating the fixed effects before estimation by first difference
elimination. On the contrary, Su and Yang (2015) derive asymptotics even with
random effects specification. They showed that, when n is finite and fixed
effects are treated directly, MLE is biased and inconsistent.

1.3.4 Generalized Yule-Walker estimator

Dou, Parrella, and Yao (2016) proposed a new estimator for the following SDPD
model

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt (1.18)
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Compared with the model in Yu, De Jong, and Lee (2008) it allows the scalar co-
efficients λi to be different for each location. In fact D(λi) = diag(λi1, λi2, .., λip)

for i = 0, 1, 2 are the matrices of the unknown coefficient parameters, differently
from the model (1.14) where they are considered equal for each location. As
before, D(λ0) captures the pure spatial effect, D(λ1) captures the pure dynamic
effect and D(λ2) the time spatial-time effect. No endogenous regression com-
ponents are included in the model.
The extension to a model with different scalar coefficients is motivated by prac-
tical situations, in which empirical evidence shows how considering constant
effect for each location can be limiting. Nevertheless, considering more param-
eters in the model leads to inconsistent MLE. Thus, the authors proposed a
simple and new method of estimation based on Yule-Walker estimator. They
propose to apply least squares to each of individual rows of a Yule-Walker
equation system obtained by the model (1.18) as

(I− D(λ0)W)Σ1 = (D(λ1) + D(λ2)W)Σ0 (1.19)

where Σk = Cov(yt+k, yt), k ≥ 0. The matrices Σ0 and Σ1 are replaced by the
respective sample counterparts. Each row of the above equation is a system of
p linear equations and the parameters (λ0j, λ1j, λ2j), j = 1, .., p are estimated by
least squares. The resulting estimator has the closed form

(λ̂0j, λ̂1j, λ̂2j) = (X̂′jX̂j)
−1X̂′jŶj, (1.20)

where X̂j = (Σ̂′1ωj, Σ̂0ej, Σ̂0ωj) and Ŷj = Σ̂1ej. ej is a p-dimensional null vector
with jth element equal to 1 and wj corresponds to the jth row of matrix W.
Unfortunately, this estimator suffers of increasing parameters, in fact when
n/
√

p → ∞ it admits nonstandard convergence rate. The authors propose to
restrict the number of equations to be estimate in order to restore the usual rate
of convergence. Such a restriction is perform keep only those rows for which
the contribution in estimation is not too small. The contribution is measured in
term of correlation between yk,t−1 and (ω′jyt, yj,t−1, ω′jyt−1) by ρ

(i)
j = |e′kΣ′1ωj|+

|e′kΣ1ej|+ |e′kΣ0ωj|. The idea is that, when ρ
(j)
k is small, say close to zero, the k-th

equation carries little information in the estimation and can be ruled out. This
thresholding results in transformation of the starting overdetermined scenario
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in a new one where the estimation can be done consistently. The new system
will have a restricted number of equations.
The asymptotic analysis in Dou, Parrella, and Yao (2016) requires the following
assumptions

1. W is known with wjj = 0, j = 1, ..., p;

2. the error term εt satisfies Cov(yt−1, εt) = 0;

3. the process yt is α-mixing with the mixing coefficient α(k) satisfying

∑∞
k=1 α(k)

γ
4+γ < ∞ for some constant γ > 0;

4. for γ > 0 in the above assumption, it holds supp E|w′iΣ0yt|4+γ < ∞,
supp E|w′iΣ1yt|4+γ < ∞, supp E|e′iΣ0yt|4+γ < ∞, supp E|w′iyt|4+γ < ∞,
supp E|e′iyt|4+γ < ∞;

5. the rank of matrix (Σ′1wi, Σ0ei, Σ0wi) is equal to 3;

Dou, Parrella, and Yao (2016) show the asymptotics of their estimator in both
case of p fixed and growing. When p is fixed the estimator is

√
n consistent.

When p is diverging, the standard
√

n rate is achieved as long as p grows less
than

√
n, while convergence rate may be slower if p is of higher order of

√
n.

The estimator is asymptotically normal as long as the number of restricted
equations in the estimation is o(

√
n).

