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Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) are, together with 

Traditional Speciality Guaranteed (TSG), the instruments created by the European Union (EU) to protect 

Geographical Indications (GIs) within the European framework as indications which identify a good as 

originating in a specific location, where a given quality, reputation or other characteristic of the good is 

essentially attributable to its geographical origin. Food products with a protected geographical status 

distinguish from other similar products of the same category for the link with the region they originate from. 

Despite the improvement this quality scheme provided to the protection of unique foodstuff, the threat of food 

fraud is still present and sophistication of adulteration of food products is making the utilization of the most 

advanced technologies compulsory for labelled food product protection. Mass spectral characterization of food 

materials has advanced rapidly in the past few years, mostly due to the development and now routine 

availability of electrospray ionization (ESI). However, it is now clear that food products exist as complex 

mixtures and High resolution Electrospray Ionization Fourier transform—Ion Cyclotron Resonance Mass 

Spectrometry (ESI FT-ICR MS) at high magnetic fields is currently a techniques capable of resolving 

thousands of individual molecules in few minutes. In this work, a Mass Spectrometry-based phytochemical 

screening was performed on several traditional food products produced in the Basilicata region (Italy) labelled 

with geographical indication marks of quality. High Resolution ESI-FT-ICR MS data obtained from food 

sample analyses were used to perform a rapid evaluation of metabolome by converting accurate m/z values in 

putative elemental formulas. Molecular formula maps, or molecular fingerprints, were obtained by making 2D 

Van Krevelen plots, that lead to a direct identification of different classes of metabolites. The presence of 

important metabolite classes, i.e. fatty acid derivatives, tannins, amino acids and peptides, carbohydrates and 

polyphenolic derivatives, was assessed. Moreover, differences among Van Krevelen plots could be noticed 

from their direct comparison, thus reflecting differences in promoted biochemical pathways and suggesting 

the presence of biomarkers, that can eventually be identified by a target approach. Thus, molecular fingerprints 

prove to be an innovative tool that could be useful for food authentication and traceability.  
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Geographical indications (GIs) are a key economic asset for the EU, and Italy has 876 GI-protected products 

exalting the agricultural sector, promoting worldwide the Italian culture of “well-eating and well-being” [1]. 

EU quality schemes aim at protecting the names of specific products to promote their unique characteristics, 

linked to their geographical origin as well as know-how of the region and were develop to meet the increasing 

consumer demand for safe and high quality products, understanding quality as the sum of features, 

characteristics, and properties of a product, which bear on its ability to satisfy stated or implied needs. The 

World Intellectual Property Organization (WIPO) defines a geographical indication (GI) as “a sign used on 

goods that have a specific geographical origin and possess qualities, a reputation, or characteristics that are 

essentially attributable to that origin” [2]. At present, no “worldwide” GI right exists. As explained by the 

WIPO, “intellectual property rights are governed by the ‘territoriality principle’. The effects of a right obtained 

in a particular jurisdiction are limited to the territory of that jurisdiction. At the end of the 20th century, the 

European Union (EU) recognized and supported the potential of differentiating quality products on a regional 

basis. The first regulation on geographical indications was adopted in the EU in 1992, to harmonize diverse 

protection instruments existing in some Member States and to create a system of registration and protection of 

names compatible with the single common market. Since then, EU law lays down stringent requirements 

guaranteeing the standards of all European products. The distinctiveness of protected productions is ensured 

by dedicated consortia, which state rigorous production regulations. Technical reports clearly describing the 

link with the territory, intended as the correlation between the geographical area and the characteristics of the 

product, and truthful information for guarantee rights and awareness of consumers should be provided [3]. The 

EU has created three labels regarding Protected Designation of Origin (PDO), Protected Geographical 

Indication (PGI), and Traditional Specialty Guarantee (TSG). Those schemes encourage diverse agricultural 

production, protect product names from misuse and imitation, and help consumers by giving them information 

concerning the specific character of the labelled products. PDO covers agricultural products and foodstuffs 

which are produced, processed, and prepared in a given geographical area (a specific place, region, or, in 
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exceptional cases, a country) using recognized know-how, whose quality or characteristics are essentially or 

exclusively due to a particular geographical environment with its inherent natural and human factors and the 

production steps which all take place in the defined geographical area. PGI protects agricultural products and 

foodstuffs closely linked to the geographical area (a specific place, region, or country), whose given quality, 

reputation, or other characteristics are essentially attributable to its geographical origin, and at least one of the 

stages of production, processing, or preparation takes place in the defined geographical area. TSG indicates 

the traditional character of food, either in the composition or means of production. It describes a specific 

product or foodstuff that results from a mode of production, processing, or composition corresponding to 

traditional practice for that product or foodstuff or is produced from raw materials or ingredients than are those 

traditionally used. GI work as product differentiators on the market by enabling consumers to distinguish 

between products with geographical origin-based characteristics and others without those characteristics. 

Usually, the price of such GI products is higher than those without GI, as it is necessary to have accurate 

methods for distinguishing them because financial incentives continue to drive retailers/resellers to misidentify 

the geographic origin of commodities and food products. The use of analytical techniques to determine the GI 

of food products is the best way to avoid adulterations and mislabelling after the incorporation of food to the 

market [4]. Strategies employed to detect adulterated or mislabelled products have relied on instrumental 

techniques mainly because of the sophistication of fraudulent procedures. Since the content of selected 

minerals and trace elements clearly reflects the soil type of a cultivation area and the environmental growing 

conditions for food productions [5], evaluation of trace element content has been proposed as one of the 

selected approaches to assure the geographical origin of food samples. In this context, techniques like 

Inductively Coupled Plasma Optical Emission spectroscopy (ICP–OES) and Mass Spectrometry (ICP-MS) 

were employed extensively since up to 60 elements can be screened per sample run in less than one minute 

and trace element composition can be determined in a variety of aqueous or organic matrices [6]. However, 

the main drawbacks of ICP-MS and ICP-OES are the expensive instrumentation and operation costs, the 

requirement for trained operators, and in most cases, the need of sample pre-treatment steps, which frequently 

includes the complete mineralization of samples. Apart from element analysis, screening and quantification of 

organic compounds was employed for food authentication and traceability, providing satisfying results. In this 

context, metabolomics played a crucial role in the protection of labelled food products, since through this 

approach multiple metabolites with features of discrimination and prediction were identified and quantified 

[7]. Spectroscopic techniques like UV/Vis and Near and Middle Infrared Spectroscopy were employed to 

examine global parameters or indexes which depend on the content of a single molecule or a specific metabolite 

family, such as the anisidine value in the quality of edible oils, being defined as the absorbance of a solution 

of a fat sample containing aldehydes which have reacted with p-anisidine, the process of fat deterioration by 

the peroxide value, or the general color, determined by the saturation of chlorophyll or carotenoid pigments, 

among others [8]. On the other hand, 1H NMR is a suitable way to simultaneously determine multiple 

compounds belonging to specific metabolite classes. For instance, profiles generated using 1H NMR, together 

with the utilization of multivariate statistical techniques, were employed to characterize Corsican honey [9]. 
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Despite the advantages provided by the utilization of spectroscopic techniques, such as completeness of 

information in single spectra, several drawbacks, like low sensitivity and specificity, hamper the use of these 

methods for routine analysis.  Separation techniques, like gas and liquid chromatography (GC and LC, 

respectively), provide higher levels of sensitivities and specificities in organic molecule analysis, leading to 

the separation of single components of a complex matrix. Moreover, coupling with Mass Spectrometry makes 

possible the obtainment of important structural information to shed light on analyte structures. These 

advantages allow to identify low concentration key markers unique for a certain labelled food product and to 

obtain important clues on their identity. For instance, separation and detection of fatty acids and 

triacylglycerols, sterols, and aroma have been used for the authentication of food [10–12]. LC has been 

extensively used in food analysis for measuring numerous compounds, e.g. carbohydrates, vitamins, additives, 

mycotoxins, amino acids, proteins, triglycerides, lipids, chiral compounds, and pigments [13]. On the other 

hand, GC is one of the most universal separation techniques used in food analysis, mainly for volatile and 

semivolatile composition studies, aromas, and pesticides [14]. Full scan LC and GC-MS analyses provided 

complex chromatograms that turned out to be very suitable as molecular fingerprints, i.e. unique patterns of 

metabolites that can be compared among each other for food authentication purposes [15]. Thus, utilization of 

hyphenated techniques could be thought as a milestone for metabolomic analysis and labelled food protection. 

However, these analyses are really time-consuming, with related analysis times that could span from 30-40 

minutes to hours, and cost demanding, needing high volumes of organic solvents to be employed [13]. For 

these reasons, during the last years, High-resolution (HR) Mass Spectrometry is becoming the technique of 

choice for sensitive and selective analysis of both known and unknown compounds. Outstanding levels of 

accuracy and resolution led to unequivocal identification of molecules, starting from their chemical formulas. 

Moreover, simple direct injection full scan HRMS spectra can be obtained in few seconds and could be used 

as molecular fingerprints since high sensitivity and resolution allows to distinguish potential markers without 

any need of prior separation [15–17]. These benefits could be provided even if sample treatment steps are 

reduced to a minimum. HRMS data could be used to trace molecular cartography of foodstuffs, i.e. real 

molecular maps rich in information about molecules proposed as unique marks for a specific food product, 

data obtained from various techniques must be transformed into suitable descriptors. The molecular annotation 

network obtained is then converted by using dedicated algorithms, into molecular maps, e.g. Van Krevelen 

diagrams recently used to define the metabolic fingerprint of foodstuffs [15,18]. Overall, HRMS can be thought 

as a promising technique to characterize food matrices and to expand the range of powerful analytical 

techniques to be used for quality assurance and protection of labelled foodstuffs. 
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2. Methodologies 
 

 

 

 

 

 

 

 

 

 

Mass spectrometry is an indispensable analytical tool in chemistry, biochemistry, pharmacy, medicine, and 

many related fields of science [1–9]. Mass spectrometry (MS) is employed to analyze combinatorial libraries 

[10,11], sequence biomolecules [12], and help explore single cells [13] or objects from outer space [14]. 

Structure elucidation of unknown substances, environmental and forensic analytes, quality control of drugs, 

foods, and polymers all rely to a great extent on mass spectrometry [2,3,8,15,16]. The information delivered 

by mass alone can be sufficient for the identification of elements and the determination of the molecular 

formula of an analyte. The relative abundance of isotopologues helps to establish which elements contribute 

to such a formula and to estimate the number of atoms of a contributing element. Under the conditions of 

certain mass spectrometric experiments, fragmentation of ions can deliver information on ionic structure. Thus, 

MS elucidates the connectivity of atoms within smaller molecules, identifies functional groups, determines the 

(average) number and eventually the sequence of constituents of macromolecules, and in some cases even 

yields their three-dimensional structure [17]. The basic principle of mass spectrometry (MS) is to generate ions 

from either inorganic or organic compounds by any suitable method, to separate these ions by their mass-to-

charge ratio (m/z) and to detect them qualitatively and quantitatively by their respective m/z and abundance 

[17,18]. The analyte may be ionized thermally, by electric fields or by impacting energetic electrons, ions or 

photons. The large variety of ionization techniques and their key applications can be roughly classified by their 

relative hardness or softness and (molecular) mass of suitable analytes [19]. A mass spectrometer consists of 

an ion source, a mass analyser, and a detector which are operated under high vacuum conditions. A closer look 

at the front end of such a device might separate the steps of sample introduction, evaporation, and successive 

ionization or desorption/ionization, respectively, but it is not always trivial to identify each of these steps as 

clearly separated from each other [17–20]. Nowadays, the instrument is always coupled with a data system 

which collects and processes data from the detector. Whereas other spectroscopic methods such as nuclear 

magnetic resonance (NMR), infrared (IRS) or Raman spectroscopy do allow for sample recovery, mass 

spectrometry is destructive, i.e., it consumes the analyte [17]. This is apparent from the process of ionization 

and translational motion through the mass analyser to the detector during analysis. Although some sample is 
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consumed, it may still be regarded as practically non-destructive, because the amount of analyte needed is in 

the low microgram range or even by several orders of magnitude below [17]. In turn, the extremely low sample 

consumption of mass spectrometry makes it the method of choice when most other analytical techniques fail 

because they are not able to yield analytical information from nanogram amounts of sample [21]. What a Mass 

Spectrometry analysis returns is a so-called Mass Spectrum, a two-dimensional representation of signal 

intensity (ordinate) versus mass-to-charge ratios (m/z, abscissa). The position of a peak, as signals are usually 

called, reflects the m/z of an ion that has been created from the analyte within the ion source [17,18,20]. The 

intensity of this peak correlates to the abundance of that ion. Often but not necessarily, the peak at highest m/z 

results from the detection of the intact ionized molecule, the molecular ion, M+• [17]. The molecular ion peak 

is usually accompanied by several peaks at lower m/z caused by fragmentation of the molecular ion to yield 

fragment ions. Consequently, the respective peaks in the mass spectrum may be referred to as fragment ion 

peaks [22]. The most intense peak of a mass spectrum is called base peak. In most representations of mass 

spectral data the intensity of the base peak is normalized to 100% relative intensity. This largely helps to make 

mass spectra more easily comparable. The normalization can be done because the relative intensities are 

basically independent from the absolute ion abundances registered by the detector. Usually, spectra are 

represented as a bar graphs or histograms. Such data reduction is common in mass spectrometry and useful as 

long as peaks are well resolved. The intensities of the peaks can be obtained either from measured peak heights 

and the position of the signal, i.e., the m/z ratio, is determined from its centroid [17]. 

2.1. Important features of Mass Spectra 

2.1.1. Isotopic Patterns 

As long as we are dealing with low molecular mass ranges, it is possible to separate ions which differ by 1 Da 

in mass. The upper mass limit for their separation depends on the resolution of the instrument employed. 

Consequently, the isotopic composition of the analyte is directly reflected in the mass spectrum – it can be 

regarded as an elemental fingerprint [23,24]. Even if the analyte is chemically perfectly pure it represents a 

mixture of different isotopic compositions, provided it is not composed of monoisotopic elements only. 

Therefore, a mass spectrum normally superimposes the mass spectra of all isotopic species involved [23,24]. 

The set of peaks relative to the same species with different isotopic content, known as isotopologues, is called 

isotopic pattern or distribution. While it may seem, at the first glance, to complicate the interpretation of mass 

spectra, isotopic patterns are in fact an ideal source of analytical information, since relative intensity of isotopic 

pattern peaks reflects elemental composition of related species [25]. For example, let’s consider a species 

whose chemical formula comprises only carbon atoms. As it can be noticed in Figure 1, the isotopic pattern 

changes by rising the carbon atom number: 
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Figure 1 Simulated isotopic pattern (calculated intensity of MS peaks versus the number of 13C atoms) of 

molecules with a different number of carbon atoms (adapted from [17]). 

 

In a more general way, carbon consists of 13C and 12C in a ratio r that can be written as r = c/(100 – c) where 

c is the abundance of 13C. Then, the probability to have only 12C in a molecular ion M consisting of w carbons, 

i.e., the probability of monoisotopic ions PM is given by [23]: 

𝑃𝑀 =  (
100 − 𝑐

100
)

𝑤

 

The probability of having exactly one 13C atom in an ion with w carbon atoms is therefore: 

𝑃𝑀+1 = 𝑤 (
𝑐

100 − 𝑐
) (

100 − 𝑐

100
)

𝑤

 

and the ratio PM+1/PM is given as: 

𝑃𝑀+1

𝑃𝑀
= 𝑤 (

𝑐

100 − 𝑐
) 

The ratio PM+1/PM reflects the one between the isotopologues M and M+1. Thus, by looking at relative intensity 

ratios, one can deduce the number of carbon atoms of the analysed species. 

As can be noticed, the equation to calculate probability of M+2, M+3, … isotopologues turns to higher level 

of complexity. Moreover, with a lower number of carbon atoms, M+2, M+3, … isotopologue intensities 

become lower and negligible, reflecting the very low probability related to extreme combinations. 

The presence of other di-or multi-isotopic elements, i.e. elements with more than one abundant isotope, 

together with high atom counts make the theoretical isotopic pattern calculation very complex, since one 

equation should be solved for every peak. Thus, two new methods were developed to simplify the process and 

are commonly used nowadays to obtain theoretical isotopic patterns given a specific chemical formula, i.e. the 

binomial and the polynomial approaches [23,26]. The former is used in case of the presence of a di-isotopic 

element into the chemical formula, like carbon, and consists in calculating isotopologues relative intensities as 

single terms of the expression (𝑎 + 𝑏)𝑛, where a and b are the isotopic abundances and n is the total atom 

count.  
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The latter, instead, is useful for the calculation of isotopic distributions of polyisotopic elements or for formulas 

composed of several non-monoisotopic elements. In general, the isotopic distribution of a molecule can be 

described by a product of polynominals: 

(𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑥)𝑛(𝑏1 + 𝑏2 + 𝑏3 + ⋯ + 𝑏𝑦)
𝑚

(𝑐1 + 𝑐2 + 𝑐3 + ⋯ + 𝑐𝑧)𝑙 …. 

where letters a, b, c, … correspond to elements, underscores relate to isotopes and n, m, l, … to the total atom 

counts. Once resolved the expression, obtained terms correspond to isotopologues relative intensities, just like 

for the binomial approach. Of course, with higher amount of multi-isotopic element and total atom counts, 

simplification of related polynomial expression is impossible by hand. For this, many computer software exist 

that are able to calculate very complex isotopic patterns in few milliseconds [26]. 

Calculation of isotopic patterns is very important in m/z formula assignment. Indeed, matching of theoretical 

and observed isotopic patterns reflects the same elemental composition, thus allowing filtering of incorrect 

formula candidates [25]. 

2.1.2. Resolution and Mass Accuracy 

The separation observed in a mass spectrum is termed mass resolution, R, or simply resolution. Mass resolution 

is given as the smallest difference in m/z (Δm/z) that can be separated for a given signal, i.e., at a given m/z 

value: 

𝑅 =
𝑚

∆𝑚
=

𝑚/𝑧

∆𝑚/𝑧
 

Accordingly, resolution is dimensionless [27,28]. The ability of an instrument to resolve neighbouring peaks 

is called its mass resolving power or simply resolving power. It is obtained from the peak width at a specific 

percentage of the peak height expressed as a function of mass, as it is shown in Figure 2: 

 

 

Figure 2 The 10% valley and full width at half maximum (FWHM) definitions of resolution (adapted from 

[17]). 
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Two neighbouring peaks are assumed to be sufficiently separated when the valley separating their maxima has 

decreased to 10% of their intensity [17,27]. Hence, this is known as 10% valley definition of resolution, R10%. 

The 10% valley conditions are fulfilled if the peak width at 5% relative height equals the mass difference of 

the corresponding ions, because then the 5% contribution of each peak to the same point of the m/z axis adds 

up to 10%. With the advent of linear quadrupole analysers, the full width at half maximum (FWHM) definition 

of resolution became widespread especially among instruments manufacturers. In principle, resolution is 

always determined from the peak width of some signal at a certain relative height and therefore, any peak can 

serve this purpose. Increasing resolution does not affect the relative intensities of the peaks, but increased 

settings of resolving power are usually obtained at the cost of transmission of the analyser, thereby reducing 

the absolute signal intensity [27]. 

Resolution is very close to another important aspect related to mass spectra, i.e. the mass measurement 

accuracy. In detail, the absolute mass accuracy, Δm/z, is defined as the difference between measured mass 

and calculated exact mass, i.e. the sum of monoisotopic masses of every atom of a chemical species [28]: 

∆𝑚/𝑧 = 𝑚/𝑧𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑚/𝑧𝐸𝑥𝑎𝑐𝑡 

In general, mass accuracy is reported as relative accuracy dividing the absolute accuracy by the calculated 

exact mass. This quantity is thus expressed in parts-per-million (ppm). Accuracy describes the deviation of the 

experimental value from the true value, however, in practice, one never deals with exact values, but to reference 

ones. Accuracy is high if the values from several measurements are close to the reference value.  

Higher mass measurement accuracies lead to the possibility to assign chemical formulas to observed ionic 

species [25,29,30]. With infinite accuracy, for example, one is able to assign a unique formula to each observed 

MS signal, in order to obtain important chemical information about identified analytes, like the presence of 

unsaturations and/or heteroatoms. In practice, it’s highly probable to deal with errors in the order of several 

ppm, depending on the utilized instrument, thus improving the number of possible formula candidate per MS 

signal [25]. 

High resolution and accurate mass measurements are closely related and depend on each other, because mass 

accuracy tends to improve as peak resolution is improved. Nevertheless, they should not be confused, as 

performing a measurement at high resolution alone does not equally imply measuring the accurate mass [28]. 

2.2. Ionization: fundamentals and common techniques 

Mass analyser of any mass spectrometer can only handle charged species, i.e., ions that have been created from 

atoms or molecules, occasionally also from radicals, zwitterions or clusters [19]. It is the task of the ion source 

to perform this crucial step and there is a wide range of ionization methods in use to achieve this goal for the 

whole variety of analytes. The classical procedure of ionization involves shooting energetic electrons on a 

gaseous neutral. This is called electron ionization (EI). Electron ionization has formerly been termed electron 
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impact ionization or simply electron impact (EI) [31,32]. When a neutral is hit by an energetic electron carrying 

several tens of electronvolts (eV) of kinetic energy, some of the energy of the electron is transferred to the 

neutral. If the electron, in terms of energy transfer, collides very effectively with the neutral, the energy 

transferred can exceed the ionization energy (IE) of the neutral. Then, from the mass spectrometric point of 

view, the most desirable process can occur, i.e. ionization by ejection of one electron generating a molecular 

ion, a positive radical ion [31]:  

M + e– → M+• + 2e– 

Depending on the analyte and on the energy of the primary electrons, doubly charged and even triply charged 

ions may be observed: 

M + e– → M2+ + 3e– 

M + e– → M3+• + 4e– 

While the doubly charged ion, M2+, is an even-electron ion, the triply charged ion, M3+•, again is an odd-

electron ion. In addition to the desired generation of molecular ions, several other events can result from 

electron-neutral interactions [17,19,31]. A less effective interaction brings the neutral into an electronically 

excited state without ionizing it. As the energy of the primary electrons increases, the abundance and variety 

of the ionized species will also increase, i.e., electron ionization may occur via different channels, each of 

which gives rise to characteristic ionized and neutral products. This includes the production of the following 

type of ions: molecular ions, fragment ions, multiply charged ions, metastable ions, rearrangement ions, and 

ion pairs [33,34]. The electron could also be captured by the neutral to form a negative radical ion. However, 

electron capture (EC) is rather unlikely to occur with electrons of 70 eV since EC is a resonance process 

because no electron is produced to carry away the excess energy [35]. Thus, EC only proceeds effectively with 

electrons of very low energy, preferably with thermal electrons. It is obvious that ionization of the neutral can 

only occur when the energy deposited by the electron-neutral collision is equal to or greater than the ionization 

energy (IE) of the corresponding neutral, defined as the minimum amount of energy that needs to be absorbed 

by an atom or molecule in its electronic and vibrational ground states in order to form an ion that is also in its 

ground states by ejection of an electron [31,33,34]. Ionization energies of most molecules are in the range of 

7–15 eV. Removal of an electron from a molecule can formally be considered to occur at a σ-bond, a π-bond, 

or at a lone electron pair with the σ-bond being the least favored and the lone electron pair being the most 

favored position for charge localization within the molecule, an assumption directly reflected in the IEs. The 

more atoms are contained within a molecule the easier it finds a way for stabilization of the charge, e.g., by 

delocalization or hyperconjugation. Once the molecular ion is formed, the electron charge is never really 

localized in a single orbital, although assuming so is often a good working hypothesis for mass spectral 

interpretation [31,33]. The ionization energy represents the absolute minimum energy required for ionization 

of the neutral concerned. This means in turn that in order to effect ionization, the impacting electrons need to 

carry at least this amount of energy. If this energy were then to be quantitatively transferred during the collision, 

ionization would take place. Obviously, such an event is of rather low probability and therefore, the ionization 
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efficiency is close to zero with electrons carrying just the IE of the pertinent neutral. However, a slight increase 

in electron energy brings about a steady increase in ionization efficiency. Strictly speaking, every molecular 

species has an ionization efficiency curve of its own. Fortunately, the curves of ionization cross section vs. 

electron energy are all of the same type, exhibiting a maximum at electron energies around 70 eV [17,31,33]. 

EI is suitable for the analysis of low molecular weight molecules, providing important structural information 

thanks to fragmentation which occurs into the ionization source moderately. Thanks to these features, it’s 

usually coupled with Gas Chromatography (GC), allowing the qualitative and quantitative analysis of volatile 

compounds after a separation step [36,37]. However, fragmentation occurs in a too high extend for higher 

molecular weight molecules, making this ionization technique not suitable for their analysis. Thus, softer 

ionization techniques were introduced, such as Chemical Ionization (CI). In chemical ionization, new ionized 

species are formed when gaseous molecules interact with ions, i.e., chemical ionization is based on ion–

molecule reactions. Chemical ionization may involve the transfer of an electron, proton, or other ions between 

the reactants [19,38]. These reactants are the neutral analyte M and ions from a reagent gas. In CI, bimolecular 

processes are used to generate analyte ions. There are four general pathways of positive-ion formation from a 

neutral analyte molecule M:  

M + [BH]+ → [M+H]+ + B proton transfer  

M + X+ → [M+X]+ electrophilic addition  

M + X+ → [M–A]+ + AX anion abstraction  

M + X+• → M+• + X charge exchange  

CI ion sources exhibit close similarity to EI ion sources. Indeed, modern EI ion sources can usually be switched 

to CI operation in seconds, i.e. they are constructed as EI/CI combination ion sources. In any CI plasma, ions 

of both polarities, positive and negative, are formed simultaneously, e.g. [M+H]+ and [M–H]– ions, and it is 

just a matter of the polarity of the acceleration voltage which ions are extracted from the ion source [38]. Thus, 

negative-ion chemical ionization (NICI) mass spectra are readily obtained when one of the following processes 

occurs: 

M → [M–H]– + H+ dissociation of acids  

M + A– → [M+A]– nucleophilic addition  

M + e– → [M–B]– + B+ + e– ion-pair formation  

Similar to EI ionization, this method poses some limitations in terms of mass range (<1000) and requires 

specific sample characteristics with regard to thermal stability and volatility. CI is, however, better than EI 

with respect to the production of the molecular ion. Nevertheless, both EI and CI were not capable of ionizing 

the most valuable, thermally instable, polar biological compounds. Subsequently, additional soft ionization 

methods were developed and replaced older techniques. These include fast atom bombardment (FAB), liquid 

secondary ion mass spectrometry (LSIMS), matrix-assisted laser desorption ionization (MALDI), and 

electrospray ionization (ESI) [39–42]. Remarkably, the latter two ionization techniques have revolutionized 
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the usage of mass spectrometers and enabled researchers to easily study biological substances, such as 

glycoconjugates, proteins, and DNA [39,40,43]. Development of electrospray ionization started with the work 

of Dole and co-workers, who successfully introduced a polystyrene polymer (average MW = 51,000 Da) into 

the gas phase as a charged species [44]. Surprisingly, this ionization technique is by far one of the simplest to 

understand. Samples are usually dissolved in a buffer or solvent that is introduced into the mass spectrometer 

in the form of a spray. In ESI-MS, the sample should be soluble in a preferably polar solvent, which can be 

infused, under atmospheric pressure, into the ionization source via a thin needle. As the sample is being 

constantly sprayed, a high electrical potential is applied at the needle (3 – 4 kV), resulting in the formation of 

highly charged droplets (i.e., nebulization). These droplets are then driven electrically and are vaporized with 

the aid of a warm neutral gas (usually nitrogen). A schematic representation of the ESI source is shown in 

Figure 3: 

 

 

Figure 3 Representation of an early electrospray ionization (ESI) source (A). In more recent configurations 

(B), the spray capillary is set at a 45° angle to the transfer capillary, preventing the clogging of capillaries 

and skimmers caused by the deposition of non-volatile impurities, such as buffer salts (adapted from [17]). 
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Under these conditions, the droplets break down and, while shifting inside the source, their size is continuously 

being reduced. Eventually, the repulsive forces, also termed the coulombic forces, among the ions on the 

surface of the shrinking droplets become very high. These forces will ultimately exceed the surface tension of 

the solvent, resulting in ions that desorb into the gas phase. This theory of ESI ion formation is termed the ion 

evaporation method [45] and is believed to favour ions with relatively low m/z values. An alternative theory, 

which is supposed to be dominant in the case of ions with very high m/z, is the charge residue model [45], 

which involves continuous evaporation of the solvent accompanied by droplet fragmentation so that a single 

ion (probably multiply charged) is formed at the end of this process (i.e., solvent is completely evaporated). 

[M+H]+ and [M-H]- are mainly produced during the process. However, the formation of other types of ions 

could take place, such as clusters, multi-charged ions (resulting from the gain or loss of more than one proton) 

or metal adducts [20,39,43]. In MALDI, ions are desorbed from the solid phase [40]. A sample is first dissolved 

in a suitable solvent and mixed with an excessive amount of an appropriate matrix. Subsequently, it is spotted 

on a MALDI plate and air-dried (or under a stream of nitrogen gas). Under these circumstances, the sample is 

co-crystallized with the matrix. The components in the mixture are brought into the gas phase via a laser beam 

(usually a nitrogen laser at a wavelength of 337 nm) that hits the sample-matrix crystal, leading to absorption 

of the laser energy by the matrix and subsequent desorption and ionization of the analytes in the sample, as it 

is shown in Figure 4: 

 

 

Figure 4 Schematic representation of MALDI process (adapted from [17]). 

 

The mechanisms of ion formation in MALDI are a subject of continuing research [46]. The major concerns 

are the relationship between ion yield and laser fluence, the temporal evolution of the desorption process and 

its implications upon ion formation, the initial velocity of the desorbing ions, and the question whether 

preformed ions or ions generated in the gas phase provide the major source of the ionic species detected in 

MALDI [46–49]. Both ESI and MALDI are very sensitive analytical techniques utilizing analyte 

concentrations that are as low as picomolar. One of the main differences, however, between MALDI and ESI 
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is the state in which the sample is introduced to the ion source. ESI uses solvated sample that is infused into 

the instrument, whereas MALDI uses the solid state. Therefore, when interfaced with LC, it is possible to 

efficiently utilize ESI for quantitative measurements [50,51]. Even though ESI is capable of reproducing data 

better than MALDI, it should be noted that relative abundance of various ions in an ESI spectrum is not a real 

representation of the sample concentration. ESI tends to produce multiply charged species for biomolecules, 

such as proteins and peptides. This is the reason why ESI can, theoretically, have unlimited mass range, 

because very large proteins can appear at lower m/z values [44,45]. MALDI, however, tends to produce singly 

charged species and this phenomenon is of great importance for identifying the molecular ion of proteins, 

carbohydrates and lipids [46,48,49]. 

2.3. Mass Analysers 

A mass analyser is the part of the instrument in which ions are separated based on their m/z values [17,18,20]. 

In a mass spectrometer, the isolation of ions is usually electrically driven, although traditional analysers, 

namely, magnetic sectors, employ a magnetic field that influences ion separation. From the very beginning to 

the present almost any physical principle ranging from time-of-flight to cyclotron motion has been employed 

to construct mass analysing devices. Some were extremely successful at the time of their invention, for others 

it took decades until their potential had fully been recognized. Currently, many analysers are widely used, 

namely, quadrupole (Q), quadrupole ion trap (QIT), time of flight (ToF), Fourier transform ion cyclotrone 

resonance (FT-ICR) and Orbitrap. These analysers vary in terms of size, price, resolution, mass range, and the 

ability to perform tandem mass spectrometry experiments (MS/MS). For example, QIT is capable of multiple 

mass spectrometric experiments (MSn), while FT-ICR is very powerful in terms of accurate mass 

measurements [15,29,30,52]. 

2.3.1. Quadrupole analysers 

Since the Nobel Prize-awarded discovery of the mass-analysing and ion-trapping properties of two- and three-

dimensional electric quadrupole fields and the concomitant construction of a quadrupole (Q) mass 

spectrometer [53,54], this type of instrument has steadily gained importance. Modern quadrupole instruments 

cover up to m/z 2000 or even higher with good resolving power and represent a standard device in LC-MS 

[55]. Among the advantages of quadrupoles there are high transmission, light-weighted, compactness and 

comparatively low-prices, low ion acceleration voltages, and high scan speeds, since scanning is realized by 

solely sweeping electric potentials. A linear quadrupole mass analyser consists of four hyperbolically or 

cylindrically shaped rod electrodes extending in the z-direction and mounted in a square configuration (xy-

plane) [56], as it is shown in Figure 5: 
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Figure 5 Schematic representation of a linear quadrupole mass analyzer (adapted from [17]). 

 

The pairs of opposite rods are each held at the same potential which is composed of a DC and an AC 

component. As an ion enters the quadrupole assembly in the z-direction, an attractive force is exerted on it by 

one of the rods with its charge opposite to the ionic charge. If the voltage applied to the rods is periodic, 

attraction and repulsion in both the x- and y-directions will alternate in time, because the sign of the electric 

force also changes periodically in time [56]. If the applied voltage is composed of a DC voltage U and a 

radiofrequency (RF) voltage V with the frequency ω, the total potential 𝜑0 is given by: 

𝜑0 = 𝑈 + 𝑉 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡  

Thus, the equations of motion are: 

𝑑2𝑥

𝑑𝑡2
+  

𝑒

𝑚𝑟0
2 𝜑0𝑥 = 0 

𝑑2𝑦

𝑑𝑡2
+  

𝑒

𝑚𝑟0
2 𝜑0𝑦 = 0 

where r0 is the distance between the centre of the quadrupole and the rod surface. In case of an inhomogeneous 

periodic field such as the above quadrupole field, there is a small average force which is always in the direction 

of the lower field. The electric field is zero along the asymptotes in case of hyperbolic electrodes. It is therefore 

possible that an ion may traverse the quadrupole without hitting the rods, provided its motion around the z-

axis is stable with limited amplitudes in the xy-plane [57]. For a given set of U, V, and ω the overall ion motion 

can result in a stable trajectory causing ions of a certain m/z value or m/z range to pass the quadrupole. Ions 

oscillating within the distance 2r0 between the electrodes will have stable trajectories. These are transmitted 

through the quadrupole and detected thereafter. The path stability of a particular ion is defined by the 

magnitude of the RF voltage V and by the ratio U/V. From here, it is possible to obtain a stability diagram, 

useful to evaluate the xy-plan trajectory stability, by plotting parameters a and q, defined as the time invariant 

and variant fields, respectively, and obtained from the equation of motion: 
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𝑎𝑥 = −𝑎𝑦 =
4𝑒𝑈

𝑚2𝑟0
2𝜔2

 

𝑞𝑥 = −𝑞𝑦 =
2𝑒𝑉

𝑚2𝑟0
2𝜔2

 

The plot, shown in Figure 6, reveals the existence of regions where both x- and y-trajectories are stable, either 

x- or y-trajectories are stable, and no stable ion motion occurs: 

 

 

Figure 6 Stability diagram for a linear quadrupole analyzer (adapted from [17]). 

