




 

 

 

 

As far as the laws of mathematics refer to  

reality, they are not certain; and as far as they  

are certain, they do not refer to reality. 

(Albert Einstein) 

 

 

 

The Guide is definitive. 

 Reality is frequently inaccurate. 

(Douglas Adams) 





Abstract 

The work presented in this Ph.D. thesis deals with the definition of new fuzzy 

models for Group Decision Making (GDM) aimed at improving two phases 

of the decision process: preferences expression and aggregation. In particular 

a new preferences model named Fuzzy Ranking has been defined to help 

decision makers express fuzzy statements on available alternatives in a simple 

and meaningful form, focusing on two alternatives at a time but, at the same 

time, without losing the global picture. This allows to reduce inconsistencies 

with respect to other existing models. 

Moreover a new preference aggregation model guided by social influence 

has been described. During a GDM process, in fact, decision makers interact 

and discuss each other exchanging opinions and information. Often, in these 

interactions, those with wider experience, knowledge and persuasive ability 

are capable of influencing the others fostering a change in their views. So, 

social influence plays a key role in the decision process but, differently from 

other aspects, very few attempts to formalize its contribution in preference 

aggregation and consensus reaching have been made till now. 

In order to validate the defined models, they have been instantiated in 

two application contexts: e-Learning and Recommender Systems. In the first 

context, they have been applied to the peer assessment problem in massive 

online courses. In such courses, the huge number of participants prevents 

their thorough evaluation by the teachers. A feasible approach to tackle this 

issue is peer assessment, in which students also play the role of assessor for 

assignments submitted by others. But students are unreliable graders so peer 

assessment often provides inaccurate results. By leveraging on defined GDM 

models, a new peer assessment model aimed at improving the estimations of 

student grades has been proposed.  
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With respect to Recommender Systems, the group recommendation issue 

has been tackled. Instead of generating recommendations fitting individual 

users, Group Recommender Systems provide recommendations targeted to 

groups of users taking into account the preferences of any (or the majority 

of) group members together. The majority of existing approaches for group 

recommendations are based on the aggregation of either the preferences or 

the recommendations generated for individual group members. Customizing 

the defined GDM models, a new model for group recommendations has been 

proposed that also takes into account the personality of group members, their 

interpersonal trust and social influence.  

The defined models have been experimented with synthetic data to show 

how they operate and demonstrate their properties. Once instantiated in the 

defined application contexts, they have been experimented with real data to 

measure their performance in comparison to other context-specific methods. 

The obtained results are encouraging and, in most cases, better than those 

achieved by competitor methods. 
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Introduction 

Everyone’s life is full of alternatives. In fact, from the early days of life to a 

venerable age, from morning awakening to nightly sleeping, a person needs 

to make decisions of some sort. So, decision making can be considered one of 

the most important and frequent human activities. It includes information 

gathering as well as data mining, modelling, and analysis. It requires formal 

calculus and subjective attitudes and may take different forms according to 

situations and circumstances.  

One of the most complex decision making structures arises when several 

persons are involved in the decision process. This is known as Group Decision 

Making (GDM). GDM has been widely studied since it has applications in 

many fields. Several models and tools have been proposed for supporting this 

process in each of its steps, from the expression of the decision makers’ 

opinions to their aggregation, from the selection of a feasible alternative to 

the achievement of the consensus on it. Among such approaches, those based 

on the Fuzzy Sets Theory, have shown to be the most effective to deal with 

the intrinsic uncertainty and imprecision of human judgments. 

Nevertheless, fuzzy GDM models are not free of defects. In particular, the 

way decision makers express their preferences is often complex and requires 

to specify the degree to which each alternative is preferable to each other. 

This may result difficult and time-consuming and is likely to introduce errors 

and inconsistencies impacting the whole decision process. Moreover, even if 

several methods exist to integrate preferences expressed by decision makers, 

few attempts have been done till now to also consider social elements affecting 

the decision process like personality, interpersonal trust and influence.  

To overcome these issues, in this Ph.D. thesis, new fuzzy models for GDM 

affecting both preferences expression and aggregation have been defined and 
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experimented within two application contexts: e-Learning and Recommender 

Systems. The thesis is organized in two parts: in part 1 (chapters 1-3), the 

proposed models are defined and experimented in-silico to demonstrate their 

properties; in part 2 (chapters 4-6), the defined models are instantiated in 

the selected contexts and experimented to measure their performance, also 

in comparison with other context-specific methods. 

In particular, chapter 1 introduces the main concepts related to decision 

making, GDM and Fuzzy Sets, that are pre-requisite for the definition of the 

original models and methods described subsequently. The application of fuzzy 

sets to GDM is discussed and the most diffused fuzzy models and methods 

to represent and aggregate decision makers’ preferences, rank the problem 

alternatives and identify the best solution are introduced. Fuzzy-based 

methods for the management of incomplete information are also described. 

In chapter 2, the original Fuzzy Ranking model for preference elicitation 

is defined and compared with related work. After having deepened the 

classical ordinal ranking model, the proposed model is described as a fuzzy 

extension of the ordinal one. Conversion algorithms from fuzzy rankings to 

fuzzy preference relations and backward are then defined as well as similarity 

measures evaluating the concordance between experts’ opinion. 

In chapter 3 a Social Influence-Guided GDM model, able to manage the 

effects of social influence in GDM, is defined. The model estimates the level 

of social influence basing on interpersonal trust with the assumption that, 

the more a decision maker trusts another, the more her opinion is influenced 

by him. After having introduced background concepts on social influence and 

related theories, the proposed model is outlined and described in each step. 

The advantages with respect to other existing models are then presented as 

well as the results of an in silico experiment. 

In chapter 4, the application of the defined models to peer assessment in 

standard and massive e-Learning contexts is discussed. The peer assessment 

problem is described and formalized, existing approaches, aimed at improving 

peer assessment reliability are outlined and performance measures capable of 



Introduction 11 

establishing and comparing the goodness of different approaches are defined. 

Then, a new approach based on the instantiation on the defined GDM models 

is presented and compared with other existing methods. 

In chapter 5, the application of the defined GDM models to the group 

recommendation problem (in the domain of Recommender Systems) is shown. 

After having introduced the most diffused approaches to individual and 

group recommendation, an original influence-based approach, based on the 

defined models, is defined and compared with related work. When generating 

group recommendations, the proposed model is able to take into account not 

only individual preferences (like most competitor methods) but also social 

elements like the personality of group members, their influence and mutual 

relationships. 

In chapter 6, a set of experiments aimed at measuring the performance of 

the original peer assessment and group recommendation methods defined in 

chapters 4 and 5 are presented and compared with those obtained by other 

methods from the respective fields. Large-scale experiments with synthetic 

realistic data as well as small-scale experiments with real data have been 

performed. Results obtained, in both contexts, are encouraging and proposed 

methods, in most cases, outperform competitor methods. 

Eventually, conclusions and on-going work are summarized. 





 

PART 1 

 

Fuzzy Models for Group Decision 

Making 





Chapter 1 

Background on Group Decision 

Making 

This chapter presents the basic concepts of Decision Making (DM) and Group 

Decision Making (GDM), which are the basis for the definition of the original 

models and methods described later on. Then, essential notions on Fuzzy Sets 

are outlined and their application in a GDM process, as a way to deal with 

the inherent uncertainty and imprecision of human judgments, is discussed. 

To this end, the most diffused fuzzy models and methods able to represent 

and aggregate decision makers’ preferences, to rank problem alternatives and 

to identify the best solution are described. Eventually, existing fuzzy-based 

methods that support incomplete and incoherent information processing in 

GDM are introduced. 

1.1 Decision Making 

Decision Making (DM) is a problem-solving activity aimed at the selection 

of a belief or a course of action among several alternatives. The typical DM 

process consists in the evaluation of the existing alternatives and the choice 

of the most satisfactory one, taking into account all the factors and 

contradictory requirements and according to the preferences of the decision-

maker. It is therefore a process that can be more or less rational and based 

on explicit or implicit knowledge. 

Any person makes decisions each and every day, often in an automatic 

and subconscious way. Some of these decisions are relatively small, such as 

deciding what to wear or what to have for lunch. Others are big and can 
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have a major influence on the course of our life, such as deciding where to go 

to school or whether to have children. Some decisions take time while others 

must be made in a split-second. 

If we look at organizations, we see that any of them has its goals and 

achieves them through the use of resources such as people, material, money, 

and the performance of managerial functions such as planning, organizing, 

directing, and controlling. To carry out these functions, managers, at various 

levels, are engaged in a continuous DM process related to problems that can 

concern aspects of logistics management, customer relationship, marketing, 

production planning, etc. [1]. 

Making a correct decision is not always easy. In many cases, in fact, the 

identified alternatives are related to complex situations that may have several 

factors of uncertainty like [2]: 

• impossibility or inexpediency of obtaining sufficient amounts of reliable 

information; 

• lack of reliable predictions of the characteristics and behavior of complex 

systems that reflect their response to external and internal actions; 

• poorly defined goals and constraints in the project, planning, operation, 

and control tasks; 

• impossibility of formalizing a number of factors and criteria. 

In [1], the authors recognize that the DM process within organizations is 

even more complex today than in the past. This is explained by several 

factors like the availability of huge amount of information that fosters the 

generation of more and more alternatives; the amplified cost of making errors 

thanks to the complexity of operations, automation, and the chain reaction 

that an error can cause in many parts of the organization; the rapid changes 

in the environment that introduce uncertainty and require decisions to be 

made quickly. These reasons justify the requirement for increasing technical 

and methodological support to help DM. 

A typical DM process can be split in four phases as shown in Figure 1 

[3]. In the intelligence phase the reality is examined, the problem is identified, 



Background on Group Decision Making 17 

its limiting factors are analyzed and the problem statement is defined. In the 

design phase, a simplified model that represents the fragment of reality under 

examination is constructed and validated, and potential alternative solutions 

are identified. In the choice phase the identified alternatives are analyzed and 

a solution to the problem is proposed and tested to determine its viability. 

In the implementation phase the proposed solution is adopted. At every step 

it is possible to return to an earlier phase to refine the intermediate outcomes 

basing on their validation. 

 

Figure 1. Steps of a DM Process 

According to several authors [1, 2, 3] DM problems can be classified based 

on their structure. In structured problems, involved entities and relationships 

are convincingly established so that they can be numerically estimated. Such 

problems can be described and analyzed through standard mathematical 

models and methods coming from the fields of operational research, business 

analytics, simulation, statistics, forecasting, mathematical optimization, etc. 

Such problems are also referred to be “quantitatively formulated”. 
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Conversely, in unstructured problems, only the description of the most 

important entities is available while quantitative relationships between them 

are not known. These problems are also known as “qualitatively expressed” 

and cannot be described and analyzed through standard models and methods. 

Typical unstructured organizational problems include planning new services, 

hiring an executive, initiate a research and development project, etc.. 

According to [2, 4], a feasible (and sometimes the only possible) way to 

address this class of problems is to rely on the formulation of subjective 

estimates carried out by decision-makers (thus based on their own ideas on 

the efficiency of possible alternatives and importance of diverse criteria) and 

on the definition of the corresponding preferences. The heterogeneous and 

qualitative parameters of the problem can be so combined into a unique 

model, which permits alternatives to be evaluated.  

The assumption is that experienced managers perceive, in a broad and 

well-informed manner, how many personal and subjective considerations they 

have to bring into the DM process. On the other hand, successes and failures 

of the majority of decisions can be judged by people on the basis of their 

subjective preferences.  

In the middle between structured and unstructured problems, there are 

semi-structured problems having both quantitative and qualitative elements. 

Solving them involves a combination of traditional analytical models with 

models based on subjective preferences. Unstructured and semi-structured 

DM problems are also called ill-structured. 

1.2 Group Decision Making  

Decisions can be made by individuals or groups. While individual decisions 

are often made at lower managerial levels and in small organizations, group 

decisions are usually made at high managerial levels and large organizations. 

The DM process in which there is more than one individual involved is named 

Group Decision Making (GDM). 
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GDM is particularly useful when decisions require multiple perspectives 

and different areas of expertise. The main advantages of GDM, if compared 

to standard GM, can be summarized as follows [5]: 

• more intellectual resources are gathered to support the decision including 

individual competencies, intuition, and knowledge; 

• the work related to acquiring and processing the amount of available 

information can be distributed among group members; 

• if the group exhibits divergent interests, the final decision tends to be 

more representative of the needs of the organization. 

GDM can be cooperative or non-cooperative. In cooperative GDM all the 

members, each with their own knowledge, ideas, experience and motivation, 

are supposed to work together to achieve a common decision for which they 

will share the responsibility. Conversely, in non-cooperative GDM (otherwise 

known as non-cooperative multi member DM), the group members play the 

role of antagonists over some interest for which they must negotiate.  

As in cooperative GDM the members share responsibility for the decision 

(and may also participate in its implementation), it is important to assure 

that each member is satisfied with it. For this reason, the ideal condition to 

terminate a GDM process is the achievement of a unanimous solution. In 

absence of unanimity, the most satisfactory alternative for the group should 

be selected. The most common approaches to find it are [1]: 

• the group decision is made by the group leader after having discussed 

with the other group members (authority rule); 

• the group decision is made by selecting the alternative that is preferred 

by the majority of members (majority rule); 

• the group decision is made by repeatedly eliminating the most unpopular 

alternative until just one is left (negative minority rule); 

• the group decision is constructed by combining ranking or scores provided 

by members, individually, for each alternative (ranking rule); 

• the group decision is constructed to minimize the group discordance so 

that no member is extremely dissatisfied (soft consensus rule) [6]. 
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As a matter of fact, the commitment to the implementation of a given 

solution strictly depends upon the level of consensus achieved by the group. 

According to this principle, a decision imposed by a dominant portion of the 

group has to be considered worse than a decision obtained achieving genuine 

consensus. The most common reasons for discordance among the group 

members can be summarized as follows [2]: 

• although the group members are supposed to share the primary goal (i.e. 

to find the solution which most benefits the organization), they can have 

hidden or just partially shared secondary goals (e.g. to meet the priorities 

and needs of their respective departments); 

• each member may have a distinct perception of the problem and intuition 

which may be hard to formalize and share to the group; 

• each member may have access to different profiles of information, certain 

members may also have privileged access to restricted information. 

These factors can be mitigated by promoting discussions and sharing all 

relevant information pertaining to the decision. However, even when this 

happens, there are other factors that can adversely affect the decision process 

like the need to obtain a solution rapidly or the pressure of concordant 

majorities on the other decision makers. Both factors are reflected in the 

group’s tendency to prematurely converge on sub-optimal solutions [7, 8]. 

Some authors [1, 2, 9] stress the importance of including a moderator to 

support the GDM process. The moderator defines the process rules, assigns 

the tasks of each member, selects the appropriate technology, develops the 

schedule to be accomplished, identifies controversial opinions, promotes the 

discussion on them and verifies the reached level of concordance [10]. As 

shown in [11], the participation of a moderator, which may be human or 

automated, very often results in better outcomes. 

Various types of uncertain factors are commonly met in GDM problems 

that may be related to the nature of the problem, the possible alternatives of 

the decision and the potential outcomes [12]. Uncertainty has often been 

associated to the gap between the information available and the information 
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that decision makers would like to have [13] and may derive from incomplete 

or overwhelming information as well as from poor understanding. According 

to [2], such factors should be taken into account when defining mathematical 

models supporting GDM processes in order to increase the credibility and the 

factual efficiency of the decisions.  

The first attempts made in this direction were based on probability theory 

[14, 15] but, in more recent works, some researchers criticized the validity of 

these approaches. In particular, in [16] it was pointed out that similar to the 

solution of problems on the basis of deterministic methods, when we assume 

exact knowledge of the information, which usually does not correspond to 

reality, the application of probabilistic methods also supposes exact knowledge 

of the distribution laws and their parameters, which does not always 

correspond to the real possibilities of obtaining the entire spectrum of the 

probabilistic description. 

Alternative and more recent approaches able to deal with uncertainty in 

GMD rely, instead, on the fuzzy set theory established by Zadeh in 1965 [17]. 

According to [2], the application of such theory in GDM opens an interesting 

avenue of giving up “excessive” precision, which is inherent in the traditional 

modeling approaches, while preserving reasonable rigor. Following these 

considerations, the novel approaches defined in this Ph.D. thesis are precisely 

based on the fuzzy set theory. In order to provide a suitable background for 

appreciating them, an introduction to the basic concepts of such theory is 

given in the next sub-section. 

1.3 Preliminaries on Fuzzy Sets 

Fuzzy sets were introduced in [17] as an extension of classical sets. While in 

a classical (crisp) sets, each element can either belong to or not belong to a 

set, fuzzy sets allow various degrees of membership of an element to a set, 

ranging from 0 (no membership) to 1 (full membership). More formally, if X 

is a collection of objects, a fuzzy set A defined in X is a set of ordered pairs: 
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 � = {(�, �%(�)) | � ∈ �} (1) 

where �%(�), called membership function, maps X to the membership space 

[0,1]. According to this definition, a crisp set A of X can also be viewed as a 

fuzzy set in X with a membership function: 

 �%(�) = {1 if � ∈ �
0 if � ∉ � (2) 

The support of a fuzzy set A, denoted by supp(�), is defined as the crisp 

set supp(�) = {� ∈ � | �%(�) > 0}. The height of a fuzzy set A, denoted by 

hgt(�) is defined as: 

 hgt(�) = sup+∈, �%(�). (3) 

If hgt(�) = 1 then A is said normal. A fuzzy set A is empty, denoted by ∅, if 

�%(�) = 0 for any � ∈ �. 

A fuzzy set A is called subset of a fuzzy set B, denoted by � ⊂ �, if 

�%(�) ≤ �1(�) for any � ∈ �. If � ⊂ � and � ⊂ � then A and B are called 

equal, denoted by � = �. The union of two fuzzy sets A and B, is the fuzzy 

set � ∪ �, whose membership function is: �%∪1(�) = max(�%(�),�1(�)). 
The intersection of two fuzzy sets A and B, is the fuzzy set � ∩ �, whose 

membership function is: �%∩1(�) = min(�%(�), �1(�)). The complement of 

a fuzzy set A, is the fuzzy set denoted by �5, whose membership function is: 

�%6(�) = 1 − �%(�) [18]. Operations on fuzzy sets comply with reflexive, 

transitive, commutative, associative and distributive properties as well as 

with absorption, involution and De Morgan’s laws. Instead, complementarity 

and mutual exclusivity laws are no longer valid for fuzzy sets. 

Let A be a fuzzy set on a collection of objects X and � ∈ [0,1], the α-cut 

of A is the crisp set �: given by: 

 �: = {� ∈ � | �%(�) ≥ �}. (4) 



Background on Group Decision Making 23 

A fuzzy set A, which is defined on the set of real numbers ℝ, is called convex 

if all its α-cuts �: are convex sets for any � ∈ [0,1] i.e. if it is verified that 

�%(α� + (1 − α)�) ≥ min(�%(�),�%(�)) for any � ∈ [0,1] and �, � ∈ ℝ. 

A fuzzy relation is a relation where various degrees of association strength 

between elements are allowed. Given two collections of objects X and Y, a 

fuzzy relation R from X to Y (or on � × � ) is defined as: 

 � = {((�, �), �A(�,�)) | (�, �) ∈ � × � }.  (5) 

The relation R can be seen as a fuzzy subset of � × � . If � = �  then R is 

called fuzzy relation on X.  

Fuzzy relations in different spaces can be combined together. Let R be a 

fuzzy relation on the space � × �  and S a fuzzy relation on the space � × �, 

the max-min composition of R and S, denoted by � ∘ �, is defined as: 

 � ∘ � = {((�, �),maxH (min(�A(�, �),�J(�, �)))) ∣ � ∈ �, � ∈ � , � ∈ �}  (6) 

A fuzzy relation R on X is called reflexive if �A(�, �) = 1 for any � ∈ �; 

it is called symmetric if �A(�, �) = �A(�, �) for any �, � ∈ �; it is called max-

min transitive if � ∘ � ⊂ �. A fuzzy relation that is reflexive and symmetric 

is called fuzzy proximity relation; a fuzzy relation that is reflexive, symmetric, 

and max-min transitive is called fuzzy similarity relation. 

A convex normal fuzzy set A on ℝ is called a fuzzy number if there is 

exactly one � ∈ ℝ so that �%(�) = 1 (� is called mean value of A) and �% is 

piecewise continuous. A sample fuzzy number A with membership function 

�% (�) = 11+(+−5)2 is shown in Figure 2.a. Following the extension principle 

defined in [19] it is possible to extend basic operations to fuzzy numbers. If 

A and B are fuzzy numbers and ∗: ℝ × ℝ → ℝ is a binary operation then the 

membership function of the fuzzy number � ∗ � is given by: 

 �%∗1 (�) = supT=+∗H min(�%(�), �1(�))  for any �, � ∈ ℝ (7) 
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A fuzzy number A is of LR-type if there exist functions L (left) and R 

(right), and scalars � > 0 and � > 0 so that the membership function of A 

can be expressed as: 

 �% (�) =

⎩{⎨
{⎧� (� − �� ) for � ≤ �

� (� − �� ) for � ≥ � (8) 

where m is the mean value of A while � and � are called the left and right 

spreads, respectively. A LR fuzzy number A can be symbolically denoted as 

(�, �, �)`A. If the mean value is not a real number but an interval [�, �] 

then A is called LR fuzzy interval and is denoted as(�, �, �, �)`A. Figure 

2.b shows the membership function of the LR fuzzy number (4,2,3)`A with 

�(�) = �−+2
 and �(�) = �−2+. 

 

Figure 2. The membership function of sample fuzzy numbers 

Operations with LR fuzzy numbers can be simplified with respect to the 

application of equation (7). Let � = (�, �, �)`A and � = (�, �, �)`A be LR 

fuzzy numbers then: � + � = (� + �, � + �, � + �)`A; −� = (−�, �, �)`A; 
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� − � = (� − �,� + �, � + �)`A. Approximate expressions for other kind of 

operations are also shown in [18]. 

A LR fuzzy number (�, �, �)`A with �(�) = �(�) = max(0, 1 − �) is 

named triangular fuzzy number and can be alternatively denoted with the 

triplet (� − �, �, � + �). Figure 2.c shows the membership function of the 

sample triangular fuzzy number (2,4,8). A LR fuzzy interval (�, �, �, �)`A 

with �(�) = �(�) = max(0, 1 − �) is named trapezoidal fuzzy number and 

can be denoted with (� − �, �, �, � + �). Figure 2.d shows the membership 

function of the sample trapezoidal fuzzy number (1,4,7,8). 

Fuzzy sets are useful to describe and assess information when it is difficult 

or impossible to do that precisely in a quantitative manner. These situations 

often involve attempting to qualify an event or an object by our human 

perception, and therefore often they lead to use words in natural languages 

instead of numerical values. To deal with these situations, linguistic variables 

are often used. Such variables can assume values that are not numbers but 

words or sentences in a natural or artificial language and rules are provided 

to map such variables on fuzzy sets. 

A linguistic variable L is characterized by a quintuple (�, � , � , �, �) 

where x is the name of the variable, T is the set of possible linguistic values 

of x, U is a collection of objects representing the universe of discourse, G is a 

syntactic rule for generating elements of T (usually a grammar) and M is a 

semantic rule for associating the meaning �(�), which is a fuzzy subset of U, 

to each term � ∈ � . 

1.4 Fuzzy Preferences Modeling in GDM 

A GDM problem is characterized by a group of decision makers (also called 

experts hereinafter) � = {�1,… , �k}, each with her own knowledge, ideas, 

experience and motivation, that express their preferences on a finite set of 

alternatives � = {�1,… , �l} to achieve a common solution. Several ways to 

express and model experts’ preferences on available alternatives have been 
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proposed so far by different researchers [2, 20]. We analyze below the main 

features of the most popular ones. 

The ordering of alternatives from best to worst, also known as ordinal 

ranking, is one of the simplest preference expression models, useful when 

decision makers have difficulties in assessing quantitatively the strength of 

their preferences. In this case, according to [21], the possibilities of deriving 

recommendations based on incorrect information are reduced. The ordinal 

ranking provided by an expert �m ∈ � can be represented as an ordering array 

�m = (�m(�1),… , �m(�l)) being a permutation function which returns the 

position of any alternative �p ∈ � [22]. 

By using utility values, an expert �m ∈ � can expresses her preferences 

through the definition of an utility function �m: � → [0,1] that associates a 

crisp value to each alternative [2]. Utility functions are supposed to preserve 

the preference ordering of the alternatives in a way that if �m(�p) > �m(�r) 
then �p is preferred to �r while, if �m(�p) = �m(�r), then �p is indifferent to 

�r for �p, �r ∈ �. Utility values allow experts to give precise estimates of 

their preferences but may introduce errors due to experts evaluating the same 

alternatives at different scales. To mitigate this issue, rating techniques have 

been defined based on anchors points and intervals [23]. 

With fuzzy estimates, each expert �m ∈ � associates a fuzzy number �m(�p) 
to each alternative �p ∈ �. Such fuzzy number can be specified or indirectly 

expressed by means of a linguistic term [24]. Figure 3 shows an example of 

linguistic terms that may be used in a GDM process and the membership 

function of the corresponding fuzzy numbers. The use of linguistic terms 

makes the preference elicitation process more intuitive but its effectiveness 

can be hindered by differences in the interpretation of the linguistic terms. 

Techniques for equalizing fuzzy sets have been defined for reducing this type 

of elicitation error [2]. 

By using preference relations, each expert is asked to express the relative 

preference of each alternative with respect to any other through the definition 

of a positive reciprocal � × � matrix M where each element �pr is a preference 
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the preference relation is asymmetric, i.e. if �p is preferred to �r then �r is 
not preferred to �p and, as a consequence, �pp = 0.5 ∀� ∈ {1,… , �} (i.e. any 

alternative is never preferred to itself). Moreover, a FPR that satisfies the 

additive transitivity property so that �pr + �rm + �mp = 1.5 ∀�, �, � ∈ {1,… , �}, 

is also said to be additive consistent [28]. 

Similarly to preference relations, in the elicitation process of FPRs it is 

necessary to collect �(� − 1) 2⁄  pairwise comparisons but it is also possible to 

collect just � − 1 preferences and estimate the missing ones by enforcing 

additive transitivity with methods described in section 1.7. Conversely, if an 

expert provides all preferences but the FPR values do not satisfy additive 

transitivity, it is also possible to improve such values by modifying them to 

guarantee an acceptable level of consistency [29]. 

Among the existing preference models, FPRs are one of the most diffused. 

According to [30], the main advantage of FPRs is that they allow experts to 

focus on two alternatives at a time facilitating, in this way, the expression of 

more accurate preferences with respect to non-pairwise methods. They also 

ensure a high level of expressiveness and translation techniques are available 

to convert preference information from any other representation model to 

FPRs and backward [2]. For this reason, in the next sub-sections we assume 

that experts’ preferences are available in form of FPR. 

1.5 Fuzzy Preferences Aggregation in GDM 

Once each expert �m ∈ � has expressed her preferences on each alternative 

�p ∈ �, m individual FPRs �1,… , �k are available where �m = (�prm ). A first 

step needed to reach a final decision is to aggregate available individual FPRs 

into a collective one by using some aggregation operator [1]. Several operators 

have been proposed for this purpose by different researchers, each based on 

a different mapping from [0,1]k to [0,1]. We describe the most diffused.  

One of the simplest preferences aggregation operators is the Weighted 

Arithmetic Mean (WAM) [31]. Let (�pr1 ,… , �prk) with �, � ∈ {1,… , �} be a list 
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of preference values to aggregate, coming from �1,… , �k, the WAM operator 

on these values is defined as:  

 ���(�pr1 ,… , �prk) = ∑ �m�prm
k

m=1
 (10) 

where �1,… , �k ∈ [0,1] are weights such that ∑ �m = 1km=1 . Weights may 

represent the relative importance of each expert or can be selected with the 

aim of maximizing the consistency of the resulting FPR [27]. 

Another aggregation operator is the Weighted Geometric Mean (WGM) 

[31] that can be defined as follows: 

 ��� (�pr1 ,… , �prk) = ∏(�prm )�� 
k

m=1
 (11) 

where each symbol has the same meaning of equation (10). Both WAM and 

WGM have a compensatory behavior (i.e. they allow a bad evaluation given 

by an expert to be compensated by a good one from another expert) while 

the compensatory character of WGM is weaker than that of WAM [2]. 

A non-compensatory aggregation operator is min operator [32] that can 

be trivially defined as follows: 

 ���(�pr1 ,… , �prk) = min1≤m≤k �prm  (12) 

where each symbol has the same meaning of equations (10) and (11). The 

min operator is particularly helpful when the group agrees that the collective 

decision should be pessimistic, in the sense that an alternative which was 

badly evaluated by any expert should be badly evaluated by the group in a 

non-compensatory way [2]. 

The Ordered Weighted Average (OWA) [33] is among the most diffused 

aggregation operators. It can be defined as follows: 
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 ���(�pr1 ,… , �prk) = ∑ �m�pr�(m)
k

m=1
 (13) 

where each symbol has the same meaning of equations (10), (11) and (12) 

while �: {1, … �} → {1,… �} is a permutation function aimed at reordering 

the values to aggregate such that �pr�(m) ≥ �pr�(m+1)
 for � ∈ {1,… , � − 1}.  

A basic aspect of this operator is the re-ordering step. In particular, the 

degree of membership of an element in a fuzzy set is not associated with a 

particular weight. Rather a weight is associated with a particular ordered 

position of a degree of membership in the ordered set of relevant degrees of 

membership [18].  

The behavior of OWA strictly depends on the used weight vector. In [22], 

the authors propose to initialize the weight vector starting from an increasing 

proportional linguistic quantifier to let OWA undertake the behavior of soft 

majority. While the majority is traditionally defined as a threshold number 

of individuals, soft majority is a fuzzy concept which is controlled through 

linguistically quantified propositions. 

Quantifiers represent the amount of items satisfying a given statement. 

While classical logic is restricted to the use of two quantifiers (there exists, 

for all), human discourse is much richer and more diverse in its quantifiers 

(about 10, almost all, a few, many, most, as many as possible, nearly half, at 

least half, etc.). Linguistic quantifiers have been introduced in [34] to bridge 

the gap between formal systems and natural discourse. In particular, absolute 

linguistic quantifiers (about 2, more than 5, etc.) are represented as fuzzy 

subsets of ℝ+, while proportional linguistic quantifiers (most, at least half, 

etc.) are represented as fuzzy subsets of the unit interval [0,1]. 

Given a proportional linguistic quantifier Q, the membership function 

��(�) represents the degree to which the proportion � ∈ [0,1] is consistent 

with the meaning of Q. Functionally, linguistic quantifiers can be increasing 

(most, at least half, etc.), decreasing (a few, at most half, etc.) or unimodal 

(about half, about all, etc.). In particular, increasing quantifiers satisfy the 
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property: ��(�1) ≥ ��(�2) for any �1 > �2. The membership function ��(�) 
of an increasing proportional linguistic quantifier Q can be written as:  

 ��(�) =

⎩{⎨
{⎧0 if � < �,� − �� − � if � ≤ � ≤ �,

1 if � > �.
 (14) 

with �, �, � ∈ [0,1]. Examples of increasing proportional linguistic quantifiers 

and the related membership functions are shown in Figure 4. The parameters 

(�, �) of such quantifiers are: (0,1); (0,0.5); (0.3,0.8); (0.5,1) respectively.  

 

 

Figure 4. Example of increasing proportional linguistic quantifiers 

The weights of an OWA operator of dimension m can be obtained from 

an increasing proportional linguistic quantifier as follows [33]:  

 �m = �� ( ��) − �� (� − 1� ) ;  � ∈ {1,… , �}. (15) 
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where the quantifier Q must be selected to reflect the fusion strategy that 

the decision makers would apply (i.e. the ratio of experts that are expected 

to be satisfied with the aggregated preference value). In this way it is possible 

to obtain collective evaluations in which the opinions of most of the experts 

involved in the decision problem are considered. 

In this way, every collective preference �pr for �, � ∈ {1, … , �} is obtained 

as: �pr = ����(�pr1 ,… , �prk), where ���� is the OWA operator initialized 

with the weights coming from the quantifier Q. By extending the notation to 

matrices, we can rewrite the equation as: � = ����(�1,… , �k).  

When the relative importance of each expert must be taken into account 

during the aggregation step (e.g. to reflect experts’ different backgrounds and 

levels of knowledge about the problem) specific versions of the OWA operator 

can be used. For example, the Induced OWA operator (IOWA) induces the 

reordering of the set of values to aggregate on the reordering of a set of values 

associated with them [35].  

Based on IOWA, the Importance IOWA operator (I-IOWA) has been 

defined in [36] to consider the importance of each expert in the aggregation 

step while being guided by a proportional quantifier as in equation (15). Let 

(�pr1 ,… , �prk) with �, � ∈ {1,… , �} be a list of preference values to aggregate, 

coming from the FRPs �1,… , �k, let �p ∈ [0,1] be the importance degree of 

each �p ∈ � and Q a non-decreasing proportional fuzzy quantifier, then the 

I-IOWA operator is defined as follows: 

 �-����� ((�pr1 ,�1), … , (�prk, �k)) = ∑ �m�pr�(m)
k

m=1
 (16) 

were �: {1,… �} → {1, … �} is a permutation function so that ��(m) ≥ ��(m+1) 

for each � ∈ {1,… , � − 1} and the k-th weight �m is obtained as follows: 

 �m = �� ( �(�)�(�)
) − �� (�(� − 1)�(�)

) ;  � ∈ {1,… , �}. (17) 
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where �(�) = ∑ ��(m)
m�=1 .  

Extending the notation to matrices, given a set of individual FPRs 

�1,… , �k and a vector of experts’ importance degrees � = (�1,… �k), the 

collective FPR P that takes into account the importance of each expert can 

be obtained as � = �-����((�1,�1),… , (�k,�k)). 
1.6 Fuzzy Alternatives Ranking in GDM 

Once the individual FPRs have been aggregated in a collective one � = (�pr) 
through one of the methods described in section 1.5, the available alternatives 

must be rated associating a degree of preference �(�p) to each �p ∈ �. Then 

the best one (i.e. the one associated with the higher degree of preference) is 

selected. Several measures have been proposed so far to quantify the degree 

of preference of each alternative basing on the collective FPR. We describe 

below the most diffused ones. 

In [27] the degree of preference of each alternative is calculated in terms 

of Net Flow (NF) as follows: 

 ��� (�p) = ∑ �
��

�

�=1,�≠�

− ∑ �
��

�

�=1,�≠�

 (18) 

where the first summation is the leaving flow i.e. the total degree of preference 

of �+ over all the other alternatives, while the last summation is the entering 

flow i.e. the total degree of preference of all the other alternatives over �+.  

