

Ultra-low power HW accelerator
for the integration of Binary Neural

Networks
on inertial sensors

Antonio De Vita

UNIVERSITY OF SALERNO

DEPARTMENT OF INDUSTRIAL

ENGINEERING

Ph.D. Course in Industrial Engineering

Curriculum in Electronic Engineering – XXXIII

Cycle

ULTRA-LOW POWER HW ACCELERATOR

FOR THE INTEGRATION OF

BINARY NEURAL NETWORKS

ON INERTIAL SENSORS

Supervisor Ph.D. student

Prof. Gian Domenico Licciardo Antonio De Vita

Scientific Referees

Prof. Nicola Petra

Prof. Maurizio Valle

Ph.D. Course Coordinator

Prof. Francesco Donsì

List of publications

Journal articles

De Vita, A., Russo, A., Pau, D., Di Benedetto, L., Rubino, A., Licciardo,
G.D. (2020) A Partially Binarized Hybrid Neural Network System for
Low-Power and Resource Constrained Human Activity Recognition.
IEEE Transactions on Circuits and Systems I: Regular Papers (Early
Access).
doi: 10.1109/TCSI.2020.3011984.

De Vita, A., Licciardo, G.D., Femia, A., Di Benedetto, L., Rubino, A., Pau,
D. (2019) Embeddable Circuit for Orientation Independent Processing in
Ultra Low-Power Tri-Axial Inertial Sensors. IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 6, pp. 1124-1128.
doi: 10.1109/TCSII.2019.2928476.

Licciardo, G.D., Di Benedetto, L., De Vita, A., Rubino, A., Femia, A. (2019)
A Bit-Line Voltage Sensing Circuit With Fused Offset Compensation and
Cancellation Scheme. IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 66, no. 10, pp. 1633-1637.
doi: 10.1109/TCSII.2019.2928456.

Conference proceedings

De Vita, Pau, D., A., Di Benedetto, L., Rubino, A., Pétrot, F., Licciardo, G.

D. (2020) Low Power Tiny Binary Neural Network with improved
accuracy in Human Recognition Systems. 2020 23rd Euromicro
Conference on Digital System Design (DSD), (early access).
doi: 10.1109/DSD51259.2020.00057.

De Vita, A., Pau, D., Parrella, C., Di Benedetto, L., Rubino, A., Licciardo,
G.D. (2020) Low-Power HW Accelerator for AI Edge-Computing in
Human Activity Recognition Systems. 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pp.
291-295.
doi: 10.1109/AICAS48895.2020.9073913.

2

De Vita, A., Licciardo, G.D., Femia, A., Di Benedetto, L., Pau, D. (2019)
µW Pre-processing Unit for Virtual Sensors Based on Tri-axial Smart
Accelerometers. 2019 17th IEEE International New Circuits and Systems
Conference (NEWCAS), pp. 1-4.
doi: 10.1109/NEWCAS44328.2019.8961264.

De Vita, A., Licciardo, G.D., Femia, A., Di Benedetto, L., Rubino, A., Pau,
D. (2019) Low-Power Integrated Circuit for Orientation Independent
Acquisitions from Smart Accelerometers. AISEM Annual Conference on
Sensors and Microsystems.
doi: https://doi.org/10.1007/978-3-030-37558-4_6

De Vita, A., Licciardo, G.D., Di Benedetto, L., Pau, D., Plebani, E., Bosco,

A., (2018) Low-power Design of a Gravity Rotation Module for HAR
Systems Based on Inertial Sensors. 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and
Processors (ASAP), pp. 1-4.
doi: 10.1109/ASAP.2018.8445130.

Table of Contents

List of Figures ... VI
List of Tables ... XI
Abstract .. XIV
Introduction .. XVI
Chapter I .. 1
Introduction to Neural Networks ... 1
I.1 Advancements in Deep Learning ... 1
I.2 The Classification Problem .. 2

I.2.2 Score Function: the Linear classification example 3
I.2.3 Loss Function .. 5

I.3 Learning Parameters .. 6
I.3.1 Optimization: Gradient Descent.. 6
I.3.2 Mini-batch Gradient Descent and Stochastic Gradient Descent ... 9
I.3.3 Backpropagation ... 10

Interpretation of the gradient ... 10
Compound expressions with the chain rule 11

I.4 A fundamental element: the neuron ... 12
I.4.1 The neuron .. 12
I.4.2 Neuron as linear classifier ... 13
I.4.3 Commonly used activation functions .. 14

Sigmoid ... 14
Tanh ... 15
ReLU ... 15

I.5 Artificial Neural Networks .. 17
I.5.1 Layer organization in ANNs ... 17
I.5.2 Sizing ANNs ... 18
I.5.3 Data pre-processing .. 19

Mean subtraction ... 19
Normalization .. 19
PCA and Whitening .. 19

I.6 Convolutional Neural Networks .. 20
I.6.1 Architecture of a CNN .. 21

Convolutional layer ... 21
Pooling layer ... 23
Normalization layer ... 24
Fully-Connected layer ... 24

I.7 Binarized Neural Networks .. 24
I.7.1 Binarization of weights ... 26
I.7.2 Binarization of activations .. 27
I.7.3 Bitwise operations ... 28
I.7.4 Energy consumption in Binarized Neural Networks 29

II

I.7.5 Accuracy of Binarized Neural Networks 29
I.7.6 Hardware Implementation of Binarized Neural Networks 30

FPGA implementation .. 30
ASIC Implementation ... 31

Chapter II .. 33
II.1 Definition and Applications ... 33
II.2 Sensors in Human Activity Recognition Systems 34
II.3 Classification Techniques ... 35

II.3.1 Pattern Recognition methods ... 35
Feature Extraction ... 36
Classification ... 36

II.3.2 Deep Learning methods ... 36
II.4 Time-Latency Requirements in Human Activity Recognition 39
II.5 Public Datasets for Human Activity Recognition 40

II.5.1 PAMAP2 dataset ... 40
II.5.2 SHL dataset ... 40

II.6 HW Solutions for Human Activity Recognition 42
Chapter III ... 45
III.1 Device-Orientation problem .. 45
III.2 State-of-the-art solutions to the device-orientation problem 46

III.2.1 Accelerometer + Magnetometer ... 46
III.2.2 Accelerometer + Gyroscope ... 47
III.2.3 Only Accelerometer ... 48

III.3 Proposed Solution ... 49
III.3.1 Filtering Stage .. 49

IIR Filters .. 49
Structure Identification ... 50
Coupled All-Pass filters .. 51
Filter Design .. 54
Sizing the wordlength ... 55

III.3.2 Vector Rotation Stage .. 57
Rotation algorithms ... 57
Proposed rotation algorithm .. 58
Square root algorithm .. 60
Division algorithm .. 62
Sizing the wordlength ... 62

Chapter IV ... 65
IV.1 Proposed HAR systems... 65
IV.2 Hybrid Binary Neural Network architecture 67
IV.3 Accuracy performance of the proposed HAR systems 69

IV.3.1 Training settings .. 69
IV.3.2 Accuracy on PAMAP2 dataset .. 70

Accuracy Performance on 5 classes .. 70
Accuracy Performance on 12 classes .. 71

 Table of Contents

 III

IV.3.3 Accuracy Performance on the SHL dataset.............................. 71
Accuracy Performance on 5 classes .. 71
Accuracy Performance on 8 classes .. 72

IV.3.4 Accuracy on custom dataset ... 72
IV.3.5 Summary of the accuracy performance results 77

Chapter V .. 79
V.1 Pre-processing module ... 79

V.1.1 Gravity Rotation Unit .. 80
HW module description .. 80
Differences between FP and FI implementations 81
Results ... 82

V.1.2 Filter stage circuitry ... 84
Coupled-All pass filter realization .. 84
Re-using the Gravity Rotation Unit resources 85

V.1.3 Pre-processing module architecture .. 86
V.2 HBN accelerator ... 87

V.2.1 Architecture of the HBN accelerator ... 87
Architecture of the cores in the FIFO-based HBN accelerator 89
Architecture of the core in the RAM-based HBN accelerator 91

V.2.2 Architecture of the processing element 91
Adder Tree .. 92
Non-linearities implementation ... 92

V.3 Results .. 93
V.3.1 Results from FPGA implementation ... 93
V.3.2 Results from CMOS standard cells synthesis 95

V.4 FPGA-based demo board ... 98
Conclusions ... 101
References ... 103
Appendix A ... 116
Confusion Matrixes for the HBN .. 116
Confusion matrixes for 5 classes on the PAMAP2 dataset 116

Conf 1 - 3D accelerometer (with pre-processing) 116
Position: ankle16g ... 116
Position: ankle6g ... 117
Position: hand16g .. 118
Position: hand6g .. 119
Position: chest16g ... 120
Position: chest6g ... 121

Conf 2 - 3D accelerometer (no preprocessing) 122
Position: ankle16g ... 122
Position: ankle6g ... 123
Position: hand16g .. 124
Position: hand6g .. 125
Position: chest16g ... 126

IV

Position: chest6g ... 127
Conf 3 - 3D accelerometer + 3D gyroscope 128

Position: ankle16g ... 128
Position: ankle6g ... 129
Position: hand16g .. 130
Position: hand6g .. 131
Position: chest16g ... 132
Position: chest6g ... 133

Confusion matrixes for 12 classes on the PAMAP2 dataset 134
Conf 2 - 3D accelerometer (no pre-processing) 135

Position: ankle16g ... 135
Position: ankle6g ... 137
Position: hand16g .. 138
Position: hand6g .. 140
Position: chest16g ... 142
Position: chest6g ... 143

Conf 3 - 3D accelerometer + 3D gyroscope 145
Position: ankle16g ... 145
Position: ankle6g ... 147
Position: hand16g .. 148
Position: hand6g .. 150
Position: chest16g ... 152
Position: chest6g ... 153

Confusion matrixes for 5 classes on the SHL dataset 155
Conf 1 - 3D accelerometer (with pre-processing) 155

Position: Bag ... 155
Position: Hand ... 156
Position: Hips .. 157
Position: Torso .. 158

Conf 2 - 3D accelerometer (no preprocessing) 159
Position: Bag ... 159
Position: Hand ... 160
Position: Hips .. 161
Position: Torso .. 162

Conf 3 - 3D accelerometer + 3D gyroscope 163
Position: Bag ... 163
Position: Hand ... 164
Position: Hips .. 165
Position: Torso .. 166

Confusion matrixes for 8 classes on the SHL dataset 167
Conf 1 - 3D accelerometer (with pre-processing) 168

Position: Bag ... 168
Position: Hand ... 169
Position: Hips .. 170

 Table of Contents

 V

Position: Torso .. 171
Conf 2 - 3D accelerometer (no pre-processing) 173

Position: Bag ... 173
Position: Hand ... 174
Position: Hips .. 175
Position: Torso .. 176

Conf 3 - 3D accelerometer (with pre-processing) 178
Position: Bag ... 178
Position: Hand ... 179
Position: Hips .. 180
Position: Torso .. 181

List of Figures

Figure I.1 Graphical representation of the relation between Artificial
Intelligence, Machine Learning, and Deep Learning......................................2
Figure I.2 Example of a training dataset. In this dataset, 4 classes are
considered: cat, dog, mug, hat. Each image in the dataset is labeled with one
of the 4 classes...3
Figure I.3 Representation of the image space, where each image is a single
point, and three classifiers are visualized. The cat classifier line shows all
points in the space that get a score of zero for the cat class. The arrow shows
the direction of increase, so all points to the left of the cat classifier line have
positive (and linearly increasing) scores, and all points to the right have
negative (and linearly decreasing) scores...4
Figure I.4 Graphical representation of the optimization process using
Gradient Descent. The gradient of the loss function is computed at each step,
and the parameters W are updated in the direction of the minimum...............7
Figure I.5 Impact of the learning rate on the convergence of the
optimization process. In (a) the learning rate is too small, and the minimum
is not reached. In (b) the learning rate is too high, and the process does not
converge...8
Figure I.6 Example of a loss function with complex shape. Local minima
and plateaus are the main issues: In the first case, the GD fails to reach the
global minimum, as it gets trapped in a local minimum; in the second case,
the gradient is very low and a large number of iterations are required to
reach to effectively minimize the cost function..8
Figure I.7 Graph of the computation for the function in (13) and of the
backpropagation process. In the forward direction, the output value for the
function is evaluated (values in black). In the backward direction, the
backpropagation is performed, which starts at the end, and recursively
applies the chain rule to compute the gradients (values in grey)...............12
Figure I.8 Basic structure of a human neuron and its components..............13
Figure I.9Computational model of the neuron. The input signals of the
neuron are denoted by xi, and each input is weighted by the synaptic strength
wi. All the weighted inputs are summed up in the cell body, and an
activation function, f, is applied...13