 

Among the four stability regions of the first category, region I is of special interest for the normal mass-

separating operation of the linear quadrupole [55–57]. If the ratio a/q is chosen so that 2U/V = 0.237/0.706 = 

0.336, the xy-stability region shrinks to one point, the apex, of the diagram. By reducing a at constant q, i.e. 

reducing U relative to V, an increasingly wider m/z range can be transmitted simultaneously. Enough resolving 

power is achieved as long as only a small m/z range remains stable, e.g. one specific m/z ± 0.5 for unit 

resolution. Thus, the width (Δq) of the stable region determines the resolving power. By varying the magnitude 

of U and V at constant U/V ratio, a U/V = constant linked scan is obtained allowing ions of increasingly higher 

m/z to pass the quadrupole. Overall, the quadrupole analyser rather acts as a mass filter. Quadrupole analysers 

generally are operated at so-called unit resolution, normally restricting their use to typical low resolution (LR) 

applications [57]. At unit resolution adjacent peaks are just separated from each other over the entire m/z range, 

i.e. R = 20 at m/z 20, R = 200 at m/z 200, and R = 2000 at m/z 2000. Setting the DC voltage U to zero transforms 

the quadrupole into a wide band pass for ions. In the stability diagram this mode of operation is represented 

by an operation line equivalent to the q-axis. Such devices are commonly known as RF-only quadrupoles (q); 

RF-only hexapoles (h) and octopoles (o) are used analogously [58–60]. Generally, higher-order RF 2N-
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multipoles differ from quadrupoles in that they do not exhibit a sharp m/z cut-off in transmission. Higher-order 

multipoles exhibit increasingly steeper potential wells, offer better ion-guiding capabilities and better wide-

band pass characteristics, i.e. wider m/z range acceptance. This property led to the widespread application of 

electric quadrupoles, hexapoles, and octopoles as ion guides and collision cells [61]. From the viewpoint of 

the ions, they act like a hose or pipe while being fully permeable for neutrals. Thus, the RF ion guide allows 

residual gas to effuse through the gaps between the rods into the vacuum pumps, whereas ions are escorted 

into the mass analyser. RF-only quadrupole, hexapole, or octopole collision cells are part of so-called triple 

quadrupole mass spectrometers, which essentially represent QqQ, QhQ, or QoQ instruments, respectively, 

depending on the type of RF-only collision cell actually in place [62].  

In general, it is also possible to prevent ions inside a multipole from escaping via either open end by creating 

a trapping potential well. This is possible by placing electrodes of slightly higher potential adjacent to the front 

and rear ends of the multipole. Such devices are known as linear (quadrupole) ion traps (LIT) [63]. While the 

entrance plate of the LIT is held at low potential, ions may enter the radially ion-confining RF field. The time 

span for ion accumulation is limited by reflection of the fast ions at the backside potential wall affording that 

the entrance gate must be closed before the lightest ions to be stored can exit the trap via the entrance. Storage 

of ions in the presence of some buffer gas, e.g., argon or nitrogen at 10–3–10–2 mbar, then allows for their 

thermalization and collisional focusing towards the LIT axis [63]. The ions can be axially ejected at any 

convenient point in time. It’s worth noting that quadrupoles are the only devices capable of mass-selective 

operation, whereas higher-order RF ion guides or higher-order LITs can only guide, accumulate, store, and 

finally release ions for subsequent m/z analysis. LITs are a rapidly expanding field of instrumentation. They 

have been established to collect ions externally before injecting them in bunches into an FT-ICR or a TOF 

analyser [64,65]. In those instruments the LIT serves to accumulate ions until a population suitable for the 

respective analyser is reached, to thermalize the ions in order to have narrow kinetic energy distributions, and 

to deliver this package to a mass analyser operating in batch mode [63]. For ion ejection from a LIT, there are 

two modes possible: one employs excitation of the ions to achieve mass-selective ejection in radial direction, 

the other uses mass-selective axial ejection by application of an auxiliary AC field to the rods of the LIT [63–

65]. For the latter, when the ion radial secular frequency (governed by the stability parameters and the drive 

RF) matches that of the auxiliary AC field, ion excitation is effected in a way that also enhances its axial kinetic 

energy, and thus, leads to ejection from the LIT. 

2.3.2. Fourier Transform Ion Cyclotron Resonance 

The development that led to modern Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers 

began in 1932 when E. O. Lawrence applied a transverse alternating electric field orthogonally to a magnetic 

field to build a particle accelerator [66]. It was demonstrated that in ion cyclotron resonance (ICR) the angular 

frequency of the circular motion of ions is independent of the radius they are traveling on. Later, this principle 

was applied to construct an ICR mass spectrometer [67,68]. It was the introduction of FT-ICR in 1974 that 

initiated the major breakthrough [69]. Ever since, the performance of FT-ICR instruments has steadily 
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improved to reach unprecedented levels of resolving power and mass accuracy when superconducting magnets 

are employed [70]. Modern FT-ICR mass spectrometers offer higher resolving power and mass accuracy, 

attomol detection limits (with nanoESI or MALDI sources), high mass range and MSn capabilities [25,29,30]. 

Most of the modern FT-ICR instruments represent some sort of hybrids with linear quadrupole or LIT front 

ends [70,71]. 

The ICR mass analyzer, or ICR cell, is showed in Figure 7: 

 

 

Figure 7 A representation of the ICR cell (adapted from [67]). 

To understand what happens in an ICR cell, let’s consider an ion entering a uniform magnetic field B, which 

direction is co-axial with the cell axis (z-direction). In this situation, it will, by action of the Lorentz force, 

immediately move on a circular path with a velocity v perpendicular to B, with negative ions circulating 

clockwise while positive ions moving counterclockwise [68]. The radius rm of the ions’ circular motion is 

determined by: 

𝑟𝑚 =
𝑚𝑣

𝑞𝐵
 

where m being the mass of the ionic species, v its velocity, q its charge and B the magnitude of the applied 

magnetic field. By substituting 𝑣 = 𝜔𝑐𝑟𝑚, it’s possible to determine the cyclotron angular frequency 𝜔𝑐 by 

rearranging the previous equation: 

𝜔𝑐 =
𝑞𝐵

𝑚
 

From here, the cyclotron frequency can be obtained: 

𝑓𝑐 =
𝜔𝑐

2𝜋
=

𝑞𝐵

2𝜋𝑚
 

One realizes that the cyclotron frequency is independent of the ions’ initial velocity, but proportional to its 

charge and the magnetic field, and inversely proportional to its mass. Of any physical quantity, frequencies 

can be measured at the highest accuracy, and thus, cyclotron frequency measurements appear as ideal premises 

for building powerful m/z analysers [67,68]. 
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Gaseous ions are not at rest but at least move arbitrarily at their thermal velocities. When such a package of 

thermal ions is generated within a magnetic field or is injected into it, the resulting small ion cloud contains 

ions that are all spinning at their respective cyclotron frequencies (circular micromotion) while the cloud as a 

whole remains stationary provided it has been brought to a halt within the field boundaries [68]. Therefore, the 

magnetic field not only acts in a m/z-sensitive way by imposing the cyclotron motion on the ions, but also 

provides ion trapping in a plane perpendicular to its field lines. In practice, the ions initially oscillate at very 

small “thermal” cyclotron orbits. However, their initial packet radius in the ICR cell is defined by the space 

that they occupied in the ion optics, which is probably ~1 mm, before being transferred into the ICR cell 

[67,68]. For detection, a radio frequency (RF) potential is applied to the excitation plates to increase an ions’ 

cyclotron radius. When the RF excitation frequency equals the cyclotron frequency of the ion, it will absorb 

energy from the electric field and spiral up into a larger cyclotron orbit with a diameter of typically 2–5 cm, 

depending on the excitation amplitude, cell geometry parameters, and the excitation duration [68], as it is 

shown in Figure 8: 

 

 

Figure 8 Excitation (A) and image current detection (B) in FT-ICR MS (adapted from [17]). On the bottom 

(C), a simulation of the ion cloud motion during excitation in a FT-ICR cell reveals the presence of coherence 

on the y,z-plane too (adapted from [68]). 

 

Normally, to excite all the ions for detection, the applied RF pulse is a stepwise frequency sweep across the 

entire resonant frequency range of interest, and the amplitude of the pulse is usually a constant, known as an 

“RF chirp” [67,68,72]. During the excitation event, ions that are off-resonance do not absorb energy (mostly) 

and remain at the centre of the cell, while ions whose cyclotron frequency is in resonance with the excitation 

one rapidly spiral outwards coherently to a larger radius. Through the RF chirp, ions of the same m/z are excited 
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coherently and undergo motions as ion packets. Each ion packet has a resonance frequency (corresponding to 

m/z). For lighter ions, the spiral reaches the same radius with fewer cycles than in case of heavier ones, i.e. the 

spiral is steeper, because low-mass ions need less energy than high-mass ions to accelerate to a certain velocity. 

Cyclotron frequency measurements are thus made by image current detection, which relies on the fact that an 

ion cloud repeatedly attracts (positive ions) or repels (negative ions) the electrons of two opposite detection 

electrodes upon its passage [73]. The resulting minuscule image current can be amplified, transformed into a 

voltage signal and recorded as long as the ion motion exhibits sufficient coherence. Thus, the potential induced 

by the ion current is recorded simultaneously as a function of time. As the ions’ motion in the cell is periodic, 

the signal recorded is a composite sum of N sinusoidal waves with different frequencies in the time domain, 

and the intensity of the signal is damped with time.  

Detection of this image current allows to record a so-called free induction decay (FID), i.e. an oscillating signal 

that goes to zero after a certain time span [67,68,73]. The transient FID is recorded, and afterwards, is converted 

from the time to the frequency domain by means of Fourier transformation, a mathematical operation that 

transforms one complex-valued function of a real variable into another. This means that the complex FID 

caused by superimposition of many single frequencies is deconvoluted to reveal the single contributing 

frequencies and their respective amplitudes [67]. The frequencies are converted to m/z values, their amplitudes 

now representing the abundances of the corresponding ions. The detection efficiency is greatly improved for 

cylindrical cells as compared to cubic cells, because the ions pass the detection electrodes at almost constant 

distance to their surface, resulting in stronger image currents [68,74,75]. The image current induced in the 

detector plates (y-axis) is recorded as transient signal for some period of time (0.5–30 s). The excitation of the 

ions within the ICR cell must stop at a level low enough to avoid wall collisions of the lightest ions to be 

measured.  

It’s worth noting that in an actual experiment, the continuous image current detected cannot yield continuous 

time domain data. Instead, it is sampled at a certain acquisition frequency to produce a discrete transient 

consisting of a finite number of data points [67]. Due to the discontinuity of the data, the frequency used for 

sampling is crucial for reconstruction of the original signal. According to the Nyquist theorem [76], the 

required frequency for sampling must be at least twice the highest frequency being recorded in the transient. 

The instrument software determines the sampling frequency, which is usually twice the highest frequency in 

the spectrum (corresponding to the lowest m/z cut-off). Similarly, the number of data points to be acquired in 

the transient can be determined by the user prior to acquisition. After that, the acquisition time (T) of the 

transient can be calculated from the sampling frequency fs and the data set size N (expressed in mega-point, 

e.g. 1 mega-point = 1 x 1024 x 1024 data points) according to the following expression: 

𝑇 =
𝑁

𝑓𝑠
 

During acquisition, the time domain transient with a fixed data size is then digitized at the sampling frequency 

rate [67]. 
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At a first glance, the z-dimension of the cell seems to be of no importance for the function of an FT-ICR mass 

spectrometer. However, the z-component of thermal energy and the kinetic energy of ion injection into the 

ICR cell in case of an external ion source both would lead to rapid loss of the xy-trapped ions along that axis, 

because they would pass through the cell along the z-axis on a helical trajectory. It is therefore important to 

establish a trapping potential in z-direction [74,77]. Trapping of ions in a potential well implies reflection of 

ions between the trapping plates that induces an oscillatory motion along the z-axis with a frequency ωz. The 

curved electric field close to the borders also produces an outward-bound radial force Fr = qE(r) opposed to 

the action of the Lorentz force. The magnetic field now acts by transforming the radial force component into 

another circular motion of the trapped ions. The sum of these acting forces results in two other angular 

frequencies, i.e. the reduced cyclotron angular frequency 𝜔+ and the magnetron frequency 𝜔− [68], given by: 

𝜔+ =
𝜔𝑐
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Thus, the presence of the trapping potential well results in a reduction of the unperturbed cyclotron angular 

frequency 𝜔𝑐 and a more complex ion motion. To summarize, the three ion motional modes are represented in 

Figure 9: 

 

 

Figure 9 The three natural ion motional modes, i.e. cyclotron rotation, magnetron rotation, and trapping 

oscillation (adapted from [67]). 

 

Among the three frequencies, the trapping frequency 𝜔𝑧 (<10 kHz) and the magnetron frequency (<100 Hz, 

approximately independent of m/z) are the consequence of the applied trapping electric field which are much 

lower than the cyclotron frequency (ranging from kHz to MHz), for this reason, trapping and magnetron 

frequencies are often ignored. However, the trapping electric fields do perturb the ion’s motion and affect the 

measurement of the ion cyclotron frequency in case of inhomogeneity of the applied magnetic field, and these 
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can result in undesirable effects including radial ion diffusion, frequency shift, peak broadening, and sidebands 

on the peaks [74]. However, during last years, modifications of the ICR cell were apported in order to adjust 

trapping electric field and, thus, to reduce ion motion perturbation. Among most suitable solutions, the 

dynamically harmonized FT-ICR cell deserves a special attention, since a dynamic harmonization of the 

electric field [78] is achieved here by adding extra electrodes shaped in such a way that the averaged electric 

field created by these produces a counter force to the forces caused by the inhomogeneous magnetic field. This 

resulted in the highest resolving power achieved in peptide and protein analysis [74]. Nowadays, the 

dynamically harmonized FT-ICR cell is used in commercial instrumentations such as the Bruker SolariX XR, 

providing outstanding results [29,30,79,80]. 

Ion traps, ICR cells as well as quadrupole ion traps, are best operated with the number of trapped ions close to 

their respective optimum, because otherwise ion trajectories are distorted by coulombic repulsion [81]. Hence, 

external ion sources, in combination with ion transfer optics capable of controlling the number of injected ions, 

are ideally attached to ion traps. Currently, MALDI and even more so ESI ion sources predominate in FT-ICR 

[29,30,79,80]. The ion current is not solely regulated by the source but by some device to collect and store the 

desired amount of ions until the package is ready for injection into the ICR cell. Linear RF-multipole ion traps 

are normally employed for that purpose. RF-only multipoles are commonly used to transfer the ions through 

the boundaries of the magnetic field into the ICR cell [64]. For their injection, it is important to adjust the 

conditions so that the ions have low kinetic energy in z-direction in order not to overcome the shallow trapping 

potential. While some buffer gas is beneficial in case of LITs and QITs, ICR cells are operated at the lowest 

achievable pressure. The typical path from an external ion source into the ICR cell is therefore characterized 

by multistep differential pumping to achieve some 10–8–10–7 Pa inside the ICR cell. 

 

2.4. Practical aspects of Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometry and Data Treatment 

2.4.1. Signal Acquisition: Resolution, Signal-to-Noise ratio and Transient time 

Mass measurement accuracy (MMA) is the key measurement parameter of a FT-ICR mass spectrometer. 

Indeed, FT-ICR can achieve mass accuracy in sub-ppm, or even ppb (parts per billion) level in state-of-the-art 

instruments [82]. With such extraordinary performance, the ion’s elemental composition can be revealed 

without tandem MS experiments [29,30,79,80]. However, mass accuracy depends upon the mass resolving 

power (R) and signal-to-noise ratio (S/N), because a prerequisite for accuracy is that the peak of interest must 

be well resolved and distinguished from others [27]. FT-ICR is known best for its high mass resolving power: 

𝑅 =
𝑚

∆𝑚
=

𝜔

∆𝜔
 

where m and 𝜔 are the m/z and the cyclotron frequency values for the peak of interest, ∆𝑚 and ∆𝜔 are the 

peak width at half maximum (FWHM). The resolving power is particularly important when peaks become 
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close neighbours (e.g., isotope peaks of highly charged ions, complex mixtures). The mass resolving power in 

FT-ICR can be estimated in terms of the applied magnetic field and the transient time: 

𝑅 =
𝑚

∆𝑚
=

𝜔

∆𝜔
=

𝑞𝐵

𝑚∆𝜔
∝

𝑞𝐵𝑇

𝑚𝑘
 

∆𝜔 ∝
𝑘

𝑇
 

in which k is a peak width constant and q is the ionic charge. This peak width, ∆𝜔, is inversely proportional to 

the signal acquisition time, T, after the Fourier transform (FT). Therefore, the equations above reveal that the 

resolving power of any peak for a given m/z (m and q are fixed) is directly dependent on the magnetic field 

(B), duration of the transient (T), and the peak width constant (k). Among the three factors, building a higher 

magnetic field is the most straightforward way to improve resolution [70,82]. However, the expense of the 

magnet is the major part of the instrument cost and increases dramatically for high field. Nevertheless, efforts 

can be made through instrument tuning and data analysis in order to improve T and k. Thus, the users tune the 

instrument to acquire a time-domain signal which lasts as long as possible. Overall, R increases with the 

duration time of the transient, and the peak shape changes from a sinc function to a Lorentzian function. It 

could seem that R increases linearly with T, thus suggesting assuming long transient times for the analysis to 

reach higher resolution levels. Such an argument is only partially right. The increase of resolution is almost 

linear during the first 1-2 sec in the transient which agrees with theory, however, the slope starts to drop quickly 

after that, and the resolution reaches a maximum before facing a decrease. Such a nonlinear variation of the 

resolving power results from the damping of the transient. After the excitation event, the ions’ coherent motion 

will experience frequent collisions with other ions and gas particles, which speeds up the magnetron expansion 

and affects ions’ cyclotron motion [83–85]. In the ICR cell, the trapping potential is nearly ideal in the centre, 

but “squares off” quickly at larger radius. With substantial magnetron expansion or axial excitation, the ions 

will be exposed to increasingly inhomogeneous electric fields in both cyclotron and trapping motions, and 

therefore, the coherent ion packets dephase rapidly during the ion detection event, which results in an 

exponential decay on the signal intensity. Furthermore, in a real experiment, the Coulombic repulsion and 

inhomogeneous electric field in the cell will cause an ion’s frequency to shift and undergo peak broadening, 

which further attenuate the signal-to-noise ratio S/N. The latter parameter thus seems to follow the same 

fashion related to resolution. But, generally, the resolution of a peak is maximized at longer acquisition times 

than S/N, which means the optimal data acquisition time for the two parameters are not the same. From 

theoretical considerations, the optimal conditions for R and S/N in terms of transient time depends on the 

transient shape [86]. Therefore, when acquiring a spectrum, in addition to monitoring the m/z spectrum, it is 

important to monitor the transient at the same time. 

2.4.2. Absorption and Magnitude mode Mass Spectra 

In FT-ICR, the original signal is a composite sum of sinusoidal waves with different frequencies recorded in 

the time-domain. Such a signal is Fourier transformed to a frequency domain spectrum. Fourier transformation 
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on a time domain signal, F(t), produces a frequency spectrum with a complex output, f(𝜔), consisting the 

absorption mode spectrum, A(𝜔), and the dispersion mode spectrum, iD(𝜔) [87]: 

𝑓(𝜔) = 𝐴(𝜔) + 𝑖𝐷(𝜔) 

The phase angle of the complex number can be calculated by the following expression: 

𝜙(𝜔) = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝐷(𝜔)

𝐴(𝜔)
] 

Mathematically, 𝐴(𝜔) and 𝐷(𝜔) are the projection of 𝑓(𝜔) in the real and imaginary axis, which means they 

contain the same information with π/2 difference in phase. However, as projection of 𝑓(𝜔) on the x- or y-axis 

ranges from positive to negative, both 𝐴(𝜔) and 𝐷(𝜔) have positive and negative values which makes their 

plots difficult to interpret [88]. To overcome this problem, the vector sum of 𝐴(𝜔) and 𝐷(𝜔) is calculated to 

yield a phase independent magnitude mode spectrum, 𝑀(𝜔), which is plotted by all commercial and custom 

FT-ICR instruments [89]: 

𝑀(𝜔) = √((𝐴(𝜔))2 + (𝐷(𝜔))2) 

It’s worth noting that, even if plotting magnitude-mode spectra allows to avoid the tedious phasing problem, 

using absorption mode acquisition provides a series of advantages [88]. First, the peak width at half-maximum 

height (𝛥𝑚) is narrower than its corresponding magnitude-mode by a factor depending on the damping of the 

transient, from 1.7 to 2, without a concomitant loss in peak height. Second, in absorption-mode, the S/N 

increases by √2 compared to magnitude-mode and this is because the noise of the imaginary part of the 

complex number is not added to the one related to the absorption mode spectrum. Third, displaying the 

spectrum in absorption mode can easily distinguish the common artefacts that exist in any FT-based mass 

spectrometer. This is possible since artificial peaks cannot be phased. Unfortunately, in FT-ICR, the pulse 

program involves a large and varying phase shift before the spectral acquisition event, and such a phase shift 

has hindered usage of the absorption mode spectrum for almost 40 years [90,91]. The phase shift comes from 

two sources. First, for signal detection, ions in the ICR cell are excited to a larger orbital radius by a linear 

frequency sweep, and ions will undergo excitation once its cyclotron frequency matches the excitation 

waveform frequency. Thus, ions of different frequencies are excited at different times and accumulate a 

different total phase lag before the detection event. Second, once the ions are excited, a delay time (in 

milliseconds) is required to settle the amplifiers before the detection event. During the delay time, all ions will 

continue their cyclotron motion and accumulate phase [68]. In summary, before signal detection, all ions 

experience varying phase shifts, and any ion’s phase, 𝜙(𝜔), is expected to vary with their excited frequency. 

The wide range of the phase shift results in the “phase wrapping problem” [91]. As any peak can be perfectly 

phased at a 𝜙(𝜔) between 0 and 2π, it is easy to phase a small m/z region in the spectrum, where the phase 

shift is <2π. However, according to trigonometric relationships, 𝜙(𝜔𝑖) = 𝜙(𝜔𝑖) + 2𝑛𝑖𝜋 for any integer ni at 

any 𝜔𝑖, which makes any phase angle beyond 2π return to 0–2π (known as phase wrapping). Consequently, it 

becomes essential to consider the additional 2𝑛𝑖𝜋 into the phase angle for each peak in the spectrum. In FT-
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ICR, a typical excitation bandwidth ranges from kHz to MHz, which makes the accumulation of phase 

substantial (e.g. >10000 π for the m/z range from 200 to 2000 in a 12 T system). Finding the correct ni for each 

peak (thousands of peaks in a spectrum) is crucial for broadband phase correction, and this answers the 

question why virtually all FT-ICR instruments plot the spectrum in the magnitude-mode as calculating the 

phase shift accurately for each peak is difficult. Despite this, many efforts were dedicated to find a solution, 

some of which include the utilization of a dedicated instrumentation, while others comprise the 

accomplishment of too many computational steps [67]. Nevertheless, Kilgour et al. [91,92] optimized 

successfully a tool able to calculate absorption mode mass spectra in few milliseconds by employing a genetic 

algorithm regardless the type of FT-MS instrumentation, making absorption mode MS analysis accessible to 

common users. 

2.4.3. Apodization and Zero-filling 

Spectra acquired from an instrument have a definite peak shape which is associated with the instrument itself. 

The natural peak shape is a convolution of both sinc and Lorentzian functions, and the component from the 

sinc function contains undesirable sidebands at both sides of a peak, which cannot be avoided during spectral 

acquisition [93]. These wiggles contain no useful information but can interfere with the identification of 

adjacent peaks of low intensity. Therefore, during data processing, the time-domain transient is often 

multiplied by a window function prior to FT to minimize the sideband intensities and smooth the line shape. 

Such procedure is called apodization [94]. An optimal window function can smooth the sidebands but also 

inevitably degrades the S/N and resolving power of the spectrum. It has been found that the magnitude and 

absorption mode spectra do performance better with different types of apodization [93]. By multiplying the 

transient with a window function, the overall peak shape changes, which therefore affects the resolution, 

relative intensity, and S/N of the peaks after FT. After apodization, the sidebands of the peak are largely 

suppressed and the line shape becomes much smoother, while at the same time, the peak width is broadened. 

Such effect is important for complex spectra (e.g. from proteomics to petroleomics), where peak intensities 

vary over 1,000x throughout these ones. By using apodization, the low intensity peaks will suffer much less 

perturbation from adjacent intense peaks. Apodization is a standard step during FT-ICR data processing, 

because it smooths the peak shape and facilitates the assignment. However, the benefit varies with the spectral 

conditions and for different peaks in the same spectrum. Furthermore, the improved peak shape is generated 

at the cost of spectral resolution, and problems like frequency shifts, from image or space-charge, will often 

be “hidden” as the peak shape is “smoothed out”. Thus, it is advisable to keep the raw spectrum and use 

apodization carefully. 

Although most window functions produce similar results, spectra in magnitude and absorption-mode are 

affected differently by different types of window functions. A window with its maximum at the beginning and 

minimum at the end is called “half window”, a symmetrical window with its minimum at two sides and its 

maximum in the middle is called “full window” [95,96]. In the magnitude-mode plot, the full window after FT 

shows a narrower peak width and suppressed sidebands compared to the half window apodization, therefore, 
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it is recommended in the magnitude-mode spectrum for the best line shape and better resolving power. 

However, a full window function will generate large negative intensities in the absorption mode after FT 

[95,96]. As the peaks become more closely spaced in the m/z domain, the negative sidebands start to interact 

with neighbouring peaks and can severely distort the spectrum; such a problem can be fixed by using a half 

window function [93]. And in addition, the half window apodization in the absorption-mode normally results 

in a narrower peak width compared to a full window function in the magnitude mode. An extra benefit is that 

the full window zeroes the signal at both beginning and end of the transient, while a half window function 

retains the most intense signal at the beginning. Therefore, using a half window apodization will cause less 

change in S/N and peak shape compared to the full window apodization. In summary, while no apodization is 

preferred for preservation of peak shapes and detection of space-charge or electric field inhomogeneity effects, 

if apodization is required to facilitate peak picking and assignment, the full window and half window functions 

are recommended for magnitude- and absorption-mode spectrum, respectively. 

During recording, it’s important to remember that a continuous image current cannot analytically be recorded; 

instead, a discrete transient, F(t), is sampled at 2x of the Nyquist frequency, and then recorded at N equally 

spaced intervals over the signal acquisition time T. Fourier transformation on the discrete time-domain signal 

yields N/2 complex data points in the positive frequency domain, with 1/T Hz space interval. The spectrum is 

plotted by connecting the individually discrete frequency points using a straight line. However, compared to a 

theoretical continuous spectrum, a straight-line connection inevitably distorts the spectral line shape, as in most 

situations the signal frequency to be determined is not exactly the one of the frequency points used by the FT. 

Such distortion of line shapes causes peak broadening, sideband wiggles, and position shift, which will affect 

the peak centroiding algorithms for determining the peak location and intensity [97,98]. Recovery of the 

continuous line shape can be greatly improved by zero filling, a method to extend the time-domain data by 

adding zeros at the end of the transient prior to FT. Consider if N zeros are added to the end of an N-point 

transient, the data size will then become 2N, therefore, the FT yields an N-points frequency spectrum, which 

is now equally spaced at the interval of 1/2T Hz rather than 1/T Hz. By doing this, the number of data points 

in the frequency spectrum is doubled, and a smoother line shape can be generated, thus improving peak shapes 

and resolution. The discrete spectrum approaches the true continuous spectrum with infinite zero filling. 

However, each zero fill doubles the data size, and the computation time for FT increases substantially with the 

increasing data length. Although zero filling is usually necessary to reduce the errors rising from the discrete 

line shape, to some extent, further zero filling is a waste of the computer memory. In general, the peak shape 

and resolution can be almost perfectly recovered by two zero fills. 

2.4.4. Mass Calibration and Space-Charge effect 

Operation of FT-ICR requires implementation of a mass calibration equation to convert experimentally 

measured frequencies of ions into the corresponding m/z value [81,99]. Extremely high mass accuracy becomes 

essential for unambiguously determining the elemental composition of the ions, and therefore, an accurate 

calibration function is required to convert the detected frequency of ions to their true m/z. Typically, one of 
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two calibration functions are used for calibrating the FT-ICR spectrum: the Ledford equation [81] and the 

Francl equation [99], both originating from the ion’s motion in a spatially uniform magnetic field plus a three-

dimensional axial quadrupolar electrostatic potential: 

𝑚
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=
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in which α is the trapping scale factor, a is the size (i.e. distance between the trap plates) of the ICR cell, B is 

the magnitude of the applied magnetic field, 𝑉𝑇 is the applied trapping DC voltage, e is the charge of an electron 

and 𝜔+ is the reduced cyclotron angular frequency. In practice, although the calibration constants are in 

principle known, they are usually determined by calibration. Mass calibration consists of least squares fitting 

for either Ledford or Francl equations to the frequencies of two or more peaks of known m/z values to yield 

either constants [100]. This equation is then used to calculate the m/z scale from the known frequency scale. 

The two calibration functions above are essentially equivalent within the usual mass range and can be 

interconverted [100]. 

The mass error from measurement caused by different experimental conditions and parameters from scan to 

scan (e.g. the trapping potential applied, stability of the magnetic field, variation of the ion population) is 

inevitable. Currently, it is possible to routinely achieve mass measurement accuracies (MMAs) better than 1 

ppm level over a broad m/z range via internal calibration [101,102]. However, such performance is also the 

lower limit of the two calibration functions cited above, i.e. routine MMA <0.1 ppm can hardly be achieved 

by a simple implementation of the two equations. The major contributor to mass errors below 0.1 ppm is 

attributed to the space-charge effect rising from the columbic repulsion between ions during the detection of 

the time-domain signal [81]. Similar to the applied electric field, the ion space-charge causes frequency shift, 

and such a perturbation is highly dependent on the total ion number in the cell [103]. Although the sensitivity 

and dynamic range of the image current detector increases with the number of ions trapped in the cell, the 

accuracy of measurement tends to decrease significantly [104], and in extreme cases, the space-charge effect 

can cause the transient to collapse and die out in a very short time, a phenomenon called “the spontaneous loss 

of coherence catastrophe” [105]. The conventional calibration functions struggle to achieve sub-ppm MMA. 

Due to space-charge effects, particularly the “local” space-charge, the number of ions trapped in the ICR cell 

should be considered during the measurement to achieve better MMA. In an FT-ICR experiment, the normal 

principle to achieve high MMA is to acquire spectra with small ion populations (minimize space-charge), 

average the signal of multiple spectra, and mass calibrate internally. By contrast, external calibration can never 

provide accuracy better than a few ppm because the ion number for a measurement varies from experiment to 

experiment. Changes in both “global” and “local” space-charge conditions can severely degrade the ability for 

the Ledford and Francl equation to accommodate the frequency shift. Masselon et al. [106] have pointed out 

that in addition to the “global” space-charge for all the existing ions (which can be compensated by internal 

calibration), each individual ion cloud experiences different interactions with other ion clouds, called a “local” 
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space-charge effect, and this effect become crucial when the frequencies are measured to a precision better 

than 0.25 Hz (corresponding to a mass error of ~1 ppm depending on the magnetic field). Furthermore, the 

space-charge of local ion clouds varies with the specific ion abundance over a wide range. Internal calibration 

compensates for the “global” space-charge effect because the ions being detected are exposed to an identical 

experimental environment, and therefore, the conventional calibration laws can routinely approach MMA of 

~1 ppm level [102]. Meanwhile external calibration only performs well when the calibrant and the analyte 

spectra are measured under the same conditions (e.g. same instrument, trapping potentials, excitation voltage, 

and transient duration). Neverthless, the ion population cannot always be reproduced from one experiment to 

another, especially in LC-MS, MALDI, and imaging experiments, whose chaotic nature produces scan-to-scan 

variations on the number of ions even for the same analyte. When dealing with unknown samples, an external 

calibration function acquired using the same experimental parameters can be applied, and external calibration 

offers a simpler pulse sequence and higher throughout because an internal calibrant is not always feasible. 

However, if the space-charge effect is ignored, the external calibration can result in mass errors of hundreds 

of ppm, and such error is even worse for spectra with a larger frequency range or with many components in 

the sample. 

2.4.5. Artefacts in FT-ICR Mass Spectrometry 

The peaks in a FT-ICR spectrum represent the frequency of the ions’ cyclotron motion, while artefacts that 

result from transient distortion and radio-frequency interference (RFI) also exist as peaks in the spectrum. The 

artefacts are inevitable spectral features [107]. They contain no chemical information but can complicate the 

task of data interpretation. Artefacts induced by RFI are noise signals from the detection lines. In an FT-ICR 

instrument, power supplies, turbo pumps, RF oscillators, ion gauges, and even the (noisy) DC voltages on the 

ion optics can be the source of RFI, and thus introduce electronic peaks into the final m/z spectrum. Typically, 

electronic peaks are single peaks without isotopic patterns (although they can show some modulation by 

interference with other signals). Therefore, if the RFI peaks do not overlap with real peaks, they can normally, 

but not always, be easily recognized in the spectrum. The harmonics are the most common artefacts existing 

in any FT-based mass spectrometer (FT-ICR, Orbitrap, and ion trap) [108]. Different from the RFI, harmonic 

peaks are not real signals, they are generated inherently during the FT due to non-sinusoidal features of real 

signals. Odd harmonics are mostly generated by non-sinusoidal image current from detection electrodes, 

saturation of the amplifier or overloading the analog-to-digital converter. Even harmonics are mostly generated 

by non-zero magnetron radius, misalignment of the cell with the magnetic field, or imbalance of the excitation 

or detection amplifiers [108]. Although the intensity of the artefacts is usually minor, all these frequencies will 

still exist in the spectrum after FT. When the spectrum is complex, these artefacts can overlap with real peaks, 

deteriorate the S/N, and cause confusion for data interpretation, affecting the performance of the FT-ICR 

instrument. Unfortunately, they can never be completely avoided in the experiment. However, they can be 

easily observed in the absorption-mode spectrum by their anomalous phase variation, because neither the 

harmonics nor RFI experiences ion’s cyclotron motion in the ICR cell, and therefore, cannot normally be 

phased correctly [88,91,92]. 
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2.4.6. Smoothing and Baseline subtraction 

Mass spectrometry data usually shows a varying baseline. Chemical noise in the matrix or ion overloading can 

cause this variation. Subtracting the baseline makes spectra easier to compare [109]. Baseline subtraction 

should be used whenever samples show an obvious offset, drift, or broad low-frequency peaks and before 

correcting the obtained spectrum with mass calibration, because the noise would affect the results of that step 

[109]. One strategy for removing a low-frequency baseline within the high-frequency noise and signal peaks 

follows three steps: estimate the most likely baseline in a small window, regress the varying baseline to the 

window points using a spline interpolation and smoothing, and subtract the estimated and regressed baseline 

from the spectrum [109,110]. Estimating the most likely background in every window is the most crucial step. 

Unfortunately, it’s not possible to observe the true baseline using the minimum values because of the high-

frequency signal noise. There are two good approaches to overcome this problem: 

● Use a quantile value of the observed sample within the window. One can safely underestimate the 

quantile with the result that the estimated baseline is slightly conservative. On the other hand, if the 

quantile should be overestimated, the proportion of baseline points includes peak values [111]; 

● Using a probabilistic model. The second approach improves the result at the cost of computational 

time. The method consists of assuming that the points in every window come from a doubly stochastic 

model, that the source of each point can be “noise” or “peak,” and that each class has its own 

distribution. In practice, assuming a uniform Gaussian distribution is relatively safe. Estimating the 

baseline implies learning the distributions and the class labels for every point, which is an unsupervised 

clustering problem. At the end, the mean of the “noise” class turns out to be the best baseline estimate 

for the window [112]. 