A different measure has been proposed in [37, 38] where the score of an 

alternative is calculated in term of Non-Dominance Degree (NDD) i.e. the 

degree in which the alternative is not dominated by the others: 

 ����(�p) = 1 − max1≤r≤l; r≠p(�rp − �pr, 0) (19) 
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In [22, 39] the Quantifier Guided Dominance Degree (QGDD) has been 

proposed to calculate the dominance that one alternative has over all the 

others in a soft majority sense: 

 �����(�p) = ����(�pr;  � = 1,… , �;  � ≠ �). (20) 

where ���� specifies the OWA operator initialized with the weights coming 

from the increasing proportional linguistic quantifier Q as defined in 1.5. 

In [22, 39] the authors propose a NDD version named Quantifier Guided 

Non-Dominance Degree (QGNDD) to calculate the degree in which a given 

alternative is not dominated by a soft majority of the remaining ones: 

 ������(�p) = ���� (1 − max1≤r≤l; r≠p(�rp − �pr, 0)). (21) 

When the quantifier Q represents the statement “all”, that has a membership 

function obtainable from equation (14) with � = � = 1, the definition of the 

QGNDD measure coincides with that of NDD. 

GGDD and QGNDD can be also used in combination. In particular, two 

different selection policies can be applied according to [22]: a sequential or a 

conjunctive one. In the sequential policy, a measure is selected and applied 

obtaining a selection set of alternatives reaching the maximum score. If such 

set includes more than one alternative, then the other measure is applied to 

select the alternative of the above set with the best score. In the conjunctive 

policy both measures are applied obtaining two distinct selection sets that 

are intersected to obtain the final one. This policy is more restrictive than 

the former because it is possible to obtain an empty selection set. In [39] it 

is suggested to apply the conjunctive policy as the first step and then apply 

the sequential one just in case the first one returns an empty set. 

After having rated the available alternatives with one (or a combination) 

of the described measures, the one with the highest degree of preference is 

the solution of the GDM problem. 
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1.7 Dealing with Incomplete Information 

Sometimes, due to domain complexity, limited expertise or pressure to make 

a decision, it may be difficult or even impossible for an expert to express a 

preference on every pair of alternatives. This leads to incomplete FPRs where 

missing values have to be estimated in a non-contradictory way with respect 

to expressed preferences. Several methods have been proposed so far for this 

purpose as described below.  

In [40] a method to estimate the missing values of an FPR P by applying 

reciprocity and additive transitivity properties on the existing values of the 

same FPR is proposed. In fact, the definition of additive transitivity provided 

in section 1.4, allows to obtain the following three estimates of the preference 

�pr, of alternative �p over alternative �r, using an intermediate alternative �m 

with �p, �r, �m ∈ �: 

�m1(�pr) = �pm + �mr − 0.5; �m2(�pr) = �mr − �mp + 0.5; �m3(�pr) = �pm − �rm + 0.5. 

(22) 

If P is additive consistent, then �m1(�pr) = �m2(�pr) = �m3(�pr) for all values 

�, �, � ∈ {1,… , �}. Unfortunately, user defined FPRs are not always additive 

consistent. In this case it is still possible to use equation (22) to identify 

missing values that are as consistent as possible with the existing ones by 

mediating the estimates over any defined intermediate alternative. 

If � = {(�, �) | �, � ∈ {1, … , �}; �pr is defined in � } is a set including the 

positions of all the defined values of P and � = {(�, �) | �, � ∈ {1, … , �}} ∖ � 

is the set including the positions of the undefined ones, the overall estimator 

of a missing preference �pr with (�, �) ∈ � can be defined as follows: 

 �(�pr) =
∑ ∑ �m� (�pr)m∈����3�=1

∑ ∣�pr� ∣3�=1
 (23) 
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where the sets �pr1 = {� | (�, �), (�, �) ∈ �}, �pr2 = {� | (�, �), (�, �) ∈ �} and 

�pr3 = {� | (�, �), (�, �) ∈ �} include the indexes of the defined intermediate 

alternatives, useful for each estimator of �pr. 
The generation of missing values through equations (22) and (23) is done 

in several iterations. In each iteration new values are computed based on 

those previously known and added to the FPR. In particular, being � (0) the 

initial FPR and � (¡) the same FPR after t iterations, the missing FPR values 

that can be estimated at step � + 1 are: 

�(¡+1) = {(�, �) ∈ � (¡) | �pr1(¡) ∪ �pr2(¡) ∪ �pr3(¡) ≠ ∅} (24) 

where � (¡) collects the position of undefined values of � (¡) while each �pr�(¡) 
(with 1 ≤ � ≤ 3) includes the indexes for the l-th estimator of �pr in � (¡). If 
at the t-th iteration the set �(¡+1) is empty, then no more elements of P can 

be estimated and the process stops.  

In [30], a different approach has been defined to estimate missing FPR 

values based on reciprocity and multiplicative transitivity. According to [41], 

a FPR P is multiplicative transitive if:  

�p¤ ̇ ⋅ �rm ⋅ �mp = �pm ⋅ �mr ⋅ �rp ∀�, �, � ∈ {1,… , �}. (25) 

Applying equation (25), when an FPR P is multiplicative transitive, the 

preference �pr of alternative �p over alternative �r can be estimated using an 

intermediate alternative �m with �p, �r, �m ∈ � in this way: 

�m(�pr) =
�pm ⋅ �mr ⋅ �rp�rm ⋅ �mp . (26) 

By considering that, based on reciprocity, �pr = 1 − �rp∀ �, � ∈ {1, … , �}, we 

can modify equation (26) as follows:  

�m(�pr) =
�pm ⋅ �mr�pm ⋅ �mr + (1 − �pm) ⋅ (1 − �mr). (27) 
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When the FPR to be completed is not multiplicative transitive, it is still 

possible to use equation (27) to identify missing values that are as consistent 

as possible with the existing ones by mediating the estimates over any defined 

intermediate alternative. Let D and U be respectively the sets including the 

positions of defined and undefined elements of P (as previously defined) we 

can estimate a missing preference �pr with (�, �) ∈ � as follows 

 �(�pr) =
∑ �m(�pr)m∈���∣�pr∣ . (28) 

where the set �pr = {� | (�, �), (�, �) ∈ �} includes the indexes of any defined 

intermediate alternative between �p and �r, useful for the estimator. Also in 

this case the estimation of missing values proceeds in several iterations and 

the process stops when no additional elements can be estimated.  

Both methods described in this sub-section use FPR values related to an 

alternative to infer missing FPR values connected to the same alternative. If 

no preferences at all are available for a given alternative, then it is impossible 

to estimate any of them. This happens when does exist an alternative �p ∈ � 

so that any �pr and �rp is undefined for any � ∈ {1,… , �}.  

In [42], the authors refer to this case as an ignorance situation and suggest 

to initialize missing FPR values with some seed values that are subsequently 

refined through an iterative process based on equations (22)-(23) or (27)-(28) 

to make them as consistent as possible with the existing values. Four different 

ways to obtain seed values have been proposed: 

• indifference: undefined preferences are initially set to 0.5; 

• alternative proximity: seed values are obtained from the preferences given 

by the same expert to similar alternatives (this implies having additional 

information on problem alternatives allowing to define a distance measure 

between them); 

• collective seed value: seed values are chosen from the collective FPR that 

is obtained by aggregating partial individual FPRs; 
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• expert proximity: seed values are chosen from the FPRs provided by the 

experts that are nearest to the expert whose FPR has to be completed 

(where distances between experts can be calculated by averaging the 

absolute differences between defined FPR values). 

The first approach is useful when there are no additional external sources 

of information about the problem and when a high FPRs consistency level is 

required. The second approach is only feasible when some kind of metadata 

on alternatives is available. The third and fourth approaches, making the 

opinions of the experts closer, are useful when a fast consensus is needed. The 

fourth approach is also able to maintain high the FPRs consistency level. 

The first two approaches are also named individual strategies because they 

rely on information coming from the same expert to estimate missing values 

while the last two are named social strategies because they use information 

coming from other experts.  

Once generated, seed values must be refined to make them more coherent 

with existing FPR values. If the set U includes the position of the undefined 

elements of P as defined before, in case of an ignorance situation, seed values 

are generated for any �pr so that (�, �) ∈ � and included in P. Then, �(�pr) is 
calculated through equations (23) or (28) for any �pr so that (�, �) ∈ � and 

obtained values are substituted to seed values in P. 

 

 

  



Chapter 2 

Modeling Expert Preferences with 

Fuzzy Rankings 

 

Although FPRs are among the most commonly used preference models in 

GDM, they are not free from drawbacks. First of all, especially when dealing 

with many alternatives, the definition of FPRs becomes complex and time-

consuming. Moreover they allow to focus on only two options at a time. This 

facilitates the expression of preferences but, on the other hand, let experts 

lose the global perception of the problem with the risk of introducing several 

inconsistencies that impact negatively on the whole decision process.  

For these reasons, different preference models are often adopted in real 

GDM settings (as reported in section 1.4) and, if necessary, transformation 

functions are applied to obtain equivalent FPRs. In this chapter we propose 

Fuzzy Rankings, a new preferences model that offers and higher level of user-

friendliness with respect to FPRs while trying to maintain an adequate level 

of expressiveness. Fuzzy rankings allow experts to focus on two alternatives 

at a time without losing the global picture so reducing inconsistencies. 

After having deepened the ordinal ranking model (already introduced in 

section 1.4), the proposed model for fuzzy rankings is described as a fuzzy 

extension of the ordinal one. Conversion algorithms from fuzzy rankings to 

FPRs and backward are then defined as well as similarity measures useful 

when evaluating the concordance between experts’ opinion. Eventually a 

comparison of the proposed model with related works is reported. 
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2.1 Ordinal Rankings 

As seen in section 1.4, the Ordinal Ranking is one of the simplest preference 

models for GDM. Let � = {�1,… , �l} be a set of alternatives, an ordinal 

ranking on X specifies an ordering ��(1) ≻ ⋯ ≻ ��(l) between its elements 

where �: {1,… �} → {1,… �} is a permutation function. An ordinal ranking 

can be conveniently represented through an ordering array � = (�1,… , �l) 

where each element �p ∈ {1,… , �} states the position of i-th alternative of X 

within the ranking.  

Example 1. Let � = {�1, �2, �3} be a set of alternatives, the ordering array 

� = (2, 3, 1) specifies that the alternatives �1, �2 and �3 are ranked second, 

third and first respectively. Using the alternate notation, case we can describe 

the same ordinal ranking as: �3 ≻ �1 ≻ �2. 

In GDM problems, each expert �p ∈ � defines an individual ranking by 

specifying the ordering array �p = (�mp ) with � ∈ {1,… , �} and � ∈ {1,… , �} 

on the same set X. To assess the level of agreement between experts, several 

methods to evaluate ranking similarity have been defined so far by different 

researchers [43]. Let �p and �r be two ordinal rankings on the same set X, 

the Kendall’s rank correlation coefficient [44, 45] is defined as: 

 �(�p,�r) =
2(�pr − �pr)�(� − 1)

 (29) 

where �pr is the number of concordant pairs and �pr the number of discordant 

pairs between �p and �r. A concordant pair is pair of alternatives of X which 

have the same order in the two rankings while a discordant pair is a pair of 

alternatives which have the opposite order in the two rankings. 

The Kendall’s rank correlation coefficient is normalized in [−1,1]. In the 

case of maximus similarity between �p and �r (i.e. if rankings are identical), 

then �(�p, �r) = 1. In the case of maximum dissimilarity (i.e. if one ranking 
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is the reverse of the other), then �(�p, �r) = −1. A value of zero indicates 

the absence of any association between the two rankings. 

Another measure of a correlation between rankings is the Spearman‘s 

rank correlation coefficient [46] that is defined as: 

 �(�p, �r) = 1 − 6∑ (�mp − �mr )2lm=1�(�2 − 1)
 (30) 

where �mp  is the k-th element of �p and �mr  is the k-th element of �r. Also the 

Spearman‘s rank correlation coefficient is normalized in the interval [−1,1] 

and its interpretation is analogous to the previous ones. 

Example 2. Let � = {�1,… , �5} be a set of alternatives, �1 = (5, 3, 4, 1, 2) 

and �2 = (4, 2, 5, 3, 1) two ordering arrays defined on X, where the first one 

represents the ranking �4 ≻ �5 ≻ �2 ≻ �3 ≻ �1 while the second represents 

the ranking �5 ≻ �2 ≻ �4 ≻ �1 ≻ �3. According to equations (29) and (30) 

we obtain that: �(�1,�2) = 0.4 and �(�1,�2) = 0.6. So both indexes show a 

positive correlation between the two rankings. 

In order to use ordinal rankings in conjunction with fuzzy models and 

methods for GDM, it can be convenient to convert them in FPRs. According 

to [2], it is possible to convert an ordering array O of size n into an � × � 

FPR � = (�pr) through any function �: {1,… , �}2 → [0,1] satisfying the 

following conditions: 

• �(�p, �r) is a non-increasing function of the first argument and a non-

decreasing function of the second argument; 

• �(�p,�p) = 0.5 ∀� ∈ {1,… , �}; 

• �(�p, �r) > 0.5 if �p < �r ∀�, � ∈ {1,… , �}; 

• �(�p, �r) + �(�r, �p) = 1 ∀�, � ∈ {1,… , �} (additive reciprocity). 

In [22] the following transformation function respecting these conditions 

has been proposed: 
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 �pr = �(�p, �r) =
1

2
(1 +

�r − �p� − 1
) (31) 

Moreover, the FPRs generated with this function are additive consistent with 

respect to the definition given in section 1.4. 

To transform a FPR back to an ordering array it is possible to associate 

a degree of preference �(�p) to any �p ∈ � according to one of the FPR-based 

measures defined in section 1.6 and then rank the alternatives with respect 

to their associated degrees of preference.  

Example 3. Let � = {�1, �2, �3, �4} be the set of available alternatives and 

� = (2, 1, 4, 3) be the ordering array provided by an expert. By applying the 

equation (31) it is possible to obtain the corresponding FPR: 

� =

⎝⎜
⎜⎛ 0.5 0.33 0.83 0.67

0.67 0.5 1 0.83
0.17 0 0.5 0.33
0.33 0.17 0.67 0.5 ⎠⎟

⎟⎞ 

To transform P back to an ordinal ranking, it is possible to apply equation 

(18) to calculate the score of each alternative in terms of Net Flow as follows: 

��� (�1) = 0.67; ��� (�2) = 2; ��� (�3) = −2; ��� (�4) = −0.67. According 

to these values, the ordering array that corresponds to P is: � = (2, 1, 4, 3) 

that is exactly the initial one.  

2.2 Evolution to Fuzzy Rankings  

Ordinal rankings can be considered too simplistic to model preferences in real 

GDM problems. Experts are sometimes unable to assign a precise position in 

a ranking to alternatives that are considered equivalent or, when a position 

can be assigned, experts may need to specify at what extent an alternative is 

better than the following one. To overcome these limitations, we introduce 

in this section the notion of Fuzzy Ranking that can be considered as a fair 
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compromise between the expressive capability of FRPs and the user-

friendliness of ordinal rankings. 

A fuzzy ranking is a sequence � = (��(1) �1 ��(2)  …  ��(m−1) �m−1 ��(m)) 
with � ≤ �. Terms in odd positions in the sequence represent a subset of the 

alternatives, while �: {1,… �} → {1,… �} is a k-permutation function. Terms 

in even positions (separators) belong to the set of symbols � = {≫,>, ≥, ≈} 

and define a degree of preference between subsequent terms (with ≫ meaning 

“is much better than”, > “is better than”, ≥ “is a little better than” and ≈ 

“is similar to”). Each alternative appears at most once in the ranking so 

cycles are not allowed although partial rankings are admitted. 

Example 4. The fuzzy ranking � = (�4 ≫ �5 ≈ �2 ≥ �3 > �1) defined on 

� = {�1,… , �5} states that, according to expert’s opinion, the fourth 

alternative is much better than the fifth one that, in turn, is similar to the 

second one, while both are a little better than the third one that, in turn, is 

better than the first one. 

If we look at Example 4, it becomes clear that, by relying on standard 

ordinal rankings, it would have been impossible for the same expert to specify 

her belief so thoroughly. In fact, the ordinal ranking �4 ≻ �5 ≻ �2 ≻ �3 ≻ �1 
that can be extracted from R and can be summarized with the ordering array 

� = (5, 3, 4, 1, 2), has a deeply different semantics: ties are not allowed so the 

equivalent alternatives �5 and �2 are artificially ordered while the preference 

gaps between �4 and �5, �2 and �3, �3 and �1 seems comparable in O while 

they are very different in expert’s belief, as expressed in R. 

Figure 5 graphically illustrates the interpretation of the expert’s belief 

captured by the fuzzy ranking R of Example 4 and by the extracted ordinal 

ranking �. As it can be seen, fuzzy rankings offer more tools to highlight the 

differences between alternatives with respect to ordinal rankings. Inspired by 

studies on the use of linguistic labels in GDM like [47], the cardinality of S 

(i.e. the number of available symbols) has been chosen small enough so as 

not to impose useless precision to the experts and rich enough to allow a 
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discrimination of the relative performance of the alternatives. On the other 

hand, the possibility to compose fuzzy rankings by chaining alternatives and 

symbols, allows to indirectly express a wide variety of preference levels. 

 

Figure 5. Interpretation of the fuzzy ranking R coming from Example 4 and 

of the extracted ordinal ranking O 

As an option, experts may be allowed to provide multiple fuzzy rankings 

interesting disjoint subsets of X, rather than just one. In this way it is possible 

to deal with the case in which some options are considered as mutually 

incomparable. As for ordinal rankings, conversion algorithms to and from 

FPRs can be defined for fuzzy rankings, as well as similarity measures. Such 

methods are described in the next subsections. 

2.3 From Fuzzy Rankings to FPRs 

Starting from a fuzzy ranking � = (��(1) �1 ��(2)  …  ��(m−1) �m−1 ��(m)) it is 
possible to generate the corresponding FPR � = (�pr) in several ways. A first 

approach consists in associating a predefined preference degree �(�) to each 

symbol � ∈ � and obtain FPR elements from R in this way: 

• ��(p)�(p+1) = �(�p) ∀� ∈ {1,… , � − 1};  

• ��(p+1)�(p) = 1 − �(�p) ∀� ∈ {1,… , � − 1}; 

• ��(p)�(p) = 0.5 ∀�{1,… , �}; 

(32) 
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where the first statement transforms the degrees of preference embedded in 

R in values of P, while the second and third statements are aimed at ensuring 

the reciprocity of P according to the definition given in section 1.4. A feasible 

set of values for the function �(�) is shown in Table 1 (second column).  

 

Symbol Preference degree �(�) Relative strength |�| 
≫ 0.85 2 

> 0.65 1 

≥ 0.58 0.5 

≈ 0.50 0 

Table 1. Feasible values for the preference degree and the relative strength 

associated to ranking string symbols 

It should be noted that, by applying equations (32) on a fuzzy ranking 

R, only 3� − 2 elements of P can be defined. Even in the case that R involves 

all available alternatives, (i.e. when � = �), a number of �2 − 3� + 2 elements 

of P remain undefined and should be estimated through one of the methods 

proposed in section 1.7. Moreover, the generated FPR, even when completed 

in this way, is not guaranteed to be additive consistent.  

Example 5. If � = (�4 ≫ �5 ≈ �2 ≥ �3 > �1) is a fuzzy ranking on the set 

� = {�1,… , �5}, the following FPR is generated according to equation (32) 

using preferences degree values coming from Table 1. 

� =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 − 0.35 − −− 0.5 0.58 − 0.5

0.65 0.42 0.5 − −− − − 0.5 0.85− 0.5 − 0.15 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

 

where the symbol – indicates an undefined cell. Applying equations (22)-(23) 

on P we can obtain the missing values as follows: 
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� =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.27 0.35 0 0.27

0.73 0.5 0.58 0.15 0.5
0.65 0.42 0.5 0.07 0.42
1 0.85 0.93 0.5 0.85

0.73 0.5 0.58 0.15 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

 

A second approach for generating a FPR from a fuzzy ranking is through 

a transformation function similar to that described in section 2.1. A relative 

strength |s| is associated to each symbol � ∈ � and, given a fuzzy ranking R, 

a fractional rank �(�p) is associated to each alternative so that:  

• �(��(1)) = 1;  

• �(��(p)) = �(��(p−1)) + |�p−1| ∀ � ∈ {2, … , �}; 

• �(�p) is undefined if �(�) is undefined i.e. if the i-th alternative 

does not appear in R. 

(33) 

A feasible set of relative strengths for proposed symbols is shown in Table 

1 (third column). The relative strength of each symbol has been selected so 

that each symbol doubles the strength of the next one. By only using the 

symbol >, the fuzzy ranking becomes an ordering of alternatives and equation 

(33) generates an ordering array as defined in section 2.1. The use of the 

symbols ≫ or ≥ in place of >, respectively doubles or halves the distance of 

the preceding and subsequent terms in the ranking while the use of ≈ means 

that the preceding and subsequent terms have the same rank. 

Then, for any pair of alternatives �p and �r appearing in R, basing on a 

modified version of equation (31), an element of P can be defined as follows:  

 �pr =
1

2
(1 +

�(�r) − �(�p)���� − 1
) (34) 

where ���� = �(��(m)) is the maximum rank. The special case ���� = 1, 

arising when an expert considers all alternatives as equivalent i.e. when she 

sets � = (��(1) ≈ ⋯ ≈ ��(m)), is handled by directly setting �pr = 0.5 for any 



Modeling Expert Preferences with Fuzzy Rankings 47 

�p and �r appearing in R. Differently from the first approach, by applying 

equation (34) it is possible to directly define �2 elements of the corresponding 

FPR. When R involves all alternatives, (i.e. when � = �), the generated FPR 

presents no undefined elements.  

Proposition. If � = (�pr) is a � × � FPR generated from a fuzzy ranking R 

according to equations (33)-(34), then the elements of P that exist verify the 

additive consistency property.  

Proof. According to the definition given in 1.4, P is additive consistent if 

�pr + �rm + �mp = 1.5 ∀�, �, � ∈ {1,… , �}. Based on equation (34) we obtain: 

�pr + �rm + �mp =
1

2
(1 +

�(�r) − �(�p)���� − 1
) +

1

2
(1 +

�(�m) − �(�r)���� − 1
)

+
1

2
(1 +

�(�p) − �(�m)���� − 1
)

=
3

2
+

�(�r) − �(�p) + �(�m) − �(�r) + �(�p) − �(�m)

2���� − 2
. 

For ���� ≠ 1 and because the fraction numerator is equal to 0, we have that 

�pr + �rm + �mp = 3 2⁄ + 0 = 1.5 proofing that P is additive consistent. The 

case ���� = 1, which leads to a 0 0⁄  indeterminate form, is treated separately 

by setting �pr = 0.5 ∀�, � ∈ {1,… , �}. In this case the proof that P is additive 

consistent is trivial given that: 

�pr + �rm + �mp = 0.5 + 0.5 + 0.5 = 1.5 ∀�, �, � ∈ {1,… , �}. 

Example 6. Let � = (�4 ≫ �5 ≈ �2 ≥ �3 > �1) be the same fuzzy ranking 

of the previous example. Using relative strength values coming from Table 1 

in (33), we obtain the fractional rank of available alternative as: �(�1) = 4.5, 

�(�2) = 3, �(�3) = 3.5, �(�4) = 1, �(�5) = 3. Then, according to equation 

(34), it is possible to generate the corresponding FPR P as follows:  
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� =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.29 0.36 0 0.29

0.71 0.5 0.57 0.21 0.5
0.64 0.42 0.5 0.14 0.43
1 0.79 0.86 0.5 0.79

0.71 0.5 0.57 0.21 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

. 

Differently from the previous example, there is no need to complete the FPR 

with techniques coming from section 1.7. Moreover, the resulting FPR can 

be shown to be additive consistent. 

2.4 From FPRs to Fuzzy Rankings 

In some cases it can be useful to translate the preferences expressed with a 

FPR back to a fuzzy ranking. This process can help making manifest and 

easy to understand experts’ defined FPRs or obtaining a meaningful ranking 

of available alternatives from the collective FPR.  

In both cases it is possible to calculate the degree of preference �(�p) of 

each alternative �p ∈ � starting from a (individual or collective) FPR P with 

one of the methods defined in section 1.6. Then, the corresponding fuzzy 

ranking � = (��(1) �1 ��(2)  …  ��(l−1) �l−1 ��(l)) can be generated where � 

is a permutation function such that �(��(p)) ≥ �(��(p+1)) and �p ∈ � for any 

� ∈ {1,… , � − 1}. Two approaches can be then adopted (reversing the two 

approaches proposed in section 2.3) to identify the symbols �1,… , �l−1. 
Given two adjacent alternatives ��(p) and ��(p+1) in R, the first approach 

determines the intermediate symbol �p from the preference value ��(p)�(p+1) of 

P as follows: 

 �p =

⎩{{
⎨{
{⎧≈ if ��(p)�(p+1) < 0.54≥ if 0.54 ≤ ��(p)�(p+1) < 0.62

> if 0.62 ≤ ��(p)�(p+1) < 0.75≫ if ��(p)�(p+1) ≥ 0.75

 (35) 
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for any � ∈ {1,… , � − 1}, where the threshold values 0.54, 0.62 and 0.75 are 

obtained by averaging each pair of subsequent preference degree values from 

Table 1 (second column).  

This approach is practicable when the starting FPR respects additive or 

multiplicative transitivity properties defined in sections 1.4 and 1.7 i.e. when 

every FPR value is consistent to the others. Otherwise, it is possible to select 

one or more non-coherent preference values and, consequently, to generate 

incongruent ranking symbols. Moreover by directly referring to FPR values, 

the possible transformations introduced in the calculation of the degree of 

preference of each alternative, according to the methods defined in section 

1.6, are disregarded in the selection of the ranking symbols. 

Example 7. From the additive consistent FPR P resulting from Example 6 

it is possible to generate the degree of preference of each alternative in terms 

of Net Flow according to equation (18): ��� (�1) = −2.14; ��� (�2) = 0; 

��� (�3) = −0.71; ��� (�4) = 2.86; ��� (�5) = 0. According to these values, 

it is possible to define the alternative ranking: �4 ≻ �2 ≻ �5 ≻ �3 ≻ �1, also 
representable with the ordering array � = (5, 2, 4, 1, 3). The corresponding 

fuzzy ranking and the related separators can be obtained from equation (35) 

basing on the FPR values: �4,2 = 0.79; �2,5 = 0.5; �5,3 = 0.57; �3,1 = 0.64 as 

follows: � = (�4 ≫ �2 ≈ �5 ≥ �3 > �1). 

Given two adjacent alternatives ��(p) and ��(p+1) in a fuzzy ranking R, 

the second approach determines the intermediate symbol �p from the degrees 

of preference �(��(p)) and �(��(p+1)) that can be associated to the alternatives 

according to one of the methods defined in section 1.6: 

 �p =

⎩{{
⎨{
{⎧≈ if �(��(p+1)) − �(��(p)) < 0.25 ⋅ �

≥ if 0.25 ⋅ � ≤ �(��(p+1)) − �(��(p)) < 0.75 ⋅ �
> if 0.75 ⋅ � ≤ �(��(p+1)) − �(��(p)) < 1.5 ⋅ �
≫ if (��(p+1)) − �(��(p)) ≥ 1.5 ⋅ �

 (36) 
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where � is the average difference between the degrees of preference of two 

subsequent alternatives in the ranking: 

 � =
1� − 1

∑ (�(��(p+1)) − �(��(p)))l−1
p=1

 (37) 

and the threshold values 0.25, 0.75, 0.75 are obtained by averaging each pair 

of subsequent relative strength values from Table 1 (third column).  

Being based only on preference degrees associated to each alternative, the 

second approach is insensible to the level of consistency of the original FPR. 

Moreover, any transformations introduced in the calculation of such degrees 

of preference (according to the methods defined in section 1.6), is considered 

in the selection of the ranking symbols too. 

Example 8. From the FPR resulting from Example 6, after having generated 

the degree of preference of each alternative in terms of Net Flow, as seen in 

Example 7, the ordering array of available alternatives is: � = (5, 2, 4, 1, 3). 

By applying equation (37) on such degrees of preferences we obtain � = 1.25. 

Basing on equation (36) we can then obtain the fuzzy ranking of available 

alternatives as: � = (�4 ≫ �2 ≈ �5 ≥ �3 > �1). 

2.5 Partial and Multiple Fuzzy Rankings 

As specified in section 2.2, each available alternative appears at most once in 

a fuzzy ranking so partial rankings i.e. rankings involving only k alternatives 

with � < � are admitted. The exclusion of one or more alternatives from a 

fuzzy ranking means that the expert who defined the ranking is unable to 

evaluate such alternatives or she considers them incomparable to the others.  

In such cases, the transformation methods defined in section 2.3 produce 

incomplete FPRs. In particular, if R is a partial fuzzy ranking on the set X 

and � = (�pr) is the corresponding FPR obtained with equations (32) or (33)-

(34), for any �p ∈ � not included in R, the corresponding elements �pr and 
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�rp remain undefined for any � ∈ {1,… , �}. As explained in 1.7 this is an 

ignorance situation that can be solved with specific methods based on the 

injection of seed values and their subsequent refinement to make them as 

consistent as possible with other values. 

Example 9. Let � = (�4 ≫ �5 ≈ �2 > �1) be a partial fuzzy ranking on the 

set � = {�1,… , �5}, using equation (33) with relative strength values coming 

from Table 1, we obtain the fractional rank of each alternative involved in R 

as: �(�1) = 4, �(�2) = 3, �(�4) = 1, �(�5) = 3. The fractional rank of �3 is 
undefined given that it does not appear in R. According to equation (34), it 

is then possible to generate the corresponding FPR P as follows:  

� =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.33 − 0 0.33

0.67 0.5 − 0.17 0.5− − − − −
1 0.83 − 0.5 0.83

0.67 0.5 − 0.17 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

. 

The third row and the third column of P are completely undefined because 

no information has been provided on �3. To complete P it is possible to inject 

seed values coming from other experts or similar alternatives according to 

section 1.7. The simpler (and rougher) method is to set undefined preferences 

to 0.5 assuming the indifference between �3 and any other alternative and 

then iterate equations (22)-(23) until convergence obtaining the following 

updated version of P: 

� =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.33 0.33 0 0.33

0.67 0.5 0.47 0.17 0.5
0.67 0.53 0.5 0.27 0.53
1 0.83 0.73 0.5 0.83

0.67 0.5 0.47 0.17 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

. 

In order to make more evident the “artificial” evaluation made of alternative 

�3 it is possible to convert P back to a fuzzy ranking by calculating the degree 

of preference of alternatives in terms of Net Flow according to equation (18) 
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as follows: ��� (�1) = −2; ��� (�2) = −0.4; ��� (�3) = 0; ��� (�4) = 2.8; 

��� (�5) = −0.4. The ordering array of alternatives is then: � = (5, 3, 2, 1, 4). 

By applying equation (37) we obtain � = 1.2. Basing on equation (36) we can 

then obtain the fuzzy ranking as follows: � = (�4 ≫ �3 ≥ �2 ≈ �5 > �1). 

As anticipated in section 2.2, experts may be allowed to provide multiple 

fuzzy rankings: sets of partial fuzzy rankings �1,… , �� interesting disjoint 

subsets of X i.e. so that if an alternative �p ∈ � appears in a component 

fuzzy ranking �r with � ∈ {1, . . , �}, then �p does not appear in any other 

component ranking �m with � ∈ {1, . . , �} ∖ {�}. The use of multiple fuzzy 

rankings allows experts to deal with subsets of alternatives they consider as 

mutually incomparable. 

To simplify the notation we can represent a multiple fuzzy ranking within 

a single sequence � = (��(1) �1 ��(2)  …  ��(m−1) �m−1 ��(m)) where terms in 

even positions belong to the upgraded set of symbols � ∪ {∧}. The additional 

symbol ∧ is used to interlock the component rankings �1,… , �� interesting 

disjoint subsets of X. Also in this case each alternative appears at most once 

in the ranking although partial rankings are admitted. 

Example 10. The fuzzy ranking � = (�4 ≫ �1 ∧ �2 ≥ �3 > �5) defined on 

� = {�1,… , �5} states that the fourth alternative is much better than the 

fifth one and that the second one is a little better than the third one that, in 

turn, is better than the first one. Moreover it manifests the expert’s inability 

to compare alternatives coming from the subset {�1, �4} with alternatives 

coming from {�2, �3, �5}. 

To obtain a FPR P from a multiple fuzzy ranking R it is enough to iterate 

equations (32) or (33)-(34) on any component ranking �1,… , �� of R and 

merge the obtained FPRs � 1,… , � �. Being �1,… , �� partial fuzzy rankings 

interesting disjoint subsets of X, for any pair of alternatives �p,�r ∈ � there 

exist at most one FPR � m = (�prm ) with � ∈ {1, … , �} so that �prm  is defined. 
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For this reason, any element �pr of the overall FPR P can be obtained from 

the elements of � 1,… , � � as follows: 

 �pr = �prm : � ∈ {1, … , �}, �prm  is defined. (38) 

When for some �, � ∈ {1,… , �}, �prm  is undefined for any � ∈ {1,… , �} then 

�pr remains undefined too. This case happens when �p and �r only appear in 

different component rankings of R or when either �p or �r do not appear at 

all in any component ranking of R. In particular, the latter case happens 

when the multiple ranking only interests a subset of alternatives of X i.e. 

when it is also a partial ranking. 

Example 11. The multiple fuzzy ranking � = (�4 ≫ �1 ∧ �2 ≥ �3 > �5) 
coming from the previous example can be split in the two component rankings 

�1 = (�4 ≫ �1) and �2 = (�2 ≥ �3 > �5). Applying equation (33) we obtain 

that �(�1) = 3, �(�2) = 1 from �1 and �(�2) = 1, �(�3) = 1.5, �(�5) = 2.5 

from �2. Applying equation (34) on such fractional ranks we then obtain the 

following FPRs:  

� 1 =

⎝⎜
⎜⎜⎜⎜
⎛0.5 − − 0 −− − − − −− − − − −

1 − − 0.5 −− − − − −⎠⎟
⎟⎟⎟⎟
⎞

; � 2 =

⎝⎜
⎜⎜⎜⎛

− − − − −− 0.5 0.67 − 1− 0.33 0.5 − 0.83− − − − −− 0 0.17 − 0.5 ⎠⎟
⎟⎟⎟⎞. 

Merging � 1 and � 2 through equation (38) the following FPR is obtained: 

� =

⎝⎜
⎜⎜⎜⎜
⎛0.5 − − 0 −− 0.5 0.67 − 1− 0.33 0.5 − 0.83

1 − − 0.5 −− 0 0.17 − 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

. 

