Davide Cantarelli
Department of Economics - University of Padova davide.cantarelli@unipd.it
\section*{Elasticities of Complementarity and SubSTITUTION IN SOME FUNCTIONAL FORMS. a Comparative Review*}

Working Paper 3.157
febbraio 2005

* Thanks are due to Piero Tani, Giandemetrio Marangoni and Sergio Destefanis for some useful suggestions, and to Dr. Licia Salce for her help in calculations using the Mathematica program. Obviously, the author is solely responsible for any errors.
Index

1. Introduction 7
2. Functional Forms 9
3. Inflexible Functional Forms 14
4. Flexible Functional Forms: a) Diewert's GL and Translog. 21
5. Flexible Functional Forms: b) Lau's Quadratic and Diewert's Generalized Cobb-Douglas, Extended by Magnus 29
6. Final Considerations 34
Appendix 38
References 40

Abstract

This paper presents and discusses the results of a comparative review of the elasticities of complementarity and substitution which may be obtained from seven functional forms, inflexible and flexible. Every functional form is examined in its four versions: production, cost, profit, and distance. The elasticities of complementarity were obtained from the production and distance functions (elasticities of Hicks, Antonelli and Morishima), and those of substitution from the cost and profit functions (elasticities of Allen-Uzawa and Lau). The results of the calculations of the various elasticities are compared and evaluated.

JEL Classification:

D21, D24

Keywords:

production, cost, profit and distance functions; input substitutability and complementarity; derived, gross and net, demand functions for inputs.

1. Introduction

Many, reading the title of this paper, will object that there is no need for such a survey. The main task of this introduction is therefore to justify this work.

The contemporary substitutability and complementarity of production factors is certainly one of the most important grounds of theoretical and applied research on the phenomena of production and distribution. To the initial analytical instrument, i.e., the production function, thanks to the development of the duality theory, functions of cost, profit and distance have been added, and applied to numerous functional forms with equally numerous "variants" and extensions, mainly put forward in the twenty-year period 19701990. It is well-known that the main reason for proposing flexible functional forms (FFF) was the wish (and also, objectively, the need) to use them to increase the possibility of variation of the elasticity of substitution among the factors (i.e., what was defined in our view, improperly - as a "second-order parameter") with respect to the elasticity permitted by inflexible functional forms (IFF). Theoretical contributions and relative discussions on the elasticity of substitution have also covered the capacity of its various versions to express the nature, directions and intensity of the phenomenon ${ }^{1}$. One very significant example of these discussions was the contested validity of Allen's elasticity and above all its exten-

[^0]sion from a production function with two factors to one with n factors ${ }^{2}$. A very different fate was that of the elasticity of complementarity, which has received far less attention - even less than that justified by its more specific and limited field of application ${ }^{3}$. After the work by J.R. Hicks (1970), in which the author credited Joan Robinson with having created the elasticity of substitution while Hicks maintained that of complementarity, there were remarkably few - in absolute and not only relative terms - theoretical and applicative contributions devoted to the elasticity of complementarity until the end of the last century (and millennium), when interest was renewed ${ }^{4}$. Together with this, three more facts characterise the current situation of the theory of production: first, the growing use of the distance function, which allows us to treat cases in which there is more than one output; second, the current cessation of new proposed functional forms; and third, the development and spread of the "non-parametric" analysis of production.

This set of conditions suggested the idea of surveying a certain number of functional forms in their quadruple aspects of production, cost, profit, and distance, and the elasticities of substitution and complementarity deriving from them. By highlighting particular aspects which may escape a superficial examination, we hope to make the survey more interesting - not just a manual or a "reference paper" for the future. We do not consider here the aspects and problems of the econometric application of the functional forms examined here, since they are beyond both the author's capacity and competence and the proper dimensions of a paper.

This work has six sections. Section 2 presents the functional forms examined here, their layout, and the list of uniform symbols which are used. Section 3 presents and discusses IFF formulas, and sections 4 and 5 FFF formulas. Section 6 makes conclusive considerations.

[^1]
2. Functional Forms

The functional forms examined in this survey are three IFF, i.e., Cobb-Douglas (CD), CES-ACMS (Arrow, Chenery, Minhas, Solow 1961) and CMC-CES ${ }^{5}$, and four FFF, i.e., Translog, Diewert's Generalized Leontiev (DGL 1971), Lau's Quadratic (LQ 1978), and Diewert's Generalized Cobb-Douglas (1973), corrected and extended by Magnus (MEDGCD) (1979). The survey opens with the Cobb-Douglas IFF, with all its constant and unitary elasticities, as an act of homage to and respect for a cornerstone in the construction of the theory of production and as an analytical tool which - rightly or wrongly - is still used ${ }^{6}$. The CES-ACMS has constant elasticities but they are not always equal for the four functions. The CMC-CES is homothetic, like the previous two, but not homogeneous, and it has properties which are partly equal and partly different. Among the FFF, there are, of course, Translog and DGL, because they are the forms mostly frequently applied with respect to the other two, Lau's Quadratic and MEDGCD.

MEDGCD is presented in place of the original function (1973), because the latter has the defect that estimations of its primary and secondary parameters (and thus also their elasticities) are not invariant with respect to the multiplicative scaling of input prices ${ }^{7}$. Every function form is accompanied by its formulas for the functions of: production, cost, profit, distance, elasticity of substitution or of complementarity, demand or quota of input cost, scale economies and size economies ${ }^{8}$. It should be recalled that the

[^2]functions of the elasticity of complementarity have as their arguments the physical quantities of productive inputs and are thus obtained from the production and distance functions, whereas those of the elasticity of substitution have as their arguments costs (normalised, or less so, in various ways) of inputs. The elasticities of complementarity presented here are those of Hicks, Antonelli and Morishima (1967). While Hicks' elasticity of complementarity is obtained from the production function, that yielded by the distance function is called "Antonelli's elasticity" (1886), to recall both that he was the first to define the concept of inverse demand functions (Cornes (1992) and Kim (2000)), and that Antonelli's substitution matrix is precisely the matrix of second partial derivatives of the distance function in the consumer theory (Deaton (1979) and thus of the producer. Morishima's elasticities of complementarity, proposed by Kim (2000), are also derived from the distance function.

The elasticities of substitution are those of Allen-Uzawa (1962) and Morishima (1967), taken from the cost functions, and that of Hotelling-Lau, taken from the profit function ${ }^{9}$. Allen's (1938) elasticity of substitution, yielded by the production function with n inputs, is not examined here, because the author shares the opinion of authoritative experts that it does not give a correct measure of the
duced. The ratio x_{o}^{+} / x_{O} is the maximum scalar λ for which x_{O} may be divided and still produce y_{o}. In symbols, $\lambda=D_{I}\left(x_{O}^{+}, y_{O}\right) \equiv \max \left\{\lambda \mid f\left(x_{O}^{+} / \lambda\right) \geq y_{o}\right\}$. The maximum value of λ depends on the choice of x_{o}^{+}and y_{o}, and the distance function precisely expresses this dependence. In symbols, $D_{I}(y, x) \equiv \max \{\lambda \mid(1 / \lambda) x, y)$ possible $\}$. This is the input distance function, which must not be confused with the output distance function, which also exists and which mirrors it. The input distance function may easily be extended to cases of several inputs and outputs. In this case, if $D_{I}(\boldsymbol{y}, \boldsymbol{x})$ may be differentiated twice everywhere,
$\partial D_{I}(\boldsymbol{y}, \boldsymbol{x}) / \partial x_{i} \equiv w_{i}(\boldsymbol{y}, \boldsymbol{x})$ is the marginal product or inverse demand function for input x_{i}.
For further details, see Cornes (1992). It is perhaps also appropriate to recall that the elasticity of scale measures how output varies moving along a scale line from the origin in the input space; the elasticity of size measures how cost varies along the expansion path (locus of the minimum cost) in the input space. If the production function is homothetic, the two elasticities are equivalent.
${ }^{9}$ The name Hotelling-Lau is due to Bertoletti (2001) who refers to Chapter I.3, "Applications of Profit Functions", of Lau's "Production Economics", in which Lau defines this elasticity by means of the profit function (page 197).
relation between inputs when there are more than two of them, and that this relation can be obtained with Morishima's elasticity.

The elasticity formulas shown in the tables are mostly calculated autonomously (like all the elasticities of complementarity and Morishima's elasticity) and partly taken from authors who have proposed functional forms (e.g., the elasticities of Translog production and cost functions) and are all presented with uniform symbols. Autonomous proposals and adaptations "by analogy" have also been advanced, in cases in which one of the cost, profit or distance functions is not explicitly proposed by experts on the subject ${ }^{10}$.

Given the generic function $y=g\left(z_{1} \ldots z_{n}\right)$ of production, cost, profit or distance, non-Morishima elasticities $e_{i j}$ are calculated by means of the formula:

$$
\begin{equation*}
e_{i j}=\frac{g\left(z_{1} \ldots z_{n}\right) \cdot \partial^{2} g / \partial z_{i} \partial z_{j}}{\left(\partial g / \partial z_{i}\right)\left(\partial g / \partial z_{j}\right)}=e_{j i} ; i \neq j \tag{1}
\end{equation*}
$$

and those of Morishima by means of:

$$
\begin{equation*}
e_{i j}=\frac{\partial^{2} g / \partial z_{i} \partial z_{j}}{\partial g / \partial z_{j}} \cdot z_{i}-\frac{\partial^{2} / \partial^{2} z_{i}}{\partial g / \partial z_{i}} \cdot z_{i} \tag{2}
\end{equation*}
$$

and

$$
e_{j i}=\frac{\partial^{2} g / \partial z_{i} \partial z_{j}}{\partial g / \partial z_{i}} \cdot z_{j}-\frac{\partial^{2} / \partial^{2} z_{j}}{\partial g / \partial z_{j}} \cdot z_{j}
$$

For the FFF, the four functions are maintained in their simplest forms, i.e., uni-product, without fixed inputs, and without the addition of variables in a multiplicative relation with the main arguments of the functions themselves, i.e., inputs or their costs, which may enter (complicating them) into the elasticity formulas through apposite derivatives.

As symbols for the parameters appearing in each of the four functions of every functional form, letters α and β are always

[^3]used, and γ appears as an efficiency parameter. Obviously, these letters take on differing values for each of the functions to which they refer. The characteristics of the parameters are shown next to the production functions and are to be understood as extended and valid also for the other three, unless otherwise indicated. Simplification of the expressions resulting from the application of formulas (1) and (2) was carried out with varying intensity (greater for (2)), bearing in mind conditions sufficient for their easy identification.

As the number of symbols used is quite high, they are listed, for readers' convenience, at the end of this Section and before the tables containing the functional formulas.