The chosen window size should be sufficiently small so that the varying trend of the baseline is not significant, 

and it should be sufficiently large so that a representative sample of the baseline in the window can be observed. 

Nevertheless, sometimes it’s necessary to filter or reduce the noise from mass spectra to improve the validity 

and precision of identified m/z values. To do so, another step is performed in Mass Spectrometry data pre-

treatment, the so-called smoothing, that allows to smooth the spectra, making easier the work of peak detection 

algorithms [113]. Smoothing (also known as polynomial filtering) involves the treatment of the signal samples 

in order to make them fit a particular model. It consists of adjusting sample by sample the signal based on a 

regional polynomial fit [113]. Among the different smoothing algorithm used in Mass Spectrometry, the 

Savitzky and Golay’s one is commonly used and it’s able to smooth a mass spectrum using a least-squares 

digital polynomial filter [114]. The filter coefficients are derived by performing an unweighted linear least 

square fit using a polynomial of a given degree and a dataset of a predefined size (m/z window). It allows to 

use higher order polynomials for the fitting. As a result, the algorithm preserves signal features such as the 

resolution between ion peaks and the height of the peaks. One of the most important parameters in polynomial 

filtering is the size of the window (or spanning). It is indirectly associated with the cut-off frequency. However, 
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there is not a practical relation between these two so one can usually adjust the window based on experimental 

experience. 

2.4.7. Noise level estimation: the N-sigma methodology 

As can be noticed from previous statements, noise reduction or filtering is important in a FT-ICR Mass 

Spectrometry experiment to accurately identify analyte signals. In FT-ICR MS, the intensity of noise peaks 

increases with m/z, being a serious problem for FT-ICR MS analyses in higher m/z ranges. Smoothing 

algorithms allow to reduce the noise level, but they are not always useful for analyte identification purposes. 

A possible alternative could be noise filtering, which can be thought as a complete cut-off of noisy signals 

from the recorded mass spectrum. Different approaches were assumed to accomplish this task. One of them 

consists of a direct elimination of several MS signals whose Signal-to-Noise ratio (S/N) is lower than a 

preselected threshold value, defined itself as the noise level. S/N ranging between 2 and 20 [30,115–117] have 

been used which highlights the challenge of reliable noise level estimation in a wide mass range. Other studies 

simply removed the lowest 10% of peaks (based on intensity) [118] while a S/N of 4 effectively removed peaks 

with relative intensity below 0.5% in a previous study [119]. Nevertheless, the choice of S/N or a cut-off based 

on intensity seems arbitrary and could lead to a massive loss of information, especially in metabolomics, since 

S/N ratio of metabolite-related peaks is often found to be near to 1 [29,30]. Reproducibility increases with 

increasing S/N cut-off from 3 to 10. However, using a strict S/N threshold is not adequate for establishing peak 

detection reproducibility because well-defined peaks could go undetected just below the defined threshold. An 

efficient solution to keep reproducibility while avoiding missing analyte signal consists of the estimation of 

the S/N threshold and this is the key feature of the N-sigma methodology [120]. In practice, for each processed 

spectrum, the noise level is estimated based on fitting a normal distribution to a histogram of intensities. 

Histogram bin sizes are selected based on the Freedman-Diaconis rule [121] to ensure the histogram is 

representative without excessive computer processing. The noise intensity is characterised by a bi-modal 

normal distribution. The first mode corresponds to the lowest intensity peaks in the MS probably associated 

with thermal noise [122]. The second mode may correspond to a higher intensity chemical noise or artefacts, 

like wiggles resulting from the application of Fourier transformation [118]. Artefacts signals may have 

intensities similar to analyte peaks with low concentrations or ionisation efficiency which make up the second 

mode of the histogram. The noise level, which is subsequently used to remove peaks during the main 

processing stage, is thus estimated as the mean plus N standard deviations based on the fit of the first mode. 

In general, choosing N = 3 is conservative, while choosing common peaks from replicate experiments accounts 

for the second mode. However, if doing replicates is not feasible, switching to a direct cut-off approach by 

choosing a noise level equal to three times the mean value could be a suitable solution, but implies the exclusion 

of several low intensity analyte peaks.  

Smoothing the mass spectrum leads to the depletion of wiggles, thus leading to the one of the second mode of 

the intensity distribution, lowering the probability of detection of false positives by acting following the direct 

cut-off approach. 
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2.4.8. Formula Assignment: the Seven Golden rules and the Kendrick Mass Defect analysis 

FT-ICR Mass Spectrometry thus provides unprecedented levels of resolution and accuracy. The former allows 

to separate isobaric peaks considering their different mass defects, i.e. the decimal part of related m/z values, 

and to resolve isotopic fine structures of multicharged ions, while the latter makes possible the assignment of 

a reduced number of possible chemical formulas to an observed m/z value, thus leading to elemental 

composition determination [29,30,79,80]. In detail, the number of possible formulas for a specific m/z value 

depends on the experimental accuracy. Since FT-ICR Mass Spectrometers can provide accuracies in the order 

of sub-ppm, it’s possible to make unequivocal formula assignments for low m/z values. However, still a huge 

number of possible candidates persists for high m/z range MS signals. To overcome this problem, several tools 

should be applied to filter possible results.  

The Seven Golden rules [25] are a set of chemical and heuristic rules, validated on a large database consisting 

of 432,968 molecular formulas which covered a chemical space of more than five million compounds, that are 

used as constraints for finding the correct chemical formula. The first one is related to the element numbers. 

In detail, it’s possible to assume a maximum for element numbers, in order to reduce the number of calculated 

formulas. The maximum element count can be chosen a priori considering the chemistry of the analysed 

sample (for example, lower nitrogen and sulphur count maxima could be assumed for formula assignment in 

petroleomics [123–125]). Otherwise, maximum element count can be deduced from the analysis of available 

databases. In this regard, maximum element counts deduced from the analysis of Wiley and the Dictionary of 

Natural Products (DNP) databases are listed in Table 1: 

 

Table 1 Maximum element counts for small molecule formula generation based on examination of the DNP 

and Wiley mass spectral databases. 

Mass 

Range 

(Da) 

Library C 

max 

H 

max 

N 

max 

O 

max 

P 

max 

S max F 

max 

Cl 

max 

Br 

max 

Si 

max 

< 500 DNP 29 72 10 18 4 7 15 8 5  

 Wiley 39 72 20 20 9 10 16 10 4 8 

< 1000 DNP 66 126 25 27 6 8 16 11 8  

 Wiley 78 126 20 27 9 14 34 12 8 14 

< 2000 DNP 115 236 32 63 6 8 16 11 8  

 Wiley 156 180 20 40 9 14 48 12 10 15 
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< 3000 DNP 162 208 48 78 6 9 16 11 8  

 

 

Then, the second rule, known as the Senior rule, relates to the chemical feasibility of a formula. In particular, 

it allows to understand if a certain chemical formula could correspond to a chemically existent species, or 

molecular graph. Senior's theorem [126] requires three essential conditions for the existence of molecular 

graphs [127]: 

● The sum of valences or the total number of atoms having odd valences is even (that comprises the so-

called hydrogen rule [128]); 

● The sum of valences is greater than or equal to twice the maximum valence; 

● The sum of valences is greater than or equal to twice the number of atoms minus 1. 

The third rule deals with detected isotopic patterns. Indeed, compounds that were synthesized by natural 

precursors comprise monoisotopic and isotope masses according to the natural average abundance of stable 

isotope abundances [129]. Considering isotopic ratio abundance patterns removes most of the wrongly 

assigned molecular formulas from a certain mass measurement experiment. The fourth rule is related to the 

hydrogen-carbon ratio, while the fifth one to heteroatom-carbon ones, values that can be used as a constraint. 

Indeed, most typical ratios are found between 3.1 > H/C > 0.2, for example for long chain alkanes (H/C ~ 2) 

or polycyclic aromatic hydrocarbons (H/C ~ 0.5). As a proof, it can be noticed that more than 99.7% of all 

formulas in Wiley database show a H/C ratio between 0.2–3.1 [25]. Heteroatom ratios distributions are even 

more skewed than H/C ratios, because many formulas comprise no heteroatom at all (such as alkanes) or very 

few, and rare cases exist with high ratios of heteroatoms to carbon numbers. The common, the extended and 

the extreme ratios for small organic compounds comprised in the Wiley mass spectral database are listed in 

Table 2: 

 

 

Table 2 Common element ratios obtained from the analysis of the Wiley mass spectral database formulas for 

the mass range 30 Da – 1500 Da. 

Element Ratio Common range  

(99.7 % of formulas 

covered) 

Extended range  

(99.99 % of formulas 

covered) 

Extreme range  

(beyond 99.99 % of 

formulas covered) 

H/C 0.2 – 3.1 0.1 – 6 < 0.1 and 6 – 9 

F/C 0 – 1.5 0 – 6 > 1.5 

Cl/C 0 – 0.8 0 – 2 > 0.8 

Br/C 0 – 0.8 0 – 2 > 0.8 
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N/C 0 – 1.3 0 – 4 > 1.3 

O/C 0 – 1.2 0 – 3 > 1.2 

P/C 0 – 0.3 0 – 2 > 0.3 

S/C 0 – 0.8 0 – 3 > 0.8 

Si/C 0 – 0.5 0 – 1 > 0.5 

 

 

The latter rules only restrict unlikely high element ratios in molecular formulas, but they don’t account for 

multiple high element counts. The sixth rule, thus, deals with too improbable combinations of high element 

ratios. In Table 3, additional constraints are listed for NOPS, NOP and NOS combinations: 

 

Table 3 Multiple element count restriction for compounds < 2000 Da. 

Element Counts Heuristic Rule 

NOPS all > 1 N< 10, O < 20, P < 4, S < 3 

NOP all > 3 N < 11, O < 22, P < 6 

OPS all > 1 O < 14, P < 3, S < 3 

PSN all > 1 P < 3, S < 3, N < 4 

NOS all > 6 N < 19, O < 14, S < 8 

 

 

Finally, the seventh golden rule, or the trimethylsilyl (TMS) rule, can be applied in analyses which comprise 

a derivatization step which in turn involves the addiction of TMS groups to analytes. In detail, TMS groups 

should be subtracted from calculated formulas before assignments. Then, resulting formulas which obey the 

previous rules should be considered for assignment. A similar approach could be assumed by considered 

different types of adduct, like sodium, potassium or water ones. 

The ring-plus-double bonds equivalent (RDBE), obtained by using the equation 𝑅𝐷𝐵𝐸 =  𝐶 + 𝑆𝑖 − 1/2(𝐻 +

𝐹 + 𝐶𝑙 + 𝐵𝑟 + 𝐼) + 1/2(𝑁 + 𝑃) + 1, where each element symbol represents the count of atoms of an element 

in the chemical formula, couldn’t be used as a constraint, since it doesn’t account for the different valences of 

nitrogen, sulphur and phosphorus. However, for the 99.90% of known natural compounds, the RDBE has been 

found to be less than 40 [25]. 

Together with the Seven Golden rules, the so-called nitrogen rule could be used to further reduce the number 

of possible formulas [130]. It states that an odd nominal mass related to a neutral molecular species corresponds 
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to an odd number of nitrogen atoms. However, this is no more valid for nominal masses higher than 500 Da, 

because small non-nominal mass contributions from a large number of elements add up in higher mass regions 

[25]. Nevertheless, the nitrogen rule can still be useful in lower mass ranges or during assignment of elemental 

compositions to small fragments. 

Despite the huge number of filtered formulas, the employment of the Seven Golden rules could not lead to 

unique assignment for every MS signal. For example, isotopologues of low intensity monoisotopic peaks could 

not always be distinguished from noise, thus making impossible the utilization of the third rule for candidate 

formula filtration. 

Another useful tool able to further improve formula assignment confidence is the Kendrick Mass Defect 

analysis [131,132]. The method implies the conversion of recorded spectra from the IUPAC scale to the 

Kendrick one, by multiplying m/z values to a specific factor, which value is related to a preselected group of 

atoms (building block), thus to obtain the corresponding Kendrick masses (KM): 

𝐾𝑀 = 𝑀
𝑁𝑀𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘

𝑀𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘
 

Here, NMBuilding Block and MBuilding Block refer to the nominal and the exact mass of the chosen building block, 

respectively, and M to the accurate measured mass. The building block is defined by a chemical formula and 

could correspond to a known chemical functional group or a neutral molecular species. The main effect of this 

conversion is a global re-ordering of the peaks. In detail, peaks with the same Kendrick Mass Defect (KMD), 

defined as 𝐾𝑀𝐷 = 𝐾𝑁𝑀 − 𝐾𝑀, where KNM is the Kendrick nominal mass, will differ each other by a certain 

amount of the chosen building block. As a conseguence, it will be possible to observe the formation of different 

families of peaks, i.e. homologous series, each characterized by a certain value of KMD [132]. This leads to a 

further filtration of candidate formulas of peaks belonging to one of them. In particular, if an unequivocal 

assignment has already been performed for a member of the series, it’s possible to automatically select the 

correct chemical formula of the other ones by adding or subtracting the corresponding amount of the building 

block. Moreover, separation of peaks in different homologous series could be useful since different KMD 

values could be related to different values of RDBE and/or to the presence of heteroatoms [131,132]. Another 

parameter calculated in KMD analysis is the z* score, which insert another degree of separation among 

homologous series: 

𝑧∗ = [𝑚𝑜𝑑(𝑁𝑀𝐴𝑛𝑎𝑙𝑦𝑡𝑒 − 𝑁𝑀𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘)]/𝑁𝑀𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘 

Thus, homologous series are organized in nominal mass series. The z* score employment helps distinguishing 

homologous series with similar KMD values, but different formula type. 

This approach is particularly useful in petroleomics, where different hydrocarbons contained in crude oil 

samples often differ for their alkylation grade [124,132]. In this situation, by setting CH2 as the chosen building 

block, it’s possible to easily identify alkylation derivatives and to assign unique formulas. Moreover, in 



36 

metabolomics, groups of atoms corresponding to known biochemical reactions could be selected as building 

blocks to improve formula assignment [29]. 

2.4.9. Mass Spectrometry visualization tools: Kendrick plot, Van Krevelen diagram and 

Molecular Mass Difference Network 

Analysis by ESI-FT-ICR-MS of complex samples, such as food matrices, produces large data sets with 

thousands of peaks [29,30]. As stated previously, molecular formulas can be determined for each individual 

peak because of the higher levels of accuracy reached by using FT-ICR MS technique. Once obtained chemical 

formulas, various information can be obtained, related to the chemistry of a certain species, such as the RDBE 

and the atomic ratios. Through these parameters, it would be possible to infer which kind of class of molecules 

our analytes belong to or which kind of derivative they are [29,30,79,80]. To simplify this kind of analysis, 

it’s possible to employ a well-known visualization tool, i.e. the Van Krevelen diagram [133], which was first 

introduced by Van Krevelen [134] and first used for FT-MS data by Kim et al. [135], plotting the molar H/C 

ratios on the y-axis and the molar O/C ratios on the x-axis. Such a plot allows one not only to elucidate what 

compound classes are present but also to identify what reaction pathways are taking place [79,80,135]. Thus, 

masses in complex natural mixtures could be related by numerous chemical transformations (e.g. methylation, 

hydrogenation, hydration, redox, carboxylation, etc.). In Figure 10, an example of Van Krevelen plot is shown: 

 

 

Figure 10 In plot A, Van Krevelen plot of a sample of Fagioli di Sarconi beans. In plot B, Van Krevelen 

diagram with the interpretation of molecular family (CHONS (red), CHO (blue), CHON (orange) and CHOS 

(green) elemental compositions; adapted from [30]). 

 

In addition to the two-dimensional van Krevelen diagram, one can also display the information in three 

dimensions by adding ion abundance or another molar ratio (N/C, S/C, etc.) as the z-axis [136,137]. Plotting 

peak intensity as the third dimension provides an indication of which compound class is present with the 

highest abundance, but because ionization efficiency plays a large role in determining the ions’ abundance, 

this comparison should only be used qualitatively [133]. Plotting the z-axis as either an N/C ratio or S/C ratio 
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disperses the elemental composition information into a third dimension where one can examine the H/C and 

O/C ratio of N- or S-containing molecules separated from the clusters of molecules containing only C, H, and 

O. If peptides are abundantly present, then the N/C ratio will highlight their presence. N/C ratios of 0.0–0.1 

suggest long-chain alkyl amines, while N/C ratios of 0.1–0.4 suggest peptides and proteins [137]. Overall, 

two- and three-dimensional van Krevelen diagrams greatly assist in visualizing the complicated mass spectra 

that are acquired during the analysis of complex samples. 

Another way to simplify MS data visualization and interpretation relies on KMD analysis. Indeed, as stated 

previously, by converting observed masses to the Kendrick scale, peaks are re-ordered in different homologous 

series, each of which is characterized by a KMD value. Thus, plotting the latter versus the KNM will result in 

a diagram in which every homologous series is characterized by points arranged on a horizontal line, each one 

divided by a certain amount of the chosen building block. Such a diagram is known as the Kendrick plot [132] 

and is shown in Figure 11: 

 

 

Figure 11 Example of Kendrick plot obtained from the FT-ICR MS analysis of a sample of crude oil [132]. 

Different nominal mass or z* families are distinguished by colours (adapted from [132]). 

 

Depending on the makeup of the sample, KMD analysis using other functional groups (e.g. OCH2, COO, CO, 

etc.) can be more valuable. In this way, related Kendrick plot could be used to identify species which take part 

to related reactions.  

Despite the great potential of KMD analysis for formula assignment and data visualization, still some 

drawbacks persist. In detail, KMD analysis relates to one building block, making harder the identification of 

frequent building blocks and performing simultaneous KMD analyses related to them. Moreover, this hampers 
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markedly formula assignment step, making harder the identification of species that belong to no obtained 

homologous series. To overcome these issues, during the last years, a new approach of network reconstruction 

and visualisation of high-field FT-ICR mass spectra has been optimized, which offers expedient assignment 

of elemental formulae with improved coverage. Moreover, this approach offers new unambiguous means to 

depict relationships between functional group equivalents, transformations and organic molecular complexity 

in general. In detail, this network-based method relies on the construction of the so-called Mass Difference 

Networks (MdiN) [138–140], in which every node corresponds to an observed m/z value, while connecting 

edges correspond to pre-selected mass differences ∆m, related to known atomic groups, as for the one in 

Figure 12: 
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Figure 12 Molecular network derived from a negative electrospray 12T FT-ICR mass spectrum of a secondary 

atmospheric aerosol (adapted from [140]). 
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In this way, it’s possible to highlight more than a chemical relationship among detected species by preselecting 

more building blocks. Furthermore, this approach could simplify isotopologue identification by adding isotopic 

differences, such as 13C-12C or 34S-32S, as building blocks [140]. Compositional and functional network 

visualisation in two or three dimensions is enabled by means of a multilevel, force-directed, layout algorithm 

[141]. Highly connected nodes are then arranged near the centre whereas less connected ones are assembled 

towards the periphery. Obtained network provide a wide range of useful information. For example, crowded 

clusters could form and be related to a common structural motif. Furthermore, high frequency building blocks 

could be identified by evaluating the occurrence of specific edges. Thus, comparison of different networks 

could reveal chemical pathway promotion or depletion [138–140]. 

Of course, formula assignment is further improved, thanks to the fact that more building blocks could be 

considered at once for formula calculation or filtration, leading to the accomplishment of more simultaneous 

KMD analyses.  

2.4.10. Use of programming languages for Mass Spectrometry data treatment: the R software 

As can be noticed, FT-ICR MS data face a huge processing before interpretation and results. Moreover, each 

step could appear very time consuming, since the dimension of obtained dataset markedly increases with the 

complexity of the sample. It’s the case of omics fields, whose samples contain thousands of small molecules. 

Accordingly, the use of a dedicated software is compulsory to improve laboratory efficiency nowadays, saving 

a considerable amount of time in performing MS routine tasks [142]. In general, mass spectrometers are 

commercialized together with a dedicated software system for data pre-treatment, like apodization, zero-

filling, smoothing and calibration. Additional packages are offered to perform MS data analysis like formula 

assignment or statistics. However, related costs are too high to be widely used by research groups. Fortunately, 

the scientific community has developed a wide range of open source software, providing freely available 

advanced processing and analysis approaches. Among these, the programming and statistics environment R 

has emerged as one of the most popular environments to process and analyse MS datasets [143–145]. The core 

of the R language was started in 1997 and provided the basic functionality of a programming language, with 

some functions targeting statistics [146]. The real power driving the popularity of R today is the huge number 

of contributed packages providing algorithms and data types for a myriad of application realms. Many 

packages have an Open Source license. These packages are typically hosted on platforms that serve as an 

umbrella project and are a “home” for the developer and user communities. The Comprehensive R Archive 

Network (CRAN) repository contains over 14,500 packages for many application areas. The Bioconductor 

project (BioC for short) was started by a team around Robert Gentleman in 2004 [147], and has become a 

vibrant community of around 1000 contributors, working on 1741 software, 371 data and 948 annotation 

packages (BioC release 3.9). Among all of these, many are dedicated to MS data processing. For example, 

peak picking can be done using MassSpecWavelet [148] that applies a continuous wavelet transform-based 

peak detection. Moreover, many packages are dedicated to formula assignment and application of isotope 

pattern filtering, such as GenFormR and MSbox, while other packages, like enviPat and InterpretMSspectrum 
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allows to calculate theoretical isotopic patterns [148–152]. A plethora of packages exist for hyphenated MS 

and MS/MS techniques too, the most important of which is xcms [144], useful for LC and GC-MS and MS/MS 

data pre-treatment (peak peaking, feature extraction, data merging and data dimension reduction). Finally, R 

packages exist that help data interpretation through application of chemometric tools, like MetaboAnalyst, a 

package optimized for the multivariate and pathway analyses of metabolomic LC and GC-MS data [153]. 

R language is relatively easy to understand and allows to create personal functions able to perform multiple 

tasks at once, in order to save more time. Apart from MS related packages, other R software tools exist that 

make easier analysts' lives. For example, the R software offers a wide variety of built-in tools that allows to 

do huge statistics with a single function [146], like ANOVA with the function aov() and prcomp() for principal 

component analysis. It’s possible to re-organize datasets by mean of the package dplyr, which comprises 

functions to join datasets following several criteria (like joining rows with values of a pre-selected variable in 

common), filter a dataset by deleting rows which don’t meet a predefined prerequisite, adding or binding rows 

or columns, etc. Other packages allow you to work on character strings, like stringr, or to create ready 

publishable plots with few lines of code, like ggplot2. Finally, other remarkable R packages are R Markdown 

[154] and R Shiny [155]. The former allows users to create documents in different formats, like pdf, docx and 

html. The major advantage related to its use is that it’s possible to run lines of code during document creation 

thus avoiding manual insertion of huge tables or graphics. Moreover, it’s possible to use it to automatically 

generate reports at the end of a user defined pipeline. The latter, instead, makes easier the creation of interactive 

web apps. Indeed, with minimal syntax, it’s possible to create a friendly user interface with a wide variety of 

widgets and to create interactive plots whose appeal changes with different user inputs. 
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3.1. Abstract 

 

Pepper fruits (genus Capsicum) are an excellent source of health-related compounds, such as ascorbic acid 

(vitamin C), carotenoids (provitamin A), tocopherols (vitamin E), flavonoids and capsaicinoids, each of them 

known for biological activities such as antioxidant, anti-inflammatory and anticarcinogenic ones. They have 

been used for fresh and cooked consumption, as well as for medicinal purposes, such as treatment of asthma, 

coughs, sore throats, and toothache. During recent years, many efforts were dedicated to the metabolic profiling 

of pepper fruits, in order to obtain a complete overview of the diversity of biocomponents present in analyzed 

samples and, thus, to be able to make some speculation on macroscopic health-promoting properties. However, 

as far as we know, none of the assumed approach was able to simultaneously identify all the metabolite classes 

and possible derivatives of model compounds present in pepper fruits with a simple and fast direct analysis. 

This was accomplished in this work on Peperoni di Senise peppers (Capsicum Annuum L.), a typical food 

product cultivated in Basilicata (Southern Italy), protected with a PGI quality mark, known for their unique 

taste, by performing a direct-injection Fourier Transform Ion Cyclotron Mass Spectrometry technique. 

Moreover, several data pre-treatment steps were followed starting from recorded free induction decay (FID) 

to finally obtain the absorption mode FT-ICR mass spectrum, by using the new commercial software 

AutoVectis Pro. This tool allowed to increase the information on metabolic profile of Peperoni di Senise PGI 

through the identification of a higher number of compounds. 
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3.2. Introduction 

A huge number of wild and cultivated species belong to the genus Capsicum. Capsicum plants are grown all 

over the world, principally in tropical and subtropical countries. The genus Capsicum, pepper, belongs to the 

family Solanaceae and consists of up to 30 species [1,2]. Among these, the species Capsicum Annuum L. 

(pepper) is one of the five major cultivated and marketed species. The market for Capsicum saw a great 

expansion during the last years [3]. World pepper production in 2018 reached ~0.8 million tons [4]. Peppers 

are used as a fresh or cooked vegetable, a condiment, or a spice. The industry uses peppers as a spice or 

colouring agent in many food products. Capsicum fruits are a rich source of capsaicinoids, carotenoids (some 

of them with provitamin A activity), flavonoids, and vitamins, such as ascorbic acid (vitamin C), and 

tocopherols (vitamin E) [5,6]. The amount and composition of these metabolites vary among genotypes and 

are affected by many conditions such as fruit maturity, cultivation systems, geographical origin and processing 

methods [7,8]. The presence of these particular compounds provides Capsicum fruits some of their very well-

known macroscopic properties. In detail, capsaicinoids are responsible for the hot taste of chili peppers, also 

known as pungency and any variation in their chemical structures, including the structure of the acyl moiety, 

affects the level of the pungency [9,10]. Furthermore, the colours of pepper fruits, green, red, yellow, brown, 

and orange, derive from carotenoids, except for the purple-fruited pepper, in which anthocyanins (flavonoid 

derivatives) contribute to the purple colour [11]. The presence of some of these metabolites may be employed 

in some defence mechanisms against various biotic and abiotic stresses [12,13]. Polyphenols such as feruloyl 

O-glucosides, kaempferol O-pentosyldihexosides, and dihydroxyflavone O-hexoses can act as phytoanticipins. 

Other polyphenols are known phytoalexins, such as N-caffeoyl putrescine and caffeoyl O-hexoside, which are 

induced in C. Annuum fruits upon infection with the fungus Colletotrichum gloeosporioides. In addition, 

capsaicin is suggested to be responsible of the defence of pepper plants against fruit-eating animals and 

Fusarium fungi. Ascorbic acid in bell pepper fruits may protect the plant against physiological disorders caused 

by environmental stresses, such as the calcium deficiency known as blossom-end rot [12,13]. The biochemical 

content of Capsicum Annuum L. species is not only valuable for the plant itself but may also be advantageous 

for human health. Different techniques were used to shed some light on metabolomic profile of peppers, such 

as UV/Vis, Infrared (IR) and NMR spectroscopy [14–17]. However, satisfying levels of specificity and 

sensitivity were reached only after the breakthrough of hyphenated chromatographic techniques, like gas and 

liquid chromatography coupled to Mass Spectrometry (GC and LC-MS), which allowed the separation of 

matrix components and, thus, a more accurate identification and quantification of specific metabolites [18–

27]. With them, an improvement of the knowledge of present metabolite derivatives was possible, thus making 

possible to understand to which kind of biochemical pathways specific types of biocompounds are subjected 

and under which condition this takes place. Furthermore, extraction techniques could be optimized to isolate 

one or more specific metabolites, a common task to accomplish in order to prepare efficient nutraceutical 

products [18,24,28–31]. However, utilization of these techniques in metabolomic analysis is hampered by a 

series of drawbacks, such as long time of analysis and its high costs (related to the utilization of high amounts 

of eluents). High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) is 
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able to provide a complete information of classes of metabolites present in analysed samples, being capable to 

identify an enormous number of ionic species simultaneously in a simple and fast direct analysis [32–36]. The 

promises of this approach are remarkable, simplifying and accelerating metabolomic experimental designs for 

biomechanistic and nutraceutical formulation purposes [32–36]. By the way, a particular attention should be 

paid to FT-ICR data pre-treatment. Indeed, obtained raw data cannot be readily used for observation 

discussion, as mass spectra could contain artefacts, such as wiggles and harmonics, which could lead to wrong 

formula assignments of observed accurate mass-to-charge (m/z) ratios [37,38]. Moreover, probability of loss 

of information is remarkable since FT-ICR mass spectra of complex matrices is usually noisy [39]. This latter 

feature could make difficult or impossible to distinguish low intensity ionic species from noise peaks. To 

overcome these problems, absorption mode mass spectra could be employed instead of more common 

magnitude mode ones, since related peaks are way narrower, thus leading to a marked improvement of the 

overall resolution [37]. Moreover, absorption mode mass spectra are characterized by lower levels of noise, 

thus allowing to identify more ionic species [37,38]. Finally, in absorption mode, artefacts could be easily 

identified and deleted [37]. However, obtaining a readable absorption mode mass spectrum is not 

straightforward, since a proper correction of the phase shifting of the ions should be made prior to result 

formulation, and this is not easy for complex matrix analysis [37]. For this reason, utilization of dedicated tools 

is compulsory to efficiently perform a proper data pre-treatment process and to extrapolate a useful absorption 

mode mass spectrum from raw data, which is virtually not possible with current commercial FT-ICR 

instrumentation [37,38]. In this work, a complete metabolic profile of a methanolic extract of Peperoni di 

Senise PGI peppers was obtained by using FT-ICR MS and elaborating raw data with the new software 

AutoVectis Pro, with which was possible to perform a phase correction step in few milliseconds and, thus, to 

obtain the absorption mode mass spectrum, thanks to which a higher number of ionic species could be 

identified. Moreover, utilization of a well-known visualization tool, i.e. the Van Krevelen plot, allowed to 

better interpret our results, leading to the identification of the classes of metabolites present in our sample and 

to the evaluation of the diversity of related derivatives.  

 

3.3. Materials and Methods 

Chemicals 

Sodium trifluoroacetate (NaTFA, 98%) and methanol were purchased from Sigma-Aldrich (Milano, Italy). 

Methanol LC-MS grade was used for the analysis. Pure nitrogen (99.996%) was delivered to the MS system 

as the sheath gas. 

Sample Preparation 

Extracts of Peperoni di Senise peppers PGI sun-dried peppers (Capsicum Annuum L.) were obtained by 

following a modified procedure based on a previously reported method [24]. Peppers were grounded to a fine 

powder using a home miller and residual water was eliminated by lyophilization (24 h). 500 mg of each sample 

were extracted by using 1.5 mL of MeOH as solvent. Metabolites were extracted by means of the Ultrasound 
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Assisted Extraction (UAE) technique for 15 min at room temperature (Sonorex Super RK 100/H sonicator; 

Bandelin electronic, Berlin, Germany) with a 35 kHz automatic frequency control and a high-frequency power 

of 80 W. Extracts were passed through a PTFE 0.22 µm filter and were injected into the MS system without 

any further pre-treatment. A blank sample was prepared by applying every step on 1.5 mL of MeOH. 

Mass spectrometry analysis 

ESI (-) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR) technique was used to 

untargeted analysis of the sample. High-resolution Mass Spectra were acquired on a Bruker (Bruker Daltonik 

GmbH, Bremen, Germany) solariX XR Fourier transform ion cyclotron resonance mass spectrometer (FT-

ICR-MS) equipped with a 7T superconducting magnet and an ESI source. The capillary voltage was set to 3.9 

kV, with a nebulizer gas pressure of 1.2 bar and dry gas flow rate of 4 L/min at 200 °C. Spectra were acquired 

with a Time Domain size of 16 mega-word, an accumulation time of 0.1 s and a mass range of 100-2000 m/z. 

Moreover, the average number of scans was set to 50. Before the analysis, the mass spectrometer was 

externally calibrated with NaTFA. High accuracies were reached, with a root mean square (RMS) error lower 

than 0.1 ppm. Once recorded, FT-ICR mass spectra were submitted to several data pre-treatment steps. More 

specifically, recorded free induction decays (FIDs) were subjected to apodization and related absorption and 

magnitude mode mass spectra (aFT and mFT, respectively) were obtained. On the former, phase correction, 

mass recalibration and baseline correction have been performed, while the latter was processed by means of 

smoothing, choosing the Savitzki-Golay (SK) algorithm with a 0.001 Da range and performing 10 cycles. 

Finally, noise filtering has been performed on mass spectra by following the N-Sigma methodology approach 

[39]. More specifically, noise level has been estimated and peaks showing a signal-to-noise ratio (S/N) higher 

than 2 were retained. Thus, obtained FT-ICR mass spectra were exported to peak lists. From these, possible 

elemental formulas were calculated for each MS signal. To obtain unequivocal formulas, several constraints 

were applied, such as atoms number limitations, i.e. C ≤ 100, H ≤ 200, O ≤ 80, N ≤ 5 and S ≤ 1 [36], restrictions 

on atoms to carbon number ratios, i.e. 0.2 ≤ H/C ≤ 3.1, O/C ≤ 2, N/C ≤ 1.3 and S/C ≤ 0.8, RDBE > 0, nitrogen 

rule (for m/z ratio values lower or equal to 500) and isotopic pattern filtering [40]. Moreover, Kendrick mass 

defect (KMD) was performed to help formulas assignment for both magnitude and absorption mode mass 

spectra. For the KMD analysis, building blocks with a higher number of occurrences were identified and 

chosen for the analysis. For this step, experimental mass differences values were examined and only those 

comprised in the range ± 1 mDa of the building block exact mass were considered [41–44]. To further improve 

the reliability of results, building blocks with occurrences lower than a threshold value (properly chosen to 

remove all the noisy data) were excluded, being higher the probability for these to have occurred randomly 

[45]. The threshold was set to 30 for the mFT, while it was set to 200 for the aFT. HRMS data were processed 

by using AutoVectis Pro (v.8.9, Spectroswiss, Lausanne, Switzerland) and R software (v3.6.3, www.r-

project.org). 

