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Chapter 1

Introduction

In recent years, deep learning (DL) has raised in popularity due to its

ever-growing number of successes. It is now able to correctly classify millions

of images with super-human performance [1], detect and segment objects [2],

perform action recognition [3], generate images or enhance their quality [4],

translate and generate text [5], synthesize speech [6], play complex games

such as Go or StarCraft better than humans [7], aid in medical diagnosis [8],

failure prediction [9], reducing energy consumption [10] and much more. The

advent of big data and capable hardware has allowed the researchers to develop

and train bigger and better models that can learn more complex and abstract

features, which is the main advantage of deep learning with respect to classical

machine learning methodologies, that require careful manual feature design.

In particular, the use of deep learning for video analysis is receiving

increasing attention. Exploring the information contained in videos can have

important repercussions: understanding what is happening in a scene, either

by tracking the objects or people in it, or by understanding the actions they

are taking, is an important step for tasks such as autonomous driving, video

surveillance, advanced human-computer interactions, crowd behavior analysis,

video retrieval, and so on.

This thesis focuses on the application of deep learning to two tasks

related to video analysis: multiple object tracking (MOT) and video retrieval.

In particular, I am going to present a comprehensive survey on the MOT
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CHAPTER 1. INTRODUCTION

algorithms that use deep learning, followed by a novel pipeline for face-based

video retrieval (FBVR) employing DL algorithms. The main contributions of

this thesis, which I will describe in greater detail in the next chapters, can be

summarized as follows:

❼ a comprehensive survey on the use of deep learning in MOT for 2D

single-camera videos;

❼ the identification of the four main steps characterizing a MOT algorithm,

with a description of the main trackers that use deep learning in any of

the four steps;

❼ the collection and analysis of experimental results for the presented

algorithms on the most commonly used MOT datasets, in order

to identify the most successful techniques and the promising future

directions of research;

❼ a novel pipeline for the retrieval of unconstrained multi-shot videos using

faces, specifically in the context of television/media content;

❼ the construction of an appropriate large-scale dataset for the evaluation

of the face-based video retrieval pipeline;

❼ an extensive comparison among different models and algorithms

employed in the pipeline for shot detection, face detection, face

recognition and feature aggregation, with a particular focus on deep

learning models, including a discussion about the advantages and

disadvantages of each method. The best configuration of the pipeline

obtained 97.25% Mean Average Precision on the test dataset, while

performing queries over thousands of videos in less than 0.5 seconds;

❼ the integration of the proposed pipeline into a commercial platform,

TVBridge, developed by CEDEO.

My PhD was funded by the Italian Ministry of University and

Research (Italian: Ministero dell’Università e della Ricerca), under the
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CHAPTER 1. INTRODUCTION

National Operational Program for Research and Innovation 2014-2020 (Italian:

Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 ) for

innovative industrial doctorates. Part of the research presented in this thesis

was thus performed in collaboration with the University of Granada (Spain)

and with the company CEDEO, based in Turin (Italy). In particular, the

research work regarding MOT was performed in Granada under the supervision

of professor Francisco Herrera, while the development of the FBVR pipeline

and its integration into TVBridge was performed with CEDEO under the

supervision of Dr. Leonardo Chiariglione.

The rest of the thesis is organized as follows. In Chapter 2 I will define

deep learning and briefly describe the main deep networks used for image

classification and object detection, that will be mentioned in both the MOT

and video retrieval chapters. Chapter 3 will present the survey on MOT,

while Chapter 4 will focus on the proposed face-based video retrieval pipeline.

Finally, Chapter 5 will summarize the findings presented in the thesis.
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Chapter 2

Deep Learning

Before describing the use of deep learning in MOT or presenting the

DL-based pipeline for video retrieval, I will present here a brief summary

regarding the most important DL algorithms and techniques that will be widely

mentioned in the next chapters, after a brief introduction about DL itself.

2.1 Deep learning basics

The term deep learning (DL) is used in the field of machine learning to

distinguish between deep neural networks (DNN) and the classical, shallow

artificial neural networks. Since classical neural networks had a single hidden

layer, by convention any neural network with at least two hidden layers is

considered deep, although the vast majority of DNNs has usually many more

layers.

While classical neural networks (sometimes called Multi-Layer

Perceptrons — MLP) mainly used fully-connected layers, which means that

every neuron in a layer is connected to every neuron in the previous layer,

deep neural networks take advantage of different types of layers. Arguably,

one of the most important ones is the convolutional layer, used mostly (but

not exclusively) for visual data, such as images. In a convolutional layer,

every output neuron is only connected to a small region of the previous layer,

i.e. each neuron only looks at a specific local receptive field of the previous
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CHAPTER 2. DEEP LEARNING

layer. Moreover, the weights of the connections are shared among the output

neurons, that is, the same operation is performed for each output neuron in

a convolution layer, with the only difference being the input neurons it is

connected to. The result emulates a discrete convolution between the input

data (which can be an image in the first layer, or the intermediate features

computed in the middle layers) and a filter kernel, i.e. the shared weights.

Figure 2.1 shows an example of convolution in a deep network.

Input

Convolution
kernel

Elt-wise Multiplication with: Sum

Output

Figure 2.1: Scheme of a convolution. The 3x3 kernel in the example slides over

the entire input image. For each 3x3 area in the input image a single output

is obtained by multiplying each element of the input with each element of the

kernel, and summing the results.

Deep neural networks that employ convolutional layers are called

Convolutional Neural Networks (CNN). Usually, convolutional layers in a CNN

include multiple filters, each operating independently on the input matrix and

producing a different output matrix. The combined stacked features from the

various filters of a layer are often called channels : so, we can have layers with

3, 16, 32, or even 512 channels. Since each intermediate layer outputs a 3D

feature volume1 (channels × height × width), each following convolution uses

3-dimensional kernels, so that each output neuron looks at the receptive field

through the entire depth of the input volume. In this way, filters in deeper

layers combine multiple features computed in the preceding layers. This results

1Note that if we use RGB images, the input layer is also 3-dimensional, with one channel

for each of the three RGB color components.
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CHAPTER 2. DEEP LEARNING

in learning more and more complex and abstract features, the deeper we go

into the network.

Another common operation used in CNNs is pooling. The pooling

operation is used to reduce the spatial size (i.e. width and height) of the

features in a layer. It operates with a sliding window, similar to the convolution

operation, but has no parametric kernel (i.e. no learnable parameters, at

least in the most common versions) and simply computes the average or the

maximum of the input neurons, depending on whether we are using max or

average pooling. The use of pooling is important for two reasons: first for

computational efficiency, both in terms of time and space, since deeper layers of

CNNs tend to have a high number of channels; second, it helps with achieving

larger effective receptive fields in deep layers, i.e. a single output in the final

layer of a CNN can be influenced by information present in most or all of the

input image (translation invariance) — this is desirable in many tasks, such

as image classification, where a decision must be made based on global image

information.

Depending on the type of CNN, and on the task it is trying to solve,

fully-connected layers can also be present, often in the final layers of the

network. For example they can be used to output classification probabilities

or regression values by looking at the features output by the convolutional

modules.

For the convolutional layers, ReLU [11] is usually employed as an

activation function. It is defined as max(0, x), where x is the value of the

neuron. ReLU was introduced to solve the vanishing gradient problem: the

use of sigmoidal activations caused a progressive reduction in the magnitude

of the backpropagated gradients, that tended towards zero in the first layers

of the network, preventing convergence. Since the derivative of ReLU for

positive values is 1, and, differently from the sigmoid, does not tend to 0 for

large values of the input, it solves the problem of vanishing gradients. Other

alternatives to ReLU exist, such as Leaky ReLU, Parametric ReLU (PReLU)

[12] or Exponential Linear Unit (ELU) [13], which try to solve some issues
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CHAPTER 2. DEEP LEARNING

with ReLU; however, the latter still remains the most used activation function

in CNNs. The final classification layer of a CNN uses instead the classical

softmax activation function, like shallow neural networks.

As mentioned, training deep networks is performed by backpropagation,

like classical shallow neural networks, using a variety of optimization

algorithms. The most used ones are variations of the mini-batch Stochastic

Gradient Descent (SGD), such as SGD with Momentum [14], RMSProp[15],

Adagrad[16] or Adam[17]. SGD operates similarly to classical gradient descent,

with the main difference being the fact that is not applied on the entire training

dataset, but on mini-batches. This helps dealing with the large datasets usually

employed to train CNNs, and introduces some randomness in the gradient

descent process that can help discovering new local minima. The mentioned

variants of SGD aim to improve the stability and the speed of the convergence

to the local minima.

The loss function depends on the problem, but multi-class cross-entropy

loss is the usual choice for classification problems, while Mean Square Error

(MSE) or Mean Absolute Error (MAE) are often used for regression problems,

like for classical neural networks.

While early CNNs were proposed in the 80’s, such as the LeNet-5 CNN

[18] for hand-written digits recognition, the advent of more capable hardware

and the availability of larger scale datasets popularized the use of CNNs in

the first part of the 2010’s. In particular, the outstanding results obtained by

AlexNet [19] on the popular ImageNet image classification dataset [20] in 2012

are often cited as the spark that renewed interest in deep learning, now capable

to obtain superior results with respect to classical methods. After AlexNet,

many new network structures were developed, progressively improving the

classification performance and solving new problems, such as object detection

or instance segmentation, as we will see.

In the next sections I will describe the main networks for image

classification and object detection that we will encounter in Chapters 3 and 4.
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CHAPTER 2. DEEP LEARNING

2.2 Deep learning for image classification

As explained before, AlexNet was one of the first CNNs to obtain good

results on a large scale image classification dataset like ImageNet. AlexNet

was composed of 5 convolutional layers, with 3 max pooling layers in between,

and 3 final fully-connected layers, with the last one containing 1000 outputs,

each predicting the probability that the input image belonged to one of the

1000 classes of ImageNet. AlexNet introduced the use of ReLUs for CNNs.

In 2014, the VGGNet CNNs were proposed [21], with the most famous

one being VGG-16. The authors showed that increasing the depth (i.e.

the number of layers) of a CNN leads to better results. VGG-16 reached

state-of-the-art accuracy on ImageNet. Its structure is shown in Figure 2.2.
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Figure 2.2: Structure of VGG-16. All convolutions have 3× 3 kernel size and

are followed by a ReLU. All max pooling layers have 2 × 2 window size and

move with a stride of 2 (i.e. the sliding window moves by 2 positions for each

step instead of 1). All fully-connected layers are also followed by ReLU, and

softmax activation is used on top of the last one. The network has 16 learnable

layers, hence the name.

Another important CNN is GoogLeNet [22] (often called Inception-v1, to

distinguish it from the later versions). The main concept behind GoogLeNet

is the use of the Inception module: instead of simply stacking convolutions

like previous CNNs, the Inception module looks at the input features using

different receptive fields, by exploiting different convolution kernel sizes. In

order to reduce the number of parameters for large kernel convolutions,

the authors proposed the use of 1 × 1 convolutions before the 3 × 3 and

5 × 5 ones. The 1 × 1 convolutions reduced the number of input channels
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CHAPTER 2. DEEP LEARNING

to the larger convolutions, reducing the number of parameters and the

computational time. The scheme of the Inception-v1 module is shown in

Figure 2.3. GoogLeNet stacked 9 Inception layers, with intermediate max

pooling layers and a final fully-connected layer for the classification; a total of

about 100 layers were included. Before the fully-connected layer, dropout

was applied during training: dropout is a regularization procedure that

involves setting to 0 a fraction of randomly-chosen connections between two

layers. This forces the network to learn multiple alternative pathways to

produce the same classification result, making the network more robust to

noise. GoogLeNet obtained better performance than VGG-16 on ImageNet.

The authors later proposed improvements to the Inception module, such as

Inception-v3 [23], Inception-v4 and Inception-ResNet [24], which introduced

factorized convolutions, unified the number of filters in the Inception blocks,

and more.

1x1 conv
3x3 conv

1x1 conv

5x5 conv

1x1 conv

1x1 conv

3x3 max
pooling

concatenation

previous layer

Figure 2.3: Structure of the Inception-v1 module. The red 1× 1 convolutions

are used to reduce the number of feature channels to speed up computation.

Adding layers to CNNs normally reaches diminishing returns, and after

a certain number of layers the performance starts to degrade. To solve this

problem, He et al. [1] proposed the use of skip connections in their residual

networks (ResNet), as shown in Figure 2.4. Such a constructed network can

learn identity functions more easily when needed, leading to faster training
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CHAPTER 2. DEEP LEARNING

and better results. The authors trained various versions of the ResNets, with

different number of layers, by repeating the residual blocks a varying number

of times: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, where

each number represents the amount of parametric layers. Even the deepest

network exhibited benefits from the greater depth: increasing the number of

layers led to increasingly better results on ImageNet. The networks also used

batch normalization, which helps to compensate for distribution shifts during

training and stabilizes the training process, reducing the number of training

steps required to reach convergence. Some variants of ResNet have been

proposed, among which we can mention ResNeXt [25], that introduced grouped

convolutions, and Wide ResNet (WRN) [26], that increased the number of

channels in each layer.

Convolution

Convolution

+

Figure 2.4: Structure of a residual block. A lateral skip connection sums the

input to the features computed by the two layers. The authors claimed that

this structure allowed the network to learn identity mapping more easily.

Classification CNNs trained on ImageNet have often been used as a

starting base for the development of more complex networks for other tasks,

such as object detection, as we will se.
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2.3 Deep learning for object detection

Object detection is the task of identifying instances of one or more

specific classes in an image. For example, we might have object detectors

trained to detect people, cars, animals, food, everyday objects. Arguably

the most famous CNN for object detection is Faster R-CNN [27]. Evolution

of R-CNN [28] and Fast R-CNN [29], Faster R-CNN introduced a Region

Proposal network able to produce candidate regions, i.e. regions that could

contain an object. The structure of Faster R-CNN is summarized in Figure

2.5. In the original article, VGG-16 is used as a backbone feature extraction

network, that is, the convolutional layers from VGG-16 are reused for feature

extraction: in this way, the network weights that were pre-trained on ImageNet

could be reused to ease convergence on the new task. The Region Proposal

Network uses anchor boxes to produce a preliminary set of candidate regions

by predicting the probability that each anchor box contains an object. These

regions are then classified by the classification head, that re-uses the backbone

features cropped with ROI Pooling. The ROI Pooling layer extracts a fixed

size feature map from the backbone features according to the spatial location

of the region proposal. ROI Pooling allows the network to take images of

any size as input without changing its structure and without the need for

re-training. The network head also performs bounding box regression. Faster

R-CNN obtained state-of-the-art results on the COCO object detection dataset

[30]. It is important to note that while the original article used VGG-16 as a

backbone network, it is also possible to employ other backbones, e.g. a ResNet.

A later evolution of Faster R-CNN, Mask R-CNN [2], added a

segmentation prediction branch to the classification head in order to predict

segmentation masks for each of the detected boxes. This task is usually called

instance segmentation. The authors also developed a more refined ROI Pooling

layer (called ROIAlign) to crop the feature maps more accurately.

The introduction of Feature Pyramid Networks (FPN) [31] has been an

important step to produce better results, especially in detecting small object.
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The main idea is to add additional branches on top of the network, which merge

features from earlier layers with features from the last ones. This results in

higher-resolution features with the same abstraction and complexity level of

the deeper layers, and it allows to use anchors at different scales, helping with

the detection of small objects, which can be lost in the smaller feature maps

of the last layers.

Input image

Feature extraction
backbone

Region Proposal
Network

Region
proposals

ROI Pooling +
classification head

+ bb regression

Detected objects

Figure 2.5: Structure of a residual block. A lateral skip connection sums the

input to the features computed by the two layers. The authors claimed that

this structure allowed the network to learn identity mapping more easily.

While Faster R-CNN represents an example of two-stage object detector,

where the first stage is the region proposal, and the second stage in the region

classification, the Single Shot MultiBox Detector (SSD) [32] is instead an

example of single-stage object detector. SSD is a fully-convolutional network

(i.e. it does not use fully-connected layers, but only convolutional ones), that

performs region proposal and classification at the same time, by using a similar

concept of anchor boxes. SSD adds additional convolutional layers on top of

the VGG-16 backbone, and anchors are defined on each of these different layers,

representing objects at different scales in the image. This helped the network

to detect smaller objects. While two-stage detectors tend to obtain slightly

better results than one-step detectors such as SSD or YOLO [33, 34, 35], the

latters tend to be much faster.
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Chapter 3

Deep Learning for Multiple

Object Tracking

The first part of this thesis focuses on the use of deep learning for

Multiple Object Tracking in videos. In particular, I will present an extensive

survey on the state of the art of DL-based MOT algorithms. Part of the

work described in this chapter was done in collaboration with the team lead

by professor Francisco Herrera, from the Universidad de Granada, Spain.

Moreover, most of content presented here has been published as a journal

article on Neurocomputing [36].

The chapter is organized as follows. Section 3.1 will introduce the

problem of MOT, the limitations of existing surveys and reviews, and the

main contributions of this thesis. In Section 3.2 I will describe the four

main steps performed by most MOT algorithms. Section 3.3 will describe the

evaluation metrics usually employed in MOT, while Section 3.4 will present

the main datasets used to evaluate MOT algorithms. The main part of the

chapter is Section 3.5, which describes the various MOT algorithms that use

DL techniques, categorized into the aforementioned four steps. I have also

collected the numerical results obtained by the described algorithms on various

MOTChallenge datasets: they will be presented in Section 3.6 along with their

analysis and the discussion about pros and cons of various approaches. Finally,

in Section 3.7 I will summarize the findings and present some future directions
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of research in MOT.

In addition to the survey work, I also collaborated with the Universidad

de Granada in researching possible strategies to improve a MOT tracker. Since

results from early experiments were not satisfactory, this work is not described

in the main text. A short summary is instead provided in Appendix A.

3.1 Introduction to MOT and contributions of

this thesis

Multiple Object Tracking (MOT), sometimes also called Multi-Target

Tracking (MTT), is the problem of identifying and tracking multiple objects in

videos, including pedestrians, cars, animals, cells, without any prior knowledge

about the number of targets or their appearance. Many computer vision

problems depend on MOT: video surveillance, autonomous driving, crowd

behavior analysis and action recognition are just a few examples. While object

detection algorithms, as we have seen in Section 2.3, output a collection of

bounding boxes for each input image, without any temporal knowledge, a

MOT algorithm outputs a collection of sequences of bounding boxes, where

each sequence contains bounding boxes indicating the location of a specific

object instance throughout time. Thus, a MOT algorithm, in addition to the

information on location and size of the bounding boxes, also assigns an ID

to each box, that is used to distinguish among different object instances of a

certain class throughout the video. Figure 3.1 shows an example of the output

of a MOT algorithm applied to pedestrians.

It is important to distinguish between Single Object Tracking (SOT)

and MOT algorithms. In the SOT task there is a single target to track,

whose appearance is usually provided as input to the algorithm; in MOT,

the number and appearance of tracked targets is not known a priori, and a

detection step is thus necessary to identify possible new targets entering the

scene. Another difficulty of MOT is the need to avoid ID switch errors or

target drift when two targets overlap or when a target is temporarily occluded
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Figure 3.1: Example output of a MOT algorithm tracking pedestrians. The

algorithm assigns a different ID to each separate identity, represented as

different colors in the images above. Note that people can be occluded or

exit the frame, and new people can enter the scene. The frames are taken

from the MO17-09 video of the MOT17 dataset (see Section 3.4).

by a background object, although target drift is also a problem with SOT. The

necessity to overcome these challenges implies that a naive application of Single

Object Tracking algorithms for the MOT problem is not sufficient. For this

reason, various competitions and datasets have been presented specifically for

the MOT problem, and a lot of work has been done in recent years to develop

effective and efficient MOT algorithms.

In particular, many of these new algorithms use deep learning techniques

in order to extract powerful features to help with the tracking task. As we have

seen in Chapter 2, DNNs are able to learn complex, abstract features which

can help distinguish among different instances of the same object class, which

is a fundamental aspect of MOT algorithms. For this reason, a survey on the

specific use of deep learning in MOT can be useful for future researchers who

want to tackle the problem.

While some works in the literature applied MOT on 3D data, for example
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using RGB-D data (RGB frames with depth information), this thesis will

focus on MOT performed on 2D video frames. Moreover, only single-camera

MOT will be considered, as opposed to multi-camera MOT, where a scene

is simultaneously recorded by different points of view, and targets must be

tracked across cameras.

While some surveys and reviews on MOT have been published in the

literature, they present some limitations:

❼ Luo et al. [37] presented, to the best of my knowledge, the first

comprehensive review focused on MOT, including a unified formulation

of the MOT problem. The authors also described the main components of

MOT systems with the related techniques used in the literature. They

also presented a performance comparison between various algorithms.

However, deep learning had only been used in a limited number of

works at that time, so it was not the main focus of their review. The

authors predicted that deep learning would be one of the promising future

research directions for MOT.

❼ Camplani et al. [38] presented a survey on Multiple Pedestrian Tracking,

but they focused on RGB-D data and did not cover deep learning based

algorithms.

❼ Emami et al. [39] proposed a formulation of the data association step in

MOT algorithms as a Multidimensional Assignment Problem (MDAP)

and mostly focused on that specific step of MOT. While a few DL-based

approaches were presented, it was not the main focus of their work and

they did not explore the use of DL in the other steps (e.g. the object

detection step) of a typical MOT algorithm.

❼ Leal-Taixé et al. [40] presented an analysis of the results obtained

by algorithms on the datasets for the MOT15 [41] and MOT16 [42]

challenges. The authors computed statistics about the results obtained

on those particular datasets, and identified the main lines of research.
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They found that recent algorithms focused on improving the techniques

used to compute affinity between identities, as opposed to researching

novel optimization methods for the object association step, which was

the main goal of earlier works. They correctly predicted that future

approaches would tackle this issue by using deep learning. However, this

work too did not focus specifically on DL-based techniques, which were

still relatively new in the MOT task at that time.

Given the limitations of existing works in the literature, this thesis

will present a comprehensive survey about the recent1 MOT algorithms that

employ deep learning. In particular, the main contributions of this thesis are

the following:

❼ the first comprehensive survey on the use of Deep Learning in Multiple

Object Tracking, focusing on 2D data extracted from single-camera

videos, including works that have not been covered by past surveys and

reviews;

❼ the identification of four steps which are common to most MOT

algorithms, together with the description of the various trackers in the

literature that utilized DL models for each of these four steps;

❼ the collection of experimental results for DL-based MOT algorithms on

the most common MOT datasets, along with an analysis of the most

successful techniques employed in recent years;

❼ a discussion on the open issues of current trackers and the possible future

research directions for MOT algorithms.

1Since I collected and analyzed the literature presented in this chapter in 2019, some very

recent techniques may not be included in this thesis; however, the general categorization of

MOT algorithms and most of the related observations are still valid and I hope they can be

useful for researchers that want to use or improve existing trackers or develop a novel one.
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3.2 Structure of a MOT algorithm

The majority of MOT algorithms follow the so-called

tracking-by-detection approach: a set of bounding boxes (usually just

called detections in the context of MOT), each locating a target in the input

frames, are extracted from the video. These detections are then used to

guide the tracking, which usually includes an association process that groups

detections belonging to same person or object, and assigns them the same ID.

For this reason, many MOT algorithms formulate the task as an assignment

problem. Since modern detection frameworks [27, 2, 43, 32, 34] usually

obtain high quality results, most researchers have focused their efforts in

improving the association process, and many MOT datasets provide optional

pre-computed detections that enable a fair comparison between different

association algorithms.

MOT algorithms can be divided into batch and online methods. Batch

algorithms look at data from the entire video to perform the detection

association: for this reason, the ID of a certain detection in frame k can be

determined by using information from both past and future frames. Online

algorithms instead only use present and past information to determine the

IDs of the detections in frame k. Since batch algorithms have access to more

information with respect to online ones, they tend to perform better in general.

However, many real-world scenarios require the use of an online algorithm; for

example, autonomous driving requires that the tracking is done in real-time,

and cannot obviously wait for all future frames to be collected. It is important

to distinguish online MOT algorithm from real-time ones: while every real-time

algorithm must be online, since it cannot access future information, not every

online algorithm is necessarily able to run in real-time. As we will see, in fact,

many online DL-based algorithms still struggle to reach real-time execution,

since deep networks often require heavy computation.

While many different MOT algorithms are described in the literature,

with a great variety of employed techniques, most of them follow (all or part
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of) these four steps (see Figure 3.2):

1. detection stage: an object detection algorithm analyzes each input

frame to identify objects belonging to the target class(es) using bounding

boxes, also known as detections in the context of MOT;

2. feature extraction/motion prediction stage: one or more feature

extraction algorithms analyze the detections and/or the candidate

tracklets2 to extract appearance, motion and/or interaction features. In

some cases, a motion predictor predicts the next position of each tracked

target;

3. affinity computation stage: the computed features and the predicted

trajectories are used to compute a similarity/distance score between pairs

of detections and/or candidate tracklets;

4. association stage: the similarity/distance measures are used to

associate detections and tracklets belonging to the same target by

assigning them the same ID.

Batch methods tend to apply this sequence of four stages once for the

entire video, running each stage on all the video frames at once; online

methods instead usually iterate these four stages for each incoming frame. It is

important to note that this four-stage classification is not rigid by any means,

as many algorithms merge or mix some of these steps, or run them multiple

times per “iteration” (e.g. two-phase algorithms with a pre-association step

that gets refined in a second association stage). In addition, some algorithms

do not directly associate detections, but use them to refine the trajectory

predictions output by a motion model or just to manage the initialization and

termination of tracks. Even in these cases, however, it is often possible to

clearly identify many or all of the four described stages.

2The term “tracklet” is often used in the literature to indicate a short track or a fragment

of a track.
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Object detection

Feature
extraction

Affinity
computation

Association

Figure 3.2: The four steps of a MOT algorithm. First, object detection

is performed on the video frames, in this case to detect pedestrians. The

bounding boxes are used to extract visual or motion features (represented as

colored feature vectors in the figure), which are then compared to each other

in order to compute some kind of affinity score (the colored distance matrix in

the image). The affinities are then fed to an association algorithm that decides

which detections belong to the same person, and assigns them the same ID

(each ID is represented as a different bounding box color in the figure).
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3.3 Evaluation metrics in MOT

In order to evaluate the performance of a MOT algorithm, a number of

metrics have been proposed throughout the years. We can group the most

commonly used ones in three main groups: a set of “classical” metrics [44],

the CLEAR MOT metrics [45] and the ID metrics [46].

3.3.1 Classical metrics

Proposed by Wu and Nevatia [44], this set of metrics can give useful

information about the type of errors made by a MOT algorithm. They are the

following:

❼ Mostly Tracked (MT) trajectories: the number of ground-truth

trajectories that are correctly tracked in at least 80% of the frames.

❼ Mostly Lost (ML) trajectories: the number of ground-truth trajectories

that are correctly tracked in less than 20% of the frames.

❼ Fragments : number of predicted trajectories which cover at most 80% of

a ground truth trajectory. Observe that a true trajectory can be covered

by more than one fragment.

❼ False trajectories : the number of predicted trajectories which do not

correspond to a ground truth trajectory.

❼ ID switches : the number of times a tracked object has its associated ID

mistakenly changed.

3.3.2 CLEAR MOT metrics

The CLEAR MOT metrics were developed for the Classification of

Events, Activities and Relationships (CLEAR) workshops held in 2006 [47] and

2007 [48]. They consist of the Multiple Object Tracking Accuracy (MOTA)

and Multiple Object Tracking Precision (MOTP). The goal was to define two

unified metrics which can summarize the performance of a MOT algorithm.
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First of all, it is necessary to decide how to match track hypotheses with

ground truth tracks. The most used criteria is the one proposed for the original

2015 MOTChallenge [41, 45]. The Intersection over Union (IOU) is used to

match predicted and ground truth boxes. It is computed as the ratio between

the area of the intersection of two bounding boxes and the area of their union.

The mapping between ground truth tracks and hypotheses follows the

so-called continuity constraint: if the ground truth object oi and the hypothesis

hj are matched in frame t − 1, and IoU(oi, hj) ≥ 0.5 in frame t, then oi

and hj are also matched in frame t, even if there exists another hypothesis

hk such that IoU(oi, hj) < IoU(oi, hk). In other words, once a predicted

track and a ground truth trajectory are matched, the match is kept until

their IOU falls under the 0.5 threshold. After existing tracks from previous

frames have been matched, the remaining ground truth objects are matched

with the remaining hypotheses, using again the 0.5 IOU threshold. At the

end of the process, the ground truth bounding boxes that are not associated

to any predicted box are false negatives (FN), while the predicted boxes that

are not associated to any ground truth box are the false positives (FP). Every

time the ID associated to a tracked ground truth object is incorrectly changed

an ID switch (IDSW) is counted. The authors also defined the concept of

fragmentations3 (Fragm), which is the number of times the tracking of a ground

truth object is interrupted for a number of frames and then resumed at a later

point.

Given the previous definitions, the MOTA score obtained by an algorithm

on a video is defined as follows:

MOTA = 1−
(FN + FP + IDSW )

GT
∈ (−∞, 1],

where GT is the number of ground truth boxes. If the algorithm makes no

errors, that is it does not produce any false positive, false negative or ID switch,

MOTA is equal to 1. It is important to note that the score can be negative,

as the algorithm can commit a number of errors greater than the number of

3Not to be confused with the fragments described in Section 3.3.1.
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ground truth boxes.

On the other hand, MOTP is computed as:

MOTP =

∑
t,i IOU (t, i)
∑

t ct
,

where ct denotes the number of matches in frame t, and IOU (t, i) is the IOU

between the hypothesis i and its assigned ground truth object (false positive

hypotheses are ignored). MOTP is thus a measure of the average localization

accuracy of the tracking algorithm. In tracking-by-detection approaches, this

is usually highly dependent on the quality of the object detector.

3.3.3 ID metrics

The MOTA score highligths the number of times a tracker takes an

incorrect decision (e.g. an ID switch), but in some scenarios, such as

surveillance, one might be more interested in rewarding a tracker that can

follow an object for the longest possible time, since it is very important

to avoid losing its location. Because of that, Ristani et al. [46] proposed

alternative metrics, that are supposed to complement the information given

by the CLEAR MOT metrics.

Instead of matching ground truth and detections frame by frame, the

mapping is performed globally, and the trajectory hypothesis assigned to a

given ground truth trajectory is the one that maximizes the number of frames

correctly classified for the ground truth. To solve that problem, a bipartite

graph is constructed, weighing the edges according to the number of false

negatives and false positives the corresponding match would generate. Some

“dummy” false positive and false negative nodes are also added to the graph.

The minimum cost bipartite matching problem is then solved on the graph to

obtain the prediction/ground truth matches. Each matched pair of nodes can

be a true positive ID (if a ground truth trajectory node was matched with a

predicted trajectory node), a false positive ID (if a predicted trajectory node

was matched to a false positive node) or a false negative ID (if a ground truth

trajectory node was matched to a false negative node).
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Three scores are then computed:

❼ IDTP : the sum of the weights of the edges representing true positive ID

matches (equivalent to the percentage of correctly assigned detections);

❼ IDFP : the sum of the weights of the false positive ID edges;

❼ IDFN : the sum of the weights of the false negative ID edges.

These serve to define the final three ID measures that are used to evaluate

a MOT algorithm:

❼ Identification precision: IDP = IDTP

IDTP+IDFP

❼ Identification recall: IDR = IDTP

IDTP+IDFN

❼ Identification F1: IDF1 = 2
1

IDP
+ 1

IDR

= 2IDTP

2IDTP+IDFP+IDFN

Since the majority of works in the literature evaluated their results on

at least one of the various MOTChallenge datasets (see Section 3.4), the most

commonly used metrics are the ones that are also used in the MOTChallenge

leaderboard: mainly MOTA, IDF1 and MOTP, but often accompanied by

the other CLEAR MOT metrics, MT and ML, which can give some useful

information that complements the aforementioned metrics.

3.4 MOT datasets

In recent years, a number of MOT datasets, usually tied to competitions,

have been published.

MOTChallenge. MOTChallenge4 is the most commonly used

benchmark for MOT in the literature. Various versions of MOTChallenge

datasets that focused on pedestrian tracking were published throughout the

years, and are among the largest publicly available datasets for MOT. In

addition to providing ground truth for the training videos, the authors also

provide pre-computed detections for both training and test videos. These

4https://motchallenge.net/
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so-called public detections are useful to evaluate the performance of a tracking

algorithm independently from the quality of the object detector, since it

usually has a major impact on the performance of a tracker. For this

reason, the MOTChallenge leaderboard distinguishes between results obtained

with public detections, for which the score mostly depends on the quality

of the association procedure, and results obtained with private detections

(i.e. detections obtained with a custom object detection algorithm), which

account for the quality of the entire tracking pipeline. The leaderboard

also distinguishes among online and batch algorithms, for the considerations

presented in Section 3.2. All the algorithms in the leaderboard are evaluated on

the test sets by submitting the tracking results to the test server, since ground

truth for the test sets are not public. MOTA is the primary evaluation score for

the MOTChallenge, but many other metrics are computed and shown on the

leaderboard, including the ones presented in section 3.3. Since most DL-based

MOT trackers in the literature focus on pedestrians, the MOTChallenge

datasets are the most widely used, as they provide enough data to train deep

models because of their size.

MOT15. The first MOTChallenge dataset is the 2D MOT 20155 [41]

(often shortened to MOT15). It contains 22 videos (11 for training and 11 for

testing), collected from older datasets, with a different visual properties (fixed

and moving cameras, different environments and lighting conditions, and so on)

in order to test the robustness of the tracking algorithms in different situations.