1.3.5 Estimation with increasing dimensions

When both p and n go to infinity, the issue of increasing parameters in MLE
becomes less stringent and efficiency of estimator improves. For the stable case
Yu, De Jong, and Lee (2008) show the properties of estimator in setting both
p and n going to infinity. The spatial cointegration case is elegantly treated
in Yu, Jong, and Lee (2012). Meanwhile, the explosive case is more difficult
to handle. In fact, when some eigenvalues of matrix A are greater than 1, it
might be difficult to obtain good estimates, as asymptotic properties of ML in
such a case are unknown. Moreover, such situations can be treated by data
transformation in order to eliminate the unstable components.
For panel data models, Alvarez and Arellano (2003) showed that the bias of
MLE of autoregressive parameters is of order O(1/n) when p and n grow pro-
portionally. Hahn and Kuersteiner (2002) extended the work of Alvarez and



1.3. Estimation of SDPD 73

Arellano (2003) introducing a bias corrected estimator. Meanwhile in the context
of spatio-temporal models, Yu, De Jong, and Lee (2008) provided a rigorous
asymptotic theory that covers several high-dimensional scenarios, as the one
where p may grow faster than n, and vice versa. They consider model (1.14)
with no temporal effects (αt = 0), fixed individual effects and i.i.d error term.
Under some specific assumptions, reported in the section 1.3.2, they prove that
the MLE of common parameters is consistent but has an asymptotic bias of
order O(1/n), as in panel data model of Alvarez and Arellano (2003). More
specific, when n grows both proportional to p or faster than p, the estimators
are
√

pn consistent, but in the case of n increasing proportional to p, the limit
distribution is not centre and bias occurs; instead when p is relatively large
with respect to n, the estimator are n consistent and have a degenerate limit
distribution. They also prove how to obtain bias-corrected estimator achieving
√

pn consistency even when p/n goes to infinity.
Note that, the model in (1.14) can be regarded as a vector autoregressive
(VAR(1)) process with existence of cointegration relationship among locations.
Thus, the SDPD in Yu, De Jong, and Lee (2008) assumes this configuration and
its cointegrating space is completely known. In fact, it is determined by the
spatial weight matrix W in equation (1.14). This assumption is rather enforced
compared with classical cointegration time series analysis where the primary
purpose is inference about W. However, here the dimension of process in (1.14)
can be large and asymptotically tends to infinity, while in the canonical VAR(1)
it is fixed and relatively small, hence it can be of particular interest in studying
high dimensional contexts.
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Chapter 2

Testing different structures of
Spatial Dynamic Panel Data models

2.1 Introduction

The spatio-temporal models have affected a very rapid development of research
in econometric field. Classical representation of spatio-temporal model can be
found in Baltagi et al. (2007), Kapoor, Kelejian, and Prucha (2007), Lee and Yu
(2010b), Lee and Yu (2014), and Yu, De Jong, and Lee (2008).
Over the last decade, it has been developed a particular class of models for
spatio-temporal data analysis, the spatial dynamic panel data models (SDPD).
In particular, several versions of the SDPD model have been proposed, based on
different assumptions on the spatial parameters and different properties of the
estimators. The standard version of the model assumes that the spatial parame-
ters are constant over location. Two are the most common methods developed
to estimate standard SDPD. One of them is by maximum likelihood (MLE) or
quasi-maximum likelihood (QML) estimators, the other method is based on
instrumental variables and generalized method of moments (IV/GMM). Yu,
De Jong, and Lee (2008) constructed a bias-corrected estimator for dynamic
model with spatial fixed effects, Lee and Yu (2010a) extend this study to include
time-period fixed effects. Another recently proposed version, called generalized
SDPD, assumes that the spatial parameters are adaptive over location.
The assumption of different scalar coefficients is motivated by practical situa-
tions, in which empirical evidence shows how considering constant effect for
each location can be limiting. Nevertheless, considering an increasing number
of parameters in the model leads to inconsistent MLE. Therefore, generalized
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model is usually estimated by different method based on Yule-Walker estimator.
In this work we propose a strategy for testing the particular structure of the spa-
tial dynamic panel data model, by means of a multiple testing procedure that
allows choosing between the generalized version of the model and some spe-
cific versions derived from the general one by imposing particular constraints
on the parameters. The multiple test is made by the Bonferroni technique and
the distribution of the multiple test statistic is derived by a residual bootstrap
resampling scheme.