As it can be seen, preference values between alternatives from {�1,�4} (that 
are referenced in �1) and alternatives from {�2, �3, �5} (that are referenced 



54 Fuzzy Models for Group Decision Making and their Applications 

 

in �2) remain undefined. As for Example 9, also in this case it is possible to 

estimate missing values with one of the methods proposed in section 1.7. 

2.6 Similarity Between Fuzzy Rankings 

In order to assess the level of agreement between experts’ opinions, as for 

ordinal rankings, it is useful to define similarity measures also between fuzzy 

rankings. A feasible approach for that is to extend to fuzzy rankings the two 

similarity measures defined in section 2.1. 

Let �p and �r be two fuzzy rankings defined by the experts �p, �r ∈ � on 

the same set X, the Kendall’s rank correlation coefficient defined by equation 

(29) can be applied on �p and �r by computing the number �pr of concordant 

pairs and the number �pr of discordant pairs. Indeed, to take ties and partial 

rankings into account, it is needed to redefine �pr and �pr based on the notion 

of fractional rank defined in section 2.3. 

If �p(�m) denotes the fractional rank of an alternative �m ∈ � in a fuzzy 

ranking �p and ��m�p = �p(�m) − �p(��) for �m, �� ∈ �, we can say that (�m, ��) 
is a concordant pair between �p and �r if both alternatives appear in both 

rankings and the condition ��m�p ⋅ ��m�r > 0 or ��m�p = ��m�r = 0 is verified (i.e. 

��m�p  and ��m�r  are both positive, both negative or both 0). Conversely, (�m, ��) 
is a discordant pair if both alternatives appear in �p and �r but the preceding 

condition is not met (i.e. ��m�p  and ��m�r  are one positive and the other negative 

or one equal to 0 and the other different from 0). Based on �pr and �pr we can 

define the Kendall’s correlation coefficient for fuzzy rankings as follows: 

 �(�p,�r) =
2(�pr − �pr)����pr(����pr − 1) (39) 

where ����pr = max(�p, �r) while �p and �r are the number of alternatives 

involved, respectively, in �p and �r (with �p, �r ≤ �). 
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Example 12. Let �1,… , �5 be fuzzy rankings defined on � = {�1,… , �5} 
as reported in the first column of Table 2, using the relative strength values 

from Table 1 in equation (33), we obtain, for each ranking �p, the fractional 

ranks �p(�1),… , �p(�5) of any alternative of X as reported in columns 2-6 of 

Table 2 for � ∈ {1, … ,5}. Then, exploiting the definition of concordant and 

discordant pairs previously reported, we obtain: �1,2 = 6, �1,3 = 10, �1,4 = 6, 

�1,5 = 1, �1,2 = 4, �1,3 = 0, �1,4 = 0, �1,5 = 9. Basing on such values and 

considering that ����pr = 5 for �, � ∈ {1,… ,5} we obtain from equation (39): 

�(�1,�2) = 0.2 (weak positive correlation), �(�1,�3) = 1 (equivalence), 

�(�1,�4) = 0.6 (moderate positive correlation), �(�1,�5) = −0.8 (strong 

negative correlation).  

 

Ranking �p(�1) �p(�2) �p(�3) �p(�4) �p(�5) 
�1 = (�4 ≫ �5 ≈ �2 ≥ �3 > �1)  4.5 3 3.5 1 3 

�2 = (�5 > �4 ≥ �3 ≥ �2 ≈ �1)  3 3 2.5 2 1 

�3 = (�4 ≥ �5 ≈ �2 ≫ �3 ≥ �1)  4 1.5 3.5 1 1.5 

�4 = (�4 ≫ �5 ≈ �2 > �1)  4 3 − 1 3 

�5 = (�3 ≈ �1 ≥ �5 ≫ �4 ≥ �5)  1 1.5 1 3.5 4 

Table 2. Five sample fuzzy rankings and the fractional rank of each 

involved alternative 

A limit of the Kendall’s correlation coefficient is that it considers only 

the position of alternatives in the ranking disregarding the preference gaps 

quantified by the separators. In Example 12, �1 and �3 are considered as 

equivalent even if, by looking at the separators used, we can see that the 

experts’ beliefs captured by the two rankings are quite different. In fact the 

preference gap between �4 and �5 is wide in �1 and thin in �3 while the 

preference gap between �2 and �3 is thin in �1 and wide in �3. 
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To take separators into account when computing the similarity between 

fuzzy rankings, we introduce the Spearman’s correlation coefficient for fuzzy 

rankings as follows: 

 �(�p,�r) =
∑ (�p(�m) − �¹̅̅̅̅̅)(�r(�m) − �¤̅̅̅ ̅̅ )lm=1√∑ (�p(�m) − �¹̅̅̅̅̅)lm=1 2 √∑ (�r(�m) − �¤̅̅̅ ̅̅ )lm=1 2 (40) 

where �¹̅̅̅̅̅ = 1l ∑ �p(�m)lm=1  is the average fractional rank extracted from �p and 

�¤̅̅̅ ̅̅  is the average fractional rank extracted from �r in the same way.  

Differently from the Kendall’s correlation coefficient for fuzzy rankings, 

the Spearman’s one cannot be directly obtained as an extension of equation 

(30) because, according to [46], such equation is inapplicable in case of ties. 

So equation (40) have been obtained from an alternative formulation of the 

Spearman’s rank correlation coefficient defined in [48] as the covariance of 

two statistical variables divided by the product of their standard deviations 

where the values are converted in ranks before calculation. 

Example 13. Let �1,… , �5 be the fuzzy rankings defined in Example 12 

and summarized in Table 2 with their fractional ranks. By applying equation 

(40) we obtain the following values for the Spearman’s correlation coefficient: 

�(�1, �2) = 0.41 (moderate positive correlation), �(�1, �3) = 0.83 (strong 

positive correlation), �(�1,�4) = 0.97 (very strong positive correlation), 

�(�1, �5) = −0.68 (moderate negative correlation).  

By looking at the results of Example 13, it can be seen that �1 and �3 
are only strongly correlated according to the Spearman’s coefficient rather 

than equivalent as in the previous case. This happens because the Spearman’s 

coefficient, being based on differences between fractional ranks, also takes 

into account the preference gaps quantified by the separators that are used 

within the fuzzy ranking.  
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2.7 Comparison with Related Works 

To the best of our knowledge, the concept of fuzzy ranking is quite new. 

Nevertheless, an alternative formulation has been only recently proposed in 

[49] as a generalization of crisp rankings. While in a crisp ranking each object 

is assigned just one position, in the fuzzy ranking model defined in [49], the 

same object may be assigned to many positions with different degrees of 

membership. So, to characterize it, an � × � ordering matrix R is used whose 

generic element �pr ∈ [0,1] denotes the membership degree of the i-th object 

to the j-th position and ∑ �pr =lp=1 ∑ �pr =lr=1 1 for all �, � ∈ {1,… , �}. 

The main difference with respect our model resides in the way the ranking 

concept is fuzzyfied. Instead of allowing the same object belong to multiple 

positions, in fact, our model allows to extend or contract the gap between 

subsequent positions to reinforce or weaken the ordering relation. As well as 

being more useful to support preferences expression in GDM, our approach 

also allows the use of a more compact and user-friendly notation for rankings 

definition. The definition of an ordering matrix, like that needed for the 

model described in [49] is in fact quite difficult and comparable to the direct 

definition of a FPR, nullifying in this way any advantage carried out by the 

adoption of an alternative model.  

In [50, 51] Linguistic Preference Relations (LPRs) have been defined as 

an alternative preference model with respect to FPRs. In LPRs, the relative 

preference of each alternative with respect to each other is expressed with a 

linguistic term rather than with a membership degree in [0,1]. A LPR can be 

so represented with an � × � matrix � = (�pr) where each element �pr states 

the linguistically assessed preference degree of the alternative �p over �r. 
Similarly to LPRs, fuzzy rankings allow to specify fuzzy statements about 

pairs of alternatives, differently from LPRs (where a linguistic term must be 

chosen for every pair of alternatives), in fuzzy rankings a fuzzy statement is 

specified only for a subset of all possible pairs i.e. only for alternatives that 

are adjacent in the ranking. On one hand, this allows fuzzy rankings to adopt 
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a more compact and meaningful notation; on the other hand, it is possible to 

easily infer missing preferences by avoiding inconsistencies. Moreover, while 

fuzzy rankings can be transformed in FPRs and processed with standard 

GDM methods and tools (discussed in section 1), LPRs need specific fuzzy 

extensions of such methods and tools. 

A topic quite related to fuzzy rankings is that of fuzzy numbers ranking. 

How to rank fuzzy numbers is an important problem in DM and GDM, and 

is particularly felt when experts use fuzzy estimates (maybe expressed in form 

of linguistic terms) to specify their preferences. According to [52], more than 

30 fuzzy ranking indices have been proposed since 1976 for this purpose. By 

directly using fuzzy rankings instead of fuzzy estimates to specify preferences 

can be considered as a convenient and user-friendly method to overcome the 

fuzzy numbers ranking issue. 

In [53, 54] the Fuzzy SQL (FSQL) language has been proposed to handle 

fuzzy information within databases. In order to perform queries involving 

fuzzy quantities, such language introduces several fuzzy comparators like: F= 

(fuzzy equal than), F<> (fuzzy different to), F> (fuzzy greater than), F>= 

(fuzzy greater or equal than), F< (fuzzy less than), F<= (fuzzy less or equal 

than), F≫ (fuzzy much greater than), F≪ (fuzzy much less than) where each 

comparator is associated to an algorithm able to compare fuzzy numbers as 

those used for ranking.  

As it can be noted, there is a substantial similarity between symbols used 

by fuzzy comparators and those adopted by fuzzy rankings. Nevertheless, 

fuzzy rankings use such symbols to state fuzzy relations about crisp objects 

rather than to assess if a crisp relation exists between fuzzy quantities. For 

this reason, even if syntactically similar, the semantics under these symbols 

is very different. 

 



Chapter 3 

A Fuzzy GDM Model Guided by 

Social Influence 

 

A promising research area in GDM is the study of interpersonal influence 

and its impact on the evolution of experts’ opinions. As seen in section 1, in 

conventional GDM models, a group of experts express their preferences on a 

finite set of alternatives, preferences are aggregated and the best alternative, 

satisfying the majority of experts, is selected. Nevertheless, in real situations, 

experts form their opinions in a complex interpersonal environment where 

preferences are liable to change due to social influence.  

In fact, experts are usually let free to interact and discuss each other 

exchanging opinions and information. During these interactions, experts with 

wider background, experience and knowledge are capable of influencing other 

experts. So, after a discussion, the preferences of such experts may undergo 

a modification due to social influence.  

To manage the effects of social influence in GDM, we propose in this 

section a Social Influence-Guided GDM model based on interpersonal trust. 

The assumption is that, the more an expert trusts another expert, the more 

her opinion is influenced by him. Elaborating on the definitions given in [55], 

the concept of trust is interpreted as the belief of an expert in the capability 

of another expert in finding the correct solution to a given problem. 

The proposed model adopts fuzzy rankings, defined in chapter 2, to collect 

both experts’ preferences on available alternatives and trust statements on 

other experts. Starting from collected information, possibly incomplete, the 
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configuration and the strengths of interpersonal influences are evaluated and 

represented through a Social Influence Network (SIN). The SIN, in its turn, 

is used to let the opinions expressed by each expert be completed (if partial) 

and evolved over time through the incorporation of elements captured from 

the opinion of trusted experts. The process then iterates until the convergence 

toward a shared solution to the GDM problem is reached. 

After having introduced background concepts on social influence and 

related theories, the proposed model is outlined and described in each step. 

The advantages of the proposed model with respect to other existing models 

are then presented as well as the results of an in silico simulation that also 

illustrates the opinions evolution process and its convergence properties. 

3.1 Theory of Social Influence and Opinion 

Change 

Influence modelling and the appraisal of its effect on opinion change has been 

studied in [56, 57]. Influence is capable of playing a key role in GDM too but, 

despite that, the introduction of GDM models that takes into account social 

influence have just recently been proposed [58, 59]. According to [56, 57], the 

influence can be modelled through a so-called Social Influence Network (SIN): 

a directed graph between the set of experts E and where each arc (�p, �r) has 

a weight �pr ∈ [0,1] that represents the strength of the influence of the j-th 

expert on the i-th one. Figure 6 shows an example of SIN.  

A SIN involving a set of experts � = {�1,… , �k} can be summarized by 

an � × � fuzzy adjacency matrix � = (�pr). In [56] it was suggested that 

the weights �p1,… , �pk are directly chosen by the expert �p ∈ � before she 

is informed of the preferences expressed by the others, on the basis of the 

relative importance she assigns to the opinion of the various experts, 

including himself. Selected weights must verify the normalization property so 

that: 
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 ∑ �pr = 1
k

r=1
 ∀ � ∈ {1, … , �} (41) 

If �(1) is an � × 1 vector representing the initial experts’ opinions on a 

given alternative, it is supposed that, after having interacted, this opinion 

vector will change to �(2) = ��(1) due to interpersonal influence. If we 

suppose that each expert is informed that the others have changed their 

opinion, it is reasonable to expect that the expert will change again her 

opinion according to the same principle. By iterating the process, it is possible 

to obtain the experts’ opinion after t interactions as: 

 �(¡) = ��(¡−1). (42) 

In [56] it was demonstrated that, if there exists a positive integer t so 

that every element in at least one column of � ¡ is positive, then the m 

opinions are expected to converge to the same value. In [57] it was suggested 

to also specify the susceptibility of each expert �p to interpersonal influence 

as �pp ∈ [0,1]. Then, being �(1) the initial experts’ opinions, their opinions 

after t interactions are obtained iteratively as: 

 

Figure 6. A sample SIN composed by 4 nodes 
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 �(¡) = ���(¡−1) + (� − �)�(1) (43) 

where A = ����(�11,… , �kk) and I is the � × � identity matrix. In other 

words, at each time, the current opinion of an expert is obtained as a linear 

combination of her initial opinion and the influenced opinion she had at the 

time immediately preceding. In [57] it was demonstrated that, if the matrix 

� − ��  is non-singular and �(∞) = lim¡→∞ �(¡) exists (i.e. the process reaches an 

equilibrium), then: 

 �(∞) = (� − �� )−1(� − �)�(1). (44) 

In [58], equations (43)-(44) have been applied for the first time in a GDM 

process where the experts provide opinions on a set � = {�1,… , �l} of 

alternatives rather than on just one. For each expert �p, the initial degree of 

preference �pr(1)
 on each alternative �r is calculated starting from expert’s 

individual FPR via the application of the QGDD metric (as defined in section 

1.6) to all preference values of the j-th row of the corresponding FPR. 

Then, the influence model is applied on each column of the � × � matrix 

� (1) = (�pr(1)) by extending equation (44) to matrices and obtaining that: 

� (∞) = (� − �� )−1(� − �)� (1) where the i-th row of � (∞) represents the 

preferences of the expert �p after having introjected the opinions of her peers. 

Eventually, influenced preferences are aggregated, available alternatives are 

ranked and the final solution obtained. 

3.2 Outline of the Proposed Model 

Based on the works described in the preceding section, the proposed model 

is aimed at taking into account social influence within a GDM process both 

in general and, especially, in presence of incomplete information. The research 

assumptions on which the model is built are two: experts influence each other 
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and the more an expert trusts in the capability of another expert, the more 

her opinion is influenced by the trusted expert.  

To make the model immediately applicable in practice, fuzzy rankings 

(defined in chapter 2) have been adopted for preference modeling since they 

are user friendly and less vulnerable to inconstancies than FPRs. The same 

model is used to collect opinions on alternatives as well as trust statements 

on experts. Given a set of experts � = {�1,… , �k} and a set of alternatives 

� = {�1,… , �l}, the model works through the following steps: 

1. opinions collection: each expert �p ∈ � specifies her preferences about 

alternatives in X in a (possibly partial or multiple) fuzzy ranking �p; 
2. trust statements collection: each expert �p ∈ � specifies the trust she has 

in all experts that belong to E (including himself) in a (possibly partial 

or multiple) fuzzy ranking �pÁ; 
3. fuzzy ranking conversion: fuzzy rankings �p and �pÁ are converted into 

the (possibly incomplete) individual FPRs �p and �pÁ for � ∈ {1, … , �}; 

4. social influence network generation: all FPRs �pÁ for � ∈ {1,… , �}, 

representing trust degrees between experts, are used to generate a SIN 

characterized by the � × � fuzzy adjacency matrix W; 

5. missing preferences estimation: any individual FPR �p for � ∈ {1,… , �}, 

in presence of missing information, is completed by injecting values from 

other FPRs according to influence information gathered by the SIN; 

6. influence-guided preferences evolution: to simulate the effects of experts’ 

interpersonal influence, any individual FPR �p for � ∈ {1,… , �}, once 

completed, is updated according to the SIN until convergence; 

7. preferences aggregation: the individual FPRs �p for � ∈ {1,… , �} once 

updated according to the previous step, are aggregated through OWA to 

obtain the collective FPR P. 

8. alternative selection: the dominance degree �(�p) is estimated for each 

alternative �p ∈ � according to P, then the alternatives are ranked from 

the best to the worst and the first one is selected. 
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The information flow among the described steps is summarized in Figure 

7 while the next sections provide details on each step. In particular section 

3.3 deals with the collection of opinions and trust statements, their conversion 

into FPRs and the subsequent generation of the SIN (steps 1-4); section 3.4 

explains how the generated SIN is applied to estimate missing preferences 

(step 5); section 3.5 deals with the application of the influence model on 

obtained FPRs, their aggregation and alternative selection (steps 6-8). 

  

Figure 7. The information flow between model steps 
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3.3 FPRs and SIN Generation 

Fuzzy rankings are used in our model to let experts express their opinion 

with respect to (a subset of) alternatives as well as their trust on (a subset 

of) experts. More formally, each expert �m ∈ � provides a fuzzy ranking �m 
on the set of alternatives in X and a fuzzy ranking �mÁ on the set of experts 

E (including himself). Starting from �m and �mÁ, by applying equation (34), 

the corresponding (incomplete) FPRs �m and �mÁ are computed and taken 

forward to the next steps.  

Example 14. Let us suppose that we have a set � = {�1, �2, �3, �4, �5} of 
alternatives and a set � = {�1, �2, �3} of experts, that expert �1 provides the 
fuzzy ranking of alternatives: �1 = �4 ≫ �5 ≈ �2 ≥ �1 and the fuzzy ranking 

of experts: �1Á = �2 ≫ �1 ≈ �3. In �1 the expert states that the alternative �4 
is much better than �5 and �2 that, in their turn, are a little better than �1. 
In �1Á the expert states that she thinks that the expert �2 is much more 

trustable than both �1 (himself) and �3. Starting from �1 and �1Á, through 

equations (33)-(34), the following corresponding FPRs are obtained: 

�1 =

⎝⎜
⎜⎜⎜⎜
⎛0.5 0.4 − 0 0.4

0.6 0.5 − 0.1 0.5− − − − −
1 0.9 − 0.5 0.9

0.6 0.5 − 0.1 0.5⎠⎟
⎟⎟⎟⎟
⎞

; �1Á = (0.5 0 0.5
1 0.5 1

0.5 0 0.5

). 

The opinions on experts collected in �mÁ = (�prÁm) for � ∈ {1,… , �} are 

used to generate a SIN. As explained in 3.1, a SIN is characterized by a fuzzy 

adjacency matrix � = (�m�) where each element �m� ∈ [0,1] represents the 

strength of the influence of the l-th expert on the k-th one for �, � ∈ {1,… , �}. 

So, the elements of k-th row of W can be obtained from �mÁ through FPR 

measures defined in section 1.6 like QGDD. Moreover, to comply the SIN 

property so that ∑ �mp = 1kp=1 , a normalization step is needed as follows: 
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 �m� =
�m(��)∑ �m(�p)kp=1

 (45) 

where: 

 �m(��) = ����(��rÁm;  � = 1,… , �: ��rÁm is defined). (46) 

Undefined elements of �mÁ are not considered in equation (46); when the 

l-th row of �mÁ is undefined (i.e. when �m expresses no preferences on ��) �m(��) = 0; in the special case which the k-th expert only trusts himself, we 

obtain via equations (45)-(46): �m� = 0 for � ≠ � and �mm = 1 meaning that 

the expert is not influenced by any other. 

Example 15. Let X, E, �1Á and �1Á be as reported in Example 14, by applying 

equations (45)-(46) with values from �1Á and using the fuzzy quantifier (0,1) 

corresponding to the linguistic label “much” (see Figure 3) to guide the OWA 

operator, the obtained SIN weights referring to the expert �1 are: �1,1 = 0.17; 

�1,2 = 0.67; �1,3 = 0.17. If we suppose that the experts �2 and �3 define the 

following fuzzy ranking of experts: �2Á = �1 ≈ �2 ≫ �3 and �3Á = �3 > �2 > �1, 
then it is possible to obtain the SIN represented by the following matrix: 

� = (0.17 0.67 0.17
0.5 0.5 0
0.08 0.33 0.85

). 

Being m the number of experts and n the number of alternatives, the 

time complexity of the whole FPRs generation step is �(� ⋅ �2). Moreover, 

assuming that OWA uses state-of-the-art sorting algorithms, the overall time 

complexity of the SIN generation step is �(� ⋅ �2 log �). 
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3.4 Using Social Influence to Estimate Missing 

Preferences 

When some experts express their opinions only on a subset of alternatives, 

incomplete FPRs are generated through equations (33)-(34). In particular, if 

the i-th alternative does not appear in a given fuzzy ranking, then both the 

i-th row and the i-th column of the corresponding FPR remain undefined 

(e.g. alternative �3 in Example 14). As seen in section 1.7, this is considered 

an ignorance situation that can be solved by selecting seed values to initialize 

the missing preferences and by iterating the equations (22)-(23) or (27)-(28) 

until the convergence is reached and the final estimates obtained. 

Several methods have been proposed so far to obtain seed values. Here 

we propose to obtain seed values from preferences provided by the experts 

that are trusted by the one whose FPR has to be completed. This is to say 

that, when an expert is asked to evaluate an unknown alternative, she forms 

her judgment using the opinion of experts she trusts.  

Based on the generated SIN, a missing preference �prm  of an FPR �m 
coming from �m is estimated through the I-IOWA operator (defined in 1.5) 

where the preferences to aggregate come from all the defined FPRs �� with 

� ∈ {1,… , �} while the importance degrees come from W and represent the 

trust degree of �m on each expert of E. More formally, basing on equation 

(16), a missing preference �prm  is estimated as follows: 

 �(�prm ) = �-����� ((�pr� ,�m�);  � = 1,… , �: �pr�  is defined) (47) 

Undefined elements of �� for � ∈ {1,… , �} are not considered in equation 

(47). If seed values for some preferences are still missing (e.g. when the same 

preferences are missing in the FPRs of any trusted expert), then the 

estimation process based on equation (47) is repeated on FPRs injected with 

estimated values. The process is iterated until no additional seed values can 

be calculated. Then, the final estimates are computed through the iterative 

application of equations (22)-(23) or (27)-(28) until convergence is reached. 
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In some cases it is possible that some FPR value still remain undefined. 

Given an FPR �m and an alternative �p ∈ �, when none of the experts 

(directly or indirectly) trusted by �m have an opinion on �p i.e. when �pr�  and 

�rp�  are undefined for any � ∈ {1, … , �} and any l so that a path (that excludes 

0-weighted arcs) from �� to �m exists in the SIN, then both the i-th row and 

the i-th column of �m remain undefined.  

In case the SIN is a connected graph this means that all experts have no 

opinion on �p. This suggests that the alternative is of no interest for the 

whole group so it can be removed from X. Conversely, in case the SIN is 

disconnected, it is possible that other (untrusted) experts have provided an 

opinion on �p. In such cases �p can’t be removed and remaining undefined 

FPRs elements must be estimated through a different method among those 

discussed in 1.7 (e.g. through indifference by setting the seed value to 0.5). 

Example 16. Let X, E and �1 be as reported in Example 14, let W be the 

SIN adjacency matrix calculated in Example 15 and suppose that the experts 

�2, �3 ∈ � specify the following fuzzy rankings: �2 = �4 ≈ �5 > �3 > �2 and 

�3 = �3 ≈ �5 ≥ �4 ≫ �1. The FPRs corresponding to such fuzzy rankings, 

obtained through equations (33)-(34), are: 

�2 =

⎝⎜
⎜⎜⎜⎛

− − − − −− 0.50 0.25 0 0− 0.75 0.50 0.25 0.25− 1 0.75 0.50 0.50− 1 0.75 0.50 0.50⎠⎟
⎟⎟⎟⎞ ; �3 =

⎝⎜
⎜⎜⎜⎜
⎛0.50 − 0 0.10 0− − − − −

1 − 0.50 0.60 0.50
0.90 − 0.40 0.50 0.40
1 − 0.50 0.60 0.50⎠⎟

⎟⎟⎟⎟
⎞

. 

Seed values for missing preferences of �1 are then generated from �2 and �3 
basing on the first row of W: �1,1 = 0.17; �1,2 = 0.67; �1,3 = 0.17 through 

equation (47) and using the quantifier (0,1) to guide the I-IOWA operator. 

Estimated values are: �(�1,31 ) = 0, �(�2,31 ) = 0.25, �(�3,11 ) = 1, �(�3,21 ) = 0.75, 

�(�3,31 ) = 0.5, �(�3,41 ) = 0.32, �(�3,51 ) = 0.3, �(�4,31 ) = 0.68, �(�5,31 ) = 0.7. By 

iteratively applying equations (22)-(23) until convergence and injecting the 
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last estimates in �1, the FPR coming from �1 is completed as follows (where 

injected values are reported in bold): 

�1 =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.4 �. �� 0 0.4

0.6 0.5 �. �� 0.1 0.5�. �� �. �� �. � �. �� �. ��
1 0.9 �. �� 0.5 0.9

0.6 0.5 �. �� 0.1 0.5 ⎠⎟
⎟⎟⎟⎟
⎞

. 

The time complexity of the preference estimation step is affected by the 

number of missing preferences, being m the number of experts and n the 

number of alternatives. Assuming that I-OWA uses state-of-the-art sorting 

algorithms, the overall time complexity of this step can be asymptotically 

limited by Ω(� ⋅ �2) and �(� ⋅ �3 log �). 

3.5 Preferences Evolution and Best Alternative 

Selection 

To simulate the effects of social influence between experts, the individual 

FPRs obtained at the preceding steps are revised using the SIN generated 

with equations (45)-(46). The aim is to predict the final decision that will be 

adopted by the group of experts as a result of interaction, without the need 

to actually perform such interaction. To do that we apply an iterative process 

like that described in section 3.1 where at each step the individual FPR of 

each of the experts is slightly changed to take into account the influence 

coming from trusted experts. Differently from [58], in our model the influence 

model directly impacts individual FPRs rather than utility vectors obtained 

from them. 

Being �m(1)
= (�prm(1)) the FPR representing the initial opinion of the k-th 

expert with � ∈ {1, … , �} and �, � ∈ {1, … , �}, it is possible to estimate the 

elements of the k-th expert’s FPR after t interactions based on the SIN fuzzy 

adjacency matrix W as follows: 
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 �prm(¡)
= �-����� ((�pr1(¡−1)

, �m1),… , (�prk(¡−1)
, �mk)). (48) 

In other words, at each step, each preference is updated by composing 

the current preference with preferences coming from all the experts via the 

I-IOWA operator. The importance degree of each contribution matches the 

strength of the social influence coming from W. Extending the notation to 

matrices, we can rewrite equation (48) as follows: 

 �m(¡) = �-����� ((�1(¡−1)
,�m1),… , (�k(¡−1)

, �mk)). (49) 

Proposition. When the fuzzy quantifier � = (0,1), corresponding to the label 

“much” (see Figure 3), is used to obtain the I-IOWA weights, it can be 

demonstrated that, if there exists a positive integer l so that every element in 

at least one column o� �f  is positive, then all the FPRs �m(¡) for � ∈ {1, … , �} 

are expected to converge to the same FPR. 

Proof. Combining equation (48) with the definition of the I-IOWA operator 

provided by equations (16)-(17), we obtain that, being �m(¡) a generic element 

belonging to the FPR �m(¡) for � ∈ {1,… , �} and � > 1: 

�m(¡) = �-����� ((�1(¡−1)
, �m1),… , (�k(¡−1)

, �mk))
= ∑ (�� ( �(�)�(�)

) − �� (�(� − 1)�(�)
)) ��(p)(¡−1)

k
p=1

 

where �(�) = ∑ �m�(r)pr=1  and �: {1, … �} → {1,… �} denotes a permutation 

function so that ��(p) ≥ ��(p+1) for each � ∈ {1,… , �}. Being � = (0,1), by 

substituting � = 0 and � = 1 in equation (14) we obtain: ��(�) = H−01−0 = � for 

0 ≤ � ≤ 1. Given that �(�) and �(�) are positive number and �(�) ≥ �(�) 
for 1 ≤ � ≤ �, then we can say that 0 ≤ J(p)J(k)

≤ 1 so ��( J(p)J(k)
) = J(p)J(k)

. By 

substituting this in the preceding equation we obtain: 
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�m(¡) = ∑ ( �(�)�(�)
− �(� − 1)�(�)

) ��(p)(¡−1)
k

p=1
= ∑ ∑ �m�(r) − ∑ �m�(r)p−1r=1pr=1 ∑ �m�(r)kr=1

��(p)(¡−1)
k

p=1
= ∑ �m�(p)∑ �m�(r)kr=1

��(p)(¡−1)
.

k
p=1

 

Given that W is the fuzzy adjacency matrix of a SIN, thanks to equation (45) 

we have that: ∑ �mrkr=1 = 1 for any � ∈ {1,… , �}. Being � a permutation 

function, ∑ �m�(r)kr=1  simply sum the same elements in a different order so 

we can say that ∑ �m�(r)kr=1 = 1 too. By substituting this in the preceding 

equation we obtain: 

�m(¡) = ∑ �m�(p)��(p)(¡−1)
k

p=1
= ∑ �mp�p(¡−1)

k
p=1

. 

If we build the vector �(¡) = (�1(¡) ,… , �k(¡))Ñ
including the same preference as 

expressed by all the m experts we can generalize the preceding equation using 

matrix notation as �(¡) = ��(¡−1) = � ¡−1�(1). As explained in [56], W can 

be so regarded as the one-step transition probability matrix of a Markov chain 

with m states and stationary transition probabilities. 

If there exists a positive integer l so that every element in at least one column 

of � � is positive then the Markov chain is said regular and, thanks to the 

limit theorem for regular finite Markov chains [60], it exists a value p so that 

���¡→∞ �m(¡) = � ∀� ∈ {1,… , �} i.e. the preferences expressed by the m experts 

converge to the same value p. By extending this result (that regards a generic 

FPR preference) to the whole FPR, we can say that, if conditions are met, 

all the FPRs �m(¡) for � ∈ {1, … , �} converge to the same FPR. 

In practical applications the preferences evolution may be stopped after 

a fixed number of iterations or when the average absolute difference between 

FPRs values in two subsequent steps is under a given threshold � i.e. when: 
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1� ⋅ �2 ∑ ∣�prm(¡) − �prm(¡−1)∣

1≤p,r≤l; 1≤m≤k
≤ � (50) 

When the stopping conditions are met, in case of lack of convergence, the 

obtained FPRs are aggregated through the ���� operator defined in section 

1.5, whose weights are initialized according to equation (15). A score value 

�(�p) is then calculated for each �p ∈ � through the QGDD operator defined 

by equation (20) and the best alternative is chosen as the result of the GDM 

problem. To obtain a more exhaustive and easy to understand solution to 

the problem, it is possible to convert the obtained score values back to a 

collective fuzzy ranking of alternatives through equations (36)-(37). 

Example 17. Let X, E, �1, �2, �3 and �  be as reported in the previous 

examples, using W, it is possible to complete the individual FPRs �2 and �3 
through equation (47) as follows (injected values are represented in bold): 

�2 =

⎝⎜
⎜⎜⎜⎜
⎛ �. � �. �� �. �� �. �� �. ���. �� 0.5 0.25 0 0�. �� 0.75 0.5 0.25 0.25�. �� 1 0.75 0.5 0.5�. �� 1 0.75 0.5 0.5 ⎠⎟

⎟⎟⎟⎟
⎞

; 

�3 =

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 �. �� 0 0.1 0�. �� �. � �. �� �. �� �. ��

1 �. �� 0.5 0.6 0.5
0.9 �. �� 0.4 0.5 0.4
1 �. �� 0.5 0.6 0.5 ⎠⎟

⎟⎟⎟⎟
⎞

. 

The completed FPRs are then updated according to equation (49) simulating 

the effect of social influence. The fuzzy quantifier � = (0,1), corresponding 

to the linguistic label “much”, is used to guide the I-IOWA operator. The 

following matrices represent the evolution of �1 after 2 and 6 iterations: 
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�1(2)
=

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.51 0.26 0.07 0.17

0.45 0.5 0.24 0.04 0.1
0.65 0.76 0.5 0.31 0.35
0.89 0.56 0.69 0.5 0.55
0.78 0.9 0.65 0.45 0.5 ⎠⎟

⎟⎟⎟⎟
⎞

; 

�1(6)
=

⎝⎜
⎜⎜⎜⎜
⎛ 0.5 0.48 0.25 0.05 0.22

0.48 0.5 0.26 0.05 0.18
0.68 0.74 0.5 0.31 0.4
0.91 0.95 0.69 0.5 0.62
0.75 0.82 0.6 0.38 0.5 ⎠⎟

⎟⎟⎟⎟
⎞

. 

After 6 iterations all individual FPRs converge to � = �1(6)
= �2(6)

= �3(6)
 

that can be considered as the collective preference relation of consensus (so 

there is no need for aggregation). By applying equation (20), the preference 

degrees associated to available alternatives are: �(�1) = 0.25; �(�2) = 0.24; 

�(�3) = 0.53; �(�4) = 0.79; �(�5) = 0.64. The best alternative is then �4 
which can be considered the solution of the GDM problem. Applying equations 

(36)-(37) it is also possible to obtain the following collective fuzzy ranking of 

problem alternatives: �4 > �5 > �3 ≫ �1 ≈ �2. 

Being m the number of experts and n the number of alternatives, the 

time complexity of each iteration of preferences evolution is �(� ⋅ �3 log �). 

Being the number of iterations limited by a constant, it can be considered as 

asymptotically negligible. The aggregation between FPRs (in case of lack of 

convergence) has a time complexity of �(� ⋅ �3 log �), while the complexity 

of the alternative selection step is �(�2 log �). 