 List of Figures

 VII

Figure I.10 Sigmoid function..16
Figure I.11 Tanh function..16
Figure I.12 ReLU function..16
Figure I.13 Example of ANNs that use a stack of FC layers. (a) 2-layer NN
with 3 inputs, and with one hidden layer of 4 neurons (or units) and one
output layer with 2 neurons. (b) 3-layer NN with 3 inputs, and with two
hidden layers of 4 neurons (or units) each and one output layer...........17
Figure I.14 Example of a binary classification problem. The black balls
represent the first class, while the white balls represent the second class. The
gray region is the decision region for the first class, otherwise, the second
class is chosen. Considering a NN with one hidden layer, a better decision
region can be obtained by increasing the number of neurons......................18
Figure I.15 Neurons in layers are arranged in three dimensions: depth,
height, and width. Neurons are graphically represented by white circles,
while each box represents the set of input activations for a layer. These
correspond either to the output activations of the previous layer or to the
input image for the first layer..21
Figure I.16 In the examples above, the white boxes represent the input
activations, while the grey ones are the outputs. Thus, the input size W = 5,
the receptive field F = 3, and the zero-padding P = 1. Two different cases are
considered: on the left, the input stride S = 1, thus the output size is equal to
(5 + 3 + 2) / 1 + 1 = 5; on the right, the input stride S = 2, thus the output
size is equal to (5 + 3 + 2) / 2 + 1 = 3...22
Figure I.17 Example of MaxPool and AveragePool. In both cases the size of
pooling is 2×2 and the stride is 2. The size of the input volume (4×4) is
scaled down by a factor of 2, resulting in an output volume of size 2×2.....24
Figure III.1 Graphical representation of the 2 possible reference frames for
an inertial sensor. The Device Coordinate System is the reference frame
defined by the device (solid line in the figure). The World Coordinate
System is the reference frame defined by the world s gravity force (dotted
line in the figure). In this figure, the World Coordinate System is defined as
the reference frame whose z-axis is opposite to the gravity vector, g..........46
Figure III.2 Coupled All-Pass realization of G(z) and its power
complementary function H(z)..51
Figure III.3 Schematic representation of a two-pair with a constraint on the
second port...53
Figure III.4 Two pair representation of Am(z)..53
Figure III.5 Realization of the two-pair using a single multiplier..............53
Figure III.6 Realization of an mth order all-pass filter using the two-pair
extraction approach, in which the two-pair is realized using a single
multiplier...54
Figure III.7 Ideal frequency response of the filter; the frequency response
around the normalized cutoff frequency is shown in detail...........................55
Figure III.8 Comparison between the high-pass frequency response

VIII

obtained using filter coefficients represented in FP 64-bit encoding (H-
FL64), assumed as the ideal frequency response, and the high-pass
frequency responses obtained using filter coefficients represented in FI 32-
bit (H-FI32), FI 28-bit (H-FI28), FI 24-bit (H-FI24), FI 20-bit (H-FI20). The
filter is realized using a Coupled All-Pass structure..........................56
Figure III.9 Comparison between the high-pass frequency response
obtained using filter coefficients represented in FP 64-bit encoding (H-
FL64), assumed as the ideal frequency response, and the high-pass
frequency responses obtained using filter coefficients represented in FI 32-
bit (H-FI32), FI 28-bit (H-FI28), FI 24-bit (H-FI24), FI 20-bit (H-FI20). The
filter is realized using a Coupled All-Pass structure..............................56
Figure III.10 Realization of the filter using a Coupled All-Pass
structure...57
Figure III.11 Proposed calculation scheme for the vector rotation stage....60
Figure III.12 Approximation error in square root function computation
using a third-order Taylor series expansion over the range [0.8, 6]. The

function has been expanded around 10 points: { 0.12, 0, 0.28,
0.60, 0.93, 1.30, 1.80, 2.53, 3.42, 4.50}...62
Figure III.13 Maximum predictions error rate when an ANN is fed with
fixed-point results from the vector rotation stage. Predictions obtained when
the ANN is fed with floating-point double-precision outputs are taken as
reference..63
Figure IV.1 Configuration 1 for the proposed HAR system. The input comes
from a 3-axis accelerometer only. Data is pre-processed to remove the
uncertainties due to the unknown orientation of the sensor. The classification
is achieved by the HBN model..66
Figure IV.2 Configuration 2 for the proposed HAR system. The input comes
from a 3-axis accelerometer only. No pre-processing operations are
performed. The classification is achieved by the HBN model...................66
Figure IV.3 Configuration 3 for the proposed HAR system. The input comes
from a 3-axis accelerometer and a 3-axis gyroscope. No pre-processing
operations are performed. The classification is achieved by the HBN
model...67
Figure IV.4 Architecture of the exploited HBN. The (Binarization) label
indicates where binarization occurs for the output activations. A 16-bits
fixed-point format is assumed as input..68
Figure IV.5 Graph of the accuracy of the 3 configurations for the proposed
HAR system on 5 classes from the PAMAP2 dataset. All combinations of
sensor position and accelerometer range are considered...............................73
Figure IV.6 Graph of the accuracy of the proposed HAR system
(configurations 2 and 3 are considered) on 12 classes from the PAMAP2
dataset. All combinations of sensor position and accelerometer range are
considered..74
Figure IV.7 Graph of the accuracy of the 3 configurations for the proposed

 List of Figures

 IX

HAR system on 5 classes from the SHL dataset. All sensor positions are
considered..75
Figure IV.8 Graph of the capacity of the 3 configurations for the proposed
HAR system on 5 classes from the SHL dataset. All sensor positions are
considered..75
Figure IV.9 Graph of the accuracy of the 3 configurations for the proposed
HAR system on all 8 classes from the SHL dataset. All sensor positions are
considered..76
Figure IV.10 Graph of the capacity of the 3 configurations for the proposed
HAR system on all 8 classes from the SHL dataset. All sensor positions are
considered..76
Figure V.1 Block diagram of the HW module used to execute the reference
frame transformation from DCS to WCS. The core of the HW module is the
Gravity Rotation Unit (GRU)..82
Figure V.2 Block diagram of the Gravity Rotation Unit. The module is
made up of 3 multipliers, 2 adders, and MUXs to properly manage the
dataflow...82
Figure V.3 Realization of the filter using a Coupled All-Pass structure and
iterating on an All-pass fundamental cell. The latter is detailed in the dark
black box in the upper right corner of the figure. Each used cell is identified
with a Roman numeral..84
Figure V.4 (a) Scheme for the calculation of V1 and (b) part of the GRU
needed to implement the scheme...85
Figure V.5 (a) Scheme for the calculation of Y1, Y2 and (b) part of the
GRU needed to implement the scheme..85
Figure V.6 (a) Fundamental all-pass cell, (b) HW implementation for its
realization, and (c) the corresponding part of the GRU needed to implement
the scheme...86
Figure V.7 Block diagram of the HW architecture which implements the
overall preprocessing module..87
Figure V.8 Block diagram of the proposed HBN accelerator. The RAM
module is present in the RAM-based design only. The structure of the cores
is different for the two versions...88
Figure V.9 Block diagram of a core in the FIFO-based design. In this case,
weights and biases are stored in FIFO memories locally. FIFO_w are the
FIFOs where weights are stored, whereas FIFO_b are the FIFOs where
biases are stored. Output activations from CONV layers are stored in
FIFO_o and are re-used locally in each core...90
Figure V.10 Detail about the management of the circular FIFOs. At the
startup of the system, the CU sets the LDP signal to 1, and FIFOs are loaded
with parameters by an external stream of data. During normal operations, the
CU sets the LDP signal to 0 so that each parameter is sent back to the first
element of the FIFO after having been used..90
Figure V.11 Block diagram of a core in the FIFO-based design. In this case,

X

weights and biases are stored in a RAM, which is external and shared by
each core. Output activations from CONV layers are stored in FIFO_o and
are re-used locally in each core..91
Figure V.12 Circuitry for the sign management for the first level of the
adder tree in the PE..92
Figure V.13 Block diagram of the circuitry for the implementation of ReLU
function and binarization...93
Figure V.14 Breakdown of the area occupation and the power consumption
of the various submodules of the proposed HW accelerator. All values refer
to the FIFO-based version for the HBN accelerator.....................................98
Figure V.15 Breakdown of the area occupation and the power consumption
of the components in a core of the FIFO-based HBN accelerator.................98
Figure V.16 FPGA-based demo board. The scores for each one of the 5
classes and the consequent classification are printed to video in real-
time..100

List of Tables

Table I.1 Energy consumption and Area occupation for different arithmetic
operations and memory accesses. Energy values are from Horowitz (2014).
Area values come from synthesis with TSMC 45 nm standard cells......25
Table I.2 Equivalence between XNOR logical operation between Bit1 and
Bit2 and multiply operation between Value1 and Value2......................28
Table I.3 Comparison of accuracy on the ImageNet dataset (Deng, 2009)
between 32-bit FP model and BNNs. For each topology, the bit-width is
expressed as W/A, that is weights/activations. Where binarization occurs, the
accuracy loss compared to the FP model is reported....................................29
Table I.4 Comparison of FPGA implementations of BNN accelerators. All
accuracy results refer to training on the CIFAR-10 dataset (Krizhevsky,
2009)..30
Table I.5 Comparison of ASIC implementations of BNN accelerators.......31
Table II.1 Most used sensors in HAR systems...34
Table II.2 Examples of Pattern Recognition methods for Human Activity
Recognition. The activities which are classified are specified for each case,
as well as the accuracy and the sensors used to sample data.........................37
Table II.3 Examples of Deep Learning methods for Human Activity
Recognition. The activities which are classified are specified for each case,
as well as the accuracy and the sensors used to sample data.........................38
Table II.4 Available time window in seconds for each activity in the
PAMAP2 dataset. An ID is associated with each activity. Also, a check sign
is used to identify the 6 optional activities..41
Table II.5 Available time window in hours for each activity in the SHL
dataset. An ID is associated with each activity..41
Table II.6 Summary of SHL and PAMAP2 public datasets. For each dataset,
the following features are specified: number of classes, sensors used to
sample data, sampling frequency for each sensor, possible carry positions..42
Table II.7 Application power requirements for the HW accelerator proposed
in the work of Kodali et al. (2017)..44
Table III.1 Results from the orientation test for different input data (Ustev,
2013)..47
Table III.2 Initial filter specifications...49

XII

Table III.3 Required HW resources for different filter structures..............50
Table III.4 Filter specifications for a coupled all-pass implementation......54
Table III.5 Comparison of the number of operations and functions required
to perform a reference frame transformation between the proposed
algorithms and state-of-the-art methods...60
Table IV.1 Summary of the 3 configurations for the proposed HAR
systems...67
Table IV.2 Complexity of the proposed HBN model. Data refer to
configuration 1 and configuration 2, i.e. when data from a single 3-axis
accelerometer are provided as input. 5 output classes are assumed..............68
Table IV.3 Complexity of the proposed HBN model. Data refer to
configuration 3, i.e. when data from a single 3-axis accelerometer and a 3-
axis gyroscope are provided as input. 5 output classes are assumed.............69
Table IV.4 Possible combinations between sensor position and
accelerometer range in the PAMAP2 dataset..70
Table IV.5 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 5 classes from the PAMAP2 dataset. All
combinations of sensor position and accelerometer range are
considered..73
Table IV.6 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 12 classes from the PAMAP2 dataset. All
combinations of sensor position and accelerometer range are considered....74
Table IV.7 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 5 classes from the SHL dataset. All sensor
positions are considered...77
Table IV.8 Numerical values of the capacity of the 3 configurations for the
proposed HAR system on 5 classes from the SHL dataset. All sensor
positions are considered...77
Table IV.9 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on all 8 classes from the SHL dataset. All sensor
positions are considered...77
Table IV.10 Numerical values of the capacity of the 3 configurations for the
proposed HAR system on all 8 classes from the SHL dataset. All sensor
positions are considered...77
Table IV.11 Summary of the accuracy performance for the PAMAP2 and
the SHL dataset. Both the best configuration and the best sensor position are
reported for each dataset..78
Table IV.12 Summary of the accuracy performance for the PAMAP2 and
the SHL dataset. Both the worst configuration and the worst sensor position
are reported for each dataset..78
Table V.1 Sequence of GRU operations...81
Table V.2 Comparison between FP and FI implementation of the HW
architecture to execute the reference frame rotation operation. Results from
both the FPGA implementation and the CMOS standard cell synthesis are

 List of Tables

 XIII

reported..83
Table V.3 Synthesis results of the pre-processing module...........................87
Table V.4 Signals for the sign management in the adder-tree.....................92
Table V.5 Results from FPGA implementation of the proposed HW
accelerator. The HW accelerator is made up of the pre-processing module
and the HBN accelerator. The results are compared with state-of-the-art
solutions as well...95
Table V.6 Results from CMOS standard cell synthesis of the proposed HW
accelerator. The HW accelerator is made up of the pre-processing module
and the HBN accelerator. The results are compared with a state-of-the-art
solution as well..97

