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Introduction

The study of stochastic processes derived from Brownian motion plays an
increasingly important role in the scientific panorama given the considerable
applications in physical and financial sciences.

Noteworthy, in recent times, the use of models for movements of the ani-
mals based on the Brownian bridge, first introduced by Horne et al. (2007),
which quickly gained great popularity in the ecological community (see Lon-
ergan et al. 2009, Willems and Hill 2009, Farmer et al. 2010, Takekawa et al.
2010, Yan et al. 2014), or the use of Brownian motions with alternating drift
for the price of options in Finance (Di Crescenzo and Pellerey 2002; Kolesnik
and Ratanov 2013; Di Crescenzo et al. 2014).

Brownian motion governed by a telegraph process is proposed as a natural
and significant generalization of such stochastic processes.

The telegraph process, first studied by Cane (1959) in the context of
ethology, is, in its most general form, a random motion {Y (t), t ≥ 0} char-
acterized by two distinct velocities c and −v (generally we consider c, v > 0)
regulated by a generic alternating counting process with independent incre-
ments {N(t), t ≥ 0}. It is a non-trivial probabilistic object and a large part
of the results obtained so far are limited to the simplest case in which N(t)
is a process of Poisson (Perry et al. 1999, Stadje and Zacks 2004, Kolesnik
and Ratanov 2013).

A first study of processes deriving from a combination of a standard
Brownian motion and a generalized integrated telegraph process is given by
Di Crescenzo and Zacks (2015), where three particular distributions for the
inter-arrival times of the process were considered: exponential with constant
intensity, exponential with linear intensities and Erlang distributions. Ex-
plicit expressions have been obtained for the transition density of the process
and, for the first case, a system of differential equations characteristic for the
transition density and the flow function (an explicit form of which is also
given) which generalizes both Kolmogorov equations for the classical tele-
graph process (Kolesnik and Ratanov 2013) and the heat equation for the
density of standard Brownian motion.

vii



INTRODUCTION viii

The aim of this research thesis is to broaden the treatment of this class
of stochastic processes also showing an original application to the volcanic
phenomenon of Phlegraean bradyseism. It consists in the periodic alternation
of phases of raising and lowering the ground level in the territory of Campi
Flegrei, in particular in Pozzuoli. The dynamics of this phenomenon, as
well as the significant implications for the risk assessment in such a heavily
man-made area, is very controversial and still the subject of hypotheses and
surveys (De Vivo et al. 2009, De Natale et al. 2017).

This is the plan of the thesis: in Chapter 1 the classical telegraph process
is presented. The Kolmogorov equations and the telegraph equation for the
transition density are derived, as well as an explicit form for the latter. In
Section 1.5 the results are extended to a generalization of the telegraph pro-
cess that admits velocities with different absolute value, whose alternation is
governed by a generic counting process with independent increments.

Chapter 2 presents a generalization of the telegraph process in which the
turning rates depend on the current state of the motion. The process is
defined in Section 2.1, in Section 2.2 the general expression of the transition
density is obtained while in Section 2.3 the case in which the inter-arrival
times have Gamma distribution is considered. A first passage time problem is
addressed in Section 2.4. Part of these results is also reported in Di Crescenzo
and Travaglino 2019 [37].

Chapter 3 deals with a stochastic process defined as the sum of a Brownian
motion and a generalized integrated telegraph process, focusing in particular
on the case in which the inter-arrival times have an exponential distribution.
Explicit forms are derived for the transition density and flow function of
the process, as well as a differential system that generalizes the Kolmogorov
equations.

Chapter 4 presents an application to the phenomenon of bradyseism in
Campi Flegrei, which carries on the one in Travaglino et al. 2018 [96], with
more rigorous methods and updated data. After a brief description of the
phenomenon in Section 4.1 the data sets available for analysis are presented.
The stochastic model used, which is an appropriate generalization of the one
seen in Chapter 3, is presented in Section 4.2. Section 4.3 is devoted to data
analysis. In Section 4.3.1 a statistical procedure is presented to identify the
points of changes in the trend of the motion and the corresponding inflation
and deflation episodes. In Section 4.3.2 the velocities of motion, the turning
rates and the infinitesimal variance of motion are estimated. The estimates
obtained, combined with the knowledge of the probability laws that regulate
the motion, allow us to make predictions on the position and velocity in future
instants of time: this is done in Section 4.3.3. To verify the admissibility of
the model, a statistical test on the Brownian component is performed in
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Section 4.4. The chapter ends with some remarks on the obtained results
and considerations on possible future developments.

A short appendix on Bessel functions closes the thesis. These functions
appear in the explicit form of the transition density of the telegraph process,
making the latter a very complex probabilistic object (for example, it is not
even thinkable to use the likelihood function for parameter estimation). The
process itself, however, appears as a conceptually simple object: throughout
the thesis we have tried to exploit this point to obtain the results of interest
in a simpler way, using methods designed ad hoc.

In this thesis the following software have been used for plots, analysis and
statistical processing: R, Mathematica and MATLAB.

The following articles:

• Travaglino F, Di Crescenzo A, Martinucci B, Scarpa R (2018)
A new model of Campi Flegrei inflation and deflation episodes based
on Brownian motion driven by the telegraph process
Mathematical Geosciences 50:961–975

• Di Crescenzo A, Travaglino F (2019)
Probabilistic analysis of systems alternating for state-dependent di-
chotomous noise
Mathematical Biosciences and Engineering 16:6386–6405

will be the main references of the entire thesis.



Chapter 1

Telegraph process

1.1 Definition and basic properties
Let (Ω,F , {Ft, t ≥ 0},P) be a filtered probability space and {N(t), t ≥

0} a Poisson process with intensity λ > 0 adapted to the filtration {Ft, t ≥
0}. The probability distribution of N(t) is given by

P{N(0) = 0} = 1,

P{N(t) = k} =
(λt)k

k!
e−λt, t > 0, k = 0, 1, 2, . . .

(1.1)

We consider the stochastic process {V (t), t ≥ 0} with random V (0), in-
dependent from N(t) and such that

P{V (0) = c} = P{V (0) = −c} =
1

2
, (1.2)

where c > 0 is a fixed constant and

V (t) := V (0)(−1)N(t). (1.3)

We give the following definition

Definition 1.1. The process {X(t), t ≥ 0} given by

X(t) :=

∫ t

0

V (s)ds = V (0)

∫ t

0

(−1)N(s)ds (1.4)

is said Goldstein-Kac (integrated) telegraph process.

Such a process describes the position of a particle moving on the line
(−∞,+∞) with velocity V (t) being constant in modulus (equal to a posi-
tive constant c). Each time a Poisson event occurs the sense of the motion

1
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changes. At time t = 0 the velocity is positive or negative with the same
probability.

We can define the processes X+(t) and X−(t) such that

X±(t) := ±c
∫ t

0

(−1)N(s)ds, (1.5)

with fixed initial velocities V (0) = ±c.
We observe that

P{X+(t) = +ct} = P{X−(t) = −ct} = P
{∫ t

0

(−1)N(s)ds = t

}
= P{N(s) = 0 ∀s ∈ [0, t]} = P{N(t) = 0} = e−λt,

(1.6)

thus

P{X(t) = ±ct} = P{X(t) = ±ct, V (0) = ±c}
= P{X(t) = ±ct|V (0) = ±c}P{V (0) = ±c}

=
1

2
P{X±(t) = ±ct} =

1

2
e−λt.

(1.7)

The distribution of X(t) has two atoms at the points ±ct, which correspond
to the case in which no Poisson events occur until time t and thus the particle
does not change its initial velocity, elsewhere

P{X(t) = x} = 0 ∀x 6= ±ct.

The distribution function F (x, t) = P{X(t) < x} is continuous for (x, t) ∈
R2

+ \ {|x| = ct}, where R2
+ := R × (0,+∞). Furthermore, being c < +∞,

F (x, t) ≡ 0 for x < −ct, t > 0 and F (x, t) ≡ 1 for x > ct, t > 0. For the same
reason the density

p(x, t) =
P{X(t) ∈ dx}

dx
, x ∈ R, t > 0, (1.8)

has finite support [−ct, ct].
The density (1.8) should be understood as a generalized function as it

has a singular component. Indeed, one has

p(x, t) =
1

2
e−λt[δ(x+ ct) + δ(x− ct)] + P (x, t)1{|x|<ct}(x, t) (1.9)

for (x, t) ∈ R2
+, where δ is the Dirac delta function, P is the absolutely con-

tinuous component with support [−ct, ct] and 1A(x) is the indicator function

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.
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For every continuous function ϕ : R→ R we can compute the mean

E[ϕ(x+X(t))] =

∫ +∞

−∞
ϕ(x+ y)p(y, t)dy

=
1

2
e−λt

∫ +∞

−∞
ϕ(x+ y)[δ(y + ct) + δ(y − ct)]dy

+

∫ +∞

−∞
ϕ(x+ y)P (y, t)1{|y|<ct}(y, t)dy

=
1

2
e−λt[ϕ(x− ct) + ϕ(x+ ct)] +

∫ ct

−ct
ϕ(x+ y)P (y, t)dy.

(1.10)

Now let p+(x, t) and p−(x, t) be the densities conditioned by having fixed
the initial velocity V (0) = ±c,

p±(x, t) =
P{X±(t) ∈ dx}

dx
=

P{X(t) ∈ dx |V (0) = ±c}
dx

(1.11)

for (x, t) ∈ R2
+. One has

p(x, t) =
P{X(t) ∈ dx}

dx

=
P{X(t) ∈ dx, V (0) = c}+ P{X(t) ∈ dx, V (0) = −c}

dx

=
1

2

[
P{X(t) ∈ dx|V (0) = c}

dx
+

P{X(t) ∈ dx|V (0) = −c}
dx

]
=

1

2
[ p+(x, t) + p−(x, t) ]

(1.12)

and, similarly to (1.9),

p+(x, t) = e−λtδ(x− ct) + P+(x, t)1{|x|<ct}(x, t),

p−(x, t) = e−λtδ(x+ ct) + P−(x, t)1{|x|<ct}(x, t),
(1.13)

where P+ and P− are the absolutely continuous components of these densities,
with P (x, t) = 1

2
[P+(x, t) + P−(x, t)].

1.2 Kolmogorov equations
For all n = 1, 2, . . . we indicate with τn the arrival time of the n-th

Poisson event
τn := inf{t : N(t) = n}.
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Let τ be equal to τ1. For all t > 0 the following equality in distribution
conditional on having fixed the initial velocity V (0) = v, v = ±c holds:

X(t)
d
= vt1{τ>t} +

[
vτ + X̃(t− τ)

]
1{τ<t} (1.14)

where {X̃(t), t ≥ 0} is a telegraph process independent of X with opposite
initial velocity −v.

From the (1.14) one has

P{X(t) ∈ dx|V (0) = v}
= P{X(t) ∈ dx, τ > t|V (0) = v}+ P{X(t) ∈ dx, τ < t|V (0) = v}
= P{vt ∈ dx, τ > t}+ P{X̃(t− τ) ∈ d(x− vτ), τ < t}

= P{vt ∈ dx}P{τ > t}+

∫ t

0

P{X̃(t− τ) ∈ d(x− vτ)|τ = s}P{τ ∈ ds}

= P{vt ∈ dx}P{τ > t}+

∫ t

0

P{X̃(t− s) ∈ d(x− vs)}P{τ ∈ ds}.

Recalling that the first arrival time τ of the Poisson process has the exponen-
tial distribution of parameter λ we can conclude that the (1.14) is equivalent
to the following two integral equations on conditional densities :

p+(x, t) = e−λtδ(x− ct) +

∫ t

0

p−(x− cs, t− s)λe−λsds,

p−(x, t) = e−λtδ(x+ ct) +

∫ t

0

p+(x+ cs, t− s)λe−λsds.
(1.15)

Now let us define the last arrival time (in the case N(t) > 0) τ :=
max{τn|τn < t}. It is easy to see that

X(t)
d
= V (t)t1{N(t)=0} +

[
V (t)(t− τ) +X(τ)

]
1{N(t)>0}. (1.16)

Let us consider the joint probability densities of the position and the
current direction of motion:

f(x, t) :=
P{X(t) ∈ dx, V (t) = +c}

dx

b(x, t) :=
P{X(t) ∈ dx, V (t) = −c}

dx

(1.17)

defined for (x, t) ∈ R2
+.
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Reasoning as before we obtain that the (1.16) is equivalent to the following
integral equations for f and b:

f(x, t) =
1

2
e−λtδ(x− ct) +

∫ t

0

b(x− c(t− s), s)λe−λ(t−s)ds,

b(x, t) =
1

2
e−λtδ(x+ ct) +

∫ t

0

f(x+ c(t− s), s)λe−λ(t−s)ds.

(1.18)

We immediately notice that, with the change of variables s→ t− s, the
integrals in the equations (1.15) coincide with those in the (1.18).

Let us introduce the matrix operator:

L :=

(
∂
∂t

+ c ∂
∂x

+ λ −λ
−λ ∂

∂t
− c ∂

∂x
+ λ

)
. (1.19)

By differentiating the equations (1.15) and (1.18) we get the differential
form of the Kolmogorov equations.

Theorem 1.1 (Kolmogorov equations). The functions p = (p+, p−)T and
p = (f, b)T satisfy the equations

Lp = 0, |x| < ct. (1.20)

For |x| > ct one has

p+(x, t) ≡ p−(x, t) ≡ f(x, t) ≡ b(x, t) ≡ 0 (1.21)

and the initial conditions are

p+(x, 0) = p−(x, 0) = δ(x)

f(x, 0) = b(x, 0) =
1

2
δ(x).

(1.22)

Proof. The (1.21) is obvious while the initial conditions (1.22) immediately
follow from the (1.15) and (1.18).

We will prove just the first of the (1.20)

∂p+

∂t
(x, t) + c

∂p+

∂x
(x, t) = −λp+(x, t) + λp−(x, t) (1.23)

only for the functions p+ and p−. The proof of the rest is similar.
Let us start by observing that(

∂

∂t
+ c

∂

∂x

)[
e−λtδ(x− ct)

]
= −λe−λtδ(x− ct)− ce−λtδ′(x− ct) + ce−λtδ′(x− ct)
= −λe−λtδ(x− ct)
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and
d

ds
p−(x− cs, t− s) = −

(
∂

∂t
+ c

∂

∂x

)
[ p−(x− cs, t− s) ].

Differentiating the first of (1.15) we get(
∂

∂t
+ c

∂

∂x

)[
p+(x, t)

]
= −λe−λtδ(x− ct) + p−(x− ct, 0)λe−λt −

∫ t

0

d

ds
p−(x− cs, t− s)λe−λsds.

Integrating by parts one has∫ t

0

d

ds
p−(x− cs, t− s)λe−λsds

= p−(x− cs, t− s)λe−λs
∣∣∣∣s=t
s=0

+ λ

∫ t

0

p−(x− cs, t− s)λe−λsds

= p−(x− ct, 0)λe−λt − p−(x, t)λ+ λ

∫ t

0

p−(x− cs, t− s)λe−λsds

and thus(
∂

∂t
+ c

∂

∂x

)[
p+(x, t)

]
= −λe−λtδ(x− ct) + λp−(x, t)− λ

∫ t

0

p−(x− cs, t− s)λe−λsds

= −λ
[
e−λtδ(x− ct) +

∫ t

0

p−(x− cs, t− s)λe−λsds
]

+ λp−(x, t)

= −λp+(x, t) + λp−(x, t).

System (1.20) is also known as Cattaneo system (see [58]).
From Theorem 1.1 we deduce that

f(x, t) =
1

2
p+(x, t) and b(x, t) =

1

2
p−(x, t). (1.24)

Given a C1 function ϕ : R → R, we can introduce the Kolmogorov dual
equations for the conditional means

u±(x, t) := E
[
ϕ(x+X(t))|V (0) = ±c

]
=

∫ +∞

−∞
ϕ(x+ y)p±(y, t)dy (1.25)
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and the joint means

u+(x, t) :=

∫ +∞

−∞
ϕ(x+ y)f(y, t)dy,

u−(x, t) :=

∫ +∞

−∞
ϕ(x+ y)b(y, t)dy.

(1.26)

By differentiating the previous identity and taking into account the (1.20)
we obtain that the functions u = (u+, u−)T and u = (u+, u−)T satisfies the
equations

L′ u = 0, (1.27)
with the intial conditions

u±(x, 0) = ϕ(x),

u±(x, 0) =
1

2
ϕ(x).