3.6 Numerical Example 

This section describes two in silico experiments of the proposed methodology 

aimed at illustrating its operational steps and convergence properties. Let 

� = {�1,… , �6} be a set of experts that have to choose the best alternative 

among those available in the set � = {�1,… , �10}. According to the defined 

model, experts use fuzzy rankings to express their preferences on alternatives 
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and their trust on other experts. Defined fuzzy rankings are reported in Table 

3. As it can be seen, many experts provide incomplete information both with 

respect to alternatives and to other experts. For example �1 just evaluates 7 

alternatives over 10 and express her trust on 4 experts over 6.  

 

Expert Fuzzy rankings of alternatives Fuzzy rankings of experts 

�1 �5 ≫ �7 ≈ �8 ≥ �1 ≈ �3 > �4 ≫ �2 �2 ≫ �1 > �4 ≥ �5 
�2 �10 ≈ �6 > �2 ≥ �1 ≫ �3 ≥ �9 ≈ �5 �3 > �2 ≈ �4 ≥ �5 > �6 
�3 �3 ≈ �5 > �10 ≫ �1 > �2 > �6 ≈ �7 ≈ �8 �3 ≫ �6 ≥ �2 > �5 �4 �6 > �2 ≥ �1 > �9 ≈ �5 > �8 �4 > �3 > �2 ≈ �1 > �5 ≈ �6 
�5 �3 > �5 ≫ �8 > �1 > �10 > �6 > �2 �3 ≥ �5 ≥ �6 > �1 ≈ �2 
�6 �10 ≈ �4 > �5 ≫ �6 > �2 �6 ≫ �2 ≥ �5 > �4 

Table 3. Collected fuzzy rankings of alternatives and experts (first case) 

Applying equations (33)-(34), the fuzzy rankings on alternatives are 

converted into FPRs (see Table 4). As it can be seen, many elements remain 

undefined given the incompleteness of experts’ opinion.  

The same process is repeated with fuzzy rankings of experts and obtained 

FPRs (that are not reported for reasons of brevity) are, in turn, used to build 

a SIN via equations (45)-(46). It should be noted that, even if information on 

trust is incomplete, the SIN generation process is able to initialize any SIN 

weight. The obtained SIN, shown in Figure 8, can be summarized by the 

following fuzzy adjacency matrix:  

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.26 0.45 0 0.17 0.12 0
0 0.22 0.32 0.22 0.17 0.07
0 0.20 0.44 0 0.11 0.25

0.16 0.16 0.22 0.29 0.09 0.09
0.09 0.09 0.34 0 0.28 0.21
0 0.25 0 0.11 0.20 0.44⎠⎟

⎟⎟⎟⎟
⎟⎟⎞

. 

  



A Fuzzy GDM Model Guided by Social Influence 75 

 

�1   �2 

0.50 0.77 0.50 0.59 0.27 - 0.45 0.45 - -  0.50 0.44 0.75 - 0.81 0.31 - - 0.81 0.31 

0.23 0.50 0.23 0.32 0.00 - 0.18 0.18 - -  0.56 0.50 0.81 - 0.88 0.38 - - 0.88 0.38 

0.50 0.77 0.50 0.59 0.27 - 0.45 0.45 - -  0.25 0.19 0.50 - 0.56 0.06 - - 0.56 0.06 

0.41 0.68 0.41 0.50 0.18 - 0.36 0.36 - -  - - - 0.50 - - - - - - 

0.73 1.00 0.73 0.82 0.50 - 0.68 0.68 - -  0.19 0.13 0.44 - 0.50 0.00 - - 0.50 0.00 

- - - - - 0.50 - - - -  0.69 0.63 0.94 - 1.00 0.50 - - 1.00 0.50 

0.55 0.82 0.55 0.64 0.32 - 0.50 0.50 - -  - - - - - - 0.50 - - - 

0.55 0.82 0.55 0.64 0.32 - 0.50 0.50 - -  - - - - - - - 0.50 - - 

- - - - - - - - 0.50 -  0.19 0.13 0.44 - 0.50 0.00 - - 0.50 0.00 

- - - - - - - - - 0.50  0.69 0.63 0.94 - 1.00 0.50 - - 1.00 0.50 

�3  �4 

0.50 0.60 0.20 - 0.20 0.70 0.70 0.70 - 0.30  0.50 0.43 - - 0.64 0.29 - 0.79 0.64 - 

0.40 0.50 0.10 - 0.10 0.60 0.60 0.60 - 0.20  0.57 0.50 - - 0.71 0.36 - 0.86 0.71 - 

0.80 0.90 0.50 - 0.50 1.00 1.00 1.00 - 0.60  - - 0.50 - - - - - - - 

- - - 0.50 - - - - - -  - - - 0.50 - - - - - - 

0.80 0.90 0.50 - 0.50 1.00 1.00 1.00 - 0.60  0.36 0.29 - - 0.50 0.14 - 0.64 0.50 - 

0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  0.71 0.64 - - 0.86 0.50 - 1.00 0.86 - 

0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  - - - - - - 0.50 - - - 

0.30 0.40 0.00 - 0.00 0.50 0.50 0.50 - 0.10  0.21 0.14 - - 0.36 0.00 - 0.50 0.36 - 

- - - - - - - - 0.50 -  0.36 0.29 - - 0.50 0.14 - 0.64 0.50 - 

0.70 0.80 0.40 - 0.40 0.90 0.90 0.90 - 0.50  - - - - - - - - - 0.50 

�5  �6 

0.50 0.71 0.21 - 0.29 0.64 - 0.43 - 0.57  0.50 - - - - - - - - - 

0.29 0.50 0.00 - 0.07 0.43 - 0.21 - 0.36  - 0.50 - 0.00 0.13 0.38 - - - 0.00 

0.79 1.00 0.50 - 0.57 0.93 - 0.71 - 0.86  - - 0.50 - - - - - - - 

- - - 0.50 - - - - - -  - 1.00 - 0.50 0.63 0.88 - - - 0.50 

0.71 0.93 0.43 - 0.50 0.86 - 0.64 - 0.79  - 0.88 - 0.38 0.50 0.75 - - - 0.38 

0.36 0.57 0.07 - 0.14 0.50 - 0.29 - 0.43  - 0.63 - 0.13 0.25 0.50 - - - 0.13 

- - - - - - 0.50 - - -  - - - - - - 0.50 - - - 

0.57 0.79 0.29 - 0.36 0.71 - 0.50 - 0.64  - - - - - - - 0.50 - - 

- - - - - - - - 0.50 -  - - - - - - - - 0.50 - 

0.43 0.64 0.14 - 0.21 0.57 - 0.36 - 0.50  - 1.00 - 0.50 0.63 0.88 - - - 0.50 

                     

Table 4. Experts’ initial opinions converted in FPRs (first case) 



76 Fuzzy Models for Group Decision Making and their Applications 

 

 

Figure 8. The generated SIN (first case) 

Applying the process described in section 3.4 it is possible to estimate 

missing preferences injecting external seeds from trusted experts (according 

to the SIN) and to consolidate them through harmonization with existing 

preferences using the additive transitivity property. Completed FPRs are 

shown in Table 5. To make these results more readable, we apply equations 

(36)-(37) to obtain back the completed fuzzy rankings after the injection of 

external preferences. They are reported in Table 6.  

The next step consists in executing the process described in section 3.5 

to let experts’ preferences evolve according to social influence. The process is 

expected to converge since all the elements of at least one column of W are 

positive. In fact, after 5 iterations, the experts’ preferences converge to the 

same collective FPR P reported below:  
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�1   �2 

0.50 0.77 0.50 0.59 0.27 0.32 0.45 0.45 0.62 0.35  0.50 0.44 0.75 0.38 0.81 0.31 0.70 0.69 0.81 0.31 

0.23 0.50 0.23 0.32 0.00 0.14 0.18 0.18 0.44 0.16  0.56 0.50 0.81 0.37 0.88 0.38 0.69 0.68 0.88 0.38 

0.50 0.77 0.50 0.59 0.27 0.27 0.45 0.45 0.57 0.30  0.25 0.19 0.50 0.26 0.56 0.06 0.58 0.57 0.56 0.06 

0.41 0.68 0.41 0.50 0.18 0.21 0.36 0.36 0.51 0.23  0.42 0.46 0.54 0.50 0.62 0.37 0.65 0.64 0.64 0.28 

0.73 1.00 0.73 0.82 0.50 0.41 0.68 0.68 0.71 0.44  0.19 0.13 0.44 0.21 0.50 0.00 0.53 0.52 0.50 0.00 

0.61 0.79 0.66 0.63 0.52 0.50 0.53 0.60 0.73 0.46  0.69 0.63 0.94 0.46 1.00 0.50 0.78 0.77 1.00 0.50 

0.55 0.82 0.55 0.64 0.32 0.30 0.50 0.50 0.60 0.33  0.20 0.24 0.32 0.11 0.40 0.15 0.50 0.42 0.42 0.06 

0.55 0.82 0.55 0.64 0.32 0.33 0.50 0.50 0.63 0.36  0.25 0.29 0.37 0.16 0.45 0.19 0.48 0.50 0.47 0.11 

0.31 0.50 0.36 0.33 0.22 0.14 0.23 0.30 0.50 0.16  0.19 0.13 0.44 0.12 0.50 0.00 0.44 0.43 0.50 0.00 

0.59 0.77 0.63 0.60 0.49 0.41 0.50 0.57 0.71 0.50  0.69 0.63 0.94 0.55 1.00 0.50 0.87 0.86 1.00 0.50 

�3  �4 

0.50 0.60 0.20 0.32 0.20 0.70 0.70 0.70 0.63 0.30  0.50 0.43 0.42 0.50 0.64 0.29 0.60 0.79 0.64 0.34 

0.40 0.50 0.10 0.21 0.10 0.60 0.60 0.60 0.52 0.20  0.57 0.50 0.38 0.47 0.71 0.36 0.57 0.86 0.71 0.30 

0.80 0.90 0.50 0.54 0.50 1.00 1.00 1.00 0.84 0.60  0.58 0.62 0.50 0.59 0.62 0.53 0.69 0.79 0.69 0.42 

0.48 0.62 0.26 0.50 0.30 0.67 0.65 0.65 0.64 0.32  0.46 0.50 0.38 0.50 0.50 0.41 0.57 0.67 0.57 0.30 

0.80 0.90 0.50 0.53 0.50 1.00 1.00 1.00 0.84 0.60  0.36 0.29 0.38 0.47 0.50 0.14 0.57 0.64 0.50 0.30 

0.30 0.40 0.00 0.16 0.00 0.50 0.50 0.50 0.47 0.10  0.71 0.64 0.47 0.56 0.86 0.50 0.66 1.00 0.86 0.39 

0.30 0.40 0.00 0.11 0.00 0.50 0.50 0.50 0.42 0.10  0.37 0.40 0.28 0.37 0.40 0.31 0.50 0.57 0.47 0.20 

0.30 0.40 0.00 0.11 0.00 0.50 0.50 0.50 0.42 0.10  0.21 0.14 0.21 0.30 0.36 0.00 0.40 0.50 0.36 0.13 

0.24 0.38 0.02 0.09 0.06 0.43 0.41 0.41 0.50 0.08  0.36 0.29 0.24 0.33 0.50 0.14 0.43 0.64 0.50 0.16 

0.70 0.80 0.40 0.52 0.40 0.90 0.90 0.90 0.83 0.50  0.66 0.70 0.58 0.67 0.70 0.61 0.77 0.87 0.77 0.50 

�5  �6 

0.50 0.71 0.21 0.49 0.29 0.64 0.65 0.43 0.67 0.57  0.50 0.61 0.44 0.31 0.44 0.51 0.35 0.50 0.61 0.33 

0.29 0.50 0.00 0.28 0.07 0.43 0.44 0.21 0.46 0.36  0.29 0.50 0.29 0.00 0.13 0.38 0.20 0.36 0.46 0.00 

0.79 1.00 0.50 0.69 0.57 0.93 0.85 0.71 0.86 0.86  0.43 0.61 0.50 0.31 0.44 0.50 0.34 0.50 0.61 0.32 

0.47 0.68 0.28 0.50 0.34 0.62 0.62 0.45 0.64 0.49  0.45 1.00 0.46 0.50 0.63 0.88 0.37 0.52 0.63 0.50 

0.71 0.93 0.43 0.63 0.50 0.86 0.79 0.64 0.80 0.79  0.46 0.88 0.46 0.38 0.50 0.75 0.37 0.52 0.63 0.38 

0.36 0.57 0.07 0.35 0.14 0.50 0.51 0.29 0.52 0.43  0.39 0.63 0.40 0.13 0.25 0.50 0.31 0.46 0.57 0.13 

0.32 0.52 0.12 0.31 0.18 0.46 0.50 0.29 0.48 0.33  0.29 0.47 0.29 0.17 0.30 0.36 0.50 0.35 0.46 0.18 

0.57 0.79 0.29 0.48 0.36 0.71 0.64 0.50 0.66 0.64  0.36 0.54 0.37 0.25 0.38 0.44 0.28 0.50 0.54 0.26 

0.23 0.44 0.04 0.23 0.10 0.38 0.38 0.21 0.50 0.25  0.26 0.44 0.26 0.14 0.27 0.33 0.17 0.32 0.50 0.15 

0.43 0.64 0.14 0.48 0.21 0.57 0.63 0.36 0.65 0.50  0.57 1.00 0.58 0.50 0.63 0.88 0.48 0.64 0.75 0.50 

                     

Table 5. Experts’ opinions completed with preferences injected from  

trusted experts (first case) 
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� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎛ 0.5 0.58 0.4 0.39 0.44 0.51 0.59 0.61 0.67 0.36

0.4 0.5 0.31 0.24 0.32 0.43 0.48 0.51 0.59 0.23
0.57 0.67 0.5 0.46 0.51 0.61 0.69 0.71 0.71 0.44
0.46 0.67 0.38 0.5 0.46 0.6 0.56 0.58 0.63 0.37
0.54 0.68 0.46 0.45 0.5 0.6 0.67 0.69 0.68 0.42
0.47 0.57 0.37 0.31 0.4 0.5 0.53 0.57 0.66 0.29
0.3 0.42 0.2 0.21 0.23 0.36 0.5 0.42 0.45 0.17
0.35 0.46 0.25 0.26 0.29 0.4 0.46 0.5 0.5 0.24
0.25 0.35 0.2 0.17 0.25 0.27 0.35 0.38 0.5 0.12
0.61 0.77 0.53 0.53 0.58 0.71 0.73 0.73 0.8 0.5 ⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎞

 

From P, through equation (20), it is possible  to calculate the degrees of 

preference associated to each alternative in terms of dominance degree as 

follows: �(�1) = 0.51, �(�2) = 0.39, �(�3) = 0.6, �(�4) = 0.52, �(�5) = 0.58, 

�(�6) = 0.46, �(�7) = 0.31, �(�8) = 0.36, �(�9) = 0.26, �(�1) = 0.67. So, the 

best alternative is �10. In addition, the obtained dominance degrees can be 

used to generate the following collective fuzzy ranking of alternatives: 

�10 ≫ �3 ≥ �5 > �4 ≥ �1 > �6 ≫ �2 ≥ �8 > �7 > �9. 

Expert Completed fuzzy rankings of alternatives 

�1 �5 > �6 ≥ �10 > �7 ≈ �8 ≥ �1 ≥ �3 ≫ �4 ≫ �9 > �2 
�2 �10 ≥ �6 ≫ �2 > �1 > �4 ≫ �3 ≥ �8 ≥ �5 ≥ �7 ≈ �9 
�3 �3 ≈ �5 > �10 ≫ �4 ≥ �1 ≫ �2 ≫ �6 ≈ �7 ≈ �8 ≥ �9 

�4 �10 ≥ �6 > �3 > �2 ≥ �1 ≥ �4 ≫ �5 ≥ �7 ≥ �9 ≫ �8 
�5 �3 > �5 ≫ �8 > �1 ≈ �4 > �10 ≫ �6 ≥ �7 > �2 ≥ �9 
�6 �10 > �4 > �5 ≫ �1 ≈ �3 > �8 ≥ �6 > �7 > �9 ≥ �2 

Table 6. Completed fuzzy rankings of alternatives (first case) 

Figure 9 shows the evolution of the degree of preference associated to 

each alternative for the involved experts, which elucidates the convergence 

process versus the final preferences. The x-axis represents the number of 

performed iterations while the y-axis represents the dominance degree of each 
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alternatives for each expert at a given iteration. Different colors correspond 

to different alternatives whose identifier is shown on the right. The first 5 

alternatives are plotted on the left, the last 5 on the right. The figure allows 

to easily perceive the final ranking but also shows the process dynamics that 

led to the generation of the final decision. For example, it can be noticed that 

the most controversial alternatives are �2 and �6 since the convergence on 

them is reached later than for the other alternatives.  

 

Figure 9. Evolution of preferences based on the influence model (first case) 

A special case is when W does not respect the conditions for convergence. 

Let us suppose that the previous experts provide the same opinions about 

the alternatives but different fuzzy rankings about experts (as shown in Table 

7). By applying equations (33)-(34), the fuzzy rankings are converted in FPRs 

and, then, used to build a SIN via equations (45)-(46). The SIN, shown in 

Figure 10, can be summarized by the following fuzzy adjacency matrix:  

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.61 0.28 0.11 0 0 0
0.17 0.67 0.17 0 0 0
0.33 0.33 0.33 0 0 0
0 0 0 0.67 0.17 0.17
0 0 0 0.17 0.67 0.17
0 0 0 0.5 0 0.5 ⎠⎟

⎟⎟⎟⎟
⎟⎟⎞
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Expert Fuzzy rankings of alternatives Fuzzy rankings of experts 

�1 �5 ≫ �7 ≈ �8 ≥ �1 ≈ �3 > �4 ≫ �2 �1 > �2 ≥ �3 
�2 �10 ≈ �6 > �2 ≥ �1 ≫ �3 ≥ �9 ≈ �5 �2 ≫ �1 ≈ �3 
�3 �3 ≈ �5 > �10 ≫ �1 > �2 > �6 ≈ �7 ≈ �8 �1 ≈ �2 ≈ �3 
�4 �6 > �2 ≥ �1 > �9 ≈ �5 > �8 �4 > �5 ≈ �6 
�5 �3 > �5 ≫ �8 > �1 > �10 > �6 > �2 �5 ≥ �4 ≈ �6 
�6 �10 ≈ �4 > �5 ≫ �6 > �2 �4 ≈ �6 > �5 

Table 7. Collected fuzzy rankings of alternatives and experts (second case) 

 

Figure 10. The generated SIN (second case) 

Like in the previous case, the experts are initially in disagreement but, 

unlike the previous case, they grant their trust only to a small subset of 

colleagues so as to create two unconnected subgroups. As it can be seen from 

Figure 10 (but also from W), experts �1, �2 and �3 do not provide trust 

information related experts �4, �5 and �6 and vice versa, so their preferences 
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are not mutually influenced by the model. It is easy to demonstrate that W 

does not meet the conditions for convergence since it is impossible to find a 

positive integer l so that every element in at least one column of � � is 
positive. So it is expected that the influence process does not converge.   

Since the fuzzy rankings on alternatives are the same as in the previous 

example, after conversion, the obtained FPRs are the same already shown in 

Table 4. Obtained FPRs are then completed according to the new SIN and 

used as input for the influence model. The completed FPRs converted back 

into fuzzy rankings are reported in Table 8. After 8 interactions, each of the 

two subgroups of experts reaches internal consensus on a single FPR but the 

FPRs obtained by the two subgroups of experts are different (the two FPRs 

are reported in Table 9).  

Expert Completed fuzzy rankings of alternatives 

�1 �10 ≥ �5 ≫ �6 > �7 ≈ �8 ≥ �1 ≈ �3 ≫ �4 ≫ �9 > �2 
�2 �10 ≥ �6 ≫ �2 ≥ �1 ≫ �7 ≈ �8 ≈ �4 ≥ �3 > �5 > �9 
�3 �3 ≈ �5 ≫ �10 ≫ �1 ≫ �2 ≥ �4 > �6 ≈ �7 ≈ �8 ≥ �9 

�4 �6 ≥ �3 ≫ �4 ≈ �2 ≥ �1 > �10 > �5 ≥ �7 ≈ �9 ≫ �8 
�5 �3 > �5 ≫ �8 ≥ �4 > �1 > �10 ≥ �9 ≈ �7 ≥ �6 > �2 
�6 �4 ≈ �10 ≫ �5 ≫ �1 ≥ �6 ≫ �3 ≥ �7 > �9 > �2 > �8 

Table 8. Completed fuzzy rankings of alternatives (first case) 

The evolution of the dominance degree of the first two alternatives is 

shown in Figure 11 where the x-axis represents the number of iterations and 

the y-axis represents the dominance degree of the plotted alternative for each 

expert at a given iteration. Different colors correspond to different experts, 

the identifiers for experts and alternatives are shown on the right. Equations 

(13)-(15) are used to aggregate the FPRs coming from the two subgroups of 

experts and the resulting dominance degrees, associated to each alternative, 

are: �(�1) = 0.48, �(�2) = 0.39, �(�3) = 0.51, �(�4) = 0.43, �(�5) = 0.49, 
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�(�6) = 0.54, �(�7) = 0.36, �(�8) = 0.34, �(�9) = 0.28, �(�1) = 0.6. Again, 

the final group solution is �10, although the new collective fuzzy ranking of 

alternatives is:  

�10 ≫ �6 > �3 ≥ �5 ≈ �1 > �4 > �2 > �7 ≥ �8 ≫ �9. 

� ′
   � ′′

 

0,50 0,58 0,56 0,58 0,51 0,41 0,58 0,58 0,72 0,29  0,50 0,52 0,25 0,29 0,49 0,41 0,32 0,63 0,55 0,44 

0,42 0,50 0,48 0,45 0,43 0,36 0,46 0,46 0,67 0,24  0,43 0,50 0,15 0,15 0,41 0,38 0,23 0,60 0,52 0,29 

0,44 0,52 0,50 0,55 0,45 0,33 0,57 0,57 0,63 0,21  0,56 0,69 0,50 0,38 0,56 0,59 0,41 0,66 0,55 0,56 

0,36 0,48 0,39 0,50 0,31 0,28 0,44 0,44 0,52 0,13  0,46 0,70 0,30 0,50 0,53 0,60 0,37 0,58 0,51 0,51 

0,49 0,57 0,55 0,63 0,50 0,35 0,65 0,65 0,65 0,23  0,46 0,59 0,29 0,32 0,50 0,47 0,33 0,63 0,52 0,49 

0,58 0,63 0,66 0,59 0,63 0,50 0,63 0,63 0,80 0,37  0,54 0,62 0,25 0,25 0,53 0,50 0,33 0,71 0,64 0,40 

0,40 0,53 0,42 0,48 0,34 0,32 0,50 0,48 0,54 0,16  0,30 0,43 0,14 0,17 0,32 0,33 0,50 0,41 0,34 0,30 

0,40 0,53 0,42 0,48 0,34 0,32 0,48 0,50 0,54 0,16  0,30 0,35 0,15 0,17 0,32 0,24 0,20 0,50 0,37 0,33 

0,23 0,28 0,32 0,28 0,30 0,13 0,32 0,32 0,50 0,02  0,33 0,39 0,16 0,19 0,39 0,27 0,23 0,51 0,50 0,33 

0,70 0,75 0,78 0,73 0,76 0,61 0,79 0,79 0,91 0,50  0,42 0,66 0,24 0,32 0,46 0,55 0,31 0,52 0,45 0,50 

                     

Table 9. The influenced FPRs � ′ and � ′′ obtained within the first and  

the second experts’ subgroups (second case) 

 

Figure 11. Evolution of experts’ preferences for the alternatives  

�1 and �2 (second case) 
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3.7 Comparison with Related Works 

As explained in section 3.1, the study of the effects of social influence in GDM 

has just begun and some early models dealing with influence are starting to 

be proposed. In [58], equations (43)-(44) have been applied for the first time 

in a GDM process to let the experts’ individual opinions evolve, according to 

a predefined SIN, before being aggregated to form the collective FPR. Even 

though it is based on modified versions of the same equations, in our model 

the SIN is not predefined but generated from trust statements expressed by 

the experts in the same form of preferences about alternatives. 

Interpersonal trust has been already used to improve the outcomes of a 

GDM process. In [61, 62], two models have been defined were each expert is 

explicitly asked to express their fuzzy trust statements on the other experts. 

Such statements are then aggregated and a global level of trust is calculated, 

associated to each expert and used to weight their opinions in the aggregation 

step. Instead, we propose to use trust statements to let the opinions of each 

expert evolve by incorporating elements captured from the opinion expressed 

by other experts she trusts.  

In [59], the social influence among experts is calculated by combining the 

number of common connections with the number of direct interactions over 

a social network. The obtained value is then used to infer missing FPR values 

by selecting values from the opinions of influencing experts. Despite this 

method automates the influence estimation process, it does not guarantee 

that the tie strength over a social network is a good approximation of how 

an opinion can be influenced with respect to a DM problem. Moreover it 

requires that all experts are active members of the same social network. 

It should be noted that, the use of data coming from social networks to 

support the DM process is not new. In [63] Social Network Analysis (SNA) 

is used to measure inter-organizational relationships to enhance a DM process 

for project selection while in [64] a consensus model based on SNA has been 

defined to reconcile conflicts in the collaborative annotation of media content.  



84 Fuzzy Models for Group Decision Making and their Applications 

 

According to [59], also in our model incomplete opinions are completed 

with data injected from trusted experts. In addition with respect to the same 

work, such opinions are further modified by simulating their evolution due 

to social influence. Moreover, unlike in [59, 61, 62], in our model the influence 

in not used to estimate a global importance level for each expert but to let 

the preference of each expert gradually evolve simulating interaction. 

Our model uses for the first time fuzzy rankings to represent experts’ 

opinions regarding both their preferences on the set of alternatives and their 

trust on other experts. Such preference model offers an higher degree of user 

friendliness and is less vulnerable to inconstancy than commonly used FPRs. 

Moreover, by asking experts to place themselves in the defined rankings, we 

avoid the complication of requiring the definition of a numerical value that 

represents the susceptibility level of each expert to influence (like in [58]) or 

a the interpersonal trust level as in [61, 62].  

Simulating the natural evolution of opinions thanks to discussion, our 

model also tries to obtain the convergence between the experts’ opinions. 

This is a distinctive feature with respect to existing models because social 

influence also impacts the preferences aggregation phase. In such sense, our 

model can be also used to support automated consensus processes. Table 10 

summarizes the differences and the advantages of the proposed model with 

respect to other existing ones. 

We believe that the defined model leads to a more accurate representation 

of the GDM process by formalizing important aspects that are commonly 

disregarded by other models. On the other hand, we estimate the level of 

social influence only based on interpersonal trust, without considering other 

psychological traits like leadership, charisma, persuasive ability, etc. that 

could strengthen or weaken influence when real interactions between experts 

take place. Nevertheless, we believe that the exclusion of these additional 

traits is advantageous and enables to reach more objective decisions.  
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The time complexity of the whole process embedded in the defined model 

is polynomial and limited by �(� ⋅ �3 ��� �) where m is the number of experts 

and n is the number of alternatives.  

 

 Our model 
Model defined 

in [58] 

Model defined 

in [59] 

Models in 

[61, 62]  

Estimation  

of Social 

Influence  

Fuzzy rankings  

of experts 
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SIN 
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Numerical  

trust 

statements 

Representation  

of Social 

Influence  

SIN  SIN 
Normalized 
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Applications  
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Estimation of 

missing  
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Evolution of 

preferences 
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best option 

Evolution of 
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importance  

Estimation of 
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preferences 

Estimation 

of experts’  

importance  

Table 10. Comparison with other models 
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Chapter 4 

Applications to e-Learning 

This chapter, that opens the second part of this thesis work, is aimed at the 

application of the GDM models and techniques, defined in the first part, to 

support peer assessment both in standard and massive educational contexts. 

Massive Open Online Courses (MOOCs) are becoming increasingly popular 

in education but, to reach their full extent, they require the resolution of new 

issues like assessing students at a massive scale. A feasible approach to tackle 

this issue is peer assessment, in which students also play the role of assessor 

for assignments submitted by others. Unfortunately, students are unreliable 

graders so peer assessment often does not deliver accurate results.  

In this chapter, after having introduced the problem of student evaluation 

in massive contexts, peer assessment is described and formalized. Existing 

approaches, aimed at mitigating the problem of peer assessment reliability, 

are outlined and performance measures capable of establishing and comparing 

the goodness of different approaches are defined. Then, two novel approaches, 

aimed at improving peer assessment performance, are presented: the first one 

is based on graph mining techniques while the second one applies fuzzy GDM 

models and techniques defined in the first part.  

4.1 Student Assessment in Massive Courses 

The term MOOC was coined in 2008 to describe educational resources that 

show the following characteristics: Massive (there is no limit on attendance), 

Open (free of charge and accessible to anyone), Online (delivered via the 

Internet) and Courses (structured around a set of goals in a specific area of 
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study) [65]. Since their introduction MOOCs have become a popular trend in 

online learning. According to [66], until the end of 2016, a total of 6.850 

MOOCs have been launched from over 700 universities with the total number 

of students who signed up for at least one course estimated to be 58 million. 

Figure 12 shows the growth of MOOCs over years. 

 

Figure 12. Growth of MOOC courses (source: Class Central) 

According to [67], MOOCs are a continuation of the trend in innovation, 

experimentation and use of technology initiated by distance and on-line 

learning, to provide learning opportunities for large numbers of learners. 

Most of the discussions about MOOCs distinguish between two formats with 

two distinct pedagogical underpinnings [68]: cMOOCs, that are based on 

connectivism, emphasizes interaction with a distributed network of peers, 

learning artifacts, and learning technologies while xMOOCs, that are more 

structured and centralized, emphasize individual learning through video 

lectures and regular assessments. 

Due to their scale, MOOCs introduce new technical and pedagogical 

challenges that require overcoming the traditional e-learning model based on 

tutor assistance to maintain a cheap and unrestricted access to high quality 

resources. Because of the high number of students enrolled and the relatively 

small number of tutors, in fact, tutor involvement during delivery stages has 

to be limited to the most critical tasks [69]. 
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In [70], the key challenges that MOOCs designers and providers are facing 

are analysed. Massiveness and low teaching involvement have been identified 

as one of the biggest challenges. Moreover, since the heterogeneity of MOOC 

learners is high, and their level of maturity and experience is varied, courses 

have to be conceived taking into account different educational and cultural 

backgrounds. Another concern is a high students’ dropout rate, with several 

sources indicating that only 10% of participants finish the courses on average. 

However, some authors suggest that such statistics might be interpreted in 

the light on the different personal goals that motivate students’ attendance 

to a course besides finalizing it. 

According to the same work, among the key challenges of MOOCs, the 

assessment of students’ performance is one of the most prominent. In fact, 

given their discrepancy in number, it is not possible for the tutors to follow 

up with every student and review assignments individually. This also 

represents a major obstacle to the credential programs launched by MOOC 

players and targeted to people that want to achieve credits toward a degree 

or earn credentials to show to prospective employers. 

A typical approach to overcome the assessment problem is to use close 

questions in exams and assignments so that grading can be automated [71]. 

Unfortunately, automated grading is limited, disappointing and insufficient, 

with no partial marks and, in some cases, with no detailed explanations of 

answers. It may result particularly unsatisfactory when applied to complex 

tasks like the evaluation of the students’ ability of proving mathematical 

statements, expressing their critical thinking over an issue, demonstrating 

proficiency in skills like creative writing, etc. [72]. 

To overcome these limitations, an approach that is gaining a growing 

consensus is Peer Assessment that can support both the formative assessment 

task (aimed at monitoring student learning and providing ongoing feedback) 

and the summative assessment one (aimed at evaluating student learning at 

the end of the course). In peer assessment, students are required to grade a 

small number of their peers’ assignments as part of their own assignment. 
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The final grade of each student is then obtained by combining information 

provided by peers.  

The positive aspect of this approach is its capability of easily scale to any 

size: the number of assessors in fact naturally grows with the number of 

students. Conversely, its use may be seen as unprofessional and unreliable 

given that it is based on grades assigned by students lacking the needed 

expertise, both didactical and on the specific subject to be assessed. Some 

researches point out that students themselves seem to distrust the results of 

peer assessment [73]. To mitigate this issue, several corrected methods have 

been identified as described in the next section. 

4.2 Peer Assessment Methods 

Peer assessment has been used for many years as a tool to improve learning 

outcomes. In fact, the literature reports on many learning benefits for peer-

assessors like the exposure to different approaches, the development of self-

learning abilities, the enhancement of critical thinking, etc. [69]. Even if some 

studies suggest a good correlation between the results of peer assessment and 

instructor ratings in conventional classrooms and online courses (at least for 

specific, high structured domains), there is still a general concern on its use 

as a reliable strategy to approximate instructor marking [73]. 

Despite these concerns, given the growing diffusion of MOOCs and the 

related increasingly felt issue of students’ assessment, the application of peer 

assessment as an evaluation tool is increasing. To improve its accuracy, 

several approaches, at various stages of development, have been proposed so 

far as summarized below. 

The Calibrated Peer Review (CPR) proposes a calibration step to be 

performed by students before starting to assess other students’ assignments 

[74]. During the calibration step, each student rates a set of assignments that 

have been already rated by the instructor. The discrepancy between students’ 

and instructors’ grades measures the accuracy of each student and is used to 
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weight subsequent assessments provided by the same student. Obviously, the 

more accurate is an assessor, the more weight is given to her judgment on a 

peer assessment.  

CPR has been experimented in several contexts demonstrating to be an 

effective instructional tool. Despite that, it requires additional work from 

those students who are asked to take part in the calibration step. Moreover, 

this method does not take into account the progresses that students make 

over time until a new calibration step is done. For this reason, additional 

approaches have been defined able to automatically tune peer grades based 

on different parameters. 

In [75], three probabilistic models for tuning peer-provided grades are 

presented. Such models estimate the reliability of each assessor as well as her 

bias (i.e., a score reflecting the assessor’s tendency to inflate or deflate her 

grade) based on the analysis of grading performance on special “ground 

truth” submissions that are evaluated either by the instructor or by a big 

number of peers (hypothesising that the mean of many grades should tend 

toward the correct grade). Reliability and bias of each student are then used 

to tune the provided grades to other submissions. 

A similar approach has been applied in [76], where a Bayesian model has 

been used to calculate the bias of each peer assessor in general, on each item 

of an assessment rubric and as a function of the assessor grade assigned by 

the instructor. As in the previous case, obtained biases are used to tune the 

grades provided during peer assessment. Differently from the previous case, 

bias calculation is based on the results of a whole round of assessment rather 

than on just few “ground truth” submissions so, in the calibration step, the 

instructor should rate all the submissions. In [77] comparable results have 

been obtained with a hierarchical Bayesian model.  

