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Summary 

The biochemical mechanisms underlying tendinopathy are obscure. We briefly describe 

preliminary observations of human tenocyte behaviour in culture as a vehicle for determining 

the role of reactive oxygen in tendon pathology.  
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Tendons transfer the force from muscular contraction to bone. The term ‘tendinopathy’ 

includes the pathologies in and around tendons(1, 2). In most instances, sports-related 

tendinopathies result from a dysfunctional repair response(1, 2). This histopathological 

appearance has been termed “tendinosis”, although the degenerative implication of this label 

is only partially correct, as the histopathological picture is of a failed, haphazard healing 

response(3). Overuse tendinopathies show no evidence of “tendonitis” (i.e. of a local 

inflammatory reaction), providing a histopathological explanation for the chronicity of 

symptoms that often occur in athletes with tendinopathies.  

Tendinopathy involves both the collagen matrix and the specialised tendon fibroblasts, the 

tenocytes. Normally, collagen fibres in tendons are tightly bundled in a parallel fashion, but 

tendinopathic samples show unequal and irregular crimping, loosening and increased 

waviness of collagen fibres, with an increase in Type III (reparative) collagen(4, 5). In 

tendinopathic tendons, tenocytes are abnormally plentiful in some areas, and have rounded 

nuclei and ultrastructural evidence of increased production of proteoglycan and protein which 

gives them a chondroid appearance. Other areas may contain fewer tenocytes than normal 

with small, pyknotic nuclei(4). Rarely, there is infiltration of lymphocytes and macrophage 

type cells, which may be part of a healing process(4). Although classically tendinopathy was 

thought to be associated with hypovascularity, a characteristic feature of tendinopathic 

tendons is proliferation of capillaries and arterioles, with degeneration of tenocytes and 

collagen fibres, and subsequent increase in noncollagenous matrix(6, 7). 

Two aetiopathogenetic hypotheses have been propounded for the occurrence of 

tendon rupture within tendinopathy. First, that injury per se may only be manifest after 

considerable underlying tendon damage, as described above. Second, that injury occurs by 

more sudden excessive mechanical forces without a requirement for degeneration(8-11). 

There may be overlap between these two hypotheses(12). 
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Healing of ruptured tendons depends on the intrinsic potential of the tenocytes to 

respond to the stimulus induced by the injury to the surrounding tissue matrix(13). This will 

be manifest within a complex series of cellular responses possibly encompassing apoptosis 

(programmed cell death), chemotaxis, proliferation, and differentiation(5, 14-16). However, 

the relative occurrence and importance of these events, the balance of which will be crucial in 

determining the effectiveness of repair and any prevalence to repetitive damage, remains 

obscure. In addition, the mechanism of failed healing response which may predispose the 

tendon to mechanical damage may also be superimposed on other, not yet clarified, 

processes. 

A molecular link between the apparently disparate events of overuse tendon injuries 

and the subsequent orchestration of effective healing may well be the control of the 

production and persistence of a variety of molecules within both the intra and extracellular 

tendinous environment(17). 

 

Cellular responses to reactive oxygen  

Radical and non-radical but reactive species oxygen species (ROS) include the 

superoxide anion (O2
.-
), hydrogen peroxide (H2O2), hydroxyl radical (HO

.
), singlet oxygen 

(O2
1
), peroxyl radicals (RO2

.
), and the interrelated reactive nitrogen species, peroxynitrite.

  

ROS may induce cellular/tissue damage via lipid peroxidation, DNA damage and 

protein modification(18-21). The participation of H2O2 in the iron/copper catalysed Fenton 

and Haber-Weiss reactions to form highly reactive HO
.
 probably accounts for much of the in 

vivo toxicity associated with excessive O2
.-
/H2O2 production(19-21). Conditions in which 
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excessive ROS generation are thought to be of direct importance include, but are no way 

confined to, tumourigenesis, coronary heart disease, autoimmune disease(18, 20). ROS are 

also implicated in overuse exercise- related damage in muscle(9), and may impair fracture 

healing in bone(22). 