(1.28)

L′ is the dual operator of L :

L′ :=
(

∂
∂t
− c ∂

∂x
+ λ −λ

−λ ∂
∂t

+ c ∂
∂x

+ λ

)
. (1.29)

Let us consider now the conditional transition densities

p±(y, t;x, s) :=
P{X(t) ∈ dy |X(s) = x, V (s) = ±c}

dx
(1.30)

for s < t, x, y ∈ R. As for the Brownian motion, these functions only depend
on the differences y − x and t − s. To convince ourselves of this we first
observe that, for 0 < s < t,

V (t) = V (0)(−1)N(t) = V (0)(−1)N(s)(−1)N(t)−N(s) = V (s)(−1)N(t)−N(s).

Let us now analyze the conditional increments[
X(t)−X(s)|V (s) = v

]
= v

∫ t

s

(−1)N(τ)−N(s)dτ
d
= v

∫ t

s

(−1)N(τ−s)dτ

= v

∫ t−s

0

(−1)N(τ)dτ =
[
X(t− s)|V (0) = v

]
,

with the distribution equality that follows from the stationarity of the incre-
ments of the Poisson process. It is also interesting to note that, for the same
reason, conditional increments are independent. It is clear that

p±(y, t;x, s) = P{X(t) ∈ dy|X(s) = x, V (s) = ±c}
= P{X(t)−X(s) ∈ d(y − x)|V (s) = ±c}
= P{X(t− s) ∈ d(y − x)|V (0) = ±c} = p±(y − x, t− s)

(1.31)
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for every s < t and x, y ∈ R.
From the (1.15) we have then

p±(y, t;x, s)

= e−λ(t−s)δ(y − x∓ c(t− s)) +

∫ t−s

0

p∓(y, t;x± cτ, s+ τ)λe−λτdτ.
(1.32)

By differentiating these equations in a similar way to the proof of Theorem
(1.1) we obtain the backward Kolmogorov differential equations:

−∂p+

∂s
(y, t;x, s)− c∂p+

∂x
(y, t;x, s) = −λp+(y, t;x, s) + λp−(y, t;x, s)

−∂p−
∂s

(y, t;x, s) + c
∂p−
∂x

(y, t;x, s) = −λp−(y, t;x, s) + λp+(y, t;x, s)

(1.33)

for s < t and |y − x| < c(t− s).

1.3 Telegraph equation
In this section we will see that the first order hyperbolic systems (1.20),

(1.27) and (1.33) are equivalent to just one second order hyperbolic differen-
tial equation.

Theorem 1.2. The functions p, p±, f and b are solutions of the telegraph
differential equation:

∂2p

∂t2
(x, t) + 2λ

∂p

∂t
(x, t) = c2 ∂

2p

∂x2
(x, t), (x, t) ∈ R2

+. (1.34)

Proof. We will make use of the so called Kac’s trick. We remember that

p(x, t) =
p+(x, t) + p−(x, t)

2

and define
w(x, t) :=

p+(x, t)− p−(x, t)

2
. (1.35)

We see that

1

2
(1, 1) · Lp =

∂p

∂t
+ c

∂w

∂x
1

2
(1,−1) · Lp =

∂w

∂t
+ c

∂p

∂x
+ 2λw

with p = (p+, p−)T and L given by the (1.19).
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System (1.20) is thus equivalent to
∂p

∂t
= −c∂w

∂x
,

∂w

∂t
= −c∂p

∂x
− 2λw.

(1.36)

Differentiating the first equation with respect to t and the second equation
with respect to x we get

∂2p

∂t2
= −c ∂

2w

∂x∂t
,

∂2w

∂x∂t
= −c∂

2p

∂x2
− 2λ

∂w

∂x

and therefore, eliminating the mixed derivative,

∂2p

∂t2
= c2 ∂

2p

∂x2
+ 2λc

∂w

∂x
.

From the first of the (1.36) it follows the (1.34) for p .
We can similarly verify that w satisfies the (1.34) by differentiating the

first equations of system (1.36) with respect to x and the second with respect
to t and again eliminating the mixed derivative.

The thesis then follows from the linearity of the telegraph equation (1.34),
taking into account the relationships

p+(x, t) = p(x, t) + w(x, t), p−(x, t) = p(x, t)− w(x, t)

and the (1.24).

It is well known that the transition functions of the standard Brownian
motion and of the derived processes can be obtained as solutions of suitable
initial value problems for the heat equation. Similarly, the transition density
of the telegraph process p, as well as the p±, f and b, is the solution of an
initial value problem for the telegraph equation.

To derive the initial conditions for the conditional densities p±, we eval-
uate the equations (1.20) for t = 0, taking into account the (1.22):

∂p±
∂t

(x, 0)± c∂p±
∂x

(x, 0) = 0.

Furthermore, from the (1.15) it is easy to obtain

∂p±
∂x

(x, 0) = δ′(x).
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So we have
p±(x, 0) = δ(x),

∂p±
∂t

(x, 0) = ∓cδ′(x). (1.37)

Then it is easy to derive the initial conditions for p = 1
2
(p+ + p−)

p(x, 0) = δ(x),
∂p

∂t
(x, 0) = 0 (1.38)

and for f and b (taking into account the relationships (1.24))

f(x, 0) =
1

2
δ(x),

∂f

∂t
(x, 0) = − c

2
δ′(x),

b(x, 0) =
1

2
δ(x),

∂b

∂t
(x, 0) = +

c

2
δ′(x).

(1.39)

Now let ϕ : R→ R be a C2 function. We consider the conditional means
(1.25); since

u±(x, t) =

∫ +∞

−∞
ϕ(x+ y)p±(y, t)dy =

∫ +∞

−∞
ϕ(y)p±(y − x, t)dy,

one has(
∂2

∂t2
+2λ

∂

∂t
−c2 ∂

2

∂x2

)
u±(x, t) =

∫ +∞

−∞
ϕ(y)

(
∂2

∂t2
+2λ

∂

∂t
−c2 ∂

2

∂x2

)
p±(y−x, t)dy

and thus the u± satisfy the (1.34), too.
We can therefore state the following theorem.

Theorem 1.3. The functions u±, as well as the function

u(x, t) = E[ϕ(x+X(t))] =
1

2
(u+(x, t) + u−(x, t)),

are solutions of the telegraph equation (1.34) with the initial conditions:

u+(x, 0) = u−(x, 0) = u(x, 0) = ϕ(x),

∂u±
∂t

(x, 0) = ±cϕ′(x),
∂u

∂t
(x, 0) = 0.

(1.40)

Finally, we observe that is possible to apply Kac’s trick to the (1.33) too,
obtaining the following version of the telegraph equation for the functions
p = p±(y, t;x, s) :

∂2p

∂s2
− 2λ

∂p

∂s
= c2 ∂

2p

∂x2
, (1.41)
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with the final conditions

p±(y, t;x, t) = δ(y − x),
∂p±
∂s

(y, t;x, t) = ±cδ′(y − x). (1.42)

Obviously, the previous identities can be obtained directly from the re-
spective results for the functions p±(x, t), taking into account relationships
(1.31).

We emphasize here that all the functions and derivatives treated must be
understood as generalized functions.

In particular, in the space D′(R) of the distributions, the solutions of the
(1.34) and of the equivalent hyperbolic systems having support included in
R2

+ are unique once the initial conditions are set.

1.4 Transition Density
In the following pages we will use the following lemma.

Lemma 1.1. The solution v(x, t) of the equation

∂2v

∂t2
(x, t)− c2 ∂

2v

∂x2
(x, t) = λ2v(x, t), (x, t) ∈ R2

+, (1.43)

with the initial conditions

v(x, 0) = ϕ(x),
∂v

∂t
(x, 0) = ψ(x), (1.44)

can be written in the form

v(x, t) = Z(x, t;ψ) +
∂Z

∂t
(x, t;ϕ), (1.45)

where, for every continuous function ψ : R→ R,

Z(x, t;ψ) :=
1

2

∫ t

−t
ψ(x+ cs)I0

(
λ
√
t2 − s2

)
ds

=
1

2

∫ t

0

[ψ(x+ cs) + ψ(x− cs)]I0

(
λ
√
t2 − s2

)
ds.

(1.46)

Proof. Omitted. See [58, pp. 34-35].

The following theorem gives the explicit form of the transition density
p(x, t) of the telegraph process {X(t), t ≥ 0}.
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Theorem 1.4.

p(x, t) =
1

2
e−λt[δ(x+ ct) + δ(x− ct)]

+
1

2c
e−λt

[
λI0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
1{|x|<ct}

(1.47)

for (x, t) ∈ R2
+, where I0(x) is the modified Bessel function.

Proof. As seen in the previous paragraph, it is sufficient to show that the
density p = p(x, t) defined by (1.47) is a solution of the (1.34) with the
initial conditions (1.38). It is easy to see that this is equivalent to requiring
that the function v(x, t) = eλtp(x, t) satisfies the equation (1.43) with the
initial conditions

v(x, 0) = δ(x),
∂v

∂t
(x, 0) = λδ(x).

By applying Lemma 1.1 we therefore have

v(x, t) = Z(x, t;λδ) +
∂Z

∂t
(x, t; δ)

=
1

2

[
δ(x− ct) + δ(x+ ct)

]
+

1

2

∫ t

−t
δ(x+ cs)

[
λI0

(
λ
√
t2 − s2

)
+
∂

∂t
I0

(
λ
√
t2 − s2

)]
ds

=
1

2

[
δ(x− ct) + δ(x+ ct)

]
+

1

2c

∫ ct

−ct
δ(x+ y)

[
λI0

(
λ

√
t2 − y2

c2

)
+
∂

∂t
I0

(
λ

√
t2 − y2

c2

)]
dy

=
1

2

[
δ(x− ct) + δ(x+ ct)

]
+

1

2c

[
λI0

(
λ

√
t2 − x2

c2

)
+
∂

∂t
I0

(
λ

√
t2 − x2

c2

)]
.

Multiplying by e−λt we get the thesis.

Taking into account the well known identity for Bessel function I ′0(z) =
I1(z), one has

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
=

λct√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)
(1.48)
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Figure 1.1: The absolutely continuous component (1.50) of the probability density
(1.49), with t = 2, λ = 1, and c = 2.

and therefore the (1.47) can be written in the form:

p(x, t) =
1

2
e−λt[δ(x+ ct) + δ(x− ct)]

+
λ

2c
e−λt

[
I0

(
λ

c

√
c2t2 − x2

)
+

ct√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
1{|x|<ct}.

(1.49)

Comparing the previous identity with the (1.9) we get the expression of
the absolutely continuous component of the transition density of the tele-
graph process:

P (x, t) =
λ

2c
e−λt

[
I0

(
λ

c

√
c2t2 − x2

)
+

ct√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
(1.50)

for (x, t) ∈ R2
+, |x| < ct. Figure 1.1 shows a plot of the (1.50).

We can now reason as in Theorem 1.4 to derive the conditional densities
p±(x, t). We notice then that, since the p± satisfy the (1.34) with the initial
conditions (1.37), the functions q±(x, t) = eλt are solutions of the (1.43) with
initial conditions

q±(x, 0) = δ(x),
∂q±
∂t

(x, 0) = λδ(x)∓ cδ′(x). (1.51)
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By applying again Lemma 1.1 we get the explicit form of the p±:

p±(x, t) = e−λt
[
Z(x, t;λδ ∓ cδ′) +

∂Z

∂t
(x, t; δ)

]
= e−λt

[
Z(x, t;λδ) +

∂Z

∂t
(x, t; δ)

]
+ e−λtZ(x, t;∓cδ′)

= p(x, t)∓ 1

2
e−λt

[
δ(x+ ct)− δ(x− ct)

]
± 1

2c
e−λt

[
λx√

c2t2 − x2
I1

(
λ

c

√
c2t2 − x2

)
1{|x|<ct}

]
= e−λtδ(x∓ ct)

+
λ

2c
e−λt

[
I0

(
λ

c

√
c2t2 − x2

)
+

ct± x√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
1{|x|<ct}.

(1.52)

Comparing the previous identities with the (1.13) we obtain the absolutely
continuous component:

P±(x, t) =
λ

2c
e−λt

[
I0

(
λ

c

√
c2t2 − x2

)
+

ct± x√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
.

(1.53)
We notice that

P+(−x, t) = P−(x, t) and p+(−x, t) = p−(x, t). (1.54)

This is a consequence of the symmetry of the telegraph process; indeed

−X+(t) = −c
∫ t

0

(−1)N(s)ds = X−(t). (1.55)

We also get that f(−x, t) = b(x, t), taking into account the (1.24).

1.5 Generalized telegraph process
So far we have considered a telegraph process with velocities c and −c,

equal in the modulus, which alternate according to a Poisson process.
Let us now consider a process {X(t),≥ 0} characterized by velocities c

and −v, with c, v > 0 and c 6= v, governed by a generic alternating counting
process {N(t), t ≥ 0} with independent increments. Let V (t) denote the
velocity of X(t) at time instant t and assume that it is random at the initial
instant:

P{V (0) = c} = P{V (0) = −v} =
1

2
. (1.56)
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Definition 1.2. The stochastic process

X(t) :=

∫ t

0

V (s)ds, t ≥ 0, (1.57)

where

V (t) := V (0)(−1)N(t) +
c− v

2

[
1− (−1)N(t)

]
, t > 0, (1.58)

is said generalized telegraph process.

The process N(t) denotes the number of velocity changes in the interval
[0, t] and is governed by the sequences of random variables {U1, U2, . . . } and
{D1, D2, . . . }, independent of each other and of V (0), where Ui (respectively
Di) describes the i-th period during which X(t) has positive (respectively
negative) velocity.

We assume that the variables Ui and Di, i = 1, 2, . . . , are absolutely
continuous.

It is clear that N(t) depends on V (0), since the sequence of interarrival
times is U1, D1, U2, D2, . . . if V (0) = c and D1, U1, D2, U2, . . . if V (0) = −v.

For i = 1, 2, . . . let FUi and FDi denote the cumulative distribution func-
tions (CDF) of Ui and Di , fUi and fDi the respective probability densitiy
functions (PDF), FUi = 1− FUi and FDi = 1− FDi the survival functions.

Furthermore, for each n = 1, 2, . . . , let us define the following sums

U (n) := U1 + U2 + · · ·+ Un,

D(n) := D1 +D2 + · · ·+Dn,
(1.59)

and denote with F
(n)
U , F (n)

D and f
(n)
U , f (n)

D the relative CDFs and PDFs, re-
spectively.

We notice that

[V (t)|V (0) = c]

=

{
c if U (n) +D(n) ≤ t < U (n+1) +D(n) for some n = 0, 1, 2, . . .

−v if U (n+1) +D(n) ≤ t < U (n+1) +D(n+1) for some n = 0, 1, 2, . . .

(1.60)

[V (t)|V (0) = −v]

=

{
−v if D(n) + U (n) ≤ t < D(n+1) + U (n) for some n = 0, 1, 2, . . .

c if D(n+1) + U (n) ≤ t < D(n+1) + U (n+1) for some n = 0, 1, 2, . . .

(1.61)
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Figure 1.2: Simulated sample paths of a generalized telegraph process with c = 2
and v = 1.
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having set in the previous identities U (0) = D(0) = 0.
To derive the probability law of X(t), it is of fundamental importance to

determine the distribution of the process

W (t) :=

∫ t

0

1{V (s)=c}(s) ds, t ≥ 0, (1.62)

called occupation time, which represents the total amount of time in which
X(t) has positive velocity in the interval [0, t].