Symbols

y	output in physical units
x_{i}	quantity of input i
w_{i}	nominal unit cost of input i
p_{y}	nominal unit price of output y
$q_{i}=w_{i} / p_{y}$	unit "normalized" cost of input i
$y(\boldsymbol{x})$	production function
$C(y, \boldsymbol{w})$	total cost function
$G(\boldsymbol{q})$	normalized profit function
$D(y, \boldsymbol{x})$	distance function
μ	scale coefficient in production function
${ }_{y} S_{i}$	output's share of input i in Translog production function
${ }_{c} S_{i}$	cost's share of input i in Translog cost function
${ }_{\text {см }} S_{i}$	cost's share of input i in MEDGCD cost function
$\varepsilon(y, \boldsymbol{x})$	elasticity of scale from production function
$\mathcal{E}^{*}(y, \boldsymbol{w})$	elasticity of size from cost function
σ^{A}	Allen's elasticity of substitution from production function
σ	constant elasticity of substitution in CES functions
$\theta=(1-\sigma) / \sigma$	
$\rho_{i j}^{\text {HEC }}$	Hicks' elasticity of complementarity from production function
$\rho_{i j}^{A E C}$	Antonelli's elasticity of complementarity from distance function
$\rho_{i j}^{M E C} \neq \rho_{j i}^{M E C}$	Morishima's elasticities of complementarity from distance function
$\sigma_{i j}^{\text {AUES }}$	Allen-Uzawa's elasticity of substitution from cost function
$\sigma_{i j}^{\text {MES }} \neq \sigma_{j i}^{\text {MES }}$	Morishima's elasticities of substitution from cost function
$\sigma_{i j}^{\text {HLES }}$	Hotelling-Lau's elasticity of substitution from profit function

3. Inflexible Functional Forms

As already noted in section 2, Table 1 (Cobb-Douglas) does not require much comment. All the elasticities, including σ^{4} are positive, constant, and equal to 1 . The inputs are thus always and only q-complement and p-substitutes. The total passus coefficient $\varepsilon(y, x)=\mu$ is assumed to be <1, in order to write the profit function, which would otherwise be annulled, as the formula clearly shows. The demand functions of inputs - like all the functional forms considered here - are taken from the cost function according to Shephard's lemma, and from the profit function according to Hotelling's lemma. The two functions are different because the one obtained from the cost function is conditional or "compensated" by the constancy of output, while that obtained from the profit function is not. Therefore, $\sigma_{i j}^{A U E S}$ expresses net p-substitutability and $\sigma_{i j}^{H E E S}$ gross p-substitutability.

Table 2, showing the CES-ACMS functions, presents a slightly more varied situation. Production is written in the way Arrow, Chenery, Minhas and Solow wrote it in their original work of 1961, i.e., with negative exponents inside or outside square brackets ${ }^{11}$.

Also in this case, and for the same reason as for the CobbDouglas function, μ is assumed to be <1. One first aspect to be noted is that, although coefficient μ enters into the calculation of $\rho_{i j}^{H E C}$, it does not in $\sigma_{i j}^{A}$. However, if μ is assumed to be equal to 1 , then $\rho_{i j}^{H E C}$ is the reciprocal of σ^{A}. In this regard, the hypothesis may be advanced that, whereas in the Cobb-Douglas function (and, as we shall see later, also in the CMC-CES) the value of μ is, as it were, "incorporated" in the function (see Table 1), and obtainable from it, in CES-ACMS it is a constant introduced from the outside.

[^4]Table 1 - Cobb-Douglas Functions

Production

$y(\boldsymbol{x})=\gamma \prod_{i=1}^{n} x_{i}^{\alpha_{i}} ; \quad \gamma>0 ; \quad 0<\alpha_{i}<1 ; \quad x_{i}>0$
$\varepsilon(y, \boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i}=\mu<1 ; \quad \sigma^{A}=1 ; \quad \rho^{H E C}=1$
Cost
$C(y, \boldsymbol{w})=\left(\frac{y}{\gamma}\right)^{\frac{1}{\mu}} \cdot \prod_{i=1}^{n}\left(\frac{w_{i}}{\alpha_{i}}\right)^{\frac{\alpha_{i}}{\mu}} ; \quad \varepsilon^{*}(y, \boldsymbol{w})=\mu ; \quad \sigma_{i j}^{\text {AUES }}=\sigma_{j i}^{\text {AUES }}=1$
$\sigma_{i j}^{M E S}=1 ; \quad \sigma_{j i}^{M E S}=1$
demand for input $x_{j}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{j}}=\left(\frac{Y}{\gamma}\right)^{\frac{1}{\mu}} \cdot \prod_{i=1}^{n}\left(\frac{w_{i}}{\alpha_{i}}\right)^{\frac{\alpha i}{\mu}} \cdot \frac{1}{\mu} \cdot \frac{w_{j}}{\alpha_{j}}$
Profit
$G(\boldsymbol{q})=(1-\mu) \gamma \prod_{\lambda=1}^{n}\left(\frac{q_{i}}{\alpha_{i}}\right)^{\frac{-\alpha i}{1-\mu)^{-1}}} ; \quad q_{i}=\frac{w_{i}}{p_{y}} ; \quad \sigma_{i j}^{\text {HHES }}=1$
supply of output $y=y(\boldsymbol{q})=\gamma \prod_{i=1}^{n}\left(\frac{q_{i}}{\alpha_{i}}\right)^{-\alpha_{i}(1-\mu)^{-1}}$
demand for input $x_{i}=-\frac{q_{j}}{\alpha_{j}} \gamma \prod_{i=1}^{n}\left(\frac{q_{i}}{\alpha_{i}}\right)^{-\alpha_{i}(1-\mu)^{-1}}$
Distance
$D(y, \boldsymbol{x})=\gamma \prod_{i=1}^{n} x_{i}^{\alpha i} / \mu y^{-1 / \mu} ; \quad \rho_{i j}^{A E C}=\rho_{j i}^{A E C}=1 ; \quad \rho_{i j}^{M E C}=1 ; \quad \rho_{j i}^{M E C}=1$
(inverse) demand for input $x_{j}=w_{j}=\frac{\partial D(y, \boldsymbol{x})}{\partial x_{j}}=D(y, x) \cdot \frac{\alpha_{j}}{x_{j}} \cdot \frac{1}{\mu}$

Table 2 - CES-ACMS Functions

Production

$y(\boldsymbol{x})=\gamma\left[\sum_{i=1}^{n} \alpha_{i} x_{i}^{-\theta}\right]^{-\mu / \theta} ; \quad \gamma>0 ; \quad 0<\alpha_{i}<1 ; \quad x_{i}>0 ; \quad \sum_{i=1}^{n} \alpha_{i}=1$
$\varepsilon(y, \boldsymbol{x})=\mu<1 ; \quad \sigma_{i j}^{A}=\frac{1}{1+\theta}=\sigma ; \quad \rho_{i j}^{H E C}=1+\frac{\theta}{\mu}=\rho_{j i}^{H E C}$
Cost
$C(y, \boldsymbol{w})=\frac{y^{1 / \mu}}{\gamma}\left[\sum_{i=1}^{n} \alpha_{i}^{\sigma} w_{i}^{\sigma \theta}\right]^{1 / \sigma \theta} ; \quad \varepsilon^{*}(y, w)=\mu ; \quad \sigma_{i j}^{A U E S}=\sigma_{j i}^{A U E S}=\sigma$ $\sigma_{i j}^{M E S}=\sigma ; \sigma_{j i}=\sigma$
demand for input $x_{j}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{j}}=\frac{y^{1 / \mu}}{\gamma}\left[\sum_{i=1}^{n} \alpha_{i}^{\sigma} w_{i}^{\sigma \theta}\right]^{\left(\frac{1}{\sigma \theta}-1\right)} \cdot \alpha_{j}^{\sigma} w_{j}^{\sigma \theta-1}$
Profit
$G(\boldsymbol{q})=\mu^{\frac{\mu}{\mu-1}}(1-\mu)\left[\sum_{i=1}^{n} \alpha_{i}\left(\frac{q_{i}}{\alpha_{i}}\right)^{1-\sigma}\right]^{\frac{\mu(\theta+1)}{\theta(\mu-1)}} ;$
$q_{i}=\frac{w_{i}}{p_{y}} ; \quad \sigma_{i j}^{H L E S}=\frac{\mu+\theta}{\mu(\theta+1)}=\sigma_{j i}^{H L E S}$
supply of output $y=(1-\mu)^{-1} G(q)$
demand for input $x_{j}=-\mu^{\frac{1}{1-\mu}}\left[\sum_{i=1}^{n} \alpha_{i}\left(\frac{q_{i}}{\alpha_{i}}\right)^{\frac{\theta}{\theta+1}}\right]^{\frac{\mu+\theta}{\theta(\mu-1)}} \cdot\left(\frac{q_{j}}{\alpha_{j}}\right)^{-\frac{1}{\theta+1}}$
Distance
$D(y, x)=\gamma^{\frac{1}{\mu}}\left[\sum_{i=1}^{n} \alpha_{i}\left(\frac{x_{i}}{y^{1 / \mu}}\right)^{-\theta}\right]^{-1 / \theta} ; \quad \rho_{i j}^{A E C}=\rho_{j i}^{A E C}=\rho_{i j}^{M E C}=\rho_{j i}^{M E C}=\frac{1}{\sigma}$
(inverse) demand for input
$x_{j}=\frac{\partial D(y, \boldsymbol{x})}{\partial x_{j}}=\left(\frac{\gamma}{y}\right)^{1 / \mu} \cdot\left[\sum_{i=1}^{n} \alpha_{i} x_{i}^{-\theta}\right]^{-\frac{1+\theta}{\theta}} \cdot \alpha_{j} x_{j}^{-(\theta+1)}$

When this happens, it does not modify $\sigma_{i j}^{A}$ but enters into the calculation of $\rho_{i j}^{H E C}$ and does not leave it. Instead, the reciprocal of $\sigma_{i j}^{4}$ is $\rho^{A E C}$, respecting the rule that this must happen for a function which is homogeneous and not simply homothetic. The two $\rho_{i j}^{M E C}$ are also reciprocals of $\sigma_{i j}^{A}$. The constancy of σ^{4} is also transmitted to $\sigma_{i j}^{A U E S}$ and $\sigma_{i j}^{\text {MES }}$. Instead, a constant but different value results for $\sigma_{i j}^{\text {HLES }}$, in which (as in $\rho_{i j}^{\text {MEC }}$), the value of μ enters. This contemporary presence matches the duality which, it is stated, exists between the production and profit functions (Bertoletti, 2001), and the circumstance that $\rho^{\text {HEC }}$ and $\sigma_{i j}^{\text {HLES }}$ respectively express a gross q-complementarity and a gross p-substitutability.

A very different situation arises with the CMC-CES functional form. Its production function is homothetic but not homogeneous, σ^{A} is constant and equal to $1 / s$, and its dual cost function is also homothetic. Although the production function is not homogeneous, its Hicks' elasticity of complementarity, $\rho^{\text {HEC }}$, is equal to 1 , as in the Cobb-Douglas function - a result which was not expected a priori. The elasticities of substitution $\sigma_{i j}^{A U E S}, \sigma_{i j}^{\text {MES }}$ and $\sigma_{j i}^{\text {MES }}$ obtainable by means of the cost function, are all equal to $1 / s$ as expected. The CMC-CES function is a special case, comparatively simpler, of the more general CMC non-homogeneous function, in which each input x_{i} has its own s_{i}, and its elasticity σ^{4} is variable within limits defined by the relations $>,<,=$ among the s_{i}.

Table 3-CMC-CES Functions

Production

Cost
$C(y, \boldsymbol{w})=\left[\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{s-1}\right)^{1 / s} w_{i}^{\frac{s-1}{s}}\right]^{\frac{s}{s-1}} \cdot\left(-\ln \frac{y}{\gamma}\right)^{\frac{1}{1-s}}$
$\varepsilon^{*}(y, \boldsymbol{w})=(s-1)\left(-\ln \frac{y}{\gamma}\right) ; \quad \sigma_{i j}^{A U E S}=\sigma_{i j}^{M E S}=\sigma_{j i}^{M E S}=\frac{1}{s}$
demand for input x_{j}
$x_{j}=\left[\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{s-1}\right)^{1 / s} \cdot w_{i}^{-1 / s}\right]^{\frac{1}{s-1}} \cdot\left(\frac{\alpha_{j}}{s-1}\right)^{1 / s} \cdot w_{j}^{-1 / s} \cdot\left(-\ln \frac{y}{\gamma}\right)^{\frac{1}{1-s}}$

The general CMC is a somewhat complex function, which yields the dual cost function only in very particular cases, or else by means of more or less satisfactory approximations ${ }^{12}$. Now, for such a function with a variable $\sigma^{A^{13}}, \rho^{H E C}$ is constant and equal to 1, as in the simpler Cobb-Douglas function!