 

3.4. Results and Discussion 
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Direct-injection High Resolution ESI(-)-FT-ICR MS data were used to obtain a general description of 

metabolome of Peperoni di Senise peppers PGI. Obtained mass spectra showed an enormous number of peaks, 

thus revealing the high complexity of the sample. However, most of them could be related to noise and artifacts, 

thus hampering the straight identification of observed metabolites by formula assignment [37,38]. It is, thus, 

important to face several pre-treatment steps to obtain more reliable MS data, from which an accurate 

metabolic profile could be deduced. It’s in this context that the choice of working with absorption or magnitude 

mode mass spectra could make the difference. Utilization of aFT could lead to the improvement of peak 

resolutions and signal-to-noise ratios, lowering the probability of losing information and boosting the number 

of species identified with a single direct analysis. Moreover, artifact identification is possible with aFT. Despite 

all these advantages, a series of disadvantages made impractical the employment of aFT for scientific purposes 

for at least 40years [37]. Indeed, ion phase shifting makes these unreadable, because of the presence of intense 

negative peaks, which could show a marked asymmetry too. Moreover, phase shifting depends from the 

cyclotron frequency, so every identified ion needs a different phase correction [37,38]. These features make 

the obtainment of complex matrices aFT almost impossible without the utilization of a dedicated tool, with 

which a full control of the FID elaboration is possible. In this sense, the new software AutoVectis Pro [46] was 

crucial for data pre-treatment, allowing us to work directly on the FID, starting from apodization to aFT phase 

correction [47–49]. Firstly, a full control of the peak peaking process was possible, allowing tuning of related 

parameters such as the magnitude of points interval to consider for centroid calculation. Moreover, aFT and 

mFT could be readily calculated from the apodized FID (Figure 1A). AutoVectis Pro software, thus, allowed 

to make a direct comparison between them. In this way, it was possible to appreciate peak shrinkage which 

characterizes aFT, leading to an improvement of related resolution, and artefact depletion (Figure 1B). Thus, 

by considering the latter, it’s possible to perform a more reliable peak quality evaluation, that is not always 

possible by looking at the mFT alone. Obtainment of the aFT not only led to a marked reduction of artifacts, 

like wiggles and harmonics, but to the improvement of peak resolutions and S/N ratios too, thus increasing the 

number of resolved MS signals and observed ion species. However, before this, a proper phase correction 

should be carried out to obtain a readable aFT. During the last years, several approaches were optimized to 

solve the phase correction problem [37]. However, some of them needs the utilization of a dedicated MS 

apparatus, while others shown to be really time consuming because of the higher number of computational 

steps. AutoVectis Pro employs a genetic algorithm able to deduce calibration coefficients in few milliseconds 

[47,49]. In detail, it generates several phase correction functions starting from a predefined one (which order 

is defined by the user) and applying random mutation on related frequency values. After the best phase 

correction function from the initial population has been identified, the step is iterated till a full optimization is 

obtained [49]. Thanks to the aFT, more ionic species could be distinguished and identified and a complete 

information on metabolic profile of the analyzed sample could be retrieved. This last aspect was evident during 

the formula assignment step. Indeed, a m/z peak list of 4906 members could be extrapolated from the aFT, a 

marked improvement compared to the 901 peaks obtained from the mFT. In each case, however, the number 

of MS signals is huge, making necessary to find another way to visualize results to simplify their analysis and 
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to obtain desired information from mass spectra. In light of this, accurate m/z values were subjected to the 

KMD analysis [44] to identify present homologous series and to simplify molecular formula assignment. It’s 

worth noting how aFT analysis provided a more complete information of the metabolic profile of our sample 

by leading to the discovery of new homologous series and related members, as can be noticed by the analysis 

of related Kendrick plots (Figure 2). Moreover, this last feature helped the identification of other high 

frequency building blocks (Table 1), that could be chosen to perform other KMD analyses to extend the range 

of assigned peaks. For aFT, 1175 unequivocal formulas were obtained, a marked improvement compared to 

the 351 formulas obtained for the mFT. To best interpret our results, a well-known visualization method was 

assumed, i.e. Van Krevelen diagrams, in which elemental compositions are plotted depending on their O/C 

and H/C ratios [32–36]. Thanks to these plots, simply by looking at the positions of the spots, it’s possible to 

assign every observed metabolite to a specific metabolic class [32–36]. From the analysis of aFT and mFT 

related Van Krevelen plots (Figure 3), the presence of the same important classes of metabolites could be 

deduced, i.e. fatty acids and related derivatives, carotenoids, amino acids and peptides, carbohydrates and 

polyphenols. As a matter of fact, peppers are a rich source of this kind of metabolites, some of them important 

for the improvement of human health. In detail, peppers show high levels of carotenoids and polyphenols, 

well-known compounds for their antioxidant activity toward free radicals and reactive oxygen and their 

potential anticancer activity [24,50]. Moreover, peppers contain anthocyanins, metabolites belonging to the 

classes of polyphenols, that give color to the fruit [51]. The presence of a high concentration of these 

compounds gives peppers beneficial properties and this makes this kind of fruit suitable for medical purposes, 

such as treatment of asthma, sore throats and toothache [24,50,52]. As can be deduced from the analysis of 

obtained Van Krevelen plots, sun-dried Peperoni di Senise PGI peppers still show a wide diversity of these 

kind of metabolites, thus supporting the hypothesis of retainment of macroscopic health promoting properties. 

Moreover, comparison of aFT and mFT related Van Krevelen plots allowed to appreciate the advantages 

provided by the former, supporting what was already argued from the analysis of related Kendrick plots. 

Indeed, point density is higher for the former, providing a better idea of the range of different metabolites 

belonging to a specific class. 

 

3.5. Conclusions 

The new commercial AutoVectis Pro software demonstrated to be crucial in maximizing the reliable 

information provided by a single High Resolution MS spectrum obtained from the analysis of a very complex 

matrix. The possibility to work on recorded FID directly and to calculate absorption mode FT-ICR MS spectra 

in few seconds allowed us to obtain a complete overview of the metabolic profile of a methanolic extract of a 

sample of Peperoni di Senise PGI pepper. More specifically, the utilization of the software AutoVectis Pro led 

to the identification of an enormous number of species, as could be deduced from related Kendrick and Van 

Krevelen plot, minimizing loss of information and allowing the complete characterization of metabolic profile 

of the sample. This work underlines how the implementation of absorption mode MS calculation is necessary 
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to gain more clues on analyzed matrix and how AutoVectis Pro could be the perfect solution to make this step 

easy, fast and straightforward. 
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3.7. Figures 

 

Figure 1 In plot A, the ESI(-)-FT-ICR magnitude (black line) and absorption mode (red line) mass spectra of 

a sample of sun-dried Peperoni di Senise (PGI) peppers. In plot B, a detail of the spectra, in which an 

improvement of peak resolution and a reduction of related wiggles (artefacts, see text) can be appreciated. 

 

Figure 2 Kendrick plot obtained from absorption (red dots) and magnitude (blue dots) mode MS, by 

choosing CH2 as building block. 
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Figure 3 Van Krevelen plots of an extract of sun-dried Peperoni di Senise PGI peppers (Capsicum Annuum 

L.), obtained from the elaboration of the magnitude (plot A) and absorption (plot B) mode MS, respectively. 

Types of formula are distinguished by colors, i.e. blue for CHO, green for CHON, red for CHONS and yellow 

for CHOS type. 

 

  



72 

3.8. Tables 

 

Table 1 Building block occurrences in both absorption and magnitude mode mass spectra. Mass differences 

which value was in the range ±1 mDa of the building block exact mass were considered. 

Building 

Block 

Exact mass Reaction Magnitude 

Mode MS 

Absorption 

Mode MS 

CH2 14.016 Methylation 54 441 

H2 2.016 Hydrogenation 104 1033 

C1 12.000 C-insertion 31 340 

O1 15.995 O-insertion 42 455 

CO2 43.990 Carboxylation 37 253 

C2H2 26.016 Decarboxylative Condensation 73 537 

H2O 18.011 Hydrolysis/Condensation 43 355 

C2H4 28.032 Alkylation 48 645 

C6H10O5 162.053 Glucose addiction 62 291 

CH2O 30.011 Hydroxymethyl transfer 39 380 

C2H2O 42.011 Hydroxypyruvic acid addiction 0 310 

CO 27.995 Formyl transfer 0 288 

C2H4O 44.026 Pyruvic Acid addiction 0 246 

C2H4O2 60.021 Hydroxypyruvic acid addiction/ 

hydrogenation 

0 206 

C3H2O2 70.006 2-Ketosuccinate addiction 0 206 

C3H6O2 74.037 3-Hydroxy-2-oxobutanoic acid 

addiction 

0 275 

C5H8O4 132.043 Pentose addiction (condensation) 0 212 
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4.1. Abstract 

The chemical composition of wine samples comprises numerous bioactive compounds that are responsible for 

unique flavor and health-promoting properties. Moreover, most of them might account for all wine specific 

features such as cultivar, vintage, origin, and quality. Thus, it’s important to have a complete overview of 

metabolic profile of new wine products in order to obtain peculiar information in terms of their bioactivity, 

quality and traceability. To achieve this aim, in this work a Mass Spectrometry-based phytochemical screening 

was performed on seven new wine products from Villa D’Agri in the Basilicata region (Italy), i.e. Aglianico 

bianco, Plavina, Guisana, Giosana, Malvasia ad acino piccolo, Colata Murro and Santa Sofia. High 

Resolution Mass Spectrometry data obtained from sample analysis were employed to perform a rapid analysis 

of metabolome by converting accurate mass-to-charge ratio (m/z) values in putative elemental formulas in 

order to better understand the chemical composition of the samples. Molecular formula maps were obtained 

by making 2D Van Krevelen plots, that led to a direct identification of different classes of metabolites. The 

presence of important metabolite classes, i.e. fatty acid derivatives, tannins, amino acids and peptides, 

carbohydrates and phenolic derivatives, was assessed. Moreover, the comparison of obtained metabolomic 

maps revealed some differences among profiles, thus suggesting their employment as metabolic fingerprints. 

This study shed some light on metabolic composition of seven new Italian wine varieties, improving their 

value in terms of related bioactive compound content. Moreover, unique metabolomic fingerprints were 

obtained for each of them, which can be used as innovative tools for their authentication. 
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4.2. Introduction 

Wine has been part of human culture for 6000 years, being employed for dietary and socioreligious purposes 

[1,2]. Its first production goes back to antiquity, as does the discovery of its healthful benefits, now largely 

attributed to the antimicrobial activity of ethanol [2]. Throughout ancient times, the conversion of grapes into 

wine was considered a gift from the gods and the best wines were thus reserved for the elite of society [1]. 

Today, wine is an integral component of the culture of many countries, a form of entertainment and a beverage 

of choice for supporters of its health benefits. Unlike many foodstuffs, wine’s attractions rely not on bold 

consistent flavours, but upon a wide array of sensations that make its charm difficult to define [3]. Indeed, 

wine producers are considered sellers of sensory experiences. Regardless of the region in which the wine is 

produced or the economic status of the consumer, all wines are expected to be pleasant experiences [3]. In 

most of the world’s wine regions, at least until around the middle of the 1980s, wine has been obtained from 

grapes, following a complex process known as “winemaking”, that comprises the fermentation of grape must 

with the indigenous yeasts present on the grapes when harvested, or introduced from the equipment and cellar 

during the vinification process [4–7]. Nowadays, the practice of adding selected yeasts to slightly sulphited 

musts has become widespread to ensure that must fermentation is rapid and complete and can produce wines 

of reproducible character and quality [5,6,8]. The biological process of winemaking is the result of a series of 

biochemical transformations carried on by the action of several enzymes from different microorganisms, 

especially yeasts, which are responsible for the principal part of the process, alcoholic fermentation [4,6]. 

Result of the winemaking process is, thus, the production of a series of biocompounds that are considered to 

be responsible for the most appreciated properties of this beloved product, such as its taste and related 

biological activity [7,9]. It’s for this reason that a lot of effort has been spent through the last years to improve 

the knowledge of metabolic profile of different wine varieties. Knowledge of the chemical composition of 

grape and wine provided a wide series of advantages, such as the possibility to shed some light on how 

winemaker process could influence the metabolic profile of the final product, thus allowing its optimization 

for the maximization of certain wine properties [8–12]. The number of compounds identified in wine increased 

dramatically since the development of gas chromatography (GC), high pressure liquid chromatography 

(HPLC), thin-layer chromatography (TLC), infrared spectroscopy (IRS), and nuclear magnetic resonance 

(NMR) [13–21]. In detail, coupling of Mass Spectrometry (MS) technique to GC and to HPLC has been 

especially valuable in identifying unknown compounds [22–25]. More than 500 compounds have been 

recognized in wine thus far, of which ~160 are esters. Concentrations range between 10-1 and 10-6 mg/L 

generally. At these levels, the individual compounds play very little or no role in the human organoleptic (taste) 

perception, but collectively they may be very significant [26–28]. The number of aromatic and sapid substances 

derived from grapes are relatively few compared to that of by-products of yeast activity during fermentation. 

Wines generally contain 0.8 – 1.2 g/L of aromatic compounds, of which the most common are alcohols, volatile 

acids, and fatty acid esters [29,30]. Alcohols often constitute 50% of all volatile substances in wines [24,25]. 

Carbonyls, phenols, lactones, terpenes, acetals, hydrocarbons, sulphur, and nitrogen compounds are present in 

much lower concentrations, but they are more important qualitatively and contribute specific sensory 
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characteristics relevant to the fragrance of a wine [31–33]. The taste and mouth-feel sensations are due 

primarily to the few compounds that occur individually at concentrations > 100 mg/L, like water, ethanol, 

organic acids, sugars, and glycerol [34–36]. Tannins occur in red wine and rarely in significant amounts in 

white wines [37,38]. The principal grape sugars are glucose and fructose, and they occur in roughly equal 

proportions at maturity, whereas overripe grapes often have a higher proportion of fructose [39,40]. 

Polysaccharides are generally low in content. They are partially water soluble and are extracted into the juice 

during crushing and pressing [41]. The most important and abundant alcohol in wine is ethanol [42,43]. Under 

standard fermentation conditions, ethanol can accumulate to ~14–15%, but generally ethanol concentrations 

in wine range between 10–13%. Different factors control ethanol production, like sugars, temperature, and 

yeast strain. Ethanol is crucial to the stability, aging, and sensory properties of wine [42,43]. Other potentially 

significant higher alcohols in wine are the straight-chain alcohols: 1-propanol, 2-methyl-1-propanol, 2-methyl-

1-butanol, and 3-methyl-1-butanol [44]. The formation of higher alcohols occurs as a by-product of yeast 

fermentation and is markedly influenced by vinification parameters, such as temperature, presence of oxygen, 

suspended solids, and yeast strain [5,7,8]. Carboxylic acids like tartaric, malic, lactic, succinic, oxalic, fumaric, 

and citric acids control the pH of wine [39,45]. Phenols are important for the characteristics and quality of red 

wines. Their concentration in white wine is much lower. Phenols and related compounds can affect the 

appearance, taste, mouth-feel, fragrance, and antimicrobial properties of wine [44]. The two primary phenol 

groups that occur in grapes and wine are the flavonoids and the nonflavonoids. The most common flavonoids 

in wine are flavonols, catechins (flavan-3-ols), and, in red wines, anthocyanins [46–48]. Flavonoids come 

primarily from the skins, seeds, and stems of the fruit [49]. In red wines, they commonly constitute > 85% of 

the phenol content, while, in white wines, flavonoids typically comprise < 20% of the total phenolic content. 

The amount of flavonoids extracted during vinification is influenced by many factors, including temperature, 

length of skin contact, mixing, type of fermentation vessel, ethanol concentrations, SO2, yeast strain and pH 

[50–54]. Hydroxycinnamic acid derivatives commonly occur esterified to sugars, organic acids, or various 

alcohols. The concentration of phenolics in wine increases during skin fermentation and subsequently begins 

to fall as phenols aggregate and precipitate with proteins and yeast cell remnants [32,33]. During fining and 

ripening, phenols continues to decrease, and aging has a further dramatic effect on their reduction. Seen the 

huge diversity of organic compounds present in wine varieties and their synergic activity resulting in pleased 

macroscopic properties, together with the deep correlation between compound levels and winemaking process, 

it’s of great interest to have an idea of the metabolomic profile of new wine varieties, in order to use obtained 

information for related winemaking process optimization, quality control, authentication and traceability [55–

58]. This could be accomplished using hyphenated techniques by following an untargeted analysis approach 

[58]. However, high costs and long analysis times hamper their routine employment for this task. Nevertheless, 

High Resolution Mass Spectrometry (HRMS) technique showed to be the technique of choice for untargeted 

metabolomic analysis, even if used by following a shotgun, or direct-injection, approach [59–62]. Indeed, 

HRMS has been already used for wine characterization, allowing the identification of thousands of metabolites 

with a single direct analysis, with labour times of few minutes [28,59,60]. Moreover, related results provided 
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useful biochemical mechanistic information, highlighting metabolic differences among samples subjected to 

different winemaking conditions [28,59,60]. In this study, Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR MS) was employed to profile the molecular profile of of seven new Italian wine 

varieties, i.e. Aglianico bianco, Plavina, Guisana, Giosana, Malvasia ad acino piccolo, Colata Murro and 

Santa Sofia, produced in Villa D’Agri in the Basilicata region (Italy). Maps of main metabolites were proposed 

and discussed. 

4.3. Materials and Methods 

Wine Samples 

Wine samples were obtained from new germoplasms cultivated in the Pollino region, a natural area located in 

Basilicata (Italy, and were provided by the the Agency for Development and Innovation in Agriculture 

(ALSIA, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura). Key features of these new wine 

varieties, together with a detailed organoleptic description, are describer elsewhere [63]. 

Chemicals 

Sodium trifluoroacetate (NaTFA, 98%) and Methanol (MeOH, LC-MS grade) were purchased from Sigma-

Aldrich (Milano, Italy). Pure nitrogen (99.996%) was delivered to the MS system as the sheath gas. Wine 

samples were provided by ALSIA (Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura). 

Sample Preparation 

Wine samples were prepared by following a previous method [60]. In detail, 20 µL of sample were diluted by 

adding 1 mL of MeOH. The solution was vortexed, passed through a PTFE 0.22 µm syringe filter and directly 

injected into the HRMS instrument. For every sample, 3 replicates have been prepared, together with a blank 

sample obtained by subjecting 20 µL of MeOH to the whole sample preparation step. 

Mass spectrometry analysis 

ESI (±) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR MS) technique was 

used for the untargeted analysis of the sample. High-resolution Mass Spectra were acquired on a Bruker 

(Bruker Daltonik GmbH, Bremen, Germany) solariX XR Fourier transform ion cyclotron resonance mass 

spectrometer (FT-ICR-MS) equipped with a 7T superconducting magnet and an ESI source. The capillary 

voltage was set to 3.9 and -4.5 kV for negative and positive ionization modes, respectively, with a nebulizer 

gas pressure of 1.2 bar and dry gas flow rate of 4 L/min at 200 °C. Spectra were acquired with a Time Domain 

size of 16 mega-word, an accumulation time of 0.1 s and a mass range of 100-2000 m/z. Moreover, the average 

number of scans was set to 50. Before the analysis, the mass spectrometer was externally calibrated with 

NaTFA. High accuracies were reached, with a root mean square (RMS) error lower than 0.1 ppm. FT-ICR 

mass spectra were subjected to several data pre-treatment steps. In detail, recorded free induction decays (FIDs) 

were subjected to apodization and related absorption mode mass spectra was obtained. Phase correction, mass 

recalibration and baseline correction have been performed, together with blank subtraction [64–66] and noise 
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filtering by following the N-Sigma methodology approach [67]. More specifically, noise level has been 

estimated and peaks showing a signal-to-noise ratio (S/N) higher than 2 were retained. Thus, obtained FT-ICR 

mass spectra were exported to peak lists. From these, possible elemental formulas were calculated for each 

MS signal. To obtain unequivocal formulas, several constraints were applied, such as atoms number 

limitations, i.e. C ≤ 100, H ≤ 200, O ≤ 80, N ≤ 5 and S ≤ 1 [59–62], restrictions on atoms to carbon number 

ratios, i.e. 0.2 ≤ H/C ≤ 3.1, O/C ≤ 2, N/C ≤ 1.3 and S/C ≤ 0.8, RDBE > 0, nitrogen rule (for m/z ratio values 

lower or equal to 500) and isotopic pattern filtering. Moreover, Kendrick mass defect (KMD) was performed 

to help formulas assignment [59,60]. In detail, building blocks with a higher number of occurrences were 

identified and chosen for the analysis. For this step, experimental mass differences values were examined and 

only those comprised in the range ± 1 mDa of the building block exact mass were considered [68,69]. To 

further improve the reliability of results, building blocks with occurrences lower than a threshold value 

(properly chosen to remove all the noisy data) were excluded, being higher the probability for these to have 

occurred randomly [70]. HRMS data were processed by using AutoVectis Pro (v.8.9, Spectroswiss, Lausanne, 

Switzerland) and R software (v3.6.3, www.r-project.org). 

4.4. Results and Discussion 

Direct-injection High Resolution ESI(±)-FT-ICR MS data were used to obtain a general description of 

metabolome of new Italian wine varieties samples. In detail, five types of white wines, i.e. Aglianico bianco, 

Guisana, Giosana, Malvasia ad acino piccolo and Santa Sofia, and two types of red ones, i.e. Colata Murro 

and Plavina, were analyzed. Obtained mass spectra showed a huge number of peaks (Figure 1), thus revealing 

the wide diversity of metabolites present in our samples. However, it should be pointed out that artifacts 

occurrence cannot be considered negligible in FT-ICR [71,72]. Moreover, noisy data hamper the identification 

of low intensity ionic species, thus making overall data elaboration not easy. Working with absorption mode 

mass spectra turned out to be the best solution to overcome these issues. Indeed, peak resolution and signal-

to-noise ratios (S/N) were markedly improved, leading to the identification of a higher number of ionic species. 

Of course, utilization of a dedicated tool to accomplish this task, i.e. the AutoVectis Pro software, was crucial 

to perform a quick phase correction step efficiently and, thus, to obtain a readable absorption mode mass 

spectrum, task that couldn’t be achieved for almost 40 years [64,65,71]. Despite the advantages provided by 

the absorption mode mass spectrum, it’s still difficult to deduce something by simply looking at MS spectra. 

To best interpret our results, MS signals were assigned to unique elemental formulas (see Materials and 

Methods) and results were employed with a well-known visualization tool, i.e. the Van Krevelen plot, made 

by plotting elemental formula on a 2D diagram, setting the H/C and the O/C ratios as the y- and the x-axis, 

respectively [59–61]. Identified ionic species are, thus, spread all over the plot and their position is crucial to 

classify them in one of the major metabolite classes. Thanks to the analysis of Van Krevelen plots, the presence 

of specific types of metabolites in wine samples was proposed, i.e. carbohydrates, polyphenols, amino acids 

and peptides and unsaturated fatty acids (Figure 1). In detail, from the analysis of Van Krevelen plots, 

differences among metabolic profiles can be noticed, some of them reflecting what was already found in the 

literature. More specifically, by looking at the negative ionization mode results, it can be seen how every type 
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of wine showed a higher density of points on the upper right part of the plot, indicating a wider diversity of 

carbohydrates and glycoconjugates. Furthermore, red wines seem to contain a higher amount of unsaturated 

glycoconjugate compounds, supporting what was already found regarding the occurrence of phenolic 

compounds in wine as glycoconjugates mainly [7,44,47,48,73]. A higher density of points in the middle part 

of Van Krevelen plot of red wines, moreover, indicates the presence of more phenolic derivatives, most 

probably flavonoids [59,60]. However, white wines show a little cluster of points in the middle left part of the 

plot (Figure 1B), absent for red wine varieties, which could be related to the presence of low oxygen content 

phenolic acids, such as hydroxycinnamic acid derivatives, which are known to be responsible for the typical 

yellowish colour of white wines [74,75]. Overall, among the same types of wine, difference could be spot 

related to the absence and the presence of points in specific Van Krevelen plots, suggesting the fact that some 

of the identified derivatives are present only in some wine samples, just like the unsaturated CHNO formula 

type compounds present for the Giosana and Santa Sofia white wines (see Supplementary Material) or the 

aliphatic amides present in the Colata Murro red wine sample only, suggesting the utilization of Van Krevelen 

plots to rapidly detect potential markers for quality control purposes. For what concerns positive ionization 

mode results, the analysis of related Van Krevelen plots shows how profiles look similar among the different 

types of wine (Figure 2). In this case, amino acids and peptides, together with their aliphatic derivatives, and 

aliphatic amides seems to be predominant, together with other CHO formula type compounds most probably 

related to unsaturated fatty acid derivatives. Interestingly, no remarkable differences among red and white 

wine metabolic profiles could be uncovered by looking at positive ionization mode Van Krevelen plots. 

Moreover, the Malvasia ad acino piccolo white wine Van Krevelen plot shows the highest density of points, 

indicating how wider is the range of the diversity of identified classes of metabolites. 

4.5. Conclusions 

High Resolution Mass Spectrometry technique was successfully used in this work for the characterization of 

metabolome of new Italian type wine varieties, thus confirming its suitability for quick and efficient untargeted 

metabolic analysis of natural samples. Useful information about types of metabolite present in wine samples 

were obtained, since a classification of identified species has been made possible by the utilization of the Van 

Krevelen plot, a well-known visualization tool useful for HRMS data interpretation. Results helped to identify 

principal classes of metabolites and to spot principal differences among related metabolic profiles and, thus, 

are very promising for the employment of Van Krevelen plots as metabolomic fingerprints useful for potential 

marker identification, for quality control, authentication and traceability. 

  



79 

4.6. References 

[1] G.J. Soleas, E.P. Diamandis, D.M. Goldberg, Wine as a biological fluid: History, production, and role 

in disease prevention, J. Clin. Lab. Anal. 11 (1997) 287–313. https://doi.org/10.1002/(SICI)1098-

2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4. 

[2] J.B. German, R.L. Walzem, The Health Benefits of Wine, Annu. Rev. Nutr. 20 (2000) 561–593. 

https://doi.org/10.1146/annurev.nutr.20.1.561. 

[3] Zoecklein, ed., Wine Analysis and Production, Springer US, 1995. https://doi.org/10.1007/978-1-4757-

6978-4. 

[4] R.B. Boulton, V.L. Singleton, L.F. Bisson, R.E. Kunkee, Principles and Practices of Winemaking, 

Springer US, 1999. https://doi.org/10.1007/978-1-4757-6255-6. 

[5] P. Romano, M. Ciani, G.H. Fleet, Yeasts in the Production of Wine, Springer-Verlag, New York, 2019. 

https://doi.org/10.1007/978-1-4939-9782-4. 

[6] P.J. Chambers, I.S. Pretorius, Fermenting knowledge: the history of winemaking, science and yeast 

research, EMBO Rep. 11 (2010) 914–920. https://doi.org/10.1038/embor.2010.179. 

[7] M.V. Moreno-Arribas, M.C. Polo, Winemaking Biochemistry and Microbiology: Current Knowledge 

and Future Trends, Crit. Rev. Food Sci. Nutr. 45 (2005) 265–286. 

https://doi.org/10.1080/10408690490478118. 

[8] J.A. Suárez-Lepe, A. Morata, New trends in yeast selection for winemaking, Trends Food Sci. Technol. 

23 (2012) 39–50. https://doi.org/10.1016/j.tifs.2011.08.005. 

[9] E.C. Kritzinger, F.F. Bauer, W.J. Du Toit, Role of glutathione in winemaking: A review, J. Agric. Food 

Chem. 61 (2013) 269–277. https://doi.org/10.1021/jf303665z. 

[10] K.L. Sacchi, L.F. Bisson, D.O. Adams, A Review of the Effect of Winemaking Techniques on Phenolic 

Extraction in Red Wines, Am. J. Enol. Vitic. 56 (2005) 197–206. 

[11] A. Di Lorenzo, N. Bloise, S. Meneghini, A. Sureda, G. Tenore, L. Visai, C. Arciola, M. Daglia, Effect 

of Winemaking on the Composition of Red Wine as a Source of Polyphenols for Anti-Infective 

Biomaterials, Materials (Basel). 9 (2016) 316. https://doi.org/10.3390/ma9050316. 

[12] B. Ayestarán, L. Martínez-Lapuente, Z. Guadalupe, C. Canals, E. Adell, M. Vilanova, Effect of the 

winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines, 

Food Chem. 276 (2019) 187–194. https://doi.org/10.1016/j.foodchem.2018.10.013. 

[13] S. Agatonovic-Kustrin, C.G. Hettiarachchi, D.W. Morton, S. Razic, Analysis of phenolics in wine by 

high performance thin-layer chromatography with gradient elution and high resolution plate imaging, 



80 

J. Pharm. Biomed. Anal. 102 (2015) 93–99. https://doi.org/10.1016/j.jpba.2014.08.031. 

[14] A. Romano, H. Klebanowski, S. La Guerche, L. Beneduce, G. Spano, M.L. Murat, P. Lucas, 

Determination of biogenic amines in wine by thin-layer chromatography/ densitometry, Food Chem. 

135 (2012) 1392–1396. https://doi.org/10.1016/j.foodchem.2012.06.022. 

[15] E. Revilla, J.M. Ryan, Analysis of several phenolic compounds with potential antioxidant properties in 

grape extracts and wines by high-performance liquid chromatography-photodiode array detection 

without sample preparation, J. Chromatogr. A. 881 (2000) 461–469. https://doi.org/10.1016/S0021-

9673(00)00269-7. 

[16] A. Visconti, M. Pascale, G. Centonze, Determination of ochratoxin A in wine by means of 

immunoaffinity column clean-up and high-performance liquid chromatography, J. Chromatogr. A. 864 

(1999) 89–101. https://doi.org/10.1016/S0021-9673(99)00996-6. 

[17] L. Culleré, A. Escudero, J. Cacho, V. Ferreira, Gas Chromatography-Olfactometry and Chemical 

Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines, J. Agric. Food 

Chem. 52 (2004) 1653–1660. https://doi.org/10.1021/jf0350820. 

[18] R. López, M. Aznar, J. Cacho, V. Ferreira, Determination of minor and trace volatile compounds in 

wine by solid-phase extraction and gas chromatography with mass spectrometric detection, J. 

Chromatogr. A. 966 (2002) 167–177. https://doi.org/10.1016/S0021-9673(02)00696-9. 

[19] R. Godelmann, F. Fang, E. Humpfer, B. Schütz, M. Bansbach, H. Schäfer, M. Spraul, Targeted and 

nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. 

differentiation of important parameters: Grape variety, geographical origin, year of vintage, J. Agric. 

Food Chem. 61 (2013) 5610–5619. https://doi.org/10.1021/jf400800d. 

[20] H.S. Son, G.S. Hwang, K.M. Kim, H.J. Ahn, W.M. Park, F. Van Den Berg, Y.S. Hong, C.H. Lee, 

Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with 

multivariate statistics, J. Agric. Food Chem. 57 (2009) 1481–1490. https://doi.org/10.1021/jf803388w. 

[21] D. Cozzolino, M.J. Kwiatkowski, M. Parker, W.U. Cynkar, R.G. Dambergs, M. Gishen, M.J. 

Herderich, Prediction of phenolic compounds in red wine fermentations by visible and near infrared 

spectroscopy, in: Anal. Chim. Acta, Elsevier, 2004: pp. 73–80. 

https://doi.org/10.1016/j.aca.2003.08.066. 

[22] Y. Wang, F. Catana, Y. Yang, R. Roderick, R.B. Van Breemen, An LC-MS method for analyzing total 

resveratrol in grape juice, cranberry juice, and in wine, J. Agric. Food Chem. 50 (2002) 431–435. 

https://doi.org/10.1021/jf010812u. 

[23] L. Jaitz, K. Siegl, R. Eder, G. Rak, L. Abranko, G. Koellensperger, S. Hann, LC-MS/MS analysis of 

phenols for classification of red wine according to geographic origin, grape variety and vintage, Food 



81 

Chem. 122 (2010) 366–372. https://doi.org/10.1016/j.foodchem.2010.02.053. 

[24] M. Aznar, R. López, J.F. Cacho, V. Ferreira, Identification and quantification of impact odorants of 

aged red wines from Rioja, GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC 

fractions, J. Agric. Food Chem. 49 (2001) 2924–2929. https://doi.org/10.1021/jf001372u. 

[25] J. Bosch-Fusté, M. Riu-Aumatell, J.M. Guadayol, J. Caixach, E. López-Tamames, S. Buxaderas, 

Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography-

mass spectrometry (GC-MS) analysis, Food Chem. 105 (2007) 428–435. 

https://doi.org/10.1016/j.foodchem.2006.12.053. 

[26] N.A. Bokulich, T.S. Collins, C. Masarweh, G. Allen, H. Heymann, S.E. Ebeler, D.A. Millsa, 

Associations among wine grape microbiome, metabolome, and fermentation behavior suggest 

microbial contribution to regional wine characteristics, MBio. 7 (2016). 

https://doi.org/10.1128/mBio.00631-16. 

[27] A. Cuadros-Inostroza, P. Giavalisco, J. Hummel, A. Eckardt, L. Willmitzer, H. Peña-Cortés, 

Discrimination of wine attributes by metabolome analysis, Anal. Chem. 82 (2010) 3573–3580. 

https://doi.org/10.1021/ac902678t. 

[28] C. Roullier-Gall, D. Hemmler, M. Gonsior, Y. Li, M. Nikolantonaki, A. Aron, C. Coelho, R.D. 

Gougeon, P. Schmitt-Kopplin, Sulfites and the wine metabolome, Food Chem. 237 (2017) 106–113. 

https://doi.org/10.1016/j.foodchem.2017.05.039. 

[29] R.A. Peinado, J. Moreno, J.E. Bueno, J.A. Moreno, J.C. Mauricio, Comparative study of aromatic 

compounds in two young white wines subjected to pre-fermentative cryomaceration, Food Chem. 84 

(2004) 585–590. https://doi.org/10.1016/S0308-8146(03)00282-6. 

[30] M. Vilanova, C. Martínez, First study of determination of aromatic compounds of red wine from Vitis 

vinifera cv. Castañal grown in Galicia (NW Spain), Eur. Food Res. Technol. 224 (2007) 431–436. 

https://doi.org/10.1007/s00217-006-0322-0. 

[31] R. Longo, J.W. Blackman, P.J. Torley, S.Y. Rogiers, L.M. Schmidtke, Changes in volatile composition 

and sensory attributes of wines during alcohol content reduction, J. Sci. Food Agric. 97 (2017) 8–16. 

https://doi.org/10.1002/jsfa.7757. 

[32] R. Harrison, Practical interventions that influence the sensory attributes of red wines related to the 

phenolic composition of grapes: a review, Int. J. Food Sci. Technol. 53 (2018) 3–18. 

https://doi.org/10.1111/ijfs.13480. 

[33] C. Coetzee, W.J. Du Toit, Sauvignon blanc wine: Contribution of Ageing and Oxygen on Aromatic 

and Non-aromatic Compounds and Sensory Composition: A Review, South African J. Enol. Vitic. 36 

(2015) 347–365. https://doi.org/10.21548/36-3-968. 



82 

[34] S. Vidal, L. Francis, S. Guyot, N. Marnet, M. Kwiatkowski, R. Gawel, V. Cheynier, E.J. Waters, The 

mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium, J. Sci. Food Agric. 

83 (2003) 564–573. https://doi.org/10.1002/jsfa.1394. 

[35] S. Vidal, L. Francis, P. Williams, M. Kwiatkowski, R. Gawel, V. Cheynier, E. Waters, The mouth-feel 

properties of polysaccharides and anthocyanins in a wine like medium, Food Chem. 85 (2004) 519–

525. https://doi.org/10.1016/S0308-8146(03)00084-0. 

[36] S. Vidal, P. Courcoux, L. Francis, M. Kwiatkowski, R. Gawel, P. Williams, E. Waters, V. Cheynier, 

Use of an experimental design approach for evaluation of key wine components on mouth-feel 

perception, Food Qual. Prefer. 15 (2004) 209–217. https://doi.org/10.1016/S0950-3293(03)00059-4. 

[37] A.P. Nel, Tannins and anthocyanins: From their origin to wine analysis - A review, South African J. 

Enol. Vitic. 39 (2018) 1–20. https://doi.org/10.21548/39-1-1503. 