It is clear that P{0 ≤ W (t) ≤ t} = 1.
As we will see in the next theorem, the distribution of W (t) has two

atoms at the points 0 and t and an absolutely continuous component in the
interval (0, t). We therefore introduce, for x ∈ (0, t) and v0, vt ∈ {c,−v}, the
density

ψ(x, t) :=
∂

∂x
P{W (t) ≤ x} =

P{W (t) ∈ dx}
dx

, (1.63)

the joint density

ψ(x, t; vt) :=
∂

∂x
P{W (t) ≤ x, V (t) = vt}, (1.64)

and the conditional joint density given the initial direction

ψv0(x, t; vt) :=
∂

∂x
P{W (t) ≤ x, V (t) = vt |V (0) = v0}. (1.65)

Let us first observe that

P{W (t) ≤ x, V (t) = vt}
= P{W (t) ≤ x, V (t) = vt, V (0) = c}+ P{W (t) ≤ x, V (t) = vt, V (0) = −v}
= P{W (t) ≤ x, V (t) = vt|V (0) = c}P{V (0) = c}

+ P{W (t) ≤ x, V (t) = vt|V (0) = −v}P{V (0) = −v}

=
P{W (t) ≤ x, V (t) = vt|V (0) = c}

2
+

P{W (t) ≤ x, V (t) = vt|V (0) = −v}
2

hence
ψ(x, t; vt) =

1

2

[
ψc(x, t; vt) + ψ−v(x, t; vt)

]
. (1.66)

Of course one also have

P{W (t) ≤ t} = P{W (t) ≤ t, V (t) = c}+ P{W (t) ≤ t, V (t) = −v}

and thus
ψ(x, t) = ψ(x, t; c) + ψ(x, t;−v). (1.67)
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Theorem 1.5. For every t > 0

P{W (t) = 0} =
1

2
FD1(t), P{W (t) = t} =

1

2
FU1(t). (1.68)

Moreover, for x ∈ (0, t),

ψc(x, t; c) =
+∞∑
n=1

[
F

(n)
U (x)− F (n+1)

U (x)
]
f

(n)
D (t− x),

ψc(x, t;−v) =
+∞∑
n=0

[
F

(n)
D (t− x)− F (n+1)

D (t− x)
]
f

(n+1)
U (x),

(1.69)

and symmetrically

ψ−v(x, t; c) =
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
f

(n+1)
D (t− x),

ψ−v(x, t;−v) =
+∞∑
n=1

[
F

(n)
D (t− x)− F (n+1)

D (t− x)
]
f

(n)
U (x).

(1.70)

Proof. Since the random times Ui and Di are positive, one has
W (t) = 0 ⇐⇒ V (0) = −v and D1 ≥ t,

W (t) = 1 ⇐⇒ V (0) = c and U1 ≥ t,

therefore
P{W (t) = 0} = P{V (0) = −v,D1 ≥ t}

= P{V (0) = −v}P{D1 ≥ t} =
1

2
P{D1 > t} =

1

2
FD1(t)

where second equality follows from the independence of the variables Di of
V (0) and third equality follows from being absolutely continuous D1. Simi-
larly

P{W (t) = t} = P{V (0) = c}P{U1 > t} =
1

2
FU1(t).

Now let us prove the first of the (1.69).

ψc(x, t; c)dx :=P{W (t) ∈ dx, V (t) = c|V (0) = c}

=
+∞∑
n=0

P{W (t) ∈ dx, V (t) = c|V (0) = c, U (n) < x ≤ U (n+1)} ·

·P{U (n) < x ≤ U (n+1)}

=
+∞∑
n=0

P{W (t) ∈ dx, V (t) = c|V (0) = c, U (n) < x ≤ U (n+1)} ·

·
[
F

(n)
U (x)− F (n+1)

U (x)
]
.
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Let us analyze the probabilities appearing as addends in the previous summa-
tion. Since they are conditional probabilities given V (0) = c, the interarrival
times sequence is U1, D1, . . . , Un, Dn, Un+1, . . . .
From W (t) ∈ dx and U (n) < x ≤ U (n+1) we deduce that t is the sum of U (n),
D(n) and a portion of U (n+1).
Then t −W (t) = D(n) and time instant t falls within the period Un+1, so
that condition V (t) = c is superfluous. Hence

P{W (t) ∈ dx, V (t) = c|V (0) = c, U (n) < x ≤ U (n+1)}
= P{D(n) ∈ d(t− x)|V (0) = c, U (n) < x ≤ U (n+1)}
= P{D(n) ∈ d(t− x)} = f

(n)
D (t− x)dx,

with third equality following from the independence of random times Di of
the variables V (0) and Ui.
Then, taking into account that 0 < x < t andD(0) = 0, one has f (0)

D (t−x) = 0
and thus:

ψc(x, t; c)dx =
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
·

· P{W (t) ∈ dx, V (t) = c|V (0) = c, U (n) < x ≤ U (n+1)}

=
+∞∑
n=1

[
F

(n)
U (x)− F (n+1)

U (x)
]
f

(n)
D (t− x)dx.

The proof of the first of the (1.70) is similar, with the difference that, being
V (0) = −v, the interarrival times sequence isD1, U1, . . . , Dn, Un, Dn+1, Un+1, . . .
and therefore t−W (t) = D(n+1) :

ψ−v(x, t; c)dx =
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
·

· P{W (t) ∈ dx, V (t) = c|V (0) = −v, U (n) < x ≤ U (n+1)}

=
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
f

(n+1)
D (t− x)dx.

The remaining equations can be derived by symmetry by inverting the
roles of processes W (t) and t−W (t).

The previous theorem, along with the identities (1.66) and (1.67), gives
us the explicit form of the absolutely continuous component ψ(x, t) of the
density of the process W (t).
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For every (x, t) ∈ R2
+, the generalized density of W (t) is given by

P{W (t) ∈ dx}
dx

=
1

2
FD1(t)δ(x) +

1

2
FU1(t)δ(x− t) + ψ(x, t)1{0<x<t}. (1.71)

From the proof of the previous theorem we notice that, for every x ∈
[0, t], the random variable W (t) is equal in distribution to t−W (t) once the
distributions of the processes U (n) and D(n) are inverted for each n. We can
write:

P{W (t) ≤ x}|{(U(n),D(n));n∈N} = P{W (t) ≥ t− x}|{(D(n),U(n));n∈N}. (1.72)

Corollary 1.1. For every t > 0

E[W (t)] =
1

2

∫ t

0

[
Ψc(x, t) + Ψ−v(x, t)

]
dx, (1.73)

V ar[W (t)] =

∫ t

0

x
[
Ψc(x, t) + Ψ−v(x, t)

]
dx− {E[W (t)]}2, (1.74)

where, for 0 < x < t,

Ψc(x, t) : = P{W (t) > x|V (0) = c}

=
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
F

(n)
D (t− x),

(1.75)

Ψ−v(x, t) : = P{W (t) > x|V (0) = −v}

=
+∞∑
n=0

[
F

(n)
D (t− x)− F (n+1)

D (t− x)
]
F

(n)
U (x).

(1.76)

Proof. Let us start by proving the (1.73):

E[W (t)] :=

∫ +∞

0

P{W (t) > x}dx−
∫ 0

−∞
P{W (t) ≤ x}dx

=

∫ t

0

P{W (t) > x}dx+

∫ +∞

t

P{W (t) > x}dx

=

∫ t

0

[
P{W (t) > x, V (0) = c}+ P{W (t) > x, V (0) = −v}

]
dx

=
1

2

∫ t

0

[
P{W (t) > x|V (0) = c}+ P{W (t) > x|V (0) = −v}

]
dx

=
1

2

∫ t

0

[
Ψc(x, t) + Ψ−v(x, t)

]
dx.
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What remains to be proven are the (1.75), (1.76).

P{W (t) > x|V (0) = c}
= P{x < W (t) < t|V (0) = c}+ P{W (t) = t|V (0) = c}
= P{x < W (t) < t, V (t) = c|V (0) = c}
+ P{x < W (t) < t, V (t) = −v|V (0) = c}+ P{U1 ≥ t}

=

∫ t

x

[
ψc(y, t; c) + ψc(y, t;−v)

]
dy + FU1(t).

We compute the integral using (1.69):∫ t

x

[
ψc(y, t; c) + ψc(y, t;−v)

]
dx

=

∫ t

x

+∞∑
n=0

{[
F

(n+1)
U (y)− F (n+2)

U (y)
]
f

(n+1)
D (t− y)

+
[
F

(n)
D (t− y)− F (n+1)

D (t− y)
]
f

(n+1)
U (y)

}
dy

=
+∞∑
n=0

∫ t

x

{
F

(n+1)
U (y)f

(n+1)
D (t− y)− F (n+1)

D (t− y)f
(n+1)
U (y)

− F (n+2)
U (y)f

(n+1)
D (t− y) + F

(n+1)
D (t− y)f

(n+2)
U (y)

}
dy

+

∫ t

x

F
(0)
D (t− y)f

(1)
U (y)dy

=
+∞∑
n=0

∫ t

x

∂

∂y

[
−F (n+1)

U (y)F
(n+1)
D (t− y) + F

(n+2)
U (y)F

(n+1)
D (t− y)

]
dy

+

∫ t

x

fU1(y)dy

=
+∞∑
n=0

[
F

(n+1)
U (x)F

(n+1)
D (t− x)− F (n+2)

U (x)F
(n+1)
D (t− x)

]
+ FU1(t)− FU1(x)

=
+∞∑
n=1

[
F

(n)
U (x)− F (n+1)

U (x)
]
F

(n)
D (t− x) + FU1(t)− FU1(x).

Noticing that

FU1(t)− FU1(x) + FU1(t) = 1− FU1(x) =
[
F

(0)
U (x)− F (1)

U (x)
]
F

(0)
D (t− x),
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we get

P{W (t) > x|V (0) = c} =

∫ t

x

[
ψc(y, t; c) + ψc(y, t;−v)

]
dy + FU1(t)

=
+∞∑
n=0

[
F

(n)
U (x)− F (n+1)

U (x)
]
F

(n)
D (t− x).

The (1.76) can be proven in a similar way.
To prove the (1.74) we use the identity (see [28, theorem 5.5]):

E[X2] =

∫ +∞

0

2xP{X > x}dx−
∫ 0

−∞
2xP{X ≤ x}dx. (1.77)

One has

E{[W (t)]2} =

∫ +∞

0

2xP{W (t) > x}dx−
∫ 0

−∞
2xP{W (t) ≤ x}dx

=

∫ t

0

x
[
P{W (t) > x|V (0) = c}+ P{W (t) > x|V (0) = −v}

]
dx

=

∫ t

0

x
[
Ψc(x, t) + Ψ−v(x, t)

]
dx

and thus the thesis is proven, since V ar[X] = E[X2]− {E[X]}2.

We can now derive the distribution of the generalized telegraph process
X(t). To do so, we define the absolutely continuous component of the tran-
sition density:

g(x, t) :=
∂

∂x
P{X(t) ≤ x}, −vt < x < ct, t > 0. (1.78)

Theorem 1.6. For every t > 0

P{X(t) = −vt} =
1

2
FD1(t), P{X(t) = ct} =

1

2
FU1(t), (1.79)

moreover, for −vt < x < ct,

g(x, t) =
1

c+ v
ψ

(
x+ vt

c+ v
, t

)
. (1.80)

Proof. From the definition of W (t) the following relationship immediately
follows:

X(t) = cW (t)− v
(
t−W (t)

)
= (c+ v)W (t)− vt. (1.81)
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Hence

P{X(t) = −vt} = P{W (t) = 0},
P{X(t) = ct} = P{W (t) = t},

g(x, t) =
∂

∂x
P{X(t) ≤ x} =

∂

∂x
P
{
W (t) ≤ x+ vt

c+ v

}
=

1

c+ v
ψ

(
x+ vt

c+ v
, t

)
.

The thesis follows from Theorem 1.5.

From the previous theorem we can derive the generalized density of the
process {X(t), t ≥ 0}:

p(x, t) :=
P{X(t) ∈ dx}

dx
= P{X(t) = −vt}δ(x+ vt) + P{X(t) = ct}δ(x− ct) + g(x, t)1{−vt<x<ct}

=
1

2
FD1(t)δ(x+ vt) +

1

2
FU1(t)δ(x− ct) +

1

c+ v
ψ

(
x+ vt

c+ v
, t

)
1{−vt<x<ct}

(1.82)

for every (x, t) ∈ R2
+.

We conclude this section by showing a result for joint densities

f(x, t) : =
P{X(t) ∈ dx, V (t) = c}

dx
,

b(x, t) : =
P{X(t) ∈ dx, V (t) = −v}

dx
,

(1.83)

defined for (x, t) ∈ R2
+, which generalizes Kolmogorov’s equations (1.20) in

the case in which the random times Ui and Di are exponentially distributed.

Theorem 1.7. For every i = 1, 2, . . . , let the random variables Ui and Di

be exponentially distributed with parameters λ and µ, respectively. Then, for
t > 0 and −vt < x < ct, the densities (1.83) satisfy the system of differential
equations 

∂f

∂t
+ c

∂f

∂x
= −λf + µb,

∂b

∂t
− v ∂b

∂x
= −µb+ λf.

(1.84)

Proof. Let us prove the first of the (1.84).
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For fixed t > 0 and x ∈ (−vt, ct) one has

f(x, t+ ∆t) :=
∂

∂x
P{X(t+ ∆t) ≤ x, V (t+ ∆t) = c}

=
∂

∂x
P{X(t) + c∆t ≤ x, V (t) = c,N(t+ ∆t)−N(t) = 0}

+
∂

∂x
P{X(t) + α∆t ≤ x, V (t) = −v,N(t+ ∆t)−N(t) = 1}

+
∂

∂x
P{X(t+ ∆t) ≤ x, V (t+ ∆t) = c,N(t+ ∆t)−N(t) ≥ 2}

= f(x− c∆t, t)(1− λ∆t) + b(x− α∆t, t)µ∆t+ o(∆t),

by having used well known properties of Poisson increments N(t+∆t)−N(t).
We notice that the parameter α ∈ (−v, c) is random, as it is depends on

the time instant θ ∈ (t, t+ ∆t] at which the velocity change occurs, but it is
not necessary to make explicit the expression or the probability law since, as
will be seen, it will be completely irrelevant in subsequent developments.

By developing in the Taylor series we get the previous identity

f + ∆t
∂f

∂t
+ o(∆t) =

{
f − c∆t∂f

∂x

}
(1− λ∆t) +

{
b− α∆t

∂b

∂x

}
µ∆t+ o(∆t),

hence, dividing by ∆t,

∂f

∂t
= −c∂f

∂x
− λf − λc∆t∂f

∂x
+ µb− µα∆t

∂b

∂x
+
o(∆t)

∆t
.

The thesis follows by taking the limit for ∆t→ 0.
The second equation can be proved similarly.

Corollary 1.2. Under the hypotheses of the previous theorem, the following
system of differential equations holds

∂p

∂t
+
c− v

2

∂p

∂x
+
c+ v

2

∂j

∂x
= 0,

∂j

∂t
+
c+ v

2

∂p

∂x
+
c− v

2

∂j

∂x
= −(λ− µ)p− (λ+ µ)j,

(1.85)

for t > 0 and −vt < x < ct, where j(x, t) := f(x, t)− b(x, t).

Proof. It follows straightforwardly from the linearity of the system (1.84),
taking into account that p(x, t) = f(x, t) + b(x, t).
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State-dependent telegraph
process

In this chapter we consider a state-dependent telegraph process {X(t), t ≥
0}, which describes the alternating behavior of a suitable stochastic system,
such as the motion of a particle running on the real line. The particle velocity,
say V (t), alternates randomly between the fixed values c > 0 and −v < 0.
We assume that the initial position is X(0) = 0 and the initial velocity is
V (0) = c.

Let f(x, t) and b(x, t) denote respectively the forward and backward tran-
sition densities of the motion, defined as

f(x, t) :=
∂

∂x
P{X(t) ≤ x, V (t) = c},

b(x, t) :=
∂

∂x
P{X(t) ≤ x, V (t) = −v}.

(2.1)

For t > 0 and −vt < x < ct, densities (2.1) satisfy the following partial
differential equations:

∂

∂t
f(x, t) + c

∂

∂x
f(x, t) = −λ+(x)f(x, t) + λ−(x)b(x, t),

∂

∂t
b(x, t)− v ∂

∂x
b(x, t) = −λ−(x)b(x, t) + λ+(x)f(x, t),

(2.2)

where λ+(x) and λ−(x) are nonnegative functions, for all x ∈ R. The function
λ+(x) represents the intensity of velocity changes when the particle occupies
state x with current forward motion, and similarly λ−(x) represents the same
intensity for the backward motion. Clearly, for the classical telegraph process
the intensity functions λ+(x) and λ−(x) are constant, leading to exponentially
distributed interarrival times between consecutive velocity changes. Instead,

25
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Figure 2.1: A sample path of X(t) with indications of the relevant random vari-
ables and the velocities of the motion (after Di Crescenzo and Travaglino 2019).

herein we assume that they depend on the position x and satisfy the following
assumptions: {

λ+(x) = 0 if x ≤ 0,

λ−(x) = 0 if x ≥ 0,
(2.3)

and ∫ +∞

0

λ±(±x)dx = +∞. (2.4)

The conditions (2.3) express that each instant a velocity change occurs, then
the process is forced to return to the 0 state prior to the subsequent veloc-
ity change (see the sample path of X(t) shown in Figure 2.1). Specifically,
changes from positive to negative velocity occur only if the particle occu-
pies a positive state x, whereas the opposite velocity changes occur only at
negative states. The assumption (2.4) provide a bona fide condition, whose
role will be clarified in the following. Clearly, the given assumptions imply
that consecutive velocity changes of the motion are separated by passages
through the zero state. The resulting state-dependent telegraph process is
then useful to describe systems that alternate randomly around the 0 level.