Although the presence of a single s in the CMC-CES allows its dual cost function to be rendered in explicit form, this is not enough for the present writer to obtain the profit function. Lau's procedure in the case of two preceding IFF to yield the $G(\boldsymbol{q})$ functions shown in Tables 1 and 2 is - at least, in the writer's opinion inapplicable ${ }^{14}$, because it is based on the constancy of coefficient

[^5]$\varepsilon(\boldsymbol{x})=\mu$ (see Tables 1 and 2). In the CMC-CES, $\varepsilon(\boldsymbol{x})=\sum_{i}^{n} \alpha_{i} x_{i}^{1-s}$ decreases variably with the increase in the quantity of inputs, passing from an initial part, in which it is >1, to the following part, in which it becomes <1. The profit and function $G(q)$ may thus exist only starting from $\mu<1$. Some simple simulations confirmed that the value of μ at which maximum profit is reached is one and only one, and that it determines the maximum value of G at the same time ${ }^{15}$. In other words, μ is not only a variable but also an unknown, to be defined before or together with function $G(\boldsymbol{q})$, if we know how to determine it. In fact, by means of simulations it is possible to obtain the value of $G_{\max }$ with every degree of approximation desired, as explained in note (14), but they do not supply the equations of function $G(\boldsymbol{q})$ and of $\sigma^{\text {HLES }}$ which - at least for the moment - we must abandon.

The variability of μ also comes into play in the distance function, again making it difficult to define. The CMC-CES function, with an equational form only slightly more complex than that of CD and CES-ACMS, confirms the opinion of experts (cf. for example,
function) becomes $\left.\left(\alpha_{i} y / x_{i}\right)=q_{i}\right)$ and, using the mathematical procedure called "Legendre transformation", y is substituted by its value in terms of profit function G and x_{i} by its corresponding $-\partial G / \partial q_{i}$. He thus obtains for input x_{i} a first-order differential equation with separable variables, making part of the compound system of similar equations for all n inputs. He treats this system as an ordinary differential equation and, integrating it, obtains function $G(\boldsymbol{q})$. The writer dispelled his initial doubts on the legitimacy of treating the system as a single equation by means of a series of control simulations. They confirmed the result: given parameters α_{i} and γ, and q_{i} with constant μ and <1, functions $G(\boldsymbol{q})$ of the Cobb-Douglas and CES-ACMS forms do give G values realizing maximum profit.
${ }^{15}$ The simulation is effected in the following way. If there are, for instance, 3 inputs, x_{1}, x_{2}
and x_{3}, with given values of x_{1}, the functions of the expansion paths yield the levels of x_{2} and x_{3}. These may be used to calculate output y, total cost $C(y, \boldsymbol{w})=\sum_{i=1}^{n} x_{i} w_{i}$, total revenue $R=y p_{y}$, profit $P=R-C(y, \boldsymbol{w})$ and, proceeding by trial and error, $P_{\max }$ and, thus, the x_{i} which define μ. In this way, $G(\boldsymbol{q})=y-\sum q_{i} x_{i}$ turns out to be an increasing function up to a maximum when even P is maximum, and then a decreasing one, and $P_{\max }=G_{\max } \cdot p_{y}$.

Cornes, 1992) regarding the difficulty of defining it outside really simple cases. For example, in the case of CMC-CES, relation $D(y, \boldsymbol{x})=f(\boldsymbol{x})^{-1}$ cannot be used (as it is later), because it is applicable only in the case of constant returns to scale which, as already mentioned, are variable in the CMC-CES function ${ }^{16}$.

Intuition, the fact that the other elasticities of the functional form are constant, tests carried out with some "invented" functions, and the meaning of "efficient complementarity" ${ }^{17}$ which parameter s takes on in the production function, are all circumstances which lead us to conclude that elasticities of complementarity $\rho^{H E C}$ and $\rho^{\text {MES }}$ must be equal to s.

However, apart from hypotheses and inferences and the real or presumed impossibility of determining the profit and distance functions of CMC-CES or any other function, it should be recalled that a way of obtaining $\sigma^{\text {HLES }}$ directly from $\sigma^{\text {AUES }}$ and $\rho^{\text {HEC }}$ from $\rho^{a E C}$ and vice versa was recently proposed, not resorting to the functions themselves but to given elasticities, such as those regarding the output of conditional or unconditional demands of inputs and those of the total or marginal cost (Bertoletti, 2001, formulas 13 and 17). "Filling in" and checking these formulas by means of the above-mentioned elasticities for the functional forms

[^6]examined here, and for others, together with a practical application, would certainly be an interesting subject for a special research.

4. Flexible Functional Forms: a) Diewert's GL and Translog

Undeniably, Diewert's GL has the positive characteristic of simple path-breaking. It does determine linear demand functions of inputs, the econometric estimation of which is thereby facilitated, and elasticities of substitution and complementarity whose values may range over wide intervals. This appreciation is particularly and specifically true for the cost rather than for the production function ${ }^{18}$. This, in our opinion, is because the former can be subjected to extensions of various types, which may transform it from homothetic into non-homothetic, thus making it more realistic, as econometric applications show. If we examine some extensions of it (Table 4), we can see how simple they are, easy but nonetheless significant after modification-substitution of the generic function $h(y)$. Instead, as regards the production function, it is more difficult to imagine what content and significance function h may take on (note the difference in writing it used by Diewert!). The quantities of inputs must be excluded, because they already appear in the function. In the explicit words of the author, quoted in Table $4^{19}, h$ must be understood as an increasing function and not as a constant, similar to the μ which appears in the CES-ACMS, capable of transforming constant returns to scale into increasing or decreasing ones.

[^7]Table 4 - Diewert's Generalized Leontiev (DGL) Functions
Production
$y=h \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i}^{1 / 2} x_{j}^{1 / 2} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} \geq 0 ;$
$h=$ continuous, monotonic, increasing function $\rightarrow+\infty ; \quad h(0)=0$; $\varepsilon(y, \boldsymbol{x})=1$
$\rho_{i j}^{H E C}=\frac{1}{2} \beta_{i j}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i}^{1 / 2} x_{j}^{1 / 2}\right)\left(\frac{1}{\sum_{j=1}^{n} \beta_{i j} x_{j}^{1 / 2}} \cdot \frac{1}{\sum_{i=1}^{n} \beta_{i j} x_{i}^{1 / 2}}\right)$
Cost
$C(y, \boldsymbol{w})=h(y) \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} \geq 0 ;$
$h(y)=$ continuous, monotonic, increasing function of y,
$\rightarrow+\infty$ with $y \rightarrow+\infty ; \quad h(0)=0$
$\sigma_{i j}^{A U E S}=\frac{1}{2} \beta_{i j}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2}\right)\left(\frac{1}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}} \cdot \frac{1}{\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}}\right)$
$\sigma_{i j}^{\text {MES }}=\frac{1}{2}\left(1+w_{i}^{1 / 2}\left(\frac{\beta_{i j}}{\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}}-\frac{\beta_{i i}}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}}\right)\right)$
$\sigma_{j i}^{\text {MES }}=\frac{1}{2}\left(1+w_{j}^{1 / 2}\left(\frac{\beta_{i j}}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}}-\frac{\beta_{j j}}{\sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2}}\right)\right)$
demand function for input $x_{i}=\frac{\partial C(y, \boldsymbol{w})}{\partial \boldsymbol{w}_{i}}=h(y) \sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}$

Profit

$G(w)=\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i}$
$\sigma_{i j}^{H E S S}=\frac{1}{2} \beta_{i j}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2}\right)\left(\frac{1}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}} \cdot \frac{1}{\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}}\right)$
demand function for input $x_{i}=\frac{\partial G(\boldsymbol{w})}{\partial w_{i}}=-\sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}$
Distance
$D(y, \boldsymbol{x})=y^{-1} h\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i}^{1 / 2} x_{j}^{1 / 2}\right) ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} ; \quad h=$ see production
function
$\rho_{i j}^{i E C}=\frac{1}{2} \beta_{i j}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i}^{1 / 2} x_{j}^{1 / 2}\right)\left(\frac{1}{\sum_{j=1}^{n} \beta_{i j} x_{j}^{1 / 2}} \cdot \frac{1}{\sum_{i=1}^{n} \beta_{i j} x_{i}^{1 / 2}}\right)$
$\rho_{i j}^{M E C}=\frac{1}{2}\left(\frac{\beta_{i j} x_{i}^{1 / 2}}{\sum_{i=1}^{n} \beta_{i j} x_{i}^{1 / 2}}+\frac{\sum_{k=1, k \neq i}^{n} \beta_{i k} x_{k}^{1 / 2}}{\sum_{j=1}^{n} \beta_{i j} x_{j}^{1 / 2}}\right)$
$\rho_{j i}^{M E C}=\frac{1}{2}\left(\frac{\beta_{i j} x_{j}^{1 / 2}}{\sum_{j=1}^{n} \beta_{i j} x_{j}^{1 / 2}}+\frac{\sum_{k=1, k \neq j}^{n} \beta_{j k} x_{k}^{1 / 2}}{\sum_{i=1}^{n} \beta_{i j} x_{i}^{1 / 2}}\right)$
(inverse) demand function for input
$x_{i}=\frac{\partial D(y, \boldsymbol{x})}{\partial x_{i}}=y^{-1} h \sum_{j=1}^{n} \beta_{i j} x_{i}^{-1 / 2} x_{j}^{1 / 2}$

Extensions of the DGL cost function

1. Homothetic function with constant returns to scale: $h(y)=y$ (Parks 1971)
$C(y, \boldsymbol{w})=y \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} ; \quad \varepsilon^{*}(y, \boldsymbol{w})=1$ $\sigma_{i j}^{A U E S}, \sigma_{i j}^{\text {MES }}, \sigma_{j i}^{M E S}$ are the same as the original DGL
demand function for input $x_{i}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{i}}=y \sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}$
2. Non-homothetic function with variable returns to scale (Parks 1971)
$C(y, \boldsymbol{w})=y \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2}+y^{2} \sum_{i=1}^{n} \alpha_{i} w_{i} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i}$
$\boldsymbol{\varepsilon}^{*}(y, \boldsymbol{w})=1-\frac{y \sum_{i=1}^{n} \alpha_{i} w_{i}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2}+2 y \sum_{i=1}^{n} \alpha_{i} w_{i}}$
$\sigma_{i j}^{A U E S}=\frac{\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j}+y \sum_{i=1}^{n} \alpha_{i} w_{i}\right)\left(\frac{1}{2} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{-1 / 2}\right)}{\left(\sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}+\alpha_{i} y\right)\left(\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{-1 / 2}+\alpha_{j} y\right)}$
$\sigma_{i j}^{\text {MES }^{\prime}}=\frac{1}{2}\left(\frac{\beta_{i j} w_{i}^{1 / 2}}{\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}+\alpha_{j} y w_{j}^{1 / 2}}+\frac{\sum_{k=L, k \neq i}^{n} \beta_{i k} w_{k}^{1 / 2}}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}+\alpha_{i} y w_{i}^{1 / 2}}\right)$
$\sigma_{j i}^{M E S}=\frac{1}{2}\left(\frac{\beta_{i j} w_{j}^{1 / 2}}{\sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}+\alpha_{i} y w_{i}^{1 / 2}}+\frac{\sum_{k=1, k t j}^{n} \beta_{j k} w_{k}^{1 / 2}}{\sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}+\alpha_{j} y w_{j}^{1 / 2}}\right)$
demand function for input $x_{i}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{i}}=y \sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}+\alpha_{i} y^{2}$
3. Non-homothetic function with variable returns to scale (Guilkey, Lovell and Sickles, 1983)
$C(y, \boldsymbol{w})=y \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{1 / 2}+y^{2} \sum_{i=1}^{n} \alpha_{i} w_{i}+\sum_{i=1}^{n} \beta_{i} w_{i} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i}$

