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Abstract 
 

Language is a distinctive human ability that supports our daily life 

interactions. A deep understanding of the brain mechanisms behind 

language processing is fundamental to create physiological models 

and find possible alterations derived from specific pathologies. 

In the last decades, the general technological advancement and the 

development of more precise and less invasive investigation 

techniques have increased dramatically our knowledge of the neural 

correlates of language processing. However, the great variety of 

human languages, the possibility to communicate across multiple and 

different channels and the uncertainty about the actual role of some 

linguistic features leave several open questions with a concrete 

possibility of neuroscientific innovation. For instance, the features of 

a highly inflected language like Italian can provide interesting 

research questions and additional insights on how our brain processes 

linguistic information.  

The main aim of this work is to explore in greater details the 

influence of the linguistic distributional factors on the neural 

correlates of both language production and comprehension by 

exploiting the richness of the Italian language. Therefore, three 

functional magnetic resonance imaging (fMRI) experiments were 

performed by using both classical parametric and novel naturalistic 

frameworks. Two fast event-related fMRI experiments investigated 

the influence of the language distributional factors on the neural 

correlates of the inflectional process, whereas a third experiment was 

dedicated to providing additional insights on the linguistic prediction 

mechanism during natural language comprehension by modelling the 

neural response with two statistical language models.  

The first experiment addresses the influence of the inflectional classes 

(i.e. the conjugations) and their distributional features (e.g. the size, 

the productivity, and the ortho-phonological consistency) on the 

generation of the past participle of the Italian verbs by analyzing both 

neural and behavioral data. The study reports significant effects of the 

conjugations on the cognitive operations and, for the first time, 
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differential cortical activations in the left middle frontal gyrus, left the 

supplementary motor area and left anterior cingulate cortex for verbs 

from different conjugations supporting the hypothesis that the neural 

correlates of the verb inflection are influenced by specific properties 

of the inflectional classes.  

The second experiment explores the influence of the noun inflectional 

classes and their properties (e.g. the consistency, number and 

cumulative frequency of members) on the nominal inflection by 

analyzing the neural data of a group of participants involved in overt 

inflection task from the singular to plural and vice versa. The study 

reports an extensive bilateral cortical network involving the cingulate 

cortex, frontal and temporal areas, and the cerebellum, revealing that 

the neural activations are modulated by specific distributional features 

of the noun inflectional paradigm.  

The third experiment investigates the neural correlates of the linguistic 

prediction underlying the natural language processing during narrative 

listening. The interest, therefore, shifts from word (verb or noun) 

production to structured text understanding. This is done by fitting the 

fMRI data with models that encode the probabilistic features of the 

language via the estimation of the so-called surprisal, that is a measure 

that quantifies the unexpectedness of a word given the previous ones. 

Two stochastic language models were estimated on a large written 

Italian corpus to obtain two versions of surprisal: a lexical-only 

version, based only on the lexical information of the chosen stimulus 

and a novel semantics-weighted model that integrates both lexical and 

semantic features.  

Our study reports better prediction accuracy and better fitting of the 

fMRI data for the semantics-weighted model. The two models 

produced both overlapping and distinct activations: while lexical-only 

surprisal activated secondary auditory areas in the superior temporal 

gyri and the cerebellum, semantics-weighted surprisal additionally 

activated the left inferior frontal gyrus. The results support the 

usefulness of the surprisal models to describe the linguistic prediction 

and suggest that the proper inclusion of semantics information in the 

surprisal model may increase its the sensitivity in higher-order 

language-related areas, with possible implications for future 
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naturalistic fMRI studies of language under normal and (clinically or 

pharmacologically) modified conditions. 

 Besides the investigation of the influence of the language 

distributional factors on the neural correlates of both language 

production and comprehension, an additional aim of this work is the 

proposal of an innovative procedure in the broader field of the fMRI-

neurofeedback (fMRI-NF).  

In general, the fMRI-NF has been successfully applied in several 

cognitive domains and it is a procedure based on the possibility to self-

modulate the neural signal of a brain region to explore and induce 

behavioral changes. The proposed method integrates the 

representational similarity analysis (RSA) and the fMRI-NF 

framework to train the subjects in modulating their mental state rather 

than simply regulating the neural signal of a region. The method has 

been tested in a pilot experiment at 7 Tesla where the subject was 

asked to imagine concrete objects. The results show that the presented 

approach is feasible suggesting further investigations and future 

applications in several domains, including representational and 

distributional aspects of language processing.    
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Riassunto 
Il linguaggio è una caratteristica tipica del genere umano ed è alla base 

di tutte le nostre interazioni quotidiane. Per questo motivo lo studio 

delle sue basi neurali è fondamentale per la creazione di modelli 

fisiologici e l’individuazione di possibili alterazioni tipiche di alcune 

patologie. 

Negli ultimi decenni, l’avanzamento tecnologico e lo sviluppo di 

modelli e strumenti, allo stesso tempo più precisi e meno invasivi, ci 

hanno permesso di aumentare le nostre conoscenze sulle basi neurali 

del linguaggio. Tuttavia, il grande numero di lingue presenti in tutto il 

mondo, la loro diversità e il fatto che il linguaggio umano può essere 

espresso sotto varie forme (e.g. scritta, orale) lascia aperte numerose 

domande, ampi spazi di ricerca scientifica e concrete possibilità di 

innovazione.  

 Questo lavoro si concentra su alcune di queste domande, 

ancora senza risposta, analizzando dati di risonanza magnetica 

funzionale acquisiti all’interno sia di classici paradigmi sperimentali 

parametrici sia di innovativi paradigmi di tipo naturalistico. Inoltre, 

l’utilizzo della lingua italiana come argomento di studio ci permette di 

espandere le nostre conoscenze sulle basi neurali del linguaggio e dei 

processi grammaticali per via delle sue caratteristiche e differenze 

rispetto ad altre lingue più comunemente e intensamente studiate come 

l’Inglese. Per questo motivo, due esperimenti di risonanza magnetica 

funzionale con paradigma di tipo fast event-related sono stati condotti 

su due gruppi di volontari sani per indagare le basi neurali del processo 

di flessione linguistica, mentre un esperimento con paradigma 

naturalistico è stato condotto per studiare la predizione linguistica 

durante l’ascolto di un brano.  

Il primo esperimento è stato dedicato allo studio dei processi cerebrali 

che sono alla base della creazione del participio passato dei verbi 

Italiani provenienti da tutte e tre le coniugazioni. L’innovazione di 

questo esperimento risiede nel fatto che, rispetto agli studi sulla lingua 

Inglese che si sono potuti concentrare solo sulle differenze tra verbi 

regolari e irregolari, l’Italiano presenta tre classi flessive per i verbi 

caratterizzate ognuna da specifiche peculiarità nella formazione del 

participio passato. Questo studio riporta, per la prima volta, delle 
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differenze di attivazione corticale nel giro frontale medio sinistro, 

nell’area supplementare premotoria sinistra e nel cingolo sinistro 

anteriore per verbi appartenenti a differenti coniugazioni supportando 

l’ipotesi che le attivazioni cerebrali siano modulate da specifiche 

proprietà delle classi flessive. 

Il secondo esperimento di risonanza magnetica funzionale è dedicato 

allo studio dei processi neurali che guidano la flessione dei sostantivi. 

Per questo motivo, i soggetti sono stati coinvolti in un compito di 

flessione ad alta voce del sostantivo, dalla sua forma singolare a quelle 

plurale e viceversa. L’ipotesi è che la flessione dei sostantivi sia 

influenzata dal suffisso della forma lessicale, dalla selezione del 

paradigma flessivo e dall’identificazione del genere grammaticale. I 

risultati dello studio riportano delle attivazioni nella corteccia 

cingolata, nelle aree frontali e temporali e nel cervelletto suggerendo 

che queste siano modulate dalle caratteristiche tipiche del paradigma 

flessivo del sostantivo. 

Il terzo esperimento differisce dai primi due nel tipo di paradigma 

sperimentale usato e nell’argomento studiato. Infatti, lo scopo di 

questo esperimento è lo studio della predizione linguistica durante 

l’ascolto di un brano (scenario naturalistico) modellando il dato 

neurale con due modelli probabilistici stimati su un grande corpus 

dell’Italiano scritto: un modello solo lessicale, già usato in studi 

precedenti, e uno totalmente nuovo che combina informazione 

lessicale e semantica. I risultati dello studio mostrano che la 

combinazione di informazioni lessicali e semantiche aumenta la 

capacità predittiva del modello e quella di spiegare il segnale neurale. 

In aggiunta, oltre alle attivazioni comuni tra i due modelli nelle aree 

uditive secondarie, si nota come l’integrazione dell’informazione 

semantica con quella lessicale migliori la sensibilità in aree 

considerate importanti nella rete neurale del linguaggio come il giro 

frontale inferiore. In generale, i risultati supportano l’uso di modelli 

statistici del linguaggio per spiegare i processi di predizione 

linguistica a livello neurale e la combinazione di più informazioni 

linguistiche, aprendo possibili scenari per l’uso di questi paradigmi 

nello studio della comprensione linguistica anche a livello clinico. 
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 Oltre agli studi dedicati all’esplorazione dei processi 

neurolinguistici, questo lavoro contiene la proposta di un nuovo 

paradigma sperimentale nel campo più ampio ed emergente 

dell’interazione cervello-computer con risonanza magnetica 

funzionale (fMRI-neurofeedback). In generale, le tecniche di fMRI-

neurofeedback sono state applicate in molti campi delle neuroscienze 

dimostrando la possibilità di influire su comportamenti esterni con la 

auto-modulazione del segnale cerebrale stimato da una regione di 

interesse. Il modello proposto integra il paradigma del fMRI-

neurofeedback con il modello della representation similarity analysis 

(RSA) in modo tale da allenare il soggetto a modulare il suo stato 

cerebrale e non semplicemente a modificare il singolo segnale di 

attivazione estratto da una regione. Il metodo è stato implementato e 

testato sui dati di un esperimento pilota, contenente un task 

immaginativo, condotto con uno scanner di risonanza magnetica ad 

alto campo (7 Tesla). I risultati, sebbene preliminari, mostrano che la 

tecnica è applicabile facilmente a un esperimento di fMRI-

neurofeedback e suggeriscono l’implementazione di nuovi 

esperimenti in altri ambiti applicativi, compreso lo studio dei processi 

linguistici.  
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Chapter 1:  

Exploring the neural bases of language 

processing with functional MRI  
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1.1 The neuroanatomical organization of language 

processing 
Language is an efficient and sophisticated communication system that 

allows humans to convey, in various forms, a theoretically infinite 

number of ideas and to describe things and events both spatially and 

temporally distant. During the centuries, it has become an essential 

part of our life, supporting the creation of thoughts, the collection of 

new information and knowledge, and the transmission of cultural 

practices (Hagoort, 2019). Besides, it provides a powerful 

representational medium in which concepts can be stored and 

manipulated efficiently (Ünal and Papafragou, 2018) and it has a 

mutual relationship with perception, consciousness, and memory 

(Perlovsky and Sakai, 2014). 

It has been estimated that there are nearly 7000 spoken idioms and 

more than 100 sign languages in the world (Vigliocco et al., 2005) and 

each of these languages requires different features from its speakers 

by even influencing fundamental dimensions of human experience 

like the notions of time and space (Boroditsky, 2011). Indeed, there is 

evidence supporting that linguistic differences affect also our 

preferences (Danziger and Ward, 2010) and how we reconstruct what 

we have eyewitnessed (Fausey and Boroditsky, 2011). Furthermore, 

there are studies showing that speakers of different languages focus 

their attention on different features of the world while they are 

converting thoughts into speech (Bunger et al., 2016; Gleitman et al., 

2007; Papafragou et al., 2008; Ünal and Papafragou, 2018, 2016). 

Therefore, understanding the neural bases of language processing has 

been an interesting field of study for both linguists and neuroscientists 

since the 19th century.  

 The formulations of the earliest language models were 

highly influenced by the studies on aphasic syndromes induced by 

brain damages and were focused on which regions are most important 

for language processing (Phillips and Sakay, 2005). For instance, in 

1874, Carl Wernicke proposed a model for language processing that 

classifies regions according to the tasks they accomplish. In particular, 

two main areas were identified: Brodmann’s area 44/45 and 

Brodmann’s area 22. According to the model, the first is specialized 
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in transforming the language representations in speech and it is also 

known as Broca’s area because Paul Broca was the first, in 1861, to 

identify and claim a link between damages in this region and 

impairments in language production (Broca, 1861). The second, also 

known as Wernicke’s area, is responsible for decoding and storing the 

language units, as a relation between the lesion in this area and 

impairments in language comprehension and semantic coherence had 

been observed (Wernicke, 1874). The Wernicke’s model and its 

updated version proposed by Geschwind (Geschwind, 1965) have 

suggested a left-lateralized organization for the language processing 

with the comprehension mechanism mainly supported by the temporal 

cortex (in particular by the left superior temporal gyrus (L-STG)) and 

the production process hosted in the left inferior frontal lobe 

(Geschwind, 1965; Wernicke, 1874).  

However, in the 1970s and 1980s, several findings questioned the 

bases of Wernicke’s model (Hickok and Poeppel, 2007). For instance, 

it was observed that damages to the L-STG were linked to deficits in 

language production but not comprehension (Damasio and Damasio, 

1980) and that disruptions in the left frontal lobes caused impairments 

in language tasks requiring syllable discrimination (Blumstein et al., 

1977a, 1977b). Besides, the advent of modern neuroimaging 

techniques such as positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI) and magnetoencephalography 

(MEG), contributed to revisit the notions of the Wernicke’s model 

(Tippett et al., 2014). Particularly, since Ogawa et al. (1990) 

introduced a way to measure the brain activity by estimating the blood 

oxygenation level-dependent (BOLD) signal (Ogawa et al., 1990), the 

number of fMRI studies focused on language processing have 

increased steadily (Ardila and Bernal, 2016; Willems and van Gerven, 

2018), expanding our knowledge and leading, for example, to the 

proposal of a more comprehensive functional and anatomical model 

of speech organization (Hickok and Poeppel, 2007).  
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1.2 The influence of distributional factors in language 

processing 
Human language is a complex high-order function and therefore, to 

understand its neural correlates, it has to be decomposed into basic 

building blocks and core operations (Hagoort, 2019): The building 

blocks consist of the knowledge about sound patterns, semantic and 

syntactic features of the lexical items (e.g. noun, verbs and 

grammatical gender), and orthographic forms. Core operations include 

all those operations that require information to be exchanged among 

these building blocks or retrieved from memory (e.g. word 

recognition), enabling to integrate small into larger arrangements (e.g. 

verb/noun inflection) (Hagoort, 2019). Despite this complexity, 

children are able to handle these core operations already in the earliest 

years of life without formal instructions, i.e. mainly by inferring 

distributional patterns and statistical schemes in the linguistic input 

(Romberg and Saffran, 2010) suggesting an important role of these 

factors in language processing. 

 The neural correlates of the building blocks, the basic core 

operations and their interactions have been extensively studied in 

cognitive neuroscience with both behavioral and neural (e.g. fMRI) 

experiments. For instance, the contribution of the grammatical 

information to both lexical processing and representation has been 

investigated by comparing the characteristics of two grammatical 

classes, i.e. nouns and verbs, in lexical production and comprehension 

processes (Laudanna et al., 2004). Previous studies showed that the 

two grammatical classes are handled by two different neural networks: 

left temporal regions for nouns and left prefrontal regions for verbs 

(Crepaldi et al., 2011; Vigliocco et al., 2011). 
Other studies focused their attention on the role of the grammatical 

category information within single word classes (e.g. inflectional 

class, mood, tense and person for verbs and gender and number for 

nouns) in determining the organization of the lexical system 

(Laudanna et al., 2004). For instance, a large body of research 

explored the generation of the inflected forms of both verbs and nouns. 

In the first case, most of the studies were focused on a relatively poor 

inflectional phenomenon, such as the formation of the past participle 
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of the English verbs, and aimed at disclosing a clear dichotomy 

between the processing of regular and irregular verbs (Joanisse and 

Seidenberg, 2005; Kielar and Joanisse, 2009; Marslen-Wilson et al., 

1995; McClelland and Patterson, 2002; Pinker and Ullman, 2002; 

Rumelhart and McClelland, 1986; Smolka et al., 2013; Ullman, 2001, 

1993; van der Lely and Ullman, 2001). In the second case, the nominal 

inflection has been mainly investigated by studying the consequences 

on the lexical access of the variable association between the 

grammatical gender and the noun suffixes (Caffarra et al., 2014; 

Caffarra and Barber, 2015; Heim, 2008; Heim et al., 2005; Hernandez 

et al., 2004; Miceli et al., 2002; Padovani et al., 2005; Quiñones et al., 

2018; Wang and Schiller, 2019).  

However, in highly inflected languages, like Italian, the inflection of 

both verbs and nouns are influenced by additional factors, such as the 

distributional features, that were not exhaustively considered in 

previous studies. First, the inflection of verbs intersects other aspects 

of morphology, such as the presence of the conjugations, that creates 

paradigmatic relations among wordforms beyond the classical 

regular/irregular distinction (Aronoff, 1994; Carstairs-McCarthy, 

1994). Second, the nominal inflection seems to be affected by 

distributional factors such as the suffix type frequency, the suffix 

predictability and the size of the inflectional neighborhood (Mirković 

et al., 2011; Nevat et al., 2017; Zwitserlood et al., 2000).  

The distributional features of the language have a role also in the 

comprehension process. In fact, it has been argued that language 

comprehension is supported by a probabilistic prediction mechanism 

that exploits the recurrence in the language corpus of groups of lexical, 

syntactic and semantic cues to predict the upcoming word (Dikker et 

al., 2014; Dikker and Pylkkänen, 2013; Lau et al., 2016; Lopopolo et 

al., 2017; Wicha et al., 2004; Willems et al., 2016). A possible way to 

model and study this phenomenon is the use of a measure known as 

surprisal that quantifies the Shannon information received with the 

incoming input (Shannon, 1948) and that can be estimated with any 

stochastic language model (Armeni et al., 2017). Previous findings 

demonstrated that the surprisal is linearly correlated with the 
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language-related cognitive effort (Demberg and Keller, 2008; Hale, 

2016, 2001; Levy, 2008; Smith and Levy, 2013). 

 In this work, the role of the linguistic distributional factors 

in both language production (verb and noun inflection) and 

comprehension (natural listening) processes has been explored in 

greater details by performing three experiments.  

The first experiment investigated if the neural correlates of the Italian 

verb inflection are affected by the presence of inflectional classes (i.e. 

the conjugations) and their properties (Laudanna, 2007; Laudanna et 

al., 2004) by using an overt past participle generation task in both a 

behavioral and a rapid event-related fMRI experiment (ISI: 7.2 s; 

jitter: 2.4 s). The second chapter of this work is entirely focused on 

this experiment and its results. 

The second experiment aimed at disclosing whether and how the 

lexical system and its neural correlates respond to distributional 

factors of the inflectional properties of the Italian nouns. A set of 

stimuli, carefully selected using a reliable database about the 

distribution of noun inflectional features (De Martino et al., 2019, 

2018), were administered to a group of healthy subjects in a rapid 

event-related (ISI 7.5 s; jitter 4.5 s) fMRI experiment with an overt 

inflection task. The third chapter of this work is entirely focused on 

this experiment and its results. 

The third experiment exploited the advantages of a naturalistic 

experimental paradigm, such as the flexibility and the ecological 

validity (Kandylaki and Bornkessel-Schlesewsky, 2019), and the 

ability of the stochastic language frameworks in modelling the 

richness and the complexity of the real-life linguistic experience 

(Armeni et al., 2017) to investigate the linguistic prediction underlying 

the language comprehension. In detail, two variants of a measure that 

quantifies the expectation of a word based on the previous ones (i.e. 

the context), called “surprisal”, has been estimated on a large written 

Italian corpus: a more classical one based only on the co-occurrences 

of the lexical items and a novel version that integrates information 

from multiple linguistic levels (i.e. lexical surprisal and semantic 

distance). Both surprisal models were applied to the fMRI signal 

measured during the listening to an audiobook and their performance 
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in capturing the BOLD signal variance were investigated and 

compared. The fourth chapter of this work is focused on this 

experiment and its results. 
 

 

1.3 A multidimensional approach to the fMRI 

neurofeedback 
 

A further aspect investigated in this work, and described in the fifth 

chapter, is a methodological innovation in the field of the real-time 

fMRI neurofeedback (rt-fMRI-NF). The latter is a 

psychophysiological method in which the online measured BOLD 

signal is provided as feedback to the subject to allow manipulation and 

self-regulation of the neural correlates of a targeted behavior (Sitaram 

et al., 2017). Rt-fMRI-NF has been associated with improvements or 

changes in specific neural functions and/or behaviors and it has been 

successfully applied in a great variety of domains (Watanabe et al., 

2017). In a typical rt-fMRI-NF experiment the NF signal is based on 

the neural signal changes of a selected ROI or on the variation of the 

functional connectivity of a network, whereas the feedback provided 

to the subject, that can be more or less complex, is visual, acoustic, 

haptic or electrical (Paret et al., 2019). However, even the most 

complex visual feedback, such as a virtual environment, is based on 

the variation of a single dimension of the fMRI signal although several 

scenarios could benefit from a different approach that evaluates 

multiple dimensions of the BOLD signal. Therefore, a novel 

experimental paradigm that provides a NF signal based not only on 

the current participant’s mental representation of a stimulus but also 

on its relationships (similarity) with other mental representations, is 

proposed by integrating the representation similarity analysis 

(Kriegeskorte et al., 2008a) in an fMRI-NF paradigm. To test the 

feasibility and validate the method a pilot fMRI data set has been 

acquired at 7 Tesla. The fifth chapter of this work is focused on this 

pilot experiment and its results. 
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Chapter 2:  

Producing regularly and irregularly 

inflected verb forms: behavioral data 

from the three Italian conjugations 
 

 

M. De Martino, A. Mancuso, A. G. Russo, A. Elia, F. Di Salle, R. 

Saponiero, S. Vietri, F. Esposito & A. Laudanna (2020), Language, 

Cognition and Neuroscience, 35:4, 420-

439, DOI: 10.1080/23273798.2019.1668953 
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2.1 Introduction 
The hypothetical segregation of the grammatical information from the 

other forms of linguistic features, such as semantics and phonology, 

has been a central issue in the research on the linguistic processes 

(Bates and Goodman, 1997). For instance, the investigation of the 

differences between regular and irregular verbs has been a critical test 

for the cognitive status of the grammatical information.  

Previous findings have been explained in the dual- (Allen and 

Badecker, 2002; Marslen-Wilson et al., 1995; Penke and Krause, 

2002; Ullman, 1993; van der Lely and Ullman, 2001) or in the single-

mechanism framework (Eddington, 2002; Justus et al., 2011; Kielar 

and Joanisse, 2009; Rumelhart and McClelland, 1986; Sach et al., 

2004; Schreuder et al., 1999; Smolka et al., 2013). The first postulates 

that regular forms are generated using a rule-based procedure 

(regardless of the phonology and of the semantics of the stem) that is 

subserved by the frontal cortex and the basal ganglia, whereas 

irregular forms are stored in the mental lexicon, hosted by the temporal 

lobe, and retrieved with an associative mechanism (Pinker, 1991; 

Pinker and Ullman, 2002; Ullman, 2001). The second postulates that 

regular and irregular verbs are processed by a single neural network 

exploiting the phonological and semantic features of the item 

(McClelland and Patterson, 2002). 

However, there is an increasing number of studies whose findings 

cannot be clearly explained by the dual or the single-mechanism 

models. For instance, in highly inflected languages the difference 

between regular and irregular word forms intersects many 

morphological aspects, such as the presence of inflectional classes 

(Aronoff, 1994; Colombo et al., 2004; Meunier and Marslen-Wilson, 

2004) that have been shown to play a role in the inflectional process. 

Behavioral studies demonstrated that the higher is the consistency and 

regularity of the inflectional class the smoother and the more accurate 

is the inflectional process (Colombo et al., 2006, 2004; De Martino et 

al., 2017, 2011; Laudanna, 2007; Laudanna et al., 2004; Veríssimo 

and Clahsen, 2009). Therefore, linguists and psycholinguists (Burzio, 

1998; Laudanna, 2007, 1999) hypothesized that the inflectional 

process is influenced by the features of inflectional class such as the 
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size, the productivity, and the ortho-phonological consistency. 

However, the understanding of the role of the inflectional classes 

during morphological encoding is limited and inconclusive as 

previous research focused on a relative morphologically poor 

phenomenon like the inflection in the English language (Bordag and 

Pechmann, 2009; Colombo et al., 2004; Veríssimo and Clahsen, 

2009). 

 This study aims to explore the behavioral and neural 

correlates of the formation of the past participle by exploiting the 

characteristics of the Italian inflectional system and test whether the 

differences in the inflectional process between verbs belonging to 

different inflectional classes, can be explained with the dual or single-

mechanism or by the features of the classes. Therefore, two groups of 

Italian native speakers were involved respectively in a behavioral and 

in a rapid event-related fMRI experiment where they produced overtly 

the past participle of a set of both regular and irregular Italian verbs 

belonging to the three conjugations.  

The effect of the conjugations and its characteristics has been analyzed 

by contrasting all the regular verbs belonging to the three 

conjugations. In light of previous findings (Colombo et al., 2006, 

2004; Laudanna et al., 2004), if the consistency of the inflectional 

class affects the inflectional process, slower response latencies and 

more errors in the behavioral task and, higher cortical activations in 

the fMRI signal are expected for the 2nd conjugation compared to the 

1st and, to a lesser extent, to the 3rd. On the other hand, if the 1st 

conjugation acts as the default inflectional class, thus recreating the 

regular-irregular dichotomy, differences with both the 2nd and the 3rd 

conjugations should be observed (Say and Clahsen, 2002; Veríssimo 

and Clahsen, 2009).  

The comparison of the stimuli of the 2nd conjugations to the stimuli of 

the 3rd conjugations allowed us to explore the possible interactions 

between inflectional class and the regularity. In light of previous 

observations (Colombo et al., 2004; Slioussar et al., 2014) if the lower 

consistency of the conjugation affects the inflection, a disadvantage 

(longer response latencies, higher error rates, and higher cortical 

activations) for the 2nd conjugation compared to the 3rd is expected. 
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Concerning the possible brain areas involved in the fMRI task, if the 

inflectional process can be explained with the dichotomy regular-

irregular, activations in the temporal lobe for the irregulars (non-

default classes: 2nd and 3rd conjugations) and, in the frontal lobe and 

basal ganglia for the regulars (default class: 1st conjugation) are 

expected (Ullman, 2001). On the other hand, if the inflectional process 

is influenced by the characteristics of the inflectional classes, we 

expect higher activations for the 2nd conjugation compared to the 1st 

and the 3rd (to a lesser extent). Moreover, we expect an interaction 

effect between conjugation and regularity in a more widespread 

network including areas previously observed to be involved in 

inflectional operations such the left inferior frontal gyrus (L-IFG) 

(Bozic and Marslen‐Wilson, 2010; Carota et al., 2016), the anterior 

cingulate cortex (ACC)(Carter and van Veen, 2007), the 

supplementary motor area (SMA)(Sahin et al., 2006) and the 

postcentral gyrus (PostCG) (Indefrey and Levelt, 2004; Miceli et al., 

1983).  