Abstract

The research activity described in this thesis aims to demonstrate the
possibility to embed Artificial Intelligence (AI) capabilities in wearable and
portable devices by deploying and executing Neural Network (NN) models
close to the sensing element. Among AI models, Deep Learning (DL) and
Deep Neural Networks can achieve high performance in many tasks, e.g.
image classification, activity recognition, and so on. However, DL models
usually require a huge amount of memory resources and high-performance
digital architecture to be executed. These specifications are hardly met by
wearable and portable devices, which have to be as small as possible and
guarantee a satisfactory battery lifetime. For this reason, the cloud
computing strategy is often used. However, higher latencies occur in this
case, which can be unacceptable in many latency-sensitive applications, such
as autonomous vehicles or assisted microsurgery. Moreover, the data transfer
consumes network bandwidth and energy. In this context, moving the
computation close to the device is highly demanded, and it is named edge-
computing. However, deploying DL models on edge devices is still a
challenge. General-purpose platforms (i.e. CPUs, GPUs) are not the best
solution in terms of energy efficiency, especially for wearable and battery-
powered devices, where the device lifetime is a major concern. Thus, a lot of
research is being made about the design of custom HW accelerators for DL
and to move the circuitry needed to implement the computation closer to the
sensing element, thus obtaining a smart sensor. In this thesis, a novel Hybrid
Binary Neural Network (HBN) model is proposed, which exploits the
advantages of Binarized Neural Networks (BNNs). Human Activity
Recognition (HAR) based on inertial sensors has been selected as a case
study. Also, a pre-processing algorithm has been developed to solve the
device-orientation problem for 3-axis accelerometers. The pre-processing
operations can improve the accuracy of the proposed system in some
conditions when it is used in conjunction with the HBN model. The results
show an accuracy of up to 99% in recognizing 5 human activities. After
having developed the model, a custom ultra-low power HW accelerator has
been designed and implemented with both FPGA and CMOS standard cells.
Due to the very low operating frequency required by HAR applications,

 Abstract

 XV

power consumption has been reduced by reducing the number of resources.
The design can implement both the pre-processing operation and the HBN
model. The results show that the HW accelerator has a power consumption
of 6.3 W and an area occupation of 0.20 mm2 when synthesized with
CMOS 65 nm Low-Power (LP) High Voltage Threshold (HVT) standard
cells. The proposed design has at least 7.3 times lower power consumption
than the state-of-the-art solution. Also, a FPGA-based demo board has been
developed to demonstrate the real-time operation of the system.

Introduction

The research activity presented in this thesis aims to design an ultra-low
power Hardware (HW) accelerator for Neural Networks (NNs) that can be
embedded in wearable and portable devices. The objective is to demonstrate
the possibility to integrate the HW accelerator into the sensor circuitry, in
order to realize an ultra-low power Artificial Intelligence (AI)-based smart
sensor.

Among AI techniques, Deep Learning (DL) is currently widely used
thanks to its ability to reach very high performance in terms of accuracy, and
it can outperform human performance in many tasks. Unfortunately, DL
requires a huge amount of computations, which is far beyond the standard
capabilities of modern portable or wearable devices. For this reason, cloud
computing is often used because it offers scalable storage and processing
services. In addition to scalability, the cloud provides easier maintainability
than distributed Internet of Things (IoT) based solutions can offer. However,
in many latency-sensitive applications, for example in autonomous vehicles
or assisted microsurgery, the delay waiting for a result from a cloud-based
AI is unacceptable. Moreover, sending a huge amount of data to the cloud
for storage and processing might consume all network bandwidth making it a
non-scalable and energy-hungry solution. Thus, moving the computation
close to the device is highly demanded in many applications, and it is named
edge-computing. However, deploying DL models on edge devices is still a
challenge. General-purpose platforms (i.e. CPUs, GPUs) are not the best
solution in terms of energy efficiency, especially for wearable and battery-
powered devices, where the device lifetime is a major concern. Currently, a
lot of research is being made about the design of custom energy-efficient
HW accelerators for Deep Learning. Ultimately, great advantages can be
gained in terms of reduced power consumption and area occupation by
moving the circuitry needed to implement the computation closer to the
sensing element, either on a single chip or on a System on Chip (SoC), thus
obtaining a smart sensor.

In this regard, this research activity aims to design an ultra-low power
smart sensor targeting W power consumption. This is made possible by the
use of a binarized version of a Convolutional Neural Network (CNN), which

 Introduction

 XVII

is a CNN in which weights and the activations are binarized, i.e. constrained
of NN models on

resource-constrained devices with lower power consumption and footprint.
However, a major drawback of Binarized Neural Networks (BNN) is a
significant decrease in accuracy compared to standard CNN models. As a
solution, a new Hybrid Binary Neural Network (HBN) is proposed, where
binarization has been carefully implemented to obtain a tradeoff between
accuracy and required resources. Human Activity Recognition (HAR) is
taken as a case study to test the proposed HBN model. More in detail, HAR
based on inertial sensors, such as accelerometers and gyroscopes, has been
considered. Also, a preprocessing algorithm has been developed, which
allows extracting useful features from the raw data coming from a 3-axis
accelerometer. Pre-processing operations allow compensating the accuracy
loss in some conditions. The proposed HAR system is made up of a sensor,
the pre-processing module, and the HNN. The sensor is a low-power digital
3-axis MEMS accelerometer, which can be used in conjunction with a 3-axis
gyroscope. During pre-processing, raw data from the accelerometer are
filtered to separate the high-frequency component from the low
frequency/DC component, which roughly corresponds to the gravity
acceleration. Then, a reference frame transformation is performed to
represent the high-frequency component compared to a common reference
system, to eliminate the dependence of the acquired data on the sensor
orientation. Finally, classification is achieved through the HBN. The model
has been constructed and tested in Lasagne, by implementing the binary
layers with custom functions. The results show that the system reaches an
accuracy of up to 99% in recognizing 5 different human activities.

After having developed the model, a custom ultra-low power HW
accelerator has been designed and implemented with both FPGA and CMOS
standard cells. Due to the very low operating frequency required by HAR
applications, power consumption has been reduced by reducing the number
of resources. The design can implement both the pre-processing operation
and the HBN model. The results show that the HW accelerator has a power
consumption of 6.3 W and an area occupation of 0.20 mm2 when
synthesized with CMOS 65 nm Low-Power (LP) High Voltage Threshold
(HVT) standard cells. A FPGA-based demo board has been also realized to
prove the real-time operation of the proposed HAR system.

The structure of the thesis is structured as follows.
Chapter I briefly introduces the theory behind NNs, describing how these

models are built and trained. A focus is devoted to BNNs, which are the
basis to understand the proposed HBN model. Also, state-of-the-art about
HW implementations is provided.

Chapter II introduces HAR, which is the application field that has been
used as a case study for the proposed system. An overview of algorithms and

XVIII

HW solutions for HAR is provided, along with the description of two public
datasets that have been used to test the proposed system.

Chapter III introduces the device-orientation problem in inertial sensors.
State-of-the-art solutions are described based on the types of sensors that are
involved. Then, a new solution is proposed to solve the device-orientation
problem thanks to an HW-friendly algorithm.

Chapter IV introduces the proposed HBN model and describes how it is
used to build the HAR system. The results from many tests on both two
public datasets and a custom dataset are reported in terms of accuracy.

Chapter V describes the proposed HW accelerator. The results are
reported for both the FPGA and CMOS standard cell implementations. Also,
the FPGA-based demo board is briefly described.

Chapter I
Introduction to Neural Networks

I.1 Advancements in Deep Learning

Over the last few years, we have witnessed the huge spread of Deep
Learning (DL) for a great variety of applications (LeCun, 2015), especially
in image recognition (Krizhevsky, 2012), (Tompson, 2014), speech
recognition (Hinton, 2012), (Nassif, 2019), autonomous driving (Li, 2019a)
(Grigorescu, 2019), etc. As depicted in Figure I.1, DL is a subset of Machine
Learning (ML), which in turn is a subset of Artificial Intelligence (AI). The
term AI was first coined in 1956 by John McCarthy, who defines it as the
science and engineering of making intelligent machines (McCharthy,
2007). This basically means the automated reproduction of human cognitive
activities. Among the various AI techniques, ML allows the automated
extraction of abstract knowledge from data and experience, which means
ML algorithms can make predictions or decisions learning from data with
which they are trained, without being explicitly programmed to do so. DL is
a special case of ML, in which multi-layered representations are used to
extract knowledge. The reason why DL has been so successful is that it
allows overcoming a major issue of conventional ML techniques. Indeed, the
latter are not able to extract useful information directly from raw data.
Consequently, considerable domain-specific expertise is required to identify
a suitable internal representation or a feature vector from which the
knowledge can be effectively extracted. This process is usually called
feature extraction. The great advantage of DL is the ability to avoid the
feature extraction phase, thanks to its multi-layered structure, thus allowing
extracting useful information from the raw data directly. However, there is a
price to pay for this advantage. In fact, DL models have a huge
computational complexity and require a large amount of memory to store all
their parameters: as an example, the AlexNet (Krizhevsky, 2012)
architecture requires approximately 837M FLOPs to perform a single
inference step, and 60M parameters need to be stored. Thus, the execution of
a DL model is usually unfeasible on CPUs or MCUs, and larger parallel-

Chapter I

2

processing platforms, such as GPUs, must be used. Alternatively, DL can be
delegated to the cloud, implementing the so-called cloud computing
paradigm (Bianchi, 2019).

Figure I.1 Graphical representation of the relation between Artificial
Intelligence, Machine Learning, and Deep Learning.

I.2 The Classification Problem

One of the main tasks of DL models is classification, which is the task of
assigning a label to input data from a fixed set of categories. A typical
example is image classification: for example, an image classification model
can take a single image and assigns a probability to 4 labels (cat, dog, hat,
mug). This is a trivial task for a human to perform, but at the same time is a
very complex problem to solve with conventional computer vision
algorithms. In fact, it is not easy to come up with an algorithm for
identifying cats in images, because each category should be carefully
specified and described in the code. In doing so, so many aspects should be
considered, such as viewpoint variation, scale variation, deformation,
illumination conditions, etc. Therefore, a different approach must be used,
which is referred to as the data-driven approach: many examples of each
class are provided to the machine, and then, based on these examples,
learning algorithms are developed that allows learning the features of all
classes. The set of examples is almost always called training dataset. An
example is shown in Figure I.2. Thus, the complete pipeline is the following:

1) Input construction: the input consists of a set of images (or a
different kind of data for different tasks), each one is labeled with
one of many different classes. This is the training dataset.

2) Learning: at this point, the objective is to use the training dataset
to learn what every one of the classes looks like. This process is
referred to as training the classifier or learning a model .

3) Evaluation: in the end, the quality of the classifier is evaluated by
asking it to predict labels for a new set of images, that is different

 Introduction to Neural Networks

 3

from the training dataset. The predicted labels are then compared
with the true labels (ground truth).

The same concepts apply to other kinds of input data as well for example
signals sampled by microphones or inertial sensors.

Figure I.2 Example of a training dataset. In this dataset, 4 classes are
considered: cat, dog, mug, hat. Each image in the dataset is labeled with one
of the 4 classes.

I.2.2 Score Function: the Linear classification example

To understand the meaning of the computational model of a neuron,
linear classification must be introduced. To this aim, image classification is
again used as an example. Let us assume a training dataset of images xi
RD, each one is associated with a label yi. Here i 1 N and yi 1 K. That
is, there are N examples (each one with dimensionality D) and K distinct
categories. What we need is an approximation of the function that maps the
raw image pixels to class scores. This is named score function, and it is
defined as in (1).

 (1)

The simplest possible function is the linear mapping:

 (2)

In (2), we are assuming that the image xi has all its pixels flattened out to
a single column vector of shape [D×1]. The matrix W and the vector b are
the parameters of the score function, and they have size respectively [K×D]
and [K×1]. The parameters in W are usually called weights, and b is called
the bias vector because it influences the outputs scores, but without
interacting with the actual data xi. Note that the single matrix multiplication

Chapter I

4

Wxi is effectively evaluating K separate classifiers in parallel, where each
classifier is a row of W. The goal is to set the parameters, W and B, in such a
way that the computed scores match the ground truth labels across the whole
training set. Intuitively, we wish that the correct class has a score that is
higher than the scores of the incorrect classes.

Since the images are stretched into high-dimensional column vectors, we
can interpret each image as a single point in the space, i.e. each point is a
point in D-dimensional space. If D is very large, we cannot visualize the D-
dimensional space. But if we imagine squashing all the dimensions into only
two dimensions, then we can try to visualize what the classifier is doing.
This is represented in Figure I.3. Each row of W is a classifier for one of the
classes. The geometric interpretation of these numbers is that as we change
one of the rows of W, the corresponding line in the image-space will rotate in
different directions. The biases b, on the other hand, allow our classifier to
translate the lines. In fact, without the bias term, plugging xi = 0 would
always give a score of zero regardless of the weights, so all lines would be
forced to cross the origin.

Figure I.3 Representation of the image space, where each image is a single
point, and three classifiers are visualized. The cat classifier line shows all
points in the space that get a score of zero for the cat class. The arrow shows
the direction of increase, so all points to the left of the cat classifier line
have positive (and linearly increasing) scores, and all points to the right
have negative (and linearly decreasing) scores.

