
i
i

“main” — 2018/4/10 — 10:46 — page i — #1 i
i

i
i

i
i

Università degli studi di Salerno

Dipartimento di Fisica “E.R. Caianiello”

Dottorato di Ricerca in Matematica, Fisica e applicazioni

XXX ciclo, 2014/2017

Tesi di dottorato in

Event triggering and deep learning for

particle identification in KM3NeT

Dottorando:

Chiara De Sio

Tutor:

Prof. Cristiano Bozza

Coordinatore:

Prof. Roberto Scarpa

http://www.unisa.it
https://www.fisica.unisa.it/index.php/it/

i
i

“main” — 2018/4/10 — 10:46 — page ii — #2 i
i

i
i

i
i

ii

“Do. Or do not. There is no try”

Master Yoda

i
i

“main” — 2018/4/10 — 10:46 — page iii — #3 i
i

i
i

i
i

iii

Abstract

Chiara De Sio

Event triggering and deep learning for particle identification in KM3NeT

Neutrino astronomy experiments like KM3NeT allow to survey the Universe leveraging

the properties of neutrinos of being electrically neutral and weakly interacting parti-

cles, making them a suitable messenger. Observing neutrino emission in association

with electromagnetic radiation allows evaluating models for the acceleration of parti-

cles occurring in high energy sources such as Supernovae or Active Galactic Nuclei.

This is the main goal of the ARCA project in KM3NeT. In addition, KM3NeT has

a program for lower energy neutrinos called ORCA, aimed at distinguishing between

the scenarios of “normal hierarchy” and “inverted hierarchy” for neutrino mass eigen-

states.

The KM3NeT Collaboration is currently building a network of three Cherenkov tele-

scopes in the Mediterranean sea, in deep water off the coasts of Capopassero, Italy;

Toulon, France, and Pylos, Greece. The water overburden shields the detectors from

down-going charged particles produced by the interactions of cosmic rays in the atmo-

sphere, while up-going neutrinos that cross the Earth are the target of the observation.

Cosmic rays are a background to the KM3NeT signal, usually discarded by directional

information. Nevertheless, they provide a reliable reference to calibrate the detector

and work out its effective operating parameters, namely direction and energy of the

incoming particles.

Estimation of tracking capabilities is directly connected to the evaluation of the ability

of the experiment to detect astrophysical point-like sources, i.e. its discovery potential.

Being able to distinguish among the three neutrino flavours, or between neutrinos and

muons, as well as estimating the neutrino direction and energy, are the main goals

of such experiments. Trigger and reconstruction algorithms are designed to separate

i
i

“main” — 2018/4/10 — 10:46 — page iv — #4 i
i

i
i

i
i

iv

the signal from background and to provide an estimation for the above mentioned

quantities, respectively.

This work describes an innovative approach, based on the application of Deep Learn-

ing models, to perform event classification and interaction parameters estimation.

KM3NeT simulated events are used as input data to train Neural Network models,

capable of classifying the neutrino events based on their shape and the time distri-

bution of the signal hits produced in the detector. In particular, triggered events are

fed into Convolutional Neural Network models specifically designed to accomplish 4

different tasks, namely: "up-going" and "down-going" neutrinos classification; νµCC

and νeCC interactions classification; energy and direction estimations of simulated

neutrinos. The Convolutional Neural Network models have been implemented using

the Keras deep learning framework, a high-level neural networks API designed for

easy and fast prototyping which runs seamlessly on CPU and GPU1.

Since the selection criteria for the events affect the quality of the reconstruction, a

preliminary study on the trigger conditions has been conducted to ensure the purity

of the selected events.

The developed Deep Learning models have been tested on a dataset consisting of

258, 879 νµCC and νeCC simulated events, achieving an accuracy of 93.3% for the

up-going/down-going classification and 92.8% for the νµCC/νeCC classification. For

the estimation of the neutrino energy and the cosine of the zenith angle of the neutrino

direction, the obtained mean squared errors are 0.22 and 0.03, respectively.

The performance of the Neural Network models for energy and direction estimations,

as well as up-going/down-going classification have been compared to those calculated

by the official reconstruction algorithm currently in use in the KM3NeT reconstruction

software pipeline. In this case, only νµCC events have been used since the considered

reconstruction algorithm, namely JGandalf, is based on the assumption of a track-like

event shape. The results obtained with the two different approaches are comparable.

Nevertheless, the capability of the Neural Networks of performing these estimations

directly from raw data constitutes a promising approach in terms of computational

times and resources required.

1Graphical Processing Unit.

i
i

“main” — 2018/4/10 — 10:46 — page v — #5 i
i

i
i

i
i

v

Acknowledgements

First of all, I would like to thank my tutor Prof. Cristiano Bozza for the inputs and

the suggestions, and for always setting me on the right track and letting me follow my

path. I would also like to express my gratitude to the other members of the “Giorgio

Romano” Astro-particle physics and Nuclear Emulsion Group of the University of

Salerno, in particular Prof. Giuseppe Grella for admitting me in the group a few years

ago, and for his constant encouragement and support. I would also like to thank

Simona Maria Stellacci and Maurizio Di Marino for their presence and friendship and

for all the moments shared in the laboratory.

I want to thank the KM3NeT Collaboration members for their direct and indirect

contributions to this work: every single aspect of the experiment they’ve been working

on made this thesis possible; all their questions, comments and suggestions during

the meetings helped me improve this work. In particular, I would like to thank

Prof. Christos Markou and Prof. Ekaterini Tzamarioudaki for their precious comments

in reviewing the first draft of this manuscript. Their suggestions and point of view

helped me to better refine my work.

A special thank goes to the Erlangen group, in particular Prof. Uli Katz and Dr. Kay

Graf, who welcomed me in their Department and supervised my work during my

visiting period at ECAP. I really enjoyed the six months spent there. Feeling part

of that group made me enjoy this Ph.D. even more, and the weekly meetings were

always a source of inspiration.

I want to thank my family for their support in every situation, and my friends, who

always believe in me and never let me feel alone. I’ve learnt that distance and time

do not really count, as long as friendship is real.

Finally, I would like to thank V., who made everything possible in the last three years,

including this.

i
i

“main” — 2018/4/10 — 10:46 — page vi — #6 i
i

i
i

i
i

i
i

“main” — 2018/4/10 — 10:46 — page vii — #7 i
i

i
i

i
i

vii

Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Neutrino astronomy . 1

1.1.1 High-energy neutrino detection 6

1.1.2 High-energy neutrino interactions 8

1.1.3 The Cherenkov radiation . 12

1.2 The KM3NeT experiment . 14

1.3 Neutrino interaction events in KM3NeT 16

2 Event triggering in KM3NeT 19

2.1 Online and offline triggers in KM3NeT 19

2.2 Trigger parameters . 24

2.2.1 JTriggerEfficiency . 24

2.2.2 JTE parameters tuned . 25

2.3 Trigger efficiency optimisation . 28

2.3.1 Standard trigger set vs. alternative set 29

2.3.2 Dependency on the time window 31

2.3.3 Standard trigger vs. (100ns, 4 hits) on reconstructed events . . 33

3 Machine and Deep Learning 39

3.1 Machine Learning Settings . 43

3.1.1 Supervised Learning . 43

3.1.2 Reinforcement Learning . 44

3.1.3 Unsupervised Learning . 44

3.2 Deep Learning . 45

i
i

“main” — 2018/4/10 — 10:46 — page viii — #8 i
i

i
i

i
i

viii

3.2.1 Modelling complex functions with Artificial Neural Networks . 45

3.3 Training Artificial Neural Networks . 52

3.3.1 Neural Network Training . 52

3.3.2 Activation Functions . 55

3.4 Convolutional Neural Networks . 57

3.4.1 Convolutional arithmetics . 59

3.5 Evaluating Machine Learning Models 64

3.5.1 Training, Validation, and Test sets 64

3.5.2 Capacity, Overfitting and Underfitting 65

3.5.3 Performance estimators . 65

3.6 Machine Learning Applications in High Energy Physics 69

4 Deep Learning Applications for KM3NeT-ARCA 71

4.1 Data preparation . 72

4.1.1 Lattice definition . 72

4.1.2 Event Definition . 76

4.1.3 Training, test and validation . 80

4.2 Learning neutrino interactions . 81

4.2.1 Task 1: Up-going/Down-going neutrino event classification . . . 82

4.2.2 Task 2: νµCC/νeCC interaction classification 89

4.2.3 Task 3: Neutrino energy estimation 94

4.2.4 Task 4: Neutrino direction estimation 99

4.3 Comparison with the official reconstruction 102

4.3.1 Energy estimation comparison 103

4.3.2 cos(θz) estimation comparison 105

4.3.3 Up-going/Down-going classification comparison 108

4.4 Hardware settings and execution times 111

5 Conclusions 113

5.1 Summary . 113

5.2 Outlook . 113

i
i

“main” — 2018/4/10 — 10:46 — page ix — #9 i
i

i
i

i
i

ix

List of Figures

1.1 Cosmic rays all-particle spectrum as measured by different experiments 3

1.2 KM3NeT events and detector representation 7

1.3 Low energy neutrino/nucleon cross sections 8

1.4 High energy neutrino/nucleon cross sections 9

1.5 Feynman diagrams of neutrino interactions relevant for KM3NeT . . . 9

1.6 Median of the angle between the neutrino and the produced muon di-

rections . 10

1.7 Path lengths in water . 12

1.8 Cherenkov radiation emitted at a characteristic angle θC 13

1.9 KM3NeT Digital Optical Module (DOM) 15

1.10 Detector and Can . 16

2.1 Time-over-Threshold definition . 20

2.2 Cherenkov light emitted by a muon: schematic view 22

2.3 Muon propagation and Cherenkov light emission and detector view . . 23

2.4 Trigger efficiency for standard trigger as a function of the neutrino

energy, for different choices of the parameter combineL1 27

2.5 Trigger efficiency as a function of the neutrino energy for numberOfHits=5

vs. trigger efficiency selecting events with more than 5 DOMs hit. . . . 28

2.6 Trigger efficiency vs. neutrino energy for std trigger conditions com-

pared to alter conditions. 30

2.7 Trigger efficiency (vs. neutrino energy) dependency on time window. . 32

2.8 Trigger efficiency (vs. neutrino energy) dependency on time window -

zoom. 32

2.9 Reconstruction efficiency for different allowance angles. 35

2.10 Trigger efficiency as a function of the neutrino energy with and without

the random background parameter activated in JTE for std trigger

and (100ns, 4hits). 36

2.11 Ratio of trigger efficiencies with and without random background for

std trigger and (100ns, 4hits). 37

i
i

“main” — 2018/4/10 — 10:46 — page x — #10 i
i

i
i

i
i

x

3.1 Machine Learning: a different programming paradigm 40

3.2 Machine Learning algorithm representation 41

3.3 McCulloch and Pitt’s mathematical model of a neuron. 46

3.4 The Perceptron model . 48

3.5 The Adaline model . 49

3.6 The Gradient Descent . 50

3.7 The Multilayer Perceptron model . 51

3.8 The forward propagation step of MLP 53

3.9 The backward propagation step of MLP 54

3.10 Activation functions and derivatives 56

3.11 Feature maps representation . 58

3.12 Example of CNN architecture . 59

3.13 Computing the output values of a 2D discrete convolution. 60

3.14 Half padding, unit strides . 62

3.15 Average Pooling . 63

3.16 Confusion matrix general definition . 67

4.1 Detector 3D view . 73

4.2 Detector 2D view . 74

4.3 Detector 2D view - DUs connected . 74

4.4 Lattice 2D view . 75

4.5 Distribution of the displacement between the real positions of the DOMs

and the lattice position . 76

4.6 2D view DOMs vs lattice DOMs . 76

4.7 Discretised times in an event . 77

4.8 Event shapes comparison between Detector and Regularised Lattice . . 79

4.9 Sketch of how the different sets and sub-sets are defined 80

4.10 Colour code for the layers used in the Neural Networkmodels 82

4.11 (T,Z) view of a down-going νµCC event 83

4.12 (T,Z) view of an up-going νµCC event 83

4.13 Coordinate system definition . 83

4.14 CNN model for upgoing/downgoing classification 84

4.15 (T,Z) view of a νeCC shower event before (left) and after (right) the

Average Pooling is applied. 85

4.16 Loss as a function of the epochs for training and validation of Up-

going/Down-going classifier . 86

i
i

“main” — 2018/4/10 — 10:46 — page xi — #11 i
i

i
i

i
i

xi

4.17 Accuracy as a function of the epochs for training and validation of

Up-going/Down-going classifier . 86

4.18 Confusion Matrix for Up-going/Down-going classification 86

4.19 ROC curve for upgoing-downgoing classification 87

4.20 Definition of distance from the detector centre 87

4.21 ROC curve for upgoing-downgoing classification as a function of the

neutrino energy . 87

4.22 ROC curve for upgoing-downgoing classification as a function of the

distance of the neutrino from the detector centre 88

4.23 Classification efficiency for upgoing/downgoing events as a function of

the neutrino energy . 88

4.24 Classification efficiency for upgoing/downgoing events as a function of

the distance of the neutrino from the detector centre 88

4.25 (T ,Z) view of a 2.5 TeV νeCC event 90

4.26 (X,Y) view of a 2.5 TeV νeCC event 90

4.27 (T ,Z) view of a 600 GeV νµCC event 90

4.28 (X,Y) view of a 600 GeV νµCC event 90

4.29 CNN model for νµCC/νeCC classification 91

4.30 Training loss evolution for νµCC/νeCC classification. 92

4.31 Training accuracy evolution for νµCC/νeCC classification. 92

4.32 Confusion Matrix for νµCC/νeCC classification. 92

4.33 ROC curve for νµCC/νeCC classification. 93

4.34 ROC curve for νµCC/νeCC classification as a function of the neutrino

energy. 93

4.35 ROC curve for νµCC/νeCC classification as a function of the distance

of the neutrino from the detector centre. 93

4.36 Classification efficiency for νµCC/νeCC events as a function of the neu-

trino energy . 94

4.37 Classification efficiency for νµCC/νeCC events as a function of the dis-

tance of the neutrino from the detector centre 94

4.38 CNN model for neutrino energy estimation 95

4.39 Energy estimation model history: Loss function evolution during train-

ing and validation . 96

4.40 Regression performance on the estimation of log10(E)[GeV] of the lep-

tons for νµCC ∪ νeCC events. 97

i
i

“main” — 2018/4/10 — 10:46 — page xii — #12 i
i

i
i

i
i

xii

4.41 Regression performance of energy estimation with 68% and 90% inter-

vals on the whole (νµCC ∪ νeCC) test dataset 98

4.42 Regression performance of energy estimation with for νµCC test dataset 98

4.43 Regression performance of energy estimation with for νeCC test dataset 98

4.44 CNN model for cos(θz) estimation . 99

4.45 cos(θz) estimation model history: Loss function evolution during train-

ing and validation . 100

4.46 Regression performance of cos(θz) estimation for νµCC ∪ νeCC events 101

4.47 Regression performance of cos(θz) estimation for νµCC and νeCC test

events separately . 101

4.48 Performances of log10(E) estimation for νµCC events without quality

cuts. Left plot: Neural Network; Right plot: JGandalf. 103

4.49 Performances of log10(E) estimation for νµCC events with quality cuts.

Left plot: Neural Network; Right plot: JGandalf. 104

4.50 Estimated versus true cos(θz) values without quality cuts 105

4.51 Performances of cos(θz) estimations for νµCC events without quality

cuts. Left plot: Neural Network; Right plot: JGandalf. 106

4.52 Estimated versus true cos(θz) values with quality cuts 106

4.53 Performances of cos(θz) estimations for νµCC events with quality cuts

applied to select events. Left plot: Neural Network; Right plot: JGandalf.107

4.54 Reconstruction performance on cos(θz) estimation for νµCC events with

quality cuts - zoom. 107

4.55 ROC curve up-down comparison - no cuts 108

4.56 ROC curve up-down comparison - no cuts, energy dependency 109

4.57 ROC curve up-down comparison - no cuts, distance dependency 109

4.58 ROC curve up-down comparison - quality cuts 110

4.59 ROC curve up-down comparison - quality cuts, energy dependency . . 110

4.60 ROC curve up-down comparison - quality cuts, distance dependency . 110

i
i

“main” — 2018/4/10 — 10:46 — page xiii — #13 i
i

i
i

i
i

xiii

List of Tables

2.1 Trigger parameters and their default values 25

2.2 Comparison of background rate for combineL1=(0,1) 27

2.3 Comparison of the std and the alter parameter sets 30

2.4 Table of comparison of the background rate for st and alter conditions. 31

2.5 Table of comparison of the atmospheric muons background rate for

different trigger conditions. 33

2.6 Fraction of well reconstructed events at different allowance angles, for

low and high energy events separately, for std trigger conditions. . . 34

2.7 Fraction of well reconstructed events at different allowance angles, for

low and high energy events separately, for (100ns, 4hits) conditions. . 35

4.1 X, Y , Z ranges (in metres) for the real detector. 73

4.2 Label definition for up-going/down-going classification 83

4.3 Labels definition for νµCC/νeCC classification 89

4.4 Comparison of the energy estimation errors for Neural Network and

JGandalf approaches without quality cuts. 103

4.5 Comparison of the energy estimation errors for Neural Network and

JGandalf approaches with quality cuts applied to select events 103

4.6 Comparison of the cos(θz) estimation errors for Neural Network and

JGandalf approaches without quality cuts. 105

4.7 Comparison of the cos(θz) estimation errors for Neural Network and

JGandalf approaches with quality cuts applied to select events. 106

4.8 Comparison of the up-going/down-going classification accuracy without

quality cuts . 108

4.9 Comparison of the up-going/down-going classification accuracy for νµCC

events for Neural Network and JGandalf approaches with quality cuts

applied to select events. 109

4.10 Technical specifications of the GPU used to train and test the Neural

Network models. 111

4.11 Train and test times of the 4 Neural Network models 111

i
i

“main” — 2018/4/10 — 10:46 — page xiv — #14 i
i

i
i

i
i

i
i

“main” — 2018/4/10 — 10:46 — page 1 — #15 i
i

i
i

i
i

1

Chapter 1

Introduction

Overview

KM3NeT events are suitable to be analysed with Deep Learning techniques, which

are capable of extracting global information from raw data. In this work, Neural

Network techniques are used to classify neutrino interactions and to estimate event

parameters according to event features that are automatically defined and extracted

by a Neural Network. A brief introduction of the neutrino astronomy and of the

KM3NeT experiment will be presented in Chapter 1. A preliminary study on the

trigger conditions has been conducted to optimise the event detection and will be

described in Chapter 2. The Machine Learning and Deep Learning techniques will

be presented in Chapter 3, along with the details of the applications chosen for the

purpose of KM3NeT. Finally, in Chapter 4 the models constructed and the results

will be presented and discussed, and compared to the performance of the official

reconstruction algorithms.

1.1 Neutrino astronomy

In the last decades, neutrino astronomy has been developed to complement the tradi-

tional branches of astronomy. Commonly, photons are the carriers of information in

astrophysics. Such particles have the advantages of being electrically neutral, easy to

detect, abundant in the universe and have a wide spectrum of energy. Furthermore,

they carry information about the chemical composition of the observed structures.

On the other hand, photons cannot offer any direct insight into some astrophysical

high energy sources, such as the dense and hot matter in the centre of the stars and

other astrophysical energy sources, which are completely opaque to them. Moreover,

i
i

“main” — 2018/4/10 — 10:46 — page 2 — #16 i
i

i
i

i
i

2 Chapter 1. Introduction

high energy photons are partially absorbed by interstellar dust, and interact with in-

frared radiation background and the cosmic microwave background radiation (CMB)

to create electron-positron pairs. Therefore, a different messenger capable of carrying

information at greater distances, is needed for the purpose of studying such emitters,

and is the main ingredient in a new branch of astronomy: neutrino astronomy. Being

electrically neutral, stable and weakly interacting, the neutrino travels long distances

undeflected by magnetic fields, carrying information about distant high energy sources,

and penetrating regions generally opaque to photons. Over the last 40 years, several

astrophysical sources have been studied because they are known neutrino emitters,

such as the Sun [1]. On the other hand, astrophysical sources of high-energy neutri-

nos have not been directly observed yet, whereas several models exist that predict the

neutrino emission. The main idea is that information on the features of such sources

can be inferred from the properties of cosmic rays, namely protons and nuclei accel-

erated by astrophysical objects and travelling through cosmic distances [2]. Neutrino

astronomy opens a new window to the Universe, by investigating the nature of large

and powerful particle accelerators, with the goal of finding an answer to the questions

about the origin, the propagation and the acceleration mechanisms of cosmic rays.

The exact composition of cosmic rays is still debated, due to the difficulty of an accu-

rate measurement of the mass of each particle impinging the Earth atmosphere. Most

estimations, though, agree on the composition of the most prevalent particles: 85%

protons, 12% helium, 1% of heavier nuclei (Z>3). The remaining part is composed of

other particles (e.g. electrons), and a small fraction is represented by anti-particles,

such as anti-protons and positrons [3]. The energy spectrum is a power law which

extends over 12 orders of magnitude, from around 1 GeV up to extremely high energy

values, exceeding 1020 eV, as shown in Figure 1.1. The lower limit of such spectrum

is set by the interaction of cosmic rays (CRs) with fluctuations of the solar wind mag-

netic fields, rejecting charged particles coming from outside the solar system, hence

causing a reduction of the flux reaching the Earth by a factor 108 [4]. Above a few

GeV, the spectrum follows a power law dN/dE ≈ E−2.7, which holds to a good ap-

proximation up until the so-called knee, around 1015 eV. Above the knee, for 3 orders

of magnitude in energy the flux falls more steeply, following a power law of E−3, up

to the so-called ankle, where it becomes less steep again (back to E−2.7). The changes

in the spectral index (i.e. the exponent of the power law, generally indicated with γ)

are due to differences, with the increasing energy, in the origin, in the propagation or

in the composition of the cosmic rays. Above 1020 eV, the composition and origin of

cosmic rays is less known, due to low statistics and consequently high experimental

i
i

“main” — 2018/4/10 — 10:46 — page 3 — #17 i
i

i
i

i
i

1.1. Neutrino astronomy 3

Figure 1.1 Cosmic rays all-particle spectrum as measured by different
experiments. Shown in [4].

uncertainties. However, the knowledge of such very energetic propagating particles,

also known as Ultra High Energy Cosmic Rays (UHECR), represents an important

source of information about the possibility of surveying the space using ultra-high

energy protons as carriers. In fact, protons with energies greater than 1018 eV are

most likely of extra-galactic origin, and their energy and charge lets them propagate

approximately undeflected, pointing back to their origin. Heavier nuclei, on the other

hand, would be deflected by the Galactic magnetic field BG ≈ 3 µG, causing particles

to describe helical trajectories with a Larmor Radius rL = E/(ZeBG). However, at

such high energies another effect has to be taken into account when considering the

propagation of particles in the Universe: above 1019 eV, protons interact with the

Cosmic Microwave Background radiation (CMB), consequently losing energy via the

resonant pion production expressed by:

p+ γ → ∆+ → π0 + p, (1.1)

p+ γ → ∆+ → π+ + n. (1.2)

A rough calculation, considering the energy of the CMB of 2.7 K, the threshold energy

for the p/γ interaction (Ep ≈ 6·1019 eV), and the cross section σp/γ ≈ 100 µbarn, leads

to an absorption length for the UHE protons in the Universe of less than 100 Mpc,

i.e. shorter than the distance between cosmological sources and the Earth. This effect

i
i

“main” — 2018/4/10 — 10:46 — page 4 — #18 i
i

i
i

i
i

4 Chapter 1. Introduction

is known as the Greisen-Zatsepin-Kuz’min (GZK) limit [5].

While primary cosmic ray nuclei do not travel in straight lines, secondary photons

and neutrinos point back to their sources, allowing their identification as cosmic ac-

celerators. As reported above, accelerated protons interact in the surroundings of the

Cosmic Ray emitter with photons predominantly via the ∆+ resonance, producing

pions in the final state. Moreover, protons will interact also with the surrounding

matter (protons, neutrons and nuclei), resulting in the production of charged and

neutral mesons. Neutral pions decay in photons (observed at Earth as γ-rays), i.e.

π0 → γγ, while charged pions emit neutrinos in the decay:

π+ → µ+ + νµ, (1.3)

with the muon subsequently decaying in: e++ ν̄µ + νe , and

π− → µ− + ν̄µ, (1.4)

with the muon subsequently decaying in: e−+νµ +ν̄e . In the π± decay chains the

three neutrino species are produced with a ratio νe : νµ : ντ = 1 : 2 : 0, but due to

neutrino flavour oscillations during the propagation from the source to Earth, equipar-

tition of the three leptonic flavours (νe : νµ : ντ = 1 : 1 : 1) is expected at the Earth.

The exact source of the high-energy cosmic rays is thus unknown, although some very

energetic processes have been proposed as sources or accelerators. An example is

represented by Supernova remnants (SNR), i.e. matter ejected at supersonic velocity

by the explosion of a Supernova. During this very energetic ending phase of a star,

matter can be accelerated to energies greater than 1012 eV, resulting in shock waves

that move outwards from the centre [6].

Other accelerating processes are represented by Active Galactic Nuclei (AGN), i.e.

galaxies with a very bright core of emission in their centre, which are believed to con-

tain a very massive central black hole (106 to 109 solar masses). Such massive objects

are capable of attracting huge quantities of surrounding matter from an accretion

disk, and consequently emitting two opposite relativistic jets, i.e. collimated outflows

of plasma propagating in perpendicular direction w.r.t the accretion disk. The rel-

ativistic jets can accelerate particles to ultra-high energies, thus leading to a very

concentrated energy output from a relatively small volume. Early models postulat-

ing the hadronic acceleration in the AGN cores, predicted a production of secondary

neutrinos [7, 8]. AGNs, as well as Radio Galaxies (galaxies that are very luminous

i
i

“main” — 2018/4/10 — 10:46 — page 5 — #19 i
i

i
i

i
i

1.1. Neutrino astronomy 5

at radio wavelengths) or Galactic clusters can accelerate protons to energies up to

1020 eV.

Neutrino astronomy can also provide long baselines for neutrino oscillation studies.