 

2.2 Materials and methods 
 

2.2.1 Behavioral experiment 

 

2.2.1.1 Participants 

Forty-two healthy native Italian speakers (8 males, minimum age: 19 

years old, maximum age: 31 years old), all students from the 

University of Salerno were included in the behavioral experiment. All 

participants had a normal or corrected-to-normal vision and served for 

one session lasting about 15 min.  

 

2.2.1.2 Stimuli 

Italian verbs can be classified, with few exceptions (Thornton et al., 

1997), in three main inflectional classes called conjugations (Serianni, 

1988) that differ in terms of the thematic vowel (TV) of the infinitive 
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form, numerosity, productivity and presence of regular and irregular 

inflection (Table 2.1). 

 

 Total Regular 

inflection 

Irregular 

inflection 

1st conjugation 71% 97% 3% 

2nd conjugation 18% 22% 78% 

3rd conjugation 11% 84% 16% 

verbs with regular inflection 84% 

verbs with irregular inflection 16% 

Table 2.1 Distribution of Italian verbs along the regularity/irregularity dimension and 

within different inflectional classes; count based on the Italian basic dictionary, a 

corpus of 7076 Italian words (Thornton et al., 1997) 

 

Considering the regularity of the inflection, the 1st conjugation (TV: 

“-a”)  is highly regular, the 2nd conjugation (TV: “-e”) is mainly 

irregular although it contains 13 regular sub-paradigms (count based 

on the BDVDB database (Thornton et al., 1997)) and the 3rd 

conjugation (TV: “-i”) is mainly regular with a small presence of 

irregular verbs and 5 related sub-paradigms (BDVDB database 

(Thornton et al., 1997)). 

 

In this experiment, a set of one 168 Italian verbs were selected from 

all the three conjugations. For each conjugation, the 56 verbs selected 

were divided into two lists: the first with 28 regular verbs and the 

second with 28 irregular verbs. The two lists of the 1st conjugation 

contained both regular verbs, as in this conjugation there are only four 

irregular verbs. This arrangement replicated as much as possible the 

distributions of verbs in real-life scenarios. The 6 lists were matched 

for the psycholinguistics variables reported in Table 2.2. 

 
 1st conjugation 2nd conjugation 3rd conjugation 
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 reg reg II reg irr reg irr 

letters 

(infinitive 

form) 

8.8 (1) 8.7 (1.4) 8.6 (1.5) 9.2 (1.4) 8.3 (1.4) 8.4 

(1.5) 

written type 

frequency 

(Bertinetto 

et al., 2005) 

250 

(350) 

(63 pm) 

283 

(358) 

(71 pm) 

246 

(283) 

(62 pm) 

276 

(838) 

(59 pm) 

239 

(258) 

(60 pm) 

306 

(454) 

(77 

pm) 

 

written 

token 

frequency 

(Bertinetto 

et al., 2005) 

51 (55) 

(13 pm) 

50 (70) 

(13 pm) 

44 (74) 

(12 pm) 

44 (107) 

(12 pm) 

43 (51) 

(11 pm) 

57 

(74) 

(15 

pm) 

spoken 

token 

frequency                         

(past 

participle 

form) 

(De Mauro 

et al., 1993) 

3 (6) 

(6 pm) 

6 (11) 

(12 pm) 

3 (5) 

(6 pm) 

4 (8) 

(8 pm) 

3 (5) 

(6 pm) 

7 (19) 

(14 

pm) 

n-count 

(infinitive 

form) 
2 (2) 2 (2) 3 (2) 2 (1) 2 (1) 3 (1) 

n-count 

(past 

participle 

form) 

6 (2) 5 (1) 3 (1) 4 (3) 3 (2) 4 (3) 

number of 

consonant 

clusters 

(infinitive 

form) 

1 (1) 1 (1) 1 (1) 2 (1) 1 (1) 1 (1) 

number of 

consonant 

clusters 

(past 

participle 

form) 

1 (1) 1 (1) 1 (1) 2 (1) 1 (1) 2 (1) 

Table 2.2 Mean values (standard deviations in parentheses, pm=per million) for the 

relevant lexical parameters controlled in the behavioral experiment. 
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Moreover, to avoid any strategic bias and to match the distribution of 

conjugation/regularity through the Italian verbal system, 42 filler 

verbs (36 regular verbs of 1st conjugation and 6 regular verbs 3rd 

conjugation) were added to the experimental list. Thus, the list of 210 

stimuli was arranged in 7 blocks composed of 30 stimuli and visually 

delivered to each participant. Both stimuli and blocks were fully 

randomized.  

 

2.2.1.3 Experimental procedure 

Participants were provided with the infinitive form of the verb (e.g. 

giocare, to play) and were requested to produce overtly the 

corresponding past participle (e.g. giocato, played) as soon as 

possible. The stimuli appeared in lower-case letters (12-point size) in 

the center of a computer screen, preceded by a period of 300 ms with 

a fixation point and a blank period of 300 ms. Participant’s onset 

verbal response was detected by a microphone using a voice-key 

detector, which was connected to the stimulation computer. The 

presentation of the stimuli was controlled with E-Prime 2.2 

experimental control shell (Psychology Software Tools, Sharpsburg, 

PA, USA, www.pstnet.com). 

As soon as a voice response was detected, the stimulus disappeared 

from the computer screen. Each stimulus remained on the screen for a 

maximum of 800 ms and if participants did not produce any answer 

within that time, the feedback-mask “Fuori tempo” (“Out of time”), 

appeared. Reaction times from word presentation to the beginning of 

each vocalization (onset) were measured. Oral responses were 

recorded and carefully checked for accuracy by an experimenter. 

Before the experimental session, participants performed a brief 

training simulation.  

The experimental session consisted of 7 blocks of 30 stimuli 

interleaved by a 30 s break. 

 

2.2.2 Functional MRI experiment 

 

2.2.2.1 Participants 
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Twenty-three healthy volunteers (11 males; minimum age: 19 years 

old, maximum age: 34 years old) were enrolled in the fMRI 

experiment. All participants had normal vision and no history of 

neurological, psychiatric, developmental, or linguistic disorders. 

Participants provided written informed consent.  

The experimental procedure conformed to the principles of the 

Declaration of Helsinki and was approved by the local ethics 

committee. 

 

2.2.2.2 Stimuli 

The stimuli used in the fMRI experiment were identical to the stimuli 

used in the behavioral experiment. However, to reduce the acquisition 

time the filler stimuli were not included. The stimuli presentation was 

synchronized with the fMRI acquisition and randomized in each scan 

using the software Presentation (Version 1.8, Neurobehavioral 

System, www.neurobs.com).  

 

2.2.2.3 Experimental procedure 

Functional MRI acquisition was performed using a 3 Tesla scanner 

(Magnetom Skyra, Siemens Healthcare, Erlangen, Germany) 

equipped with a 20-channel parallel head coil. The fMRI scan 

consisted of 600 volumes of a repeated gradient-echo echo-planar 

imaging sequence (repetition time (TR) = 2200 ms, echo time (TE) = 

30 ms, number of axial slices = 28, matrix = 128 × 128, field of view 

(FOV) = 240 mm, thickness = 4 mm, interslice gap = 0 mm). Three-

dimensional T1-weighted sagittal images (MPRAGE sequence, voxel 

size = 1.0 × 1.0 × 1.0 mm3) were acquired in the same session to have 

a high-resolution anatomical reference for registration and 

normalization of the functional images.  

During the fMRI scan, the list of 168 verbs was serially and randomly 

provided to the subject in their infinitive form using a video display 

unit (connected to a back-projection screen in the MRI room) 

controlled by a personal computer (synchronized with the fMRI 

acquisition). A row of white fixation crosses (++++++) was 

maintained on the center of the visual field against a black 
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background. Using a rapid event-related paradigm (ISI: 7.2 s; jitter: 

2.4 s), stimuli (white lower-case letters, Arial font, size 48) replaced 

the fixation crosses for a period of 800 ms. Participants were asked to 

covertly inflect the verb on the screen in the past participle form. 

Stimuli were replaced by a row of fixation crosses (++++++) for 1400 

ms. When the crosses were replaced by hashtags (########) for 1000 

ms, participants were then required to produce aloud the past 

participle. Stimuli presentation and the word production timings were 

uncoupled to minimize possible artifacts associated with small head 

movements due to the word production. Vocal responses were 

reproduced in the MRI console via loudspeakers connected to the 

stimulation computer, recorded via an MRI compatible voice 

microphone laying on their mouth (Serene Sound, Resonance 

Technology, USA, www.mrivideo.com) and then checked for 

accuracy by an experimenter. Besides, a row of fixation 

crosses/hashtags rather than a simple fixation cross/hashtag was used 

to avoid spurious activations in visual brain areas.  

Before starting the experiment, participants were instructed and 

performed a brief offline simulation of the task using a small set of 

stimuli not included in the experimental list. 

 

2.2.3 Data analysis 

 

2.2.3.1 Behavioral data analyses 

Statistical analyses were carried on both response latencies and 

response accuracy.  

Concerning the response latencies, the effect of the inflectional class 

was tested using an ANOVA by participants (F1) and by items (F2).  

In both cases, Conjugation was considered the independent variable 

with three levels (1st, 2nd, and 3rd), and the response time of the regular 

verbs from all the conjugations was considered as the dependent 

variable. 

Response time, elicited only the 2nd and the 3rd conjugations, were 

used as the dependent variable in an ANOVA by participants (F1) and 

by items (F2) where the Conjugation (two levels: 2nd and 3rd) and the 

Regularity (two levels: regular and irregular) were considered as 
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independent variables to test the main effect of Conjugation, 

Regularity and their interaction.  

Incorrect responses (yes/no) were analyzed using a Generalized linear 

mixed model (GLMM), where Conjugation, Regularity, and their 

interactions were considered as fixed effects (Jaeger, 2008; Quené and 

van den Bergh, 2008). Significant effects and parameters were 

evaluated using a Wald chi-square test (Bates et al., 2015).  

A qualitative analysis was performed on the incorrect responses to 

explore whether regular and irregular paradigms could influence 

morphological errors. The following distinction has been made: 

• Regularizations: 

1. a regular inflection is used to inflect an irregular verb-stem. 

2. the regular inflection of a given conjugation is used to inflect 

a verb-stem from a different conjugation. 

• Irregularizations: 

1. an irregular inflection is used to inflect a regular stem. 

2. irregular verbs are inflected by using an irregular inflectional 

affix not compatible with the input stem. 

Within the categories “Regularizations” and “Irregularizations” 

additional subclasses have been identified: 

• conjugation change: errors resulting from the combination of 

verb-stems with suffixes belonging to other conjugations. 

• no change: errors resulting from the combination of verb-stems 

with a suffix which is present within the conjugation of the target. 

These classifications allowed us to explore to what extent participants 

followed the conjugation rules in making errors. In fact, according to 

the dual-mechanism the 1st conjugation, acting as the default class, 

tends to attract the errors (Say and Clahsen, 2002). 

 

2.2.3.2 Image data analysis 

Slice scan time correction, motion correction, spatial smoothing 

(Gaussian kernel with 6 mm full width half maximum), and high-pass 

filtering (cut-off to 0.008 Hz) were applied to the fMRI time-series 

using BrainVoyager QX (Version 2.8, Brain Innovation, The 

Netherlands, www.brainvoyager.com). Then, the fMRI images were 

registered to the MPRAGE images, and the resulting realigned data 
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were then transformed into Talairach space before the computation of 

a random-effects multi-subject GLM.  

This hierarchical analysis entailed a first-level analysis in which all 

experimental conditions for each subject were modelled as separate 

predictors. The resulting GLM fits thus contained 6 beta weights per 

subject (Reg1, Irr1, Reg2, Irr2, Reg3, Irr3) corresponding to the 6 

predictors of interest in the first-level GLM. Each predictor was 

convolved with a canonical double-gamma hemodynamic response 

function (HRF) peaking 5 s after the offset of word presentation. 

Motion correction parameters (3 translation and 3 rotation parameters) 

were included as covariates of no interest in the first level (individual) 

GLM analysis to account for residual motion-related effects.  

In the second-level analyses, the Conjugation effect in the regular 

verbs and the effect of Regularity, Conjugation, and their interaction 

for the 2nd and 3rd conjugations verbs were analyzed. First, the beta 

values of all the regular verbs entered in a random-effects one-way 

(1x3) ANOVA, where the Conjugation factor had three levels (1st, 2nd, 

and 3rd).  Second, to jointly model the main effects of Regularity and 

Conjugation on verb inflection, as well as their interaction, the beta 

values were analyzed in a two-way 2x2 (Regularity x Conjugation) 

random-effects analysis of variance (ANOVA) model. For this model, 

only 2nd and 3rd conjugation verbs were considered.  

The statistical parametric maps (F statistics) resulting from both 

ANOVA models were overlaid in pseudo color on the average 

Talairach-normalized anatomical scan after correction for multiple 

comparisons using cluster-level thresholding (Forman et al., 1995). 

More specifically, maps were initially thresholded at a voxel-wise p-

value of 0.005 (uncorrected) and then subjected to a whole-brain (no 

mask) correction procedure based on the estimate of the intrinsic 

spatial smoothness of the map and 10000 iterations of a Monte Carlo 

simulation, to determine the minimum cluster size threshold ensuring 

a corrected p-value of 0.05 (cluster-level corrected). Small volume 

corrections were also considered for subcortical nuclei and 

hippocampus based on a priori regional hypotheses (Worsley et al., 

1996). These analyses were carried out to test specific predictions of 

the declarative-procedural model about the role of these areas in 
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processing regular and irregular verb-forms (Ullman, 2001). For 

compact clusters exhibiting significant effects, all activated voxels 

were selected, and the corresponding individual beta values were 

averaged. For each cluster, the averaged beta values (for all the 

experimental conditions) were extracted and plotted (mean betas with 

standard errors). 

 

2.3 Results 
 

2.3.1 Behavioral experiment 

 

2.3.1.1 Response latencies: Conjugation effect in regular verbs 

Two participants were excluded from the ANOVA by participants 

(F1) and by items (F2) because of the high rate of non-valid responses 

(trials during which the voice-key was accidentally activated). Data 

from three items from the 2nd conjugation (“intessere”, to interweave, 

“mietere”, to harvest, and “precedere”, to precede) were excluded 

from the analyses for their elicited error rates higher than 2.5 standard 

deviations over the mean. The effect of the variable Conjugation was 

significant: F1(2, 78) = 17.33, MSE = 7049, p < 0.00001; F2(2, 78) = 

3.89, MSE = 3986, p = 0.02. Tuckey HSD post hoc tests revealed that 

2nd conjugation verbs were responded to significantly slower when 

compared to 1st (+27 ms; p = 0.0001) and 3rd conjugation verbs (+17 

ms; p = 0.001). No significant differences were detected between the 

verbs of the 1st and the 3rd conjugation. 

 

2.3.1.2 Response latencies: main effects of Conjugation and 

Regularity and Conjugation by Regularity Interaction in 2nd 

and 3rd conjugation regular and irregular verbs 

Two participants were excluded from these analyses because of the 

high rate of non-valid responses. Data from three items (“consistere”, 

to consist, and “redigere”, to draw up, 2nd conjugation, irregulars, 

“intessere”, to interweave, 2nd conjugation, regular) were excluded 
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from the analyses due to error rates higher than 2.5 standard deviations 

over the mean. The ANOVAs by participants performed on response 

latencies evidenced (i) a main effect of Conjugation (F (1, 39) = 17.71, 

MSE = 6210, p = 0.0001) with slower response latencies observed for 

the 2nd conjugation verbs (+13 ms) compared to 3rd conjugation verbs; 

(ii) a main effect of Regularity (F (1, 39) = 4.55, MSE = 1651, p = 

0.04) with slower responses for irregular verbs (+7 ms) than regular 

verbs; (iii) a significant Conjugation by Regularity interaction (F (1, 

39) = 4.41, MSE = 1534, p = 0.04) with faster responses for the 3rd 

regular verbs (−13 ms, p = 0.004). 

No significant effects were found in the ANOVA by items. A 

summary of results is provided in Table 2.3 

 
Main effect of Conjugation 

 reaction times error rate 

1st conjugation 548 ms (42) 6% 

2nd conjugation 575 ms (48) 16% 

3rd conjugation 558 ms (46)  13% 

Regularity by Conjugation Interaction 

 regular verbs irregular verbs total 

 reaction 

times 

error 

rate 

reaction 

times 

error 

rate 

reaction 

times 

error 

rate 

2nd conjugation 577 ms 

(47) 

20% 577 ms 

(46) 

30% 577 ms 

(46) 

25% 

3rd conjugation 558 ms 

(46) 

13% 571 ms 

(49) 

27% 564 ms 

(48) 

20% 

total 567 ms 

(48) 

16% 574 ms 

(47) 

28%  

 

Table 2.3 Behavioral experiment: Mean reaction times (standard deviations in 

parentheses) and error rates. 

 

2.3.1.3 Error analyses 

The incorrect responses (whose latencies were excluded from the 

reaction time analyses) constituted 11% of the whole dataset and were 

distributed in 10 categories (Table 2.4).  

Regular verbs of the 1st conjugation elicited a significantly lower error 

rate (5%) compared to both the regular verbs of the 2nd (13%, p = 

0.001) and the 3rd (12%, p < 0.01) conjugations revealing a significant 
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effect of Conjugation (Wald chi-square [df = 2] = 14.62, p < 0.001). 

No significant differences between 2nd and 3rd conjugation verbs were 

observed (p>0.05).  

The analyses performed on the errors of the verbs from the 2nd and the 

3rd conjugations revealed a significant main effect of Regularity (Wald 

chi-square [df = 1] = 19.29, p < 0.001) with the irregular verbs 

showing a significantly higher percentage of errors (25% vs. 15%). 

Concerning the distributions of the incorrect responses in the category 

of the morphological errors, the analysis revealed no errors for the 1st 

conjugation. Errors due to irregularization were significantly higher 

for 2nd conjugation irregular verbs; regularizations errors were mostly 

elicited by 3rd conjugation irregular verbs; the 4% of morphological 

errors resulted in a conjugation change and they mostly interested the 

3rd conjugation regular verbs that were attracted by the pattern of the 

2nd conjugation. (Table 2.5) 

 
Error description Error type rate 

Missing Responses (no response given) 19% 

Fragments (the intended target was not entirely 

articulated) 

30% 

Hesitations (pause made during response articulation) 16% 

Uninflected Stimuli (input stimulus read aloud instead 

of being inflected) 

0.8% 

Visual Errors (response that can be ascribed to a 

misreading of the input stimulus) 

17% 

Phonological Errors (target misspelt and resulting in 

either a word or a non-word  

3% 

Morphological Errors (responses morphologically 

related to the intended target) 

11% 

Mixed Errors (responses related to the intended target 

for more than one feature, misreading of the input 

stimulus and erroneous inflection) 

2% 

Other (responses not included in the described 

categories) 

0.3% 

Table 2.4 Description and distribution of error in different categories. 

 

Morphological errors 

 

1st 

conj 

reg 

1st 

conj 

reg II 

2nd 

conj 

reg 

2nd 

conj 

irr 

3rd 

conj 

reg 

3rd 

conj 

irr 
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Irregularizations 0% 0% 2.9% 18.8% 1.4% 7.2% 

Regularizations 0% 0% 0% 8.7% 4.3% 56.5% 

Conjugation changes 

Irregularizations 

1st 

conj 

reg 

1st 

conj 

reg II 

2nd 

conj 

reg 

2nd 

conj 

irr 

3rd 

conj 

reg 

3rd 

conj 

irr 

towards 

2nd conjugation 
- - 0% 0% 0% 0% 

towards 

3rd conjugation 
- - 0% 0% 0% 0% 

no change - - 3% 19% 1% 7% 

Regularizations 

Regularizations 

1st 

conj 

reg 

1st 

conj 

reg II 

2nd 

conj 

reg 

2nd 

conj 

irr 

3rd 

conj 

reg 

3rd 

conj 

irr 

towards 

1st conjugation 
- - 0% 0% 0% 0% 

towards 

2nd conjugation 
- - 0% 0% 4% 0% 

towards 

3rd conjugation 
- - 0% 0% 0% 0% 

no change - - 0% 9% 0% 57% 

Table 2.5 Distribution of morphological errors across conjugations and regularity 

categories, with a focus on conjugation changes. 

 

2.3.2 Functional MRI experiment 

In the analysis of the activations elicited only by regular verbs (1-way 

ANOVA), statistically significant main effects of the  Conjugation 

were observed in the left middle frontal gyrus (L-MFG) and left pre-

supplementary motor area (L-PreSMA) (p ≤ 0.05, cluster-level 

corrected) (Figure 2.1). Using a small volume correction, bilateral 

activation of the caudate nuclei was also detected (p ≤ 0.05, small 

volume corrected) (Figure 2.1). All these regions were found 

significantly less activated for verbs belonging to the 1st relative to the 

2nd or the 3rd conjugations (post hoc t-test: p < 0.05), albeit equally 

activated for verbs belonging to the 2nd and the 3rd conjugations (post 

hoc t-test: p > 0.05) (Figure 2.1).  
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Figure 2.1 Activation pattern elicited by regular verbs: a main effect of the variable 

Conjugation. Clusters with statistical significant effects (overlaid on a tri-planar view 

of average normalized anatomical scan) and corresponding bar plots of BOLD signal 

changes (mean and standard error in z-score units) are shown for: (a) left middle 

frontal gyrus (L-MFG) (p<=0.05, cluster-level corrected), (b) left pre-supplementary 

motor area (L-PreSMA) (p<=0.05, cluster-level corrected) and (c) left and right 

caudate nuclei (p<=0.05, small volume corrected). The yellow box indicates the 

correction volume. 

 

In the analysis of the activations elicited only by the verbs of the 2nd 

and 3rd conjugations (both regular and irregular) significantly higher 

activations for the irregular verbs compared to the regular ones in the 

left prefrontal cortex (L-PFC) and in the anterior part of the L-IFG was 

observed (Figure 2.2). Using a small volume correction, additional 

main effects of Regularity were also detected in L-PreSMA, in the left 

caudate nucleus and the left hippocampus (Figure 2.3). However, 

while both L-PreSMA and left caudate were significantly more 

activated for irregular, compared to regular verbs, the opposite pattern 

was observed for the hippocampus (post hoc t-test: p < 0.05). 

Independently of regularity, a cluster was detected in the perigenual 

part of the left ACC (L-ACC) exhibiting a significant main effect of 

Conjugation in the 2-way ANOVA model. This cluster was 

significantly more activated for verbs belonging to the 2nd relative to 

the 3rd conjugation (post hoc t-test: p = 0.001) (Figure 2.4). Finally, a 

significant Regularity by Conjugation interaction effect was found in 

the left and right postcentral gyri (R-, L-PostCG) (Figure 2.5). 
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Irregular verbs of the 2nd conjugation elicited significantly weaker 

activation than regular ones; 3rd conjugation verbs elicited the opposite 

pattern. 

  

Figure 2.2 Activation pattern elicited by regular or irregular verbs from the 2nd and 

the 3rd conjugation: main effect of Regularity. Clusters with statistical significant 

effects (overlaid on a tri-planar view of average normalized anatomical scan) and 

corresponding bar plots of BOLD signal changes (mean and standard error in z-score 

units) are shown for: (a) left prefrontal cortex (L-PFC) (p<=0.05, cluster-level 

corrected), (b) left inferior frontal gyrus (L-IFG) (p<=0.05, cluster-level corrected).  
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Figure 2.3 Activation pattern elicited by regular or irregular verbs from the 2nd and 

the 3rd conjugation: main effects of Regularity. Clusters with statistically significant 

effects (overlaid on a sagittal view of average normalized anatomical scan) and 

corresponding bar plots of BOLD signal changes (mean and standard error in z-score 

units) are shown for: (a) left PreSMA (p<=0.05, small volume corrected), (b) left 

caudate nucleus (p<=0.05, small volume corrected), (c) left hippocampus (p<=0.05, 

small volume corrected). The yellow boxes indicate the correction volumes. 

 

  

Figure 2.4 Activation pattern elicited by regular or irregular verbs from the 2nd and 

the 3rd conjugation: main effects of Conjugation. A cluster with statistical significant 

effects (overlaid on a tri-planar view of average normalized anatomical scan) and the 

corresponding bar plot of BOLD signal changes (mean and standard error in z-score 

units) is shown in the perigenual part of the left anterior cingulate cortex (L-ACC) 

(p<=0.05, cluster-level corrected). 



32 

  

Figure 2.5 Activation pattern elicited by irregular or verbs from the 2nd and the 3rd 

conjugation: Regularity x Conjugation interaction. A cluster with statistically 

significant effects (overlaid on multiple axial slices from the average normalized 

anatomical scan) and the corresponding bar plot of BOLD signal changes (mean and 

standard error in z-score units) is shown in the bilateral post-central gyri (R-, L-

PostCG). 

2.4 Discussions 
In this study, the neural correlates of the production of the past 

participle of the Italian verbs have been investigated using a 

behavioral and an fMRI rapid event-related experiment. Our results 

support the idea that the inflection is influenced by the presence of the 

inflectional classes. 

 
2.4.1 Main effect of Conjugation 

A main effect of Conjugation has been observed in both the behavioral 

and the fMRI analyses. In the former, the 2nd conjugation verbs 

showed significantly higher response latencies compared to both the 

1st and the 3rd conjugation verbs, that showed similar responses. In the 

latter, significantly higher activations for the 2nd and 3rd conjugations 

compared to the 1st have been observed in the L-MFG, L-preSMA, 

and bilaterally in the caudate nucleus. Both results support our 

hypothesis that inflectional class information affects the inflectional 

process. In particular, behavioral results do not conform with the 
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single- or the dual-mechanism and they are in line with previous 

studies (Bordag and Pechmann, 2009; Colombo et al., 2006, 2004; De 

Martino et al., 2017; Laudanna et al., 2004; Veríssimo and Clahsen, 

2009). Similarly, the results of the fMRI analysis do not follow the 

predictions either of the dual-mechanism (Ullman, 2001) or the single-

mechanism (Joanisse and Seidenberg, 2005). The lower activation for 

the 1st conjugation verbs in the L-MFG can be explained by a lower 

need for control and response monitoring (Miceli et al., 1983; Perani 

et al., 1999; Shapiro et al., 2006; Willms et al., 2011) due to the high 

consistency (Laudanna et al., 2004). The higher activations elicited by 

the verbs from the 2nd and the 3rd conjugations compared to the 1st in 

the L-preSMA is coherent with the idea that this area supports the 

articulation planning process (Kielar et al., 2011) that is needed to 

select the correct items among competing alternatives (de Diego 

Balaguer et al., 2006). Finally, the analyses on the morphological 

errors show that both regularizations and irregularizations are coherent 

with the conjugation paradigm rather than be biased towards the 1st 

conjugation, thereby ruling out the possibility to explain the observed 

results with the dual-mechanism model, where the largest, the most 

regular and productive inflectional class (the 1st conjugation in Italian) 

acts as default (Say and Clahsen, 2002).  