 Introduction to Neural Networks

 5

I.2.3 Loss Function

Another important aspect of classification methods is the loss function.
The loss function, sometimes also referred to as the cost function or the
objective, measures how compatible a given set of parameters is, compared
to the ground truth table in the training dataset. The loss will be high if we
are doing a poor job of classifying the training data, and it will be low if we
are doing well. Thus, the classification becomes an optimization problem in
which we will minimize the loss function compared to parameters of the
score function.

There are several ways to define the details of the loss function. A
commonly used loss is the Multiclass Support Vector Machine (SVM) loss:

 (3)

where sj is the score for the j-th class, syi is the score for the correct class, and
is a fixed margin. The function in (3) is often called hinge loss. Thus, the

SVM loss is set up so that the correct class for each image has a score higher
than the incorrect classed by some fixed margin . However, there is one
problem that should be considered with the hinge loss: if a set of parameters
W allows classifying correctly all the examples (so the loss is zero for each
example), then any multiple of these parameters W > 1, will also
give zero loss. In order to remove this ambiguity, a preference should be
specified for a certain set of weights. A typical way to do so is to modify the
loss by adding a regularization penalty R(W). An example is the L2 norm
regularization, which gives preference to smaller weights by introducing an
elementwise quadratic penalty over all the parameters:

 (4)

Notice that the value of the regularization function in (4) does not depend on
data, whereas it does depend on the weights. Thus, integrating the
regularization term in (3), we obtain the complete SVM loss:

 (4)

Two components can be identified: the data loss (which is the average loss
over all examples) and the regularization loss. The parameter does not
result from the optimization process, and it must be arbitrarily defined and
then tuned to obtain the best classification performance. These parameters
are called hyperparameters.

Besides SVM, another very used classifier is Softmax. Different from
SVM, the Softmax classifier gives a more intuitive meaning to the score
assigned to each class. Indeed, a probabilistic interpretation is assigned to the

Chapter I

6

output: while the function mapping in (2) stays unchanged, the hinge loss is
replaced by the cross-entropy loss:

 (5)

where fj is the j-th element of the vector of class scores f. Even in this case,
the complete loss can be computed by applying (4). The function:

 (6)

is the Softmax function. It takes a vector of real-valued scores and
transforms it into a vector of values between 0 and 1 that sum to one. As a
result, the expression in (6) can be interpreted as the probability that the j-th
class is the correct one. Thus, ideally, we want the value of Sj(z) to be close
to 1 when j is the correct class, while we want it to be close to 0 when j is
one of the wrong classes. In this way, the loss in (5) will be close to 0 if the
probability associated with the correct class is high, while it will be higher
otherwise.

I.3 Learning Parameters

After having defined the classifier and the loss function, an optimization
method should be found to determine the set of weights W for the classifier
that minimizes the loss function. During the optimization process, the
classifier is said to learn its parameters, therefore we usually talk about the
learning process. Typically, in ML models, parameters are learned by
feeding them with many examples, that is we train a certain model on a
specific dataset. For this reason, the optimization process is also called the
training process.

I.3.1 Optimization: Gradient Descent

Finding the best set of weights W might seem a very difficult or even
impossible task, especially if we are trying to figure out the best
configuration of weights for a whole DL model. However, the problem of
identifying a set of weights W that is slightly better is significantly less
difficult. This basically means that the approach is to start with a random W
and then iteratively update it, making it better each time. On the basis of the
above, making W better means updating it in order to get a lower value when
evaluating the loss function. An initial strategy might be to generate random
perturbations W to W, and if the new loss is lower, then the update is
performed. However, this is not the best solution. Indeed, the best direction
along which W should be changed can be computed, as it is mathematically

 Introduction to Neural Networks

 7

guaranteed to be the direction of the steepest descend. This direction will be
related to the gradient of the loss function, which is a generalization of the
slope for multiple variable functions. In practice, the gradient is a vector of
slopes (more commonly referred to as derivatives) for each dimension in the
input space. The mathematical expression for the derivative of a 1-D
function compared to its input is:

 (7)

When the function takes a vector of numbers instead of a single number,

the derivatives are called partial derivatives, and the gradient is the vector of
partial derivatives in each dimension. The procedure of repeatedly
evaluating the gradient and then performing a parameter updating is called
Gradient Descent (GD). A graphical representation of this process is shown
in Figure I.4. At the beginning of the process, W is randomly set. Then the
value of the cost function is decreased at each step by following the gradient.

An important parameter in GD is the size steps, determined by the
learning rate hyperparameter. The effect of the learning rate on the
optimization process is depicted in Figure I.5. If the learning rate is too
small, then the optimization process will have to go through many iterations
to converge, which will require a long time. On the other hand, if the
learning rate is too high, the algorithm may diverge failing to find a good
solution. Finally, not all functions have a regular trend, and this makes it
more difficult to reach the minimum. In Figure I.6, two main challenges of
GD are shown: if the random initialization starts the process on the left, then
it will converge to a local minimum, which is not as good ad the global
minimum; if it starts on the right, the gradient will be very low, and it will
take a very long time to cross the plateau. Each iteration that leads to a
parameter update is called epoch.

Figure I.4 Graphical representation of the optimization process using
Gradient Descent. The gradient of the loss function is computed at each step,
and the parameters W are updated in the direction of the minimum.

Chapter I

8

Figure I.5 Impact of the learning rate on the convergence of the
optimization process. In (a) the learning rate is too small, and the minimum
is not reached. In (b) the learning rate is too high, and the process does not
converge.

Figure I.6 Example of a loss function with complex shape. Local minima
and plateaus are the main issues: In the first case, the GD fails to reach the
global minimum, as it gets trapped in a local minimum; in the second case,
the gradient is very low and a large number of iterations are required to
reach to effectively minimize the cost function.

 Introduction to Neural Networks

 9

I.3.2 Mini-batch Gradient Descent and Stochastic Gradient Descent

Notice that when using GD, the loss function must be evaluated on the
whole training dataset before the parameters update happens. Nevertheless,
in most applications, the training data can have millions of examples.
Therefore, a huge amount of time would be required to compute the loss
function for each update step. A very common approach is to compute the
gradient over batches of the training data. This batch is then used to perform
a parameter update. This method is called Mini-batch Gradient Descent
(MGD). The reason this works well is that the examples in the training data
are supposed to be correlated. Thus, the gradient from a mini-batch is a good
approximation of the gradient of the full objective. In practice, much faster
convergence can be achieved by evaluating the mini-batch gradients to
perform more frequent parameter updates. The extreme case of this is
Stochastic Gradient Descent (SGD), where the mini-batch contains only a
single example. This is relatively less common because in practice it can be
computationally much more efficient to evaluate the gradient for 100
examples, than the gradient for one example 100 times. Even though SGD
technically refers to using a simple example at a time to evaluate the
gradient, in most cases the term is used even when referring to MGD. The
size of the mini-batch is a hyperparameter, and it is usually based on
memory constraints. Typically, the size of the mini-batch is set to be a power
of 2 because many vectorized operations work more efficiently when their
inputs are sized in that way.

Due to their stochastic nature, MGD and SGD are much less regular than
the standard GD algorithm. In particular, MGD is less regular than standard
GD, and SGD is less regular than MGD. Thus, instead of gently decreasing
until it reaches the minimum, the loss will experience some oscillations,
decreasing only on average. Over time, it will end up being very close to the
minimum, but once it gets there it will continue to oscillate around, never
settling down. So, once the process stops, the final parameters are good, but
not optimal. On the other hand, when the loss function is very irregular, this
can help in jumping out of local minima, thus MGD and SGD have a better
chance of finding the global minimum than standard GD does.

To summarize, the introduction of randomness helps in solving the local
minima issue, but at the same, it avoids obtaining an optimal solution due to
constant oscillations. One solution is to gradually reduce the learning rate:
the steps are larger at the beginning of the optimization process (which helps
make quick progress and escape local minima), then they get smaller and
smaller, allowing the algorithm to settle at the global minimum. The function
that determines the learning rate at each iteration is called the learning
schedule. If the learning rate is reduced too quickly, the process may get
stuck at a local minimum. If the learning rate is reduced too slowly, there

Chapter I

10

may be oscillations around the global minimum for a long time, and the
process may end up with a suboptimal solution if it is stopped too early.

I.3.3 Backpropagation

Backpropagation is a way of computing gradients of expressions through
the recursive application of chain rule. Thus, the problem consists of
computing the gradient of a certain function f(x), where x is a vector of
inputs. In the specific case of DL models, the function f will correspond to
the loss function, and the inputs x will consist of the training data and the
weights. Please notice that training data is given and fixed, whereas the
weights are variables that must be optimized. Hence, during the optimization
process, we usually compute the gradient for the parameters (e.g. W, b) so
that we can use it to perform a parameter update.

Interpretation of the gradient

To give an easy interpretation of the gradient, let us consider the
elementary function:

 (8)

It should be remembered that the derivatives indicate the rate of change
of a function compared to a certain independent variable if this variable has
an infinitesimal variation. The concept is expressed by (7). For example, if
x = 4, y = 3 then f(x, y) = 12. According to (8), the derivative on x is equal
to 3. Thus, if the variable x increased by a very tiny amount, the effect on f
would be a decrease by three times that amount. This can be seen by
rewriting the equation in (7) as:

 (9)

As mentioned, the gradient of a function f is the vector of partial
derivatives. So, for the specific example that we are considering

 (10)

For sake of completeness, the partial derivatives of other common basic
inputs are reported below.

 (11)

 Introduction to Neural Networks

 11

 (12)

Compound expressions with the chain rule

Based on (8), (11), and (12), the gradient of more complicated
expressions that involve multiple composed functions can be computed. Let
us consider the example:

 (13)

The function in (13) is simple to differentiate directly, but a particular
approach will be taken in the following to provide the idea behind
backpropagation. More in details, the expression in (13) can be decomposed
into two expressions:

 (14)

The derivatives of both expressions in (14) can be computed by applying
(8) and (11):

 (15)

However, the gradient on the intermediate value q is not required.
Instead, we are interested in the gradient of f compared to x, y, and z. The
chain rule states that the correct way to combine the gradient expressions in
(15) is through multiplication, i.e.:

 (16)

In practice, this is a simple multiplication of the two numbers that hold
the two gradients. To clarify that, let us consider a simple example:

 Set the inputs: x = 2; y = 5; z = 4;
 Perform the forward pass:

q = x + y = 3
f = q * z = 12

 Backpropagation in reverse order:
o backpropagation through f = q*z:

gradient on z = dfdz = q = 3
gradient on q = dfdq = z = 4

o backpropagation through q = x + y:
dfdx = dfdq * 1 (the multiplication by 1 is the chain rule)
dfdy = dfdq * 1 (the multiplication by 1 is the chain rule)

Chapter I

12

In the end, we obtained the gradients of f compared to x, y, and z, which

are respectively dfdx, dfdy, dfdz. The process above can be also represented
with a graph, as shown in Figure I.7. The graph can be swiped both in the
forward direction and in the backward direction. In the forward pass, the
values from inputs to outputs are computed, while in the backward pass the
backpropagation is performed by applying the chain rule as explained above.

Figure I.7 Graph of the computation for the function in (13) and of the
backpropagation process. In the forward direction, the output value for the
function is evaluated (values in black). In the backward direction, the
backpropagation is performed, which starts at the end, and recursively
applies the chain rule to compute the gradients (values in grey).

I.4 A fundamental element: the neuron

One of the most used ML/DL models is the Artificial Neural Network
(ANN), or simply Neural Network (NN). The idea behind ANNs is to mimic
the behavior of the human brain.

I.4.1 The neuron

The basic computational element of the brain is the neuron.
Approximately 86 billion neurons can be found in the human nervous system
and they are connected by approximately 10E+14 10E+15 synapses. In
Figure I.8, it is shown that each neuron receives input signals from its
dendrites and produces output signals along its (single) axon. The axon
eventually branches out and connects via synapses to the dendrites of other
neurons. In Figure I.9 the computational model of a neuron is depicted. The
signals that travel along the axon (e.g. x0) interact multiplicatively (e.g. w0x0)
with the dendrites of other neurons based on the synaptic strength at that
synapse. (e.g. w0). The dendrites carry the signals to the cell body where they
all get summed. If the final sum is above a certain threshold, the neuron can
fire, sending a spike along the axon. In the computational model, the
frequency of the firing communicates information. Based on this rate-code

 Introduction to Neural Networks

 13

interpretation, the firing rate of the neuron is modeled with an activation
function, f, which represents the frequency of the spikes along the axon.
Historically, a common choice of function is the sigmoid function , since it
takes a real-valued input (the strength after the sum) and squashes it to the
range between 0 and 1. In summary, as reported in Figure I.9, each neuron
performs a dot product with the input and its weights, adds the bias, and
applies the activation function. Thus, the key arithmetic operation in neurons
is the Multiply-Accumulate (MAC) operation.

Figure I.8 Basic structure of a human neuron and its components.