The Vancouver algorithm, defined in [78], measures the grading accuracy 

of a student by comparing the grades given by her to each assignment with 

the average grade for that assignment. Differently from the other approaches, 

the assessor accuracy is used as a modifier of the assessor’s grade rather than 
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of assessees’ ones so that the student’s grade can reflect not only the quality 

of her homework but also the quality of her work as a reviewer. 

In [79] the ability of an assessor student to correctly rate peer students is 

assumed to be dependent on the grade obtained by the same student. In 

other words, final grades to be assigned to students are obtained by weighting 

the grades proposed by their assessors on the basis of the grades received by 

the assessors themselves. Given that students’ grades recursively depend on 

other students’ grades, an iterative algorithm, named PeerRank (inspired by 

Google PageRank [80]) is proposed for their calculation. The advantage of 

this approach, compared to the previous ones, is that it does not require any 

instructor’s intervention given that there is no need of a ground truth of 

professionally graded assignments. 

In [81] a different approach, aimed at making the assessment process as 

simple as possible, has been proposed. The authors have shown that ordinal 

feedback (e.g. “the report x is better than the report y”) is easier to provide 

and more reliable than cardinal one (e.g. “the grade of report x is a B”). 

Basing on that assumption, the authors have defined a probabilistic model 

for obtaining student grades starting from partial rankings provided by the 

peers. An experiment with real data have demonstrated that the performance 

of such method is at least competitive with cardinal methods for grade 

estimation, even though it requires less information from the graders.  

In [72], the authors have shown that Ordinal Peer Assessment is a highly 

effective and scalable solution for student evaluation. They have defined a 

model for distributing the assignments among peers so that the collected 

individual rankings can be merged into a global one that is as close as possible 

to the real ranking. They have demonstrated that, given k students, if each 

correctly ranks the received assignments, the defined aggregation method is 

able to recover a fraction 1 − �(1/�) of the true ranking. They have also 

demonstrated that the same ordinal peer assessment method is quite robust 

even when students have imperfect capabilities as graders. 



Applications to e-Learning 95 

With respect to the application of Fuzzy Set Theory to peer assessment, 

some experiment has been already performed so far. In [82], the students of 

a class have been asked to express a grade, in terms of a fuzzy value in [0,1], 

for each assignment coming from the other students in the same class. The 

final grade of each assignment is then obtained by averaging the proposed 

grades, weighted with respect to expertise levels assigned by the teacher. 

In [83], the authors have proposed a framework aimed at enhancing the 

effectiveness of peer assessment by letting students express peer grades as 

fuzzy membership functions with respect to a given set of assessment criteria. 

The proposed grades are then adapted basing on assessors’ learning styles 

(through defined heuristics) and differences among grades are reconciled 

through agent negotiation based on fuzzy constraints. 

In [84], the students of a class have been experimentally asked to evaluate 

the assignments coming from peers in terms of linguistic labels mapped to 

interval Type-2 fuzzy sets. Then, the final grade of each assignment has been 

obtained by aggregating the grades proposed by peers and weighting them 

with respect to the expertise levels assigned by the teachers. Obtained results 

have been re-mapped on linguistic labels to obtain the final literal grades.  

Basing on the reported literature, ordinal peer assessment methods have 

shown a more promising behavior with respect to cardinal ones. In particular, 

they overcome the problem that students may be grading on different scales 

in fact, by letting students propose ordinal statements rather than cardinal 

grades, there is no need to develop a scale from each student onto the peer 

assessment algorithm. On the other hand, the existing fuzzy-based methods 

seems to be mainly thought for small contexts and aimed at encouraging class 

students to participate in the evaluation of their learning, so enhancing their 

reflective and critical thinking, rather than at providing reliable grades for 

students in massive learning contexts. 
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4.3 Formalization of the Peer Assessment 

Problem 

In a typical peer assessment scenario an assignment is given to n different 

students � = {�1,… , �l}. Each student elaborates her own solution (e.g. an 

essay, a set of answers to open-ended questions, etc.) generating a submission. 

Each student has then to grade m different submissions (with � ≤ �) coming 

from other students (maybe based on an assessment rubric). 

The assignment of submissions to assessor students is performed in 

accordance to an assessment grid: a Boolean � × � matrix � = (�pr) where 

�pr = 1 if the student �r has to grade the submission of �p while �pr = 0 

otherwise. The matrix A has the following properties:  

• the sum of the elements in each row and column is equal to m (i.e. each 

student grades and is graded by m other students);  

• the sum of the elements in the main diagonal is equal to 0 (i.e. nobody 

evaluates himself). 

A feasible way to build an assessment grid is by filling it at random with 

an algorithm preserving the above properties. A possible (non optimized) 

algorithm starts with an � × � null matrix and initializes its elements basing 

on the following equation: 

 �mod(�+�−1,�)+1,� = 1 ∀� ∈ {1, … , �}, � ∈ {1, … , �} (51) 

where mod indicates the remainder after division of the first term by the 

second one. The obtained matrix is then shuffled in several iterations by 

randomly selecting a couple of rows (or columns) �, � ∈ {1, … , �} such that 

�pr = �rp = 0 and swapping them. 

Then, in a Cardinal Peer Assessment setting, each student �r ∈ � has to 

review and propose a grade for every peers’ submissions according to the 

assessment grid i.e. to all  students in �r = {�p ∈ �| �pr = 1}. Proposed grades 

are collected in a � × � grades matrix � = (�pr) whose generic element �pr, 
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so that 0 ≤ �pr ≤ 10, is the grade proposed by �r for �p. The final grade �p for 

each student �p ∈ � can be then obtained starting from G according to the 

adopted method among those discussed in section 4.2. 

In an ideal peer grading setting, every student performs the grading task 

so, the easiest way to estimate the final grade �p of any student �p ∈ � is by 

averaging all the grades obtained by peers (a matrix row) as follows: 

 �p =
1� ∑ �pr

l
r=1

 ∀ 1 ≤ � ≤ �. (52) 

The same equation can be applied to non-ideal settings (when some 

students skip the grading task) by averaging on the total number �p′ < � of 

grades proposed for i. Some authors propose to average all obtained grades 

apart the best and the worst, while other authors use the median in place of 

the average [78]. 

The assessment grid can be seen as the adjacency matrix of an m-regular 

directed graph where each node represents a student and each arc represents 

an assessment to be performed. In addition, the grades matrix can be seen as 

the weighted adjacency matrix of an m-regular directed graph where each 

node represents a student, each arc represents an assessment and the weight 

on arcs represent assigned grades. Figure 13 shows the graph interpretation 

of a grades matrix with 6 students and 2 submissions to be rated by each 

(i.e. so that � = 6 and � = 2). 

Differently from the previous case, in a Ordinal Peer Assessment setting, 

each student �r is asked to define an ordinal ranking ≻r (see section 2.1) over 

the subset of her assessee �r = {�1r ,… , �kr } as follows: 

 ��(1)
r ≻r ��(2)

r ≻r … ≻r ��(k)
r  (53) 

where �: {1,… , �} → {1,… , �} is a permutation function. Equation (53) 

means that, according to �r, the submission of the student ��(1)
r  is better than 

that of ��(2)
r , etc. According to the notation introduced in section 2.1, the 
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same ranking can be represented as an ordering array �r = (�1r ,… , �lr ) where 

�pr ∈ {1,… , �} represents the position, within the ranking, of the submission 

coming from the student �pr ∈ �r. 

 

Figure 13. Graph interpretation of peer assessment 

The ranking ≻r is undefined for elements not included in �r so it is a 

partial ranking over S. The partial rankings defined by all students are so 

collected in a � × � ranking matrix � = (�pr) whose generic element �pr is the 

position of �p in the ranking ≻r if �p ∈ �r (i.e. the element �pr from the ordering 

array �r), 0 otherwise. Starting from a ranking matrix, an aggregation rule 

is able to compute a complete ranking over the whole set of submissions.  

Several aggregation rules have been defined so far, according to the 

methods discussed in section 4.2. A simple and effective aggregation rule is 

the classical Borda count [85] where the partial ranking provided by each 

assessor is interpreted as follows: m points are given to the submission ranked 

first, m−1 points to the one ranked second, etc. The Borda score of the 

submission coming from �p is then calculated as follows: 
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 �����(�p) = ∑ �pr ⋅ (� − �pr + 1).l
r=1

 (54) 

The global ranking is then computed by ordering all the submissions in 

decreasing order of their Borda scores.  

In [72], authors have demonstrated that Borda outperforms other, more 

complex aggregation rules like Random Serial Dictatorship [86] and Markov 

chain inspired methods [87] especially in case of imperfect grading (i.e. when 

partial rankings defined by students are not consistent to the ground truth). 

In [81] authors have defined other methods for ordinal peer assessment based 

on models that represent probabilistic distributions over rankings, obtained 

from the models of Mallows [88], Bradley-Terry [89] and Plackett-Luce [90]. 

Such methods have demonstrated better performance with respect to Borda 

also in case of imperfect grading and are also capable of detecting meaningful 

cardinal grades.  

4.4 Measuring Peer Assessment Performance 

The Root Mean Square Error (RMSE) is the most widely used performance 

indicator in peer assessment. Let �p be the final grade estimated for a student 

�p through peer assessment and �¹̅̅̅ ̅̅ the ground truth i.e. a grade assigned to 

the same student by an experienced teacher for � ∈ {1,… , �}, the RMSE 

between estimated and real grades is calculated as follows: 

 ���� = √∑ (�p − �¹̅̅̅ ̅̅)2lp=1 � . (55) 

Statistically, the RMSE represents the sample standard deviation of the 

differences between predicted and observed values. The individual differences 

are called residuals when the calculation is performed over the data sample 

used for estimation, and prediction errors when it is performed out-of-sample. 

The RMSE allows to aggregate the magnitudes of the errors in predictions 
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for various times into a single measure of predictive power. It is a measure 

of accuracy and is used to compare forecasting errors of different models for 

a particular task [91]. 

The effect of each error on RMSE is proportional to the size of the squared 

error thus larger errors have a disproportionately large effect on RMSE. As 

a consequence, RMSE is sensitive to outliers. For this reason some researcher 

recommends the use of alternative error measures like the Mean Absolute 

Error (MAE) where the influence of each error is proportional to the absolute 

value of the error [92]. The MAE is defined as follows: 

 ��� =
∑ |�p − �¹̅̅̅ ̅̅|lp=1 �  (56) 

where the symbols have the same meaning that in equation (55). 

RMSE and MAE both summarize performance in ways that disregard the 

direction of over- or under- prediction. Both measures are scale-dependent, 

therefore they cannot be used to make comparisons between models that 

operate on different scales. MAE has advantages in terms of interpretability 

over RMSE but it is less widespread with respect to the evaluation of models 

for peer assessment. 

If we refer to ordinal peer assessment, performance can be measured in 

terms of similarity between the ranking O estimated through peer assessment 

on the set S and the ground truth �̅ i.e. a ranking defined by an experienced 

teacher on the same set. The Kendall’s rank correlation coefficient �(�, �̅) 
or the Spearman’s rank correlation coefficient �(�, �̅) defined in section 2.1 

can be used for this purpose. A similar measure is the Percentage of Correctly 

Recovered Pairwise Relations (PCRPR) with respect to the ground truth 

[72] that can be calculated as follows: 

 �����(�, �̅) =
2��(� − 1)

 (57) 
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where c is the number of concordant pairs between � and �̅ i.e. the number 

of pair of elements of S which have the same order in the two rankings. 

While �  and � are normalized in [−1,1] (where 1 means identity, 0 means 

lack of correlation and −1 means reverse correlation), PCRPR is normalized 

in [0,1] (where 1 means identity, 0 means absence of association). It should 

be noted that while RMSE and MAE are error measures (so smaller values 

correspond to better models); � , � and PCRPR are similarity measures (so 

higher values correspond to better models). 

4.5 Peer Assessment Methods based on Graph 

Mining 

In section 4.3, a graph interpretation of peer assessment is proposed where 

the grades matrix G is seen as the weighted adjacency matrix of an m-regular 

directed graph with nodes representing involved students and weighted arcs 

representing performed assessments. Basing on such interpretation, Graph 

Mining Peer Assessment (GMPA) methods estimate the final grade of each 

student with techniques based on graph theory. 

In [79] it has been proposed to weight the grade that each assessor student 

gives to another student by her own grade i.e. to use the grade of a student 

as a measure of her ability to grade correctly. Let � = (�pr) be the grades 

matrix obtained by cardinal peer assessment on a set of submissions coming 

from students in � = {�1,… , �l} according to an assessment grid � = (�pr), 
the estimated grade �p of a �p ∈ � can be so obtained as: 

 �p =
∑ �pr ⋅ �rr→p∑ �rr→p

 (58) 

where both summations (at numerator and at denominator) are calculated 

over all students �r that have evaluated �p (indicated with � → �) i.e. such 

that �pr = 1. 
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Given that the grades of all assessor students are themselves weighted 

averages of grades obtained by their own assessors, an iterative process, 

named PeerRank, has been proposed to calculate the final grade of each 

student. Let be �p(¡) the grade of the student i at the t-th iteration, the grade 

of i at the iteration � + 1 is defined as:  

 �p(¡+1)
= (1 − �)�p(¡) + � ∑ �pr ⋅ �r(¡)r→p∑ �r(¡)r→p

 (59) 

where 0 ≤ � ≤ 10 is a constant affecting the convergence speed and �p0 is 
initialised by simply averaging all the grades obtained by peers according to 

equation (52).  

Equation (59) takes into account that each student only evaluates m 

peers according to the assessment grid. This is a more realistic setting with 

respect to the one described in [79] where each student is assumed to evaluate 

any other student. In the same paper, useful properties for the defined grade 

updating rule have been defined and it has been also demonstrated that, after 

a limited number of iterations, the rule converges to stable values. 

It is interesting to note that equation (59) is a variation of the Google 

PageRank rule proposed in [80]. While, in PageRank, Web pages are ranked 

according to the ranks of the Web pages that link to them, in PeerRank, a 

grade assigned by a student is weighted on the grade assigned to her by other 

students. So, equation (59) can be seen as an indicator of the centrality [93] 

of each node of the graph obtained from the grades matrix G. According to 

this interpretation we classify PeerRank under the GMPA umbrella as well 

as the derived methods described below. 

Equation (59) does not incentivize students to evaluate peers accurately. 

For this reason, in [79], the following update to the PeerRank rule has been 

proposed: 
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 �p(¡+1)
= (1 − � − �)�p(¡) + � ∑ �pr ⋅ �r(¡)r→p∑ �r¡r→p

 + � ∑ 10 − ∣�rp − �r¡∣r→p �  (60) 

where 0 ≤ � ≤ 1 is a constant, so that � + � ≤ 1, that weights the reward 

given to a student according to the inverse normalised absolute error in the 

grades provided by her. 

If � = 0 then equation (60) degenerates to equation (59). For � > 0, if 

�rp = �r(¡) for all � ∈ {1,… , �} so that �rp = 1, then all the grades assigned by 

�p are accurate and the contribution of the third addendum is 10 ⋅ �. At the 

opposite, if ∣�rp − �r(¡)∣ = 10 for all j so that �rp = 1, then the grades assigned 

by �p are wrong and the contribution of the third addendum is 0. 

The updated PeerRank rule, described by equation (60), prescribes that 

the influence of the grade of an assessor student on any grade she proposes 

is linear. For sake of simplicity we can decompose equation (60) as the sum 

of tree different components as follows: 

 �p(¡+1)
= (1 − � − �)�p(¡) + ��p(¡)  + ��p(¡) (61) 

where the constants � and � have the same meaning as in equation (60), �p(¡) 
is the contribution coming from peer graders while �p(¡) is the incentive for 

accurate grading. 

In order to improve the quality of the final grades, we propose an updated 

rule named F-PeerRank that applies a super-linear modifier to the grades 

proposed by peer assessors by modifying the �p(¡) component as follows: 

 �p(¡) =
∑ �pr ⋅ �(�r(¡))r→p∑ �(�r(¡))r→p

 (62) 

The function f, that affects the contribution given by the grades proposed 

by other peers, has the purpose of minimizing the contribution of low skilled 

student while maximising those of high skilled ones. Feasible functions are 
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the power function �(�) = �l (for some � > 1) as well as the exponential one 

�(�) = �+ (with e being the Euler’s constant). 

Bringing this reasoning to the extreme, we can imagine to assign the 

maximum influence only to the best grader for each student and no influence 

at all to any other proposed grade. This is the case of another approach we 

propose, named BestPeer. It calculates a transitory grade �p′ for any student 

�p with one of the previous methods and then assigns to each student the 

final grade �p according to the following rule: 

 �p = ��,argmax�→� ��′  (63) 

where the function argmax (argument of the maximum) returns the value j 

so that �r′ is maximized for � ∈ {1,… , �} and �pr = 1. 

This method is capable of performing particularly well when, for each 

student, at least one good grader is available. Unfortunately, this condition 

cannot be granted with the random assessor-assessee assignment proposed by 

equation (51) that can generate settings in which some student is assessed 

by only unreliable graders (i.e. students with a low grade). In this case, even 

weighting the grades, the overall peer-assessment performance may be poor.  

Balancing reliable graders among students is a feasible approach to 

overcome this issue but, unfortunately, we have no information about the 

grades when the assessment grid is built. To overcome this issue it is possible 

to initialize the assessment grid � = (�pr) based on grades coming from 

previous assessments. To do that, a feasible algorithm starts with a null 

matrix and initialises its elements according to the following equation: 

 �mod(�(�−1)+�−1),�)+1,����(�) = 1 (64) 

for each 1 ≤ � ≤ � and 1 ≤ � ≤ � and where ����(�) denotes the position of 

the i-th student in the list of the students ordered decreasingly on the average 

grade obtained in previous assessments. 
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Equation (64) does not ensure the fulfilment of the second property of 

assessment grids. For this reason another check is needed and, if �pp = 1 for 

some � ∈ {1,… , �}, then the closest column j of A so that �pr = 0 and exists 

a � ∈ {1,… , �} so that �Tp = 0 and �pr = 1 is selected and the values of �pp 
and �pr are swapped as well as values of �Tp and �Tr. In other words, the 

student �p does not assess himself anymore but the student �T assigned to 

the closest performer �r that, in turn, takes care of evaluating �p. 
A second option for optimizing the assessor-assessee assignment is to 

proceed incrementally (i.e., to perform the assessment session in m rounds). 

In the first round, just one student to grade is assigned to each other student. 

In each subsequent round, students are ranked in two lists: list 1 orders 

students, decreasingly, on the average grade obtained in the preceding rounds 

(i.e. on their ability as graders); list 2 orders students, increasingly, on the 

average grade obtained by their graders in the preceding rounds (i.e. on the 

quality of obtained grades). 

Then, for the subsequent round, each student from list 1 has to grade the 

student from the list 2 with the same rank. This ensures that, in each step, 

the best graders are assigned to the students that, in the previous steps, have 

obtained grades from the worst ones. Some additional checks must be made 

to ensure that no student evaluates herself and that no student evaluates 

another student more than once.  

This method has the advantage that it does not need any information 

about past assessments. Conversely, its incremental nature requires that 

every grade is assigned for a given round before starting the next one. This 

constraint can be very expensive, especially in massive contexts, when some 

student may be late in providing grades or may not provide grades at all. 

4.6 Fuzzy Ordinal Peer Assessment 

A peer assessment problem, as formalized in section 4.3, can be seen as a 

special case of GDM problem. In a typical GDM problem, a group of experts 
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evaluate a set of alternatives, taking into account the involved factors and 

criteria, with the aim of selecting the best one to adopt. To this end, each 

expert expresses her preferences on alternatives, preferences are aggregated, 

a collective preference degree of each alternative is calculated and a ranking 

over alternatives is generated. 

Similarly, in peer assessment, the involved students evaluate submissions 

made by other students (rather than alternatives) and their evaluations are 

aggregated to obtain the grade of each submission (rather than the degree of 

preference of each alternative). For these reasons, a peer assessment problem 

can be regarded as a GDM problem where: 

• experts and alternatives belong to the same set (i.e. students evaluate the 

submissions made by other students);  

• each expert only ranks a small subset of alternatives (i.e. few submissions 

are evaluated by each student);  

• experts’ opinion is not fully reliable (it should be taken into account that 

students are far to be perfect assessors). 

These properties (in particular the last two) suggest to refer to GDM 

approaches able to deal with the uncertainty resulting from inaccuracy and 

lack of knowledge in experts’ evaluations, like those based on the fuzzy set 

theory. Following these considerations, this section introduces a new peer 

assessment model, named Fuzzy Ordinal Peer Assessment (FOPA) based on 

the GDM models and techniques defined in the first part of this thesis. 

As described in section 4.3, in ordinal peer assessment, each student of a 

set � = {�1,… , �l} ranks the submissions coming from m other students 

according to an assessment grid � = (�pr). By setting � = � = � (where E 

and X are, respectively, the sets of experts and of alternatives of a standard 

GDM problem as seen in section 1) and assigning to each student �m ∈ � a 

subset �m = {�p ∈ �| �pm = 1} of submissions to be evaluated, we easily 

obtain the GDM problem corresponding to peer assessment. 

In ordinal peer assessment each student �m ∈ � is asked to define a partial 

ranking on �m. By leveraging on GDM, preferences between the elements of 
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�m can be expressed in terms of a FPR �m. Individual FPRs, coming from 

the assessor students, can then be aggregated and a global ranking of 

submissions can be calculated. Unfortunately, the definition of a FPR may 

result too complex and time-consuming for students with the risk of 

introducing errors and inconsistencies impacting assessment performances. 

To overcome this issue, FOPA adopts a simpler preference model based on 

fuzzy rankings (as defined in section 2).  

In FOPA each student �m ∈ � proposes a fuzzy ranking �m over �m (that 

is a partial fuzzy ranking over S). Each �m for � ∈ {1,… , �} is then converted 

in a FPR �m according to the methods introduced in section 2.3 and used for 

subsequent processing. The main advantage of this approach is that students 

not only order the submissions from the best to the worst but also express a 

degree of preference between them. As explained in the next section, this 

allows to obtain better performances when reconstructing the global ranking 

and, also, to obtain a reliable cardinal grade for each submission. Moreover, 

it mitigates the bias problem (seen in section 4.2) given that students provide 

relative evaluations that consider only a couple of submissions at a time. 

Example 18. Let � = {�1,… , �6} be a set of students involved in a peer 

assessment session. Let us suppose that, according to a random assessment 

grid, the student �1 has to evaluate the subset of students �1 = {�2,�4,�5, �6} 
and that she provides the following fuzzy ranking: 

�1 = (�4 ≫ �5 ≈ �2 > �6). 

The student states that, according to her opinion, the submission of �4 is 
much better than that of �5 and �2 (considered at the same level) that, in 

turn, are better than that of �6. Through equation (32) it is then possible to 

obtain the corresponding partial FPR as follows: 
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�1 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

− − − − − −− 0.50 − − 0.50 0.65− − − − − −− − − 0.50 0.85 −− 0.50 − 0.15 0.50 −− 0.35 − − − 0.50⎠⎟
⎟⎟⎟⎟
⎟⎟⎞

 

where the symbol – indicates an undefined cell. Applying equations (22)-(23) 

on �1 we can obtain some of the missing values as follows: 

�1 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

− − − − − −− 0.50 − 0.15 0.50 0.65− − − − − −− 0.85 − 0.50 0.85 1.00− 0.50 − 0.15 0.50 0.65− 0.35 − 0.00 0.35 0.50⎠⎟
⎟⎟⎟⎟
⎟⎟⎞

 

Given n students and m assignments per student, for every defined fuzzy 

ranking �m with � ∈ {1,… , �}, the conversion step produces an FPR �m 
where only a fraction of �2/�2 elements are defined. In real contexts, 

hundreds of students (thousands in MOOCs) have to be evaluated in total 

(so n becomes very large) while each student can be requested to evaluate 

only a small number of other submissions (so m remains small). This means 

that every �m becomes a sparse matrix with only few elements defined. 

When all individual FPRs �m = (�prm ) with � ∈ {1,… , �} are obtained, an 

aggregation step is needed to build the collective FPR � = (�pr). To do that, 

FOPA adopts the �� �� operator defined in section 1.5 with the exception 

that individual FPRs are incomplete so undefined elements must be excluded. 

To this end, the following equation, that combines and adapts equations (13) 

and (15), is used to determine the collective FPR elements: 

 �pr = ∑ (�� ( �
#�pr) − �� (� − 1

#�pr)) �pr���(m)

m∈���
 (65) 
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where �pr = {� ∣ �prm  is defined}, �pr:�pr → �pr is a permutation function 

aimed at reordering the values of �pr so that �pr���(m) ≥ �pr���(m′)
 for any � < �′ 

with �, �′ ∈ �pr and ��: [0,1] → [0,1] is the membership function of the 

selected linguistic quantifier. 

After having aggregated individual preferences, it could happen that some 

values of the collective FPR P still remain undefined. In fact when none of 

the assessor students has expressed a preference between the i-th and j-th 

submissions for some �, � ∈ {1,… , �}, then the corresponding values �pr and 

�rp of the collective FPR can’t be calculated. In most cases it does suffice to 

estimate missing values according to equations (22)-(23) or equation (28) as 

described in section 1.7. 

For � ≫ � and when many students skip the assessment task for one or 

more submissions, some elements of P may still remain undefined. Such 

ignorance situation can be solved through seed-based approaches as described 

in section 1.7. For example it is possible to assume indifference for any 

undefined value by setting it to 0.5. Then, estimators defined by equations 

(22)-(23) or by equation (28) can be applied again to make seed values as 

consistent as possible to the other FPR values. 

Example 19. Let �2 and �3 be individual FPRs generated from the fuzzy 

ranking �2 = (�1 ≥ �6 ≈ �5 ≥ �3) and �3 = (�4 > �1 ≥ �5 > �6) as follows: 

�2 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.50 − 0.65 − 0.58 0.58− − − − − −
0.35 − 0.50 − 0.43 0.43− − − − − −
0.43 − 0.58 − 0.50 0.50
0.43 − 0.58 − 0.50 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎞

, 

�3 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.50 − − 0.35 0.58 0.73− − − − − −− − − − − −
0.65 − − 0.50 0.73 0.88
0.43 − − 0.28 0.50 0.65
0.28 − − 0.13 0.35 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎞

; 
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the collective FPR obtained by aggregating them with �1 (from Example 18) 

through equation (65) initialized with the increasing proportional linguistic 

quantifier most (see Figure 4), is shown below: 

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.50 − 0.65 0.35 0.58 0.64− 0.50 − 0.15 0.50 0.65
0.35 − 0.50 − 0.43 0.43
0.65 0.85 − 0.50 0.78 0.93
0.43 0.50 0.58 0.20 0.50 0.61
0.34 0.35 0.58 0.05 0.36 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎞

. 

Then missing values are estimated on the collective FPR through equations 

(22)-(23) to complete it as follows: 

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

0.50 0.59 0.65 0.35 0.58 0.64
0.41 0.50 0.65 0.15 0.50 0.65
0.35 0.35 0.50 0.11 0.43 0.43
0.65 0.85 0.89 0.50 0.78 0.93
0.43 0.50 0.58 0.20 0.50 0.61
0.34 0.35 0.58 0.05 0.36 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎞

 

Once all values of the collective FPR have been defined, it is possible to 

calculate the degree of preference �(�p) for each �p ∈ � according to one of 

the measures defined in section 1.6 (i.e. NF, NDD, QGDD or QGNDD). The 

global ranking between the alternatives is then computed by ordering all the 

submission decreasingly on their preference degree. In alternative, one of the 

methods described in section 2.4 can be applied to directly obtain the global 

fuzzy ranking of all submissions from the collective FPR. 

Starting from the preference degrees it is possible to calculate the cardinal 

grade of each submission, provided that a cardinal assessment is made by a 

reliable expert (e.g. the teacher) to the best and the worst submissions (i.e. 

the first and the last in the final ranking). Let �kpl and �ká+ be the grades 

assigned to the best and the worst submissions, the estimated grade �p for 

every �p ∈ � can be obtained via normalization as follows: 
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 �p =
(�(�p) − �kpl) ⋅ (�ká+ − �kpl)

(�ká+ − �kpl)
+ �kpl (66) 

where �kpl and �ká+ are the degrees of preference associated to the best and 

the worst submissions. 

Example 20. From the collective FPR P resulting from Example 20, it is 

possible to obtain the preference degree of each submission in terms of Net 

Flow through equation (18) as follows: ��� (�1) = 0.63; ��� (�2) = −0.28; 

��� (�3) = −1.68; ��� (�4) = 3.23; ��� (�5) = −0.33; ��� (�6) = −1.58. The 

collective fuzzy ranking of submissions can be then obtained through equations 

(36)-(37) as follows:  

�4 ≫ �1 > �2 ≈ �5 > �6 ≈ �3. 
By applying equation (18) on obtained preference degrees with �kpl = 2 

and �ká+ = 9 (supposed to be assigned by an expert assessor), the following 

grades can be estimated: �1 = 5.3; �2 = 4; �3 = 2; �4 = 9; �5 = 3.9; �6 = 2.2. 





Chapter 5 

Applications to Recommender 

Systems 

This chapter proposes the application of the GDM models and techniques 

defined in the first part of this thesis in the domain of Recommender Systems 

(RSs). In recent years RSs have become increasingly popular to handle the 

information overload problem. They are currently adopted in a variety of 

areas including movies, music, news, books, research articles, search queries, 

social tags, and products in general. Although the majority of RSs provides 

recommendations for individual users, there are several activities that can be 

performed by groups of people, like watching a movie, going to a restaurant 

or traveling with friends. In such cases, recommendations should by targeted 

to groups rather than individuals and the preferences of any (or the majority 

of) group members must be taken into account together.  

Group Recommender Systems (GRSs) are RSs targeting groups of users. 

In addition to the previous cases, they can also play an important role in 

Ambient Intelligence, supporting applications that sense the environment and 

respond to the presence of people with personalized content. As most physical 

environments are used by many people at the same time, once their profiles 

are inferred or retrieved (e.g. via sensors, smart devices, RFID systems, etc.) 

GRSs can be used to select the most feasible content meeting all preferences. 

Example include the selection of the products to advertise on digital signage 

or the background music to be played in physical stores to maximize the well-

being of present customers with a view to increasing sales. 

The majority of existing GRS approaches are based on the aggregation 

of either the preferences or the recommendations generated for individual 
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group members. Nevertheless, in many contexts, the personality of group 

members, their influence and mutual relationships play an important role in 

the final decision adopted by the group. So, such social elements, should be 

taken into account in the recommendation process to provide better results.  

This chapter, after having summarized the main existing approaches to 

RS and GRS and the main metrics to measure their performances, introduces 

a novel influence-based approach to group recommendations based on the 

fuzzy GDM models and techniques defined in the first part. 

5.1 Recommendation Algorithms 

A formal definition of the recommendation problem can be expressed in these 

terms: let � = {�1,… , �k} be a set of users, � = {�, … , �l} a set of items 

that can be recommended, R a totally ordered set whose values represent the 

utility of an item for a user (e.g. integers between 1 and 5 or real numbers 

between 0 and 1) and �: � × � → � a utility function measuring how an 

item � ∈ � is useful for an user � ∈ � ; the purpose of a RS is to recommend, 

to each user u, the item �∗ that maximizes the utility function so that [94]: 

 �∗ = argmax+∈, �(�, �) (67) 

The central problem of RSs is that f is not completely defined over the 

space � × � in fact, in typical applications, a user never expresses 

preferences on each available item. A RS shall then be able to estimate the 

values of the utility function also in the space of data where it is not defined, 

extrapolating from the points of � × � where it is known. In other words, 

the goal is to predict the rating that an user would give to an unknown item. 

The techniques, by which it is possible to predict unknown ratings, are a 

fundamental aspect of RSs. In content-based approaches [95], the utility 

�(�, �) of an unknown item x for the user u is predicted by considering defined 

values of f for items that are considered similar to x. For example, in an 

application for movies recommendation, the RS would try to understand the 
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similarities between the movies that the user has positively rated in the past 

and those currently available (e.g. same genre, same director, common actors, 

etc.). After that, only items with high similarity would be proposed. 

In such applications, each item � ∈ � is associated with a profile, i.e. a 

set of attributes able to characterize the content, that is represented by a 

vector �(�) = (�+,1,… , �+,m) where �+,p with � ∈ {1, … , �} is the weight of 

the i-th attribute or an indication of how the i-th attribute is able to 

characterize the item x. Weights can be either automatically generated (e.g. 

the frequency of keywords in text-based items) or manually provided (e.g. 

the presence or absence of a specific tag associated with the item). 

Each user � ∈ � is also associated with a profile �(�) = (�â,1,… , �â,m) 
where each weight �â,p with � ∈ {1,… , �} denotes the importance of the i-th 

attribute for the user u. The user profile is based on the attributes of the 

items preferred by the user in the past. In the simplest formulation it can be 

obtained by averaging all profiles of the items for which u has expressed a 

rating and weighting them on the basis of the rating itself.  

Once the profiles that characterize items and users have been defined, the 

utility of an unrated item x for an user u is calculated basing on the similarity 

between the two profiles. In other words �(�, �) = ���(�(�), �(�)). Several 

similarity measures can be used for this purpose. One of the most common is 

the cosine similarity that calculates the cosine of the angle between the two 

vectors as follows: 

 ���(�(�), �(�)) =
∑ �â,p�+,pmp=1√∑ �â,p2mp=1 ⋅ √∑ �â,p2mp=1

 (68) 

The main advantage of this approach is that recommendations are only 

based on information related to domain items: first useful recommendations 

are so made immediately, with only one assessment available. On the other 

hand it tends to over-specialize predictions, therefore making them obvious 

and, consequently, uninteresting. 
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In collaborative approaches [96], unknown ratings are estimated from 

those made available by other users. The basic idea is that users who have 

evaluated the same items in a similar way, are likely to have the same tastes. 

User-based algorithms predict the utility �(�, �) of an unrated item x for the 

user u by aggregating the utility expressed for x by similar users. One of the 

simplest aggregation functions is the average of ratings given by similar users, 

weighted on the degree of similarity as follows: 

 �(�, �) =
∑ �(�′, �) ⋅ ���(�, �′)â′∈ã�∑ |���(�, �′)|â′∈ã�

 (69) 

where �m ⊆ �  is the set of the k users considered most similar to u (with k 

chosen between 1 and the total number m of users). 