Such phenomena, i.e. the neutrino flavour transitions due to quantum mechanical

mixing among neutrino flavours (νe , νµ , ντ) and mass eigenstates (ν1, ν2, ν3), have

been investigated by several experiments, using solar, atmospheric, reactor or accel-

erator neutrinos, spanning energies from a fraction of MeV to tens of GeV, providing

evidence which contributed knowledge on the subject [6, 9, 10]. Such discoveries imply

that neutrinos are massive particles. However, no information on the absolute neu-

trino masses can be deduced from neutrino oscillation measurement, but they provide

estimations of the squared-mass splittings: ∆m2
ij = m2

i −m2
j , (i, j = 1, 2, 3). From the

three neutrino mass eigenstates, three mass-squared differences can be constructed,

but only two of them are independent: ∆m2
32 + ∆m2

21 = ∆m2
31. Consequently, there

are two possible non-equivalent orderings for the mass eigenvalues (the convention is to

choose m1 and m2 as the mass eigenstate that are close to each other, with m1 < m2),

and the two scenarios are referred to as the normal hierarchy (NH) (m1 < m2 < m3)

and the inverted hierarchy (IH) (m3 < m1 < m2). Some neutrino astronomy experi-

ments are dedicated also to the neutrino oscillation measurements, as will be briefly

described in the following sections. Furthermore, neutrinos can provide evidence of

Dark matter self-annihilation reactions, which are believed to emit neutrinos [6].

The drawback of using neutrinos as carriers, of course, is that their weak interac-

tions prevent direct detection, and make indirect detection difficult because of their

extremely small cross sections (as reported in Section 1.1.2). This implies that very

large target masses are needed for the detection, with extremely good background

rejection, to observe a measurable flux. The idea of using a very large volume of

sea-water as detection medium was proposed by Markov and Zheleznykh in 1960 [11].

The sea water acts in this case simultaneously as the target, the shield and the active

detection volume. The proposal foresaw the instrumentation of a large volume of

water (as well as ice) with several optical sensors in order to detect the Cherenkov

light emitted by the charged particles produced in the CC interaction of neutrinos

with water and rock in the proximity of the telescope.

After the pioneering work carried out by the DUMAND collaboration off shore Hawaii

Island [12], Baikal was the first collaboration to install a small scale underwater neu-

trino telescope in the Siberian Lake Baikal (Russia) [13]. On the other hemisphere,

the AMANDA detector, constructed at the Amundsen-Scott South Pole Station was

i
i

“main” — 2018/4/10 — 10:46 — page 6 — #20 i
i

i
i

i
i

6 Chapter 1. Introduction

completed in 2001 [14]. AMANDA was a first-generation instrument that served as

test bench for technologies and as prototype for the km3-size detector IceCube, which

has been taking data in its final configuration since December 2010. In the Northern

Hemisphere the largest operating detector is now ANTARES that has a total instru-

mented volume of about 0.025 km3, while the construction of KM3NeT, a network of

cubic kilometer-scale detectors in the Mediterranean Sea, is currently on-going.

1.1.1 High-energy neutrino detection

The general idea behind the detection of neutrinos in underwater Cherenkov telescopes

consists in detecting the optical signal emitted by secondary particles generated in neu-

trino interactions with the water. This kind of detection is indirect, since the light

collected by the photosensors is the Cherenkov radiation emitted by the secondary

particles, propagating with a velocity greater than the speed of light in the medium.

Muons produced in charged current neutrino interactions represent the golden chan-

nel for high-energy neutrino telescopes, since they are highly penetrating particles,

massive enough (mµ ∼ 200 me) not to lose quickly all the energy via radiative pro-

cesses (their range in water or rock is several kilometres at Eµ ≥ 1 TeV), and carry

information on interactions occurring far outside the instrumented volume. However,

electron and tau neutrinos can also be identified, although with a worse angular accu-

racy with respect to the muon neutrinos, through the detection of particle showers1.

Also neutral current interactions of high energy neutrinos occurring inside the tele-

scope volume can be detected through the measurement of the produced cascades.

Such detectors should be as isotropic as possible, in order to be sensitive to events

coming from different directions, and should have a volume large enough to efficiently

track muons, either produced externally and crossing the detector volume or produced

internally (Figure 1.2).

The typical scale of Cherenkov neutrino telescopes is of the order of 1 km3. More-

over, these detectors have to be shielded from the intense flux of atmospheric muons,

originated in the interactions of cosmic rays with the atmosphere. At the Earth

surface their flux is about 1011 times larger than the one expected for astrophysical

neutrino events [15]. Therefore, neutrino telescopes are usually deployed deep under-

water. Even at large depths (∼ 3000 m), the flux of muons that reaches the detector

is about 6 orders of magnitude more intense than the atmospheric neutrino-induced

muon flux [15]. This is the reason why down-going muons cannot be used in the
1also known as cascades

i
i

“main” — 2018/4/10 — 10:46 — page 7 — #21 i
i

i
i

i
i

1.1. Neutrino astronomy 7

!"
"

"

!

(1)

(2)

(3)

Figure 1.2 Representation of 3 types of interaction and Cherenkov light production
inside the detector. (1): up-going νµCC interaction, generating a muon that propagates
into the detector producing a track signature; (2): down-going atmospheric muon gen-
erating a track event; (3):shower event, produced either by a νeCC interaction or a NC
neutrino interaction (any flavour). A schematic representation of the detector geometry
is depicted.

search for astrophysical sources, being the signal almost completely overwhelmed by

the background. On the contrary, upward-oriented muon events are considered good

neutrino candidates, since they cannot be atmospheric: even at the highest energies,

in fact, muons are absorbed within a path of about 50 km of water, so they cannot

traverse the entire Earth diameter (∼ 13000 km). However, even a downward-looking

neutrino telescope suffers the background due to atmospheric muons that are mis-

reconstructed as up-going and may contaminate the up-going astrophysical neutrino

event sample. A water overburden of thousands of meters (e.g. about 3000 m in the

KM3NeT-ARCA case) is therefore required in order to strongly reduce the number of

mis-reconstructed down-going events. A completely different source of background is

the optical background due to bioluminescence (“bursts” with variable duration from

i
i

“main” — 2018/4/10 — 10:46 — page 8 — #22 i
i

i
i

i
i

8 Chapter 1. Introduction

seconds to days, produced by bacteria or small organisms) and to radioactive salts

present in sea-water (40K decay), which produce spurious signals on the optical sen-

sors. The reduction of the background is obtained in this case by requiring space-time

correlation between signals on nearby photodetectors (see section 2.1).

1.1.2 High-energy neutrino interactions

Neutrino interaction with matter may occur either with a nucleon or an electron.

With one exception being the Glashow resonance, occurring at very high energies

(∼ PeV) [16], the neutrino-nucleon interaction is dominant for all flavours and ener-

gies considered in this work. Neutrinos can interact with nucleons in many ways. The

contributing processes are the quasi-elastic scattering (QE), dominant below 1 GeV,

the resonance production (RES), mostly significant around a few GeV, and the deep

inelastic scattering (DIS), which is dominant for higher energies (i.e. above 100 GeV).

The neutrino-nucleon cross sections are shown in Figure 1.3, for neutrinos and an-

tineutrinos respectively, as a function of the neutrino energy, for energies up to a few

hundreds GeV [17], while for higher energies, as evaluated by [18], the cross sections

are shown in Figure 1.4.

Figure 1.3 Neutrino/nucleon (left) and anti-neutrino/Nucleon (right) cross section per
energy unit, as a function of neutrino energy up to 102 GeV, for different processes,
evaluated by [17].

The type of interaction, charged current (CC) or neutral current (NC), as well as the

neutrino flavour, characteristically affect the signature of the neutrino events in the

detector (Figure 1.5).

The exchanged mediator boson is a W± or Z, respectively: the NC interaction only

transfers momentum and energy, the CC interaction also transfers charge. Neutrino

charged current interactions result in a relativistic charged lepton, with the same

i
i

“main” — 2018/4/10 — 10:46 — page 9 — #23 i
i

i
i

i
i

1.1. Neutrino astronomy 9

Figure 1.4 Neutrino/nucleon (left) and anti-neutrino/Nucleon (right) cross section as
a function of neutrino energy up to 1012 GeV, taken from [18]. The CC interaction is
represented by the dashed line, the NC interactions by the point-dashed line while the
solid line shows the total (CC+NC) cross section.

Figure 1.5 Representations of the neutrino interactions relevant to KM3NeT. N indi-
cates the nucleon involved in the interaction, while W and Z are the mediator bosons,
charged and neutral, respectively. From left to right: νµCC interaction, resulting in a
muon and a hadronic shower; νeCC interaction, resulting in an electron and an electro-
magnetic plus a hadronic shower; ντCC resulting in double bang event; νNC interaction,
i.e. Neutral Current interaction of a neutrino (any flavour), resulting in a hadronic shower
(often producing secondary EM showers in the propagation) and a scattered neutrino.

flavour of the incident neutrino, and a hadronic shower, according to:

νl +N → l +X, l = e, µ, τ (1.5)

(and corresponding equation for the anti-neutrinos and anti-leptons respectively).

Therefore, νµ will produce muons, νe will produce electrons and in the latter case

an electromagnetic shower will overlap with the hadronic shower. ντ events, on the

other hand, have a peculiar signature: the τ particle produced in the interaction will

travel a certain distance before decaying (as shown in Figure 1.7) according to its

energy and, depending on the decay type, might produce a second hadronic shower,

resulting in the so-called "double bang event". Neutral Current interactions, on the

other hand, are similar for all neutrino flavours. The neutrino interacting with the

nucleon will result in a lower energy scattered neutrino and a hadronic shower, as

i
i

“main” — 2018/4/10 — 10:46 — page 10 — #24 i
i

i
i

i
i

10 Chapter 1. Introduction

described by:

νl +N → νl +X, l = e, µ, τ (1.6)

(and corresponding equation for the anti neutrinos). Furthermore, for all hadronic

showers, as roughly 1/3 of the produced pions are neutral, there is usually an electro-

magnetic component that drains off the energy into electromagnetic showers, which

overlaps with the hadronic cascade. Therefore, all neutrino interactions that can oc-

cur may be classified in (or are a combination of) two signatures: shower-like and

track-like events.

A track signature corresponds to a single particle propagating in the medium, pro-

ducing Cherenkov light as a result of its motion. This behaviour is typical of muons,

for the reasons described before, so the track-like events usually indicate a charged

current muon neutrino (νµCC) interaction. The kinematics of this interaction is

such that there is a small angle between the neutrino and the produced muon direc-

tions (Figure 1.6).

Figure 1.6 Median of the angle between the neutrino and the produced muon directions
as a function of neutrino energy, as shown in [19].

As only the muon direction can be reconstructed, this sets a limit on the achievable

angular resolution. Since the angle decreases with energy, the angular resolution of

a neutrino telescope is dominated by the reconstruction above energies of typically a

few TeV and by the kinematics of the neutrino interaction below. Muons produced

by neutrinos with Eν > 10 TeV can be considered almost collinear with their parent

neutrino [6]. When a high energy muon propagates in a transparent medium (like

water or ice), a small fraction of its energy is lost via the Cherenkov radiation emission.

The majority of the muon energy loss is due to other mechanisms:

• ionisation of matter, which is the dominant process at energies below 1 TeV;

• radiative losses;

i
i

“main” — 2018/4/10 — 10:46 — page 11 — #25 i
i

i
i

i
i

1.1. Neutrino astronomy 11

• photo-nuclear interactions.

The total energy loss by muons, neglecting photo-nuclear interactions, for energies

above 1 TeV can be expressed as:

dE

dx
= −α(E)− β(E)E (1.7)

where the α term is referred to as the ionisation term and the β term is the radiative

loss. According to this equation, the muon range is computed as:

R =
1

β
ln(1 +

Eµβ

α
). (1.8)

A shower signature, on the other hand, indicates the production of a large number

of charged particles, initiated by the decay of a particle or by the interaction of such

particle with the surrounding medium. Each particle produced may further decay or

interact, resulting in the production of more particles. The process stops when the

energy of the particles involved is not sufficient to convert energy into matter. The

length of a shower is related to the type and the energy of the initial particle. Elec-

tromagnetic showers are typically initiated by the photons emitted in the propagation

of high energy electrons (via bremsstrahlung or ionisation). These photons produce

electron/positron pairs, leading to a cascading process, since electrons and positrons

may further radiate photons via bremsstrahlung reiterating the process. Cherenkov

light is emitted by all charged particles with enough energy (above the Cherenkov

threshold). The shower evolution is characterised by the radiation length X0, which

is the average distance after which the shower energy is reduced by a factor 1/e. X0 in

water is approximately 36 cm, while the maximum longitudinal elongation for shower

energies of a few GeV is approximately 1 m. [20].

The spatial distributions of electromagnetic and hadronic showers are similar, but in

the latter case the process is initiated and driven by nuclear interactions instead of elec-

tromagnetic interactions. In water, the nuclear interaction length is about 83 cm [20].

Although hadronic showers are characterised by longer mean free paths, electromag-

netic and hadronic showers with the same initial energy have very similar longitudinal

apparent length in water, since the masses of the hadrons involved are much heavier

(w.r.t. the mass of the electron) and this reduces the quantity of Cherenkov light

emitted because the Cherenkov threshold for the involved hadrons is higher. Further-

more, at higher energies the Cherenkov light emitted by hadronic shower approaches

i
i

“main” — 2018/4/10 — 10:46 — page 12 — #26 i
i

i
i

i
i

12 Chapter 1. Introduction

that of the electromagnetic ones, and this is due to the fact that 1/3 of the parti-

cles produced in the secondary interactions are π0, which decay mostly in a pair of

photons, initiating electromagnetic sub-showers [4].

Neutral Current interactions typically produce hadronic shower events, resulting from

the interaction of the neutrinos with the nucleons, and subsequent nucleon fragmen-

tation due to DIS. Electrons have a short mean free path in water, causing an elec-

Figure 1.7 Path lengths of muons, taus and electromagnetic (em) and hadronic (had)
showers in water. Taken from [19].

tromagnetic shower. As a result, the hadronic and electromagnetic showers overlap.

Therefore, electron neutrino CC interactions (νeCC) have a signature of a shower

event similar to NC interactions. Since muons have much longer mean free path than

electrons due to their larger mass, which suppresses radiative losses, the muon neu-

trino CC signature is that of track and/or a hadronic shower. The path lengths of

muons and taus as well as those of the hadronic and electromagnetic showers are

shown in Figure 1.7. The present work will focus on muon and electron neutrino CC

and NC interactions.

1.1.3 The Cherenkov radiation

Charged particles propagating with velocity v in a dispersive medium of refractive

index n polarise and excite the surrounding atoms. If v is larger than the speed

of light in the medium (c/n), a part of the excitation energy is emitted as coherent

radiation, peaked at a characteristic angle θC with the direction of the moving particle

(Figure 1.8).

i
i

“main” — 2018/4/10 — 10:46 — page 13 — #27 i
i

i
i

i
i

1.1. Neutrino astronomy 13

Figure 1.8 Cherenkov radiation emitted at a characteristic angle θC .

The angle θC is linked to n and v by the relation

cos(θC) =
1

βn
(1.9)

where β = v/c. The number N of Cherenkov photons emitted by a particle of charge

ze per wavelength interval dλ and distance travelled dx, is given by:

d2N

dxdλ
=

2παz2

λ2
(1− 1

β2n2(λ)
) (1.10)

where λ is the wavelength of the photon and α is the fine structure constant. In the

wavelength range from 300 nm to 600 nm, in which water is transparent, this results

in about 3.4 × 104 emitted photons per metre of particle track. In this wavelength

region, the refractive index of water is n ∼ 1.35, thus for a highly relativistic particle

with β ∼ 1, this leads to a Cherenkov angle θC of about 42◦. The attenuation of

the Cherenkov light in water sets an upper limit to the distance between the optical

sensors of the telescope. In order to properly describe the transparency of sea water

as a function of the wavelength, it is necessary to introduce the parameters describing

absorption and scattering, namely the absorption length λabs and the scattering length

λs. Each of these quantities represents the path after which a beam of light of initial

intensity I0 and wavelength λ is reduced in intensity by a factor of 1/e, through

absorption or scattering according to:

Iabs,s(x) = I0e
(− x

λabs,s
)
, (1.11)

where x is the distance travelled by the photons. The attenuation length is defined as

1/λatt = 1/λabs + 1/λs. Water is transparent only to a narrow range of wavelengths

(350 nm ≤ λ ≤ 550 nm). In particular, λabs is about 100 m for deep polar ice [21],

and it is about 70 m for clear ocean waters [22].

i
i

“main” — 2018/4/10 — 10:46 — page 14 — #28 i
i

i
i

i
i

14 Chapter 1. Introduction

1.2 The KM3NeT experiment

KM3NeT is a multi-km3 network of neutrino telescopes designed to be installed in the

Mediterranean Sea, in a convenient location to look for high-energy neutrino sources in

the inner part of our Galaxy. Three sites (40 km off-shore Toulon, France, at a depth

of 2500 m; 80 km off-shore Capo Passero, Italy, at a depth of 3500 m; 20 km off-shore

Pylos, Greece at depths of 3500-5000 m) have been chosen to host the telescopes, and

the first two, namely the Italian and the French sites, are already hosting working

detectors. The main goals of KM3NeT are to identify sources of cosmic neutrinos and

to establish the neutrino mass hierarchy (see Section 1.1). Since neutrinos propagate

undisturbed from their sources to the Earth, even modest numbers of detected neutri-

nos can be of great scientific relevance, e.g. by indicating the astrophysical objects in

which cosmic rays are accelerated, or pointing to places where dark matter particles

annihilate or decay. The analyses performed in large ice and water Cherenkov detec-

tors rely upon the reconstruction of the muon direction and energy (in νµCC events),

to get an estimate of the direction and energy of the neutrino. As the two studies

are conducted with neutrinos having very different energy scales, two different detec-

tor configurations have been designed, namely: ARCA (Astroparticle Research with

Cosmics in the Abyss), the high energy detector; and ORCA (Oscillation Research

with Cosmics in the Abyss), dedicated to the low energy neutrino detection. In the

latter, since low energy neutrinos are more abundant and a denser configuration is

needed for a reliable reconstruction, a smaller detector volume is constructed. The

structure of the two configurations is basically the same, the main difference being in

the spacing of the components. The whole KM3NeT detector will be composed by

three so-called building blocks, of which two will be dedicated to the high energy mea-

surements (ARCA), while one will be used for ORCA. Currently, KM3NeT phase-1 is

under construction, which will have 24 ARCA Detection Units and 7 ORCA Detection

Units deployed in the Italian and French sites, respectively. Each building block will

contain a set of 115 Detection Units, each in the shape of a string of 18 Digital Optical

Modules (DOMs). The Digital Optical Module (DOM) [23] is a transparent 17 inch

diameter glass sphere made of two separate hemispheres, housing 31 Photo-Multiplier

Tubes (PMT) and their associated readout electronics (Figure 1.9). The design of

the DOM has several advantages over traditional optical modules using single large

PMTs, as it houses three to four times the photo-cathode area in a single sphere and

has a much more uniform angular coverage [6]. As the photo-cathode is segmented,

the identification of more than one photon arriving at the DOM can be done with

i
i

“main” — 2018/4/10 — 10:46 — page 15 — #29 i
i

i
i

i
i

1.2. The KM3NeT experiment 15

high efficiency and purity. In addition, the directional information provides improved

rejection of optical background. Within the Optical Module, the PMTs are arranged

in 5 rings of 6 PMTs plus a single PMT at the bottom, pointing vertically downwards.

The PMTs are spaced at 60◦ in azimuth and successive rings are staggered by 30◦.

There are 19 PMTs in the lower hemisphere and 12 PMTs in the upper hemisphere,

held in place by a mechanical support [6].

Figure 1.9 KM3NeT Digital Optical Module (DOM) [24].

For KM3NeT/ARCA, each string is about 700 m in height, with DOMs spaced ap-

proximately 36 m apart in the vertical direction, starting about 80 m from the sea

bed. For KM3NeT/ORCA, each string is 200 m in height with DOMs spaced 9 m

apart in the vertical direction, starting about 40 m from the sea floor. The lower

end of each string is anchored to the sea bed and connected to the shore station with

an electro-optical cable, which transfers data to shore via optical fibres. The upper

part of the detector reaches a depth of about 2700 m in the ARCA case under the

sea level and is held approximately vertical by a submerged buoy, to reduce the hor-

izontal displacement of the top relative to the base, due to large sea currents. This

work will focus on the ARCA detector, and in particular, all the simulations used

have been based on one ARCA building block. Therefore, all of the analyses shown

will be following this configuration. The KM3NeT-ARCA design has been carefully

optimised to maximise the sensitivity to the Galactic sources. One of the findings in

this process is that the overall sensitivity is not reduced if the neutrino telescope is

split into separate building blocks, provided they are large enough, at least 0.5 km3

each [6].

i
i

“main” — 2018/4/10 — 10:46 — page 16 — #30 i
i

i
i

i
i

16 Chapter 1. Introduction

1.3 Neutrino interaction events in KM3NeT

Event simulations and detector response

Monte Carlo simulation tools are necessary for understanding the systematic effects

in a detector and to determine the detection efficiency of the signal of interest and the

background. The muon and electron neutrino charged and neutral current interaction

events considered in this study have been simulated with software that has mostly

been developed in the ANTARES Collaboration and then adapted to the KM3NeT

configuration. Muon and electron neutrino Charged Current interactions will be re-

ferred to as νµCC and νeCC, while the Neutral Current interactions will be denoted

as νµNC and νeNC respectively. In event generation, the interaction of a neutrino and

the passage of a particle through the detector are simulated. The simulation is based

on the nominal detector geometry described in the previous section. Each of the two

ARCA blocks is treated identically and independent simulations are performed for a

single block, and the effective lifetime (event rate) is multiplied by two. The first step

of the simulation chain is the generation of particle fluxes in the so-called generation

volume, which is significantly larger than the instrumented volume, in order to include

particles that can travel larger distances, e.g. the high energy muons. To save com-

puting time, a region containing the instrumented volume at its centre is defined (the

so-called can), according to which the simulated events are recorded (Figure 1.10).

The can typically extends three times the absorption length of light in water around

the instrumented volume. For each generated event, the produced particles are prop-

SEA BED

DETECTOR

100m

210m

CAN

Figure 1.10 Detector and Can

agated and if at least one reaches the can, the event is recorded. Each neutrino

interaction is simulated using the GENHEN code [25], in which an energy spectrum

according to a power law with a given index E−γ is assumed. The simulation includes

i
i

“main” — 2018/4/10 — 10:46 — page 17 — #31 i
i

i
i

i
i

1.3. Neutrino interaction events in KM3NeT 17

propagation through Earth, deep-inelastic scattering, quasi-elastic scattering and res-

onant interactions. Atmospheric muons are simulated using the MUPAGE code [26].

MUPAGE uses a parameterisation of the atmospheric muon flux at different energies

and zenith angles. As a result, events can be relatively easily generated with sufficient

statistics, to match the actual detection rate of atmospheric muons. In addition to

single atmospheric muons, atmospheric muon bundles are simulated: i.e. groups of

muons produced in the core of an extended air shower (EAS). Such events exhibit a

signature very similar to that of a single high-energy muon in the detector, but with a

stochastic energy-loss pattern that is much more uniform, and a non-negligible lateral

spread (w.r.t. the characteristic spatial resolution scale of ARCA) [6]. Muon bundles

are especially important at high energies. Since the energy spectrum of atmospheric

muons is steep, MUPAGE simulations have been performed for different muon energy

bins. This allows simulating adequate statistics at energy regions of interest for cosmic

neutrino detection. The light production for showers is simulated using a so-called

“multi-particle” approximation. Except for muons and taus, the light production of

particles is simulated by treating them like an electron shower with a scaled equiva-

lent energy and distance to the vertex. The light production of particles in the can

is simulated using tabulated results from a GEANT 3.21 simulation. This approach is

used to reduce the computing time that would be required by single-photon track-

ing. The code used for this simulation is called KM3 [27]. This software projects

the light produced to the PMTs in the detector, taking into account the scattering

and absorption of the light in the sea water. In the next step the light detection is

modelled including absorption in the glass sphere and the gel, as well as the PMT

efficiency and PMT angular acceptance. Light from 40K decays and dark rates from

the PMTs are simulated by adding 5 kHz of random noise to the signal reaching the

PMTs. Light from bioluminescence bursts is not simulated. The PMT response is

simulated using the JPP software framework [28]. It includes the transition time and

the amplification of the PMT as well as the effects of the readout electronics. The

detector response, as well as some packages contained in JPP will be described in

the trigger optimisation section (2.1). Since the detector response is recorded as a

collection of hits, i.e. signal detected by the PMTs, and times, the shower-like and

track-like topologies produce very different space-time hit patterns in the detector.

In particular, the shower-like events are characterised by a very dense distribution

of hits, close to the neutrino interaction point. A significant fraction of the neutrino

energy is released in a hadronic shower (and, in the case of νeCC interactions, the

rest in an electromagnetic cascade), thus allowing for a good estimate of the neutrino

i
i

“main” — 2018/4/10 — 10:46 — page 18 — #32 i
i

i
i

i
i

18 Chapter 1. Introduction

energy. A track-like event is characterised by the Cherenkov light from the emerging

muon that can travel large distances through Earth rock and sea water. The spatial

hit pattern in this case is closely related to the muon direction, thus allowing for a

precise measurement of the latter. Starting from the ANTARES experience, algo-

rithms that reconstruct direction, energy and interaction vertex of the neutrinos from

the muon tracks or the showers have been developed. These have been optimised for

pure track events (νµCC events far from the detector, where only a single energetic

muon is observed) and for shower events (NC interactions of all neutrino flavours and

νeCC events, where only a shower is observed), respectively.

i
i

“main” — 2018/4/10 — 10:46 — page 19 — #33 i
i

i
i

i
i

19

Chapter 2

Event triggering in KM3NeT

Triggers have paramount importance during data acquisition and analysis to select

events and reduce the background contamination. Most analyses, such as the event

reconstruction algorithms or Neural Network-based particle identification, are affected

by different choices of the trigger conditions, as they rely on event selection. For in-

stance, loose trigger conditions may result in a large amount of data collected, which

can be counter-productive for the computing time and memory occupation; on the

other hand too strict cuts may cause an excessive loss of data, causing inefficiencies.