Figure I.9 Computational model of the neuron. The input signals of the
neuron are denoted by xi, and each input is weighted by the synaptic strength
wi. All the weighted inputs are summed up in the cell body, and an activation
function, f, is applied.

I.4.2 Neuron as linear classifier

The computational model of the neuron in Figure I.9 might look familiar,
as it reminds the equation of the linear classifier in (2). Thus, similarly to a
linear classifier, a neuron can like or dislike certain linear regions of its
output space. Hence, with an appropriate loss function on the neuron s

Chapter I

14

output, the single neuron can become a linear classifier. For example,
considering the sigmoid function as an activation function, the output of the
neuron can be interpreted as a binary classifier. In particular, it can be seen
as the probability:

 (17)

Since the probabilities of each class must sum to one, the probability of
the other class will be:

 (18)

With this interpretation, the cross-entropy loss in (5) can be used during
the optimization process. This is called binary Softmax classifier (also
known as logistic regression). Since the sigmoid function is restricted to be
in (0, 1), the predictions of this classifier are based on whether the output of
the neuron is greater than 0.5.

I.4.3 Commonly used activation functions

An activation function (or non-linearity) takes a single value and
executes a specific mathematical operation on it. In practice, several
activation functions are used in DL models. Here below, the most common
ones are shown.

Sigmoid

The mathematical expression for the sigmoid is reported in (19) while the
function is plotted in Figure I.10:

 (19)

The sigmoid function allows shrinking the range of representation for a
certain number between 0 and 1. More precisely, large negative values
become almost 0, while large positive values become almost 1. Although the
sigmoid function is a good representation of the firing rate of a neuron (0
corresponding to a neuron that is not firing, and 1 corresponding to a neuron
that is firing at the maximum frequency), it is almost ever used due to two
major drawbacks:

 The sigmoid function tends to saturate, thus killing the gradient.
In fact, when the neuron s activation saturates at either tail of 0 or
1, the gradient at these regions is almost zero. During
backpropagation, the chain rule is applied, and this gradient must
be multiplied by the gradient of the neuron s output. As a

 Introduction to Neural Networks

 15

consequence, when the local gradient is close to zero, no signal
will be backpropagated through that neuron.

 The sigmoid outputs are not zero-centered. Again, this can be an
issue during the backpropagation process. Indeed, if the input to a
neuron is always positive (the sigmoid output is the input for
other neurons), then the gradient on the weights w in (2) will
become either all positive or negative. This may introduce some
undesirable zig-zagging effects in the gradient updates for the
weights.

Tanh

The mathematical expression for the tanh is reported in (20), where it is
expressed in terms of the sigmoid function, while the function is plotted in
Figure I.11.

 (20)

The tanh non-linearity is very similar to the sigmoid, but it shrinks the
range of representation of a number between 1 and +1. It shares with the
sigmoid the same issue about output saturation, but it has the advantage of
being zero-centered. Therefore, in practice, the tanh non-linearity is always
preferred to the sigmoid non-linearity.

ReLU

The Rectified Linear Unit (ReLU) is currently one of the most used
output activations. The function is plotted in Figure I.12, and it computes the
function:

ReLU() max(0,)x x (21)

The function is basically a threshold at zero. Thanks to its linear form, the
ReLU function has been found to greatly accelerate the convergence of SGD
(or MGD) compared to sigmoid or tanh (Krizhevsky, 2012). Also, the ReLU
can be implemented very easily, whereas both sigmoid and tanh require
complex operations to be computed. However, there is an issue with the
ReLU activation function: the gradient of ReLU is 0 when its input is lower
than 0. Thus, certain units can become dead because the backpropagated
error is canceled whenever there is a negative input into the neuron.

Chapter I

16

Figure I.10 Sigmoid function.

Figure I.11 Tanh function.

Figure I.12 ReLU function.

 Introduction to Neural Networks

 17

I.5 Artificial Neural Networks

An ANN is built by connecting many neurons to each other. In particular,
the output of some neurons is inputted to other neurons. In standard ANN,
cycles are not allowed because that would result in an infinite loop during
computation, especially during the forward pass.

Figure I.13 Example of ANNs that use a stack of FC layers. (a) 2-layer NN
with 3 inputs, and with one hidden layer of 4 neurons (or units) and one
output layer with 2 neurons. (b) 3-layer NN with 3 inputs, and with two
hidden layers of 4 neurons (or units) each and one output layer.

I.5.1 Layer organization in ANNs

An important thing to notice is that neurons are not chaotically connected
to each other. On the contrary, ANNs are organized structures where neurons
are collected in layers. Different types of layers exist, however, let us take
the example of Fully Connected (FC) layers to clarify the concept. FC layer
is by far one of the most used layers. As its name suggests, all neurons in a
FC layer are connected to every output from the previous layer, while
neurons within the layer share no connections. Two examples of ANNs that
use a stack of FC layers are shown in Figure I.13. We must distinguish
between 3 types of layers:

 Input layer: it is the first layer of a NN, and corresponds to the
input.

 Output layer: it is the last layer of a NN. Unlike all other layers,
here it is common that neurons do not have an activation
function. This is because the output layer is usually taken to
represent the class scores in classification or a real-valued target
in regression.

 Hidden layers: they are all the layers between the input layer and
the output layer.

Chapter I

18

Notice that an N-layer NN is a NN with N layers, but in N the input layer
is not counted. Thus, in Figure I.13a a 2-layer NN is represented, while in
Figure I.13b a 3-layer NN is represented. A particular case is the single-layer
NN, in which no hidden layers exist, and the input is directly mapped to the
output. ANN like the ones in Figure I.13 (all layers are FC layers) are
sometimes called Multi-Layer Perceptrons (MLPs).

Figure I.14 Example of a binary classification problem. The black balls
represent the first class, while the white balls represent the second class. The
gray region is the decision region for the first class, otherwise, the second
class is chosen. Considering a NN with one hidden layer, a better decision
region can be obtained by increasing the number of neurons.

I.5.2 Sizing ANNs

Mainly two metrics can be used to measure the size of a NN: the number
of neurons, or more commonly the number of parameters. The latter allows
getting an insight into the amount of memory required to store all
parameters. Considering Figure I.13, the two metrics can be computed as
follow:

 In Figure I.13a, the NN has 4+2 = 6 neurons (inputs must not be
counted); the number of parameters is (3×4)+(4×2) = 20 weights
and 4+2 = 6 biases, for a total of 26 learnable parameters.

 In Figure I.13b, the NN has 4+4+1 = 9 neurons; the number of
parameters is (3×4)+ (4×4)+(4×1) = 32 and 4+4+1 = 9 biases, for
a total of 41 learnable parameters.

Modern NNs have more than 100 million parameters and are usually
made up of 10-20 layers, from which the name DL. In fact, a famous
theorem formulated by Cybenco in 1989 (Cybenco, 1989) states that a NN
with at least one hidden layer is a universal approximator, that is the NN can
approximate any continuous function. The problem of this theorem is that
nothing is said about the number of neurons required in the hidden layer to
get a good approximation. In practice, it turns out that deeper networks (with
more hidden layers) can perform much better than NN with a single hidden

 Introduction to Neural Networks

 19

layer. At this point, it is crucial to understand how to know the number of
hidden layers to use and, also, how large each layer should be. To this aim, it
is useful to introduce the concept of capacity of a NN. The capacity is
related to the space of representable functions. In general, the capacity of
NN increases as the size and the number of layers increases. The idea is that
more neurons can better cooperate to express much more different functions.
This is illustrated in Figure I.14. However, attention must be paid because it
is easier to overfit the training data when the capacity of the NN is high.
Overfitting occurs when a NN with high capacity learns noise in the data
instead of the abstract relationship. Fortunately, there are many ways to
prevent overfitting, such as L2 regularization, dropout (Srivastava, 2014),
etc. In practice, it is always better to use these methods to control overfitting
instead of reducing the size of the NN.

I.5.3 Data pre-processing

In most cases, ANNs are not fed with raw data, and some kind of data
pre-processing is performed. Here below, 3 common forms of data-
preprocessing are briefly described.

Mean subtraction

Mean subtraction consists of subtracting the mean computed across every
feature in the data and has the geometric interpretation of centering the data
around the origin along each dimension.

Normalization

Normalization is a pre-processing technique used to make all samples
from input data approximately the same order of magnitude. This can be
achieved in two ways. A solution is to divide each dimension by its standard
deviation, whereas the other one is to normalize all values in the range

, where 1 represents the minimum value, and +1 represents the
maximum value.

PCA and Whitening

In this kind of pre-processing, first, a mean subtraction is performed as
described above. Then, the covariance matrix is computed which gives
information about the correlation between dimensions of the data. The two
operations are described in (22) and (23) respectively, where Xi is the i-th
input tensor with N elements, and C is the covariance matrix.

 (22)

Chapter I

20

 (23)

At this point, the Single Value Decomposition (SVD) factorization of the
covariance matrix can be performed, which gives the eigenvectors and the
singular values of C. It should be noted that the eigenvectors constitute a set
of orthonormal vectors, thus they can be considered as basis vectors. Thus,
the zero-centered data obtained with (22) is projected on the eigenvectors to
decorrelate the data. This pre-processing is named Principal Component
Analysis (PCA) reduction. It allows reducing the number of dimensions D of
input data. While zero-centering and normalization are commonly used also
in DL models, PCA is mostly used in single layer ANN or standard Pattern
Recognition (PR) methods (Abdi, 2010).

I.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are historically related to image
recognition because they introduce many advantages when elaborating
images. Despite this, they are successfully used for other purposes as well,
especially times series classification (Zhao, 2017). CNNs, are very similar to
ANNs: they are made up of neurons, and they have learnable weights and
biases. The neuron retains the same structure as explained in paragraph I.4,
and the whole network still expresses a differentiable score function. What
actually changes is the way neurons are connected between consecutive
layers.

As explained in paragraph I.5, ANNs receive an input in the form of a
single vector and elaborate it through a series of hidden layers. Each neuron
in each hidden layer of the network is fully connected to all neurons of the
previous layer. To understand the limitations of this type of organization, let
us take the CIFAR-10 dataset (Krizhevsky, 2009) as an example. The
CIFAR-10 dataset consists of 60000 32×32 color images in 10 classes, with
6000 images per class. Thus, the size of each input image is 32×32×3, and
each neuron in the first hidden layer of a given ANN would have
3 3 = 3072 weights. If we imagine that each weight is represented using
a 32-bit Floating-Point (FP) (IEEE, 2019) coding, 12 KB would be required
just to store the weights of each neuron in the first hidden layer. Moreover,
many hidden layers are usually needed, and hundreds or also thousands of
neurons are present in practice in each hidden layer. In this context, the
number of total parameters becomes incredibly high, and with it the memory
requirement. In addition to that, a so high number of parameters quite often
leads to overfitting. Thus, the full connectivity is wasteful and must be
replaced by a different kind of organization.

 Introduction to Neural Networks

 21

I.6.1 Architecture of a CNN

CNNs allow overcoming the issues introduced by full connectivity. As
said before, CNNs are historically related to image processing. In fact, the
core idea in CNNs is to replace the set of weights in a certain layer with a set
of filters. Thus, the output of the layer is computed by filtering its input.
However, differently from standard signal-processing techniques, the filter
parameters are not hand-crafted, whereas they are the result of the learning
process. Another difference with regular ANNs is that CNNs have neurons
arranged in 3 dimensions: width, height, depth. This is represented in Figure
I.15. For example, the input images in CIFAR-10 are an input volume of
dimensions 32×32×3 (width, height, depth, respectively). Every layer in
CNNs transforms a 3D input volume to a 3D output volume of neuron
activations. A simple CNN is a sequence of layers.

Figure I.15 Neurons in layers are arranged in three dimensions: depth,
height, and width. Neurons are graphically represented by white circles,
while each box represents the set of input activations for a layer. These
correspond either to the output activations of the previous layer or to the
input image for the first layer.

A CNN is a sequence of layers. The three main types of layers used to
build these networks are Convolutional layers (CONV), Pooling layers, and
Fully-Connected layers (FC). The latter type of layer is exactly the same as
seen in regular ANN.

Convolutional layer

The CONV layer is the main component of a CNN. The parameters of a
CONV layer consist of a set of learnable filters. Every filter has a small size
along width and height but extends to the full depth of the input volume. If
we keep considering the image processing as an example, a typical filter on
the first layer of a CNN might have size 5×5×3, i.e. 5 pixels width and

Chapter I

22

height, and 3 because images have depth 3 (the color channels). During the
forward pass, each filter slides across the width and height of the input
activations and compute dot products between the weights of the filter and
the input. At the end of this process, a 2-dimensional activation map (or
feature map) is obtained, which is the result of applying that filter to the full
input volume. In a CONV layer, many filters are applied to the input, and
each of them will produce a different feature map. All feature maps are
concatenated along the depth dimension, thus constituting the output of the
layer.