In total, it contains 11,283 frames at various resolutions, with 1221 different

identities and 101,345 boxes. The provided detections were obtained using the

Aggregated Channel Features (ACF) detector [49].

MOT16/17. A new version of the dataset was presented in 2016,

called MOT166 [42]. Differently from MOT15, the authors annotated the

dataset from scratch using a consistent protocol across the videos. MOT16

5Dataset: https://motchallenge.net/data/2D_MOT_2015/, leaderboard: https://

motchallenge.net/results/2D_MOT_2015/.
6Dataset: https://motchallenge.net/data/MOT16/, leaderboard: https:

//motchallenge.net/results/MOT16/.
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contains 14 videos, 7 for training and 7 for testing, with a higher pedestrian

density compared to MOT15, posing a greater challenge to MOT algorithms,

which have to deal with a greater number of possible occlusions. The public

detections included with MOT16 were obtained using Deformable Part-based

Model (DPM) v5 [50, 51]. MOT16 includes a total of 11,235 frames with 1,342

identities and 292,733 boxes. The MOT17 dataset7 includes the same videos as

MOT16, but with more accurate ground truth and with three sets of detections

for each video: one from Faster R-CNN [27], one from DPM and one from the

Scale-Dependent Pooling (SDP) [52] algorithm. Using detections from multiple

sources to compute the finale average MOTA score forces the trackers to be

more robust to lower-quality detections in order to obtain competitive scores.

MOT20. The MOT20 dataset [53] was recently released, first as part

of the CVPR 2019 Tracking Challenge8 [54], and then as a public dataset on

the MOTChallenge website9. It contains 8 videos (4 for training, 4 for testing)

with extremely high pedestrian density, reaching up to 245 pedestrians per

frame on average in the most crowded video. The dataset contains 13,410

frames with 6,869 tracks and a total of 2,259,143 boxes, much more than the

previous datasets.

KITTI. Differently from MOTChallenge, the KITTI tracking

benchmark10 [55, 56] focuses on both pedestrian and vehicle tracking, which

are both needed to tackle the challenging task of autonomous driving. The

dataset was collected by driving a car around a city and it was released in 2012.

It contains 21 training videos and 29 test videos, with a total of about 19,000

frames (32 minutes total length). Similarly to MOTChallenge, KITTI also

7Dataset: https://motchallenge.net/data/MOT17/, leaderboard: https:

//motchallenge.net/results/MOT17/.
8https://motchallenge.net/workshops/bmtt2019/tracking.html
9Dataset: https://motchallenge.net/data/MOT20/, leaderboard: https:

//motchallenge.net/results/MOT20/. This dataset was originally called MOT19

by the authors, and figures as MOT19 in [36].
10http://www.cvlibs.net/datasets/kitti/eval_tracking.php
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provides pre-computed detections, that were obtained using the DPM11 and

RegionLets12 [57] detectors. KITTI also provides stereo and laser information,

but models that used this kind of data were not considered in this thesis,

since the focus is on pure 2D data. Models are evaluated using the CLEAR

MOT metrics, MT, ML, ID switches and fragmentations. The pedestrians and

vehicle tracking tasks are considered separate challenges, and a leaderboard for

each of the two is provided.

Other datasets. Before MOTChallenge, a number of other smaller

tracking datasets were used. Some of the most commonly used ones are

PETS200913 [58] (pedestrian tracking), TUD14 [59] (pedestrian tracking)

and the UA-DETRAC tracking benchmark15 [60] (vehicle tracking in videos

recorded by traffic cameras). Many of the videos in PETS2009 and TUD are

integrated into MOTChallenge.

3.5 Deep learning in MOT

In this section we are going to explore the DL-based techniques employed

in the literature for each of the four steps described in Section 3.2, grouping

similar models together. I remind the reader that, as explained previously, the

classification is not rigid, since not every algorithm strictly follows the linear

order of the four steps, and some DL algorithms can play a role in multiple

stages. However, the categorization can still be useful to highlight the purpose

for which each DL model was used.

All of the methods described in Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4 have

been summarized in a table in Appendix B.

11The L-SVM (latent SVM) model mentioned on the website is now known as Deformable

Parts Model (DPM).
12http://www.xiaoyumu.com/project/detection
13http://www.cvg.reading.ac.uk/PETS2009/a.html
14https://www.d2.mpi-inf.mpg.de/node/428
15https://detrac-db.rit.albany.edu/Tracking
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3.5.1 Deep learning in the detection step

While many MOT algorithms in the literature have used pre-computed

detections from public datasets, such as MOTChallenge and KITTI, some

decided instead to train a CNN in order to improve the overall accuracy of the

tracker. As mentioned before, in fact, the quality of the detections impacts

significantly on the accuracy of a tracking algorithm, since the reduced number

of false positive and false negative detections translates into a lower number

of false positive and false negative track boxes, and thus into a higher MOTA.

Faster R-CNN and derivatives

SORT. One of the first MOT algorithms to use a CNN to detect

pedestrians was Simple Online and Realtime Tracking (SORT) [61]. Replacing

the MOT15 public detections obtained using ACF with detections computed

by Faster R-CNN increased the MOTA score by 18.9% and SORT reached

state-of-the-art performance on the dataset at that time. SORT used the

Kalman filter [62] to predict object motion; the predicted positions were then

associated to detections in the frame by using the Hungarian algorithm [63]

with a cost matrix consisting of the IOU between each predicted box and the

detections.

POI. Yu et al. instead used a modified version of Faster R-CNN in their

Person of Interest (POI) detector [64]. The authors added skip pooling [65]

and multi-region features [66] to Faster R-CNN in order to combine features

at different scales and abstraction levels, and trained the network on multiple

pedestrian detection datasets, including ETHZ [67], the Caltech pedestrian

dataset [68] and a self-collected surveillance dataset. The structure of the

detectors is summarized in Figure 3.3. The use of this enhanced detector

allowed the authors to improve the MOTA by 30% with respect to using

the public detections for MOT16. The authors also noted that using more

accurate detections allows to reduce the complexity of the tracking algorithm

without losing accuracy. The detections computed on MOT16 by this modified
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Faster R-CNN were published16 and many other researchers used them in their

algorithms [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].

Feature extraction backbone

Region
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Faster R-CNN with Skip Pooling and Multi-Region features

Figure 3.3: Architecture of the pedestrian detector used in POI. The image

is simplified and does not show the actual number of layers, for lack of space.

The classic structure of a Faster R-CNN, with a backbone feature extraction,

a RPN with ROI Pooling and a classification head is preserved. However,

two additional features are introduced: skip pooling [65], that pools features

from multiple layers in order to look at different scales and abstraction levels;

multi-region features [66], that are extracted from different crops of the region

candidate and force the network to look at object parts and context, besides

making it more sensitive to localization inaccuracies.

HOGM. Zhou et al. [80] used Mask R-CNN [2], a variant of Faster

R-CNN, as explained in Section 2.3, in the detection step of their HOGM

tracker. The network was used to extract masks in addition to the bounding

boxes, in order to avoid the inclusion of background noise in the feature

extraction step. They showed that extracting features from masks, as opposed

16https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
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to the entire bounding box, led to MOTA improvements in both their HOGM

algorithm and DeepSORT (described in Section 3.5.2).

Other uses of Faster R-CNN. Faster R-CNN is also part of many

other MOT algorithm, not only for pedestrians, but also to track athletes [81],

cells [82] and pigs [83], following an appropriate re-training of the network to

detect objects of the appropriate classes.

SSD

Pig tracking. Zhang et al. [83] compared the use of three different

object detectors in a pig tracking pipeline: SSD, Faster R-CNN and R-FCN

[43]. SSD led to better results on their dataset. This was probably due to

the higher number of anchors in SSD and to its matching strategy, that allows

to predict high scores even for highly-overlapping boxes. This is desirable in

the pig detection task, since pigs often occlude each other in the images and

their boxes overlap significantly. Moreover, SSD was also two to three times as

fast as the other two CNNs. After detection, the pigs were then tracked using

the ECO tracker [84], applied to small regions at the center of each pig called

tag-boxes, in order to increase efficiency, since the animals have very similar

appearances. The tracker used HOG [85] and Colour Names [86] features, and

the Hungarian algorithm was used to associate the tracked tag-boxes and the

actual pig detections.

Joint Detection and Tracking Kieritz et al. [87] proposed the use

of SSD with a modified NMS step, which uses the affinity scores computed

between tracklets and each candidate detection in order to refine the confidence

score of each candidate, before NMS. In this way, the algorithm avoids to filter

out low-score detection candidates which actually match an existing track.

The confidence scores were re-weighted by using a multi-layer perceptron with

two hidden layers.

CCF-based SSD Zhao et al. [88] used a CNN-based Correlation Filter

(CCF) to predict the position of an object (a pedestrian or a vehicle) in

the next frame; a box centered in this position was then cropped and fed
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to SSD, which was thus able to detect smaller objects in the frame. These

detections were combined with the ones obtained from the full frame and then

track-to-detection association was performed using the Hungarian algorithm.

The latter used a cost matrix which accounted for both IOU and appearance

features (Average Peak-to-Correlation Energy - APCE [89]). Appearance

features were also used for object re-identification (ReID), in order to

recover from occlusions. The network, trained with multi-scale augmentation,

obtained results comparable to state-of-the-art online algorithms on both

MOT15 and KITTI.

Other uses of SSD. Lu et al. [90] used SSD in their a LSTM tracking

algorithm (explained in more detail in Section 3.5.2), which was able to track

multiple object classes, including people, animals and cars.

Other CNNs

In addition to Faster R-CNN and SSD, we can find a number of other

CNNs employed in the detection stage of MOT algorithms. For example, Kim

et al. [91] used YOLOv2 [34] to detect pedestrians, Sharma et al. [92] used the

Recurrent Rolling Convolution (RRC) CNN [93] and SubCNN [94] to detect

vehicles in videos (see section 3.5.2), Pernici et al. [95] used the Tiny CNN

detector [96] in their face tracking algorithm, obtaining a better performance

when compared to non-deep algorithms such as DPM [50].

Other uses of deep learning in the detection step

Instead of using a network to directly produce detections, some works

used CNNs in the detection step in a different way.

Detection pruning For example, Min et al. [97] proposed a vehicle

tracking algorithm in which the main detection work was performed using

a modified version of the ViBe algorithm [98], which basically performs

background subtraction of the input frame. Boxes were computed around

the remaining foreground pixels, and were first pruned by a SVM [99], and

then by the Faster-CNN based network proposed in [100]. This resulted in
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faster detection because the CNN was only used when the SVM did not have

a high enough confidence in the prediction.

Instance segmentation Bullinger et al. [101] used instead a Multi-task

Network Cascade (MNC) [102] to obtain instance-aware semantic segmentation

maps, instead of bounding boxes, which were not used at all in the pipeline.

This was done in order to remove background pixels from each object instance.

An optical flow tracker was used [103, 104, 105], and the locations predicted

by it were then matched to the detected instances in the new frame by

using the Hungarian algorithm. The authors claimed that since the tracking

algorithm was based on optical flow, the removal of background noise would be

particularly beneficial for the quality of the results, especially in the presence

of camera motion. In fact, when using MNC segmentations as detections, the

tracker reached better performance than SORT on MOT15 videos with camera

motion.

3.5.2 Deep learning in the feature extraction/motion

prediction step

The main strength of deep learning lays in its ability to extract powerful,

representative features. It should not surprise the reader that the main stage

in a MOT pipeline where deep learning algorithms are employed is thus the

feature extraction stage.

The decision to couple feature extraction and motion prediction as a

single stage stems from the fact that the latter can be seen as the computation

of motion features. Both help with the affinity computation and association

processes, and thus play a similar role.

Autoencoders

One of the first MOT algorithms that used deep learning was published

in 2014 by Wang et al. [106]. It used a two-layer network of autoencoders that

was pre-trained on a set of natural scene videos [107]. A multi-task learning
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strategy was then used to update the features according to the appearance

of the specific target objects. Affinity between objects was computed with a

SVM, and the association was performed by solving a minimum spanning tree

problem. The authors showed that fine-tuning features for each target using a

multi-task approach led to improved model performance.

Apart from this early approach, subsequent works mostly employed

CNNs instead of autoencoders.

CNNs for appearance feature extraction

MHT-DAM. Kim et al. proposed one of the first uses of a CNN as

visual feature extractor [108]. They used a pre-trained R-CNN in order to

extract 4096-dimensional feature vectors from each detection, compressed to

256 dimensions using PCA. The appearance model was updated online using

Multi-output Regularized Least Squares (MORLS) [109]. The tracker was

based on the Multiple Hypothesis Tracking (MHT) algorithm [110]. The use

of deep features improved the MOTA score on MOT15 by 3%, and the model

reached state-of-the-art results on that dataset at the time, with 32.4% MOTA.

POI. The already mentioned POI algorithm [64] (see Section 3.5.1)

used a CNN similar to GoogleNet [22], pre-trained on multiple person

re-identification datasets, in order to extract visual features. Affinity

between detections was computed using the cosine distance, and two different

association algorithms were proposed, an online method, using the Hungarian

algorithm, and a batch one, using a modified version of the H2T algorithm

[111]. The tracker reached top performance on MOT16 with 66.1% MOTA.

DeepSORT. Wojke et al. improved the performance of the SORT

algorithm by empowering it with deep features in their DeepSORT tracker [69].

They used a Wide Residual Network (a variation of ResNet with less depth

but increased width, i.e. number of channels) [26] to extract 128-dimensional

features. The cosine distance between the features was used to complement the

other affinity scores used in SORT. The structure of the pipeline is summarized

in Figure 3.4. The use of deep features helped reducing the number of ID
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switches by almost a half.

Fusion with pose information. Some algorithms fused the visual

features with pose information. For example, Ran et al. fused CNN visual

features with pose features extracted with the AlphaPose CNN [112] in their

Multi-Athlete Tracking (MAT) algorithm [81], while Tang et al. combined the

body part score maps obtained by the DeepCut pose detector [113] with the

cropped pedestrian images as input to a feature extraction CNN. Both these

algorithms will be described in more detail in section 3.5.3.

Cell tracking. Hu et al. proposed the use of a Fast R-CNN with

VGG-16 backbone in order to track cells in microscopy image sequences [82].

After separating slow and fast cells, visual features extracted from the Fast

R-CNN were fused with motion features in order to track fast-moving cells

more accurately. The CNN was trained for cell classification. After the main

tracking process, a quality enhancement step was performed by combining

partial tracklets in order to reduce the number of false positives and false

negatives.

Random fern classifier. Kim et al. [91] used the features extracted by

a YOLOv2 CNN object detector to build a random ferns (RF) classifier [114].

The algorithm worked in two steps. In the first step, a so-called teacher-RF was

trained in order to differentiate pedestrians from non-pedestrians. After the

teacher-RF was trained, for every tracked object a smaller student-RF classifier

was constructed. These were specialized in distinguishing their specific tracked

object from the other objects in the scene. The student models help reduce

the computational complexity of the algorithm, for use in real-time scenarios.

DSGM. The Directed Sparse Graphical Model (DSGM) by Ullah et

al. [115] used a Hidden Markov Model [116] to predict the position of each

object in the next frame. A CNN was used to extract visual features, and

the affinity computation was performed only among the pairs with a low

enough distance between the predicted HMM position and the detection.

Mutual information was used to compute affinity between visual features

and a dynamic programming algorithm was employed to solve the association
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Figure 3.4: Architecture of the DeepSORT tracking pipeline. Detections from

[64] are fed to a 10-layer CNN that extracts visual features from each of them.

These are compared to historical appearances of existing tracks using cosine

distance. At the same time, box predictions by a Kalman filter are used to

compute Mahalanobis distance with the detections. The two distances are

fused into a unified metric, used to perform association.
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problem.

Other uses of CNNs as visual feature extractors. Many more

algorithms employed CNNs as visual feature extractors. Chen et al. used

a custom CNN to extract appearance features in their MHT-based EDMT

algorithm for pedestrian tracking [117], while Yang et al. used Fast R-CNN

in their HybridDAT pedestrian tracker [118]. Wang et al. [119] used a CNN

to extract features from fish heads, employed to track fish with the help of

motion predictions obtained with a Kalman Filter. Other models combined

CNN visual features with other types of features, such as CNNMTT [70], which

fused them with dynamic and position features, and CDA DDAL [120], which

combined the appearance features with shape and motion models.

Pernici et al. [95] decided to reuse the features extracted by the face

detection CNN in their face tracking pipeline. Matching was performed using

Reverse Nearest Neighbour [121].

GoogLeNet features were used in pedestrian tracking models such as

EETN [122], RAN [123], NT [124], or HAF [125].

ResNet was employed in pedestrian tracking algorithms such as

MHT-bLSTM [126], an evolution of MHT-DAM employing a Bilinear LSTM

to help with affinity computation (more details in Section 3.5.3), and

BMH-RMNet [127], which also combined it with a LSTM, which performed

bounding box regression in addition to affinity computation. The same Wide

ResNet used in DeepSORT was instead employed by Fu et al. [128] in their

PHD-DCM tracker, that used a discriminative correlation filter in order to

compute correlation between features. This correlation was combined with a

spatio-temporal relation score for use as a likelihood in a Gaussian Mixture

Probability Hypothesis Density filter [129].

Siamese networks

A special kind of CNNs which are often used to compute reliable features,

able to accurately discriminate between different objects, are the Siamese

CNNs [130] (see Figure 3.5). Siamese CNNs are usually trained using two
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parallel convolutional backbones, sharing parameters, each taking a different

image as input, and with a number of fully-connected layers on top that are

trained to predict the probability that the two input images contain the same

object instance. It is important to note that during normal operation, after

they have already been trained, standard siamese networks only take a single

image as input. While the output probability score can be directly used as an

affinity measure, the methods described in this section instead discard the final

prediction layer, and just use the feature vectors to compute object affinities

using other strategies, possibly in combination with other types of features.

The use of siamese networks for affinity computation is described instead in

Section 3.5.3.

ESNN.Kim et al. [131] proposed the Enhanced Siamese Neural Network

(ESNN) for their pedestrian tracking algorithm, trained using a contrastive

loss. In addition to the two input images, the network also used the IOU

between them and their area ratio. The Euclidean distance between the

features was used to compute the affinity scores between boxes, together with

IoU score and the area ratio between the boxes. The association step was

solved using a greedy algorithm.

CNNTCM. Wang et al. [132] trained a small Siamese CNN using a

margin-based loss in their CNNTCM pedestrian tracker. Affinity between

detections was computed using the Mahalanobis distance, weighted with a

learned weight matrix, and taking temporal constraints into account.

SymTriplet. Zhang et al. [133] proposed the use of a SymTriplet loss

function for the training of their Siamese CNN. Instead of the classic two

CNN branches, they used three CNNs with shared weights, taking as input

an anchor image, a positive image and a negative image. The SymTriplet loss

penalized a high distance between feature vectors of the positive pair (since

the images belonged to the same person), while also penalizing a low distance

between features of the negative pair (since the images belonged to different

persons). This allowed to obtain more discriminative features, which helped
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with the tracking process17. The algorithm was tested on videos from TV

shows and music videos from YouTube. Since videos included multiple shots,

data association between frames in the same shot was first performed, using

Euclidean distance between the feature vectors, together with temporal and

kinematic information; afterwards, tracklets were merged across shots, using a

Hierarchical Agglomerative Clustering algorithm that also used the appearance

features to perform the tracklet merging.

Siamese CNN with stacked inputs. Leal-Taixé et al. [134] proposed

the use of two stacked images as input to their Siamese CNN, in a unified CNN

backbone (see Figure 3.5). Like the standard siamese networks, it output the

similarity between the input images at training time, but the advantage was

that CNN features were merged between the two images at earlier stages in the

pipeline, leading to better performance. The feature vectors were then used

as input for a Gradient Boosting model, together with contextual information,

in order to get an affinity score between detections. The association step was

solved using Linear Programming [135].

Quad-CNN. Son et al. [136] proposed the use of the more complex

Quad-CNN for their pedestrian tracking pipeline. As the name suggests, this

Siamese-like CNN took four input images: the first three images were from

the same person, temporally ordered, and the last one was from a different

person. The authors proposed a loss that accounted for increasing dissimilarity

between features of the same person at increasing temporal distances, but

that still forced a higher distance between positive and negative samples. The

CNN branches were included into a more complex network, using bounding

box positions to compute the distance between detections and tracklets, and

included a bounding box regression branch. The entire network was trained

end-to-end. A minimax label propagation algorithm was used to perform

association.

17I will also discuss about the effectiveness of triplet losses in Chapter 4, when talking

about face recognition algorithms.
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Figure 3.5: Standard Siamese CNN compared to Siamese CNN with stacked

inputs. Standard Siamese CNNs run the backbone separately on the two

images to be compared, and a classification head uses the features from both

images to predict the probability that they contain the same object. A Siamese

CNN with stacked inputs is run directly on two stacked images, allowing the

convolutional layers to look at both images at the same time.

HOMG. Zhou et al. [80] used a Siamese network based on Mask

R-CNN [2] in their High-Order Graph Matching (HOGM) tracker. Three

masks extracted by Mask R-CNN were used to train the shallow Siamese net,

with the usual anchor, positive and negative samples for the triplet loss. Cosine

distance was computed on the 128-dimensional feature vectors extracted from

the network, and it was combined with linear and non-linear motion models.

The association problem was then solved with a power iteration over a 3D

tensor of the computed similarities.
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DMAN. Zhu et al. [137] proposed the use of a Spatial Attention

Network (SAN), a Siamese CNN with ResNet-50 backbone, in their Dual

Matching Attention Networks (DMAN) tracker. The SAN computed a Spatial

Attention Map from the last convolutional layers of the model, representing

a measure of the importance of different areas in the bounding box, in order

to suppress background pixels and other targets from the extracted features,

which were weighted by the attention map. The network was jointly trained

with a classification task, in order to obtain a better performance. The affinity

information was further fed to a bidirectional LSTM, the Temporal Attention

Network (TAN), which was the network that actually computed the final

affinity scores between pairs of detections (see Section 3.5.3).

DCCRF. Zhou et al. proposed the use of a visual displacement CNN

[138] in their Deep Continuous Conditional Random Field (DCCRF) tracker.

The CNN learned to predict the next position of an object by taking as input

patches from consecutive frames and outputting a displacement map. The

model used information about the relationship between the various objects

in the scene, as well as the object’s past trajectory. At the same time, the

network also extracted visual information from the predicted location in the

new frame and from the other detections, in order to compute a similarity

score, as it will be explained in Section 3.5.3.

MOTDT. Chen et al. [139] used a GoogLeNet CNN trained with

triplet loss for feature extraction in their MOTDT tracker. First, a R-FCN

[43] was used to predict possible detection candidates using information from

the existing tracklets. Second, those predictions were combined with the

actual detections and NMS was performed. In the second step, GoogLeNet

extracted visual features from the detections, and the association problem was

solved with a hierarchical association algorithm. The algorithm reached top

performance among online methods in the MOT16 dataset at the time of its

publication.

FPSN-MOT. Lee et al. [140] combined feature pyramid networks and

Siamese networks for their Feature Pyramid Siamese Networks MOT tracker
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(FPSN-MOT). The authors tested the FPSN using either SqueezeNet [141]

or GoogLeNet [22] as backbone network, in order to extract visual features

from two different images with the usual shared parameters. Afterwards, as

explained in Section 2.3, the feature pyramid network combined features at

different levels in the CNN in order to produce more discriminative features at

the higher granularity of lower layers. In this way, both coarse and fine-level

information were used in the network. The affinity computation step is

explained in Section 3.5.3.

Other trackers using Siamese CNNs. Maksai et al. [142] used the

128-dimensional feature vectors extracted by the re-identification triplet CNN

proposed in [143], and combined it with other appearance-based features. In

their SAS tracker, those features were further processed by a bidirectional

LSTM for affinity computation (see Section 3.5.3). Ma et al. [144] trained a

Siamese CNN as part of their GCRA tracker in order to extract visual features

from tracked pedestrians in their model, which is also explained in detail in

Section 3.5.4.

Other approaches for appearance feature extraction

Some algorithms used different CNN structures or combined CNNs with

other kind of deep networks for appearance feature extraction.

a LSTM Lu et al. [90] used an LSTM in their a LSTM algorithm in

the process to compute the association features. It used an image descriptor

extracted with RoI pooling from each detection, combined with the class

predicted by SSD in the detection step. Cosine distance between the LSTM

features was used to perform association.

HFM The Hierarchical Feature Model (HFM), proposed by Ullah et al.

[145], used the first seven layers of GoogLeNet to learn a dictionary of features

of the tracked objects. The first 100 frames of the video were used to learn

the dictionary. Orthogonal Matching Pursuit (OPM) [146] was used to reduce

feature dimensionality. During the test phase, the OPM representation was

computed for every detected object in the scene and was compared with the
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dictionary in order to construct a cost matrix, combining visual and motion

information extracted by a Kalman filter. Association was performed using

the Hungarian algorithm.

Multiple RNNs for feature extraction. Sadeghian et al. [147]

used three RNNs in their tracker to compute different types of features.

The first RNN extracted appearance features. The input of this RNN was

a vector extracted by a VGG CNN [21], pre-trained specifically for person

re-identification. The second RNN was a LSTM trained to predict the velocity

vector of each object. The last RNN was trained to learn the interactions

between different objects on the scene, since the position of some objects

could be influenced by the behavior of surrounding elements. The affinity

computation was then performed by another LSTM, using the information

from the other RNNs (see Figure 3.6 in Section 3.5.3).

STAM. The Spatial-Temporal Attention Mechanism tracker (STAM),

proposed by Chu et al. [148], used instead a set of stacked CNNs for feature

extraction. First, a pre-trained shared CNN extracted common features for

every object in the scene. This CNN was not updated online. Then, RoI

pooling was applied to extract features specific for each candidate, and a

new target-specific CNN was instantiated and trained online. Those CNNs

extracted both the visibility map and the spatial attention map for its

candidate. The probability of a candidate to belong to each track was then

computed, performing association with a greedy algorithm.

Geometry and shape cues for vehicle tracking. Sharma et al.

[92] combined appearance features, extracted by a CNN, with 3D shape and

position features (computed from the 2D frames assuming a moving camera)

in order to compute an appropriate distance metric for their vehicle tracker.

In addition to those, 3D-2D distances and 3D-3D distances were computed

between 3D projections of bounding boxes and 2D bounding boxes. The

Hungarian algorithm was used to solve the association problem.
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CNNs for motion prediction: correlation filters

Wang et al. [149] used the convolutional correlation filter (CCF)

presented in [150], that computes an estimation map of the position of the

object in the next frame. This was combined with optical flow affinity,

computed using the Lucas-Kanade algorithm [151], a motion affinity obtained

with a Kalman filter, and a bounding box scale affinity. A SVM classifier was

used to remove false detections, and the response map from the CCF was also

used to handle missing detections.

Zhao et al. [88] also used a correlation filter to predict the future position

of the objects. The filter used CNN appearance features, compressed using

PCA. The predicted position was later used to compute a similarity score,

combining the IoU between prediction and detections, and the APCE score of

the response map. The assignment problem was solved using the Hungarian

algorithm.

Other relevant approaches

Rosello et al. [152] used a reinforcement learning framework to train

a set of agents to use in the feature extraction step. The algorithm (named

MARLMOT, from Multi-Agent Reinforcement Learning for MOT) only used

motion cues, and did not use any visual information. An agent for each tracked

object was used to manage a Kalman filter, deciding when to ignore filter

predictions or when to start and stop tracks. While the authors claimed that

their algorithm could solve the tracking task with good performance without

using visual features, they only reported experimental results on the training

set of MOT15. For this reason, the algorithm performance can hardly be

compared to other models.

Babaee et al. proposed a post-processing step to deal with errors due

to occlusions in pedestrian tracking algorithms [153]. This procedure can be

applied on the output of any MOT model. The authors used an LSTM to

predict position and size of each tracked object by exploiting position and

velocity information from the previous frames. Tracks were then associated
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by a greedy algorithm, that used the IOU between the track boxes and the

predicted positions. The authors showed that the algorithm was able to reduce

the number of ID switches for many existing MOT algorithms, thus increasing

the MOTA score.

3.5.3 Deep learning in the affinity computation step

While most of the algorithms presented so far used explicit distance

measures to compute similarities/dissimilarities between detections and tracks,

such as Euclidean or cosine distance, some works in the literature used instead

a deep network to learn the affinity function.

Recurrent neural networks and LSTMs

RNN LSTM. Milan et al. [154] proposed one of the first MOT

algorithms (named RNN LSTM in the MOTChallenge leaderboard) to use

recurrent neural networks (RNN) and LSTMs. The RNN played the role of a

Bayesian filter, and was composed of three blocks: a motion prediction block,

a prediction refinement block (also called update block), that updated the

prediction using the detections in the new frame, and a block that decided when

to start or end tracks by predicting the probability of existence of the object

in the new frame, given the predictions from the previous blocks. In order to

update the prediction from the first block, the update block used an association

vector that was computed by the LSTM. The LSTM was thus in charge of

computing the probability that each detection in the new frame was part of

each existing track. We can easily see this as a form of affinity computation.

The LSTM used the Euclidean distance between the track and the detections

in order to compute the association probabilities. Both networks were trained

using syntethic sequences. While the algorithm reach better performance with

respect to other appearance-less algorithms, its MOTA was still low (19%)

with respect to other trackers. Nonetheless, it was faster than most other

algorithms, with an average of ∼ 165 frames per second (FPS) on MOT15.
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LSTM feature fusion. Sadeghian et al. [147] used an LSTM with

a fully-connected layer on top in order to predict an affinity score between

tracks and detections. The structure of the affinity model is summarized in

Figure 3.6. This LSTM used features computed by three more LSTMs (as

explained in Section 3.5.2) as input. The overall tracking algorithm followed

the Markov Decision Processes (MDP) based framework presented in [155],

where a single object tracker was used to track targets independently until an

occlusion happened; in that case, the Hungarian algorithm was used to solve

the association, with the help of the association probabilites computed by the

LSTM. The authors showed that using LSTMs rather than a simple FC layer

would produce better results on MOT15. The algorithm reached top score on

MOT15 and MOT16 at the time of publication, with 37.6% and 47.2% MOTA,

respectively.

MAT. Ran et al. also used multiple LSTMs in their Multi-Athlete

Tracking (MAT) algorithm [81]. A so-called Pose-based Triple Stream Network

computed affinity scores by combining three base affinities computed by three

LSTMs. One LSTM computed appearance similarity using CNN features and

pose information computed with AlphaPose [112]. A second LSTM computed

motion similarity using pose joints velocities. The third one computed an

interaction similarity, using an interaction grid. The algorithm reached good

performance on their proprietary Volleyball dataset for athlete tracking.

Siamese LSTMs

Some trackers used siamese LSTMs for affinity computation. Siamese

LSTMs work in a similar way to Siamese CNNs, but include LSTM cells.

Liang et al. [156] used a Siamese LSTM to compute similarity scores

between tracklets and detections. In order to reduce computational complexity,

a pre-association step was first performed by predicting association probability

between tracks and detections using an SVM. The SVM used position and

velocity similarity scores computed by two LSTMs. Detections with low SVM

affinity scores were discarded. The final association step was then performed
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Figure 3.6: Affinity computed with LSTM feature fusion in [147]. Three

LSTM-based feature extractors, one for appearance (shown in lower half of

the figure), one for motion and one for interaction features, produce feature

vectors that are combined by an additional LSTM-based model to produce a

final affinity score.
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by the Siamese LSTM, that used VGG-16 features for its predictions. A greedy

association algorithm was employed. The system obtained results in line with

the state-of-the-art on MOT17.

Wan et al. [71] also used a Siamese LSTM in a two-step association

process. First, short reliable tracklets were built by using the Hungarian

algorithm with affinity measures involving IOU and position predictions. Then,

a tracklet merging step was performed, using the affinities computed by the

Siamese LSTM. CNN appearance features and motion features were used by

the LSTM for the affinity computation.

Bidirectional LSTMs

The DMAN algorithm [137], used a Temporal Attention Network

(TAN) for the affinity computation. The TAN computed different attention

coefficients, i.e. weights, for each detection in a tracklet, in order to remove the

influence of noisy observations in the affinity computation step. The network

consisted of a bidirectional LSTM, and used the features extracted by the

Spatial Attention Network, already described in Section 3.5.2. The TAN was

used as part of the occlusion recovery procedure, in case of failure of the SOT

ECO algorithm [84], which was the base tracker of DMAN. DMAN obtained

results in line with online state-of-the-art algorithms on MOT16 and MOT17.

Yoon et al. [157] also used a Bidirectional LSTM to compute affinities.

It only used bounding box coordinates and detection confidences as features,

pre-processed by a number of fully-connected layers, while no appearance

feature was considered. The Hungarian algorithm was used for association.

The network was evaluated on MOT15 and on the Stanford Drone Dataset

(SDD) [158] and the accuracy was comparable with top algorithms that did

not use visual cues, although still worse than appearance-based methods.

LSTMs in MHT frameworks

Various MOT algorithms have integrated the use of LSTMs in order to

compute affinities in a Multiple Hypothesis Tracking (MHT) based framework.
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MHT works by building a tree of potential track hypotheses for each candidate

target. The likelihood of each track candidate is then computed and the

combination of tracks with the highest likelihood is taken as the optimal

tracking solution.