$$
\left\lvert\, \begin{aligned}
& \sigma_{i j}^{A U E S}=\frac{C(y, \boldsymbol{w}) \cdot \frac{1}{2} \beta_{i j} y w_{i}^{-1 / 2} w_{j}^{-1 / 2}}{\left(y \sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}+y^{2} \alpha_{i}+\beta_{i}\right)\left(y \sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2} w_{j}^{-1 / 2}+y^{2} \alpha_{j}+\beta_{j}\right)} \\
& \sigma_{i j}^{M E S}=\frac{1}{2} y\left(\frac{\beta_{i j} w_{i}^{1 / 2}}{y \sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}+y^{2} \alpha_{j} w_{j}^{1 / 2}+\beta_{j} w_{j}^{1 / 2}}+\frac{\sum_{k=1, k \neq i}^{n} \beta_{i k} w_{k}^{1 / 2}}{y \sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}+y^{2} \alpha_{i} w_{i}^{1 / 2}+\beta_{i} w_{i}^{1}}\right. \\
& \sigma_{j i}^{M E S}=\frac{1}{2} y\left(\frac{\beta_{i j} w_{j}^{1 / 2}}{y \sum_{j=1}^{n} \beta_{i j} w_{j}^{1 / 2}+y^{2} \alpha_{i} w_{i}^{1 / 2}+\beta_{i} w_{i}^{1 / 2}}+\frac{\sum_{k=1, k \neq j}^{n} \beta_{j k} w_{k}^{1 / 2}}{y \sum_{i=1}^{n} \beta_{i j} w_{i}^{1 / 2}+y^{2} \alpha_{j} w_{j}^{1 / 2}+\beta_{j} w_{j}^{1}}\right. \\
& \text { demand function for inputs } \\
& x_{i}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{i}}=y \sum_{j=1}^{n} \beta_{i j} w_{i}^{-1 / 2} w_{j}^{1 / 2}+y^{2} \alpha_{i}+\beta_{i}
\end{aligned}\right.
$$

In any case, observing the formulas of $\rho^{\text {HEC }}$ and $\sigma^{\text {AUES }}$ of Diewert's original functions, we see that they are in an identical equational form, with the obvious difference that the quantities of inputs appear in the formula of $\rho^{\text {HEC }}$ and their unitary costs in that of $\sigma^{\text {AUES }}$. In the application of formula (1) of Section 2, h and $h(y)$ cancel out, as was to be expected with homothetic functions. Comparing $\sigma^{\text {AUES }}$ and $\sigma^{\text {HLES }}$, we see that their formulas are not formally similar, as above, but substantially equal ${ }^{20}$. Diewert does not resort, like Lau, to the normalization procedure $q_{i}=w_{i} / p_{y}$ for the profit function, so that the equality between the two formulas is immediately apparent. The result is that this profit function yields a $\sigma^{\text {HLES }}$ formula which prevents us from distinguishing the gross substitutability it expresses from the net substitutability, expressed by $\sigma^{A U E S}$. If we then observe the formulas of $\rho^{A E C}$ and $\rho^{H E C}$, we see that they too are equal, as must happen with production func-

[^8]tions with constant returns to scale like the GL. The latter characteristic, together with homotheticity, removes the differences between gross and net complementarity and substitutability. Clearly, no comparison is possible between extended non-homothetic cost functions, and Diewert's original production function ${ }^{21}$.

As regards the Translog production and cost functions, it is very difficult, if not impossible, to find something that has not already been written ${ }^{22}$. However, these functions are shown in Table 5 , in order to make proper comparisons with the profit and distance functions.

The profit function was taken from Lau ${ }^{23}$. Its analytical form is formally similar to that of the production function, with q_{i} in the place of x_{i}, and thus the formulas of $\rho^{H E C}$ and $\sigma^{\text {HLES }}$ are equally similar. Apart from this analogy, the two elasticities have the common feature of being gross.

The distance function was obtained by means of the reduction to a single output of the multi-output function proposed and used by R. Färe and S. Grosskopf, unanimously recognised as experts on the subject ${ }^{24}$. The reduction to a single output and the elimination of fixed inputs, as well as obviously reducing the number of terms in the function, means that it takes on a significant formal similarity with the cost function. Apart from the presence of inputs x_{i} in the place of their unitary costs w_{i}, the difference between it and the cost function is due to the absence of the term $\alpha_{y y} \ln (y)^{2}$. However, its presence or absence does not influence calculation of

[^9]the partial derivatives (of an additive function in the logarithms) with respect to w_{i} or x_{i}, which are necessary to calculate the elasticities of substitution and complementarity. If the uni-product version of the distance function is accepted, its partial derivatives are a mix of those of the production function (due to the presence of inputs x_{i}) and of those of the cost function (due to the presence of output y). The different values of the elasticities are thus entrusted to the differing combinations of the variables according to which they are defined ${ }^{25}$.

Table 5 - Translog Functions

$$
\begin{aligned}
& \text { Production } \\
& \ln y(\boldsymbol{x})=\ln \alpha_{0}+\sum_{i=1}^{n} \alpha_{i} \ln x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln x_{i} \ln x_{j} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} \\
& \varepsilon(y, \boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln x_{j} \\
& \rho_{i j}^{H E C}=1+\frac{\beta_{i j}}{\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} \ln x_{j}\right)\left(\alpha_{j}+\sum_{i=1}^{n} \beta_{i j} \ln x_{i}\right)}=1+\frac{\beta_{i j}}{{ }_{y} S_{i y} S_{j}} \\
& \begin{array}{l}
{ }_{y} S_{i}=\frac{\partial y}{\partial x_{i}} \cdot \frac{x_{i}}{y}=\frac{\partial \ln y}{\partial \ln x_{i}} ; \text { if } \frac{\partial y}{\partial x_{i}}=\frac{w_{i}}{p_{y}} \Rightarrow{ }_{y} S_{i}=\frac{w_{i} x_{i}}{p_{y} y} \\
\ln (y, \boldsymbol{w})=\ln \alpha_{0}+\alpha_{y} \ln y+\frac{1}{2} \alpha_{y y}(\ln y)^{2}+\sum_{i=1}^{n} \alpha_{i} \ln w_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln w_{i} \ln w_{j}+ \\
\quad+\sum_{i=1}^{n} \beta_{i y} \ln y \ln w_{i} \\
\varepsilon^{*}(y, \boldsymbol{w})= \\
\quad \alpha_{y}+\alpha_{y y}+\sum_{i=1}^{n} \beta_{i y} \ln w_{i}
\end{array}
\end{aligned}
$$

[^10]\[

$$
\begin{aligned}
& \left\lvert\, \sigma_{i j}^{\text {UES }}=1+\frac{\beta_{i j}}{\left(\alpha_{i}+\beta_{i j} \ln y+\sum_{j=1}^{n} \beta_{i j} \ln w_{j}\right)\left(\alpha_{j}+\beta_{j y} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln w_{i}\right)}=\right. \\
& =1+\frac{\beta_{i j}}{{ }_{c} S_{i c} S_{j}} \\
& { }_{c} S_{i}=\frac{\partial \ln C}{\partial \ln w_{i}}=\frac{\partial C}{\partial w_{i}} \cdot \frac{w_{i}}{C} ; \quad x_{i}=\frac{\partial C}{\partial w_{i}} \Rightarrow{ }_{c} S_{i}=\frac{w_{i} x_{i}}{C} \\
& \sigma_{i j}^{M E S}=1+\frac{\beta_{i j}}{\alpha_{j}+\beta_{i j} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln w_{i}}-\frac{\beta_{i i}}{\alpha_{i}+\beta_{i y} \ln y+\sum_{j=1}^{n} \beta_{i j} \ln w_{j}}= \\
& =1+\frac{\beta_{i j}}{{ }_{c} S_{j}}-\frac{\beta_{i i}}{{ }_{c} S_{i}} \\
& \sigma_{j i}^{M E S}=1+\frac{\beta_{i j}}{\alpha_{i}+\beta_{i j} \ln y+\sum_{j=1}^{n} \beta_{i j} \ln w_{j}}-\frac{\beta_{i j}}{\alpha_{j}+\beta_{i j} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln w_{i}}= \\
& =1+\frac{\beta_{i j}}{{ }_{c} S_{i}}-\frac{\beta_{i i}}{{ }_{c} S_{j}} \\
& \text { demand function input } x_{i}=\operatorname{cost} \text { share of input } x_{i} \\
& \frac{w_{i} x_{i}}{C}=\alpha_{i}+\beta_{i j} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln w_{i} \\
& \ln G(q)=\ln \alpha_{0}+\sum_{i=1}^{n} \alpha_{i} \ln q_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln q_{i} \ln q_{j} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} ; \quad q_{i}=\frac{w_{i}}{p_{1}} \\
& \sigma_{i j}^{\text {HLES }}=1+\frac{\beta_{i j}}{\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} \ln q_{i}\right)\left(\alpha_{j}+\sum_{i=1}^{n} \beta_{i j} \ln q_{j}\right)} \\
& \text { demand function input } x_{i} \\
& \frac{q_{i} x_{i}}{G(\boldsymbol{q})}=-\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} \ln q_{j}\right)
\end{aligned}
$$
\]

$$
\left\lvert\, \begin{aligned}
& \text { Distance } \\
& \ln D(y, x)=\ln \alpha_{0}+\alpha_{y} \ln y+\sum_{i=1}^{n} \alpha_{i} \ln x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \ln x_{i} \ln x_{j}+\sum_{i=1}^{n} \beta_{i j} \ln x_{i} \ln y \\
& \rho_{i j}^{A E C}=\frac{1}{2} \beta_{i j} \frac{2\left(\ln \alpha_{0}+\alpha_{y} \ln y+\sum_{1}^{n} \alpha \ln x\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln x_{i} \ln x_{j}+2 y \sum_{i=1}^{n} \beta_{i j} \ln x_{i}}{\left(\alpha_{i}+\beta_{i y} y+\sum_{j=1}^{n} \beta_{i j} \ln x_{j}\right)\left(\alpha_{j}+\beta_{j} y+\sum_{i=1}^{n} \beta_{i j} \ln x_{i}\right)} \\
& \rho_{i j i}^{M E C}=1+\frac{\beta_{i j}}{\alpha_{j}+\beta_{i y} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln x_{i}}-\frac{\beta i i}{\alpha_{i}+\beta_{i y} \ln y+\sum_{j=1}^{n} \beta_{i j} \ln x_{j}} \\
& \rho_{i j}^{M E C}=1+\frac{\beta_{i j}}{\alpha_{i}+\beta_{i j} \ln y+\sum_{j=1}^{n} \beta_{i j} \ln x_{j}}-\frac{\beta_{i j}}{\alpha_{j}+\beta_{j y} \ln y+\sum_{i=1}^{n} \beta_{i j} \ln x_{i}}
\end{aligned}\right.
$$

(inverse) demand function for inputs x_{i}
$x_{i}=\frac{\partial D(y, \boldsymbol{x})}{\partial x_{i}}=\frac{1}{x_{i}}\left(\alpha_{i}+\beta_{i j} \ln y+\sum_{j=1}^{n} \beta_{i j} x_{j}\right)$

5. Flexible Functional Forms: b) Lau's Quadratic and Diewert's Generalized Cobb-Douglas, Extended by Magnus

If we compare Lau's Quadratic production function with Translog, we see that the latter repeats its form, with natural rather than logarithmic values. Lau, who is one of the most important contributors to the theory of the profit function, did not formulate any function, of either cost or distance. Both have been proposed by us, exploiting the analogy with Translog, i.e. using its form in natural values. However, from production and cost functions formulas of $\rho^{\text {HEC }}$ and $\sigma^{\text {AUES }}$ result, which do not repeat the form of the Translog ones, because the second mixed derivative, necessary for their calculation, is reduced in both cases only to term $\beta_{i j}$, a thing which does not allow the processing which, in the Translog function,
eliminates respectively y and $C(y, \boldsymbol{w})$ from the formulas. Lau states that the production function is "self dual" and thus its convex conjugate, i.e., the profit function, is also quadratic and is written with $G(\boldsymbol{q})$ in place of y, and q_{i} in place of $x_{i}{ }^{26}$. The consequence - mutatis mutandis - is that the formula of $\sigma^{\text {HLES }}$ is formally similar to that of $\rho^{H E C}$.