This way of computing a CONV layer may be expressed in terms of
neurons as well. To do that, we must imagine that each neuron of a layer is
connected to only a local region of the input volume. The size of this region
is a hyperparameter called the receptive field of the neuron, which
corresponds to the filter size. It should be noticed that the size of the
receptive field along the depth dimension is always equal to the depth of the
input volume. However, the receptive field alone is not enough to define the
size of the output volume. To this aim, three hyperparameters must be
defined: depth, stride, and zero-padding:

 The depth of the output volume corresponds to the number of
filters that are associated with the given layer.

 The stride defines the step with which the filter slides across the
input. When the stride is 1, then the filters shift one position at a
time. When the stride is 2 then the filters shift of 2 positions at a
time, thus skipping one activation. This will produce an output
activation map smaller than the input one.

 In some cases, it may be useful to pad the input activation map
with zeros around the border. The size of zero-padding is a
hyperparameter, which can be used to control the size of the
output activation map. In most cases, zero-padding is used to
preserve the size of input along the width and height dimensions.

Figure I.16 In the examples above, the white boxes represent the input
activations, while the grey ones are the outputs. Thus, the input size W = 5,
the receptive field F = 3, and the zero-padding P = 1. Two different cases
are considered: on the left, the input stride S = 1, thus the output size is
equal to (5 + 3 + 2) / 1 + 1 = 5; on the right, the input stride S = 2, thus the
output size is equal to (5 + 3 + 2) / 2 + 1 = 3.

Based on what said above, the spatial size of the output feature map (i.e.
width×height) can be computed as follow:

 Introduction to Neural Networks

 23

 (24)

where O is the size of the output feature map, W is the size of the input
feature map, F is the receptive field of the CONV layer, S is the stride with
which filters are applied, and P is the amount of zero-padding. The equation
in (24) holds both for 2D square filters and 1D filters. An example is shown
in Figure I.16. Looking at the example on the left, it can be noticed that the
input size and the output size are equal: also 5. In general, when the stride is
1, setting zero-padding to:

 (25)

ensures that the input activation map and the output activation map will have
the same size.

Local connectivity is not the only feature of neurons in CONV layers.
Indeed, parameter sharing is also used to control the number of weights.
This is based on the concept that if some weights are useful to compute the
output activation from some position (x1, y1), then it should also be useful to
compute the output activation at a different position (x2, y2). Thus, each
neuron in a single 2-dimensional slice of depth, namely a depth slice, is
constrained to use the same weights. For example, if the input volume has a
size 32×32×3, all neurons in each depth slice of size 32×32 will use the same
weights. Therefore, only 3 unique sets of weights (one for each depth slice)
are required. Notice that if all neurons in a single depth slice are using the
same weight vector, then the forward pass of the CONV layer can be
computed as a convolution of the weights with the input volume. Hence the
name Convolutional Layer. For this reason, the set of weights are generally
referred to as filters or kernels.

Pooling layer

Another commonly used layer in CNN is the Pooling layer, which is used
to progressively reduce the spatial size of the feature maps. This layer is
used to reduce the amount of memory and computational power required by
the model. Consequently, it also helps in preventing overfitting. The Pooling
layer operates independently on every depth slice in the input and resizes it
spatially. The most common forms of pooling are max-pooling (MaxPool)
and average-pooling (AveragePool), which perform the max and average
operations respectively with a particular filter size. The most common form
is MaxPool with filter size 2 (or 2×2) with a stride 2, which corresponds to
down-sampling the input volume by 2. An example is given in Figure I.17.

Chapter I

24

Figure I.17 Example of MaxPool and AveragePool. In both cases the size of
pooling is 2×2 and the stride is 2. The size of the input volume (4×4) is
scaled down by a factor of 2, resulting in an output volume of size 2×2.

Normalization layer

Many types of normalization layers exist for use in CNNs. One of the
most useful ones is the Batch Normalization (BatchNorm) layer (Ioffe,
2015). This normalization layer aims to standardize the inputs to a layer for
each mini-batch. In fact, the distribution of the inputs to layers may change
after each mini-batch, thus making it hard to properly accomplish the
training process. In particular, BatchNorm performs a rescaling of data to
have a mean of zero and a standard deviation of one, i.e. a standard
Gaussian. This has the effect of stabilizing and speeding up the training
process.

Fully-Connected layer

In a FC layer, all neurons of a certain layer are connected to the neurons
of the previous layer. This is the layer described for regular ANNs in
paragraph I.5. Differently from CONV layers, neurons in FC layers are not
arranged along 3 dimensions. As a consequence, when a FC layer receives
input from a CONV layer, the 3-dimensional feature map needs to be
flattened into a vector of input activations.

I.7 Binarized Neural Networks

The main issue of NNs, especially Deep Neural Networks (DNNs), is that
they require a huge amount of memory to store parameters and
computational power. For example, AlexNet (Krizhevsky, 2012) and ResNet
(He, 2016) require 200 MB of memory, VGG-Net (Simonyan, 2014)
requires 500 MB of memory. It is clear that it is hard to deploy those models
on portable and wearable devices, which are constrained both in terms of
resources and power consumption. Currently, quantization is the most
appealing solution to this problem. The core idea in Quantized Neural

 Introduction to Neural Networks

 25

Networks (QNNs) is to reduce the number of bits used to represent values in
the model. In fact, 32-bit Floating-Point (FP) values are generally used to
compute neural network models. Quantization techniques aim to execute the
model by using a lower number of bits and representing values with a Fixed-
Point (FI) coding. The lower number of bits allows reducing the amount of
memory required to store parameters (i.e., a 4× memory saving is obtained
by switching from 32-bit FP to 8-bit FI), whereas using FI rather than FP is
beneficial in terms of hardware complexity. Indeed, FP arithmetic circuits
are generally larger and consume more power than the FI counterpart. The
advantage in terms of area and energy consumption is clear if considering
the values in Table I.1. The energy consumption decreases with the number
of bits of the arithmetic operators, and FP circuits are more consuming than
the FI counterpart. But more importantly, memory accesses typically
consume more than arithmetic operations, and the cost of memory accesses
increases with memory size.

The price to pay for the reduction of the memory requirements and the
computational power is generally a decrease in the accuracy of the model.
Thus, QNNs need to be careful designed in order to preserve as much as
possible the original accuracy.

Table I.1 Energy consumption and Area occupation for different arithmetic
operations and memory accesses. Energy values are from Horowitz (2014).
Area values come from synthesis with TSMC 45 nm standard cells.

Operation Energy (pJ) Area (m2)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137

16b FP Add 0.4 1360
32b FP Add 0.9 4184

8b Mult 0.2 282
32b Mult 3.1 3495

16b FP Mult 1.1 1640
32b FP Mult 3.7 7700

32b SRAM Read (8 KB) 5 N.A.
32b DRAM Read (Off-chip) 640 N.A.

The extreme case of quantization is binarization. Binarization is a 1-bit

quantization, that is values can only have two possible values. Generally, 1
and +1 are used. NNs that exploit binarization are referred to as Binarized
Neural Networks (BNNs). One critical aspect is that backpropagation cannot
be directly applied to BNNs, since it is not possible to update weights in
small increments. The simplest workaround is to train the NN model with
32-bit FP values and then quantize the resulting weights and biases. This

Chapter I

26

approach is usually named post-training quantization. Unfortunately, the
highest degradation of accuracy is obtained with this method (Finkelstein,
2019).

I.7.1 Binarization of weights

Courbariaux et al. (2015), for the first time, provided a way to train NNs
using binary weights, which is named BinaryConnect. It should be noticed
that many MAC operations are replaced by simple Additions/Subtractions
(ADD/SUB) operations when using binary weights. This is a huge
advantage, as FI adders are much less expensive both in terms of area and
energy than FI MAC circuits (David, 2007). Using binary values during
training provides a more representative loss to train against post-training
quantization. The binarization operation transforms the real-valued weights
into two possible values. A very straightforward binarization operation is
based on the sign function:

 (26)

where wb is the binarized and w the real-valued weight. Although this is a
deterministic operation, averaging this discretization over the many input
weights of a hidden unit could compensate for the loss of information. An
alternative that allows having a finer and more correct averaging process is
to binarize stochastically:

 (27)

where is the hard sigmoid function:

 (28)

The reason why hard sigmoid is used is that it is far less computationally
expensive than the original version in (19).

The key point in BinaryConnect (Courbariaux, 2015) is that weights are
binarized during the forward and backward propagations but not during
parameter updates. In fact, keeping good precision during updates is
necessary for SGD to work, because a large number of almost infinitesimal
changes in the direction that most minimize the loss function must be
performed. The core idea is that what matters most at the end of training is
the sign of the weights, but before that, a lot of small changes to a
continuous-valued quantity are performed, and only at the end its sign is
considered. In more detail, at training time, BinaryConnect randomly picks a

 Introduction to Neural Networks

 27

binary value (+1 or 1) for each weight, for each mini-batch, for both the
forward and the backward steps. However, the update is accumulated in a
real-valued variable storing the parameter. Since the binarization is not
influenced by variations of the real-valued weights when its magnitude is
above the range [1, 1], the real-valued weights are clipped within the
[1, 1] interval right after the weight updates. The real-valued weights would
otherwise grow very large without any impact on the binary weights.

One thing to notice is that the derivative of the sign function in (26) is
zero almost everywhere, which seems to be incompatible with the
backpropagation algorithm. This is true even if stochastic quantization in
(27) is used. A solution to this problem was proposed in the paper by Bengio
et al. (2013), where the straight-through estimator (STE) is used to estimate
the gradient through stochastic neurons. The idea is simply to backpropagate
through the sign function as if it had been the identity function.

I.7.2 Binarization of activations

Thanks to the binarization of weights, a large amount of memory can be
saved compared to a FP-32 NN model. Also, binarizations allow replacing
MAC operations with simpler ADD/SUB operations. However, a further
advantage can be gained by binarizing activations as well. In doing so, an
additional amount of memory is saved (i.e. buffers to store activations can be
smaller) and bit-wise operations can further reduce the computational
complexity, and hence the power consumption, of the model.

Binarization of the activations in BNNs was introduced for the first time
by Courbariaux et al. (2016). In order to binarize the activations, they are
passed through a sign function using a STE in the backward step, similar to
what happens in the binarization of weights. The sign function is used as the
activation function in the NN model. A version of the STE that considers the
clipping effect is applied to the deterministic sign function in (26). In
particular, it was observed that to obtain good results, the gradient must be
canceled out if the input to the activation function is too large. Thus,
considering the activation function, i.e. the sign function:

 (29)

the STE of the gradient of the cost function C compared to r is computed
as:

 (30)

where:

Chapter I

28

 (31)

I.7.3 Bitwise operations

When using binary values, the dot product between weights and
activations can be reduced to bitwise operations. The binary values can be
either +1 or 1, which are encoded with 1 and 0, respectively. Using an
XNOR logical operation at bit level is equivalent to perform multiplication
on the binary values. This is shown in Table I.2.

Table I.2 Equivalence between XNOR logical operation between Bit1 and
Bit2 and multiply operation between Value1 and Value2.

Bit1 (Value1) Bit2 (Value2) XNOR (Multiply)
0 (1) 0 (1) 1 (+1)
0 (1) 1 (+1) 0 (1)
1 (+1) 0 (1) 0 (1)
1 (+1) 1 (+1) 1 (+1)

Thus, the XNOR function can be used to perform multiply operations

between binary values. However, dot product operation also requires the
accumulation of the results from the element-wise multiplication between
elements of the input vectors. It turns out that the accumulation operation
can be performed through the popcount operation, which is the process of
counting the number of 1s in a binary value. More in detail, the
accumulation can be performed by counting the number of 1s in a group of
XNOR products, multiplying this value by 2, and subtracting the total
number of bits producing an integer value. The reason why this holds is
given below. Let us consider the accumulation of N binary values. The
relation between the bit representation xb (i.e., 0 and 1) and the integer values
x (i.e., 1 and +1) is the following:

 (32)

When the accumulation of N binary values is performed, the result is:

 (33)

 Introduction to Neural Networks

 29

I.7.4 Energy consumption in Binarized Neural Networks

BNNs can drastically reduce memory size and accesses, and replace most
arithmetic operations with bitwise operations. In comparison with 32-bit FP
NNs, BNNs require 32 times smaller memory size and 32 times fewer
memory accesses, with relevant advantages in energy consumption
according to Table I.1. Moreover, considering that the key arithmetic
operation in NNs is the MAC operation, 32-bit FP MAC operations are
replaced by 1-bit XNOR-popcount operations. This can lead to faster
execution times and fewer hardware resources required in digital design
architectures, especially for specialized ones (Simons, 2019). Despite this, it
should be pointed out that training a BNN takes longer than traditional NNs
due to the STE heuristic needed to approximate the gradient of the real-
valued weights.

I.7.5 Accuracy of Binarized Neural Networks

While BNNs are compact and efficient compared to their full precision
counterparts, they suffer from degradation of accuracy. A summary of the
state of the art in terms of accuracy is reported in Table I.3. Results refer to
classification performance on the ImageNet dataset (Deng, 2009). Looking
at the values in the table, it turns out that a minimum accuracy loss of about
3 percentage points must be accepted when using binary weights. The
accuracy loss is even higher when binarizing both weights and activation,
where the minimum accuracy loss is about 20 percentage points.