The similarity among users is calculated on the vectors (�â,+1 ,… , �â,+æ) 
that represent the ratings defined by an user � ∈ � where �â,+ = �(�, �), if 

defined, and � ∈ �. Several similarity measures exist to calculate such user 

similarity. Among them, one of the most commonly used is the Pearson’s 

correlation coefficient defined as follows: 

 ���(�, �′) =
∑ (�â,+ − �̅)+∈, (�â′,+ − �′̅̅̅ ̅̅ ̅)

√∑ (�â,+ − �̅)+∈, 2 ⋅ √∑ (�â′,+ − �′̅̅̅ ̅̅ ̅)+∈,
2 (70) 

where �̅ and �′̅̅̅ ̅̅ ̅ represent the mean rating assigned by users u and �′. 
The advantage of computing recommendations basing on user similarity 

is to provide less obvious advice with respect to content-based approaches. 

On the other hand, when users provide few ratings, it is difficult to correlate 

them leading to inaccurate recommendations. Item-based algorithms [97] try 

to address this problem by estimating the utility of an unrated item x by 

aggregating the utility expressed by u to similar items. A simple aggregation 

function can be obtained by modifying equation (69) as follows: 
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 �(�, �) =
∑ �(�, �′) ⋅ ���(�, �′)+′∈,�∑ |���(�, �′)|+′∈,�

 (71) 

where �m ⊆ � is the set of the k items considered most similar to x (with k 

chosen between 1 and the total number n of items). 

The similarity between two items is computed using the aforementioned 

similarity measures (68), (70) on the vectors (�â1,+,… , �âç,+) that represent 

the ratings defined by the system users for the item � ∈ � i.e. �â,+ = �(�, �), 

if defined, and � ∈ � . This approach is capable of providing fairly accurate 

recommendations also to users who have rated only few items. 

Collaborative approaches suffer of a normalization issue due to the fact 

that each user adopts its own personal scale to provide ratings. This lead to 

inaccurate results when ratings provided by different users are compared 

without normalization. The most popular normalization schemes are [98]: 

• mean-centering – the mean rating provided by an user (or for an item in 

item-based approaches) is subtracted to each rating before calculating 

similarities between users (or items in item-based approaches); 

• z-score – mean centered ratings are divided by the standard deviation of 

user ratings (or item ratings in item based approaches) before calculating 

similarities. 

In model-based approaches [99] the history of the RS in not directly 

used to make predictions but to learn a model that is then used to generate 

recommendations. Popular implementations rely on matrix factorization 

[100], that map users and items to a latent factor space of dimensionality 

� ≪ �, �. Each item � ∈ � is then associated with a vector �+ ∈ �é and each 

user � ∈ � with a vector �â ∈ �é. The elements of �+ measure the extent to 

which the item x possesses latent factors while the elements of �â the extent 

of interest the user u has in items that are high on the corresponding factors. 

The dot product between �+ and �â captures the interaction between the 

user u and the item x representing the user’s overall interest in the item’s 

characteristics. The utility function can be so obtained as �(�, �) = �+Ñ �â. 
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The main challenge of this approach is to compute the mapping of each item 

and user to the latent factors. A common approach is to minimize the error 

on the set of known ratings as follows [101, 102]: 

 
minê,ë ∑ (�(�, �) − �+Ñ �â)2 + �(‖�+‖2 + ‖�â‖2)

(â,+)∈î
 

(72) 

where � is the set of pairs (�, �) so that �(�, �) is known (i.e. items that have 

been explicitly rated by users) and the constant � controls the regularization 

extent and is usually determined by cross-validation. 

Latent factor models combine good scalability with predictive accuracy. 

In addition, they are well suited to modeling temporal effects, which can 

significantly improve accuracy. In real applications, in fact, items perception 

and popularity constantly change as new selections emerge and, similarly, 

users’ inclinations evolve, leading them to redefine their taste.  

5.2 Measuring Recommendation Performances 

RSs have several properties that may affect user experience and, connected 

to them, there are different metrics aimed at measuring RS performance with 

respect to each property. Among RS properties, the accuracy is one of the 

most discussed in RS literature. It may take different forms according to the 

way it is measured. The rating prediction accuracy measures the ability of 

the system to correctly predict unknown user ratings. In such cases RMSE 

and MAE metrics, already discussed in section 4.4 are commonly applied 

between predicted utilities and assigned ratings [103]. 

Nevertheless, in many applications, the final aim of a RS is the generation 

of useful recommendations rather than the ratings prediction. In these cases, 

the RS ends up with a list of recommended items for any user and measures 

for usage prediction accuracy can be applied to determine how correctly such 

lists predict how users will select available items in the future. In particular, 

each recommendation is capable of producing four different outcomes: 
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• true positive i.e. a recommended item is selected; 

• false positive i.e. a recommended item is not selected; 

• true negative i.e. a non-recommended item is not selected; 

• false negative i.e. a non-recommended item is selected. 

By counting the number of items that fall into each category it is possible 

to compute the following measures: 

 ��������� =
#��

#�� + #�� ;   ������ =
#��

#�� + #�� (73) 

where #��, #�� and #�� are, respectively, the number of true positives, false 

positives and false negatives. Longer recommendation lists typically improves 

recall reducing precision and vice-versa. For this reason, when possible, it is 

useful to compute curves comparing precision to recall with different lengths 

of the recommendation lists. A measure that summarizes precision and recall 

in a single value is the F-measure defined as follows [104]: 

 � = 2 ⋅ ��������� ⋅ ��������������� + ������ (74) 

Sometimes an RS ends-up with a ranked list of recommendations for each 

user rather than with a flat list. In such cases ranking prediction accuracy 

measures can be used. When true rankings of all available items are known, 

rank correlation measures such as Kendall’s �  or Spearman’s �, introduced 

in section 2.1, are applicable. In the more realistic case that true rankings are 

available just for some items, alternative measures must be used.  

The normalized rank score (NRS) metric, defined in [105], extends usage 

prediction accuracy metrics taking into account the position of recommended 

items. In particular, a decreasing utility is associated to the position in the 

item rank basing on the assumption that later positions have a higher chance 

of being overlooked. Given an user � ∈ � the rank score can be defined as: 
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 ��â = ∑ 1

2
ñálm(+)−1:+∈¡ê

  (75) 

where tp is the set of true positives (i.e. recommended items that are actually 

selected by the user), ����(�) is the position of x in the recommendation list, 

� is parameter setting the half-life of utilities i.e. so that a successful hit at 

the first position has twice as much utility than one at the � + 1 rank. 

NRS normalizes RS by the maximum achievable score if all selected items 

are assigned to the lowest position in the recommendation list. Let fn be the 

set of false negatives, the NRS for an user � ∈ � can be defined as: 

 ���â =
��â��âká+   where  ��âká+ = ∑ 1

2
p−1: .

|¡ê∪ól|

p=1
 (76) 

The normalized discounted cumulative gain (NDCG) is a similar measure 

where positions are discounted logarithmically [106]. Let �â = (�1â,… , �mâ) be 

a recommendation list generated for an user � ∈ � , the discounted cumulative 

gain of such list can be defined as: 

 ���â = ∑ �(�, �pâ)

log2(� + 1)

m
p=1

  (77) 

where �(�, �pâ) is the real utility i.e. the true rating provided by the user u 

for the item �pâ. NDCG normalizes DCG by the maximum achievable score 

i.e. considering ����â = ���â ���âká+⁄  where ���âká+ is the value that 

DCG can get by ordering recommended items according to the true ratings. 

The calculation of NDCG relies on the assumption that true ratings are 

available for any recommended item. However in most cases users express a 

rating only for some items of the recommendation list. To overcome this 

issue, in [107] it was suggested to compute NDCG just on the subset of ranked 

items included in the recommendation list, sorted according to the ranking 

computed by the recommendation algorithm.  
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The prediction accuracy of a RS usually improves when the amount of 

available data increases. Nevertheless, in many cases, recommendations can 

be generated only on a portion of available data about items and users. The 

coverage of a RS measure the size of this portion. In particular, the catalog 

coverage is the percentage of available items which are recommended to some 

user i.e. the size of the union of all the recommendation lists divided by the 

number of available items. The more general prediction coverage represents 

instead the percentage of available items for which a recommendation can be 

generated. Similarly, the user-space coverage is the percentage of users for 

which a recommendation can be generated [108]. 

Often, the recommendation lists generated by a RS contains many similar 

items making them of limited value for users. In fact, in such cases, it may 

take longer to explore the full range of recommendations. To measure the 

ability of a RS to avoid this issue, some measures of diversity have been 

proposed [109]. Among them, one of the most used is the average distance 

between item pairs. Let �â = (�1â,… , �mâ) be the recommendation list for an 

user � ∈ � , its diversity measure can be obtained as: 

 ���������â = 1 − 2 ⋅ ∑ ∑ ��� (�(�pâ),�(�râ))mr=p+1m−1p=1 � ⋅ (� − 1)
 (78) 

where ��� (�(�pâ), �(�râ)) denotes a similarity metric defined in [0,1] (like the 

cosine similarity) applied on the profiles characterizing the content of items 

�pâ and �râ as described in section 5.1. 

RSs might generate recommendations with high accuracy and reasonable  

diversity and coverage but that are useless for practical purposes [108]. For 

example, it happens when an RS makes obvious recommendations involving 

popular items or items that users would have chosen even without them being 

recommended. Conversely, the most valuable recommendations involve items 

users have never heard of, but would love. To measure the attitude of a RS 

to generate surprisingly successful recommendations, serendipity metrics 

have been introduced [110].  
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Several measures of serendipity exist. In [111] it was suggested to obtain 

serendipity as linear composition of novelty and unpopularity. The novelty of 

an item � ∈ �, recommended to an user � ∈ � , is calculated as the distance 

between the profile representing x from that representing u. Using a similarity 

metric defined in [0,1] it can be so obtained as 1 − ���(�(�), �(�)). Instead, 

the unpopularity of x can be obtained as 1 − �+ �⁄  where m is the total 

number of users while �+ is the number of users who selected the item x in 

the past (or who gave it a positive rating). 

5.3 Group Recommendation Strategies 

Although the majority of RSs are designed to generate recommendations for 

individual users, in many circumstances the selected content is consumed in 

groups. Typical cases include the selection of movies or TV shows to be 

watched in a family context, the selection of restaurants, bars or cultural 

events for friends coming out together, the selection of holiday destinations 

for travel groups, etc. In such cases, provided recommendations should fit the 

preferences of any (or the majority of) group members [112]. 

Several group recommendation strategies have been proposed so far by 

different researchers. In [113], they have been classified in two broad classes 

depending on the stage in which information about individual group members 

is aggregated to obtain suggestions for the whole group. Recommendations 

aggregation strategies foresee the generation of individual recommendations 

for group members through a standard algorithm as those seen in section 5.1. 

Then, the individual lists of recommended items are merged into a single list 

addressing the group as a whole. Different algorithms have been proposed to 

perform the aggregation step and to decide whether to include or exclude 

individual suggestions in the group list. 

Preferences aggregation strategies, instead, combine users’ preferences (in 

terms of profiles or assigned ratings) in a single model that is used to obtain 

recommendations for the group through a standard algorithm. In this way 
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the group is seen as a pseudo-user reflecting the interests of all members. 

Compared to recommendations aggregation, these strategies increase the 

chance of finding unexpected, surprising items. On the other hand, group 

recommendations cannot be directly linked to individual preferences, which 

may be disorienting and makes them difficult to explain [114].  

In GRSs, a central role is played by the algorithm employed to aggregate 

recommendations or preferences (according to the selected strategy). In [112, 

115] several aggregation methods have been proposed as summarized below. 

The average method, in case of recommendations aggregation, merges 

the individual recommendation lists provided by a standard recommendation 

algorithm by calculating, for each item belonging to at least one of these lists, 

the average utility among all group members. Let �� ⊆ �  be the set of users 

belonging to a group and �� ⊆ � the set including all items recommended 

to at least one member, the group utility of any � ∈ �� is estimated as: 

 �(��, �) =
∑ �(�, �)â∈ãõ

#��  (79) 

The elements of �� with highest utilities are then proposed to the group. 

In case of preferences aggregation, instead, the average method uses equation 

(79) to estimate the group utility of any � ∈ �. Then, the items of X with 

the highest utilities are proposed to the group. When some group members 

have more influence on the group decision, a weighted average may be used. 

The average without misery method looks for the optimal decision for 

the group, without making some members really unhappy with such decision. 

In case of recommendations aggregation, any element � ∈ �� so that �(�, �) 

is below a given threshold for at least one user � ∈ ��, is removed from �� 

or receives a penalty in the calculation of the group utility value. Similarly, 

in case of preferences aggregation, any item � ∈ � whose utility is below a 

given threshold for at least one group member, receives a penalty.  

Like for the average method, equation (79) is used to aggregate remaining 

elements of �� or X. Penalties can be applied by multiplying the obtained 
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group utility to a penalizing factor between 0 and 1 or by using the minimum 

individual utility in place of the group utility. 

The least misery method aims at minimizing the overall misery of the 

group by considering the minimum individual utility as the group utility for 

each available item. Conversely, the specular most pleasure method aims 

at maximizing the overall pleasure of the group by considering the maximum 

individual utility as the group utility. Within both methods, in case of 

recommendations aggregation, the estimation is done only for items in �� 

while, in case of preferences aggregation, any item � ∈ � is considered.  

The multiplicative method obtains the group utility of any item � ∈ � 

by multiplying together the individual estimated utilities �(�, �) of x for any 

group member � ∈ ��: 

 �(��, �) = ∏ �(�, �)
â∈ãõ

 (80) 

In case of recommendations aggregation, the estimation is done only for items 

in �� while, in case of preferences aggregation, any item � ∈ � is considered.  

The most respected person method adopts the recommendations made 

for the most influencing member as the group preferences. This method needs 

to know the influence level of group members. 

In [112] an experiment was made to identify how users perceive group 

recommendations obtained with different aggregation strategies. Participants 

were given individual ratings for sample items and users as well as item 

sequences chosen by the aggregation strategies. They rated how satisfied they 

thought group members would be with generated sequences, and explained 

their ratings. According to participants, the multiplicative method performed 

best followed by average, average without misery and most pleasure. 

When recommending items to groups of users, it is impossible to equally 

satisfy each member at all times. On the other hand, it is important that no 

one remains dissatisfied too many times. This leads to the need of balancing 

user satisfaction over time. In [116] several satisfaction function have been 
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proposed to model members’ satisfaction during multiple interactions with a 

group recommender system. Let �(1),… , �(m) ∈ � be the sequence of the last 

k proposed items for the group of users ��, the current satisfaction ���(�) of 

an user � ∈� can be defined as follows: 

• addition – summing the utilities of the last k selected items for the user 

u i.e. ���(�) = ∑ �(�, �(¡))m¡=1 ; 

• addition with normalization – dividing the sum of the utilities of the last 

k selected items by the sum of the utilities of the top l preferred items for 

u in X;  

• addition with decay – summing the utilities of the last k selected items 

weighted according to a decay function to give more importance to last 

selected items i.e. ���(�) = ∑ �1−¡ ⋅ �(�, �(¡))m¡=1  

When the satisfaction of each group member has been estimated through 

one of the previous methods, the preference aggregation function may use 

these values to improve recommendations. For example the item which is 

most liked by the least satisfied user can be proposed to the group or the top 

k preferred items for the least l satisfied users can be pre-selected in �� and 

a recommendations aggregation strategy can be applied on �� to generate 

the final suggestions. 

5.4 A GDM Model for Group Recommendation 

The group recommendation problem, as formalized in section 5.3, can be seen 

as a special case of the GDM problem. In GDM, a group of experts evaluate 

a set of alternatives with the aim of selecting the best one to adopt. To this 

end, each expert expresses her preferences on alternatives, preferences are 

aggregated, a collective preference degree of each alternative is calculated 

and a ranking over alternatives is generated. 

Similarly, the aim of GRSs, is to select from a given catalogue the item 

or the set of items that fit the preferences of all (or the majority of) members 

belonging to a group of users. Differently from GDM, users do not need to 
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explicitly state their preferences on items but an utility function, estimating 

such preferences, is already available as output of a standard RS algorithm. 

As in GDM, user preferences must be aggregated, the collective preference 

degree of each item calculated and a ranking over items generated. 

Let �â be the recommendation list built for an user � ∈ � by a standard 

RS algorithm as those described in section 5.1, �� ⊆ � a group of users and 

�� = ⋃ �ââ∈�  the set of items recommended to at least one group member. 

By considering �� as a set of experts and �� as a set of alternatives, we can 

translate the GRS problem in a GDM one. Then, the estimated utility 

�(�, �), with � ∈ �� and � ∈ ��, naturally represents experts’ preferences. 

In some implementations, the RS only provides, for each user, the list of 

suggested items without specifying their utilities. In other implementations 

only the utility of suggested items is known. Instead, to instantiate a GDM 

problem corresponding to a GRS one, the underling RS should be able to also 

estimate the utility of a non-recommended item. This is needed to estimate 

preferences users have for items recommended to other group members. In 

other words, values for �(�, �) must be generated for any � ∈ �� and for 

any � ∈ ��. Just in case of limited coverage i.e. when, due to limited data, 

it is impossible to estimate some utility values, the corresponding preferences 

of the GDM problem remain undefined. 

It is important to consider that GDM problems, instantiated in this way, 

found the decision process on predicted utility values rather than on explicit 

preference statements collected among experts. This suggests to rely on GDM 

approaches that are intrinsically able to deal with the uncertainty resulting 

from prediction inaccuracy, like those based on the fuzzy set theory. As seen 

in section 1.4, such approaches foresee preference modeling in terms of FPRs 

whose elements must be defined starting from predicted utilities. 

Given an utility function � : �� × �� → [0,1], estimated by a standard 

RS, with �� = {�1�,… , �k� } ⊆ �  and �� = {�1�,… , �l�} ⊆ �, the 

corresponding FPR �m = (�prm ), representing preferences of each group 

member �m� ∈ ��, must be defined. According to [2], utility values 
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(�1,… , �l), normalized in [0,1], can be transformed into a FPR by any 

function �: [0,1] × [0,1] → [0,1] so that the following conditions are satisfied: 

• �(�p,�r) is a non-decreasing function of the first argument and a non-

increasing function of the second one ∀ �, � ∈ {1, … , �}; 

• �(�p, �p) = 0.5 ∀ � ∈ {1,… , �}; 

• �(�p, 0) = 1 ∀ � ∈ {1, … , �} to reflect the fact that, if the utility of an 

alternative is zero, then any other alternative should be preferred to it 

with the maximum preference degree; 

• �(�p,�r) > 0.5 iif �p > �r ∀�, � ∈ {1,… , �}; 

• �(�p,�r) + �(�r,�p) = 1 ∀�, � ∈ {1,… , �} that is the additive reciprocity 

property described in section 1.4. 

Several utility-to-FPR transformation functions exist. Among them, in 

[2], the following function that build FPRs satisfying the additive transitivity 

property too (as defined in section 1.4) has been proposed: 

 �(�p,�r) =
1 + �p − �r

2
. (81) 

Applying equation (81) on the utility function f, it is possible to obtain the 

elements of the FPRs �m with � ∈ {1,… , �}, associated to any group member 

as follows: 

 �prm =
1 + �(�m�,�p�) − �(�m�, �r�)

2
. (82) 

Example 21. Let �� = {�123,�335,�467} be the subset of RS users belonging 

to a given group G; �123 = {�12,�25, �39, �77}, �335 = {�12,�46, �67, �77} �467 = {�39, �46,�77, �89} the recommendation lists built for �� members by 

a standard RS; �� = �123 ∪ �335 ∪ �467 = {�12,�25, �39, �46, �67,�77, �89} 
the set of items recommended to at least one group member. By assuming 

that the individual utilities for items in �� are those summarized in Table 

11 (where – represents an undefined prediction), it is possible to build the 

FPR associated to �123 according to equation (82) as follows: 
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�123 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛0.50 0.55 0.50 0.75 0.90 0.60 −

0.45 0.50 0.45 0.70 0.85 0.55 −
0.50 0.55 0.50 0.75 0.90 0.60 −
0.25 0.30 0.25 0.50 0.65 0.35 −
0.10 0.15 0.10 0.35 0.50 0.20 −
0.40 0.45 0.40 0.65 0.80 0.50 −− − − − − − −⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

. 

 

Group members 
Individual item utilities 

�12 �25 �39 �46 �67 �77 �89 
�123 1.00 0.90 1.00 0.50 0.20 0.80 − 

�335 0.90 0.30 0.60 1.00 0.90 1.00 0.10 

�467 0.10 0.30 0.90 0.80 − 0.80 1.00 

Table 11. Individual item utilities used in Example 21 

Given that, in the example, the RS is unable to predict the utility of �89 for 
the user �123, the values corresponding to the last row and column of �123 
remain undefined and should be estimated with one of the methods proposed 

in section 1.7. For example, assuming the indifference between �89 and any 

other item and iterating equations (22)-(23) until convergence, the following 

complete version of �123 is obtained: 

�123 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛0.50 0.55 0.50 0.75 0.90 0.60 0.61

0.45 0.50 0.45 0.70 0.85 0.55 0.57
0.50 0.55 0.50 0.75 0.90 0.60 0.61
0.25 0.30 0.25 0.50 0.65 0.35 0.40
0.10 0.15 0.10 0.35 0.50 0.20 0.27
0.40 0.45 0.40 0.65 0.80 0.50 0.53
0.39 0.43 0.39 0.60 0.73 0.47 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

. 

When all individual FPRs �m with � ∈ {1, … , �} are obtained, they must 

be aggregated to obtain the collective FPR P through one of the functions 
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defined in section 1.5, like ����. Then, it is possible to calculate the group 

preference �(�p�) for each item �p� ∈ �� according to one of the measures 

defined in section 1.6 (i.e. NF, NDD, QGDD or QGNDD). The global ranking 

between the items is then computed by ordering them decreasingly on their 

group preference degree and the top-ranked elements can be recommended 

to the group. In addition, if needed, an estimation of the group utility of each 

item � ∈ �� can be obtained through normalization as follows: 

 �(��, �) =
(�(�) − �kpl) ⋅ (�ká+ − �kpl)

(�ká+ − �kpl)
+ �kpl (83) 

where �kpl and �ká+ are, respectively, the minimum and maximum values 

of the group preference �(�p�) for � ∈ {1,… , �}, while �kpl and �ká+ are the 

minimum and maximum of the utility function �(�m�, �p�) for � ∈ {1,… , �} 

and � ∈ {1,… , �}. 

Example 22. Let ��, �� and �123 be as reported in the previous example 

and individual utilities of the �� items as summarized in Table 11, by using 

equation (82) to obtain the FPRs �335 and �467, equations (22)-(23) to 

complete �467 and equations (13)-(15) to aggregate FPRs with �� �� guided 

by the linguistic quantifier “much”, the following collective FPR is obtained: 

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛0.50 0.58 0.42 0.45 0.55 0.40 0.52

0.42 0.50 0.33 0.37 0.47 0.32 0.44
0.58 0.67 0.50 0.53 0.62 0.48 0.60
0.55 0.63 0.47 0.50 0.59 0.45 0.58
0.45 0.53 0.38 0.41 0.50 0.36 0.51
0.60 0.68 0.52 0.55 0.64 0.50 0.63
0.48 0.56 0.40 0.42 0.49 0.37 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

. 

Then, it is possible to obtain the group preference of each item in terms of 

QGDD through equation (20) and, in turn, their group utility with equation 

(83) as follows: �(��, �12) = 0.51; �(��,�25) = 0.10; �(��, �39) = 0.91; 

�(��,�46) = 0.76; �(��, �67) = 0.31; �(��, �77) = 1; �(��, �89) = 0.37. The 

top-ranked items for group consumption so are: �77, �39 and �46. 
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An important aspect to take into account in the FPR aggregation process 

is the choice of the linguistic quantifier guiding the ���� operator. While 

the selection of the quantifier “much” (like in Example 22) assigns the same 

importance to all individual utilities, by selecting a different quantifier it is 

possible to obtain a different behavior. For example, by using the “at least 

half” quantifier, it is expected that at least half of group users is satisfied 

with an item to recommend it. To this end, higher individual utilities are 

privileged with respect to lower ones. Conversely by using the “as many as 

possible” quantifier, it is expected that the majority of users is satisfied with 

an item so lower individual utilities are privileged over higher ones. By using 

the “most” quantifier, instead, lower-intermediate utilities are privileged over 

extreme (higher or lower) ones. 

Example 23. Let �� = {�1�,�2�, �3�, �4�} be the set of users belonging to a 

group G and �� = {�1�,�2�, �3�, �4�} the set of items recommended to at least 

one group member. Let assume that the estimated individual utility for each 

group member is that reported in Table 12, by using the defined GDM model 

to compute recommendations for the whole group we obtain different results 

according to the linguistic quantifier chosen for the ���� operator during 

the FPR aggregation process. Table 13 summarizes the results obtained using 

different linguistic quantifiers and compare them with those obtained with 

standard group recommendations aggregators as seen in section 5.3. 

As it can be seen in Table 13, by averaging individual utilities (through the 

“average” aggregator) all items seem equally relevant to the group. The 

“average without misery” aggregator has a similar behavior but it excludes 

items �1� and �4� because their utility is too low for some users (�1� and �2�). 

The “least misery” and “most pleasure” aggregators use, in turn, the lower 

and the higher individual utility of each item while, the “multiplication” 

aggregator, privileges lower individual utilities over higher ones. 
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Group members 
Individual item utilities 

�1� �2� �3� �4� 

�1� 1.00 0.60 0.80 0.20 

�2� 0.60 0.60 0.80 0.20 

�3� 0.50 0.60 0.40 1.00 

�4� 0.30 0.60 0.40 1.00 

Table 12. Individual item utilities used in Example 23 

Similarly, by adopting the defined GDM based model, different behaviors are 

obtained by choosing different quantifiers for the ���� aggregator. Given 

that FPRs are built comparing, for each user, the individual utilities of 

different items, the GDM model operate on relative utilities rather than on 

absolute ones. To this end mean-centered individual utilities (where the mean 

is calculated with respect to each user) are reported in Table 14.  

 

Aggregators 
Ranked group utilities 

1st  2nd  3rd  4th  

average �1� (0.60) �2� (0.60) �3� (0.60) �4� (0.60) 

average without misery �2� (0.60) �3� (0.60) �1� (0.00) �4� (0.00) 

least misery �2� (0.60) �3� (0.40) �1� (0.30) �4� (0.20) 

most pleasure  �1� (1.00) �4� (1.00) �3� (0.80) �2� (0.60) 

multiplication �2� (0.13) �3� (0.10) �1� (0.09) �4� (0.04) 

at least half (GDM) �4� (1.00) �1� (0.35) �3� (0.35) �2� (0.20) 

much (GDM) �1� (0.50) �2� (0.50) �3� (0.50) �4� (0.50) 

most (GDM) �2� (1.00) �3� (0.65) �1� (0.25) �4� (0.20) 

as many as possible (GDM) �2� (1.00) �1� (0.85) �3� (0.85) �4� (0.20) 

Table 13. Ranked group utilities obtained using different aggregators 



132 Fuzzy Models for Group Decision Making and their Applications 

 

By considering again Table 13 in the light of the relative utilities shown in 

Table 14, it can be seen that the “much” quantifier in the GDM model behave 

like the “average” aggregator. The “at least half” quantifier, instead, 

privileges relative utilities associated to most enthusiastic users, so �4� wins 

thanks to its high estimated relative utility for users �3� and �4�. Conversely, 

the “as many as possible” quantifier privileges relative utilities associated to 

less enthusiastic users so �2� wins thanks to its high estimated relative utility 

for users �1� and �3�. Finally, the “most” quantifier privileges relative utilities 

associated to lower-intermediate users so, in this case, the winner is �2�. 

 

Group members 
Mean-centered individual utilities 

�1� �2� �3� �4� 

�1� 0,35 -0,05 0,15 -0,45 

�2� 0,05 0,05 0,25 -0,35 

�3� -0,12 -0,03 -0,22 0,38 

�4� -0,27 0,03 -0,17 0,43 

Table 14. Mean-centered individual item utilities for group members 

The previous example demonstrates the flexibility of the proposed model. 

In fact, it allows to design different aggregation strategies by simply selecting 

different linguistic quantifiers. Moreover, when needed, a new strategy can 

be introduced by simply defining a new quantifier. 

5.5 Influence-Based Recommendations 

When selecting an item for consumption within a group of users, often the 

final choice is deeply affected by the personality of group members. In fact, 

due to interpersonal influence, individual preferences may change during the 

selection process when information and opinions are exchanged in social 
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interactions. In order to take social influence into account, we propose an 

improved GDM-based model for group recommendations that introduces 

social elements in accordance with the approach defined in chapter 3. 

In particular, as proposed in section 3.1, the configuration and strength 

of social influence among group members is evaluated basing on interpersonal 

trust and represented within a SIN. The SIN, in its turn, is used to complete 

the generated FPRs in case of missing elements (e.g. due to limited coverage 

of the underlying RS) and to evolve them by incorporating elements captured 

from other FPRs simulating, in this way, the effects of social influence on 

opinion change. The process then iterates until convergence toward a shared 

FPR that is then used to build recommendations. 

In analogy with the definition provided in section 3.1, a SIN represents a 

directed graph associating, to each pair of group members (�p�, �r�) ∈ ��2 , a 

weight �pr ∈ [0,1] that measures the strength of the influence of the j-th 

member on the i-th one. SIN weights can be determined starting from explicit 

user-provided trust statements, like discussed in section 3.3, or inferred by 

analyzing past social interactions among group members e.g. by looking at 

implicit information contained in social networks like Facebook or Twitter. 

The main advantage of the second approach is that the process is completely 

transparent to users. On the other hand, it is required that all group members 

belong to the same social network but this issue is mitigated by the rising 

popularity of this kind of applications. 

In [117] it was demonstrated that trust and tie strength are conceptually 

different but strongly correlated. In [118], 74 Facebook variables have been 

identified as potential predictors of tie strength. By relying on these results, 

in [119] interpersonal trust has been estimated as linear combination of 10 

factors measured on Facebook profiles. Then, on the same paper, it has been 

demonstrated that a reliable estimation of trust strength can be obtained by 

just considering, for each �p�, �r� ∈ �� with � ≠ �, the following 5 factors: 

• �1(�p�,�r�) represents the amount of common friends between �p� and �r�, 

ranging from 0.1 (less than 5) to 1 (more than 25); 
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• �2(�p�,�r�) is the percentage of pictures where �p� and �r� appear together 

over the total number of pictures in the �p� profile; 

• �3(�p�,�r�) is the duration of the relationship between �p� and �r� ranging 

from 0.1 (less than 1 year) to 1 (more than 10 years), obtained comparing 

information on age, schools, universities, work and family relations; 

• �4(�p�,�r�) is the percentage of common interests described in the profiles 

of �p� and �r� (movies, books, joined groups, etc.) over the total number 

of interests declared in the �p� profile; 

• �5(�p�,�r�) is the strength of the declared status between �p� and �r� 

ranging from 0.1 (barely know) to 1 (couple). 

The trust level of any group member �p� in any other member �r� can be 

then obtained as weighted sum of such factors as follows: 

 �����(�p�, �r�) = ∑ �m�m(�p�,�r�)5
m=1

 (84) 

where � ≠ � and the weights �m with � ∈ {1,… ,5} are chosen experimentally 

so that ∑ �m = 1
5m=1 . A feasible set of weights is: �1 = 0.4; �2 = �3 = 0.2; 

�4 = 0.15 and �5 = 0.05. 

Once the interpersonal trust among group members is estimated, to build 

a SIN, it is still needed to estimate users’ self-confidence. Such value measures 

the attitude of an user to remain faithful to her initial preferences, mitigating 

the effects of social influence. In [119], a similar attribute is estimated based 

on the Thomas-Kilmann Conflict Mode Instrument (TKI), a test made of 30 

questions with two possible answer each [120].  

TKI define five personality modes of dealing with conflicts: competing, 

collaborating, avoiding, accommodating and compromising. Depending on 

the answers provided to test questions, a score is assigned to each personality 

mode. Then, the obtained results are summarized along two basic dimensions: 

assertiveness and cooperativeness through a weighted sum of the obtained 

scores. Given the assertiveness �(�p�) and the cooperativeness �(�p�) of an 
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user�p� ∈ ��  obtained in this way and assuming that both values are defined 

in [0,1], the self-confidence of �p� can be obtained as follows: 

 ����(�p�) =
1 + �(�p�) − �(�p�)

2
 (85) 

A problem of this approach is that it requires that group members fill a 

30-questions test before start using the system. Nevertheless, several studies 

[121, 122] correlate conflict management styles with the so-called five-factors 

personality traits (extraversion, agreeableness, conscientiousness, neuroticism 

and openness). Basing on these studies, if the personality traits are known, 

it is possible to estimate the levels of assertiveness and cooperativeness of a 

given user and, through equation (85), the ����-���������� too. 

Several types of test exist to estimate such personality factors like the 

Five-Factor Personality Inventory or the Revised NEO Personality Inventory 

[123]. Unfortunately, such approaches suffer from the same limitations seen 

for the direct estimation of the conflict management styles i.e. users are 

needed to fill long questionnaires before system use. Nevertheless, some 

approaches exist to predict personality directly from the language used in 

social media. For example, in [124], an algorithm for the prediction of the 

five-factors traits from the textual analysis of users’ Facebook status updates 

is defined. Moreover, from a similar work [125], the on-line tool Apply Magic 

Sauce1 for personality prediction from Facebook has been implemented.  

Once ����(�p�) and �����(�p�,�r�) are estimated for �, � ∈ {1, … , �}, it is 

possible to obtain SIN weights as follows: 

 �pr =

⎩{⎨
{⎧(1 − ����(�p�)) ⋅ �����(�p�, �r�)

∑ �����(�p�, �m�)m∈{1,…,k}∖p
if � ≠ �,

 ����(�p�) if � = �.
 (86) 

                                         
1 https://applymagicsauce.com/ 
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The special case where �����(�p�,�r�) = 0 ∀ � ∈ {1,… , �} ∖ � (i.e. when an 

user does not trust any other user) is handled by setting �pp = 1 and �pr = 0 

∀ � ∈ {1,… , �} ∖ �. It is trivial to demonstrate that the so obtained matrix 

W fulfills the normalization property defined by equation (41). 

Example 24. Let �� = {�123,�335,�467} be the subset of RS users belonging 

to a given group G and that �����(�123,�335) = 0.3; �����(�335,�123) = 0.8; 

�����(�123, �467) = 0.9; �����(�467,�123) = 0; �����(�335,�467) = 0.8 and that 

�����(�467,�335) = 0.8. Let also assume ����(�123) = 0.5; ����(�335) = 0.2 

and ����(�467) = 0.8, according to equation (86) it is possible to obtain the 

SIN represented by the following matrix: 

� = (0.5 0.12 0.38
0.4 0.2 0.4
0 0.2 0.8

). 

The obtained SIN is used to complete the generated FPRs in case of 

missing elements. According to section 3.4, seed values for missing elements 

are obtained from FPRs of group members that are trusted by the one whose 

FPR has to be completed through equation (47). Then, the final estimates 

are computed through the iterative application of equations (22)-(23) until 

convergence is reached. 