We remark that other stochastic processes describing alternating motions
governed by non-constant parameters have been treated recently by Garra
and Orsingher [46]. Specifically, some cases of space-varying velocities and
time-varying intensity are treated by means of suitable space-time transfor-
mations.
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We point out that performing a transformation analogous to Eq. (2.3) of
Beghin et al. [8], the equations (2.2) lead to a system of partial differential
equations for the transition density p(x, t) and the flow function w(x, t) of
the process X(t), defined respectively as

p(x, t) :=
∂

∂x
P{X(t) ≤ x} = f(x, t) + b(x, t),

w(x, t) := f(x, t)− b(x, t).
(2.5)

According to Orsingher [76], in a large ensemble of particles moving as speci-
fied, the function w(x, t) can be viewed as a measure of the excess of particles
moving forward with respect to those moving backward near point x at time
t.

2.1 Probabilistic structure of the process
In this section we analyze the probabilistic structure of the random vari-

ables that describe the upward and downward particle motion.
For every i ∈ N, we denote by Ui (respectively Di) the random duration

of the i-th time interval in which the motion has positive (negative) velocity.
For any i ∈ N, we express Ui as the sum of the random time length U−i during
which X(t) < 0, and the random time length U+

i during which X(t) > 0.
Clearly, since the initial velocity is positive, one has

U−1 = 0 and U1 = U+
1 .

Similarly we have (see Figure 2.1)

Di = D+
i +D−i , i ∈ N.

From the assumptions (2.3) and (2.4) it follows that the passages of X(t)
through the 0 state are regenerative alternating events, and the dynamics of
the velocity changes do not depend on time. Hence, the sequence {U+

i ; i ∈ N}
is formed by independent and identically distributed random variables. The
same conclusion holds for the independent sequence {D−i ; i ∈ N}.

We denote by Zi the i-th random instant in which the process is equal to
0, and by Pi (resp. Ni) the duration of the i-th time interval in which X(t)
is positive (negative), as shown in Figure 2.1. It is easy to verify that, for
every i ∈ N, {

Pi = Z2i−1 − Z2(i−1),

Ni = Z2i − Z2i−1,
(2.6)
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where Z0 := 0. From the assumptions on the motion, the following relation-
ships are straightforward (as shown in Figure 2.1)

cU+
i − vD+

i = 0, −vD−i + cU−i+1 = 0,

so that 
Pi = U+

i +D+
i =

c+ v

v
U+
i ,

Ni = D−i + U−i+1 =
c+ v

c
D−i .

(2.7)

Thus, the sequences {Pi; i ∈ N} and {Ni; i ∈ N} are independent and, clearly,
they are formed by independent and identically distributed random variables.

Since the motion proceeds with constant velocities, and the instants
{Z2i; i ∈ N} and {Z2i−1; i ∈ N} are regenerative, a linear time-transformation
allows the functions λ+(x) and λ−(x) in Eqs. (2.2) to represent the intensities
of occurrence of velocity changes along the time axes. Hence, from classical
arguments of renewal theory, it follows that λ+(x) and λ−(−x), for x ≥ 0,
are respectively the hazard rate functions of cU+

i and vD−i at x ≥ 0, i.e.

λ+(x) = lim
h→0+

1

h
P{cU+

i ≤ x+ h | cU+
i > x},

λ−(−x) = lim
h→0+

1

h
P{vD−i ≤ x+ h | vD−i > x}.

We can thus introduce the following expressions, for x ≥ 0,

F cU+
i

(x) = P{cU+
i > x} = exp

{
−
∫ x

0

λ+(y)dy

}
= e−Λ+(x),

F vD−
i

(x) = P{vD−i > x} = exp

{
−
∫ x

0

λ−(−y)dy

}
= e−Λ−(x),

(2.8)

where
Λ±(x) :=

∫ x

0

λ±(±y)dy, x ≥ 0, (2.9)

constitute the corresponding cumulative hazard rates. Hence, we immedi-
ately obtain the probability density functions of U+

i and D−i , namely

fU+
i

(x) = cλ+(cx)e−Λ+(cx), fD−
i

(x) = vλ−(−vx)e−Λ−(vx), x > 0.

Consequently, due to assumption (2.4), the random variables U+
i and D−i are

nonnegative, absolutely continuous, honest random variables, for all i ∈ N,
with distribution functions

FU+
i

(x) = 1− e−Λ+(cx), FD−
i

(x) = 1− e−Λ−(vx), x > 0, (2.10)
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respectively. Finally, the relations (2.7) allow to express the complementary
distribution functions of Pi and Ni, i ∈ N, as follows, for x ≥ 0,

F Pi(x) = exp

{
− Λ+

( cv

c+ v
x
)}

, FNi(x) = exp

{
− Λ−

( cv

c+ v
x
)}

.

On the ground of the above results, we are now able to express the de-
pendence of the process X(t) on the regenerative random times Zi. Indeed,
if k velocity changes occurred in [0, t], t > 0, then

X(t) = Vk (t− Zk), (2.11)

where
Vk =

{
c, k even
−v, k odd.

Consequently, the process X(t) can be expressed as

X(t) =
∞∑
k=0

1{M(t)=k}Vk (t− Zk), t > 0,

where 1A is the indicator function of A, i.e. 1A = 1 if A is true, and
1A = 0 otherwise, and where M(t) is the alternating counting process that
counts the number of velocity changes in [0, t], whose interarrival times are
U1, D1, U2, D2, . . .

2.2 Transition densities
In this section we determine the formal expressions of the probability

density functions that describe the motion during suitable time intervals.
Specifically, with reference to the random variables introduced in Section
2.1, we deal with the following densities, for n ∈ N,

fn(x, t) :=
∂

∂x
P{X(t) ≤ x, Z2(n−1) − U−n ≤ t < Z2(n−1) + U+

n },

bn(x, t) :=
∂

∂x
P{X(t) ≤ x, Z2n−1 −D+

n ≤ t < Z2n−1 +D−n }.
(2.12)

Clearly, for each n ∈ N, fn(x, t) (resp. bn(x, t)) represents the forward (back-
ward) density of the particle position at time t, during the n-th period in
which the motion has positive (negative) velocity. Hence, the densities de-
fined in (2.1) can be expressed by

f(x, t) =
∞∑
n=1

fn(x, t), b(x, t) =
∞∑
n=1

bn(x, t), (2.13)
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provided that the above series are convergent. Before determining the for-
ward densities given in the first of (2.12) we recall that, since the initial ve-
locity is positive, the state space of the particle position at time t is (−vt, ct],
and the probability law of X(t) has a discrete component at point ct, so that
the density f1(x, t) is degenerate.

Theorem 2.1. The forward probability densities defined in the first of (2.12)
can be expressed as follows:

f1(x, t) = FU+
1

(t)δ(ct− x), x ∈ R, t ≥ 0, (2.14)

where δ(x) denotes the Dirac delta function, and, for n = 2, 3, . . . ,

fn(x, t) =


1

c
fZ2(n−1)

(
t− x

c

)
FU+

n

(
x

c

)
, 0 < x < ct,

1

c+ v

∫ t+x
v

0

fD−
n−1

(
c(t− z)− x

c+ v

)
fZ2n−3(z) dz, −vt < x < 0.

(2.15)

Proof. If t < U+
1 , then no changes of velocity have occurred up to time t, and

so X(t) = ct. Thus, equation (2.14) follows immediately since the relevant
distribution has an atom at the point x = ct. Note that the density f1(x, t)
must be intended as a generalized function. It is clear that in the n-th period
in which the velocity is positive X(t) = c(t− Z2(n−1)), as stated in equation
(2.11) for k = 2n − 1, and confirmed by Figure 2.1. So that, for n > 1 and
0 < x < ct we have
P{X(t) ≤ x, Z2(n−1) < t < Z2(n−1) + U+

n }
= P{c(t− Z2(n−1)) ≤ x, U+

n > t− Z2(n−1), Z2(n−1) < t}

=

∫ t

0

P{c(t− Z2(n−1)) ≤ x, U+
n > t− Z2(n−1)|Z2(n−1) = z}P{Z2(n−1) ∈ dz}

=

∫ t

0

P{c(t− z) ≤ x, U+
n > t− z}P{Z2(n−1) ∈ dz}

=

∫ t

0

P{c(t− z) ≤ x}P{U+
n > t− z}P{Z2(n−1) ∈ dz}

=

∫ t

0

P
{
z ≥ t− x

c

}
P{U+

n > t− z}P{Z2(n−1) ∈ dz}

=

∫ t

0

1{z≥t−x
c
}P{U+

n > t− z}P{Z2(n−1) ∈ dz}

=

∫ t

t−x
c

FU+
n

(t− z)fZ2(n−1)
(z) dz.

(2.16)
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Differentiating with respect to x we thus obtain the density (2.15) for 0 <
x < ct. Furthermore, for n = 2, 3, . . . and −vt < x < 0, in the n-th period
in which the velocity is positive one has

X(t) = −vD−n−1 + c(t− Z2n−3 −D−n−1)

= ct− cZ2n−3 − (c+ v)D−n−1.

So that, similarly to (2.16), we have

P{X(t) ≤ x, Z2(n−1) − U−n ≤ t < Z2(n−1)}
= P{X(t) ≤ x, Z2n−3 +D−n−1 ≤ t < Z2n−3 +D−n−1 + U−n }

= P
{
X(t) ≤ x, Z2n−3 +D−n−1 ≤ t < Z2n−3 +D−n−1 +

v

c
D−n−1

}
= P

{
X(t) ≤ x, Z2n−3 +D−n−1 ≤ t < Z2n−3 +

c+ v

c
D−n−1

}
= P

{
ct− cZ2n−3 − (c+ v)D−n−1 ≤ x,D−n−1 ≤ t− Z2n−3 <

c+ v

c
D−n−1

}
=

∫ t

0

P
{
c(t− z)− (c+ v)D−n−1 ≤ x,D−n−1 ≤ t− z < c+ v

c
D−n−1

}
P{Z2n−3 ∈ dz}

=

∫ t

0

P
{
D−n−1 ≥

c(t− z)− x
c+ v

,D−n−1 >
c(t− z)

c+ v
,D−n−1 ≤ t− z

}
P{Z2n−3 ∈ dz}

=

∫ t

0

P
{
D−n−1 ≥

c(t− z)− x
c+ v

,D−n−1 ≤ t− z
}
P{Z2n−3 ∈ dz}

=

∫ t

0

1{ c(t−z)−x
c+v

≤t−z}P
{
c(t− z)− x

c+ v
≤ D−n−1 ≤ t− z

}
P{Z2n−3 ∈ dz}

=

∫ t+x
v

0

[
FD−

n−1
(t− z)− FD−

n−1

(
c(t− z)− x

c+ v

)]
fZ2n−3(z) dz.

Differentiating with respect to x we finally get the density (2.15) for −vt <
x < 0.

A similar result can be obtained for the densities introduced in the second
line of (2.12).

Theorem 2.2. For n ∈ N, the backward probability densities defined in the
second of (2.12) can be expressed as

bn(x, t) =


1

v
fZ2n−1

(
t+

x

v

)
FD−

n

(
− x

v

)
, −vt < x < 0,

1

c+ v

∫ t−x
c

0

fU+
n

(
x+ v(t− z)

c+ v

)
fZ2(n−1)

(z) dz, 0 < x < ct.

(2.17)
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Proof. As stated in (2.11) for k = 2n, during the n-th period in which the
velocity is negative The proof is omitted, being very similar to that of the
previous theorem.

2.3 Gamma distributed interarrival times
In this section we aim to analyze in detail the case in which the upward

and downward displacements performed by the particle after passages though
the zero state have gamma distribution. Specifically, we assume that the
random variables cU+

i and vD−i , i ∈ N, are gamma distributed with shape
parameters α and α∗, respectively, and equal rate parameters β, say

cU+
i ∼ Gamma(α, β), vD−i ∼ Gamma(α∗, β), (2.18)

where α, α∗, β > 0. This assumption is similar to that in Di Crescenzo and
Martinucci [26], in which a more classical telegraph process with gamma-
distributed intertimes between velocity changes has been analyzed.

Clearly, the assumptions (2.18) correspond to the case in which the in-
tensity functions λ+(x) and λ−(x) are given by

λ+(x) =
βαxα−1e−βx

Γ(α, βx)
, λ−(−x) =

βα
∗
xα

∗−1e−βx

Γ(α∗, βx)
, x > 0, (2.19)

where Γ(·, ·) denotes the upper incomplete gamma function. We remark that
such intensity functions are strictly decreasing (increasing) in |x| if 0 < α < 1
(α > 1), and are constant if α = 1, with

lim
x→0+

λ+(x) =


+∞, 0 < α < 1,
β, α = 1,
0, α > 1,

lim
x→+∞

λ+(x) = β,

with analogous limits holding for λ−(x). See Figure 2.2 for some plots of
λ+(x). We remark that, from the assumptions given in (2.18), one also has

U+
i ∼ Gamma(α, cβ), D−i ∼ Gamma(α∗, vβ). (2.20)

In the following theorems we obtain the forward and backward transition
densities (2.1) in a special case. Such densities will be expressed in terms of
the generalized (two-parameter) Mittag-Leffler function, defined as

Ea,b(z) :=
∞∑
n=0

zn

Γ(an+ b)
. (2.21)
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Figure 2.2: Intensity function λ+(x) given in (2.19), with β = 1 and α = 0.1, 0.5,
1, 2, 3, 4, 5, from top to bottom (left plot), α = 0.5 and β = 1, 2, 3, 4, 5, from
bottom to top (central plot), α = 2 and β = 1, 2, 3, 4, 5, from bottom to top (right
plot), after Di Crescenzo and Travaglino (2019).

Properties and results on such Mittag-Leffler function can be found, for in-
stance, in Gorenflo et al. [48], Haubold et al. [50] and references therein. We
recall that function (2.21) has been used recently in the analysis of probabil-
ity distributions of some birth-death type processes in Alipour et al. [2], Di
Crescenzo et al. [34] and Orsingher and Polito [79].

Theorem 2.3. Let {X(t), t ≥ 0} be the state-dependent telegraph process
with intensity functions specified in (2.19). For t > 0, the forward transition
density is given by

f(x, t) =
Γ(α, βct)

Γ(α)
δ(ct− x) +

Γ(α, βx)

Γ(α)

1

ct− x

(
(ct− x)vβ

c+ v

)α+α∗

× exp

{
− (ct− x)vβ

c+ v

}
Eα+α∗,α+α∗

((
(ct− x)vβ

c+ v

)α+α∗)
1{x<ct}, 0 < x ≤ ct,

(2.22)

f(x, t) =
cα

Γ(α∗)

(
vβ

c+ v

)α+α∗

exp

{
− vβ(ct− x)

c+ v

}
×
∫ t+x

v

0

(c(t− z)− x)α
∗−1zα−1Eα+α∗,α

((
cvβz

c+ v

)α+α∗)
dz, −vt < x < 0.

(2.23)



CHAPTER 2 34

Proof. From (2.13), (2.14), the first case of (2.15) and (2.20) we easily obtain,
for 0 < x ≤ ct,

f(x, t) =
Γ(α, βct)

Γ(α)
δ(ct− x) +

Γ(α, βx)

Γ(α)

1

c

∞∑
n=2

fZ2(n−1)

(
t− x

c

)
. (2.24)

In order to analyze the distribution of Z2(n−1) we note that, from the rela-
tionships (2.7), one has

Pi ∼ Gamma

(
α,

cv

c+ v
β

)
, Ni ∼ Gamma

(
α∗,

cv

c+ v
β

)
,

and thus
n∑
i=1

Pi ∼ Gamma

(
nα,

cv

c+ v
β

)
,

n∑
i=1

Ni ∼ Gamma

(
nα∗,

cv

c+ v
β

)
.

