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Abstract - The 67 kDa laminin receptor (67LR) 

is a non-integrin cell surface receptor for laminin 

(LM) that derives from a 37 kDa precursor (37LRP). 

67LR expression is increased in neoplastic cells and 

correlates with an enhanced invasive and metastatic 

potentialin many human solid tumors, 

recommending this receptor as a new promising 

target for cancer therapy. This is supported by in 

vivo studies showing that 67LR downregulation 

reduces tumour cell proliferation and tumour 

formation by inducing apoptosis. 67LR association 

with the anti-apoptotic protein PED/PEA-15 

activates a signal transduction pathway, leading to 

cell proliferation and resistance to apoptosis. 

However, the main function of 67LR is to 

enhance tumor cell adhesion to the LM of basement 

membranes and cell migration, two crucial events in 

the metastasis cascade.Thus, inhibition of 67LR 

binding to LM has been proved to be a feasible 

approach to block metastatic cancer cell spread.  

Despite accumulating evidences on 67LR 

overexpression in hematologic malignancies, 67LR 

role in these diseases has not been clearly defined. 

Here, we review 67LR expression and function in 

normal and malignant hematopoietic cells, 67LR role 

and prognostic impact in hematological malignancies 

and first attempts in targeting its activity. 
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I.INTRODUCTION 

 
 The 67kDa laminin receptor (67LR) is a non 

integrin cell surface receptor for extracellular matrix 

(ECM) able to bind with high affinity laminin-1 (LM), the 

major glycoprotein of basement membranes [1]. The 

primary function of 67LR is to promote tumor cell 

adhesion and migration to LM, crucial steps in tissue 

invasion and metastasis, by binding LM with high affinity 

(Kd=2x10-9 M). cDNA clones coding for human and 

mouse 67LR encode a protein with a molecular weight of 

32kDa and an apparent electrophoretic mobility of about 

37kDa. This polypeptide was identified as the precursor of 

67LR, and named 37kDa laminin receptor precursor 

(37LRP) [2].  

The mechanism by which 37LRP is converted 

into the mature 67LR is still unclear [3,4]. 37LRP is 

abundantly localized in the cytoplasm, where it acts as a 

multifunctional protein involved in the translational 

machinery and in ribosome assembly, and in the nucleus, 

tightly associated with nuclear structures [5].67LR, the 

mature form of the receptor, is localized in the cell 

membrane, from which it is internalized via early-

endosomes and lysosomal-mediated degradation [6]. On 

the cell surface, 67LR is able to interact with α6β4 

integrin; both receptors are co-expressed and physically 

associated in a complex that recognize different sites on 

LM, increasing the affinity of the binding [7].  Upon 

binding 67LR, LM interacts more efficiently with 

integrins and becomes more sensitive to proteolytic 

enzymes, releasing fragments endowed with chemotactic 

activity [8]. Three regions of 37LRP/67LR are involved in 

LM binding: (i) repeated sequences (TWEDS) at the C-

terminal, (ii) a direct laminin binding region (aminoacids 

205-229) [9] and (iii) a heparan sulfate dependent LM 

binding region (amino acids 161-180), also called peptide 

G, and containing the palindromic sequence LMWWML, 

responsible for LM binding [10]. 

All the three LM-binding sites of the receptor 

bind the same minimal YIGSR region of the β1 chain of 

LM [11]. As a membrane receptor, 37LRP/67LR is also a 

receptor for viruses, bacteria and prions [5,12].67LR is 

overexpressed in neoplastic cells and correlates with an 

enhanced invasive and metastatic potential in many solid 

tumors [13-17]. 67LR role in metastatic diffusion is well 

documented and mostly rely in its  ability to mediate 

adhesion to the LM of basement membranes of epithelia 

and endothelia and to mediate trans-endothelial migration 

of metastatic cancer cells [18]. 67LR role in hematological 

malignancies has not been clearly defined, even though 

many reports have been produced on its expression, 

function and inhibition on normal and malignant 

hematopoietic cells. 
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II.  37LRP/67LR FUNCTION AND TARGETING IN 

SOLID TUMORS 

 

 Given its importance in solid tumor progression, 

67LR represents a suitable target for cancer therapy and 

different approaches have been used to inhibit its function, 

in order to contribute to metastasis prevention and/or 

treatment (reviewed in 19).Different strategies used 

against this receptor were able to reduce the invasive 

potential of HT1080 fibrosarcoma cells [20]. 