 

2.4.2 Main effect of Conjugation in 2nd and 3rd conjugation 

regular and irregular verbs 

A Conjugation effect was observed in both behavioral and fMRI 

analyses in the comparison between 2nd and 3rd conjugations, with the 

former that elicited higher response latencies and higher BOLD 

activations in the L-ACC. These results support the role of the 

inflectional classes during the inflectional process and do not follow 

the predictions of the dual- or single-mechanism. The direction of the 

behavioral results and the widely acknowledged role of the ACC in 

the error detection process (Carter and van Veen, 2007) are in line with 

the idea that the different regularities of the 2nd and 3rd conjugations 

influence speakers’ performances (Colombo et al., 2006, 2004; 

Laudanna, 2007) 
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2.4.3 Main effect of Regularity in 2nd and 3rd conjugation verbs 

An effect of the Regularity has been observed in both the fMRI and 

the behavioral analyses. A disadvantage for the irregular verbs (i.e. 

higher error rates and slower response latencies) and higher cortical 

responses in the L-PFC, in the anterior part of the L-IFG, in the L-

preSMA and the left caudate have been detected. On the other hand, 

the regional analysis performed on the subcortical nuclei and 

hippocampus revealed a higher cortical response for the regular verbs 

compared to the irregular in the left hippocampus. Although 

differences between the regular and irregular verbs are postulated by 

the dual mechanism model, the observed brain areas are not coherent 

with its neuroanatomical predictions (Ullman, 2001).  

The higher cortical responses for the irregular verbs and its counterpart 

in the behavioral data can be explained by the need for higher 

computational processing compared to the regular ones. For instance, 

the activation in the anterior part of the L-IFG (partly overlapping with 

the BA45 area) is in line with previous studies that suggest a role of 

this area in controlling task-relevant features (Badre and Wagner, 

2002) and in supporting the morphological processing (Carota et al., 

2016). Besides, this finding is in line with a lesion study on 

Parkinson’s disease patient showed a correlation between the 

thickness of the anterior parts of L-IFG and the executive control 

ability to select a target among competing alternatives (Di Tella et al., 

2018).  

All these findings suggest that the inflection of the irregular verbs is 

affected by the necessity of selecting among competing alternatives. 

 

2.4.4 Conjugation by Regularity interaction in the 2nd and 3rd 

conjugation verbs 

An interaction effect between Conjugation and Regularity has 

observed bilaterally in the PostCG and the behavioral analysis. For 

instance, 3rd conjugation irregular verbs elicited significantly higher 

activation and higher response latencies than 3rd conjugation regular 

verbs, while 2nd conjugation verbs elicited the opposite pattern. The 

observed brain area has been already linked with differential 
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processing load in articulation planning (Indefrey and Levelt, 2004; 

Miceli et al., 1983) and the differences can be explained in terms of 

the number of members and consistency of the inflectional paradigms. 

In fact, the 2nd conjugation is highly inconsistent as it contains 13 

competing alternative paradigms and the regular verbs constitute only 

22% of the class, whereas the 3rd includes only 4 different paradigms 

and the regular verbs are the majority (84%). Therefore, both the 

higher cortical response and higher response latencies for the irregular 

verbs of the 3rd conjugation and the regular verbs of the 2nd, compared 

respectively to the 3rd conjugation regular verbs and the 2nd 

conjugation irregular verbs, are expected and supported by the 

inflectional class properties. Finally, this finding is in line with 

previous behavioral production studies supporting the hypothesis that 

word representations in the output mental lexicon are informed by 

inflectional class properties (Laudanna et al., 2004).  

 

2.5 Conclusions and future perspectives 
Our findings showed that the inflection of the Italian verbs reflects the 

properties of the conjugations rather than the dichotomy 

regularity/irregularity supporting the hypothesis of the lexical 

representation of the inflectional class and suggesting further 

developments of both the dual and the single-mechanism theory, at 

least for highly inflected languages. However, future studies are 

needed to understand the role of different properties of the inflectional 

classes on the inflectional processes, whereas clinical studies on 

pathological populations, the use of different investigation techniques, 

and different grammatical classes like the nouns, could provide 

interesting experimental frameworks to test the lexical representation 

of the inflectional classes.
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3.1 Introduction  
Grammar is the ability to combine words within larger structures and 

manipulate linguistic units, such as stems and morphemes, to generate 

both novel words and word forms (Hagoort, 2019). Word stems 

convey the core meaning, whereas word morphemes specify the 

inflectional properties (e.g. tense for verbs and number for nouns) by 

adapting words to specific contexts without modifying the meaning. 

For example, inflectional morphemes are used to express number 

information for nouns (“one dog” vs. “two or more dogs” in English) 

(Marslen-Wilson and Tyler, 2007). The generation of the noun 

inflected forms intersects both semantic (Baggio and Hagoort, 2011; 

Bybee, 1985; Carreiras et al., 2010; Corbett, 1991; Dahl, 2008; 

Fedorenko et al., 2012; Franzon et al., 2014; Friederici et al., 2000; 

Luzzatti and De Bleser, 1996; Molinaro et al., 2015; Strickland, 2017) 

and inflectional features such as the noun grammatical gender, the 

noun inflectional morpheme and the inflectional class. The first is a 

morpho-syntactic feature that in many languages participates in the 

generation of the noun inflectional paradigm (Aronoff, 1994). The 

second is usually identified with the gender suffixes and it can be 

considered transparent, opaque or even irregular when it is 

respectively, highly, equally or unreliably associated with a specific 

gender on distributional grounds. The third is a group of words that 

generate their inflected forms following the same pattern. 

In general, the brain mechanisms underlying the generation of 

inflectional morphology have been mainly studied by comparing 

words with a regular and irregular inflection (see (Leminen et al., 

2019) for a review) and by contrasting nouns and verbs (Benetello et 

al., 2016; Finocchiaro et al., 2010; Miozzo et al., 2010; Shapiro et al., 

2005; Tsigka et al., 2014; Tyler et al., 2004). In addition, researchers 

focused also on nominal inflection by mainly investigating the 

consequences on the lexical access of the gender-to-morpheme 

transparency, i.e. the variable consistent association between gender 

and specific morphemes (typically the noun suffixes). It has been 

shown that noun forms with a gender transparent suffix are processed 

faster compared to nouns with opaque (i.e. morphemes that can be 

equally associated with more than one gender) and/or irregular 
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suffixes (i.e. morphemes that can be associated with more than one 

gender although are strongly biased towards one specific gender). 

Moreover, the comparison between the brain responses to gender 

transparent and gender opaque words elicited regionally specific 

effects mostly in temporal and frontal cortical areas (Caffarra et al., 

2014; Caffarra and Barber, 2015; Heim, 2008; Heim et al., 2005; 

Hernandez et al., 2004; Miceli et al., 2002; Padovani et al., 2005; 

Quiñones et al., 2018; Wang and Schiller, 2019). However, it has not 

been yet fully clarified whether such effects are genuinely due to the 

suffix transparency or other to gender-related inflectional properties. 

Indeed, behavioral, neural and simulation studies have shown that 

nominal inflection is affected by distributional factors such as suffix 

type frequency, suffix predictability and inflectional neighborhood 

size (Mirković et al., 2011; Nevat et al., 2017; Zwitserlood et al., 

2000), at least in highly inflected languages where multiple parameters 

contribute to the lexical representation of words and word-forms 

(Baayen et al., 2011; Hendrix, 2016; Milin et al., 2009). For instance, 

the Italian inflectional paradigm of nouns consists of two forms 

(singular and plural) that are distinguished by the inflectional suffix 

(i.e. the final vowel) encoding both gender and number information 

(i.e. letto/letti, bed/beds, masculine, casa/case, house/houses, 

feminine). The final vowel of the singular form (the citation form) acts 

as a criterion for the generation of number-inflected forms and the 

distinction between nominal inflectional classes (i.e. the different 

singular-to-plural mapping possibilities) ((Salvi and Vanelli, 2004), 

see Table 3.1) that are classified by descriptive grammars according 

to their reliability of the gender-to-ending association of the citation 

form (Table 3.2):  

• transparent classes, where gender is highly associated with 

the citation form suffix, (i.e. masculine nouns from the -o/-i 

class and feminine nouns from the -a/-e class);  

• opaque classes, where the gender suffix can be equally 

probable for masculine and feminine nouns in the citation 

form (masculine and feminine nouns from the -e/-i class); 
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• irregular classes, where the gender suffix could be 

untrustworthy in the citation form (masculine nouns from the 

-a/-i class and feminine nouns ending in -o). 

 

Inflectional 

class 

Inflectional 

endings 

(singular/plural) 

Prevailing 

gender 
Examples 

1 -o/i masculine 
orologio/orologi 

(watch/watches) 

2 -a/-e feminine 
mela/mele 

(apple/apples) 

3 -e/-i 

masculine 

and 

feminine 

ponte/ponti 

(bridge/bridges) 

nave/navi 

(ship/ships) 

4 -a/-i masculine 
clima/climi 

(climate/climates) 

5 singular=plural 
masculine and 

feminine 

città, crisi 

(city/cities, 

crisis/crisis) 

Table 3.1: Inflectional Classes of Italian nouns (Salvi and Vanelli, 2004) 

 
 

Distribution of Italian nouns across inflectional classes 

Singular/plur

al suffix 
Type Frequency (percentages) 

Type Frequency (raw 

values) 

o/i 31.3% 7,391 

a/e 23.4% 5,528 

a/i 0.6% 140 

e/i 20.1% 4,737 

other 24.7% 5,823 
 100% 23,619 

Singular/plur

al suffix 
Masculine Nouns Feminine Nouns 

 

Type 

Frequency 

(percentages

) 

Type 

Frequency (ra

w values) 

Type 

Frequency 

(percentages

) 

Type 

Frequenc

y (raw 

values) 

o/i 60.8% 7,389 0.02% 2 

a/e 0.1% 8 48% 5,520 

a/i 1% 138 0.02% 2 
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e/i 20% 2,449 20% 2,288 

other 18% 2,165 32% 3,658 
 100% 12,149 100% 11,470 

Distribution of inflectional endings in Italian nouns 

Singular 

Suffix Type Frequency (percentages) 
Type Frequency (raw 

values) 

-o 33% 7,763 

-a 27% 6,459 

-e 26% 6,032 

other 14% 3,365 
 100% 23,619 

Suffix Masculine Nouns Feminine Nouns 

 

Type 

Frequency 

(percentages

) 

Type 

Frequency 

(raw values) 

Type 

Frequency 

(percentages

) 

Type 

Frequenc

y (raw 

values) 

-o 57% 7,726 0.4% 37 

-a 4% 578 58.9% 5,881 

-e 25% 3,429 26.1% 2,603 

other 14% 1,906 14.6% 1,459 
 100% 13,639 100% 9,980 

Plural 

Suffix Type Frequency (percentages) 
Type Frequency (raw 

values) 

-i 54% 12,831 

-e 30% 7,048 

other 16% 3,740 
 100% 23,619 

Suffix Masculine Nouns Feminine Nouns 

 

Type 

Frequency 

(percentages

) 

Type 

Frequency 

(raw values) 

Type 

Frequency 

(percentages

) 

Type 

Frequenc

y (raw 

values) 

-i 75,27% 10,266 25,7% 2,565 

-e 8,1% 1,099 60% 5,949 

other 16,7% 2,274 15% 1,466 
 100% 13,639 100% 9,980 
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Table 3.2: Distribution of noun inflectional suffixes and inflectional classes across 

grammatical genders in written Italian. Counts were performed on the DeGNI 

database (De Martino et al., 2019, 2018) that provides gender and inflectional class 

annotations for noun-types (23,619 records) extracted from the CoLFIS corpus 

(Bertinetto et al., 2005).  

However, in Italian, there are additional features of the inflectional 

suffixes that might play a critical role in the lexical access.  

First, the same suffix can be present in both masculine and feminine 

nouns, but it can be differently associated with the gender and the noun 

inflectional pattern. For example, the suffix –a is present in the citation 

form of two kinds of non-opaque (i.e. transparent and irregular) nouns, 

however, it is gender transparent for feminine nouns (i.e. class #2 in 

Table 3.1) and irregular for masculine nouns (i.e. class #4 in Table 

3.1). It has been shown that these associations influence the lexical 

processing (Cubelli et al., 2005; De Martino et al., 2017, 2011) and, 

likely, they affect also the inflectional mechanism. 

Second, in some Italian inflectional classes, the transparency of the 

gender suffix is not fixed as it changes within the paradigm of the 

noun. In fact, it is possible that a noun suffix is transparent in one 

inflectional variant of the noun (i.e. the plural form of the class #3 in 

Table 3.1) and not transparent in the other one (i.e. the singular form 

of the class #3 in Table 3.1), thus possibly influencing the inflectional 

operations. This variability in the degree of transparency of the gender 

suffix across different inflectional variants of the same noun 

constitutes the index of consistency of Italian nominal inflectional 

classes. It has been hypothesized, but not fully clarified, that the 

consistency of inflectional classes, their type-frequency (number of 

members) and token frequency (cumulative frequency of members) 

could affect lexical processing, and specifically inflectional 

operations, independently of, or in interaction with, the gender suffix 

transparency (De Martino et al., 2019; but see also Mirković et al., 

2011; Nevat et al., 2017; Zwitserlood et al., 2000). 

In this work, we aimed at verifying whether and how the 

lexical system and its neural correlates respond to distributional 

parameters of inflectional properties of nouns by exploiting the Italian 

rich and complex morphology and the availability of reliable corpus-

based quantitative data about the distribution of noun inflectional 
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features (De Martino et al., 2019, 2018). Therefore, 50 healthy young 

adults were enrolled in a fast event-related functional MRI (fMRI) 

experiment where they were asked to inflect nouns aloud from 

singular-to-plural and vice versa upon visual presentation of an input 

form. Noun stimuli were selected to create a factorial experimental 

design highlighting the specific effect of the gender-to-suffix 

association (transparency) and the consistency and size of the 

inflectional class. The assumption underlying the task is that, during 

inflectional processes, the suffix of the input form triggers the 

selection of the inflectional paradigm through the identification of the 

grammatical gender. If the transparency of the gender suffix of the 

input form is the key factor in inflectional processing, we expect that 

the process should be less demanding for transparent input noun 

forms, regardless of the size and consistency of their inflectional class. 

For example, masculine nouns from the -a/-i class should be processed 

more effortlessly when being inflected from P2S than from S2P. In 

contrast, if the consistency and/or of the frequency distribution of the 

inflectional class affect inflectional processing, the inflectional 

operations are expected to be globally more demanding for nouns from 

small and/or less consistent inflectional classes. More specifically, in 

light of previous studies, regionally specific differences in fMRI 

responses between opaque and non-opaque nouns are expected in left 

temporal and frontal areas (Hernandez et al., 2004; Miceli et al., 2002; 

Padovani et al., 2005; Quiñones et al., 2018). Besides, the interplay 

between the transparency of gender suffixes and the size and 

consistency of inflectional classes should modulate the cortical 

activity in specific temporal and frontal regions involved in both noun 

processing (Finocchiaro et al., 2010; Shapiro et al., 2005) and 

attentional control and error monitoring (Marangolo et al., 2006, 2003; 

Piras and Marangolo, 2007; Pliatsikas et al., 2014). 

 

3.2 Materials and Methods 
 

3.2.1 Participants 

https://paperpile.com/c/U6cgnk/F93L+x1Fy+UcAO+zVh6
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Fifty healthy participants (mean age 23.94 ± 3.66 years old, 28 females 

and 22 males) took part in this study. They all had no known history 

of neurological and language disorders, were Italian native speakers, 

right-handed, and had a normal or corrected-to-normal vision. 

The experiment conformed to the principles of the Declaration of 

Helsinki and was approved by the local ethics committee. All 

participants signed a concise, transparent, intelligible and easily 

accessible written informed consent where it was clearly stated all the 

characteristics of the experimental procedure and that the collected 

data would have been used for research purposes. 

 

3.2.2 Stimuli 

Seventy-six Italian nouns were selected from the inflectional classes 

2, 3, and 4 (Table 3.1) and were used as experimental stimuli in two 

inflectional tasks: S2P and P2S (Table 3.3). 

 
S2P 

task 

Gender 

Masculine Feminine 

Citation 

form 

suffix 

Input 

Output 

Transpa

rency 

Size 

and 

consistency 

Input 

Output 

Transpa

rency 

Size 

and 

consistency 

a 

Panora

ma 

Panora

mi 

non-

opaque 

Small 

inconsistent 

Pagina 

Pagine 

non-

opaque 

Large, 

consistent 

e 
Paese 

Paesi 
opaque 

Medium, 

Partially 

consistent 

Palude 

Paludi 
opaque 

Medium, 

inconsistent 

P2S 

task 

Gender 

Masculine Feminine 

Citation 

form 

suffix 

Input 

Output 

Transpa

rency 

Size 

and 

consistency 

Input 

Output 

Transpa

rency 

Size 

and 

consistency 

a 

Panora

mi 

Panora

ma 

non-

opaque 

Small 

inconsistent 

Pagine 

Pagina 

non-

opaque 

Large, 

consistent 

e 
Paesi 

Paese 
opaque 

Medium, 

Partially 

consistent 

Paludi 

Palude 
opaque 

Medium, 

incosistent 
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Table 3.3: Scheme of the experimental design 

The stimuli were arranged into 4 experimental conditions:  

1. masculine non-opaque (or masculine irregular): singular 

form ending in –a; plural form ending in –i, 

panorama/panorami, landscape/landscapes; 

2. masculine opaque: singular form ending in –e; plural form 

ending in –i, pedale/pedali, pedal/pedals; 

3. feminine non-opaque (or feminine transparent): singular 

form ending in –a; plural form ending in –e, pagina/pagine, 

page/pages;  

4. feminine opaque: singular form ending in –e; plural form 

ending in –i, parete/pareti, wall/walls. 

 

The experimental conditions were matched for the main 

psycholinguist variables as reported in Table 3.4. Values for written 

frequency were extracted from the CoLFIS database (Bertinetto et al., 

2005), whereas values for spoken frequency were taken from the 

VoLIP database (De Mauro et al., 1993). Imageability values were 

obtained by asking an additional group of 20 participants (not enrolled 

in the fMRI study) to judge the imageability of the experimental 

stimuli using a 7-points Likert scale. The initial phoneme, the 

phonological complexity, and the stress pattern were kept under 

control across all the experimental conditions. 

 

Grammatical 

Gender 
Masculine Feminine 

Citation Form 

Suffix 
-a -e -a -e 

 Mean SD Mean SD Mean SD Mean SD 

#letters 6.7 1.5 6.6 1.3 6.8 1.7 6.7 1.9 

#syllables 3.0 0.7 3.0 0.6 3.2 1.0 2.9 0.8 

#phonemes 6.4 1.5 6.4 1.3 6.4 1.7 6.4 1.9 

n-count 2.3 2.0 3.0 1.8 2.5 2.0 2.9 2.3 

#consonant 

clusters 
0.6 0.6 0.5 0.5 0.5 0.6 0.5 0.5 

#geminates 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 
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stress on 

antepenultimate 

syllable 

0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 

singular form 

written 

frequency (log 

per million) 

0.9 0.8 1.1 0.6 1.3 0.7 1.3 0.7 

plural form 

written 

frequency (log 

per million) 

0.6 0.7 0.8 0.7 1.0 0.7 0.7 0.6 

singular form 

spoken 

frequency (log 

per million) 

0.8 0.8 0.7 0.8 1.1 0.8 0.9 0.8 

plural form 

spoken 

frequency (log 

per million) 

0.3 0.7 0.5 0.7 0.7 0.7 0.5 0.6 

imageability 4.5 1.0 4.9 1.0 4.7 1.1 4.7 1.0 

Table 3.4: Mean and standard deviation values for the psycholinguistic parameters 

controlled in the experiment. 

The selected stimuli allowed the comparison of masculine and 

feminine nouns sharing the gender suffixes, “-a” and “-e”, as input 

(S2P task) or output forms (P2S task). These suffixes are differently 

associated with grammatical gender across the Italian nominal 

inflectional classes (see Table 3.2). Stimuli in conditions (1) and (3) 

are respectively masculine and feminine non-opaque nouns that share 

the inflectional suffix in the singular form (–a) but belong to different 

inflectional classes. Stimuli in condition (3) are feminine nouns 

showing the mapping pattern “-a/-e” between singular and plural that 

is a highly consistent pattern mostly associated with the feminine 

gender. Thereby, these noun forms have highly reliable (transparent) 

gender suffixes both in the singular and in the plural form (see Table 

3.2). On the other hand, condition (1) contains stimuli with the 

mapping “-a/-i” between the singular and the plural form. This pattern 

is highly infrequent and violates the widespread inflectional pattern of 

singular nouns ending in “-a” that is strongly biased in favor of 

feminine nouns with the “-a/-e” mapping. Therefore, the suffix of 
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nouns in this condition is irregular in the singular but completely 

transparent in the plural form (-i is the suffix for all Italian masculine 

plural nouns regardless of their inflectional class, see Table 3.2). 

Conditions (2) and (4) contain respectively masculine and feminine 

nouns that share the inflectional class. Inflectional suffixes for the 

singular and the plural form within this class show some peculiarities: 

the suffix “-e” in the singular is equally associated with masculine and 

feminine nouns, whereas the suffix “-i” in the plural is biased in favor 

of masculine plurals. Therefore, the plural of feminine opaque nouns 

violates a prevailing association between the suffix “-i” and the 

masculine gender (see Table 3.2).  

Additional 76 nouns were extracted from the remaining inflectional 

classes (classes 1 and 5, Table 3.1) and were added as filler stimuli to 

avoid effects of list composition. A whole list of 152 stimuli was 

administered to the participants. 

 

3.2.3 Experimental procedure 

Participants were presented with the singular (or plural) noun form and 

were requested to produce overtly the plural (or singular) form. 

Thereby, each participant was assigned either to the S2P task group or 

the P2S task group in a pseudo-random order and the stimulus set was 

chosen accordingly. The S2P group was composed of 10 males and 15 

females (mean age 24.16 ± 3.27 years old) whereas the P2S group was 

composed of 12 males and 13 females (mean age 23.79 ± 4.23 years 

old). 

During the fMRI scan, 152 nouns were serially displayed to the 

subject. In the S2P (P2S) experiment nouns were presented in their 

singular (plural) form in random order on a video display unit 

(connected to a back-projection screen in the MRI room) controlled 

by a personal computer (synchronized with the fMRI acquisition). The 

experimental protocol was written in Python 2.7 using PsychoPy2 

module (Peirce, 2008, 2007). For off-line accuracy assessment (error 

counting), participants’ oral responses were recorded via an MRI 

compatible voice microphone laying on the mouth of the subjects 

(Serene Sound, Resonance Technology, USA) and then transcribed by 

one of the experimenters. For online monitoring of the experiments, 
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the responses were also reproduced in the MRI console via 

loudspeakers connected to the stimulation computer.  

Each experimental trial started with a row of white fixation crosses 

(+++++++) that was presented on the center of the screen against a 

black background. Using a rapid event-related paradigm (ISI 7.5s, 

jitter 4.5s), stimuli (white lower-case letters, Arial font, size 60) 

replaced the fixation crosses for 800 milliseconds. Participants were 

then asked to covertly inflect the displayed noun from the singular 

(plural) to the plural (singular). A 1200 ms period then followed, 

during which the row of fixation crosses (+++++++) appeared again. 

When the crosses were replaced by hashtags (#######), for 1000 ms, 

participants were required to produce aloud the plural (singular) form 

of the noun. It was decided to have participants to produce their 

responses only after 1200 ms after the stimulus had disappeared from 

the screen to minimize the impact of possible motion artefacts 

associated with small head movements induced by word production 

and to reduce as much as possible the inter-trial and inter-subject 

variability in the expected onset of the neural responses. Moreover, a 

row of fixation crosses/hashtags, rather than a simple fixation 

cross/hashtag, was used to avoid spurious activations in visual brain 

areas.  

Before entering the scanner, participants received instructions about 

the experimental session and underwent a brief simulation of the task 

where they were instructed to either perform the S2P task or the P2S 

task using a set of 10 stimuli not included in the experimental list.  

 

3.2.4 Image acquisition      

MRI was performed on a 3 Tesla scanner (Magnetom Skyra, Siemens 

Healthcare, Germany) equipped with a 20-channel parallel head coil. 

The fMRI scan consisted of 1200 volumes of a multi-band (Feinberg 

et al., 2010; Moeller et al., 2010; Xu et al., 2013) repeated gradient-

echo echo-planar imaging (EPI) sequence (repetition time (TR) = 

1000 ms, echo time (TE) = 30 ms, number of axial slices = 60, matrix 

= 96 x 96, field of view (FOV) = 240 mm, thickness= 2.5 mm, 

interslice gap = 0 mm, multi-band factor = 4). Two more short multi-

band gradient-echo EPI sequences were acquired. The first was 
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identical to the sequence of 1200 volumes, whereas the second was 

acquired with an opposite phase encoding. Three-dimensional T1w 

Magnetization Prepared Rapid Gradient-Echo (MPRAGE) sequence 

(TR =2400 ms, TE= 2.26 ms, TI = 950 ms, flip angle = 8°, slice 

thickness = 1.0 mm, matrix size = 256x256, number of slices = 192 

and voxel size = 1.0 x 1.0 x 1.0 mm3) was acquired in the same session 

in order to have a high resolution anatomical reference for registration 

and normalization of the functional images. 

 

3.2.5 Behavioral data analysis 

For both tasks, incorrect responses and non-responses were scored as 

errors and were used in both qualitative and quantitative analyses.  

Errors were analyzed through a generalized linear mixed model fit by 

maximum likelihood (Laplace Approximation) (Baayen et al., 2008; 

Jaeger, 2008) in R with the lme4 package (Bates et al., 2015). The 

analysis included as fixed factors the two within-subject factors 

(grammatical gender and citation form suffix) and one between-

subject factor (the inflectional task), whereas subjects and items were 

considered as random factors. Frequency values for both written 

inputs (Bertinetto et al., 2005) and spoken outputs (De Mauro et al., 

1993) were added the model as predictors and their interactions with 

the other variables were taken into account. To evaluate the 

collinearity of the predictor matrix both the degree of correlation 

between input and output frequency and the variance inflation factor 

(VIF) were assessed. A qualitative analysis of the morphological 

errors was performed to investigate if they are caused by the 

interference from highly frequent inflectional patterns or by the degree 

of the gender suffix transparency in the different inflectional variants 

of the nouns.  

 

3.2.6 FMRI data analysis 

First, slice scan time correction followed by motion correction was 

applied to the fMRI time-series using BrainVoyager QX (Version 2.8, 

Brain Innovation, The Netherlands, www.brainvoyager.com). Then, 

the data were converted in NIfTI format and the task sequence (1200 
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volumes) was corrected for distortions with FSL TOPUP tool 

(Andersson et al., 2003; Jenkinson et al., 2012; Smith et al., 2004) 

using the two short sequences acquired in opposite phase encoding. 