To simulate the effects of social influence between group members, the 

individual FPRs obtained at the preceding steps are evolved using the SIN. 

According to section 3.5, an iterative process is applied where, at each step, 

the individual FPR of each group member is slightly changed to take into 

account the influence of trusted members through equation (49). When the 

stopping conditions defined by equation (50) are met, in case of lack of 

convergence, the obtained FPRs are aggregated through the ���� operator 

as defined in section 1.5.  

Finally, the group preference �(�p�) for each item �p� ∈ �� is calculated 

as described in section 5.4 on the collective FPR, the global ranking between 

the items is computed and the top-ranked elements are recommended to the 
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group. Optionally, an estimation of the group utility of each item � ∈ �� 

can be obtained through equation (83). 

Example 25. Let �� and �� be as defined in Example 21 and the individual 

utilities for items in �� as reported in Table 11, through equation (82) it is 

possible to build the FPR associated to each group member. By relying on 

the SIN adjacency matrix W defined in Example 24, it is then possible to 

estimate missing FPR elements with equation (47) followed by the iterative 

application of equations (22)-(23). The obtained FPR for user �123 ∈ �� is 

reported below and should be compared to that obtained in Example 21 by 

applying the “indifference” estimation strategy. 

�123 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛0.50 0.55 0.50 0.75 0.90 0.60 0.58

0.45 0.50 0.45 0.70 0.85 0.55 0.54
0.50 0.55 0.50 0.75 0.90 0.60 0.62
0.25 0.30 0.25 0.50 0.65 0.35 0.41
0.10 0.15 0.10 0.35 0.50 0.20 0.33
0.40 0.45 0.40 0.65 0.80 0.50 0.54
0.42 0.46 0.38 0.59 0.67 0.46 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

. 

Such FPR, together with those obtained for �335, �467 ∈ �� (not reported for 

shortness) are then evolved according to the process described in section 3.5 

to simulate the effects of social interaction. After 6 iterations, all individual 

FPRs converge to the following FPR: 

� =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛0.50 0.50 0.26 0.30 0.34 0.28 0.29

0.50 0.50 0.27 0.30 0.30 0.28 0.29
0.74 0.73 0.50 0.53 0.52 0.51 0.53
0.70 0.70 0.47 0.50 0.51 0.48 0.50
0.66 0.70 0.48 0.49 0.50 0.47 0.56
0.72 0.72 0.49 0.52 0.53 0.50 0.52
0.71 0.71 0.47 0.50 0.44 0.48 0.50⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

. 

Then, it is possible to obtain the group preference of items through equation 

(20) and, with equation (83), their group utility as follows: �(��, �12) = 0.11; 

�(��,�25) = 0.10; �(��, �39) = 1.00; �(��, �46) = 0.89; �(��, �67) = 0.89; 
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�(��,�77) = 0.97; �(��, �89) = 0.85. The top-ranked items for the group so 

are: �39 and �77 followed by �67 and �46.  
Compared with the results obtained in Example 22, we see that now �39 is 
preferred over �77 even if it has an higher average of individual utilities. This 

is because �39 is preferred by users �123 and �467 that, according to the SIN, 

are more influencing than �335 (who prefers �77 instead). It should also be 

noted the good position reached of �67 due to the fact that the opinion of the 

influencing member �467 (initially unknown) is formed on that of �335 (that 
likes �67) disregarding that of the untrusted member �123(that dislikes �67). 

5.6 Comparison with Related Works 

Several GRSs have been proposed in the literature. Among the first systems 

there is MusicFX [126] that selects background music to be played in a fitness 

center to suit the group of people expected to exercise at a given time. User 

profiles are generated with an interview and the music selection is based on 

a variant of the least misery aggregation strategy (seen in section 5.3) that 

includes some randomness to avoid always choosing the same music. Another 

GRS for the selection of ambient music is Flytrap [127] that generates user 

profiles starting from the music people listen to on their computers and uses 

RFID badges to detected people present in the room. 

Polylens [128] is a group extension of the popular Movielens system for 

movies recommendation2. It allows users to create groups and ask for group 

recommendations that are built by aggregating individual recommendations 

(generated basing on users’ star ratings) through the least misery strategy 

and avoiding movies already seen by any group member. In the field of TV 

shows, Yu’s TV [129] recommends television programs for families. It bases 

recommendations on the average strategy applied on individual preferences 

for program features (e.g. genre, directors, actors, etc.). Family Interactive 

                                         
2 https://movielens.org/ 
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TV [130] also filters television programs according to the viewers’ preferences 

and uses implicit relevance feedback assessed through the actual program the 

viewer has chosen for watching. 

In the touristic field, the Travel Decision Forum [131] assists a group to 

agree on the desired attributes of a planned joint holiday. Users indicate their 

preferences on a set of features (room facilities, sightseeing attractions in the 

surrounding area, etc.), preferences are then aggregated and a mediator agent 

supports users to reach consensus. The Collaborative Advisory Travel System 

[132] is a similar system that induces group members’ profiles by proposing 

holiday packages and collecting critiques on their features. 

The Pocket Restaurant Finder [133] delivers restaurant recommendations 

for groups that are planning to go out eating together. The application bases 

recommendations on individual preferences related to cuisine type, restaurant 

amenities, price category, etc. also taking into account the physical location 

of users and restaurants. Intrigue [134] is a GRS for touristic places which 

build recommendations by relying on a single group profile obtained from the 

characteristic of the group (e.g. presence of children or disabled) as well as 

from the aggregation of individual preferences. 

Beyond application-specific works, some studies evaluate the performance 

of different aggregation strategies for GRSs. A main issue of this task is that 

the majority of RS datasets just include single-user data. To overcome this 

limitation, in some works, like [107, 113], synthetic groups are generated on 

well-known dataset like Movielens. Unfortunately, being the true preferences 

of such groups unknown, the generated recommendations are compared with 

the individual ratings in the test set. Although calculating GRS performance 

in such way seems questionable, some useful result is obtained. In particular, 

the recommendations accuracy decreases as the group size increases and, the 

greater the similarity of group member profiles, the better the accuracy of 

recommendations. 

Some small-scale experiments have been also performed with real users. 

In [112] participants rated how satisfied they thought group members would 
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be with group recommendations generated according to different strategies. 

In such experiment, the multiplicative method performed best followed by 

average, average without misery and most pleasure. In [135], an experiment 

with real users was conducted to validate the results obtained with synthetic 

groups. One of the main conclusions of this study was that it is possible to 

realize trustworthy experiments with synthetic data, as the online user test 

confirmed the results of the offline experiment.  

The preceding works have in common that the group recommendations 

just take users’ individual preferences into account without considering either 

the user personality or the relationships among group members. Despite that 

in real contexts such aspects are crucial in the item selection process, systems 

dealing with them have been introduced only recently. For example, in [119] 

a 30-questions test is used to determine a value representing how selfish or 

cooperative an user is in conflict situations. Such value is used, in turn, to 

weight the preferences of group members during aggregation.  

With respect to relationships among group members, in [136] it has been 

pointed out that people tend to rely more on recommendations coming from 

people they trust than on anonymous ratings coming from similar users. 

According to [119], this is even more important when users have to decide on 

items to be consumed within a group. FilmTrust [137] is an example of trust-

aware RS, which builds a network of trust among users based on explicit 

feedback. Users are asked to provide a trust rating for each person they add 

as a friend. Then, unknown items for each user are rated according to the 

average rating of trusted friends weighted by the value of trust. Another 

example is Epinions3, an e-commerce site which maintains a network of trust 

by asking users to indicate which members they trust or distrust. If no direct 

connections from an user to any rater exist for a given item, trust propagation 

and aggregation metrics are used to estimate indirect trust values.  

                                         
3 http://www.epinions.com/ 
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A drawback of such personality and trust-based approaches is that they 

requires explicit feedback from users. To overcome this issue, a promising 

alternative is to build networks of trust from implicit information commonly 

shared on-line by users e.g. data contained in social networks. According to 

[138], the complete transparency of this process compensates the fact that 

the trust networks obtained in such way are less accurate than those obtained 

with explicit feedback. For example, in [119], interpersonal trust has been 

estimated as a combination of 10 factors measured on Facebook profiles and 

used within a GRS for movie recommendation named Happy Movie. 

As an evolution of the latter approaches, the novel GRS models proposed 

in this chapter combine interpersonal trust and personality concepts in that 

of social influence. This is motivated by the fact that items selection in a 

group usually follows an argumentation process, where each member defends 

her preferences and rebuts other’s opinions. In this process, interpersonal 

influence (that is dependent of both trust and personality) is a major factor 

affecting opinion change toward a common decision. Taking such factor into 

account allows to define a more accurate representation of the reality, leading 

to better recommendations. 

In particular, to introduce social influence in GRS, we propose a GDM 

based approach. In fact, while items selection for individual consumption can 

be considered as an interaction-free process, so manageable with standard RS 

techniques, when interaction is needed to find an agreement among different 

hypotheses, a GDM problem can be outlined and specific techniques taking 

social influence into account can be applied. In addition, given that group 

recommendations are generated starting from individual predictions made for 

group members (rather than from explicit preference statements), fuzzy-

based approaches, intrinsically able to deal with uncertainty and inaccuracy 

of such predictions, have been preferred. 

The application of GDM techniques to support GRS is a young research 

area. To the best of our knowledge few works exist in this area and are mainly 

related to consensus-reaching among group members. For example, in [139] 
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a collaborative approach is used to provide individual recommendations for 

a group of users and then, an automatic consensus model based on GDM is 

applied to update the preferences of the most discordant members making 

them as concordant as possible with average preferences. In [140] the same 

approach is applied to restaurant recommendations and takes into account 

geolocation too. With respect to such works, our approach applies a full GDM 

process that also deals with social aspects of influence, trust and personality. 

 

 

 

 



Chapter 6 

Experiments and Evaluation 

 

This chapter presents a set of studies and experiments aimed at measuring 

the performance of the original peer assessment methods defined in chapter 

4 in comparison with other existing methods. In particular, the results of two 

in-silico studies (made of several experiments with synthetic, realistic data), 

related to GMPA methods and FOPA, are reported and discussed.  

The results of three experiments with real students are also reported, one 

related to GMPA methods, one to FOPA and one involving both at the same 

time. Two of these experiments have been made at the University of Salerno 

and one at the Open University of Catalonia. In two experiments cardinal 

peer grades have been collected and, when needed, converted in ordinal ones 

while, in the last experiment, students were asked to directly provide fuzzy 

rankings as the output of the assessment task. The results of each experiment 

are discussed in a specific subsection. 

6.1 GMPA with Synthetic Data 

To evaluate the performance of the GMPA methods defined in section 4.5 

and compare them with existing methods, seven different experiments with 

synthetic data have been performed. In all experiments 100 students are 

supposed to have submitted a solution to an assignment composed of 10 

questions. For each correct answer a student gains 1 point and for each wrong 

answer she gains 0 points. The real grade of each student is then an integer 

belonging to the set [0,10]. 
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Each student has then to evaluate the submissions of m other peers. 

According to [79], we suppose that each student i with a real grade �¹̅̅̅ ̅̅ has 

probability �¹̅̅̅ ̅̅/10 of marking correctly each answer of a peer submission. So 

if the student i grades the submission of a student j (whose real grade is �¤̅̅̅ ̅̅), 
then the proposed grade �rp is a random variable so that: 

 �rp ~ B(�¤̅̅̅ ̅̅, �¹̅̅̅ ̅̅
10

) + B (1 − �¤̅̅̅ ̅̅, 1 − �¹̅̅̅ ̅̅
10

)  (87) 

where B(�,�) is a binomial distribution of m trials with probability p. 

Each experiment is made of several iterations. For each iteration, real 

grades are randomly assigned (with different probability distributions). Then, 

the assessment grid is built (according to different methods) and the grades 

matrix is randomly filled according to the probability distribution given in 

equation (87). The final grades are then calculated (according to different 

methods) and compared to real grades by calculating the RMSE as defined 

in section 4.4. The details and the results of each experiment are discussed 

in the next sub-sections. 

6.1.1 Binomial Distribution of Grades 

In the first experiment, real grades are assigned according to a binomial 

distribution: each student, for each of the 10 questions of her assignment, has 

a probability p of answering correctly and a probability 1 − � of answering 

wrongly. The real grade of a student i is so assigned according to: 

 �¹ ̅̅̅ ̅̅̅~ B(10, �).  (88) 

In each step a probability p is chosen and 1000 iterations are performed. 

For each iteration, real grades are assigned according to equation (88) with 

probability p. Then, a 100´100 assessment grid is randomly generated with 

equation (51) so that each student evaluates 4 other peers (� = 4). A grades 



Experiments and Evaluation 145 

matrix, including all proposed grades, is then randomly generated from the 

distribution given in equation (87).  

For each iteration, the final grade of each student is calculated in the 

following ways: 

• as the Average of grades proposed by peers with equation (52); 

• with the PeerRank rule described by equation (60); 

• with the F-PeerRank the rule described by equations (61)-(62) selecting 

the function �(�) = �2, named PowPeerRank hereinafter; 

• with the F-PeerRank the rule described by equations (61)-(62) selecting 

the function �(�) = �+, named ExpPeerRank hereinafter; 

• with the BestPeer rule described by equation (63) using ExpPeerRank to 

obtain a first estimation of student grades. 

For each iteration, the RMSE between final and real grades is calculated 

over all students and obtained values are mediated over all iterations. Figure 

14 plots the performance obtained applying the five methods to the defined 

marking model in terms of mean RMSE against the probability p used to 

generate real grades. It results that PeerRank and ExpPeerRank outperform 

Average for � > 0.6. The performance of all methods is quite similar when 

0.5 ≤ � ≤ 0.6 while, for � < 0.5, the best method remains the Average.  

Obtained results show that all GMPA methods need � > 0.5 to get useful 

signal out of the data. It is worth noting that � = 0.5 means that students 

are answering (or marking) questions just as well by tossing a coin. So, in 

real contexts, assuming that � > 0.5 is not a restrictive constraint. Moreover, 

as it can be seen, PowPeerRank performs a little better than PeerRank while 

ExpPeerRank outperforms both. Instead, BestPeer is better than other 

methods only for � > 0.9.  

The best choice for this distribution of grades is so ExpPeerRank that 

ensures, in best cases, a decrease in RMSE of about 1 grade with respect to 

the baseline Average method. So, on average, each student will have a final 

grade closer to the real one of approximately 1 point over 10. 
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Figure 14. Performances or GMPA methods on a binomial distribution of 

grades with different values for p (probability of answering correctly). 

6.1.2 Uniform Distribution of Grades 

In the second experiment, the real grades are assigned according to a uniform 

distribution i.e. each student receives an integer random grade to the whole 

assignment from a minimum min to a maximum 10 where 0 ≤ ��� ≤ 10. 

Hence the real grade of a student i is assigned according to: 

 �¹ ̅̅̅ ̅̅̅~ U ({���,… , 10}) (89) 

where U(�) defines a discrete uniform distribution over the set S. 

Figure 15 plots the performance, in terms of mean RMSE against the 

minimum grade min, obtained by applying the same methods of the first 

experiment to the defined marking model with � = 4. Also in this case 

ExpPeerRank outperform the other methods in almost all conditions while 

PowPeerRank is a little more performant than PeerRank. Only for ��� = 0 

the performance of all methods is quite the same.  
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It is interesting to note that BestPeer behaves better than in the previous 

experiment, with a RMSE lower or equal to PeerRank. The best performance 

is obtained when ��� ≤ 5 (high variance of real grades) and with ��� ≥ 8 

(high average real grade). This can be explained by the fact that, when there 

is a high variance in student levels, there is a high probability that a peer is 

evaluated also by unreliable graders and this affects the quality of the final 

grade in all methods (at different levels) apart from BestPeer where only the 

best grade is selected. This advantage disappears when min increases because 

in that case, proposed grades increase their average quality. 

  

Figure 15. Performance of GMPA methods on a uniform distribution of 

grades with different values for min (minimum grade). 

6.1.3 Binomial Distribution of Grades with Smart 

Assignment 

This experiment replicates the one of section 6.1.1 with the difference that 

the assessment grid is generated according to equation (64) rather than to 

equation (51). In the model, we assume that the average grade obtained in 
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previous assessments (needed to generate the student ranking) is equal to the 

assigned real grade. This is a simplification that supposes that students 

maintain a constant performance across several assignments. Given that, the 

results of this experiment can be considered as an upper bound of the results 

obtainable with smart assignment in real contexts.  

Figure 16 plots the performance obtained applying the defined methods 

to the marking model with random (dashed lines) and smart (plain lines) 

assignment methods. Given that the performance of PowPeerRank is quite 

similar to that offered by the standard PeerRank method, we have removed 

this method from the figure to maintain an higher readability.  

 

Figure 16. Performance of GMPA methods on a binomial distribution of 

grades with different assignment methods (SA = Smart Assignment). 

As it can be seen, with a binomial distribution of real grades Average, 

PeerRank and ExpPeerRank are quite insensitive to the smart assignment. 

Instead, as it might be supposed, BestPeer has a substantial improvement 
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because the smart assignment ensures that each student is assessed by at 

least one good grader whose proposed grade is selected as the final one. 

6.1.4 Uniform Distribution of Grades with Smart 

Assignment 

This experiment replicates the one of section 6.1.2 with the difference that 

the assessment grid is generated according to equation (64) rather than to 

equation (51), with the same assumptions made in section 6.1.3 with respect 

to the average grade obtained in previous assessments. 

 

Figure 17. Performance of GMPA methods on a uniform distribution of 

grades with different assignment methods (SA = Smart Assignment). 

Figure 17 plots the performance obtained by applying the four methods 

(also in this case we exclude PowPeerRank whose performance is similar to 

the standard PeerRank) to the defined marking model with random (dashed 

lines) and smart (plain lines) assignment methods in case of uniform 

distribution of real grades. In this case, while Average and PeerRank result 
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again quite insensitive to smart assignment, ExpPeerRank and (to a greater 

extent) BestPeer, show a good improvement.  

In particular, BestPeer outperforms all the other methods, especially in 

configurations with high grades variance (��� < 5) and high average real 

grade (��� > 6). Only for ��� < 1 its performance is comparable than that 

of other methods. Hence in this case, the best choice seems to be BestPeer, 

whose performance in contexts that present a high variance of student levels, 

is boosted by the smart assignment.  

6.1.5 Binomial Distribution of Grades and Variable 

Number of Assessors per Student 

The number m of submissions that each student has to evaluate is one of the 

main parameters that must be defined to setup a peer grading session. On 

one hand, such number must be kept as small as possible to avoid overloading 

the students, with the risk that they do not respond adequately to the 

exercise providing rough, partial or void estimations. On the other hand, this 

number corresponds to the number of assessors for each submission. Taking 

this into consideration, m should be kept as big as possible to have sufficient 

information to estimate the final grades. 

To determine how the selection of m impacts on the performance of the 

defined GMPA methods, we have performed another experiment where the 

real grades are assigned according to a binomial distribution with probability 

� = 0.7 (a reasonable value in real contexts). In each step, the number m of 

assessors for each student is chosen from 1 to 12 and 1000 iterations are 

performed. For each iteration, real grades are assigned, then an assessment 

grid is generated with smart assignment according to equation (64). A grades 

matrix, including all proposed grades, is then randomly generated from the 

distribution given in equation (87). 

Figure 18 plots the performance obtained by applying the five methods 

to the defined marking model in terms of mean RMSE against the number 
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of assessors m. As expected, the error decreases when the number of assessor 

increases but the decrease is smoother as m increases.  

 

Figure 18. Performance of GMPA methods on a binomial distribution of 

grades with different number of assessors for student. 

With Average, PeerRank and PowPeerRank algorithms, the increase in 

performance after the 4th assessor is negligible. ExpPeerRank offers good 

improvement until the 6th assessor while BestPeer has sensible improvements 

until the 10th assessor. Moreover, this latter becomes more performant of 

both PeerRank and PowPeerRank starting from the 12th assessor.  

This fact can be explained by considering that the number of assignments 

evaluated by the best graders increase when more assessors are added. The 

impact on rules other than BestPeer is limited given that the resulting grades 

are obtained by considering also grades proposed by other assessors while the 

most positive impact is on BestPeer that only considers the grade assigned 

by the best grader. 
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6.1.6 Uniform Distribution of Grades and Variable 

Number of Assessors per Student 

This experiment replicates the previous one but the real grades are assigned 

according to a uniform distribution and each student receives an integer 

random grade to the whole assignment from a minimum of 6 to a maximum 

of 10 i.e. ��� = 6 in equation (89). Figure 19 plots the performance obtained 

by applying the defined GMPA methods to the defined marking model (with 

smart assignment) in terms of mean RMSE against the number m of assessors 

per student.  

 

Figure 19. Performance of GMPA methods on a uniform distribution of 

grades with different number of assessors for student. 
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the effect is more evident with uniform distribution of real grades thanks to 

the high average level of the simulated class that results in a high number of 

reliable graders. 

6.1.7 BestPeer and Support Methods 

As described in section 4.5, the BestPeer method calculates the final grade 

for any student with one of the other methods, then assigns to each student 

the grade coming from the assessor with the best final grade. In the previous 

experiments ExpPeerRank has been used as support method for BestPeer. In 

this last experiment we wonder if ExpPeerRank is the best possible choice, 

at least in the configuration of the experiment made in section 6.1.2. 

We have so repeated the same experiment only with BestPeer, adopting 

different support methods. Obtained results are shown in Figure 20 against 

the standard Average method. As it might be supposed, ExpPeerRank (that 

is the method with the best performance in the majority of configurations) 

represents the best choice.  

 

Figure 20. Performance of Best Peer with different support methods on a 

uniform distribution of grades with different values for m. 
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6.2 GMPA with Real Data 

To evaluate the effectiveness of the GMPA methods defined in section 4.5 

also with real users, we have applied them on peer grading data coming from 

an on-line course held in Spring 2014 at the Open University of Catalonia 

(UOC) [141]. The on-line course had 58 students enrolled and was divided in 

7 subsequent modules. After having completed the study of a module, each 

student received an invitation to answer three open questions. When the 

answers were collected, each student had to access each classmates’ answers 

and evaluate it according to a 5-point scale (A, B, C+, C-, D) before starting 

the subsequent module. 

The peer grading core component was developed in Java and integrated 

in the UOC learning management system. It integrates two external Web 

applications: Google Forms4 to collect the answers to module questions and 

Lime Survey5 to let students evaluate peers’ answers to module questions. To 

exchange data between the two tools a Comma Separated Value exchange 

model has been adopted and the Super CSV6 package has been selected to 

deal with such format in Java. 

Table 15 shows the statistics collected for each module. As it can be seen, 

the number of active students per module (students providing answers to 

module questions) has decreased about 70% over time: from 41 in module 1 

to 12 in module 7 (on a total of 58 enrolled students). Despite it may seem 

discouraging, this result is in line with the problematic drop-out rate suffered 

by on-line courses (the mean drop-out ratio at UOC is about 50%).  

Moreover, only a part of the active students have also executed the peer 

grading task. The second row of Table 15 reports on the number of students 

that, for each module, succeeded in evaluating (at least some of) their peers. 

                                         
4 https://docs.google.com/forms/ 

5 https://www.limesurvey.org/ 

6 http://super-csv.github.io/super-csv/ 
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The remaining rows of the table report the mean grade obtained by students 

for each question of each module normalized between 0 and 10. If we consider 

that the three questions are graded separately, data for 3 × 7 = 21 separate 

assignments is available.  

 

Modules 1 2 3 4 5 6 7 

Active students 41 28 23 20 21 18 12 

Peer Assessors 30 24 15 14 16 11 11 

Mean grade (question 1) 7.3 8.0 7.5 7.3 7.8 7.5 7.5 

Mean grade (question 2) 7.0 7.3 7.5 7.5 7.3 7.5 7.3 

Mean grade (question 3) 7.5 7.8 7.3 7.8 7.3 7.8 7.5 

Table 15. Main statistics of the performed experiment 

In the experiment, students were asked to grade all peers. Conversely, in 

a MOOC peer grading setting, students would be asked to evaluate only a 

small subset of other students. In the absence of an assessment made by an 

expert tutor, this peculiarity allows us to calculate the approximate real grade 

�¹̅̅̅ ̅̅ of a student i as the mean grade obtained by her over the whole population 

of assessors. According to [75], we have assumed that the mean of many 

student grades tend towards the correct real grade, especially for the first 

two modules where each submission were graded by 30 (for module 1) and 

24 (for module 2) peer assessors. 

Starting from this data we have then performed two different experiments 

as detailed in the next subsections. Once the assignment is selected among 

the 21 available, each experiment is made of several iterations. Given an 

assignment, for each iteration we have supposed that just m grades were 

proposed (randomly selected among those available) for each active student. 

This allow us to simulate the real conditions of a MOOC peer grading task. 
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So, for each iteration, the assessment grid is built by randomly selecting 

m assessors for each active student and the grades matrix is filled with grades 

proposed by that students. Final grades are then calculated (with different 

GMPA methods) and compared to the approximate real grade (obtained as 

previously described) by calculating the RMSE. 

The purpose of the experiments is to determine which of the defined 

methods can estimate with better accuracy the approximate real grade 

(obtained by averaging all available evaluations) using only a small number 

m of randomly selected evaluations per submission. Considering that the 

approximate real grade is, in turn, an estimation of the real grade, we are 

indirectly finding the best estimator of the real grade. 

6.2.1 Fixed number of peer assessors 

This experiment is made of 7 steps (one for each module) and 21 sub-steps 

(corresponding to the three questions for each module). For each sub-step, 

1000 iterations are performed. In each iteration, 4 assessors are randomly 

selected for each submission (i. e. � = 4) and both the assessment grid and 

the grades matrix are filled as previously explained. The dimension of these 

matrices is equal to the number of active students in the related module 

(from 41´41 in the first step to 12´12 in the seventh).  

For each iteration, the final grade of each student is calculated as the 

Average of grades proposed by peers with equation (52); with the PeerRank 

rule described by equation (60); with the F-PeerRank the rule described by 

equations (61)-(62) selecting the functions �(�) = �2 (PowPeerRank) and 

�(�) = �+ (ExpPeerRank); with the BestPeer rule described by equation (63) 

using ExpPeerRank to obtain a first estimation of student grades. The RMSE 

between final and approximate real grades is calculated for each iteration 

over the active students.  

Table 16 summarizes the performance obtained by the defined methods 

on the experimental data. The reported RMSE values are mediated over all 

iterations for each sub-step and over all stub-steps for each step. As it can 
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be seen both PeerRank and PowPeerRank outperform the Average method 

in all conditions. They show a better accuracy in predicting the approximate 

real grade even with a small number of available evaluations for each student. 

Conversely, ExpPeerRank and BestPeer performances are worst. 

 

Module 
RMSE per method 

Average PeerRank PowPeerRank ExpPeerRank BestPeer 

1 1.00 0.96 0.94 1.40 2.13 

2 0.87 0.82 0.81 1.16 1.87 

3 0.88 0.83 0.82 1.13 1.82 

4 0.82 0.77 0.77 1.01 1.80 

5 0.81 0.76 0.75 1.02 1.74 

6 0.80 0.76 0.75 1.07 1.87 

7 0.65 0.61 0.61 0.77 1.49 

Mean 0.83 0.79 0.78 1.08 1.81 

Table 16. Performance obtained on experimental data 

This result can be explained by the fact that, with both ExpPeerRank 

and BestPeer, the final grade of each student is extremely influenced by the 

grade proposed by one grader: the most reliable. This moves the final grade 

away from the approximate real grade obtained by mediating all available 

evaluations. In particular, BestPeer suffers from an approximation issue too. 

Indeed, by just considering the grade proposed by the best grader, the final 

grade results in an integer from 1 to 5 (a point from the 5-point scale) 

normalized in the interval [0,10].  

It should be noted that, when the total number of active student 

decreases (as the progressive module number increases), the performance of 

all methods improves. This behaviour is explained by the fact that the 

number of evaluations used for prediction is fixed (i.e. � = 4) while the total 

number of evaluations (used to calculate the approximate real grade) 
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decreases. Therefore, the ratio of available data over the whole set increases, 

resulting in better performance. 

6.2.2 Variable number of peer assessors 

In this experiment the attention is focused just on one assignment (i.e. the 

first question of the first module) but the number m of assessors for each 

submission is increased from a minimum of 2 to a maximum of 10. In each 

step, the number m of assessors for each student is chosen in this range and 

1000 iterations are performed. For each iteration the assessment grid and the 

grades matrix have been generated as in the previous experiment and the 

final grades are calculated according to the defined methods. 

 

Figure 21. Performance of GMPA methods on experimental data with 

different number of assessors for student. 

Figure 21 shows the performance obtained by the five methods in terms 

of mean RMSE against the number of assessors m. As in experiments 

reported in sections 6.1.5 and 0 (executed on synthetic data), the error 

decreases when the number of assessor increases and the decrease is smoother 
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as m increases. An exception is BestPeer that has uniform performance 

regardless of the selected number of assessors. This can be explained through 

the same approximation issue pointed out in the preceding sub-section. 

As it can be seen, both the PeerRank and PowPeerRank methods show better 

performance with respect to the average aggregation rule. Indeed, the 

performance gap between these methods decreases with the increase of the 

number of assessors i.e. when the quantity of information available becomes 

closer to information used to calculate the approximate real grade. It should 

be noted that the comparison against approximated real grades obtained by 

averaging a large number of peer grades (rather than against teachers’ 

provided grades) obviously advantages the Average aggregation rule. Taking 

this into consideration, the performance achieved by GMPA methods in such 

experiment can be considered as a lower bound to the performance obtainable 

in contexts where also teachers’ grades are available. 

6.3 FOPA with Synthetic Data 

To demonstrate the effectiveness of FOPA and to compare it with different 

approaches, we have performed several experiments with synthetic data. In 

all the experiments, 100 students are supposed to have submitted a solution 

to a given assignment. The submission of each student �p has a real grade �¹̅̅̅ ̅̅ 
belonging to [0, 10] assigned according to a normal distribution �¹ ̅̅̅ ̅̅ ̅̅ ~ �(6, 2) 

centered in 6 with a standard deviation of 2. 

Each student has then to evaluate the submissions of m peers (with m 

constant or variable according to the specific experiment) matching a random 

assessment grid � = (�pr) defined as specified by equation (51). Students are 

imperfect graders so, according to [75], we have modelled such imperfection 

with two parameters:  

• a bias term � ≥ 0 that reflects a tendency of an assessor student to either 

inflate or deflate her assessment (i.e. high biases describe lenient assessors 

while low biases describe stringent ones); 
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• an unreliability term � ≥ 0 that reflects how far, on average, a grader’s 

assessment tends to land with respect to the corresponding true grade 

(i.e. a low unreliability describes a proper attitude to distinguish between 

good and bad submissions).  

Basing on these two parameters, the perceived grade �pr of a student �p 
from the assessor student �r, is defined according to the following probability 

distributions:  

 �pr ~ �(�¹̅̅̅ ̅̅ + �r, �) so that �r ~ �(0, �).  (90) 

The fuzzy ranking �r is then defined for each assessor student �r ∈ � through 

equations (36)-(37) by setting �(�p) = �pr for each �p ∈ �r. 
Starting from synthetic data generated in this way, the global ranking 

and the absolute grades have been estimated for each submission according 

to the model defined in section 4.6 and compared to real grades (and related 

rankings). This has allowed us to measure FOPA performances in revealing 

the ground truth also in presence of noisy data (taking into account different 

values for bias and reliability) and in comparisons to existing ordinal and 

cardinal peer assessment methods (described in sections 4). The details and 

the results of such experiments are discussed in the next sub-sections. 

6.3.1 Optimal Parameters Setting 

This experiment is aimed at discovering the best settings for the parameters 

used by FOPA. This is done by measuring the performance obtained in 

reconstructing the global ranking of submissions both in case of perfect 

grading (i.e. when students make no errors when assessing other students) 

that in the more realistic case of imperfect one. The results obtained with 

different settings are then compared to discover the most promising settings 

to be used in next experiments. 

The first parameter to set is the ranking measure to adopt for quantifying 

the degree of preference of each submission among those defined in section 
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1.6 i.e. the one that offers the best performance for the specific problem. 

Moreover, according to section 1.5, the aggregation of preferences based on 

OWA can be done starting from several linguistic quantifiers like much, at 

least half, most and as many as possible. Another parameter to set is so the 

quantifier to apply. 

To identify which setting offers the best performances, we have executed 

the experiment described so far with 100 students and 4 assignments to be 

evaluated by each (so � = 4). When generating perceived grades, we have 

set � = 0 and u ranging from 0 (perfect grading) to 3 (average difference of 3 

between the real grades and the perceived ones). For each value assigned to 

u we have repeated the experiment 1000 times and mediated the obtained 

results in terms of PCRPR as defined by equation (57). Then, we have 

repeated the process by setting � = 0 and b ranging from 0 (no bias at all) 

to 3 (average bias of 3).  

 

Figure 22. Performances of the QGDD, QGNDD, and NF ranking 

measures compared with the Borda count in terms of PCRPR. 

Figure 22 shows the results in terms of PCRPR, obtained by FOPA, 

changing the applied ranking measure among Quantifier Guided Dominance 

Degree (QGDD), Quantifier Guided Non-Dominance Degree (QGNDD) and 

Net Flow (NF), against the unreliability rate u (on the left) and the bias rate 
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(on the right). The figure shows that, among the available measures, two 

obtain the best performances with any value of u and b: QGDD and NF. In 

case of perfect grading (i.e. when � = � = 0), they show a PCRPR of 95.7%, 

that is far beyond the 84.5% obtained by the Borda count.  

Both measures demonstrate a fair robustness to unreliability but, the 

improvement with respect to the Borda count, decreases when u increases. 

Moreover, it should be noted that all the methods are very robust with 

respect to the bias with average variations of less than 1% in terms of PCRPC 

for each increase of 1 grade in bias. Nevertheless, this is a common advantage 

of ordinal grading methods.  

On the other hand, FOPA results to be insensitive with respect to the 

selection of the OWA quantifier for the aggregation step: the same results 

are in fact obtained regardless of the adopted one. The same level of 

insensitivity has been also detected by changing the fuzzy quantifier adopted 

within the QGDD and QGNDD measures. For this reason, the results 

obtained changing the quantifier are not shown in the figure. 

6.3.2 Comparison with other Ordinal Peer Assessment 

Methods 

This experiment is aimed at comparing the performance of FOPA with that 

of the other methods for ordinal peer assessment described in section 4.3 in 

case of perfect and imperfect grading. To do that, we have executed the same 

experiment described so far with 100 students and 4 assignments to be 

evaluated by each. When generating perceived grades, we have set � = 0 and 

u ranging from 0 to 3. For each value assigned to u we have repeated the 

experiment 1000 times and mediated the obtained results in terms of 

PCRPR, calculated according to equation (57).  