37LRP/67LR is able to affect tumor progression also by 

promoting angiogenesis; indeed,  a receptor specific 

antibody inhibited endothelial tube formation 

[21].37LRP/67LR is involved in the maintenance of 

cellular viability and reduction of its expression induced 

apoptosis of cancer cells [22]. The role of 37LRP/67LR in 

apoptosis was also confirmed by the finding by our group 

of a structural and functional association between 67LR 

and the anti-apoptotic protein PED/PEA-15 [23]. 

A recent study reveals a novel function of 

37LRP/67LR: siRNA treatment of 37LRP/67LR resulted 

in a significant decrease of telomerase activity 

[24].Recently, our group searched, by a virtual screening 

(VS) approach, small molecules able to specifically target 

67LR. VS is a computational method that allows the 

identification of new therapeutics for a specific biological 

target from large chemical libraries [25]. This study led to 

the identification of a specific inhibitor of 37LRP/67LR, 

NSC47924. This compound specifically inhibited cell 

adhesion and migration to LM, as well as cell invasion. A 

subsequent hierarchical similarity search with NSC47924 

allowed the refinement of this lead compound, identifying 

additional four compounds able to inhibit cell binding to 

LM and to block in vitro cancer cell invasion, exhibiting a 

lower Ic50 as compared to NSC47924 [26].  

These small molecules are cell-permeable and 

orally available, the most important advantage in respect 

to monoclonal antibodies. Moreover, they showed a short 

half-life, high specificity and low toxicity, thus may be of 

considerable clinical benefit in tailoring personalized 

target therapies in cancer. 

 

 

III.  37LRP/67LR EXPRESSION AND FUNCTION IN 

NORMAL HEMATOPOIETIC STEM CELLS 

 

HSCs normally resides within the bone marrow 

(BM) and can be mobilized into the circulation by 

chemotherapy or cytokine treatment [27]. The most 

common mobilizer is the granulocyte-colony stimulating 

factor (G-CSF). GCSF-mobilized HSCs are increasingly 

used in stem cell transplantation (SCT) for the relative 

ease of collection, the higher yield and the shorter time to 

engraftment than BM stem cells [28].  

We have demonstrated that 67LR expression is 

increased in G-CSF-mobilized HSCs, as compared with 

BM HSCs, and significantly correlated with mobilization 

efficiency [29]. During G-CSF–induced HSC 

mobilization, the expression of laminin receptors switched 

from α6 integrins, which mediated LM-dependent 

adhesion of steady-state human BM HSCs, to 67LR, 

responsible for G-CSF–mobilized HSC migration toward 

LM. This switch in the expression of LM receptors also 

induced a change in the signal transduction pathway 

activated in response to LM binding. In vitro G-CSF 

treatment, alone or combined with exposure to marrow-

derived endothelial cells, induced 67LR up-regulation in 

marrow HSCs; moreover, anti-67LR antibodies 

significantly inhibited transendothelial migration of G-

CSF–stimulated marrow HSCs. Finally, G-CSF–induced 

mobilization in mice was associated with 67LR up-

regulation both in circulating and marrow HSCs, and anti-

67LR antibodies significantly reduced HSC mobilization.  