The solution is finding a balance between the two extreme options, to get the best

from the trigger conditions applied both on-line and off-line. This chapter will de-

scribe a study performed on the trigger conditions, by investigating how tuning trigger

parameters affects the data selection. The main goal of this study is to ensure that

the best trigger conditions are used to select the events further fed into Deep Learning

models, as reported in Chapter 4.

2.1 Online and offline triggers in KM3NeT

The readout of the KM3NeT detector is based on the “all-data-to-shore” concept, ac-

cording to which all the analogue signals from the PMTs exceeding a threshold (typ-

ically voltage equivalent to 0.3 photo-electrons) are digitised and sent to the shore

station to be processed. Dedicated software filters possible physics events from back-

ground. Each analogue signal is converted to digital by an individual time-to-digital

converter (TDC) implemented in an FPGA (Field Programmable Gate Array) on the

Central Logic Board (CLB), contained in the DOM [29]. Converted data are then

transferred to shore via an Ethernet network of optical fibres. Hits are recorded as

a pair of the start time and the duration of the signal above a predefined threshold

i
i

“main” — 2018/4/10 — 10:46 — page 20 — #34 i
i

i
i

i
i

20 Chapter 2. Event triggering in KM3NeT

(also called time-over-threshold); the time during which the signal is above the thresh-

old is then recorded, and is referred to as the “time-over-threshold” quantity (ToT)

(Figure 2.1).

V

ToT

Vthreshold

Figure 2.1 Schematic view of the Time-over-Threshold technique: the duration of the
time interval in which the signal exceeds a threshold value is recorded as ToT. Refer-
ence: [30].

The raw data are organised in segments called timeslices of 100 ms duration. Each

timeslice contains a data frame per DOM in which the information of the hits (start

time and ToT) is stored. The start time of the hit is recorded with 1 ns granularity.

The hit time is determined with respect to the internal clock of all PMTs of every

DOM. Thus, every pulse, along with its time over threshold and time of the hit, is

commonly referred to as a hit, with the time granularity of 1 ns. As a result, the total

data rate for a single building block is about 25 Gb/s. A reduction of the data rate

is required to store the filtered data on disk [6]. The following selection criteria, to

reduce the amount of background events recorded, are applied to the data on shore,

except the first selection, which is applied off shore:

• the level-zero filter (L0) is the threshold for the analogue pulses that are sent to

the shore station;

• the level-one filter (L1) refers to a coincidence of two or more L0 hits from

different PMTs in the same optical module, within a fixed time window. The

scattering of light in deep-sea water is such that the time window can be very

small. A typical value is ∆T = 10 ns. The estimated L1 rate per optical module

is then about 1000 Hz, of which about 600 Hz is due to coincidences from 40K

decays (in the ARCA environment);

i
i

“main” — 2018/4/10 — 10:46 — page 21 — #35 i
i

i
i

i
i

2.1. Online and offline triggers in KM3NeT 21

• The remaining part arises from random coincidences that can be reduced by

about a factor two relying on the known orientations of the PMTs. This is

referred to as the level-two filter (L2).

In order to reject random background, space-time coincidences between the hits are

required. The basic idea of all trigger algorithms is that events produce clusters

of hits that are separated in time by light propagation in water, while background

light is uncorrelated. In particular, first a selection of all of the local coincidences is

performed (L1 coincidences, within the same DOM in the 10 ns time window), then

clusters of hits are selected, so that any hit in the cluster is related to the remaining

ones, according to the following causality relation:

|∆t|< |∆r|/cwater + Textra (2.1)

where ∆t is the time difference between the two hits, ∆r is the distance between

the two considered hits, cwater is the group velocity of the hits in water, i.e. c
n , and

Textra is an additional time window, considered in the event to account for timing

uncertainties, as well as photon scattering, and is typically set to about 10-20 ns.

After the cluster of hits is defined, it is further extended by including all the causally

connected hits for which the following conditions are fulfilled:

• the hits are causally connected to at least 75% of the cluster hits;

• the hits are closer than 50 m to at least 40% of the cluster hits;

Separate trigger algorithms operate in parallel on the data, each optimised for a

specific event topology: track-like and shower-like events (Section 1.1.2). Therefore, a

Muon trigger and a Shower trigger are defined for each topology, respectively.

Muon trigger

The general idea to trigger a muon track event requires the assumption of a muon

direction. In this way, the causality relation can be rewritten as follows [19, 31].

Figure 2.2 shows the relation between a propagating muon and the arrival time of the

Cherenkov light at a given PMT, which can be expressed as:

ti = t0 +
zi − z0
c

+ tan(θC)ri
n

c
, (2.2)

where ti is the time of the hit, i.e. the time at which the photon reaches the PMT;

t0 is the starting time of the event, i.e. the instant at which the muon is in the

i
i

“main” — 2018/4/10 — 10:46 — page 22 — #36 i
i

i
i

i
i

22 Chapter 2. Event triggering in KM3NeT

Figure 2.2 Schematic view of a muon (solid arrow) propagating in the vicinity of a
DOM; Cherenkov light (dashed arrow) emitted and collected by a PMT.

position z0; zi is the position of the particle when the Cherenkov photon is emitted

at the Cherenkov angle θC ; ri is the distance of the PMT from the direction of the

muon. This relation is evaluated after having rotated the coordinate system so that

the muon is seen travelling along the Z axis. Thus, the time difference of two hits in

this coordinate system satisfies the inequality:

|(ti − tj)c− (zi − zj)|≤
√

(xi − xj)2 + (yi − yj)2tan(θC), (2.3)

where ti and tj are the times (of arrival at the PMTs) of the hits, and x, y, z the

corresponding coordinates [31].

For each assumed direction, the intersection of a cylinder (whose axis is the muon

direction) with the 3D array of optical modules is considered, and all the PMTs falling

inside the intersection are included in the event (Figure 2.3). The diameter of this

cylinder (also known as road width) corresponds to the maximal distance travelled by

light in sea water, and is safely set to a few times the absorption length [6].

With a requirement of four (or more) L1 hits, this filter shows a very small contribution

of random coincidences: such constraints improve the signal-to noise ratio (S/N) of an

L1 hit by a factor of (at least) 104 compared to the general causality relation [6].

Shower trigger

For shower events, a point-like emission is assumed. As a consequence, the definition

of a maximum photon travel distance limits the maximum distance Dmax between

hit DOMs. The maximal allowed time difference ∆T between two causally connected

i
i

“main” — 2018/4/10 — 10:46 — page 23 — #37 i
i

i
i

i
i

2.1. Online and offline triggers in KM3NeT 23

Figure 2.3 The geometry of the detection of the Cherenkov light emitted by a prop-
agating muon (solid arrow). The dashed arrows represent the Cherenkov light emitted
with the characteristic angle. A cylinder is superimposed to represent the road width
defined for hits selection.

hits separated by a distance d is then:

∆Td =

d/cwater + Textra if d < Dmax/2

(Dmax − d)/cwater + Textra if d > Dmax/2
(2.4)

Such filters help reducing the total number of PMTs to be considered in each event

and the width of the time window obtained with the causality relation [6]. It is worth

noting that the number of computers and the speed of the algorithms determines the

performance of the system and hence needs to be properly sized to avoid affecting the

physics output of KM3NeT.

i
i

“main” — 2018/4/10 — 10:46 — page 24 — #38 i
i

i
i

i
i

24 Chapter 2. Event triggering in KM3NeT

2.2 Trigger parameters

The response of the detector is simulated by the tools named JTriggerEfficiency

and JTriggerProcessor, contained in the JPP framework - the official simulation and

analysis framework developed in the KM3NeT Collaboration. The main difference

between the two programs is that JTriggerProcessor, often referred to as JTP, is de-

signed to trigger DAQ data files (i.e. the real data events), while JTriggerEfficiency

(JTE) is to be applied to Monte Carlo simulations, with the added functionality of sim-

ulating uncorrelated background hits, usually discarded by the space-time coincidence

requirements. The trigger algorithms implemented in JTE include both the muon and

the shower trigger. The shower trigger is used for the optimisation of the detection of

shower-like events, which are produced by charged-current (CC) interactions of elec-

tron (anti)neutrinos νe (ν̄e), and νµ , νe , ντ (ν̄µ , ν̄e , ν̄τ) neutral current (NC)

interactions, resulting in particle showers, as explained in 1.1.2: the produced elec-

tron gives rise to an electromagnetic shower, while the hadronic system can develop a

hadronic shower, according to its energy and to the decay modes of the particles pro-

duced. For events induced by the neutral current (NC) interaction of neutrinos, both

electromagnetic and hadronic showers can be produced. On the other hand, track-like

events are produced mainly by νµ charged current (CC) interactions and high energy

atmospheric muons. Depending on which trigger selects a hit, 3DShowerTrigger or

3DMuonTrigger, each hit has an associated trigger bit set for analysis purposes. If the

hit is triggered by both algorithms, both trigger bits are set.

2.2.1 JTriggerEfficiency

All the trigger parameters can be selected via command line arguments when running

JTriggerEfficiency (or JTriggerProcessor). Default values are hard-coded in the

software, but each parameter can be tuned. The following table shows the trigger

parameters and their default values.

Besides these tunable parameters, further options regarding the output settings can

be used (e.g. whether to save only triggered hits, or verbosity options). The software

is typically run by specifying the detector file, containing a detailed description of the

detector geometry to use in the analysis, the input event file and the output file name.

In the following, the tunable parameters will be described in detail.

i
i

“main” — 2018/4/10 — 10:46 — page 25 — #39 i
i

i
i

i
i

2.2. Trigger parameters 25

Trigger parameter Default value
trigger3DShower.enabled 0

trigger3DShower.numberOfHits 5
trigger3DShower.DMax_m 250

trigger3DShower.TMaxExtra_ns 20
trigger3DShower.factoryLimit 100

trigger3DMuon.enabled 0
trigger3DMuon.numberOfHits 5

trigger3DShower.TMaxExtra_ns 20
trigger3DMuon.DMax_m 1000

trigger3DMuon.roadWidth_m 120
trigger3DMuon.gridAngle_deg 10
trigger3DMuon.TMaxExtra_ns 20
trigger3DMuon.factoryLimit 100

L2Min 2
ctMin -1

TMaxLocal_ns 10
TMaxEvent_ns 5000
numberOfBins 1000
combineL1 1

Table 2.1 Trigger parameters and their default values

2.2.2 JTE parameters tuned

The trigger parameters that can be tuned and passed to JTE and JTP via command

line arguments are:

• trigger3DShower(trigger3DMuon).numberOfHits: the minimum number of

L1 hits required for an event in the coincidence time window to be triggered.

This parameter can be set separately for the muon and the shower triggers;

• trigger3DShower.DMax_m: the maximum distance in m between PMTs to be

used for triggered event time;

• TMaxExtra_ns: maximum time in ns added to the coincidence time window to

select the L1 hits contributing to a triggered event. This time is added to the

maximum event time (see Section 2.1);

• trigger3DMuon.roadWidth_m: radius of the cylinder surrounding a muon track

that selects which PMTs are considered in the event;

• combineL1: if activated, multiple L1 hits occurring on a single DOM in the local

time window are merged to create a single L1 hit per DOM;

• TMaxLocal_ns: local time window according to which L1 coincidences are de-

fined;

i
i

“main” — 2018/4/10 — 10:46 — page 26 — #40 i
i

i
i

i
i

26 Chapter 2. Event triggering in KM3NeT

• B (string): random noise rate to add to the input signal, to take into account

random coincidences due to 40K decay. A common choice for this is: "5000,

500, 50, 5, 0.5" (Hz), to include 2, 3, 4, 5-fold coincidences per DOM and

stay on the safe side with 5000 Hz of simulated background rate;

• gridAngle_deg: angular step considered in the scanning of the sky: the number

of directions for which a track hypothesis is tested defines the maximum number

of directions to test;

• factoryLimit: cut on maximum size of hits in the event; if exceeded, the event

is written in any case;

• L2Min: minimum number of L2 coincidences required for an event to be trig-

gered;

• ctMin: minimum value for the cosine of the zenith angle. If −1, then the down-

going events are included, whereas setting this parameter to 0 will consider only

the horizontal and up-going events.

The trigger algorithm works as follows: the time difference between the first and the

last L1 hit of each event is evaluated and compared to the local coincidence time

window. If in this event time window the number of correlated L1 hits is larger than

numberOfHits, then the event is triggered. This chapter concentrates on the effects

of the tuning of the following parameters on the trigger efficiency: the number of

L1 hits (numberOfHits), the time window TMaxExtra_ns, the distance parameters

roadWidth_m and DMax_m for muon and shower trigger respectively, and the boolean

parameter combineL1. In the following, if not explicitly indicated the parameters

numberOfHits and TMaxExtra_ns are set for both the muon and shower trigger at the

same value.

combineL1=0 vs. combineL1=1

Events in KM3NeT can produce multiple hits on the same DOM, if these hits are

collected by several PMTs in the local time window. In principle, each hit occurring

in the local time window counts as one. Thus, an event with 5 or more hits in the same

DOM could in principle be triggered. The parameter combineL1, if activated, merges

the multiple hits occurring on a DOM in the local time window, resulting in a single

L1 hit on the selected DOM. This way, multiple DOMs must be triggered in order

to let the event pass the selecting conditions. Deactivating this parameter, a larger

number of hits is collected. Consequently, if the bare number of hits is considered to

i
i

“main” — 2018/4/10 — 10:46 — page 27 — #41 i
i

i
i

i
i

2.2. Trigger parameters 27

discriminate the events, a greater number of triggered events is obtained, especially for

lower energies. In Figure 2.4 the trigger efficiency is compared for the default trigger

conditions (referred to as std_trigger_combineL1), and for the standard trigger with

the parameter deactivated (referred to as std_trigger_nocomb). As expected, the

resulting trigger efficiency would be much higher with respect to the case in which

the parameter is on. On the other hand, this choice dramatically increases the rate of

background signal. As an example, for the 40K decay, Table 2.2 shows the measured

rate as a function of the simulated random background rate, for the two different

choices of the trigger parameter combineL1. The typical rate of the 40K signal is of

about 5 kHz. Nevertheless, it is possible to detect bursts of higher rates, for which the

trigger rate must be kept low. Furthermore, it is important to notice that multiple

hits occurring on the same optical module within a larger timespan can still count as

separate hits. For this reason, additional conditions can be applied.

Trigger Efficiency

!" CC_std_trigger_combineL1
!" NC_std_trigger_combineL1
!e CC_std_trigger_combineL1
!e NC_std_trigger_combineL1
!" CC_std_trigger_nocomb
!" NC_std_trigger_nocomb
!e CC_std_trigger_nocomb
!e NC_std_trigger_nocomb

Figure 2.4 Trigger efficiency for standard trigger as a function of the neutrino energy,
for different choices of the parameter combineL1

Input signal (kHz) Trig. rate (Hz) w/ Trig. rate (Hz) w/
combineL1=1 combineL1=0

5 0 1.5 · 103

10 0.9 2.2 · 103

15 9.8 3.5 · 103

20 1.1 · 102 6.4 · 103

Table 2.2 Table of comparison of the background rate for default trigger conditions
with combineL1=0 and combineL1=1 for different rates of input signal.

i
i

“main” — 2018/4/10 — 10:46 — page 28 — #42 i
i

i
i

i
i

28 Chapter 2. Event triggering in KM3NeT

Number of hits vs. number of DOMs hit

The parameter trigger3DShower(trigger3DMuon).numberOfHits, for both shower

and muon triggers, has been tested with different configurations. The tested values

are 4 and 5, since lower values would represent an extremely loose condition, whereas

higher values would be too strict a constraint. Even though L1 hits are merged locally

on a single optical module, multiple hits are still possible if occurring in a time interval

that is larger than the local time window (TMaxLocal_ns). The number of DOMs hit,

instead of the bare number of hits, proves itself to be more effective in the selection of

events. This choice allows to reject events with multiple hits on the same DOM, but

few DOMs hit. This selection improves the quality of event detection, even though it

decreases the trigger efficiency, as can be seen in Figure 2.5. In the following sections

and in all of the presented analyses, the term “number of hits” will be referred to as

the minimum number of hits occurring on different DOMs per event.

Trigger Efficiency

!" CC_std_trigger_n_hits
!" NC_std_trigger_n_hits
!e CC_std_trigger_n_hits
!e NC_std_trigger_n_hits
!" CC_std_trigger_n_DOMs
!" NC_std_trigger_n_DOMs
!e CC_std_trigger_n_DOMs
!e NC_std_trigger_n_DOMs

Figure 2.5 Trigger efficiency as a function of the neutrino energy for numberOfHits=5
vs. trigger efficiency selecting events with more than 5 DOMs hit.

2.3 Trigger efficiency optimisation

Different selections of the trigger parameters have been tested, in order to maximise

the number of collected events, and to keep the background contamination low at

the same time. Several combinations of trigger parameters have been considered,

and trigger efficiency has been evaluated and compared for each choice. A sample

of approximately 500, 000 events from the official KM3NeT Monte Carlo production

i
i

“main” — 2018/4/10 — 10:46 — page 29 — #43 i
i

i
i

i
i

2.3. Trigger efficiency optimisation 29

have been processed with JTriggerEfficiency for each trigger configuration. The

neutrino flavour and interactions that have been considered are: charged and neutral

current muon neutrino interactions and charged and neutral current electron neutrino

interactions, often referred to as νµCC , νµNC , νeCC and νeNC respectively. For each

configuration, the number of triggered events have been collected and compared to

the number of simulated events, i.e. the total simulated events before the simulation

of the detector response via JTE. The trigger efficiency, namely the ratio of triggered

over simulated events per energy bin, is defined as:

Eff =
number of triggered events

number of simulated events
(2.5)

The efficiency has been evaluated as a function of the energy of the simulated particles

at can level (i.e. the energy of the simulated particles that reach the can). For each

energy bin (8 energy bins in a logarithmic scale from 102 to 108 GeV), the number

of triggered/simulated events is calculated, and the obtained curve is shown for every

different selection of trigger parameters. In particular, numberOfHits ranging from 4

to 5 has been combined to increasing TMaxExtra_ns from 20 ns to 370 ns. Relaxing the

request on the minimum number of hits required for an event to be triggered, as well as

enlarging the time window, allows more events to be collected, as might be expected.

As this can result in a larger amount of background detected, for every investigated

set of parameters, the background rate is evaluated alongside the efficiency in order

to choose the combination that maximises it with a sustainable background rate of

approximately 100−150 Hz (set on the basis of disk/network speed occupancy).

2.3.1 Standard trigger set vs. alternative set

A first comparison has been carried out considering the default set of trigger parame-

ters in JTE and a selection of values for the same parameters that have been studied in

the master thesis reported in [32]. This work focussed on investigating the possibility

to optimise trigger conditions, while ensuring atmospheric muons background rejec-

tion. In the following, the two lists of parameters considered in the comparison will

be referred to as “std trigger” for the standard trigger conditions, i.e. the default

parameters, and “alter” for the alternative set, as defined in [32]. The values for the

two sets of trigger parameters are reported in Table 2.3.

Differently from the standard trigger conditions, the alter parameter set relaxes the

selection on the number of hits to 4 (i.e. numberOfHits), while the distances (i.e.

i
i

“main” — 2018/4/10 — 10:46 — page 30 — #44 i
i

i
i

i
i

30 Chapter 2. Event triggering in KM3NeT

Parameters std alter
trigger3DShower.numberOfHits 5 4

trigger3DShower.DMax_m 250 130

trigger3DShower.TMaxExtra_ns 20 370

trigger3DMuon.numberOfHits 5 4

trigger3DMuon.roadWidth_m 120 50

trigger3DMuon.TMaxExtra_ns 20 150

Table 2.3 Comparison of the std and the alter parameter sets. The standard values
are the default parameters set in JTE, as reported in table 2.1, while the alternative set
has been proposed by [32].

DMax_m for the shower trigger, and roadWidth_m for the muon trigger) have been con-

siderably reduced, allowing for more triggered events, but with fewer DOMs taking

part in the process. On the other hand, very large time windows (i.e. TMaxExtra_ns)

have been defined. This parameters selection relies on allowing more coincidences

on neighbour DOMs, thus including more hits collected in the large time windows,

but reducing the number of total DOMs considered, by restricting the distances al-

lowed.

The trigger efficiency has been evaluated for electron and muon neutrino charged

current and neutral current interactions for the two sets of trigger conditions and is

shown in Figure 2.6.

Trigger Efficiency

!" CC_std_trigger
!" NC_std_trigger
!e CC_std_trigger
!e NC_std_trigger
!" CC_alter
!" NC_alter
!e CC_alter
!e NC_alter

Figure 2.6 Trigger efficiency vs. neutrino energy for std trigger conditions compared
to alter conditions.

Trigger efficiency, in terms of number of events that satisfy the trigger requirements, is

higher in the alter case, and the effect is more evident for lower energies (E < 10 TeV).

i
i

“main” — 2018/4/10 — 10:46 — page 31 — #45 i
i

i
i

i
i

2.3. Trigger efficiency optimisation 31

Such effect may be related to the fact that with such large time windows more hits

are collected, even if they are not caused by the propagating particle.

However, to keep the background rate under control, the effects of both sets of trig-

ger parameters on the rate of random background collected have been compared as

well. A random background signal, accounting for random coincidences due to 40K

decays, has been simulated with the tool JRandomTimesliceWriter and processed

with JTriggerProcessor. As can be seen in Table 2.4, for the alter parameters set

the collected rate is too high to be handled: in fact, for some choices of the input rate

it exceeds 1 kHz.

Input signal(khz) std trigger rate (Hz) alter trigger rate (Hz)
5 0 3.8

10 0.9 24.3

15 9.8 2.0 · 102

20 1.1 · 102 1.2 · 103

Table 2.4 Table of comparison of the background rate for st and alter conditions.

2.3.2 Dependency on the time window

From the previous comparison, it looks inconvenient to enlarge the time window and

reduce the minimum number of hits at the same time. On the other hand, it is worth to

further investigate the stricter requirement on the distances introduced in [32]. To this

aim, the dependency on the time window of the trigger efficiency has been evaluated,

fixing, at the same time, the roadWidth_m and the DMax_m as in the alter conditions.

Figure 2.7 shows the dependency of the trigger efficiency on the time window for

several (increasing) values: in this analysis, the standard values are compared to the

alter set, and to 4 different versions of the latter, with TMaxExtra_ns varying in the

following set of values: 20 ns, 50 ns, 100 ns, 150 ns (e.g. keeping the parameters as

set in the alter conditions, and varying the extra time window only).

As can be seen in more detail in Figure 2.8, the alter set with a 20 ns time window

slightly increases the trigger efficiency in the low energy region (i.e. below 10 TeV),

with respect to the standard conditions, while the curve does not change for high

energies. For larger time windows, instead, the change in efficiency is evident over

the whole energy spectrum. Moreover, there appears to be a saturation effect above

100 ns: the relative change in efficiency is small, thus setting an upper limit to the

TMaxExtra_ns time window.

i
i

“main” — 2018/4/10 — 10:46 — page 32 — #46 i
i

i
i

i
i

32 Chapter 2. Event triggering in KM3NeT

Trigger Efficiency

!" CC_std_trigger
!" CC_alter
!" CC_alter_20ns
!" CC_alter_50ns
!" CC_alter_100ns
!" CC_alter_150ns

!" CC_std_trigger
!" CC_alter
!" CC_alter_20ns
!" CC_alter_50ns
!" CC_alter_100ns
!" CC_alter_150ns

Figure 2.7 Trigger efficiency (vs. neutrino energy) dependency on time window.

Trigger Efficiency

!" CC_std_trigger
!" CC_alter
!" CC_alter_20ns
!" CC_alter_50ns
!" CC_alter_100ns
!" CC_alter_150ns

Figure 2.8 Trigger efficiency (vs. neutrino energy) dependency on time window - zoom.

Atmospheric muons background rate

All of the previously discussed trigger conditions have been tested also for the detection

of atmospheric muons. Being the latter a source of background, their signal rate must

be kept low, and a tolerable value is around 100 Hz (as stated above). Table 2.5 shows

the rate for 1 million simulated events with a threshold at 100 GeV for one block of

i
i

“main” — 2018/4/10 — 10:46 — page 33 — #47 i
i

i
i

i
i

2.3. Trigger efficiency optimisation 33

Trigger configuration Background rate (Hz)
std 61

50 ns 72

100 ns 80

150 ns 83

alter 84

st_nocomb 1.3 · 102

Table 2.5 Table of comparison of the atmospheric muons background rate for different
trigger conditions.

ARCA and livetime of 2530 seconds. The conditions ensuring the minimum trigger

rate are the standard trigger one, while the deactivation of the parameter combineL1

doubles that rate. As for the other trigger conditions, the background rate for the

atmospheric muons is acceptable.

2.3.3 Standard trigger vs. (100ns, 4 hits) on reconstructed events

Since the amount of events lost at trigger level (i.e. the number of events after the

trigger compared to the initial number of simulated events) is almost half of the total

number of events, a further investigation on trigger conditions allowing more events to

be triggered is worthwhile. The choices of parameter sets investigated in this section

are the following tuples: (20ns, 5hits), also known as the standard trigger conditions

(std trigger), and (100ns, 4hits), which triggers more events, keeping the background

rate acceptable. For the trigger parameters optimisation, though, the trigger efficiency

is not the only quantity to be maximised. In fact, a good selection of events should lead

to a good reconstruction. The triggered events are then processed with the reconstruc-

tion algorithm provided by JPP, to estimate the muon energy and direction, through

the following chain: JPrefit, JSimplex, JGandalf, JEnergy. In details, JPrefit

selects clusters of L0 and L1 hits by running a scan of directions in the solid angle;

for each direction, a three parameter (x, y, t) fit is performed on the data; the output

of JPrefit is processed with JSimplex, in which a five parameter (x, y, t, dx, dy) fit is

applied to the data (where dx and dy are the x and y neutrino direction components).

From the previous step, the best 12 fits obtained with JPrefit are compared and the

one yielding the smallest angular discrepancy between the reconstructed track and the

simulated direction is selected. The ordering of the solutions follows a reconstruction

quality parameter, related to the number of hits, the number of degrees of freedom

and the χ2 error for the fit. From the JSimplex step, only one solution is kept and

considered as the best fit. The JGandalf fit is based on the Levenberg-Marquardt

i
i

“main” — 2018/4/10 — 10:46 — page 34 — #48 i
i

i
i

i
i

34 Chapter 2. Event triggering in KM3NeT

optimisation algorithm [33, 34]. In this fit, all hits within a preset road width and

interval around the expected arrival time are selected. Quality parameters such as the

likelihood (of the fit w.r.t. the original direction) and the χ2 of the fit are calculated.