[38] M.J. Herderich, P.A. Smith, Analysis of grape and wine tannins: Methods, applications and challenges, 

Aust. J. Grape Wine Res. 11 (2005) 205–214. https://doi.org/10.1111/j.1755-0238.2005.tb00288.x. 

[39] M. Calull, R.M. Marcé, F. Borrull, Determination of carboxylic acids, sugars, glycerol and ethanol in 

wine and grape must by ion-exchange high-performance liquid chromatography with refractive index 

detection, J. Chromatogr. A. 590 (1992) 215–222. https://doi.org/10.1016/0021-9673(92)85384-6. 

[40] E.F. Lopez, E.F. Gomez, Simultaneous Determination of the Major Organic Acids, Sugars, Glycerol, 

and Ethanol by HPLC in Grape Musts and White Wines, J. Chromatogr. Sci. 34 (1996) 254–257. 

https://doi.org/10.1093/chromsci/34.5.254. 

[41] S. Escot, M. Feuillat, L. Dulau, C. Charpentier, Release of polysaccharides by yeasts and the influence 

of released polysaccharides on colour stability and wine astringency, Aust. J. Grape Wine Res. 7 (2001) 

153–159. https://doi.org/10.1111/j.1755-0238.2001.tb00204.x. 

[42] A. Rakotovao, C. Berthonneche, A. Guiraud, M. de Lorgeril, P. Salen, J. de Leiris, F. Boucher, Ethanol, 

Wine, and Experimental Cardioprotection in Ischemia/Reperfusion: Role of the 

Prooxidant/Antioxidant Balance, Antioxid. Redox Signal. 6 (2004) 431–438. 

https://doi.org/10.1089/152308604322899503. 

[43] M. Iriti, E.M. Varoni, Moderate Red Wine Consumption in Cardiovascular Disease: Ethanol Versus 

Polyphenols, in: Mediterr. Diet An Evidence-Based Approach, Elsevier Inc., 2015: pp. 143–151. 

https://doi.org/10.1016/B978-0-12-407849-9.00014-2. 

[44] K.H. Čiča, M. Pezer, J. Mrvčić, D. Stanzer, J. Čačić, V. Jurak, M. Krajnović, J.G. Kljusurić, 

Identification of phenolic and alcoholic compounds in wine spirits and their classification by use of 

multivariate analysis, J. Serbian Chem. Soc. 84 (2019) 663–677. 

https://doi.org/10.2298/JSC190115020H. 



83 

[45] D. Tusseau, C. Benoit, Routine high-performance liquid chromatographic determination of carboxylic 

acids in wines and champagne, J. Chromatogr. A. 395 (1987) 323–333. https://doi.org/10.1016/S0021-

9673(01)94121-4. 

[46] R. Boulton, The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical 

Review, Am. J. Enol. Vitic. 52 (2001). 

[47] N. Castillo-Muñoz, S. Gómez-Alonso, E. García-Romero, I. Hermosín-Gutiérrez, Flavonol profiles of 

Vitis vinifera red grapes and their single-cultivar wines, J. Agric. Food Chem. 55 (2007) 992–1002. 

https://doi.org/10.1021/jf062800k. 

[48] N. Castillo-Muñoz, S. Gómez-Alonso, E. García-Romero, M.V. Gómez, A.H. Velders, I. Hermosín-

Gutiérrez, Flavonol 3-O-glycosides series of Vitis vinifera Cv. Petit Verdot red wine grapes, J. Agric. 

Food Chem. 57 (2009) 209–219. https://doi.org/10.1021/jf802863g. 

[49] I. Fernandes, R. Pérez-Gregorio, S. Soares, N. Mateus, V. de Freitas, Wine Flavonoids in Health and 

Disease Prevention, Molecules. 22 (2017) 292. https://doi.org/10.3390/molecules22020292. 

[50] S.D. Cohen, J.M. Tarara, G.A. Gambetta, M.A. Matthews, J.A. Kennedy, Impact of diurnal temperature 

variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid 

pathway genes, J. Exp. Bot. 63 (2012) 2655–2665. https://doi.org/10.1093/jxb/err449. 

[51] J.A. Kennedy, M.A. Matthews, A.L. Waterhouse, Effect of Maturity and Vine Water Status on Grape 

Skin and Wine Flavonoids, Am. J. Enol. Vitic. 53 (2002). 

[52] F. Fang, J.M. Li, Q.H. Pan, W.D. Huang, Determination of red wine flavonoids by HPLC and effect of 

aging, Food Chem. 101 (2007) 428–433. https://doi.org/10.1016/j.foodchem.2005.12.036. 

[53] F. Fang, J.M. Li, P. Zhang, K. Tang, W. Wang, Q.H. Pan, W.D. Huang, Effects of grape variety, harvest 

date, fermentation vessel and wine ageing on flavonoid concentration in red wines, Food Res. Int. 41 

(2008) 53–60. https://doi.org/10.1016/j.foodres.2007.09.004. 

[54] M. Nardini, I. Garaguso, Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid 

Measurements in White Wine, Foods. 7 (2018) 35. https://doi.org/10.3390/foods7030035. 

[55] I.S. Arvanitoyannis, M.N. Katsota, E.P. Psarra, E.H. Soufleros, S. Kallithraka, Application of quality 

control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics), Trends 

Food Sci. Technol. 10 (1999) 321–336. https://doi.org/10.1016/S0924-2244(99)00053-9. 

[56] K. Chira, M. Jourdes, P.L. Teissedre, Cabernet sauvignon red wine astringency quality control by 

tannin characterization and polymerization during storage, Eur. Food Res. Technol. 234 (2012) 253–

261. https://doi.org/10.1007/s00217-011-1627-1. 

[57] M. Amargianitaki, A. Spyros, NMR-based metabolomics in wine quality control and authentication, 



84 

Chem. Biol. Technol. Agric. 4 (2017) 1–12. https://doi.org/10.1186/s40538-017-0092-x. 

[58] J.D. Nunes-Miranda, G. Igrejas, E. Araujo, M. Reboiro-Jato, J.L. Capelo, Mass Spectrometry-Based 

Fingerprinting of Proteins and Peptides in Wine Quality Control: A Critical Overview, Crit. Rev. Food 

Sci. Nutr. 53 (2013) 751–759. https://doi.org/10.1080/10408398.2011.557514. 

[59] C. Roullier-Gall, M. Witting, D. Tziotis, A. Ruf, R.D. Gougeon, P. Schmitt-Kopplin, Integrating 

analytical resolutions in non-targeted wine metabolomics, Tetrahedron. 71 (2015) 2983–2990. 

https://doi.org/10.1016/j.tet.2015.02.054. 

[60] C. Roullier-Gall, M. Witting, R.D. Gougeon, P. Schmitt-Kopplin, High precision mass measurements 

for wine metabolomics, Front. Chem. 2 (2014) 102. https://doi.org/10.3389/fchem.2014.00102. 

[61] R. Pascale, G. Bianco, T.R.I. Cataldi, P.S. Kopplin, F. Bosco, L. Vignola, J. Uhl, M. Lucio, L. Milella, 

Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi 

beans (Phaseolus vulgaris L.), Food Chem. 242 (2018) 497–504. 

https://doi.org/10.1016/j.foodchem.2017.09.091. 

[62] A. Santarsiero, A. Onzo, R. Pascale, M.A. Acquavia, M. Coviello, P. Convertini, S. Todisco, M. 

Marsico, C. Pifano, P. Iannece, C. Gaeta, S. D’Angelo, M.C. Padula, G. Bianco, V. Infantino, G. 

Martelli, Pistacia lentiscus Hydrosol: Untargeted Metabolomic Analysis and Anti-Inflammatory 

Activity Mediated by NF-κB and the Citrate Pathway, Oxid. Med. Cell. Longev. 2020 (2020) 1–14. 

https://doi.org/10.1155/2020/4264815. 

[63] V. Alba, C. Bergamini, M. Gasparro, F. Mazzone, S. Roccotelli, D. Antonacci, A.R. Caputo, 

Basivin_SUD: la ricerca del germoplasma viticolo in Basilicata, 2nd ed., n.d. 

[64] D.P.A. Kilgour, R. Wills, Y. Qi, P.B. O’Connor, Autophaser: An algorithm for automated generation 

of absorption mode spectra for FT-ICR MS, Anal. Chem. 85 (2013) 3903–3911. 

https://doi.org/10.1021/ac303289c. 

[65] D.P.A. Kilgour, S.L. Van Orden, Absorption mode Fourier transform mass spectrometry with no 

baseline correction using a novel asymmetric apodization function, Rapid Commun. Mass Spectrom. 

29 (2015) 1009–1018. https://doi.org/10.1002/rcm.7190. 

[66] D.P.A. Kilgour, M.J. Neal, A.J. Soulby, P.B. O’Connor, Improved optimization of the Fourier 

transform ion cyclotron resonance mass spectrometry phase correction function using a genetic 

algorithm, Rapid Commun. Mass Spectrom. 27 (2013) 1977–1982. https://doi.org/10.1002/rcm.6658. 

[67] A.T. Zielinski, I. Kourtchev, C. Bortolini, S.J. Fuller, C. Giorio, O.A.M. Popoola, S. Bogialli, A. 

Tapparo, R.L. Jones, M. Kalberer, A new processing scheme for ultra-high resolution direct infusion 

mass spectrometry data, Atmos. Environ. 178 (2018) 129–139. 

https://doi.org/10.1016/j.atmosenv.2018.01.034. 



85 

[68] K. Longnecker, E.B. Kujawinski, Using network analysis to discern compositional patterns in 

ultrahigh-resolution mass spectrometry data of dissolved organic matter, Rapid Commun. Mass 

Spectrom. (2016) 2388–2394. https://doi.org/10.1002/rcm.7719. 

[69] F. Moritz, M. Kaling, J.-P. Schnitzler, P. Schmitt-Kopplin, Characterization of poplar metabotypes via 

mass difference enrichment analysis, Plant. Cell Environ. 40 (2017) 1057–1073. 

https://doi.org/10.1111/pce.12878. 

[70] E. V. Kunenkov, A.S. Kononikhin, I. V. Perminova, N. Hertkorn, A. Gaspar, P. Schmitt-Kopplin, I.A. 

Popov, A. V. Garmash, E.N. Nikolaev, Total mass difference statistics algorithm: A new approach to 

identification of high-mass building blocks in electrospray ionization fourier transform ion cyclotron 

mass spectrometry data of natural organic matter, Anal. Chem. 81 (2009) 10106–10115. 

https://doi.org/10.1021/ac901476u. 

[71] Y. Qi, P.B. O’Connor, Data processing in Fourier transform ion cyclotron resonance mass 

spectrometry, Mass Spectrom. Rev. 33 (2014) 333–352. https://doi.org/10.1002/mas.21414. 

[72] E.N. Nikolaev, Y.I. Kostyukevich, G.N. Vladimirov, Fourier transform ion cyclotron resonance (FT 

ICR) mass spectrometry: Theory and simulations, Mass Spectrom. Rev. 35 (2016) 219–258. 

https://doi.org/10.1002/mas.21422. 

[73] M.V. Moreno-Arribas, M.C. Polo, Wine chemistry and biochemistry, Springer-Verlag, New York, 

2009. https://doi.org/10.1007/978-0-387-74118-5. 

[74] A.F. Ortega, A. Lopez-Toledano, M. Mayen, J. Merida, M. Medina, Changes in Color and Phenolic 

Compounds During Oxidative Aging of Sherry White Wine, J. Food Sci. 68 (2003) 2461–2468. 

https://doi.org/10.1111/j.1365-2621.2003.tb07046.x. 

[75] Á.F. Recamales, A. Sayago, M.L. González-Miret, D. Hernanz, The effect of time and storage 

conditions on the phenolic composition and colour of white wine, Food Res. Int. 39 (2006) 220–229. 

https://doi.org/10.1016/j.foodres.2005.07.009. 

 

  



86 

4.7. Figures 

 

Figure 2 Van Krevelen plots of Colata Murro (A) and Aglianico Bianco (B) red and white wine samples, 

respectively, obtained from related ESI(-)-FT-ICR MS data. Types of formula are distinguished by colors 

(green for CHNO, yellow for CHNOS, blue for CHO and red for CHOS). 

 

Figure 2 Van Krevelen plots of Malvasia ad acino piccolo (A) and Colata Murro (B) white and red wine 

samples, respectively, obtained from related ESI(+)-FT-ICR MS data. Types of formula are distinguished by 

colors (green for CHNO, yellow for CHNOS, blue for CHO and red for CHOS). 
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4.8. Supplementary Material 

 

Figure S1 Van Krevelen plot of Giosana white wine sample, obtained from related ESI(-) (A) and ESI(+)-FT-

ICR MS (B) data, respectively. Types of formula are distinguished by colors (green for CHNO, yellow for 

CHNOS, blue for CHO and red for CHOS). 

 

Figure S2 Van Krevelen plot of Guisana white wine sample, obtained from related ESI(-) (A) and ESI(+)-FT-

ICR MS (B) data, respectively. Types of formula are distinguished by colors (green for CHNO, yellow for 

CHNOS, blue for CHO and red for CHOS). 
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Figure S3 Van Krevelen plot of Malvasia ad acino piccolo white wine sample, obtained from related ESI(-)-

FT-ICR MS data. Types of formula are distinguished by colors (green for CHNO, yellow for CHNOS, blue for 

CHO and red for CHOS). 

 

Figure S4 Van Krevelen plot of Santa Sofia white wine sample, obtained from related ESI(-) (A) and ESI(+)-

FT-ICR MS (B) data, respectively. Types of formula are distinguished by colors (green for CHNO, yellow for 

CHNOS, blue for CHO and red for CHOS). 
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Figure S5 Van Krevelen plot of Plavina white wine sample, obtained from related ESI(-) (A) and ESI(+)-FT-

ICR MS (B) data, respectively. Types of formula are distinguished by colors (green for CHNO, yellow for 

CHNOS, blue for CHO and red for CHOS). 

 

Figure S6 Van Krevelen plot of Aglianico Bianco white wine sample, obtained from related ESI(+)-FT-ICR 

MS data. Types of formula are distinguished by colors (green for CHNO, yellow for CHNOS, blue for CHO 

and red for CHOS). 
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5.1. Abstract 

High Resolution Mass Spectrometry is becoming the technique of election for the identification of thousands 

of metabolites in very complex matrices, such as petroleum, human tissue or food products. Among the 

advantages provided by its employment, the most important one consists of providing higher levels of 

accuracies, thanks to which elemental formulas can be calculated and assigned to Mass Spectrometry signals. 

However, high accuracy is not enough to obtain unique formula assignments for higher mass-to-charge ratios 

(m/z). To reduce the number of possible candidates, several tools and filters are employed. Among these, 

Kendrick plot and Molecular Network use is promising, since these approaches exploit the chemistry of 

analyzed samples to accomplish this task, providing important mechanistic information and clues on the variety 

of derivatives present in it too. In this work, a new R Shiny app, i.e. the Omics Interactive Formula Assignment 

(OIFA) software, is presented, which allowed us to assume an interactive approach for the elemental formula 

assignment process by directly working on Kendrick plot and Molecular Networks by means of a point-and-

click approach. In this way, low resolved homologous series can be identified easily, elemental formulas for 

single members can be calculated, most frequent building blocks can be identified and immediately used for 

formula assignment purposes and systematic effects acting on data could be uncovered. OIFA was crucial for 

the elaboration of metabolomic High Resolution Mass Spectrometry data of two Italian typical food products, 

i.e. the Fagioli Bianchi di Rotonda PDO beans and the Melanzane Rosse di Rotonda PDO eggplants, leading 

to the identification of present metabolites and their classification by means of Van Krevelen plots. 
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5.2. Introduction 

Mass spectrometry (MS) technology saw a remarkable evolution during last years, becoming an indispensable 

tool for compound characterization [1–3]. In detail, development of softer ionization techniques and specific 

types of analyzers made this technique able to provide useful information about analytes [4,5]. As an example, 

Matrix-Assisted Laser Desorption and Electrospray Ionizations (MALDI and ESI, respectively) can be used 

as a way to ionize polar higher molecular weight and thermal labile compounds with a reduced or depleted 

degree of fragmentation, thus assuring the observation of relative pseudomolecular ions, through which the 

monoisotopic mass of the analytes of interest can be deduced, which can be more accurate if the soft ionization 

source is coupled to accurate mass measurement analyzers such as Orbitrap and Fourier-Transform Ion 

Cyclotron resonance (FT-ICR) cell [6–8]. This leads to the calculation of compound chemical formulas, crucial 

for the identification of unknown species and to shed some light about their chemistry. Indeed, knowledge of 

chemical formulas could lead to the differentiation of metabolites present in natural samples or to the 

evaluation of the range of derivatives of an analyte of interest, like pollutants in an air sample [9,10]. Orbitrap 

and FT-ICR analyzers are able to identify thousands of ions simultaneously, with accuracies in the range of 

parts-per-million (ppm) and sub-ppm, assuring a huge filtering of possible formulas for a single accurate mass 

value [10–17]. However, higher accuracies alone cannot provide unique formula assignments for accurate 

masses > 200 Da [18], thus making compulsory the utilization of other tools to further filter formulas of higher 

accurate mass species. To this aim, different strategies are assumed. One of these relies on the matching of 

experimental and theoretical isotopic patterns, the calculation of which is possible from a chemical formula by 

using natural isotopic abundances and employing a polynomial expression [1,18]. A mass spectrum of 

sufficient resolution can report the ionic species containing the monoisotopic elements [M] and an isotopic 

element [M + 1] or elements [M + n]. Both the presence of isotopic peaks and their relative abundance to the 

monoisotopic peak can provide evidence for constraining the number of elemental formulas. In particular, this 

is useful when analyzers such as FT-ICR and Orbitrap are employed, able to provide a dramatical improvement 

of peak resolution, thus leading to the observation of isotopic fine structures [19]. To apply chemical and 

heuristic rules for elemental formula filtering consists in another strategy commonly adopted. These include 

relatively well-known chemical rules such as the nitrogen, the hydrogen and ring-plus-double-bond 

equivalence rules [18], and established principles relating to valence electron theory (i.e. Lewis ‘octet rule’) 

[18]. Finally, an effective method for analyte identification uses accurate mass data that is searched in a 

chemical database such as Chemical Abstracts Service (CAS) registry or ChemSpider [20]. Searches can be 

carried out using a range of properties, but typically using elemental formula or molecular weight as the active 

search parameter where results are ranked according to the highest number of references within the database. 

Despite the impressive reduction of candidate formulas supplied by these strategies, still it’s not possible to 

obtain unique assignments for accurate mass values >500 Da. Moreover, chemical database search not always 

provides reliable results, since some derivatives observed in mass spectra could have not ever been reported 

before [21]. To overcome this problem, different visualization tools where introduced to guide formula 

assignment of high mass-to-charge (m/z) species, i.e. the Kendrick plot and the Molecular Network Analysis 
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[22,23]. The former can be obtained by converting observed accurate mass values to the so-called Kendrick 

scale by means of a linear expression, which depends on the choice of a specific building block, i.e. a group of 

atoms which usually corresponds to a specific chemical reaction [24]. Direct consequence of this conversion 

is the organization of MS signals in homologous series, whose members show the same mass defect (or 

Kendrick Mass Defect, KMD, since accurate masses have been converted to the Kendrick scale) [24]. For this 

reason, by plotting MS signals as points in a 2D Kendrick Nominal Mass/KMD plot, it’s possible to observe 

different homologous series as points ordered on a line parallel to the x-axis [22]. The key feature of 

homologous series is the fact that members differ from each other by a certain amount of the chosen building 

block, thus, by assuming that one member has been successfully assigned to one elemental formula, it would 

be possible to calculate formulas of other members by adding or subtracting the right amount of building block 

unit [22]. A step forward to this approach is represented by the Molecular Network Analysis, thanks to which 

more than one building block can be considered simultaneously by applying network analysis on experimental 

MS data [21,23]. In detail, networks are built by assuming that nodes correspond to experimental m/z ratios 

and edges to mass differences, which in turn are related to a specific building block [25]. Ionic species are, 

then, organized in clusters, which can differ from each other by the amount of several heteroatoms or by their 

RDBE value, depending from which kind of building blocks are considered, and a single unique formula 

assignment allows the calculation of one elemental formula for every node of the cluster [25]. Utilization of 

these tools revolutionized the way High Resolution MS is used in metabolomics, making it the technique of 

choice for untargeted omics analysis, such as petroleomics and metabolomics, being able here to identify 

thousands of compounds with a single direct-injection analysis and providing valuable information on the 

chemistry of samples [10,26–29]. However, full automation of these processes could lead to errors, especially 

when systematic effects influence raw data and/or a huge number of artefacts, such as wiggles, are present in 

recorded mass spectrum [30]. These aspects could get in wrong assignments, which can propagate all over the 

MS data by using cited tools. Thus, in this work, a new interactive app, i.e. the Omics Interactive Formula 

Assignment (OIFA) software, developed by means of the R Shiny package [31], is presented and used to 

perform a metabolomic profile of two Italian typical food products, i.e. the Fagioli Bianchi di Rotonda PDO 

(Protected designation of Origin) beans and the Melanzane Rosse di Rotonda PDO eggplants. Direct-injection 

High Resolution Mass Spectrometry data were elaborated with OIFA, which allowed to carry on a more 

reliable formula assignment step thanks to the possibility to directly interact with related Kendrick plot and 

Molecular Network. This approach allowed to make a distinction among low resolved homologous series and 

to select starting points for calculation of other members elemental formula. Moreover, a closer look to longer 

homologous series allowed us to identify the presence of systematic effects and to measure their entity. 

5.3. Materials and Methods 

Chemicals 

Sodium trifluoroacetate (NaTFA, 98%) and ethanol (EtOH, 96%) were purchased from Sigma-Aldrich 

(Milano, Italy). Pure nitrogen (99.996%) was delivered to the MS system as the sheath gas. Ultra-pure water 

was employed and was produced using a Milli-Q RG system from Millipore (Bedford, MA, USA). Fagioli 
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Bianchi di Rotonda PDO beans (Phaseolus Vulgaris L.) and Melanzane Rosse di Rotonda PDO eggplants 

(Solanum melongena L.) were provided by the Agency for Development and Innovation in Agriculture 

(ALSIA, Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura, Rotonda, Italy). 

Sample Preparation 

Extracts of Fagioli Bianchi di Rotonda PDO beans and Melanzane Rosse di Rotonda PDO eggplants were 

obtained by following modified procedures based on two previously reported methods, with slight 

modifications [10,32]. Beans were grounded to a fine powder using a home miller, while eggplants were 

subjected to lyophilization prior to the grinding step. 10 mL of a solution of EtOH and ultrapure water in a 7:3 

ratio were added to 1 g of the bean sample, while 10 mL of MeOH was added to 200 mg of the eggplant one. 

Metabolites were extracted by means of the Ultrasound Assisted Extraction (UAE) technique at room 

temperature (Sonorex Super RK 100/H sonicator; Bandelin electronic, Berlin, Germany) with a 35 kHz 

automatic frequency control and a high-frequency power of 80 W. The UAE was applied for 6 h for the bean 

sample and for 15 min for the eggplant one. Extracts were passed through a PTFE 0.22 µm filter and were 

injected into the MS system without any further pre-treatment. Blank samples were prepared by applying every 

preparation step to 10 mL of EtOH/H2O 7:3 and to 10 mL of MeOH, respectively. Extracts were stored under 

-20°C prior to the analysis. 

Mass Spectrometry 

ESI (±) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) technique was used for 

the untargeted metabolomic analysis of the samples. High Resolution Mass Spectra were acquired on a Bruker 

(Bruker Daltonik GmbH, Bremen, Germany) solariX XR Fourier transform ion cyclotron resonance mass 

spectrometer (FT-ICR-MS) equipped with a 7T superconducting magnet and an ESI source. The capillary 

voltage was set to 3.9 and -4.5 kV for negative and positive ionization modes, respectively, with a nebulizer 

gas pressure of 1.2 bar and dry gas flow rate of 4 L/min at 200 °C. Spectra were acquired with a Time Domain 

size of 16 mega-word, an accumulation time of 0.1 s and a mass range of 100-2000 m/z. Moreover, the average 

number of scans was set to 50. Before the analysis, the mass spectrometer was externally calibrated with 

NaTFA. Once recorded, FT-ICR mass spectra were submitted to several data pre-treatment steps. In detail, 

recorded free induction decays (FIDs) were subjected to apodization and related absorption mode mass spectra 

were obtained. Phase correction, mass recalibration and baseline correction have been performed [33,34]. 

Finally, noise filtering has been performed on mass spectra by following the N-Sigma methodology approach 

[9]. More specifically, noise level has been estimated and peaks showing a signal-to-noise ratio (S/N) higher 

than 2 were retained [10]. Thus, obtained FT-ICR mass spectra were exported to peak lists. From these, 

possible elemental formulas were assigned to each MS signal by direct comparison of m/z ratio values to an 

in-house formula database. The latter was obtained by considering several constraints too, such as atoms 

number limitations, i.e. C ≤ 100, H ≤ 200, O ≤ 80, N ≤ 5 and S ≤ 1 [10,29], restrictions on atoms to carbon 

number ratios, i.e. 0.2 ≤ H/C ≤ 3.1, O/C ≤ 2, N/C ≤ 1.3 and S/C ≤ 0.8, RDBE > 0, hydrogen and nitrogen rule 

(the latter applied for m/z ≤ 500 only) [18]. So obtained data were subjected to an interactive Kendrick mass 
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defect (KMD) analysis to help formula filtering and calculation by means of the OIFA R Shiny app. A list of 

building blocks was previously prepared, each of them corresponding to common biochemical reactions [21], 

and chosen subsequently for the analysis. To further improve the reliability of results, an interactive Molecular 

Network analysis was carried on. For this step, experimental mass differences values were examined and only 

those comprised in the range ± 1 mDa of the building block exact mass were considered for the construction 

of molecular networks [21,25]. Building blocks with occurrences lower than a threshold value (properly chosen 

to remove all the noisy data [35]) were excluded, being higher the probability for these to have occurred 

randomly [35]. FT-ICR MS raw data pre-processing has been done by using AutoVectis Pro (v.8.9, 

Spectroswiss, Lausanne, Switzerland), while interactive KMD and Molecular Network analyses were done by 

means of the OIFA tool, developed by using the R software (v3.6.3, www.r-project.org) and employing 

different R packages [31,36–38]. 

5.4. Results and Discussion 

High Resolution Mass Spectrometry is a powerful technique for the untargeted analysis of complex natural 

matrices, being able to identify thousands of metabolites with a single direct analysis [10,26,29]. However, 

obtained data are just too complex to be interpreted at first sight, a feature that makes the utilization of 

dedicated visualization tools compulsory for compound identification and classification. OIFA R Shiny app is 

able to build interactive Kendrick plots and Molecular Networks from data, allowing a critical evaluation of 

identified homologous series and to monitor the formula assignment process step-by-step. OIFA presents a 

friendly GUI, through which one is able to upload personal data for elaboration. Firstly, a database of building 

blocks should be uploaded, without which the software would not be able to make the Kendrick plot and 

Molecular Network. Further, it’s possible to upload personal data, which would consist in a dataset in which 

m/z data are reported. It’s worth noting, here, that few elemental formulas should already be assigned, in order 

to calculate other formulas through KMD and Molecular Network analyses [22,23]. Once done, the software 

calculates related Kendrick plot and Molecular Network in two different tabs immediately. For the former 

(Figure 1), it’s possible to perform a series of operations by assuming a point-and-click approach, together 

with the utilization of action buttons. Principally, it’s possible to choose the building block considered for the 

KMD analysis by selecting it on the left panel of the GUI. Hovering on a point of the Kendrick plot allow to 

display information of that ionic species, such as the m/z value, the intensity and KMD related properties, i.e. 

the KMD, the Kendrick Mass (KM), the Kendrick Nominal Mass (KNM) and the z*, another useful parameter 

in KMD analysis which adds another level of differentiation of ionic species in different nominal mass families 

[24]. Then, clicking on a point of the Kendrick plot allows to highlight it, together with the other members 

belonging to the same homologous series, showing the same z* and a KMD value lying in a range defined by 

the KMD mean value of the series ± an error (∆KMD). For what concerns this aspect, since obtained data 

consists of accurate mass values, single members show different KMD values, randomly distributed around a 

mean. Obviously, the higher is the mass measurement accuracy, the narrower is this range [22,24]. So, points 

of the Kendrick plot belonging to the same homologous series should appear randomly distributed around a 

horizontal line ideally parallel to the x-axis. Deviations from this situation would be caused by the presence of 

http://www.r-project.org/
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systematic effects, derived from, for example, space-charge interactions among the ions inside the ICR cell 

[30]. The ∆KMD value considered for the identification of members of the homologous series can be set by 

the user on the left panel. Once the homologous series is selected, it can be isolated by pressing on the 

unselected point legenda (Figure 2). This allows to focus the attention of the user on selected homologous 

series completely, making possible the observation of systematic effects affecting the data, suggested by a drift 

of the ideal horizontal KMD line. Further, once clicked on a point, a table is displayed under the Kendrick plot, 

showing assigned formulas for members of the highlighted homologous series (NA would occur if no formula 

has been assigned to the corresponding MS signal). It’s possible, then, to calculate formulas for all the member 

or, if there are elemental formulas assigned to members already, to filter them by clicking on the starting point 

and using related action buttons. For the calculation, it’s possible to decide if to use or not the Nitrogen rule 

by using related radio buttons, since it’s not respected by >500 m/z ratios [18]. Another useful function 

provided by the software allows to identify all the homologous series related to the other building blocks 

present in the uploaded database to which a selected point belongs to, together with related total number of 

members and KMD standard deviation. Thanks to this feature, the user can know in advance which of the 

building blocks should be selected to calculate a formula for the selected point (Table 1). Despite complete 

automation of the process could lead to errors, especially when artefacts are present, it’s still possible to switch 

to it by dedicated action buttons. In particular, two action buttons are present to perform automatic formula 

filtering or calculation, depending on if elemental formula candidates are present in the m/z dataset already or 

they should be calculated from unique formula assignments. Other two tabs are related to Molecular Network 

analysis, one of which containing the neural network in which all the ionic species are connected by building 

blocks forming clusters. In detail, the app doesn’t consider all the building blocks provided by the user for the 

construction of the network but focalizes on the ones with a number of occurrences higher than a threshold 

value, set by the user on the left panel. Setting this parameter is not straightforward and needs a careful 

observation of mass differences among experimental peaks [35]. To this aim, the software identifies and 

collects all the experimental mass differences, comparing them to the building blocks present in uploaded 

database. In this way, mass difference values within an error (set by the user) are correlated to specific building 

blocks and their occurrence is calculated. Thus, a plot of mass differences and related occurrences is provided 

to the user into the second tab (Figure 3). Mass differences that were successfully assigned to a building block 

can be highlighted by using dedicated radio buttons under the plot and x- and y-axis range can be set by the 

user. The analysis of the plot allows a rough estimation of the noise [35], which can be cut off by setting the 

proper threshold value on the left panel. Building blocks related to the noise are, then, not considered for the 

making of the neural network, since the probability of having occurred randomly is not negligible for them 

[35]. As for the Kendrick plot, the Molecular Network can be used with a point-and-click approach (Figure 

4). More specifically, clicking on the nodes allows to display its information as a data table, such as m/z, peak 

intensity, assigned formula and Kendrick properties. Moreover, it’s possible to interact with the network 

through dedicated action and radio buttons, such as displaying labels of the edges (thus revealing 

corresponding building blocks) or calculating or filtering elemental formulas of the other nodes of the cluster 
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starting from the selected one, depending on which kind of action button is used. Here too, the process can be 

automated, starting calculation from assigned nodes. OIFA software has been used in this work for the 

elaboration of High Resolution FT-ICR MS data of two Italian typical food products, i.e. the Fagioli Bianchi 

di Rotonda PDO beans and the Melanzane Rosse di Rotonda PDO eggplants, cultivated in the Basilicata 

region. Obtained raw data were pre-treated to calculate de-noised, phase corrected and full informative 

absorption mode mass spectra, the peaks of which were preliminary assigned to elemental formulas contained 

in a database subjected to a series of constraints (see Materials and Methods). Then, redundance resolution 

and further elemental formula calculation were performed by the OIFA software. Kendrick plots were 

immediately calculated (Figure 1) and used for formula assignment as described previously. Furthermore, 

selection of long homologous series made possible the assessment of the presence of a systematic error by the 

observation of a change in the angular coefficient of the ideal horizontal KMD line (Figure 2). The presence 

of the same effect for other homologous series noticed by assuming this approach assured that the same error 

affects all the dataset. For this reason, recalibration with a reference list of ubiquitous fatty acids [39,40] was 

performed before further performing formula assignment. The analysis of mass difference occurrences allowed 

the rough evaluation of a threshold value for the noise cut-off (Figure 3). Obtained networks show the presence 

of different clusters (Figure 4), defining formula families which differ from each other by the presence or the 

absence of nitrogen, sodium and potassium atoms. Unique formula assignments are distinguished here by 

colour (red for unique assignments, blue for redundances and grey for not assigned MS signals) and could be 

selected to assign elemental formulas to nodes of the cluster they belong. In this way, 52 and 192 reliable 

unique formulas were obtained from the elaboration of the Fagioli Bianchi di Rotonda PDO bean and the 

Melanzane Rosse di Rotonda PDO eggplant datasets, respectively. Furthermore, so obtained formulas were 

used to make a Van Krevelen plot (Figure 5), through which the classification of identified metabolites in 

major classes and an evaluation of related derivatives could be accomplished [10,29,41]. In particular, for what 

concerns Fagioli Bianchi di Rotonda PDO beans, nitrogen and sulphur-bearing amino acids and peptides, 

together with related alkyl derivatives, were identified. Moreover, the presence of few unsaturated fatty acid 

derivatives could be deduced by CHO formula type points lying on the left middle part of the plot. Observation 

seems to agree to what is reported in literature for Phaseolus vulgaris L. cultivars, since beans are rich sources 

of amino acids and peptides and the presence of high RDBE fatty acids, such as linolenic and linoleic acids, 

was accessed too [42]. Despite this, Fagioli Bianchi di Rotonda PDO bean extract seems to be pour for what 

concerns metabolite diversity, unlike most of the other bean cultivars [10,42]. For Melanzane Rosse di Rotonda 

PDO eggplants, two major metabolite classes could be identified, i.e. fatty acids and carbohydrates. Few points 

suggest the presence of carotenoids and peptide derivatives too. Moreover, the presence of high RDBE CHNO-

type compounds (points in the middle part of the Van Krevelen plot) could indicate the presence of nitrogen-

containing steroidal glycosides, commonly found in members of the genus Solanum [43]. However, unlike 

what was found for different cultivars of the species Solanum melongena L. [43], few CHO formula type points 

are present in the middle part of the Van Krevelen plot, suggesting a low diversity of phenolic derivatives. 