Table 6 - Lau's Quadratic Functions

Production
$y(x)=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i} x_{j} ; \quad i \neq j ; \quad \beta_{i j}=\beta_{j i} ; \quad \alpha_{0} \geq 0$
$\varepsilon(y, x)=\frac{1}{y}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i} x_{j}\right)$
$\rho_{i j}^{\text {HEC }}=\frac{y \beta_{i j}}{\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} x_{j}\right)\left(\alpha_{j}+\sum_{i=1}^{n} \beta_{i j} x_{i}\right)}$
Cost
$C(y, \boldsymbol{w})=\alpha_{0}+\alpha_{y} y+\frac{1}{2} \alpha_{y y} y^{2}+\sum_{i=1}^{n} \alpha_{i} w_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} w_{i} w_{j}+\sum_{i=1}^{n} \beta_{i} y w_{i} ; \quad \alpha_{0} \geq 0$
$\varepsilon^{*}(y, \boldsymbol{w})=\frac{C(y, \boldsymbol{w})}{y}\left(\alpha_{y}+\alpha_{y y} y+\sum_{i=1}^{n} \beta_{i} w_{i}\right)^{-1}$
$\sigma_{i j}^{A U E S}=\frac{C(y, w) \cdot \beta_{i j}}{\left(\alpha_{i}+\beta_{i} y+\sum_{j=1}^{n} \beta_{i j} w_{j}\right) \cdot\left(\alpha_{j}+\beta_{j} y+\sum_{i=1}^{n} \beta_{i j} w_{i}\right)}$
$\sigma_{i j)}^{\text {MES }}=w_{i}\left(\frac{\beta_{i j}}{\alpha_{j}+\beta_{j} y+\sum_{i=1}^{n} \beta_{i j} w_{i}}-\frac{\beta_{i i}}{\alpha_{i}+\beta_{i} y+\sum_{j=1}^{n} \beta_{i j} w_{j}}\right)$

[^11]$$
\sigma_{j i}^{M E S}=w_{j}\left(\frac{\beta_{i j}}{\alpha_{i}+\beta_{i} y+\sum_{j=1}^{n} \beta_{i j} w_{j}}-\frac{\beta_{i j}}{\alpha_{j}+\beta_{j} y+\sum_{i=1}^{n} \beta_{i j} w_{i}}\right)
$$
demand function for input $x_{i}=\frac{\partial C(y, \boldsymbol{w})}{\partial w_{i}}=\alpha_{i}+\beta_{i} y+\sum_{j=1}^{n} \beta_{i j} w_{j}$
Profit
$G(\boldsymbol{q})=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} q_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} q_{i} q_{j} ; q_{i}=\frac{w_{i}}{p_{y}} ; \quad \alpha_{0} \geq 0$
$\sigma_{i j}{ }^{\text {LLES }}=\frac{G(\boldsymbol{q}) \beta_{i j}}{\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} q_{j}\right)\left(\alpha_{j}+\sum_{i=1}^{n} \beta_{i j} q_{i}\right)}$
demand function for input $x_{i}=\frac{\partial G(\boldsymbol{q})}{\partial q_{i}}=-\left(\alpha_{i}+\sum_{j=1}^{n} \beta_{i j} q_{i}\right)$
Distance
$D(y, \boldsymbol{x})=\alpha_{y} y+\sum_{i=1}^{n} \alpha_{i} x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i j} x_{i} y$
$\rho_{i j}^{A E C}=\frac{D(y, x) \beta_{i j}}{\left(\alpha_{i}+\beta_{i y} y+\sum_{j=1}^{n} \beta_{i j} x_{j}\right)\left(\alpha_{j}+\beta_{i y} y+\sum_{i=1}^{n} \beta_{i j} x_{i}\right)}$
$\rho_{i j}^{M E C}=x_{i}\left(\frac{\beta_{i j}}{\alpha_{j}+\beta_{j y} y+\sum_{i=1}^{n} \beta_{i j} x_{i}}-\frac{\beta_{i i}}{\alpha_{i}+\beta_{i j} y+\sum_{j=1}^{n} \beta_{i j} x_{j}}\right)$
$\rho_{j i}^{M E C}=x_{j}\left(\frac{\beta_{i j}}{\alpha_{i}+\beta_{i j} y+\sum_{j=1}^{n} \beta_{i j} x_{j}}-\frac{\beta_{i j}}{\alpha_{j}+\beta_{j y} y+\sum_{i=1}^{n} \beta_{i j} x_{i}}\right)$
inverse demand for input $x_{i}=\frac{\partial D(y, \boldsymbol{x})}{\partial x}=\alpha_{i}+\beta_{i y} y+\sum_{j=1}^{n} \beta_{i j} x_{j}$

Among the elasticities taken from the distance and cost functions, the relationships of formal analogy described above for the same functions in Translog are repeated.

The functions of the generalized Cobb-Douglas form, shown in logarithmic terms for convenience, do not present any especially distinctive features. As the production function is subject to constant returns to scale, the equality between $\rho^{H E C}$ and $\rho^{A E C}$ turns out to be confirmed, as expected (Kim, 2000).

The cost function shown in non-homothetic form is due to Guilkey et al. (1983). The presence of terms $\ln y$ and $(\ln y)^{2}$ - as in Translog and GL - means that $\sigma^{\text {AUES }}$ loses its formal analogy with $\rho^{\text {HEC }}$ and reduces the possibility of simplifying the formula. In the $\sigma^{\text {MES }}$ formulas, the partial own prime and second derivatives are shown with the symbol d (for reasons of space) and appear in extended form in the Appendix. The presence in the formulas of negative signs in front of the two terms should not mislead readers, causing perplexity. That of the first term comes from the second mixed derivative of the function, whereas the second term is annulled by the negativity of its own second derivatives.

The demand function of input i is presented in Translog form as the quota of its total cost, multiplying the prime derivative of the cost function by its unitary cost w_{i}.

The normalised profit function, proposed by the writer, does not present any particular difficulty.

Table 7 - Magnus Extended, Diewert's Generalized Cobb-Douglas Functions

Production

$\ln y=\ln \gamma+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln \left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right) ; \quad \alpha_{i} \geq 0 ; \quad \gamma>0 ; \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j}=1 ; \quad \beta_{i j}=\beta$
$\varepsilon(y, x)=\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j}=1$

$$
\rho_{i j}^{\text {HEC }}=1-\frac{1}{2} \cdot \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)^{2}\left(\sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} x_{i}+\alpha_{j} x_{j}}\right)\left(\sum_{i=1}^{n} \frac{\beta_{i j}}{\alpha_{i} x_{i}+\alpha_{j} x_{j}}\right)}
$$

Cost

$\ln C(y, \boldsymbol{w})=\ln \alpha_{0}+\alpha_{y} \ln y+\frac{1}{2} \alpha_{y y}(\ln y)^{2}+$
$+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln \left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)+\sum_{i=1}^{n} \alpha_{i j} \ln y \ln w_{i}$
$\mathcal{E}^{*}(y, \boldsymbol{w})=\left(\alpha_{y}+\alpha_{y y} \ln y+\sum_{i=1}^{n} \alpha_{i y} \ln w_{i}\right)^{-1}$
$\sigma_{i j}^{A U E S}=1-\frac{2 \alpha_{i} \alpha_{j} \beta_{i j}}{\left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)^{2}\left(\frac{\alpha_{i j} \ln y}{w_{i}}+2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right)}$.
$\frac{1}{\left(\frac{\alpha_{i y} \ln y}{w_{j}}+2 \alpha_{j} \sum_{i=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right)}$
$\sigma_{i j}^{\text {MES }}=w_{i}\left(-\frac{2 \alpha_{i} \alpha_{j} \beta_{i j}}{\left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)^{2}}-\frac{d_{i i}}{d_{i}}\right)$
$\sigma_{j i}^{\text {MES }}=w_{j}\left(-\frac{2 \alpha_{i} \alpha_{i} \beta_{i j}}{\left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)^{2}}-\frac{d_{i j}}{d_{j}}\right)$
demand function input $x_{i}=\operatorname{cost}$ share of input x_{i}
$\frac{w_{i} x_{i}}{C(y, \boldsymbol{w})}=2 \alpha_{i} \alpha_{j} \beta_{i j} w_{i}\left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)^{-1}+\alpha_{y i} \ln y$
Profit
$\left\{\begin{array}{l}\ln G(\boldsymbol{q})=\ln \alpha_{0}+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \cdot \ln \left(\alpha_{i} q_{i}+\alpha_{j} q_{j}\right) \\ \sigma_{i j}{ }^{\text {HLES }}=1-\frac{1}{2} \frac{\beta_{i j}}{\left(\alpha_{i} q_{i}+\alpha_{j} q_{i}\right)^{2}\left(\sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} q_{i}+\alpha_{j} q_{j}\right)}\right)\left(\sum_{i=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} q_{i}+\alpha_{j} q_{j}\right)}\right)}\end{array}\right.$

$$
\left\{\begin{array}{l}
\text { demand function for input } x_{i}=-\frac{\partial G(\boldsymbol{q})}{\partial q_{i}}=-2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} q_{i}+\alpha_{j} q_{j}\right)} \\
\text { Distance } \\
\ln D(y, \boldsymbol{x})=\ln \gamma+\alpha_{y} \ln y^{-1}+\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \ln \left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right) \\
\rho_{i j}^{A E C}=1-\frac{1}{2} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)^{2}\left(\sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}\right)\left(\sum_{i=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}\right)} \\
\rho_{i j}^{M E C}=-\frac{\beta_{i j} \alpha_{i} x_{i}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)^{2} \sum_{i=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}}+\frac{\beta_{i i}}{2 \alpha_{i} x_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}} \\
\rho_{j i}^{M E C}=-\frac{\beta_{i j} \alpha_{j} x_{j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)^{2} \sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}}+\frac{\beta_{j j}}{2 \alpha_{j} x_{j} \sum_{i=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}}
\end{array}\right.
$$

inverse demand function for input
$x_{i}=\frac{\partial D(y, \boldsymbol{x})}{\partial x_{i}}=2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\left(\alpha_{i} x_{i}+\alpha_{j} x_{j}\right)}$

6. Final Considerations

At the conclusion of a research which produced in the author a mixture of disappointment and interest - work which he would not have undertaken if he had seen the general picture clearly right from the beginning - some comments may be made. First, although admitting the modesty of the aim of the research and of its mathematical and theoretical standard, we hope that the "parade" of the seven inflexible and flexible functional forms, may be useful for formulating evaluations which are not simple but more articulated.

A first consideration regards IFF and FFF as separate groups. Due to their functions and correlated elasticities, IFF present solutions which may be defined as clear and distinct within their limited scope, as shown by unitary or constant but in any case positive values. For these solutions, inputs are always and only q complements and p-substitutes. They are clear solutions because, due to their self-dual nature, the rules of economic and mathematical logic proceed along the same lines; and they are distinct because the four functions have specific and proper equation forms. The non-determination of the profit function for the CMCCES form and the hypothetical conclusions on the elasticity of the distance function are certainly due only to the writer's limited capacity to face the analytical difficulties which others will doubtless find easy to carry out.

The overall picture of the FFF is very different from that of the IFF, but not less unitary from other aspects. The deliberate abandon of self-duality between the functions and the acceptance of an approximation as second best, involves more or less similar consequences for all functions. Once the equation form of the production function has been chosen and defined while respecting established canons, the others must be "invented". Emblematic here is the case of the cost function of the functional forms DGL, TL and MEDGCD, of which the first and third have production functions with constant returns to scale. Now, the terms y and y^{2} were inserted in the three cost functions in order to have variable economies of size and to presume a priori - and more realistically - variable (increasing) average and marginal costs. If this was done by clearly authoritative experts, then it seems to us that the "invention by analogy" on our part of the cost function for Lau's Quadratic, in which we introduced y and y^{2}, should not be blamed.