(2.25)
We point out that, due to (2.6), for the regenerative random times Zi one
has

Z2n =
n∑
i=1

(Pi +Ni), Z2n−1 = Z2(n−1) + Pn, n ∈ N.

Hence, since the gamma-distributed random variables in (2.25) have identical
rates, we get

Z2n ∼ Gamma

(
n(α + α∗),

cv

c+ v
β

)
,

Z2n−1 ∼ Gamma

(
(n− 1)(α + α∗) + α,

cv

c+ v
β

)
.

Such relations, thanks to (2.21), allow to compute the following sum:

1

c

∞∑
n=2

fZ2(n−1)

(
t− x

c

)

=
1

c
exp

{
− (ct− x)vβ

c+ v

} ∞∑
n=2

(
cvβ
c+v

)(n−2)(α+α∗)+(α+α∗)

Γ((n− 2)(α + α∗) + (α + α∗))

(
t− x

c

)(n−2)(α+α∗)+(α+α∗)−1

=
1

ct− x
exp

{
− (ct− x)vβ

c+ v

}(
(ct− x)vβ

c+ v

)α+α∗ ∞∑
n=0

((
(ct−x)vβ
c+v

)α+α∗)n
Γ(n(α + α∗) + (α + α∗))

=
1

ct− x
exp

{
− (ct− x)vβ

c+ v

}(
(ct− x)vβ

c+ v

)α+α∗

Eα+α∗,α+α∗

((
(ct− x)vβ

c+ v

)α+α∗)
.

(2.26)
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Substituting (2.26) in (2.24) we finally obtain (2.22). Similarly, from (2.13)
and the second of (2.15) we obtain, for −vt < x < 0,

f(x, t) =
1

c+ v

∫ t+x
v

0

∞∑
n=2

fD−
n−1

(
c(t− z)− x

c+ v

)
fZ2n−3(z) dz

=
1

c+ v

∫ t+x
v

0

fD−
1

(
c(t− z)− x

c+ v

) ∞∑
n=0

fZ2n+1(z) dz

=
1

c+ v

(vβ)α
∗

Γ(α∗)

∫ t+x
v

0

(
c(t− z)− x

c+ v

)α∗−1

exp

{
− vβ(c(t− z)− x)

c+ v

}

× exp

{
− cvβz

c+ v

} ∞∑
n=0

(
cvβ
c+v

)n(α+α∗)+α

Γ(n(α + α∗) + α)
zn(α+α∗)+α−1 dz

=
1

Γ(α∗)

(
vβ

c+ v

)α∗

exp

{
− vβ(ct− x)

c+ v

}

×
∫ t+x

v

0

(c(t− z)− x)α
∗−1

(
cvβz

c+ v

)α
1

z

∞∑
n=0

((
cvβz
c+v

)α+α∗)n

Γ(n(α + α∗) + α)
dz

=
cα

Γ(α∗)

(
vβ

c+ v

)α+α∗

exp

{
− vβ(ct− x)

c+ v

}
×
∫ t+x

v

0

(c(t− z)− x)α
∗−1zα−1Eα+α∗,α

((
cvβz

c+ v

)α+α∗)
dz,

(2.27)

which finally gives Eq. (2.23).

The following theorem is a companion of Theorem 2.3.

Theorem 2.4. Let {X(t), t ≥ 0} be the state-dependent telegraph process
with intensity functions specified in (2.19). For t > 0, the backward transition
density is:

b(x, t) =
Γ(α∗,−βx)

Γ(α∗)

1

vt+ x

(
c(vt+ x)β

c+ v

)α
× exp

{
− c(vt+ x)β

c+ v

}
Eα+α∗,α

((
c(vt+ x)β

c+ v

)α+α∗)
, −vt < x < 0,

(2.28)
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Figure 2.3: Absolutely continuous component of the densities obtained in Theorem
2.3 for −vt < x < ct, with t = 2, α = 2, α∗ = 1, β = 1, c = 2, v = 2 (after Di
Crescenzo and Travaglino 2019).

Figure 2.4: As for Figure 2.3, with α∗ = 2 (after Di Crescenzo and Travaglino
2019).

b(x, t) =
vα+α∗

Γ(α)

(
cβ

c+ v

)2α+α∗

exp

{
− cβ(x+ vt)

c+ v

}
×
∫ t−x

c

0

(x+ v(t− z))α−1zα+α∗−1Eα+α∗,α+α∗

((
cvβz

c+ v

)α+α∗)
dz, 0 < x < ct.

(2.29)

Proof. The proof is omitted, being similar to that of Theorem 2.3.

Combining the results of the previous theorems with relationships (2.5)
one can easily calculate the transition density and the flow function of the
process X(t).

As example, in Figure 2.3 and 2.4 we show some plots of the (absolutely
continuous component of the) densities f(x, t) and b(x, t).
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If α = α∗ = 1, then the intensity rates (2.19) are constants and thus the
corresponding cumulative hazard rates (2.9) are linear in x, i.e. the random
times U+

i and D−i are exponentially distributed. This special case leads to
simpler closed-form results, as shown hereafter.

Corollary 2.1. Let {X(t), t ≥ 0} be the state-dependent telegraph process
with intensity functions λ+(x) = λ−(−x) = β, x > 0. For t > 0, the forward
and backward transition density are:

f(x, t) =


e−βctδ(ct− x) + 1

2
e−βx

vβ

c+ v

(
1− exp

{
− 2(ct− x)vβ

c+ v

})
1{x<ct}, 0 < x ≤ ct,

1

2
eβx

vβ

c+ v

(
1− exp

{
− 2c(vt+ x)β

c+ v

})
, −vt < x < 0,

(2.30)

b(x, t) =


1

2
e−βx

cβ

c+ v

(
1− exp

{
− (ct− x)vβ

c+ v

})2

, 0 < x < ct,

1

2
eβx

cβ

c+ v

(
1 + exp

{
− 2c(vt+ x)β

c+ v

})
, −vt < x < 0.

(2.31)

Proof. The proof follows from Theorems 2.3 and 2.4 after some calculations,
and noting that E2,1(z) = cosh(

√
z) and E2,2(z) = sinh(

√
z)/
√

(z).

2.4 A first-passage-time problem
This section is devoted to a first-passage-time problem for the process

X(t), assuming the presence of two boundaries, say η > 0 and −ξ < 0.
Hereafter we thoroughly assume that, in addition to assumptions (2.3) and
(2.4), the intensity functions λ+(x) and λ−(x) satisfy the following condition:∫ t

0

λ±(±x)dx < +∞ for any t > 0. (2.32)

With reference with the notions introduced in Section 2.1, we denote by

M+(t) =
∞∑
n=0

1{Z2n≤t} (2.33)

the right-continuous counting process whose increments occur at the random
instants 0 = Z0, Z2, Z4, . . ., so that

M+(Z2n) = n+ 1, n ∈ N0.
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We denote by
Tζ = inf{t > 0 : X(t) = ζ}, ζ 6= 0

the first-passage time of X(t) through the boundary ζ 6= 0. Then we in-
troduce the integer-valued random variable M+(Tη). Recalling that the i-th
time interval in which the motion has positive velocity (upward period, say)
has random duration Ui, i ∈ N, let M+(Tη) denote the ordinal number of
the first of such upward periods in which X(t) crosses the boundary η > 0.
Clearly, due to the first of (2.10) we have

P{M+(Tη) = k} = P{cU+
1 < η, . . . , cU+

k−1 < η, cU+
k ≥ η}

=
k−1∏
i=1

FU+
i

(
η

c

)
FU+

k

(
η

c

)
=

(
1− e−Λ+(η)

)k−1

e−Λ+(η), k ∈ N.

(2.34)

Hence, M+(Tη) has geometric distribution with parameter e−Λ+(η), where
Λ+(x) is defined in (2.9). It thus follows that

E
[
M+(Tη)

]
= eΛ+(η). (2.35)

Similarly,

M−(t) =
∞∑
n=0

1{Z2n+1≤t} (2.36)

is the right-continuous counting process whose increments occur at the ran-
dom instants Z1, Z3, Z5, . . ., and thus

M−(Z2n+1) = n+ 1, n ∈ N0.

For ξ > 0, we can thus introduce the integer-valued random variableM−(T−ξ).
In analogy with M+(Tη), we assume that M−(T−ξ) gives the ordinal number
of the first downward period in which X(t) crosses the boundary −ξ < 0.
Similarly as in (2.34), M−(T−ξ) has geometric distribution with parameter
e−Λ−(ξ), so that its expectation is

E
[
M−(T−ξ)

]
= eΛ−(ξ). (2.37)

Let us now consider the first-passage-time problem in the presence of two
boundaries. We consider the random variable

M(−ξ, η) := min{M+(Tη),M
−(T−ξ)}. (2.38)



CHAPTER 2 39

Since, for k ∈ N,

P{M(−ξ, η) = k} = P{cU+
1 < η, vD−1 < ξ, . . . , cU+

k−1 < η, vD−k−1 < ξ, cU+
k ≥ η}

+ P{cU+
1 < η, vD−1 < ξ, . . . , cU+

k−1 < η, vD−k−1 < ξ, cU+
k < η, vD−k ≥ ξ}

=

(
1− e−Λ+(η)

)k−1(
1− e−Λ−(ξ)

)k−1{
e−Λ+(η) +

(
1− e−Λ+(η)

)
e−Λ−(ξ)

}
=

(
1− e−Λ+(η) − e−Λ−(ξ) + e−Λ+(η)e−Λ−(ξ)

)k−1

×

×
{
e−Λ+(η) + e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ)

}
,

it follows thatM(−ξ, η) has geometric distribution with parameter e−Λ+(η) +
e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ) and expectation

E
[
M(−ξ, η)

]
=

1

e−Λ+(η) + e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ)
. (2.39)

We remark that the assumption (2.32) ensures that the expectations given
in (2.35), (2.37) and (2.39) are finite.

Let us now consider the special case of interarrival times having gamma
distribution like in Section 2.3.

Proposition 2.1. Let {X(t), t ≥ 0} be the state-dependent telegraph process
with intensity functions specified in (2.19). Then, the expectations ofM+(Tη)
and M−(T−ξ) are expressed as

E
[
M+(Tη)

]
=

Γ(α)

Γ(α, ηβ)
, E

[
M−(T−ξ)

]
=

Γ(α∗)

Γ(α∗, ξβ)
. (2.40)

Hence, the expectation of (2.38) is

E
[
M(−ξ, η)

]
=

Γ(α)Γ(α∗)

Γ(α, ηβ)Γ(α∗) + Γ(α∗, ξβ)Γ(α)− Γ(α, ηβ)Γ(α∗, ξβ)
.

(2.41)

Proof. The results immediately follow from Eqs. (2.35), (2.37), (2.39), and
(2.8), by taking into account that for a Gamma(α, β)-distributed random
variable the complementary distribution function at x > 0 is Γ(α, βx)/Γ(α).

Recalling Eqs. (2.35) and (2.39), we can now introduce the following
function:

R(−ξ, η) :=
E
[
M(−ξ, η)

]
E
[
M+(Tη)

] =
1

1 + eΛ+(η)e−Λ−(ξ) − e−Λ−(ξ)
. (2.42)
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Figure 2.5: Plots of the ratio of mean values (2.43) for 0 ≤ η ≤ 14, with β = 1,
ξ = 1, 2, 3, 4, 5 (from bottom to top) and (i) α = 2, α∗ = 1, (ii) α = 2, α∗ = 5,
(iii) α = 5, α∗ = 1, (iv) α = 5, α∗ = 5 (after Di Crescenzo and Travaglino 2019).

Clearly, sinceM(−ξ, η) is stochastically smaller thanM+(Tη), and both such
random variables have finite means, from (2.42) we have

0 ≤ R(−ξ, η) ≤ 1.

For the first-passage-time problem in the presence of the boundaries η and
−ξ, the ratio of mean values introduced in (2.42) is a measure of the rele-
vance of the boundary η with respect to the boundary −ξ, in the sense that
R(−ξ, η) is close to 1 (0) if the first passage through the upper boundary η
is expected much more (less) earlier than the first passage through −ξ.

Under the assumptions of Proposition 2.1, the ratio of mean values (2.42)
becomes

R(−ξ, η) =
Γ(α, ηβ)Γ(α∗)

Γ(α, ηβ)Γ(α∗) + Γ(α∗, ξβ)Γ(α)− Γ(α, ηβ)Γ(α∗, ξβ)
. (2.43)

In Figures 2.5 and 2.6 some plots of R(−ξ, η) are shown for β equal to 1 and
2, respectively, for ξ = 5 and for different choices of the parameters α and α∗.
As can be expected, the plots shows that R(−ξ, η) is decreasing in η and α∗,
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Figure 2.6: Plots of the ratio (2.43) for 0 ≤ η ≤ 14, with β = 2 and the same
values of the other parameters of Figure 2.5 (after Di Crescenzo and Travaglino
2019).

increasing in ξ and α. Recall that the mean of U+
i and D−i is proportional

to α and α∗, respectively.
By taking advantage of the properties of the counting process (2.33) and

(2.36), we can finally derive the explicit form for the probability law of the
random first passage times. Let η > 0 be a threshold and Tη the random
first passage time

Tη = inf{t > 0 : X(t) = η}

Theorem 2.5.

∂

∂t
P (Tη ≤ t) =

Γ(α, ηβ)

Γ(α)

c

ct− η
exp

{
− (ct− η)vβ

c+ v

}
×

× Eα+α∗,0

(
γ(α, ηβ)

Γ(α)

(
(ct− η)vβ

c+ v

)(α+α∗)
)
1{

t> η
c

} (2.44)

Proof. The case t ≤ η
c
is trivial since it takes at least a time t = η

c
to cover



CHAPTER 2 42

a distance η at the velocity c. Now, taken a k > 1, we notice that

M+(Tη) = k ⇐⇒ η crossed for the first time during the k-th upwards period

⇐⇒ Tη = Z2(k−1) +
η

c
,

so that, for t > η
c
, we can compute the following probability:

P (Tη ≤ t) =
+∞∑
k=1

P{Tη ≤ t,M+(Tη) = k}

=
+∞∑
k=1

P{Tη ≤ t|M+(Tη) = k}P{M+(Tη) = k}

=
+∞∑
k=1

P

{
Tη ≤ t

∣∣∣∣Tη = Z2(k−1) +
η

c

}
P{M+(Tη) = k}

=
+∞∑
k=1

P

{
Z2(k−1) ≤ t− η

c

}
P{M+(Tη) = k}

=
+∞∑
k=1

FZ2(k−1)

(
t− η

c

)[
FU+

1

(
η

c

)]k−1

F̄U+
1

(
η

c

)
.

Remembering the gamma distribution of the random variables:

Z2(k−1) ∼ Gamma
(

(k − 1)(α + α∗),
cv

c+ v
β

)
,

U+
1 ∼ Gamma(α, cβ),
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we can compute the derivative

∂

∂t
P (Tη ≤ t) =

+∞∑
k=1

fZ2(k−1)

(
t− η

c

)[
FU+

1

(
η

c

)]k−1

F̄U+
1

(
η

c

)

=
+∞∑
k=1

(
cvβ
c+v

)(k−1)(α+α∗)(
t− η

c

)(k−1)(α+α∗)−1

Γ
(
(k − 1)(α + α∗)

) exp

{
− cvβ

c+ v

(
t− η

c

)}
×

×
[
γ(α, ηβ)

Γ(α)

]k−1
Γ(α, ηβ)

Γ(α)

=
Γ(α, ηβ)

Γ(α)

(
t− η

c

)−1

exp

{
− (ct− η)vβ

c+ v

}
×

×
+∞∑
k=0

[(
cvβ
c+v

)(
t− η

c

)]k(α+α∗)

Γ
(
k(α + α∗)

) [
γ(α, ηβ)

Γ(α)

]k
=

Γ(α, ηβ)

Γ(α)

(
c

ct− η

)
exp

{
− (ct− η)vβ

c+ v

}
×

×
+∞∑
k=0

1

Γ
(
k(α + α∗)

)[((ct− η)vβ

c+ v

)(α+α∗)
γ(α, ηβ)

Γ(α)

]k
=

Γ(α, ηβ)

Γ(α)

(
c

ct− η

)
exp

{
− (ct− η)vβ

c+ v

}
×

× Eα+α∗,0

(
γ(α, ηβ)

Γ(α)

(
(ct− η)vβ

c+ v

)(α+α∗)
)

so that the theorem is proved.