2.2 Model

Consider a multivariate stationary process {yt} of order p generating the obser-
vations at time t from p different locations. The following model

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt, t = 1, . . . , n. (2.1)

where yt = (y1t, y2t, ...ypt, )′, is the generalized SDPD and has been proposed by
Dou, Parrella, and Yao (2016) as generalization of the spatial dynamic panel
data model of Yu, De Jong, and Lee (2008). The errors εt are serially uncorre-
lated, they have zero mean value and may show cross-sectional correlation and
heteroskedasticity, which means that εt have a full variance/covariance matrix
Σε; the spatial matrix W is a weight matrix with zero main diagonal; the matrices
D(λi) are diagonal and λi are the vectors with the coefficients λij for i = 0, 1, 2
and j = 1, . . . , p. Model (2.1) guarantees adaptivity by means of its 3p param-
eters and it is characterized by the sum of three terms: the spatial component,
driven by matrix W and the vector parameter λ0; the dynamic component, driven
by λ1; and the spatial–dynamic component, driven by W and λ2.
Model (2.1) allows for non constant regression coefficients among locations,
starting from it we can derive different models as special cases by considering
some constraints on the parameters. The first one is the standard SDPD of Yu,
De Jong, and Lee (2008), that has constant spatial coefficients for all locations

yt = λ0Wyt + λ1yt−1 + λ2Wyt−1 + εt. (2.2)
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with homoskedastic and uncorrelated errors. Other special cases (available in
the literature) of the model can be derived from the standard SDPD by testing
the significance of specific λij coefficients. Both (2.1) and (2.2) can be expressed
in VAR representation. For the generalized model, let S0 = (I− D(λ0)W), thus
we have the reduced form

yt = Ayt−1 + ηt (2.3)

where A = S−1
0 (D(λ1) + D(λ2)W) is the parameters matrix and ηt = S−1

0 εt.
Model (2.3) is a p-dimensional VAR(1) with coefficient matrix given by A, its
equivalent for model (2.2) can be found in Yu, De Jong, and Lee (2008).

2.3 Estimation of the SDPD models

In the sequel, we assume that y1, · · · , yn are n observations from a stationary
process defined by (2.1) or (2.2). We assume that the process has mean zero and
denote with Σh = Cov(yt, yt−h) = E(yty′t−h) the autocovariance matrix of the
process at lag h, where the prime subscript denotes the transpose operator.

From literature of spatio-temporal models we know that as yt occurs on both
sides of (2.2), Wyt and εt are correlated. Applying least squares method directly
based on regressing yt on (Wyt, yt−1, Wyt−1) leads to inconsistent estimators.
Usually the estimation of standard SDPD is performed by MLE, meanwhile
ML applied to the generalized SDPD requires at least 3p parameters estimation
and can result in inconsistent estimates. A proper estimator of the parameters
for the generalized SDPD model (2.1) has been proposed and analysed by Dou,
Parrella, and Yao (2016). They suggested applying least square estimator to the
Yule-Walker equations to avoid endogeneity problem and propose a particular
estimator, called Generalized Yule-Walker estimator, that allows for heterogeneous
coefficients among locations.
In the following we define the Yule-Walker equation system as in Dou, Parrella,
and Yao (2016)

(I− D(λ0·)W)Σ1 = (D(λ1·) + D(λ2·)W)Σ0 (2.4)

where Σh are the autocovariance matrices of the process at lags h = 0, 1. The
coefficients matrices D(λk·), with k = 0, 1, 2, are p× p diagonal matrices with
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main diagonal given by coefficients λkj, j = 1, ..., p.
The matrices Σ0 and Σ1 are replaced by the respective sample counterparts

Σ̂0 =
1
n

n

∑
t=1

yty′t, Σ̂1 =
1
n

n

∑
t=1

yty′t−1 (2.5)

Generalized Yule-Walker estimator of Dou, Parrella, and Yao (2016) involves
least square estimation for each row of the equation system in (2.4), that is

(e′j − λ0jω
′
j)Σ̂1 = (λ1je′j + λ2jω

′
j)Σ̂0 , j = 1, ..., p

where ej denotes the p-variate null vector with 1 in the jth position and ωj is the
jth row of matrix W. Parameters vector (λ̂0j, λ̂1j, λ̂2j)

′ is estimated as solution
of the problem

min
∥∥Σ̂′1(ej − λ0jωj)− Σ̂0(λ1jej + λ2jωj)

∥∥2
2 , j =, ..., p

The resulting estimator has closed form

λ̂j = (λ̂0j, λ̂1j, λ̂2j)
′ = (X̂′jX̂j)

−1X̂′jŶj, j = 1, ..., p

where

X̂j = (Σ̂′1ωj, Σ̂0ej, Σ̂0ωj) and Ŷj = Σ̂1ej

(2.6)

Following we will introduce our proposal for testing the structure of SDPD
models. In particular, we will define a test statistics for a multiple test procedure
that allows choosing between the generalized model or its standard version.