Of the profit functions, three out of four have the mark of the inventors of production functions, i.e., Diewert and Lau. In this case too, can the extension we made for the MEDGCD profit function be condemned a priori? Among the distance functions, the situation is less complex. "Inventions" are limited to Translog and Lau's Quadratic, because DGL and MEDGCD have $\varepsilon(y, \boldsymbol{x})=1$ and therefore the relationship $D(y, \boldsymbol{x})=Y(\boldsymbol{x}) y^{-1}$ may be used. The two
inventions have very different parentage: Färe and Grosskopf for Translog, and the present writer for Lau's Quadratic.

Secondly, an overall view of the functional forms helps us to assess better and understand the reasons which led econometricians to prefer certain functional forms and, within them, to choose the most suitable among the four functions. Among the FFF, the preference for Translog is explained by its generality and the fact that it can be extended ${ }^{27}$. Its production function is presumed to be neither homogeneous nor homothetic, its elasticities are not constant, and technological, physico-natural and social variables may be added without difficulty. As regards the three IFF, readers will not be surprised if the writer views CMC-CES as progress with respect to CD and CES-ACMS, at least as regards the variable trends (first increasing, then decreasing) of average and marginal productivities.

Considering the set of four FFF, the cost function is the most frequently applied, and we believe this is because nonhomogeneity and non-homotheticity may be assumed a priori (empirical data reject homogeneity with increasing frequency), as long as they can be tested a posterior ${ }^{28}$.

Application of the distance function still does not seem to have reached the level of the cost and production functions, although for several reasons - this is definitely to be hoped for. The main reasons are its capacity to treat the multi-output case and to be fruitfully applicable in conditions of limited profitability with respect to ends or means ${ }^{29}$. The distance function also seems to be the parametric instrument best able to sustain the challenge with nonparametric analysis, which is becoming more popular. The poor application of the profit function is very probably due to competition conditions in the production markets which it must assume. This circumstance is confirmed by the fact that its application covers

[^12]agricultural production, in which the above conditions are judged to be quite satisfied ${ }^{30}$.

As regards elasticities, we believe that their characteristics and mutual relations have been sufficiently described in the previous Sections. There is only one question remaining open: is Morishima's or Allen's form (in which all the others are shown) to be preferred? The writer has reflected on this point for some time and the preparation of this survey reinforced his views, although he is in a minority: with more than two inputs and non-homothetic functions, Morishima's elasticities are more appropriate. For this reason, they were calculated and presented together with $\sigma^{\text {AUES }}$ and $\rho^{A E C}$. Without going back about fifteen years or so to the words of Blackorby and Russell ${ }^{31}$, which are still valid, we observe that extension of the application to the distance function of Morishima's elasticities as operated by Kim (2000, p. 257) may be performed for all the others. The reason for this extension, which does not prevent us from using traditional versions when suitable, is that $\sigma^{\text {MES }}$ and $\rho^{\text {MEC }}$, together with non-homogeneous (or at most homothetic) production functions and distance functions are, in our opinion, the main analytical tools capable of continuing development of the parametric theory of production.

[^13]
Appendix

The derivatives of the MEDGCD cost function in the $\sigma_{i j}^{\text {MES }}$ and $\sigma_{j i}^{M E S}$ formulas are:
$d_{i}=\left(\frac{\alpha_{i j} \ln y}{w_{i}}+2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{i}}\right)$
$d_{i j}=\left[\begin{array}{l}-\frac{2 \alpha_{i} \alpha_{j} \beta_{i j}}{\left(\alpha_{i} w_{i}+\alpha_{j} w_{j}\right)^{2}}+\left(\frac{\alpha_{i j} \ln y}{w_{i}}+2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right) \\ \left(\frac{\alpha_{j y} \ln y}{w_{j}}+2 \alpha_{j} \sum_{i=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right)\end{array}\right]$
$d_{i i}=\left[\left(-\frac{\alpha_{i j} \ln y}{w_{i}^{2}}-2 \alpha_{i}^{2} \sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right)+\left(\frac{\alpha_{i y} \ln y}{w_{i}}+2 \alpha_{i} \sum_{j=1}^{n} \frac{\beta_{i j}}{\alpha_{i} w_{i}+\alpha_{j} w_{j}}\right)^{2}\right]$
$d_{i j}$ - mutatis mutandis - is defined in the same way as $d_{i i}$

References

Allen R.G.D., "Analisi matematica per economisti" (Italian trans. of "Mathematical Analysis for Economists", London, MacMillan, 1938, by A. Uggé), Milano-Varese, Istituto Editoriale Cisalpino, 1955.

ANTLE J.M., "The structure of U.S. Agricultural Technology", American Journal of Agricultural Economics, 1984, nov., pp. 414-423.
Antonelli G.B., "Sulla teoria matematica dell'Economia Politica", Pisa, 1886, reprinted in II Giornale degli Economisti, 1951.
Arrow K.J., Chenery B.H., Minhas B.S., Solow R.M., "CapitalLabor Substitution and Economic Efficiency", Review of Economics and Statistics, 1961, Vol. 43, no. 3, pp. 225-250.
Bertoletti P., "Elasticity of Substitution, One More Time: Gross Versus Net, Direct Versus Inverse Measures", Working Paper n. 56, November 2001, Università degli Studi di Torino, Facoltà di Economia, Dipartimento di Scienze Economiche e Finanziarie "G. Prato".
Blackorby C., Russel R.R., "Will the Real Elasticity of Substitution Please Stand Up? (A comparison of the Allen/Urzawa and Morishima Elasticities)", American Economic Review, 1989, Vol. 79, no. 4, pp. 882-888.
Cantarelli D., Marangoni G., Cupello L., "Contributo alla teoria della funzione di produzione", Padova, CEDAM, 1990.
Cantarelli D., Di Fonzo T., Giacomello B., "A New Model of an Inhomogeneous Multifactor Production Function", Rivista Internazionale di Scienze Economiche e Commerciali, 1994, Vol. XLI, no. 6-7, Giugno-Luglio, pp. 491-517.
Cantarelli D., Giacomello B., "Allen's and Morishima's Elasticities of Substitution in a VES Inhomogeneous Production Function: A Comparison", Giornale degli Economisti e Annali di Economia, 1995, Gennaio-Marzo, pp. 1-24.
Cantarelli D., "A "Quasi-Dual" Approximation of a NonHomothetic Cost Function: Results of a Preliminary Experiment", Rivista Internazionale di Scienze Economiche e Commerciali, 1999, Vol. XLVI, no. 3, September, pp. 467-497.

Cantarelli D., "The "Quasi-Dual" Approximation of a NonHomothetic Cost Function, II: Results of a Further Experiment", Rivista Internazionale di Scienze Economiche e Commerciali, 2003, Vol. L, no. 1, March, pp. 15-38.
Chambers R., "Applied Production Analysis: A Dual Approach", 1988, Cambridge, Cambridge University Press.
Cornes R., "Duality and Modern Economics", 1992, Cambridge, Cambridge University Press.
Deaton A., "The Distance Function in Consumer Behavior with Applications to Index Numbers and Optimal Taxation", Review of Economic Studies, 1979, Vol. 46, pp. 391-405.
Diewert E., "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function", Journal of Political Economy, 1971, Vol. 79, no. 3, pp. 481-507.
DIEWERT E., "Functional Forms for Profit and Transformation Functions", Journal of Economic Theory, 1973, Vol. 6, pp. 284-316.
DIEWERT E., "Separability and a Generalization of the CobbDouglas Cost, Production and Indirect Utility Functions", Department of Economics, University of British Columbia, 1973.
Färe R., Primont D., "Multi-Output Production and Duality: Theory and Applications", Kluwer Academic Publisher, Boston, 1995.
Grosskopf S., Hayes K., Hirschberg I., "Fiscal Stress and the Production of Public Safety: A Distance Function Approach", Journal of Public Economics, 1995, Vol. 57, pp. 227-296.
GUILKEY D.K., LOVELL K.C.A., Sickles R.C., "A Comparison of the Performance of Three Flexible Functional Forms", International Economic Review, 1983, Vol. 24, no. 3, October, pp. 591-616.
HICKS J.R., "Elasticities of Substitution Again: Substitutes and Complements", Oxford Economic Papers, 1970, Vol. 22, pp. 289-296.
KIM H.Y., "The Antonelli versus Hicks Elasticities of Complementarity and Inverse Input Demand Systems", Australian Economic Paper, 2000, Vol. 39, pp. 245-261.
Lau L.J., Yotopoulos P.A., "Profit, Supply, and Factor Demand Functions", American Journal of Agricultural Economics, 1972, Febr., pp. 11-18.
LaU L.J., "Applications of Profit Functions", Ch. I of Fuss M. and McFADDEN D. (Eds.), Production Economics: A Dual Approach
to Theory and Applications, North Holland Publishing Company, Amsterdam, 1978, pp. 134-216.
LOPEZ R.E., "Estimating Substitution and Expansion Effects Using a Profit Function Framework", American Journal of Agricultural Economics, 1984, Aug., pp. 358-367.
McFadden D., Fuss M., Mundlak Y., "A Survey of Functional Forms in the Economic Analysis of Production", Ch. II of Fuss M. and McFadden D. (Eds.), Production Economics: A Dual Approach to Theory and Applications, North-Holland Publishing Company, Amsterdam, 1978, pp. 216-268.
Magnus I., "Substitution Between Energy and Non-Energy Inputs in The Netherlands 1950-1976", International Economic Review, 1979, Vol. 20, no. 2, June, pp. 465-484.
Morishima M., "Danryokusei riron ni kansuru ni-san no teian (A few suggestions on the theory of elasticity), Keizai Hyoron, 1967, Vol. 16, pp. 144-150 (Section IV, translated from Japanese into Italian).
Mundlak Y., "Elasticities of Substitution and the Theory of Derived Demand", Review of Economic Studies, 1968, Vol. 35, pp. 225-236.
NaKamura S., "A Nonhomothetic Generalized Leontief Cost Function Based on Pooled Data", Review of Economics and Statistics, 1990, Vol. LXXII, no. 4, pag. 649-655.
Parks R.W., "Price Responsiveness of Factor Utilization in Swedish Manufacturing", Review of Economics and Statistics, 1971, Vol. LIII, no. 2, May, pp. 129-139.
Sato R., Koizumi T., "On the Elasticities of Substitution and Complementarity", Oxford Economics Papers, 1973, Vol. 25, pp. 44-56.
SEIDMAN L.S., "Complements and Substitutes: The Importance of Minding p's and q's", Southern Economic Journal, 1989, Vol. 56, pp. 183-190.
Shumway C.R., "Supply, Demand, and Technology in a Multiproduct Industry: Texas Field Crops", American Journal of Agricultural Economics, 1983, Nov., pp. 748-760.
Sidhu S.S., BaAnante C.A., "Estimating Farm-Level Input Demand and Wheat Supply in the Indian Punjab Using a Translog Profit Function", American Journal of Agricultural Economics, 1981, May, pp. 237-246.

Syrquin M., Hollender G., "Elasticities of Substitution and Complementarity: The General Case", Oxford Economic Papers, 1982, Vol. 34, pp. 515-519.
Uzaw H., "Production Functions with Constant Elasticities of Substitution", 1962, Review of Economic Studies, Vol. 29, pp. 291299.

Uzawa H., "Duality Principles in the Theory of Cost and Production", International Economic Review, 1964, Vol. 5, no. 2, May, pp. 216-220.