Eventually, JEnergy estimates, from the best of the previous fits, the energy of the

neutrino.

Reconstruction outputs, containing fit parameters, the position and the direction of

the lepton produced by the neutrino interaction, an estimation of the muon neutrino

energy, as well as likelihood and quality parameters, are used as a further check to

assess if the choice of the trigger conditions is optimal. The leptons considered in this

analysis are muons, since this reconstruction algorithm relies on a track hypothesis.

The reconstructed direction is used to calculate the angle between the simulated and

reconstructed track, and so to define well reconstructed events. The angle α is cal-

culated from the direction cosines of the two tracks, as the arc-cosine of the scalar

product: α = acos(~mc_dir · ~reco_dir). A well reconstructed event is defined after a

threshold value for the angle α is chosen. Thus, for a given choice of α, the number of

reconstructed events is compared to the total simulated events in each energy bin. In

order to evaluate the dependency of the number of well reconstructed events on the

angle between simulated and reconstructed tracks, for the two considered choices of

trigger parameters the fraction of well reconstructed over the total number of simu-

lated events has been evaluated, setting a threshold to separate low and high energies

at 10 TeV. Tables 2.6 and 2.7 show the results for the two sets of parameters, sepa-

rately, without any source of background.

Angle α (deg) % well reconstructed % of well reconstructed
events (E ≤ 10 TeV) events (E > 10 TeV)

0.0 0 0
0.2 3.4 29.7
0.4 8.0 39.5
0.6 11.8 42.5
0.8 12.7 44.0
1.0 13.9 45.0
1.2 14.8 45.2
1.4 15.4 45.6
1.6 15.9 45.9
1.8 16.2 46.2
2.0 16.6 46.4

Table 2.6 Fraction of well reconstructed events at different allowance angles, for low
and high energy events separately, for std trigger conditions.

The reconstruction efficiency is defined as the ratio between well reconstructed and

simulated events per bin. The efficiency, evaluated for each set of trigger conditions,

is compared in the plot shown in Figure 2.9 for different allowance angles.

i
i

“main” — 2018/4/10 — 10:46 — page 35 — #49 i
i

i
i

i
i

2.3. Trigger efficiency optimisation 35

Angle α (deg) % of well reconstructed % of well reconstructed
events (E ≤ 10 TeV) events (E > 10 TeV)

0.0 0 0
0.2 3.7 30.1
0.4 8.7 40.1
0.6 12.0 43.4
0.8 14.2 45.0
1.0 15.7 45.8
1.2 16.8 46.4
1.4 17.5 46.8
1.6 18.1 47.2
1.8 18.6 47.4
2.0 19.0 47.7

Table 2.7 Fraction of well reconstructed events at different allowance angles, for low
and high energy events separately, for (100ns, 4hits) conditions.

Trigger Efficiency

!" CC_std_trigger
!" CC_alter

!" CC_alter_20ns
!" CC_alter_50ns

!" CC_alter_100ns
!" CC_alter_150ns

!" CC_std_trigger_0.6deg
!" CC_std_trigger_100ns_4hits_0.6deg
!" CC_std_trigger_0.8deg
!" CC_std_trigger_100ns_4hits_0.8deg
!" CC_std_trigger_1deg
!" CC_std_trigger_100ns_4hits_1deg

Figure 2.9 Reconstruction efficiency for different allowance angles.

As reported in Table 2.6 and Table 2.7, as well as in Figure 2.9, the reconstruction

efficiency is always below 0.5, meaning that at least half of the events is lost in the

process. Moreover, the (100ns, 4hits) set of conditions allows more events to be

triggered and then reconstructed, especially in the low energy region.

Reconstructed events with random background

To perform a more realistic study of the reconstruction efficiency, the simulated events

have also been processed adding random background using the background parameter

(i.e. B) in JTriggerEfficiency. This option creates random hits in the detector

volume, to add noise with a chosen frequency to the detected signal. As a result,

more hits are triggered, even though they are not correlated to the original simulated

i
i

“main” — 2018/4/10 — 10:46 — page 36 — #50 i
i

i
i

i
i

36 Chapter 2. Event triggering in KM3NeT

event. The reconstruction efficiency is then evaluated using the events processed with

the random background (with the default input rate, namely "5000, 500, 50, 5,

0.5" (Hz)), and the results are shown in Figure 2.10. Again, (100ns, 4hits) gives a

higher efficiency, especially in the low energy region: with the (100ns, 4hits) require-

ments more events are collected w.r.t. the (20ns, 5hits) case. On the other hand, the

efficiency curves with and without background are almost coincident in the case of

the standard trigger.

As a further check, the ratio between the reconstruction efficiency, for both choices

of parameters, for the background case w.r.t. the "background-free" one has been

evaluated and is shown in Figure 2.11. This can be interpreted as the standard

trigger selection giving many more pure events as a result, at least in the low energy

region.

Trigger Efficiency with random background

!" CC_100ns_4hits_bkg
!" CC_std_trigger_no_bkg
!" CC_100ns_4hits_no_bkg

!" CC_std_trigger_bkg

Figure 2.10 Trigger efficiency as a function of the neutrino energy with and without
the random background parameter activated in JTE for std trigger and (100ns, 4hits).

To summarise, it has been seen in the previous sections that the time window plays a

crucial role in the selection of events, as well as the minimum number of hits. More-

over, selecting the number of optical modules hit in the given timeslice allows fewer

random coincidences to be selected and thus provides event samples with higher pu-

rity. Concerning the background from atmospheric muons, both trigger configurations

tested give a reasonable amount of random background detected, even though the rate

is slightly higher for the one with the larger time window. Despite the fact that al-

most half of the simulated events are being lost with any of the trigger conditions

tested, as shown in Figure 2.9, it is seen that a larger amount of random coincidences

i
i

“main” — 2018/4/10 — 10:46 — page 37 — #51 i
i

i
i

i
i

2.3. Trigger efficiency optimisation 37

Trigger Efficiency with random background

!" CC_std_trigger
!" CC_100ns_4hits

Figure 2.11 Ratio of trigger efficiencies with and without random background for std
trigger and (100ns, 4hits).

is collected with the (100ns, 4hits) choice, especially in the low energy region, which

is also dominated by other sources of background.

As a consequence, in order to select more pure events, which are consequently well

reconstructed, it is convenient to use std trigger conditions, which also keep a rea-

sonable background rate. This choice is safe in this phase in which the trigger and

reconstruction algorithms are still being studied and optimised on both simulated and

real-data events, and is especially convenient for the analyses shown in the following

sections, as the trigger represents the starting point for the Neural Network analysis

reported in Chapter 4. In fact, the events used as input are the triggered events

(using std trigger conditions) with at least 5 hit DOMs. An inefficient choice of

the trigger conditions, resulting in wrongly selected events, would affect the Neural

Network study and the derived conclusions.

i
i

“main” — 2018/4/10 — 10:46 — page 38 — #52 i
i

i
i

i
i

i
i

“main” — 2018/4/10 — 10:46 — page 39 — #53 i
i

i
i

i
i

39

Chapter 3

Machine and Deep Learning

Machine Learning is defined as "the systematic study of algorithms and systems that

improve their knowledge or performance with experience." [35]. In fact, with the term

Machine Learning (also ML from here on) we refer to the category of algorithms and

statistical methods that are able to automatically extractmeaningful information from

(typically large) data sets [36]. Data-Driven methodologies are adopted by Machine

Learning techniques to learn to generalise: input data are used to tune the behaviour

of the algorithm, so that it will be possible to generate predictions on similar but

unseen data. Such generalisation capability practically defines the concept of learning

through experience that is the specific characteristic differentiating ML approaches

from classical “data mining” algorithms.

Tom Mitchell in [37] defines Machine Learning as:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E”

On the other hand, Peter Flach in [35] defines Machine Learning from a slightly

different perspective:

“Machine learning is concerned with using the right features to build the

right models that achieve the right tasks.”.

This definition emphasises the fundamental “ingredients” (as the author calls them)

constituting ML techniques.

The science of learning plays a key role in the fields of statistics, data mining and

artificial intelligence, intersecting with areas of engineering and other disciplines [38].

However, differently from the “classical” approach to Artificial Intelligence (AI), Ma-

chine Learning introduces a shift in the adopted programming paradigm [39]. In

i
i

“main” — 2018/4/10 — 10:46 — page 40 — #54 i
i

i
i

i
i

40 Chapter 3. Machine and Deep Learning

classical AI, the programming paradigm was based on symbolic computation: hu-

mans input rules (i.e. a program), and data are then processed according to these

rules, so that answers can be generated (see Figure 3.1).

“Classical”
Artificial Intelligence

Rules

Data
Answers

Machine
Learning

Data

Answers
Rules

Figure 3.1 Machine Learning: a different programming paradigm [39].

With Machine Learning, humans input data as well as the answers expected from the

data, so that the rules generating the answers can be derived. These rules can then be

applied to new data to produce original answers. In fact, Machine Learning is about

learning from data [38]. However, differently from classical AI, Machine Learning sys-

tems are trained rather than explicitly programmed. In a typical scenario, there is

an outcome measurement, usually quantitative (such as a stock price) or categorical

(such as heart attack/no heart attack), that has to be estimated based on a set of

features (e.g. diet and clinical measurements). A training set of data is available, in

which the outcome and feature measurements for a set of objects (e.g. people) can be

found. Using these data, it is possible to build a prediction model, or learner, which

will enable to estimate the outcome for new unseen objects. A good learner is one

that accurately estimates outcomes for unseen data.

In more details, developing ML applications requires the following steps to be accom-

plished [36]:

1. Problem formulation: The first crucial step concerns the formulation of a given

problem in terms of the selected ML approach. There are several learning meth-

ods that are based on different theoretical backgrounds and adopt different al-

gorithmic strategies. All these aspects characterise the task of different ML

techniques, which must be taken into account during the problem formulation.

2. Problem representation: The next step is to select an appropriate representation

for both the data and the knowledge to be learned (i.e. the model). Different

learning methods require different formalisms, e.g. some approaches are based

i
i

“main” — 2018/4/10 — 10:46 — page 41 — #55 i
i

i
i

i
i

Chapter 3. Machine and Deep Learning 41

on a vectorial representation of data, while others require to process structured

data such as trees or graphs.

3. Data collection: Data represent the main “ingredient” for ML algorithms. In

particular, ML approaches strongly depend on the quality and the quantity of

the data available to carry out the learning process. Therefore, data must be

properly pre-processed to remove spurious values and fitting a unique format.

Several techniques of data processing are required to tackle this problem.

Furthermore, data are fundamental for the definition of features, which deter-

mine much of the success of ML applications, because a model is only good as

its features [35]. A feature can be thought of as a function that maps the data

from one domain to another, i.e. the feature space.

4. Perform the learning process: Once the data have been collected, the learn-

ing process can be accomplished. This step represents the core of ML algo-

rithms [36], where data are actually analysed. Depending on the specific strat-

egy, data may be separated in two different sets, namely the training and the

test sets, exploited in an iterative process to train and evaluate the learning,

respectively.

5. Analyse and evaluate the learnt knowledge: The final step of ML applications is

devoted to the evaluation of the performances of the learning process. Depending

on the type of application, this step could also be an integral part of the learning

process itself. Besides performance evaluations, this step is also important to

discover and resolve practical problems that may affect the learning process

itself, such as overfitting, or the local optima [40]. Some possible causes could

be data inadequacy, noise or irrelevant attributes in data.

Figure 3.2 summarises these steps, as reported in [35].

Figure 3.2 Machine Learning algorithm representation [35].

i
i

“main” — 2018/4/10 — 10:46 — page 42 — #56 i
i

i
i

i
i

42 Chapter 3. Machine and Deep Learning

Machine Learning lies at the intersection of computer science, engineering, and statis-

tics [36], and it can be applied to many problems. In fact, ML algorithms have proven

to be of great value in a variety of application domains: any field that needs to inter-

pret and act on data can benefit from Machine Learning techniques [36].

Deep Learning (also DL from here on) is a subfield of machine learning, which puts an

emphasis on learning successive layers of increasingly meaningful representations [39].

In fact, the term deep stands for the idea of multiple stacked layers, and the number of

layers defines the depth of the model. Other appropriate names for the field could have

been layered representations learning, or hierarchical representations learning [39].

Modern deep learning often involves tens or even hundreds of successive layers of

representations and they are all learned automatically from training data. Conversely,

other Machine Learning approaches tend to focus on learning only one or two layers of

representations of the data, so they are sometimes referred to as shallow learning. In

Deep Learning, such layered representations are (most commonly) learnt via models

called Neural Networks, structured in layers stacked on top of each other.

Data Augmentation

One of the best ways to make Machine Learning models generalise better is to train

them on large sets of data. This is particularly the case of Deep Learning Neural

Networks, in which the quality of the feature representations learnt from the data

through the multiple stacked layers improves with the increasing size of the dataset.

However, as most datasets in practice are limited, this is not always possible.

Data augmentation is a technique generally used to improve the training phase of

Machine Learning models by providing slightly modified versions of the same exam-

ples. The typical application of these techniques is on images, in which operations on

data are easily applicable, usually involving in-plane rotations and symmetric trans-

formations. Including these artificially transformed samples allows Machine Learn-

ing models to be more robust to noisy input data. In fact, providing different versions

of the same samples forces the model to learn so-called translation-invariant (resp.

rotation-invariant) representation of features.

i
i

“main” — 2018/4/10 — 10:46 — page 43 — #57 i
i

i
i

i
i

3.1. Machine Learning Settings 43

3.1 Machine Learning Settings

Although ML systems may be classified according to different points of view [41], a

common choice is to classify ML approaches according to the specific learning strategy,

namely the strategy ML approaches adopt to learn from data.

In every learning situation, the learner transforms information provided by the envi-

ronment into some new form in which it is stored for future use [37, 42]. The nature

of this transformation determines the type of learning strategy adopted. Several basic

strategies have been distinguished: rote learning, learning by instruction, learning by

deduction, learning by analogy, and learning by induction [42]. The latter is further

distinguished in learning by observation and learning from examples [41, 42].

Learning from examples is one of the most popular and widely employed strategy in

ML approaches that is often simply called learning. Similarly, the term “example” is

usually treated as a synonym for “data”. Thus, from now on, the two terms will be

used interchangeably.

The learning problem that this strategy involves can be described as “finding a gen-

eral rule that explains the data, given only a sample of limited size”. This strategy

comprises multiple learning techniques, further organised in three main categories, i.e.

Supervised Learning, Reinforcement Learning, and Unsupervised Learning [43].

3.1.1 Supervised Learning

In Supervised Learning, data are represented as tuples in the form of 〈input, output〉

patterns. This strategy is called supervised because the objects under considerations

are already associated with the target values, i.e. the labels. In more details, in the

problem of Supervised Learning, the training set of examples is provided, along with

corresponding correct outcomes. Based on this training set, the learning algorithm

generalises to respond correctly to all possible inputs [43]. More formally, the training

set is usually written as a set of pairs (xi, ti), where the inputs are xi, the targets are

ti, and the i index suggests that there are lots of pairs, ranging from 1 to an upper

limit N ∈ N [43]. Each index i refers to a specific training sample.

Typical examples of Supervised Learning approaches are the Classification and the

Regression that differ according to the type of the outcomes (and so, the labels):

• Classification: In the classification learning problem, the output space is com-

posed by a finite number of discrete classes, and the corresponding learning

i
i

“main” — 2018/4/10 — 10:46 — page 44 — #58 i
i

i
i

i
i

44 Chapter 3. Machine and Deep Learning

algorithm is called classifier. In particular, the learning problem is to assign to

each input data its corresponding class.

• Regression: If the output space of the learning problem corresponds to values

of continuous variables, then the learning task is known as the problem of re-

gression. Typical examples of regression include predicting the value of shares

in the stock exchange market, or estimating the value of a physical quantity like

the direction of a particle, or its energy.

In many cases, the outputs y may be difficult to collect automatically and must be

provided by a human "supervisor", hence the supervised label, but the term applies

also to cases in which the training set targets are collected automatically [43].

3.1.2 Reinforcement Learning

Reinforcement learning corresponds to a strategy that lies between Supervised and

Unsupervised learning. The ML algorithm gets told when the output is wrong, but

does not know how to correct it [43]. Thus, the algorithm tries to explore different

possibilities until the final correct output has been discovered. In other words, the

problem of reinforcement learning is to learn what to do, i.e. how to map situations

to actions in order to maximise a given reward. Such maximisation is what guides the

learning algorithm through the different possible solutions. [44]

3.1.3 Unsupervised Learning

If the input data to the learning algorithm comprises a set of samples without as-

sociated labels, the problem is classified as Unsupervised Learning. In Unsupervised

Learning, data do not contain any indication to the correct target. Instead, the algo-

rithm tries to identify similarities among the inputs so that inputs that are in some

way related are categorised together [43]. Some of the advantages of Unsupervised

Learning techniques with respect to Supervised ones are [45]:

• There is no cost of collecting and labelling samples.

• Unsupervised techniques may be used to identify characteristics of the samples

which are useful for differentiating among them.

• Unsupervised techniques may be used for exploring the data analysing their

structure.

i
i

“main” — 2018/4/10 — 10:46 — page 45 — #59 i
i

i
i

i
i

3.2. Deep Learning 45

In the rest of the Chapter we will limit the discussion to Supervised Learning set-

tings, as this is the main focus of the presented work. A more complete reference to

Unsupervised Learning settings can be found in [35, 38, 40, 46].

3.2 Deep Learning

As briefly mentioned before, Deep Learning is a specific subfield of Machine Learn-

ing in which the main focus is on learning from data, through successive layers of

increasingly meaningful representations. In Deep Learning, these layered representa-

tions in data are learnt by using a specific set of Machine Learning models named

artificial neural networks (ANN). In other words, Deep Learning refers to the set

of algorithms and methods developed to train ANN with many layers most effi-

ciently [47].

The term neural network1 is a reference to neurobiology, but although some of the

central concepts in Deep Learning were developed in part by drawing inspiration from

our understanding of the brain, Deep Learning models are not models of the brain [39].

Hence, for our purposes, Deep Learning only represents a mathematical framework

that will be used to learn (meaningful) representations from data.

3.2.1 Modelling complex functions with Artificial Neural Networks

Despite the huge interest gained in recent years on Deep Learning and Neural Net-

works, early studies go back to the 1940s when Warren McCulloch and Walter Pitt

proposed the first scheme of how neurons could work [48]. However, in the decades

that followed the first implementation of the McCulloch-Pitt neuron model, the so-

called Perceptron [49], many researchers and Machine Learning practitioners slowly

began to lose interest in Neural Networks since nobody had a good solution for train-

ing a neural network with multiple layers [47]. The interest in Neural Network was

revived only in 1986, when G.E. Hinton et al. (re)discovered and popularised the

back-propagation algorithm to train ANN more efficiently [50].

Nevertheless, the Perceptron, that is the first model of ANN with only one single layer,

constitutes the building block on which multi-layer ANN are defined [47].
1Note that the terms artificial neural networks, neural networks, and ANN are all synonyms, and

so will be used interchangeably.

i
i

“main” — 2018/4/10 — 10:46 — page 46 — #60 i
i

i
i

i
i

46 Chapter 3. Machine and Deep Learning

Single-layer Neural Network

The processing unit of the human brain is called neuron. There are lots of them

(≈ 1011 according to the most common estimation [43]), and each neuron comes

in lots of different types, depending on its particular task. However, their general

operation is similar in all cases: transmitter chemicals within the fluid of the brain

raise or lower the electrical potential inside the neuron. If this membrane potential

reaches some threshold, the neuron spikes (or fires), and a pulse of fixed strength and

duration is sent down the axon [43]. The axons organise neurons into specific series

of interconnections named synapses.

This simplistic schematisation of the human brain structure and activity is what

McCulloch and Pitts in [48] tried to extract and represent in their mathematical

model. In more details, they proposed a model of neurons consisting of [43]:

• a set of weighted inputs wj , that correspond to the synapses;

• an adder that sums the input signals (equivalent to the membrane of the cell

that collects electrical charge)

• an activation function (initially a threshold function) that decides whether the

neuron fires for the current inputs.

A representation of this model is reported in Figure 3.3. This scheme will be used as

reference to report the corresponding mathematical description.

Σ

x1

xm

x2 .
.
.

w1
w2

wm
!

z
ŷ

<latexit sha1_base64="ZBjZAyijMgxC807O89lIPUUaL60=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsN+3SzSbsToQQ+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXplIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJJpxn2WyER3Q2q4FIr7KFDybqo5jUPJO+HkZuZ3Hrk2IlH3mKc8iOlIiUgwilbq9McUi3w6qDfcpjsH+Uu8kjSgRHtQ/+wPE5bFXCGT1Jie56YYFFSjYJJPa/3M8JSyCR3xnqWKxtwExfzcKTmxypBEibalkMzVnxMFjY3J49B2xhTHZtmbif95vQyjy6AQKs2QK7ZYFGWSYEJmv5Oh0JyhzC2hTAt7K2FjqilDm1DNhuAtv/yX+GfNq6Z7d95oXZdpVOEIjuEUPLiAFtxCG3xgMIEneIFXJ3WenTfnfdFaccqZQ/gF5+MbHT2PnQ==</latexit><latexit sha1_base64="ZBjZAyijMgxC807O89lIPUUaL60=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsN+3SzSbsToQQ+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXplIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJJpxn2WyER3Q2q4FIr7KFDybqo5jUPJO+HkZuZ3Hrk2IlH3mKc8iOlIiUgwilbq9McUi3w6qDfcpjsH+Uu8kjSgRHtQ/+wPE5bFXCGT1Jie56YYFFSjYJJPa/3M8JSyCR3xnqWKxtwExfzcKTmxypBEibalkMzVnxMFjY3J49B2xhTHZtmbif95vQyjy6AQKs2QK7ZYFGWSYEJmv5Oh0JyhzC2hTAt7K2FjqilDm1DNhuAtv/yX+GfNq6Z7d95oXZdpVOEIjuEUPLiAFtxCG3xgMIEneIFXJ3WenTfnfdFaccqZQ/gF5+MbHT2PnQ==</latexit><latexit sha1_base64="ZBjZAyijMgxC807O89lIPUUaL60=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsN+3SzSbsToQQ+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXplIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJJpxn2WyER3Q2q4FIr7KFDybqo5jUPJO+HkZuZ3Hrk2IlH3mKc8iOlIiUgwilbq9McUi3w6qDfcpjsH+Uu8kjSgRHtQ/+wPE5bFXCGT1Jie56YYFFSjYJJPa/3M8JSyCR3xnqWKxtwExfzcKTmxypBEibalkMzVnxMFjY3J49B2xhTHZtmbif95vQyjy6AQKs2QK7ZYFGWSYEJmv5Oh0JyhzC2hTAt7K2FjqilDm1DNhuAtv/yX+GfNq6Z7d95oXZdpVOEIjuEUPLiAFtxCG3xgMIEneIFXJ3WenTfnfdFaccqZQ/gF5+MbHT2PnQ==</latexit>

Figure 3.3 A picture of McCulloch and Pitt’s mathematical model of a neuron. The
input features xj are multiplied by the weights wj , and the neurons sum their values. If
this sum is greater than the threshold θ, then the neuron fires, otherwise it does not.

On the left-hand side of the Figure, there is the set of the input nodes, namely

(x1, x2, . . . , xm). The strength of the synapsis is represented by the weights wj , as-

sociated to each connection. This strength affects the strength of the signal, so each

input is multiplied by the associated weight, i.e. xj ×wj . When all the signals arrive

into the neuron, it adds them up to see if there is enough strength to make it fire,

i
i

“main” — 2018/4/10 — 10:46 — page 47 — #61 i
i

i
i

i
i

3.2. Deep Learning 47

namely:

z =
m∑
j=1

wjxj = wTx, (3.1)

The McCulloch and Pitts neuron is a binary threshold model: it sums up the inputs

(multiplied by the synaptic weights), and either the neuron fires or does not fire. Thus,

if z > θ, the neuron will produce output ŷ = 1 (i.e. fires); ŷ = 0, otherwise. So, the

activation function of the network can be formalised as:

ŷ = φ(z) =

1 if z > θ

0 if z ≤ θ
(3.2)

This simple unit step function, is also known as the Heaviside step function. However,

to simplify the notation, we can bring the threshold parameter θ to the left side of

the equation, and reformulate z as a weight-zero linear combination:

z =

m∑
j=0

wjxj (3.3)

where w0 = −θ and x0 = 1. Consequently:

ŷ = φ(z) =

1 if z > 0

0 if z ≤ 0
(3.4)

In the literature, this is called the bias input trick [43].

The Perceptron model proposed by Rosenblatt in [51], is a collection of McCul-

loch and Pitts neurons together with a set of inputs and some weights to fasten the

inputs to the neurons [43]. The main advantage introduced by this model is that it

consists of an algorithm able to learn automatically the optimal weight coefficients

wj . In the context of Supervised Learning, and classification, this algorithm could

then be used to predict if a sample belongs or not to one class. In the literature, this

problem is usually referred to as binary classification problem.

The whole idea behind the Perceptron model is fairly simple. Considering X =

{x(1), . . . ,x(i), . . . ,x(N)} as the input (training) data to the model, so that

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
j , . . . , x

(i)
m) ∈ X (3.5)

i
i

“main” — 2018/4/10 — 10:46 — page 48 — #62 i
i

i
i

i
i

48 Chapter 3. Machine and Deep Learning

and w = (w1, w2, . . . , wj , . . . , wm) the weight vector, the Perceptron algorithm can be

summarised by the following steps [47]:

1. Initialise the weights w to 0 or vector of small random numbers;

2. For each training sample x(i) perform the following steps:

(a) Compute the output value ŷ = φ(z);

(b) Update the weights.