Engraftment of HSCs to BM after transplantation 

is a key factor in SCT. G-CSF-induced 67LR 

overexpression on G-CSF mobilized HSCs, could play a 

crucial role also in HSC homing back to BM by mediating 

interactions with the basement membranes of vascular 

endothelia and subsequent cell migration. Indeed, 67LR 

also promoted homing to BM of transplanted HSCs, 

playing a key role in erythroid progenitor and precursor 

cells lodgment within the BM [30]. Thus, 67LR 

overexpression occurs in BM and circulating normal 

HSCs after cytokine stimulation and regulates HSC 

trafficking from and to BM. These findings further 

support a model in which HSC mobilization could 

represent a physiologic counterpart of leukemic and 

metastatic cell spread. 

 

 

IV. 37LRP/67LR EXPRESSION AND TARGETING IN 

CHRONIC LYMPHATIC LEUKEMIA 

 

B-cell chronic lymphocytic leukemia (CLL) is a 

heterogeneous group of diseases with various B-cell 

membrane markers expression and clinical course [31]. 

Despite the identification of genetic and phenotypic 

markers that correlate with prognosis, the biological basis 

of this clinical variability remains unclear [32].  

In CLL, 37LRP/67LR is widely expressed and 

37LRP is considered as an oncofetal antigen (OFA), thus 

often referred to as OFA/iLRP (oncofetal 

antigen/immature laminin receptor) [33]. Oncofetal 

antigens are conserved tumor-associated antigens or 

transplantation antigens expressed on the surface of 

human tumors and on fetal cells but not on normal adult 

tissues. OFAs are able to induce an immune response 

against tumors as well as a tolerogenic response, linked to 

cancer progression [34].Dendritic cells (DCs) primed with 

OFA/iLRP or transfected with RNAs specific to 

OFA/iLRP induced a T-cell immune response against 

hematological malignancies, in particular acute myeloid 

leukemia (AML) and chronic lymphatic leukemia (CLL) 

cells. In a murine B-cell lymphoma model, treatment with 

syngeneic DCs transfected with OFA/iLRP-coding RNA 

resulted in powerful antitumor effect [35]. There is also 
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evidence of a humoral response against OFA/iLRP: pre-

existing antibodies (Abs) to OFA/iLRP have been 

 
Figure 1. 67LR involvement in hematopoietic stem cell 

(HSC) mobilization. 
Panel A. Steady-state interactions between HSCs and LM of the BM 

microenvironment are mediated by α6 containing integrin receptors 

transducing proliferative signals. Panel B. G-SCF modification of HSC 
ECM receptor profile leads to α6 integrin downregulation and 67LR 

overexpression. Panel C. Overexpressed 67LR, through LM binding, 

transduces motility signals, stimulates the secretion of proteolytic 
enzymes, modifies LM structure with the release of motility  fragments. 

Panel D. 67LR engagement by LM enhances HSC release from the BM; 

mobilized HSCs show increased 67LR expression important for their 
subsequent homing to BM. 

detected in sera of CLL patients. Patient Abs to 

OFA/iLRP were cytotoxic in vitro and individuals with an 

anti-OFA/iLRP humoral response had a more favorable 

prognosis. OFA/iLR Abs were cytotoxic and exerted also 

a role in the graft-vs-leukemia effect in CLL [36].  

Confirming its nature of immune stimulating 

tumor associated antigen, high expression of the protein 

OFA/iLR correlated with mutated IGVH status and 

predicted for a favorable prognosis in CLL [37]. These 

results are in agreement with reports on the ability of anti -

37LRP/67LR monoclonal antibodies (MoAbs) to block 

neoplastic B cell proliferation in vitro and in vivo. Two 

MoAbs, BV-15 and BV-27, showed anti-metastatic 

activity in the A20 B-cell leukemia model. Only BV-27 

was growth-suppressive in vitro; however, both antibodies 

suppressed A20 cell attachment to LM [38]. Thus, 

inhibition of LM attachment seems crucial for the 

inhibitory effect, as reported with antibodies targeting 

both the immature and mature forms of the receptor or 

with treatments that down-regulate the expression of 

37LRP/67LR in solid tumors [19,39]. These MoAbs could 

be used therapeutically even though it is not clear whether 

they exert their action by effector functions (Ab or 

complement dependent cytotoxicity) or by their action 

(cell growth inhibition and/or blocking of cell binding to 

LM). 