Similarly, the following theorem holds for the random first passage time:

T−ξ := inf{t > 0 : X(t) = −ξ}, ξ > 0.

Theorem 2.6.

∂

∂t
P (T−ξ ≤ t) =

Γ(α∗, ξβ)

Γ(α∗)

(
v

vt− ξ

)(
c(vt− ξ)β
c+ v

)α
×

× exp

{
− c(vt− ξ)β

c+ v

}
Eα+α∗,α

(
γ(α∗, ξβ)

Γ(α∗)

[
c(vt− ξ)β
c+ v

](α+α∗)
)
1{

t> ξ
v

}
(2.45)

Proof. Similarly to what we saw in the previous theorem, the following equiv-
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alence chain holds

M−(T−ξ) = k ⇐⇒ −ξ crossed for the first time during the k-th downwards period

⇐⇒ T−ξ = Z2k−1 +
ξ

v

so that

P (T−ξ ≤ t) =
+∞∑
k=1

P{T−ξ ≤ t,M−(T−ξ) = k}

=
+∞∑
k=1

P{T−ξ ≤ t|M−(T−ξ) = k}P{M−(T−ξ) = k}

=
+∞∑
k=1

P

{
T−ξ ≤ t

∣∣∣∣T−ξ = Z2k−1 +
ξ

v

}
P{M−(T−ξ) = k}

=
+∞∑
k=1

P

{
Z2k−1 ≤ t− ξ

v

}
P{M−(T−ξ) = k}

=
+∞∑
k=1

FZ2k−1

(
t− ξ

v

)[
FD−

1

(
ξ

v

)]k−1

F̄D−
1

(
ξ

v

)
.

The random variables of interest have the following gamma distribution:

Z2k−1 ∼ Gamma
(

(k − 1)(α + α∗) + α,
cv

c+ v
β

)
,

D−1 ∼ Gamma(α∗, vβ).
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Thus, the theorem is proved by taking the derivative

∂

∂t
P (T−ξ ≤ t) =

+∞∑
k=1

fZ2k−1

(
t− ξ

v

)[
FD−

1

(
ξ

v

)]k−1

F̄D−
1

(
ξ

v

)

=
+∞∑
k=1

(
cvβ
c+v

)(k−1)(α+α∗)+α(
t− ξ

v

)(k−1)(α+α∗)+α−1

Γ
(
(k − 1)(α + α∗) + α

) ×

× exp

{
− cvβ

c+ v

(
t− ξ

v

)}[
γ(α∗, ξβ)

Γ(α∗)

]k−1
Γ(α∗, ξβ)

Γ(α∗)

=
Γ(α∗, ξβ)

Γ(α∗)

(
t− ξ

v

)α−1(
cvβ

c+ v

)α
exp

{
− c(vt− ξ)β

c+ v

}
×

×
+∞∑
k=0

[(
cvβ
c+v

)(
t− ξ

v

)]k(α+α∗)

Γ
(
k(α + α∗) + α

) [
γ(α∗, ξβ)

Γ(α∗)

]k
=

Γ(α∗, ξβ)

Γ(α∗)

(
v

vt− ξ

)(
c(vt− ξ)β
c+ v

)α
exp

{
− c(vt− ξ)β

c+ v

}
×

×
+∞∑
k=0

1

Γ
(
k(α + α∗) + α

)[(c(vt− ξ)vβ
c+ v

)(α+α∗)
γ(α∗, ξβ)

Γ(α∗)

]k
=

Γ(α∗, ξβ)

Γ(α∗)

(
v

vt− ξ

)(
c(vt− ξ)β
c+ v

)α
exp

{
− c(vt− ξ)β

c+ v

}
×

× Eα+α∗,α

(
γ(α∗, ξβ)

Γ(α∗)

(
c(vt− ξ)β
c+ v

)(α+α∗)
)
.

As example, in Figure 2.7 and 2.8 we show some plots of the densities
(2.44) and (2.45).

2.5 Future developments
It would be interesting to study the limiting behaviour of the state-

dependent telegraph process {X(t), t ≥ 0} as both the speed of the motion
and the intensity of switchings tend to infinity. Specifically, one can ask if
the process X(t) converges in a weak sense to a certain stochastic process
under suitable conditions on the parameters c, v, λ and µ.

For example, under the Kac’s scaling condition, the classical telegraph
process converges in distribution to a Brownian motion with zero drift (see
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Figure 2.7: Probability density (2.44) of the first passage time, with η = 2, α = 2,
β = 1, c = 2, v = 2 and α∗ = 1 (above) or α∗ = 5 (below).



CHAPTER 2 47

Figure 2.8: Probability density (2.45) of the first passage time, with ξ = 2, α = 2,
β = 1, c = 2, v = 2 and α∗ = 1 (above) or α∗ = 5 (below).



CHAPTER 2 48

[58]). One can then verify if, under the following generalization of Kac’s
conditions

c→∞, v →∞, λ→∞, µ→∞, c
2

λ
→ σ2

1,
v2

µ
→ σ2

2,

the state-dependent telegraph process X(t) converges in a weak sense to a
Gaussian process with infinitesimal standard deviation alternating between
σ1 and σ2, such as a Brownian motion modified in such a way to be attracted
to the state zero, the origin of the motion.

This could be proved by verifying if the differential system (2.1) reduces
to a generalization of the heat equation for the Wiener process. Despite the
analysis carried out up to now, we are not yet able to give a rigorous proof
for such a result.



Chapter 3

Brownian motion driven by a
generalized telegraph process

In this chapter we will study a process deriving from the sum of a standard
Brownian motion {B(t), t ≥ 0} and a generalized telegraph process {Y (t), t ≥
0}.

For the process Y (t) we will use the same notations as in Section (1.5).
Specifically, we will attribute the same meaning to the constants c, v > 0, to
the processes V (t) andW (t), to the random times {U1, U2, . . . }, {D1, D2, . . . }
and to the densities ψ(x, t), ψ(x, t; vt) and ψv0(x, t; vt).

The main reference of this chapter will be Di Crescenzo and Zacks (2015)
and Travaglino et al. (2018).

3.1 Definition and distribution of the process
Let us consider the process {X(t), t ≥ 0}, defined as follows:

X(t) := Y (t) +B(t), t ≥ 0, (3.1)

where the standard Brownian motion {B(t), t ≥ 0} and the generalized tele-
graph process {Y (t), t ≥ 0} are independent of each other.

Such a process can be understood as a Brownian motion with drift V (t)
alternating the values c and −v.

Now let us define, for every (x, t) ∈ R2
+ = R × (0,+∞), the transition

density

p(x, t) :=
∂

∂x
P{X(t) ≤ x}. (3.2)

The following theorem holds.

49
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Figure 3.1: Simulated sample paths of Y (t) and X(t) for c = 2, v = 1, λ = 1,
µ = 0.5 and σ = 0.5
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Theorem 3.1. For every (x, t) ∈ R2
+

p(x, t) =
1

2
√
t

{
FD1(t)φ

(
x+ vt√

t

)
+ FU1(t)φ

(
x− ct√

t

)}
+

1√
t

∫ t

0

ψ(w, t)φ

(
x+ vt− (c+ v)w√

t

)
dw,

(3.3)

where φ is the standard normal density function.

Proof. From the relationship (1.81) it easily follows that

X(t) = (c+ v)W (t)− vt+B(t) (3.4)

and thus[
X(t) |W (t) = w

]
= (c+ v)w − vt+B(t)

d
= (c+ v)w − vt+

√
t B(1),

so that

P{X(t) ≤ x|W (t) = w} = P
{
B(1) ≤ x+ vt− (c+ v)w√

t

}
= Φ

(
x+ vt− (c+ v)w√

t

)
.

Therefore, by taking into account the (1.71), one has

P{X(t) ≤ x} =

∫ +∞

−∞
P{X(t) ≤ x|W (t) = w}P{W (t) ∈ dw}

=
1

2
FD1(t)Φ

(
x+ vt√

t

)
+

1

2
FU1(t)Φ

(
x− ct√

t

)
+

∫ t

0

ψ(w, t)Φ

(
x+ vt− (c+ v)w√

t

)
dw.

The thesis follows by differentiating with respect to x.

Corollary 3.1. For every t > 0

E[X(t)] = (c+ v)E[W (t)]− vt, (3.5)
V ar[X(t)] = (c+ v)2V ar[W (t)] + t, (3.6)

with E[W (t)] and V ar[W (t)] given by the (1.73) and (1.74).

Proof. It immediately follows from the (3.4).
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Let us introduce the joint probability densities:

f(x, t) : =
∂

∂x
P{X(t) ≤ x, V (t) = c},

b(x, t) : =
∂

∂x
P{X(t) ≤ x, V (t) = −v},

(3.7)

for (x, t) ∈ R2
+.

Corollary 3.2. For every (x, t) ∈ R2
+

f(x, t) =
1√
t

[
FU1(t)

2
φ

(
x− ct√

t

)
+

∫ t

0

ψ(w, t; c)φ

(
x+ vt− (c+ v)w√

t

)
dw

]
,

b(x, t) =
1√
t

[
FD1(t)

2
φ

(
x+ vt√

t

)
+

∫ t

0

ψ(w, t;−v)φ

(
x+ vt− (c+ v)w√

t

)
dw

]
.

(3.8)

Proof. Similar to the proof of Theorem 3.1.

Finally, we define the flow function of X(t):

j(x, t) := f(x, t)− b(x, t), (x, t) ∈ R2
+. (3.9)

3.2 Exponentially distributed times
In this section we assume that the random times Ui and Di are exponen-

tially distributed with parameters λ and µ, where λ, µ > 0.
The summations U (n) have thus Erlang distribution with parameters λ

and n, briefly U (n) ∼ E(λ, n), and D(n) ∼ E(µ, n). Therefore, one has, for
n = 1, 2, . . . and x ≥ 0,

f
(n)
U (x) =

λnxn−1

(n− 1)!
e−λx, F

(n)
U (x) = 1− e−λx

n−1∑
j=0

(λx)j

j!
,

f
(n)
D (x) =

µnxn−1

(n− 1)!
e−µx, F

(n)
D (x) = 1− e−µx

n−1∑
j=0

(µx)j

j!
.

(3.10)

Theorem 3.2. If the random variables Ui and Di, i = 1, 2, . . . , are expo-
nentially distributed with parameters λ and µ, respectively, then, for t > 0,

P{W (t) = 0} =
1

2
e−µt, P{W (t) = t} =

1

2
e−λt, (3.11)
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and, for 0 < x < t,

ψ(x, t) =
e−λx−µ(t−x)

2
·

·
{

(λ+ µ)I0

(
2
√
λµx(t− x)

)
+

√
λµ t√

x(t− x)
I1

(
2
√
λµx(t− x)

)}
.

(3.12)

Furthermore, for (x, t) ∈ R2
+,

p(x, t) =
1

2
√
t

{
e−λtφ

(
x− ct√

t

)
+ e−µtφ

(
x+ vt√

t

)}
+

1√
t

∫ t

0

ψ(w, t)φ

(
x+ vt− (c+ v)w√

t

)
dw

(3.13)

and

j(x, t) =
1

2
√
t

{
e−λtφ

(
x− ct√

t

)
− e−µtφ

(
x+ vt√

t

)}
+

1√
t

∫ t

0

[
ψ(w, t; c)− ψ(w, t;−v)

]
φ

(
x+ vt− (c+ v)w√

t

)
dw,

(3.14)

where

ψ(x, t; c)− ψ(x, t;−v) =
e−λx−µ(t−x)

2
·

·
{

(µ− λ)I0

(
2
√
λµx(t− x)

)
+

√
λµ(2x− t)√
x(t− x)

I1

(
2
√
λµx(t− x)

)}
.

(3.15)

Proof. The (3.11) immediately follow from the (1.68), taking into account
the exponential distribution of U1 and D1.

Similarly, the (3.13) follows from the (3.3) and the (3.14) immediately
follows from the definition (3.9) and from Corollary 3.2.
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From the (1.69) and (3.10) it follows that

ψc(x, t; c)

=
+∞∑
n=1

[
1− e−λx

n−1∑
j=0

(λx)j

j!
− 1 + e−λx

n∑
j=0

(λx)j

j!

]
µn(t− x)n−1

(n− 1)!
e−µ(t−x)

=
+∞∑
n=1

[
(λx)n

n!
e−λx

]
µn(t− x)n−1

(n− 1)!
e−µ(t−x)

= e−λx−µ(t−x)

+∞∑
n=1

(λµx)n(t− x)n−1

n!(n− 1)!

= e−λx−µ(t−x)(λµx)
+∞∑
n=0

(
λµx(t− x)

)n
n!(n+ 1)!

= e−λx−µ(t−x) λµx√
λµx(t− x)

+∞∑
n=0

(√
λµx(t− x)

)2n+1

n!(n+ 1)!

= e−λx−µ(t−x)

√
λµx√

x(t− x)
I1

(
2
√
λµx(t− x)

)
as well as

ψc(x, t;−v) =
+∞∑
n=0

e−µ(t−x)

(
µ(t− x)

)n
n!

λn+1xn

n!
e−λx

= λe−λx−µ(t−x)

+∞∑
n=0

(
λµx(t− x)

)n
n!n!

= λe−λx−µ(t−x) I0

(
2
√
λµx(t− x)

)
.

In the same way, by making use of the (1.70), one has

ψ−v(x, t; c) = µe−λx−µ(t−x) I0

(
2
√
λµx(t− x)

)
as well as

ψ−v(x, t;−v) = e−λx−µ(t−x)

√
λµ(t− x)√
x(t− x)

I1

(
2
√
λµx(t− x)

)
.

The thesis follows from the relationships (1.66) and (1.67).

Theorem 3.3. Under the assumptions of the previous theorem one has, for
t ≥ 0,

E[W (t)] =
µ

λ+ µ
t+

λ− µ
2(λ+ µ)2

(
1− e−(λ+µ)t

)
. (3.16)
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Proof. It follows from the second identity of Corollary 1 in [85].

Reasoning as in the proof of Theorem 1.7 we also get the following result.

Theorem 3.4. For every i = 1, 2, . . . , let the random variables Ui and Di

be exponentially distributed with parameters λ and µ, respectively. Then, for
(x, t) ∈ R2

+, the densities f(x, t) and b(x, t) satisfy the system of differential
equations 

∂f

∂t
+ c

∂f

∂x
=

1

2

∂2f

∂x2
− λf + µb,

∂b

∂t
− v ∂b

∂x
=

1

2

∂2b

∂x2
− µb+ λf.

(3.17)

Corollary 3.3. Under the hypothesis of the previous system, the following
system of differential equations holds

∂p

∂t
+
c− v

2

∂p

∂x
+
c+ v

2

∂j

∂x
=

1

2

∂2p

∂x2
,

∂j

∂t
+
c+ v

2

∂p

∂x
+
c− v

2

∂j

∂x
=

1

2

∂2j

∂x2
− (λ− µ)p− (λ+ µ)j,

(3.18)

for (x, t) ∈ R2
+.

Proof. It follows straightforwardly from the linearity of the system (3.17),
taking into account that p(x, t) = f(x, t) + b(x, t) and j(x, t) = f(x, t) −
b(x, t).

We observe that by setting c = v = 0 in the system (3.18) we get the
heat equation for the standard Brownian motion while if we disregard the
diffusive terms 1

2
∂2p
∂x2

and 1
2
∂2j
∂x2

the system (3.18) is reduced to the system of
differential equations (1.85) which governs the generalized telegraph process.
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A stochastic model for Campi
Flegrei inflation and deflation
episodes

This chapter is devoted to the construction of a suitable stochastic model,
based on Brownian motion driven by the telegraph process, for the phe-
nomenon of bradyseism in Campi Flegrei.

The idea first appeared in Travaglino et al. (2018) [96], from which the
following introduction to the phenomenon is taken.