The simultaneous update of each weight wj in the weight vector w can be formally

defined as:

wj = wj + ∆wj (3.6)

The value of ∆wj , which is used to update the weight wj , is calculated by the so-called

perceptron learning rule [43, 47]:

∆wj = η(y(i) − ŷ(i))xj
(i) (3.7)

where η is the learning rate, y(i) is the true label of the i-th training sample, ŷ(i) is

the corresponding predicted label, and E = (y(i) − ŷ(i)) is the error function, namely

a function to calculate the number of misclassifications obtained by the model. It is

important to remark that all the weights in w are being updated simultaneously, which

means that ŷ(i) is not recomputed before all of the weights ∆wj were updated.

Figure 3.4 The Perceptron learning strategy [47].

Figure 3.4 illustrates the learning strategy as defined by the Perceptron model. The

convergence of the Perceptron model is only guaranteed if the considered binary clas-

sification problems consists of two classes that are linearly separable, and the learning

rate η is sufficiently small [35]. This is a direct consequence of the defined learning

function that is based on a linear model by definition. Alternatively, it is possible

to set a maximum number of steps over the training dataset, called epochs, and/or

i
i

“main” — 2018/4/10 — 10:46 — page 49 — #63 i
i

i
i

i
i

3.2. Deep Learning 49

a threshold for the number of tolerated misclassifications, to prevent the algorithm

from updating the weights indefinitely.

The Adaline model (ADAptive LInear NEuron [52] can be considered an evo-

lution of the Perceptron model. This algorithm is particularly interesting because it

illustrates the key concept of defining and minimising cost functions, which repre-

sent the very basis to understand how the learning of a Neural Network works. The

key difference between the Adaline model and the Perceptron is that the weights wj

are updated based on a linear activation function rather than a unit step function.

The Adaline learning strategy is represented in Figure 3.5. In this model, the lin-

ear activation function φ(z) is simply the identity function of the net input so that

φ(wTx) = wTx.

Figure 3.5 The Adaline learning strategy [47].

Differently from the learning strategy illustrated in Figure 3.4, the difference in the

Adaline strategy is to use the continuous valued output from the linear activation to

compute the model error and update the weights accordingly, rather than binary class

labels.

One of the key ingredients of Supervised Learning algorithms is to define an objective

function that has to be optimised during the learning process. This objective function

is often a cost function (similarly loss function) that we want to minimise [47]. In the

case of Adaline, the cost function J to minimise to learn the weights is the sum of

squared errors (SSE) between the calculated outcome and the true class labels:

J(w) =
1

2

∑
i

(y(i) − φ(z(i)))2 (3.8)

The main advantage of this continuous linear activation function is that the cost

function is differentiable (in contrast to the unit step function used by the Perceptron).

Furthermore, this cost function is convex; thus, we can use a simple, yet powerful,

i
i

“main” — 2018/4/10 — 10:46 — page 50 — #64 i
i

i
i

i
i

50 Chapter 3. Machine and Deep Learning

optimisation algorithm called gradient descent [40] to find the weights that minimise

the cost function (see Figure 3.6).

Figure 3.6 The Gradient Descent optimisation algorithm [47].

Using the gradient descent, the weight update rule can be expressed as taking a step

away from the gradient ∇J(w) of the cost function J(w):

w := w + ∆w (3.9)

In this formulation, the weight change ∆w is defined as the negative gradient2 mul-

tiplied by the learning rate η:

∆w = −η∆J(w) (3.10)

so that

∆wj = −η ∂J
∂wj

= −η
∑
i

(y(i) − φ(z(i)))x
(i)
j (3.11)

Although the Adaline learning rule looks similar to the Perceptron rule, the weight

update is calculated based on all samples in the training set, instead of updating the

weights incrementally after each sample. This approach is also referred to as (full)

batch gradient descent [47]. However, in real Deep Learning settings, in which the

full batch gradient descent strategy can be computationally expensive, the stochastic

gradient descent algorithm (SGD) is used instead [40].
2As we are interested in minimising the cost function

i
i

“main” — 2018/4/10 — 10:46 — page 51 — #65 i
i

i
i

i
i

3.2. Deep Learning 51

The Multilayer Perceptron

The Multilayer perceptron (MLP) [49, 53], (also referred to in the literature as the

traditional Neural Network model), has been defined as an evolution of the single-layer

Neural Network. Multi Layer Perceptron can be considered as the joining link between

traditional ML and DL, as its simplest structure consists of one (passthrough) input

layer, one hidden layer, and an output layer (see Figure 3.7). Although the name

may suggest differently, the original definition of the MLP model consists of only one

hidden layer. In fact, according to Hinton [54], a deep network differentiates from the

MLP for having at least more than one hidden layer.

Figure 3.7 The Multilayer Perceptron model [47].

All the three layers of MLP are fully connected3, meaning that the output of each

node is the weighted sum of the outputs of all nodes in the previous layer, plus a bias

term, operated on by a non-linear function. Traditionally, the preferred non-linearity

is a sigmoid function such as tanh or the logistic function [53]. A more comprehensive

description of Neural Network activation functions is reported in Section 3.3.

A MLP with a single hidden layer, under certain assumptions, can be shown to ap-

proximate any function to arbitrary precision given a sufficient number of hidden

nodes [55]. The MLP is a powerful technique, but it has a number of deficiencies [56].

For example, it tends to scale poorly to a large number of input samples. Never-

theless, the MLP model represents the fundamental basis on which modern Deep

Learning architectures have been defined. The learning process of the MLP will be

used as reference to describe the learning mechanism adopted by Neural Networks to

learn from input data (see Section 3.3).
3Also referred to as dense layers

i
i

“main” — 2018/4/10 — 10:46 — page 52 — #66 i
i

i
i

i
i

52 Chapter 3. Machine and Deep Learning

3.3 Training Artificial Neural Networks

The training process of an ANN is rather simple: input data are passed to the network,

and the output of every neuron in each consecutive layer is computed. This phase of

the process is called the forward pass, as data flows from input layer to output layer.

Once the forward pass is completed, the network output error, namely the difference

between the expected output and the generated estimations, is computed. This cal-

culation then proceeds backward, i.e. from output layer up to the input layer: first it

computes how much each neuron in the last hidden layer contributed to each output

neuron’s error; then it proceeds to measure how much of these error contributions

came from each neuron in the previous hidden layer and so on, until the algorithm

reaches the input layer. This reverse pass efficiently measures the error across all the

connection weights in the network, by propagating the error backward in the network

(hence the name of the algorithm, i.e. backward propagation). Within this process, a

lot of components of the network are involved, such as layers’ activation functions, or

the optimisation technique used to calculate the gradients. Some of these components

will be detailed in the rest of this Section. A more comprehensive reference can be

found in [57].

3.3.1 Neural Network Training

The learning procedure of ANN consists of three simple steps:

1. Starting at the input layer, input data are forward propagated through the

network to generate the output (i.e. predictions);

2. Based on generated predictions, the error to minimise is calculated, using the

specified loss function;

3. The error is back-propagated in the reverse order (from the output layer to the

input one), so that the derivatives with respect to each weights are calculated,

and the model parameters are updated.

The above steps are repeated several times (i.e. epochs). In the following, a more

formal definition of the forward and backward pass will be provided. Without loss of

generality, the description will be limited to the case of MLP (i.e. one single hidden

layer).

i
i

“main” — 2018/4/10 — 10:46 — page 53 — #67 i
i

i
i

i
i

3.3. Training Artificial Neural Networks 53

Figure 3.8 The forward propagation step of MLP [47].

Forward Propagation

Since each unit in the hidden layer is connected to all the units in the input layer, the

activations a(2) = φ(z(2)), where

z(2) = W(1)a(1) (3.12)

Here, a(1) is a (m + 1) × 1 dimensional feature vector of a sample x(i) plus bias

unit. W(1) is a h × (m + 1) dimensional weight matrix; h is the number of hidden

units. z(2) is the h× 1 dimensional net input vector obtained after the matrix-vector

multiplication. Finally, a(2) ∈ Rh×1 is calculated.

The generalisation of the formulation for all the N samples in the training set can be

written as:

Z(2) = W(1)[A(1)]T (3.13)

Here, A(1) is the N × (m+1) matrix, and the matrix-matrix multiplication will result

in a h×N dimensional input matrix Z(2).

Similarly, the same procedure is repeated to calculate A(3), i.e. the activation of the

output layer in the vectorised form:

Z(3) = W(2)[A(2)] (3.14)

A(3) = φ(Z(3)),A(3) ∈ Rt×N (3.15)

i
i

“main” — 2018/4/10 — 10:46 — page 54 — #68 i
i

i
i

i
i

54 Chapter 3. Machine and Deep Learning

where t is the number of output units. A schematic representation of the forward

propagation step is reported in Figure 3.8.

Backward Propagation

Figure 3.9 The backward propagation step of MLP [47].

In the back-propagation algorithm, the objective is to propagate the error from right

to left. Thus, the error vector of the output layer must be calculated first, which in

the case of the MLP corresponds to:

δ(3) = a(2) − y (3.16)

Next, the error term of the hidden layer is calculated:

δ(2) = (W(2))T δ(3)
∂φ(z(2))

∂z(2)
(3.17)

where ∂φ(z(2))

∂z(2)
is the derivative of the activation function of the hidden layer (usually

a logistic function in the case of MLP). Now, generalising this calculation to every

sample in the training set, ∆(l) can be defined as:

∆(l) := ∆(l) + δ(l+1)(A(l))T (3.18)

i
i

“main” — 2018/4/10 — 10:46 — page 55 — #69 i
i

i
i

i
i

3.3. Training Artificial Neural Networks 55

Last, after the gradients have been computed, the weights can be updated by taking

a step opposite to the gradient:

W(l) := W(l) − η∆(l) (3.19)

The back-propagation steps are illustrated in Figure 3.9.

3.3.2 Activation Functions

One of the key advantages of the back-propagation is that the algorithm can be used

whatever activation function is chosen within layers, with the only constraint imposed

by the method that the activation function must be differentiable.

As in the case of the MLP, the most common activation function used is the sigmoid

or the logistic function4. The logistic function is often used to model the probability

that the sample x(i) belongs to the positive class in binary classification:

φlogistic(z
(i)) =

1

1 + e−z
(i)
. (3.20)

The Softmax function [40] is a generalisation of the logistic function to be used in

case of multi-class classification. The output of the Softmax function can be used to

represent a categorical distribution, that is, a probability distribution over K different

possible outcomes. In fact, this activation is usually combined with the categorical

cross-entropy loss function [57, 58] for multi-class learning5. The formulation of the

Softmax is:

φSoftmax(z(i))k =
ez

(i)
k∑K

j=1 e
zj

(3.21)

The categorical cross-entropy is defined as:

H(y, ŷ) =
∑
i

yi log
1

ŷi
= −

∑
i

yi log ŷi (3.22)

4 Although the two terms are not actually synonyms, in the literature they are used interchange-
ably. What is commonly referred to as the sigmoid function is in fact a special case of a sigmoid,
namely the logistic function [57].

5The logistic activation is typically combined with the binary cross-entropy activation [58].

i
i

“main” — 2018/4/10 — 10:46 — page 56 — #70 i
i

i
i

i
i

56 Chapter 3. Machine and Deep Learning

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5

1

1.5

2

2.5

3

ReLU
Tanh
Logit
Step

input
ou

tp
ut

(a)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5

1

1.5

2

2.5

3 ReLU
Tanh
Logit

input

de
riv

at
ive

(b)

Figure 3.10 Activation functions (a): ReLU, tanh, Logistic, step, and their derivatives
(b).

The logistic activations can be problematic in case there is a high number of negative

inputs, since the output would be close to zero. This would result in a very slow

training of the Neural Network, increasing the probability for the network to get

stuck in a local minimum [57]. For this reason, the hyperbolic tangent, also known as

tanh, is often preferred as an activation function for the hidden layers [55].

The tanh activation function can be interpreted as a rescaled version of the logistic

function:

φtanh(z(i)) = 2× φlogistic(2× z(i))− 1 =
ez

(i) − e−z(i)

ez
(i)

+ e−z
(i)

(3.23)

Thus:

φtanh(z(i)) =
1− e−2z(i)

1 + e−2z
(i)

(3.24)

The advantage of the hyperbolic tangent over the logistic function is that it has a

broader output spectrum and ranges to the open interval (−1, 1), which can improve

the convergence of the back-propagation algorithm [55].

As can be seen in Figure 3.10(a) the shapes of the two sigmoidal curves look similar;

however, the tanh function has a two-times larger output space than the logistic func-

tion. The same is reflected in the corresponding derivatives (Figure 3.10(b).)

i
i

“main” — 2018/4/10 — 10:46 — page 57 — #71 i
i

i
i

i
i

3.4. Convolutional Neural Networks 57

Another common function used in Neural Networksis the Rectified Linear Unit (ReLU)

activation [59]. A ReLU computes a linear function of the inputs, and outputs the

result if it is positive, and 0 otherwise (see Figure 3.10):

φReLU (z(i)) = max (0, z(i)) (3.25)

The advantages of the ReLU activation are many:

• Sparse activation: in randomly initialised network, only about 50% of hidden

units are activated (i.e. having a non-zero output).

• Efficient computation

• Scale-invariant: max (0, ax) = amax (0, x).

Furthermore, this function does not suffer from the vanishing gradient problem [57],

making the ReLU activation the de-facto standard for most of the popular Deep Learn-

ing models in literature [60]. The vanishing gradient problem is a difficulty affecting

the training of ANN with gradient-based learning methods and back-propagation. As

each of the Neural Network weights receives an update proportional to the gradient

of the error with respect to the current weight, in some cases it may happen that

this gradient is vanishingly small, effectively preventing the weight from changing at

all. In the worst case, this may completely stop the Neural Network from further

training.

3.4 Convolutional Neural Networks

This work will focus on applications of Convolutional Neural Networks (CNNs), which

have been highly successful in the field of computer vision for image classification and

other tasks [60, 61]. Although the usage described in this thesis (in particular in

Chapter 4) will not be the analysis of images, the description of the main features

of such models will refer to this most common field of application of CNNs. Their

current widespread application is due to recent work, in which deep CNNs have re-

defined the state-of-the-art in image classification and segmentation [62, 63]. In these

studies, it was found that the visual cortex contains simple cells, which are sensitive

to edge-like features within small regions of the retina, and complex cells, which are

receptive to collections of simple cells and are sensitive to position-independent edge-

like features. These structures can be modelled by performing discrete convolutions to

extract simple features across the visual field [64]. CNNs mimic this structure using a

i
i

“main” — 2018/4/10 — 10:46 — page 58 — #72 i
i

i
i

i
i

58 Chapter 3. Machine and Deep Learning

series of convolutional layers that extract a set of features from the input image, and

pooling layers that perform dimensionality reduction, extract more global features

and add translational invariance. The resulting output image is known as a feature

map (Figure 3.11). At early stages, the feature maps often resemble the original image

with certain elements emphasised, but they become more abstract at later stages of

the network.

Figure 3.11 Feature maps representation

Since each convolutional layer generates many feature maps which have comparable

dimensions to the original input image, the memory requirements and number of

operations needed to evaluate the network can grow dramatically. To tackle this

problem, pooling is useful since it also down-samples the size of feature maps, in a

way that depends on the technique applied. e.g. max pooling and average pooling [60].

In n ×m max pooling, the image is down-sampled by replacing an n ×m region of

the image with a single value corresponding to the maximum value in that region; in

average pooling the average value is used. The pooled regions may be chosen to overlap

[30, 31] to reduce information loss. Since each pixel after pooling corresponds to n×m

before pooling, small translations in input features result in identical output. This

decreases the network’s sensitivity to the absolute location of elements in the image.

Pooling can also be crucial in the extraction of macroscopic features: i.e. if a complex

structure is presented to the network, like the "image" of a particle propagating in

space, and only the direction of the particle is needed, pooling can help removing

the background (unwanted fluctuations that could lead to misreconstruction of the

direction) and obtain a cleaner image. The actual need for downsampling is related

to the specific task the model is designed for. A typical example of CNN architecture

is reported in Figure 3.12.

i
i

“main” — 2018/4/10 — 10:46 — page 59 — #73 i
i

i
i

i
i

3.4. Convolutional Neural Networks 59

Figure 3.12 Example of CNN architecture

3.4.1 Convolutional arithmetics

In this section, a brief description of the convolutional arithmetics, as described in [65]

will be presented. A convolutional layer’s output shape is affected by the shape of

its input as well as the choice of some important properties, like the kernel shape,

the zero padding and the strides step, whose role will be explained in the following

sections. This aspect is different from the case of fully-connected layers, whose output

size is independent of the input size. The main concept at the basis of Convolutional

Neural Networks is affine transformations: an input vector is multiplied with a matrix

to produce an output (to which a bias vector is usually added before passing the result

through a nonlinearity). This is applicable to any type of input, be it an image, a

sound clip or an unordered collection of features: whatever their dimensionality, their

representation can always be flattened into a vector before the transformation. All

of the above mentioned input data have an intrinsic structure. In other words, they

share the following important properties:

• They are stored as multi-dimensional arrays.

• They feature one or more axes for which ordering matters (e.g., width and height

axes for an image, time axis for a sound clip).

• One axis, called the channel axis, is used to access different views of the data

(e.g., the red, green and blue channels of a coloured image).

When an affine transformation is applied, all the axes are treated in the same way

and the topological information is not taken into account. Still, taking advantage of

the implicit structure of the data may prove very handy in solving some tasks, and

it is convenient to preserve it. A discrete convolution is a linear transformation that

preserves this notion of ordering. It is sparse (only a few input units contribute to a

i
i

“main” — 2018/4/10 — 10:46 — page 60 — #74 i
i

i
i

i
i

60 Chapter 3. Machine and Deep Learning

given output unit) and reuses parameters (the same weights are applied to multiple

locations in the input).

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

Figure 3.13 Computing the output values of a 2D discrete convolution.

Figure 3.13 provides an example of a discrete convolution: the light blue grid is called

input feature map. For the sake of simplicity, a single input feature map is represented,

but it is not uncommon to have multiple stacked feature maps. A kernel (shaded area)

of chosen value slides across the input feature map: at each step, the product between

each element of the kernel and the input element it overlaps is computed and the

results are summed up to obtain the output in the current location. The procedure

can be repeated using different kernels to form as many output feature maps as desired.

The final outputs of this procedure are called output feature maps. If there are multiple

input feature maps, each feature map will be convolved with a distinct kernel - and the

resulting feature maps will be summed up element-wise to produce the output feature

map. The convolution depicted in Figure 3.13 is an example of a 2D convolution,

but it can be generalised to N-D convolutions: for instance, in a 3D convolution, the

kernel would be a cuboid and would slide across the height, width and depth of the

input feature map. The collection of kernels defining a discrete convolution has a

shape corresponding to some permutation of (n,m, k1, . . . , kN), where n represents

the number of output feature maps, m is the number of input feature maps, kj is the

kernel size along axis j.

i
i

“main” — 2018/4/10 — 10:46 — page 61 — #75 i
i

i
i

i
i

3.4. Convolutional Neural Networks 61

The output size of a convolutional layer along axis j, namely oj , is affected by the

following properties:

• ij : input size along axis j,

• kj : kernel size along axis j,

• sj : stride (distance between 2 consecutive positions of the kernel) along axis j,

• pj : zero padding (number of zeros concatenated at the beginning and at the end

of an axis) along axis j.

The analysis of the relationship between convolutional layer properties is made easier

by the fact that they don’t interact across axes, i.e., the choice of kernel size, stride

and zero padding along axis j only affects the output size of axis j. For this reason,

the following simplified settings will be considered in this description:

• 2-D discrete convolutions (N = 2),

• square inputs (i1 = i2 = i),

• square kernel size (k1 = k2 = k),

• same strides along both axes (s1 = s2 = s),

• same zero padding along both axes (p1 = p2 = p).

This facilitates the analysis and the visualisation, but the results can generalise to the

N-D and non-square cases easily.

The simplest case to analyse is that in which the kernel just slides across every position

of the input (i.e., s = 1 and p = 0). One way of defining the output size in this case

would be by computing the number of possible placements of the kernel on the input.

For instance, let us consider the width axis: the kernel starts on the leftmost part of

the input feature map and slides by steps of one until it touches the right side of the

input. The size of the output will be equal to the number of steps made, plus one,

accounting for the initial position of the kernel. The same logic applies for the height

axis. More formally: for any i and k, and for s = 1 and p = 0,

o = (i− k) + 1. (3.26)

i
i

“main” — 2018/4/10 — 10:46 — page 62 — #76 i
i

i
i

i
i

62 Chapter 3. Machine and Deep Learning

(Half) same Padding

Sometimes zero padding is applied, i.e. padding the input volume with zeros around

the border to control the output shape. In general, zero padding with p zeros changes

the effective input size from i to i + 2p. So, in the most general case, the relation

between input and output shapes is: for any i, k and p, and for s = 1,

o = (i− k) + 2p+ 1. (3.27)

In some applications, having the output size equal to the input size (i.e., o = i) can

be a desirable property. In this case, the relation between the input and output size

becomes the following. For any i and for k odd (k = 2n + 1, n ∈ N), s = 1 and

p = bk/2c = n,

o = i+ 2bk/2c − (k − 1)

= i+ 2n− 2n

= i.

(3.28)

This is sometimes referred to as half (or same) padding. Figure 3.14 provides an

example for i = 5, k = 3 and (therefore) p = 1 [66].

Figure 3.14 (Half padding, unit strides) Convolving a 3 × 3 kernel over a 5 × 5 input
using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Pooling arithmetic

In a neural network, pooling layers provide invariance to small translations of the

input. The most common kind of pooling is max pooling, which consists in splitting

the input in (usually non-overlapping) patches and outputting the maximum value

of each patch. Other kinds of pooling exist, e.g., mean or average pooling, which all

share the same idea of aggregating the input locally by applying a non-linearity to the

content of some patches. Since pooling does not involve zero padding, the relationship

i
i

“main” — 2018/4/10 — 10:46 — page 63 — #77 i
i

i
i

i
i

3.4. Convolutional Neural Networks 63

describing the general case is as follows: For any i, k and s,

o =

⌊
i− k
s

⌋
+ 1. (3.29)

This relationship holds for any type of pooling [66]. Figure 3.15 shows as example of

numerical computation of average pooling.

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

1.1

1.0

1.7

0.8

1.2

1.7

1.3

1.8

1.7

Figure 3.15 Computing the output values of a 3 × 3 average pooling operation on a
5× 5 input using 1× 1 strides, outputting the mean value for each patch

i
i

“main” — 2018/4/10 — 10:46 — page 64 — #78 i
i

i
i

i
i

64 Chapter 3. Machine and Deep Learning

3.5 Evaluating Machine Learning Models

In Machine Learning, the goal is to obtain models that generalise, namely that per-

form well on new and unseen data, and overfitting is the central obstacle to this

goal. Although it is complicated to reliably measure the generalisation power of a

Machine Learning model, strategies exist for mitigating the risk of overfitting as well

as maximising generalisation.

3.5.1 Training, Validation, and Test sets

Machine Learning algorithms cannot be evaluated on the same data used for the

training. The reason for not doing that quickly becomes evident: the model can

simply remember the whole training set, and will therefore always generate the correct

prediction for any point in the training set. As a consequence, this “remembering”

property does not provide any indication whether the model will be able to generalise.

Consequently, model performance on unseen data is much worse compared to the one

obtained on the training data. Hence, evaluating a Machine Learning model always

requires the available data to be split in two disjoint sets, namely the training set

and the test set. The former is used to train models, while the latter (also referred

to as hold-out set or external validation set) is used exclusively to evaluate the model

performances once the training process is completed.

Furthermore, Machine Learning models have several parameters and settings that

can be used to control their behaviour during training. These settings, also known as

hyper-parameters, are not automatically adapted by the algorithm during the training

process, even though this could in principle be done by designing another algorithm

dedicated to the parameters optimisation. Typical examples of hyper-parameters for

a deep network may be the number of layers, or the size of the layers, or the different

activation functions used. Hyper-parameters are usually not learnt on the training

set, in order to avoid overfitting: learning the hyper-parameters on the training set

might result in fitting the training set better, but at the same time not being able to

correctly generalise on the test set.

To solve this problem, an additional validation set is usually defined. The validation

set is constructed by splitting the training set in two subsets, one of which is used to

learn model parameters (i.e. training), and the other one (i.e. validation) is used to

estimate the generalisation error during the training process. Typically, about 80% of

the total training data is used for training and a 20% for validation [57].

i
i

“main” — 2018/4/10 — 10:46 — page 65 — #79 i
i

i
i

i
i

3.5. Evaluating Machine Learning Models 65

3.5.2 Capacity, Overfitting and Underfitting

The ability to perform well on previously unobserved inputs is called generalisation.

Typically, when training a machine learning model, a training set is provided; a func-

tion to measure the error is computed and referred to as the training error, and several

operations are made to minimise it. So far, it is simply an optimisation problem. What

separates machine learning from optimisation is that the goal is to minimise also the

generalisation error, also called test error, defined as the expected value of the error

on a new input. Of course, when using a machine learning algorithm, the parameters

(weights) are not fixed ahead of time. In fact, the training set is sampled, then used to

choose the combination of parameters to reduce the training error, and then the test

set is sampled. Under this process, the expected test error is greater than or equal

to the expected value of training error. The factors determining how well a machine

learning algorithm will perform are its ability to:

• Make the training error small.

• Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: un-

derfitting and overfitting. Underfitting occurs when the model is not able to obtain

a sufficiently low error value on the training set. Overfitting occurs when the gap

between the training error and test error is too large, i.e. the model performs well

on the training set, but fails to generalise. We can control whether a model is more

likely to overfit or to underfit by altering its capacity. Informally, the capacity of a

model is the ability to fit a wide variety of functions. Models with low capacity may

struggle to fit the training set. Models with high capacity can overfit by memorising

properties of the training set that do not serve them well on the test set. One way to

control the capacity of a learning algorithm is by choosing its hypothesis space, the

set of functions that the learning algorithm is allowed to select as the solution. For

example, the linear regression algorithm has the set of all linear functions of its input

as its hypothesis space. We can generalise linear regression to include polynomials,

rather than just linear functions, in its hypothesis space. Doing so increases the model

capacity [57].

3.5.3 Performance estimators

In order to evaluate the abilities of a machine learning algorithm, a quantitative

measure of its performance must be defined. Usually the performance measurement

i
i

“main” — 2018/4/10 — 10:46 — page 66 — #80 i
i

i
i

i
i

66 Chapter 3. Machine and Deep Learning

is specific to the task being carried out by the system. For tasks such as classification,

the performance is expressed in terms of the ability of the model to predict the correct

label for each test sample, while for the regression problems the error in the quantity

estimation is often calculated.