The corrected fMRI series was imported back in BrainVoyager for 

high-pass filtering (cut-off to 0.008 Hz) and spatial smoothing 

(Gaussian kernel with 6mm full width half maximum). This fMRI 

series was registered to the MPRAGE images, and the resulting 

realigned data were then transformed into Talairach space before the 

computation of a random-effects multi-subject general linear model 

(GLM).  

For the first-level analysis, a single study deconvolution-based general 

linear model (GLM) was applied to the volume time-courses with 

“stick” predictors defined over each interval of 20 s from the time of 

visual presentation of the stimulus in its input form (singular in S2P, 

plural in P2S). In this way, we defined 20 predictors of interest for 

each stimulus. The six motion parameters were added in the GLM 

model as confound predictors.  

For the second-level analysis, a random-effects (RFX) GLM was 

applied and the main effects of all four predictors corresponding to the 

five delays between 3 s and 7 s (i.e. around the expected peak of the 

BOLD response) were estimated. A three-way ANOVA (2 within 

factor and 1 between factor) was performed, considering grammatical 

gender and the citation form gender suffix as within-subject factors 

with two levels (gender: masculine vs. feminine; citation form suffix: 

opaque vs. non-opaque) and inflectional task as a between-subject 

factor with two levels (S2P vs. P2S). The F statistics of the main 

effects of each factor and all interaction terms were calculated at each 

voxel. The resulting statistical maps were overlaid in pseudo-color on 

the average Talairach-normalized anatomical scan after correction for 

multiple comparisons using cluster-level thresholding (Forman et al., 

1995; Goebel et al., 2006). More specifically, maps were initially 

thresholded at a voxel-wise p-value of 0.001 (uncorrected) and then 

given in input to a whole-brain (no mask) correction procedure based 

on the estimate of the intrinsic spatial smoothness of the map and on 

1000 iterations of a Monte Carlo simulation, to determine the 
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minimum cluster size threshold ensuring a corrected p-value of 0.05 

(cluster-level corrected) at each voxel. 

To disclose the direction of the interaction effects, post-hoc paired t-

tests comparing the different categories were performed on the 

average GLM betas from all clusters with significant effects from the 

voxel-based analysis. The results of the post-hoc contrasts were 

considered statistically significant at p = 0.05 after correction for 

multiple comparisons using the Bonferroni criterion. 

 

3.3 Results 
Data from 6 participants were excluded from both the error and the 

fMRI data analyses due to excessive head movement (>3mm and/or 

>3°, 4 participants), technical reasons (incomplete acquisition, 1 

participant) and error rate exceeding 2 standard deviations the group 

mean (1 participant). Therefore, data from 44 subjects (19 males and 

23 females) were included in the error and fMRI data analyses. 

Responses to 3 stimuli (cute, skin, duce, leader and duca, duke) were 

removed from the fMRI dataset of both S2P and P2S task, whereas 

responses to 2 stimuli (eritema, erythema, and comma, subsection) 

were removed only from the S2P dataset since they resulted as 

incorrect responses for more than 10% of participants. These 

responses were considered in a separate predictor of no interest in the 

first-level fMRI analysis. 

 

3.3.1 Behavioral Performances 

Error rates, means, and corresponding standard deviations are reported 

in Table 3.5. Errors constituted 3.5% of the whole response dataset 

and were distributed in 7 categories (Table 3.6). Only 1.4% of the 

overall response dataset (41% of errors) resulted in morphological 

errors due to incorrect computation of inflection. The remaining 59% 

of errors were due to other factors. 

No significant correlation (r=0.2, p =0.25) was observed between 

input and output frequency. VIF of all variables was less than 5, thus 

supporting the absence of collinearity among predictors. A significant 

3-factors interaction between gender, citation form suffix and 
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inflectional task was found (Wald chi-square [df = 1] = 4.07, p = 0.05). 

In particular, in the comparison between S2P and P2S tasks, non-

opaque masculine nouns elicited more errors than feminine non-

opaque nouns, whereas the opaque nouns showed the opposite pattern 

with feminine nouns eliciting more errors than masculine nouns. 

 
S2P Inflectional Task 

 masculine 

non-opaque 

masculine 

opaque 

feminine 

non-opaque 

feminine 

opaque 

Mean ± SD 1.57 ± 0.95 

(8.2%) 

0.57 ± 0.59 

(3%) 

0.43 ± 0.66 

(2.30%) 

0.83 ± 1.03 

(4.30%) 

P2S Inflectional Task 

 masculine                        

non-opaque 

masculine 

opaque 

feminine                     

non-opaque 

feminine 

opaque 

Mean ± SD 0.76 ± 0.7 

(4%) 

0.43 ± 0.68 

(2.3%) 

0.19 ± 0.51 

(1%) 

0.43 ± 0.68 

(2.3%) 

Table 3.5: Error rates distribution across experimental categories and inflectional 

tasks (Mean, standard deviations and percentages (in parentheses) values).  

 

Error description 
Error type 

rate 

Uninflected Stimuli 34% 

Missing Responses 28% 

Mixed Errors 

(responses related to the intended target for more than one feature) 
17% 

Visual Errors 

(response that can be ascribed to a misreading of the input 

stimulus) 

10% 

Inflectional Errors 

(responses where the input stimulus was not correctly inflected) 
8% 

Hesitations 

(pause made during response articulation) 
2% 

Other 

(responses not included in the described categories) 
1% 
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Table 3.6: Qualitative analysis of incorrect responses 

 

3.3.2 Functional MRI Results 

Significant main effects of gender and significant 2- and 3-way 

interaction effects (gender by citation form suffix and gender by 

citation form suffix by inflectional task) were observed.  

The significant effects are reported in Table 3.7 and are described in 

the following paragraphs.  

 

Gender-by-Suffix-by-Inflectional Task 

Region Talairach coordinates (x,y,z) size (mm3) P-value 

R-SFG 33 11 46 259 0.000167 

L-pCC -6 -31 31 1794 0.000003 

L-MTG -60 -34 10 246 0.000072 

Gender-by-Opacity 

Region Talairach coordinates (x,y,z) size (mm3) P-value 

L-IFG -45 11 22 441 0.000004 

L-pCC -9 -31 34 377 0.000004 

L-cerebellum -24 -64 -26 802 0.000029 

R-MTG 60 -22 -20 401 0.000024 

Table 3.7: Clusters of statistically significant fMRI changes (p<0.05, cluster level 

corrected, cluster forming threshold p=0.001). 

 

3.3.2.1 Main effects of Gender 

Significant main effects of Gender (p<0.05, cluster level corrected, 

cluster forming threshold p=0.001) were found in the cerebellum 

(bilaterally) and the R-MTG (Figure 3.1 and Figure 3.2). Post-hoc t-

tests revealed that in all these regions there was an increased activation 

for feminine nouns when compared to masculine nouns (p<0.05, 

corrected for multiple comparisons).  
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Figure 3.1: Bar plots of BOLD signal changes for masculine and feminine nouns in 

the R-MTG and the Cerebellum. 
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Figure 3.2: Activation pattern elicited by the “gender” factor. Clusters with statistical 

significant effect (overlaid on a tri-planar view of average normalized anatomical 

scan) are shown bilaterally in the cerebellum (b= right cerebellum; c= left cerebellum) 

and the right middle temporal gyrus (R-MTG, a) (p<0.05, cluster level corrected, 

cluster forming threshold p=0.001). 

 

3.3.2.2 Gender by citation form suffix interaction  

Significant gender by citation form suffix interaction effects (p<0.05, 

cluster level corrected, cluster-forming threshold p=0.001) were found 

in the left Inferior Frontal Gyrus (L-IFG, Figure 3.4a), in the left 

posterior Cingulate Cortex (L-pCC, Figure 3.4b), in the left 

cerebellum (Figure 3.4c) and the Right Middle Temporal Gyrus (R-

MTG, Figure 3.4d).  

The following contrasts reached the statistical significance in the post 

hoc t-tests (Figure 3.3). Increased activation was observed for 

masculine non-opaque (irregular) nouns when compared to masculine 

opaque nouns in all the significant clusters (p<0.05, corrected for 

multiple comparisons).  

Feminine opaque nouns yielded a significantly higher activation in the 

L-IFG and the left cerebellum when compared to feminine transparent 

nouns (p <0.05, corrected for multiple comparisons).  

A significant difference between masculine and feminine nouns was 

detected among both opaque nouns and non-opaque nouns: masculine 

non-opaque (irregular) nouns produced a significantly higher 

activation when compared to feminine non-opaque (transparent 

nouns) in the L-IFG, L-pCC, and R-MTG (p<0.05, corrected for 

multiple comparisons). Second, a significantly higher activation for 

feminine opaque nouns compared to masculine opaque nouns was 

found in the L-pCC, in the left cerebellum, and the R-MTG (p<0.05, 

corrected for multiple comparisons).  
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Figure 3.3: Bar plots of BOLD signal changes detected in L-IFG, L-PCC, L-

Cerebellum, and R-MTG for masculine and feminine nouns with opaque vs. non-

opaque citation form suffix. 
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Figure 3.4: Activation pattern elicited by the interaction of two factors: gender and 

citation form suffix. Clusters with statistical significant effect (overlaid on a tri-planar 

view of average normalized anatomical scan) are shown in the left inferior frontal 

gyrus (a, L-IFG), left posterior cingulate cortex (b, L-pCC), left Cerebellum (c) and 

right middle temporal gyrus (d, R-MTG) (p<0.05, cluster level corrected, cluster 

forming threshold p=0.001) 
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3.3.2.3 Gender by citation form suffix by inflectional task 

interaction  

Significant gender by citation form suffix by Inflectional Task 

interaction effects (p < 0.05, cluster level corrected, cluster-forming 

threshold p=0.001) were detected in the left Middle Temporal Gyrus 

(L-MTG, Figure 3.6a), in the L-pCC (Figure 3.6b) and the right 

Superior Frontal Gyrus (R-SFG, Figure 3.6c). 

The following contrasts reached the statistical significance in the post 

hoc t-tests (Figure 3.5). In the S2P task, feminine opaque nouns 

exhibited significantly higher activation than masculine opaque nouns 

(L-MTG and L-pCC (p<0.05, corrected for multiple comparisons)), 

feminine transparent nouns (L-pCC (p<0.05, corrected for multiple 

comparisons) and masculine non-opaque nouns (L-MTG (p<0.05, 

corrected for multiple comparisons)).  

Masculine irregular nouns yielded higher activation compared to both 

feminine transparent and masculine opaque nouns in the L-PCC 

(p<0.05, corrected for multiple comparisons).  

Considering the P2S task, the R-SFG was found more activated by 

feminine non-opaque nouns than masculine non-opaque nouns 

(p<0.05, corrected for multiple comparisons). 
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Figure 3.5: Bar plots of BOLD signal changes detected in R-SFG, L-MTG and L-

PCC for masculine and feminine nouns with opaque vs. no opaque citation form suffix 

in the S2P (a) and P2S (b) inflectional task. 

 

 
Figure 3.6: Activation pattern elicited the interactions of three factors: gender, 

citation form suffix and inflectional task. Clusters with statistical significant effect 

(overlaid on a tri-planar view of average normalized anatomical scan) are shown in 

the left middle temporal gyrus (a, L-MTG), left posterior cingulate cortex (b, L-pCC) 

and right superior frontal gyrus (c, R-SFG) (p<0.05, cluster level corrected, cluster 

forming threshold p=0.001). 

 

3.4 Discussions 
This work investigated the neural correlates of nominal inflection by 

exploring the effects of the gender transparency and the distributional 
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properties of inflectional classes (size and consistency) by 

manipulating the grammatical gender, the gender suffixes, and the 

inflectional classes in a factorial analysis of both behavioral (error) 

and neural (fMRI) data. FMRI data showed that nominal inflectional 

operations activate an extensive bilateral cortical network involving 

L-pCC, frontal areas (L-IFG, R-SFG), temporal areas (R- and L-

MTG) and the cerebellum, that is in line with previous functional 

neuroimaging findings (Benetello et al., 2016; Finocchiaro et al., 

2010; Marangolo et al., 2006, 2003; Miceli et al., 2002; Padovani et 

al., 2005; Piras and Marangolo, 2007; Pliatsikas et al., 2014; Quiñones 

et al., 2018; Shapiro et al., 2005).  

Moreover, for the first time, our data support that nominal inflectional 

processes are sensitive to the size and consistency of the inflectional 

classes rather than be influenced only by the variable transparency of 

gender morphemes. In fact, smaller and/or less consistent inflectional 

classes yielded higher cortical activity, suggesting a higher cognitive 

and attentional demand and confirming our hypothesis that 

inflectional distributional factors modulate cognitive processes and 

neural mechanisms underlying lexical access (Baayen et al., 2011; De 

Martino et al., 2019, 2020; Hendrix, 2016; Milin et al., 2009; Mirković 

et al., 2011; Nevat et al., 2017; Zwitserlood et al., 2000).  

It is worth noting that, despite the focus on a language-specific 

phenomenon (Italian nominal inflection), our data support the more 

general claim that the functioning of the mental lexicon is sensitive to 

the existence of highly frequent phenomena in a linguistic 

environment whether they are formal, grammatical or semantic 

(Cibelli et al., 2015; Pylkkänen et al., 2004). The lower cortical 

activity elicited by the inflection of noun belonging to highly frequent 

and consistent inflectional classes suggests that speakers benefit from 

the presence of words in the mental lexicon that are inflectionally 

consistent with the input. On the contrary, the inflection of nouns 

belonging to less consistent inflectional classes needs extra cognitive 

processing load, attentional control and error monitoring.  

In the following subsections, the specific findings from behavioral and 

neural data will be discussed. 
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3.4.1 Behavioral performance 

Statistical analyses performed on incorrect responses revealed an 

interaction between inflectional task, grammatical gender and citation 

form suffix showed that in the comparison between the S2P task and 

the P2S task. In particular, non-opaque masculine nouns (panorama, 

landscape) elicited more errors than feminine non-opaque nouns 

(pagina), whereas the opaque nouns showed the opposite pattern, with 

feminine nouns (parete) eliciting more errors than masculine nouns 

(pedale). The finding suggests that when noun forms have an 

unreliable gender suffix and belong to small and inconsistent 

inflectional classes they can be disadvantaged during inflectional 

operations. 

3.4.2 Main effect of gender 

The inflectional processing of feminine, compared to masculine, 

nouns were associated with significantly higher activation bilaterally 

in the cerebellum and the R-MTG. This finding suggests the presence 

of a higher attentional resource demand induced by the asymmetry of 

the gender-to-ending association between masculine and feminine 

nouns stimuli used in the present study. In our experiments, masculine 

nouns have a transparent (or at least a highly biased) suffix, whereas 

feminine nouns have a transparent suffix only when they are the input 

forms in the S2P task. Therefore, the inflectional suffixes of feminine 

nouns turned out to be, more ambiguous and trickier, thus requiring 

higher neural activity in regions devoted to error monitoring and 

attentional control. Particularly, the increase of the cerebellar activity 

for feminine nouns is likely to be an epiphenomenon of the executive 

attentional control required by the lower degree of gender 

transparency of feminine suffixes and it is supported by a growing 

number of studies suggesting a crucial role for this region in high-

order cognitive functions related to language processing (Kellett et al., 

2012; King et al., 2019; Marek et al., 2018; Mariën et al., 2014; Pleger 

and Timmann, 2018; Pliatsikas et al., 2014; Ullman, 2004). Similarly, 

the activation observed in the R-MTG is in line with previous lesion-
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studies that proposed the involvement of right-hemisphere areas in 

linguistic tasks when a choice between alternatives is necessary 

(Marangolo et al., 2006, 2003; Piras and Marangolo, 2007).  

These findings show that the noun inflectional processing elicits 

neural responses in regions involved in control activities related to 

linguistic tasks and that it is modulated by the distributional properties 

of inflectional morphemes. 

 

3.4.3 Gender by citation form suffix interaction  

The gender by citation form suffix interaction elicited significant 

activations in the L-pCC, the L-IFG, the left cerebellum and the R-

MTG. In all these regions, increased neural activation was observed 

for masculine non-opaque nouns when compared to masculine opaque 

nouns. A less extended pattern was observed among feminine nouns: 

in the L-IFG and left cerebellum feminine opaque nouns elicited 

higher activations than feminine non-opaque nouns. Significantly 

higher activation for the masculine non-opaque compared to the 

feminine non-opaque nouns were observed in the L-IFG, the L-pCC 

and the R-MTG. Feminine opaque nouns elicited higher activation 

compared to masculine opaque nouns in the L-pCC, the left 

cerebellum and the R-MTG.  

All these effects cannot be explained by the transparency of gender 

suffixes per se thus supporting the hypothesized role of size and 

consistency of the inflectional class (Baayen et al., 2011; De Martino 

et al., 2020; Hendrix, 2016; Milin et al., 2009; Mirković et al., 2011; 

Nevat et al., 2017; Zwitserlood et al., 2000). In fact, as these findings 

come from the pooled data of both inflectional tasks, the observed 

neural response is likely to be ascribed to the interplay of the nominal 

inflection features rather than the transparency of each specific form. 

Specifically, the L-IFG showed increased activation for nouns 

belonging to scarcely consistent inflectional classes (i.e. feminine 

opaque and masculine non-opaque) both compared to nouns from a 

highly consistent class (i.e. feminine non-opaque). These findings are 

supported by previous observations about the involvement of the L-

IFG (BA 44, Broca’s area) in the processing of gender-related 

inflectional affixes (Heim, 2008; Miceli et al., 2002; Padovani et al., 
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2005) and the inflectional morphology of verbs (De Martino et al., 

2020). The similar effects observed in the R-MTG are also coherent 

with this explanation and are in line with previous research (Padovani 

et al., 2005; Quiñones et al., 2018).  

The L-pCC showed higher activation for the feminine opaque and 

masculine non-opaque nouns compared respectively to masculine 

opaque and feminine non-opaque in the L-pCC. In line with the 

previous observations, also this finding can be ascribed to higher 

attentional control and/or self-monitoring of the ongoing performance 

required by nouns from less consistent inflectional patterns. The L-

pCC is part of a so-called “task-negative” network (Fox et al., 2005) 

and its activation in language tasks has been associated with the 

difficulty of the linguistic task or to its metalinguistic nature (Miceli 

et al., 2002). Moreover, a recent study documented anatomical 

changes in L-pCC volume after language therapy sessions based on a 

combination of anodal transcranial direct current stimulation (tDCS) 

and written naming/spelling therapy in primary progressive aphasia 

(de Aguiar et al., 2020).  

Finally, the differences observed between masculine non-opaque and 

masculine opaque nouns with the same gender but belonging to 

different inflectional classes in the left cerebellum confirm that 

inconsistent inflectional paradigms require increased executive 

control in the linguistic task (De Smet et al., 2007; Guell et al., 2018; 

Kellett et al., 2012; King et al., 2019; Mariën et al., 2014; Pleger and 

Timmann, 2018).  

 

3.4.3 Gender by citation form by inflectional class interaction 

The L-MTG, the L-pCC and the R-SFG, were found to respond 

significantly to the interaction between gender, citation form suffix 

and inflectional task. Specifically, during the S2P task, L-pCC was 

significantly more activated for feminine opaque, compared to 

feminine non-opaque nouns and for masculine non-opaque, compared 

to both feminine non-opaque and masculine opaque nouns. In both 

cases the experimental category that showed higher activation is 

characterized by an inflectional morpheme that is distributionally 

biased towards another experimental category, thus increasing the 
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difficulty of the S2P inflectional task and the need of language-related 

attentional control and error monitoring that has been already 

observed in this brain region (Miceli et al., 2002). 

During the S2P task, feminine opaque nouns also elicited significantly 

higher activation than masculine opaque nouns, in the L-MTG and the 

L-pCC. In this case, the effect cannot be accounted by the (suffix) 

transparency per se, as both the suffix –e and the S2P inflectional 

mapping -e/-i are equally distributed between the two genders. 

However, the observed effect can be ascribed to the interplay between 

the degree of transparency of the input suffix and the consistency of 

the inflectional pattern. In fact, the suffix –i is present in all masculine 

plural forms but only in 26% feminine plural nouns, therefore 

generating an asymmetry that might increase the cognitive demand for 

the selection of the appropriate gender for feminine plural nouns 

ending in -i. Moreover, L-MTG and L-pCC, have been associated 

respectively to lexical storage and retrieval (Binder, 2015; Heim, 

2008) and increased attentional control in linguistic tasks (Miceli et 

al., 2002). Crucially, this finding suggests that, rather than being a 

fixed independent cue to grammatical gender, the transparency of 

gender suffixes is likely to interact with the size and consistency of the 

gender-to-suffix association within the noun paradigm.  

When considering the P2S task, the R-SFG was found significantly 

more activated for feminine non-opaque nouns when compared to 

masculine non-opaque nouns. This effect can be explained 

considering specific task-related requirements as, in the input forms of 

the P2S task, the suffix –i occurs more frequently than the suffix –e. 

In fact, it is associated to three out of four experimental categories, 

therefore, reproducing the distribution in the natural context (64% of 

noun plurals ending in -i vs. 36% of noun plurals ending in -e (De 

Martino et al., 2019, 2018)). Thus, the less frequent feminine non-

opaque plurals ending in -e might require higher attentional control 

and error monitoring compared to all other plurals ending in -i and 

involve the intervention of an error detection system supported by the 

R-SFG (Dapretto and Bookheimer, 1999; Hagoort and Brown, 1999; 

Indefrey and Levelt, 2004; Padovani et al., 2005). 
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3.5 Conclusions  
Our findings suggest that the neural correlates of nominal inflection 

are supported by an extensive bilateral cortical network involving L-

pCC, frontal areas (L-IFG, R-SFG), temporal areas (R- and L-MTG) 

and the cerebellum. The rich and complex Italian inflectional system 

provided a valid testing ground to disclose the interplay between 

morphological (e.g. the transparency of gender suffixes) and 

distributional (i.e. the size and consistency of inflectional classes) 

factors in language processing, that have not been fully considered in 

the available cognitive and neuroanatomical models. 

Moreover, our findings suggest that the access to the mental lexicon 

benefit of highly frequent phenomena in a linguistic environment, 

whether they are formal, grammatical or semantic, therefore 

supporting the general notion that the statistical structure of a language 

affects the functioning of the mental lexicon and its neural correlates. 

Future investigations are needed to further analyze the role of 

qualitative and quantitative properties of words from different 

inflectional classes in cross-linguistical, naturalistic and clinical 

experimental framework to provide additional insights on how the 

brain processes crucial morphological operations. 

This research also suggests that current standards in implementing 

protocols for language evaluation, treatment and mapping in brain-

damaged patients can be improved when inflectional morphology 

processing is considered, especially for highly inflected language.  
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4.1 Introduction  
Probabilistic language models are increasingly used in combination 

with naturalistic fMRI to provide neural representations of linguistic 

processes beyond the perceptual experience by generating informative 

neural predictors from (series of) spoken or written words, which can 

be used to map the neural correlates of single words (Huth et al., 2016; 

Pereira et al., 2018) or encode language-related sequential processing 

occurring in the human brain (Armeni et al., 2017; Brennan et al., 

2016; Lopopolo et al., 2017; Willems et al., 2016).  

It is thought that, during normal functioning, the human brain 

is constantly engaged in predicting what (input) is coming next on the 

base of the available information (Clark, 2013; Friston, 2005). Similar 

to other cognitive domains, natural language comprehension relies on 

specific neural processes based on the expectation or prediction of 

words, letters or other linguistic elements, when these are embedded 

in naturalistic streams (Armeni et al., 2017; Frank and Willems, 2017; 

Kuperberg and Jaeger, 2016). For the naturalistic analysis of linguistic 

features, mismatches between the actual input and the expected one 

can be quantified using an information-theoretic measure known as 

surprisal (Hale, 2001; Levy, 2008). The latter can be estimated with 

the use of any probabilistic language model assigning conditional 

probabilities to linguistic units such as words, letters, phonemes or 

part-of-speech tags (Armeni et al., 2017). Therefore, a word surprisal 

indicates its unexpectedness (i.e. the surprise) given the previous 

words, and it has been parametrically linked to the language-related 

cognitive effort or difficulty  (Demberg and Keller, 2008; Hale, 2016, 

2001; Levy, 2008; Smith and Levy, 2013).  

In previous fMRI studies, different linguistic predictability measures 

have been correlated with the blood oxygen level dependent (BOLD) 

signal measured during both active (reading) and passive (listening) 

language comprehension tasks (Carter et al., 2019; Frank et al., 2015; 

Frank and Willems, 2017; Henderson et al., 2016; Lopopolo et al., 

2017; Shain et al., 2020; Willems et al., 2016). Among these, two 

previous studies employed word-level conditional probabilities in a 

listening task: in the first, using multiple excerpts from an audiobook, 

Willems et al. reported significant effects of a lexical surprisal 
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predictor within a broad network including the left inferior temporal 

sulcus, the superior temporal gyrus and the temporal poles bilaterally 

(Willems et al., 2016). In the second, a re-analysis of the same data set 

was proposed by Lopopolo et al. (2017), using the so-called perplexity 

(an exponential transformation of surprisal), which was developed in 

three different versions to address the lexical, syntactic and 

phonological information. The lexical perplexity was found to be more 

selectively correlated with the BOLD activity in the left inferior 

temporal gyrus and the superior temporal gyrus bilaterally (Lopopolo 

et al., 2017). Furthermore, Shain et al. (2020) recently showed that 

linguistic prediction is specifically supported by the language network 

and that these predictions are sensitive both to local word co-

occurrence patterns and to the hierarchical structure of sentences 

(Shain et al., 2020).  

Recent studies also showed the flexibility and the power of using 

distributed word embedding models to address the neurological bases 

of semantics in different naturalistic experimental settings (Nishida 

and Nishimoto, 2017; Pereira et al., 2018; Wang et al., 2018). 

However, to the best of our knowledge, distributed word vectors have 

never been used to account explicitly for the semantic dimension in 

linguistic prediction models like the surprisal. 

The aim of this work was to provide additional insights about 

the neural underpinnings of linguistic prediction during spoken 

narrative listening by analyzing naturalistic fMRI data with an 

augmented surprisal model explicitly accounting for the semantic 

dimension. Therefore, a naturalistic fMRI experiment was designed in 

which healthy Italian participants were asked to listen to a 12-minute 

narrative in Italian while their BOLD signal was recorded and, later, 

to respond to a post hoc questionnaire to assess their comprehension. 