Working Papers del Dipartimento

```
1988, 3.1 Guido CELLA
    Linkages e moltiplicatori input-output.
1989, 3.2 Marco MUSELLA
    La moneta nei modelli di inflazione da conflitto.
1989, 3.3 Floro E. CAROLEO
    Le cause economiche nei differenziali regionali del tasso di disoccupazione.
1989, 3.4 Luigi ACCARINO
    Attualità delle illusioni finanziarie nella moderna società.
1989, 3.5 Sergio CESARATTO
    La misurazione delle risorse e dei risultati delle attività innovative: una valu-
    tazione dei risultati dell'indagine CNR- ISTAT sull'innovazione tecnologica.
1990, 3.6 Luigi ESPOSITO - Pasquale PERSICO
    Sviluppo tecnologico ed occupazionale: il caso Italia negli anni '80.
1990, 3.7 Guido CELLA
    Matrici di contabilità sociale ed analisi ambientale.
1990, 3.8 Guido CELLA
    Linkages e input-output: una nota su alcune recenti critiche.
1990, 3.9 Concetto Paolo VINCI
    I modelli econometrici sul mercato del lavoro in Italia.
1990, 3.10 Concetto Paolo VINCI
    Il dibattito sul tasso di partecipazione in Italia: una rivisitazione a }20\mathrm{ anni di
    distanza.
1990,3.11 Giuseppina AUTIERO
    Limiti della coerenza interna ai modelli con la R.E.H..
1990, 3.12 Gaetano Fausto ESPOSITO
    Evoluzione nei distretti industriali e domanda di istituzione.
1990, 3.13 Guido CELLA
    Measuring spatial linkages: input-output and shadow prices.
1990, 3.14 Emanuele SALSANO
    Seminari di economia.
```

1990, 3.15	Emanuele SALSANO Investimenti, valore aggiunto e occupazione in Italia in contesto biregionale: una prima analisi dei dati 1970/1982.
	Alessandro PETRETTO- Giuseppe PISAURO Uniformità vs selettività nella teoria della ottima tassazione e dei sistemi tributari ottimali.
1990, 3.16	

1992, 3.30	Antonio LOPES Crisi debitoria e politiche macroeconomiche nei paesi in via di sviluppo negli anni 80.
1992, 3.31	Antonio VASSILLO Circuiti economici semplici, complessi, ed integrati.
	Gaetano Fausto ESPOSITO
	Imprese ed istituzioni nel Mezzogiorno: spunti analitici e modalità di relazio- ne.
1992, 3.32	

1995, 3.44	A. PELOSI, R. LOMBARDI Fondi pensione: equilibrio economico-finanziario delle imprese.
1995, 3.45	Emanuele SALSANO, Domenico IANNONE Economia e struttura produttiva nel salernitano dal secondo dopoguerra ad oggi.
1995, 3.46	Michele LA ROCCA Empirical likelihood and linear combinations of functions of order statistics.
1995, 3.47	Michele LA ROCCA L'uso del bootstrap nella verosimiglianza empirica.
1996, 3.48	Domenico RANESI Le politiche CEE per lo sviluppo dei sistemi locali: esame delle diverse tipologie di intervento e tentativo di specificazione tassonomica.
1996, 3.49	Michele LA ROCCA L'uso della verosimiglianza empirica per il confronto di due parametri di posizione.
1996, 3.50	Massimo SPAGNOLO La domanda dei prodotti della pesca in Italia.
1996, 3.51	Cesare IMBRIANI, Filippo REGANATI Macroeconomic stability and economic integration. The case of Italy.
1996, 3.52	Annarita GERMANI Gli effetti della mobilizzazione della riserva obbligatoria. Analisi sull'efficienza del suo utilizzo.
1996, 3.53	Massimo SPAGNOLO A model of fish price formation in the north sea and the Mediterranean.
1996, 3.54	Fernanda MAZZOTTA RTFL: problemi e soluzioni per i dati Panel.
1996, 3.55	Angela SPAGNUOLO Concentrazione industriale e dimensione del mercato: il ruolo della spesa per pubblicità e R\&D.
1996, 3.56	Giuseppina AUTIERO The economic case for social norms.
1996, 3.57	Francesco GIORDANO Sulla convergenza degli stimatori Kernel.
1996, 3.58	Tullio JAPPELLI, Marco PAGANO The determinants of saving: lessons from Italy.

1997, 3.59	Tullio JAPPELLI The age-wealth profile and the life-cycle hypothesis: a cohort analysis with a time series of cross sections of Italian households.
1997, 3.60	Marco Antonio MONACO La gestione dei servizi di pubblico interesse.
1997, 3.61	Marcella ANZOLIN L'albero della qualità dei servizi pubblici locali in Italia: metodologie e risultati conseguiti.
1997, 3.62	Cesare IMBRIANI, Antonio LOPES Intermediazione finanziaria e sistema produttivo in un'area dualistica. Uno studio di caso.
1997, 3.63	Tullio JAPPELLI Risparmio e liberalizzazione finanziaria nell'Unione europea.
1997, 3.64	Alessandra AMENDOLA Analisi dei dati di sopravvivenza.
1997, 3.65	Francesco GIORDANO, Cira PERNA Gli stimatori Kernel per la stima non parametrica della funzione di regressione.
1997, 3.66	Biagio DI SALVIA Le relazioni marittimo-commerciali nell'imperiale regio litorale austriaco nella prima metà dell'800. I. Una riclassificazione delle Tafeln zur Statistik der Öesterreichischen Monarchie.
1997, 3.67	Alessandra AMENDOLA Modelli non lineari di seconda e terza generazione: aspetti teorici ed evidenze empiriche.
1998, 3.68	Vania SENA L'analisi econometrica dell'efficienza tecnica. Un'applicazione agli ospedali italiani di zona.
1998, 3.69	Domenico CERBONE Investimenti irreversibili.
1998, 3.70	Antonio GAROFALO La riduzione dell'orario di lavoro è una soluzione al problema disoccupazione: un tentativo di analisi empirica.
1998, 3.71	Jacqueline MORGAN, Roberto RAUCCI New convergence results for Nash equilibria.

1998, 3.72	Rosa FERRENTINO Niels Henrik Abel e le equazioni algebriche.
1998, 3.73	Marco MICOCCI, Rosa FERRENTINO Un approccio markoviano al problema della valutazione delle opzioni.
1998, 3.74	Rosa FERRENTINO, Ciro CALABRESE Rango di una matrice di dimensione K.
1999, 3.75	Patrizia RIGANTI L'uso della valutazione contingente per la gestione del patrimonio culturale: limiti e potenzialità.
1999, 3.76	Annamaria NESE Il problema dell'inefficienza nel settore dei musei: tecniche di valutazione.
1999, 3.77	Gianluigi COPPOLA Disoccupazione e mercato del lavoro: un'analisi su dati provinciali.
1999, 3.78	Alessandra AMENDOLA Un modello soglia con eteroschedasticità condizionata per tassi di cambio.
1999, 3.79	Rosa FERRENTINO Su un'applicazione della trasformata di Laplace al calcolo della funzione asintotica di non rovina.
1999, 3.80	Rosa FERRENTINO Un'applicazione della trasformata di Laplace nel caso di una distribuzione di Erlang.
1999, 3.81	Angela SPAGNUOLO Efficienza e struttura degli incentivi nell'azienda pubblica: il caso dell'industria sanitaria.
1999, 3.82	Antonio GAROFALO, Cesare IMBRIANI, Concetto Paolo VINCI Youth unemployment: an insider-outsider dynamic approach.
1999, 3.83	Rosa FERRENTINO Un modello per la determinazione del tasso di riequilibrio in un progetto di fusione tra banche.
1999, 3.84	DE STEFANIS, PORZIO Assessing models in frontier analysis through dynamic graphics.
1999, 3.85	Annunziato GESUALDI Inflazione e analisi delle politiche fiscali nell'U.E..
1999, 3.86	R. RAUCCI, L. TADDEO Dalle equazioni differenziali alle funzioni $e^{x}, \log x, a^{x}, \log _{a} x, x^{\alpha}$.

1999, 3.87	Rosa FERRENTINO Sulla determinazione di numeri aleatori generati da equazioni algebriche.
1999, 3.88	C. PALMISANI, R. RAUCCI Sulle funzioni circolari: una presentazione non classica.
2000, 3.89	Giuseppe STORTI, Pierluigi FURCOLO, Paolo VILLANI A dynamic generalized linear model for precipitation forecasting.
2000, 3.90	Rosa FERRENTINO Un procedimento risolutivo per l'equazione di Dickson.
2000, 3.91	Rosa FERRENTINO Un'applicazione della mistura di esponenziali alla teoria del rischio.
2000, 3.92	Francesco GIORDANO, Michele LA ROCCA, Cira PERNA Bootstrap variance estimates for neural networks regression models.
2000, 3.93	Alessandra AMENDOLA, Giuseppe STORTI A non-linear time series approach to modelling asymmetry in stock market indexes.
2000, 3.94	Rosa FERRENTINO Sopra un'osservazione di De Vylder.
2000, 3.95	Massimo SALZANO Reti neurali ed efficacia dell'intervento pubblico: previsioni dell'inquinamento da traffico nell'area di Villa S. Giovanni.
2000, 3.96	Angela SPAGNUOLO Concorrenza e deregolamentazione nel mercato del trasporto aereo in Italia.
2000, 3.97	Roberto RAUCCI, Luigi TADDEO Teoremi ingannevoli.
2000, 3.98	Francesco GIORDANO Una procedura per l'inizializzazione dei pesi delle reti neurali per l'analisi del trend.
2001, 3.99	Angela D'ELIA Some methodological issues on multivariate modelling of rank data.
2001, 3.100	Roberto RAUCCI, Luigi TADDEO Nuove classi di funzioni scalari quasiconcave generalizzate: caratterizzazioni ed applicazioni a problemi di ottimizzazione.
2001, 3.101	Adriana BARONE, Annamaria NESE Some insights into night work in Italy.
2001, 3.102	Alessandra AMENDOLA, Marcella NIGLIO

Predictive distributions of nonlinear time series models.

2001, 3.103	Roberto RAUCCI Sul concetto di certo equivalente nella teoria HSSB.
2001, 3.104	Roberto RAUCCI, Luigi TADDEO On stackelberg games: a result of unicity.
2001, 3.105	Roberto RAUCCI Una definizione generale e flessibile di insieme limitato superiormente in \mathfrak{R}^{n}
2001, 3.106	Roberto RAUCCI Stretta quasiconcavità nelle forme funzionali flessibili.
2001, 3.107	Roberto RAUCCI Sugli insiemi limitati in \Re^{m} rispetto ai coni.
2001, 3.108	Roberto RAUCCI Monotonie, isotonie e indecomponibilità deboli per funzioni a valori vettoriali con applicazioni.
2001, 3.109	Roberto RAUCCI Generalizzazioni del concetto di debole Kuhn-Tucker punto-sella.
2001, 3.110	Antonia Rosa GURRIERI, Marilene LORIZIO Le determinanti dell'efficienza nel settore sanitario. Uno studio applicato.
2001, 3.111	Gianluigi COPPOLA Studio di una provincia meridionale attraverso un'analisi dei sistemi locali del lavoro. Il caso di Salerno.
2001, 3.112	Francesco GIORDANO Reti neurali per l'analisi del trend: un approccio per identificare la topologia della rete.
2001, 3.113	Marcella NIGLIO Nonlinear time series models with switching structure: a comparison of their forecast performances.
2001, 3.114	Damiano FIORILLO Capitale sociale e crescita economica. Review dei concetti e dell'evidenza empirica.
2001, 3.115	Roberto RAUCCI, Luigi TADDEO Generalizzazione del concetto di continuità e di derivabilità.
2001, 3.116	Marcella NIGLIO Ricostruzione dei dati mancanti in serie storiche climatiche.