MHT-bLSTM. Kim et al. [126] proposed the use of a Bilinear LSTM

to compute an affinity score used to prune branches of the MHT tree. The

particular MHT algorithm used was MHT-DAM [108]. The LSTM cell

computed a feature matrix representing the historical appearance of a tracklet,

using a combination of appearance features extracted by a ResNet-50 CNN

and motion features computed by a standard LSTM. The matrix was then

multiplied by the vector containing the appearance features of the detection

that was being compared to the tracklet. Fully-connected layers finally

computed the affinity score between the tracklet and the detection. The

authors claimed that this so-called Bilinear LSTM was able to store relevant

appearance information for a longer time. The Bilinear LSTM and the motion

LSTM were pre-trained separately and fine-tuned jointly, including localization

errors and missing detections as data augmentation in order to enhance the

model robustness. The algorithm was evaluated on MOT16 and MOT17 and

it performed better than the original MHT-DAM when the comparison was

done using high-quality detections. However, the performance was still worse

than other state-of-the-art algorithms.

Eliminating Exposure Bias and Loss-Evaluation Mismatch.

Maksai et al. [142] described two frequent problems that occur in training

deep networks for MOT: the loss-evaluation mismatch, that arises when a

network is trained by optimizing a loss that is not well-aligned to the evaluation

metric used at inference time (e.g. classification score vs. MOTA); the

exposure bias, i.e. lack of exposure of the model to its own errors during

the training process. In their iterative variation of the MHT algorithm,

the authors used a Bidirectional LSTM to score tracklets18 in a way that

18While not exactly an affinity metric, it is included in this section because it plays a

similar role. Like proper affinity metrics, it is used to decide whether to associate tracklets
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maximizes a proxy of the IDF1 metric. This solved the loss-evaluation

mismatch problem. The exposure bias was instead solved by including hard

examples and model-generated tracklets at training time, so that the training

distribution was more similar to the test one. The authors tested the model by

using either only geometric features or both geometric and appearance features.

As with other approaches, using appearance features improved the quality

of the results, and the algorithm reached top IDF1 score on various MOT

datasets, including MOT15, MOT17 and DukeMTMC, while not excelling in

MOTA score. This was most likely due to the use of their IDF1 proxy to train

the LSTM.

BMH-RMNet. Finally, we can mention a third use of recurrent

networks in MHT-based trackers. Chen et al. [127] proposed an LSTM called

Recurrent Metric Network (RMNet) to compute visual similarity between

tracklet hypotheses and detections. RMNet used ResNet appearance features

to compute the affinity and perform bounding box regression too. The affinity

was used in their batch MHT-based algorithm in order to prune the hypothesis

tree, like previous examples. Kalman filter was used to smooth the final

trajectories. The algorithm obtained good IDF1 performance on MOT15,

PETS2009[58], TUD [159] and KITTI; since the the IDF1 metric rewards

the continuous tracking of targets, the good result was likely due to the use

of a re-find reward inside the MHT algorithm, that encouraged track recovery

after occlusions.

Other recurrent networks

Fang et al. [123] used Gated Recurrent Units (GRUs) [160] as part

of their Recurrent Autoregressive Network (RAN) algorithm for pedestrian

tracking. The authors used two autoregressive models for each tracked target,

one for motion and one for appearance, each predicting the probability of

observing a given motion or appearance based on past motion and appearance.

The GRUs were used to estimate the parameters of the autoregressive

or not.
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models19. The final association probability was computed by multiplying

the motion and appearance affinities, and it was performed by solving a

bipartite matching problem [155]. The RANs were trained by formulating

the optimization task as a maximum likelihood estimation problem.

Kieritz et al. [87] used a recurrent MLP with two hidden layers in order

to compute appearance affinity between detections and tracklets. Another

MLP used such affinity, together with track and detection confidence scores,

to predict the final affinity score. The Hungarian algorithm was then used to

perform association using said affinity. The method reached top performance

on the UA-DETRAC dataset [60], but the performance on MOT16 was not

on par with other algorithms using private detections (the algorithm used a

modified version of SSD, see Section 3.5.1).

CNNs for affinity computation

LMP. Tang et al. [79] formulated the tracking problem as a minimum

cost lifted multicut problem (LMP) [161]. It can be thought of as a

graph clustering problem, where each output cluster forms a track. The

edge costs were computed using a detection similarity score that combined

person re-identification confidence, deep correspondence matching [162] and

spatio-temporal relations. The lifted multicut problem was solved heuristically

[163]. The authors proposed the StackNetPose CNN in order to compute

the person re-identification affinity. In addition to the two input images to

compare, 14 body part probability maps, computed using the DeepCut body

part detector [113] (see Section 3.5.2), were also concatenated to the input. The

two images and the pose information were all fed to a single branch network,

so that the network was able to look at both images at the same time since the

first layers, similar to the stacked Siamese CNN we have seen in Figure 3.5.

StackNetPose followed a similar structure to VGG-16. The algorithm reached

19Like [142], this work was included in this section because the probabilities predicted by

the GRUs play a similar role to an affinity function, determining whether a detection is part

of a tracklet or not based on their motion/appearance similarity.
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top MOTA score on the MOT16 dataset at the time of publication.

STAM. Chen et al. used a Particle Filter [164] with a Spatial-Temporal

Attention Mechanism (STAM) as part of their pedestrian tracker [165]. The

Particle Filter predicted target motion by weighting the importance of each

particle using a modified Faster R-CNN, that was trained to predict the

probability that a bounding box contains a person. The Faster R-CNN

was augmented with a target-specific branch, that used the target historical

features in order to predict the probability that the two images belong to the

same identity. The difference with most of the approaches we have explored in

this section is that in this case the affinity is computed between the sampled

particles and the tracked target, instead of comparing targets and detections.

Despite being an online tracking algorithm, it reached top MOTA on MOT15,

surpassing even the performance of batch algorithms, both with public and

private detections (obtained from [166]).

DCCRF. In addition to the visual-displacement CNN, described in

Section 3.5.2, the DCCRF algorithm [138] also employed a visual-similarity

CNN in order to compute affinity scores between detections and tracklet

boxes predicted by the Deep Continuous Conditional Random Fields. This

affinity was merged with a IOU-based spatial similarity in order to perform

association, with the help of the Hungarian algorithm in case of association

conflicts. DCCRF reached a MOTA score on par with state-of-the-art online

MOT algorithms on MOT15 and MOT16 at the time of publication.

Siamese CNNs for affinity computation

Differently from the Siamese CNNs described in Section 3.5.2, the ones

presented here were used to directly compute an affinity score, instead of using

hardcoded distance metrics between feature vectors.

HCC. For example, Ma et al. used a Siamese CNN to compute tracklet

affinities in their two-step Hierarchical Correlation Clustering (HCC) algorithm

for multiple pedestrian tracking [167]. The hierarchical clustering worked by

solving two consecutive lifted multicut problems: local data association and
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global data association. In the first one, only temporally-close detections

were merged into tracklets, with the use of the robust DeepMatching-based

similarity measure presented in [168]. In the global data association step, the

local tracklets were merged using affinities computed by the Siamese CNN.

The network used a GoogLeNet backbone, it was trained on a re-identification

dataset and fine-tuned on MOT15 and MOT16 videos. Joint verification and

classification tasks were used to train the network, in order to improve the

performance. At test time, the network was fine-tuned in an unsupervised

manner on the test videos, in order to adapt the feature computation to the

particular characteristics of each video (resolution, camera angle, illumination,

and so on). This unsupervised fine-tuning was done by using the positive and

negative pairs extracted from the tracklets of the local association step. The

algorithm reached top performance on MOT16, with 49.3% MOTA.

FPSN-MOT. Lee et al. [140] used a Feature Pyramid Siamese Network

to extract appearence features, as already mentioned in Section 3.5.2. On top

of the network, three fully-connected layers merged the appearance features

with a vector of motion features in order to learn an affinity metric between

tracks and detections. This combined network was trained end-to-end. The

association procedure was iterative, starting from high-affinity matches and

stopping when the matching score reached a threshold. At the time of

publication, the algorithm obtained top performance on MOT17 among the

online algorithms.

3.5.4 Deep learning in the association step

A minority of works have used deep learning to improve classical

association algorithms, like the Hungarian algorithm, or to manage the

track status. I decided to include in this section the use of DL in track

management since it is strictly related to the association process: we can

think of track initialization as a prerequisite for the association stage, and of

track termination as a direct consequence of the association choices made for

a given frame.
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Recurrent neural networks

RNN LSTM. The algorithm presented by Milan et al. [154], already

described in Section 3.5.3, used a RNN to predict the probability of existence

of a track in a new frame. This was used to initialize and terminate tracks,

making it one of example of the use of RNNs to manage track status.

GCRA. Ma et al. [144] used a bidirectional GRU to split tracklets in

their GCRA pedestrian tracker. The algorithm consisted of three steps: first,

appearance and motion affinities wesre used with the Hungarian algorithm

to generate the initial candidate tracklets; second, a bidirectional GRU was

employed to cleave (i.e. split) tracklets predicted to contain ID switches, in

order to obtained smaller tracklets with a single identity each; finally, a Siamese

bidirectional GRU was used to extract features from the tracklets in order

to perform the reconnection of tracklets belonging to the same identity. A

polynomial curve fitting procedure was used to fill the gaps in the newly formed

tracks. The cleaving GRU used features extracted by a Wide ResNet [26] to

output two feature vectors for all the detections in a tracklets, one for the

forward direction and one for the backward direction of the GRU; then, for

each frame, the feature vectors in the two directions were compared by using a

distance metric and the tracklet was cut at the frame where the largest feature

distance was found, if higher than a threshold. A large distance was in fact

indicative of a great visual difference between the boxes on one side of the time

arrow and the boxes on the other side. The reconnection GRU operated in a

similar way, with the addition of a FC layer on top of the GRU and a temporal

pooling layer, used to extract a feature vector representing the entire tracklet;

the distance between the features of each tracklet pair was then used to decide

whether to fuse them or not. The algorithm reached results comparable to

state-of-the-art on the MOT16 dataset.

Deep Multi-Layer Perceptron

While not being a common approach, deep MLPs have also been used

in the track management process. One notable example is the algorithm by
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Kieritz et al. [87], previously discussed in Section 3.5.3. The authors used a

MLP with two hidden layers20 to compute track confidence scores in order to

manage the termination of tracks. The algorithm only tracked a fixed number

of targets through time, replacing older low-confidence tracks with new ones.

In order to take its decision, the MLP exploited the track score computed in

the previous step as well as the association and detection confidence scores of

the last detection added to the track.

Deep Reinforcement Learning agents

MARLMOT. Rosello et al. [152] used multiple deep reinforcement

learning (RL) agents in order to manage each tracked target. The agents were

able to decide when to start and stop tracks, and could influence the operation

of the Kalman filter, as explained in Section 3.5.3. Each agent was a MLP

with three hidden layers.

C-DRL. Ren et al. [169] used multiple deep RL agents in a collaborative

environment to manage the association task in their C-DRL (Collaborative

Deep RL) tracking algorithm. The system consisted of two main parts: a

prediction network and a decision network. The prediction network, a CNN,

predicted the position of each target in the new frame by using both appearance

information (extracted using MDNet [170]) from the target and the new frame,

and using the recent tracklet trajectory. The decision network instead was in

charge of the track management process: based on information such as the new

predicted position, the nearest target and detection, detection reliability and

target occlusion status, it took a decision about the examined track. It could

choose to update the track and its appearance features with new information

(also deciding which information to use and to ignore for the update step),

to mark the track as occluded, or to delete the track. The decision network

was made of a collaborative system composed of multiple deep RL agents, one

per each tracked target. Each agent consisted of 3 FC layers on top of the

20As explained in Chapter 2, any neural network with at least two hidden layers is

considered deep by convention, although DNNs usually have many more layers.
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feature extraction layers of the MDNet. The authors showed that using this

C-DRL system improved the performance with respect to using linear motion

models and the simpler Hungarian algorithm for the association process. The

system reached state-of-the-art results among online methods on MOT15 and

MOT16, despite producing a relatively high number of ID switch errors.

3.5.5 Other uses of DL in MOT

In this section I will describe some uses of deep learning in MOT that do

not easily fit the four stage categorization.

Q-learning for bounding box regression. One example is the

approach proposed by Jiang et al. [171]. The authors used a Q-network

[172], made of 3 FC layers, as a deep RL agent able to perform bounding

box regression. The agent could take one of 13 possible actions, that included

rescaling and repositioning the box, and determining when the regression was

complete. The network used VGG-16 appearance features and a vector of the

last 10 decisions made by the network itself in order to decide the next action.

The authors applied this bounding box regression method to the output of a

variety of MOT algorithms, as a post-processing step. The regression increased

the MOTA between 2 and 7% on the MOT15 dataset, reaching top score among

methods using public detections. The method also showed better performance

compared to the use of a CNN regression branch, like the one used by Faster

R-CNN.

MCMOT. Lee et al. [173] proposed a multi-class MOT algorithm

(MCMOT) that used an ensemble of detectors, such as VGG-16 and ResNet,

to compute the position likelihood maps for each target in the new frame.

These likelihoods were used in a method based on Markov Chain Monte Carlo

sampling in order to predict the next position of each target. The authors also

used a changing point detection algorithm [174] to detect tracking drift, in

order to remove unstable track segments and recombine them correctly. The

results were comparable to state-of-the-art algorithms on MOT16 using private

detections.
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MBFILH. Hoak et al. [175] used a 5-layer CNN to compute the position

likelihood of a target in the new frame. This was then used in a multi-Bernoulli

filter with Interactive Likelihood (MBFILH), that is a variation of the particle

filter algorithm [176] for tracking. The algorithm obtained good results on the

VSPETS 2003 INMOVE soccer dataset21 and the AFL dataset [177].

Fusion of head and body detectors. Henschel et al. [178] used

head detections, extracted with a CNN [179], in addition to the usual body

detections to perform pedestrian tracking. In fact, the presence or absence of

a head and its position relative to the body bounding box can help determine

if a bounding box is a true or a false positive. Association was performed by

formulating the problem as correlation clustering on graphs, with distances

computed using spatial and temporal costs that accounted for the relative

positions of heads and bodies. The algorithm reached top MOTA score on

MOT17 and second-best score on MOT16 at the time of publication.

CNNs for enhanced model updates. Gan et al. [180] employed a

modified MDNet [170] in their online pedestrian tracking framework. The

network shared 3 convolutional layers for all the targets, but also had 3

target-specific FC layers, that were updated online to capture the appearance

change of each target. A set of box candidates, selected using motion models,

were fed to the network, that output a confidence score for each of them,

in order to determine the target position in the new frame. To reduce the

number of ID switch errors, the algorithm looked for the tracklet that was

most similar to the estimated box, using another appearance and motion-based

affinity measure.

TripT+BF. Xiang et al. [181] proposed a so-called MetricNet to

track pedestrians in their algorithm, called TripT+BF. It was composed of

an appearance model and a motion model. A VGG-16 trained for person

re-identification was used to extract appearance features and perform bounding

box regression. The motion model instead included an LSTM and a so-called

BF-Net, that used the features output by the LSTM and a candidate box

21ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
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to perform Bayesian filtering and output the new position of the target.

MetricNet was trained using triplet loss. The algorithm obtained the highest

and second-highest MOTA among online methods on MOT16 and MOT15,

respectively.

Instance-aware tracker with Dynamic Model Refreshment. Chu

et al. [182] used three different CNNs in their algorithm. PafNet [183], was

used to separate the background from the tracked objects. PartNet [184], was

employed to discriminate among the different targets. A third CNN, composed

of a convolutional layer and a FC layer, was used instead to decide whether to

refresh the tracking model or not. For each tracked target PafNet and PartNet

computed two score maps that were used by a Kernel Correlation Filter (KCF)

tracker [185] to predict the new position of the object. At certain intervals,

detections were matched to the current tracks in order to determine which

tracks had to be terminated. The third CNN, trained with reinforcement

learning, used the PafNet maps in order to determine whether to use the

predicted box or the associated detection box as the new box in the track,

and the KCF model was updated accordingly. The algorithm reached top

performance overall on MOT15 and top performance among online methods

on MOT16.

3.6 Performance analysis and comparisons

In order to understand which approaches led to better trackers, a

numerical comparison is needed. For this reason, I will include here the results

obtained by many of the presented algorithms on the MOTChallenge datasets,

since they are the ones on which most of the presented methods evaluated their

algorithms.

In particular, I will show the results on MOT15, MOT16 and MOT17,

considering only the scores computed on the respective test sets for a fair

comparison. Papers that only reported their results on customized validation

sets, or even on the training set, will not be included here, since they cannot
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be compared with the other algorithms. Furthermore, since the quality of

detections is an important factor in the performance of a tracker, I will provide

separate tables for methods using public detections, provided with the dataset,

and “private” detections, obtained by authors using different detectors. In

each table, methods will be divided into online and batch methods, since this

is another major factor influencing the accuracy of a model, given the limited

information available to online methods to take decisions.

For each algorithm, tables include the year of publication, the mode of

operation (batch/online), and a number of metrics, following the ones provided

on the public leaderboards of MOTChallenge: MOTA, MOTP, IDF1, Mostly

Tracked (MT), Mostly Lost (ML), false positives (FP), false negatives (FN), ID

switches (IDS), fragmentations (Frag), and average number of frames processed

per second by the algorithm (Hz). Note that MOTA, MOTP, IDF1, MT and

ML are expressed in percentages. For each metric, an arrow pointing up (↑)

indicates that the higher score the better, while an arrow pointing down (↓)

indicates the opposite. I have collected and merged the results provided in each

paper with the data from the public MOTChallenge leaderboards. If multiple

configurations of an algorithm have been tested on the same dataset, only the

one with the highest MOTA will be shown.

Tables 3.1 and 3.2 show results on MOT15 using public and private

detections respectively; Tables 3.3 and 3.4 do the same on MOT16; finally,

Table 3.5 shows results on MOT17 using public detections22. Algorithms

are sorted by ascending year of publication. For each metric, the best score

obtained among batch algorithm and the best score among online methods is

highlighted, the highest of the two in bold and the other one underlined.

It is important to note that the speed comparison is not always reliable,

since many algorithms excluded the time taken by the detection step in

22At the time of writing, none of the presented algorithms has published results on MOT17

using private detections. Note that MOT16 and MOT17 provide the same videos, with

the only differences being the more accurate annotations and the multiple sets of public

detections in MOT17, obtained with different detectors.
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reporting the performance, which is usually one of the most computationally

expensive ones. This is true even for some algorithms using private detections.

For this reason, many of the algorithms, that we may think as operating in

real-time by just looking at reported results, might not actually able to do so

yet with current hardware. Speaking of hardware, another important factor

at play is the use of machines with different characteristics and performance,

which makes speed comparisons even harder.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑

[108] 2015

Online

32.4 71.8 45.3 16.0 43.8 9064 32 060 435 826 0.7
[154] 2017 19.0 71.0 17.1 5.5 45.6 11 578 36 706 1490 2081 165.2
[149] 2017 31.6 71.8 10.1 46.3 491 994
[120] 2017 32.8 70.7 38.8 9.7 42.2 4983 35 690 614 1583 2.3
[148] 2017 34.3 70.5 48.3 11.4 43.4 5154 34 848 348 1463 0.5
[118] 2017 35.0 72.6 47.7 11.4 42.2 8455 31 140 358 1267 4.6
[147] 2017 37.6 71.7 46.0 15.8 26.8 7933 29 397 1026 2024 1.0
[165] 2017 38.5 72.6 47.1 8.7 37.4 4005 33 204 586 1263 6.7
[138] 2018 33.6 70.9 39.1 10.4 37.6 5917 34 002 866 1566 0.1
[123] 2018 35.1 70.9 45.4 13.0 42.3 6771 32 717 381 1523 5.4
[169] 2018 37.1 71.0 14.0 31.3 7036 30 440
[171] 2018 42.3 47.7 13.6 39.7 3.1
[157] 2019 22.5 70.9 25.9 6.4 61.9 7346 39 092 1159 1538 172.8
[181] 2019 37.1 72.5 48.4 12.6 39.7 8305 29 732 580 1193 1.0
[182] 2019 38.9 70.6 44.5 16.6 31.5 7321 29 501 720 1440 0.3

[134] 2016

Batch

29.0 71.2 34.3 8.5 48.4 5160 37 798 639 1316 52.8
[132] 2016 29.6 71.8 36.8 11.2 44.0 7786 34 733 712 943 1.7
[136] 2017 33.8 73.4 40.4 12.9 36.9 7898 32 061 703 1430 3.7
[142] 2018 22.2 71.1 27.2 3.1 61.6 5591 41 531 700 1240 8.9
[127] 2019 28.1 74.3 38.7 6733 36 952 477 790 16.9

Table 3.1: Results obtained by DL-based MOT algorithms on MOT15 using public detections.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑

[61] 2016

Online

33.4 72.1 40.4 11.7 30.9 7318 32 615 1001 1764 260.0
[101] 2017 32.1 70.9 13.2 30.1 6551 33 473 1687 2471
[120] 2017 51.3 74.2 54.1 36.3 22.2 7110 22 271 544 1335 1.3
[165] 2017 53.0 75.5 52.2 29.1 20.2 5159 22 984 708 1476 6.7
[88] 2018 32.7 38.9 26.2 19.6 11.1
[123] 2018 56.5 73.0 61.3 45.1 14.6 9386 16 921 428 1364 5.1

Table 3.2: Results obtained by DL-based MOT algorithms on MOT15 using private detections.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑

[131] 2016

Online

35.3 75.2 7.4 51.1 5592 110 778 1598 5153 7.9
[166] 2016 38.8 75.1 7.9 49.1 8114 102 452 965 1657 11.8
[120] 2017 43.9 74.7 45.1 10.7 44.4 6450 95 175 676 1795 0.5
[148] 2017 46.0 74.9 50.0 14.6 43.6 6895 91 117 473 1422 0.2
[147] 2017 47.2 75.8 46.3 14.0 41.6 2681 92 856 774 1675 1.0
[180] 2018 44.2 78.3 15.2 45.7 7912 93 215 560 1212
[138] 2018 44.8 75.6 39.7 14.1 42.3 5613 94 125 968 1378 0.1
[123] 2018 45.9 74.8 48.8 13.2 41.9 6871 91 173 648 1992 0.9
[137] 2018 46.1 73.8 54.8 17.4 42.7 7909 89 874 532 1616 0.3
[169] 2018 47.3 74.6 17.4 39.9 6375 88 543
[139] 2018 47.6 74.8 50.9 15.2 38.3 9253 85 431 792 1858 20.6
[181] 2019 48.3 76.7 50.9 15.4 40.1 2706 91 047 543 896 0.5
[182] 2019 48.8 75.7 47.2 15.8 38.1 5875 86 567 906 1116 0.1

[136] 2017

Batch

44.1 76.4 38.3 14.6 44.9 6388 94 775 745 1096 1.8
[117] 2017 45.3 75.9 47.9 17.0 39.9 11 122 87 890 639 946 1.8
[79] 2017 48.8 79.0 18.2 40.1 6654 86 245 481 595 0.5
[126] 2018 42.1 47.8 14.9 44.4 11 637 93 172 753 1156 1.8
[153] 2018 46.9 76.4 46.8 16.1 43.2 6257 91 669 549 757
[125] 2018 47.2 75.7 52.4 18.6 42.8 12 586 83 107 542 787 0.5
[124] 2018 47.5 43.6 19.4 36.9 13 002 81 762 1035 1408 0.8
[178] 2018 47.8 75.5 44.3 19.1 38.2 8886 85 487 852 1534 0.6
[144] 2018 48.2 77.5 48.6 12.9 41.1 5104 88 586 821 1117 2.8
[167] 2018 49.3 79.0 50.7 17.8 39.9 5333 86 795 391 535 0.8

Table 3.3: Results obtained by DL-based MOT algorithms on MOT16 using public detections.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑

[64] 2016

Online

66.1 79.5 65.1 34.0 20.8 5061 55 914 805 3093 9.9
[69] 2017 61.4 79.1 62.2 32.8 18.2 12 852 56 668 781 2008 17.4
[87] 2018 39.1 11.1 41.1 9411 99 727 1906 4.5
[72] 2018 55.0 76.7 20.4 24.5 15 766 65 297 1024 1594 16.9
[71] 2018 62.6 78.3 32.7 21.1 10 604 56 182 1389 1534
[123] 2018 63.0 78.8 63.8 39.9 22.1 13 663 53 248 482 1251 1.6
[80] 2018 64.8 78.6 73.5 40.6 22.0 13 470 49 927 794 1050 39.4
[70] 2019 65.2 78.4 62.2 32.4 21.3 6578 55 896 946 2283 11.2

[173] 2016

Batch

62.4 78.3 51.6 31.5 24.2 9855 57 257 1394 1318 34.9
[64] 2016 68.2 79.4 60.0 41.0 19.0 11 479 45 605 933 1093 0.7
[79] 2017 71.0 80.2 70.1 46.9 21.9 7880 44 564 434 587 0.5
[153] 2018 58.1 77.2 47.4 23.1 33.3 4883 70 207 1624 2539

Table 3.4: Results obtained by DL-based MOT algorithms on MOT16 using private detections.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑

[180] 2018

Online

44.9 78.9 13.8 44.2 22 085 287 267 1537 3295
[128] 2018 46.5 77.2 16.9 37.2 23 859 272 430 5649 9298 1.6
[137] 2018 48.2 75.7 55.7 19.3 38.3 26 218 263 608 2194 5378 0.3
[139] 2018 50.9 76.6 52.7 17.5 35.7 24 069 250 768 2474 5317 18.3
[140] 2019 44.9 76.6 48.4 16.5 35.8 33 757 269 952 7136 14 491 10.1

[142] 2018

Batch

44.2 76.4 57.2 16.1 44.3 29 473 283 611 1529 2644 4.8
[126] 2018 47.5 51.9 18.2 41.7 25 981 268 042 2069 3124 1.9
[156] 2018 50.3 47.9 21.8 36.2 22 204 249 342 3243 3155 1.9
[178] 2018 51.3 77.0 47.6 21.4 35.2 24 101 247 921 2648 4279 0.2
[125] 2018 51.8 77.0 54.7 23.4 37.9 33 212 236 772 1834 2739 0.7

Table 3.5: Results obtained by DL-based MOT algorithms on MOT17 using public detections.

68



CHAPTER 3. DEEP LEARNING FOR MULTIPLE OBJECT
TRACKING

3.6.1 Discussion of the results

General observations

As expected, the best performing algorithms on each dataset use private

detections, confirming the fact that the detection quality dominates the

overall performance of the tracker: 56.5% MOTA vs. 42.3% for MOT15 and

71.0% vs. 49.3% for MOT16. Moreover, on MOT16 and MOT17 the batch

algorithms slightly outperform the online ones, even though the online methods

are progressively getting closer in performance. In fact, the best reported

algorithm on MOT15 runs in an online fashion. However, this might be due

to the fact that the research community has been focusing much more on the

development of online methods, given the possible implications for developing

real-time tracking systems.

A common problem among online methods that is not reflected in the

MOTA score is the higher number of fragmentations, as we can see in Table 3.6.

This is probably due to the main limitation of online algorithms, that cannot

look at future information in order to re-identify lost targets and reconstruct

the missing parts of a trajectory, e.g. by interpolation [148, 118, 120]. In

Figure 3.7 we can see an example of trajectory that is fragmented by an online

method, MOTDT [139], while it is correctly tracked by a batch method, HAF

[125].

Mode MOT15 MOT16 MOT17

Batch 1143.8 1104.9 3188.2

Online 1509.5 1820.2 7555.8

Table 3.6: Average number of fragmentations for online and batch methods in

the three considered datasets.

Another interesting thing to notice is that since the number of FNs

dominates the MOTA score, being one or two orders of magnitude larger

than the number of FPs and ID switches for most methods, the algorithms
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(a) MOTDT output

before occlusion

(b) MOTDT output

during occlusion

(c) MOTDT output

after occlusion

(d) HAF output

before occlusion

(e) HAF output

during occlusion

(f) HAF output

after occlusion

Figure 3.7: Example of fragmentation produced by an online method during

occlusion. Above: tracking results for MOTDT [139], online algorithm. Below:

tracking results for HAF [125], batch algorithm. From left to right, frames 145,

170 and 217 of the MOT17-08 video are shown. Images were cropped from the

public MOTChallenge website and show results using the public detections.

The person in 3.7a surrounded by the green box is occluded in 3.7b by the

one identified by the blue box. The tracking is lost (fragmentation) until

the occlusion ends in 3.7c (the person is also given a new ID, causing an ID

switch). In contrast, we can see how in 3.7e the track is maintained through

the occlusion, since the batch algorithm can look at the future information

(e.g. frame 3.7f) and infer the position of the target during occlusions.
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that manage to significantly reduce the FNs are also the ones that obtain

the highest MOTA, if they manage to keep the corresponding increase of

false positives relatively small. This was already observed in previous works

[40]. Computing the Pearson correlation coefficient between MOTA and FNs

shows that for MOT15, MOT16 and MOT17 these two measures are in fact

highly correlated, with coefficients of −0.95, −0.98 and −0.95 respectively.

This observation can also explain why methods using higher-quality, private

detections tend to perform better, since these detectors are able to identify

many challenging objects that older, simpler detectors cannot, thus reducing

the final number of FNs in tracking-by-detection algorithms. In Figure 3.8

we can see how the SORT algorithm, that is particularly sensitive to missing

detections, is not able to detect a target as soon as the corresponding detection

is missing. When the target is detected in a later frame, the algorithm assigns

it a new ID.

To solve this issue, new techniques have been developed. In fact, while

basic approaches that perform interpolation are able to recover missing boxes

during occlusions, this is still insufficient to detect targets that are not covered

by even a single detection, that have been shown to be 18% of the total on

MOT15 and MOT16 [40]. For example, the eHAF16 algorithm, presented by

Sheng et al. [125], employed superpixel extraction to complement the publicly

provided detections and was in fact able to significantly reduce the number of

false negatives on MOT17, reaching top MOTA score on the dataset. MOTDT

[139] instead used a R-FCN to integrate the missing detections with new

candidates, and was able to reach the highest MOTA and the lowest number

of false negatives among online algorithms on MOT17. The STAM algorithm

[165] was also able to avoid the problems caused by missing detections by

employing a Particle Filter and relying on detections only to initialize new

targets and to recover lost ones. The algorithm presented in [169] reduced

FNs by designing a deep network to learn the motion model of each object.

Predicting the position of each object resulted in a reduction of the amount

of false negatives, since the algorithm was less reliant on missing detections.
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(a) DPM detections

for frame 20

(b) DPM detections

for frame 24

(c) DPM detections

for frame 28

(d) SORT results

for frame 20

(e) SORT results

for frame 24

(f) SORT results

for frame 28

Figure 3.8: Influence of detection failures on the SORT algorithm. The images

show frames 20, 24 and 28 of the MOT17-01 video. Images were cropped from

the public MOTChallenge website. Above: public DPM detections provided

with MOT17. Below: tracking results using SORT [61], when applied to the

DPM detections. We can see how as soon as the central target is not detected

in 3.8b, SORT loses the target too (3.8e). When the detector finds it again

(3.8c), tracking is restored (3.8f), but with a different ID (since SORT does

not perform person re-identification).
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In fact, the algorithm produced one of the lowest numbers of false negatives

among online methods on MOT16.

Another interesting observation is related to the strategy used to train

deep networks for affinity computation. As noted by Kim et al. [126],

training a network using ground truth trajectories to predict affinities might

produce suboptimal results, since the data distribution at inference time will

be different, with many noisy trajectories that can include missing/wrong

detections. For this reason, some of these networks have been trained using

either actual detections [123] or augmented ground truth trajectories, with

the artificial addition of noise and errors [126, 137]. However, some works

also found that this strategy may sometimes slow the training process and not

always be feasible [87].

Best approaches in the four MOT steps

Detection step. Algorithms that used private detections produced by

Faster R-CNN and its variants seem to obtain the best results. In fact, the

algorithm presented in [64], that used a modified Faster R-CNN, held its top

ranking position among online methods on MOT16 for about 3 years, and many

of the other top-performing MOT16 algorithms used the same detections.

In contrast, algorithms that employed the SSD detector, such as the

ones presented in [87] and [88], tend to perform worse on average, but are

able to reach faster speeds: for example, the algorithm presented by Kieritz

et al. [87] can run at 4.5 FPS including the detection stage23, a step in the

direction of real-time performance. However, despite the efforts in developing

efficient online methods, the use of deep learning techniques in a MOT pipeline

still represents a computational bottleneck, limiting the application of online

algorithms employing complex deep networks in real-time scenarios.

Feature extraction step. Regarding feature extraction, all the top

performing methods on the three considered datasets use a CNN to extract

23Remember that the FPS reported by many algorithms tend to exclude the detection

step, that is one of the most computationally expensive parts of a MOT algorithm.
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appearance features, with GoogLeNet being the most commonly used one.

Methods that do not exploit appearance (either extracted with deep or classical

methods) tend to perform worse. However, visual features are not enough:

many of the best algorithms also employ other types of features to compute

affinity, especially motion cues. In fact, methods like LSTMs and Kalman

Filters are often employed to predict the position of the targets in the next

frame, which helps improve the quality of the association. Various Bayesian

filters, such as particle filter and hypotheses density filter, are also used to

predict target motion, and they benefit from the use of deep models [181, 165,

128]. However, even when the appearance features are used in conjunction with

non-visual features, appearance still plays a major role in improving the overall

performance of the algorithm [147, 181], especially by avoiding ID switches

[108] or by re-identifying targets after long occlusions [69]. In the latter case,

simple motion predictors do not work since the linear motion assumption is

easily broken, as noted by Zhou et al. [80].