To model continuous fMRI time-series, two word-level surprisal 

predictors were derived from a large written Italian corpus (Lyding et 

al., 2014), respectively based on purely lexical information (Lopopolo 

et al., 2017; Willems et al., 2016) and on a combination of lexical and 

semantic features of each word (Mitchell, 2010; Mitchell and Lapata, 

2009; Sayeed et al., 2015). In light of previous findings (Willems et 

al., 2016), we expected that the model associated with pure lexical 
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information would activate secondary auditory areas in the temporal 

cortex, whereas the augmented semantics-weighted surprisal would 

possibly increase the correlation between the surprisal predictor and 

the fMRI signal in higher-order areas such as the left inferior frontal 

gyrus, where the new upcoming information is supposed to be 

integrated in the context (Binder et al., 2009; Hagoort, 2013, 2005; 

Zhu et al., 2012). Moreover, as the surprisal measure has been proven 

to be a good proxy of the linguistic cognitive effort (Demberg and 

Keller, 2008; Hale, 2016, 2001; Levy, 2008; Smith and Levy, 2013), 

a possible correlation between the participants’ elicited BOLD 

response (taken as a neural index of cognitive effort) and the 

participants’ scores to the post hoc questionnaire (taken as a 

behavioral index of their comprehension of the story) was also 

theorized. 

 

4.2 Material and Methods 
 

4.2.1 Participants 

Thirty-one healthy volunteers (Italian native proficient speakers, 23 

females, mean age 24.2 ± 4.4 years old) without known psychiatric or 

neurological problems, with normal or corrected-to-normal vision and 

without hearing, developmental and language-related problems, were 

enrolled in the experiment. All participants were right-handed by self-

report, and all participants were naive concerning the purpose of the 

experiment. Written informed consent was obtained following the 

Declaration of Helsinki, and the study was approved by the local ethics 

committee.  

 

4.2.2 Stimuli 

The stimulus used in the present work has been selected from the 

website of “Progetto Babele Rivista Letteraria” 

(http://www.progettobabele.it) where several written and spoken 

Italian narratives of semi-professional and amateur writers are 

available. The excerpt used in this work is “Storia di Gianna e delle 
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sue chiavi” (“Story of Gianna and her keys”) written by Carlo Santulli 

and read by Silvia Cecchini 

(https://www.progettobabele.it/AUDIOFILES/ascolta.php?ID=841). 

The excerpt was spoken at an average rate of 156 words per minute 

that is in line with the recommended word per minute rate for 

audiobooks (Williams, 1998). Stimulus duration was 11:50 min (1878 

written words).  

The bigrams with the presence of an apostrophe were entered in the 

model first as two separate words, then only the surprisal relative to 

the second word was considered as it includes the whole bigram and 

it was listened by the subjects as a single word. Therefore, the final 

number of words used in the subsequent analysis was 1856.  

Reversed speech version of the stimulus was obtained with Audacity 

2.03 (https://www.audacityteam.org/) by importing the original audio 

track and then applying a transformation so that the end of the audio 

was heard first and the beginning last. This technique has been used in 

previous studies (Lopopolo et al., 2017; Willems et al., 2016) as the 

reversed speech is comparable to forward speech in terms of auditory 

characteristics while omitting the linguistic components (but see also 

Brown et al., 2012). To avoid and reduce biases due to previous 

knowledge of the story, in this study a short narrative of an amateur 

writer was chosen as our stimulus. Indeed, all subjects declared that 

they did not have any prior knowledge of the story. 

 

4.2.3 Definition of Surprisal 

A human speaker, using specific rules (syntax) sets the order of a list 

of words to convey a message. As a consequence, it can be postulated 

that the language system, after the processing of the first t−1 words 

(W1,..., Wt−1) of a stream will be in a state that implicitly assigns a 

conditional probability: P(Wt|W1,...,Wt−1) to each potentially 

upcoming word Wt (Kuperberg and Jaeger, 2016).  

The surprisal associated with an upcoming new word appearing at a 

time (or position) t is defined as the negative logarithm of its 

conditional occurrence probability: 

 

surprisal (t) = -log10(P ((Wt | W1…., Wt-1)) (1) 

https://www.audacityteam.org/
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If the conditional probability of the observed word is one it means that 

given the left-side context of the word there are no other possible 

outcomes, thereby the surprise in observing the word is null. On the 

other hand, the occurrence of a word that was not among the candidate 

outcomes, i.e. an event with a null probability, corresponds to infinite 

surprisal value.  

The conditional probabilities essential for the estimation of the 

surprisal values can be calculated by any probabilistic language model 

(Henderson et al., 2016; Willems et al., 2016).  

 

4.2.4 Definition of semantic vector space 

In 1954, Harris postulated the distributional hypothesis of language 

affirming that the meaning of a word can be inferred from the contexts 

in which it is used (Harris, 1954). Using word co-occurrences in a 

large corpus, it is possible to observe that, for example, the contexts in 

which the word “merchant” is used are similar to those in which the 

word “dealer” occurs, whereas the context of occurrence of “dog” and 

“pillars” are essentially different (Tripodi and Pira, 2017). In the 

natural language processing field, this hypothesis supported the 

construction of several algorithms to create vector space models where 

each word is represented by an N-dimensional vector (Dumais, 2004; 

Mikolov et al., 2013; Pennington et al., 2014; Sayeed et al., 2015; 

Turney and Pantel, 2010), where N is the number of the so-called 

context words that are the most common in the language corpus 

(excluding the determiners and conjunctions).  

The i-th component of the word vector w (ci) is estimated as the ratio 

between the conditional probability of the context word ci given the 

word w and the (unconditional) probability of the context word ci: 

 

vi = p (ci| w) / p(ci)   (2) 

The numerator in (2) can be obtained by iterating through the corpus 

and counting how many times word w appears together with a context 

word ci within a fixed window of words. A window size of 10 was 

selected to weaken possible syntactic effects and the 1000 most 

common words (excluding function words such as determiners) of the 
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corpus were chosen as context words (Huth et al., 2016; Sayeed et al., 

2015). Vector representations of unknown words (i.e. words do not 

present in the corpus) were artificially created using a vector of ones 

to guarantee the mathematical structure of the model and to not bias 

these unknown words towards a specific context word. 

This representation allows estimating the semantic similarity between 

two words using the cosine of the angle between the word vectors ŵ 

and ĥ 

 

cos(φ) = (ŵ * ĥ) /(|ŵ|*|ĥ|)      (3) 

In this work to prepare the corpus and to estimate the vector semantic 

space a combination of custom scripts in Python (Software 

Foundation. Python Language Reference, version 3.5. available at 

http://www.python.org) was used based on the package Natural 

Language Toolkit (NLTK) (Bird et al., 2009) and TreeTagger 

(Schmid, 1994). Additional custom scripts in R (Tierney, 2012) and 

bash scripts were also used.  

 

4.2.5 Estimation of the surprisal models 

Two different types of surprisal were estimated. The first is based on 

the word co-occurrences of the observed lexical form given the 

preceding local context estimated on a large corpus, therefore it can 

be referred to as a lexical surprisal (LS). In the second type, a 

multiplicative factor expressing the semantic similarity of the current 

word with a preceding broader context is introduced to modulate the 

co-occurrences of the current lexical form with the left-side local 

context (independent from the local one), using the distributed 

representations of the words in a vector space model, therefore it can 

be called semantics-weighted surprisal (SwS).  

The word co-occurrences used to build both the semantic vector space 

model and the probability for the LS need to be estimated on a large 

linguistic corpus. In this study, the PAISÀ corpus that is a Creative 

Commons licensed large web corpus of contemporary Italian was 

used. The latter corpus contains approximately 388,000 documents 
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from 1,067 different websites, for a total of about 250M tokens 

(Lyding et al., 2014). 

Word co-occurrences were estimated after a series of pre-processing 

steps on the corpus that was necessary to fulfil the requirements of the 

used software (see next sections), i.e. to reduce the sparsity of the word 

vector and the computational cost. Thereby, residuals and spurious 

HTML tags, words with a total frequency of less than fifty (in most 

cases they represented typos or obsolete words) were removed from 

the corpus. Finally, the corpus was split into sentences (one sentence 

per line), all words were lowered, and the punctuation marks were 

removed.  

 

4.2.5.1 Estimation of the lexical surprisal 

The LS was based only on the co-occurrences of the observed lexical 

form given its context in a large corpus. In this work, a stable and 

widely used stochastic model was used: the second-order Markov 

model, also known as trigram model (Armeni et al., 2017; Willems et 

al., 2016). It is based on the idea that, in a given sentence formed by 

words {W1, W2…., WN} the probability of observing the word Wt 

given the whole left-side context P(Wt|W1,..., Wt-1) can be 

approximated to P(Wt|Wt−2, Wt−1) (i.e. the probability of observing the 

word Wt given only the two preceding words). Surprisal values 

estimated by trigram models have been used successfully in recent 

neuroimaging studies (Frank and Willems, 2017; Lopopolo et al., 

2017; Willems et al., 2016) and in many psycholinguistic EEG studies 

that demonstrated that trigram-based surprisal correlates positively 

with the N400 (Frank et al., 2015). The LS values were estimated 

using the software SRILM and Kneser-Ney smoothing was used to 

control for possible unknown words, i.e. words that are not present in 

both the raw and the preprocessed version of the corpus (Stolcke et al., 

2011). Unknown words were either atypical inflected forms of an 

Italian word or obsolete words. The absence in the corpus was either 

due to the corpus preprocessing  (e.g. the removal of words with a 

frequency lower than 50) or to the fact that these words were already 

absent in the web documents that were searched during the creation of 

the corpus (Lyding et al., 2014). In total, after corpus preprocessing, 
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3.7% of the words in the corpus were labelled as unknown. For 

example, an unknown (obsolete) word was the word “vapoforno” 

(literally steam-oven) that refers to a specific oven used in the past to 

bake the bread, whereas a word with a frequency of 1, and thus lower 

than 50, was “sbattei” (I slammed). 

 

4.2.5.2 Estimation of the semantics-weighted surprisal 

The SwS was estimated following the semantic surprisal model 

originally presented in (Mitchell and Lapata, 2009) and recently 

implemented and used by Sayeed and colleagues in a psycholinguistic 

study (Sayeed et al., 2015). In this study, it has been shown that the 

SwS can successfully predict spoken word durations in naturalistic 

scenarios such as workgroup meetings (Sayeed et al., 2015). Briefly, 

this model integrates the probabilities obtained by the trigram model 

and the semantic similarity calculated from the vector space model 

between the considered word and its preceding words (i.e. the history 

of the word). However, a distinction between the “content” words (i.e. 

words that carry relevant semantic meaning such as “cat” or “dog”) 

and “function” words (i.e. words that do not have a clear semantic 

meaning such as the determiners) is made. For content words, the 

trigram probability is scaled by a positive factor depending on the 

semantic similarity of the current word with its recent history (i.e. the 

words constituting the preceding context) (Mitchell and Lapata, 2009). 

The theoretical range of this factor is between zero and infinite and 

therefore it can either result in a downscaling (if it is lower than 1) or 

an upscaling (if it is higher than 1) of the trigram probability. For 

function words, the semantic scaling factor is simply set to 1. 

Therefore, assuming that for the function word the SwS is P(Wt|Wt−2, 

Wt−1) (i.e. it equals LS), for the content words the SwS is estimated as 

follows:   

 

SwS = p(Wt|Wt-1, Wt-2) Σiwihip(ci) (4) 

where wi is the i-th component of the semantic vector associated with 

the word Wt, hi is the i-th component of the vector H that is the result 

of the sum of the semantic vectors associated to {W1, W2, W3, ..., Wt-
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3} (the words Wt-1 and Wt-2 are not considered to separate semantic and 

lexical contributes). This formulation originates from two 

modifications in the original definition of the semantic similarity 

(scalar product in eq. 3), to properly account for the influence of the 

frequency of the target word: (i) the terms inside the scalar product are 

multiplied by the unconditional probabilities of the context words (i.e. 

the factor p(ci)) and (ii) the probability of the word to be predicted (i.e. 

the factor p(w)) is replaced by the trigram probability (Mitchell and 

Lapata, 2009; Sayeed et al., 2015). In our implementation of the 

model, the vector history H is obtained by multiplication of the 

semantic vectors of the four content words preceding the lower bound 

of the trigram (i.e. considering the current word as W0 its history 

vector is composed by the words ranging from W-8 to W-3). The four-

word length has been chosen to both have a suitable amount of 

contextual information and to reduce as much as possible any syntactic 

relationship between the context and the word under examination.   

However, as pointed out by Mitchell (2009) the SwS calculated using 

the formula (4) is no longer a probability, so a normalization step is 

required (Mitchell and Lapata, 2009; Sayeed et al., 2015). The 

normalization factor ensures (i) that the semantic similarity factor 

assigned to the content word depends on the semantic similarity 

assigned to all other words and (ii) that only the trigram probability 

factor is re-distributed across the other words (Mitchell and Lapata, 

2009; Sayeed et al., 2015):  

 

ΣWc p(Wc|Wt-1, Wt-2)/ ΣWc p(Wc)  (5) 
 

Therefore, combining (4) and (5) the SwS of the content word can be 

estimated as follows: 

 

SwS = p(Wt|Wt-1, Wt-2) * Σiwihip(ci) *( ΣWc p(Wc|Wt-1,Wt-2)/ ΣWc 

p(Wc))   (6) 

 

In conclusion, given a sequence of words {W1, W2, W3, ..., WN} in a 

sentence, the SwS is: 
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● Content words = p(Wt|Wt-1, Wt-2) * Σiwihip(ci) *( ΣWc 

p(Wc|Wt-1,Wt-2)/ ΣWc p(Wc))   (7) 

● Function words = p(Wt|Wt-1, Wt-2)   (8) 

 

For a more detailed description of the semantic surprisal model and its 

linguistic background see (Mitchell and Lapata, 2009; Sayeed et al., 

2015). For a more detailed empirical analysis of the relation between 

the two surprisal measures (i.e. LS and SwS), with a specific focus on 

the numerical impact of the semantic weighting (scaling factor) on the 

corresponding LS values, as well as on the specific neural effects of 

the semantic component isolated from the SwS model, see section 2 

of the Appendix. 

 

4.2.6 Experimental procedure 

Participants listened to a story, as well as to its reversed version, while 

in the MRI scanner. Half of the participants started with the non-

reversed stimulus and half with the reversed speech stimulus. Before 

entering the scanner, the participant was instructed to listen as 

carefully as possible. A short break separated the two versions of the 

stimulus.  

Stimuli were presented using a custom script written in Python 2.7 

with the use of the PsychoPy2 module (Peirce, 2008, 2007) via MRI 

compatible earphones (Serene Sound, Resonance Technology, USA). 

For online monitoring of the experiments, the stimuli were also 

reproduced in the MRI console via loudspeakers connected to the 

stimulation computer. Before the beginning of the acquisition, a 

volume test was performed: a fragment from another story with 

comparable voice and sound quality was presented while the scanner 

was collecting images. The volume of the audio was adjusted to the 

optimal level based on feedback from the participant.  

 

4.2.7 Post-hoc questionnaire 
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After the acquisition, participants underwent a questionnaire to test 

their comprehension of the non-reversed story. The questionnaire 

contained 8 multiple choice questions regarding the non-reversed 

story with 4 answer options to each question. Questions were about 

general content, and correct answers were summed to have an overall 

level of understanding and attention of each participant. 

 

4.2.8 Image acquisition      

MRI was performed on a 3 Tesla scanner (Magnetom Skyra, Siemens 

Healthcare, Germany) equipped with a 20-channel parallel head coil. 

The fMRI scan consisted of 750 volumes of a multi-band (Feinberg et 

al., 2010; Moeller et al., 2010; Xu et al., 2013) repeated gradient-echo 

echo-planar imaging (EPI) sequence (repetition time (TR) = 1000 ms, 

echo time (TE) = 30 ms, number of axial slices = 60, matrix = 96 x 96, 

field of view (FOV) = 240 mm, thickness= 2.5 mm, interslice gap = 0 

mm, multi-band factor = 4). Two more multi-band gradient-echo EPI 

sequences (5 volumes each) were acquired. The first was identical to 

the sequence of 750 volumes, whereas the second was acquired with 

an opposite phase encoding. Three-dimensional T1w Magnetization 

Prepared Rapid Gradient-Echo (MPRAGE) sequence (TR = 2400 ms, 

TE = 2.26 ms, TI = 950 ms, flip angle = 8°, slice thickness = 1.0 mm, 

matrix size = 256x256, number of slices = 192 and voxel size = 1.0 x 

1.0 x 1.0 mm3) was acquired in the same session in order to have a 

high resolution anatomical reference for registration and 

normalization of the functional images. 

 

4.2.9. Prediction performances 

When comparing the prediction performances between a pure lexical 

and a semantics-weighted surprisal model, it is important to consider 

that (i) the SwS model integrates information of different nature (i.e. 

word co-occurrences and semantic vectors) and (ii) the words included 

in the conditioning context are not the same in the two models. 

Regarding the first point, it is worth noting that the SwS is a weighted 

version of the LS where the semantic of the word is explicitly 

modelled, whereas, in the LS model, the semantic of the word is still 
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present in the lexical form but it is not explicitly taken into account 

during the surprisal estimation. 

Regarding the second point, Frank and Willems, (2017) introduced a 

modified lexical surprisal model, called “skip-bigram”, to overcome 

this disparity in the conditioning context. In brief, the “skip-bigram” 

probability (PSB) is estimated from the co-occurrence of the pair 

(bigram) formed by the considered word and each word outside the 

context used for the trigram model, that has been used to estimate the 

semantic distance. The estimated probabilities are then interpolated 

with the lexical probability (see (Frank and Willems, 2017) for more 

details). According to this study, an adapted version of this model 

could reduce the influence of the length of the conditioning domains 

(see section 2.5.2) in the comparison as it takes into account the same 

context of the semantic distance that is based (by definition) on a 

higher number of context words (four context words vs. two context 

words). Therefore, as the difference between the LS and the SwS is in 

how they model the word meanings, the LS interpolated with the PSB 

allows us to investigate and to isolate the “semantics-weighting” as it 

made the two conditioning domains between the pure lexical and the 

semantics-weighted model perfectly equitable.    

The “skip-bigram” factor for each word was estimated by considering 

the same content words used for the estimation of the SwS semantic 

component. Thus, a modified version of the LS, called “skip-bigram” 

LS (LSSB), was estimated by linearly interpolating the PSB with the LS: 

 

LSSB = -log10(λ p(Wt|Wt-1, Wt-2)  + (1- λ)PSB)    (9) 

 

where 𝜆 𝜖 [0,1]indicates the contribution of the PSB to the surprisal. 

The lower the value in this modified surprisal, the better is the 

prediction (Frank and Willems, 2017). Therefore, the 𝜆  factor that 

minimized the LSSB average was chosen.  

An estimate of the average surprisal was computed for (and compared 

between) the three models (SwS, LS and LSSB), by averaging the 

surprisal values across all words in the narrative text. 

 

4.2.10 Functional MRI Data Analysis 



79 

MRI data pre-processing was performed using BrainVoyager (Brain 

Innovation, The Netherlands, www.brainvoyager.com) (Goebel, 

2012), SPM12 (Wellcome Department of Imaging Neuroscience, 

London, UK, http://www.fil.ion.ucl.ac.uk/spm/), MATLAB R2018b 

(The MathWorks, Inc., Natick, MA, www.mathworks.com) and FSL 

(Jenkinson et al., 2012). FMRI statistical analysis was performed in 

BrainVoyager. 

 

4.2.10.1 FMRI Data Preprocessing   

The raw slice time-series of each scan (DICOM series) were first 

imported in BrainVoyager and carefully reviewed with the time-

course movie tool to promptly detect the occurrence of spikes in the 

images or other acquisition-related technical problems. In 

BrainVoyager, slice timing correction, followed by motion correction 

and high-pass filtering (cut-off to 0.008 Hz) was applied to all fMRI 

time-series. Moreover, starting from the motion parameters, the 

maximum absolute translation/rotation values and the mean 

framewise displacement (FD) were estimated. No de-spiking was 

applied to the fMRI time-series, which were exported to NIfTI format 

and corrected for EPI geometrical distortions with the FSL tool 

TOPUP (Andersson et al., 2003; Jenkinson et al., 2012; Smith et al., 

2004) using the two additional short fMRI time-series acquired with 

opposite phase encoding to estimate the warps. The corrected series 

were then further pre-processed using the Data Processing Assistant 

for Resting-State fMRI toolkit (DPARSF; http://www.rfmri.org) 

(Chao-Gan and Yu-Feng, 2010). In particular, the anatomical and 

functional scans were spatially normalized to the standard Montreal 

Neurological Institute (MNI) template, functional images were 

resampled to 2x2x2 mm voxel sizes and then, white matter (WM), 

cerebrospinal fluid (CSF) signals and the Friston-24 movement 

parameters (Friston et al., 1996) were regressed out from fMRI time 

series. Finally, functional images were spatially smoothed using an 

isotropic 4-mm full-width at half-maximum Gaussian kernel. 

After these steps, all individual fMRI series were imported back in 

BrainVoyager and further transformed into the Talairach space. This 

http://www.brainvoyager.com/
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step allowed the statistical analysis and presentation of group‐level 

activation maps in the surface space on the cortical surface meshes. 

 

4.2.10.2 FMRI Data Modeling and Statistical Analysis  

For the whole-brain voxel-based statistical analysis of the fMRI time-

courses, a two-level (mixed-effects) general linear model (GLM) was 

performed in BrainVoyager. In the first-level GLM, the correlation 

between surprisal estimates and fMRI time-courses was estimated as 

a fixed effect in every single subject in both narrative conditions 

(original and reversed speech). In the second-level GLM, the inter-

subject variability of these effects was assessed by treating subjects as 

random observations. 

The first-level general linear model (GLM) was applied to the volume 

time-courses of each subject (Friston et al., 1995) alternatively 

accounting for the LS or the SwS of the words. In addition to the 

predictor of interest, three predictors of no interest (confounds) 

accounting for word duration (WD), lexical frequency (LF) and root 

mean squared (RMS) amplitude of the word sound (WS) were added 

to the design matrix. The inclusion of the LF ensures that no extra 

effects result from the correlation of fMRI responses with LS and SwS 

predictors because of the absolute (context-independent) rarity of a 

word in a language-representative corpus, whereas the inclusion of the 

WD and the RMS of the WS in two additional parametric nuisance 

predictors ensures that no extra effects result from purely acoustic 

sources of variance, such as the (changing) volume of the sound, or 

the variable prosody, intonation and tone of the speaker’s voice. To 

justify the use of separate fMRI data models for the two surprisal 

predictors (LS, SwS), as well as the inclusion of the LF as confound 

predictor in both models, some additional analyses were performed to 

explore in greater details the multicollinearity of all three predictors 

(LS, SwS, LF) as well as the neural effects associated with the LF 

variable. The description and the results of these analyses are provided 

in section 1 of the Appendix.  

For every single word, starting from the original speech, LS and SwS 

values were estimated using a custom Python script. The LS and SwS 

series were reversed for the reversed speech. Word onsets 
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(timestamps) and durations were separately calculated for the original 

and reversed speech using Speechmatics 

(https://www.speechmatics.com/). The (log-transformed) LF of each 

word was obtained from the PAISÀ corpus (Lyding et al., 2014). As 

the single word represents the linguistic unit of interest for our model, 

all parameters (SwS, LS, WD, LF and RMS) were related to the single 

words, thereby a parametric design was used to build the predictors in 

the GLM. To this purpose, word onsets and durations were used to 

create a box-car predictor, i.e. a function that is one for the whole 

duration of a word and zero otherwise, at the time resolution of 0.01s 

(which is the time resolution of the word timestamp). To generate the 

LS, SwS and LF predictors, the boxcar predictor was amplitude-

modulated at each word by the value of the parameter at that word. To 

generate the WS predictor, the RMS value of the audio signal was 

estimated over the time interval between the onset and the offset of 

each word. Before modulation, the series of each parameter were 

converted to z scores. The unmodulated (box-car) predictor was also 

taken to account for the variable durations of each word. All four 

predictors were then convolved with the hemodynamic response (to 

account for the hemodynamic delay) at the sampling rate of 100Hz. 

Finally, the convolved predictors were down-sampled at the time 

resolution of fMRI (1 Hz). This procedure was applied identically for 

the original and reversed speech stimuli. As the two surprisal models 

were applied separately, two separate GLM were performed where the 

predictor of interest was either the LS or the SwS predictor. To 

decorrelate the other (confound) predictors, the Gram-Schmidt 

procedure was implemented according to its hierarchical formulation, 

whereby the first predictor is simply unaffected by the procedure, the 

second predictor is orthogonal to the first, the third predictor is 

orthogonal to the subspace spanned by the first two predictors, and so 

on. This is equivalent to replacing each confounding variable by its 

residuals from a least-squares regression on the previous variables. 

Because each subject performed two runs (in random order), the 

modelled time courses from both runs (original and reversed speech) 

were concatenated along time and the two design matrices were both 

concatenated along the time dimension (rows) and duplicated (with 
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zero-padding) along the predictor dimension (columns) to keep the 

original and reverse speech conditions separate. 

For the second (group) level analysis, two separate random-effects 

(RFX) GLM analysis were performed: one with the LS and one with 

the SwS, as predictor of interest in the first-level GLM. In both cases, 

the contrast between the “original” and the “reversed” narrative 

stimulus condition was evaluated, resulting in two statistical maps (t 

statistics). These maps were overlaid in pseudo-color on, and, for 

visualization purposes, projected on an inflated cortical mesh of a 

Talairach-normalized T1-weighted scan of a single subject. To correct 

for the multiple voxel-wise comparisons, a cluster-level thresholding 

approach was applied (Forman et al., 1995; Goebel et al., 2006), 

thereby, the t maps were initially thresholded at a maximum voxel-

wise p-value of 0.001 (uncorrected) and then given in input to a whole-

brain (no mask) correction procedure based on the estimate of the 

intrinsic spatial smoothness of the map and on 1000 iterations of a 

Monte Carlo simulation, to determine the minimum cluster size 

threshold ensuring a corrected p-value of 0.05 (cluster-level corrected) 

at each voxel. 

 

4.2.10.3 Likelihood-based model comparison and model fitting 

The clusters where the surprisal models elicited significant activations 

in the original speech compared to the reversed speech were further 

investigated to understand how well the two surprisal models explain 

the variance of the BOLD signal. In particular, the average BOLD 

time-courses for both the original and the reversed story were 

extracted from these clusters in each subject’s data set and the 

resulting inter-subject data matrix (N subjects by 750x2 volumes) was 

used in a likelihood-based model comparison test (Brennan et al., 

2016) where the surprisal, the experiment-related and stimulus-related 

(confounds) predictors were treated as fixed effects and the subjects 

as random effects. First, a specific base model containing the stimulus-

related confounds predictors (LF, WD and RMS) and the experiment-

related predictor (speech direction) was created for each surprisal 

model (two different models to take into account the different effects 

of the Gram-Schmidt procedure applied). Second, the corresponding 
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surprisal predictors (i.e. one for the “real” and one for the “reversed” 

speech) were added to each base model to create a specific augmented 

surprisal model. 

To compare the two augmented statistical models (i.e. the ones that 

include the surprisal as first predictor) in their ability to explain the 

variance of the neural data (i.e. the BOLD signal from each ROI), a 

simulated likelihood ratio test (LRT) (Royston and Thompson, 1995) 

was performed. 