2001, 3.117	Vincenzo VECCHIONE Mutamenti del sistema creditizio in un'area periferica.
2002, 3.118	Francesco GIORDANO, Michele LA ROCCA, Cira PERNA Bootstrap variable selection in neural network regression models.
2002, 3.119	Roberto RAUCCI, Luigi TADDEO Insiemi debolmente convessi e concavità in senso generale.
2002, 3.120	Vincenzo VECCHIONE Know how locali e percorsi di sviluppo in aree e settori marginali.
2002, 3.121	Michele LA ROCCA, Cira PERNA Neural networks with dependent data.
2002, 3.122	Pietro SENESI Economic dynamics: theory and policy. A stability analysis approach.
2002, 3.123	Gianluigi COPPOLA Stima di un indicatore di pressione ambientale: un'applicazione ai comuni della Campania.
2002, 3.124	Roberto RAUCCI Sull'esistenza di autovalori e autovettori positivi anche nel caso non lineare.
2002, 3.125	Maria Carmela MICCOLI Identikit di giovani lucani.
2002, 3.126	Sergio DESTEFANIS, Giuseppe STORTI Convexity, productivity change and the economic performance of countries.
2002, 3.127	Giovanni C. PORZIO, Maria Prosperina VITALE Esplorare la non linearità nei modelli Path.
2002, 3.128	Rosa FERRENTINO Sulla funzione di Seal.
2003, 3.129	Michele LA ROCCA, Cira PERNA Identificazione del livello intermedio nelle reti neurali di tipo feedforward.
2003, 3.130	Alessandra AMENDOLA, Marcella NIGLIO, Cosimo VITALE The exact multi-step ahead predictor of SETARMA models.
2003, 3.131	Mariangela BONASIA La dimensione ottimale di un sistema pensionistico: means tested vs programma universale.
2003, 3.132	Annamaria NESE Abitazione e famiglie a basso reddito.

2003, 3.133	Maria Lucia PARRELLA
	Le proprietà asintotiche del Local Polynomial Bootstrap.
2003, 3.134	Silvio GIOVE, Maurizio NORDIO, Stefano SILVONI
	Stima della prevalenza dell'insufficienza renale cronica con reti bayesiane: analisi costo efficacia delle strategie di prevenzione secondaria.
2003, 3.135	Massimo SALZANO
	Globalization, complexity and the holism of the italian school of public finance.
2003, 3.136	Giuseppina AUTIERO
	Labour market institutional sistems and unemplyment performance in some
	Oecd countries.
2003, 3.137	Marisa FAGGINI
	Recurrence analysis for detecting non-stationarity and chaos in economic times series.
2003, 3.138	Marisa FAGGINI, Massimo SALZANO
	The reverse engineering of economic systems. Tools and methodology.
2003, 3.139	Rosa FERRENTINO
	In corso di pubblicazione.
2003, 3.140	Rosa FERRENTINO, Roberto RAUCCI
	Sui problemi di ottimizzazione in giochi di Stackelberg ed applicazioni in modelli economici.
2003, 3.141	Carmine SICA
	In corso di pubblicazione.
2004, 3.142	Sergio DESTEFANIS, Antonella TADDEO, Maurizio TORNATORE
	The stock of human capital in the Italian regions.
2004, 3.143	Elena Laureana DEL MERCATO
	Edgeworth equilibria with private provision of public good.
2004, 3.144	Elena Laureana DEL MERCATO
	Externalities on consumption sets in general equilibrium.
2004, 3.145	Rosa FERRENTINO, Roberto RAUCCI
	Su alcuni criteri delle serie a termini non negativi.
2004, 3.146	Rosa FERRENTINO, Roberto RAUCCI
	Legame tra le soluzioni di Minty e di Stempacenhia nelle disequazioni variazionali.

2004, 3.147	Gianluigi COPPOLA In corso di pubblicazione.
2004, 3.148	Massimo Spagnolo The Importance of Economic Incentives in Fisheries Management
2004, 3.149	F. Salsano La politica monetaria in presenza di non perfetta osservabilità degli obiettivi del banchiere centrale.
2004, 3.150	A. Vita La dinamica del cambiamento nella rappresentazione del territorio. Una mappa per i luoghi della Valle dell'Irno.
2004, 3.151	Celi Empirical Explanation of vertical and horizontal intra-industry trade in the UK: a comment.
2004, 3.152	Amendola - P. Vitale Self-Assessment and Career Choices: An On-line resource for the University of Salerno.
2004, 3.153	A. Amendola - R. Troisi Introduzione all'economia politica dell'organizzazione: nozioni ed applicazioni.
2004, 3.154	A. Amendola - R. Troisi Strumenti d'incentivo e modelli di gestione del personale volontario nelle organizzazioni non profit.
2004, 3.155	Lavinia Parisi La gestione del personale nelle imprese manifatturiere della provincia di Salerno.
2004, 3.156	Angela Spagnuolo - Silvia Keller La rete di accesso all'ultimo miglio: una valutazione sulle tecnologie alternative.

[^0]: ${ }^{1}$ See Mundlak (1968) and Chambers (1988).

[^1]: ${ }^{2}$ See Blackorby and Russel (1989).
 ${ }^{3}$ It has been rightly noted (Kim, 2000) that the elasticity of complementarity is useful when there are constraints to the quantities of inputs, so that their prices are distorted or even non-existent. It measures the substitutability of inputs in terms of their quantities.
 ${ }^{4}$ From 1970 to 1991, only about a dozen theoretical and applicative contributions to Hicks' elasticity of complementarity appeared in leading journals, i.e., a number not comparable with contributions regarding the elasticity of substitution. See Kim (2000) for references.

[^2]: ${ }^{5}$ On the characteristics and properties of the CMC-CES function, see Cantarelli, Di Fonzo and Giacomello (1994).
 ${ }^{6}$ Its use remains extended to the macro level even if it non is limited to the micro level.
 ${ }^{7}$ The modified function of Magnus (1979) is immune from this defect. In a letter to the present author, Prof. Diewert stated that it was precisely this defect, pointed out to him by Prof. E. Berndt, which led him not to submit his 1973 working paper containing the GLD function to any journal.
 ${ }^{8}$ Since the distance function, of the four is definitely the least known, it is appropriate to recall its definition. Starting from the simplest case of a one input-one output production func-
 tion, output y_{O} is produced with an increase of input x_{O}^{+}, while - given function production
 $y=f(x)$ - quantity $x_{O}<x_{o}^{+}$would be sufficient, and with $x_{o}^{+} y_{O}^{+}>y_{O}$ could be pro-

[^3]: ${ }^{10}$ In Chapter II. 1 of Production Economics, "A Survey of Functional Forms in the Economic Analysis of Production" by McFadden, Fuss and Mundlak, the functional forms shown on pages 238 and 239, according to the authors, may be production, cost or profit functions, according to whether the variables are quantities of inputs, costs or prices. No mention is made of distance functions.

[^4]: ${ }^{11}$ In the same pages of "Production Economics" (see previous note), the CES function is written with positive exponents and without the γ constant. Simulations reveal that the version with negative exponents supplies values for output y which are systematically lower and in (modest) constant proportion with respect to those obtained with positive exponents. The difference in sign of the exponents of the production function affects those of the profit function.

[^5]: ${ }^{12}$ On the approximated forms of the non-homothetic CMC cost function, see Cantarelli (1999) and (2003).
 ${ }^{13}$ On σ^{A} in the CMC (not CES) function, see Cantarelli and Giacomello (1995).
 ${ }^{14}$ See Lau (1978), pp. 190-192. Lau starts from the first-order condition necessary in order to have maximum profit, $\left(\partial y / \partial x_{i}\right)=w_{i} / p_{y}$ (which, for example, in the Cobb-Douglas

[^6]: ${ }^{16}$ In this regard, see Syrquin and Hollender (1982) and Kim (2000).
 ${ }^{17}$ As regards the efficient complementarity expressed by s, see Cantarelli, Di Fonzo and Giacomello (1994) and Cantarelli (1999). Out of curiosity and as proof, recourse to the equation $D(y, \boldsymbol{x})=f(\boldsymbol{x})^{-1}$ gives $\rho^{A E C}=\rho^{H E C}=1$ and $\rho_{i j}^{M E S}=\rho_{j i}^{M E S}=s$. The result, $\rho^{A E C}=\rho^{H E C}=1$, is not acceptable in the case of variable returns to scale, because $\rho^{H E C}$ is an index of gross complementarity, which incorporates an output effect next to the substitution effect - contrary to what happens to the other forms, which only express the second effect (cf. note 16). Alternative versions were also tried out, which, variously, mimic the Cobb-Douglas function, exploiting the circumstance of the identity of work undertaken by exponents α_{i} of CD and $\alpha_{i} x_{i}^{1-s}$ of CMC-CES, i.e., $\varepsilon(y, x)=\sum \alpha_{i}$ and $\varepsilon(y, x)=\sum \alpha_{i} x_{i}^{1-s}$ (cf. Table 1). Mile-long expressions were obtained for $\rho^{A E C}$: however, possibilities of achieving further simplifications - which the computer could not or would not carry out - could not be found. Instead, for $\rho^{M E C}$, on similarly mile-long expressions, the computer carried out the simplifications and, for all of them, supplied s as a result, the reciprocal of $\sigma^{\text {AUES }}$ and $\sigma^{M E S}$ obtained from the cost function, which is a dual of the distance function.

[^7]: ${ }^{18}$ Looking at the space devoted to the cost function over the production function in Diewert's pioneering paper of 1971, perhaps the author's main interest was in the former, and that in the latter residual and formally complementary.
 ${ }^{19}$ See Diewert (1971), p. 506.

[^8]: ${ }^{20}$ The formula of Diewert's profit function in the multi-output form (see Diewert [1973a], p. 300) is reduced here to one-output.

[^9]: ${ }^{21}$ There are, of course, more sophisticated extensions and variants than those presented here (see, for instance, Nakamura, 1990). However, those in the text are the most frequently used.
 ${ }^{22}$ Although it is quite well-known, the only circumstance which is perhaps worth noting here is that there are substantial differences in the formal equality of the formulas of $\rho^{H E C}$ and $\sigma^{\text {AUES }}$, which influence their values. In effect, there is nothing which imposes and/or guarantees that coefficients $\beta_{i j}$, obtained from the estimates of the cost function, are not significantly different from those of the production function. This is why the independent variables are different, and why the term $\beta_{i y} \ln y$ appears in the equations of the s_{i} of the cost function but not in those of the production function.
 ${ }^{23}$ See Lau 1978, pag. 194.
 ${ }^{24}$ See Grosskopf, Hayes and Hirschberg (1995). It should be recalled that these authors, on page 257 , write the function as $\ln (1)=\alpha_{0}+\alpha \ln y \ldots$.

[^10]: ${ }^{25}$ In order to obtain $\rho^{A E C}$, Kim (2000, p. 252) does not use a distance function but a Translog production function, stating that the distance function is "less well known", and proposes a procedure which, starting from $\rho^{H E C}$ in the case of a production technology of a given degree, achieves definition of the $\rho^{A E C}$. We must confess that this procedure seems neither clear nor pertinent.

[^11]: ${ }^{26}$ See Lau (1978), p. 194. However, his statement regarding self-duality is not accompanied by any explanation or reference to another publication.

[^12]: ${ }^{27}$ The preference is not hampered by the danger of falling into the "concavity trap", a danger shared by other FFF like DGL, which is also largely applied. Some researches regard the checking of the concavity conditions for all data of the available sample as a positive feature of the Translog and DGL functions.
 ${ }^{28}$ From this viewpoint too, Translog is in a better position with respect to the others, because its production function may also sometimes perform better than the cost function in terms of fitting empirical data, and with different but yet significant estimates of the parameters.
 ${ }^{29}$ See Grosskopf et al. (1995), and references therein.

[^13]: ${ }^{30}$ See Lau e Yotopoulos (1972), Sidhu e Baanante (1981), Shumway (1983), Antle (1984) e Lopez (1984).
 ${ }^{31}$ Cf. note (2).