Affinity computation. While deep learning plays an important role

in detection and feature extraction, the use of deep networks to learn affinity

functions is less common. For now, it does not seem to have led to significant

improvements over the classical techniques, that usually involve a combination

of hand-crafted distance metrics on a mix of deep and non-deep features.

However, some good-performing algorithm already use deep networks to learn

an affinity metric [167, 165, 79, 123], mostly using Siamese CNNs or recurrent

neural networks. In particular, the Siamese network variation proposed by Ma

et al. [167] was able to produce reliable similarity measures that helped with

person re-identification after occlusions, and allowed the algorithm to reach the

highest MOTA score on MOT16. The integration of body part information

was also crucial for the StackNetPose CNN proposed by Tang et al. [79], since

it played the role of an attention mechanism that allowed the network to focus

on the relevant parts of the input images. This, in turn, resulted in a more

accurate similarity measure, that helped the algorithm reach top performance

on MOT16 using private detections.
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Association step. Even less works have explored the use of deep

learning to guide the association process. The use of reinforcement learning

[169] or recurrent neural networks [144] to manage associations and track status

has showed some promising results, so this might be an interesting future

direction of research.

Trends in top-performing algorithms

Some common approaches can be identified in the best performing

algorithms.

Adaptation of Single Object Trackers. Many successful online MOT

trackers employed appropriate variations of Single Object Trackers to manage

the tracking process. For example, the Instance-Aware tracker by Chu et al.

[182], DMAN by Zhu et al. [137] and the algorithm presented by Sadeghian et

al. [147] all used a SOT tracker enhanced with deep learning methods in order

to recover from occlusions or to refresh the target models. It is interesting to

note that none of the presented SOT-based algorithms has been used yet on

private high-quality detections on the MOTChallenge datasets. Since private

detections increase the number of targets that are identified at least once, the

use of SOT trackers, that usually only rely on a single detection to initialize a

tracklet, can help cover more targets, reducing the number of false positives. In

addition to that, a batch method could exploit the SOT tracker to look at past

frames and recover any missed detection before the target was detected for the

first time. This would lead to a higher overall performance of the tracker. For

this reason, the use of SOT trackers appears to be another interesting research

direction to explore.

However, SOT-based MOT trackers can sometimes still be prone to

tracking drift and produce a higher number of ID switches. For example,

the KCF16 algorithm [182], while reaching top MOTA score among online

methods on MOT16 with public detections, it still produces a relatively high

number of identity switches, due to tracking drift, as it can be seen in Figure

3.9. Moreover, since SOT-based MOT algorithms do not rely on detections
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as other methods, a false positive detection might jumpstart a entire spurious

trajectory, so particular attention must be payed to alleviate this issue when

using a SOT tracker. Current approaches [182, 137], in fact, tend to check if

the predicted trajectories overlap with at least some of the detections, in order

to understand if it is a true or a false positive. However, better solutions should

be investigated to avoid exclusive reliance on the quality of the detections.

(a) Frame 134 (b) Frame 142 (c) Frame 149 (d) Frame 164

Figure 3.9: Examples of tracking drift with a SOT-based MOT algorithm

(KCF [182]). The four images are cropped from the MOT16-01 video

(https://motchallenge.net/method/MOT=1156&chl=5). At first (a) the

three targets are tracked. After a few frames (b) the orange box starts drifting

towards the occluded man, while the blue box starts drifting towards the

foreground target. In (c) blue and orange have switched target, counting as

two ID switches. In (d), after the blue and cyan identities overlap, the cyan

one drifts to track the blue target (third ID switch), whose track is interrupted.

A new identity is assigned to the woman in the background, causing a fourth

ID switch.

Graph optimization techniques in batch algorithms. While both

online and batch methods perform association by formulating the task as

a graph optimization problem, batch methods seem to particularly benefit

from it, since they are able to perform global optimization over the entire

video. For example, the minimum cost lifted multicut problem has reached

top performance on MOT16, helped by CNN-computed affinities [167, 79],

while heterogeneous association graph fusion and correlation clustering are
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used in the two top MOT17 methods, [125, 178].

Bounding box refinement. Finally, we can see that the accuracy of

bounding boxes can radically affect the performance of an algorithm. In fact,

the top ranked tracker on MOT15 [171] obtained a relatively high MOTA

score by just performing a bounding box regression step on the output of an

existing state-of-the-art algorithm [118] using a deep RL agent. Developing an

effective bounding box regressor to be incorporated in future MOT algorithms

may be an interesting research direction that has not yet been explored

thoroughly. Moreover, since relying on isolated detections might lead to

regression mistakes, future approaches might be interested in using contextual

information from past frames (and future ones too, for batch methods), in

order to accurately regress the bounding box around the right target when

different targets or objects partially overlap.

3.7 Conclusion and future directions

I have presented a comprehensive survey on the use of deep learning in

MOT for single-camera videos and 2D data. I have identified and described the

four major steps that characterize the majority of MOT algorithms: detection,

feature extraction, affinity computation and association. For each of these

steps, I have presented the deep learning techniques used to solved them in

the literature, in the context of each MOT algorithm. I have also collected

and presented a comparison of the results obtained by most of the described

algorithms on the MOTChallenge dataset, highlighting some of the pros and

cons of the most common approaches, and finding some common themes among

the best performing algorithms:

❼ detection quality is important: the amount of false negatives still

dominates the MOTA score. While some algorithms managed to partially

compensate for missing detections, the use of higher quality detectors is

still the most effective way to reduce false negatives. Thus, a careful

use of deep learning in the detection step can considerably improve the
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performance of a tracking algorithm;

❼ CNNs are essential in feature extraction: the use of appearance

features is also fundamental for a good tracker and CNNs are particularly

effective at extracting them. Moreover, the best trackers tend to use

them in conjunction with motion features, that can be computed using

LSTMs, Kalman filter or other Bayesian filters. However, the downside

of using appearance features is an increase in computational complexity,

with a reduction of the overall algorithm speed;

❼ SOT trackers and global graph optimization: the adaptation of

SOT trackers to the MOT task, with the help of deep learning, has

recently produced good-performing online trackers; batch methods have

instead benefited from the integration of deep models in global graph

optimization algorithms.

Deep learning is a relatively recent introduction in the field of MOT, and

thus various promising directions of research can be identified:

❼ researching more strategies to mitigate detection errors:

although modern detectors are reaching better and better accuracy, they

can still produce a significant number of false negatives and false positives

in complex scenarios, such as dense pedestrian tracking. Some algorithms

have already provided solutions to reduce the exclusive reliance on

detections, for example by integrating them with information extracted

from other sources (e.g. superpixels [125], R-FCN [139], Particle Filter

[165]), but further strategies should be investigated;

❼ applying DL to track different targets: most of DL-based MOT

algorithms have focused on pedestrian tracking. Since different types

of targets pose different challenges, possible improvements in tracking

vehicles, animals, or other objects with the use of deep networks should

be investigated;
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❼ investigating the robustness of current algorithms: while datasets

such as MOTChallenge provide videos recorded with different lighting

conditions and camera motion, they still show only a small part of

the possible challenging conditions in which tracking might be applied.

For example, while the majority of trackers focused on pedestrians,

many other scenarios are possible. One possibility is tracking people

in movies, which could be useful for scene understanding and automatic

scene description, and poses additional challenges such as a great variety

of settings, hectic scenes with high target motion, shots captured from

different views and zoom levels, and so on. How do current algorithms,

trained on pedestrians, fare in those new contexts and situations? In

addition to that, a study on the robustness of existing algorithms to

missing frames or other video artifacts, possible situations in real-world

scenarios, might also be interesting;

❼ applying DL to guide association: the use of deep learning to directly

guide the association process and to manage the track status has not been

investigated thoroughly yet: more research is needed in this direction to

understand if deep algorithms can be useful in this step too;

❼ combining SOT trackers with private detections: combining the

use of SOT trackers with high-quality detectors seems a promising way

to reduce the number of lost tracks, and thus decrease the number of

false negatives, especially in a batch setting, where it would be possible

to recover past detections that were previously missed;

❼ investigating bounding box regression: the use of bounding box

regression has been shown to be a promising step in improving the MOTA

score, but this has only been marginally explored. For example, it may

be interesting to investigate the use of past and future information to

guide the regression;

❼ investigating post-tracking processing: in batch contexts, it is
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possible to apply post-processing steps on the output of a tracker to

increase its accuracy. This has already been shown by Babaee et al. [153],

that have applied occlusion handling on top of existing algorithms, and

by Jiang et al. [171] with the aforementioned bounding box regression

step. More complex post-processing procedure might help to further

improve the results.
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Chapter 4

Deep Learning for Face-Based

Video Retrieval

The second part of this thesis focuses on the problem of face-based video

retrieval. In particular, I propose a pipeline that allows to use the image of

a face to search for videos containing the same person, including a list of the

video shots in which the person appears.

As explained in Chapter 1, I performed part of the work described here

in collaboration with the company CEDEO s.a.s. [186], based in Turin, Italy.

In fact, CEDEO was interested in integrating a video retrieval system powered

by deep learning inside their TVBridge platform [187].

TVBridge is an “end-to-end system that allows a broadcaster to offer

television programs with enriched use of additional content relevant to specific

moments of the program” [188]. It is composed of two parts: an authoring

tool (AT), that allows the broadcaster to identify and mark the points of a

television program that they want to be enriched with multimedia content

(called bridget); a phone app, that identifies the program the user is currently

watching on TV (using audio fingerprints) and delivers the bridgets to him at

the right time.

The goal of my collaboration with CEDEO was to integrate the proposed

video retrieval pipeline into TVBridge, in order to build a prototype system

able to help TVBridge editors with their job of finding correlated content to
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show as bridgets in the TVBridge app. In fact, the use of an automated video

retrieval pipeline allows an AT user to easily search for videos containing the

same person appearing in the TV program he is currently editing. Moreover,

the indication of the shots in which the person appears helps the editor to

quickly jump to the relevant parts of each video, in order to easily find the

relevant video(s) that he wants to include in the bridget. With respect to

textual search methods, this kind of content-based search has the advantage

of not needing any manual annotation of the videos, since the retrieval is

based on the actual visual content, and not on the title or description of a

video, which might not contain the name of the person of interest.

In short, the problem can be described as follows: building a system

which, given an input face extracted from a video frame (for example, from

the TV program that the editor is currently working on), searches a given set

of videos for all the videos containing that person, with an indication of the

shots in which the person appears. Moreover, the system needs to have the

following characteristics:

❼ being able to search for arbitrary people in the videos. There is no

predefined comprehensive set of all the people which might appear in a

TV program, so the algorithm cannot just learn to classify a closed set

of faces. Knowing the identity of the person (i.e. their name) is not

necessary;

❼ being able to analyze effectively, end-to-end, videos which can be long,

have multiple shots, include multiple people, and be of variable resolution

and quality, with faces appearing in varying poses and illumination

conditions;

❼ being reasonably efficient both in the video analysis step, which

is the most computationally expensive and constrains the hardware

requirements and costs, and in the query execution, since users of the

system expect a fast response from the server.
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The main contributions of this thesis in this regard can be summarized

as follows:

❼ a novel modular pipeline for efficient and effective end-to-end analysis

of unconstrained multi-shot, variable-length, variable-quality, videos, for

the purpose of video retrieval using person faces. The focus is put on

videos with similar characteristics to television content. The pipeline

starts from raw, unsegmented videos and outputs features ready to be

used for video and shot retrieval. The retrieval protocol is also included

in the pipeline;

❼ the construction of an appropriate video dataset for the evaluation of

the retrieval task. As we will see, currently available datasets suffer from

a number of issues that make them unsuitable for a fair and realistic

end-to-end evaluation of the proposed algorithm, since they are either

small or their video clips are short, do not contain multiple shots or are

pre-segmented, or contain only one main face. The proposed dataset is

an adaptation of the VoxCeleb2 dataset for audio-visual recognition;

❼ an extensive comparison of the performance of various models and

algorithms for shot detection, face detection, face feature extraction and

feature aggregation, in the context of the proposed pipeline, in order

to find the most effective combination for face-based video retrieval,

highlighting pros and cons of each approach. A particular focus is

put on deep learning models. The best configuration of the pipeline

obtains 97.25% Mean Average Precision on the proposed dataset, while

performing a query on thousands of videos in less than 0.5 seconds;

❼ the integration of the proposed pipeline into the commercial platform

TVBridge, developed by CEDEO, to aid the platform’s users with the

task of searching for video content in the bridget creation process.

At the time of writing, a journal article describing the research presented

in this chapter is in preparation [189].
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The chapter is organized as follows. In Section 4.1 I will present a

summary of the state of the art algorithms for face-based video retrieval,

face recognition, face detection and shot detection, including a list of the

most important face recognition and retrieval datasets in the literature. In

Section 4.2 I will describe the proposed pipeline for face-based video retrieval,

while the experiments and the related results will be presented in Section

4.3. In Section 4.4 I will briefly describe how the pipeline was integrated into

TVBridge. Finally, in Section 4.5 I will summarize the findings and describe

some future directions of research.

4.1 State of the art

4.1.1 Face-based video retrieval

Throughout this thesis I am going to refer to the task of searching

for videos or video shots containing a specific person provided as a query,

either via a single image or multiple images/frames, as the task of face-based

video retrieval (FBVR). The problem I have tackled falls indeed in this

category. Note that this kind of query-by-example problem is distinct from

query-by-keyword, that involves the user searching for videos using textual

keywords or identity names, as opposed to images and video frames [190].

Video retrieval is also distinct from the generic task of face recognition

in videos, in that a retrieval algorithm has the goal of returning a list of videos

containing the queried subject, while face recognition often refers to different

tasks, such as face verification, i.e. determining if two face images/videos

contain the same person, or face identification, i.e. assigning a specific identity

to a face — either by classifying the image/video into one of N given identities

or by comparing it with a series of reference templates to identify which of the

templates corresponds to the given face [191].

Face recognition is in fact an important part of a FBVR system. In

a sense, we might consider the problem of FBVR as the “inverse” problem
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of face identification in videos. Instead of finding for each input video1 the

identity it corresponds to, in FBVR the identity is given, and we want to find

all the videos that contain the given identity. It is then easy to understand

how techniques and models used for face recognition are fundamental for a

successful retrieval system.

FBVR is a challenging task: the algorithm must deal with unconstrained

videos, where faces belonging to the same person can vary greatly across

shots and videos, with different poses, resolutions, illumination conditions

and possible occlusions; a FBVR system must be able to search and match

faces of identities which are not known a priori and might change over time

in a real-world scenario, as video databases gradually grow in size. At the

same time, an efficient and effective FBVR system can enable new multimedia

fruition modalities: for example, we can imagine large-scale retrieval systems

similar to Google Images but for videos; or TV show/movie streaming services

with the possibility for the user to search for scenes containing a specific

character, without needing manual annotations of each scene.

Various works have tackled the FBVR problem throughout the years.

Early approaches. In 2005 Arandjelović and Zisserman [192] proposed a

shot retrieval system using faces. In order to obtain a so-called signature

image of a face, invariant to pose, illumination, scale and occlusion, they

proposed a series of steps for each detected face: first, Support Vector Machines

(SVMs) [99, 193] were used to detect face feature locations (eyes and mouth);

the face was then affine warped in order to align their features to their

mean canonical locations; face segmentation was then performed by using

image intensity discontinuities and the background was successively removed;

band-pass filtering was used to compensate for illumination changes. To

determine if two faces belonged to the same person, the L2 norm of the

difference between the two signature images was compared, ignoring pixels

1In the problem of face identification, each video usually contains only a single person.

This is not necessarily true in video retrieval, including in my case study, as we will see.

85



CHAPTER 4. DEEP LEARNING FOR FACE-BASED VIDEO
RETRIEVAL

which had a high enough probability of being occluded. The algorithm was

evaluated by performing queries with each image or image set and ranking

the data in order of similarity to it. When evaluated on two movies and a

situation comedy episode, with a total of 8830 faces, the algorithm obtained

high precision and recall scores (93% and 92% respectively).

Sivic et al. [194] improved on the previous system. Shot detection was

performed on two movies, faces were detected and tracking was performed to

obtain 776 face tracks over 337 shots. SIFT descriptors [195] were used to

collect face features, which were aggregated for each face track. The retrieval

was then performed with the following procedure: a user selected a face from

a shot, the features from the corresponding track were recovered, and the

face tracks with the lowest χ2 distance from the query track were retrieved.

The algorithm obtained 98.1% precision and 90.7% recall in the face matching

process.

Fusion of visual features with measurement information. Herrmann

et al. [196] proposed to encode face track features (which included image

intensity, LBP [197], LDP [198] and SIFT [195] descriptors) together with

measurement information (such as camera position and head pose/rotation).

The features from all the face track frames were then processed to compute

cumulative descriptors for the entire track using techniques such as Bags of

visual words [199] or Fisher Vectors [200]. These descriptors were then used to

form the database on which retrieval was performed. 10-fold cross-validation

queries were performed on datasets of tracks such as YouTube Faces (YTF)

[201] and Face In Action (FIA) [202], where a mean Average Precision (MAP)

of 17.0% and 93.0% was obtained respectively.

L-QTS. Arandjelović [203] proposed a method, called Learnt

Quasi-Transitivity (L-QTS), to perform retrieval of image sets. Specifically,

they proposed a meta-algorithm that, starting from a baseline algorithm,

used the structure of the data at hand to enhance the performance on image

sets that are not correctly retrieved by the starting baseline. The algorithm
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exploited the quasi-transitivity on similarity scores computed between the

query, target and proxy image sets using the baseline algorithm. The authors

used LBP as frame features and two different similarity measures, the

maximum maximorum cosine similarity [201] and the Locality-constrained

Linear Coding (LLC) [204]. They showed that the meta-algorithm improved

the performance over the baselines on frame sets from the YTF dataset.

HHSVBC. Li et al. [205, 206, 207] proposed a compact binary

representation for video data, called Hierarchical Hybrid Statistic based

Video Binary Code (HHSVBC). The frames were represented by Fisher

Vectors computed on one of various possible local features (raw gray features,

histogram equalized gray features, Dense SIFT descriptors [195], LBP and

Histogram of Oriented Gradients (HOG) [85]). Variability across frames

was then encoded using covariance matrices. Fisher Covariance Matrices of

different sizes were used to obtain coarse and finer representations of the data.

These high-dimensionality features were transformed into a low-dimensionality

vector in Hamming space by means of multiple SVMs with Riemannian kernels

[208] (covariance matrices are known to lie on a Riemannian manifold). The

algorithm was tested on a set of around 14,000 face tracks extracted from two

TV series, The Big Bang Theory and Prison Break (ICT-TV dataset [207]). It

reached 91.72% and 30.35% MAP on those two TV shows, respectively [207].

HER. A variation of the previous algorithm that can deal with mixed

modalities, i.e. using single images to query video data, was also presented

by the same authors [209]. Since images were usually represented with vectors

in Euclidean spaces, while face tracks were often represented by covariance

matrices on Riemannian manifolds, the authors presented a way to learn a

mapping of the two heterogeneous spaces into a common Hamming space: they

embedded the two spaces into Reproducing Kernel Hilbert Spaces (RKHS) and

then used SVMs to learn the hashing function based on Hamming distance.

The algorithm was named “Hashing across Euclidean space and Riemannian

manifold” (HER). Tests over faces extracted from The Big Bang Theory and
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Buffy the Vampire Slayer episodes obtained a MAP of 55.39% and 58.77% on

the two datasets respectively, higher than single modality hashing methods2.

First uses of deep learning. Dong et al. [210] beat the scores obtained by

HHSVBC by proposing the use of a deep neural network in order to learn

the hash code to represent the video data. First, the AlexNet CNN was

pretrained on ImageNet. A pre-trained hash function was obtained using

SVMs, then a triple ranking loss was devised to train the network and the hash

function jointly using gradient descent. The algorithm obtained 94.12% and

32.61% MAP on The Big Bang Theory and Prison Break datasets respectively,

following the usual protocol of running 10 queries for each annotated character.

A later refinement of the procedure [211], by training the network on an

additional dataset, CASIA-WebFace, with the use of hard negative mining,

obtained 98% MAP and 83% MAP on the two TV shows. The authors also

tested cross-modal queries (image query vs. video database and vice-versa),

obtaining results comparable to the video-to-video retrieval task.

Mühling et al. [212] presented a system which was able to perform

video search based on textual descriptions or face images, in addition to face

identification and clustering. In particular, regarding video retrieval by faces,

the authors used Faster R-CNN with ZFNet backbone for face detection [213,

214] on video shots that were segmented using two shot boundary detection

algorithms [215, 216]. Face overlap and RGB histogram intersection (like

in [217]) were used in conjunction with LBP features in order to perform

face tracking across frames, keeping only tracks with at least 5 faces. Face

representations were obtained using the same network presented in [218], with

11 convolutional layers and a 320-dimensional output vector. The network

was trained on the CASIA-WebFace dataset. For each face track, the feature

vectors for each face image and the average feature vectors were saved. At

retrieval time, the authors compared two different approaches to measure face

2Note that these results are not comparable to the ones from HHSVBC, since in this case

queries on the videos were performed using images, while HHSVBC used video queries.
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similarities: one involved simply computing the cosine similarity between the

input face feature vector and the average face track feature vector; the second

method instead consisted in computing the cosine similarity between the input

face feature vector and all the face feature vectors contained in each track,

and then averaging the similarities to produce a final score. The authors

showed that the latter approach produced better results, with 67.24% MAP

compared to 59.96% MAP obtained with the first approach. The test was

done by querying the Movie Trailers Face Dataset [217], which contains 101

trailer videos, using face images from 6 different persons, extracted from the

PubFig+10 dataset [219], as queries. Comparing each query image with all the

faces in each track entailed a significant time penalty however, with a 250 ms

runtime with respect to 10 ms for the single comparison approach. Moreover,

the AP varied significantly among the 6 celebrities used as queries: queries on

Paul Rudd obtained 92.56% AP, while queries on Jennifer Lopez only reached

2.05% AP.

DVC. Qiao et al. [220] proposed the use of temporal feature pooling

to fuse information extracted by a 3-layer CNN run on each input

frame. Fully-connected layers were put on top to predict the binary hash

representation of each video, called Deep Video Code (DVC), and they were

trained using a smooth triplet loss. The network was able to reach 99.41%

and 97.88% MAP in the retrieval task on the clips from the two TV shows

from the aforementioned ICT-TV dataset. They also showed that the use of

temporal max/average pooling was better than using a 3D CNN.

Correlation features for video retrieval. Jing et al. [221] proposed the

fusion of CNN features, extracted from an AlexNet backbone fine-tuned on

CASIA-WebFace, with correlation features, that were computed on the CNN

features after PCA dimensionality reduction. The correlation matrix was

mapped to Euclidean space using a logarithm and Log-Euclidean distance, and

it was then converted to a vector. The CNN features and the correlation vector

were then concatenated and fed to a fully-connected layer, playing the role of a
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fusion layer. A final layer then learned the feature mapping to Hamming space

in order to produce the hash code used for retrieval. The authors tested the

network in a retrieval task on the ICT-TV dataset, showing that: 1) correlation

features helped getting better performance and 2) extracting features from all

the clip frames and averaging them led to better results. The network reached

99.24% MAP on The Big Bang Theory and 84.61% MAP on Prison Break.

Integration of image quality information. Fang et al. [222] proposed

a model which used quality information such as face detection confidence in

order to aggregate and denoise the face features provided in the IQIYI-VID

2019 [223] dataset. The authors then trained a Multi-Layer Perceptron (MLP)

to classify faces into the 10,034 identities of the dataset. The network obtained

89.83% MAP in the retrieval task. However, the presented method had a major

drawback: it could only work with a pre-defined set of identities. Adding new

identities to the database would require changing the network structure and

retraining it. For this reason, the method is not suitable for retrieval tasks

with unknown identities.

DHH. Recently, Qiao et al. [224] proposed and end-to-end Deep

Heterogeneous Hashing (DHH) method that integrates the three main stages of

feature representation, video modeling and heterogeneous hashing, and learns

them jointly. Differently from approaches such as the one presented by Li

et al. [209], the Riemann-to-Euclidean mapping of the CNN features of the

videos/images can be used for multi-modality retrieval and the hashes and

features are learned simultaneously. The authors used a fast 10-layer VGG-like

network specifically designed for face recognition tasks [218]. DHH obtained

61.2% MAP on YouTube Celebrities (YTC) [225], 95.63% on Prison Break and

47.36% on UMDFaces [226] in the video retrieval task with image queries. The

authors also compared their binary representations with real-valued features:

as expected, the compressed binary representation obtained slightly lower

MAP since some of the information is inevitably lost in the compression to

a lower-dimensionality representation.
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HVIH. Wang et al. [227] proposed a Hybrid Video and Image Hashing

(HVIH), by which both dense frame-level features and video-level aggregated

features are exploited, as opposed to the usual strategy of using only the

aggregated ones. A CNN is used to extract features, that are then temporally

pooled to produce the video-level features. Both levels of features are

transformed to Hamming space. Training was done by jointly applying

both frame-wise and image set-wise supervision. The training procedure also

featured a video center alignment (VCA) technique that aimed at correcting

video-level feature shift with respect to the frame-level pooled features. Both

the image-to-video and video-to-video retrieval tasks were evaluated on the

YouTube Celebrities and UMDFaces datasets, and the algorithm reached MAP

higher than 70% for video-to-video and higher than 60% for image-to-video on

both datasets.

The main limitation of the vast majority of the presented algorithms is

that they deal with short-length video clips which often contain a single main

face for each video. In many cases, in fact, the algorithms start from already

cropped videos of face tracks, which are not representative of real-world videos

and cannot thus be directly employed in a real-world system, since they do not

include nor evaluate the use of different shot boundary detection, face detection

and face tracking algorithms. Some other works are limited to very few

identities and videos, or to videos constrained to one or two TV shows, which

can be insufficient to effectively evaluate the algorithm in real-world scenarios,

where the data has higher variability. These are the main motivations for the

development and evaluation of an end-to-end FBVR pipeline, which includes

the comparison of a variety of shot detectors, face detectors, face trackers

and face feature extractors, and is tested on a dataset that is suited to a fair

FBVR evaluation, closer to real-world condition. For a deeper look into the

limitations of existing datasets, see Section 4.3.1.
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4.1.2 Face recognition

As already mentioned, face recognition algorithms play an important role

in FBVR. For this reason, I present here a brief summary of the state of the

art of face recognition algorithms, with a focus on deep learning methods,

since they have recently reached top performance in the face verification and

identification tasks [191, 228].

DeepFace. In 2014, DeepFace [229] was one of the first methods to show

that deep neural networks had the potential to reach human performance

in face verification. The authors proposed the use of a CNN with both

convolutional and locally-connected layers3, using 3D-aligned faces as input.

The authors tested different methods to compare the features extracted by

the CNN: the inner product between normalized feature vectors, χ2 distance

with SVM-learned weights, and a Siamese CNN, with the latter one obtaining

better results on the Labeled Faces in the Wild (LFW) dataset [230]. The

authors trained the network on a private dataset of Facebook photos. They

tested both the “single” network and an ensemble of networks, each using

different inputs (3D-aligned images, 2D-aligned images, greyscale images with

gradient information). The network ensemble obtained 97.35% accuracy in

face verification on the LFW dataset, compared to 97.53% obtained by humans

[231]. The network was also tested on the videos from the YTF dataset, on

which it reached 91.4% accuracy, compared to less than 80% accuracy from

classical non-deep methodologies.

DeepID. Around the same time, Sun et al. proposed the DeepID algorithm

[232]. 60 CNNs extracted features from 60 different face patches, obtaining

a final 19,200-dimensional feature vector. The Joint Bayesian technique [233]

was then used to perform face verification using those features. The network

3Locally-connected layers are similar to convolutional layers, in that they do not connect

each output neuron to every input neuron. However, connections in locally-connected layers

do not share weights.
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obtained results comparable to the ones by DeepFace. The same authors later

proposed an improved version of this method, named DeepID2 [234], that

used AlexNet CNNs and contrasting loss for training, in order to produce

feature vectors closer together for faces of the same person, and farther apart

otherwise. The network reached 99.15% accuracy on LFW, training the

network on the CelebFaces+ dataset [232]. A further improvement was made

with the DeepID3 network [235], that used 25 networks with VGG-10-like

structure mixed with Inception-like layers, trained to extract features on 25

face patches. The new network structure obtained 99.53% accuracy on LFW.

FaceNet. An even higher accuracy of 99.63% on LFW was obtained

by FaceNet [236] by using a GoogleNet-like CNN trained with a triplet

loss function and online semi-hard negative mining. Differently from the

constrastive loss of DeepID, which only compared pairs of images, the triplet

loss compares three images: an anchor with a positive (i.e. same-class) example

and a negative (i.e. different-class) example. The loss enforces a margin

between images belonging to the same class and images from different classes.

This is similar to the loss used for the Siamese CNNs that we have seen

in Chapter 3. Another difference from previous works is that the network

was directly trained to learn the feature embedding, instead of using an

intermediate layer to extract the features. The network was also tested for

face verification on YTF, by averaging the distances between all pair of faces

in the first 100 frames of each clip, and obtained 95.12% accuracy.

VGGFace. Parkhi et al. proposed the use of a VGG-16 network to learn

a Euclidean embedding using triplet loss on their newly proposed VGGFace

dataset [237]. The triplet loss used by the authors to learn the Euclidean

embedding can be expressed as follows:

E(W ) =
∑

(a,p,n)∈T

max{0, α− ‖xa − xn‖
2
2 + ‖xa − xp‖

2
2}, xi = W

oi

‖oi‖2
,

where oi is the output of the CNN on sample i, W represents the weights

of the layer which projects the output of the network onto the Euclidean
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embedding, α is a learning margin, T is a collection of training triplets, with

(a, p, n) being the anchor, positive and negative examples respectively. The

network thus tries to maximize the distance between the features of the anchor

and negative samples, while minimizing the distance between the anchor and

positive samples. While VGGFace was the largest face image dataset publicly

available at the time, it was still much smaller than Google/Facebook private

datasets. However, the authors managed to reach comparable performance

(98.95% verification accuracy) despite using a smaller dataset and a much

simpler network architecture. The network also reached 97.3% accuracy on

YTF, the highest at that time. A bigger version of the VGGFace dataset,

VGGFace2, was proposed in 2018 [238], with a greater variety in pose, ethnicity

and age of the faces. The authors trained a ResNet-50 and a SENet-50

to classify identities on their new dataset using standard cross-entropy loss.

They showed that training CNNs on this new dataset led to better accuracy

than using only the original VGGFace dataset or only MS-Celeb-1M [239],

reaching state-of-the-art performance on the IJB-A dataset [240]. Pre-training

the networks on the MS-Celeb-1M dataset and then fine-tuning on VGGFace2

led to the best results.

Loss functions for face recognition. Between 2016 and 2018, a lot of focus

was put on the design of better loss functions to help separate faces belonging

to different identities. Wen et al. [241] proposed to combine cross-entropy loss

with a so-called Center Loss to train the CNN, which computes the center

of the deep features for each class and minimizes the distance between the

features and the class center. Later, Qi et al. proposed an improvement of

this loss, Contrastive-Center Loss [242], which introduces the maximization of

the distance between each feature vector and the centers of different classes.

The network reached 98.68% verification accuracy on LFW.

Liu et al. [243] proposed a large-margin Softmax loss4 (or L-Softmax)

4While it should technically be called “cross-entropy loss”, it is not rare to see it called

“softmax loss” in the literature, since it is often used in conjunction with a softmax activation

layer.
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to again encourage a large margin between different-class samples and a small

margin between same-class ones, with the additional advantage of preventing

overfitting.

Liu et al. [244] presented the congenerous cosine (COCO) loss, which

included explicit cosine similarity optimization among the feature vectors. An

Inception-ResNet model trained with the COCO loss obtained state-of-the-art

performance on LFW, with a record 99.86% accuracy.

Liu et al. [245] later proposed the SphereFace algorithm. Features

were embedded on a hypersphere with the use of an Angular margin Softmax

(A-Softmax) loss.

Qi et al. [246] proposed the use of an Additive Angular Margin (AAM)

loss together with centralized coordinate learning (CCL), in order to force the

features to be more dispersed in the feature space and lie on a hypersphere.

Differently from SphereFace, Wang et al. [247] used an additive instead

of multiplicative margin to the softmax loss.

Zheng et al. [248] proposed the Ring Loss, a way to augment standard

loss functions with the ability to gradually push the network to compute

normalized feature vectors.

Wang et al. [249] presented CosFace, a ResNet trained with a Large

Margin Cosine Loss (LMCL), which maximizes the margin between cosines of

the angles of feature vectors.

Huang et al. [250] proposed a Cluster-based Large Margin Local

Embedding (CLMLE), which consisted in training a network using a loss that

can account for the presence of subclusters within larger classes in imbalanced

datasets. The loss enforces large inter-cluster margins both within the same

class and across different class boundaries. The CNN trained with this loss

was able to reach 99.62% and 96.5% verification accuracy on LFW and YTF,

respectively.