5.5. Conclusions 
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A new interactive tool for the reliable assignment of elemental formulas to accurate m/z ratios, i.e. the Omics 

Interactive Formula Assignment (OIFA) R Shiny app, has been shown in this work and employed to elaborate 

High Resolution MS data obtained from the direct analysis of two Italian typical food products, i.e. the Fagioli 

Bianchi di Rotonda PDO beans and the Melanzane Rosse di Rotonda PDO eggplants. Thanks to this new tool, 

the identification and isolation of low resolved homologous series and elemental formula calculation of related 

members was possible simply by working on related Kendrick plots. Moreover, by means of this tool, 

identification of higher occurrence building blocks and making of Molecular Network was possible, 

remarkably improving the elemental formula assignment step. This was crucial for the identification of 

metabolites present in our sample and their characterization through the making of Van Krevelen plots, thanks 

to which principal classes of metabolites into the analysed extracts were identified. The source code of the 

OIFA R Shiny app can be found in the Supplementary Material, together with custom functions used by the 

app. 
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5.7. Figures 

 

Figure 3 Kendrick plots obtained from ESI-FT-ICR MS data of Fagioli Bianchi di Rotonda PDO beans (A) 

and Melanzane Rosse di Rotonda PDO eggplants (B). Unique assignments, redundances and not assigned 

peaks are distinguished by colour. 

 

Figure 2 Homologous series highlighting example in plot A. In plot B, selected homologous series is isolated 

by clicking on the unselected label in the legenda, making related points to disappear. 

 

Figure 3 Mass difference occurrence plots related to Fagioli Bianchi di Rotonda PDO beans (A) and 

Melanzane Rosse di Rotonda PDO eggplants (B), respectively. Mass differences successfully associated to 

building blocks present into the uploaded database are indicated by labels. 
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Figure 4 Example of clusters belonging to Melanzane Rosse di Rotonda PDO eggplant Molecular Network. 

Nodes are distinguished by color according to the number of related formula candidates (blue for 

redundancies, red for unique assignments and grey for unassigned peaks). 

 

Figure 5 Van Krevelen plots of Fagioli Bianchi di Rotonda PDO beans (A) and Melanzane Rosse di Rotonda 

PDO eggplants (B), respectively. Formula types are distinguished by color (blue for CHO, green for CHNO, 

red for CHOS and yellow for CHNOS). 
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5.8. Tables 

 

Table 1. Homologous series data for m/z 539.50704, obtained by identification of homologous series related 

to different building blocks the selected peak belongs to. Since the initial number of formula candidates for 

selected peak is 4, it’s possible to deduce that in every identified homologous series, the selected peak is the 

lowest redundance level member. 

 

Building Block Members KMD standard deviation Minimum redundance level 

CH2 4 0.00028080 4 

C2H4 4 0.00028080 4 

C4H6 3 0.00049930 4 

C2H2 3 0.00017078 4 

H-1N-1O 3 0.00029740 4 

H2 2 0.00050516 4 

C1 2 0.00005657 4 

C3H5NO 2 0.00033499 4 

C2H5NO-1 2 0.00010923 4 

C9H9NO 2 0.00021062 4 
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5.9. Supplementary Material 

 

Omics Interactive Formula Assignment R Shiny app source code 

Here the OIFA source code is reported. It comprises a series of custom functions that the app employs to 

accomplish its tasks. Custom functions, together with the ui and server objects, should be loaded into the R 

software Global Environment before running the R Shiny app with the command > shinyApp(ui = ui, 

server = server). 

 

 

#Loading needed packages  

 
require(shiny) 
require(plotly) 
require(visNetwork) 
require(shinyWidgets) 
require(dplyr) 
require(ggplot2) 
require(foreach) 
require(doParallel) 
require(visNetwork) 
require(stringr) 
require(purrr) 
require(rcdk) 
require(InterpretMSSpectrum) 
require(numbers) 
#They should be installed to use the app 

 
###########Custom Functions########### 

 
#Functions to load into the Global Environment since they are used by the 
#app. 

 
#The function calculates Kendrick properties of the input peak list, 
#which is supposed to be comprised by two columns, i.e. mz and Intensity. 
#It's possible to change the unit base fraction by specifying it 
#into the baseunit_fraction argument. 

 
kendrick_properties_calculator<-function(building_block = "C1H2", df, 
                                         bb_database, 
                                         baseunit_fraction = 1){ 
  db<-bb_database 

   
  building_block_choosen<-db[( 
    db$Formula == building_block 
  ),] 
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  building_block_choosen<-building_block_choosen[,1] 

   
  building_block_choosen<-c((round(building_block_choosen,  
                                   digits = 0)/baseunit_fraction), 
                            (building_block_choosen/baseunit_fraction)) 

   
  current_data<-df 
  current_data$KM<-NA 
  current_data$NM<-NA 
  current_data$KNM<-NA 
  current_data$KMD<-NA 
  current_data$zstar<-NA 

   
  bbratio<-as.numeric(building_block_choosen[1])/as.numeric( 
    building_block_choosen[2]) 

   
  current_data<-within(current_data, KM <- current_data[,1]*(bbratio)) 

   
  current_data$NM<-round(current_data[,1]) 

   
  current_data$KNM<-round(current_data$KM) 

   
  current_data<-within(current_data,  
                       zstar <- numbers::mod(NM, 
                                             as.numeric( 
                                               building_block_choosen[1])) 
                       - as.numeric(building_block_choosen[1])) 

   
  current_data<-within(current_data, KMD <- (KM - KNM)) 

   
  #KMD is defined as the difference between the mass  in Kendrick scale 
  #minus the related nominal mass (KNM) 

   
  return(current_data) 
} 

 
#The function allows to separate peaks into different nominal mass families 
#according to peak Kendrick properties. 
#The function returns a list, in which every object is related to a nominal 
#mass family 

 
zstar_separation<-function(starting_data){ 
  cl<-starting_data 
  cl$zstar<-cl$zstar %>% as.factor() 

   
  output<-lapply(c(1:length(levels(cl$zstar))), function(i){ 
    current_zstar<-levels(cl$zstar)[i] 
    subset(cl, zstar == current_zstar) 
  }) 
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  #For every value of the vector levels(cl$zstar), a data.frame in which 
  #zstar == current_zstar is returned 

   
  return(output) 

   
} 

 

 
#The function works on every zstar family and divides related peaks into 
#different homologous series 

 
kmd_separation<-function(zstar_set = NULL, masslist = NULL, 
                         deltaKMD, bb_mass_integer = 14){ 
  zlist<-zstar_set 
  df<-masslist 

   
  if(is.null(zlist)){ 
    zlist<-zstar_set(df) 
  } 

   
  bb_int<-bb_mass_integer 

   
  totalkmdlist<-map(zlist, .f = function(x){ #map applica la funzione .f 

     
    cur_mz<-x 
    y<-list(NA) 

     

     
    index<-0 
    while(nrow(cur_mz)>0){ 
      #The first KMD value is taken into account. Then, other KMD values 
      #within a set range +-deltaKMD are selected to isolate 
      #an homologous series. Once collected, the homologous series 
      #is substracted from the starting zstar dataset. 
      #The loop ends when there are no other values to collect. 

       
      cur_kmd_value<-cur_mz$KMD[1] 

       
      cur_homoseries<-cur_mz[( 
        cur_mz$KMD<(cur_kmd_value+deltaKMD) & 
          cur_mz$KMD>(cur_kmd_value-deltaKMD) 
      ),] 

       
      cur_mz<-cur_mz[!( 
        cur_mz[,1] %in% cur_homoseries[,1] 
      ),] 

       
      if(nrow(cur_homoseries)>1){ 
        cur_homoseries<-q_calculator(chem_data = cur_homoseries, 
                                     bbinteger = bb_mass_integer) 
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      } else{ 
        cur_homoseries$q<-NA 
      } 

       
      index<-index+1 

       
      y[[index]]<-cur_homoseries 
    } 

     
    y 

     
  }) 

   
  return(totalkmdlist) 

   
} 

 
#The function allows to delete or keep homologous series in which there's at  
#least one member showing a q value equal to an integer, specified into the  
#q_value argument. If discard_logical == T, than homologous series that  
#satisfy this requisite are discarded. 

 
kmd_q_filtering<-function(kmd_set, q_value = 1, 
                          discard_logical = F){ 

   
  kmd<-kmd_set 

   
  if(discard_logical==F){ 

     
    output<-keep(kmd, function(w){ 
      sum(w$q == q_value, na.rm = T) > 0 
    }) 

     
  } else{ 

     
    output<-discard(kmd, function(w){ 
      sum(w$q == q_value, na.rm = T) > 0 
    }) 

     
  } 

   
  return(output) 

   
} 

 
#The function allows to discard peaks which don't belong to any homologous 
#series. The function is used for automatic formula calculation 
#through Kendrick Mass Defect analysis or to simplify the Kendrick plot. 

 



110 

kendrick_noise_filter<-function(masslist = NULL, kmdset = NULL, 
                                bb_database = NULL, deltaKMD = NULL, 
                                chosen_bb = "C1H2"){ 

   
  kmdlist<-kmdset 
  db<-bb_database 
  df<-masslist 

   

   
  if(is.null(kmdlist)){ 

     
    df<-kendrick_properties_calculator(building_block = chosen_bb, 
                                       bb_database = db, df = df) 
    zset<-zstar_separation(df) 
    kmdlist<-kmd_separation(zstar_set = zset, deltaKMD = deltaKMD, 
                            bb_mass_integer = round(db[( 
                              db$Formula==chosen_bb 
                            ),1])) 

     
  } 

   
  output<-unlist(kmdlist, recursive = F) 

   
  output<-keep(output, function(i){ 
    (nrow(i)>1 & sum(i$q>0, na.rm = T)>0) 
  }) 

   
  return(output) 

   
} 

 
#The funcion calculates the q value for every member of the homologous series, 
#i.e. the difference between the NM of one member and the NM of the previous 
#one, divided by the nominal mass of the chosen building block. 
#Practically, it's the number of building block units which separates  
#the two members 

 
q_calculator<-function(chem_data, bbinteger=14){ 
  df<-chem_data 
  df$q<-NA 

   
  if(nrow(df)>1){ 
    for (o in seq(2, nrow(df), 1)){ 

       
      df$q[o]<-((df$NM[o]-df$NM[o-1])/bbinteger) 

       
    } 
  } 

   
  return(df) 
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} 

 
#The function filtrates candidate formulas of homologous series members 
#starting from the lowest redundance level member. 
#The function needs a building block database to work, which in turn 
#comprises building block exact mass, atom counts and formula. 
#The function applies only on homologous series in which members show a 

different 
#number of candidate formulas. 

 

 
kendrickfilter<-function(homoseriesdf, bb_database,  
                         bb_formula = "C1H2", 
                         max_q_value){ 

   
  db<-bb_database 
  bb<-bb_formula 
  selected_bb<-db[(db$Formula == bb), purrr::map_lgl(db, is.numeric)] 
  #Only numeric variables of building block database are retained. 

   
  df<-homoseriesdf 

   
  df_smallest_redun<-df[,1] %>% table() %>% as.data.frame() 
  #It's supposed that the first column of df is related to m/z ratios 

   
  df_smallest_redun[,1]<-df_smallest_redun[,1] %>% as.character() %>% 
    as.numeric() 

   
  if(nrow(df_smallest_redun)>1){ 

     
    z<-names(selected_bb) 

     
    selected_bb<-lapply(c((max_q_value*(-1)):max_q_value), 
                        function(w){ 
                          selected_bb*w 
                        }) 

     
    selected_bb<-do.call(rbind, selected_bb) 
    #selected_bb contains data of the same building block, multiplied by a 
    #different w factor. selected_bb is used for other members  
    #formula calculation. 

     
    if(min(df_smallest_redun$Freq)!=max(df_smallest_redun$Freq)){ 
      df_smallest_redun<-df[( 
        df[,1] %in% (subset(df_smallest_redun, Freq == min(Freq))[,1]) 
      ),] 
    }else{ 
      df_smallest_redun<-df[( 
        df[,1] == df_smallest_redun[1,1] 
      ),] 
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    } 

     

     

     
    df2<-df_smallest_redun[, z]#Assure that the order of variables 
    #is the same of the one of the building block database. 
    #It's important that the name of the variable related to the exact mass 
    #is the same for building block database and peak list. 

     
    assignments<-lapply(c(1:ncol(df2)), function(i){ 
      y<-lapply(c(1:nrow(selected_bb)), function(j){ 
        df2[,i]+selected_bb[j,i] 
      }) 
      unlist(y) 
    }) 

     
    assignments<-do.call(cbind, assignments) 

     

     
    assignments<-assignments %>% as.data.frame() 

     
    names(assignments)<-names(df2) 

     
    assignments<-create_Formula(assignments) 

     
    output<-df[( 
      df$Formula %in% assignments$Formula 
    ),] 

     
    #The following chunk is necessary to control if no m/z value 
    #was deleted after filtration process. This can happen if 
    #no other matching has been observed. 

     
    k<-df[,1] %>% table() %>% as.data.frame() 
    y<-output[,1] %>% table() %>% as.data.frame() 

     
    if(nrow(k) == nrow(y)){ 

       
      return(output) 

       
    } else{ 

       
      #If an information loss is observed,  
      #the starting dataset is returned 

       
      return(df) 

       
    } 
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  }else{ 
    return(df) 
  } 

   
} 

 
#The function performs an automatic formula filtering through KMD analysis 
#by working on every homologous series. 

 
kmd_analysis<-function(chemlist, bb_database, deltaKMD = 0.001, 
                       chosen_bb = "C1H2"){ 

   
  df<-chemlist 
  db<-bb_database 
  mz_df<-chemlist[,1:2]%>%table()%>%as.data.frame() 
  mz_df<-mz_df[( 
    mz_df$Freq>0 
  ),1:2] 
  mz_df[,1]<-mz_df[,1]%>%as.character()%>%as.numeric() 
  mz_df[,2]<-mz_df[,2]%>%as.character()%>%as.numeric() 
  mz_df<-mz_df[order(mz_df[,1]),] 
  #assuming that m/z ratios are into the first column and the intensity values 
  #into the second one 

   
  mz_df<-kendrick_properties_calculator(building_block = chosen_bb, 
                                        df = mz_df, bb_database = db 
  ) 
  zset<-zstar_separation(mz_df) 
  kmdset<-kmd_separation(zstar_set = zset, masslist = mz_df, 
                         deltaKMD = deltaKMD, bb_mass_integer = round( 
                           db[(db$Formula==chosen_bb), 1] 
                         )) 
  kmdset2<-kendrick_noise_filter(kmdset = kmdset) 

   
  kmdset2<-kmd_q_filtering(kmd_set = kmdset2, q_value = 0, discard_logical = T) 
  #Discard overlapping homologous series. 

   
  finaldata<-map(kmdset2, function(x){ 

     
    cur_q_value<-max(x$q, na.rm = T)*10 
    chem<-df[( 
      df[,1]%in%x[,1] 
    ),] 
    assigned<-chem[(is.na(chem$Formula)==F),] 
    not_assigned<-chem[(is.na(chem$Formula)==T),] 

     
    if(nrow(assigned)>0){ 
      output<-kendrickfilter(homoseriesdf = assigned, 



114 

                             bb_database = db, 
                             bb_formula = chosen_bb, 
                             max_q_value = cur_q_value) 
      if(nrow(not_assigned)>0){ 
        output<-rbind(output, not_assigned) 

         
        output 

         
      } else{ 
        output 
      } 
    } else{ 
      not_assigned 
    } 

     
  }) 

   
  finaldata<-do.call(rbind, finaldata) 

   
  finaldata<-rbind(finaldata, df[!(df[,1]%in%finaldata[,1]),]) 

   
  finaldata<-finaldata[order(finaldata[,1]),] 

   
  return(finaldata) 

   
} 

 
#The function performs an automatic formula calculation process, acting in the 
#same way of the kmd_analysis() function, but starting calculation from 
#lowest redundance level member of homologous series 

 
kmd_form_calc<-function(chemlist, bb_database, deltaKMD = 0.001, 
                        chosen_bb = "C1H2", ppm = 5){ 

   
  df<-chemlist 
  db<-bb_database 
  selected_bb<-db[(db$Formula==chosen_bb),map_lgl(db, is.numeric)] 

   
  mz_df<-chemlist[,1:2]%>%table()%>%as.data.frame() 
  mz_df<-mz_df[( 
    mz_df$Freq>0 
  ),1:2] 
  mz_df[,1]<-mz_df[,1]%>%as.character()%>%as.numeric() 
  mz_df[,2]<-mz_df[,2]%>%as.character()%>%as.numeric() 
  mz_df<-mz_df[order(mz_df[,1]),] 

   
  mz_df<-kendrick_properties_calculator(building_block = chosen_bb, 
                                        df = mz_df, bb_database = db 
  ) 
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  zset<-zstar_separation(mz_df) 

   
  kmdset<-kmd_separation(zstar_set = zset, masslist = mz_df, 
                         deltaKMD = deltaKMD, bb_mass_integer = round( 
                           db[(db$Formula==chosen_bb), 1] 
                         )) 

   
  kmdset2<-kendrick_noise_filter(kmdset = kmdset) 

   
  kmdset2<-kmd_q_filtering(kmd_set = kmdset2, q_value = 0, discard_logical = T) 

   

   
  finaldata<-map(kmdset2, function(x){ 

     
    cur_q_value<-max(x$q, na.rm = T)*10 
    chem<-df[( 
      df[,1]%in%x[,1] 
    ),] 
    assigned<-chem[(is.na(chem$Formula)==F),] 
    not_assigned<-chem[(is.na(chem$Formula)==T),] 
    cur_bb<-lapply(seq((cur_q_value*(-1)),cur_q_value, 1), function(i){ 
      selected_bb*i 
    }) 
    cur_bb<-do.call(rbind, cur_bb) 

     
    if(nrow(assigned)>0 & nrow(not_assigned)>0){ 

       
      #Calculation takes place when assigned and not assigned peaks 
      #are present into the same homologous series 

       
      redundances<-assigned[,1]%>%table()%>%as.data.frame() 
      redundances[,1]<-redundances[,1]%>%as.character()%>%as.numeric() 

       
      if(sum(redundances$Freq==min(redundances$Freq, na.rm = T))==1){ 

         
        starting_formulae<-assigned[( 
          assigned[,1]%in%redundances[(redundances$Freq==min( 
            redundances$Freq, na.rm = T)),1] 
        ), ] 
        #If there's only one lowest redundance level member...  
      } else{ 

         
        #...otherwise, the lowest m/z ratio related one is selected 

         
        smallest_redundances<-redundances[(redundances$Freq==min( 
          redundances$Freq, na.rm = T)),1] 
        starting_formulae<-assigned[( 
          assigned[,1]%in%smallest_redundances[1,1] 
        ), ] 
      } 
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      assignments<-candidate_formulae_calculator(exp_form = starting_formulae, 
                                                 building_blocks = cur_bb) 
      #Candidate formula calculation 

       
      new_assignments<-assignment_script(masslist = not_assigned[,1:2], 
                                         err_ppm = ppm,  
                                         formula_db = assignments) 

       
      if(nrow(new_assignments[(is.na(new_assignments$Formula)==F),])>0){ 

         
        #to continue, it's important that at least one new assignment has 
        #been obtained successfully 

         
        assigned<-rbind(assigned[, names(new_assignments)], new_assignments) 

         
        not_assigned<-not_assigned[!( 
          not_assigned[,1]%in%assigned[,1] 
        ),] 

         
        if(nrow(not_assigned)==0){ 
          #If every member has been assigned to a candidate elemental formula 
          assigned 
        } else{ 
          #If not, binds assigned members data to not assigned members one 
          rbind(assigned, not_assigned[, names(assigned)]) 
        } 

         

         
      } else{ 

         
        #If no new assignment has been obtained, starting homologous series 
        #is returned 

         
        chem 
      } 

       
    } else{ 
      chem 
    } 

     
  }) 

   
  finaldata<-do.call(rbind, finaldata) 

   
  finaldata<-rbind(finaldata, df[!(df[,1]%in%finaldata[,1]),]) 

   
  return(finaldata) 
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} 

 
#Given a preselected m/z ratio and a building block dataset, together 
#with a predefined error for KMD (deltaKMD), the following function allows 
#to calculate the number of members of every homologous series 
#the selected m/z ratio belongs to. 

 
homo_series_numbers<-function(df, mz_ratio, bb_db, deltaKMD = 0.001, 
                              chemlist = NULL){ 

   
  mz<-df 
  choosen_mz<-mz_ratio 
  db<-bb_db 
  chem<-chemlist #The argument is needed to know the minimum redundance 
  #multiplicity 

   
  output<-lapply(c(1:nrow(db)), function(i){ 

     
    k<-kendrick_properties_calculator(building_block = db$Formula[i], 
                                      df = mz, bb_database = db) 
    k$building_block<-db$Formula[i] 

     
    k 

     
    #Calculate Kendrick parameters for every experimental m/z ratio 

     
  }) 

   
  output<-map(output, function(x){ 

     
    choosen_mz_row<-x[( 
      as.character(x[,1]) %in% as.character(choosen_mz) 
    ),] 

     
    homologous_series<-x[( 
      x$zstar == choosen_mz_row$zstar & 
        x$KMD>(choosen_mz_row$KMD-deltaKMD) & 
        x$KMD<(choosen_mz_row$KMD+deltaKMD) 
    ),] 
    homologous_series<-homologous_series[order(homologous_series[,1]),] 

     
    ifelse(nrow(homologous_series)>1, 
           yes = homologous_series$sdKMD<-sd(homologous_series$KMD, na.rm = T) 
, 
           no = homologous_series$sdKMD<-homologous_series$KMD 
    ) 
    #This chunk allows the calculation of the KMD standard deviation in a 
    #series, just to have an idea of the "quality" of found homologous 
    #series 
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    if(is.null(chem)==F){ 

       
      homologous_chem<-chem[( 
        as.character(chem[,1]) %in% as.character(homologous_series[,1]) 
      ),] #Extrapolate calculate formulas for homologous series members 

       
      redundance<-homologous_chem[( 
        is.na(homologous_chem$Formula)==F 
      ),1] %>% table() %>% as.data.frame() 

       
      #Only assigned peaks will be considered to calculate minimum redundance 
      #value 

       
      redundance[,1]<-redundance[,1] %>% as.character() %>% as.numeric() 
      redundance[,2]<-redundance[,2] %>% as.character() %>% as.numeric() 
      #From factor to numeric 

       
      data.frame(Formula = x$building_block[1], 
                 Members = nrow(homologous_series), 
                 sdKMD = homologous_series$sdKMD[1], 
                 Minimum_Redun = min(redundance[,2], na.rm = T)) 

       
    } else{ 

       
      data.frame(Formula = x$building_block[1], 
                 Members = nrow(homologous_series), 
                 sdKMD = homologous_series$sdKMD[1]) 

       
    } 

     

     
  }) 

   
  output<-do.call(rbind, output) 

   
  output<-output[(output$Members<50 & 
                    output$Members>1),] #Longer series are not feasible 
  #Be aware! At higher deltaKMD, longer series are obtained, but it's obvious 
  #members don't really belong to these (too high error). 
  #Furthermore, only 2 or higher member series are of interest. 

   
  output<-output[order(output$Members, decreasing = T),] 

   
  return(output) 

   

   
} 

 
#The function allows to assign candidate formulas (formula_db argument) 
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#to m/z ratios given as an input data.frame (masslist argument). 
#The error, the ionization mode and the application of the nitrogen rule 
#can be set by the err_ppm, mode and nitrogen_rule_applier arguments. 
#The function allows to perform isotopologue collection and isotopic 
#pattern matching score too, if isot_pattern_filtering == T. 

 
assignment_script<-function(masslist, err_ppm = 5, 
                            formula_db, isot_pattern_filtering = F, 
                            isodiff = list(C13 = c(1.003, 50),  
                                           N15 = c(0.997,1), 
                                           S34 = c(1.995,10)), 
                            int_precision = 0.02, 
                            digits = 3, 
                            err_da = 0.001, 
                            mode = "positive", 
                            nitrogen_rule_applier = T){ 
  df<-masslist 
  names(df)<-c("mz", "Intensity") 
  z<-names(df) 
  cur_db<-formula_db 

   
  if(isot_pattern_filtering==T){ 
    isolist<-isot_collector(masslist = df, dmatrix = NULL, 
                            daerr = err_da, dmatrix_digits = digits, 
                            isot_diff_list = isodiff) 
    isoset<-do.call(rbind, isolist) 
    df<-df[!( 
      df[,1] %in% isoset$`M+1` 
    ),] 
  } 

   

   
  output<-lapply(c(1:nrow(df)), function(i){ 

     
    cur_mz<-df[i,1] 
    cur_i<-df[i,2] 
    nm<-round(cur_mz) 

     
    candidate_formulae<-cur_db[( 
      cur_db$exact.mass>(cur_mz-0.1)& 
        cur_db$exact.mass<(cur_mz+0.1) 
    ),] 

     
    candidate_formulae<-within(candidate_formulae, 
                               ppm<-((cur_mz-exact.mass)/exact.mass)*1e+6) 
    candidate_formulae<-candidate_formulae[( 
      abs(candidate_formulae$ppm)<err_ppm 
    ),] 

     
    y<-data.frame(mz = rep(cur_mz, nrow(candidate_formulae)), 
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                  Intensity = rep(cur_i, nrow(candidate_formulae)), 
                  candidate_formulae) 

     

     
    y 

     

     
  }) 

   
  output<-do.call(rbind, output) 

   

   
  if(nrow(output)>0){ 
    output<-create_Formula(output) 
    #Nitrogen rule applier 

     
    if(nitrogen_rule_applier == T){ 

       
      output2<-output[( 
        output[,1]>500 
      ),] 

       
      output<-output[( 
        output[,1]<=500 
      ),] 

       
      #Nitrogen rule is applied only to less or equal than 500 m/z ratios 
      #to increase accuracy of assignments. 

       
      output<-anti_join(output, output[( 
        (round(output[,1])%%2==0) & 
          output$N%%2==0 
      ),]) 

       
      output<-anti_join(output, output[( 
        (round(output[,1])%%2!=0) & 
          output$N%%2!=0 
      ),]) 

       
      output<-rbind(output, output2) 

       

       
    } 

     

     

     
    output<-full_join(x = output, y = df[!(df[,1] %in% output[,1]),], 
                      by = z) 
    output<-output[order(output[,1]),] 
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    if(isot_pattern_filtering==T){ 

       
      output<- isotopic_pattern_filtering(chemlist = output, 
                                          isolist = isolist, 
                                          mode = mode) 

       
    } else{ 
      output$mSigma<-NA 
    } 

     
    return(output) 
  } else{ 

     
    df$Formula<-NA 
    return(df) 

     
  } 

   

   

   
} 

 
#The function identifies and collects isotopologues. 
#isot_diff, err_da and rel_int_thresh arguments are related to  
#isotopologue difference, difference error and relative intensity threshold, 
#respectively, considered to distinguish monoisotopic peaks from isotopologues 
#and depend from the element and related isotope considered. 

 
isotopologue_identifier<-function(masslist, dmatrix = NULL, 
                                  isot_diff = 1.003, 
                                  err_da = 0.001, 
                                  rel_int_thresh = 50, 
                                  dmatrix_digits = 3){ 
  mass<-masslist 
  ddf<-dmatrix 

   
  if(is.null(ddf)){ 
    ddf<-dmatrixcalculator(masslist1 = mass, 
                           number_of_digits = dmatrix_digits) 
  } 

   
  isotopologues<-which((ddf <(isot_diff+err_da) & 
                          ddf >(isot_diff-err_da)),  
                       arr.ind = T) %>% as.data.frame() 

   
  if(nrow(isotopologues)>0){ 

     
    isotopologues<-isotopologues[,c(2,1)] 
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    isotopologues$row<-mass[isotopologues$row, 1] 
    isotopologues$col<-mass[isotopologues$col, 1] 

     
    isotopologues<-lapply(c(1:nrow(isotopologues)), function(i){ 
      currow<-isotopologues[i,] 
      currow[3]<-mass[(mass[,1] %in% currow[1]),2] 
      currow[4]<-mass[(mass[,1] %in% currow[2]),2] 
      currow 
    }) 
    isotopologues<-do.call(rbind, isotopologues) 

     
    names(isotopologues)<-c("M", "M+1", "Intensity", "I+1") 

     
    isotopologues<-mutate(isotopologues,  
                          isotopologues$`I+1`<-(isotopologues$`I+1`/ 
                                                  isotopologues$Intensity)*100) 

     
    isotopologues<-isotopologues[( 
      isotopologues[,5]<=rel_int_thresh 
    ),c(1:4)] 

     
    return(isotopologues) 
  } 

   
} 

 
#The function returns a list in which different families of isotopologues 
#(one per considered element) are collected in different objects. 
#It's possible to specify elements, mass differences and intensity thresholds 
#through the isot_diff_list argument. 

 
isot_collector<-function(masslist, dmatrix = NULL, 
                         isot_diff_list = list(C13 = c(1.003, 50),  
                                               N15 = c(0.997,1), 
                                               S34 = c(1.995,10)), 
                         daerr = 0.001, 
                         dmatrix_digits = 3){ 
  mass<-masslist 
  ddf<-dmatrix 

   
  if(is.null(ddf)){ 
    ddf<-dmatrixcalculator(masslist1 = mass, 
                           number_of_digits = dmatrix_digits) 
  } 

   
  output<-lapply(c(1:length(isot_diff_list)), function(i){ 

     
    isotopologue_identifier(masslist = mass, dmatrix = ddf, 
                            isot_diff = isot_diff_list[[i]][1], 
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                            err_da = daerr, 
                            rel_int_thresh = isot_diff_list[[i]][2], 
                            dmatrix_digits = dmatrix_digits) 

     
  }) 

   
  names(output)<-names(isot_diff_list) 

   
  return(output) 

   

   
} 

 
#The function works on a chemlist and compare theoretical isotopic patterns to 
#the observed ones. It's assumed that isotopologues are not present into the 
#chemlist and are collected into a separated list (isot_collector() output) 

 
isotopic_pattern_filtering<-function(chemlist, isolist, mode = "positive", 
                                     err_ppm = 5, rel_int_precision = 10){ 

   
  output<-chemlist 

   
  output$mScore<-NA 

   
  isoset<-do.call(rbind, isolist) 

   
  assign_iso<-output[(output[,1] %in% isoset$M),] 
  assign_iso<-assign_iso[(is.na(assign_iso$Formula)==F),] 
  mass_e<-0 

   
  if(mode == "positive"){ 
    mass_e<-chemdict[c("e"),1]*(-1) 
  } 
  if(mode == "negative"){ 
    mass_e<-chemdict[c("e"),1]*(+1) 
  } 

   
  assign_iso2<-lapply(c(1:nrow(assign_iso)), function(x){ 

     
    cur_row<-assign_iso[x,] 

     

     
    obs_iso<-isofinder(exp_mz = assign_iso[x,1], isolist = isolist) %>% 
      as.data.frame() 

     
    int_precision<-(min(obs_iso[,2], na.rm = T)*rel_int_precision)/100 

     
    min_int_value<-(min(obs_iso[,2], na.rm = T)-int_precision) 
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    the_iso<-get.isotopes.pattern(get.formula( 
      mf = as.character(assign_iso$Formula[x])),  
      minAbund = min_int_value) %>% as.data.frame() 
    the_iso[,1]<-the_iso[,1]+mass_e 

     
    ddf<-dmatrixcalculator(masslist1 = the_iso,  
                           masslist2 = obs_iso, 
                           number_of_digits = 5,  
                           zero_and_neg_to_na = F) 
    ddf<-(ddf/t(obs_iso)[1,])*1e6 #Convert abs errors in ppm 

     
    #Create a difference matrix in ppm to select 
    #isotopologues nearest to the observed pattern  
    #in terms of ppm 

     

     
    k<-which(abs(ddf)<err_ppm, arr.ind = T) 

     
    the_iso<-the_iso[k[,1],] %>% as.data.frame() 

     
    if(nrow(obs_iso)==nrow(the_iso)){ 

       
      cur_row$mScore<-mScore(obs = t(obs_iso), the = t(the_iso), 
                             dabs = 0, dppm = err_ppm, 
                             int_prec = int_precision) 
      cur_row 

       
    } else{ 

       
      cur_row$mScore<-0 
      cur_row 

       
    } 

     
  }) 

   
  assign_iso2<-do.call(rbind, assign_iso2) 

   
  output<-rbind(assign_iso2, output[!(output[,1] %in% assign_iso2[,1]),]) 
  output<-output[order(output[,1]),] 

   
  return(output) 

   

   
} 

 
#The function allows filter the input peak list deleting all the isotopologues. 
#The function works as isot_collector(), which is effectively used 
#to obtain a data.frame of isotopologues, useful for their elimination 
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#from input peak list. 

 
isot_filter<-function(masslist, isot_list = NULL, 
                      dmatrix = NULL, 
                      isot_diff_list = list(C13 = c(1.003, 50),  
                                            N15 = c(0.997,1), 
                                            S34 = c(1.995,10)), 
                      daerr = 0.001, 
                      dmatrix_digits = 3){ 

   
  isotlist<-isot_list 
  df<-masslist 
  ddf<-dmatrix 

   
  if(is.null(ddf)){ 
    ddf<-dmatrixcalculator(masslist1 = df, number_of_digits = dmatrix_digits) 
  } 

   
  isodifflist<-isot_diff_list 

   

   
  if(is.null(isotlist)){ 

     
    isotlist<-isot_collector(masslist = df, dmatrix = ddf, 
                             isot_diff_list = isodifflist, 
                             daerr = daerr, 
                             dmatrix_digits = dmatrix_digits) 

     
  } 

   
  isoset<-do.call(rbind, isotlist) 

   
  output<-df[!( 
    df[,1] %in% isoset$'M+1' 
  ),] 

   
  return(output) 

   
} 

 
#The function allows to collect isotopologues of a specific experimental 
#m/z ratio from an isotopologues set, created by using the function 
#isot_collector() 

 
isofinder<-function(exp_mz, isolist){ 

   

   
  final<-lapply(c(1:length(isolist)), function(x){ 
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    isoset<-isolist[[x]] 

     
    if(!is.null(isoset)){ 

       
      if(nrow(isoset)>0){ 

         
        output<-isoset[(isoset$M==exp_mz), c("M", "Intensity")] 

         
        if(nrow(output)>0){ 

           
          repeat{ 

             
            output2<-isoset[(isoset$'M'==output[nrow(output), 1]),  
                            c("M+1", "I+1")] 

             
            if(nrow(output2)>0){ 

               
              names(output2)<-names(output) 
              output<-rbind(output, output2) 

               
            } else{ 
              break 
            } 

             
          } 

           
          if(x==1){ 

             
            output 

             
          } else{ 

             
            output[2:nrow(output),] 

             
          } 

           
        } 

         
      } 

       
    } 

     

     

     
  }) 

   
  final<-do.call(rbind, final) 

   
  final<-mutate(final, Intensity=(Intensity/max(Intensity))) 
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  return(final) 

   
} 

 
#The function calculates a mass difference matrix (dmatrix or ddf), in which  
#every column and 
#row correspond to a m/z ratio. Thus, every matrix cell contains a difference 
#value among two m/z ratios. Through the number_of_digits argument, it's 
#possible to round mass difference values to a specified number of digits. 
#If zero_and_neg_to_na == T, zero and negative values are converted to NA. 