The LRT is used to compare (and choose between) two competing 

statistical models. For example, within the current literature of natural 

language processing applied to fMRI, Brennan et al. (2016) have 

shown how LRTs can be repeatedly applied to hierarchically compare 

different syntactic models, with the purpose to evaluate the unique 

contribution made by each type of syntactic structure to the BOLD 

signal across ROIs (Brennan et al., 2016). Within the context of 

generalized linear models, the simulated LRT can be seen as an 

extension of the LRT enabling the comparison of two competing 

statistical models that are not nested into one another (see, e.g. Lewis 

et al., 2011). In the present study, the two competing models used in 

the fMRI data analysis contain the same number of predictors, and 

therefore they are not nested. 

In short, the simulated LRT is performed by first creating a reference 

(null) distribution for the LRT statistic using one of the two models 

(chosen as the reference model). Then, a statistical significance for the 

other (alternative) model (given the null hypothesis that the two 

models are not different) is obtained non-parametrically by comparing 

the observed LRT statistic with the reference distribution (see, e.g. 

Lewis et al., 2011). In our case, the SwS was naturally chosen as the 

alternative model, as it was originally introduced as a special version 

of the LS, which was, instead, chosen as the reference model. Thus, 

for each iteration of the simulation process, a new simulated data set 

was created from the LS model with the parameters set to the 

maximum likelihood estimates (as resulting from the fitting to the 

observed data). Then, both models (LS and SwS) were fitted to the 

simulated data set, and the result of the LRT  was evaluated to the 

reference distribution (Lewis et al., 2011). After 10000 simulations, 
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the estimated p-value of the model comparison was obtained as the 

ratio of the number of times the simulated LRT statistic is equal to or 

exceeds, the observed value plus one, divided by the total number of 

iterations plus one (Manly, 2007). 

 

4.2.10.4 Correlation between behavioral and neural responses  

The regression coefficients for the surprisal predictors from the first-

level GLM fit of the regional BOLD signals were extracted for each 

participant and each region of significant activations in the contrast 

“real vs. reversed speech”. These values and the percentage of correct 

answers of the participants in the post-hoc questionnaire were 

analyzed using a generalized linear model, where the regression 

coefficients were considered as fixed factors. The statistical 

significance of the effect of the regression coefficients was evaluated 

with an F test. 

All the regional analyses were performed in MATLAB. 

 

4.3 Results 
Participants correctly answered at least five out of the eight questions 

(mean ± std 86% ± 10%) presented in the questionnaire, indicating a 

satisfactory level of comprehension of the story (p<0.05, binomial 

distribution, chance level: 0.25). Three subjects were excluded from 

the fMRI data analysis due to excessive motion or incomplete data 

acquisition; one subject was excluded due to a technical problem 

which caused the loss of the data set, resulting in a group of 27 

participants (21 females). 

Across included participants, translation and rotation movements were 

all below the threshold of 3mm and 3 degrees (N=27, translation: 

mean ± std 0.34 ± 0.40 mm; rotation: mean ± std 0.32 ± 0.37 degree). 

The mean FD of each participant was below 0.5 mm (Power et al., 

2012) and the grand mean FD of the analyzed cohort (N=27, mean ± 

std 0.11 ± 0.10 mm) was below the grand mean FD of an exemplary 

“low-motion” cohort (N=43, mean ± std 0.29 ± 0.12 mm) analyzed in 

(Patel et al., 2014). 
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In the surprisal analysis of the narrative text, the LS model yielded a 

higher average surprisal compared to the SwS (2.74 vs. 2.85) with the 

SwS model almost systematically reducing the actual probability 

space for each upcoming word in comparison with the LS model. To 

test if this difference was only due to the different word contexts (and 

more specifically to the higher number of words) used in the 

estimation of the SwS model, the LS was linearly interpolated with the 

word conditional probabilities estimated from the same context words 

used in the SwS estimation by creating the LSSB model. In this case, 

the lowest average surprisal on our narrative stimulus (i.e. the best 

model) was obtained by choosing an interpolation factor of 0.98, 

indicating that the integration of the LS with further conditional 

probabilities estimated on the additional context used in the SwS 

calculation had a negligible impact on the model (Figure 4.1). 

Therefore, as the improvement over a purely Markov model (i.e. the 

LS) is very small (LS average surprisal 2.86 ± 1.60, LSSB average 

surprisal 2.86 ± 1.59), with changes in the fMRI predictor on the 

second decimal digit, only the LS model was used in the fMRI 

analysis. 

 
Figure 4.1: Skip-bigram interpolation effect. The average surprisal value of the 

narrative stimulus estimated for different interpolation factors (lambda) with the 

model that integrates lexical surprisal and the skip-bigram factor. 
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In the whole-brain voxel-based fMRI data analysis, LS and SwS 

predictors produced both overlapping and distinct activations in the 

contrast between original and reversed story conditions. In all 

significant clusters, the fMRI time-courses were found to be positively 

modulated by word surprisal (i.e. higher surprisal levels were 

associated with higher activation levels and vice versa) and the size of 

this effect was significantly higher when listening to the original, 

compared to the reversed, speech condition. 

The LS predictor elicited significant activations (p<0.05, cluster level 

corrected, cluster-forming threshold p=0.001) in both hemispheres. In 

the left hemisphere, activation was observed in a compact cluster 

extending from the posterior to the anterior portion of the superior 

temporal gyrus and the middle temporal gyrus (L-STG/MTG). In the 

right hemisphere, significant activations were detected in the superior 

temporal gyrus (R-STG), in the anterior temporal lobe (BA 38) (R-

ATL) and the right cerebellar lobule VIIb (R-cerebellum) (Figure 4.2, 

Table 4.1). 

 

 
Figure 4.2: Lexical surprisal brain response. Activation pattern elicited by the LS 

model in the real speech compared to the reversed speech. Clusters with statistically 

significant effect (overlaid on an inflated cortical mesh from a Talairach-normalized 

anatomical scan) are shown in the left and right superior (L-, R-STG), in the right 

anterior temporal lobe (R-ATL) and in the right cerebellum (R-cerebellum). 
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LS 

  Talairach coord. (x,y,z) t-value mm3 

R-STG 57, -11, 8 6.09 717 

R-ATL 45, 19, -20 7.58 1173 

R-cerebellum 15, -73, -40 5.08 294 

L-STG/MTG -49, 11, -18 8.78 11831 

SwS 

  Talairach coord. (x,y,z) t-value mm3 

R-ATL 45, 19, -20 7.17 1356 

L-STG/MTG -49, 11, -18 9.40 11770 

L-IFG -55, 19, 20 6.57 869 

Table 4.1. Clusters of statistically significant fMRI activations (p<0.05, cluster level 

corrected, cluster-forming threshold p=0.001) for both surprisal predictors. Activated 

regions had a higher positive correlation with the surprisal of the narrative during 

actual compared to reversed speech. The description of the area, the Talairach 

coordinates of the peak voxel, the cluster extent of the cluster, and the t-value of the 

peak voxel in the cluster are displayed in the table. 

The SwS predictor activated a more left-lateralized pattern in the 

original, compared to the reversed, speech condition. Similar to the 

LS, a significant activation (p<0.05, cluster level corrected, cluster-

forming threshold p=0.001) was observed in a cluster encompassing 

the L-STG and L-MTG and in a cluster in the R-ATL. These two 

clusters overlapped by 90% (10681 mm3) and 85% (1080 mm3) 

respectively between the LS and SwS models. Differently from the 

LS, an additional cluster was detected in the left inferior frontal gyrus 

(L-IFG), encompassing (part of) left pars-triangularis (BA 45) and the 

left pars-opercularis (BA 44) (Figure 4.3, Table 4.1).  
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Figure 4.3: Semantics-weighted surprisal brain response. Activation pattern elicited 

by the Semantic-weighted Surprisal (SwS) in the real speech compared to the reversed 

speech. Clusters with statistically significant effect (overlaid on an inflated cortical 

mesh from a Talairach-normalized anatomical scan) in the left superior temporal 

gyrus (L-STG), in the right anterior temporal pole (R-ATL) and the left inferior frontal 

gyrus (L-IFG). 

 

The subject-specific time-courses extracted from the above-

mentioned clusters were used in a likelihood-based model comparison 

to evaluate differences between models in explaining the BOLD signal 

and to evaluate the prediction of behavioral performances from the 

individual model coefficients. In all regions where the LS (or SwS) 

predictor elicited significantly higher activation in the real, compared 

to the reversed, speech condition, both surprisal models significantly 

improved the fitting compared to the base models without surprisal 

predictor. Most notably, the SwS yielded better fitting compared to the 

LS model in the L-STG/MTG, R-ATL and L-IFG (p<0.05) (Table 

4.2).  

 

Likelihood-based model 

comparisons 

Area LS vs SwS 

R-STG 0.99 
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R-ATL 0.13 

R-Cerebellum 0.87 

L-STG/MTG <0.05* 

Likelihood-based model 

comparisons 

Area LS vs SwS 

R-ATL <0.05* 

L-STG/MTG <0.05* 

L-IFG <0.05* 

Table 4.2. Summary of the results of the likelihood-based model comparisons 

considering the neural data of all the subjects. The SwS model yielded significant 

better fitting compared to the LS model in the L-STG/MTG, considering the areas 

where the LS showed higher activation in the original compared to the reversed 

speech, and in all the regions (R-ATL, L-STG/MTG and L-IFG) where the SwS 

yielded higher activations in the original compared to the reversed speech. 

 

No significant effects were observed for the regression coefficients of 

the fMRI analysis, extracted from each ROI, in the analysis of the 

participants’ answers to the post-hoc questionnaire (p>0.05). 

 

4.4 Discussions 
In this study, the neural correlates of linguistic predictions have been 

investigated using naturalistic fMRI (natural listening of full-spoken 

narratives) and a novel semantics-weighted word-level surprisal 

model of continuous fMRI responses. The main objective was to 

augment a pure lexical surprisal model of fMRI responses by 

integrating lexical and semantic information within the same 

probabilistic language framework (Mitchell and Lapata, 2009; Sayeed 

et al., 2015) in the express attempt to more selectively capture the 

neural responses associated with word (un)predictability in a natural 

listening scenario. Notably, this model has been shown to have lower 

perplexity on a held-out data set (Mitchell and Lapata, 2009) and to 

elicit better performances in predicting word pronunciation duration 

compared to the trigram model (Sayeed et al., 2015), although it was 



90 

not previously employed for studying continuously spoken language 

with fMRI. 

 

4.4.1 Surprisal modelling issues 

The basic assumption of surprisal modelling is that a more surprising 

(i.e. less predictable) word stimulates greater prediction errors which 

may, in turn, result in more effective modulations of neural responses 

in those brain regions that handle such errors and contribute to 

successful speech comprehension (Friston et al., 2010; Tuennerhoff 

and Noppeney, 2016). On these premises, the neural correlates of two 

(LS, SwS) word-level surprisal predictors were comparatively 

analyzed within a mixed-effects GLM of continuous fMRI recordings. 

As the SwS model was expressly formulated as a weighted version of 

the LS model (assigning the same LS values to the function words and 

resulting in a modulation with a semantic factor of the LS values for 

the content words), the two models were not combined in the first-

level GLM and two separate whole-brain statistical analyses were 

performed. Indeed, as expected, for the narrative text used here, the 

SwS and LS predictors were highly (positively) correlated between 

each other (r = +0.77, see section 1 of the Appendix for more details), 

thereby the SwS predictor was strictly intended to possibly replace, 

and not be added to, the LS predictor, in the fMRI data model. In 

contrast, three stimulus-related confounds were added to the first-level 

GLM to properly account for the variability in linguistic (lexical 

frequency) and non-linguistic (duration, acoustic energy) word 

features, that should in principle not affect the context-specific 

predictability of a word when this is embedded in a spoken narrative. 

However, because infrequent words are in general less predictable (i.e. 

more surprising), among context-independent linguistic features, the 

neural effects of the lexical frequency were also considered in a 

separate “context-free” whole-brain analysis using LF as predictor of 

interest and WD and acoustic energy as confounds (see section 1 of 

the Appendix). 

The SwS model showed a lower average surprisal value for the 

narrative stimulus compared to the LS, suggesting that, on average, 

the semantic information mostly reduces the conditional probability of 
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a word in a context. This is apparently in contrast from what could be 

expected based on a previous work suggesting that the integration of 

semantic distance with the word predictability may not be necessarily 

effective to improve the prediction performances (Frank and Willems, 

2017). However, in our study, the context words used for estimating 

the lexical and the semantic components of the SwS model were 

purposely kept different and independent (Mitchell and Lapata, 2009; 

Sayeed et al., 2015) and were integrated using a scaling approach 

instead of a linear interpolation (Mitchell, 2010). 

When comparing the raw numeric values of the LS and SwS models 

on content words in the narrative, there were some visible extrema in 

the SwS values (Figure S2, see section 2 of the Appendix for more 

details). However, these only occurred for 47 (out of a total of 893) 

content words (i.e. ~6% of the content words and ~3% of all the words 

in the narrative text), mostly in the lower quartiles of LS values, and 

no particular patterns of heteroscedasticity between the two measures 

were noted across LS quartiles (see Figure S2). Moreover, when 

performing the same comparative analysis on the two resulting fMRI 

predictors (i.e. the series of values across time points of the fMRI 

series, not across words of the narrative, after preprocessing and 

hemodynamic convolution), the resulting scatter plot showed no 

extrema (and no heteroscedasticity patterns) for the SwS predictor (see 

Figure S3). 

Finally, to test if the observed difference between the two models was 

just due to the inclusion of a larger word context in the SwS, a different 

lexical surprisal model was estimated by following the workflow 

described in Frank and Willems (2017). In the present study, the 

further interpolation of the LS with a factor that takes into account the 

conditional probabilities derived from the broader (non-local) word 

context used to estimate the semantic component of the SwS model, 

had very little impact on the LS model, and this observation is in 

agreement with the analysis performed by Frank and Willems (2017) 

on the English language (Frank and Willems, 2017). 

 

4.4.2 Surprisal-related neural effects 
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Both the LS and SwS predictors elicited a significant activation in the 

L-STG/MTG and in the R-ATL in the fMRI contrast between the 

actual speech (real story) and the reversed speech (reversed story). 

However, while the LS also activated the R-STG and the R-

cerebellum, the SwS selectively activated a cluster in the L-IFG. The 

activation of this network of areas is perfectly in line with a recent 

study by Shain et al. (2020) which also showed how the cognitive 

processes underlying linguistic prediction, as indexed by word co-

occurrence models such as the surprisal models, are fully supported 

by the language network and not by more general domain areas (Shain 

et al., 2020). 

Notably, the more extended activation pattern obtained via the SwS 

model, encompassing both the whole L-STG/MTG and the L-IFG, 

could not be equally obtained by the sole semantic component (i.e. the 

semantic scaling factor isolated from the SwS formulation). Indeed, a 

separate whole-brain fMRI analysis based on the semantic component 

as the predictor of interest (see section 2 of the Appendix for more 

details) revealed that, when isolating the semantic scaling factor from 

the SwS model, and using it to modulate an independent word-level 

measure of semantic relatedness of each content word with its 

previous context, the significant effects of the resulting fMRI contrast 

within the language network were substantially reduced and mainly 

confined within the secondary auditory cortex (see Figure S5). Thus, 

considering also that the semantics weighting mainly produced a 

linear (R2=0.78), rather than exponential (R2=0.08), transform of the 

semantic similarity values across the content words (i.e. changes in 

semantic similarity and semantic weighting, after the transformation 

and normalization, were mainly proportional, see Figure S4), it is 

plausible that the increased sensitivity of the SwS model within the 

language network may truly reflect the constructive integration of a 

context-dependent semantic similarity with the conditional 

probabilities. 

On the other hand, a context-free whole-brain analysis (i.e. with the 

LF as predictor of interest) also revealed significant positive effects 

(i.e. more infrequent words were associated with higher positive 

BOLD signal changes) within the same language network, albeit the 
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shape and size of the cortical patches were different from the 

corresponding ones highlighted by the LS and SwS predictors (Figure 

S1, see section 1 of the Appendix for more details). Thus, similar to 

previous studies (Levy, 2008; Shain et al., 2020; Staub, 2015), we also 

observed that both LF and (two) surprisal measures can capture a 

significant portion of the BOLD signal variance within the language 

network. These observations further support the notions that lower-

frequency words are also (generally speaking) more unexpected than 

higher-frequency words (Staub, 2015) and that, during natural 

listening, word frequency effects are strictly linked with word 

predictability effects at the neural level (Levy, 2008; Shain et al., 

2020). It should be also noted, however, that, the sign of neural effects 

for frequency was not always consistent among previous studies with 

the (most obvious) expectation that more infrequent words trigger 

higher (positive) BOLD signal changes (implying that the processing 

of these words should be carried out with greater neural processing 

cost). Actually, while the sign of frequency-related neural effects was 

positive in our naturalistic fMRI data, in full agreement with the 

previous work by Staub (Staub, 2015), the recent study by Shain et al. 

(2020) found exactly the opposite, i.e. more infrequent words were 

associated with lower BOLD signal changes. Thus, we could speculate 

that the impact of the LF measure, albeit potentially highly significant, 

could be in principle less specific in the prediction of the BOLD signal 

changes within the language network, possibly due to its strict 

dependency on the specific corpus with no link to the local context of 

the narrative being listened during measurements. However, future 

studies are needed to clarify the neural interactions between lexical 

surprisal and lexical frequency within the language network, as also 

suggested by Shain et al. (2020). 

 

4.4.3 Whole-brain analysis of surprisal-related fMRI activity 

The STG and the MTG are two essential cortical structures for both 

speech comprehension (Binder et al., 2009, 2008; Friederici et al., 

2003; Lopopolo et al., 2017) and voice recognition (Belin et al., 2011; 

Pernet et al., 2015; Watson et al., 2014).  

https://www.sciencedirect.com/science/article/pii/S0028393219303495?via%3Dihub#bib254
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The bilateral involvement of the STG from the LS predictor applied to 

an Italian story is perfectly in line with a previous study using an 

identical implementation of the lexical surprisal model applied to 

Dutch stories. Thus, this finding also proposes the postulated 

prediction mechanism whereby the STG activity is modulated by the 

prediction (error) of the upcoming lexical form of a word (Willems et 

al., 2016). Contrariwise, the lack of activation of the R-STG for the 

SwS model might be due to the fact that the lexical predictability 

would involve the right hemisphere more heavily (Bonhage et al., 

2015; Carter et al., 2019) whereas the semantic prediction (that is 

strictly related to the semantic system (Carter et al., 2019)) should be 

more left-lateralized (Binder et al., 2009; Carter et al., 2019).  

For what concerns the involvement of the L-MTG, it has been 

previously suggested that this region is deeply involved in speech 

processing, and, more specifically, in triggering the retrieval of lexical 

and syntactic features of an incoming word from the long-term 

memory (Dronkers et al., 2004; Lopopolo et al., 2017). However, it 

also plays a fundamental role in facilitating the collection and storage 

of semantic knowledge related to the words (Binder et al., 2009). 

Therefore, the activation of this cortical region for both LS and SwS 

predictors (but also the better fitting found for the SwS predictor) 

would be in line with the interpretations provided in two previous 

studies using models of linguistic prediction and reporting the link 

between the L-MTG activation and both lexical (Lopopolo et al., 

2017) and semantic (Weber et al., 2016) predictability of the stimulus. 

The activation detected in the right posterior lobule of the cerebellum 

corroborates the hypothesis, supported by previous findings, that this 

area has a role in the linguistic expectancy (Argyropoulos, 2016; 

Moberget and Ivry, 2016; Pleger and Timmann, 2018; Sokolov et al., 

2017). Particularly, the cerebellum has been found responsive to the 

predictability of the upcoming word  (Lesage et al., 2017), to the 

prediction of semantic (Carter et al., 2019; D’Mello et al., 2017) and 

syntactic (Carter et al., 2019) features, and, more in general,  during 

several language processing tasks (Mariën et al., 2014). 

The bilateral activation of the ATL has been observed by Willems et 

al. (2016) using an identical implementation of the LS on a different 
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language (Dutch) (Ferstl et al., 2008; Willems et al., 2016). Our 

finding replicates the same mechanism in Italian and therefore both 

strengthens the notion of this region implicated in language processing 

in general and, more specifically, in the integration of linguistic 

information within a stream of words (Carter et al., 2019), thereby 

confirming the sensitivity of the surprisal measure in capturing the 

modulation of neural responses underlying the comprehension of the 

text. 

The left IFG has been extensively associated with language-related 

processing tasks such as syntax computation, semantic selection and 

phonological demanding tasks (Ardila et al., 2016; Binder et al., 2008; 

Carreiras et al., 2012; Clos et al., 2014). However, studies focusing on 

linguistic prediction showed mixed findings (Henderson et al., 2016; 

Lopopolo et al., 2017; Willems et al., 2016). In our study, the SwS 

elicited a significant activation in the L-IFG encompassing both the 

pars opercularis and the pars triangularis, which seems in line with the 

putative role of the L-IFG in the semantic prediction as a higher-level 

cognitive control processing unit (Binder et al., 2009; Ferstl et al., 

2008; Hagoort, 2013, 2005; Thompson-schill et al., 2009; Zhu et al., 

2012). The activation of the L-IFG for the SwS predictor and the better 

fitting showed by the model, therefore, suggest that the semantic 

integration gathers a better (more sensitive) measure of the ongoing 

high-level cognitive engagement required by the linguistic prediction 

than the LS predictor (Mitchell and Lapata, 2009; Sayeed et al., 2015). 

The lack of activation in the left fusiform gyrus in both LS and SwS 

patterns is partly surprising, as its activation has been previously 

reported using two different measures of linguistic prediction, albeit 

on the same data set (Lopopolo et al., 2017; Willems et al., 2016). 

However, two different explanations were provided in those studies: 

Willems et al. (2016) pointed out the emergence of priming effects in 

the fusiform gyrus which were successfully detected by the model 

because of the prediction (error) in the word form (Willems et al., 

2016). Instead, Lopopolo et al. ascribed this effect to the continuous 

access to the lexico-semantic information of the word via this region 

(Lopopolo et al., 2017). In our case, we might speculate that the 

activation of this region did not reach the statistical significance for 
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both the LS and the SwS models most likely because, compared to 

Dutch and English, Italian has higher orthographic transparency and 

lower syllabic complexity (Borleffs et al., 2017; Seymour et al., 2003) 

whereby the postulated continuous access to the word form might be 

less necessary in general and consequently the surprisal modulation 

would be less effective. 

 

4.4.4 Region-based comparison of surprisal models of fMRI 

activity 

The fMRI time-courses from the above clusters were also used to 

compare the ability of the surprisal predictors to fit these neural data. 

Particularly, the use of a simulated LRT allowed a rigorous 

comparison of the two statistical models that, although related to one 

another, could not be nested as they included the same number of 

predictors and the first predictor was an alternative version of the 

surprisal model. 

The comparisons of the two surprisal models with their corresponding 

base models confirmed that the use of a surprisal predictor may help 

in explaining more variance of the neural response as measured with 

fMRI during natural listening. Moreover, in comparison with the LS, 

the SwS model showed a significantly better performance in fitting the 

neural data in the L-STG/MTG, R-ATL and L-IFG. Altogether these 

findings support, first, the idea of using surprisal models to capture 

more variance in the BOLD response during language comprehension 

and, second, the hypothesis that the integration of the semantic 

information into the surprisal probabilistic framework may further 

improve the ability of the model in fitting the neural responses. 

 

4.4.5 Behavioral correlates of surprisal-related fMRI activity 

The regression coefficients from the ROI analysis of fMRI time-

courses in the above clusters were also used in the analysis of the 

participants’ answers to the post hoc questionnaire to test the possible 

correlation between the magnitude of the BOLD response and the 

participants’ level of comprehension. In fact, as the surprisal measure 

has been proven to be a good proxy of the cognitive effort related to 
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linguistic processing (Demberg and Keller, 2008; Hale, 2016, 2001; 

Levy, 2008; Smith and Levy, 2013) it was possible that the higher 

(lower) the cognitive effort required for integrating the incoming input 

with the current information, the more positively (negatively) the 

BOLD signal had to be expected to change within the activated 

regions. As a consequence, the variation of the BOLD response of a 

participant could signal a higher (lower) cognitive engagement in the 

comprehension of the entire sentence albeit this does not necessarily 

imply that the same participant is ultimately understanding more (less) 

of its meaning. 

The analysis of the participants’ answers did not yield a significant 

effect of the regression coefficients of the group fMRI analysis on the 

participants’ scores, therefore we cannot provide supporting evidence 

to the possibility of using fMRI measures as a possible index of 

comprehension. On the other hand, as all participants were healthy, 

fully compliant and highly educated young subjects, most of them 

responded correctly to the majority of the questions, and therefore it 

is likely that the observed variability in the participants’ scores was far 

too small to reveal possible correlations with the BOLD responses. 

Thus, we cannot rule out (and actually would rather still expect) that, 

in future studies, the use of more complex stories and/or the 

submission of far more detailed questionnaires (e.g. more questions, 

more choices per question, etc.) or the enrollment of subjects overtly 

experiencing more difficulties in understanding the narrative (e.g. 

hypoacusic or mentally retarded patients) could gather more inter-

subject variability in the participants’ levels of understanding that can 

be better correlated with the size of surprisal-related BOLD effects.   

 

4.4.6 Future directions 

In general, the proposed experimental paradigm has several 

advantages that could make it useful or convenient for certain clinical 

applications. The use of a naturalistic stimulus (i) enables the 

possibility to study language-related brain mechanisms without 

involving the subjects in an explicit cognitive performance and (ii) 

may improve the overall quality of the data as naturalistic fMRI 

measurements are more accurate and reproducible than resting-state 
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fMRI measurements and also less vulnerable to the major confounds 

of head motion and physiological artefacts (Chen et al., 2019; Hasson 

et al., 2010). Particularly, the possibility to have informative neural 

predictors that target one or more linguistic aspects from the BOLD 

response changes during listening to a spoken narrative could be 

clinically relevant for studying subjects affected by receptive language 

disorder (i.e. a syndrome characterized by problems in language 

understanding but not production, mostly present in the children and 

adolescents (Goldstein and Naglieri, 2011)), as it can be used to obtain 

a fixed response model for both a healthy and a pathological group 

without the need of co-varying the response with the behavioral 

performance. For instance, in a cohort of participants affected by 

language comprehension deficits, it is likely to expect different neural 

behavior in key areas of the language network compared to the pattern 

elicited in a population with normal language abilities. However, as 

this approach has never been used (to the best of our knowledge) in 

this scenario we cannot yet formulate clear expectations about the 

direction of these changes. 

Finally, the existence of natural language processing models based on 

recurrent neural networks, that appear to learn both the semantic 

features and the position of words within the streams (Bengio et al., 

2003; De Mulder et al., 2015), suggests that future investigations and 

developments of the presented surprisal models, and in particular the 

SwS model, should possibly attempt to take the position of the words 

in the context into account. 