2.4 The test statistics

In order to test the structure of the SDPD model, we define the test statistics

D̂ij =
√

n
(

λ̂ij −
1
p

p

∑
k=1

λ̂ik

)
, j = 1, . . . , p, and i = 0, 1, 2; (2.7)

In (2.7) we are comparing the estimator under the generalized model, λ̂ij, with
a proxy of the estimator under the standard model with constant coefficients.
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When the true model is the standard SDPD, it has not been proved that estimator
in Dou, Parrella, and Yao (2016) is consistent for parameters in the restricted
model. We can expect that it is bound to converge to some constant equal for
all the locations.
Since our purpose is not to evaluate the properties of generalized estimator under
the standard model, we consider to evaluate estimation under the standard model
by the mean value of the estimates over different locations

λ̄ =
1
p

p

∑
j=1

λ̂j =
1
p

p

∑
j=1

(X̂′jX̂j)
−1X̂′jŶj. (2.8)

Considering (2.8) as a proxy of constant estimated coefficients is sufficient
for our purpose. Our proposal is about a strategy for testing the particular
structure of the spatial dynamic panel data model, therefore, first of all we are
interested in studying the behaviour of the test statistics when the true model is
the generalized one (with nonconstant coefficients) and when the model is the
standard one (with constant coefficients) as in (2.2).
Notice that large values of the statistics in (2.7) denote a preference for the
generalized SDPD model. Instead, when the true model has constant parameters,
as in the SDPD model of Yu, De Jong, and Lee (2008), the statistics in (2.7) are
expected to be around zero. By Theorem 2 of Dou, Parrella, and Yao (2016),
it can be shown that under the null hypothesis D̂ij = Op(1) since λ̄

p−→ λ∗,
even that λ∗ 6= λ. Conversely, if the true model is the generalized one, D̂ij does
not converge to zero inasmuch as λ̄ is not consistent for the heterogeneous
parameters. In such a case, it can be shown that D̂ij = Op(

√
n).

In order to give an empirical evidence of this, Figure 2.1 shows the estimated
density (based on N = 250 replications of the model) of the statistic (2.7), for
i = 2, j = 1 and dimension p = 50, with different time series lengths (going
from n = 100 to n = 1000 and denoted by the line width, as indicated in the
legend). The left side of the figure refers to a case where the true model is
the standard SDPD model, with constant parameters, therefore this is a case
generated under the null hypothesis. In such a case, as expected, the distribution
of the statistic is centred around zero. The right side of the figure refers to a
case where the true model is a generalized SDPD, with non-constant parameters,
therefore this is a case generated under the alternative hypothesis. In such a
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case, as expected, the statistic D̂ij is far away from zero. Moreover, as required
for consistency, the value of the statistic increases for increasing time series
length. Similar results for other values of j, i and p will be shown later in the
simulation study.
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FIGURE 2.1: Estimated densities (based on N = 250 replications) of the statistic D̂ij =
√

n
(

λ̂ij − λ̄i

)
, for i = 2, j = 1 and dimension p = 50, with different time series lengths

denoted by the line width. The left side refers to the case generated under the null
hypothesis of true standard SDPD model. The right side refers to the case generated under

the alternative hypothesis of true generalized SDPD model.

Before explain in detail the strategy of the test by using statistics (2.7), we
state some basic assumptions and definitions useful for the next results.

Let F b
a be the σ-algebra generated by {yt, a ≤ t ≤ b} and let

α(A,B) = sup
A∈A,B∈B

|P(A)P(B)− P(AB)| (2.9)

denote the strong mixing coefficient for two σ-algebras A and B on the same
probability space.

Definition 1 (strong mixing coefficient). The strong mixing coefficients αn for the
process {y}t are defined by

αn = sup
i∈N

α(F i
−∞,F∞

n+i) (2.10)
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moreover, for the sequence αn we define a function α(t) = α[t] that is right
continuous and has a left limit, while we denote by α−1 its inverse.

Definition 2 (double array). Let (Yi,j)i=1,...,n; j=1,...,pn be a double array of dimensions
(pn, n)

Y1,1 Y1,2 ... Y1,j ... Y1,pn

Y2,1 Y1,2 ... Y2,j ... Y2,pn

...

Yn,1 Yn,2 ... Yn,j ... Yn,pn

(2.11)

where we denote pn in order to considering the high-dimensional case with growing p
as n→ ∞.
We also set Yn,pn = ∑

pn
j=1 Yn,j and Vn,pn = Var(Yn,pn).