ArcFace. Deng et al. recently presented ArcFace [251], which is a further

improvement over CosFace and SphereFace. It works by using the arc-cosine
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function to compute the angle between a feature vector and a target weight

vector, which acts as a class center. An additive angular margin is then added

to the angle obtained and its cosine is computed. The obtained logits are then

fed to regular softmax. The loss can be expressed as follows:

L = −
1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
es cos θj

,

where N is the batch size, n is the number of classes, θj is the angle between

the normalized feature vector extracted by the network and the weight vector

representing the center of class j, yi is the ground truth class of sample i, m is

the additive angular margin penalty between the ground truth weight vector

Wj and the feature vectors xi, and s is a scaling factor used to distribute the

learned embedding features on a hypersphere with radius s. Note that cos θj =
WT

j xi

‖Wj‖‖xi‖
, so it can be simply obtained by performing the inner product between

the normalized feature and weight vectors. The loss encourages the network to

learn a mapping that keeps intra-class feature vectors close to their class centers

and forces an angular margin between vectors belonging to different classes.

ArcFace obtained state-of-the-art accuracy on a number of face recognition

datasets, such as YTF (98.02%), Megaface [252] (96.98% verification accuracy

and 81.03% Rank-1 identification accuracy), LFW (99.83%), IJB-B [253]

(94.2% verification accuracy), IJB-C [254] (95.6% verification accuracy), and

more. The network was also tested on the iQIYI-VID 2018 dataset [255]

where it reached 79.80% Mean Average Precision (MAP) in the video retrieval

task. A three-layer fully-connected network was added in order to obtained

customized feature descriptors for the challenge.

Face recognition in videos. While the methods described above mostly

tackle the problem of face recognition in images, a few works have also focused

on the task of face recognition in videos instead of images.

In particular, some works explicitly exploited the temporal structure

of the videos using deep neural networks. For example, Rao et al. [256]

proposed a Generative Adversarial Network (called Discriminative Aggregation
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Network – DAN) to generate an “aggregated” face image starting from a

series of consecutive input images taken from a video. Instead of extracting

discriminative features from each frame, the features were extracted directly

on the aggregated face image. The authors claimed that their system reduces

the number of processed frames and increases the discriminative power of the

extracted features. The algorithm reached state-of-the-art results compared to

methods at that time, with 94.28% accuracy on YTF, 92.06% and 80.33% on

the two video subsets of the Point-and-Shoot Challenge (PaSC) dataset [257],

and 97.32% on the YTC dataset.

The same authors also presented an attention-aware deep reinforcement

learning (ADRL) method [258], in order to selectively choose the most

important frames to consider when comparing two face videos. Both CNNs

and LSTMs were used to extract spatio-temporal features, used by a Frame

Evaluation Network in conjunction with the raw frame images to iteratively

select the most representative frames. The system reached 96.52% verification

accuracy on YTF, 95.67% and 93.78% on the two video subsets of PaSC, and

97.82% accuracy on YTC.

Ding et al. proposed the Trunk-Branch Ensemble Convolutional Neural

Network (TBE-CNN) [259] to tackle the pose variability in videos by adding

side branches to the network, trained to extract features from specific image

patches, which are less sensitive to face pose. In addition to that, they proposed

to add blurred images to the training set in order to train the network to

deal with blurred faces, which can often be found in video frames. Finally,

they proposed a refined triplet loss in order to regularize the distance between

each identity’s mean representation. The system obtained 97.80% and 96.12%

verification accuracy on the two video subsets of PaSC, and 94.96% accuracy

on YTF.

Recently, Zheng et al. [260] proposed an end-to-end pipeline to perform

face recognition in unconstrained multi-shot videos. The pipeline is composed

of the following steps: first, faces are detected in the probe videos using the

SSD CNN [261] (for non-surveillance videos); facial landmarks are extracted
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using the All-in-One Face CNN [262], in order to align the faces; features

are extracted using one of three possible CNNs described in [263]. Intra-shot

faces are pre-associated by tracking the bounding boxes using the Kernelized

Correlation Filter (KCF); a one-shot SVM is then used to further associate

faces across multiple shots. Since the algorithm was tested on the IJB-B

dataset, which indicates the person of interest for each video, the SVM could

be trained to classify faces as belonging to the target person or not, based

on the face features. In order to aggregate the features for each video,

the authors proposed two possible techniques to map the deep features onto

subspaces: “regular” subspace learning (equivalent to performing PCA) and

quality-aware subspace learning (similar to a PCA, but weighting samples

in the objective function according to the detection score, used as a proxy

for face quality). Matching between the aggregated features is then done by

one of various proposed techniques: principal angles between subspaces, a

combination of principal angles and cosine distances between average features,

a combination of principal angles and cosine distances between quality-based

averaged features, by using a variance-aware projection metric, or by a

combination of the previous methods. Combining the various metrics led to

the best results on the video face identification protocols of IJB-B and IJB-S

[264] datasets.

4.1.3 Large-scale datasets for unconstrained face

recognition and retrieval

Large-scale face image datasets. One of the first important large-scale

still image face datasets was Labeled Faces in the Wild (LFW) [230], published

in 2007. It included 13,233 unconstrained face images from 5,749 identities

and it was tuned for face verification. Other important publicly-available

large-scale datasets published in the following years, and focusing on still image

face recognition in unconstrained environment, include the CASIA-WebFace

dataset [218], with 494,414 images of 10,575 celebrities, VGGFace [237], with
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2.6 million images of 2,622 celebrities, annotated with bounding box and poses,

the MS-Celeb dataset [239], which in its latest version included 6.8 million

images of 180,000 celebrities, MegaFace [252]5, with 4.7 million images of

672,052 identities, and VGGFace2 [238], with 3.31 million images of 9,131

identities.

Large-scale face video datasets. More importantly for the goal of this

thesis, a number of datasets for face recognition and retrieval in videos have

also been published.

YTF. One of the first ones is the YouTube Faces (YTF) dataset [201],

presented by Wolf et al. in 2011. It is composed of 3,425 videos of 1,595

celebrities, with an average of 2.1 videos per subject. It was built from

YouTube videos using the Viola-Jones face detector [266] to extract clips

containing each subject.

UMDFaces. UMDFaces [226, 267] included 3,735,476 annotated video

frames extracted from 22,075 videos with 3,107 subjects. The dataset was

focused on face verification. At the time of writing, the dataset is in

maintenance, and not available for download[268].

The IJB datasets. The IARPA Janus Benchmark-C (IJB-C) [254] dataset,

published in 2017, is an extension of the IARPA Janus Benchmark-A (IJB-A)

[269] and IARPA Janus Benchmark-B (IJB-B) [253] datasets, and it is

one of the most comprehensive face detection and recognition datasets in

videos that are currently publicly available. It provides 31,334 images, and

frames extracted from 11,779 videos containing 3,531 subjects. Person-centric

videos (e.g. interviews) were collected from YouTube, and the dataset thus

presents a large variation in face pose, illumination conditions, and other

visual properties. The challenge provides many evaluation protocols, including

5Both MS-Celeb and MegaFace are not available anymore for download. The first was

retired for ethical concerns, the second one because of administration costs[265].
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face detection, 1:1 face verification (determining if two templates, made of

single or multiple images, belong to the same person), 1:N face identification

(determining for each probe template the corresponding gallery template, if

any). In addition to those, the benchmark includes end-to-end protocols, which

require the algorithm to first detect the faces in the input image/video, and

then match them against the gallery templates.

iQIYI-VID. The iQIYI-VID-2019 dataset [223] is a large-scale video

retrieval dataset presented by iQIYI for the 2019 iQIYI Celebrity Video

Identification Challenge, in conjunction with the 2019 ACM International

Conference on Multimedia. It is an extension of the iQIYI-VID-2018 dataset

[255], published in 2018 for the Multi-modal Video-based Person Identification

Challenge as part of the Chinese Conference on Pattern Recognition and

Computer Vision (PRCV 2018). The 2019 version contains 211,490 video clips

from 10,034 identities. The goal of the challenge is to search for videos in the

test set for each of the identities included in the training set. The models can

be trained to recognize each identity by using the training videos, including

audio, but external data can also be used. The test set also includes distractor

videos.

VoxCeleb. Recently, the VoxCeleb datasets have been published, being the

first large-scale datasets for audio-visual person recognition in unconstrained

videos. VoxCeleb consists “of short clips of human speech, extracted from

interview videos uploaded to YouTube” [270]. It was published in two versions:

VoxCeleb1 [271] and VoxCeleb2 [272]. The main goal of the dataset is to help

develop and evaluate audio-visual models for speaker recognition. They both

provide YouTube URLs to the original videos, face detections and tracks, the

audio files with the utterances of each clip, cropped face videos and speaker

metadata. The main difference between VoxCeleb2 and VoxCeleb1 is in the

size of the dataset and the heterogeneity of the identities, both improved in

the second version of the dataset. VoxCeleb2 contains 1,128,246 utterances

extracted from 150,480 videos and 6,112 speakers.
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Movies and TV shows. In addition to the aforementioned datasets, which

mainly focus on interviews and YouTube videos, there exist datasets for face

recognition in movies and TV series, albeit usually limited in size. For example,

there are datasets with face annotations for Buffy the Vampire Slayer [273],

The Big Bang Theory [274] and Sherlock [275], each limited to the small set

of characters included in a TV series. They also do not provide the original

video material, for copyright issues. The Cast Search in Movies (CSM) dataset

[276] instead provides a larger number of identities (1,218) included in 127,000

tracklets from 192 movies. The authors tackle the problem of searching

tracklets with a single query image. The tracklets are provided with the

dataset, but not the entire videos, again for copyright reasons.

4.1.4 Face detection

Another important component of a FBVR system is face detection: in

real-world scenarios, face bounding boxes are of course not included with the

video data, and must be extracted in order to identify the people in videos.

Deep learning algorithms have obtained excellent results in the face

detection task, compared to classical ones like the Viola-Jones algorithm [266],

although some older techniques still proved useful, such as the use of detection

cascades to reduce the computational overhead [277].

For example, Li et al. proposed in 2015 one of the first uses of a CNN

for face detection [278]. They proposed the use of a cascade of 6 CNNs, 3 for

face detection and 3 for face bounding box calibration. They built an image

pyramid in order to recognize faces at different scales. The first network was

executed on a sliding window over each image in the pyramid. A calibration

network refined the boxes and Non-Maximum Suppression (NMS) was applied.

The remaining boxes were then re-classified in a second classification CNN and

re-calibrated by another calibration CNN, including NMS at the end. The

same steps were finally performed a third time, returning the final set of face

bounding boxes as a result.
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MTCNN. Zhang et al. proposed the widely-known Multi-task Cascaded

Convolutional Network (MTCNN) [279]. A network cascade of three CNNs

was employed, called P-Net (Proposal Network), R-Net (Refinement Network)

and O-Net (Output Network), using an image pyramid similar to [278], but

this time the bounding box regression was included as an output branch of

each CNN, without needing an entire separate CNN. A NMS step was also

performed on the output of each CNN. MTCNN is capable of detecting 5

facial landmarks (eyes, nose, mouth corners). The network structure is shown

in Figure 4.1. The networks were jointly trained on the three tasks (hence

the “Multi-task” in the name): face detection, bounding box regression and

landmark detection. Online hard negative sample mining was used during

training. The network was able to run at 16 frames per second (FPS) on a 2.6

GHz CPU and 99 FPS on a GPU, while obtaining state-of-the-art results on

the Face Detection Data Set and Benchmark (FDDB) [280], WIDER FACE

[281] and Annotated Facial Landmarks in the Wild (AFLW) datasets.

HyperFace. Ranjan et al. also proposed a multi-task network, called

HyperFace, to perform face detection, landmark localization, pose and gender

prediction [284]. They used Selective Search [285] to extract region proposals,

similarly to R-CNN [28]. They proposed two version of the network, a faster

one using AlexNet, and a slower but more accurate one using ResNet as

backbone. The network fused features at different levels in order to use both

low-level and high-level features effectively. They also proposed to refine the

regions obtained by Selective Search using an Iterative Region Proposals (IRP)

algorithm. A novel Landmarks-based Non-Maximum Suppression algorithm

was also proposed in order to perform NMS by taking into account landmark

coordinates. The multi-task training was once again shown to be more effective

than learning each task separately, and HyperFace reached state-of-the-art

performance for the various tasks on a number of datasets, including CelebA,

Annotated Facial Landmarks in the Wild (AFLW) [286], Annotated Faces in

the Wild (AFW) [287] and others.
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Figure 4.1: Architecture of the MTCNN face detection algorithm. Example

detection on a face image is shown. First, an image pyramid is created.

Then the image is fed to P-Net, which predicts candidate boxes, refined

with bounding box regression and Non-Maximum Suppression (NMS). The

candidates are fed to O-Net, which operates similarly, and its candidates are

finally fed to R-Net, which also predicts face landmarks. Note that the network

hyperparameters shown here follow the ones from the official GitHub repository

[282] and not the ones in [279]. Conv stands for convolution, MP stands

for Max Pooling, PReLU is the Parametric Rectified Linear Unit activation

function [283].
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All-In-One CNN. Ranjan et al. also proposed a similar network to

HyperFace, called All-In-One network [262], with the addition of the face

recognition, face age estimation and smile detection tasks. Differently

from HyperFace, the network was initialized using weights from a face

recognition task, and it was trained on six datasets performing domain-based

regularization. The network obtained accuracy improvements over HyperFace.

Supervised Transformer Network. Chen et al. [288] proposed a

network similar to Faster R-CNN in structure, but replacing the bounding

box regression branch with a landmark localization branch. They added

a Supervised Transformer layer (which gives the name to their network:

Supervised Transformer Network), which learns the canonical position of faces

in an end-to-end manner, in order to compensate for pose variations. They

also replaced NMS with a non-top-K suppression strategy over the regions

proposed by the Region Proposal Network.

Detecting faces at multiple scales. A variety of works focused on

detecting faces at different scales. Hao et al. [289] proposed the use of a

Scale Proposal Network (SPN) in order to choose which scales of the image

pyramid need to be scanned by the RPN for region proposals. This was done

to reduce computational time, since the RPN was not run anymore on every

image in the pyramid.

Hu and Ramanan [96] proposed the use of a coarse image pyramid

combined with two different types of face box templates, each tuned for either

bigger or smaller images, in their “Tiny Faces” CNN. They also showed that

context can help detecting tiny faces more easily.

Yang et al. [290] dropped the use of image pyramids, employing instead

three networks with different structures to detect faces of different scales in

their ScaleFace CNN. They claimed that smaller CNNs can detect smaller

faces better. The three CNNs were fused into a single-backbone CNN, thereby

increasing the computational speed of the model.

Zhang et al. [291] proposed a single-shot face detector, S3FD. The
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network structure was similar in concept to SSD [32], but with the use of a

wider range of anchor-associated layers, in order to predict faces across different

scales more effectively.

SSH. Najibi et al. [292] presented the single-shot “headless” CNN (SSH),

a fully-convolutional CNN. The removal of the fully-connected layers helped

reduce the number of parameters and the computational time. Three

branches on top of different layers of the VGG-16 backbone were added to

perform detections of faces at different scales. Each detector module in each

branch contains a so-called context module, which performs consecutive 3x3

convolutions in order to increase the receptive field and to consider context

in the detection process. SSH regresses anchor boxes to produce the final

detection boxes, in a similar way to the RPN in Faster R-CNN. The network

structure is shown in Figure 4.2. The authors showed that a headless VGG-16

could beat state-of-the-art ResNet-101 detectors on the WIDER dataset.

Detection of occluded and “hard” faces. Wang et al. [293] focused

on detecting occluded faces by proposing the Face Attention Network (FAN).

The network included an anchor-level attention mechanism, able to highlight

the features in face regions and suppress features from non-face regions. The

network followed a feature pyramid structure like in RetinaNet [294], and the

use of a larger number of occluded faces in the training phase allowed to reach

state-of-the-art performance on the WIDER FACE dataset.

Shi et al. [295] proposed the use of Progressive Calibration Networks

(PCN) in order to detect rotated faces. The system used a cascade of

three CNN, which, besides predicting the face bounding boxes, progressively

predicted the rotations to apply to region candidates in order to obtain upright

faces, thus producing more reliable detections of rotated faces.

Yang et al. [296] approached the problem of unconstrained and occluded

faces by the use of attribute-aware CNNs, which detected various facial features

such as hair, eyes, nose, mouth and beard. The locations of the detected

features helped determine a number of region proposals, analyzed and classified
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Figure 4.2: Architecture of the SSH face detection algorithm. Each block

represents a layer or set of layers of the network. Each of the Detection modules

M1, M2 and M3 looks at features at different downscaling factors (8, 16 and

32), thus detecting small, medium and large faces, respectively. Since SSH is

fully-convolutional, the image input size is not fixed.

106



CHAPTER 4. DEEP LEARNING FOR FACE-BASED VIDEO
RETRIEVAL

by an additional CNN. The entire pipeline was called Faceness-Net.

Tang et al. [297] proposed the single-shot PyramidBox detector. Its

structure was based on the S3FD detector, but with the addition of the

Low-level Feature Pyramid Network (LFPN), which helped merge facial and

contextual features in order to detect hard faces (e.g. occluded and small

faces). The authors also changed the training sampling strategy in order to

put more emphasis on smaller faces.

Zhang et al. [298] proposed a refined Faster R-CNN for face detection,

called FDNet 1.0. They reduced the computational complexity of the predition

head, introduced a deformable layer before ROI pooling to better exploit image

context, and multi-scale training and testing was performed. The network

reached state-of-the-art performance on WIDER FACE.

Chi et al. [299] introduced two-step classification and regression modules

inside a one-shot face detector in order to reduce false positives and improve

the location accuracy of faces. Their Selective Refinement Network (SRN) also

included a Receptive Field Enhancement module, in order to improve detection

of non-square faces.

RetinaFace. Recently, Deng et al. [300] proposed RetinaFace, a lightweight

face detector that benefits from an extensive multi-task strategy. Besides

the classic face detection and bounding box regression branches, the network

benefits from landmark prediction, self-supervised 3D mesh prediction and

camera pose prediction. The network uses Feature Pyramid Networks and

the concept of a context module similar to the one from SSH, and the

authors evaluated the use of two different backbones: ResNet-152 for maximum

accuracy and MobileNet-0.25 [301], capable of real-time detection on 4K

images. MobileNet was in fact designed to run on mobile devices. It consists

of 28 layers and exploits depth-wise separable convolutions6 in order to reduce

6Depth-wise convolutions can be seen as a two-step version of the classical convolution.

First, channel-wise kernels are convolved with the input volume, then a 1x1 convolutional

layer is added on top. The depth-wise convolution results in much faster computation and

less parameters.
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the number of parameters and the computational time. The network structure

is shown in Figure 4.3. The added supervised and self-supervised tasks allowed

RetinaFace to reach state-of-the-art performance on WIDER FACE, with

91.4% AP, and the use of detections obtained by RetinaFace improved ArcFace

recognition performance on the IJB-C dataset.
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Figure 4.3: Architecture of the RetinaFace face detection network with ResNet

backbone. Each block represents a layer or set of layers of the network. C2, C3,

C4 and C5 represent the stages of ResNet. C6 is a new stage added on top of

the backbone, output of a 3x3 convolutional layer with stride 2. P2, P3, P4, P5

and P6 represent the layers from the Feature Pyramid Network (FPN), similar

to [31] but with deformable convolutions [302] instead of standard ones. Each

of the 5 stages of the FPN is fed to a different Context Module. ch. stands for

channels. Note that RetinaFace is fully-convolutional, so the image input size

is not fixed: the feature map sizes shown in the figure are for a 640x640 input

image. The network structure is analogous for the MobileNet backbone.

4.1.5 Shot boundary detection

Since an important component of the pipeline proposed in the Section

4.2 is a shot detector, a summary of the state of the art of shot detectors is

presented here.

Shot detection (also called shot transition detection or shot boundary

detection) is the process of automatically identifying shot transitions in videos.

A shot is a series of interrelated consecutive frames that represent a continuous

action in time and space [303]. Frames belonging to a single shot have been
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recorded contiguously by a single camera. Shot transitions are usually divided

into cut and gradual transitions: cut transitions are instantaneous, while

gradual ones span a number of transition frames that include visual content

from both the old and new video shots. Detecting gradual transitions is usually

harder and a lot of effort has been spent in the recent years to tackle the

problem of correctly identifying long gradual transitions.

Early approaches. Shot detection has been studied long before the advent

of deep learning. One of the first approaches [304] used color histogram

differences between frames, along with two different thresholds in order to

properly detect gradual transitions without increasing the number of false

positives. Other classical approaches used Color Coherence Vectors [305],

to exploit the color structures present in the frames, which are lost in the

color histograms; SIFT descriptors combined with SVM for keypoint matching,

with different strategies to detect different types of transitions [306]; SURF

descriptors combined with entropy for cut transitions detection [307]; HSV

color histograms and edge histograms with SVM [308]; a combination of HSV

color histograms and HOG features [309]; HSV color histograms combined

with SURF descriptors [310].

ILSD. One of the best-performing algorithms proposed before deep learning

methods emerged is the ImageLab Shot Detector (ILSD), presented by Baraldi

et al. [311]. It is based on the difference between features computed in two

frames (denoted in the article asMn
w, where n is the central frame of the window

and 2w is the window size). The authors chose to use a linear combination of

the sum of squared differences of pixels of the two frames and of the χ2 distance

of their color histograms. Both measures were normalized by the number of

pixels in a frame. The two features have the property to be almost constant

immediately before and after a transition, and to have a constant derivative

during a linear transition. [311]. The differences between the features were

computed between frames that were increasingly far apart, in order to help

detect longer gradual transitions. In order to reduce the number of false
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positives, the maximum value of Mn
w within the candidate transition was

compared to the lowest of the two Mn
w values that were computed 2w frames

before and after the start and end of the transition respectively. This ensured

that the difference scores during a transition reached a high enough peak with

respect to the surrounding shots, reducing the number of false alarms. ILSD

was evaluated on the RAI Dataset [311], reaching 0.84 F1 score.

First use of a CNN for shot detection. One of the first algorithms to use

a CNN to perform shot detection was the one proposed by Xu et al. [312]. A

segment selection step based on pixel intensities was performed to select a set

of candidate segments which might contain a transition. AlexNet CNN trained

on ImageNet was then used extract features and similarity between frames was

computed using the cosine distance among those features. Various thresholding

strategies were then used to determine whether a frame o a sequence of frames

was a cut transition or a gradual transition, respectively.

3D CNNs for shot detection. Gygli et al. [313] presented one of the

first end-to-end CNNs for shot detection. The network used convolution

through time to avoid processing each frame multiple times, and it was fully

convolutional, thus able to take as input a variable number of frames. For

these reasons it was able to reach 120 times the real time speed, while still

being more accurate than classical algorithms on the RAI Dataset, with 0.88

F1 score.

Hassanien et al. [314] proposed the use of a spatio-temporal CNN

(DeepSBD) similar to the C3D network presented by Tran et al. [315]. Each

video was split into overlapping segments, fed to the CNN; a SVM used

the extracted features to predict the probability that each frame belonged

to a cut transition, gradual transition or did not belong to a transition. A

final post-processing steps using color histograms and Bhattacharyya distance

was used to reduce the false positives. The authors merged a number of

datasets in order to obtain a large-scale shot detection dataset appropriate for

training the network; they also employed synthetic transitions. The algorithm
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reached 0.94 F1 score on the RAI Dataset and scores comparable to the

state-of-the-art algorithms on various other datasets that were part of the

TRECVID challenges. The algorithm runs between 11 and 19 times faster

than real-time, depending on the batch size.

DSM. Tang et al. [316] proposed the use of two separate detectors for cut

and gradual transitions, in their Deep Structured Models pipeline (DSM).

First, features were extracted from frames using SqueezeNet [141] trained on

ImageNet. The cosine distance among the features computed with different

window sizes was used to select frame candidates which could be part of

transitions. Then cut transition detection was performed by using a ResNet-50

CNN which took as input 6 concatenated images. The left candidates were fed

to an SSD-like CNN that included a C3D CNN, to extract the features from

the frames, and two fully-connected “sub-networks” on top. These performed

classification and regression of the so-called “default segments”, which played

a function similar to the anchors in the SSD object detector. The system

was able to run at 700 frames per second, and obtained 0.94 F1 score on

the RAI dataset, state-of-the-art performance on TRECVID 07 with 0.841 F1

score, and 0.848 and 0.870 F1 score on cut and gradual transitions respectively

on their newly proposed large-scale ClipShots dataset. The introduction of

ClipShots was necessary to perform training on a larger, more varied and

more challenging set of videos, taken from YouTube and Weibo. The dataset

was manually annotated for cut and gradual transitions.

TransNet. Souček et al. [317] proposed a different CNN to quickly and

reliably segment videos, called TransNet. The network takes a sequence of 100

resized video frames as input, applies a series of 3D dilated convolutions to it

and produces a list of 100 probability scores, each representing the probability

that the corresponding input frame belongs to a transition. The network

uses multiple dilated convolution blocks [318] run in parallel for each layer

of the network, in order to have a larger receptive field with less trainable

weights. Since only the 50 central outputs of the network have a large enough
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receptive field, the videos are split into overlapping 100-frame windows, so that

predictions for each video frame are all taken from the 50 central outputs. The

network structure is shown in Figure 4.4. The network was trained on videos

from the TRECVID IACC.3 dataset [319] and obtained an F1 score of 0.94 on

the RAI Dataset.

TransNetV2. TransNetV2 [320], by the same authors, is an improvement

over the original TransNet with a series of additions and architectural changes.

First, residual connections [1] and batch normalization were added. 3D

convolutions were factorized into 2D ones in order to reduce the number of

trainable parameters and to separate the spatial dimension from the temporal

one. The authors also added a frame similarity layer and a RGB histogram

similarity layer, producing similarity vectors that are fused with the other

CNN features before the final dense layers. Finally, the network uses two

classification heads, one trained to predict only the central frame of a transition

as positive, while the other is trained to predict every transition frame as

positive; the latter is used to help with the network training, but is not

used by the authors at evaluation time. The network structure is shown in

Figure 4.5. TransNetV2 was trained on a mix of real shot transitions from the

ClipShots dataset [316] and synthetic transitions obtained from both IACC.3

and ClipShots. The network outperformed other shot detectors on ClipShots

and BBC [321] datasets, while having competitive performance (0.94 F1 score)

on the RAI Dataset. The authors also showed that mixing real and synthetic

transitions helped improve the model accuracy.

4.2 The proposed pipeline

The pipeline includes two distinct processes: the creation of a face feature

database and the execution of queries on that database. They are summarized

in Figures 4.6 and 4.7, respectively.

When a new video is added to the database, the following steps are always
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Figure 4.4: Architecture of the TransNet shot detection CNN. The network

takes a set of 100 frames of size 48x27 as input. The backbone of the network is

composed of 3 Stacked Dilated Deep CNN (SDDCNN) blocks, each containing

a series of 2 Dilated Deep CNN (DDCNN) blocks. Each DDCNN performs 4

parallel dilated 3D convolutions with different dilation factors. The outputs

of the 4 parallel convolutions are concatenated before the next DDCNN block.

After the DDCNN blocks, each SDDCNN blocks performs max pooling before

the next SDDCNN blocks. Each dilated convolution has 2i+3 filters, where i is

the index of the current SDDCNN block, starting from 1. The final prediction

is done using two fully-connected (Dense) layers, the first with 256 neurons

per frame and the last with 2 neurons per frame, representing the probability

that the frame belongs or not to a transition.
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Figure 4.5: Architecture of the TransNetV2 shot detection CNN. The

network takes a set of N frames of size 48x27 as input (N is set to 100

in the paper, but can be changed). TransNetV2 uses residual connections

between the DDCNN blocks. The DDCNN V2 blocks factorize the 3x3x3

convolutions of the original TransNet into two consecutive 2D convolutions,

reducing model and computational complexity. RGB histogram similarities

between frames are added, as well as a learnable module which computes

frame-to-frame similarities. FC stands for fully-connected. The Pad + Gather

operation transforms the cosine similarity matrix so that each row includes

the similarities between the corresponding frame and the 50 previous and

subsequent frames (50+1+50 = 101, with the additional 1 being the similarity

between the frame and itself).
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Figure 4.6: Creation of the face feature database. When a new video is added

to the database, shot detection is first performed. The face detector then

extracts faces from a subset of the frames not belonging to shot transitions.

Tracking is performed for the detected faces, within each shot. For each track,

features are extracted for a subset of its faces, and are then aggregated before

being saved in the feature database. Optionally, features can be quantized

before saving them in the database and/or inter-video clustering can be

performed on all the features in the database.
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Figure 4.7: Querying videos in the face feature database. The input face image

is fed to the face feature extraction network to obtain a feature vector. This

is compared to the other feature vectors in the database, and the videos are

ranked based on the matching score. For each returned video, the matching

shots are also returned. If feature quantization is enabled, the feature vector

is quantized before comparing it to the database features.

performed:

1. a shot detector is used to split the video into coherent non-overlapping

shots. Frames belonging to transitions are ignored in the rest of the

pipeline;

2. for each shot, at regular intervals, a face detector is used to extract all

the image patches containing faces in each of the selected frames;

3. a fast tracking algorithm is employed to group faces belonging to the

same person throughout each shot;

4. for each obtained tracklet, face features are extracted for a small subset

of the faces that are part of the tracklet;

5. a feature aggregation step is finally performed: the feature vectors are
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clustered across the different shots and fused in order to obtain a single

feature vector for each distinct face/person in the video. Information

about the video shots in which each person appears is retained.

Besides the aforementioned steps, I also investigated two additional

optional steps (shown as dashed boxes in Figures 4.6 and 4.7). First, the

possible use of a quantization algorithm in order to reduce feature size, both

on disk and in memory; second, performing a global clustering step in order to

aggregate feature vectors across all the videos in the database, with the aim of

reducing the number of feature vectors and increasing accuracy by “stabilizing”

the features for each person across different visual contexts.

Most of the described steps are performed using a deep neural network.

Each step is described in a greater detail in Section 4.2.1.

The query process is relatively simple and composed of two main steps:

1. a feature vector is extracted from the query image using the same feature

extraction algorithm employed in the database creation step;

2. the feature vector is compared to the feature vectors in the database and

a ranked list of matching videos (with the corresponding matching shots)

is returned as a result.

If feature quantization has been used in the feature extraction step,

then it must be also performed at query time in order to be able to compare

the feature vectors appropriately. A more in-depth description of the query

algorithm is presented in Section 4.2.2.

4.2.1 Creation of the face feature database

4.2.1.1 Shot detection

The use of a shot detector in the proposed pipeline is justified by three

main reasons:

❼ the use of a fast and efficient shot detector can drastically reduce

the complexity needed for the face tracker. Since MOT algorithms
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cannot deal effectively with shot/scene changes without resorting to the

extraction of computationally expensive appearance features, the use of

a shot detector allows to track faces separately for each camera shot,

removing the need for expensive algorithms;

❼ detecting and discarding transition frames can avoid extracting faces

and face features in the middle of a transition, thus avoiding the issue of

including faces blended with other faces or with the background, which

would lead to the extraction of unreliable features;

❼ from a usability perspective, providing the user of a FBVR system with

a list of shots in which a person appears can help in two different ways:

first, he can easily see if each returned video is of interest (especially for

long videos, where it can be hard to quickly find the segment in which the

person of interest appears); second, the user can easily discard a video

if the algorithm has made a mistake by matching the wrong person, by

quickly jumping to the various shots in the video and checking the video

content.

I tested three possible shot detection algorithms for this stage of the

pipeline: the ImageLab Shot Detector (ILSD) [311], TransNet [317] and

TransNetV2 [320].

I chose ILSD in order to compare the performance, both in speed and

accuracy, between a “classical” non-deep shot detector and a deep one, since

the use of CNNs is still quite recent in the field of shot detection. My choice

for the deep shot detectors was instead motivated by their good accuracy

on the RAI Dataset, as compared to previous networks, combined with their

execution speed, which is important since shot detection is one of the three

main time-consuming steps in the feature extraction pipeline (together with

face detection and feature extraction).
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4.2.1.2 Face detection

The next step in the proposed pipeline is the face detection step.

Consecutive frames belonging to the same shot are likely to contain very

similar image content, including face location and poses; for this reason,

extracting faces from every frame would lead to high computational times

without any retrieval accuracy benefit, since no significant new information

would be acquired about the faces. Moreover, the benefit of using each frame

would also be minimal for the tracking algorithm, since in most situations

(except when fast camera/person movement is present) face location does not

change significantly when skipping a few frames, and the pipeline is robust to

a small number of tracking failures anyway, thanks to the clustering algorithm

employed in the feature aggregation step. For this reason, faces are only

extracted every k seconds, with k chosen experimentally as explained in Section

4.3. At least one frame is analyzed for each shot.

I decided to test three possible face detectors: MTCNN [279], SSH [292]

and RetinaFace [300]. MTCNN is still widely-used today despite being one

of the oldest face detectors using CNNs. It reached good accuracy, while

being able to run in real-time. SSH uses a single deeper CNN as a backbone

(VGG-16), thus it is more accurate, but slower. RetinaFace is one of the most

recent CNNs for face detection, it reaches state-of-the-art performance with

the ResNet-152 backbone and it can run in real-time while still performing

reasonably well with the MobileNet-0.25 backbone.

4.2.1.3 Face tracking

At this stage of the pipeline we have a list of shots, and for each of them

we have a number of faces extracted from a subset of its frames. We need to

group together the faces belonging to the same identity for two main reasons:

❼ grouping faces belonging to the same person allows to extract less

features for each person, since we expect that faces belonging to the same

person will have similar features, thus reducing computational time. It
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also reduces disk usage, because it allows to merge features extracted

from multiple faces of the same person;

❼ performing intra-shot face association can reduce inter-shot association

mistakes in the feature aggregation stage: averaging the features of

faces that we know belong to the same person can produce more robust

features for the inter-shot aggregation step, by reducing the variability

due to random noise in the data (see Section 4.2.1.5).