ROS levels are determined by the balance between their generation and antioxidant 

defence mechanisms. Antioxidant defences and regulators include endogenous enzymes (e.g. 

superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), iron/ copper 

chelators (e.g. ferritin, metallothioneins) endogenous low molecular weight compounds (e.g. 

glutathione, thioredoxin, urate). Other compounds as well as scavenging ROS are also able to 

repair ROS mediated damage and exert direct effects on redox mediated gene 

activation/repression (e.g. thioredoxin) (18, 23, 24). In addition, various dietary compounds 

such as vitamin C and E, exhibit antioxidant activity, and may complement endogenous 

antioxidant defences(18-20). 

 The association with direct pathological damage has to a certain extent obscured 

observations that changes in ROS type and concentration may exert more subtle effects on 

cell metabolism and development. ROS act as intra- and possibly inter-cellular signal 

molecules influencing signal transduction pathways and gene expression, and have been 

implicated in the processes of cell proliferation(25), differentiation(26), and stress 

adaptation(9, 19). ‘Higher’ levels of ROS may induce the demise of the cell either via direct 

damage or through the activation of and/or participation in ‘active’ cell death 

mechanisms(27-29). 

Thus the effects of altered antioxidant/prooxidant activity are manifest in a diversity 

of cellular responses. We suggest that it is the assessment of altered cellular function and 
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viability defines whether ‘end point’ labels such as ‘damaging’ and ‘stressed’ can really be 

applied to any such changes. 

 

Tendons and reactive oxygen 

Tenocyte proliferation and/or viability may be susceptible to reactive oxygen species. 

For example, equine tenocytes show a decrease in proliferation when subjected to bolus 

addition of 10-100 µM of H2O2 (30). Also, recent studies show increased expression of 

peroxiredoxin 5 (PRDX5), a thioredoxin peroxidase with antioxidant properties, within 

tendinopathic tendons, suggesting that oxidative stress may be involved in the pathogenesis 

of tendinopathy(31). 

Fibroblasts are able to generate ROS following a variety of biochemical and physical 

stimuli such as cytokines and growth factors(32-36). During cyclical loading of tendon, the 

period of maximum tensile load is associated with ischaemia. Subsequent restoration of 

normal tissue oxygenation may lead to enhanced ROS production(30). Exercising tendon 

core temperatures may reach 45°C(30), which may induce ROS production, most probably 

from the mitochondria(9). 

 A further, though highly speculative possibility, is that tendons are indirectly 

influenced by changes in ROS metabolism in other tissues and cells such as within exercising 

muscle(9, 37-39). In addition, although the extent of enhancement is contested(37), 

exhaustive exercise appears to increase ROS generation by activated phagocytes(37, 39-41). 

Phagocytic activity involves the generation and release, to the phagosome, of O2
-
, H2O2, HO, 

1
O2, HOCl and minor quantities of NO(42), an undesirable effect of which is the potential of 

collateral damage to ‘normal’ cells and tissues through extracellular bursts of ROS and ROS 
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leakage(42-44). This change in granulocyte activity may also have more general 

consequences for ROS levels in tissues other than skeletal muscle, possibly including the 

tendon, through collateral exposure to ROS or mediators/signals arising from their actions. 

More specifically, while the underlying tendon degeneration does not appear to involve 

inflammation, micro-tears may be followed by local inflammatory reactions(12), which can 

disrupt tendon structure(8). 

 The potential nature of ROS involvement in tendinopathy or in post-rupture tendon 

healing is only speculative. Tenocyte proliferation, development and function may be 

susceptible to influence by endogenous or exogenous sources of ROS exposure. 

 The tendon matrix may be prone to direct or indirect modification by ROS. For 

example, increased O2
.-
 production in ischaemic rat skin is correlated with impairment of 

wound healing and antioxidant treated skin possessed greater amounts of organised collagen 

relative to ischaemic controls(45, 46). O2
.-
 stimulates collagen biosynthesis in rat dermal 

fibroblasts(47). 

 With regard to tenocyte proliferation, from studies on avian tenocytes, mechanical 

load and growth factors (e.g. platelet derived growth factor [PDGF] and insulin-like growth 

factor-I [IGF-I]) may work in concert to stimulate tenocyte cell division during healing(48). 