Definition 1 is standard definition of alpha mixing coefficient for multivariate
time series and can be found in Rio (1995), meanwhile definition 2 gives us a
way of rearranging our data process in order to state some theoretical results.
Let {yt} be the multivariate process considered in the previous sections, we
denote by F its distribution function and by QF the inverse function of
u→ P(|y| > u). We arrange it in a double array according to definition 2 and
state the following assumption

(A.1) The process {yt} is strictly stationary and α-mixing with strong mixing
coefficients αn satisfying

V 3/2
n,pn

n

∑
i=1

∫ 1

0
α−1(x/2) Q2

F(x) inf
(
α−1(x/2)QF(x),

√
Vn,pn

)
dx −→ 0

(2.12)

We need some further regularity assumptions, most of them are from Dou,
Parrella, and Yao (2016). In particular we require that

(A.2) The spatial weight matrix W is known with zero main diagonal elements
and is uniformly bounded in row and column sums in absolute value
(UB) (i.e. we have, supp≥1 ‖W‖∞ and supp≥1 ‖W‖1, where
‖W‖∞ := sup1≤i,j≤p ∑j|wij| is the row sum norm and
‖W‖1 := sup1≤i,j≤p ∑i|wij| is the column sum norm);
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(A.3) the matrix S0 = I − λ0W is invertible and UB;

(A.4) εit are i.i.d. across i and t, zero mean, variance σ2 and E|εit|4+γ < ∞ for
some γ > 0;

(A.5) ∑∞
h=1|Ah| is UB, where A is as in the reduced form (2.3);

(A.6) the rank of the matrix X̂j is equal to 3, moreover the matrix

V̂j =
(
X̂′jX̂j

) p−→ Vj positive definite matrix, for j = 1, ..., p.

Conditions A.1 is a Lindeberg condition for multivariate strong mixing pro-
cesses. Assumptions A.2-A.5 are standard in SDPD modelling. Essentially,
conditions A.2 and A.3 limits the spatial correlation through spatial weights,
condition A.5 limits the dependence across serial and cross-sectional units,
condition A.6 ensures identifiability in (2.4).

2.4.1 Some theoretical results

Following, we give some theoretical results about the behaviour of the test
statistics (2.7). In detail, we state a Lemma for assessing asymptotic distribution
of the statistics under the null hypothesis.

Lemma 1. Let the model 2.1, under assumptions (A.1)-(A.6) as n→ ∞, p→ ∞ and
p = o(

√
n), we have that

√
n

p

p

∑
j=1

(λ̂j − λj)
d−→ N(0, Γ),

for some positive definite variance-covariance matrix Γ.

Proof of Lemma 1. By Corollary 1 of Dou, Parrella, and Yao (2016) we have that∥∥∥∥∥ 1
p

p

∑
j=1

(λ̂j − λj)

∥∥∥∥∥
1

≤ 1
p

p

∑
j=1
‖λ̂j − λj‖1 = Op

( 1√
n

)
, (2.13)

similar to Dou, Parrella, and Yao (2016), we have to show that

√
n

p
Γ1/2

p

∑
j=1


w>j

1
n ∑n

t=1 yty>t−1 ×
1
n ∑n

t=1 yt−1ε j,t

e>j
1
n ∑n

t=1 yty>t × 1
n ∑n

t=1 yt−1ε j,t

w>j
1
n ∑n

t=1 yty>t × 1
n ∑n

t=1 yt−1ε j,t

 d−→ N(0, I) (2.14)



2.4. The test statistics 83

By the proof of Theorem 2 of Dou, Parrella, and Yao (2016), it is sufficient to
show that

a>


1

p
√

n ∑
p
j=1 ∑n

t=1 w>j Σ1yt−1ε j,t
1

p
√

n ∑
p
j=1 ∑n

t=1 e>j Σ0yt−1ε j,t
1

p
√

n ∑
p
j=1 ∑n

t=1 w>j Σ0yt−1ε j,t

 (2.15)

is asymptotic normal, where a = (a1, a2, a3)
′ is any nonzero vector.

Let

Sn,p =
1

p
√

n

p

∑
j=1

n

∑
t=1

(
a1 w>j Σ1yt−1ε j,t + a2 e>j Σ0yt−1ε j,t + a3 w>j Σ0yt−1ε j,t

)
=

=
1

p
√

n

p

∑
j=1

n

∑
t=1

(
a1 X(j,t)

1 + a2 X(j,t)

2 + a3 X(j,t)

3

)
=

1
p
√

n

p

∑
j=1

n

∑
t=1

(
a′X(j,t)

)′.
where X(j,t) =

(
X(j,t)

1 , X(j,t)

2 , X(j,t)

3
)

Since by assumption (A.5) it holds that

lim sup
n→∞

max
1≤j≤p

V (X)

j,n/V (X)
p,n < ∞

where V (X)

j,n = Var(X(j,n)) and V (X)
p,n = Var(X(p,n)), then by Theorem 1 in Rio (1995),

2.15 is asymptotically normal for any nonzero vector a = (a1, a2, a3)
′. Substitut-

ing a with Γ1/2, (2.14) holds and the proof follows.