With this in mind, it is important to note that a state-of-the-art tracker is not

needed if it is also going to substantially increase the computational time. The

pipeline is robust to tracking mistakes, since the feature aggregation stage will

compensate for tracks that were mistakenly split. The inter-shot aggregation

stage also removes the need for an expensive re-identification CNN, since the

tracking algorithm now only has to deal with intra-shot frames, without sudden

changes in face position and size due to shot transitions.

I thus chose to use the fast IOU tracker [322], which can perform

tracking on thousands of frames per second. The IOU tracker simply considers

the Intersection Over Union (IOU) score between two bounding boxes in

consecutive frames in order to decide whether to assign or not the same ID

to the two boxes. Each box is assigned the same ID as a box of the previous

frame if it is the box in the current frame that overlaps the most with the

previous one and if the IOU is above a certain threshold. The algorithm

does not use any visual information, and it is thus computationally efficient.

Optionally, the input faces can be discarded based on the detection confidence

score and tracklets can be filtered out based on their length and on the highest

detection score of the faces belonging to each tracklet. Despite its simplicity,

this algorithm reached good performance on the UA-DETRAC [60], MOT16

and MOT17 [42] challenge datasets.

The output of this stage consists of a list of face tracks that do not cross

shot boundaries.
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4.2.1.4 Face feature extraction

In order to perform face queries, we need to perform face recognition, i.e.

we need a way to compare two faces and determine if they belong to the same

person (face verification). One possibility is employing a deep neural network

to extract features for each of the two faces, and then use a distance measure

to compute the semantic difference between the two faces: faces with a high

distance likely belong to a different person, while faces with a low distance are

likely to be of the same person.

For this purpose I chose to use the networks presented in the VGGFace

[237] and VGGFace2 datasets papers [238], together with the more recent

ArcFace [251]. The VGGFace networks7 are a set of VGG-like [21] CNNs

trained with a triplet loss in order to force a higher distance between faces of

different persons, and a lower distance between faces of the same person. The

authors used the Euclidean distance in order to determine if two faces belong

to the same person. The networks presented in the VGGFace2 paper are a

ResNet-50 [1] and a SENet-50 [323], both trained on their newly proposed

dataset. These networks too can be used to extract feature vectors, which

can be compared using the cosine distance. Moreover, the authors aggregated

feature vectors by computing their average. This will prove useful in the feature

aggregation stage (see Section 4.2.1.5). ArcFace uses one of various ResNet

backbones and, as we have seen in Section 4.1, a special Additive Angular

Margin Loss to enforce a low/high angular margin between feature vectors

belonging to the same or different persons, respectively. It is the most recent

of the three networks, and it is the one that has obtained the best performance

on a number of face recognition datasets.

Since there can be very long face tracks (e.g. in a long TV interview

without camera changes), repeatedly extracting features from the same person

7Note that while VGGFace and VGGFace2 are the names of the datasets on which the

networks were trained, the networks themselves are often referred to with the same names

in the literature. For the sake of brevity, I will also refer to the networks as VGGFace and

VGGFace2, and I will note otherwise if it is not clear from the context.
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can lead to unnecessary computation, since most of the information will be

redundant. For this reason, I chose to extract a fixed number of faces (see

Section 4.3) within each face track, avoiding the initial and final parts of

each track, which can be noisier8. With this optimization, the face feature

extraction stage is substantially faster than the shot detection or face detection

stages, since the network only needs to examine a limited number of faces for

each video.

The output of this stage is then a set of feature vectors for each detected

intra-shot face track.

4.2.1.5 Feature aggregation

While in theory it would be possible to just save all the feature vectors we

have got from the previous stage and perform queries using them all, this would

lead to substantial disk usage, since we would be saving a lot of redundant

information, but also to a longer computational time at query phase, since

the query feature vector would have to be compared with a higher number

of stored vectors. Moreover, some challenging face poses can produce noisy

feature vectors that could lead to errors at query time. A strategy to aggregate

and stabilize these feature vectors is thus necessary.

For this reason, I decided to implement the following steps:

❼ first, averaging the feature vectors for the faces belonging to each track,

since we know they likely belong to the same person. Feature vector

averaging has already been used in the literature, for example with the

VGGFace2 features [238]. Feature vectors are normalized to have unitary

norm both before and after the averaging process;

❼ after that, we can merge feature vectors from tracks that contain the

8For example, if the track starts at the start of a shot and the shot detector has not

perfectly identified all the frames belonging to the transition, some faces might be blended

with the background or other faces. Another example is the case in which the face track is

“new” after a tracking interruption caused by fast motion of the camera or of the subject:

in this case we might want to wait a few frames for the face to stabilize.
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same person that are currently split from each other because they are

either part of different shots, or because of a tracking error. So, feature

vectors are clustered both within and across shots;

❼ the new grouped feature vectors are then again merged by averaging,

followed by normalization.

For the track clustering I chose to use a hierarchical agglomerative

clustering (HAC) algorithm. Briefly, the algorithm starts with a number of

clusters equal to the number of input objects (that in our case are the face

tracks, represented each by a feature vector), with each starting cluster only

containing a single object; it then computes a distance measure between each

of the clusters and then merges the two clusters with the lowest distance. After

that, it recomputes the distances between the new and the old clusters and

repeats the previous steps until a certain distance threshold is reached. In this

way, a clustering tree is built, which is then cut to produce the final clusters.

Various strategies for the choice of the point at which to cut the tree

exist. I decided to use a distance threshold since both the cosine and euclidean

distances are bounded for normalized unit vectors9, and so various thresholds

can be easily tested in order to choose the best performing one.

The choice of using a simple unsupervised algorithm, without forcing

any temporal constraint on what tracks can be merged together, has the aim

to make the algorithm robust to tracking and detection errors. Duplicate

detections might exist and some tracks could have been mistakenly interrupted

because of a detection failure or of object motion/occlusion. For this reason,

the algorithm is allowed to group together tracks that belong to the same shot

and even tracks that overlap in some frames, since we are not sure that the

tracks actually represent different persons, and it is unlikely that two faces, of

two different identities, appearing in the same shot or frame also have features

9The cosine distance is defined as one minus the cosine similarity (which has values

between -1 and 1), thus it always take values in the interval [0, 2]. The euclidean distance

between unitary vectors also takes values in the interval [0, 2].
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so similar that they result in a merge mistake10.

In addition to the clustering threshold, I also tested different linkage

methods. The linkage method defines how we compute the distance between

each pair of clusters during the execution of the HAC algorithm. I tested simple

linkage, which uses the smallest distance between any pair of feature vectors

belonging to the two clusters we are comparing, complete linkage, which uses

instead the highest distance between all the possible pairs of feature vectors,

and average linkage, which computes the average of the distances of all the

pair of feature vectors in the two clusters.

The distance measure employed (cosine or euclidean) was chosen

according to the specific feature extraction network employed. VGGFace2 was

trained to use cosine distance between vectors, while VGGFace1 and ArcFace

used euclidean distances in the original papers.

At the end of this stage we finally have a list of feature vectors, each

ideally representing a different person in our video, and each with an associated

list of shots in which the person appears. This data is saved to the disk, where

it constitutes the feature database that is used to perform queries.

4.2.1.6 Feature quantization

In addition to the previous steps, I also briefly investigated the possibility

to employ a quantization algorithm in order to reduce the size of the feature

vectors. Depending on the network used for feature extraction, each vector can

contain between 512 and 2048 floating point values. On large scale databases,

with thousands of videos, the pipeline can extract 300-400 MB of features,

if not more. This can easily grow and become a problem both for storage

space and for memory consumption, especially when more processes are run

in parallel to execute feature extraction and queries.

10One obvious caveat would be for identical twins appearing in the same frame. But first,

the two people would be hardly distinguishable anyway even without merging their features,

and second, it is a relatively rare occurrence that we can ignore without any significant

accuracy penalty.
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It is thus possible to employ a quantization strategy in order to compress

the features without excessively reducing the recognition accuracy. While

this is not the main focus of my thesis, I studied the feasibility of using a

quantization algorithm before saving the features on disk. I chose to use the

Angular Quantization-based Binary Coding (AQBC) [324]. The reason is that

this algorithm does not require any training step, so it is agnostic to the choice

of a feature extraction network, and it takes into account the angular distance

between feature vectors, that is suitable to the features I am using for face

recognition. The only major restriction is that the feature vectors must only

have positive values (which is not always true depending on the network used)

and must be distributed on a hypersphere. Briefly, the quantization algorithm

works by projecting the 2d vertices of the binary hypercube {0, 1}d onto the

unit hypersphere, where d is the dimensionality of the original feature vectors.

The feature vectors are then quantized to a d−bit vector, by assigning the

closest projected vertex to each original vector.

In principle, this allows to reduce the size of each value in the feature

vector from 32 or 64 bits to a single bit, thus reducing the disk space (ignoring

compression) by 32 or 64 times. In practice, some efficiency limitations arise

using NumPy and Python, both in storing bit vectors and in performing an

efficient cosine distance computation over bit vectors, since some functions are

not natively implemented in the language. A more detailed discussion of the

implementation issues can be found in Section 4.3.

4.2.1.7 Inter-video clustering

A second optional step I investigated is the use of inter-video clustering,

i.e. applying a global clustering algorithm over the features extracted from

all the videos, in order to further reduce the number of feature vectors in the

database and to reduce feature variability for people that appear in more than

one video, whose features might then be affected by illumination conditions or

poses that are specific for each video he appears in.

For simplicity and consistency, I used the same HAC algorithm used in
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the intra-video feature aggregation stage. Despite inter-video clustering was in

fact able to increase the retrieval performance for some pipeline configurations

by as much as 1.5% AP, I consider this step optional for a number of

reasons: first, it can be extremely memory consuming, at least using the

standard implementation in the main Python machine learning libraries such

as Scikit-learn — in some cases, where more than 100,000 feature vectors had

to be clustered, I was not able to perform clustering in a single step using

all the vectors, since the distance matrix would require more than the 64 GB

of RAM available on the machine; the second reason is that since HAC is an

offline algorithm, every time a new feature vector is added to the database,

clustering has to be performed again from scratch, and can require significant

computational time, especially if not carefully optimized. Moreover, for some

feature extraction networks, the additional inter-video clustering step did not

have any additional benefit: since this step adds computational time and does

not reduce the feature size on disk, it is better to avoid it in these cases. The

reason why the additional clustering does not reduce disk size is that in order

to re-execute the clustering after new feature vectors are added, the original

feature vectors are needed to run the HAC from scratch, so it is not possible

to just discard them. Some online approximations of the HAC algorithm exist

[325, 326], but none seems to solve efficiently all of the problems described

above, for a possibly even minor impact on retrieval accuracy.

4.2.2 Querying the database

In order to query videos in the database it is sufficient to compute

a feature vector representing a single face11 and then compare it using

cosine/euclidean similarity with all the person feature vectors stored in the

feature database. If feature quantization was enabled in the extraction phase

11The algorithm is easily applicable to a sequence or set of query faces too (for example

in order to use video queries). It is in fact sufficient to average the feature vectors for all

(or part of) the faces in the frame sequence, and then compare the result with the database

features.
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(see Section 4.2.1.6), then the feature vector extracted here must also be

quantized in order to be comparable with the database feature vectors.

For each video, the person that matches with the query image with the

highest similarity score is considered the matching identity for that video, and

that score becomes the video’s matching score. A ranked list of videos is then

returned, sorted by matching score. A threshold can be used to eliminate

poorly matching videos and only present good matching ones to the final user.

For each returned video, the information about the shots in which the matching

person appears is also provided.

4.3 Experiments and results

4.3.1 Dataset

In order to properly evaluate the performance of the pipeline and to

ensure it will work in real-world systems in the TV context, like TVBridge, an

appropriate dataset is needed, ideally with the following properties:

❼ a large number of videos recorded in the TV setting or similar, and with

a sufficient number of identities. The characteristics of television shows

is different from, for example, surveillance videos, and we need a dataset

as close as possible to the use case of the system for a proper evaluation

of the performance. Having a large dataset ensures that the pipeline is

robust enough to both the presence of a high number of identities, and

to a higher variability in video content;

❼ videos should have varying resolutions. This is important in order to

evaluate the robustness to low-quality videos, but also to check that the

analysis of HD videos is feasible in terms of time and memory constraints;

❼ most videos should contain multiple identities. Some datasets in the

literature only provide cropped clips containing a single face. This

is not representative of real-world conditions, and the presence of
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multiple people helps evaluate various parts of the pipeline, including

face detectors, face trackers and feature extraction networks for face

recognition;

❼ since the vast majority of TV-like videos contains multiple shots and have

variable length, the dataset should include multi-shot videos in order to

match real-world conditions and to evaluate the impact of the different

shot detectors;

❼ faces in the videos must be unconstrained, i.e. they should appear in a

wide variety of poses and orientations, to simulate real-world conditions;

❼ optionally, the dataset should provide a video retrieval evaluation

protocol with the related ground truth.

However, to the best of my knowledge, no existing dataset matches all

of the described criteria12:

❼ YTF: while it has the advantage of containing many identities and

including complete face track annotations, it has two significant

drawbacks which make it unsuitable to test the proposed pipeline

effectively: it does not include multi-shot videos, since the clips only

contain the consecutive frames in which the subject of interest appears,

in many cases without other people in the background; moreover, since it

was collected in 2011, it only contains low-resolution videos. In addition

to that, the dataset does not contain still images to use as queries,

posing the problem of having to create the probe set either via web

searches (which can introduce significant noise without time-consuming

manual inspection for the 1,595 subjects) or extracting the faces from

the provided videos, but with the risk of introducing reliability issues at

evaluation phase for subjects with only a few videos in the dataset, given

the low average number of clips per subject;

12For more information about the listed datasets, see Section 4.1.3.
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❼ IJB-C: while the dataset provides a great variety of unconstrained videos

(although mainly restricted to interviews), like YTF this dataset is also

not built for video retrieval using face images, but was instead conceived

for face identification and verification, since the galleries only contain

images. However, a video retrieval protocol might be built by “inverting”

the role of the gallery still images and of the video probes, and by using

an appropriate accuracy measure, since we are not matching the images

to a single video, but we want to retrieve all the videos containing that

person;

❼ iQIYI-VID-2019: while this dataset was conceived for video retrieval,

it still presents some issues: the clips are of short duration (4 seconds on

average), do not contain shot transitions, and mostly only show a single

person each. Since there is no way to obtain the original videos from

which the clips were extracted, this makes the dataset unsuitable for the

end-to-end evaluation of the proposed pipeline, since it does not allow to

appropriately test the performance of components like the shot detector

or the tracking algorithm;

❼ VoxCeleb2: while the dataset was not originally meant for video

retrieval, it can be used as a starting point to build an appropriate

FBVR dataset. Since the URLs for the whole videos are included,

and these videos include shot transitions, multiple persons per frame

and unconstrained faces (with varying poses and occlusions). Moreover,

videos vary in resolution and quality (from old low-resolution videos to

newer HD ones) and the dataset provides the list of videos in which each

identity appears. Another advantage of VoxCeleb2 is that face tracks

are included in the dataset, so it is possible to easily extract and crop

faces from video frames to use as query inputs, resembling more closely

the use case of TVBridge (remember that users will select faces from a

video frame to perform the video search);

❼ TV series and movie datasets: while videos from TV series and
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movies would be useful to integrate interviews and YouTube videos,

which have different characteristics, the Buffy the Vampire Slayer [273],

The Big Bang Theory [274] and Sherlock [275] datasets are each limited

to a single TV show with a very low number of identities. More

importantly, all the videos from these datasets are not publicly available

because of issues related to the use of copyrighted material. The Cast

Search in Movies (CSM) dataset [276] only contains cropped tracklets for

each person, posing the same problems described for some of the other

considered datasets.

Since there was no suitable FBVR dataset in the literature that I could

use to fairly evaluate the proposed pipeline, I chose to build a new dataset

starting from VoxCeleb2. I chose VoxCeleb2 because it was the easiest dataset

to adapt for my use case, for the reason discussed previously. IJB-C was also

a good candidate, however, the face tracks provided with VoxCeleb2 (and not

included in IJB-C) opened the possibility to extract face images directly from

the provided videos for use in the query evaluation process, as we will see.

This removed the need to manually extract images from other online sources,

and matched more closely the pipeline use case in TVBridge, where queries

are performed using face images extracted from videos.

VoxCeleb2, however, still has two main limitations. First, the videos

mainly represent interviews, so while the dataset might be a good fit to evaluate

the face recognition pipeline in talk shows and similar TV programs, it might

not adequately represent other common TV programs, such as movies or TV

shows, in which the subjects might have a larger motion and the lighting and

environmental conditions are more varied. Nonetheless, some of the interviews

were recorded in outside environments and contain a high number of people

in the background, which can help evaluate the robustness of the pipeline

in the presence of a high number of distractors. The second limitation is

that since the dataset only provides cropped clips instead of complete videos,

the whole videos must be downloaded from YouTube. Not every video was

still available on YouTube when I built the dataset, slightly reducing the
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dataset size. Moreover, some videos were edited or re-processed by YouTube

after the original dataset had been built, and this introduced some noise and

inaccuracies in the face tracks provided by the dataset, as we will see.

4.3.1.1 The proposed dataset

The proposed dataset uses annotations and video URLs provided with

the VoxCeleb2 dataset [272]. Since the test set contains 118 identities,

many of which overlap with training identities in the VGGFace/VGGFace2

face extraction networks, I used the VoxCeleb2 identities from the test set

as a validation set for the FBVR pipeline, in order to choose the best

hyperparameters. Please note that while some identities in the validation set

were also used to train some of the feature extraction networks, the images in

VoxCeleb2 are extracted from video frames, while the networks were trained

on still images; images extracted from videos have different characteristics

from still pictures, since the first are subject to motion blur and other video

artifacts.

However, in order to ensure that the hyperparameter choice procedure

did not lead to overfitting, I also selected a specific subset of subjects from the

VoxCeleb2 development dataset, which does not overlap with the subjects used

to train either the VGGFace2 CNNs or ArcFace. The videos of these subjects

formed an independent test set. I did not consider the subjects used to train

the third model, the original VGGFace, since it obtained relatively poor results

on the validation set, and thus I decided not to evaluate the pipeline with this

model on the test set.

Test set identity selection. In order to determine the set of unseen

subjects to be included in the test set, I proceeded as follows. From the

set of identities in the VoxCeleb2 development set, I had to remove every

identity that was also included in the VGGFace2 and MS-Celeb-1M [239]

training datasets, since I used VGGFace2 weights that were pre-trained on

MS-Celeb-1M dataset and fine-tuned on VGGFace2, and ArcFace weights that

131



CHAPTER 4. DEEP LEARNING FOR FACE-BASED VIDEO
RETRIEVAL

were learned on MS-Celeb-1M. VoxCeleb2 provides a CSV file that allows to

match its identities to the VGGFace2 ones. For MS-Celeb-1M I was not able

to find the list of names of the identities, but only their IDs as provided by the

Google Knowledge Graph API. For this reason, I first removed the VGGFace2

training identities from the 5994 VoxCeleb development set identities; I then

used the Google Knowledge Graph API to retrieve the IDs of the remaining

identities by querying them by name; finally, I was able to remove the identities

that appeared in MS-Celeb-1M. 78 identities were left.

Dataset construction process. The dataset construction, for both the

validation and test sets, was done as follows. First, the YouTube videos were

downloaded using the youtube-dl Python library. For each video, the highest

resolution version not superior to 720p was downloaded. I excluded video

streams encoded with the recent AV1 codec, since the versions of OpenCV

and ffmpeg that I had available were not able to decode it.

Since some videos of the VoxCeleb2 dataset were not available anymore

on YouTube, I was able to download 4260 of the 4910 videos for the validation

set13, and 1375 of the 1536 videos portraying the 78 non-overlapping identities

of the test set.

On average, there are about 36 videos for each identity in the validation

set and about 18 in the test set. The validation videos contain a total of

40,153,695 frames, with 396.4 hours of footage and an average of 28.1 FPS.

The test videos contain a total of 13,862,357 frames, with 146 hours of footage

and an average of 26.4 FPS. Videos are also quite varied in resolution, ranging

from 160x120 pixels up to 1280x720, with an average of 1007x585 pixels for

the validation videos and 956x563 for the test videos.

Figure 4.8 shows example frames from videos in the test set.

Query generation. After downloading the videos, a set of queries must be

created in order to evaluate the pipeline. For this reason, I extracted faces

13The website says VoxCeleb2 test set consists of 4911 videos, but actually one of the

videos appears twice for two different identities and it is counted twice.
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Figure 4.8: Example frames extracted from videos in the test dataset. Note

the variety of locations and image quality.
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from the videos, used as query inputs. VoxCeleb2 annotations include face

tracks for each time a person of interest speaks in a video. For each of those

tracks I extracted 3 face images, one from the frame at 25% of the track

length, one from the middle frame of the track, and one from the frame at

75% of the track length. I avoided starting and ending frames in order to

reduce possible noise from initial and final frames in the tracks, similar to

the strategy described in Section 4.2.1.4. This has resulted in 94,233 query

faces for the validation set, and 29,652 query faces for the test set. The high

number of faces per identity allows to evaluate the robustness of the retrieval

performance to pose/illumination changes, that can be present even within a

single video.

While I have run all the queries on both the validation and test sets on the

faces extracted from the downloaded videos, I have also tested queries on the

validation set using faces extracted from the clips provided with the original

dataset. As we will see in Section 4.3.4, the scores obtained with those were

lower, since the clip quality was worse than the YouTube version of the videos:

in VoxCeleb2 the faces were resized to 224x224 for the entire track for all

tracks, and were recompiled as a video, thus adding another compression step

on the top; in contrast, the average size of the faces extracted directly from the

original YouTube videos is about 286x284, and they were subject to one less

compression step. For this reason I decided to only use the YouTube-extracted

faces for the rest of the tests.

For each face image used as query, a list of ground truth matching

videos is also saved. For each face, the matching videos are all the videos

that in VoxCeleb2 are annotated as containing the same person as the query

image, excluding the video from which the face was extracted. This is because

retrieving the same video that was used to extract the query face is easy, since

the face appears in it with the same lighting conditions and pose. For this

reason, every evaluation has been performed by ignoring the video containing

the query image.

Figure 4.9 shows examples of query faces from the test set.
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Figure 4.9: Examples of query face images from the test dataset. Images were

resized to fit the grid in this figure, but originally ranged from 108x108 pixels

to 394x394 pixels.
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Dataset cleaning. The annotations of the constructed dataset can be

subject to noise and mistakes.

First, there is no guarantee that a person only appears into the set of

videos indicated in the VoxCeleb2 annotations, since the VoxCeleb2 dataset

(like most large-scale video datasets) was built using automated tools. While

this error might slightly lower the evaluation score, since the pipeline might

correctly retrieve a video that is mistakenly marked as wrong in the ground

truth, this situation is unlikely and in any case it would provide us with a

conservative value of the Average Precision (AP).

A possible second issue, also related to the partially automated

construction process of VoxCeleb2, is that some face tracks might not be precise

or may contain non-face objects.

In fact, early tests on the test set showed an anomalous number of

queries with very low scores compared to the validation set (see Figure 4.10).

Performing manual inspection of the dataset I found that various videos in the

test set did not actually portray the identity they were supposed to contain,

while for many other videos the box annotations provided with VoxCeleb2

were either very inaccurate or surrounded the wrong person in the video. Since

the test set was relatively smaller than the validation set, and since having a

correct performance measure on the test set is arguably more important (the

validation set is used to choose hyperparameters, so relative changes in the

mean AP are more important than absolute scores), I performed a manual

cleaning step on the test set only.

For each video in the test set I computed the mean AP for the queries

performed using images from that video. Then I checked which videos obtained

non-perfect scores (< 95% mean AP), and I manually checked all the videos

from that identity. I did not examine videos for which all the queries obtained

near-100% AP, because it is very unlikely for the pipeline to obtain an almost

perfect score if those videos contain significant box annotation mistakes. This

helped speeding up the cleaning process by reducing the number of images to

check.
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In order to understand if the errors were caused by the feature extraction

networks or by annotation mistakes, such as wrong boxes or videos not

containing the person they were supposed to contain, I performed this process

for both of the main face feature extraction networks (VGGFace2 and ArcFace)

to ensure that I did not miss something related to model-specific issues. The

vast majority of score anomalies was in fact produced by annotation errors,

and the remaining ones were mostly hard samples (low-quality images, old

footage, glasses, extreme face poses, etc.).

I discovered that at least 96 of the 1375 test videos did not portray the

person of interest, but somebody related in some way (similar name, a sport

teammate, a fellow band member, relatives, etc.). I thus removed those videos

from the ground truth of the queries for that identity, but I still kept the videos

in the dataset to act as distractors.

Moreover, I found that at least 195 more videos had a significant number

(ranging from 15% to 100%) of wrongly annotated boxes, making the pipeline

perform queries with a wrong face image. I thus excluded the images extracted

from those videos from the query list, while still keeping the videos as query

ground truth results, since differently from the previous set of videos, these

still contained the person of interest.

The final query set of the test split contains 23,208 queries from 1,077

videos and 74 identities. 4 identities were removed because less than 2 valid

videos containing them were left in the dataset after the cleaning procedure.

However, note that the pipeline built the feature database for each experiment

on the entire set of 1,375 videos, since videos were only removed from query

ground truth of from query inputs, but were always kept in the dataset to act

as distractors.

The cleaned test set had an AP distribution much more similar to the

one in the validation set, without the anomalous peak in low-score queries, as

it is shown in Figure 4.11. While all the figures show the AP distribution for

configuration 51, which uses VGGFace2 (see Section 4.3.4), the test was also

performed using configuration 60, with ArcFace, where a very similar anomaly
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was present. The cleaning also had an analogous positive effect, so the graphs

are not shown here.

(a) Validation set (b) Raw test set

Figure 4.10: Distribution of the AP for all the queries in the validation set

and in the raw test set. Note how in the test set there is a peak in the

distribution for AP < 0.1. The test was done using configuration 51 of the

pipeline, described in Section 4.3.4.

While analysing the results on the validation set, I also found out that

a consistent fraction of the videos that were supposed to contain one of the

identities of the validation set, Patrick Monahan, singer, actually contained

a different Patrick Monahan (a Irish-Iranian comedian). This was probably

a result of the VoxCeleb2 dataset construction protocol not being able to

distinguish between homonyms. For this reason, queries containing faces of

this identity were ignored at evaluation time; the features from people detected

in those 27 videos were still kept in the database to increase the number of

distractors at query time, similarly to what was done on the test set.

Other than this, I did not perform a thorough cleaning of the validation

set, since it would be way more time consuming and it would probably have

less benefits (you can see the validation has very few queries with less than

10% AP, indicating a much lower number of important annotation mistakes).

As previously stated, it is more important to look at relative differences in AP

on the validation set in order to evaluate different pipeline hyperparameters,

rather than at absolute accuracy values. The latter might not be representative
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Figure 4.11: Distribution of the AP for all the queries in the cleaned test set.

The test was done using configuration 51 of the pipeline, described in Section

4.3.4.

of the performance of the network, since most validation identities were also

used to train the feature extraction networks.

4.3.2 Implementation details

I implemented the main code of the pipeline in Python 3, specifically

Python 3.7. The ImageLab Shot Detector was originally implemented for

Windows in C++; I ported it to Linux and added a Python interface on

top. Since many of the networks I tested already had an open source

implementation in the PyTorch deep learning framework, I decided to

use PyTorch implementations for almost every CNN employed, except for

TransNetV2. TransNet and TransNetV2 were only available in TensorFlow.

Since PyTorch tends to use less GPU memory than TensorFlow, which was

important in order to run multiple parallel processes for feature extraction, I

ported TransNet to PyTorch. TransNetV2 was instead kept in TensorFlow,

since the code was more complex to port to PyTorch, and the network didn’t
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seem to bring any accuracy benefit to the pipeline anyway, so I mostly used

TransNet in the various tests described in Section 4.3.4. I used PyTorch 1.4

and TensorFlow 2.3, both with CUDA 10 and cuDNN 7.

I ran the tests on a machine with the following hardware: Intel(R)

Xeon(R) CPU E5-2630 v4 @ 2.20GHz, GPU NVIDIA GeForce GTX 1080

(8GB VRAM), 32 GB RAM.

4.3.3 Evaluation metrics

For every test I report results using the Mean Average Precision (MAP)

metric, commonly used in information retrieval. It is defined as follows:

MAP =
1

nq

nq∑

i=1

AP i,

where nq is the total number of queries performed, and APi is the Average

Precision (AP) of the i-th query. The Average Precision approximates the

area under the precision-recall curve, and various formulations exist. I used

the scikit-learn implementation [327], which can be formulated as follows:

AP =
∑

k

(Rk −Rk−1)Pk,

where Pk and Rk are the precision and recall, respectively, computed

considering only the top k retrieved items (videos in our case), sorted by

descending matching score. The AP metric implicitly assigns a higher weight

to errors in the top results with respect to errors ranked lower in the list (i.e.

with lower matching scores). This is a desirable property, since in a retrieval

system the user mainly focuses on the top retrieved results, and expects the

first results to match better with the query with respect to the ones that are

ranked lower.

4.3.4 Results and discussion

4.3.4.1 Hyperparameter choice and pipeline validation

Since the pipeline has a large number of hyperparameters, and each

different configuration requires between 1 and 3.5 days to extract all the
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features and run the queries on the validation set, testing every possible

combination of hyperparameters (e.g. using a grid search) was not feasible.

For this reason, I started from a base configuration and gradually evaluated

changes in one or two hyperparameters at a time in order to find the locally

best configuration.

The starting configuration

The starting configuration was the following:

❼ shot detector: ILSD, with default maximum window radius W equal to

3, following the original paper;

❼ face detector: MTCNN, with default parameters from the original

implementation (minimum face size: 32 pixels per side, score thresholds

for the 3 stages: 0.6, 0.7, 0.8, NMS threshold: 0.7, scale factor for

the image pyramid: 0.707). For this starting configuration, faces were

extracted every 10 frames, regardless of the FPS rate of each video.

MTCNN (like many other face detectors) tends to extract tight boxes

around the faces, often cutting off some contextual features such as

the hair, due to the dataset annotations used for training. Since such

features are useful to obtain better results, and are in fact included in

the face recognition datasets on which VGGFace/ArcFace were trained

on, I decided to expand the boxes computed by MTCNN and extract

face patches that were centered on the MTCNN boxes and enlarged to

be 1.2 times the length and height of the predicted boxes;

❼ face tracker: IOU tracker. σIOU , the minimum IOU to consider two boxes

in consecutive frames as matching, was set to 0.5. Tracklets with less

than tmin = 4 detections were discarded. In this way, only tracks which

covered at least a 30-frame interval between the first and last detection

were considered;

❼ face feature extractor: VGGFace2 with SENet-50 (also known as

SE-ResNet-50) backbone. Only 3 samples were extracted for each track,
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avoiding the initial and final sections of the tracks, as explained in Section

4.2.1.4;

❼ feature aggregation: features were aggregated by averaging the

feature vectors and applying L2 normalization before and after the

averaging. The inter-shot clustering was performed by using Hierarchical

Agglomerative Clustering with average linkage, cosine distance, and 0.5

maximum distance threshold.

I tested this starting configuration both on images extracted from the

clipped videos provided with VoxCeleb2 (denoted as LQ) and on images

extracted from the higher quality version of the YouTube videos I downloaded

(denoted as HQ), as explained in Section 4.3.1.1. An example of the same

face from the two different image sets is shown in Figure 4.12. Image 4.12a is

clearly more blurry than image 4.12b, since it has a lower resolution: all faces

in the clips provided with VoxCeleb2 were resized to 224x224 pixels, while in

the example the high quality face is 410x41014). Moreover, since the extracted

faces in VoxCeleb2 were recompiled as an mp4 video, the image on the left

experiences one additional video compression round with respect to the image

on the right, and thus presents more compression artifacts.

The evaluation results on the two image sets are shown in Table 4.1.

As we can see, the higher quality images resulted in an improvement of more

than 2% MAP. For this reason, all the subsequent experiments were done on

the high quality images. Note that an end user in TVBridge would also run

queries using face images extracted from original videos, without additional

processing steps; so, the use of the higher quality images for evaluation more

closely reflects the real-world usage conditions of the system.

Initial hyperparameter exploration

14Note that the VGGFace2 network preprocessing step resizes the input image to 256x256

pixels and then crops the middle square of size 224x224, which gets fed to the network. For

this reason, any face image smaller than 256x256 pixels is not optimal, since it needs to be

upscaled first.
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(a) Low-quality face (b) High-quality face

Figure 4.12: The same face from the same frame extracted from the low-quality

VoxCeleb2 clips and from the original YouTube videos.

Query images MAP

LQ 90.60

HQ 92.95

Table 4.1: Mean Average Precision (percentage) for the two considered query

datasets (validation set). Features were extracted using the base pipeline

configuration described in the main text.
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The next step I took was modifying some of the hyperparameters of the pipeline

without changing the algorithms employed for each step. I tested a different

clustering distance threshold σcl, various frame intervals Ifd for the face

detection (specified in seconds, instead of the raw number of frames, in order to

be independent from the video frame rate), I changed the aggregation function

fa to median instead of average, the tracking threshold tmin, the VGGFace2

backbone to ResNet-50 (as opposed to SENet-50), and the minimum size of

the detected faces smin. The results for all these experiments are shown in

Table 4.2.