Table I.3 Comparison of accuracy on the ImageNet dataset (Deng, 2009)
between 32-bit FP model and BNNs. For each topology, the bit-width is
expressed as W/A, that is weights/activations. Where binarization occurs, the
accuracy loss compared to the FP model is reported.

Topology
Bit-width

(W/A)
Top-1 accuracy

Accuracy
Loss

Source

AlexNet 32/32 57.1% - (Zhang, 2018)
AlexNet 1/32 35.4% 21.7% (Courbariaux, 2015)
AlexNet 1/1 27.9% 29.2% (Hubara, 2016)]

ResNet-18 32/32 69.6% - (Zhang, 2018)
ResNet-18 1/32 60.8% 8.8% (Rastegari, 2016)
ResNet-18 1/1 42.7% 26.9% (Lin, 2017)
ResNet-34 32/32 73.3% - (Zhang, 2018)
ResNet-34 1/32 70.4% 2.9% (Qin, 2020)
ResNet-34 1/1 52.4% 20.9% (Lin, 2017)
ResNet-50 32/32 76.0% - (Zhang, 2018)
ResNet-50 1/32 72.8% 3.2% (Yang, 2019)

Chapter I

30

I.7.6 Hardware Implementation of Binarized Neural Networks

FPGA implementation

FPGAs are very used to accelerate BNNs when performing inference.
Indeed, most CPUs and GPUs are optimized for executing integer and FP
operations, but they may not be the best solution to execute bitwise
operations efficiently. FPGAs allow for custom data paths, so that custom
operations, such as XNOR and popcount operations, can be highly
optimized. It should be noticed that FPGAs also contain DSPs, which can be
fundamental when accelerating FP NNs models, but they are not used as
extensively for BNNs, since bitwise operations are required. Compared with
CPUs and GPUs, FPGA can accelerate a BNN with lower power
consumption, even though the power stays in the range of tens of W. A list
of FPGA implementations is reported in Table I.4, where all accuracy results
refer to training on the CIFAR-10 dataset (Krizhevsky, 2009).

Table I.4 Comparison of FPGA implementations of BNN accelerators. All
accuracy results refer to training on the CIFAR-10 dataset (Krizhevsky,
2009).

FPGA LUTs BRAMs
Clock
Freq.

[MHz]

Power
[W]

Acc.
(%)

Source

Zynq7 045 20264 - - - 66.63 (Zhou, 2017)

Virtex7 690T 20352 372 450 15.44 78
(Nakahara,

2016)
KintexUltra 115 35818 144 125 - 79.1 (Fraser, 2017)
ZynqUltra 3EG 41733 283 300 10.7 80.10 (Blott, 2018)

Zynq7 020 25700 242 100 2.25 80.10 (Blott, 2018)

Zynq7 045 46253 186 -. 11.7 80.1
(Umuroglu,

2017)

Zynq7 020 14509 32 143 2.3 81.8
(Nakahara,

2017)
KintexUltra 115 93755 386 125 - 85.2 (Fraser, 2017)

Zynq7 020 23426 135 143 2.4 85.9 (Yang, 2018)
Virtex7 980T 556920 - 340 - 86.06 (Zhou, 2017)

Zynq7 020 53200 280 200 - 86.98
(Ghasemzadeh,

2018)
Zynq7 020 46900 140 143 4.7 87.73 (Zhao, 2017)

KintexUltra 115 392947 1814 125 - 88.3 (Fraser, 2017)
Zynq7 020 29600 103 - 3.3 88.61 (Guo, 2018)

 Introduction to Neural Networks

 31

ASIC Implementation

As with FPGA, Application-Specific Integrated Circuits (ASICs) provide
the possibility to implement a custom data path with custom arithmetic
operations. ASICs provide by far the best performance both in terms of
power consumption and frequency. On the other hand, a great effort is
required to design integrated circuits, and the cost can be amortized only if
the volume of production is huge. In Table I.5 a list of ASIC
implementations of BNN accelerators is reported. It can be seen that the
power consumption is orders of magnitude lower than the one with FPGAs.

Table I.5 Comparison of ASIC implementations of BNN accelerators.

Technology
Area

[mm2]
Freq.

[MHz]

Energy
efficiency
[TOPS/W]

Power
[mW]

Latency
[ms]

Memory
[KB]

Source

28 nm 1.29 50 90 2.85 25 52 (Yin, 2018)
40 nm 12.7 30 0.698 1900 40 2144 (Li, 2019b)

65 nm 17.6 100 658 N.A. N.A. 295
(Valavi,
2018)

28 nm 5.76 N.A. 532 0.899 N.A. 328
(Bankman,

2018)

Chapter I

32

Chapter II
Human Activity Recognition

II.1 Definition and Applications

Human Activity Recognition (HAR) is the ability to recognize human
activities using sensors and it is a promising technology for many application
fields. From an analytical point of view, let us imagine that a certain person
is performing an activity belonging to a predefined set of activities A:

 (34)

where N denotes the number of activities. The activity information is
captured by a sequence of sensor readings:

 (35)

where dt denotes the sensor reading at time t. HAR aims to predict the
activity sequence Ap based on sensor reading s. To do that, a model f must be
built:

 (36)

where n denotes the length of the sequence. The true activity sequence
(ground truth) is denoted as At:

 (37)

In HAR, model f must be learned by minimizing the discrepancy between
the predicted activity Ap and the ground truth activity At.

Based on the set of activities to be recognized, different applications can
be found for HAR. In healthcare, it can be used for Parkinson s disease
monitoring or rehabilitation purposes (Eskofier, 2016), (Bisio, 2016)
(Abobakr, 2018). Also, HAR is widely used in assisted living, especially for
elderly care (De, 2018). Other applications are video surveillance (Xian,

Chapter II

34

2017), gesture recognition (Normani, 2018), gait analysis (Cola, 2017),
fitness (Chinimilli, 2017).

II.2 Sensors in Human Activity Recognition Systems

HAR can be classified based on the type of sensor used to acquire data. In
Table II.1 a list of the most used sensors in HAR systems is provided. In
particular, data can be acquired using either image sensors, such as cameras,
or inertial sensors, such as accelerometers, gyroscopes, or other Inertial
Measurement Units (IMUs). Physical health sensors are sometimes used
with motion sensors to detect the activities of patients for rehabilitation
purposes or capturing their vital signals for health condition evaluation
(Chen, 2014). A key problem in HAR is where to place the sensors since
different body parts provide different sensitivity to different activities, and
hence different performance in terms of accuracy (Yu, 2016). As an
example, placing an accelerometer at the ankle is expected to detect the
motion information caused by legs or feet on the arm, thus allowing
identifying activities like walking or running. On the other hand, an
accelerometer placed at the chest might not measure the movements of arms.

Table II.1 Most used sensors in HAR systems.

Category Sensor
Inertial Sensors Accelerometer

Gyroscope
Magnetometer

Physical Health
Sensors

Electrocardiogram (ECG)
Hearth Rate (HR)
Electroencephalograph (EEG)
Electromyogram (EMG)

Environmental
Sensors

Temperature
Humidity
Light sensor
Barometer

Others Camera
Microphone
GPS

Another classification among HAR systems is based on the number of

sensor positions and the number of types of sensors used. More precisely,
four configurations can be identified:

 One to One: this is the basic modality in HAR systems, where
one single sensor is placed at one single body part.

 Human Activity Recognition

 35

 One to Multi: in this configuration, one single type of sensor is
placed at multiple body parts, thus obtaining complementary
signals from different positions.

 Multi to One: in this configuration, a sensor device with more
than one type of sensors built-in on one body part, aiming to
capture different kinds of information.

 Multi to Multi: in this last scenario, multiple devices, each
embedded with one or more types of sensors, are placed at
multiple body parts, thus combining the advantages of all the
above configurations.

It should be noticed that better accuracies are to be expected by using
more sensors. However, the higher the number of sensors, the higher is the
complexity of the HAR system, and hence the power consumption. The most
potential body positions that have been explored to deploy one or more
sensors are hands, arms, wrists, chest, pockets, head, feet, shank, thighs,
trunk, vest, waist, ankles, belt, pelvic, hip, legs, abdomen, back, knees, ears,
neck.

To summarize, two major categories of HAR techniques can be
identified: the first is usually named video-based HAR, while the second one
is named Inertial-Sensor-based HAR (IS-HAR), or just sensor-based HAR.
The continuous improvements of sensor technology, mainly in terms of
reduced area and power consumption, as well as the increment of the
processing power of portable devices in the era of pervasive computing,
have been favored the development and the diffusion of IS-HAR systems.
This thesis focus on the design of an ultra-low power smart sensor, thus IS-
HAR is a perfect candidate as a case study.

II.3 Classification Techniques

IS-HAR systems can be further classified based on the model used to
achieve the classification. Classification can be achieved either through
conventional PR methods (Bulling, 2014), such as Decision Trees, SVM,
naïve Bayes, and hidden Markov, or through DL models (Yu, 2016), such as
CNNs, autoencoder (AE), etc.

II.3.1 Pattern Recognition methods

In a typical PR-based classification method, two main signal processing
stages can be identified: first, a set of features are extracted from raw
samples from the sensors, then a ML model is used to achieve classification
based on the extracted features.

Chapter II

36

Feature Extraction

During feature extraction, a set of features are extracted from sensor data.
More in detail, features are extracted as feature vectors Xi from an input data
window wi. The total number of features extracted forms the feature space.
The core idea is that activities that belong to the same class will be clustered
in the same region of the feature space. In HAR systems, features need to be
robust against user variability, that is features must not depend on the
specific user who is performing the activity, as well as intraclass variability,
that is the same activity must be clustered in the same region even though it
can be performed in different ways. In the following, the most used features
in HAR are listed below:

 signal-based features: these are mostly statistic features, such as
mean, variance, kurtosis, and the like. These features are popular
due to their simplicity as well as their high performance across a
variety of HAR problems (Ravi, 2007). Also, frequency-domain
features are sometimes used (Kang, 1995).

 body model features: these are calculated from a 3D skeleton
using multiple on-body sensors (Zinnen, 2009). Polynomial
features that describe signal trends such as mean, slope, and
curvature are used for trajectories of limbs (Blanke, 2010)

 event-based features: these are extracted when a certain event
occurs. An example is features extracted from repetitive eye
movement sequences (Bulling, 2011).

 multilevel features: in this case, data is first clustered, for
example using k-means. Then statistics like duration, frequency,
and occurrence of data are encoded to provide expressive
features.

Classification

Many PR methods can be used to achieve classification in HAR systems.
Among the most used ones, there are Hidden Markov Models (HMMs),
Decision Trees, k-Nearest Neighbor (kNN), and Naïve Bayes. A list of
references where PR methods are used for HAR purposes is provided in
Table II.2.

II.3.2 Deep Learning methods

Despite PR methods allow achieving satisfactory accuracies in many
cases, some drawbacks must be considered. Firstly, the features need to be
extracted in a heuristic and hand-crafted way, which heavily relies on human
expertise and domain knowledge. Even though human knowledge may help
in certain task-specific settings, in general, this will result in a lower chance
and a longer time to build a successful HAR system. Also, PR methods

 Human Activity Recognition

 37

allow achieving good accuracies only in classifying a limited number of
activities, especially when more complex activities need to be recognized.

DL models tend to overcome those limitations, as they do not require
feature extraction. Indeed, features can be automatically learned by the DL
model itself, thanks to its deep multi-layered internal representation. Among
the most used DL models in HAR, there are DNNs, CNNs, AEs, and
Recurrent Neural Networks (RNNs). A list of references where PR methods
are used for HAR purposes is provided in Table II.3.

Table II.2 Examples of Pattern Recognition methods for Human Activity
Recognition. The activities which are classified are specified for each case,
as well as the accuracy and the sensors used to sample data.

Method Activities Accuracy Sensors Ref
HMM Leaving

Toileting
Showering
Sleeping
Breakfast
Dinner
Drink

94.5% Wireless sensor
network

(VanKastere
n, 2008)

Decision
Tree

Walking
Sitting
Standing still
Watching TV
Running
Stretching
Scrubbing
Folding laundry
Brushing teeth
Riding elevator

84.3% Accelerometers (Bao, 2004)

HMM Sitting
Standing
Walking
Jogging
Walking upstairs
Walking downstairs
Riding a bicycle
Driving a car
Elevator down
Brushing teeth

91% Accelerometer
Audio
IR/visible light
High-frequency light
Pressure
Humidity
Temperature
Compass

(Lester,
2005)

kNN 3 Tai Chi
movements

85% Accelerometers
Gyroscopes

(Kunze,
2006)

Chapter II

38

SVM Walking
Upstairs
Downstairs
Standing
Sitting
Laying

89.3% Accelerometer
Gyroscope

(Anguita,
2012)

Naïve
Bayes

Take medication
Prepare breakfast
Prepare lunch
Prepare dinner
Breakfast
Lunch
Dinner
Eat a snack
Watch TV
Enter the lab
Play a videogame
Relax on the sofa
Leave the lab
Visit in lab
Put waste in the bin
Wash hands
Brush teeth
Use the toilet
Wash dishes
Wash clothes
Work at the table
Dressing
Go to the bed
Wake up

68% Binary sensors fixed
to everyday objects
Proximity tags
Location-aware
smart floor sensing
Accelerometer

(Jiménez,
2018)

Table II.3 Examples of Deep Learning methods for Human Activity
Recognition. The activities which are classified are specified for each case,
as well as the accuracy and the sensors used to sample data.