Epigallocatechin-3-gallate (EGCG) is the major 

polyphenol of green tea; it is a small molecule that 

functions as an antitumor and antiangiogenic agent. 

EGCG induces cell death and cell cycle arrest and 67LR 

was identified as a receptor able to mediate its anti-cancer 

activity [40]. In contrast with previous results showing 

that 67LR inhibition, through MoAbs, blocked neoplastic 

B lymphocyte proliferation, a phase II clinical trial 

demonstrated that 67LR stimulation by oral 

PolyphenonETM was well tolerated and 29 of 43 CLL 

patients (67%) showed evidence of a biological response 

with decreased lymphadenopathy and/or absolute 

lymphocyte count [41]. Moreover, there was a significant 

correlation between EGCG susceptibility and 67LR 

expression in CLL cells and Vardenafil, a clinically 

available phosphodiesterase inhibitor, potentiated the 

killing effect of EGCG on CLL cells [42]. The molecular 

mechanism of Vardenafil action on EGCG-induced 67LR 

stimulation and tumor cell killing was better elucidated in 

multiple myeloma cells (see below). 

 

 

V. 37LRP/67LR EXPRESSION AND FUNCTION IN 

MULTIPLE MYELOMA 

 

Multiple myeloma (MM) represents a B cell 

malignancy, characterized by a monoclonal proliferation 

of malignant plasma cells. During disease evolution, 

terminally differentiated B cells preferentially accumulate 

in the BM. LN stimulated in vitro migration of human and 

murine MM cells, through its binding to 67LR, 
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overexpressed on MM cells. 67LR inhibition by the LM-

derived peptide CDPGYIGSR, resulted in a decreased 

homing of MM cells to the BM in a murine in vivo model 

[43]. Thus, LM acts as a chemoattractant for MM cells by 

interaction with 67LR and this interaction might be 

important during the trafficking of MM cells, as already 

demonstrated for normal HSCs [29,30]. 67LR is also 

involved in lymphoma cells homing to lymph nodes and 

in their trafficking to specific organs [44].  

In MM, EGCG was able to induce inhibition of 

cell growth and apoptosis in vitro and in vivo. Silencing of 

67LR resulted in abrogation of EGCG-induced apoptosis, 

confirming the role of 67LR in EGCG-mediated growth 

inhibition in MM cells [45].EGCG induced apoptosis 

through 67LR be determining phosphorylation of PKCδ 

and activation of acid sphingomyelinase (aSMase). cGMP 

is a critical mediator of 67LR-dependent PKCδ/aSMase 

activation and MM apoptosis. EGCG induces nitric oxide 

(NO) production through 67LR-dependent activation of 

Akt and endothelial nitric oxide synthase (eNOS). NO 

increases the intracellular level of cGMP, that induces 

apoptosis by activating PKCδ/aSMase pathway. aSMAse 

acts on sphingomyelin [46] to generate ceramide, which 

induced lipid-rafts clustering, critical for apoptosis. Orally 

administered EGCG activated PKCδ and aSMase in a 

murine MM xenograft model [47].In MM cells, 

phosphodiesterase 5 (PDE5), a major negative regulator of 

cGMP, is overexpressed and is able to reduce 67LR-

mediated apoptosis induced by EGCG. Thus, Vardenafil, 

a PDE5 inhibitor, induced an enhancement of the EGCG-

activated 67LR-dependent apoptosis, through 

amplification of the downstream effectors PKCδ and 

aSMase, and prolongation of the survival time in a mouse 

xenograft model [46,47].  

 

 

VI. 37LRP/67LR EXPRESSION AND FUNCTION IN 

ACUTE MYELOID LEUKEMIA 

 

Acute myeloid leukaemia (AML) is an 

aggressive blood cancer caused by the proliferation of 

immature myeloid cells. The genetic abnormalities 

underlying AML affect signal transduction pathways, 

transcription factors and epigenetic modifiers. The genetic 

landscape of AML cells could exert a direct effect on the 

anti-leukemic immune responses [48]. Thus, 67LR 

expression and function in AML could play a critical role 

in the evolution and prognosis of the disease. 