ID σcl Ifd fa tmin VF2 backbone smin MAP

0 0.5 10 frames mean 4 SENet-50 32 92.95

1 0.4 10 frames mean 4 SENet-50 32 93.06

2 0.4 1 s mean 4 SENet-50 32 93.71

3 0.4 2 s mean 4 SENet-50 32 91.36

4 0.4 2 s mean 2 SENet-50 32 93.68

5 0.4 1 s median 4 SENet-50 32 93.39

6 0.4 1 s mean 4 ResNet-50 32 93.40

7 0.4 0.3 s mean 4 ResNet-50 32 92.70

8 0.4 2 s mean 2 ResNet-50 32 93.37

9 0.4 1 s mean 4 SENet-50 20 93.69

Table 4.2: MAP (percentage) on the validation set for various configurations

of the pipeline. Bold values highlight the 3 best configurations, which have a

very close performance. The first row indicates the starting configuration, the

same considered in Table 4.1. The ID represents each configuration for easy

reference, σcl is the clustering distance threshold, Ifd is the frame sampling

interval for face detection, fa is the feature vector aggregation function, tmin is

the minimum track length (number of faces), VF2 backbone is the VGGFace2

CNN backbone, smin is the minimum face size threshold in pixels.

First of all, decreasing the clustering threshold to 0.4 slightly increased

the MAP by around 0.1%. Since the improvement was small, I did not test
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other thresholds and fixed it at 0.4 for the subsequent experiments. Reducing

the frequency of frame sampling for face detection from 1 every 10 frames (that

converts roughly to one frame every 0.17-0.42 seconds, depending on video

frame rate) to 1 every second, the MAP increased by more than 0.6%. Pushing

it further to every 2 seconds did decrease the accuracy by 2.35% though; the

track length threshold might have played a role, since now only tracks longer

than 6 seconds were kept, and reducing tmin to 2 brought the performance back

to 93.68%. Changing the aggregation function to median reduced the MAP by

roughly 0.3%, and thus this change was discarded. Replacing the VGGFace2

backbone to ResNet-50 also worsened the performance by a similar amount,

and playing with the sampling frequency did not help. Finally, I reduced the

minimum face size from 32x32 pixels to 20x20, in order to include some smaller

faces; this did not have a significant impact in performance though, probably

because smaller faces are unlikely to represent foreground people, especially in

interviews. Moreover, small faces can be hard to distinguish and the feature

extraction network might not perform well on them. In fact, lowering the

threshold might have introduced a few small, low resolution faces which might

have acted as distractors and slightly influenced the performance, albeit in a

negligible way.

Changing the shot detector

After the first hyperparameter search, I proceeded to test different shot

detectors. I replaced ILSD with TransNet and TransNetV2. Regarding

TransNet, I also performed some fine-tuning experiments on the ClipShots

dataset and tested a double threshold strategy in order to try to improve the

performance. Since these experiments were not particularly successful, they

are briefly described in Appendix C.

The results are shown in Table 4.3. As we can see, changing shot

detector does not have any significant impact on the performance. However,

the time/memory efficiency of the three algorithms is different. Running the

pipeline with ILSD and TransNet in “serial” (using parallel processes would
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interfere with a clean measurement of running time) showed that TransNet

makes the pipeline much faster: extracting features on the 4260 videos of

the validation set took 3189 minutes (2.21 days) with TransNet, compared

to 3773 minutes (2.62 days) using ILSD. That means that changing the shot

detector alone made the pipeline about 16% faster. Note that this is after

I optimized the running time performance of the original implementation of

ILSD by implementing parallel video decoding, so that the shot detection

process did not have to wait for the entire video to be decoded.

TransNetV2 had a similar running time to TransNet15, but used much

more GPU memory (probably because of the use of TensorFlow, which is often

more memory-intensive). Since TransNetV2 got no better results than the

original TransNet, I used the latter for all the subsequent experiments. I also

used the original TransNet weights, without the ClipShots fine-tuning or the

double threshold, since these changes had no significant impact on accuracy.

This might be due either to the fact that in general small changes to the quality

of the shot detector do not influence the retrieval performance in a significant

way, or to the fact that the distribution of transitions in the ClipShots dataset

does not reflect the one in the VoxCeleb2 dataset. It is not possible to easily

check if the second hypothesis is the actual problem, since there is no ground

truth for shot detection in VoxCeleb2 and it is thus hard to compare transitions

statistics of the two datasets.

Exploring hyperparameters related to face recognition

Before testing different face feature extraction networks, I decided to

experiment first with some related hyperparameters. Specifically, the number

15In the original TensorFlow implementation of the networks. Porting TransNet “V1”

to pyTorch at first made the network slower than TransNetV2, but I changed the

implementation so that the video decoding was done on a separate thread, in parallel with

the shot detector. This actually made the shot detection process using TransNet “V1”

slightly faster than using the TensorFlow version of TransNetV2. Since TransNetV2 did not

improve the pipeline retrieval performance, I did not port it to pyTorch, nor I optimized the

video decoding step.
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ID Base conf. ID Shot detector MAP

2 - ILSD 93.71

9 - ILSD 93.69

10 9 TransNet 93.66

11 2 TransNet 93.71

12 9 TransNet (ClipShots) 93.61

13 9 TransNet (double thr.) 93.67

14 9 TransNetV2 93.61

Table 4.3: MAP (percentage) on the validation set for various configurations

of the pipeline, using different shot detectors. The first two rows indicate the

starting configurations, see Table 4.2. The ID represents each configuration for

easy reference, Base conf. ID indicates the starting configuration ID. TransNet

(ClipShots) refers to the version of TransNet fine-tuned on the ClipShots

dataset, while TransNet (double thr.) refers to the use of TransNet with a

double thresholding strategy; both are described in Appendix C.

of faces sampled from each tracklet and the sampling strategy, some clustering

hyperparameters that are influenced by the choice of features, i.e. by the choice

of the specific feature extraction CNN, the face bounding box scale factor, and

the minimum track length threshold tmin.

I changed the value of 3 samples per track to 1, 2 or 5. Results in Table

4.4 show that raising or lowering the number of samples extracted per track did

not improve the accuracy of the pipeline. For this reason I fixed the number

to 3 samples per track for the following tests.

Regarding the clustering hyperparameters, I changed the linkage method

and the distance threshold σcl. I also replaced the average linkage with single

and complete linkages, and I further lowered σcl from 0.4 to 0.3 (it was 0.5

initially).

Results are shown in Table 4.5. Single linkage worsened the performance

by more than 0.6%, while complete linkage obtained a very similar score to

average linkage. Lowering σcl to 0.3 had no impact on the average linkage
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ID Samples/track MAP

11 3 93.71

15 1 93.59

16 2 93.69

17 5 93.67

Table 4.4: MAP (percentage) on the validation set computed by changing the

number of faces sampled for each face track for feature extraction. The first

row indicates the base configuration, see Table 4.3. All the other configurations

were based on configuration 11.

method, while it slightly worsened the performance when using complete

linkage. For this reason, I kept using the threshold σcl = 0.4 for most of

the following tests (unless explicitly noted). Note that lowering the clustering

distance threshold produces more clusters (since the agglomeration process is

stopped earlier). This produces more feature vectors as a result, increasing

the feature database size on disk and in memory, and the query time (since

query vectors need to be compared with more vectors in the database). So, if

the model accuracy is very similar, it is more convenient to set the threshold

higher. To give an idea of the difference between a threshold of 0.4 and 0.3,

configuration number 19 produced a feature database of 362 MB (containing

21,791 feature vectors), while configuration 21 produced a database of size 456

MB (containing 27,461 feature vectors), 25% more.

After that, I decided to further explore the face sampling strategy and

tested a “quality-based” sampling strategy. Since the detection score output

by a face detector has been shown to be a good predictor of face quality

[328], instead of sampling the 3 middle faces of a track, I decided instead

to choose the 3 faces with the highest detection score. Other factors related

to face sampling are the bounding box enlargement factor (sdet), discussed

previously in this section, and set to 1.2 for all the previous experiments,

and the minimum track length tmin. Both changes also influence the feature

extraction process, the first by directly changing the content of the input image,

148



CHAPTER 4. DEEP LEARNING FOR FACE-BASED VIDEO
RETRIEVAL

ID Linkage method σcl MAP

11 average 0.4 93.71

18 single 0.4 93.07

19 complete 0.4 93.74

20 average 0.3 93.71

21 complete 0.3 93.68

Table 4.5: MAP (percentage) on the validation set computed by changing HAC

linkage method and clustering distance threshold σcl. The first row indicates

the base configuration, see Table 4.3. All the other configurations were based

on configuration 11.

and the second by removing more/less tracklets, thus potentially changing the

amount of noise in the features. For this reason, it is important to choose

the described hyperparameters appropriately before testing different feature

extractors.

Table 4.6 shows the results. Both decreasing and increasing tmin

led to worse performance. A very low tmin would keep many bad

detections/distractor faces in the database, while a very high tmin would

remove too much information by deleting tracks shorter than 6 or 9 seconds

for a tmin of 7 or 10 respectively. The quality-aware sampling didn’t have

much effect, so it was discarded for the subsequent tests. The scaling factor

instead had a significant effect, improving the starting MAP of 93.74% to

94.34%, a 0.6% increase. This means that including more context around the

face is important for the VGGFace2 CNN, probably because the network was

trained on faces with more context (or simply because the training faces were

smaller and occupied a more “central” position in the input images, ignoring

the borders). More face alignment considerations will be done next, with the

evaluation of the other feature extraction networks.

Comparing different face feature extractors

I replaced the VGGFace2 CNN with the original VGGFace and with ArcFace.
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ID Sampling sdet tmin MAP

19 Middle frames 1.2 4 93.74

22 Middle frames 1.2 1 92.47

23 Middle frames 1.2 2 93.20

24 Middle frames 1.2 7 91.20

25 Middle frames 1.2 10 83.12

26 Quality-aware 1.2 4 93.71

27 Middle frames 1.0 4 91.48

28 Middle frames 1.5 4 94.34

29 Middle frames 1.75 4 94.22

30 Middle frames 2.0 4 93.44

Table 4.6: MAP (percentage) on the validation set computed by changing the

sampling strategy. The first row indicates the base configuration, see Table

4.5. All the other configurations were based on configuration 19. Middle

frames indicates the standard sampling strategy used for all the previous

tests, described in Section 4.2.1.4, while Quality-aware indicates the sampling

strategy based on the face detection score. sdet is the face bounding box

scaling factor (i.e. 2.0 means the detected bounding box width and height

were doubled before feeding the face to the feature extraction network). The

result in bold indicates the best performing configuration.
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For VGGFace, since the entire VGG-16-based network was provided by

the authors, including the prediction layer used to classify the 2622 identities

of VGGFace, I tried extracting both the features from the penultimate

fully-connected layer, like it was done in the paper, and the pooled

convolutional features (before the fully-connected layers), like it is done in

the other face recognition networks. Note that the fully-connected features

are 4096-d vectors, while the pooled convolutional features are smaller 512-d

vectors. I also tested both euclidean and cosine distance metrics.

For ArcFace, the original network configuration was used exactly like

in the paper. Note that ArcFace requires face alignment before extracting

the features, so the facial landmarks extracted using MTCNN were used to

align the faces according to the original ArcFace implementation [329]. The

clustering distance thresholds for both networks was kept at 0.4 for now, both

for Euclidean and cosine distances16. Results are shown in Table 4.7.

VGGFace seems to perform consistently worse than VGGFace2. Using

the euclidean distance helped a bit, but the results are still significantly worse

than its newer version. Adding to that, VGGFace is based on the heavier and

much slower VGG-16 CNN. The pipeline with the best performing VGGFace

configuration (configuration 34) took 4336 minutes ( 3 days) to extract the

features from all the videos using 4 parallel processes, while VGGFace2 only

took 1825 minutes (1.27 days) to do the same. Moreover, since the FC

features are 4096-dimensional, the feature database occupied 4.23 GB on disk,

compared to 316 MB of the VGGFace2 version, and the query time rose

accordingly: running all the 94,233 queries on 6 parallel processes took 590

minutes (2.7 queries/second on average), as opposed to just around 55 minutes

(28.6 queries/second on average) for VGGFace2. In order to ensure that the

clustering/feature aggregation process was not at fault for the bad accuracy

of VGGFace, I performed some experiments without any aggregation step in

16Remember that for unit vectors, both the euclidean distance and the cosine distance

(computed as one minus the cosine similarity) are in the range [0, 2]. All feature vectors in

the pipeline are normalized to have unit norm after the extraction step.
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ID Base conf. ID Feature extr. net Distance metric sdet MAP

11 - VGGFace2 Cosine 1.2 93.71

19 - VGGFace2 Cosine 1.2 93.74

31 11 VGGFace1 (conv) Cosine 1.2 55.71

32 11 VGGFace1 (conv) Euclidean 1.2 67.32

33 11 VGGFace1 (FC) Cosine 1.2 74.69

34 11 VGGFace1 (FC) Euclidean 1.2 75.25

35 19 ArcFace (RN-50) Euclidean 1.2 92.74

36 19 ArcFace (RN-50) Euclidean 1.5 92.75

37 19 ArcFace (RN-101) Euclidean 1.2 94.59

38 19 ArcFace (RN-101) Euclidean 1.5 94.58

39 19 ArcFace (RN-18) Euclidean 1.2 90.38

40 19 ArcFace (RN-18) Euclidean 1.5 90.38

Table 4.7: MAP (percentage) on the validation set computed by changing the

face feature extractor. The first two rows indicate the base configurations,

see Tables 4.3 and 4.5. All the other configurations were based either on

configuration 11 or 19, with the only difference being that configuration 11

uses average linkage, while 19 uses complete linkage (for each configuration,

the Base conf. ID column indicates its starting configuration). Feature extr.

net indicates the feature extraction network employed, where VGGFace1 is

the original VGGFace, to distinguish it from VGGFace2, (conv) indicates that

the pooled convolutional features were used, while (FC) indicates that the

fully-connected features were used. RN-18, RN-50 and RN-101 indicate that a

ResNet-18, ResNet-50 or ResNet-101 backbone was used, respectively. sdet is

the face bounding box scaling factor (i.e. 2.0 means the detected bounding box

width and height were doubled before feeding the face to the feature extraction

network). The two best results are highlighted in bold.
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the pipeline: I extracted a single face from each track, thus removing the

need for feature aggregation, and saved the obtained feature vectors without

performing inter-shot clustering. But this led to a terrible MAP of just 1.18%,

close to the MAP for a random baseline retrieval system on our query set17.

For all these reasons, I abandoned the use of VGGFace1 for all the subsequent

tests.

Regarding ArcFace, the results were much better. The version with

ResNet-101 performed the best, as expected since it is the largest and most

complex model of the three ArcFace versions, but the ResNet-50 version still

obtained 0.65% lower AP than the 93.40% AP of the VGGFace2 ResNet-50

version (configuration 6) and 1% worse AP than the VGGFace2 SENet-50

version, that requires only slightly more computational time (1759 minutes

runtime for the ArcFace-based pipeline of configuration 35 vs. 1807 minutes

of the SENet VGGFace2 pipeline of configuration 19). Using ArcFace in the

pipeline seems to consistently result in a higher number of feature vectors in

the feature database. Configuration 35 obtained 117,790 512-d feature vectors,

which resulted in a database size of about 497 MB, as opposed to the 21,791

2048-d feature vectors of configuration 19, with a size of 364 MB.

In order to exclude the possibility of a clustering threshold problem, I

ran some tests using a different clustering threshold, including a threshold of

0, which implies no inter-shot clustering was performed. Results are shown in

Table 4.8. Differently from VGGFace2, where lowering the threshold further

than 0.4 brought no improvement, using any σcl ≤ 0.25 slightly increased the

MAP by 0.1%. However, this increase was counterbalanced by a substantially

higher number of feature vectors in the database, leading to 30% longer query

times. It is interesting to note that even rising the clustering threshold up to

1 (out of a maximum of 2) did not degrade the performance significantly,

17I computed the expected MAP for the validation set using the exact formula presented

in [330]. The expected random MAP is the average expected AP over all the queries of the

considered dataset. Averaging the expected AP over the 94,233 queries in the validation set

resulted in an expected MAP of 1.17% for a random retrieval system.
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highlighting the advantage of the Additive Angular Margin loss employed

in ArcFace training, which tends to impose strong angular margins between

different classes. Another thing to note regarding ArcFace performance is the

minimal impact of the bounding box scale factor sdet, which, differently from

VGGFace2, didn’t change the performance of the algorithm in a meaningful

way.

ID σcl MAP

35 0.4 92.74

41 0.0 92.85

42 0.1 92.85

43 0.25 92.85

44 0.5 92.60

45 0.75 92.42

46 1.0 92.54

Table 4.8: MAP (percentage) on the validation set using ArcFace with

different clustering distance thresholds σcl. The first row indicates the base

configuration, see Table 4.7. All the other configurations were based on

configuration 35.

Removing face alignment

Before testing different face detectors, since one of them, SSH, cannot predict

face landmarks, and ArcFace needs them for face alignment, I tested the

current configuration by removing face alignment during database creation,

at query time, or both. I used the ResNet-18 version of ArcFace in order to

speed up the feature extraction time, since the impact of face alignment on

it would presumably be similar to its impact on the ResNet-50 or ResNet-101

ArcFace CNNs.

The results are shown in Table 4.9. Differently from VGGFace2, that

does not need face alignment, ArcFace was trained with it, and the network

is only able to function properly with it. Removing face alignment from the
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query step, or both steps, degraded the performance to random baseline, with

1-2% MAP. Reinstating face alignment only in the query step recovered part of

the performance, which was however still significantly worse than the original

configuration. This suggests that the face boxes extracted by MTCNN in the

feature database creation stage, while not being explicitly aligned, were still

closer to what ArcFace expected as input with respect to the face boxes from

the VoxCeleb2 dataset, which were extracted using a SSD-based face detector,

because the query face alignment was absolutely necessary to obtain a result

that was significantly better than a random baseline.

ID DB creation face align. Query face align. MAP

40 Yes Yes 90.38

47 No No 2.28

48 No Yes 61.84

49 Yes No 1.55

Table 4.9: MAP (percentage) on the validation set using ArcFace and removing

face alignment from the database creation step, query step, or both steps.

The first row indicates the base configuration, see Table 4.7. All the other

configurations were based on configuration 40.

Replacing the face detector

I then moved on to test the pipeline with different face detectors: SSH and

RetinaFace, the latter with the lighter and faster MobileNet-0.25 backbone.

I only used the MobileNet backbone and not the ResNet-152 backbone

for two main reasons: first, ResNet-152 is way slower and much more

memory-intensive than MobileNet-0.25, but also compared to MTCNN; using

ResNet-152 would significantly slow down the tests, because the increased

memory usage would force me to decrease the number of parallel processes

used to create the feature database from 4 to 3 or even 2 in order to

avoid GPU memory issues. The second reason is that the particular

pyTorch implementation I used [331] only provided the trained weights for
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the MobileNet backbone. SSH is instead only available with the VGG-like

backbone, and is thus slower, as we will see.

The results of the face detector changes are shown in Table 4.10. For

VGGFace2, using SSH as a face detector slightly worsened the performance,

while also being much slower: the database construction with 4 parallel

processes took 5127 minutes for configuration 54, versus the 1807 minutes

of the MTCNN version. RetinaFace had almost no impact on the performance

of VGGFace2, but it was slightly faster, making it a more desirable choice over

MTCNN: the feature database construction only took 1715 minutes. However,

it is important to note that with 4 parallel processes the GPU speed is the main

bottleneck of the pipeline, thus the biggest increase in performance is obtained

by reducing the computation load of the GPU. Since MTCNN and RetinaFace

use different amounts of CPU computation time, the speed comparison might

not be representative of a serial (i.e. single-process) execution environment,

where the GPU might not be the computational bottleneck at all times.

Moreover, since the speed of MTCNN not only depends on the frame input

size, like other face detectors, but also on the number of candidates for each

frame18, it is not so straightforward to claim which of the two networks is faster

in an absolute way.

As expected from the earlier tests, since SSH does not compute facial

landmarks and face alignment was not performed, ArcFace (configuration 56)

performed poorly with SSH, with a 2% MAP. RetinaFace produced instead

an increase in performance for ArcFace. The combination of ResNet-101

ArcFace with RetinaFace allowed the pipeline to reach 95.48% MAP, and the

ResNet-50 ArcFace managed to beat the ResNet-50 VGGFace2, in contrast to

what happened using MTCNN. The combination of ResNet-50 ArcFace and

RetinaFace might be a good compromise between accuracy and performance,

with the entire pipeline taking around 1600 minutes to extract the features

from all the validation set videos. The pipeline with ResNet-101 ArcFace took

18For example, frames with no face candidates after the first step will avoid execution of

the second and third steps in MTCNN.
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a similar time, but again, this might be due to the randomness of parallel

execution. Also note that ResNet-101 uses more GPU memory, which might

be important when running multiple parallel query processes19.

Interestingly, independently from the feature extraction network, the

pipeline outputs less feature vectors using RetinaFace than using MTCNN,

while it did not change too much with SSH. This is probably due to the lower

number of faces detected using MobileNet. In order to test this, I ran the

pipeline only up until the face detection step for each of the three tested face

detectors, and counted the raw number of faces before any tracking, sampling

or clustering was done. This showed that, using the same shot detector

(TransNet) and the same frame sampling rate (1 frame per second), MTCNN

extracted 2,434,216 faces, SSH extracted 2,332,164 faces, while RetinaFace

extracted 1,940,093, confirming the fact that the MobileNet-based face detector

tends to identify less faces in general. As already noted though, this did

not reduce the retrieval accuracy, probably because the bigger, more easily

recognizable faces are the foreground ones, which are also the ones the queries

(and the TVBridge users) are looking for.

Experiments with feature quantization and inter-video clustering

In addition to all the experiments described above, I also tested two

“experimental” features, already described in section 4.2.1: feature

quantization and inter-video clustering.

Regarding feature quantization, I added it to the end of configuration

51, i.e. VGGFace2 + RetinaFace. I could only use VGGFace2 features

because the AQBC algorithm needs non-negative vector values. The retrieval

performance on the quantized features dropped from 94.44% to 93.71%, but

at the same time the feature database size decreased from 297 MB to 41 MB.

It is important to note that this was only a feasibility experiment, and the

19On the machine I used I was able to run 6 parallel processes with the ResNet-50, but I

could only use 5 with the ResNet-101 without incurring in serious memory issues, and the

system took 120 minutes to run all the queries instead of 104 minutes for ResNet-50.
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ID Base conf. ID Feature extr. net sdet Face detector MAP

19 - VGGFace2 1.2 MTCNN 93.74

28 - VGGFace2 1.5 MTCNN 94.34

35 - ArcFace (RN-50) 1.2 MTCNN 92.74

37 - ArcFace (RN-101) 1.2 MTCNN 94.59

50 19 VGGFace2 1.2 RetinaFace 93.75

51 28 VGGFace2 1.5 RetinaFace 94.44

52 35 ArcFace (RN-50) 1.2 RetinaFace 94.59

53 37 ArcFace (RN-101) 1.2 RetinaFace 95.48

54 19 VGGFace2 1.2 SSH 93.57

55 28 VGGFace2 1.5 SSH 94.16

56 37 ArcFace (RN-101) 1.2 SSH 2.07

Table 4.10: MAP (percentage) on the validation set by varying the face

detector used. The first four rows show the base configurations, see Tables

4.5, 4.6 and 4.7. For each configuration, the Base conf. ID column indicates

its starting configuration. The feature extraction networks and bounding box

scale factor sdet are also reported for ease of consultation.
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implementation was far from optimized. First of all, NumPy does not provide

a native implementation of binary vectors, so I used 8-bit unsigned integer

(uint8) vectors to store the quantized features. Using bit fields would have

further reduced the feature size by a factor of 8, both on disk and in memory;

NumPy allows to easily pack 8 binary values into a single uint8, but computing

the cosine distance on these compacted vectors was extremely slow, since

neither Python nor NumPy have a native, and thus efficient, implementation

of popcount, a requirement to perform quick cosine distance computation, as

described in [324]. The extreme loss in query time performance was not worth

the space reduction gain: a single query on the validation set could take almost

a minute on the compacted binary vectors, compared to the 0.2 seconds for

the original features or the uint8 quantized features. Despite these problems,

the experiment shows that with an efficient implementation of binary vectors,

the use of quantized features could be a valid tradeoff choice between accuracy

and disk/memory space, since it can in principle reduce the latter by about 64

times (since the original vectors were 64-bit floating points) while only losing

less than 1% MAP and thus still providing a good accuracy.

For the inter-video clustering experiments, I used the same HAC

algorithm on the final database, with the problems and limitations already

described in Section 4.2.1.7. I tried to add inter-video clustering to

configurations number 51 (VGGFace2 features), 52 (ResNet-50 ArcFace

features) and 53 (ResNet-101 ArcFace features); however, while I was able

to run the clustering step on the VGGFace2 features of all the 4260 videos in

the validation set in around 13 seconds, I ran into problems with both ArcFace

configurations. As explained previously, the pipeline produced a higher number

of feature vectors when using ArcFace, and running the clustering algorithm

on such a large number of samples incurred in RAM issues, so I was not able

to cluster all the features in one go for those configurations.

In order to solve that I tried two approaches: first, I split the 100k

feature vectors into 4 groups and only performed HAC inside those 4 groups

(partial clustering); the second approach was raising the distance threshold σcl,
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performing the partial clustering as just described, aggregating the features

and then performing a final round of clustering on the now smaller feature set

(2-round clustering). The second approach was not feasible without raising

σcl, since the partial clustering did not reduce the number of feature vectors

enough for a full clustering to fit in memory.

Results are shown in Table 4.11. Inter-video clustering had a significant

impact on the VGGFace2 features: the MAP raised from 94.44% to 95.60%,

at the expense of additional running time in a real-world scenario, where the

clustering needs to be updated every time a new video is added to the database

(see Section 4.2.1.7). Neither the partial clustering nor the 2-round clustering

on ArcFace improved the MAP. As a comparison, I also performed the partial

clustering on the VGGFace2 features, and despite a smaller performance

gain with respect to running a full clustering, it still obtained almost 0.8%

increase in MAP. This might indicate that VGGFace2 features are slightly more

unstable under different lighting conditions, so that averaging the features of a

person across different videos leads to more stable features; another possibility

is that the feature vectors produced by VGGFace2 are less well-separated, and

aggregating distractor faces (such as background faces) reduces the number

of false matches and improves the performance. In conclusion, inter-video

clustering is a promising future direction of research. The use of a more efficient

online clustering algorithm might lead to accuracy improvements and query

speedup, since the query image features would need to be compared with a

lower number of database feature vectors.

4.3.4.2 Running time considerations

While not the main focus of the thesis, some choices were still made with

time efficiency in mind, as we have seen. Designing an efficient pipeline is in

fact necessary for real-world applications, like TVBridge.

Running the pipeline in configuration 11 in single-process mode, it was

able to extract the features from the 396.4 hours of footage of the validation

set in 3189 minutes. This means that on average the pipeline was able to run
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ID Base conf. ID Feature extr. net Inter-video clustering σcl MAP

51 - VGGFace2 None 0.4 94.44

52 - ArcFace (RN-50) None 0.4 94.59

53 - ArcFace (RN-101) None 0.4 95.48

57 51 VGGFace2 Full 0.4 95.60

58 52 ArcFace (RN-50) Partial 0.4 94.55

59 53 ArcFace (RN-101) Partial 0.4 95.44

60 51 VGGFace2 Partial 0.4 95.22

61 53 ArcFace (RN-101) 2-round clustering 0.75 95.48

Table 4.11: MAP (percentage) on the validation set after adding inter-video

clustering on the final face features. The first three rows show the base

configurations, see Table 4.10. For each configuration, the Base conf. ID

column indicates its starting configuration. The feature extraction network

is reported for ease of consultation. In the Inter-video clustering column,

None means no inter-video clustering was performed, Full means a single-run

clustering on the entire feature set was performed, partial means clustering

was run separately on 4 splits of the feature set, and 2-round clustering

means the partial clustering was followed by a clustering over the aggregated

features obtained from the partial clustering step. σcl is the clustering distance

threshold.
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shot detection, face detection, tracking, feature extraction, aggregation and

clustering at 7.5 times the video real-time speed.

Tracking and feature aggregation take a negligible amount of time in

the pipeline, feature extraction takes roughly 5% of the running time, shot

detection takes about 30% of the runtime and face detection takes the

remaining 65%, approximately. These figures were computed on configuration

11 and of course vary depending on the various pipeline hyperparameters, but

it is a good rule of thumb to understand which steps of the pipeline are the

most computationally expensive. It is important to note that the TransNet

speed is close to the CPU video decoding speed: on a 1280x720 video, TransNet

takes just about 1.4 times the FFmpeg frame decoding time. For this reason,

there is limited room for improvement for the shot detector speed.

Regarding query speed, it grows linearly with the amount of feature

vectors in the database. Even with more than 100,000 feature vectors, 6

parallel processes were able to perform about 15 queries per second. This

means that the lower bound on single-process is about 2.5 queries per second,

0.4 seconds per query. The actual performance in single process can in fact

be even better, since GPU access acts as a bottleneck for the 6 concurrent

processes. When there is a large number of feature vectors in the database,

the distance computation step dominates the query running time, surpassing

the time needed to extract the single feature vector from the query image.

Anyway, we can see that even with relatively large video datasets, the query

time is reasonably small to allow for a smooth user experience in real-world

systems like TVBridge, at least in a prototype stage.

4.3.4.3 Ablation studies

While shot detection, face detection and feature extraction are obviously

mandatory for the proposed FBVR system, it would still be interesting to

study if the tracking and feature aggregation processes really help with the

performance, both in term of MAP and disk/memory footprint.

For this reason, I performed three ablation studies. First, removing the
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tracking step by feeding the single faces to the clustering algorithm; second,

removing the clustering algorithm by saving the aggregated features from

the tracking step without inter-shot clustering; third, keeping tracking but

removing any feature aggregation by extracting a single face from each track

and without any clustering.

Results are shown in Table 4.12. Removing tracking resulted in a loss of

more than 1% MAP, indicating that pre-associating faces by their location in

adjacent frames can lead to better feature vectors and helps to obtain a more

stable clustering. Removing clustering didn’t have any significant effect on

the MAP, but produced a very high number of feature vectors, with a 2.5 GB

feature database, as opposed to 362 MB for the original configuration. This

resulted in an larger usage of RAM at query time, which led to heavy memory

swapping; this, combined with the longer distance computation times, resulted

in the queries taking 293 minutes to run, as opposed to the original 57 minutes.

The advantage of inter-shot clustering is thus apparent, considering that its

running time penalty is negligible. Finally, removing any feature aggregation

resulted in a 0.74% worse MAP, with all the time/space complexity drawbacks

just discussed for the configuration without clustering. This also highlights the

importance of selecting multiple faces per track in order to smooth out pose

and illumination differences, together with other sources of noise (e.g. motion

blur or detection/tracking mistakes), that may arise along a track.

ID Tracking Samples/track Clustering MAP

19 Yes 3 Yes 93.74

62 No 3 Yes 92.58

63 Yes 3 No 93.76

64 Yes 1 No 93.00

Table 4.12: MAP (percentage) on the validation set for various ablation

studies. The first row shows the base configuration, see Table 4.5. All the

other configurations were based on configuration 19.
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4.3.4.4 Test set experiments and analysis of the results

As already discussed, I collected a test set with no identity in common

with the training sets of both VGGFace2 and ArcFace, in order to ensure a

fair, unbiased evaluation of the models. On this dataset, I decided to run the

best configuration for VGGFace2 (excluding the use of inter-video clustering),

ArcFace with ResNet-50 and ArcFace with ResNet-101, since the choice of the

feature extraction network is arguably more important than the choice of the

shot or face detector, as seen in Section 4.3.4.1. I did not test a configuration

with VGGFace1, given the poor performance on the validation set. Results

are shown in Table 4.13.

ID Feature extraction net MAP (val.) MAP (test)

51 VGGFace2 (SENet-50) 94.44 97.25

52 ArcFace (ResNet-50) 94.59 95.48

53 ArcFace (ResNet-101) 95.48 95.96

Table 4.13: MAP (percentage) on the test set for the best pipeline

configurations involving VGGFace2 and ArcFace. These configurations were

previously described in Table 4.10. Validation MAP is also shown for reference.

The pipeline using VGGFace2 reached the best performance on the

test set, with 97.25% MAP. It obtained almost 1.3% MAP higher than the

slower ArcFace with ResNet-101, despite obtaining a worse performance on

the validation set. This suggests that VGGFace2 can more easily generalize

on unseen identities. Remember that the fact the scores for all the networks

are overall higher on the test set is at least partially due to the test set cleaning

process, described previously. To give an idea of how much impact the dataset

cleaning process had, configuration 51 obtained 88.15% MAP on the raw test

set. This means that more than 9% MAP was lost due to annotation errors

and not because of model mistakes. Another factor which might have lowered

the validation performance is its bigger size: it is of course harder to find the

correct videos among a higher number of possible candidates.
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Figure 4.13 shows a comparison between the AP distribution over the

23,208 queries of the test set for the three considered configurations. As we

can see, the vast majority of queries obtains near-perfect score: for example,

for configuration 51, 21,555 queries (92.9%) obtain an AP higher than 90%,

and 13,890 queries (almost 60%) obtain an AP higher than 99.99%, which is

basically a perfect score, considering numerical errors in computing the AP.