These growth factors influence DNA synthesis and cell division in a potentially redox-

sensitive manner. For example, PDGF stimulation of rat vascular smooth muscle cells 

transiently increases intracellular H2O2 concentration, and H2O2 is required for PDGF signal 

transduction(49). In addition, proliferation and migration of vascular smooth muscle cells is 

inhibited by the H2O2 scavenger, catalase(50).  

 Extracorporeal shock wave therapy (ESWT) promotes tendon repair and bone 

growth(51), induces elevated O2
.-
production which mediates extracellular signal regulated 
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kinase signal transduction during osteogenesis(52).  Differentiation was not influenced by 

inhibition of H2O2, peroxynitrite or nitric oxide production, suggesting a specific involvement 

of O2 -. Whether such observations are relevant to the effects of ESWT on tenocytes and 

tendon repair remains to be determined.  

 Tenocyte viability may be compromised by ROS which are intimately associated with 

cell damage. Cell death is most often discussed in terms of ‘apoptosis’ and ‘oncosis’ (also 

referred to as necrosis). Apoptosis is an ordered, highly regulated form of cellular suicide, 

and is induced during cell, tissue and organ development and homeostasis. Both premature 

induction and inhibition of apoptosis are important in various aspects of pathology. Apoptosis 

is induced via activation of either the mitochondrial or death receptor pathways, but it is 

characterised by cell shrinkage, chromatin condensation and marginalization at the nuclear 

envelope, DNA cleavage and the formation of membrane bound nuclear and cytosolic 

remnants, termed ‘apoptotic bodies’. Apoptotic bodies are normally phagocytosed before 

membrane damage occurs. Inflammation is normally avoided. In comparison, oncosis 

involves cell swelling, rapid membrane damage, leakage of cellular constituents and the 

provocation of inflammation. Both oncosis and apoptosis, apparently unrelated 

manifestations of cell death, may share certain common regulatory components, with the 

rapid loss of ATP levels being a characteristic feature of oncosis as opposed to apoptosis(53). 

The relationship between cell death mechanism and ROS is complex(27). Bursts of 

ROS(27, 54) and reductions in antioxidant enzyme activity(55) frequently accompany the 

induction of apoptosis, and oxidative stress is often reported in the later phase of cell 

demise(27). However, high concentrations of hydrogen peroxide, and other ROs, can prevent 

apoptosis or induce oncotic cell death.  



Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 173-194 

 

180 
Università degli Studi di Salerno 

Evidence for the involvement of apoptosis in tendon pathology is gradually emerging. 

Degenerative joint disease of the knee, an age-related condition, is associated with higher 

susceptibility of periarticular tenocytes to Fas ligand induced apoptosis. These changes may 

contribute to decreased cellularity in degenerative tendons and promote their rupturing(56, 

57). Apoptosis has also recently been detected in human tendinopathic tendons(58, 59), and 

the increased number of apoptotic tendon cells in affected tendon tissue could affect the rate 

of collagen synthesis and repair(8, 60). Oxidative stress-induced apoptosis in human tendon 

fibroblasts may be mediated via pathway(s) involving release of cytochrome c from 

mitochondria to the cytosol and activation of the protease caspase-3(61, 62). 

 

Non-immortalized human tenocytes in culture 

As a component of studies into the involvement of ROS in tenocyte behaviour, in 

particular in orchestrating proliferation and tendon wound responses, we have prepared 

human non-immortalized tenocyte cultures from normal and ruptured Achilles tendons(63). 

Although primary or early passage cells will logically offer the greatest 

approximation to the in situ cell, it may be desirable to define a range of passages for which 

there is minimal or no phenotypic drift. This may allow greater flexibility in the number of 

experiments that may be performed from a single tissue source. Furthermore, components 

defining phenotypic drift will be markers for altered cellular function and development in 

response to wounding and oxidative stress. 