2.4.2 Simulation study

We conduct a Monte Carlo simulation in order to examine the performance of
the statistic D̂ij. We replicate the estimation procedures 1000 times for two DGP,
the standard SDPD model and its generalized version, respectively, and compute
the statistic D̂ij. We expect that statistic (2.7) takes value far from zero when
the true model is the generalized SDPD (assumed in the alternative hypothesis).
Meanwhile, when the true model is standard SDPD with constant parameters,
we expect it lies around zero. This behaviour can make the statistics useful in
testing spatial dependencies by the proposed test, in such a case it is able to
correctly discriminate both the hypothesis.
The spatial matrix W has been randomly generated as a rook matrix and has
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been row-normalized. The parameters have all been randomly generated in
the interval [−0.8, 0.8], assuring that the stationarity condition of the model is
guaranteed. Figures 2.2 and 2.3 report box-plots of the statistics under different
settings. Each panel shows the box-plots of the statistics D̂ij for the first 10
locations, the plots in column correspond to each of the 3 regression parameters
in the model λ0j, λ1j and λ2j. The behaviours of the statistics is similar under
the null hypothesis, at the same way, box-plots of statistics under the alternative
hypothesis are not centred at zero for the most part of locations. Instead, figure
2.4 shows the density of the statistics under both the DGPs and compare it
with the densities of λ̂i1 and mean value of ˆ̄λ1. The upper part is referred
to the case low dimensional case {n, p} = {100, 10}, while the bottom to
{n, p} = {500, 1000}. In each of them, first row refers to the case generated
under the null hypothesis of true standard SDPD model, while the second row
refers to the case generated under the alternative hypothesis of true generalized
SDPD model. To make the plot more clear, under the Null we have preferred to
plot the mean values of λ̄1 instead of the densities since the latters appeared
very flattened already for low dimensional case. As expected, the distribution
of the statistic is centred around zero under the null hypothesis, while the
generalized estimator is not centred at zero; under the alternative hypothesis,
although the statistic and the generalized estimator show similar behaviours, we
can see how the former is away from zero, due to the effect of λ̄1.
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FIGURE 2.2: Box-plot of the statistics Dij, for i = 0, 1, 2 (by column) and first 10 locations;
R = 1000 simulation runs. On the upper part the DGP is the standard SDPD, on the bottom

it is the generalized SDPD with {n, p} = {300, 500}.
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FIGURE 2.3: Box-plot of the statistics Dij for i = 0, 1, 2 (by column) and first 10 locations;
R = 1000 simulation runs. On the upper part the DGP is the standard SDPD, on the bottom

it is the generalized SDPD with {n, p} = {500, 1000}.
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FIGURE 2.4: Densities (derived by R = 1000 replications of the model) of the estimators
λ̂i1 (dashed green line), λ̄1 (blue solid line) and statistic D̂i1 (solid black line). Under the
Null we have reported the mean of λ̄1 (dotted blue line). Upper side refers to the case

{n, p} = {100, 10}, bottom side to {n, p} = {500, 1000}.
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2.5 A strategy for the test

We are proposing a test strategy to identify the specific structure of the spatial
dynamic model. In particular we are interested in classifying between the
standard SDPD, with constant parameters, and the its generalized version with
heterogeneous parameters among location.
Thus, for each term in (2.1) we need to test if λi1 = ... = λip or λij 6= λik for at
least one k 6= j and j = 1, ..., p.
Results from previous section show that the statistics in (2.7) can be used as
building blocks of such a testing purpose, thus the hypothesis we need to test is{

H0j : Dij = 0;

Hj1 : Dij 6= 0 for at leat one j = 1, ..., p
(2.16)

where i denotes the specific spatial parameter, with i = 0, 1, 2. Test (2.16) has
clearly a multiple testing structure and the problem then becomes how to decide
which hypotheses to reject, taking into account the multitude of tests.