Accuracy

Accuracy is the fraction of examples for which the model produces the correct out-

put [47]. If the entire set of predicted labels for a sample strictly matches with the

true set of labels, then the subset accuracy is 1.0. If ŷi is the predicted value of the i-th

sample and yi is the corresponding true value, then the fraction of correct predictions

over N samples is defined as [67]:

ACC(y, ŷ) =
1

N

N−1∑
i=0

I(ŷi = yi) (3.30)

where I(x) is the indicator function:

I(x) =

1 if event x occurs

0 otherwise
(3.31)

Confusion matrix

Confusion matrix is an estimator of the number of well-classified events per each

class. By definition a confusion matrix C is such that Ci,j is equal to the number of

observations known to be in group i but predicted to be in group j. Thus in binary

classification, the count of true negatives is C0,0, false negatives is C1,0, true positives

is C1,1 and false positives is C0,1 [68]. The diagonal elements represent the number

of points for which the predicted label is equal to the true label, while off-diagonal

elements are those that are mislabeled by the classifier (Figure 3.16). The higher

the diagonal values of the confusion matrix the better the classifier, indicating many

correct predictions [47]. The confusion matrix for the classification models in this

work is calculated using the function provided by scikit-learn metrics [67].

Receiver operating characteristic (ROC curve)

A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot

which illustrates the performance of a binary classifier system as its discrimination

i
i

“main” — 2018/4/10 — 10:46 — page 67 — #81 i
i

i
i

i
i

3.5. Evaluating Machine Learning Models 67

Figure 3.16 Confusion matrix general definition

threshold is varied. It is created by plotting the fraction of true positives out of

the positives (TPR = true positive rate) against the fraction of false positives out of

the negatives (FPR = false positive rate), at various threshold settings [68]. TPR is

also known as sensitivity, and FPR is one minus the specificity or true negative rate

(TNR), i.e. the proportion of negatives that are correctly identified as such:

TNR =
TN

TN + FP
, (3.32)

where TN indicates the number of true negatives and FP represents the number of false

positives. Compared to metrics such as the subset accuracy, the ROC doesn’t require

optimising a threshold for each label. By computing the area under the ROC curve,

which is also denoted as AUC or AUROC, the curve information is summarised in one

number. The diagonal of an ROC graph can be interpreted as random guessing, and

classification models that fall below the diagonal are considered worse than random

guessing [47]. A perfect classifier would reach the top-left corner of the graph, with

a true positive rate of 1 and a false positive rate of 0. Reporting the performance of

a classifier as the ROC AUC can provide further insights in a classifier’s performance

with respect to imbalanced samples6.

Mean squared error (MSE)

As for regression models, one way to measure the performance of the model is to

compute the mean squared error of the model on the test set. If ŷi is the predicted

value of the i-th sample, and yi is the corresponding true value, then the mean squared

error (MSE) estimated over N samples is defined as:
6However, while the accuracy score can be interpreted as a single cut-off point on a ROC curve,

the ROC AUC and accuracy metrics mostly agree with each other [69]

i
i

“main” — 2018/4/10 — 10:46 — page 68 — #82 i
i

i
i

i
i

68 Chapter 3. Machine and Deep Learning

MSE(y, ŷ) =
1

N

N−1∑
i=0

(yi − ŷi)2 (3.33)

Intuitively, one can see that this error measure decreases to 0 when ŷi = yi.

We can also see thatMSE(y, ŷ) =
1

N
‖(yi − ŷi)‖2, so the error increases whenever the

Euclidean distance between the predictions and the target increases [47, 68].

Coefficient of determination r2

Sometimes it may be more useful to report the coefficient of determination r2, which

can be understood as a standardised version of the MSE. In other words, the r2 is

the fraction of response variance that is captured by the model [47]. It is defined as

the ratio of the sum of the squared errors and the sum of total squares. If ŷi is the

predicted value of the i-th sample and yi is the corresponding true value, then the

score r2 estimated over N samples is defined as:

r2(y, ŷ) = 1−

N−1∑
i=0

(yi − ŷi)2

N−1∑
i=0

(yi − ȳ)2

(3.34)

where ȳ =
1

N

N−1∑
i=0

yi or, in other words, it is the variance of the response. In the

following, it will be rewritten as a rescaled version of the MSE:

r2(y, ŷ) = 1− MSE(y, ŷ)

V ar(y)
(3.35)

For the training dataset, r2 is bounded between 0 and 1, with the best possible score

at 1, but it can become negative for the test set (because the model can be arbitrarily

worse). A constant model that always predicts the expected value of y, disregarding

the input features, would get a r2 score of 0. If r2 = 1, the model fits the data

perfectly, with a corresponding MSE= 0. In other words, r2 provides a measure of

how well future samples are likely to be predicted by the model [47, 68].

i
i

“main” — 2018/4/10 — 10:46 — page 69 — #83 i
i

i
i

i
i

3.6. Machine Learning Applications in High Energy Physics 69

3.6 Machine Learning Applications in High Energy Physics

A key problem in experimental HEP is the correct categorisation of the particle inter-

actions recorded by the detectors as signal and background. This characterisation is

commonly performed by leveraging complex reconstruction algorithms, able to iden-

tify high-level components such as tracks, showers, bundles or clusters associated with

particle interactions recorded by the detector, and summarising the energies, direc-

tions, and shapes of these objects with the extracted quantities. These quantities are

then either directly selected or fed into machine learning algorithms such as Random

Forest [70], K-Nearest Neighbours [71], Boosted Decision Trees [72], or Multi-Layer

Perceptrons (described in Section 3.2.1) to identify particle types or separate signal

from background or classify particle interactions. In the following, classical Machine

Learning approaches implemented in High Energy Physics will be described.

Most High Energy Physics data analysis tasks, e.g. charged particle tracking, parti-

cle identification, signal/background discrimination, fitting and parameter estimation,

normally involve several measured quantities or feature variables. To obtain the best

possible results it is necessary to make maximal use of information in the data and em-

ploy optimal multivariate methods of analysis to perform the estimations. A classical

ML pipeline includes the following steps:

• Problem definition

• Preprocessing

• Feature extraction

• Feature selection

• Learning

• Problem solution (e.g.Classification or Regression)

The key step, before the actual learning procedure, is the data preparation from pre-

processing to feature selection. Whether the task is an image classification, a particle

identification or the estimation of a variable, the data need to be processed in order

to be fed into the Machine Learning algorithm. This process is often called feature

engineering, and is defined as the "process of putting domain knowledge into the cre-

ation of features, to reduce the complexity of the data and make patterns more visible

for learning algorithms to work" [35, 40]. This procedure is often not trivial and can

be expensive in terms of time and expertise: in Machine learning, most of the applied

features need to be identified by an expert and then hand-coded according to the

i
i

“main” — 2018/4/10 — 10:46 — page 70 — #84 i
i

i
i

i
i

70 Chapter 3. Machine and Deep Learning

domain and data type. For example, features can be pixel values, shapes, textures,

positions and orientations - in the case of pattern recognition in images - but can also

be some of the analysis parameters commonly used in fitting and reconstruction in

High Energy Physics. The performances of most of the Machine Learning algorithms

depend on how accurately the features are identified and extracted. Once the feature

engineering is completed, several machine learning algorithms may be used to min-

imise the selected error function on the examples provided. In High Energy Physics

experiments like KM3NeT, a common approach is to apply stacked cuts on quality

parameters of reconstruction algorithms, to select the most useful pieces of informa-

tion to perform the selected task, then define a set of variables (i.e. the features),

which may also be a combination of multiple parameters, and leverage a Machine

Learning algorithm to classify the data according to the presented examples. The

variables often used for the training are reconstructed direction of the primary par-

ticle or energy flow, the distance of the event from the source position, some quality

parameters of a reconstruction algorithm, such as the likelihood of the fit hypothe-

sis, errors on the angular reconstruction, the reconstructed energy, or the number of

hits related with the reconstructed track. Some applications are shown in [73] where

the MLP is used to perform energy reconstruction, [74, 75], where a BDT from the

tool TMVA [76] and Random Forest from scikit-learn [67] respectively are used to

perform a signal-over-background classification and other particle identification tasks.

One of the advantages of such approach is this being a rather easy way to optimise

cuts and data selection; models trained are relatively simple, especially if already im-

plemented (most packages used in HEP provide some tools to perform such kind of

analyses, see for example ROOT TMVA [76]).

While these techniques have been very successful for years, they are likely to suffer

some potential failures: for example, the features used to characterise the events are

limited to those which have already been imagined and implemented for the exper-

iment, and mistakes in the reconstruction of high level features from the raw data

can lead to incorrect categorisation of the event. As an alternative approach, Deep

Learning algorithms try to learn high-level features from raw data. This is a very

distinctive aspect of Deep Learning and a major step ahead of traditional Machine

Learning. Therefore, deep learning reduces the task of developing a new feature ex-

tractor for every problem [77]. Recently, computer vision has made great advances by

moving away from using specifically constructed features to the extraction of features

using Convolutional Neural Networks (CNNs).

i
i

“main” — 2018/4/10 — 10:46 — page 71 — #85 i
i

i
i

i
i

71

Chapter 4

Deep Learning Applications for

KM3NeT-ARCA

In this work, Neural Networks, and in particular Convolutional Neural Networks (sim-

ply CNN from here on), are applied to the problem of identifying and studying neu-

trino interactions in order to classify KM3NeT events according to their topological

features in the 3D space (i.e. space-time hit distribution). In addition, these Deep

Learning-based solutions have been also applied to estimate interaction parameters of

neutrino events for which complex reconstruction algorithms would be needed other-

wise.

Different model architectures have been designed considering the requirements of each

task, by leveraging the properties of specific Neural Network layers and activation

functions. The Keras framework, a high-level Neural Network API [58] has been

used, on the Tensorflow [78] backend. Keras is one of the most popular open source

framework for Deep Learning applications, capable of working on top of Theano [79],

Tensorflow [78] and CNTK [80] backends, and so highly flexible to different hardware

and software requirements. Within the Keras framework, common layer types are

already pre-implemented and can be arranged into different architectures by specifying

the desired layers and their connections and parameters. The models built, along with

their applications, are described in the following sections. In more details, the DL

applications presented in this Chapter are:

• up-going/down-going neutrino event classification (Section 4.2.1)

• νµCC/νeCC interaction classification (Section 4.2.2)

• neutrino energy estimation (Section 4.2.3)

• neutrino direction estimation (Section 4.2.4)

i
i

“main” — 2018/4/10 — 10:46 — page 72 — #86 i
i

i
i

i
i

72 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Furthermore, in Section 4.3 the estimations obtained from the defined Deep Learn-

ing models are compared to those resulting from the official reconstruction algorithm

(i.e. JGandalf) for νµCC events.

4.1 Data preparation

The defined DL models take the KM3NeT triggered νµCC and νeCC events as input

data. Each event is originally represented by a collection of hits, further organised as

a sequence of tuples with the following structure: {DOM-ID, ti}. DOM-ID refers to the

unique identification number of the optical module that detected the signal, whilst

ti is the corresponding time instant, with ns granularity, of the i-th hit, within the

100 ms time-slice. However, this raw-level representation of the event is impractical to

feed Neural Networks. In fact, input data has to be organised as a multi-dimensional

array (also referred to as ndarray or tensor1) in which the first dimension refers to

the specific event (i.e. the sample), whereas dimensions from the second to the last

will stand for the considered features. In the literature, such input data tensor is

usually referred to as X, as defined in equation 3.5, where N indicates the number of

samples, and M is the number of features (see Section 3.2 for more details). In the

rest of this chapter, we will indicate this input tensor as I to avoid confusion, since X

is also used to refer to the coordinate axis. Thus, considering an event as represented

by a collection of hits, i.e. {DOM-IDs, ti} pairs, one possible vector representation

could be easily obtained by unravelling the sequence of hits of each event into a single

array, then sorted by time. However, because this solution does not take into account

any spatial dependency in the data, i.e. how the optical modules are distributed into

the detector, a more sophisticated representation is needed.

4.1.1 Lattice definition

The so-called detector file defines the geometry of the detector in terms of the position

and the orientation of the PMTs, the Detection Unit IDs, and the floor identification.

All these positions are expressed relatively to the UTM reference point, which in the

case of the ARCA detector is UTM WGS84 33N 587600 4016800− 3450, correspond-

ing to a latitude of 36.2922◦ North and a longitude of 15.975 55◦ East [81]. In this

study, only the positions and the IDs of the DOMs hit are used. In particular, the
1From here on, the terms multi-dimensional array, ndarray, and tensor will be used interchange-

ably, as synonyms.

i
i

“main” — 2018/4/10 — 10:46 — page 73 — #87 i
i

i
i

i
i

4.1. Data preparation 73

positions of the DOMs are determined by the centroid of the 31 PMTs contained in

each optical module. In this way, each of the 2070 unique DOM IDs is then unam-

biguously associated to a single position in space. Therefore, considering a coordinate

system whose origin is in the centre of the detector (with respect to the X and Y

axes, while axis Z originates from the sea floor, pointing upwards), the positions of

the DOMs are then mapped to the ranges of values reported in Table 4.1.

Axis min(m) max(m)
X −451.0 494.0

Y −470.0 474.0

Z 99.96 711.96

Table 4.1 X, Y , Z ranges (in metres) for the real detector.

Figure 4.1 shows a 3D view of the 115 Detection Units arranged to form one ARCA

building block. Although this model is able to reproduce the spatial configuration of

the real detector, it should not be used yet as it is to represent the input data. In

fact, the spacing between any pair of adjacent DUs is approximately 90 m, leading to

a 3D structure that is not regular. This can be better seen considering the detector

footprint represented in Figure 4.2.

Figure 4.1 Detector 3D view, in which each blue circle represents the exact position of
each DOM.

i
i

“main” — 2018/4/10 — 10:46 — page 74 — #88 i
i

i
i

i
i

74 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.2 Detector 2D view, that is the projection on the X-Y axis of DOMs positions.

Moreover, the ordering of the strings as reported in the detector description file,

namely the real order in which the DUs are being deployed at sea, is not regular as

well. Figure 4.3 shows the X-Y view of the detector in which the DUs are connected

following their original ordering, starting from the DU in the centre.

Figure 4.3 X-Y view of one ARCA building block with DUs connected according to
their original ordering.

i
i

“main” — 2018/4/10 — 10:46 — page 75 — #89 i
i

i
i

i
i

4.1. Data preparation 75

This aspect has to be taken into account in case data augmentation techniques (in-

cluding implicit augmentation through convolution) are applied to the data to improve

the effectiveness of the Machine Learning model2. To overcome these difficulties in-

duced by the irregularities in the real detector geometry, a regular 3D lattice has been

defined, in which the detector will then be represented.

Figure 4.4 X-Y view of the lattice containing the "regularised" detector

As a consequence, the real positions of the DUs, and so of each DOM, have to be re-

calculated, so that the resulting shape of the detector would still resemble the original

one. These new positions have been determined using the k-d Tree algorithm [82, 83],

using the implementation available in the Scipy Python library [84]. This algorithm

takes as input the positions of each DOM and the structure of the lattice, and returns

the nearest neighbour for each optical module within the lattice, namely the lattice-

DOMs. Figure 4.4 shows the footprint of the “regularised” detector as contained in

the 3D regular lattice, in which the dots are exactly 90 m-spaced on the X and Y

axes, and 36 m-spaced on the Z axis.

A map to connect each DOM to the corresponding lattice DOM is then defined, and

used to collect the lattice DOMs hit for every event. As a matter of fact, the shifting

of the coordinates in the regularised lattice structure has a relatively small impact on

the DOM positions (see the distributions of the displacements between the real DOM

positions and the lattice DOM positions for each coordinate in Figure 4.5, and theX-Y

view of the coordinates of the real DOM and lattice DOM positions in Figure 4.6), but

constitutes a more convenient way to represent the data as input for ML/DL learning

algorithms. For example, this regular structure would allow performing convolutional
2For example, producing a translated version of an event by shifting the hits according to the DU

number would result in events deformed after the transformation.

i
i

“main” — 2018/4/10 — 10:46 — page 76 — #90 i
i

i
i

i
i

76 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.5 From left to right: distribution of the displacement between the real positions
of the DOMs and the lattice position, for the x, y and z coordinates respectively.

operations by shifting the kernels, without losing information on the optical modules

near the edges of the detector. Moreover, this representation also reduces the sparsity

in the data, which is typically of paramount importance for ML models. Convolutions

suffer from the same representation problem of data augmentation, namely the details

of DOM positions are lost, which can have an impact on pointing accuracy.

Figure 4.6 X-Y view of the positions of the DOMs and the lattice positions of the
DOMs. The shift is relatively small, but the resulting lattice is regular.

4.1.2 Event Definition

Within the regularised detector structure, an event is represented as a 4-dimensional

tensor, containing the (x′, y′, z′) coordinates of the lattice-DOM hit, and the time ti

at which the hit occurred. Notice that the deformations on the X and Y axes are

coupled, and so are the x′ and y′ coordinates.

In order to easily work with convolutional networks, the hit times are discretised, so

that they can be easily associated to their events. In more detail, the values of the

absolute time instants of the hits are binned into a chosen number of time intervals

i
i

“main” — 2018/4/10 — 10:46 — page 77 — #91 i
i

i
i

i
i

4.1. Data preparation 77

Figure 4.7 Histogram of the hits for a single KM3NeT event over the 75 discrete time
intervals.

and then mapped to the corresponding bin indices. The discretised time array is

defined starting from the minimum and maximum time instants of all events. Since

most events have hit times concentrated in the centre of the timeslice, the number of

bins must be chosen carefully, in order not to have a high number of hits concentrated

in few (central) bins. Different configurations have been tested, and the value for the

number of time bins resulting in best network performances is 75. Figure 4.7 shows

the distributions of the hit times of a single event for each of the 75 bins. In this way,

the collection of hits of each event is then expressed in terms of space-time integer

values within a tensor that corresponds to the space-time lattice.

Hence, the main steps of the algorithm to collect and prepare event data to be passed

to the ML/DL algorithms are:

1. Considering the initial set of events E, only those that have a number of DOMs

hit greater than or equal to 5 are selected (more details on the rationale behind

the choice of this selection threshold are reported in Section 2.2.2).

2. For each selected event, the IDs of the DOMs hit and the corresponding time

instant values are collected.

3. The T vector of the 75 discrete time intervals is defined, considering the time

instants of all the hits of the events selected at step 1.

4. The 5D tensor denoted as I , which will finally hold the data for all the selected

events, is created. The shape of |I| will be [N×75×16×15×18]. N corresponds

i
i

“main” — 2018/4/10 — 10:46 — page 78 — #92 i
i

i
i

i
i

78 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

to the total number of events; as 75 is the number of the considered time intervals

(i.e. |T|), the shape of the regular lattice structure is 16× 15× 18.

5. For each event evt, and for each time interval t ∈ T, the coordinates of the lattice

DOM IDs hit are collected and recorded; then, if the time of the hit is contained

in the current interval, the corresponding value of I (i.e. I[evt, t, x′, y′, z′]) is

incremented according to the number of hits, otherwise it is set at 0.

It is worth mentioning that the construction of the I tensor as defined above somewhat

keeps the shape of the events. Figure 4.8 compares the shape of three different ν events

as represented in the real detector geometry (on the left-hand side), and within the

regular lattice structure (on the right-hand side).

i
i

“main” — 2018/4/10 — 10:46 — page 79 — #93 i
i

i
i

i
i

4.1. Data preparation 79

(a)

(b)

(c)

(1)

(2)

(3)

Figure 4.8 Event shape comparison between Detector (on the left) and Regularised
Lattice (on the right), for different event topologies. Subplots (a) and (1) represent
a νµCC track-like event; (b) and (2) a νµCC shower-like event; (c) and (3) an νeCC
shower-like event.

i
i

“main” — 2018/4/10 — 10:46 — page 80 — #94 i
i

i
i

i
i

80 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

4.1.3 Training, test and validation

A collection of 258, 879 simulated νµCC and νeCC events has been used as the refer-

ence dataset to train the DL models. This dataset (i.e. I) is split into three subsets,

namely Itrain, Ival, and Itest, so that the training, validation, and test sets, respectively,

are generated. It is important to recall that this data splitting procedure is critical for

a correct execution of the Machine Learning experimental pipeline (See Section 3.5.1

for further details).

In more details, the I dataset is initially split in two: Itrain contains 80% of the

samples, and Itest contains the remaining 20%, to be used for testing. The training

set is further split in two subsets with 20% of the training samples to be associated

to the Ival validation set (Figure 4.9).

Dataset

Training Set Test Set

Training Set Validation Set Test Set

80%

80% 20%

20%

Figure 4.9 Sketch of how the different sets and sub-sets are defined

As a result, the total 258, 879 simulated νµCC and νeCC events are arranged into the

three following datasets:

• Training and Validation set (80%): 207, 061 events, further split into:

– Itrain (80%): 165, 610 events;

– Ival (20%): 41, 451 events;

• Test set - Itest (20%): 51, 818 events.

At each training step, the DL network evaluates its performance on the validation

set, in order to monitor the evolution of the model learning during the training phase.

Test data are not fed into the network until the training is completed. This com-

mon practice helps avoiding overfitting and testing the generalisation power of the

network.

i
i

“main” — 2018/4/10 — 10:46 — page 81 — #95 i
i

i
i

i
i

4.2. Learning neutrino interactions 81

4.2 Learning neutrino interactions

In this Section, the defined Deep Learning solutions applied to KM3NeT neutrino

interaction problems will be presented. In particular, four different tasks have been

considered and analysed from the perspective of Supervised Machine Learning. The

first pair of presented problems consists of two classification tasks: (1) up-going/down-

going neutrino event classification (Section 4.2.1), and (2) νµCC/νeCC interaction

classification (Section 4.2.2). The second two problems, on the other hand, are regres-

sion tasks: (3) neutrino energy estimation (Section 4.2.3), and (4) neutrino direction

estimation (Section 4.2.4). For each of these four tasks, a Deep Convolutional Neural

Networks model has been specifically designed and tested.

All the network architectures defined in this work have been originally inspired by

the VGG model [85], which is one of the most famous CNN models excelling at the

ImageNet image classification challenge [86]. The main feature of a VGG-like network

is to be composed by convolutional blocks. Each block presents a couple (or more) of

convolutional layers, followed by Pooling layer(s). The feature size, i.e. the first input

parameter of the layer, indicating the number of convolutional filters to be learnt, is

increasing from one block to the next one. This strategy to combine the multiple

convolutional layers and the pooling layers, by successive increasing the number of

filters in different blocks is exactly what the proposed network topologies inherits

from the VGG model. Other hyper-parameters of the models like the size of the

convolutional kernels, or the pooling strategy, and the activation functions to use,

have been adapted considering the specific learning task at hand (i.e. classification or

regression), as well as the size and the shape of the input features. In fact, the size

of the kernels used for the applications presented in this Section is 2 to 4 times larger

than those used in the original VGG model. Moreover, the average pooling strategy

has replaced the max pooling originally used in the VGG. This is mainly because,

unlike usual RGB images, the considered event snapshot “images” are sparse. Different

combinations of hyper-parameters of the networks have been tested to maximise the

performances for each model. The models with the best performance are shown.

In the following Sections, the defined Deep Network models will be detailed, along

with the structure of the input features. Then, the obtained results will be presented

and discussed. To help the understanding of the blocks composing the defined network

topologies, each model scheme will follow the same conventions in representing the

layers, according to the colour code shown in Figure 4.10. Further details about the

specific behaviour and flavours of the single layers can be found in [58].

i
i

“main” — 2018/4/10 — 10:46 — page 82 — #96 i
i

i
i

i
i

82 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Conv

Pooling

Dense

Flatten

Split

GlobalPooling

Merge

Decision

Figure 4.10 Colour code of the layers used as building blocks of the defined DL networks
for KM3NeT. From the top left: Split : functional layer used to split the different views
of the events; Conv : 2D Convolutional layer; Merge: functional layer used to merge
the output features of multiple layers into one single layer; Pooling : layer to perform the
Pooling operation; Flatten: functional layer used to reshape the (input) features of a layer
- used before Dense layers; GlobalPooling : layer to perform the GlobalAveragePooling
operation; Dense: Fully-Connected (a.k.a. Dense) layer; Decision: the very last layer of
each model that performs the estimations.

4.2.1 Task 1: Up-going/Down-going neutrino event classification

The classification problem of distinguishing between up-going and down-going parti-

cles is fundamental in KM3NeT, since up-going neutrinos are the object of observa-

tion, while down-going atmospheric muons are a source of background signal. The

Cherenkov light propagating in the detector volume is the main indicator of the pas-

sage of a neutrino. Even though different interactions produce events with their own

signatures, the evolution along the Z coordinate axis over time indicates whether

that particle is moving towards the sea surface or the sea bed. Thus, to classify

events moving upwards or downwards, the evolution over time of the z-coordinate is

considered.

Network architecture

Since we are interested in considering only the evolution over time along the Z axis,

the input 5D tensor I is downscaled to form a 3D tensor. This operation is performed

by summing over the X and Y axes, obtaining a 3D tensor of shape (N, 75, 18)3. An

event in this representation could be visualised as a 75 × 18 snapshot hue image, as

shown in Figures 4.11 and 4.12.
3N refers to the number of samples, i.e. events.

i
i

“main” — 2018/4/10 — 10:46 — page 83 — #97 i
i

i
i

i
i

4.2. Learning neutrino interactions 83

Figure 4.11 (T,Z) view of a
down-going νµCC event

Figure 4.12 (T,Z) view of an
up-going νµCC event

As for the target labels, the z component of the direction cosines, i.e. the cosine of the

angle θz that the direction of the neutrino forms with the Z axis (also cos(θz) from

here on), is used to label the data. In more details, as the directions of the events are

provided with respect to a coordinate system whose Z axis is pointing upwards (see

Figure 4.13), the classification labels have been defined as reported in Table 4.2.

cos(θz) label
cos(θz) > 0 1 : up-going
cos(θz) ≤ 0 0 : down-going

Table 4.2 Label definition for up-going/down-going classification

Z

X

Y

!z

Figure 4.13 Coordinate system in the centre of the detector with Z axis pointing up-
wards. θz is the angle between the direction of the propagating particle and the Z axis.
Therefore cos(θz) = 1 (θz = 0◦) indicates an up-going vertical event, while cos(θz) = −1
(θz = 180◦) indicates a down-going vertical event. The dashed arrow represents an
up-going event with generic direction θz w.r.t. the Z axis.