Campi Flegrei are an active caldera located near the city of Naples, Italy.
This region is worldwide famous for its slow vertical motions recorded since
roman times, providing one of the longest times series of ground deformation
recorded near a volcanic region (cf. Guidoboni and Ciuccarelli (2011) and Orsi
et al. (1999)). After some centuries of subsidence, following the last Monte
Nuovo 1538 eruption, Campi Flegrei caldera has shown unrest episodes of
activity since at least 1950 (Del Gaudio et al., 2010). The first recent uplift
episode dates back in the period 1950-1953, amounting to 73 cm, without
any report or record of seismic activity. In the period 1970-1972 and dur-
ing 1982-1984 two strong inflation episodes occurred, the first accompanied
by moderate low seismicity (Corrado et al., 1977), with only few events felt
by residents, whereas the second has been accompanied by relatively intense
swarms of Volcano Tectonic (VT) earthquakes, reaching up to magnitude 4
(Barberi et al., 1986). The seismic activity caused alarm in the population
and a spontaneous nightly evacuation of part of the city of Pozzuoli (44.000
residents). Since this last episode, subsidence has been recorded for sev-
eral years, interrupted by some small mini-uplift episodes, with a duration
of several weeks, all accompanied by seismic swarms of low magnitude VT
events. In recent years some high sensitivity instruments have been installed
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to detect slow earthquake transients and other mechanical/temperature low
intensity precursory signals (Scarpa et al., 2007; Amoruso et al., 2015). Since
late 2004 another moderate uplift is occurring at very small rate, amounting
to about 1-2 cm/yr, showing the occurrence of clear Long Period (LP) events
(Amoruso et al., 2007; Saccorotti et al., 2007; D’Auria et al., 2011). The aim
of this chapter is to provide a quantitative model of this phenomenon based
on the Brownian motion driven by a generalized telegraph process. This
approach is very important for deriving a quantitative formulation of some
basic parameters regulating the inflation/deflation processes, such as their
velocities and relative time constants. This is of fundamental relevance for
understanding the source process of this activity.

4.1 Data
As mentioned before there is a singular time series of ground deformation

records in the Campi Flegrei region. Archeological ruins of Serapeo Roman
temple demonstrate clearly that these three columns, builded above ground
level around 200 b.C. have been below the sea level for centuries until the
middle age. The dominant deflation has been interrupted around 88 a.C. and
in early 1500, when a rapid uplift amounting to approximately 8 m preceded
the last 1538 eruption several decades before. The subsidence is clearly docu-
mented since 1800 until 1950, when this trend has been interrupted by three
main episodes of uplift and several minor inflation/deflation trends. Detailed
reports of these processes have been made by Dvorak and Gasparini (1991),
Dvorak and Berrino (1991) and more recently by Del Gaudio et al. (2010).
Figure 4.1 illustrates the ground deformation reported in the last 2400 years
(after Woo and Kilburn, 2010).

The quality of data on these vertical movements dramatically improved
since 1970, due to the alarm in the population derived from the effects on the
drainage of water in the local harbor and the occurrence of some felt earth-
quakes, particularly during the uplift occurred during 1982-1984. Leveling
measurements improved in these years together with the installation of other
geophysical monitoring networks, managed by Vesuvius Observatory. Start-
ing from 2000, GPS continuous measurements were performed, integrated by
InSAR techniques since 1992, thus providing a more complete and homoge-
neous picture of ground deformations. The data set under investigation is
referred to weekly averaged GPS data recorded at the station RITE, located
near the Pozzuoli harbor. These data are available in the period may 2000-
july 2019. The values are referred to the average GPS data recorded at the
Campi Flegrei network, composed by 10 stations. The precision of these data
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Figure 4.1: Secular behavior of uplift and subsidence observed in Campi Flegrei
region observed at the Roman temple Serapeo, Pozzuoli in the period 200 bC-
present (after Woo and Kilburn, 2010). It can be observed a comparable rate of
uplift before the 1538 eruption and presently.

is close to 1-2 mm. Data have been retrieved from the technical reports of
Vesuvius Observatory.

Other time series of ground deformation are available, but they are not
homogeneous and they can basically divided in 3 parts: a first series, referred
to vertical leveling, precision around 1 cm, in the period 1970-1995 derived
from sea tide gaude data recorded at Pozzuoli harbor, compared with an-
other tide gauge instrument located in the Napoli harbor. A second data set
is referred to the measurements at a bench mark located near the Pozzuoli
harbor deduced from high precision altimetric levelings in the period april
1950-july 2010. The precision of these data is around 1 cm and the data are
referred to a bench marl located away from the center the caldera, near the
centre of Napoli. A third data set is also deduced from leveling data, but for
yearly measurements performed in the period march 1970-december 1994,
corresponding to the most intense phase of unrest. However, our investiga-
tion is performed only on the data set concerning period may 2000-july 2019,
whose measurements are homogenous and more reliable. Future investiga-
tions will be conducted also on the other time series, by taking into account
their different precision and reliability.

In the rest of the chapter times are expressed in days and lengths are
reported in cm.
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4.2 The stochastic model
In order to describe the alternating random trend exhibited by the mea-

surements performed in the Campi Flegrei area, we propose a suitable stochas-
tic model defined as the superposition of a pure alternating trend process
(telegraph process) and a diffusive noise component (Brownian motion). The
available data do not exhibit drastic displacements, so that the considered
model is characterized by continuous sample paths. As in the previous chap-
ter, the model is based on a stochastic process {X(t), t ≥ 0} consisting in
a Brownian motion whose drift alternates randomly between a positive and
a negative value (c and −v), according to a generalized telegraph process.
Formally, this assumes that the ground position at time t, with respect to
the sea level, is described by

X(t) = x0 + Y (t) + σB(t), t ≥ 0, (4.1)

where
(i) {Y (t), t ≥ 0} is a generalized (integrated) telegraph process, with Y (0) =
0;
(ii) {B(t), t ≥ 0} is a standard Brownian motion;
(iii) {Y (t)} and {B(t)} are independent processes;
(iv) x0 ∈ R, σ > 0 and X(0) = x0, since Y (0) = B(0) = 0.

In Eq. (4.1), x0 +Y (t) describes the randomly alternating trend of the ob-
served displacements, whereas the term σB(t) is a diffusive noise component
that represents the total sum of all other small independent perturbation
factors that are involved in the considered phenomenon. Physically, these
factors may include cumulative effects of small pressure perturbations in a
shallow magma chamber as suggested by Amoruso et al. (2007). Clearly,
the Gaussian distribution of σB(t) might be motivated by central-limit ar-
guments. Similar arguments justify the role of the Brownian motion in other
seismological contexts, as pointed out in Kagan and Knopoff (1987) and
Matthews et al. (2002).

The telegraph process Y (t) is characterized by velocities c > 0 and
−v < 0, which alternate according to an independent alternating Poisson
process {N(t), t ≥ 0}. The latter process is governed by the sequences of
positive independent random times {U1, U2, . . .} and {D1, D2, . . .}, which in
turn are assumed to be independent. The random variable Ui (resp. Di) is
exponentially distributed with parameter λ > 0 (resp. µ > 0), and describes
the duration of the i-th random period during which Y (t) has positive (resp.
negative) velocity, i.e. X(t) has positive (resp. negative) drift. Let us denote
by V (t) the velocity of Y (t) at time t ≥ 0. As a general model, if the initial
velocity of Y (t) is randomly chosen by an independent Bernoulli trial, with
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P{V (0) = c} = θ, P{V (0) = −v} = 1− θ, 0 ≤ θ ≤ 1, (4.2)

then the following stochastic equations hold.

Y (t) =

∫ t

0

V (s) ds, t > 0, (4.3)

V (t) =
c− v

2
+ sgn[V (0)]

c+ v

2
(−1)N(t), t > 0. (4.4)

The alternating Poisson process {N(t)}, involved in the right-hand-side of
(4.4), counts the number of velocity changes of Y (t) in [0, t]. See, for instance,
Figure 3.1 for simulated paths of Y (t) and X(t) when the initial velocity of
Y (t) is positive. Denoting by

p(x, t) :=
∂

∂x
P{X(t) ≤ x}

the transition density of X(t), for all (x, t) ∈ R× (0,+∞) one has (it follows
from the (3.13) after some simple generalizations)

p(x, t) =
1

σ
√
t

{
θ e−λtφ

(
x− x0 − ct

σ
√
t

)
+ (1− θ) e−µtφ

(
x− x0 + vt

σ
√
t

)}
+

1

σ
√
t

∫ t

0

ψ(w, t)φ

(
x− x0 + vt− (c+ v)w

σ
√
t

)
dw,

(4.5)

where φ(·) is the standard normal density, and for 0 < x < t,

ψ(x, t) = e−λx−µ(t−x)

×

[
θ

{
λ I0

(
2
√
λµx(t− x)

)
+

√
λµx√
t− x

I1

(
2
√
λµx(t− x)

)}

+ (1− θ)
{
µ I0

(
2
√
λµx(t− x)

)
+

√
λµ(t− x)√

x
I1

(
2
√
λµx(t− x)

)}]
.

(4.6)

In Eq. (4.6), I0(z) and I1(z) denote the modified Bessel functions given by

I0(z) =
+∞∑
k=0

(z/2)2k

(k!)2
, I1(z) =

+∞∑
k=0

(z/2)2k+1

k! (k + 1)!
= I ′0(z). (4.7)

The function (4.6) is the probability density of the sojourn time of V (t) in
the state c in the time interval [0, t].
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Figure 4.2: Observed ground position (in cm).

4.3 Data analysis
Various statistical analyses on the parameters of the (discretely observed)

telegraph process have been performed in the past by means of a least-
squares approach, pseudo maximum likelihood and moment (or approximate
moment) estimations (see De Gregorio and Iacus (2008), (2011), Iacus and
Yoshida (2009)). Since the model (4.1) involves also a Brownian motion com-
ponent, a different approach is considered hereafter for the estimation of the
relevant parameters.

4.3.1 Estimation of turning times

Recalling that the proposed position process (4.1) is the sum of a tele-
graph process y0 + Y (t) and an independent Brownian motion σB(t), let
us now propose to interpret the available data (shown in Figure 4.2) as a
trajectory of such alternating Brownian process X(t).

The alternating behavior suggests to identify different time periods, cor-
responding to the inflation and deflation episodes. In order to estimate the
turning times of the alternating periods we have made use of a suitable cus-
tomized version of Muggeo’s method in [73].
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The main idea behind Muggeo’s method is to linearize the following prob-
lem: 

xi = α
(1)
0 + α

(1)
1 ti + εi if ti ≤ r1

xi = α
(2)
0 + α

(2)
1 ti + εi if r1 < ti ≤ r2

...

xi = α
(K+1)
0 + α

(K+1)
1 ti + εi if rK < ti

(4.8)

where the εi are the error terms and the r1, . . . , rK are the breaking points of
the model. The linearization makes use of the following reparametrization:

xi = β0 + β1ti +
K∑
j=1

βj+1(ti − rj)1{ti>rj} + εi. (4.9)

Models (4.8) and (4.9) are equivalent when

α
(1)
0 = β0,

α
(k)
0 = β0 −

k∑
j=1

βj+1rj k = 1, 2, . . . , K,

α
(k)
1 =

k∑
j=1

βj k = 1, 2, . . . , K + 1.

(4.10)

In order to estimate the breaking points (r1, r2, . . . , rK) one can adopt
the following algorithm:

1. choose an initial estimate (r
(0)
1 , r

(0)
2 , . . . , r

(0)
K ),

2. use the first two terms of the Taylor expansion of the term (ti −
rj)1{ti>rj} in (4.9) around r(0)

j :

(ti − rj)1{ti>rj} ≈ (ti − r(0)
j )1{ti>r(0)j }

+ (rj − r(0)
j )(−1)1{ti>r(0)j }

, (4.11)

3. insert (4.11) in (4.9):

xi = β0 + β1ti +
K∑
j=1

βj+1(ti − r(0)
j )1{ti>r(0)j }

+
K∑
j=1

βj+1(rj − r(0)
j )(−1)1{ti>r(0)j }

,

(4.12)
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4. define
γj = βj+1(rj − r(0)

j ) (4.13)

and
Uji = (ti − r(0)

j )1{ti>r(0)j }
, Vji = −1{ti>r(0)j }, (4.14)

for j = 1, 2, . . . , K,

5. solve the resulting multiple linear regression model:

xi ≈ β0 + β1ti +
K∑
j=1

βj+1Uji +
K∑
j=1

γjVji + εi (4.15)

to find the Least Squares estimates β̂0, β̂1, . . . , β̂K+1, γ̂1, γ̂2, . . . , γ̂K ,

6. use Equation (4.13) to obtain the estimate of the breaking points

r̂j = r
(0)
j +

γ̂j

β̂j+1

, j = 1, 2, . . . , K, (4.16)

7. if the γ̂j are close to zero for each j stop, otherwise set r(0)
j = r̂j and

repeat the steps until convergence occurs.

In our case, for every j, in

xi = α
(j)
0 + α

(j)
1 ti + εi (4.17)

the linear part α(j)
0 + α

(j)
1 ti corresponds to the trajectory of the telegraph

process y0 + Y (t). Since Y (t) alternates just two velocities, system (4.9) can
be written as:

xi = β0 + v0ti +
K∑
j=1

δ(−1)j+1(ti − rj)1{ti>rj} + εi, (4.18)

where v0 := V (0) is the initial velocity of the process Y (t) and v0 + δ is the
other possible value for V (t). A customized version of the algorithm derives
from this in which the following system must be solved at each step:

xi ≈ β0 + v0ti +
K∑
j=1

δ(−1)j+1Uji +
K∑
j=1

γjVji + εi (4.19)

where the Uji and Vji are defined as in (4.14) and γj := δ(−1)j+1(rj − r(0)
j ).
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To find the right number of breaking points and the initial estimate for
them an empirical approach has been carried out. First, as said in [73],
to impose too many breaking points lacks of meaning; specifically, in our
case we have observed that having too many breaking points causes these
to "cross" with each other during the algorithm, thus resulting in the vec-
tor (r1, r2, . . . , rK) no longer ordered. Given the above, in a preliminary
approach, the turning times of the alternating periods have been estimated
empirically by the local minima and maxima of the observed sample path;
the corresponding estimates are:

r
(0)
1 = 2005.03.29, r

(0)
2 = 2007.01.23, r

(0)
3 = 2007.10.16,

r
(0)
4 = 2013.04.23, r

(0)
5 = 2014.03.04.

(4.20)

We point out that in our analysis it has been verified that a number of
breaking points greater than five does not work for the above reasons. Then
we use the (4.20) as initial estimate in the above algorithm, in which at each
step an Ordinary Least Squares (OLS) regression is performed.

The final estimates of the breaking points are:

r̂1 = 2005.12.30, r̂2 = 2006.11.17, r̂3 = 2010.07.30,

r̂4 = 2013.08.02, r̂5 = 2014.04.12.
(4.21)

The relevant estimated inflation and deflation periods are shown in Figure
4.3.

4.3.2 Estimation of the parameters of the motion

Once estimated the turning times, one can perform a further regression
using General Least Squares (GLS). The error terms εi in the model (4.18)
correspond to the Brownian component σB(ti), so that they exhibit het-
eroskedasticity and autocorrelation. Specifically,

Var(εi) = σ2ti, (4.22)
Cov(εi, εj) = σ2 min{ti, tj}, (4.23)

or, in matrix form,
Var(ε) = σ2Ψ, (4.24)

where Ψ = (min{ti, tj}). If we denote with β, x and M the vector of the
coefficients, the vector of the xi and the matrix of the regressors, respectively,
in model (4.18), then the GLS estimates are given by

β̂ = (M ′Ψ−1M)−1M ′Ψ−1x. (4.25)
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Figure 4.3: Estimated inflation and deflation periods. The red line corresponds
to the regression line in the last step of the algorithm in Section 4.3.1.

Figure 4.4 shows the relevant trajectory of the telegraph process, com-
pared with the observed data.