 

4.5 Conclusions 
A novel variant of the surprisal model for word prediction 

incorporating both lexical and semantic information has been 

presented and used to map the putative neural correlates of story 

comprehension in a naturalistic fMRI experiment. Compared to a pure 

lexical surprisal, the semantics-weighted surprisal provides a better 

predictor of the fMRI activity in left STG and MTG and is critically 

more sensitive in detecting linguistic processes in the left IFG. While 

future studies are certainly warranted, as far as the amount of surprisal 
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modulation detectable from continuous fMRI recordings can be 

interpreted as an index of the cognitive engagement during language 

comprehension in subjects listening to spoken narratives, the proposed 

approach may gather a possible neurological marker of (in)sufficient 

understanding of a story. In this case, analyzing different groups of 

people (e.g. from healthy and clinical populations) listening to the 

same story (or to different stories of varying language and 

complexity), eventually under (physiologically or pharmacologically) 

modified conditions, will possibly expand or challenge the validity of 

the proposed models. Finally, the use of highly naturalistic stimuli 

such as full-spoken narratives could be a crucial feature for studying 

linguistic processes in poorly compliant patients such as children or 

elderly patients. 
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5.1 Introduction  
Real-time functional magnetic resonance imaging neurofeedback (rt-

fMRI-NF) is a psychophysiological approach in which the online 

measured blood oxygen level dependent  (BOLD) signal is provided 

to the subject as visual (Cohen Kadosh et al., 2016; Yamin et al., 

2017), auditory (Ramot et al., 2016), haptic (Buch et al., 2008) or 

electrical (Young et al., 2015) feedback to allow the self-regulation of 

his/her neural activity towards target levels (Sitaram et al., 2017). The 

increasing performance in this task has been previously associated 

with measurable improvements in specific neurological functions 

and/or positive changes in behaviors (Watanabe et al., 2017), thereby 

rt-fMRI-NF has been successfully applied in a great variety of 

domains such as motor function (Scharnowski and Weiskopf, 2015; 

Sitaram et al., 2011), emotion regulation (Herwig et al., 2019; 

Linhartová et al., 2019), prosody (Rota et al., 2009) and visual task 

performance (Shibata et al., 2011). Furthermore, rt-fMRI-NF has 

found applications in the treatment of different neuropsychiatric 

disorders (Linden et al., 2012; Mehler et al., 2018; Orlov et al., 2018; 

Young et al., 2014; Zweerings et al., 2019).  

The flexibility of fMRI as a functional neuroimaging tool and its 

successful integration with advanced computational and real-time 

analysis methodologies has contributed to the development of various 

experimental rt-fMRI-NF frameworks (Paret et al., 2019). However, 

there is an ongoing debate on whether or not participants in rt-fMRI-

NF sessions need to be provided with an explicit strategy to regulate 

their brain activity. Indeed, both approaches have their strengths and 

weaknesses and in most cases, the choice of one over the other 

depends on the research question (Paret et al., 2019). Thus, there are 

studies that provide the subjects with a clear strategy (Kober et al., 

2013; Scharnowski and Weiskopf, 2015; Zilverstand et al., 2015) as 

well as studies in which the subject is left free to choose the task 

(Amano et al., 2016; Ramot et al., 2016; Shibata et al., 2019, 2011; 

Watanabe et al., 2017). Furthermore, there are various choices for the 

source of the NF signal and how it can be calculated. For example, 

some studies have used the variation in the average fMRI signal from 

a single region of interest (ROI) compared to a baseline (deCharms et 
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al., 2004; Weiskopf et al., 2003; Young et al., 2014), whereas others 

rely on (a measure of) the functional connectivity within a network of 

two or more ROIs (Koush et al., 2013) to target more complex 

cognitive functions (Cao et al., 2014; Fair et al., 2007; Watanabe et 

al., 2017). Estimating the likelihood of a decoded neural activity 

pattern starting from a previously recorded brain pattern, is also 

possible (Shibata et al., 2019, 2011; Watanabe et al., 2017). Finally, 

there is a wide spectrum of viable options also concerning the 

feedback modalities (e.g. visual, auditory, haptic and electrical) and 

how to present the NF signal to the subject. For instance, visual 

feedback can be presented using simple shapes (e.g. a vertical bar or a 

circle) (Krause et al., 2017) as well as more immersive virtual reality 

interfaces (Yamin et al., 2017). 

However, although different NF approaches have been successfully 

applied in several domains (Linden et al., 2012; Linhartová et al., 

2019; Mehler et al., 2018; Paret et al., 2019; Watanabe et al., 2017), 

the possibility to provide more semantically-driven feedback, that, by 

some means, encodes the current mental state of the subject from high-

level brain representations, as well as its differences from previous and 

other mental states, could be critically useful in some challenging 

scenarios such as emotion regulation (Linhartová et al., 2019). Along 

these lines, a semantic representation of the stimulus estimated with 

the application of a multidimensional approach to the current 

participant’s brain activity may provide the extra degrees of freedom 

to self-modulate a mental state.  

The aim of this work is to propose a novel rt-fMRI-NF 

paradigm based on a real-time incremental version of the 

representational similarity analysis (RSA) (Kriegeskorte et al., 

2008a), namely real-time RSA (rt-RSA). RSA allows an abstract 

representation of the brain activity, in terms of concepts and associated 

mental states modulated by a given task. Thus, the core of this 

approach is a visual feedback that is semantically related to the 

participant’s brain activity and this is done via the generation of a 

multi-dimensional NF signal from a high order brain region. In its real-

time implementation, this feedback represents the subject’s current 

neural activity as a movable point in a plane where a set of possible 
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target neural states are displayed as fixed points. The feasibility and 

validity of the proposed approach have been tested on real and 

artificial data.  

 

5.2 Material and Methods 
 

5.2.1 Representational Similarity Analysis 

Representational theory (Dennett, 1987) can help neuroscientists in 

interpreting the spatial distribution of brain activity or pattern across 

several neuro-physical units (e.g. neurons or voxels). It is assumed 

that, in a given time window of observation, the spatial pattern 

encodes the neural representation of contents of, e.g., an image, a 

sound, or a motor action. On these premises, the combination of 

different patterns of neuronal activity defines a multi-dimensional 

space where the dimensions are the neuro-physical units and a single 

point in this space is a pattern (Kriegeskorte and Kievit, 2013). The 

geometrical properties of this space can be characterized and analyzed 

using RSA (Kriegeskorte and Kievit, 2013).  

For example, considering a set of experimental conditions and their 

corresponding brain-activity patterns from an ROI, it is possible to 

estimate their mutual (dis)similarities and to encode these in a 

representational dissimilarity matrix (RDM) (Kriegeskorte et al., 

2008a; Kriegeskorte and Kievit, 2013; Nili et al., 2014). The RDM 

operationally defines the geometrical space of the representations of 

the selected region and can be used to compare different 

representations (from different brain regions or conditions) via a 

signed-rank test (Kriegeskorte et al., 2008a; Nili et al., 2014; 

Wilcoxon, 1945).  

The most common measure to compute the dissimilarities between 

two brain patterns is the correlation distance (i.e. one minus the linear 

correlation between spatial patterns). Statistically, this measure 

normalizes for both the mean and the standard deviation of the 

spatially variable activity. Geometrically, it is related to the angle 

between two high dimensional vectors (i.e. the brain patterns) and 
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ranges from a minimum of 0 to a maximum of 2: if the two patterns 

are highly correlated, their dissimilarity goes to 0, whereas if they are 

anti-correlated, this value goes to 2. Other possible measures are the 

Euclidean distance, the Mahalanobis distance, the absolute activation 

differences and a computational measure that is based on the pairwise 

classification accuracies of discriminative models (e.g. via linear 

discriminant analysis) (Kriegeskorte et al., 2008a; Nili et al., 2014; 

Walther et al., 2016).  

Using a dimensionality reduction approach like multidimensional 

scaling (MDS) (Borg and Groenen, 2005; Kruskal and Wish, 1978; 

Wang, 2012), the RDM can be visualized in a two or three-

dimensional scatter plot where the mutual distances among points 

reflect the dissimilarities among the response patterns (Kriegeskorte 

et al., 2008a; Nili et al., 2014). 

RSA has gathered important insights in various domains, including 

vision (Brouwer and Heeger, 2009; Op de Beeck et al., 2008), audition 

(Giordano et al., 2013), categorical perception (Kriegeskorte et al., 

2008b; Naselaris et al., 2012), memory (Polyn et al., 2005) and motor 

control (Wiestler et al., 2011). For a more exhaustive review see 

(Kriegeskorte and Kievit, 2013). 

 

5.2.2 Real-time RSA  

The rt-RSA approach integrates RSA into an NF paradigm enabling 

the comparison of multiple neural patterns (representing a given set of 

experimental conditions) between each other and intuitively 

summarizing their differences (Kriegeskorte and Kievit, 2013), in 

real-time. In its simplest version, for a given ROI, a visual feedback is 

provided to the subject consisting of a constellation of points anchored 

on a plane, called “representational space” (RS), corresponding to the 

target neural representations of a set of base stimuli, and a moving 

point corresponding to a variable neural representation. The 

coordinates of these points on the plane are estimated (and eventually 

those of the moving point updated) from multi-voxel patterns of 

regional BOLD activation which have been previously shown to 

identify (or encode the dynamic variability of) mental (e.g. cognitive 



105 

or emotional) states. Thereby, following the initial estimation of the 

RS from an fMRI localizer session, the participant’s ROI activity 

pattern will be estimated in real-time and provided as a novel movable 

point in this space. The aim is to let the subject move this point towards 

a selected target point in the RS by learning to self-modulate his/her 

multi-voxel activation pattern in such a way to engage in a specific 

mental state. To this purpose, the subjects are provided intermittently 

with a visual feedback showing the position of their current brain state 

within the RS with respect to the base stimuli. 

 

5.2.3 Mathematical description of the method  

The possibility to project a newly calculated brain activity pattern on 

the existing (previously estimated) RS is based on the application of a 

linear solution to the distance-based triangulation problem, introduced 

in the field of MDS by de Silva and Tenenbaum (2004). The solution 

was part of a different multidimensional scaling approach originally 

proposed to overcome the limitation of classical multidimensional 

scaling (cMDS) (Kruskal and Wish, 1978; Torgerson, 1958), also 

known as Principal Coordinate Analysis (PCoA), when the number of 

entries of the input matrix is very large compared to the intrinsic 

dimensionality of the data (for a complete description of the method, 

please see de Silva and Tenenbaum, 2004). The cMDS belongs to the 

family of MDS methods, as it projects elements from a high-

dimensional space (e.g. a brain pattern) to a lower-dimensional space 

while preserving the geometry as faithfully as possible (de Silva and 

Tenenbaum, 2004). 

The solution for the distance-based triangulation problem provides a 

convenient mathematical framework to project a new data point (i.e. a 

new brain pattern) onto an existing RS by simply applying a 

previously estimated linear transformation. Specifically, given a set of 

base stimuli and their evoked activity patterns in an ROI, an RDM is 

initially calculated based on their pairwise dissimilarities. In our case, 

the metric chosen for this calculation is the correlation distance. Then, 

the RS corresponding to the estimated RDM is obtained by applying 

the cMDS to the RDM itself.  Finally, using a fixed linear 
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transformation function, the coordinate vector 𝑥  representing the 

position of the pattern of a new stimulus in the estimated RS is 

obtained according to the following formula: 

 

𝑥  =  −
1

2
∗ 𝐿 ∗ (𝛿𝑎 − 𝛿µ)        (1), 

 

where  

𝐿 =  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠(𝑅𝐷𝑀)𝑇/√(𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠(𝑅𝐷𝑀)         (2), 

 

𝛿𝑎  is the squared vector of the dissimilarities between the new 

stimulus and the base stimuli and 𝛿µ   is the sum of the squared 

columns of the RDM divided by its number of entries (i.e. the number 

of base stimuli).  

 

5.2.4 General experimental framework 

An rt-fMRI-NF experiment with the use of rt-RSA requires at least 

two separate sessions: a localizer session and an NF session. To 

increase the statistical power of the estimated brain activity patterns, 

the localizer session may include multiple runs where each run can 

include several trials of one base stimulus (one run per base stimulus) 

or interleaved trials of different base stimuli. In each localizer session, 

a series of N trials (corresponding to different repetitions of each base 

stimulus) are delivered to the subject who performs an active (e.g. 

button pressing) or passive (e.g. image viewing) task. The ROI is 

ultimately selected at the end of the localizer eventually using a 

combination of functional and anatomical criteria based on the 

measured brain activation and a priori regional hypotheses, if available 

(Walther et al., 2016).  

A single activation pattern (for a given stimulus) can be obtained from 

the ROI map of regression coefficients (as effect size estimates, see, 

e.g., Walther et al., 2016) or statistical parameters (e.g. t scores, signal-

to-noise estimates, see, e.g., Walther et al., 2016) via the general linear 

model (GLM) analysis of the fMRI responses at each voxel. The GLM 
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estimation can be either performed online, thereby the signal (and 

noise) incremental estimates are recursively updated over successive 

trials, or offline, by eventually concatenating multiple runs using the 

most complete basis set of stimulus and confound predictors, to 

maximize the accuracy and power of all base stimulus patterns (to be 

used for the base RS).  

During the NF session, the multi-voxel pattern of the selected ROI is 

updated via online GLM and its position within the previously 

estimated RS is periodically displayed as a visual stimulus to the 

subject. The participants are thus periodically informed about the 

position of their current mental representation (as obtained from their 

current brain activity) with respect to the mental representations 

associated with all base stimuli (as obtained from the brain activity 

measured during the localizer runs). In this way, the subjects are 

stimulated to self-modulate their brain activity to change its position 

within the RS towards the target position. Operationally, at the end of 

each task block, the participant’s multi-voxel pattern is extracted from 

the predefined ROI and the dissimilarities of this pattern vs. the base 

stimulus patterns are calculated and given as input to (1) to update the 

corresponding coordinates in the RS. Moreover, while collecting the 

series of new patterns (i.e. mental states) over successive NF trials, the 

trajectory of the current mental state is also displayed to the subject, 

thereby the history of the modulation is kept visible to the subject to 

possibly incentive (or disincentive) an undertaken strategy towards 

reaching the target state. 

A graphical description of the procedure is provided in Figure 5.1. 
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Figure 5.1 General workflow of an fMRI-NF experiment with the use of the rt-RSA. 

In the localizer session, the subjects perform a task (e.g. passive viewing) and are 

exposed to a set of experimental conditions. The brain-activity related to each 

experimental condition is extracted from a region-of-interest (ROI) and used to 

estimate a representational dissimilarity analysis (RDM). Then, the latter is projected 

on a plane that is the representational space (RS) of the ROI.  

In the neurofeedback session, the subjects perform the same task but are provided with 

one stimulus. The fMRI data are processed in real-time and the brain activity of the 

ROI (used in the localizer session) are periodically extracted and projected in the RS. 

The position of this projection in the RS is provided intermittently to the subject as 

visual feedback.  

 

5.2.5 Method implementation 

The proposed method was implemented in Python (Python Software 

Foundation. Python Language Reference, version 3.7. Available at 

http://www.python.org)(van Rossum, 1995). The fMRI data were 

processed online and offline using Turbo-BrainVoyager version 4.0 

(TBV) (Brain Innovation B.V., Maastricht, The Netherlands) and 
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imported in Python using the TBV Network Access Plugin (Network 

Access Plugin) and the corresponding interface (GitHub - 

expyriment/expyriment-stash) as part of the open-source library 

Expyriment (Krause and Lindemann, 2014).  

All the scripts and the data used in this work are available at 

https://github.com/andreagrusso/rtRSA 

   

5.2.6 fMRI Neurofeedback experiment 

 

5.2.6.1 Participant 

Functional and anatomical data of one healthy left-handed volunteer 

(male, age 27), with normal vision and without known neurological or 

psychiatric disorders, were obtained using a 7 Tesla scanner (Siemens 

Healthcare, Germany). Informed written consent was obtained before 

the study and the experimental procedure was approved by the local 

Ethics Committee of the Faculty of Psychology and Neuroscience at 

Maastricht University. 

 

5.2.6.2 Experimental design 

The complete scanning session was divided into two main parts: an 

offline training session (outside the MR scanner) and a scanning 

session including the localizer and the NF experiment. In both 

experiments (localizer and NF) the participant performed an imagery 

task upon the delivery of an auditory cue. 

In the training session, the subject was asked to familiarize with the 

stimuli by visually inspecting and memorizing the images of selected 

objects as well as listening to their accompanying cues. Two animate 

(cat, dog) and two inanimate (chair, hammer) objects were chosen as 

base stimuli. The training continued inside the MR scanner during the 

acquisition of the anatomical data.  

The localizer experiment was composed of four consecutive 

functional runs, one for each object. A single run was experimentally 

designed as a series of ten tasks and eleven rest blocks of 20 seconds 
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in which the participant alternately imagined the object corresponding 

to the delivered auditory cue (e.g. “cat” or “chair”). At the end of each 

task-block, the word “stop” was delivered to the participant to 

announce the beginning of the resting period. The subject was 

requested to focus the gaze on a white fixation cross centered on a dark 

grey screen during the whole acquisition. The four images were 

selected from a database of naturalistic objects (Hebart et al., 2019) 

while the corresponding auditory cues were generated using 

https://soundoftext.com/ that creates audio files from text using the 

text to speech engine of Google Translate. Both the auditory cues and 

the visual feedback were delivered to the subject using a custom made 

Python script using PsychoPy3 module (Peirce et al., 2019). 

The NF run was designed according to a similar experimental 

paradigm. Specifically, the subject was requested to imagine for a 

period of 20 seconds the object upon delivery of the corresponding 

auditory cue. At the end of the task-block, the subject heard the word 

“stop” that indicated the beginning of a 20 second period of rest. 

However, differently from the training and localizer runs, the rest-

period was followed by an extra-period of 5 seconds during which the 

visual feedback was displayed. This consisted in the RS display where 

the positions of the base stimuli (i.e. the activity patterns acquired in 

the localizer session) were displayed as yellow points with a label tag 

indicating the object name. The position of the current activity pattern, 

as estimated from the last time window of measurement (40 s) ending 

right before the feedback-block, was displayed as a red star. In 

addition, the positions of the current pattern from all previous task-

blocks were also displayed as light-grey stars and linked to one 

another with a green line. Thereby, the subject was provided, not only 

with the position in the RS of the current brain pattern, but also with 

the trajectory performed across the previous task-blocks. The 

experimental procedure is summarized in Figure 5.2.  
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Figure 5.2 Workflow of the fMRI-NF experiment performed. 

In the offline training session, the subject was requested to memorize four images and 

their corresponding auditory cues. In the localizer session, the subject underwent four 

block-design fMRI acquisitions, one for each stimulus, in which he was requested to 

imagine as clear as possible the image corresponding to the provided auditory cue. 

The imagery blocks were interleaved by periods of rest. At the end of each functional 

acquisition the statistical values relative to the contrast “imagery vs rest” was 

extracted for all the voxels of a defined ROI. The dissimilarities among these 

activation patterns were estimated and first, encoded in a RDM and projected onto a 

plane to create the RS of the ROI. In the neurofeedback session the subject was 

provided with only one auditory cue and requested to imagine the corresponding 

image. The imagery blocks were interleaved by periods of rest and small period of 

feedback. At the beginning of the feedback period the activity pattern of the defined 
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ROI relative to the contrast “imagery vs. rest” is extracted and projected in the RS 

space. The RS with the new point is given as feedback to the subject. 

 

5.2.6.3 Data acquisition 

FMRI data were obtained using a 7 Tesla whole-body scanner 

(Magnetom; Siemens AG, Erlangen, Germany). The participant was 

placed comfortably in the MRI scanner with foam padding next to the 

head to minimize spontaneous or task-related motion. 

For the functional acquisition, multi-band (Feinberg et al., 2010; 

Moeller et al., 2010; Xu et al., 2013) repeated gradient-echo echo-

planar imaging (EPI) sequences were used. Except for the number of 

time points (localizer session: 430 volumes; NF session: 680 

volumes), identical scanning parameters were used for all functional 

measurements (repetition time (TR) = 1000 ms, echo time (TE) = 21 

ms, number of axial slices = 60, matrix = 112 x 112, field of view 

(FOV) = 224 mm, thickness = 2 mm, interslice gap = 0 mm, multi-

band factor = 4). In the NF session, functional images were 

reconstructed and exported using a direct TCP/IP connection from the 

image reconstruction computer to the real-time analysis computer and 

stored on the hard drive. The real-time data analysis software (TBV) 

running on the real-time analysis computer was able to read and 

process the exported images in real-time. 

For the acquisition of the structural data, a high-resolution T1-

weighted anatomical scan was acquired using a three-dimensional 

(3D) magnetization prepared rapid-acquisition gradient-echo 

(MP2RAGE) sequence (192 slices, 0.9 mm iso voxels, no gap, TR = 

4500 ms, TE = 2.39 ms, TI1 = 900ms, TI2 = 2750, FA = 5, FOV = 

230 x 230mm2, matrix size = 256 x 256, total scan time = 8 min and 

34 s.  

 

5.2.7 Online data processing 

The functional runs of the localizer were processed with TBV to 

optimally define the target ROI to be used for the extraction of the 

brain activity patterns elicited by the base stimuli and for the 

subsequent NF runs. During the localizer session, the online data 
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processing allowed the real-time monitoring of the subject’s head 

motion and the general quality of the data. More, specifically, motion 

correction with sinc interpolation, linear trend removal, temporal high-

pass filtering and spatial smoothing with an isotropic 4-mm full-width 

at half-maximum (FWHM) Gaussian kernel were applied online to the 

functional time-series. The online voxel-wise GLM was computed 

incrementally with one predictor time-course for the imagery task 

(derived from an incremental boxcar function convolved with a 

standard hemodynamic response function (Boynton et al., 1996)) and 

six motion parameters (incrementally derived from the motion 

correction procedure) as confound predictors. The online 

(incremental) GLM was fitted at each voxel using a recursive least 

squares estimation of the regression coefficients. At the end of the 

session, pre-processed functional data were reloaded in TBV and the 

offline GLM analysis was also applied to the complete pre-processed 

fMRI time series. In both cases, the t-contrast “imagery vs. rest” was 

calculated.  

Starting from offline GLM results, an ROI was defined in the inferior 

temporal cortex (ITC) as this region is well known to encode high-

level (semantic) representations of natural objects at the interface 

between vision and semantics (Haxby et al., 2001; Kriegeskorte et al., 

2008b; Mur et al., 2013). For this study, the ROI definition was 

performed using a combined anatomical and functional approach. 

Namely, a whole-brain probabilistic functional map in MNI space was 

generated from the Neurosynth database (Yarkoni et al., 2011) using 

the keyword “object”. The statistical threshold was set to q=0.1 using 

the False Discovery Rate (Genovese et al., 2002). This map was 

imported in BrainVoyager 21.4 (Brain Innovation, Maastricht, The 

Netherlands) and an ROI was initially defined by selecting a cluster of 

activation encompassing the left ITC. Before the NF run, the ROI 

definition was further adapted to the estimated brain activity from the 

offline GLM of localizer runs. Namely, the extracted ROI was 

imported in TBV where it was transformed to the native space of EPI 

images and used as a guide to manually define a functional ROI in the 

ITC from the offline GLM contrast “imagery vs. rest” (main effects of 

all stimuli, p<0.001). At the end of each functional run, for each voxel 
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of the selected ROI, the t-values relative to the contrast “imagery vs. 

rest” were extracted and stored to local disk. Upon completion of all 

the functional runs of the localizer sessions, the stored data were 

assembled in a matrix, whose dimensions were the number of stimuli 

and the number of voxels of the ROI, and which was used to estimate 

the RDM and the corresponding RS (with its transformation) to be 

used in the NF session. 

The data of the NF were processed in real-time with TBV with the 

same preprocessing steps used in the localizer session. The ROI 

activity pattern related to the contrast “imagery vs. rest” was extracted 

for the incremental time window ending one time point before the 

beginning of the feedback block, thereby encompassing the whole 

time series up to this point in time. The incremental GLM included the 

estimated motion predictors as confounds. To generate the feedback 

stimulus at the beginning of the feedback block, the extracted t-values 

from the ITC ROI were used to estimate the position of the current 

brain state in the RS estimated from the localizer data.   

 

5.2.8 Offline data analysis 

The full time-series data acquired during both the localizer and the NF 

session were reloaded in TBV and used for further analyses. Namely, 

the data from the localizer session were used to assess the 

computational and statistical performances of the rt-RSA approach on 

both real and artificial fMRI time-series, whereas the data from the NF 

session were used to analyze the experimental performance of the 

subject. For the validation, using the same GLM predictor as ideal 

response time-course, an artificial dataset with simulated brain activity 

was created to analyze the performances of the rt-RSA approach under 

different signal-to-noise conditions. In this way, the same incremental 

GLM analysis, as implemented in TBV, was used for the simulations. 

 

5.2.8.1 Stability of the rt-RSA 

The data of the functional runs of the localizer session were reloaded 

in TBV. Starting from this data set, four NF experiments were 
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simulated to investigate the stability of the rt-RSA approach. Namely, 

the t-maps from the incremental GLM were first extracted at the end 

of each task-block and used to simulate the dynamically updated brain 

pattern as the input of a virtual NF display. This pattern was projected 

as an additional point onto the RS estimated from the complete time-

series of all functional runs. The distances, and the trajectory, from the 

input to the target are estimated at each block. As both online 

(incremental) and offline GLM analyses are conducted on the same 

localizer data, this scenario simulates the ideal successful NF outcome 

whereby the input NF pattern (from the online GLM) overlaps 

perfectly to the pattern associated with one of the base stimuli. 

Thereby, the stability of the rt-RSA can be evaluated.  

 

5.2.8.2 Performance evaluation 

To evaluate the performance of the subject, both the localizer and the 

NF data were analyzed. 

Using the localizer data, an RDM was calculated at the end of each 

task-block via the incremental GLM. The last RDM (i.e. the one 

estimated from the full time-series) was chosen as reference RDM and 

the monotonic correlation between the vectorized upper triangular part 

of the RDM at each block and the vectorized upper triangular part of 

the reference RDM was statistically evaluated with a signed-rank test 

(Kriegeskorte et al., 2008a; Nili et al., 2014; Wilcoxon, 1945). The 

analysis of the RDM correlation series allowed us to have a possible 

estimate of the minimum number of blocks needed for the subject to 

incrementally generate an RDM which is not significantly different 

from the reference RDM. Moreover, it also allows evaluating the 

ability of the subject to maintain this similarity, consistently over time, 

across the subsequent blocks. The idea behind this analysis is that with 

an increase in the number of time points and, as a consequence, in the 

number of task blocks, it is possible to understand if the brain activity 

has become more stable and if the subject has been able to modulate 

consistently his/her brain activity. Therefore, this analysis could help 

us to evaluate prospectively, before the NF session, the quality of the 

localizer data as well as the stability of the base RS.  
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Using the data of the NF session, the performance of the subject was 

evaluated by measuring the distances in the RS of the projections of 

current brain patterns to the corresponding target. This analysis 

allowed us to have a measure of the subject’s performance in 

modulating his brain state in relation, not only to the target stimulus 

but also the other base stimuli whose dissimilarities generate the RS. 