We detected enhanced 67LR expression in 40% 

of 53 de novo AMLs, which frequently exhibited 

monocytic or myelomonocytic morphology. We did not 

detect 67LR expression in normal BM hematopoietic 

cells, in precursor-B acute lymphoblastic leukemia, in 

chronic lymphocytic leukemia, or in chronic myeloid 

leukemia in chronic phase. 67LR overexpression 

corresponded to a higher adhesion to LM. In contrast with 

67LR behavior in solid tumors, no statistically significant 

difference was found between 67LR expression and any 

hematological characteristic of the disease at diagnosis, 

nor between 67LR expression and outcome of the disease 

as measured by complete remission rate, disease-free 

survival, or overall survival [49].  

A more recent study demonstrated 67LR 

expression influenced the characteristics of AML cells 

toward an aggressive phenotype and increased the 

expression of GM-CSF receptor. Indeed, increased 

expression of 67LR was significantly related to elevation 

of white blood cell count, lactate dehydrogenase, and 

poorer survival among AML patients. Forced expression 

of 37LRP/67LR enhanced proliferation, cell-cycle 

progression, and antiapoptosis of AML cells associated 

with phosphorylation of STAT5, in the absence of 

stimulation LM. There was a significant relationship 

between the expression of 67LR and GM-CSFR in acute 

myeloid leukemia samples, with enhanced GM-CSFR 

signaling [50].  

This observation is not surprising; indeed, a 

previous work showed that 67LR was an interacting 

protein of both the alpha and beta subunits of GM-CSFR. 

Whereas GM-CSF functions by engaging the alpha and 

beta subunits into receptor complexes, 67LR inhibited 

GM-CSF-induced receptor complex formation. 67LR 

engagement by LM relieved the LR inhibition of GM-

CSFR. These findings provided a mechanistic basis for 

enhancing host defense cell responsiveness to GM-CSF at 

transendothelial migration sites, where 67LR is engaged 

by LM,  while suppressing it in circulation [51].  

EGCG-induced cell death through cGMP/aSMase axis 

activation and lipid raft clustering was described also in 

AML [52] and in chronic myeloid leukemia (CML) [53]. 

 

 

VII. CONCLUSIONS 

 

Mobilization of HSCs into the blood following 

treatment with chemotherapy or cytokines mimics the 

enhancement of the physiologic stem-cell release in 

response to stress and inflammatory signals and results 

from changes in the adhesion profile of HSCs, facilitating 

their egress from BM. Cytokine-stimulated HSCs, 

leukemia and multiple myeloma cells, as metastatic cells 

from solid tumors, activate a 67LR-derived signaling 

pathway, which leads to cell dissemination and trafficking 

through the host. 

36LRP/67LR is overexpressed in CLL and AML, 

but with a different prognostic impact. 37LRP/67LR 

overexpression in CLL has a positive impact, due the 

stimulation of an anti-leukemia effect. The same effect is 

not observed in AMLs in which 67LR upregulation  is 

correlated, as in solid tumors, to increased aggressiveness 

and poorer response to treatments.  

Biological agents inhibiting 67LR binding to LM, 

such as antibodies and peptides, could represent an 

efficient tool to target CLL and myeloma cells and  the 

activity of EGCG in CLL has been already proved by an 

early clinical trial. Concurrently, many reports indicate 

that EGCG activity through 67LR may help in the design 

of new strategies to also treat AML and MM. 
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It is intriguing that a 67LR stimulating small 

molecule, such as EGCG, can exert the same antitumor 

effect of 67LR inhibitory molecules. Most probably, 

clarification of the molecular mechanism of action of new 

small molecules inhibiting LM binding to  67LR, such as 

NSC47924 and its analogs, will help to clarify this issue.  
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