The network designed for this task is composed by a stack of convolutional blocks

aimed at performing local features learning (see Figure 4.14). The last convolutional

module is then followed by a Flatten layer, i.e. an operational layer aimed at flattening

the features in a way suitable for the next 2 dense layers, whose aim is to learn the

i
i

“main” — 2018/4/10 — 10:46 — page 84 — #98 i
i

i
i

i
i

84 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

global features in the data. Each convolutional module consists of 2D convolutional

layers followed by an average pooling layer. The final dense layer contains a single

node for each target class in the model, and a Softmax activation function [40] (see

Section 3.3). The Softmax is applied to generate prediction values (in the [0, 1] inter-

val) for each output neuron, so that the sum of all the Softmax values will be equal

to 1. The output of the Softmax function can be used to represent a categorical dis-

tribution [40]. All the defined convolutional blocks consider a kernel size of (12× 12)

combined with a ReLU activation function [59] (also described in Section 3.3.2).

Inputs (TZ)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

Dense 512

Flatten (3840)

Dense 512

Softmax

Outputs:
P(up-going), P(down-going)

Figure 4.14 CNN model for upgoing/downgoing classification

Moreover, the average pooling layer applies a pooling with a size of (8× 8). Padding

is included in the average pooling layers to pad the input so that the output has

i
i

“main” — 2018/4/10 — 10:46 — page 85 — #99 i
i

i
i

i
i

4.2. Learning neutrino interactions 85

the same shape of the original input. Average Pooling is used to reduce the com-

putation complexity by downscaling the data and to extract low level features from

neighbour neurons (see Section 3.4 for more details). For example, considering a

shower-like event, which is widely distributed in space, its z-coordinate might globally

move upwards (resp. downwards), while the corresponding collection of hits expands

horizontally. Averaging the positions may help the network to extract and learn the

information that the event is moving upwards or downwards, without focussing on

local fluctuations (see Figure 4.15).

Figure 4.15 (T,Z) view of a νeCC shower event before (left) and after (right)
the Average Pooling is applied.

For both training and validation, the loss function applied to measure how closely

the model’s predictions match the target classes, is the categorical cross-entropy [57]

(Section 3.3).

Results and discussion

The training and validation performances of the Up-going/Down-going classification

task are reported as function of the epochs (i.e. training iterations). Figures 4.16

and 4.17 show the evolution of the loss function (i.e. categorical cross-entropy) and the

accuracy metric, respectively, as calculated during the training process. In particular,

trends on the training and validation sets are reported.

As for the evaluation on unseen (i.e. test) data, the accuracy score is reported, that

is the percentage ratio of correct predictions over the total number of predictions (i.e.

the total number of test events):

ACCup−down = 93.3%

For a better understanding of classification performances obtained on test data, the

confusion matrix is shown in Figure 4.18. It reports the number of correctly classified

events, along with the misclassified ones, for each class. As shown, it follows that

the percentage of misclassified events (out of the total number of test events for each

i
i

“main” — 2018/4/10 — 10:46 — page 86 — #100 i
i

i
i

i
i

86 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.16 Loss as a function
of the epochs for training and
validation of Up-going/Down-
going classifier

Figure 4.17 Accuracy as
a function of the epochs for
training and validation of
Up-going/Down-going classifier

class) is 7.1% for down-going events, whereas for the up-going events it is 6.4%. This

is compatible with the detector design, which is more efficient in the detection of

up-going events.

Figure 4.18 Confusion Matrix for Up-going/Down-going classification

The ROC curve has also been calculated as a classification performance estimator.

For the whole test set, the ROC curve is shown in Figures 4.19.

Moreover, to gain even more insight on the classification performances, the ROC

curve has been calculated as a function of two physical quantities of interest, namely

the neutrino energy and the distance of the event from the detector centre. For each

event, the distance from the detector centre is evaluated as the distance of the neutrino

straight line (identified by the position and direction cosines of the propagating particle

at can level) from the centre point of the detector, as illustrated in Figure 4.20.

Figure 4.21 shows the ROC curve as a function of the incoming neutrino energy:

each curve shows the classification performances for events falling in a specific energy

i
i

“main” — 2018/4/10 — 10:46 — page 87 — #101 i
i

i
i

i
i

4.2. Learning neutrino interactions 87

Figure 4.19 ROC curve for upgoing-downgoing classification

Figure 4.20 Definition of distance from the detector centre

Figure 4.21 ROC curve for upgoing-downgoing classification as a function of the neu-
trino energy

range. The energy bins considered in the calculation are: [−1.2, 2.5, 3.0, 4.0, 5.5, 7.9]

(in terms of log10(E)[GeV]). Similarly, 5 distance bins have been defined, namely

[0.5, 170, 320, 450, 500, 810], expressed in metres. The corresponding ROC curve, for

each distance bin, is shown in Figure 4.22.

i
i

“main” — 2018/4/10 — 10:46 — page 88 — #102 i
i

i
i

i
i

88 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.22 ROC curve for upgoing-downgoing classification as a function of the
distance of the neutrino from the detector centre

As expected, the classification performances get worse for lower energies and high

distances from the centre.

A possible explanation for the energy dependency is that with a small number of hits

fluctuations affect the determination of the direction for particles approaching the

detector nearly horizontally. At high energy the available training sample is sparse,

so the network training is not optimal.

The distance dependency, on the other hand, is related to the finite volume of the

detector. Events occurring on the edge (or close to it), might not be completely

included in the instrumented region, and so they are more difficult to classify.

The classification efficiency is also defined as the accuracy per energy (resp. distance)

bin. Figures 4.23 and Figure 4.24 show the efficiency as a function of the neutrino

energy in the range 102-108 GeV and as a function of the distance of the event from

the detector centre up to approximately 800 m.

Figure 4.23 Classification ef-
ficiency for upgoing/downgoing
events as a function of the neu-
trino energy

Figure 4.24 Classification ef-
ficiency for upgoing/downgoing
events as a function of the dis-
tance of the neutrino from the
detector centre

i
i

“main” — 2018/4/10 — 10:46 — page 89 — #103 i
i

i
i

i
i

4.2. Learning neutrino interactions 89

4.2.2 Task 2: νµCC/νeCC interaction classification

Events produced by muon and electron neutrino interactions can show different shapes,

according to the neutrino energy and the particles produced in the interaction with

the sea water. In particular, high energy muon neutrinos produce muons which result

in track-like events, or showers, while charged current electron neutrino interactions

result in shower-like events (See Section 1.1.2). Furthermore, the energy of the events

often influences the detection, as events with few hits collected may be difficult to

classify. This variability makes this kind of task suitable for Neural Network applica-

tion, because the technique can be used to automatically extract features to identify

the particle type.

Network architecture

Since the νµCC and νeCC interactions classification depends on the shape of the

events, which is generally different for muon and electron neutrino events, for this

task two views of the events are considered. In fact, unlike the up-going/down-going

classification problem, in which only the evolution of the z-coordinate over time has

been considered, in this task we also introduce the x/y-coordinate views as input fea-

tures. Thus, the input data tensor is constructed starting from the 5D input tensor I

containing the evolution of the 3D coordinates of the particle position over time. For

the specific task, two 3-dimensional tensors are defined:

• TZ, a tensor of shape (N, 75, 18)4, obtained by summing over the X and Y axes;

• XY, a tensor of shape (N, 16, 15), obtained by summing over the T and Z axes.

As a consequence, an event in this representation in seen as two snapshot images of

the corresponding shapes (see Figures 4.25-4.28 for examples).

In this task, the target labels indicate whether an event has been produced by a muon

neutrino or an electron neutrino CC interaction. Therefore, from a supervised learning

perspective, this is a binary classification task (see Table 4.3):

type label
νµCC 1

νeCC 0

Table 4.3 Labels definition for νµCC/νeCC classification

4As above, N indicates the sample size, i.e. the number of events

i
i

“main” — 2018/4/10 — 10:46 — page 90 — #104 i
i

i
i

i
i

90 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.25 (T ,Z) view of a 2.5 TeV
νeCC event

Figure 4.26 (X,Y)
view of a 2.5 TeV νeCC
event

Figure 4.27 (T ,Z) view of a 600 GeV
νµCC event

Figure 4.28 (X,Y)
view of a 600 GeV
νµCC event

The network architecture designed to tackle this classification task consists of two

separated branches, corresponding to the two different views of the same event pro-

vided as input features (see Figure 4.29). These two views represent two separate

perspectives to learn from for the convolutional modules. The two separate branches

are further concatenated just before the last dense layers, by operational layers that

in order flatten and merge the outputs of the two sub-networks.

Of these two branches, one is dedicated to learn the features from the time evolution

of the z coordinate, similarly to what has been used for up-going/down-going classifi-

cation. On the other hand, the second sub-network learns from the projection of the

event on the (X,Y) plane. These two parallel branches have identical configurations:

3 convolutional blocks, composed by 2D convolutional layers plus ReLU, combined

with an average pooling layer. The sizes of convolutional and pooling kernels are

(12 × 12) and (8 × 8), respectively. The 2 Dense layers in the network end apply

the ReLU activation function as well, along with the Softmax activation function to

calculate the output predictions. The loss function to be optimised is the categorical

cross-entropy.

i
i

“main” — 2018/4/10 — 10:46 — page 91 — #105 i
i

i
i

i
i

4.2. Learning neutrino interactions 91

Inputs (TXYZ)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

Flatten (3840)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

Dense 512

Flatten (512)

Dense 512

Softmax

Outputs:
P(!"), P(!e)

Split

TZ XY

Merge CONCAT

Figure 4.29 CNN model for νµCC/νeCC classification

Results and discussion

The training and validation performances for the νµCC/νeCC classification are shown

as a function of the epochs in Figures 4.30 and 4.31.

As for the performance estimation on the test set, the accuracy score is calculated:

ACCνµCC/νeCC = 92.8%

i
i

“main” — 2018/4/10 — 10:46 — page 92 — #106 i
i

i
i

i
i

92 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.30 Training loss evo-
lution for νµCC/νeCC classifica-
tion.

Figure 4.31 Training accuracy
evolution for νµCC/νeCC classi-
fication.

as well as the confusion matrix (see Figure 4.32).

!" CC

!" CC

!e CC

!e CC

Figure 4.32 Confusion Matrix for νµCC/νeCC classification.

The confusion matrix reports that the percentage of misclassified events is higher in

the case of νµCC events. In fact, 2.7% of the νeCC events are misclassified, whereas

the same quantity is 10.3% for νµCC events.

For better insight on the phenomenon, the ROC curves for the whole test dataset

has been computed, as well as the ROC curves for event classes split according to

their neutrino energy and their distance from the detector centre. As reported in

Figures 4.33, 4.34, and 4.35, the dependency on the energy and the distance is more

evident for νµCC/νeCC classification than the up-going/down-going case. The reasons

behind this may be due to the difficulty of discriminating νµCC/νeCC interactions at

lower energies and when events occur near the detector edges.

Again, similarly to the previous classification task, the efficiency for the νµCC/νeCC in-

teraction classification is shown in Figures 4.36, and 4.37 as a function of the neutrino

energy and of the distance from the detector centre, respectively.

i
i

“main” — 2018/4/10 — 10:46 — page 93 — #107 i
i

i
i

i
i

4.2. Learning neutrino interactions 93

Figure 4.33 ROC curve for νµCC/νeCC classification.

Figure 4.34 ROC curve for νµCC/νeCC classification as a function of the neutrino
energy.

Figure 4.35 ROC curve for νµCC/νeCC classification as a function of the distance of
the neutrino from the detector centre.

i
i

“main” — 2018/4/10 — 10:46 — page 94 — #108 i
i

i
i

i
i

94 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.36 Classification ef-
ficiency for νµCC/νeCC events
as a function of the neutrino en-
ergy

Figure 4.37 Classification effi-
ciency for νµCC/νeCC events as
a function of the distance of the
neutrino from the detector centre

4.2.3 Task 3: Neutrino energy estimation

The estimation of the particle energy represents one of the main goals of high energy

neutrino detection, as it can provide information on the spectrum and origin of the

incoming neutrinos. From a simulation point of view, the energies that are recorded

are those of the tracks of the simulated particles as they reach the can. Therefore,

for the νµCC and νeCC events, the energies considered are those of the muon and the

electron produced in the neutrino interaction, respectively. From the perspective of the

learning algorithm, the estimation of the energy may be easily defined as a regression

problem. As in the previous analysis, since the shapes of the events are related to

their energy, the estimation cannot be performed without taking into account the

event topology from multiple projections (i.e. views).

Network architecture

The input data format for this task is the same used for the classification of νµCC/νeCC in-

teraction classification, namely two views of the same event of shapes 75 × 18 and

16×15, respectively. For the sake of completeness, the structure of the input features

is the following:

• TZ, a tensor of shape (N, 75, 18), obtained by summing over the X and Y axes;

• XY, a tensor of shape (N, 16, 15), obtained by summing over the T and Z axes.

Similarly to other tasks, both νµCC and νeCC events have been used to train the deep

neural network model. Despite the input features being the same of the νµCC/νeCC clas-

sification task, the learning targets are different, namely the values of the energy for

i
i

“main” — 2018/4/10 — 10:46 — page 95 — #109 i
i

i
i

i
i

4.2. Learning neutrino interactions 95

each event. However, to aid the optimisation of the gradients, and for better numer-

ical approximations, log10E has been estimated by the neural network, rather than

the values of E. To simplify the notation, in the following E and Ê will still be used

to refer to the expected and the estimated values of energy, respectively.

Inputs (TXYZ)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

GlobalAvgPooling
(128)

32x Conv 2D

128x Conv 2D

Average Pooling

64x Conv 2D

Dense 128

GlobalAvgPooling
(128)

Dense 64

Linear

Outputs:
LogE

Split

TZ XY

Merge CONCAT

Dense 32

Dense 16

Figure 4.38 CNN model for neutrino energy estimation

The model architecture, shown in Figure 4.38, consists of 2 parallel sub-networks,

which analyse separately the TZ and the XY tensors, merged and fed into multiple

fully-connected layers to combine and extract features learnt from the multiple views

of the events. In particular, the branch on the left-hand side (i.e. TZ) consists of 3

convolutional modules, where two of them include a pair of 2D convolutional layers

with the same number of filters.

All these layers apply a 12 × 12 kernel to the data, and ReLU activation function.

Average pooling strategy is applied after each convolutional module, using a (6 × 6)

i
i

“main” — 2018/4/10 — 10:46 — page 96 — #110 i
i

i
i

i
i

96 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

pool, and stride steps equal to 2, i.e. the filter convolves around the input volume

by shifting two units at a time. The sub-network ends with a Global Average Pooling

(GAP) layer [87]. The GAP layer reduces each feature map to a single number by

simply taking the average of all values, event by event. This layer learns to perform

a dimensionality reduction on the data, by maximising the contributions of the most

relevant features.

As for the right-hand side network branch (i.e. XY), the defined topology is smaller,

as the shape of the input features, i.e. (16×15). A single convolutional block equipped

with three 2D convolutional layers of increasing number of filters are defined. These

layers apply kernels of size (12 × 12), with average pooling (with 4 × 4 pools), and

a GAP layer in the very end. The two branches are then concatenated and their

output is redirected to a module consisting of 4 fully-connected (i.e. dense) layers with

hyperbolic tangent (tanh) as the activation function. The last prediction layer is again

a dense layer with no activation function, as a single number has to be estimated. The

loss function is the mean squared error (MSE), used with the Adadelta [88] optimiser.

This optimiser dynamically adapts over time, using only first order information and

has minimal computational overhead beyond stochastic gradient descent. This tool

has been empirically proved better in the case of sparse input data, which is the case

for the data at hand.

Results and discussion

For this regression task, performance are evaluated in terms of the estimation errors,

i.e. how much the estimated values Ê differ from the expected ones, denoted as E.

The evolution of the loss function during the training phase is displayed in Figure 4.39,

for both the training and the validation phase.

Figure 4.39 Energy estimation model history: Loss function evolution during training
and validation

i
i

“main” — 2018/4/10 — 10:46 — page 97 — #111 i
i

i
i

i
i

4.2. Learning neutrino interactions 97

The mean squared error (MSE) for the energy estimation is:

MSE(E, Ê) = 0.22,

with a r2 score (coefficient of determination) of:

r2(E, Ê) = 0.84.

Regression performances can also be analysed by plotting estimated (log) energy val-

ues as a function of the true values.

The resulting scatter plot (Figure 4.40), shows that energy values accumulate along the

bisection line, i.e. the cases in which estimations and expectations are identical.

Figure 4.40 Regression performance on the estimation of log10(E)[GeV] of the
leptons for νµCC ∪ νeCC events.

Since most of the events are concentrated in the energy region between 1 and 10 TeV,

it is convenient to show the plot in a different shape, highlighting the regions corre-

sponding to 68% and 90% confidence intervals. Figure 4.41 shows the plot in which

the estimated values are reported in the X axis (whereas the expected values are in

the Y axis), along with the energy resolution plot.

For a deeper understanding of the performances of the estimation, the same results

can be analysed for νµCC and νeCC test events separately. The scatter plots of the

regression performances and the energy resolution for both event classes are reported

in Figures 4.42 and 4.43.

i
i

“main” — 2018/4/10 — 10:46 — page 98 — #112 i
i

i
i

i
i

98 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.41 Left: Regression performance of energy estimation with 68% and 90%
intervals on the whole (νµCC ∪ νeCC) test dataset. True energies are displayed as a
function of the estimated values. The results shown are affected by low statistics at high
energies. Right: Distribution of log10(Eest/Etrue). The red line represents the Gaussian
fit with µ = 0.03 and σ = 0.33.

Figure 4.42 Left: Regression performance of energy estimation for νµCC event test
dataset. Right: Distribution of log10(Eest/Etrue). The red line represents the Gaussian
fit with µ = 0.07 and σ = 0.32.

Figure 4.43 Left: Regression performance of energy estimation for νeCC event test
dataset. Right: Distribution of log10(Eest/Etrue). The red line represents the Gaussian
fit with µ = −0.04 and σ = 0.32.

i
i

“main” — 2018/4/10 — 10:46 — page 99 — #113 i
i

i
i

i
i

4.2. Learning neutrino interactions 99

4.2.4 Task 4: Neutrino direction estimation

Neutrino direction estimation with Neural Networks can be formalised again as a

regression problem: the neural network model learns how to estimate the value of

a specific variable. In this Section, the estimation of the z component of the neu-

trino direction cosines will be presented. Such results constitute the starting building

block upon which a full direction estimation can be performed by Deep Neural Net-

works.

Network architecture

Inputs (TZ)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

Dense 512

Flatten (3840)

Dense 512

Softmax

Outputs:
Cos(!z)

Inputs (TZ)

32x Conv 2D2x

Average Pooling

128x Conv 2D

Average Pooling

64x Conv 2D2x

Average Pooling

Dense 512

Flatten (3840)

Dense 512

Cos

2x

2x

2x

2x

Figure 4.44 CNN model for cos(θz) estimation

i
i

“main” — 2018/4/10 — 10:46 — page 100 — #114 i
i

i
i

i
i

100 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

The estimation of the z component of the direction cosine of events will leverage the

analysis of the evolution of the z-coordinates over time as input features. Thus, the 5D

I tensor is transformed in the 3D array of shape = (N, 75, 18), by summing over the

X and Y axes. As shown in Figure 4.44, the network topology is quite similar to the

one adopted for up-going/down-going event classification (see Section 4.2.1). The real

difference between the two models is in the activation functions used in all the layers,

namely the hyperbolic tangent, tanh, rather than the classical ReLU. Moreover, the

activation function in the prediction layer is the cosine function, since cosine values

must be estimated. The loss function to minimise in this task is the mean squared

error (MSE) using the Adadelta optimiser [88].

Results and discussion

As for the regression task to estimate the z-component of the direction cosine, i.e.

cos(θ̂z), performances are evaluated in terms of the prediction error. The MSE loss

function is evaluated at each iteration during the training phase. The trend is shown

in Figure 4.45 for the training and validation phases. Note that the bump around

epoch 15 is likely caused by the optimiser used in the training phase of the model,

which uses an adaptive technique to adjust the learning rate with momentum.

Figure 4.45 cos(θz) estimation model history: Loss function evolution during training
and validation

The mean squared error (MSE) for the cos(θz) estimation is:

MSE(cos(θz), cos(θ̂z)) = 0.03,

with an r2 score (coefficient of determination) of:

r2(cos(θz), cos(θ̂z)) = 0.89.

i
i

“main” — 2018/4/10 — 10:46 — page 101 — #115 i
i

i
i

i
i

4.2. Learning neutrino interactions 101

The regression performances can be visualised also plotting the estimated cos(θ̂z)

values as a function of the true values. The resulting scatter plot (Figure 4.46-left),

shows that estimated values gather along the diagonal curve, where cos(θ̂z) = cos(θz).

For better insights on the reliability of the estimations, the relationship between the

true and estimated values within the regions of the 68% and 90% confidence intervals

is also reported in Figure 4.46-right.

The origin of the horizontal stripes in the in the density plots (Figure 4.46) is currently

not thoroughly understood, but there are hints they may be related either to the fi-

nite size of kernels and/or to the DOM top-down asymmetry (fewer PMTs looking

upwards). Moreover, this effect indicates that the current choice of the kernel size is

probably not suitable to analyse both νµCC and νeCC events with the same model

hyperparameters. This hypothesis may be further confirmed by analysing the perfor-

mance for νµCC and νeCC events separately. As reported in Figure 4.47, cos(θz) is

better estimated for νµCC events, mostly track-like events, for which the direction is

more clearly defined with respect to the shower case.

Figure 4.46 Left: Regression performance of cos(θz) estimation for νµCC ∪ νeCC
events. Right: Regression performance of cos(θz) estimation with 68% and 90% intervals
on the whole νµCC ∪ νeCC test dataset.

Figure 4.47 Regression performance of cos(θz) estimation for νµCC test events (left)
and νeCC test events (right).

i
i

“main” — 2018/4/10 — 10:46 — page 102 — #116 i
i

i
i

i
i

102 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

4.3 Comparison with the official reconstruction

In order to benchmark the performances of the defined Neural Network models, the

results obtained have been compared, where applicable, to those obtained by the

official reconstruction algorithm used in KM3NeT, namely JGandalf. The JGandalf

package reconstructs neutrino events by fitting the positions and directions of the

particles, assuming a track-like hypothesis (see Section 2.3.3). For this reason, since

the algorithm is optimised to reconstruct the track signature, the comparison could

be done only on the νµCC events. For a fair comparison, the same test events used to

evaluate the performances of the Neural Network models have been used as input data

for the reconstruction algorithm, and then the two estimations have been compared.

The total number of νµCC events used is 30, 469 events (out of 51, 818 in the whole

test set).

It is worth mentioning that in this comparison the Neural Network have only been

used in inference mode, to generate estimates. In other words, no additional training

of the network has been performed to carry out this comparison. Thus, the internal

parameters used by the Neural Network are the same optimised after the training

considering both νµCC and νeCC events.

As for the tasks, the following have been considered in the comparison:

• energy estimation comparison (4.3.1);

• cos(θz) estimation comparison (4.3.2);

• up-going/down-going classification comparison (4.3.3).

All the comparisons have been performed by applying two different selection criteria

on the νµCC events. In particular, a first comparison has been done on all the se-

lected νµCC events in the test set (i.e. 30, 469). Then a second comparison has been

performed, by selecting the events according to the quality cuts reported in [6]. These

cuts, optimised for the JGandalf-reconstructed events, are:

− lik > 60 AND − log(β0) > 2.8, (4.1)

where lik refers to the likelihood of the reconstructed track (with respect to the real

track), and β0 is the error on the direction reconstruction, as reported in the JGandalf

output.

i
i

“main” — 2018/4/10 — 10:46 — page 103 — #117 i
i

i
i

i
i

4.3. Comparison with the official reconstruction 103

According to this criteria, the reconstructed events have been selected, and the per-

formances of the two algorithms (namely JGandalf and the Neural Network models)

have been evaluated on the same selected events.

4.3.1 Energy estimation comparison

The mean squared error (MSE) and the coefficient of determination r2 have been

calculated for the two log10E estimations, namely Neural Network and JGandalf, on

νµCC events, obtaining the results shown in table 4.4.

Neural Network JGandalf
MSE(log10E, ˆlog10E) 0.176 0.690

r2(log10E, ˆlog10E) 0.860 0.455

Table 4.4 Comparison of the energy estimation errors for Neural Network and
JGandalf approaches without quality cuts.

The corresponding curves, showing the relationship between estimated and true energy

values, with confidence levels at 68% and 90% highlighted, are reported in Figure 4.49

for the Neural Network and the reconstruction algorithm, respectively.

Figure 4.48 Performances of log10(E) estimation for νµCC events without quality cuts.
Left plot: Neural Network; Right plot: JGandalf.

The same comparison, applying the quality cuts to select the events, leads to the

following results. As seen in Table 4.5, the estimation error for the reconstruction

algorithm drastically improves with this selection.

Neural Network JGandalf
MSE(log10E, ˆlog10E) 0.081 0.169

r2(log10E, ˆlog10E) 0.930 0.857

Table 4.5 Comparison of the energy estimation errors for Neural Network and
JGandalf approaches with quality cuts applied to select events

i
i

“main” — 2018/4/10 — 10:46 — page 104 — #118 i
i

i
i

i
i

104 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.49 Performances of log10(E) estimation for νµCC events with quality cuts.
Left plot: Neural Network; Right plot: JGandalf.

The corresponding curves of the relation between estimated and true energy values,

with confidence levels at 68% and 90%, are reported in Figure 4.49 for the Neural

Network and for the reconstruction algorithm. These two curves show that, while

the Neural Network estimation, despite the low statistics at high energies, is rather

stable (i.e. the dispersion around the median is almost constant in all the energy

range), in the case of JGandalf the deviation is higher for low energies, whereas the

estimation performances improve as the energies increase. It is also worth mentioning

that on the sample used for this analysis the shape of the dependency between real

energy and estimated energy for the official reconstruction is sizeably different from

what reported e.g. in the KM3NeT Letter of Intent [6]. Biases in the sample have

been sought but have not been found so far.

i
i

“main” — 2018/4/10 — 10:46 — page 105 — #119 i
i

i
i

i
i

4.3. Comparison with the official reconstruction 105

4.3.2 cos(θz) estimation comparison

As for the estimation of cos(θz), the same kind of comparisons have been performed

in the two considered cases, namely with all the νµCC test events and by selecting

the events according to the JGandalf-optimised quality cuts.