Remember that an AP score equal to 1 means that the k relevant videos for a

query are returned exactly in the top k positions in the ranked video list. The

ResNet-101 configuration achieves a similar number of queries (21,611) with

AP higher than 90%, but also obtains a very low AP, less than 10%, for 451

queries ( 2% of the total), which is the main cause for the overall lower MAP.

This is also evident in Figure 4.13c.

(a) Conf. 51 (VGGFace2) (b) Conf. 52 (ArcFace –

RN-50)

(c) Conf. 53 (ArcFace –

RN-101)

Figure 4.13: Distribution of the AP for the three tested configurations on the

test set. The vast majority of queries obtained an AP > 90%. The pipeline

configurations with ArcFace still produce some queries with AP < 10%.

In order to explore the performance difference between VGGFace2 and

ArcFace on the test set, I decided to plot the AP of all the queries against the

query image size, expressed as the square root of the image area (in pixels).

The plots are shown in Figure 4.14. We can immediately see that differently

from VGGFace2, ArcFace produces a substantial number of low-scores for

low-resolution images (notice the clump of points in the bottom left corner of

Figures 4.14b and 4.14c).

In order to understand which queries posed a problem for ArcFace, I
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(a) Conf. 51 (VGGFace2)

(b) Conf. 52 (ArcFace – RN-50)

(c) Conf. 53 (ArcFace – RN-101)

Figure 4.14: AP vs. query image size for the three tested configurations on the

test set. Note the group of low-score queries for low-resolution images in the

bottom left corner of the ArcFace plots. This is not present in the VGGFace2

case.
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sampled 16 random low-resolution face images among the ones that obtained

AP lower than 10% with ArcFace (in configuration 53). I show those in Figure

4.15. While the resolution is low, the faces in these images still appear to be

recognizable, not only by a human, but also by VGGFace2, which obtains an

average AP of 75.5% on those same 16 images.

Figure 4.15: 16 randomly sampled low-resolution query image faces which gave

AP < 10% with ArcFace with ResNet-101. Images are shown at their original

resolution and have not been resized.

As we have seen in Section 4.3.4.1, ArcFace only works well if the query

image is properly aligned. For this reason I decided to run RetinaFace on those

16 images: the network was not able to detect any face in them, except for

one. Without landmarks, these faces were not aligned in the query process

and thus ArcFace returned unreliable feature vectors. The only image where
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RetinaFace correctly detected a face (second row, second column in Figure

4.15) is actually another annotation error that bypassed the cleaning step.

In fact, VGGFace2 also obtains a low score of 3.5% AP on it, as expected.

Running RetinaFace on the 319 faces with low-resolution and low-score, I

discovered that the CNN failed to detect a face in 309 of those. This strongly

suggests that the bad performance of ArcFace on these images was caused by

a face detection failure, and thus missing face alignment. This also highlights

a weakness of ArcFace: VGGFace2 does not need face alignment and does

not suffer from face detection errors like ArcFace. Besides, not requiring a

face detection step at query phase also speeds up computation, making this a

further reason to choose VGGFace2 over ArcFace in a FBVR system.

In order to check if changing the face detector could result in less errors

and thus a better performance for ArcFace on the test set, I also ran the

pipeline with MTCNN instead of RetinaFace (configurations 35 and 37 for

ArcFace with ResNet-50 and 101 respectively). Results are shown in Table

4.14. Similarly to the results on the validation set, using MTCNN also has a

negative effect on ArcFace, as opposed to using RetinaFace. But differently

from RetinaFace, the mistakes in this case were not specific to low-resolution

faces. Figure 4.16 shows the distribution of query AP with respect to image

size. No clump of points in the lower left corner is present like the one in

Figures 4.14b and 4.14c.

ID Feature extraction net MAP (val.) MAP (test)

35 ArcFace (ResNet-50) 92.74 94.61

37 ArcFace (ResNet-101) 94.59 95.79

Table 4.14: MAP (percentage) on the test set when using ArcFace with the

MTCNN face detector. These configurations were previously described in

Table 4.7. Validation MAP is also shown for reference. Results were worse

than using RetinaFace, like on the validation set.

Examining the mistakes, I found that also in this case many were due to

face alignment errors. While, differently from RetinaFace, MTCNN was almost
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(a) Conf. 35 (ArcFace – RN-50 with MTCNN)

(b) Conf. 37 (ArcFace – RN-101 with MTCNN)

Figure 4.16: AP vs. query image size for ArcFace with MTCNN on the test set.

Differently from the distributions shown in Figures 4.14b and 4.14b, low-score

queries were not concentrated in the low-resolution images.
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always able to detect each face, the landmarks were instead not predicted

correctly, especially in extreme poses, leading to bad face alignment. This

probably caused ArcFace to compute unreliable feature vectors, resulting in

bad results for the related queries. Figure 4.17 shows examples of landmark

prediction failures among the query faces that obtained AP < 10% for

configuration 37 (ArcFace with ResNet-101).

Figure 4.17: 16 examples of landmark prediction failures by MTCNN than

resulted in low AP for ArcFace with ResNet-101 (configuration 37). Images

have been resized to be 256 pixels wide. Zoom in to see the green circles

representing the five facial landmarks (eyes, nose tip, mouth corners) predicted

by MTCNN. Some faces have less than five landmarks because the predicted

coordinates for some of them were outside of the image boundaries.

For completeness, I also decided to check the 16 worst-performing query

images for VGGFace2, irrespective of their resolution (since for VGGFace2
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there is no concentration of failures for low-resolution images like for ArcFace).

They are shown in Figure 4.18. Almost every face shown is the result of an

annotation error. The first five images are wrong boxes, where either the

box does not surround the face correctly, or there is not even a face in the

image. The 6th and 7th images (second row, columns 2 and 3) contain the

wrong person, the interviewer instead of José Manuel Barroso. The next 3

images are more annotation errors and do not contain any face. The face in

row 3, column 3 is the only correct face, despite containing some artifacts

at the bottom which might have influenced the result. Moreover, the video

in question has very low resolution, and the person (Piedad Córdoba) is not

easily recognized. Then we have 2 more wrong boxes, and then the final 3

images also contain the wrong person: the interviewer instead of Élisabeth

Guigou.

Another interesting question is whether there are some specific identities

that are harder to recognize. To verify that, I computed the average AP for

all the 74 identities in the test set, for configurations 51, 52 and 53. The

results are shown in Figure 4.19. Most of the identities have a mean AP

higher than 90%, and only one (for VGGFace2) or two (for ArcFace) have a

MAP lower than 70%. The worst-recognized identity for VGGFace2 contains

many low resolution query images and the identity sometimes wears sunglasses;

moreover, there seems to be some notable age difference between the various

videos of this person, which might contribute to his lower score. Example faces

from this identity are shown in Figure 4.20a. This is also one of the two worst

identities for ArcFace; the other one is shown instead in Figure 4.20b. We can

see that he often wears sunglasses, which might again be a factor of its worse

performance.

In conclusion, we can see that the pipeline performs reliably even on

unseen identities, with MAP reaching over 97% for the best performing

configuration. Together with the relative time efficiency, discussed in Section

4.3.4.2, the pipeline performed well enough to be integrated into a prototype

version of TVBridge. The TVBridge integration will be briefly discussed in
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Figure 4.18: The 16 query image faces which gave the lowest AP for VGGFace2.

Images have been resized to be 256 pixels wide. We can see that most of the

images are annotation errors. More details are provided in the main text.

(a) Conf. 51 (VGGFace2) (b) Conf. 52 (ArcFace –

RN-50)

(c) Conf. 53 (ArcFace –

RN-101)

Figure 4.19: Distribution of the average per-identity AP for the three

configurations tested on the test set. Only one or two identities produce a

MAP lower than 70%.
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(a) (b)

Figure 4.20: Sample images from the two worst performing identities in the

test set. VGGFace2 obtains less than 70% MAP only on identity (a), while

ArcFace (both ResNet-50 and ResNet-101 versions) on both identities (a) and

(b).

the next section.

4.4 TVBridge implementation

As discussed at the start of the chapter, TVBridge is a platform that

allows a broadcaster to enrich TV programs with second-screen content. Each

unit of multimedia content is called a bridget. TVBridge contains various

integrated components, one of which is the authoring tool (AT), which is the

one in which I integrated the face-based video retrieval pipeline.

The pipeline was hosted on an Amazon AWS machine equipped with an

NVIDIA T4 Tensor Core GPU with 16 GB of GPU memory. I implemented

a Python RESTful web service which accepts requests to add and delete

videos from the face feature database, and to perform queries on it. Since the

TVBridge AT is user-based, a separate face feature database is constructed for

each user, in order to avoid cross-searches. I used the dramatiq Python library

[332] to manage a set of parallel workers to process the feature extraction and

query requests, which can be done concurrently. A subset of the workers is

exclusively dedicated to database querying, in order to avoid a situation in

which all the workers are busy with long-running extraction processes and
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leave the user waiting for a long time for the query results.

Figure 4.21 exemplifies the system architecture when a user uploads a

new video to the TVBridge AT and when the user performs a query. When

the user uploads a new video (1) to the TVBridge AT, the AT asks the FBVR

service to extract the features from it and sends it the new video (2). The

request is put in a queue of tasks and when a worker assigned to the feature

extraction process is ready, it processes the request and saves the features to

the database related to the user that uploaded the video (3). When the user

wants to search for videos containing a specific face, he uses the AT interface

to select the face from a frame of the TV program he is working on (1), the

AT asks the FBVR service to perform a query using that face, attached to

the request (2). The request is put in a queue of tasks and when a worker

assigned to the querying process is ready, it runs the query (3) and returns

the result to the AT20 (4), which presents it to the user (5). The results are

thresholded (I set the matching score threshold to 0.6). In order to help the

user to quickly locate the person of interest in the result videos, the list of

shots is also returned to the AT, which presents the user with the option to

quickly jump to each of those shots.

The prototype interface is shown in Figure 4.22. First, the user selects

Search by face in the video selection box while editing a bridget (Figure

4.22a). The interface shows the currently selected frame and allows the user

to manually draw a rectangle around the face of interest (Figure 4.22b). The

user clicks Search and in a few tenths of a second the AT shows the list of

videos that match the query (Figure 4.22c). The user can click the thumbnail

to watch the video and he can click on one of the shots listed on screen to

quickly jump to a shot containing the person of interest (Figure 4.22d). The

user can then examine each video and easily choose the one to include in the

bridget.

20In the prototype I have implemented, the AT polls the FBVR service in order to check

the query status (which can be queued, in process, successful, or failed), and, once the query

is successful, performs a separate HTTP request to fetch the results.
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User TVBridge
AT

FBVR
service

1: Upload video 2: Transfer video 3: Extract features
and update
database

Adding a new video to database

User TVBridge
AT

FBVR
service

1: Select face 2: Transfer face

3: Query the
database

Querying the database

4: Return results5: Present results

Figure 4.21: Integration of the FBVR pipeline into the TVBridge system. The

upper section shows the video upload process, while the lower section shows

the query process.
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(a) (b)

(c) (d)

Figure 4.22: Interface to run a FBVR query in TVBridge. More details are

provided in the main text.
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4.5 Conclusion and future directions

I presented a novel pipeline for the task of face-based video retrieval

on large-scale unconstrained multi-shot video datasets, with an application

to a real-world commercial system, TVBridge. The pipeline includes shot

detection, face detection, tracking and recognition, and feature aggregation,

and presents a query protocol to perform video retrieval. I also built a

large-scale video dataset for the proper evaluation of face-based video retrieval,

derived from the VoxCeleb2 dataset, since existing datasets were not large and

varied enough, or were not appropriate for an end-to-end evaluation of the

proposed pipeline. I also briefly described how the algorithm was integrated

into TVBridge.

The pipeline was able to efficiently analyze challenging videos and

perform fast queries on databases containing features extracted from thousands

of videos. It reached a Mean Average Precision of 97.25% over more than

23,000 queries on videos with unseen identities. I also compared a variety of

approaches and network models for each step of the pipeline, and described the

pros and cons of each model, highlighting the tradeoffs in terms of accuracy

and time/memory efficiency, especially in the context of an integration in

TVBridge.

However, the pipeline still has room for improvement. For example,

one possible future line of research is the investigation of an efficient

implementation of feature quantization, which can be useful for systems with a

large number of users, for which space usage optimization is fundamental, and

query execution time is even more important. Another unexplored route is the

use of hashing strategies in order to reduce the query time complexity from

linear (in the number of database feature vectors) to constant (on average);

as we have seen, many hashing strategies exist in the literature, each of which

may work differently depending of the type of features and the network used

to extract them.

In addition to that, different tracking algorithms could be explored
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in order to help the feature aggregation process to produce more stable

descriptors. Different aggregation strategies might also be investigated, by

changing both the clustering algorithm and the feature merge process itself,

with a smarter weighting of the feature vectors in the averaging process, in

order to exclude outliers. A fast online clustering algorithm might also be

investigated, with the aim to implement an efficient inter-video clustering

process, that can help with accuracy in some cases, as we have seen.
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Conclusion

Deep learning has seen increasing popularity in the analysis of large

amounts of complex data. Recently, it has been employed in many tasks

related to video analysis. In particular, this thesis focused on the use of deep

learning for multiple object tracking and face-based video retrieval.

Regarding MOT, I presented an extensive survey of the various trackers

in the literature that employed deep learning models in their pipeline. I

identified four steps that are shared by the majority of MOT algorithms:

object detection, feature extraction and motion prediction, affinity/distance

computation, and association. Each deep learning technique was then

categorized based on these four steps, describing the different algorithms that

employed it successfully. I also collected and presented the experimental

results obtained by many of the described algorithms on the three main

MOTChallenge datasets, discussing advantages and disadvantages of the most

used techniques and identifying promising future lines of research.

For the task of face-based video retrieval I presented a novel pipeline

for the retrieval on unconstrained, multi-shot videos in large-scale video

datasets. The pipeline obtained 97.25% MAP on more than 1,000 unseen

videos. Since, to the best of my knowledge, no existing dataset in the literature

was appropriate for an end-to-end evaluation of the proposed pipeline in the

context of television/media videos, I built an evaluation dataset, starting from

the existing VoxCeleb2, that contained more than 5,000 videos with variable
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length, resolution, quality, number of shots and of people. I compared a

variety of strategies and models for each of the main steps of the pipeline,

such as shot detection, face detection, face feature extraction and aggregation.

I also described how the pipeline was integrated into a prototype version of

TVBridge, in order to aid the broadcaster editor in the process of searching for

videos to include in second-screen content (i.e. the bridgets). Finally, I also

presented some possible future directions of research to improve the pipeline

performance, both in terms of accuracy and time/memory efficiency.
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Experiments on a customized

MOT tracker

Following the findings of the survey presented in Chapter 3, I performed

some preliminary experiments on MOT algorithms, in collaboration with the

aforementioned team from the Universidad de Granada. The goal was to try to

improve the performance of current MOT algorithms by accounting for various

key observations described in Section 3.7. In particular, we wanted to solve

the excessive reliance of MOT trackers on the quality of detection. Given the

successes of SOT-based MOT trackers, we decided to apply a series of changes

to one of them, specifically the DMAN tracker [137]:

❼ the use of an improved SOT tracker;

❼ the use of bidirectional tracking (the algorithm would not run in an online

setting anymore, but in batch mode);

❼ the use of higher-quality detections.

As we will see, however, the experiments did not produce the expected results.

For this reason, I did not include this section in the main text of the thesis,

and just summarize the main experiments and results here.
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A.1 DMAN with different SOT algorithms

We performed the first experiments on the MOT16 training set. The

reason why we did not start by using the test set was that in order to evaluate

an algorithm on the test set, its predictions have to be submitted on the

MOTChallenge website. However, MOTChallenge limits the frequency of

sumbissions in order to avoid fine-tuning models on the test set.

We chose to replace the ECO tracker [84] from the original DMAN

algorithm with two possible SOT trackers: ATOM [333] and DIMP [334],

the latter both in the ResNet-18 and ResNet-50 versions (which I will refer to

as DIMP18 and DIMP50).

Testing the original DMAN with ECO on the private detections provided

by [64] resulted in a MOTA of 54.3%. Replacing ECO with ATOM, DIMP18

and DIMP50 resulted in 46.8%, 46.1% and 47.9% MOTA, respectively.

We decided to add a localization correction strategy by adjusting the

predicted location of a tracklet using the detections, whenever the IOU between

the predicted location and a detection was higher than a threshold and the

detection had a specific aspect ratio (to avoid considering false detections).

If no matching detection was found, the track status was not changed. This

resulted in an improvement over the original results, obtaining 53.1% MOTA

with ATOM, 52.6% with DIMP18 and 53.1% with DIMP50.

A further improvement was made by re-initializing the tracker status

every time a track was recovered after occlusion, in order to remove older

appearance and motion information. This further improved the performance,

resulting in 54.0% MOTA for ATOM, 53.7% for DIMP18 and 53.9% for

DIMP50. However, these results were still worse than the 54.3% obtained

by the original DMAN.

A.2 Bidirectional tracking experiments

We implemented a batch version of the algorithm that performed tracking

in both directions. We hoped that integrating bi-directional information could
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help reduce the number of false negatives.

The algorithm was run first in the normal “forward” direction, and then

backwards, i.e. by feeding it the video frames in reverse temporal order,

starting from the end of the video. After the two runs, the results were merged

to obtain the final tracks.

We implemented various association strategies, including a one-step

“naive” association, performed using the Hungarian algorithm with IOU and

box size ratio used as cost functions; a multi-step “naive” association, where

multiple rounds of tracklet merging were performed; and an appearance-based

association, where the DMAN was used to compute affinities between the

tracks. We also used a hill climbing strategy in order to choose the best

hyperparameters for the merging step, including IOU thresholds, track overlap

thresholds, the use of a short track filter, the weight of IOU-based and

appearance-based affinities in the cost matrix for the Hungarian algorithm,

and so on.

In addition to testing the algorithm on the MOT16 training set, we also

tested it on a custom subset of the training set of MOT15, which excluded

videos that were used to train the DMAN. Moreover, we also performed

tests using the lower-quality public detections included with both datasets.

However, results were underwhelming. In general, false negatives were reduced,

as expected, but this improvement was negated by a corresponding increase

in false positives. The result was that the merged trajectories were either

worse, or just marginally better than the unmerged ones. In particular, merged

trajectories were only able to improve the MOTA score on the MOT16 training

set. In order to test if the improvement was also reflected on the test set, we

submitted results on the MOT16 test split to the MOTChallenge evaluation

server. However, our modified algorithm obtained a MOTA score which was

between 6 and 8% lower than the original DMAN algorithm. Tests on the

subset of the MOT15 dataset also resulted in underwhelming results, with the

merging strategies worsening the original result by no less than 3% MOTA.
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Summary table of DL-based

MOT algorithms

The following is a summary table for all the algorithms described in

Section 3.5 for which the four described stages can be identified (i.e. excluding

algorithms from Section 3.5.5). The papers are listed by roughly following the

order in which they were presented in the main text (note that some papers

appear in multiple sections). Besides describing the algorithms used for each

of the four steps, a link to the source code or any other useful data is also

provided, where available. This table was also published in [36].
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Detection Feature extr. / mot.

pred.

Affinity / cost

computation

Association / Tracking Mode Source and

data

[61] Faster R-CNN Kalman filter IoU Hungarian algorithm O Source

[64] Modified Faster

R-CNN

Modified GoogLeNet,

Kalman filter

Cosine distance + IoU Hungarian algorithm

(online), modified H2T

[111] (batch)

O+B Detections

and

appearance

features

[81] Faster R-CNN CNN (app.),

AlphaPose CNN, pose

joints velocities,

interaction grid

Pose-based Triple

Stream Network

(LSTM-based)

Custom algorithm O

[82] Faster R-CNN CNN Euclidean distance,

cosine distance

Multifeature fusion

re-tracking algorithm

B

[83] CNN HOG + Colour Names Variation of

Discriminative

Correlation Filter

Custom algorithm +

Hungarian algorithm

O

[90] SSD SSD, LSTM Cosine similarity Hungarian algorithm O

[87] SSD SSD RNN Hungarian algorithm,

MLP (track scores)

O

[88] SSD SSD + Correlation

Filter

IoU + APCE Hungarian algorithm O

[80] Public / Mask

R-CNN

Siamese Mask R-CNN App. affinity, mot.

consistency, spatial

structural potential

Tensor-based

high-order graph

matching

O Code will

be released
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[91] YOLOv2 Tiny Yolo, Particle

filter, Random Ferns,

KLT

Pairwise overlap ratio,

student Random Ferns,

Euclidean distance

Greedy bipartite

assignment

O

[92] RRC or SubCNN Feature-based

odometry, Pose

Adjustment CNN,

stacked-hourglass CNN

3D-2D cost + 3D-3D

cost + appearance,

shape and pose costs

Hungarian algorithm O Source

[95] DPM or Tiny

(CNN)

DPM or Tiny (CNN) Implicit in Reverse

Nearest Neighbour

Reverse Nearest

Neighbour Matching

O Code will

be released

[97] ViBe + SVM +

CNN

IoU Region Matching

algorithm

O

[101] Multi-task

Network Cascades

(CNN)

Optical flow Overlap of

segmentation instances

Hungarian algorithm O

[106] Dalal-Triggs

detector

Autoencoders SVM Minimum spanning

tree

O

[108] Public CNN + PCA Multi-Output

Regularized Least

Squares

Variation of Multiple

Hypothesis Tracking

O Source
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[117] Public CNN, Kalman Filter Multi-Output

Regularized Least

Squares + Kalman

Filter +

detection-scene score

Maximum Weighted

Independent Set

B

[118] Public R-CNN Observation cost +

transition cost +

birth-death cost

Min-cost multi

commodity flow

problem, solved with

Dantzig-Wolfe

decomposition

O

[119] DoH [335] CNN CNN + Kalman filter Custom algorithm,

SVM

B

[69] From [64] Kalman filter, Wide

Residual Net

Mahalanobis dist.

(mot.) + cosine

distance (app.), IoU

Hungarian algorithm O Source

[70] From [64] CNN appearance + motion

+ dynamic affinity

Hungarian algorithm O

[126] Public CNN Bilinear LSTM Variant of MHT-DAM

[108]

B

[120] Public /

SDP+RPN

CNN Appearance + motion

+ shape affinities

Hungarian algorithm O Source
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[122] Public GoogLeNet CNN App. similarity Bayesian inference

using [336]

B

[123] Public / Faster

R-CNN

GoogLeNet CNN Recurrent

Autoregressive

Networks (GRU-based)

Bipartite graph

matching

O

[128] Public CNN Hybrid Likelihood

Function

(Discriminative

Correlation Filter +

Gaussian Mixture

Probability Hypothesis

Density)

Hungarian algorithm O

[124] Public CNN app. + HSV histogram

+ motion similarities

Pairwise update

algorithm + SSVM

B Will be

available at

this link

[125] Public GoogLeNet CNN,

Optical flow

Distance between app.

features, common

superpixels, optical

flow predictions

Multiple Hypotheses

Tracking

B

[127] Public CNN LSTM (app.) +

motion affinity

Batch

Multi-Hypothesis

B
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[79] Public / From [64] DeepCut CNN [113],

StackNetPose CNN

StackNetPose CNN Lifted multicut

problem, solved as in

[163]

B Source

[131] Public Siamese CNN Euclidean distance

(app. feat.) + IoU +

box area ratio

Custom greedy

algorithm

O

[132] DPM Siamese CNN with

temporal constraints

Mahalanobis distance

(app. feat.) + motion

affinity

Generalized Linear

Assignment solved

with Softassign [337],

Dual-threshold

strategy [338]

B

[133] HeadHunter [339] CNN Euclidean distance

(app. feat.), temporal

and kinematic affinities

Hungarian algorithm,

Agglomerative

clustering

B Source

[134] Public Siamese CNN,

contextual features

Gradient Boosting Linear programming B

[136] Public CNN, sequence-specific

statistics, optical flow,

FC layers

FC layer combining

app. and mot.

distances

Minimax label

propagation

B

[142] Public CNN + various app.

and non-app. feat.

embedding layer +

bidirectional LSTM

Variation of Multiple

Hypothesis Tracking

B
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[137] Public Linear motion model,

Spatial Attention

Network CNN

Temporal Attention

Network (bidirectional

LSTM)

Custom greedy

algorithm, ECO (SOT

tracker)

O Source

[144] Public Siamese CNN, LSTM,

WRN CNN, Siamese

Bi-GRU + CNN

Euclidean dist. (app.

feat.), spatial distance,

GRU feature matching

Hungarian algorithm,

bi-GRU RNN (track

split), custom

algorithm

B

[138] Public DCCRF,

visual-displacement

CNN

Visual-similarity CNN,

IoU

Hungarian algorithm O

[139] Public R-FCN + Kalman

Filter, GoogleNet

Eucl. dist. (app.

feat.), IoU

Hierarchical Data

Association

O Source

[140] Public Feature Pyramid

Siamese Network,

motion features

Feature Pyramid

Siamese Network

Custom greedy

algorithm

O

[145] Public Kalman Filter,

GoogLeNet

Distance between

sparse coding of

features using a

learned dictionary

Hungarian algorithm B

191

https://github.com/jizhu1023/DMAN_MOT
https://github.com/longcw/MOTDT


A
P
P
E
N
D
IX

B
.

S
U
M

M
A
R
Y

T
A
B
L
E

O
F

D
L
-B

A
S
E
D

M
O
T

A
L
G
O
R
IT

H
M

S

Detection Feature extr. / mot.

pred.

Affinity / cost

computation
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[147] Public 3 LSTMs (app., mot.,

interaction features)

using CNN, bb

velocity, occupancy

map

LSTM Hungarian algorithm,

SOT tracker [155]

O

[148] Public Linear motion model,

CNN

CNN Association to highest

classification score

O

[115] Manually

generated

Hidden Markov

Models, CNN

Mutual information

(app. feat.)

Dynamic programming

algorithm from [336]

B

[149] Public LK optical flow,

Convolutional

Correlation Filter

CNN, Kalman filter

Optical flow aff., app.

feat. aff., IoU, scale

affinity, distance

between detections

Custom algorithm

(with Hungarian alg.)

O Source

[152] Public Kalman filter + Deep

RL agent

IoU Hungarian algorithm

+ Deep RL agent

O

[153] N/A LSTM (mot.) Stitching score using

IoU

Custom iterative

tracklet-stitching

algorithm

B

[154] Public RNN (mot.) LSTM RNN O Source

[156] Public 2 LSTMs, VGG16

CNN

SVM, Siamese LSTM Greedy association B
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[71] From [64] Kalman filter or LK

optical flow, CNN +

motion features

IoU, Siamese LSTM Hungarian algorithm B

[157] Public FC layers +

Bi-directional LSTM

Hungarian algorithm O

[165] Public / from [166]

(combines DPM,

SDP and ACF)

Modified Faster

R-CNN

Modified Faster

R-CNN

Particle filter O

[167] Public DeepMatching,

Siamese CNN

Edge potential as in

[168], Siamese CNN

Lifted multicut B

[169] Public CNN (motion pred.),

part of MDNet (CNN)

N/A Deep RL agents O

Table B.1: Summary of the methods described in section 3.5. In each column, the approach for each paper in that step is shown.

app. means appearance, mot. means motion, feat. means features, pred. means prediction; O and B in the Mode column indicate

Online and Batch methods respectively. Text in the last column is clickable and contains links to the specified data.
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Appendix C

TransNet experiments

In this appendix I will briefly describe two strategies I tested in order to

improve the shot detector performance and to check if it might have a bigger

impact on the overall pipeline MAP score.

First, I used the ClipShots dataset [316] in order to fine-tune TransNet on

this newer, bigger-scale shot detection dataset. Second, I tried implementing

the use of a double thresholding strategy to better differentiate between cut

and gradual transitions and see if that could improve the performance. The

next two sections will briefly describe the two experiments. A discussion of

the results in the context of the main pipeline can be found in section 4.3.

C.1 Fine-tuning on ClipShots

ClipShots [316] is a new large-scale dataset specifically designed for

training and testing shot detector algorithms. It contains 128,636 cut

transitions and 38,120 gradual transitions from 4039 videos from YouTube

and Weibo. 3539 videos are part of the training set, while the remaining 500

are used as test set. I used 75% of the training videos as actual training and

the remaining 25% as validation videos, in order to choose the best model

epoch and threshold σ, used to declare a frame as being part of a transition

or not.

As evaluation metric, I used the F1 score, following the literature. It is

194



APPENDIX C. TRANSNET EXPERIMENTS

computed as

2 ·
p · r

p+ r
,

where p and r are the precision and recall, respectively, computed in the

usual way. Like previous works [316, 311], a true positive transition is one

which overlaps with a ground truth transition, a false positive transition is

one which does not overlap with any ground truth transition or overlaps only

with a ground truth transition that was already matched to another predicted

one; finally, a false negative transition is a ground truth transition with no

overlapping predicted transition.

The original model, trained by the authors on TRECVID videos with

some synthetic transitions, obtains 73.41% F1 score on the ClipShots test set.

In the first training experiment I used the same exact hyperparameters

and training strategy described in the original TransNet paper [317], and I

trained the model for 20 epochs, considering that ClipShots is a much bigger

dataset than the one used in the original TransNet paper, and that we are

fine-tuning the network, not training from scratch; however, while the best

combination (6th epoch weights, σ = 0.1) obtained a good 86.23% F1 score

on the validation set, this result did not translate well on the test set, with

only 68.53% F1 score, a worse result than the original model. Freezing the first

layers of the pretrained weights led to even worse results, so I fine-tuned the

entire network in the following experiments.

The authors of TransNet trained the original network by setting as

positive only the middle frame of each transition. I experimented with

changing that by setting as positive every frame belonging to a ground truth

transition. This seemed to lead to better results: stopping fine-tuning at

epoch 5 and using σ = 0.6 (computed on the validation set), the network

obtained 74.61% F1 score on the test set, an improvement of 1.2% over the

original model. This is the TransNet (ClipShots) model included in Table 4.3

in Section 4.3.
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C.2 Double thresholding experiments

Frames belonging to gradual transitions tend to have a smaller difference

between them. For this reason, in order to correctly detect gradual transitions,

the threshold σ must be kept relatively lower, so as to capture these smaller

differences. However, this introduces some false positive cut transitions, when

some isolated frames overcome the low threshold. To solve that, I decided to

implement a double thresholding strategy, according to which cut transitions

are predicted only if above a higher threshold σhigh, while gradual transition

frames are detected only when there are at least lmin consecutive frames with

a predicted transition score above σlow.

I ran a grid search over σlow, σhigh, lmin and the number of

training epochs, where both σlow and σhigh were chosen from the set

{0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, with the constraint that

σlow < σhigh, and lmin was chosen from the set {3, 5, 10, 20}.

The grid search on the fine-tuned weights returned a F1 score of 74.13%

on the ClipShots test set, using the best combination of hyperparameters

obtained on the validation set: σlow = 0.2, σhigh = 0.5, lmin = 10 and the

weights obtained after the 5th epoch of fine-tuning. This is a worse result

than using the standard single-value threshold σ, which gives 74.61% F1, as

seen in the previous section.

Running the grid search using the original weights led instead to an

improvement. The best hyperparameters turned out to be σlow = 0.01, σhigh =

0.1 and lmin = 3 (note that the original threshold used by the TransNet authors

was σ = 0.1). The F1 score on the test set was 73.71%, a slight improvement

of 0.3% over the original version, which obtained 73.41%. This is the TransNet

(double thr.) model mentioned in Table 4.3 in Section 4.3.
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[135] Laura Leal-Taixé, Gerard Pons-Moll, and Bodo Rosenhahn.

“Everybody needs somebody: Modeling social and grouping behavior

on a linear programming multiple people tracker”. In: 2011 IEEE

international conference on computer vision workshops (ICCV

workshops). IEEE. 2011, pp. 120–127.

211



REFERENCES

[136] Jeany Son et al. “Multi-object tracking with quadruplet convolutional

neural networks”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2017, pp. 5620–5629.

[137] Ji Zhu et al. “Online multi-object tracking with dual matching attention

networks”. In: Proceedings of the European Conference on Computer

Vision (ECCV). 2018, pp. 366–382.

[138] Hui Zhou et al. “Deep continuous conditional random fields with

asymmetric inter-object constraints for online multi-object tracking”.

In: IEEE Transactions on Circuits and Systems for Video Technology

(2018).

[139] Chen Long et al. “Real-time Multiple People Tracking with Deeply

Learned Candidate Selection and Person Re-identification”. In: ICME.

2018.

[140] Sangyun Lee and Euntai Kim. “Multiple Object Tracking via Feature

Pyramid Siamese Networks”. In: IEEE Access 7 (2019), pp. 8181–8194.

[141] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with

50x fewer parameters and¡ 0.5 MB model size”. In: arXiv preprint

arXiv:1602.07360 (2016).

[142] Andrii Maksai and Pascal Fua. “Eliminating Exposure Bias

and Loss-Evaluation Mismatch in Multiple Object Tracking”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (2019).

[143] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In defense

of the triplet loss for person re-identification”. In: arXiv preprint

arXiv:1703.07737 (2017).

[144] Cong Ma et al. “Trajectory factory: Tracklet cleaving and re-connection

by deep siamese bi-gru for multiple object tracking”. In: 2018 IEEE

International Conference on Multimedia and Expo (ICME). IEEE.

2018, pp. 1–6.

212



REFERENCES

[145] Mohib Ullah et al. “A hierarchical feature model for multi-target

tracking”. In: 2017 IEEE International Conference on Image Processing

(ICIP). IEEE. 2017, pp. 2612–2616.
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