2.5.1 Multiple hypothesis testing

When many hypotheses are tested jointly, some are bound to appear as sig-
nificant by chance alone, even if in reality they are not relevant. If we follow
the same rejection rule independently for each test, the resulting probability
of making at least one type I error is substantially higher than the nominal
level used for each test, particularly when the number of total tests is large.
To address this issue, multiple testing procedures seek to make the individual
tests more conservative so as to minimize the number of type I errors while
maintaining an overall error rate. The type I error rates most discussed in the
literature are FWER (family-wise error rate) and FDR (false discovery rate). The
FWER is defined as the probability of making at least one false rejection when
all the null hypotheses are true, meanwhile the FDR is defined as the expected
percentage of rejected hypotheses that have been wrongly rejected. Instead
of controlling the probability of a type I error at a set level for each test, these
methods control the overall FWER or FDR at level of the overall error rate.
To prevent us from declaring true null hypotheses to be false, we seek control
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(at least asymptotically) of the FWER or FDR. We choose to control FWER by
applying the well-known Bonferroni method. It is the most familiar scheme for
controlling the FWER : for each null hypothesis H0j, individual p-values pjs are
computed and the hypothesis H0j is rejected at global level α if pj ≤ α/m.

2.5.2 Bootstrap approach

We know by Lemma 1 that statistics (2.7) has normal asymptotic distribution.
Thus, if we would use the asymptotic distribution for our test purpose, we have
to consider studentized form, say

Ẑj = Γ−1/2
Dj

D̂j ∼ N(0, I), (2.17)

where ΓDj is a 3× 3 positive definite matrix. Then, under the Null we can
bound the probability of event {|Ẑj| < cn} as follows

P(|Ẑj| < cn) < 1− 1√
2π

∞∫
cn

exp{−u2/2} du < 1− 1
cn
√

2π
exp{−c2

n/2}

for a given cn growing with n. Thus, a primary way to proceed with the test
could be find condition that ensures P(|Ẑj| < cn) goes to one under the null
hypothesis, and at the same time it vanishes under the alternative hypothesis,
for the same threshold cn. Under such a condition the statistics has a proper
behaviour that makes it useful for infinite p hypothesis testing in a multiple
scheme like this one. Unfortunately, this strategy is no easy to adopt, first of
all we need to take into account for the variance of D̂ij in order to obtain the
studentized version (2.17), second we need some procedure in order to find
threshold cn. Therefore, for testing significance of D̂j, we must account for
some estimate Γ̂Dj of the variance-covariance matrix ΓDj . Unfortunately, direct
estimation of variance-covariance matrix is not straightforward. Moreover, we
have a further problem, if the order of increasing dimension p is not o(

√
n)

we encounter a non-vanishing bias that affects the estimate, thus we also need
to take into account for bias estimates. For that reason, in order to provide a
good approximation for our test, we apply a bootstrap method useful for finite
samples.
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As concern the derivation of the individual p-values pis, we use a resampling
procedure based on the residual bootstrap approach. In particular, we follow a
procedure that allows us to approximate the distribution of the test statistics
D̂ij, then by such a bootstrap distribution we compute the p-values for the test.
This procedure runs as follows.

1. First obtain the bootstrap errors {ε∗t } by drawing B = 999 replicates
independently from the residuals ε̂t = yt − ŷt, where ŷt = λ̄0Wyt +

λ̄1yt−1 + λ̄2Wyt−1 and λ̄i =
1
p ∑

p
j=1 λ̂ij.

2. Generate the bootstrap series, under the null hypothesis, as

ŷ∗t = Ây∗t−1 + Ŝ−1
0 ε∗t ,

where Ŝ0 = (Ip − λ̄0W) and Â = Ŝ−1
0 (λ̄1Ip + λ̄2W).

3. Compute the bootstrap statistics D̂∗ij =
√

n
(

λ̂∗ij − λ̄∗i

)
, as in (2.7), with λ̂∗ij

and λ̄∗i estimated from the bootstrap data ŷ∗t .

4. For a given j = 1, . . . , p, the individual p-value pj for testing H0j is defined

as the probability P( |D∗ij| > |D̂ij|
∣∣∣ y1, ..., yn), which is approximated by

the relative frequency of the event {|D∗ij| > |D̂ij|} over the 999 bootstrap
replications.

Bootstrap estimates consistency for VAR models has been studied, from em-
pirical and theoretical point of view, in Kim (1999), Kim (2004), Staszewska-
Bystrova (2011), and Paparoditis (1996). In our case, VAR representation (2.3) is
stationary and the estimator satisfies proper conditions to assure consistency of
the corresponding bootstrap quantities.
In particular, given the (2.4), we obtain the following reparametrization

Σ′1Σ−1
0 = (I− D(λ0·)W)−1(D(λ1·) + D(λ2·)W). (2.18)

Notice that the left side of the above equation corresponds to the Yule-Walker
equation for the reduced form of the model, meanwhile the right part corre-
sponds to the matrix A in the VAR representation (2.3).
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Given the generalized Yule-Walker estimator (2.6), we define

Â = (I− D(λ̂0·)W)−1(D(λ̂1·) + D(λ̂2·)W) (2.19)

the generalized Yule-Walker estimator of A obtained by estimators λ̂ij. Now,
given the error term εt, let Fε be its distribution function and denote by F̂ε the
empirical distribution of ε̂t.
The following proposition shows the asymptotic validity of bootstrap procedure
for estimator (2.19).