 

 
dmatrixcalculator<-function(masslist1, masslist2 = NULL,  
                            number_of_digits = 3, 
                            zero_and_neg_to_na = T){ 

   
  if(is.null(masslist2)){ 
    masslist2<-masslist1 
  } 

   
  dmatrix<-as.data.frame(matrix(data = NA, nrow = nrow(masslist1),  
                                ncol = nrow(masslist2))) 

   
  rownames(dmatrix)<-as.character(masslist1[,1]) 
  colnames(dmatrix)<-as.character(masslist2[,1]) 

   
  for (k in seq(1, nrow(masslist2), 1)){ 
    dmatrix[,k]<-masslist1[,1] - as.numeric(masslist2[,1][k]) 
  }  
  #Columns of the dmatrix are equal to the difference among the entire peak 

list 
  #and a single peak value 

   
  neg_values_positions<-which(dmatrix < 0, arr.ind = T) 

   
  zero_positions<-which(dmatrix == 0, arr.ind = T) 
  dmatrix<-round(dmatrix, number_of_digits) 

   
  if(zero_and_neg_to_na == T){ 
    dmatrix[neg_values_positions]<-NA 
    dmatrix[zero_positions]<-NA 
  }#zero and negative value are converted in NA. This assures that these 
  #values are not considered by functions which take the dmatrix 
  #as an input file 

   

   
  return(dmatrix) 
} 
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#The function returns a mass difference occurrence matrix (pmatrix or ppf), 
#in which every mass difference value of the dmatrix is collected, 
#together with its occurrence. p_threshold is an occurrence threshold value 
#which is useful to delete mass differences which occurrence is lower 
#than it. If abs_frequency==F, a probability value is returned in place of 
#the absolute occurrence (see Anal. Chem. 2009, 81, 10106-10115). 

 
pmatrixcalculator<-function(dmatrix, abs_frequency = F, p_threshold = 0.1){ 
  z<-as.matrix(dmatrix) 
  k<-as.data.frame(table(z, useNA = "no")) 
  names(k)<-c("d", "p") 
  k$d<-as.character(k$d) 
  k$d<-as.numeric(k$d) 

   
  if(abs_frequency == F){ 
    k$p<-(k$p)/((nrow(dmatrix)^2)/2)     #(nrow(dmatrix)-1) 

     
    k$p<-((k$p)/max(k$p, na.rm = T))*100 
    #Probability values are calculated as the number of occurrences 
    #on the total number of mass difference. 

     
    k<-subset(k, p >= p_threshold) 
  } else{ 
    k<-subset(k, p >= p_threshold) 
  } 

   
  return(k) 
} 

 
#The function returns a list in which edges data are collected for every m/z  
#ratio. The output list is necessary for Molecular Network calculations. 
#Indeed, every list object comprises building block data, such as 
#exact mass and atomic counts, which are then added to calculate candidate 
#formulas of adjacent nodes. 
#The function scans a mass difference matrix, filter matrix objects 
#retaining all the successfully assigned mass differences and creates 
#the output list. 

 
diff_identifier<-function(database, dmatrix = NULL, error_arg = 0.001, 
                          pmatrix = NULL, p_threshold = 50){ 

   
  db<-database 
  err<-error_arg 
  ddf<-dmatrix 
  df<-data.frame(Mass = (colnames(ddf)%>%as.numeric())) 
  ppf<-pmatrix 

   
  if(is.null(ppf)){ 
    ppf<-pmatrixcalculator(dmatrix = ddf, abs_frequency = T, 
                           p_threshold = p_threshold) 
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  } 

   
  ppf<-ppf[( 
    ppf$d != 0 
  ),] 

   
  reaction_bb<-lapply(c(1:nrow(ppf)), function(i){ 
    cur_d<-ppf$d[i] 
    cur_p<-ppf$p[i] 
    cur_sign<-NA 
    ifelse(cur_d>0, yes = cur_sign<-1, 
           no = cur_sign<-(-1)) 
    cur_bb<-db[( 
      (db[,1]>(abs(cur_d)-err)) & 
        (db[,1]<(abs(cur_d)+err)) 
    ),] 

     
    if(nrow(cur_bb)>0){ 
      data.frame(d = rep(cur_d, nrow(cur_bb)), 
                 p = rep(cur_p, nrow(cur_bb)), 
                 Formula = cur_bb$Formula, 
                 Sign = rep(cur_sign, nrow(cur_bb))) 
    } 

     
  }) 

   
  reaction_bb<-do.call(rbind, reaction_bb) 

   
  edges<-lapply(c(1:nrow(reaction_bb)), function(u){ 

     
    k<-which(ddf == reaction_bb$d[u], arr.ind = T)%>% 
      as.data.frame() 
    k$Formula<-rep(reaction_bb$Formula[u], nrow(k)) 
    k$Sign<-rep(reaction_bb$Sign[u], nrow(k)) 
    k[,2]<-df[k[,2],1] 
    k[,2:ncol(k)] 

     
  }) 

   
  edges<-do.call(rbind, edges) 
  edges<-edges[order(edges[,1]),] 
  y<-mass_collector(edges) 

   
  bblist<-lapply(c(1:nrow(y)), function(j){ 

     
    sub_edges<-edges[( 
      edges[,1]==y[j,1] 
    ),] 

     
    output<-lapply(c(1:nrow(sub_edges)), function(u){ 
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      db[( 
        db$Formula == sub_edges$Formula[u] 
      ), map_lgl(db, is.numeric)]*sub_edges$Sign[u] 
    }) 

     
    do.call(rbind, output) 

     
  }) 

   
  names(bblist)<-(y[,1]%>%as.character()) 

   
  return(bblist) 

   
} 

 
#The function calculates formulas adding building block data to a starting 
node. 
#The m/z ratio related to this is supposed to be into the first column. 
#Moreover, it's supposed that exact mass column is named in the same way for 
#both input datasets (starting node and building block data). 
#seven_golden_rules_applier = T applies the seven golden rules to filter 
#calculated formulas 

 

 
candidate_formulae_calculator<-function(starting_formulae, building_blocks, 
                                        seven_golden_rules_applier = T){ 

   
  assigned<-starting_formulae 

   
  cur_bblist<-building_blocks 
  cur_bblist<-cur_bblist[, map_lgl(cur_bblist, is.numeric)] 
  #Only numeric vectors of cur_bblist are retained 

   
  assigned<-assigned[, names(cur_bblist)] 
  #The order of columns is the same for assigned and cur_bblist. 
  #Be aware! Name of exact mass column and atom count ones must be the same 
  #to avoid errors. 

   
  y<-lapply(c(1:nrow(cur_bblist)), function(i){ 
    j<-lapply(c(1:ncol(assigned)), function(w){ 
      (assigned[,w]+cur_bblist[i,w])%>%as.data.frame() 
    }) 
    j<-do.call(cbind, j) #Formulae are obtained by doing a columnwise sum 
  }) 
  y<-do.call(rbind, y) 

   
  names(y)<-names(cur_bblist) 

   
  negative_atoms_index<-which(y<0,arr.ind = T)%>% 
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    as.data.frame() 

   
  if(nrow(negative_atoms_index)>0){ 

     
    negative_atoms_index<-negative_atoms_index[,1]%>%table()%>% 
      as.data.frame() #Only rows needed 

     
    y<-y[-(negative_atoms_index[,1]%>%as.character()%>% 
             as.numeric()),] 
    #Delete all the formulas that are not chemically feasible, 
    #i.e. negative atom count ones 

     
  } 

   
  if(seven_golden_rules_applier == T){ 

     
    y<-y[( 
      ((y$H+y$Na+y$K)/y$C)>=0.2 & 
        ((y$H+y$Na+y$K)/y$C)<=3.1 & #Atomic ratios filter, modify here or 

comment to 
        (y$O/y$C)<=2 & #avoid the application of this type of filter 
        (y$N/y$C)<=1.3 & 
        (y$P/y$C)<=0.3 & 
        (y$S/y$C)<=0.8 
    ),] 

     
    y<-element_counter_rule_applier(y) 

     
    z<-names(y) 

     
    y<-HC_OC_DBE_DBE_o_calculator(y) 

     
    y<-y[( 
      y$DBE>=0 & y$DBE<40 
    ),] 

     

     
    y<-y[,z] 

     
  } 

   
  return(y) 

   
} 

 

 
#The function filter formulas of a Molecular Network cluster starting from a  
#node/s, specified here through the argument selected_nodes. The function 
#accepts a character vector containing m/z ratios related to starting nodes. 



132 

#The function, firstly, uses diff_identifier() (if the output list is not 
#given in input through the argument bb_list) and uses building block 
#data to calculate candidate formulas and filter redundances. 
#If bb_list != NULL, dmatrix, pmatrix, p_threshold, exp_bb_err and digits 
#are useless, since they are needed to calculate bb_list (diff_identifier() 
#output). 
#User formula data should be given to the function through chemlist argument. 
#If masslist == NULL, the peak list is deduced from chemlist. 
#The function is supposed to work on formula data which are organized 
#just like the assignment_script() function output. 

 
net_filtering_analysis<-function(chemlist, 
                                 masslist = NULL, 
                                 bb_database, 
                                 selected_nodes, 
                                 bb_list = NULL, 
                                 dmatrix = NULL, 
                                 digits = 3, 
                                 pmatrix = NULL, 
                                 p_threshold = 10, 
                                 exp_bb_err = 0.001){ 

   
  db<-bb_database 
  df<-chemlist 

   
  if(is.null(masslist)){ 
    mz_df<-df[,1:2]%>%table()%>%as.data.frame() 
    mz_df<-mz_df[(mz_df$Freq>0),1:2] 
    mz_df[,1]<-mz_df[,1]%>%as.character()%>%as.numeric() 
    mz_df[,2]<-mz_df[,2]%>%as.character()%>%as.numeric() 
    mz_df<-mz_df[order(mz_df[,1]),] 
  } else{ 
    mz_df<-masslist 
  } 

   
  not_assigned<-df[(is.na(df$Formula)==T),] 

   
  if(nrow(not_assigned)>0){ 
    df<-df[!(df[,1] %in% not_assigned[,1]),] 
  } 

   
  #Difference matrix calculation. Negative values and zero are included. 

   
  if(is.null(dmatrix) & is.null(bb_list)){ 
    ddf<-dmatrixcalculator(masslist1 = mz_df, 
                           zero_and_neg_to_na = F, 
                           number_of_digits = digits) 
  } else{ 
    if(!is.null(dmatrix) & is.null(bb_list)){ 
      ddf<-dmatrix 
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    } 
  } 

   
  #Difference-occurrence matrix (Pmatrix) calculation. Zero is discarded. 

   
  if(is.null(pmatrix) & is.null(bb_list)){ 
    ppf<-pmatrixcalculator(dmatrix = ddf, abs_frequency = T, 
                           p_threshold = p_threshold) 
    ppf<-ppf[(ppf$d!=0),] 

     

     
  } else{ 
    ppf<-pmatrix 
  } 

   
  #Making a list in which building blocks are grouped by m/z values 

   
  if(is.null(bb_list)){ 

     
    collected_bb<-diff_identifier(database = db, dmatrix = ddf, 
                                  pmatrix = ppf, error_arg = exp_bb_err, 
                                  p_threshold = p_threshold) 
  } else{ 

     
    collected_bb<-bb_list 

     
  } 

   
  #Here, a loop starts, during which correct candidate formulae are 
  #collected. Starting from the selected node, formulae are calculated 
  #and compared with candidate formula starting data.frame (chemlist). 
  #Those which would match are collected and related nodes are considered 
  #to repeat the step. When no other node is collected, the loop stops 
  #and incorrect candidate formulae are discarded. 

   

   
  add_to_uniq<-df[(df[,1] %in% as.numeric(selected_nodes)),]  

   

   
  repeat{ 

     
    cur_bblist<-collected_bb[(names(collected_bb) %in% as.character( 
      add_to_uniq[,1]))] 
    #Only building blocks related to assigned m/z ratios will be considered 
    #for formula calculation 

     
    if(length(cur_bblist)==0){ 
      print("There are no edges for this node.") 
      break 
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    } 

     

     
    assignm<-lapply(c(1:length(cur_bblist)), function(x){ 

       
      cur_formulae<-add_to_uniq[( 
        as.character(add_to_uniq[,1]) %in% (names(cur_bblist)[x]) 
      ), ] 

       
      #For every building block group, formulae related to the node 
      #are selected for calculation 

       
      candidate_formulae_calculator(starting_formulae = cur_formulae, 
                                    building_blocks = cur_bblist[[x]]) 

       
    }) 

     

     
    assignm<-do.call(rbind, assignm) 

     
    assignm<-create_Formula(assignm) 

     
    cur_df<-df[!(df$Formula%in%add_to_uniq$Formula),] 

     
    selected_formulae<-cur_df[( 
      cur_df$Formula %in% assignm$Formula 
    ),] 

     
    if(nrow(selected_formulae)>0){ 

       
      add_to_uniq<-rbind(add_to_uniq, selected_formulae) 

       
    } else{ 

       
      break 
    } 

     
  } 

   
  if(length(cur_bblist)==0){ 

     
    return(df) 

     
  } else{ 

     
    output<-rbind(df[!( 
      df[,1] %in% add_to_uniq[,1] 
    ),], add_to_uniq) 
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    if(nrow(not_assigned)>0){ 
      output<-rbind(output, not_assigned) 
    } 

     
    output<-output[order(output[,1]),] 

     
    return(output) 
  } 

   
} 

 
#The function returns a data.frame comprising all the edges data. The output 
#is supposed to be suitable for the making of Molecular Network through the 
#visNetwork() function. dmatrix, database, value_to_edges_df,  
#value_frequency_thresh and exp_bb_err are arguments for the  
#mass difference matrix, the building block database, the occurrence matrix 
#(if NULL, it's made by the function itself, deleting all the mass differences 
#which occurrence is lower than value_frequency_thresh), the occurrence 

threshold 
#value and the error considered for mass difference building block assignment. 

 
make_edges_list<-function(dmatrix, database, value_to_edges_df = NULL, 
                          value_frequency_thresh = 0, 
                          exp_bb_err = 0.001){ 

   
  ddf<-dmatrix 
  db<-database 
  err<-exp_bb_err 

   
  #Occurrence matrix calculation 

   
  if(is.null(value_to_edges_df)){ 
    ppf<-pmatrixcalculator(dmatrix = ddf, 
                           abs_frequency = T, 
                           p_threshold = value_frequency_thresh) 
  } else{ 
    ppf<-value_to_edges_df 
  } 

   

   
  reaction_bb<-lapply(c(1:nrow(ppf)), function(i){ 
    cur_d<-ppf$d[i] 
    cur_p<-ppf$p[i] 
    cur_sign<-NA 
    ifelse(cur_d>0, yes = cur_sign<-1, 
           no = cur_sign<-(-1)) 
    cur_bb<-db[( 
      (db[,1]>(abs(cur_d)-err)) & 
        (db[,1]<(abs(cur_d)+err)) 
    ),] 
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    if(nrow(cur_bb)>0){ 
      data.frame(d = rep(cur_d, nrow(cur_bb)), 
                 p = rep(cur_p, nrow(cur_bb)), 
                 Formula = cur_bb$Formula) 
    } 

     
  }) 

   
  reaction_bb<-do.call(rbind, reaction_bb) 
  #Collects successfully assigned mass difference occurrence data 

   
  reaction_bb$Formula<-reaction_bb$Formula %>% as.character() 

   
  z<-names(reaction_bb) 

   
  z[1]<-c("from") 

   
  z[2]<-c("to") 

   
  #Edge data.frame making. It looks for m/z ratios into the mass difference 
  #matrix: every mass difference corresponds to a series of peaks 
  #differing for that amount of Da (within a exp_bb_err error). 

   
  edges_list<-foreach(p = c(1:nrow(reaction_bb)), .combine = rbind) %do% { 
    k<-which(matrix(ddf == reaction_bb[p,1], ncol = ncol(ddf), 
                    nrow = nrow(ddf)), arr.ind = T) 
    x<-lapply(c(1:nrow(k)),function(i){ 

       
      reaction_bb[p,(map_lgl(reaction_bb, is.character)+ 
                       map_lgl(reaction_bb, is.factor) == 1)] 
    }) 

     
    x<-do.call(rbind, x) 

     
    data.frame(from = as.numeric(names(ddf[k[,2]])),  
               to = as.numeric(names(ddf[k[,1]])), 
               x) 
  } %>% as.data.frame() 

   
  names(edges_list)<-z 

   
  edges_list$from<-edges_list$from %>% as.character() 
  edges_list$to<-edges_list$to %>% as.character() 

   
  edges_list$id<-c(1:nrow(edges_list)) %>% as.character() 

   

   
  return(edges_list) 
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} 

 
#The function automizes the formula calculation process through Molecular 
#Network Analysis. The function consider all the assigned peaks 
#as starting nodes. The function works as net_filtering_analysis() for 
#what concerns the building block data list making ad employing. 

 
net_form_calc<-function(starting_assignments,  
                        masslist = NULL, 
                        bb_db = NULL, 
                        dmatrix = NULL, digits = 3, pmatrix = NULL, 
                        bblist = NULL, 
                        p_threshold = 30, exp_bb_err = 0.001, 
                        ppm = 5){ 

   

   
  df<-starting_assignments      #Objects initialization 
  ddf<-dmatrix 
  ppf<-pmatrix 
  db<-bb_db 
  bb_list<-bblist 
  mz_df<-masslist 

   
  assigned<-df[(is.na(df$Formula)==F),] 

   
  if(nrow(assigned)>0){ 

     
    k<-assigned[,1] %>% table() %>% as.data.frame() 

     
    output<-net_form_local_calc(chemlist = df, masslist = mz_df, 
                                dmatrix = ddf, pmatrix = ppf, digits = digits, 
                                bblist = bb_list, p_threshold = p_threshold, 
                                err_da = exp_bb_err, ppm = ppm, bb_db = db, 
                                selected_nodes = as.character(k[,1])) 

     
  } 

   

   

   
  return(output) 

   
} 

 
#This function allows to calculate and to assign new chemical formulas 
#through molecular network analysis starting from selected nodes. 
#The m/z ratios of starting node should be provided as a character vector. 
#The function takes a starting chemlist as an input, a list of m/z values, 
#a dmatrix (if related argument is NULL, the function will calculate  
#it), a pmatrix(if related argument is NULL, the function will calculate  
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#it), with related frequency threshold value (p_threshold) 
#a building block database (shouldn't be NULL if bblist must be 
#calculated), a mass difference error in Da (err_da) 
#and a list object in which building blocks are grouped by m/z  
#ratio (core object of the script).  
#If this last argument is provided, no one of the formers is necessary for 
#the function to work. 
#Last but not least, an experimental error in ppm must be provided to the 
#function for the assignment (ppm argument). 

 
net_form_local_calc<-function(chemlist, masslist = NULL, 
                              selected_nodes, 
                              bb_db = NULL,dmatrix = NULL, 
                              digits = 3, pmatrix = NULL, bblist = NULL, 
                              p_threshold = 30, err_da = 0.001, 
                              ppm = 5){ 

   
  df<-chemlist      #Objects initialization 
  ddf<-dmatrix 
  ppf<-pmatrix 
  db<-bb_db 

   
  if(is.null(masslist)){ 
    mz_df<-df[,1:2]%>%table()%>%as.data.frame() 
    mz_df<-mz_df[(mz_df$Freq>0),1:2] 
    mz_df[,1]<-mz_df[,1]%>%as.character()%>%as.numeric() 
    mz_df[,2]<-mz_df[,2]%>%as.character()%>%as.numeric() 
    mz_df<-mz_df[order(mz_df[,1]),] 
  } else{ 
    mz_df<-masslist 
  } 

   

   
  if(is.null(ddf) & is.null(bblist)){ 
    ddf<-dmatrixcalculator(masslist1 = mz_df, zero_and_neg_to_na = F, 
                           number_of_digits = digits) 
  }#Dmatrix calculation (with negative value) 

   
  if(is.null(ppf) & is.null(bblist)){ 
    ppf<-pmatrixcalculator(dmatrix = ddf, abs_frequency = T, 
                           p_threshold = p_threshold) 
    ppf<-ppf[(ppf$d!=0),] 

     
  }#Pmatrix calculation 

   
  if(is.null(bblist)){ 
    bblist<-diff_identifier(database = db, dmatrix = ddf, 
                            pmatrix = ppf, error_arg = err_da, 
                            p_threshold = p_threshold) 
  } 
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  assigned<-lapply(c(1:length(selected_nodes)), function(x){ 
    df[( 
      as.character(df[,1])%in%selected_nodes[x] 
    ),] 
  }) 

   
  assigned<-do.call(rbind, assigned) 
  #Data.frame containing candidate formulae of selected nodes 

   

   
  not_assigned<-mz_df[!( 
    as.character(mz_df[,1]) %in% as.character(assigned[,1]) 
  ),] 

   
  #Initialization of core data.frames: selected nodes are in "assigned", from  
  # which formulae are calculated by adding and substracting building blocks 
  #(bblist). These formulae will be used for assignment. 

   

   
  repeat{ 

     

     
    cur_bblist<-bblist[(names(bblist) %in% as.character(assigned[,1]))] 
    #Only building blocks related to assigned m/z ratios will be considered 
    #for formula calculation 

     

     
    assignm<-lapply(c(1:length(cur_bblist)), function(x){ 

       
      cur_formulae<-assigned[( 
        as.character(assigned[,1]) %in% (names(cur_bblist)[x]) 
      ), ] 

       
      #For every building block group, formulas related to the node 
      #are selected for calculation 

       
      candidate_formulae_calculator(starting_formulae = cur_formulae, 
                                    building_blocks = cur_bblist[[x]]) 

       
    }) 

     

     
    assignm<-do.call(rbind, assignm) 

     

     
    #########Delete duplicates######## 

     
    y<-assignm[,1] %>% table() %>% as.data.frame() 
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    assignm<-lapply(c(1:nrow(y)), function(x){ 

       
      newdata<-assignm[( 
        as.character(assignm[,1]) %in% as.character(y[x,1]) 
      ),] 

       
      #For every exact mass value, the function extrapolate related duplicate 
      #data frame and retain its first row 

       
      newdata[1,] 

       
    }) 

     
    assignm<-do.call(rbind, assignm) 

     

     
    ####### 

     
    new_assignm<-assignment_script(masslist = not_assigned, 
                                   err_ppm = ppm, 
                                   formula_db = assignm) 
    #Calculated formulas are used for assignment of unassigned m/z ratios. 
    #If no assignment was possible, the function returns the starting masslist 
    #with a column 'Formula' with NAs. 

     
    new_assignm<-new_assignm[( 
      is.na(new_assignm$Formula)==F 
    ),] 

     
    if(nrow(new_assignm)>0){ 

       

       
      assigned<-rbind(assigned[,names(new_assignm)], new_assignm) 

       
      not_assigned<-not_assigned[!( 
        not_assigned[,1] %in% assigned[,1] 
      ),] 

       
    } else{ 
      break 
    } 
  } 

   
  to_be_assigned<-assigned[!(assigned$Formula %in% df$Formula),] 
  #Only new calculated formula will be added to the initial data frame 

   

   
  output<-rbind(df[!( 



141 

    as.character(df[,1]) %in% as.character(to_be_assigned[,1]) 
  ), names(to_be_assigned)], to_be_assigned) 

   
  #As it is, the function deletes already calculated formulas for 
  #assigned m/z ratios. 

   

   
  output<-output[order(output[,1]),] 

   
  return(output) 

   
} 

 
#The function creates a character variable into the input data frame containing  
#elemental formulas. 

 
create_Formula<-function(df){ 
  x<-df 

   
  atom_vector<-c( "C","H" , "N"   ,"O",  'S','P','Br','Cl','I'   ,'Na'  ,'K', 
                  "He" , "Li",  "Be",  "B"   ,       
                  'F'   ,'Ne',  'Mg',  'Al',  'Si'  ,     
                  'Ar',     'Ca',  
                  'Sc' , 'Ti'  ,'V'  , 'Cr' , 'Mn'  ,'Fe',  'Co'  ,'Ni',   
                  'Cu'  ,'Zn' , 'Ga'  ,'Ge' , 'As' , 'Se'  ,  'Kr'  , 
                  'Rb' , 'Sr' , 'Y' ,  'Zr' , 
                  'Nb'  ,'Mo'  ,'Tc'  ,'Ru'  ,'Rh'  ,'Pd' , 'Ag'  ,'Cd' , 
                  'In'  ,'Sn'  ,'Sb'  ,'Te'  ,'Xe'  ,'Cs' , 'Ba'  , 
                  'La'  ,'Ce'  ,'Pr' , 'Nd' , 
                  'Pm'  ,'Sm'  ,'Eu'  ,'Gd'  ,'Tb'  ,'Dy'  ,'Ho'  ,'Er'  , 
                  'Tm'  ,'Yb'  ,'Lu'  ,'Hf'  ,'Ta'  ,'W'   ,'Re'  ,'Os'  , 
                  'Ir'  ,'Pt'  ,'Au'  ,'Hg' , 
                  'Tl'  ,'Pb'  ,'Bi'  ,'Po'  ,'At'  ,'Rn'  ,'Fr' , 'Ra'  , 
                  'Ac' , 'Th'  ,'Pa' , 'U'   ,'Np'  ,'Pu' , 'Am'  ,'Cm' ,  
                  'Bk'  ,'Cf'  ,'Es'  ,'Fm' , 
                  'Md'  ,'No'  ,'Lr'  ,'Rf'  ,'Db'  ,'Sg'  ,'Bh',  'Hs'  , 
                  'Mt',  'Ds'  ,'Rg',  'Cn'  ,'Nh'  ,'Fl',  'Mc'  ,'Lv',   
                  'Ts'  ,'Og' ) 

   
  #Elements present into the user data frame are identified 
  #Be aware! Only variables related to atomic counts have to be named 
  #using the appropriate elemental symbol, in order to avoid errors in 
  #formula elaboration. 
  #Example: peak intensity name "I" should be avoided, since 
  #the same symbol is used for iodine. 

   
  cur_elements<-atom_vector[atom_vector %in% names(x)] 

   
  x$Formula<-"" 
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  for (i in c(1:(length(cur_elements)))){ 

     
    x<-mutate(x, Formula = paste(x$Formula, cur_elements[i],  
                                 x[,cur_elements[i]], sep = "")) 

     
  } 

   

   
  for(i in c(1:length(cur_elements))){ 
    x$Formula<-str_replace(x$Formula,  
                           capture.output( 
                             cat(cur_elements[i], "0", sep = "") 
                           ), "") 
  } 

   
  return(x) 
} 

 

 

 
#########Omics Interactive Formula Assignment App############ 

 

 
#User interface 

 

 
ui<-fluidPage( 
  sidebarLayout( 
    sidebarPanel( #Making the left panel 

       
      fileInput("ddb", label = "Upload your building block  
                               .csv file:", accept = c("text/csv")), 

       
      #Action button for building block database upload 

       
      conditionalPanel(condition = "input.bb != null", 
                       fileInput("upload",  
                                 label = "Upload your  
                                       chemlist.csv file :" 
                       ), 

                        
                       #Once uploaded, two other action buttons will 
                       #appear through which personal data can be uploaded. 

                        
                       fileInput("isotope", 
                                 label = "Upload related 
                                       isotopologues .R file:") 

                        
                       #Action button for isotopologue list upload 
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                       #(output of the isot_collector() function) 
      ), 

       

       
      uiOutput("bb_list"), #Select box for building block selection 

       
      uiOutput("mscore"), #Select box for m/z selection before isotopic 
      #pattern matching score calculation 

       
      radioButtons("mode", label = "Ionization mode:", 
                   choices = list(positive = "positive", 
                                  negative = "negative")), 
      #Selection of the source ionization mode through radio buttons, 
      #useful for isotopic pattern matching score calculation only 

       
      conditionalPanel(condition = "input.mz != null", 
                       actionButton(inputId = "ipf", 
                                    label = "Calculate mScore for 
                                          selected m/z ratio")), 
      #Perform isotopic pattern matching score calculation 

       
      numericInput( 
        "delta", 
        label = "Insert deltaKMD value :", 
        min = 1e-6, 
        max = 1e-1, 
        step = 0.0001, 
        value = 0.001 
      ), 

       
      #Selection of KMD error for homologous series identification 

       

       
      numericInput("Da_err", "Insert the value of differences error  
                                  in Da:", 
                   min = 1e-8, 
                   max = 1000, 
                   value = 0.001, 
                   step = 0.0001), 

       
      #Mass difference error for building block identification 

       
      numericInput("ppm", "Insert the mass error  
                                  in ppm for formula calculation:", 
                   min = 0.01, 
                   max = 100, 
                   value = 5, 
                   step = 0.01), 
      #ppm error for formula calculation 

       



144 

      numericInput("threshold", label = "Insert the building block  
                                  frequency threshold", 
                   min = 0, 
                   value = 30, 
                   step = 1), 
      #Threshold value for low occurrence mass differences elimination 

       
      textInput("delete", label = "Type the molecular formula to be 
                      deleted:"), 
      actionButton("godelete", label = "Delete Formula"), 
      #Delete single elemental formula 

       
      textInput("keep", label = "Type the molecular formula to be 
                      kept:"), 
      actionButton("gokeep", label = "Keep Formula"), 
      #Keep typed elemental formula and delete all the other formula 
      #candidates for related m/z ratio 

       
      helpText("All the other molecular formulae related to 
                     the same m/z ratio will be deleted."), 

       

       
      helpText( 
        "Note: Local KMD and Network analysis will be performed  
                on points related to 
                     a clicked one, i.e. with the same Z* value and a KMD 
                     comprised into the range KMD +/- deltaKMD, while 
                     Network analysis can be performed after clicked on 
                     the starting node. Once performed, 
                     these analyses will change the input file, with no chance 

to 
                     undo."), 

       

       
      helpText( 
        "Note: To start the formula calculation, a starting  
                point has to be 
                selected on relative plot. The total KMD filtering allows 
                to filter candidate formulae by considering every homologous 
                series and starting from related lower redundance level 
members."), 

       

       
      downloadButton('download', 'Download Assignments as .csv file') 
      #Download output dataset as a .csv file 

       

       
    ), 
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    mainPanel( 
      tabsetPanel(#inserting and modifying different tabs 
        tabPanel(title = "KMD Analysis", 
                 plotlyOutput("kmd_plot"), 
                 #Kendrick plot 

                  
                 fluidRow( 
                   column(4,   #Action buttons to perform KMD 
                          #analysis formula filtering 

                           
                          h3("Kendrick Mass Defect analysis"), 
                          h4("Total formula filtering"), 
                          actionButton("gototalkmd",  
                                       "Perform Total KMD Filtering"), 
                          h4("Local Formula filtering"), 
                          actionButton("gokmd",  
                                       "Perform Local KMD Filtering")), 

                    
                   column(4, #Action buttons for formula calculation 

                           
                          h3("KMD Formula calculation"), 
                          h4("Local formula calculation"), 
                          actionButton("kmd_form_calc",  
                                       label = "Perform 
                                  KMD local formula calculation"), 
                          h4("Total Formula calculation"), 
                          actionButton("kmdcalc", label = "Perform  
                         KMD total formula calculation"), 

                          
                         radioButtons(inputId = "nitrorule", 
                                      label = "Apply Nitrogen Rule for 
                                                 calculated formulae", 
                                      choices = list(yes = T, 
                                                     no = F), 
                                      selected = T)), 
                   #Radio Buttons for nitrogen rule application 
                   #during elemental formula calculation 

                    
                   column(4, 
                          radioButtons("filter",  
                                       label = "Leave homologous series only:", 
                                       choices = list(yes = "yes", 
                                                      no = "no"), 
                                       selected = "no"), 
                          #Automatically deletes from Kendrick plot 
                          #all the points which don't belong to any 
                          #homologous series 
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                          h4("Number of members per m/z ratio"), 
                          helpText("Identifies homologous series 
                                             selected m/z ratio belongs to and 
                                             calculates the number of members 
                                             together with related KMD standard 
                                             deviation."), 
                          actionButton("homonumber",  
                                       label = "Perform 
                                  number of members calculation")) 
                 ), 
                 tableOutput("subkmd"), 
                 #Every time a point of the Kendrick plot is selected, 
                 #homologous series data appear under the plot. 

                  

                  
                 tableOutput("homonumbertable")), 

         

         
        tabPanel(title = "Mass Difference analysis", 
                 #Mass Difference data related tab. 

                  
                 plotOutput("tmds_plot"), 
                 #Mass Difference occurrences plot 

                  
                 fluidRow( 
                   column(3, 
                          radioButtons("tmds",  
                                       label = "Show related building blocks:", 
                                       choices =  
                                         list(yes = "yes", no = "no", 
                                              nothing = "Show no label"), 
                                       selected = "no")), 
                   #Radio buttons for Mass Difference value and associated 
                   #building blocks displaying into the plot 

                    
                   column(3, 
                          numericRangeInput("xrange", "X-axis:", 
                                            value = c(0,500)), 
                          numericRangeInput("yrange", "Y-axis:", 
                                            value = c(0,500)), 
                          downloadButton('downloadtmds',  
                                         'Download TMDS plot as .pdf file'), 
                          downloadButton('downloadtmdsdata',  
                                         'Download TMDS data as .csv file') 
                   ) 
                 ) 
        ), 

         
        tabPanel(title = "Network Analysis", 
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                 #Molecular Network analysis related tab. 