Then, for each iteration and experimented method, the obtained scores 

have been transformed in grades through the equation (66), setting �kpl and 

�ká+ equal, respectively, to the minimum and the maximum real grade. Then 
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the RMSE between the grades estimated through each experimented method 

and the real grades have been calculated according to equation (55). 

Figure 23 (on the left) shows the results in terms of PCRPR, obtained 

by FOPA (adopting the Net Flow aggregation measure) compared with the 

models of Mallows (MAL), Bradley-Terry (BT), Plackett-Luce (PL) and 

Borda. An additional model named Score-Weighted Mallows (MALS) defined 

in [81] as an improved version of the Mallows model has been also tested. 

The same figure (on the right) plots the results in terms of RMSE of the 

same models after having transformed the scores in grades as described so 

far. To experiment the methods described in [81], we have used a software 

tool named PeerGrader7 made publicly available by the authors. 

 

Figure 23. Performances of FOPA against MAL, MALS, BT and PL in 

terms of PCRPR and RMSE. 

Among the introduced methods, MALS, BT and PL show similar PCRPR 

values while PL performs a little better than the other two in terms of RMSE, 

at least with � < 1.5. The performance of MAL are worst and comparable 

with those of Borda in terms of PCRPR while, with respect to RMSE, MAL 

                                         
7 www.peergrading.org 
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reaches a higher error rate even with small unreliability rates. Nevertheless, 

it should be noted that, as explained in [81], MAL (as Borda) is not conceived 

for obtaining cardinal grades and this is the reason why the authors have 

improved MAL defining MALS.  

The plots show that FOPA outperforms the other methods both in terms of 

PCRPS that in terms of RMSE. When considering PCRPC, FOPA gains 

about 4% against MALS, BT and PL in case of perfect grading (from 92.4% 

to 95.7%) but the improvement decreases when u increases until about 2% 

for � = 3 (from 73.2% to 74.6%). When considering RMSE, FOPA is able to 

lower the mean error of about 0.2 grades in case of perfect grading (from 0.82 

of PL to 0.65 of FOPA) while this difference tends to nullify when increasing 

the unreliability until � = 3. 

6.3.3 Comparison with Cardinal Peer Assessment 

This experiment is aimed at measuring the performances of FOPA (and some 

other ordinal approaches) in comparison to cardinal peer assessment where 

the grade �pr proposed by an assessor student �r ∈ � for a student �p ∈ �r is 
set equal to the perceived grade defined by equation (90) and the final grade 

of each student is obtained by averaging all the grades obtained by peers 

according to equation (52). 

To compare FOPA and CPA we have executed the same experiment 

described so far with 100 students and 4 assignments to be evaluated by each. 

When generating perceived grades, we have considered both b and u ranging 

from 0 to 3. For each setting, we have repeated the experiment 1000 times 

and mediated the obtained results in terms of RMSE, calculated according 

to equation (55). 

Figure 24 shows the results in terms of RMSE, obtained by FOPA (with 

Net Flow), by the Plackett-Luce method (PL), by Borda and by Cardinal 

Peer Assessment (CPA) while ranging the bias rate from 0 to 3. The plot on 

the left considers that assessor students are perfectly reliable (� = 0) while 

the plot on the right considers a moderate level of unreliability (� = 1). As 
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it can be seen, CPA is very sensitive to the bias rate compared with ordinal 

approaches. In both cases CPA introduces a lower error with respect to 

FOPA until the bias rate reaches a given threshold, variable according to the 

unreliability rate (about 1.4 for � = 0, 1.7 for � = 1). After the threshold, the 

gap in term of RMSE between CPA and FOPA increases until a difference 

of about 0.60 for � = 0 and � = 3 and about 0.43 for � = 1 and � = 3. It is 

worth noting that, in all cases, FOPA outperforms the other ordinal methods. 

 

Figure 24. Performances of FOPA, PL and Borda against CPA in terms of 

RMSE (lower is better) when u=0 (left) and u=1 (right) 

To provide a comprehensive view of the behavior of FOPA and CPA, 

Figure 25 shows the three-dimensional surfaces of the RMSE curves obtained 

ranging u and b from 0 to 3. Clearly the error level in FOPA mainly depends 

on the unreliability rate, while the error in CPA quite evenly depends on the 

unreliability and the bias rates. With medium-low bias and medium-high 

unreliability, CPA is a little better than FOPA. Conversely, with medium-

high bias and medium-low unreliability, FOPA is quite better than CPA. 

It is worth noting that CPA requires, by each assessor student, an amount 

of information significantly higher with respect to ordinal approaches. Given 

this complexity, as shown in section 4.2, in real contexts cardinal feedback is 

less reliable with respect to the ordinal one, even when assessors are at the 
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To determine how the selection of m impacts on the performance of 

FOPA, we have executed the same experiment described so far with 20 and 

200 students and a number of assignments to be evaluated by each student 

variable from 2 to 20. When generating perceived grades, we have set � = 0 

(the previous experiments have shown that FOPA is insensitive to the bias) 

and u variable from 0 (perfect grading) to 3. For each setting we have 

repeated the experiment 1000 times and mediated the obtained results in 

terms of RMSE, calculated according to equation (55). 

Figure 26 (left) plots the results obtained by FOPA (with Net Flow) with 

20 students and m ranging from 2 to 20. A first thing to observe is that, 

while for high unreliability rates (� ≥ 2) an increase of m always determines 

a decrease of the whole error level, for low unreliability rates (� < 2) an 

increase of m determines a decrease of the RMSE only until a given threshold. 

After the threshold, adding more assessors, results in an increase in the 

RMSE. This can be explained by the fact that, while using ranking strings 

for assessing the submissions, a noise is introduced in the model (in fact, 

ranking strings can be seen as approximated FPRs). Such noise increases 

when the strings length increases (so when m increases) but it is balanced by 

the additional information obtained with more assessors.  

 

Figure 26. Performances of FOPA in terms of RMSE with different values 

for u, ranging m from 2 to 20, with n=20 (left) and n=200 (right) 
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In the (unrealistic) case of perfect grading (when � = 0), all assessors 

have exactly the same perception of the student grades so, after a given 

threshold, adding more assessors does not increase the quantity of available 

information until the extreme case of � = �, when all the assessor students 

provide exactly the same ranking string. So in these cases the noise 

introduced by ranking string approximation remains unbalanced and the 

error increases. This is evenly true in settings with low unreliability rates 

(� < 2) and with more students to evaluate (Figure 26, right) even if the 

threshold becomes higher and higher. 

With respect to the selection of m, it should be noted that, apart the 

unrealistic case where � = 0, the curves plotted on the left and on the right 

side of Figure 26 have a similar trend. Regardless of the number of students 

and of the unreliability rate u, we notice a steep decrease of the RMSE while 

moving from two to three assessors and a smoother decrease for subsequent 

values of m. By looking at the right part of the figures we see that, when 

� = 1, the RMSE start to increase for � > 16 while, even for � > 1, the 

decrease in RMSE obtained adding a new assessor is less than 0.02. Such 

reflections suggest to select a number m of submissions to be assessed per 

student so that 3 ≤ � ≤ 16 regardless of the total number of students 

involved and on the expected degree of unreliability and bias. 

6.4 FOPA with Real Data 

To evaluate the performance of FOPA and other peer assessment methods 

discussed in sections 4.2 and 4.6 in another context, we have experimented 

them within a course on Computer Skills for Education of a M.S. degree in 

Pedagogical Sciences at the University of Salerno. The experiment was aimed 

at measuring at what extent each model is able to estimate the grade assigned 

by the teacher to every student based on imprecise ordinal feedback provided 

by students themselves. In the next subsections, we describe the experimental 

setting and, then, we illustrate and analyse the collected data. 
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6.4.1 Experimental Setting 

The experimental set was composed by first year students taking part in a 

20 hours course on Computer Skills for Education aimed at developing basic 

competencies on computer architectures, computational thinking and coding. 

The course, that is part of a 5-year M.S. degree in Pedagogical Sciences, was 

held through traditional face-to-face lectures and exercises sessions.  

The formative evaluation experiment was performed in two sessions, held 

in two different days of the same week, with 25 voluntary students. In the 

first session students have been asked to complete and submit a coding 

exercise while in the second session students have been asked to assess the 

submissions coming from a subset of their peers by providing a fuzzy ranking.  

The peer grading task was performed in a blind mode in order that 

students do not know whom they are assessing. The same submissions have 

been also assessed by the course teacher to build the ground truth with which 

to compare the results coming from experimented peer assessment models. 

6.4.2 Data Collection 

A total of 11 students over 25 completed the first session by submitting a 

solution to the proposed exercise while the remaining 14 were not able to 

complete the task. For this reason, during the second session students were 

divided in two groups: the first including those that submitted their solution 

and the second including the remaining ones. Students of the first group 

(being considered more proficient) were asked to evaluate 5 submissions (over 

the 11 available) while students of the second group were asked to only 

evaluate 3 submissions.  

To assign the submissions to assessors, two random assessment grids have 

been generated: the first 11×11 grid involved students from the first group 

both as assessors and as assessees while the second 11×14 grid involved 

students from the first group as assessees and students from the second group 

as assessors. In both cases, equation (51) was applied. 
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Student Assessees Fuzzy Rankings True Grade (0-30) 

�1 {�2,�4, �7, �9, �11} �4 ≥ �11 ≥ �9 ≈ �7 ≈ �2 18 

�2 {�3, �5, �6, �8, �10} �3 ≥ �10 ≈ �5 ≫ �8 ≈ �6 10 

�3 {�1, �4, �6, �9, �11} �4 ≫ �11 ≥ �9 ≥ �1 ≥ �6 24 

�4 {�1, �3, �5, �8, �10} �10 ≥ �3 > �5 > �1 > �8 30 

�5 {�1, �3, �6, �8, �11} �3 ≫ �11 > �8 > �1 ≫ �6 13 

�6 {�2,�4, �7, �9, �11} − 18 

�7 {�1, �2, �4, �6, �9} �4 ≫ �9 > �1 > �6 ≥ �2 10 

�8 {�2,�5, �6, �7, �10} �10 ≥ �5 > �2 ≥ �7 ≈ �6 11 

�9 {�3,�5, �7, �8, �10} �3 ≫ �10 > �8 ≥ �5 ≈ �7 18 

�10 {�2,�4, �7, �9, �11} �4 ≫ �11 > �9 > �7 ≥ �2 28 

�11 {�1, �3, �5, �8, �10} �3 > �10 ≫ �8 ≈ �1 ≈ �5 26 

�12 {�4, �9, �11} �4 ≫ �9 ≥ �11 − 

�13 {�4, �5, �10} �4 ≫ �5 ≈ �10 − 

�14 {�1, �5, �11} − − 

�15 {�2, �6, �7} �7 ≫ �2 ≈ �6 − 

�16 {�1, �3, �8} − − 

�17 {�2,�7, �11} �11 ≫ �7 > �2 − 

�18 {�2, �5, �10} �10 ≫ �2 ≥ �5 − 

�19 {�4, �6, �9} �4 ≫ �9 ≥ �6 − 

�20 {�3, �8, �10} − − 

�21 {�4, �8, �9} − − 

�22 {�3, �5, �10} − − 

�23 {�2,�7, �11} �11 ≥ �2 > �7 − 

�24 {�3, �6, �8} − − 

�25 {�1, �6, �9} − − 

Table 17. Students’ proposed fuzzy rankings and teacher’s assigned grades 
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Only 17 students over 25 completed the second session by providing a 

fuzzy ranking: 10 coming from the first group and 7 coming from the second 

one. All provided fuzzy rankings were complete i.e. all assigned submissions 

were covered by them. The 11 submissions were also evaluated by the teacher 

in the range [0,30]. The provided fuzzy rankings as well as teacher assigned 

grades (true grades) are summarized in Table 17. 

6.4.3 Evaluating Peer Assessment Models 

We have applied FOPA as well as the other ordinal peer assessment models 

described in section 4.2 on collected data to demonstrate the effectiveness of 

ordinal peer assessment in the estimation of student grades and to compare 

the results obtained by each model with respect to teacher assigned grades.  

The Table 18 shows, for each student, the true grade, the grade estimated 

by FOPA, those estimated by the models of Mallow (MAL), Score-Weighted 

Mallows (MALS), Bradley-Terry (BT) and Plackett-Luce (PL) as defined in 

[81], and the grade obtained using the Borda count defined by equation (54). 

Equation (66) is used to obtain cardinal grades from the scores associated to 

each submission.  

The performance of each model is measured both in terms of Correctly 

Recovered Pairwise Relations (PCRPR) and Root Mean Square Error 

(RMSE). With respect to PCRPR, as it can be seen in Table 18, all models 

rank the submissions in the same order reaching a 90% of similarity to the 

ranking made by considering teacher assigned grades. With respect to RMSE, 

the models behaviour ranges from a minimum error of 2.4, obtained by 

FOPA, to a maximum error of 2.9, obtained by Borda.  

According to such results, we can assert that ordinal peer assessment is 

a valuable approach to support formative evaluation and is capable of 

estimating quite accurately teacher assigned grades, at least in the considered 

sample. Only small differences can be appreciated with respect to the selected 

model. In particular, FOPA presents the minimum error but it slightly 

increases the mean grade of the class with respect to teacher assigned grades. 
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Instead, PL shows a slightly greater error rate but it maintains a greater 

fidelity with respect to the mean grade. 

 
Student True Grade FOPA MAL MALS BT PL Borda �1 18.0 15.7 16.0 14.6 14.7 14.3 12.0 �2 10.0 9.8 9.0 11.1 11.5 10.8 14.0 �3 24.0 28.0 27.7 26.9 27.1 26.6 25.0 �4 30.0 30.0 30.0 30.0 30.0 30.0 30.0 �5 13.0 15.6 18.3 15.9 16.2 15.1 17.0 �6 18.0 9.0 9.0 9.0 9.0 9.0 9.0 �7 10.0 11.0 11.3 11.9 12.2 11.7 14.0 �8 11.0 14.1 13.7 14.9 15.1 14.1 13.0 �9 18.0 19.6 20.7 19.7 20.3 19.9 18.0 �10 28.0 24.1 25.3 23.6 24.4 23.7 27.0 �11 26.0 23.5 23.0 22.0 22.5 22.1 24.0 

Mean 17.9 18.2 18.5 18.2 18.5 17.9 18.5 

PCRPR  0.9 0.9 0.9 0.9 0.9 0.9 

RMSE  2.4 2.7 2.8 2.8 2.6 2.9 

Table 18. True grades and grades obtained with peer assessment methods 

6.4.4 Additional Experiments 

It should be noted that, while FOPA is able to fully interpret collected fuzzy 

rankings, the other models need to translate them into ordinal rankings 

before use. In particular, while Borda just interprets the > symbol, MAL, 

MALS, BT and PT can also interpret the ≈ symbol (i.e. they admit ties). 

The symbols ≥ and ≫ within fuzzy rankings are so translated in the symbol 

> before using them with methods different from FOPA. The ≈ symbol is 

also removed with Borda and an artificial random order is introduced 

between the adjacent symbols. 

Given this difference, an additional experiment has been performed to 

investigate the behavior of FOPA when put under the same conditions of the 
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other methods i.e. when using modified fuzzy rankings rather than the 

original ones. In such conditions, FOPA ended up with a 2.7 RMSE (with 

0.9 PCRPR) so 0.3 points are lost with respect to the preceding settings. So, 

we can conclude that the contribution of fuzzy symbols is remarkable but 

not decisive in the estimation of teacher assigned grades.  

Two additional experiments have been performed to evaluate how the 

models under examination perform with a reduced set of ranking strings. As 

said, students have been assigned to two groups, a first group including “more 

proficient” students and a second group made of “less proficient” ones.  

The rows 1-3 of Table 19 show the results obtained by all peer assessment 

models by considering only fuzzy rankings coming from the group of “more 

proficient” students. With a lower amount of data available, all the models 

result in slightly higher error rates, while keeping the adherence to the 

teacher ranking almost unaltered. The consideration that can be drawn is 

that adding evaluations improve the peer grading process even in case of 

dubious reliability of the new evaluations. 

 
Group Measure FOPA MAL MALS BT PL Borda 

1 

Mean 19.1 17.6 18.7 18.9 18.7 17.9 

PCRPR 0.9 0.9 0.9 0.9 0.9 0.8 

RMSE 2.9 3.0 3.0 3.0 2.9 3.6 

2 

Mean 16.2 18.3 17.3 17.6 17.6 17.9 

PCRPR 0.8 0.6 0.7 0.8 0.8 0.6 

RMSE 4.7 7.8 4.8 4.7 4.8 8.7 

Table 19. Performance considering a subset of available fuzzy rankings 

The rows 4-6 of Table 19 show the results obtained by considering only 

fuzzy rankings coming from the group of “less proficient” students. As it can 

be seen, basing on a lower amount of data that, in addition, is of a worst 

quality, all models result in significantly higher error rates. In particular, 

Borda and MAL show the higher increase in RMSE (+5.8 for Borda, +5.1 
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for MAL) while BT shows the lowest one (+1.9). The adherence to the 

teacher's ranking also lowers drastically with values ranging from 60% to 

80%. Nevertheless, also in this case FOPA shows the best performance. 

6.5 FOPA vs. GMPA with Real Data 

Formative assessment is a teaching method where evidence about student 

achievement is elicited, interpreted, and used by teachers, learners, or their 

peers, to make decisions about the next steps in instruction that are likely to 

be better, or better founded, than the decisions they would have taken in the 

absence of the evidence [142]. An important function of formative assessment 

is providing students with continuous feedback, meaning that opportunities 

for feedback should occur continuously, but not intrusively, as a part of 

instruction [143]. 

In this experiment we evaluate the capability of both FOPA and GMPA 

peer assessment models defined in sections 4.5 and 4.6 to support formative 

assessment within a University course on Linear Algebra. In particular, the 

experiment was aimed at answering the following questions: 

1. at what extent peer assessment methods are valuable tools to support 

formative assessment? 

2. at what extent peer assessment methods are also capable of improving 

students’ learning outcomes? 

In the next subsections, we describe the experiment setting, report about 

collected data and analyse such data with the aim of providing an answer to 

the experimental questions here reported. 

6.5.1 Experimental Setting 

The experimental set was composed by first year students taking part in a 

six-monthly intensive module of mathematics within a 3-year B.Sc. degree in 

Computer Engineering at the University of Salerno. In particular, the focus 

was on the second module, which concerned linear algebra topics.  
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The module was made of eight hours per week in face-to-face traditional 

lectures/exercises sessions, supported by an on-line learning system based on 

Moodle8 which provided the students with additional learning resources and 

communication tools. The experiment was held with voluntary students. In 

particular 43 students over about 200 decided to participate. 

The peer assessment exercise was implemented through the workshop 

component of Moodle allowing students to submit and evaluate each other’s 

submissions according to a teacher’s assignment. The workflow implemented 

by the workshop component consisted of the following phases (summarized 

in Figure 27): 

• planning: the teacher decides the grading strategy and the assignment 

allocation method (in case of multiple assignments); 

• setup: the teacher creates the assessment forms and specifies instructions 

and configures settings; 

• submission: the students submit their own work and submissions are 

allocated to assessor students; 

• assessment: the students review each other’s work according to the 

criteria established by the teacher; 

• grading evaluation: student grades are calculated by mediating grades 

obtained by peers according to equation (52); 

• closing: the students can see their final grades, the single grades obtained 

by peers and the related feedback. 

6.5.2 Data Collection 

A set of 43 students participated in the experiment providing a submission 

for the 4 questions making up the assignment. Then, 3 submissions to be 

graded were assigned to each student through a random assessment grid filled 

according to equation (51). The exercise was performed in a blind mode in 

order that students did not know whom they were assessing.  

                                         
8 https://moodle.org/ 
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is settled to the number of available votes for each submission rather than to 

the number of expected ones.  

Conversely, the impact on GMPA methods described in section 4.5 is 

higher. Such methods, in fact, weight the grades provided by each assessor 

by her own grade. So, grades provided by ungraded students have no value 

at all. This impacts recursively on the grades of the assessed students and on 

those of the students assessed by them. To avoid this problem, we have 

assigned dummy grades to ungraded students and used them throughout the 

algorithm iterations. Dummy grades, initially set to the average grade of the 

class, have been removed after all class grades have been calculated. 

To use ordinal methods like Borda (described in section 4.3) and FOPA 

(described in section 4.6) on students’ cardinal input we have defined the 

fuzzy ranking �r for each assessor student �r ∈ � through equations (36)-

(37) by setting �(�p) = �pr for each �p ∈ �r (where �pr corresponds to the 

grade assigned by �r to �p). 
To evaluate the effectiveness of peer grading as formative assessment tool, 

we have also asked the teacher to provide her grades for all the available 

submissions. Teacher grades was collected separately and did not affected the 

peer grading process. 

6.5.3 Performance on Formative Assessment 

To evaluate the effectiveness of peer assessment as a formative assessment 

tool, we have applied the methods described in sections 4.2 and 4.6 to the 

data collected and adapted as explained in section 6.5.2 and have compared 

the obtained final grades to those calculated by Moodle (adopting a standard 

Average rule) as well as to those assigned by the teacher.  

Table 20 compares the results obtained with the standard Average (AVG) 

rule described by equation (52), with the PeerRank rule (PR) described by 

equation (60), with the F-PeerRank the rule described by equations (61)-(62) 

selecting the functions �(�) = �2 (PowPeerRank reported as PPR) and with 

�(�) = �+ (ExpPeerRank reported as EPR), with the BestPeer rule (BP) 
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described by equation (63) using PowPeerRank to obtain a first estimation 

of student grades, with the Borda count defined by equation (54) and with 

FOPA as described in section 4.6. Performances have been measured in terms 

of RMSE, through equation (55), between the grades estimated with each 

method and the grades assigned by the teacher.  

 

Question 
RMSE per Method 

AVG PR PPR EPR BP Borda FOPA 

1 3.73 3.65 3.65 3.64 3.73 4.20 3.70 

2 4.54 4.04 4.04 4.00 4.52 3.92 4.14 

3 4.04 3.22 3.22 3.18 4.03 3.27 2.95 

4 4.19 3.80 3.84 3.71 4.00 3.95 3.92 

Mean 4.12 3.68 3.69 3.63 4.07 3.84 3.68 

Table 20. Performance obtained on experimental data 

The first thing that can be noted is that grades coming from students are 

very unreliable if compared with grades assigned by the teacher. This may 

be due to the fact that the data comes from the first experience of the class 

with a peer-grading exercise and it has been performed at the very beginning 

of the course. Moreover, only about the 60% of all students have participated 

in the assessment step resulting in a lack of data for the aggregation step.  

The positive thing is that any of the proposed alternative methods reach 

a lower RMSE with respect to the baseline Average method provided by 

Moodle. In particular the ExpPeerRank rule outperforms the other methods 

on average and in almost all the single questions. It is also notable that FOPA 

reaches similar results by relying only on a subset of the information used by 

ExpPeerRank (just the obtained fuzzy ranking of submissions is used rather 

than the assigned ordinal grades). 
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6.5.4 Performance Injecting Teachers’ Grades 

Given the small participation rate, two additional analyses was performed on 

collected data to evaluate the behaviour of grading methods when the amount 

of available information increases. Given the availability of teacher’s grades 

for all submissions, we have measured how the performance of all the methods 

changes by considering, in addition to grades coming from assessor students, 

an increasingly large subset of grades coming from the teacher. 

Both analyses were made in 43 steps (one for each submission). At each 

step, 4 additional grades coming from the teacher were considered, one for 

each question of a new submission (the priority was given to submissions 

with the fewer amount of available evaluations). 

In the first analysis, the teacher was considered as a common student 

evaluating some of the available submissions. For each question, a new 

column filled of 0 has been so added to both the assessment grid and the 

grades matrix. At each step an element i of this row was turned to 1 in the 

assessment grid and the corresponding element of the grades matrix was set 

as the grade assigned by the teacher to the i-th submission. 

An additional row was also added to both matrices to set dummy grades 

assigned by other students to the teacher (used by PeerRank, PowPeerRank, 

ExpPeerRank and BestPeer methods). In particular, the new row has been 

filled of 1 (apart for the last element, set to 0) in the assessment grid and 

filled of 10 (apart the last element, set to 0) in the grades matrix. The teacher 

is so considered as graded 10 by all other students.  

Figure 28 shows how the RMSE of the proposed methods changes while 

adding new grades from the teacher. As it can be seen, BestPeer and FOPA 

obtain the best performance while ExpPeerRank shows an error which is 

always below than that made by the Average method. The PeerRank rule is 

better than the Average one until 17 added grades, then it results to be a bit 

worse. Borda is quite better than Average until 11 added grades, then it 

becomes quite worse.  
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Figure 28. Performance considering increasingly large subsets of grades 

coming from the teacher (case 1). 

Although BestPeer and FOPA seem to show a similar behaviour, it 

should be noted that the performance of BestPeer is boosted by the dummy 

grade of 10 assigned to the teacher. Given that it returns the grade assigned 

by the best grader, in almost all cases, when available, it returns the grade 

assigned by the teacher. Instead FOPA makes no assumption on the grades 

obtained by graders so it can be considered as the most reliable rule among 

those experimented. 

It should be also noted that the results of Borda are quite penalised by 

the fact that, to uniform scores, they have been normalized by the total 

number of assessment made by each assessor. So, while the number of 

teacher’s grades increases, their weight with respect to the other decreases. 

The second analysis is similar to the first one, except that the teacher is 

considered as a “super” student, whose grades, if available, are preferred over 

the grades provided by common students. In fact, while the first analysis is 

aimed at determining how the described methods behave with additional 
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available grades, the second one is aimed at determining if they can reach 

even better performances by asking to the teacher to fill the gaps in the data. 

Figure 29 shows how the RMSE of the proposed methods changes while 

adding new grades from the teacher. Also in this case BestPeer and FOPA 

show the best performances: FOPA is better until 33 added grades, then 

BestPeer wins. In this case, the differences among methods remains almost 

constant while in the previous case they increase with the number of available 

grades. Also in this case, the results of Borda are penalised for the same 

reasons explained above. 

 

Figure 29. Performance considering increasingly large subsets of grades 

coming from the teacher (case 2). 

Based on experimental data we can affirm that it is possible to improve 

the results of peer grading through the application of alternative methods 

with respect to the standard Average rule. In particular, FOPA is the method 

that is able to provide the best results with less information (a ranking is 

needed rather than ordinal grades). Moreover, the results of FOPA improve 

more than the others with increasing amount of information available.  
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When only few unreliable evaluations are available (as in the analysed 

case) the use of peer grading as a formative assessment tool is questionable. 

The results obtained, even when corrective algorithms are used, are quite far 

from grades assigned by the teacher. Nevertheless, as seen, such results can 

be improved by asking the teacher to fill the gaps in the data. 

6.5.5 Qualitative Evaluation 

To evaluate the effectiveness of peer assessment as a tool for improving the 

learning outcomes, we have had an open interview with the tutor that has 

oversaw the online activities of the students. She sees peer assessment as a 

good strategy for filling knowledge gaps through a different perspective and 

suggests its application also on the subsequent topics of the course. Formative 

assessment is in fact a process observable over a long period of time and the 

proposed methodology is capable of catching information over time.  

The involved tutor also thinks that the method enables to review learnt 

topics in a collaborative way. In fact, peer grading sees an involvements of 

students both as assessors of their own learning and as resources to other 

students. One of the key components of engaging students in the assessment 

of their own learning is providing them with descriptive feedback as they 

learn. Descriptive feedback provides students with an understanding of what 

they are doing well, links to classroom learning, and gives specific input on 

how to reach the next step in the learning progression.  

Apart from formative assessment, peer assessment has resulted capable 

of developing students’ argumentation skills where argumentation is defined 

as the intentional explication of the reasoning used during the development 

of a given task [144]. In fact, it encourages students to clarify, review and 

edit their ideas, through the focus of peer feedback. At the same time, it 

requires students to provide either feedback and grades to their peers based 

on the criteria of excellence they perceive.



Final Remarks 

 

In this Ph.D. thesis, several fuzzy models for GDM, aimed at improving both 

preferences expression and aggregation, have been defined and validated in 

two applicative contexts: e-Learning and Recommender Systems. First of all, 

a preference model named Fuzzy Ranking, combining the user-friendliness of 

ordinal ranking with the expressive capability of FPR, has been defined. Like 

FPRs, fuzzy rankings allow decision makers to focus on two alternatives at 

a time. Differently from FPRs it is not needed to assess preference degrees 

for any pair of alternatives (resulting in �2 comparisons with n alternatives) 

but just for adjacent alternatives in the defined ranking (resulting in � − 1 

comparisons). 

Fuzzy rankings offer a compact notation that does not oblige experts to 

be unnecessarily precise in preference definition. In this way it is very unlikely 

to introduce inconsistencies in the GDM process while allowing to reason by 

approximation. The impossibility to evaluate alternatives is supported with 

partial fuzzy rankings while multiple fuzzy rankings support incomparability 

between alternatives. To let use standard GDM methods and tools when 

preferences are expressed with fuzzy rankings, translation methods to and 

from FPRs have been provided as well as similarity measures to assess the 

convergence of experts’ opinions. 

A possible extension of fuzzy rankings, to be studied in future works, is 

the adoption of linguistic labels (mapped on fuzzy numbers) to specify the 

gap between two subsequent elements in the ranking. This would make the 

model more complex but, at the same time, enable a better representation of 

the vagueness inherent in the subjective evaluation of alternatives made by 
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experts. Specific GDM approaches based on linguistic assessment, like in 

[145], could be adapted to deal with this case. 

Once defined, the fuzzy ranking model has been used as a building block 

for a complete GDM model able to consider social influence between experts 

and to estimate how experts’ opinions change according to its effects. If fact, 

despite its prominent role in opinion formation, social influence seems to be 

almost disregarded by current GDM models. Aiming at filling this gap, the 

proposed model links the concept of social influence to that of interpersonal 

trust according to the intuition that the more an expert trusts in another, 

the more her opinion is influenced by the trusted expert, especially when she 

is unable to express an opinion on some alternatives. 

Fuzzy rankings are used to represent experts’ opinions regarding the set 

of alternatives as well as their trust on other experts. Defined rankings are 

then used to determine the structure and the level of experts’ interpersonal 

influence used, in turn, to estimate missing preferences and to let them evolve 

simulating the effects of experts’ interaction. The defined model leads to a 

more accurate representation of the GDM process by formalizing important 

aspects that are usually disregarded by other models. A future extension of 

such model could be directed toward multi-criteria (or multi-attribute) GDM 

that deals with problems where the alternatives are characterized in terms of 

multiple, usually conflicting, attributes. In such cases, the experts should first 

of all reach an agreement on the priority of each attribute and, then, on the 

priority of each alternative with respect to each attribute. 

As said, defined models have been specialized in two applicative contexts. 

With respect to the e-Learning context, a model for ordinal peer assessment, 

named FOPA, has been defined. With FOPA each student is asked to define 

a fuzzy ranking among some submissions of other students for a given 

assignment. Students’ provided rankings are transformed in FPRs, expanded 

to estimate missing values and aggregated. The aggregated relation is then 

used to generate a global ranking between the submissions and to estimate 

their absolute grades. FOPA has been compared with existing ordinal and 
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cardinal peer assessment models and has shown better performances in 

several in silico experiments both in the reconstruction of the student ranking 

and in the estimation of students’ grades. Additional experiments with real 

University students have confirmed the former results. 

Despite that it has been conceived for peer assessment, FOPA can be 

easily adapted in other contexts where several alternatives must be evaluated 

taking into account the opinion of many assessors but when each assessor has 

only a partial view of the whole picture. For example, in a Conference Review 

Process many submissions must be ranked (to choose the best ones to invite 

for presentation and/or to be awarded) basing on a set of (possibly unreliable) 

experts, each reviewing a relatively small number of works. Another example 

is the Employee Reward and Recognition Systems set up by companies to 

motivate their employees. Here employee performances are ranked according 

to suggestions coming from managers, each of them evaluating just the subset 

of employees involved in the projects she manages. 

To validate FOPA and pave the way for future extensions, we have also 

defined additional peer-assessment models based on graph mining techniques. 

The assumption of these models, confirmed by some existing studies, is that 

the grade obtained by a student on a given subject is correlated to her ability 

as assessor on the same subject. Experimental results with synthetic and real 

data show that such methods outperforms other existing methods in most 

configurations even if they show worse results than FOPA. Nevertheless, a 

possible extension of FOPA is to integrate the same techniques to detect the 

assessors’ reliability and use this information to weight the feedback provided 

in the aggregation step. To this purpose, preference aggregators that takes 

experts’ importance into account (like I-IOWA) should be preferred to OWA. 

In addition, to support assessment rubrics, it would be possible to extend the 

underlying model to multi-criteria GDM. 

Finally, with respect to applicative context of Recommender Systems, the 

group recommendation problem has been tackled. While in GDM, a group of 

decision makers evaluate a set of alternatives with the aim of selecting the 
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best one to adopt, in GRS the system selects, from a given catalogue, the set 

of items that best fit the preferences of all (or the majority of) members 

belonging to a group of users. While the majority of existing GRS approaches 

just use individual users’ preferences to estimate those of the whole group, 

the proposed approach, based on the defined GDM models, also considers the 

personality of group members, their interpersonal trust and social influence. 

Taking such factor into account allows to define a more accurate model that 

is capable of reaching good recommending performances.  

The proposed model is able to build a social influence network starting 

from information about interpersonal trust and users’ personality traits. The 

network is used, in turn, to evolve users’ preferences toward a shared solution. 

An evolution of the proposed approach is to directly obtain information about 

interpersonal trust by analyzing implicit data contained in social networks 

according to the models defined in [118, 119]. In addition, personality traits 

can be predicted by analyzing the language used in social media according to 

models defined in [124, 125, 146]. This will make the process transparent to 

users without the need to fill long questionnaires before system use.  

It is worth noting that some of the preliminary results obtained by the 

candidate during the three-years PhD program (subsequently extended and 

systematized in this thesis), have been already submitted and accepted for 

publication and presentation on international conferences and journals. In 

particular, a first version of the fuzzy GDM model guided by social influence 

described in chapter 3 has been published in [147], with an embryonic version 

of the fuzzy ranking model defined in chapter 2. A preliminary version of the 

FOPA model described in chapter 4 has been published in [148] while the 

peer assessment methods based on graph mining (described in section 4.5) 

have been also published in [149, 150]. Some of the experiments reported in 

chapter 6 have been published in [151, 152] while additional works on fuzzy 

rankings and GDM-based group recommendations are in preparation. 
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