For the first case, the mean squared errors (MSE) on the cos(θz) estimation, ob-

tained by running the Neural Network prediction on the νµCC test subset and the

reconstruction algorithm (JGandalf) are:

Neural Network JGandalf
MSE(cos(θz), ˆcos(θz)) 0.012 0.028

r2(cos(θz), ˆcos(θz)) 0.960 0.904

Table 4.6 Comparison of the cos(θz) estimation errors for Neural Network and
JGandalf approaches without quality cuts.

According to the mean error values, the Neural Network estimates seems to have better

performances if compared to the reconstruction algorithm. On the other hand, more

information about these results can be retrieved if the distributions of the estimated

values versus the true cos(θz) values are considered for both approaches. Figure 4.50

shows that, while for the Neural Network almost all estimated values gather around

the true diagonal line, values computed by the official reconstruction are closer to the

true diagonal, but in the latter case, there are more spurious points distant from the

true line. Thus, the mean error for JGandalf is higher, because of these randomly-

estimated cos(θz) values, but the performances on the "well-estimated" values are

better.

Figure 4.50 Scatter plots of estimated versus true cos(θz) values without quality cuts.
Left plot: Neural Network; Right plot: JGandalf.

As a consequence, the corresponding confidence level curves show that for the recon-

struction algorithm the 90% confidence interval is much narrower with respect to the

Neural Network case, while the latter shows a more regular trend (Figure 4.51). This

i
i

“main” — 2018/4/10 — 10:46 — page 106 — #120 i
i

i
i

i
i

106 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.51 Performances of cos(θz) estimations for νµCC events without quality cuts.
Left plot: Neural Network; Right plot: JGandalf.

is partially expected: the official reconstruction is using the actual DOM positions,

whereas the network only gets the regularised version. Improvements on this item are

expected soon.

The same calculation, performed after selecting the events according to the quality

cuts, gives the results shown in Table 4.7. Here it can be noted that the performances

improve for both algorithms, but the best estimation is provided by JGandalf.

Neural Network JGandalf
MSE(cos(θz), ˆcos(θz)) 0.002 0.001

r2(cos(θz), ˆcos(θz)) 0.990 0.993

Table 4.7 Comparison of the cos(θz) estimation errors for Neural Network and JGandalf
approaches with quality cuts applied to select events.

This is also seen in the scatter plots of the estimated values as a function of the true

cos(θz) values, shown in Figure 4.52.

Figure 4.52 Scatter plots of estimated versus true cos(θz) values with quality cuts
applied to select events. Left plot: Neural Network; Right plot: JGandalf.

The performances of the two different approaches, with the confidence intervals at 68%

and 90%, are reported in Figure 4.53 for the Neural Networks and the reconstruction

i
i

“main” — 2018/4/10 — 10:46 — page 107 — #121 i
i

i
i

i
i

4.3. Comparison with the official reconstruction 107

algorithm respectively. As for the JGandalf estimation, the confidence intervals are

very narrow, indicating that most of the estimated values are very close to the target

values. A zoomed plot, in which the intervals are visible, is shown in Figure 4.54.

Figure 4.53 Performances of cos(θz) estimations for νµCC events with quality cuts
applied to select events. Left plot: Neural Network; Right plot: JGandalf.

Figure 4.54 Reconstruction performance on cos(θz) estimation for νµCC events with
quality cuts - zoom.

i
i

“main” — 2018/4/10 — 10:46 — page 108 — #122 i
i

i
i

i
i

108 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

4.3.3 Up-going/Down-going classification comparison

The Up-going/Down-going classification, performed with the network shown in Sec-

tion 4.2.1, is compared to the official reconstruction algorithm in the following way:

the reconstructed values for the cos(θz) are used to define the reconstructed event as

up-going or down-going, in the same way described for the labels definition:

cos(θz) > 0 : up− going, cos(θz) ≤ 0 : down− going. (4.2)

Thus, the Accuracy is evaluated for both classifications, using only the νµCC test

events.

Neural Network JGandalf
ACCup/down 97.5% 95.6%

Table 4.8 Comparison of the up-going/down-going classification accuracy for νµCC
events for Neural Network and JGandalf approaches without quality cuts.

The ROC curve has been evaluated as a performance estimator for both algorithms.

The comparison of the ROC curves is shown in Figures 4.55-4.57. In particular,

in Figure 4.55 the whole νµCC test dataset is considered, whereas in Figures 4.56

and 4.57 events are split according to the energy and the distance from the detector

centre, respectively. In this case the ROC curves have been calculated using the

predicted classes as reference values, namely 0 or 1 for down-going and up-going,

respectively. Hence, step curves are obtained: the ROC curves shown in section 4.2.1

consider the probability values yielded by the Softmax layer of Neural Networks.

Since no probabilities or estimation score is provided by JGandalf, only the classes

are used.

Figure 4.55 ROC curve comparison for up-going/down-going classification on νµCC
events without quality cuts. Left plot: Neural Network; Right plot: JGandalf.

i
i

“main” — 2018/4/10 — 10:46 — page 109 — #123 i
i

i
i

i
i

4.3. Comparison with the official reconstruction 109

Figure 4.56 ROC curve comparison for up-going/down-going classification on νµCC
events without quality cuts as a function of the simulated energy. Left plot: Neural
Network; Right plot: JGandalf.

Figure 4.57 ROC curve comparison for up-going/down-going classification on νµCC
events without quality cuts as a function of the distance from the detector centre. Left
plot: Neural Network; Right plot: JGandalf.

With quality cuts better performances are reached in both cases (see Table 4.9 for the

comparison of accuracies).

Neural Network JGandalf
ACCup/down 98.7% 99.8%

Table 4.9 Comparison of the up-going/down-going classification accuracy for νµCC
events for Neural Network and JGandalf approaches with quality cuts applied to select
events.

Figure 4.58- 4.60 shows the ROC curves considering the same settings described above,

i.e. whole dataset, energy and distance dependency.

i
i

“main” — 2018/4/10 — 10:46 — page 110 — #124 i
i

i
i

i
i

110 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

Figure 4.58 ROC curve comparison for up-going/down-going classification on νµCC
events with quality cuts applied to select events. Left plot: Neural Network; Right plot:
JGandalf.

Figure 4.59 Performances of up-going/down-going classification for νµCC events with
quality cuts applied to select events, as a function of the simulated energy. Left plot:
Neural Network; Right plot: JGandalf.

Figure 4.60 ROC curve comparison for up-going/down-going classification on νµCC
events with quality cuts applied to select events, as a function of the distance from the
detector centre. Left plot: Neural Network; Right plot: JGandalf.

i
i

“main” — 2018/4/10 — 10:46 — page 111 — #125 i
i

i
i

i
i

4.4. Hardware settings and execution times 111

4.4 Hardware settings and execution times

Unlike classical Machine Learning models, Deep Neural Networks have the advan-

tage of leveraging the computational power provided by Graphical Processing Units

(GPUs). GPUs are more efficient than CPUs in performing matrix multiplications,

thanks to the large number of cores available on chip to parallelise operations. This

is particularly the case of the defined Neural Network models, in which 4 to 6 mil-

lion parameters (i.e. gradients and weights) have to be calculated at each learning

epoch. To this aim, an NVIDIA GEFORCE GTX-1080Ti X2 (see technical specifications

in Table 4.10) has been used to perform the calculations.

Technical parameters
Number of CUDA cores 3584

Base Clock (MHz) 1480

Boost Clock (MHz) 1582

Memory Clock 11 Gbps
Memory Configuration 11 GB
Memory Bandwidth (GB/s) 484

Table 4.10 Technical specifications of the GPU used to train and test the Neural Net-
work models.

Depending on the specific model, different training times have been experienced. In

particular, 3 to 4 hours were needed to perform the training for all the tested Neural

Network models, considering a dataset of 207, 061 sample events. Once a Neural

Network model is trained, the evaluation phase - in which the network is used only in

inference mode - takes much shorter time. In fact, 2 to 4 minutes were needed to test

all the presented models on the dedicated test dataset consisting of 51, 818 events.

Details on the training and test times, as well as the number of parameters of each

model, are shown in Table 4.11.

Model N. of parameters Training time Test time
Up-going/Down-going class. 6.9 · 106 3h 12m 4m 4s
νµCC/νeCC classification 4.4 · 106 3h 58m 3m 21s

log10(E) estimation 4.4 · 106 4h 30m 2m 27s
cos(θz) estimation 5.1 · 106 3h 30m 2m 49s

Table 4.11 Train and test times of the 4 Neural Network models. The training times
refers to a dataset of 207, 061 events, while the test dataset is composed by 51, 818 events.

As for the comparison of the performances with the official reconstruction algorithm

(JGandalf), the performances reported in Table 4.11 cannot be considered because

of the different experimental settings. In fact, the Neural Network models have been

trained on a dataset consisting of νµCC and νeCC events, while JGandalf is used

i
i

“main” — 2018/4/10 — 10:46 — page 112 — #126 i
i

i
i

i
i

112 Chapter 4. Deep Learning Applications for KM3NeT-ARCA

to process only νµCC events. Therefore, a different comparison must be considered.

The dataset of all νµCC events contains 149, 706 samples, and the time required by

JGandalf to process the whole dataset on a single CPU core is approximately 24 h5.

The same dataset has been fed into the pre-trained Neural Network models to generate

the estimations6. This calculations took 8 minutes to complete, thus constituting a

significant boost in the performances.

5This time can be further reduced if multiple cores are used.
6Notice that no training is required.

i
i

“main” — 2018/4/10 — 10:46 — page 113 — #127 i
i

i
i

i
i

113

Chapter 5

Conclusions

5.1 Summary

The presented Deep Learning applications look promising for the KM3NeT analyses.

The Neural Network models have proven to be comparable to the official algorithms in

terms of performances, and can already be considered as complementary to some of the

current on-going analyses. In particular, the ability to perform an Up-going/Down-

going classification, could be useful in the event selection/background suppression.

For instance, the presented models could be used as a preliminary check to be run on

the raw data before any reconstruction algorithm is applied, or act as a further test

to investigate on the events discarded by the other algorithms. As for the parameters

estimation, the ability to evaluate the energy and the directions of the particles is

fundamental in KM3NeT, and it would be worthwhile to further investigate on the

possibility to extract these (and more) information directly from raw data.

5.2 Outlook

The Neural Network-based analyses presented in the previous sections could be im-

proved in several ways. First of all, a more refined description of the events and of

the detector could be a next-order approximation worth introducing. In particular

for the direction estimations, including the positions and directions of each PMT, i.e.

refining the description of the detector response, as well as that of the hits, could

result in a significant improvement of the performances. Nevertheless, the direction of

the incoming neutrino would be better estimated if the 3 components of the direction

cosine, namely cos(θx), cos(θx), cos(θz), were estimated simultaneously, requiring the

normalisation of the overall vector. As for the particle interaction identification, the

i
i

“main” — 2018/4/10 — 10:46 — page 114 — #128 i
i

i
i

i
i

114 Chapter 5. Conclusions

analysis could be enhanced by including all three neutrino flavours, in order to dis-

tinguish among νµ, νe and ντ events, or implementing a classifier able to recognise

the atmospheric muon tracks and distinguish them from the signatures of neutrino

events. Finally, the knowledge learnt with the previously discussed improvements

could be applied to a detailed signal/background classification, which includes all the

components of the two classes. A more technical improvement, on the other hand,

would be possible by taking into account the irregularities in the detector, i.e. using

real positions of the detector components. Furthermore, the distortions by sea cur-

rents, caused by the flexibility of the strings, could be included to make the study

more realistic. Finally, inefficiencies, very common in the real usage of the detector,

such as the possibility to have DOMs or PMTs not-working/switched-off, might make

the technique even more robust. This is surely a promising research field with an

exciting potential for further improvements.

i
i

“main” — 2018/4/10 — 10:46 — page 115 — #129 i
i

i
i

i
i

115

Bibliography

[1] W. C. Haxton, R. G. Hamish Robertson, and A. M. Serenelli, “Solar Neutrinos:

Status and Prospects,” Ann. Rev. Astron. Astrophys., vol. 51, pp. 21–61, 2013.

[2] V. F. Hess, “Über Beobachtungen der durchdringenden Strahlung bei sieben

Freiballonfahrten,” Physikalische Zeitschrift, vol. 13, pp. 1084–1091, November

1912.

[3] J. Blümer, R. Engel, and J. R. Hörandel, “Cosmic rays from the knee to the

highest energies,” Progress in Particle and Nuclear Physics, vol. 63, pp. 293–338,

oct 2009.

[4] A. M. Hillas, “Cosmic Rays: Recent Progress and some Current Questions,” in

Conference on Cosmology, Galaxy Formation and Astro-Particle Physics on the

Pathway to the SKA Oxford, England, April 10-12, 2006, 2006.

[5] K. Greisen, “End to the cosmic-ray spectrum?,” Physical Review Letters, vol. 16,

pp. 748–750, Apr. 1966.

[6] S. Adrian-Martinez et al., “Letter of intent for KM3NeT 2.0,” J. Phys., vol. G43,

no. 8, p. 084001, 2016.

[7] K. Mannheim, “High-energy neutrinos from extragalactic jets,” Astroparticle

Physics, vol. 3, no. 3, pp. 295 – 302, 1995.

[8] R. J. Protheroe, “High-energy neutrinos from blazars,” ASP Conf. Ser., vol. 121,

p. 585, 1997.

[9] J. e. a. Beringer, “Review of particle physics,” Phys. Rev. D, vol. 86, p. 010001,

Jul 2012.

[10] N. Agafonova et al., “Discovery of τ Neutrino Appearance in the CNGS Neutrino

Beam with the OPERA Experiment,” Phys. Rev. Lett., vol. 115, no. 12, p. 121802,

2015.

i
i

“main” — 2018/4/10 — 10:46 — page 116 — #130 i
i

i
i

i
i

116 BIBLIOGRAPHY

[11] M. Markov and I. Zheleznykh, “On high energy neutrino physics in cosmic rays,”

Nuclear Physics, vol. 27, no. 3, pp. 385 – 394, 1961.

[12] A. Roberts, “The birth of high-energy neutrino astronomy: A personal history of

the dumand project,” Rev. Mod. Phys., vol. 64, pp. 259–312, Jan 1992.

[13] V. A. et al, “The baikal neutrino experiment,” Nuclear Instruments and Meth-

ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 626-627, pp. S13 – S18, 2011.

[14] E. A. et al., “The amanda neutrino telescope: principle of operation and first

results,” Astroparticle Physics, vol. 13, no. 1, pp. 1 – 20, 2000.

[15] E. V. Bugaev, A. Misaki, V. A. Naumov, T. S. Sinegovskaya, S. I. Sinegovsky,

and N. Takahashi, “Atmospheric muon flux at sea level, underground, and un-

derwater,” Phys. Rev. D, vol. 58, p. 054001, Jul 1998.

[16] S. L. Glashow, “Resonant scattering of antineutrinos,” Phys. Rev., vol. 118,

pp. 316–317, Apr 1960.

[17] J. A. Formaggio and G. P. Zeller, “From eV to EeV: Neutrino Cross Sections

Across Energy Scales,” Rev. Mod. Phys., vol. 84, pp. 1307–1341, 2012.

[18] R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, “Ultrahigh-energy neutrino

interactions,” Astropart. Phys., vol. 5, pp. 81–110, 1996.

[19] A. Trovato, Development of reconstruction algorithms for large volume neutrino

telescopes and their application to the KM3NeT detector. PhD thesis, Universitá

degli Studi di Catania - Scuola Superiore di Catania, 2014.

[20] K. e. a. Olive, “Review of particle physics,” Chin. Phys., vol. C38, p. 090001,

2014.

[21] M. Ackermann et al., “Optical properties of deep glacial ice at the South Pole,”

J. Geophys. Res. Atmos., vol. 111, no. D13, p. D13203, 2006.

[22] C. D. Mobley, Light and water: Radiative transfer in natural waters. San Diego:

Academic Press, 1994.

[23] Proceedings, 34th International Cosmic Ray Conference (ICRC 2015),

vol. ICRC2015, 2015.

[24] KM3NeT-Collaboration, KM3NeT Website.

i
i

“main” — 2018/4/10 — 10:46 — page 117 — #131 i
i

i
i

i
i

BIBLIOGRAPHY 117

[25] C. W. James, “GENHEN release v7r6 - KM3NeT Internal Note,” 2016.

[26] G. Carminati, A. Margiotta, and M. Spurio, “Atmospheric MUons from PAramet-

ric formulas: A Fast GEnerator for neutrino telescopes (MUPAGE),” Comput.

Phys. Commun., vol. 179, pp. 915–923, 2008.

[27] D. J. L. Bailey, “KM3 v2r1: User Guide. ANTARES Internal note,” 2002.

[28] M. de Jong et al, “The JPP software package,” www.km3net.org.

[29] D. Real and K. Collaboration, “The electronics readout and data acquisition

system of the km3net neutrino telescope node,” AIP Conference Proceedings,

vol. 1630, no. 1, pp. 102–105, 2014.

[30] K. Georgakopoulou, C. Spathis, G. Bourlis, A. Tsirigotis, A. Birbas, A. Leisos,

M. Birbas, and S. E. Tzamarias, “A 100-ps Multi-Time over Threshold Data

Acquisition System for Cosmic Ray Detection,” 2017.

[31] B. Bakker, Trigger studies for the Antares and KM3NeT neutrino telescopes.

MSc dissertation, Particle and Astroparticle physics - University of Amsterdam

- FNWI, Institute: Nikhef - Antares/KM3NeT Collaboration, 2011.

[32] S. Eichie, Triggerstudien zum KM3NeT-ARCA Neutrinoteleskop. MSc disserta-

tion, Erlangen Centre for Astroparticle Physics, 2016.

[33] K. Levenberg, “A method for the solution of certain non-linear problems in least

squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164 – 168, 1944.

[34] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear pa-

rameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11,

no. 2, pp. 431 – 441, 1963.

[35] P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense

of Data. Cambridge University Press, 2012.

[36] P. Harrington, Machine Learning in Action. Manning Publications Company,

2012.

[37] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc.,

1 ed., 1997.

[38] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

Springer, 2001.

i
i

“main” — 2018/4/10 — 10:46 — page 118 — #132 i
i

i
i

i
i

118 BIBLIOGRAPHY

[39] F. Chollet, Deep Learning with Python. Manning Publications Company, 2017.

[40] C. Bishop, Pattern Recognition and Machine Learning. Information Science and

Statistics, Springer, 2006.

[41] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “Machine learning: A

historical and methodological analysis,” AI Magazine, vol. 4, no. 3, pp. 69–79,

1983.

[42] J. Anderson, R. Michalski, J. Carbonell, and T. Mitchell, Machine Learning: An

Artificial Intelligence Approach. No. v. 2 in Machine Learning: An Artificial

Intelligence Approach, Morgan Kaufmann, 1986.

[43] S. Marsland, Machine Learning: An Algorithmic Perspective. Taylor & Francis,

2011.

[44] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Adaptive

Computation and Machine Learning Series, Bradford Book, 1998.

[45] R. Duda, P. Hart, and D. Stork, Pattern classification. Pattern Classification and

Scene Analysis: Pattern Classification, Wiley, 2001.

[46] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

[47] S. Raschka, Python Machine Learning. Packt Publishing, 2015.

[48] W. S. McCulloch and W. Pitts, “Neurocomputing: Foundations of research,”

ch. A Logical Calculus of the Ideas Immanent in Nervous Activity, pp. 15–27,

Cambridge, MA, USA: MIT Press, 1988.

[49] C. Van Der Malsburg, “Frank rosenblatt: Principles of neurodynamics: Per-

ceptrons and the theory of brain mechanisms,” in Brain Theory (G. Palm and

A. Aertsen, eds.), (Berlin, Heidelberg), pp. 245–248, Springer Berlin Heidelberg,

1986.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533–536, oct 1986.

[51] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton Project

Para. Report: Cornell Aeronautical Laboratory, Cornell Aeronautical Labora-

tory, 1957.

i
i

“main” — 2018/4/10 — 10:46 — page 119 — #133 i
i

i
i

i
i

BIBLIOGRAPHY 119

[52] S. U. S. E. Laboratories, B. Widrow, U. S. O. of Naval Research, U. S. A. S.

Corps, U. S. A. Force, and U. S. Navy, Adaptive "adaline" neuron using chemical

"memistors.". 1960.

[53] R. D. Reed and R. J. Marks, Neural Smithing: Supervised Learning in Feedfor-

ward Artificial Neural Networks. Cambridge, MA, USA: MIT Press, 1998.

[54] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–

444, 5 2015.

[55] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, Inc., 1995.

[56] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach. Learn.,

vol. 2, pp. 1–127, jan 2009.

[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[58] F. Chollet et al., “Keras.” https://github.com/keras-team/keras, 2015.

[59] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines.,” in ICML (J. Fürnkranz and T. Joachims, eds.), pp. 807–814, Omni-

press, 2010.

[60] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and appli-

cations in vision, pp. 253–256. 2010.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” pp. 1097–1105, 2012.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),

pp. 1097–1105, Curran Associates, Inc., 2012.

[63] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner,

G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A Convolutional Neural Network

Neutrino Event Classifier,” JINST, vol. 11, no. 09, p. P09001, 2016.

[64] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of

monkey striate cortex,” Journal of Physiology (London), vol. 195, pp. 215–243,

1968.

http://www.deeplearningbook.org
https://github.com/keras-team/keras

i
i

“main” — 2018/4/10 — 10:46 — page 120 — #134 i
i

i
i

i
i

120 BIBLIOGRAPHY

[65] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

ArXiv e-prints, Mar. 2016.

[66] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

ArXiv e-prints, mar 2016.

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.

[68] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-

ulae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,

B. Holt, and G. Varoquaux, “API design for machine learning software: experi-

ences from the scikit-learn project,” in ECML PKDD Workshop: Languages for

Data Mining and Machine Learning, pp. 108–122, 2013.

[69] A. P. Bradley, “The use of the area under the roc curve in the evaluation of

machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145 –

1159, 1997.

[70] G. Biau and E. Scornet, “A Random Forest Guided Tour,” ArXiv e-prints, Nov.

2015.

[71] O. Anava and K. Y. Levy, “k*-Nearest Neighbors: From Global to Local,” ArXiv

e-prints, Jan. 2017.

[72] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, “Boosted

decision trees as an alternative to artificial neural networks for particle iden-

tification,” Nuclear Instruments and Methods in Physics Research A, vol. 543,

pp. 577–584, May 2005.

[73] E. Drakopoulou, E. Tzamariudaki, and C. Markou, “EReNN: Energy reconstruc-

tion with neural networks.”

[74] K. Pikounis, “High energy starting muons.”

[75] A. Trovato, “MVA in point-source analysis.”

[76] R. Brun and F. Rademakers, “ROOT - An object oriented data analysis frame-

work,” Nuclear Instruments and Methods in Physics Research A, vol. 389, pp. 81–

86, feb 1997.

i
i

“main” — 2018/4/10 — 10:46 — page 121 — #135 i
i

i
i

i
i

BIBLIOGRAPHY 121

[77] S. Geißelsöder, “Shallow and deep learning applications in km3net.”

[78] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software

available from tensorflow.org.

[79] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU and GPU math

expression compiler,” in Proceedings of the Python for Scientific Computing Con-

ference (SciPy), jun 2010. Oral Presentation.

[80] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,”

in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’16, (New York, NY, USA), pp. 2135–

2135, ACM, 2016.

[81] KM3NeT-Collaboration, “Km3net wiki page.”

[82] S. Maneewongvatana and D. M. Mount, “Analysis of approximate nearest neigh-

bor searching with clustered point sets,” eprint arXiv:cs/9901013, Jan. 1999.

[83] S. Maneewongvatana and D. M. Mount, “It’s okay to be skinny, if your friends are

fat,” in Center for Geometric Computing 4th Annual Workshop on Computational

Geometry, 1999.

[84] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools

for Python,” 2001–. [Online; accessed <today>].

[85] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” ArXiv e-prints, Sept. 2014.

[86] Image-net_team, Image-Net.

[87] M. Lin, Q. Chen, and S. Yan, “Network In Network,” ArXiv e-prints, Dec. 2013.

[88] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” ArXiv e-

prints, Dec. 2012.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Neutrino astronomy
	High-energy neutrino detection
	High-energy neutrino interactions
	The Cherenkov radiation

	The KM3NeT experiment
	Neutrino interaction events in KM3NeT

	Event triggering in KM3NeT
	Online and offline triggers in KM3NeT
	Trigger parameters
	JTriggerEfficiency
	JTE parameters tuned

	Trigger efficiency optimisation
	Standard trigger set vs. alternative set
	Dependency on the time window
	Standard trigger vs. (100ns, 4 hits) on reconstructed events

	Machine and Deep Learning
	Machine Learning Settings
	Supervised Learning
	Reinforcement Learning
	Unsupervised Learning

	Deep Learning
	Modelling complex functions with Artificial Neural Networks

	Training Artificial Neural Networks
	Neural Network Training
	Activation Functions

	Convolutional Neural Networks
	Convolutional arithmetics

	Evaluating Machine Learning Models
	Training, Validation, and Test sets
	Capacity, Overfitting and Underfitting
	Performance estimators

	Machine Learning Applications in High Energy Physics

	Deep Learning Applications for KM3NeT-ARCA
	Data preparation
	Lattice definition
	Event Definition
	Training, test and validation

	Learning neutrino interactions
	Task 1: Up-going/Down-going neutrino event classification
	Task 2: CC/eCC interaction classification
	Task 3: Neutrino energy estimation
	Task 4: Neutrino direction estimation

	Comparison with the official reconstruction
	Energy estimation comparison
	cos(_z) estimation comparison
	Up-going/Down-going classification comparison

	Hardware settings and execution times

	Conclusions
	Summary
	Outlook