In practice, the fewer the steps (i.e. the number of task blocks) to reach 

the target, the faster the dissimilarity with the target brain state 

decreases and the dissimilarities with the other base stimuli replicate 

the original ones. Furthermore, estimating the distance between the 

projection of the last block and the target provides a measure of 

success for the NF outcome, as the lower this distance, the better the 

subject has likely fulfilled the task of engaging in that specific mental 

representation.  

 

5.2.8.3 Simulations  

An ensemble of artificial datasets was created to simulate the outcome 

of the rt-RSA analysis under different noise conditions. 

For each simulation, five different artificial time-series of 430 images 

(the same number of time points of the real localizer data) were 

simulated in an ROI of 100 voxels. All voxel time-series of all data 

sets were initialized with random Gaussian noise with zero mean and 

different variances (σ = 0.5, 1, 2, 3). In each data set, an ideal 

activation time-course was injected into a variable percentage of 

voxels, whereas the rest of the voxels only contained noise. To 

simulate five different patterns (associated with five simulated 

stimuli), the subsets of active voxels were varied across the five 

artificial data sets. In particular, assigning a numerical index to the five 

patterns from 0 to 4, the percentage of active voxels for the even 

patterns was randomly extracted from a uniform distribution of 

integers ranging from 30 to 60, whereas the percentage of active 

voxels for the odd patterns was randomly extracted from a uniform 

distribution of integers ranging from 20 to 50. The activation time 

course was generated by convolving the canonical hemodynamic 

response function with a box-car function according to the same 



117 

paradigm of the real localizer experiment. However, the signal 

amplitude of each block was scaled with a random factor from a 

uniform distribution ranging from -1 to 3, to simulate variable 

modulation performances of the subject across task blocks.  

The procedure described in the previous paragraph was repeated 1000 

times, and for each simulation, the distances of the projected brain 

activity in the RS from the target, as well as the correlation of the RDM 

calculated at the end of each task block with the reference RDM, were 

calculated. These performances were thus reported on the average of 

1000 simulations. The whole analysis was repeated four times after 

increasing level of noise variance (σ = 0.5, 1, 2, 3) to evaluate the 

performance of the rt-RSA under various noise conditions. 

 

5.3 Results 
The localizer data were preliminary used to simulate a different NF 

experiment for each stimulus, by extracting the brain pattern of the 

ROI at the end of each task block and calculating its position in the 

RS. The estimated distance between each projection (as obtained via 

incremental online GLM) and its corresponding target (as obtained via 

full offline GLM) showed, for all the stimuli, a decreasing trend over 

task blocks and a value of zero at the end of the session. In particular, 

the stimulus “cat” showed a maximum distance from the target of 0.6 

at the first task block and a distance lower than 0.2 from the 6th task 

block on. The stimulus “dog” showed a maximum distance from the 

target of 0.5 at the first task block and a distance lower than 0.2 from 

the 8th task-block on. Similarly, the stimulus “hammer” showed a 

maximum distance from the target of 0.65 at the 2nd task block and a 

distance lower than 0.2 from the 8th task-block on. The stimulus 

“chair” showed more variability with a maximum distance of 1.2 at 

the 3rd task-block and a distance lower than 0.2 only at the 10th task 

block (Figure 5.3).  
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Figure 5.3 Distance of the projections from the target in the RS over the task-blocks, 

evaluated on the localizer data. Four neurofeedback experiments were simulated 

sampling incrementally the fMRI data of one of the stimuli and projecting these values 

in the defined RS. The estimated distances have a decreasing trend for all the stimuli 

and a zero value in the last task-block. 

 

The trajectories of the projections in the RS showed, for all the stimuli, 

that, at the end of the time series, the positions of the estimated brain 

patterns coincide with the positions of the corresponding targets. 

Besides, the visual inspection of the trajectories, suggested how each 

stimulus follows a different path towards its target (Figure 5.4). 

 



119 

   
Figure 5.4 Trajectories of the projections on the RS over the task-blocks, evaluated 

on the localizer data. Four neurofeedback experiments were simulated by sampling 

incrementally the fMRI data of one of the stimuli and projecting these values in the 

defined RS. The estimated projections for all the stimuli move towards (and at the end 

perfectly overlap with) the corresponding targets. 

 

The performances of the subject during the real NF experiment were 

evaluated using the data from both the localizer and the NF session.  

The Spearman correlation between RDMs, estimated at each task 

block, and the reference RDM, estimated at the end of the localizer 

session with a full GLM, showed an overall increasing trend across 

the task blocks (Figure 5.5a). The correlation coefficient remained 

negative from the 1st to the 4th task block, before turning positive at 

the 5th task block, reaching a maximum of 0.8 at the 7th task block,  

and, finally, falling to lower values (~0.4) in the last two task blocks 

(Figure 5.5a). The estimated distances from the target in the RS 

showed an overall decreasing trend across the task-blocks. In the first 

four task blocks, the distances remained higher than 0.4 with a 

maximum of 0.82 at the 3rd task block, but then the distance from the 

target decreased towards a minimum of 0.12 at the last time-point 

(Figure 5.5b).  
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Figure 5.5 Evaluation of the subject’s performance: correlation between RDMs in the 

localizer data (a), distances between the projection and the target in the RS (b) and 

trajectory of the projection in the RS (c). The Spearman’s correlation between the 

RDMs estimated at the end of each task-block (i.e. a subset of the time series) and the 

reference RDM estimated at the end of the time series, show an increasing trend 

suggesting a stabilization of the brain patterns in the localizer data (a). The estimated 

distances between the projection in the RS and the target show a decreasing trend 

supporting the idea that, in the neurofeedback session, the subject learned to modulate 

his brain pattern to engage in the target mental state (b). The trajectories of the 

projections in the RS confirm that the subject managed to move the point 

corresponding to his brain activity towards the target (i.e. “dog”) (c). 

 

The analyses of the artificial datasets were useful to evaluate the 

stability and accuracy of the rt-RSA under different noise conditions 

by estimating the distances from the projection of the current brain 

activity (at each task block) to the target in the RS and the correlation 

between the RDMs at each task block and the reference RDM. After 

1000 simulations, the average distance exhibited a monotonic 

decreasing trend over time for different noise conditions (Figure 5.6) 

with a minimum of ~0.05 for 𝜎 = 0.5 and a maximum of ~0.2 for 𝜎 = 

3.  
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Figure 5.6 Distances from the target in the RS on the average on 1000 simulated 

datasets in various noise conditions: data with gaussian noise μ =0, σ = 0.5 (a), data 

with gaussian noise μ = 0, σ = 1 (b),data with gaussian noise μ =0, σ = 2 (c) and data 

with gaussian noise μ = 0, σ = 3 (d). In all the cases, the distances from the target have 

a decreasing trend towards zero. 

 

An opposite trend was observed in the analysis of the RDM 

correlations. Namely, the average Spearman correlation coefficient 

exhibited a monotonic increasing trend over time for each noise level 

(Figure 5.7). The exponential nature of the curve was more evident at 

lower noise levels (σ = 0.5, 1). At the first block, the starting point of 

the curve showed lower values at higher noise levels, ranging from a 

maximum of 0.825 (σ = 0.5) to a minimum of about 0.2 (σ = 3).  
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Figure 5.7 Spearman’s correlation between RDMs estimated at the end of each task-

block and the reference RDM on the average on 1000 simulated datasets in various 

noise conditions: data with Gaussian noise μ = 0, σ = 0.5 (a), data with Gaussian noise 

μ = 0, σ = 1 (b), data with Gaussian noise μ = 0, σ = 2 (c) and data with Gaussian noise 

μ = 0, σ = 3 (d). In all the cases, the correlations with the reference RDM have an 

increasing exponential trend towards one. 

 

 

5.4 Discussions 
In this work, rt-RSA, a method based on the integration of RSA within 

an rt-fMRI-NF paradigm, has been introduced. The online 

implementation of RSA (in a real-time incremental procedure) 

enabled a novel type of multi-dimensional feedback of the 

participant’s brain activity which can be semantically related to an 

internal stimulus representation (thereby reflecting the actual mental 

state of the subject) via multi-voxel pattern analysis. Using rt-RSA, 

the online estimated neural pattern is displayed as a movable point on 

a plane where two or more target points are also displayed at fixed 

positions in such a way to approximate the mutual (dis)similarity 

between the current and some candidate target neural representations 

of (sets of) base stimuli which were previously presented to the subject 

during a localizer session. In this way, the subject is requested to 

change the position of the movable point towards one of the target 
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points in a fixed RS space by self-modulating his/her brain activity 

until reaching a desired mental state. 

There are (at least) two potential advantages of this framework over 

classical NF paradigms: first, the NF display encodes (and therefore 

the self-modulation operates on) multi-voxel (i.e. spatially distributed) 

patterns of brain activity within one or more selected ROIs, which are 

(known or found to be) critically involved in the semantic processing 

of the stimulus, rather than one-dimensional (spatially averaged) ROI 

signals (deCharms et al., 2004; Weiskopf et al., 2003; Young et al., 

2014) or pairwise connectivity estimates (Koush et al., 2013); second, 

this (locally) distributed pattern of brain activity is dynamically 

compared, not just to one, but many, base or reference patterns, thus 

providing additional degrees of freedom, both to the experimenter (in 

the preparation and set-up of the NF materials) and the subject (in the 

choice of the mental strategy), to more efficiently (self-) modulate a 

mental representation along multiple dimensions. 

Rt-RSA was successfully tested in a real rt-fMRI-NF 

experiment at 7 Tesla where the subject performed a visual imagery 

task and the brain activity from an ROI in the left ITC was recorded. 

The imagery task was chosen for a proof-of-concept study, as it 

enabled the possibility to modulate the brain activity related to 

semantic features of the stimuli in a region known to encode the high-

level representation of natural objects (Haxby et al., 2001; 

Kriegeskorte et al., 2008b; Mur et al., 2013). The functional data from 

a localizer session were used to both generate the RS for a set of four 

base stimuli (to be used in the NF session) and to simulate NF 

experiments. While the actual NF performances of the subject were 

evaluated on the real NF data from the NF session, the computational 

feasibility and the statistical accuracy of the rt-RSA approach under 

simulated ideal conditions of successful modulation were evaluated on 

the same localizer data. Besides, 1000 simulations of multi-voxel ROI 

patterns were performed to evaluate the rt-RSA approach under 

different signal-to-noise conditions. 

The analysis of the simulated NF experiments with real fMRI data 

from the localizer session demonstrated that it is possible to implement 

a visual two-dimensional NF by estimating in real-time the current 
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brain pattern by dynamically updating (with negligible delays) the 

position of the associated current mental representation in a previously 

defined (and fixed) RS. Indeed, the resulting trajectory of a point on a 

two-dimensional plane (which is obtained by analyzing incrementally 

the fMRI time-series for just one target stimulus at the time) and the 

final collapsing of this point to the target position (when the full time-

series is used in the GLM) demonstrated that the provided visual 

feedback could be in principle correct and stable. More specifically, 

the results of the simulated NF experiments clearly showed that if the 

participant is in principle able to become engaged in the same mental 

state which causes exactly the same distribution of brain activity 

elicited by the target stimulus in the target ROI, the resulting visual 

feedback could in principle guide this process towards the perfect 

match between the positions of the current and target brain patterns.  

The results from the rt-fMRI-NF experiment demonstrate that the rt-

RSA approach can be applied in a real-world scenario, with little 

additional computational steps and no additional hardware 

requirements. Thus, our proof-of-concept study suggests that it would 

be possible to integrate an rt-RSA based procedure within several 

experiments using existing NF paradigms.  

The integration of a multi-dimensional NF display did not 

introduce additional difficulties for the subject to understand the task, 

at least according to the report from the single subject examined in this 

study. Indeed, while the task progress is perceived by the subject like 

“a journey in a geographical map”, the investigator can still rely on the 

distance from the target as a simple (one-dimensional) index of 

success to evaluate the subject’s performance (Paret et al., 2019). 

Moreover, the offline analyses performed on the localizer data showed 

how it is possible to obtain a preliminary assessment of the stability of 

the RS as initially created from the base stimuli, similarly as it happens 

in a one-dimensional NF where it is possible to evaluate the variability 

of the BOLD percent signal changes over the trials.  

The analyses of the artificial datasets allowed to assess the impact of 

noise on the trajectories under ideal conditions of successful NF. 

These gathered two main observations: First, the projection of the 

current neural representation, and its final convergence to the target 
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points, remains stable also when the fMRI signal is affected by a 

relatively higher amount of noise. However, higher noise levels 

critically affect the position of the current point at the beginning of the 

experiment, thereby potentially increasing the length of the trajectory 

in the RS, and therefore the minimum number of steps required, to 

reach the target. Second, the amount of noise has an impact on the 

reference RDM itself and, therefore, on the RS, thereby the monotonic 

correlations between current and reference RDMs may be reduced.  

Taken together, these results may suggest that, in an ideal scenario, 

the presence of higher noise levels simply causes longer paths to the 

target state, i.e. noise itself does not necessarily undermine or disrupt 

the stability of the rt-RSA under the assumption that the subject has 

successfully learnt to regulate his/her mental states with the decided 

strategy. However, it should be also pointed out that the stabilization 

of the statistical values does not represent per se an indication that the 

subject has successfully consolidated an optimal mental strategy. 

Actually, if the subject chooses a wrong strategy, there is no guarantee 

of successful convergence, even at very low noise levels. Nonetheless, 

as far as the noise is assumed constant across the blocks, the final 

distance of the current, from the target representation may still provide 

a useful indication of the overall performance in modulating the 

mental state according to that strategy.  

The proposed method appears to be a promising tool for the 

self-regulation of the brain signals as it is flexible and versatile. The 

visual feedback modality provides a straightforward solution to 

implement, and easy to understand for the subject, and can therefore 

be considered the default solution. However, there are in principle no 

limitations about the feedback modality as different physical 

dimensions can be used as different feedback channels. The choice of 

the mental task, for which no detailed instructions are needed, is 

completely up to the subjects and their own representations, the only 

requirement being that a robust activation pattern is elicited (and 

verified) during the localizer session. As a consequence, besides 

integrating a visual feedback during object imagery, as shown in the 

present study, rt-RSA could be in principle used in more complex 

scenarios such as those employed in NF-based emotion regulation 



126 

(Linhartová et al., 2019). In fact, basic (positive or negative) emotions 

have been previously associated with specific neural signatures within 

different brain regions (Saarimäki et al., 2016), including, e.g., the 

amygdala (Sergerie et al., 2008). Therefore, it could be possible to 

project (and target) patterns with different emotional valence, on the 

same RS from one (or more) of these brain regions, after training the 

subject to engage in several different mental states that become 

associated with different local patterns (Linhartová et al., 2019) during 

the localizer session. Technically, it is only essential to keep the same 

number and order of voxels in the ROI(s) to correctly fit the original 

dimensions of the RS (Kriegeskorte and Kievit, 2013). 

Finally, towards a proper generalization of this approach, and 

to counteract the inter-subject variability in local patterns, as resulting 

from the localizing/training phase with more complex stimuli, it could 

be possible to force higher levels of smoothing to the functional data 

and, in principle, derive one unique RDM from the group-level 

analysis of several subjects (e.g. from a healthy or control cohort). 

Along these lines, it would be possible to create one “external” RS to 

be used in the NF session of a single individual (e.g. a patient) by 

aligning the estimated neural pattern from the individual to a common 

space (Frost and Goebel, 2013; Haxby et al., 2011). As a consequence, 

the participants could be asked to self-modulate their own mental state 

by navigating through predefined mental states associated, not (only) 

with their neural representations, but rather with some “control” 

representations from different people. However, this approach will 

need proper design and careful testing to be validated before any 

clinical applications. 

 

5.5 Conclusions 
In conclusion, a new method for rt-fMRI-NF has been introduced 

which promises to go beyond the classical approach of fMRI signal 

self-modulation. The presented simulation and the preliminary results 

from a real rt-fMRI-NF demonstrate that rt-RSA gathers the 

possibility to use a fixed RS for a given ROI enabling a semantic 

feedback to the subject for the self-regulation of mental states in a 
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multi-dimensional space. This approach has been shown to be 

computationally and statistically feasible and its application to a real 

NF experiment based on a simple imagery task at 7 Tesla has yielded 

encouraging results. Nonetheless, future studies are warranted to 

increase the number of subjects and to assess performances in a multi-

subject study, eventually at lower (i.e. clinical) magnetic fields (e.g. 

1.5 or 3 Tesla).  
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Chapter 6:  

General discussions and conclusions 
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The contributions of this thesis to the neuroscience community 

involved two main aspects: (i) the investigation of the influence that 

the linguistic statistical factors have in language production and 

comprehension and (ii) the proposal of a novel multi-dimensional 

experimental method for the rapidly evolving field of the rt-fMRI-NF.  

The first aspect was addressed with two rapid event-related 

fMRI experiments on the inflection of the Italian verbs and nouns and 

with a naturalistic fMRI experiment dedicated to the neural 

mechanisms underlying the linguistic prediction in a more 

ecologically valid scenario, such as the listening to an audiobook.  

All these experiments support the idea that our brain exploits the 

statistical features of a language both during production and 

comprehension and suggest the necessity of considering these aspects 

in both theoretical frameworks and practical applications.  

The first two studies show that the inflection of both nouns and verbs 

are supported by a bilateral cortical network involving frontal and 

temporal areas. Their findings corroborate the hypothesis that the 

statistical features of a language, whether they are formal, 

grammatical or semantic, influence the functioning of the mental 

lexicon and its neural correlates for language production. Moreover, 

the presented results challenge the current theories on the lexical 

access and support the necessity of considering, at least for highly 

inflected languages, these statistical properties in both physiological 

and clinical studies. In particular, the findings of the study on the verb 

inflection demonstrates that in a highly inflected language, like Italian, 

this phenomenon reflects the distributional features of the three 

conjugations (i.e. inflectional class), such as the size, the productivity 

and the ortho-phonological consistency. Besides, the fMRI study on 

the nominal inflection shows that this process is modulated by the 

interplay between morphological (e.g. the transparency of gender 

suffixes) and distributional (i.e. the size and consistency of inflectional 

classes) factors in language processing, that have not been fully 

considered in the available cognitive and neuroanatomical models.  
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The hypothesis about the influence of the distributional factors on 

language processing has been strengthened by the findings of the third 

study, as they show that our brain exploits the recurrence of statistical 

patterns in the lexicon to infer the incoming word and maintain the 

language comprehension. The cortical responses observed are in line 

with previous similar studies showing that the surprisal measure is a 

good proxy of the linguistic prediction during language 

comprehension and that the linguistic prediction process is mainly 

hosted in the temporal poles. Furthermore, the results demonstrate that 

the integration of information from multiple linguistic levels increase 

the possibility to explain better the BOLD variance as the novel 

variant of the surprisal model, that integrates both lexical and semantic 

information, provides a better predictor of the fMRI activity in left 

STG and MTG and is critically more sensitive in detecting linguistic 

processes in the left IFG, compared to a pure lexical surprisal. Finally, 

although future investigations are definitely needed, the proposed 

experimental approach may find possible applications in studying 

language comprehension in poorly compliant subjects and exploring 

possible differences between, e.g., a healthy and a clinical cohort 

listening to the same story or different stories of varying complexity.  

 The second aspect entailed the development of a novel 

experimental procedure that integrates the ability of the RSA in 

summarizing the neural representations of a set of stimuli with the 

possibility of the rt-fMRI-NF of guiding the subject towards the self-

modulation of the measured brain response. The novel method 

promises to go beyond the classical NF approach by enabling the 

possibility to provide a semantic feedback to the subject for the self-

modulation of a mental state in a multi-dimensional space. The 

analyses of the pilot data set acquired at 7 Tesla show that the method 

is computationally and statistically feasible. Moreover, the 

preliminary encouraging results, coming from a simple imagery task, 

demonstrate that implemented procedure can be easily integrated into 

an rt-fMRI-NF as it does not require any special equipment or effort 

of the subjects and the researchers. Nonetheless, future investigations 
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are warranted to test the performances both in a multi-subjects study 

and in scanning session at lower magnetic fields.  
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Appendix 
1. Lexical surprisal and frequency predictors of BOLD signals 

In the main article, the effects of the lexical surprisal (LS) and 

semantics-weighted surprisal (SwS) on the BOLD signal were 

analyzed separately in two whole-brain voxel-based two-level (mixed-

effects) general linear model (GLM) analyses using BrainVoyager. In 

the first-level GLM, the correlation between surprisal measures and 

fMRI time-courses was estimated as a fixed effect in every single 

subject in both narrative conditions (original and reversed speech). In 

addition to the predictor of interest (either LS or SwS), three predictors 

of no interest (confounds), accounting for word duration (WD), lexical 

frequency (LF) and root mean squared (RMS) amplitude of the word 

sound (WS), were added to the design matrix. To decorrelate the 

confound predictors from the predictor of interest, the Gram-Schmidt 

orthonormalization procedure was implemented according to its 

hierarchical formulation. In the second-level GLM, the inter-subject 

variability of these effects was assessed by treating subjects as random 

observations. 

In this section, the multicollinearity of the two surprisal predictors, 

together with the LF predictor, and the correlation of the LF predictor 

with BOLD signals across the whole brain, are analyzed. To this 

purpose, the correlation matrix and the Variance Inflation Factor (VIF) 

of each predictor are computed for a design matrix composed by all 

three predictors (LS, SwS, LF), with no additional confounds and no 

orthonormalization. Also, a whole-brain analysis of the fMRI data 

using LF as the main predictor of interest (and WD and WS as 

confound predictors), is performed. In this case, LF values were 

represented on the surprisal scale (negative log probability), such that 

larger values correspond to less frequent words in the corpus, and the 

design matrix underwent the same (hierarchical) Gram-Schmidt 

orthonormalization procedure used for LS and SwS models. 

The contrast between real and reversed speech conditions was 

considered in the group-level analysis. 

The mutual correlations between SwS, LS and LF predictors revealed 

that the two surprisal predictors were highly (positively) correlated (r 
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= +0.77), whereas the correlation with the word frequency was lower 

(in absolute values) and negative (r = -0.26 for the SwS and r = -0.38 

for the LS) (Table S1). The VIF values calculated on the matrix 

containing all three predictors (SwS, LS and LF) were: 4.20 for the 

SwS, 4.81 for the LS and 1.43 for the LF. 

The whole-brain analysis with the LF as the predictor of interest 

revealed several clusters with significantly positive LF effects. These 

were localized in the superior temporal gyrus (bilaterally), in the right 

anterior temporal gyrus, in the left inferior frontal gyrus and the right 

cerebellum (p<0.05, cluster level corrected, cluster-forming threshold 

p=0.001). Additional clusters were also detected in the premotor 

cortex (Figure S1). 

 

 SwS LS LF 

SwS 1 0.77 -0.26 

LS 0.77 1 -0.38 

LF -0.26 -0.38 1 

Table S1. Correlation matrix of the SwS, LS and LF predictors. 
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Figure S1. Lexical frequency brain response.  Activation pattern elicited by the (full 

variance) LF predictor in the real speech, compared to the reversed speech, 

condition. Clusters with statistically significant effects (p<0.05, cluster level 

corrected, cluster-forming threshold p=0.001) are overlaid in pseudo-color on an 

inflated cortical mesh obtained from a Talairach-normalized anatomical scan. 

 

2. Semantic scaling factor 

In the main article, the SwS is formulated as a combined measure of 

the trigram probability and the semantic similarity. According to the 

provided formulation, the SwS modulates the co-occurrences of the 

current lexical form of each content word with its left-side local 

context via a multiplicative factor expressing its semantic similarity 

with a preceding broader context of words (i.e. the semantic scaling 

factor). For content words, the theoretical range of the semantic 

scaling factor is between zero and infinite and therefore it can either 

result in a downscaling (if it is lower than 1) or an upscaling (if it is 

higher than 1) of the trigram probability. The semantic scaling factor 

is identically set to 1 when the considered token is a function word. 

To empirically explore the relation between the two surprisal 

measures (i.e. LS and SwS), and to statistically analyze how the 

weighting by semantic information specifically affects the LS 
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measure, a scatter plot of all LS and SwS raw values assigned by the 

models to the content words in the narrative text is presented, together 

with a box plot of LS and SwS raw values across all four LS quartiles 

(figure S2). There were some visible extrema in the SwS values 

although these were only 47 out of a total of 893 content words (i.e. 

~6% of the content words and ~3% of all the words in the narrative). 

However, these only occurred for 47 (out of a total of 893) content 

words (i.e. ~6% of the content words and ~3% of all the words in the 

narrative text), mostly in the lower quartiles of LS values, and no 

particular patterns of heteroscedasticity between the two measures 

were noted across LS quartiles (see Figure S2). Furthermore, when 

performing the same analysis on the two resulting fMRI predictors 

(i.e. the series of values across time points of the fMRI series, not 

across words of the narrative, after preprocessing and hemodynamic 

convolution) the scatter plot showed no extrema (and no 

heteroscedasticity patterns) for the SwS predictor (see Figure S3). 

The linear/non-linear nature of the semantic weighting was 

empirically addressed by fitting both a linear and an exponential line 

to, and by drawing these lines on a scatter plot of, all scaling factor 

values vs. corresponding semantic similarity values, for all content 

words in the corpus. 

For instance, given the transformation/normalization in the SwS 

formula, it is possible to say that, the semantics weighting produces a 

linear (R2=0.78), rather than exponential (R2=0.08), transformation 

of the semantic similarity values (Figure S4). 

To possibly isolate the neural effects of the semantic scaling factor, 

i.e. the semantic component of the SwS model, an additional whole-

brain analysis of the fMRI data was performed where this factor was 

isolated from the formula and considered as a predictor of interest in 

the first-level GLM, exactly as previously done for the LS, SwS and 

LF predictors. In this case, however, a special regressor was created 

for the same set of words used in the other whole-brain analyses, 

where each content word was assigned with the corresponding value 

of the semantic scaling factor and each function word was assigned 

with the value of one (implying no semantic modulation for these 

words). 
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The same contrast between real and reversed speech has been 

evaluated in the second-level GLM analysis and the whole-brain 

statistical map exhibited a significantly positive activation in the 

superior temporal gyrus (bilaterally) and in the right cerebellum 

(p<0.05, cluster level corrected, cluster-forming threshold p=0.001) 

(Figure S5). 

 

Figure S2. Scatter plot (a) and box plot (b) of LS and SwS raw values. 
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Figure S3. Scatter plot of LS and SwS fMRI predictors (z scores).  

 

 



175 

 

Figure S4.  Scatter plot of the semantic weighting (scaling) factor values vs. the 

semantic similarity values for all content words in the 1800-word corpus. Both axes 

are logarithmically scaled (base 10). Linear (red) and exponential (black) trend lines 

are drawn, and the corresponding R2 value of the fit are displayed, on the graph. 

 

Figure S5 Semantic factor brain response.  Activation pattern elicited by the 

isolated semantic scaling factor in the SwS model in real speech, compared to the 

reversed speech, condition. Clusters with statistically significant effects (p<0.05, 

cluster level corrected, cluster-forming threshold p=0.001) are overlaid in pseudo-

color on an inflated cortical mesh obtained from a Talairach-normalized anatomical 

scan. 
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