                  
                 visNetworkOutput("network_proxy"), #Molecular Network 
                 fluidRow( 
                   column(4, 
                          h3("Network Analysis"), 
                          h4("NA local filtering"), 
                          actionButton("go_network",  
                                       label = "Perform Local 
                                  Network Analysis") #Perform formula filtering 
from 
                          #a clicked starting node 
                   ), 
                   column(4, 
                          h3("NA Formula calculation"), 
                          h4("Local Formula calculation"), 
                          actionButton("net_local_calc",  
                                       label = "Perform 
                                  NA local formula calculation"), 
                          #Perform formula calculation from a clicked 
                          #starting node 

                           
                          h4("Automatic Formula calculation"), 
                          actionButton("net_form_calc",  
                                       label = "Perform 
                                  NA automatic formula calculation") 
                          #Perform formula calculation from assigned nodes 
                   ), 
                   column(4, 
                          radioButtons("edgeslab", label =  
                                         "Show edge labels:", 
                                       choices = list(yes = "yes",  
                                                      no = "no"), 
                                       selected = "no")) 
                   #Display edge labels 
                 ), 
                 tableOutput("subNA")), 
        #Under the network, a table with clicked node data will appear 

         
        tabPanel(title = "Experimental m/z data.frame", 
                 tableOutput("masslist")) #Uploaded m/z dataset will be shown 
        #in this tab 
      ) 
    ) 

     
  ) 

   
) 
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server <- function(input, output) { 

   
  options(shiny.maxRequestSize=100*1024^2) #Increase maximum upload file 
  #size to 100MB 

   
  #Definition of dynamic objects, such as the m/z dataset and the isotopologue 
  #list 

   
  chem<-reactiveVal() 
  isolist<-reactiveVal() 

   
  observeEvent({input$upload 
    input$ddb},{ 

       
      #When personal data are uploaded, the following code 
      #assure that the dataset is assigned to the reactive value chem(). 
      #Of course, uploading of a building block dataset should be performed 
      #before this step, since Kendrick plot and Molecular Network 
      #would be made immediately after personal data upload 

       
      if(!is.null(input$ddb) & !is.null(input$upload)){ 
        newchem<-read.csv(input$upload$datapath) 
        newchem<-kendrick_properties_calculator(df = newchem, 
                                                bb_database = db(), 
                                                building_block = input$bb) 
        chem(newchem) 
      } 
    }, ignoreNULL = T) 

   
  observeEvent(input$godelete, { 

     
    #The following chunck assure the elimination of the elemental formula 
    #to delete from the dataset 

     
    req(input$upload) 
    current_data<-chem() 
    assigned<-current_data[(is.na(current_data$Formula)==F),] 

     
    new_data<-assigned[!(assigned$Formula %in% input$delete),] 

     
    new_data<-rbind(current_data[!(current_data[,1] %in% new_data[,1]),], 
                    new_data) 
    new_data<-new_data[order(new_data[,1]),] 

     
    chem(new_data) 

     
  }, ignoreNULL = T) 

   
  observeEvent(input$gokeep, { 
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    #The following chunck assures the input elemental formula to be kept 
    #into the dataset, deleting all the other candidates for related m/z ratio 
    #This code works when the Keep formula action button is pressed. 

     
    req(input$upload) 
    current_data<-chem() 

     
    assigned<-current_data[(is.na(current_data$Formula)==F),] 

     
    to_keep_formula<-assigned[(assigned$Formula %in% input$keep),] 

     
    new_data<-rbind(assigned[!(assigned[,1] %in% to_keep_formula[,1]),], 
                    to_keep_formula) 

     
    new_data<-rbind(current_data[!(current_data[,1] %in% new_data[,1]),], 
                    new_data) 
    new_data<-new_data[order(new_data[,1]),] 

     
    chem(new_data) 

     
  }, ignoreNULL = T) 

   
  observeEvent({input$bb},{ 
    req(input$upload) 

     
    #When another building block is selected from the left panel, 
    #the following chunck allows to recalculate Kendrick properties 
    #of the uploaded peak list 

     
    current_data<-chem() 
    newchem2<-kendrick_properties_calculator(df = current_data, 
                                             bb_database = db(), 
                                             building_block = input$bb) 
    chem(newchem2) 
  }, ignoreNULL = F) 

   
  observeEvent({input$isotope},{ 

     
    load(input$isotope$datapath) 

     
    isolist(cur_list) 

     
  }, ignoreNULL = T) 

   
  homo_numbers<-reactiveVal() 
  #Table collecting data of different homologous series the selected  
  #peak belongs to 
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  observeEvent({input$homonumber}, { 

     
    #The following chunck allows the identification of different homologous 
    #series the selected m/z ratio belongs to by recalculating Kendrick 
    #properties for every building block present into the uploaded database 

     
    req(instant_data_chem()) #Clicking on a point of the Kendrick plot 
    #is compulsory to let this chunck work 

     
    a <- event_data(event = "plotly_click", 
                    source = "sorgente") 
    cur_mz<-a$key[1] 

     
    withProgress(message = "Calculation in progress...", 
                 value = 1, { 
                   newdata<-homo_series_numbers(df = masslist(),  
                                                mz_ratio = cur_mz, 
                                                bb_db = db(),  
                                                deltaKMD = input$delta, 
                                                chemlist = chem()) 
                   newdata$Choosen_mz_ratio<-cur_mz 
                 }) 

     
    homo_numbers(newdata) 

     
  }, ignoreNULL = T) 

   
  output$homonumbertable<-renderTable({ 

     
    #Table of different homologous series of the selected point 

     
    req(input$upload) 

     
    if(!is.null(event_data(event = "plotly_click", 
                           source = "sorgente"))){ 
      homo_numbers() 
    } 

     
  }, digits = 8) 

   
  output$mscore<-renderUI({ 

     
    #Select box related to the isotopic pattern matching score calculation 
    #with which you can select the m/z ratio for which the score 
    #can be calculated 

     
    req(input$isotope) 

     
    isoset<-do.call(rbind, isolist()) 
    isoset<-isoset[order(isoset$'M'),] 
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    mz_values<-as.character(isoset$'M') 

     
    mz_list<-lapply(c(1:nrow(isoset)), function(x){ 
      mz_values[x] 
    }) 
    names(mz_list)<-mz_values 

     
    selectInput("mz", label = "Select the m/z ratio:", 
                choices = mz_list) 

     
  }) 

   
  observeEvent(input$ipf,{ 

     
    #The following chunck allows the calculation of the isotopic 
    #pattern matching score when dedicated action button is clicked 

     
    req(input$mz) 
    req(input$upload) 

     
    current_data<-chem() 
    cur_iso<-isolist() 

     
    sub_data<-current_data[(as.character(current_data[,1]) %in% 
                              input$mz),] 

     
    sub_data<-isotopic_pattern_filtering(chemlist = sub_data, 
                                         isolist = cur_iso, 
                                         mode = input$mode, 
                                         err_ppm = input$ppm 
    ) 

     
    new_data<-rbind(current_data[!(as.character(current_data[,1]) %in% 
                                     input$mz),], 
                    sub_data) 

     
    new_data<-new_data[order(new_data[,1]),] 

     
    chem(new_data) 

     

     
  }, ignoreNULL = T) 

   
  observeEvent(input$go_network,{ 

     
    #Allows filtering of formulas from selected node 

     
    req(input$current_node_id) 
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    req(db()) 

     
    withProgress(message = "Network Analysis in progress...", 
                 value = 1,{ 
                   current_data<-chem() 

                    
                   output<-net_filtering_analysis(chemlist = current_data, 
                                                  selected_nodes = 
input$current_node_id$nodes[[1]], 
                                                  bb_database = db(), 
                                                  exp_bb_err = input$Da_err, 
                                                  bb_list = bblist()) 
                   incProgress(amount = 1) 

                    
                   chem(output) 
                 }) 

     
    visNetworkProxy("network_proxy") %>% 
      visUpdateNodes(nodes = nodes()) 

     
  }, ignoreNULL = T) 

   
  observeEvent(input$edgeslab, { 

     
    #Allows to display edges labels and to hide them when dedicated radio 
    #buttons are used 

     
    req(edges()) 

     
    switch(input$edgeslab, 
           yes = { 
             cur_edges<-edges() 
             cur_edges$label<-cur_edges$Formula 
             edges_to_remove<-cur_edges$id 

              
             visNetworkProxy("network_proxy") %>% 
               visRemoveEdges(id = edges_to_remove) %>% 
               visUpdateEdges(edges = cur_edges)}, 
           no = { 
             cur_edges<-edges() 
             cur_edges$label<-c("") 
             edges_to_remove<-cur_edges$id 

              
             visNetworkProxy("network_proxy") %>% 
               visRemoveEdges(id = edges_to_remove) %>% 
               visUpdateEdges(edges = cur_edges)}) 

     
  }, ignoreNULL = T) 

   
  observeEvent(input$gokmd,{ 



153 

     
    #Filtering formula locally using KMD analysis 

     
    req(instant_data_chem()) 

     
    current_data<-chem() 
    cur_homo_chem<-instant_data_chem() 

     
    homoseries<-masslist()[(as.character(masslist()[,1])%in% 
                              as.character(cur_homo_chem[,1])),] 
    homoseries<-homoseries[order(homoseries[,1]),] 
    homoseries<-q_calculator(homoseries,  
                             bbinteger = round(db()[(db()$Formula  
                                                     %in% input$bb), 
                                                    1])) #q_calculator function 
    #needs the building block nominal mass to be specified. 

     
    filtered_data<-kendrickfilter(homoseriesdf = cur_homo_chem, 
                                  bb_database = db(), 
                                  bb_formula = input$bb, 
                                  max_q_value = max(homoseries$q, 
                                                    na.rm = T)) 
    new_data<-current_data[!( 
      current_data[,1] %in% filtered_data[,1] 
    ),] 

     
    new_data<-bind_rows(new_data, filtered_data) 

     
    chem(new_data) 

     
  }) 

   
  observeEvent(input$gototalkmd, { 

     
    #Automatic filtering of elemental formula through KMD analysis 
    #by considering every identified homologous series 

     
    req(chem()) 

     
    withProgress(message = "KMD automatic filtering in progress...", 
                 value = 1,{ 
                   current_data<-chem() 
                   new_data<-kmd_analysis(chemlist = current_data, 
                                          bb_database = db(), 
                                          deltaKMD = input$delta, 
                                          chosen_bb = input$bb) 
                   incProgress(amount = 1) 
                   chem(new_data) 
                 }) 
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    visNetworkProxy("network_proxy") %>% 
      visUpdateNodes(nodes = nodes()) 

     
  }, ignoreNULL = T) 

   
  observeEvent(input$net_form_calc, { 
    req(network()) 

     
    #Formula calculation related to Network Analysis from every 
    #assigned node 

     
    withProgress(message = "NA automatic formula calculation in progress...", 
                 value = 1,{ 
                   current_data<-chem() 
                   new_data<-net_form_calc(starting_assignments = current_data, 
                                           bblist = bblist(), 
                                           exp_bb_err = input$Da_err, 
                                           ppm = input$ppm) 
                   incProgress(amount = 1) 
                   chem(new_data) 
                 }) 

     
    visNetworkProxy("network_proxy") %>% 
      visUpdateNodes(nodes = nodes()) 
  }) 

   
  observeEvent(input$net_local_calc, { 
    req(network()) 

     
    #Formula calculation related to Network Analysis from  
    #selected node 

     
    withProgress(message = "NA local formula calculation in progress...", 
                 value = 1,{ 
                   current_data<-chem() 
                   new_data<-net_form_local_calc(chemlist = current_data, 
                                                 selected_nodes = 

input$current_node_id$nodes[[1]], 
                                                 bblist = bblist(), 
                                                 err_da = input$Da_err, 
                                                 ppm = input$ppm) 
                   incProgress(amount = 1) 

                    
                 }) 

     
    chem(new_data) 

     
    visNetworkProxy("network_proxy") %>% 
      visUpdateNodes(nodes = nodes()) 
  }, ignoreNULL = T) 
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  observeEvent(input$kmd_form_calc, { 

     
    #Formula calculation through KMD analysis from selected homologous series 
    #member 

     
    req(instant_data_chem()) #Clicking on a point is compulsory to let 
    #the following chunck running 

     
    current_data<-chem() 

     
    a <- event_data(event = "plotly_click", 
                    source = "sorgente") 

     
    withProgress(message = "Calculation in progress...", 
                 { 
                   homoseries<-

masslist()[(masslist()[,1]%in%instant_data_chem()[,1]),] 
                   homoseries<-homoseries[order(homoseries[,1]),] 
                   homoseries<-q_calculator(homoseries, 
                                            bbinteger = 

round(db()[(db()$Formula 
                                                                    %in% 

input$bb), 
                                                                   1])) 
                   q_value<-max(homoseries$q, na.rm = T) 
                   q_value<-q_value*10 

                    
                   starting<-instant_data_chem()[( 
                     as.character(instant_data_chem()[,1]) %in% 
                       as.character(a$key[1]) 
                   ),] 
                   not_assigned<-homoseries[!( 
                     as.character(homoseries[,1]) %in% 
                       as.character(starting[,1]) 
                   ),] 

                    
                   bb<-db()[(db()$Formula==input$bb),map_lgl(db(), is.numeric)] 

                    
                   bb<-lapply(c((q_value*(-1)):q_value), function(i){ 
                     bb*i 
                   }) 
                   bb<-do.call(rbind, bb) 

                    
                   if(nrow(starting)>0 & nrow(not_assigned)>0){ 
                     form_db<-candidate_formulae_calculator(starting_formulae = 

starting, 
                                                            building_blocks = 

bb, 
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seven_golden_rules_applier = F) 

                      
                     new_assigned<-assignment_script(masslist = 

not_assigned[,1:2], 
                                                     err_ppm = input$ppm, 
                                                     formula_db = form_db, 
                                                     nitrogen_rule_applier = 

input$nitrorule) 

                      

                      

                      
                     new_assigned<-kendrick_properties_calculator(df = 

new_assigned, 
                                                                  

building_block = input$bb, 
                                                                  bb_database = 

db()) 

                      
                     z<-names(starting) 

                      

                      
                     

if(nrow(new_assigned[(is.na(new_assigned$Formula)==F),])>0){ 

                        
                       new_assigned<-new_assigned[,z] 

                        
                       new_data<-rbind(current_data[!( 
                         as.character(current_data[,1]) %in% as.character( 
                           new_assigned[,1]) 
                       ), names(new_assigned)], new_assigned) 

                        
                       chem(new_data) 
                     } else{ 
                       chem(current_data) 
                     } 
                   } else{ 
                     chem(current_data) 
                   } 
                 }, value = 1) 

     
  }) 

   
  observeEvent(input$kmdcalc, { 
    req(network()) 

     
    #Automatic formula calculation through KMD analysis considering every 
    #homologous series and starting from related lowest redundance 
    #level members 

     
    withProgress(message = "KMD formula calculation in progress...", 
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                 value = 1,{ 
                   current_data<-chem() 
                   new_data<-kmd_form_calc(chemlist = current_data, 
                                           bb_database = db(), 
                                           deltaKMD = input$delta, 
                                           chosen_bb = input$bb, 
                                           ppm = input$ppm) 
                   incProgress(amount = 1) 

                    
                 }) 

     
    chem(new_data) 

     
    visNetworkProxy("network_proxy") %>% 
      visUpdateNodes(nodes = nodes()) 
  }, ignoreNULL = T) 

   

   
  masslist <- reactive({ 
    req(chem()) 

     
    #Another peak list is created here apart from uploaded one 
    #without elemental formula data to speed up KMD and NA calculations 

     
    masslist <- chem()[, 1:2] %>% 
      table() %>% 
      as.data.frame() %>% 
      subset(Freq > 0) 

     
    masslist[,1] <- masslist[,1] %>% 
      as.character() %>% 
      as.numeric() 

     
    masslist[,2] <- masslist[,2] %>% 
      as.character() %>% 
      as.numeric() 

     
    masslist<-masslist[order(masslist[,1]),] 

     
    masslist <- kendrick_properties_calculator(df = masslist, 
                                               bb_database = db(), 
                                               building_block = input$bb) 
    masslist$Freq[(masslist[,1] %in%  
                     chem()[(is.na(chem()$Formula)==T),1])]<-0 

     
    masslist$Redun <- c("uniq", "redundance")[((masslist$Freq != 1) + 
                                                 1)] 
    masslist$Redun[(masslist$Freq==0)]<-"not assigned" 

     
    return(masslist) 
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  }) 

   
  ddf<-reactive({ 

     
    #Mass difference matrix calculation. Row and column names are m/z ratio 
    #and every matrix object contains the difference between m/z values 
    #related to the row and the column the mass difference belongs to 

     
    req(input$upload) 
    dmatrixcalculator(masslist1 = masslist(), 
                      number_of_digits = (floor(log10(input$Da_err))*(-1)), 
                      zero_and_neg_to_na = T) 
    #Negative and zero values of ddf() are converted to NA 
  }) 

   
  complete_ddf<-reactive({ 
    req(input$upload) 
    dmatrixcalculator(masslist1 = masslist(), 
                      number_of_digits = (floor(log10(input$Da_err))*(-1)), 
                      zero_and_neg_to_na = F) 
    #Here, ddf negative and zero values are retained. This kind of ddf 
    #is useful for network calculation 
  }) 

   
  p_df<-reactive({ 
    req(ddf()) 

     
    #Collecting every different mass difference value in a matrix object 
    #with related occurrences. Mass differences with occurrences lower 
    #than a certain value input$threshold are automatically deleted 

     
    pmatrixcalculator(dmatrix = ddf(), 
                      abs_frequency = T, 
                      p_threshold = input$threshold) 
  }) 

   
  db<-reactiveVal() 
  #Building block database reactive value 

   
  observeEvent(input$ddb, { 

     
    new_db<-read.csv(input$ddb$datapath) 

     
    #Uploaded building block database is assigned to related reactive value 
    #db() 

     
    db(new_db) 

     
  }) 
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  output$bb_list<-renderUI({ 

     
    req(db()) 

     
    #Select box through which the KMD building block can be choosen among 
    #those uploaded 

     
    current_db<-db() 
    bb<-current_db$Formula 
    bbl<-lapply(c(1:length(bb)), function(i){ 
      bb 
    }) 
    names(bbl)<-bb 

     
    selectInput( 
      "bb", 
      label = "Choice current building block :", 
      choices = bbl, 
      selected = 1 
    ) 

     

     
  }) 

   
  text_pdf<-reactive({ 

     
    #Matrix object containing assigned mass difference values 
    #together with relative occurrences. 
    #Useful for edge matrix calculation 

     
    req(p_df()) 
    req(input$ddb) 

     
    value_df<-p_df() 
    err<-input$Da_err 
    db<-db() 

     
    reaction_bb<-lapply(c(1:nrow(value_df)), function(i){ 
      cur_d<-value_df$d[i] 
      cur_p<-value_df$p[i] 
      cur_sign<-NA 
      ifelse(cur_d>0, yes = cur_sign<-1, 
             no = cur_sign<-(-1)) 
      cur_bb<-db[( 
        (db[,1]>(abs(cur_d)-err)) & 
          (db[,1]<(abs(cur_d)+err)) 
      ),] 

       
      if(nrow(cur_bb)>0){ 
        data.frame(d = rep(cur_d, nrow(cur_bb)), 
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                   p = rep(cur_p, nrow(cur_bb)), 
                   Formula = cur_bb$Formula, 
                   Sign = rep(cur_sign, nrow(cur_bb))) 
      } 

       
    }) 

     
    reaction_bb<-do.call(rbind, reaction_bb) 

     
    reaction_bb$Formula<-reaction_bb$Formula %>% as.character() 

     
    return(reaction_bb)  

     
  }) 

   

   
  bblist<-reactive({ 

     
    #bblist collects edges data for every peak of the uploaded data. 
    #It's the core of the network and is used for formula filtering 
    #and calculation through Network Analysis 

     
    output_list<-diff_identifier(database = db(), 
                                 dmatrix = complete_ddf(), 
                                 pmatrix = NULL, 
                                 p_threshold = input$threshold, 
                                 error_arg = input$Da_err 
    ) 

     
    return(output_list) 

     
  }) 

   

   
  color_var <- reactive({ 
    req(chem()) 

     
    #Reactive value useful for homologous series highlighting 

     
    if (!is.null(event_data(event = "plotly_click", 
                            source = "sorgente"))) { 
      color_var <- c("unselected", "selected")[((masslist()[,1] %in%  
                                                   instant_data_chem()[,1]) + 
                                                  1)] 

       
      return(color_var) 
    } else{ 
      color_var <- masslist()$Redun 
      return(color_var) 
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    } 
  }) 

   
  color_vector <- reactive({ 
    req(chem()) 

     
    #Colors related to the Kendrick plot points. 
    #The color vector must be a reactive value because it's supposed to  
    #change whenever a point of the plot is selected or not 

     
    if (!is.null(event_data(event = "plotly_click", 
                            source = "sorgente"))) { 
      return(c("orange", "grey")) 
    } else{ 
      return(c("blue", "red", "green")) 
    } 
  }) 

   

   
  instant_data_chem <- reactive({ 

     
    #Dataset containing selected point information 

     
    req(chem()) 

     
    a <- event_data(event = "plotly_click", 
                    source = "sorgente") 

     
    current_data<-chem() 

     
    insta_data <- current_data[(current_data[,1] == a$key), ] 

     
    row_to_add <-current_data[( 
      (current_data$KMD < (insta_data$KMD[1] + input$delta)) & 
        (current_data$KMD > (insta_data$KMD[1] - input$delta)) & 
        (current_data$zstar == insta_data$zstar[1]) 
    ),] 

     
    row_to_add<-row_to_add[order(row_to_add[,1]),] 

     

     
    return(row_to_add) 
  }) 

   
  filtered_kmdset<-reactive({ 

     
    #List object containing every identified homologous series 
    #Useful for Kendrick plot making 

     



162 

    req(masslist()) 

     
    output<-kendrick_noise_filter(masslist = masslist()[,1:2], 
                                  bb_database = db(), 
                                  chosen_bb = input$bb, 
                                  deltaKMD = input$delta) 
    return(output) 

     
  }) 

   
  filtered_masslist<-reactive({ 

     
    req(filtered_kmdset()) 

     
    #Peak list containing m/z ratios which belong to at least 1 homologous 
    #series. Useful for Kendrick plot making 

     
    filtered<-do.call(rbind, filtered_kmdset()) 

     
    if(length(nrow(filtered)>0)!=0){ 
      filtered<-filtered[order(filtered[,1]),] 
      output<-masslist()[(masslist()[,1]%in%filtered[,1]),] 

       
      return(output) 

       
    } else{ 

       
      return(masslist()) 

       
    } 

     

     

     

     

     
  }) 

   
  kmdplot<-reactive({ 

     
    req(masslist()) 

     
    #Complete Kendrick plot 
    #It's a plot_ly object, assuring interactivity 

     
    plot_ly( 
      data = masslist(), 
      x = masslist()$NM, 
      y = masslist()$KMD, 
      type = "scatter", 
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      mode = "markers", 
      hoverinfo = "text", 
      text = paste( 
        "</br>m/z = ", 
        masslist()[, 1], 
        "</br>Z* = ", 
        masslist()$zstar, 
        "</br>KMD = ", 
        masslist()$KMD, 
        "</br>NM = ", 
        masslist()$NM, 
        "</br>N. of Formulae = ", 
        masslist()$Freq 
      ), 
      color = color_var(), 
      colors = color_vector(), 
      key = ~ mz, 
      source = "sorgente" 
    ) %>% 
      config(scrollZoom = T) %>% 
      layout(xaxis = list(title = "Kendrick Nominal Mass (KNM)", 
                          font = list(family = "Times New Roman"), 
                          linecolor = "black", 
                          linewidth = 0.5, 
                          mirror = T), 
             yaxis = list(title = "Kendrick Mass Defect (KMD)", 
                          font = list(family = "Times New Roman"), 
                          linecolor = "black", 
                          linewidth = 0.5, 
                          mirror = T)) 

     
  }) 

   
  color_var_filtered <- reactive({ 
    req(chem()) 
    req(filtered_masslist()) 

     
    #If only homologous series have to be displayed (radio button) 
    #The reactive value is a vector of colors for the filtered 
    #Kendrick plot 

     
    if (!is.null(event_data(event = "plotly_click", 
                            source = "sorgente"))) { 
      color_var <- c("unselected",  
                     "selected")[((filtered_masslist()[,1] %in%  
                                     instant_data_chem()[,1]) + 
                                    1)] 

       
      return(color_var) 
    } else{ 
      color_var <- filtered_masslist()$Redun 
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      return(color_var) 
    } 
  }) 

   
  filtered_kmdplot<-reactive({ 

     
    req(filtered_masslist()) 

     
    #Kendrick plot with homologous series only 

     

     
    plot_ly( 
      data = filtered_masslist(), 
      x = filtered_masslist()$NM, 
      y = filtered_masslist()$KMD, 
      type = "scatter", 
      mode = "markers", 
      hoverinfo = "text", 
      text = paste( 
        "</br>m/z = ", 
        filtered_masslist()[, 1], 
        "</br>Z* = ", 
        filtered_masslist()$zstar, 
        "</br>KMD = ", 
        filtered_masslist()$KMD, 
        "</br>NM = ", 
        filtered_masslist()$NM, 
        "</br>N. of Formulae = ", 
        filtered_masslist()$Freq 
      ), 
      color = color_var_filtered(), 
      colors = color_vector(), 
      key = ~ mz, 
      source = "sorgente" 
    ) %>% 
      config(scrollZoom = T) %>% 
      layout(xaxis = list(title = "Kendrick Nominal Mass (KNM)", 
                          font = list(family = "Times New Roman"), 
                          linecolor = "black", 
                          linewidth = 0.5, 
                          mirror = T), 
             yaxis = list(title = "Kendrick Mass Defect (KMD)", 
                          font = list(family = "Times New Roman"), 
                          linecolor = "black", 
                          linewidth = 0.5, 
                          mirror = T)) 

     
  }) 

   
  output$subkmd<-renderTable({ 
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    #A table collecting all the selected homologous series data 

     
    req(input$upload) 

     
    if(!is.null(event_data(event = "plotly_click", 
                           source = "sorgente"))){ 
      instant_data_chem() 
    }  
  }) 

   

   
  output$kmd_plot <- renderPlotly({ 
    req(filtered_kmdplot()) 
    req(kmdplot()) 

     
    #Depending on the selected radio button, the Kendrick plot 
    #or the filtered one is returned to the user 

     
    switch(input$filter, 
           yes = filtered_kmdplot(), 
           no = kmdplot()) 

     
  }) 

   

   

   
  tmdsplot<-reactive({ 

     
    req(p_df()) 

     
    #Mass Difference occurrence plot 
    #This is made by employing ggplot2 package, since 
    #plot_ly leads to errors 
    #This plot shows mass difference values as labels 

     
    pl<-ggplot(data = p_df(), aes(x = d, y = p)) 

     
    output<-pl + geom_bar(stat = "identity", fill = "gray",  
                          color = "black") + 
      coord_cartesian(xlim = input$xrange, ylim = input$yrange) + 
      theme_bw() + 
      theme(axis.title.x = element_text(hjust = 1, face = "bold"), 
            axis.title.y = element_text(hjust = 1, face = "bold")) + 
      xlab(label = "Mass Difference (Da)") + 
      ylab(label = "Occurrence") 

     
    return(output + geom_text(data = p_df(), aes(x = p_df()$d,  
                                                 y = (p_df()$p +20), 
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                                                 label = p_df()$d))) 

     
  }) 

   
  labeled_tmdsplot<-reactive({ 

     
    req(text_pdf()) 

     
    #Mass difference occurrence plot with labels indicating successfully 
    #assigned mass differences 

     
    if(nrow(text_pdf())>0){ 

       
      pl<-ggplot(data = p_df(), aes(x = d, y = p)) 

       
      output<-pl + geom_bar(stat = "identity", fill = "gray",  
                            color = "black") + 
        coord_cartesian(xlim = input$xrange, ylim = input$yrange) + 
        theme_bw() + 
        theme(axis.title.x = element_text(hjust = 1, face = "bold"), 
              axis.title.y = element_text(hjust = 1, face = "bold")) + 
        xlab(label = "Mass Difference (Da)") + 
        ylab(label = "Occurrence") 

       
      output + geom_text(data = text_pdf(), aes(x = text_pdf()$d,  
                                                y = (text_pdf()$p +20), 
                                                label = text_pdf()$Formula, 
                                                angle = 90)) 

       
    } else{ 

       
      return(tmdsplot()) 
    } 

     
  }) 

   
  nolabel_tmds_plot<-reactive({ 

     
    req(p_df()) 

     
    #Mass difference occurrence plot with no label at all 

     
    pl<-ggplot(data = p_df(), aes(x = d, y = p)) 

     
    output<-pl + geom_bar(stat = "identity", fill = "gray",  
                          color = "black") + 
      coord_cartesian(xlim = input$xrange, ylim = input$yrange) + 
      theme_bw() + 
      theme(axis.title.x = element_text(hjust = 1, face = "bold"), 
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            axis.title.y = element_text(hjust = 1, face = "bold")) + 
      xlab(label = "Mass Difference (Da)") + 
      ylab(label = "Occurrence") 

     
    return(output) 

     
  }) 

   
  output$tmds_plot<-renderPlot({ 

     
    req(tmdsplot()) 
    req(labeled_tmdsplot()) 

     
    #Depending on the selected radio button, a type of mass difference 
    #occurrence plot is returned to the user 

     
    switch (input$tmds, 
            "yes" = labeled_tmdsplot(), 
            "no" = tmdsplot(), 
            "Show no label" = nolabel_tmds_plot() 
    ) 
  }) 

   
  id_nodes_to_remove<-reactiveVal() 

   
  nodes<-reactive({ 

     
    #Nodes data frame 

     
    req(input$ddb) 
    req(edges()) 

     
    nodes_data<-masslist()[,1:3] 

     
    names(nodes_data)<-c("id", "I%", "Freq") 

     
    nodes_data$id<-nodes_data$id %>% 
      as.character() 

     
    #nodes_data$size<-nodes_data$size %>% 
    #    as.character() %>% 
    #    as.numeric() 

     
    #nodes_data<-mutate(nodes_data, size = (size/max(size))*100) 

     
    nodes_data$shape<-"dot" 

     
    nodes_data$shadow<-TRUE 
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    nodes_data$color.highlight.background<-"orange" 

     
    nodes_data$color.highlight.border<-"darkred" 

     
    nodes_data$color.border<-"black" 

     
    nodes_data$color.background<-c("red", "blue")[( 
      (nodes_data$Freq != 1)+1 
    )] 

     
    nodes_data$color.background[(nodes_data$Freq==0)]<-c("gray") 

     
    nodes_data$title<-paste("m/z = ", nodes_data$id, 
                            "</br> N. of Formulae = ", nodes_data$Freq, 
                            "</br> I % =", nodes_data$'I%') 
    nodes_data$label<-paste("m/z = ", nodes_data$id, 
                            "\nN. of Formulae = ", nodes_data$Freq, 
                            "\nI % =", nodes_data$'I%') 

     

     
    #nodes_data<-nodes_data[(nodes_data$id %in% edges()$from | 
    #                            nodes_data$id %in% edges()$to),] 

     
    return(nodes_data) 

     

     
  }) 

   
  edges<-reactive({ 

     
    #Edges data frame 

     
    req(input$ddb) 
    req(db()) 
    req(ddf()) 
    req(p_df()) 

     
    data_edges<-make_edges_list(dmatrix = ddf(), 
                                database = db(), 
                                value_to_edges_df = p_df(), 
                                exp_bb_err = input$Da_err) 

     

     
    return(data_edges) 

     
  }) 

   
  id_edges_to_remove<-reactiveVal() 
  #To update edges in returned Molecular Network every time the mass 
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  #difference error or the occurrence threshold value are changed, 
  #the creation of a reactive value that collect current edges IDs is  
  #compulsory 

   
  observeEvent({input$ddb 
    input$upload}, { 
      req(edges()) 

       
      id_edges_to_remove(edges()$id) 

       
    }) 

   
  network<-reactiveVal() 
  #The Molecular Network is assigned to the reactive value network() 

   
  observeEvent({input$upload 
    input$ddb},{ 

       
      #This chunck allows the making of the Molecular Network from 
      #uploaded data. 
      #It runs after uploaded personal peak list 

       
      if(!is.null(input$ddb) & !is.null(input$upload)){ 
        nodes_data<-nodes() 
        edges_data<-edges() 

         
        new_network<-visNetwork(nodes = nodes_data, edges = edges_data) %>% 
          visOptions(nodesIdSelection = T, highlightNearest = T)  %>% 
          visEvents(select = 'function(nodes_data){ 
                      Shiny.onInputChange("current_node_id",nodes_data); 
                      ;}') 

         
        network(new_network) 
      } 
    }) 

   
  output$network_proxy<-renderVisNetwork({ 

     
    network() 

     
  }) 

   
  output$subNA<-renderTable({ 

     
    #Table collecting all the selected node data, returned to the 
    #user under the Molecular Network after having selected a node 

     
    req(network()) 
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    if(!is.null(input$current_node_id$nodes[[1]])){ 
      chem()[(as.character(chem()[,1]) %in%  
                input$current_node_id$nodes[[1]]),] 
    } else{ 
      paste("") 
    } 

     
  }) 

   

   
  observeEvent({input$threshold 
    input$Da_err}, { 

       
      #The chunck allows to update the network whenever the mass difference 
      #error and the occurrence threshold are changed 

       
      req(input$ddb) 

       
      new_edges_data<-edges() 

       
      visNetworkProxy("network_proxy") %>% 
        visRemoveEdges(id = id_edges_to_remove()) %>% 
        visUpdateEdges(edges = new_edges_data) 

       
      id_edges_to_remove(new_edges_data$id) 

       
    }, ignoreNULL = T) 

   
  output$masslist<-renderTable({ 
    masslist() 
  }, digits = 8) 

   

   
  output$download <- downloadHandler( 

     
    # This function returns a string which tells the client 
    # browser what name to use when saving the file. 
    filename = function() { 
      paste(input$upload, "csv", sep = ".") 
    }, 

     
    # This function should write data to a file given to it by 
    # the argument 'file'. 
    content = function(file) { 

       
      # Write to a file specified by the 'file' argument 
      write.csv(chem(), file, row.names = FALSE) 
    } 
  ) 
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  tmds_to_download<-reactive({ 
    req(input$upload) 

     
    switch (input$tmds, 
            "yes" = labeled_tmdsplot(), 
            "no" = tmdsplot(), 
            "Show no label" = nolabel_tmds_plot()) 

     
  })  

   
  output$downloadtmds <- downloadHandler( 

     
    #This chunck allows to download the mass difference occurrence plot 
    #as a .pdf high quality file 

     
    filename = function() { 
      paste(input$upload, "pdf", sep = ".") 
    }, 

     

     
    content = function(file) { 

       
      ggsave(filename = file, plot = tmds_to_download(), dpi = 300, 
             width = 6.38, height = 3) 

       
    } 
  ) 

   
  output$downloadtmdsdata <- downloadHandler( 

     
    #Download mass difference occurrence data as a data table (.csv file) 

     
    filename = function() { 
      paste(input$upload, "csv", sep = ".") 
    }, 

     

     
    content = function(file) { 

       
      # Write to a file specified by the 'file' argument 
      write.csv(text_pdf(), file, row.names = FALSE) 
    } 
  ) 

   
} 

 
#Run the application after having defined ui and server objects 
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#into the Global Environment 
shinyApp(ui = ui, server = server) 
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6. Conclusions 

 

 

 

 

 

 

 

 

 

 

 

In this Ph. D. thesis work, High Resolution FT-ICR Mass Spectrometry was used to obtain useful information 

on metabolic profile of traditional Italian food products produced in the Basilicata region (Italy) and to evaluate 

its potentials to be used routinely for food authentication and traceability. More specifically, HRMS analyses 

were conducted on Peperoni di Senise PGI peppers, Fagioli Bianchi di Rotonda PDO beans, Melanzane Rosse 

di Rotonda PDO eggplants and seven types of red and white wines obtained from new germplasms growth in 

the Pollino natural area, i.e. Aglianico Bianco, Santa Sofia, Malvasia ad Acino Piccolo, Guisana, Giosana, 

Colata Murro and Plavina wines, by assuming a direct-injection approach. Related MS spectra were obtained 

after few seconds and led to the identification of thousands of different compounds with a single direct analysis. 

The high levels of resolution and accuracy reached led to the construction of metabolomic fingerprints or 2D 

Van Krevelen plots which made easy the identification of classes of biocompounds present in analysed 

matrices and the evaluation of related diversity. Moreover, the comparison of Van Krevelen diagrams of 

analysed wines supported their utilization to make a distinction among them on a molecular basis, since 

differences between obtained fingerprints were present. Furthermore, the usefulness of dedicated software to 

maximize the reliable information gettable from HRMS was demonstrated. In this sense, the new commercial 

software AutoVectis Pro was employed successfully to delete artifacts, i.e. wiggles and RFI peaks, which could 

led to errors during the execution of formula assignment step, and to identify a higher number of ionic species 

by increasing MS signal resolution and S/N ratio. Moreover, a new R Shiny app, i.e. the OIFA software, has 

been developed in this work to make the formula assignment step interactive and, thus, more accurate, letting 

the user to interact with built Kendrick plot and Molecular Network in order to guide formula filtering and 

calculation reducing the risk of misassignments. To summarize, High Resolution FT-ICR MS, together with 

the utilization of dedicated software, was able to provide a huge amount of reliable and useful information on 

the metabolome of analysed traditional Italian food products under the form of molecular fingerprints or 

cartographies, which could be used for their protection against adulteration and food fraud. However, despite 
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the promising starting point provided by this work, still a lot should be done to fully demonstrate the validity 

of this approach for routine food product certification and traceability by performing a validation study on 

selected matrices. 
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