Proposition 1. Suppose that the assumptions (A.1) - (A.6) hold. If p = o(
√

n), we
have that

d2(F̂ε , Fε)→ 0 in probability, (2.20)

where d2(·, ·) is the mallow’s metric (see Paparoditis (1996), pag.282).

Proof. By results of Theorem 2 in Dou, Parrella, and Yao (2016) and the continu-
ous mapping theorem, Â is a consistent estimator for A. Moreover, we know
that model (2.3) is a particular VAR(1) process. Then, by delta method (Serfling
(1980)), it can be shown that

‖Â−A‖ = Op

(√ p
n

)
. (2.21)

where ‖M‖2 = tr(M′M) denotes the Schur’s matrix norm and p is the order for
the matrix A.

Since Theorem 2.3 of Paparoditis (1996) does not require a specific estimator
for A but, it is valid for any estimator and furthermore, it only needs ‖Â−A‖ =
op(1), we can use result (2.21). Then, by Theorem 2.4 of Paparoditis (1996) the
result follows since p = o(

√
n).

Remark. After some algebra and using the same approach as in Paparoditis
(1996), we can show that (λ̂∗0j, λ̂∗1j, λ̂∗2j)

′ are consistent. The main difference with
respect to the paper of Paparoditis (1996) is that we have a dimension p which
goes to infinity when n→ ∞.
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2.5.3 Simulation results

In the following, we evaluate the performance of the test by a simulation
study. We perform 250 simulation runs, and generate data under the Null
and Alternative hypothesis, respectively. At each step we run 999 bootstrap
replication in order to compute p-values for the test statistics, we set the nominal
size α equal to 0.1.
Table 2.1 reports values of the size of the test and the power over the whole
simulation replications. Similarly, figure 2.5 shows the same results for different
combinations of number of locations p and time series length n. Each plot of
the figure shows size (black points) and power (green points) from multiple test
corresponding to one of the i = 0, 1, 2 index and for a given value of dimension
p, meanwhile the sample size n is from 100 to 1000. We also report horizontal
lines at level of the nominal size and maximum power 1. As we can see, apart
from some cases, p-values converge to the nominal size and the power to 1 as
the sample size n grows.

Under Null for i = 0 for i = 1 for i = 2

(=size) n=100 500 1000 100 500 1000 100 500 1000

p = 10 0.124 0.1 0.072 0.184 0.144 0.148 0.136 0.112 0.108
p = 50 0.024 0.12 0.092 0.156 0.144 0.172 0.144 0.164 0.24
p = 100 0.888 0.2 0.204 0.82 0.216 0.244 0.884 0.128 0.136

Under Altern. for i = 0 for i = 1 for i = 2

(=power) n=100 500 1000 100 500 1000 100 500 1000

p = 10 0.204 1 1 1 1 1 0.988 1 1
p = 50 0.056 0.108 0.148 1 1 1 1 1 1
p = 100 0.44 0.968 1 1 1 1 1 1 1

TABLE 2.1: Values of size and power of the test for different settings of sample size n and
number of parameters p.
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FIGURE 2.5: Power (green points) and size (black points) of the test for different combi-
nations of p and n. The green dotted line is at level 1, while the black one at nominal size

0.1.
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2.6 Discussion

In this chapter we proposed a strategy for testing the particular structure of
the SDPD, by means of a multiple testing procedure based on bootstrap. Our
procedure allows choosing between a generalized version of SDPD that makes
assumption of different scalar coefficients, and the standard SDPD with equal
coefficients among locations. While standard SDPD is highly regarded among
spatio-temporal models, the generalized version has been recently introduced
by Dou, Parrella, and Yao (2016). Motivation for different scalar coefficients can
be found in practical situations in which empirical evidence shows how consid-
ering constant effects for each location can be too restrictive. This suggested us
to propose a test for such a class of models. Some basic theoretical results for
the statistic and the bootstrap strategy have been showed. The multiple scheme
of the test was handled by the Bonferroni technique and the distribution of the
statistic derived by a residual resampling scheme. Results from a simulation
study show that the proposed procedure for testing SDPD models works well.
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