Cell proliferation rate, morphology and collagen, integrin and decorin expression have 

been used as markers of phenotype and changes in these would indicate ‘drift’. Type I 

collagen is the main collagen in tendons. Approximately 95% of collagen in normal tendons 
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is type I(1), with type III and V collagen present in smaller amounts. Tenocytes produce both 

fibrillar and non-fibrillar components of the extracellular matrix. In addition to collagen, a 

number of non-collagenous protein and proteoglycans (PGs) are present, which interact with 

the fibrillar collagen region network(2-5). The predominant PG in tendon is the small, 

leucine-rich, decorin(6). Decorin belongs to a family of structurally related extracellular 

matrix PGs and glycoproteins. Integrins are a family of cell membrane glycoproteins. They 

mainly mediate cell-extracellular matrix adhesion, and are also involved in cell-cell 

adhesion(7, 64, 65). Many integrins serve as cell membrane receptors. Extra-cellular ligands 

include fibronectin, laminin, and various collagens. The cytoplasmic domains of the receptor 

form connections with the cytoskeleton, so integrins serve as a link between the cytoskeleton 

and the extra-cellular matrix. In addition, we have sought to monitor telomere length, 

apoptosis and intracellular ROS levels as indicators of changing cell ‘stress’ status. Such 

markers may subsequently be utilised to monitor the influence of ROS on tenocytes.  

Tenocytes have been successfully cultured from various species including chicken, 

dog, rabbit, rat, horse and humans(66). There are differences in the extent to which drift is 

encountered in cells from differing species. The pattern of collagen synthesis may be a 

sensitive indicator of ‘drift’. Chick embryo tendons contain predominantly type I collagen, 

but, although type I collagen production remained constant, tenocytes produce type III 

collagen in about 10% of cells within three days of culture with the level of production 

increasing with passage(67). Avian tendon cells lost their ability to synthesize large amounts 

of collagen in vitro culture compared with other cell proteins(61). In juvenile rabbit 

tenocytes, a decrease in type I collagen transcript levels occurred following passage from 

primary culture(68). Variations in the level of decorin transcripts was also observed in 

cultured rabbit tenocytes, and dedifferentiation of the tenocytes occurred in early passages. 
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This would suggest that cells only up to passage two could be an acceptable representation of 

the in situ tenocyte.  

However, it is more than conceivable that drift will differ with the species, type and 

pathological state of the tendon. We have routinely cultured tenocytes from ruptured and non-

ruptured Achilles human tendon up to passage 9 (Figure 1). Using ‘Western immunoblotting’ 

and immuno flow cytometry, we have quantified the level of decorin, collagen I and III and 

the 1 component of the integrin receptor levels, and examining their distribution via 

immunohistochemistry of proliferating, confluent and post-confluent cultures(63). Cell 

morphology changed with increasing passage number; cells became more rounded, were 

more widely spaced at confluence and confluent cell density declined (P=0.009). We saw no 

change in total cell layer collagen content, but the ratio of type III to type I collagen increased 

from 0.60 at passage 1 to 0.89 at passage 8 (P<0.001). Decorin expression significantly 

decreased with passage number (P<0.001). Integrin expression did not change. This study 

showed that the phenotype of human tenocytes in culture rapidly drifts with progressive 

passaging. Consequently,  we recommend using only 1st and 2nd passage cells to maintain a 

phenotype as close as possible to that pertaining in vivo(63). 

We have been concerned that non-immortalized cultures might show progressive 

increased stress susceptibility with progressive passage. However, from passage 0 to 9 there 

is ‘harmonisation’ in the level of ROS production and no evidence of heightened ‘oxidative 

stress’ and/or loss of viability(63). 
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Conclusion 

Tendinopathies have a complex aetiology, and the precise characterisation of a role 

for ROS in aspects of tendon biology will be less than trivial, especially when considering the 

prevalence of such ailments in sport and exercise medicine(69-80). However, reactive oxygen 

species may well be involved in tendon pathology and tendon healing(17). Characterised 

non-transformed human tenocyte cultures offer the potential to dissect tendon specific 

responses to reactive oxygen and oxidative stress. 
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Figure 1 

Reactive oxygen levels in tenocyte cultures measured following passage. ROS were detected 

via flow cytometric assessment of the median rhodamine fluorescence intensity following 

dihydrorhodamine loading 
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