The infinitesimal variance σ2 of the Brownian motion can be estimating
by dividing the residual sum of squares by the number of observations minus
the number of regressors, that is,

σ̂2 =
1

N − 2
(x−Mβ̂)′Ψ−1(x−Mβ̂), (4.26)

where N = 942 is the number of observation and being 2 the number of the
regressors: those corresponding to v0 and δ in (4.18). Moreover, the (4.26)
can be used to estimate the covariance matrix of β̂:

Var(β̂) = σ2(M ′Ψ−1M)−1 ≈ σ̂2(M ′Ψ−1M)−1. (4.27)

Thus, we can evaluate the standard deviation for ĉ and v̂, since

v̂ = −β̂1, Var(v̂) = Var(β̂1)

ĉ = β̂1 + β̂2, Var(ĉ) = Var(β̂1) + Var(β̂2) + 2Cov(β̂1, β̂2).
(4.28)

However, a t-ratio test for the significance of the regressors by means of
the standard deviation of the coefficients would be meaningless, given the
customized structure of the system (4.18).
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Table 4.1: Estimates of the velocities of the telegraph process in the inflation
and deflation episodes, of turning rates, and of infinitesimal standard deviation of
the Brownian component, with the coefficient of determination for the telegraph
process. For the velocities the estimated standard deviation has been reported too.

estimates std
c 1.71 · 10−2 cm/day 1.3 · 10−3

v 6.17 · 10−4 cm/day 1.2 · 10−3

λ 6.01 · 10−4 1/day
µ 5.49 · 10−4 1/day
σ 7.47 · 10−2 cm/

√
day

R2 0.95

Furthermore, we can compute the Maximum Likelihood estimate of the
turning rates λ and µ. The Likelihood function for λ is given by (see Figure
4.4 for simplicity)

L(λ) = λe−λ(r̂2−r̂1)λe−λ(r̂4−r̂3)e−λ(tN−r̂5) (4.29)

where tN = 2019.07.02 is the time instant corresponding to the last observa-
tion available. The log-likelihood is

l(λ) := log(L(λ)) = 2 log(λ)− λ(r̂2 − r̂1 + r̂4 − r̂3 + tN − r̂5). (4.30)

Therefore, the resulting ML estimate is

λ̂ =
2

r̂2 − r̂1 + r̂4 − r̂2 + tN − r̂5

. (4.31)

Similarly, the log-likelihood for the rate µ is given by

l(µ) := logL(µ) = 2 log(µ)− µ(r̂1 − t0 + r̂3 − r̂2 + r̂5 − r̂4), (4.32)

where t0 = 2000.05.30 is the time instant corresponding to the first observa-
tion available, so that the resulting ML estimate is

µ̂ =
2

r̂1 − t0 + r̂3 − r̂2 + r̂5 − r̂4

. (4.33)

A summary of the estimated parameters is reported in Table 4.1.
As a preliminary index of the goodness of the model, it is interesting

to determine the coefficient of determination, given by R2 := 1 − Sres/Stot,
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Figure 4.4: Estimated trajectory of the telegraph process x0 + Y (t) underlying
the observed data (above) and the resulting Brownian motion σB(t) (below).

where Sres is the residual deviance and Stot is the total deviance of data.
Notice that the value of R2 is referred to the approximation of the observed
data by the telegraph process x0 + Y (t) only.

Due to Eq. (4.1), the trajectory of the Brownian component σB(t) is
obtained simply as difference, and is reported in Figure 4.4.
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Table 4.2: Probability that the current motion has no changes of tendency up to
time t.

t P0(t)
2021.12.31 0.58
2022.12.31 0.46
2023.12.31 0.37
2024.12.31 0.30
2025.12.31 0.24

4.3.3 Some predictions

For the considered model it is now possible to perform some predictions
on the ground of the results obtained so far.

The probability that the motion has no changes of tendency in time is
evaluated first. To this purpose, let us denote by P0(t) the probability of
having no changes of tendency of the motion in the time interval (tN , t], where
tN = 2019.07.02 is the last available observation time. According to the given
assumptions, since at time tN the trend is increasing (see Figure 4.3), P0(t)
is concerning an exponential distribution with parameter λ. Hence, at time
t, such probability is given by

P0(t) = e−λ(t−tN ), t > tN ,

where the estimate λ = 6.01 · 10−4 is provided in Table 4.1. Some values of
P0(t) are listed in Table 4.2. Due to the given results, during year 2022 such
probability becomes smaller than 1/2, so that a change of tendency becomes
more likely.

Let us now consider the problem of determining some predictive intervals,
i.e. intervals where the estimated location of X(t) is more likely, for suitable
choices of t. Recalling (4.5), for x1 < x2 one has

P[x1 < X(t) < x2] =

∫ x2

x1

p(x, t)dx

= θ e−λt
[
Φ

(
x2 − x0 − ct

σ
√
t

)
− Φ

(
x1 − x0 − ct

σ
√
t

)]
+ (1− θ) e−µt

[
Φ

(
x2 − x0 + vt

σ
√
t

)
− Φ

(
x1 − x0 + vt

σ
√
t

)]
+

∫ t

0

ψ(w, t)

[
Φ

(
x2 − x0 + vt− (c+ v)w

σ
√
t

)
− Φ

(
x1 − x0 + vt− (c+ v)w

σ
√
t

)]
dw,

(4.34)
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where ψ(w, t) is defined in (4.6), and Φ(·) is the standard normal cumulative
distribution function. Probability (4.34) conditional on the observed data is
then evaluated for various choices of t and (x1, x2). This is performed by
making use of the Markov property of the Brownian process, and taking into
account that at time tN = 2019.07.02 the position is X(tN) = xN = 54, and
that the tendency is increasing (so that θ = 1). Therefore

P[x1 < X(t) < x2 |X(ti) = xi, i = 1, . . . , N ]

= P[x1 < X(t) < x2 |X(tN) = xN , V (tN) = c]

= P[x1 < X(t− tN) < x2 |X(0) = xN , V (0) = c]

= e−λ(t−tN )

[
Φ

(
x2 − xN − c(t− tN)

σ
√
t− tN

)
− Φ

(
x1 − xN − c(t− tN)

σ
√
t− tN

)]
+

∫ t−tN

0

ψ(w, t− tN)

[
Φ

(
x2 − xN + v(t− tN)− (c+ v)w

σ
√
t− tN

)
+

− Φ

(
x1 − xN + v(t− tN)− (c+ v)w

σ
√
t− tN

)]
dw,

(4.35)

where the ψ is given by (see the (4.6) with θ = 1)

ψ(x, t) = e−λx−µ(t−x)

×
{
λ I0

(
2
√
λµx(t− x)

)
+

√
λµx√
t− x

I1

(
2
√
λµx(t− x)

)} (4.36)

and the involved parameters are chosen as in Table 4.1.
Finally, Table 4.3 shows the estimated intervals (x1, x2) for various values

of the probability (4.35) conditional on the observed data. The extremes x1

and x2 are taken as m± h, where m is the mode of the conditional density

p(x, t;xN , tN) =
e−λ(t−tN )

σ
√
t− tN

φ

(
x− xN − c(t− tN)

σ
√
t− tN

)
+

1

σ
√
t− tN

∫ t−tN

0

ψ(w, t− tN)φ

(
x− xN + v(t− tN)− (c+ v)w

σ
√
t− tN

)
dw.

(4.37)

By analysis of the density one has

m =

{
69.6 for t = 2021.12.31,
75.9 for t = 2022.12.31.

(4.38)

The density (4.37) is plotted in Figure 4.5 for the above specified choices of
the parameters. The particular structure of the plot shows how the density
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Table 4.3: Estimated intervals for P[x1 < X(t) < x2] conditional on the observed
data.

probability (x1, x2) (cm) (x1, x2) (cm)
P[x1 < X(t) < x2] t = 2021.12.31 t = 2022.12.31

0.70 (64.7 , 74.5) (66.9 , 84.9)
0.80 (61.6 , 77.6) (62.8 , 89.0)
0.90 (57.6 , 81.6) (58.3 , 93.5)
0.95 (55.5 , 83.7) (55.6 , 96.2)

p(x, t) can be seen as a mixture of Gaussian densities. This is reflected in the
structure of the (4.37): the highest peak corresponds to the first addendum
in the right hand, which expresses the density of the process in the event
that there are no changes in the trend of motion from time tN to time t. The
asymmetrical tail on the left corresponds to the combination of the infinite
Gaussian densities that forms the second addend of the (4.37): each of them
expresses the density of the process once the total time in which the motion
has had positive velocity in the time interval (tN , t) has been fixed (this time
is given by the variable w). By conditioning on this time, indeed, the density
of the process becomes normal (it is equivalent to considering the remaining
Brownian motion with the resulting drift).

As mentioned above, the highest peak corresponds to the case of zero
velocity changes: the mode (4.38) can therefore be found simply as m =
xN + ĉ(t− tN).

Finally, we point out that the adopted prediction procedure consists in
a statistical method based on the hypothesis that no catastrophic event oc-
curs in the reference time interval. Indeed, it is customary confirmed that
catastrophic events modify the ground dynamics substantially.

4.4 Testing the Brownian component
For the stochastic model considered so far, denote by {D(t), t ≥ 0},

the difference between the position process X(t) and the telegraph (trend)
process x0 + Y (t), plotted in Figure 4.4 (below). In this section, a statistical
test is performed on the ground of observed data in order to verify if D(t) is
a Brownian motion. Specifically, the following test is considered

H0 : D(t) = σB(t) vs H1 : D(t) is a
{

confined
directed diffusion.
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Figure 4.5: Estimated density p(x, t) for t = 2021.12.31 (blue) and t = 2022.12.31
(red).

In a sense, this is aimed to test if the noise component is namely a Brow-
nian motion or a confined or directed diffusion. The adopted method has
been proposed recently by Briane et al. (2016). It is based on the data set
concerning D(t), denoted by (D(τ0), D(τ1), . . . , D(τn)) where τi’s are the ob-
servation time instants, with n + 1 = 942. To this purpose, consider the
following standardized statistic

T nD(τn) =
SnD(τn)

σ̂MLE
√
τn
, (4.39)

where
SnD(τn) = max

i=1,2,...,n
|D(τi)−D(τ0)|

and

σ̂MLE =

{
1

n

n∑
i=1

[D(τi)−D(τi−1)]2

τi − τi−1

}1/2

. (4.40)

Eq. (4.40) is the maximum likelihood estimator (MLE) of σ, which differs
from the GLS estimator whose value is shown in Tables 4.1. However, their
values are close, since, for the considered data,

σ̂MLE = 7.44 · 10−2 cm√
day

. (4.41)

Being the sample size large, according to Briane et al. (2016), the asymp-
totic acceptance region of amplitude 1−α of the null hypotesis H0 is defined
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as {
q
(α

2

)
≤ T nD(τn) ≤ q

(
1− α

2

)}
, (4.42)

where q(α) is the lower quantile of level α of sup0≤s≤1 |B(s) − B(0)|. Since
the estimate of (4.39) is

tnD(τn) = 1.226

and since, for α = 0.05, one has (cf. Table 1 of Briane et al. (2016))

q(0.025) = 0.834, q(0.975) = 2.940,

due to (4.42) the null hypotesis H0 can be accepted with level 0.95. There-
fore, this confirms that the observed trajectory of D(t) can be viewed as a
realization of a Brownian motion.

4.5 Some remarks
The data on the vertical ground motion of Campi Flegrei, provided by

different methodologies, provide an unique example of unrest episodes in an
active caldera due to the length of the available time series. It is very difficult
to demonstrate if the current unrest episodes are a long-term precursor of a
new eruption, and if, and when it will occur. The main results derived from
this analysis provide a more precise quantification of uplift and subsidence
rates, in good agreement with previous estimates made by different authors.
The beginning of unrest dates back to 1950, and it has not been marked
by significant seismicity, whereas later episodes (in particular the 1982-1984
event) are characterized by seismicity with progressively higher magnitudes
and more significant seismic energy release. These values are still however
quite low as compared to other calderas in the world experiencing eruption
such as in Rabaul in 1994. The evolution of the deformation and seismicity
seems to indicate a slow approach to more unstable conditions of the volcano.
The time duration of the current unrest period, its size and its trend are
similar to those that preceded the eruption of 1538 in the period 1400-1536
(i.e between 2,9 and 9.1 cm/y as estimated by Di Vito et al., 2016) and may
have a similar conclusion, but it is quite difficult, in absence of additional
data, have a more precise definition of the required time. It is only roughly
expected, before the onset of the eruption, an accelerating rate of uplift and
seismicity. Another relevant observation made by Amoruso et al (2015) is
that seismicity occurs several minutes after inflation and deflation episodes.
The quantitative model presented here offers a relevant possibility to precisely
and quantitatively estimate the alternation of uplift and subsidence rates
characterizing this volcanic region.
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Figure 4.6: Historical series of ground deformation for Campi Flegrei, from 210
bC to the present day.

4.6 Future developments
The results of the analyzes in this chapter can be used to estimate the

eruptive risk of Campi Flegrei as a function of the ground level. This can be
done by studying the entire historical series of ground deformation for Campi
Flegrei, reconstructed by putting together the different datasets described in
Section 4.1 with the oldest observations carried out by means of carbon-14
dating performed on the columns of Serapeo Roman temple in Pozzuoli (see
figures 4.1 and 4.6).

As mentioned, the last eruption occurred in 1538: the closest observations
are x = 110 cm and x = 420 cm, corresponding to years 1536 and 1590,
respectively. It is likely that the ground level had a very high peak of growth
between 1536 and 1538 and then fell (very) slowly to the level recorded in
1590. Based on the current understanding of the phenomenon, according
to which inflation episodes are due to the influx of magma in significant
quantities at a very shallow depth level, it is possible to directly link the
eruptive risk to the height of the ground. We can therefore consider the
height recorded in 1590, which, based on what has been said above, should
be slightly lower than that at the time of the eruption of Monte Nuovo, as a
limit threshold: one could therefore study the eruptive risk as a first-passage-
time problem for this barrier.

To do this, one needs to perform the statistical analysis seen in section
4.3 on the entire set of observations (plotted in figure 4.6).
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However, the methods used herein, as well as the easier ones used in
Travaglino et al. [96], do not perform well on such uneven data. For example,
the algorithm used in Section 4.3.1 cannot work when there are only two or
less observations between two breaking points. Furthermore, the precision
of the measurements varies dramatically between the different observations:
1-2 mm for the most recent ones compared to a standard deviation of up to
1 meter for the oldest ones. The latter also present an uncertainty on the
time axis (up to 10 years).

To overcome these issues, we are thinking of ways to separately process
observations corresponding to different datasets and then recombine the re-
sults together, with an ad hoc designed procedure.



Appendix A

Bessel functions

The Bessel functions Jν(z) with real argument are defined as the solutions
of the Bessel’s differential equations :

z2d
2u

dz2
+ z

du

dz
+ (z2 − ν2)u = 0. (A.1)

The Jν(z) can be expressed as series:

Jν(z) =
+∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(
z

2

)2k+ν

, (A.2)

where Γ(t) :=
∫ +∞

0
xt−1e−xdx is the Euler’s gamma function.

Bessel functions can be evaluated even for complex z. Specifically, when
z is a purely immaginary argument, one gets the modified Bessel functions,
defined as follows:

Iν(z) := i−νJν(iz) =
+∞∑
k=0

1

k! Γ(k + ν + 1)

(
z

2

)2k+ν

. (A.3)

It is easy to verify that the Iν(z)s satisfy the modified Bessel’s equation:

z2d
2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0. (A.4)

Form the (A.2) it follows that

Iν(0) =

{
1 if ν = 0,

0 if ν > 0.
(A.5)
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For integer v = n, taking into account that Γ(m+ 1) = m! , one has

In(z) =
+∞∑
k=0

(z/2)2k+n

k! (k + n)!
(A.6)

and, specifically,

I0(z) =
+∞∑
k=0

(z/2)2k

(k!)2
, (A.7)

I1(z) =
+∞∑
k=0

(z/2)2k+1

k! (k + 1)!
= I ′0(z), (A.8)

I2(z) =
+∞∑
k=0

(z/2)2k+2

k! (k + 2)!
= −2

z
I1(z) + I0(z). (A.9)

For z ≥ 0 the following inequalities hold:

I0(z) ≤ ez,
I1(z)

z
≤ 1

2
ez. (A.10)

Indeed

I0(z) =
+∞∑
k=0

(
(z/2)k

k!

)2

≤
(+∞∑
k=0

(z/2)k

k!

)2

= ez,

I1(z)

z
=

1

2

+∞∑
k=0

1

k!(k + 1)!

(
z

2

)2k

≤ 1

2

+∞∑
k=0

1

(k!)2

(
z

2

)2k

=
1

2
I0(z) ≤ 1

2
ez.

The asymptotic behaviour of Bessel functions is given by the following
formula:

Iν(z) =
ez√
2πz

(
1 +O(z−1)

)
, for z → +∞. (A.11)

As a matter of fact, the following asymptotic expansion holds for z → +∞

Iν(z) ∼ ez√
2πz

{
1− (4ν2 − 1)

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+

− (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3!(8z)3
+ . . .

}
.

(A.12)

Finally, we mention the following integral form

Iν(z) =
zν

2ν
√
π Γ(ν + 1

2
)

∫ 1

−1

(1− ζ2)ν−
1
2 cosh(ζz)dζ, (A.13)

for ν > −1
2
.
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