Method Activities Accuracy Sensors Ref
CNN Walking

Walking upstairs
Walking downstairs
Sitting
Standing
Laying

95.18% Accelerometer
Gyroscope

(Jiang,
2015)

 Human Activity Recognition

 39

RNN Write notes
Open engine hood
Close engine hood
Check door gaps
Open door
Close door
Open/close two doors
Check trunk gap
Open/close trunk
Check steering wheels

95.80% Accelerometers (Ordóñez,
2016)

DNN 11 low-level activities 83.30% Accelerometer (Zhang,
2015)

AE Walking
Walking upstairs
Walking downstairs
Sitting
Standing
Laying

98.22% Accelerometer
Gyroscope

(Gao,
2019)

II.4 Time-Latency Requirements in Human Activity Recognition

In addition to the accuracy level, latency is another factor that has often
to be taken into account in HAR systems. Latency can be defined as the time
that has elapsed from the beginning of an activity to its detection by the
system (Dinarevi , 2019). However, the particular HAR tasks must be
distinguished to understand whether latency has to be actually minimized. In
particular, low latency is an important requirement in all those applications
where immediate feedback may be required, such as fall detection and
epilepsy seizure detection. In those cases, high accuracy is not sufficient and
an optimal trade-off should be investigated to guarantee an actual effective
solution. Nevertheless, few studies report their achieved latency in the
literature (Rault, 2017). For some other applications of HAR, such as the
distance walked in a day and general daily activities, a higher latency can be
accepted without compromising the validity of the solution.

The main model parameter that can be tuned to control the latency of the
system is the window size. In fact, regardless of the classification technique,
the data stream must be segmented in data windows for processing. The
most widely used segmentation method in HAR is the sliding window
approach (Banos, 2014). The signals are split into windows of a fixed size,
with the possibility to have some overlap. Banos et al. (2014) proved that the
best trade-off between recognition speed and accuracy is obtained within the
window size interval 1 2 s.

Chapter II

40

II.5 Public Datasets for Human Activity Recognition

The importance of HAR among the current research topics is proven by
the existence of several public datasets. Those datasets are fundamental to
test a new model and fairly compare it with state-of-the-art. Below, some of
the most used public datasets for HAR are briefly described.

II.5.1 PAMAP2 dataset

The PAMAP2 Physical Activity Monitoring dataset (Reiss, 2012)
contains data of 18 different physical activities, performed by 9 subjects
wearing 3 IMUs and a heart rate monitor. Each IMU was placed in a
different position. In particular, hand, chest, and ankle have been chosen.
Each IMU was made up of a 3D accelerometer, 3D gyroscope, 3D
magnetometer, and temperature. Two different scales are available for the
3D accelerometer, which are ±16g and ±6g. It should be noticed that due to
high impacts caused by certain movements (especially running), the
accelerometer with ±6g range gets sometimes saturated. The sampling
frequency was set to 100 Hz. The heart rate sensor monitored the bpm of
each subject, with a sampling frequency of approximately 9 Hz.

Each of the subjects had to follow a protocol, containing 12 different
activities, which are: lying, sitting, standing, walking, running, cycling,
Nordic walking, ascending stairs, descending stairs, vacuum cleaning,
ironing, rope jumping. Furthermore, a list of optional activities to perform
was also suggested to the subjects. From the list, in total 6 different activities
were performed by some of the subjects in addition to the protocol. Namely,
they are watching TV, computer work, car driving, folding laundry, house
cleaning, playing soccer.

The dataset is not balanced, that is a different number of samples is
associated with each activity. This is detailed in Table II.4, where the time in
seconds for each activity is specified. Also, details about the PAMAP2
dataset are summarized in Table II.6.

II.5.2 SHL dataset

The University of Sussex-Huawei Locomotion (SHL) dataset (Ciliberto,
2017) was collected at the University of Sussex. It was recorded over 7
months in 2017 by 3 users engaging in 8 different modes of transportation in
a real-life setting in the United Kingdom. More in detail, the SHL dataset,
where labels are: Car, Bus, Train, Subway, Walk, Run, Bike, and Still. The
dataset contains multi-modal data from a body-worn camera and 4
smartphones, carried simultaneously at typical body locations, that are Bag,
Hand, Hips, and Torso. All data is sampled at 100 Hz by using the following
sensors: 3D accelerometer, 3D gyroscope, 3D magnetometer, pressure

 Human Activity Recognition

 41

sensor, and temperature sensors. As for the PAMAP2 dataset, the SHL
dataset is not balanced. Details about the amount of data per class are
reported in Table II.5, whereas generic details about the SHL dataset are
summarized in Table II.6.

Table II.4 Available time window in seconds for each activity in the
PAMAP2 dataset. An ID is associated with each activity. Also, a check sign
is used to identify the 6 optional activities.

ID Activity Optional Available time window [s]
1 Lying 1925.16
2 Sitting 1851.80
3 Standing 1899.23
4 Walking 2387.53
5 Running 981.92
6 Cycling 1645.93
7 Nordic walking 1881.00
9 Watching TV 836.45
10 Computer work 3099.31
11 Car driving 545.18
12 Ascending stairs 1172.00
13 Descending stairs 1049.27
16 Vacuum cleaning 1753.45
17 Ironing 2386.82
18 Folding laundry 998.74
19 House cleaning 1871.83
20 Playing soccer 469.12
24 Rope jumping 493.54
 Total: 27248.27

Table II.5 Available time window in hours for each activity in the SHL
dataset. An ID is associated with each activity.

ID
Activity

Available time window
[h]

1 Still 127
2 Walking 127
3 Run 21
4 Bike 79
5 Car 88
6 Bus 107
7 Train 115
9 Subway 89
 Total: 753

Chapter II

42

Table II.6 Summary of SHL and PAMAP2 public datasets. For each dataset,
the following features are specified: number of classes, sensors used to
sample data, sampling frequency for each sensor, possible carry positions.

Dataset #classes Sensors Sampling Frequency Positions
PAMAP2 12+6 3D accelerometer

(±6g scale)
100 Hz Ankle

Hand
Chest 3D accelerometer

(±16g scale)
100 Hz

3D gyroscope 100 Hz
3D magnetometer 100 Hz
Heart-rate monitor 9 Hz

SHL 8 3D accelerometer 100 Hz Bag
Hand
Hips
Torso

3D gyroscope 100 HZ
3D magnetometer 100 Hz
Pressure sensor 100 Hz
Temperature
sensor

100 Hz

II.6 HW Solutions for Human Activity Recognition

Even though a lot of research is being carried out on HAR, in most of the
literature, the development of a HAR system is associated with the
development of algorithms or models, and most of the efforts are made to
achieve high accuracy. Unfortunately, such high accuracies are obtained
using MCUs, CPUs, or GPUs, and those systems are not embeddable on
ultra-low power wearable devices or smart sensors due to their high power
consumption.

Nicosia et al. (2018) addressed this problem by exploiting a light
harvester to improve the lifetime of a sensor-rich wearable node. The
module is based on a 32-bit MCU, which features a Floating-Point Unit
(FPU) single-precision (32-bit), 128 KB of RAM, and 1 MB of Flash ROM.
In addition, the module features many Micro Electrical Mechanical Systems
(MEMS) sensors, such as accelerometers, gyroscope, and magnetometer,
and environmental sensors, such as pressure, humidity, and temperature
sensors. The MCU is able to run a 5-layer CNN, which achieves an average
accuracy of 96.13% when classifying 5 different activities, i.e. stationary,
walking, running, biking, and driving. The samples are acquired using a 3D
accelerometer with a sampling frequency of 26 Hz. Measurements show that
the current absorbed by the board in dark conditions is 1.75 mA.

However, to obtain more energy-efficient systems, a dedicated HW
circuitry should be designed, which is the objective of the research activity
in this thesis. In the following, the only works found in the literature that

 Human Activity Recognition

 43

propose a dedicated HW accelerator for HAR applications are briefly
described.

Hanai et al. (2009) presented a versatile recognition processor, which is
able to perform detection and recognition of image, video, and acceleration
signals. Concerning HAR, the processor can recognize human activities such
as walking, reading, and typing from short and low-quality 3D acceleration
signals, with a time window from 2s to 10s. Data is sampled at 50 Hz with a
resolution of 8-bit. The classification is achieved using Haar-like features
and cascaded filters. The processor is fabricated in 90 nm CMOS
technology, occupies 0.89 mm2, and runs at 54 MHz with a 0.9 V supply.
For activity recognition from 8-bit 50 Hz acceleration signals, the power
consumption per frame rate is 0.15 W/fps with an accuracy of 93%.

In the paper by Kodali et al. (2017), seven different IoT applications were
implemented using a FC DNN accelerator designed in 28 nm CMOS
technology. Among the various applications, HAR is performed. The
accuracy has been estimated for 5 different public HAR datasets. The best
accuracy has been obtained for the Smartphone-based Human Activity
Recognition Feature-Extracted dataset and is equal to 93.6%. The HW
accelerator can operate with a supply voltage as low as 0.56 V. With this
voltage level, and with a frequency of 443 MHz, the power consumption is
equal to 1.12 mW. Based on this operating point, the authors have derived an
estimate of the power consumption for each application. The results are
summarized in Table II.7. It must be noticed that the authors did not take
into account the power dissipation due to leakages, which can be significant
when scaling down the frequency in a 28 nm CMOS technology.

In the work of Jafari et al. (2019), a scalable and low-power embedded
deep CNN named SensorNet is presented, which allows classifying
multimodal time-series signals. A custom low-power hardware architecture
has been designed to allow the deployment of the CNN model in an
embedded real-time system. SensorNet performance is evaluated using 3
different case studies, including HAR. When performing HAR, the model
achieves 98.0% accuracy. The architecture is implemented with CMOS
65 nm technology, and results show a total power consumption of 18.5 mW
when the throughput is 67 label/s. This throughput is obtained with a clock
frequency of 100 MHz.

Chapter II

44

Table II.7 Application power requirements for the HW accelerator
proposed in the work of Kodali et al. (2017)

Dataset Frequency [kHz] Power [nW] Energy per inference [nJ]
OPP 258.6 722.0 129.9
PAMAP2 83.3 210.6 130.0
DG 29.6 74.8 17.9
Smartphone
(Raw)

59.2 149.7 96.0

Smartphone
(FE)

39.5 99.9 128.1

Chapter III
Orientation Estimation in

Inertial Sensors

III.1 Device-Orientation problem

Inertial sensors measure motion-related physical quantities, such as
acceleration, angular rate, etc. For this kind of measurement, it is very
important to define which is the reference frame. As an example, a 3-axis
accelerometer provides the components of the measured acceleration on the
three axes defined by its own orientation in the space. Looking at Figure
III.1, the components of the measured accelerations are provided on the axis
x, y, and z. Therefore, it is easy to realize that the physical meaning
associated with the acceleration measured on each axis is strongly dependent
on the orientation of the sensors. This is not a trivial issue, especially when
the sensor is embedded in portable or wearable devices, such as smartphones
or smartwatches. Indeed, it is not possible to know in advance which will be
the orientation of the device, thus making it very difficult to extract useful
features from the raw measurement. This problem is known as the device-
orientation problem, and it is especially present in IS-HAR systems, where
the sensor cannot keep a fixed orientation in the space due to human
movements, and it can often be placed in different positions as well. In this
context, 3 different reference frames are defined in the paper by Jahn et al.
(2017): the Device Coordinate System (DCS), which is the reference frame
defined by the orientation of the sensor, the World Coordinate System
(WCS), that is the reference frame relative to the world s gravity force and
the magnetic north; the User Coordinate System (UCS), that is the reference
frame defined by the user s heading. The latter can be useful to track the
movements of a person or an object. More generally, many solutions have
been proposed in the literature to mitigate the effects of the unknown
orientation in inertial sensors by transforming the measurements from the
DCS to the WCS. A graphical representation of DCS and WCS is provided
in Figure III.1. In all cases, some signal processing operations must be

Chapter III

46

performed on the raw measurement data, such as filtering, 3D rotations, and
the like. Unfortunately, the computational complexity of such operations
does not fit with the capabilities of wearable devices, where the HW
resources are limited and the energy consumption is constrained to be as low
as possible. During the first part of my research activity, I focused on the
definition of an HW-friendly algorithm to solve the device-orientation
problem in 3-axis accelerometers.

Figure III.1 Graphical representation of the 2 possible reference frames for
an inertial sensor. The Device Coordinate System is the reference frame
defined by the device (solid line in the figure). The World Coordinate System
is the reference frame defined by the world s gravity force (dotted line in the
figure). In this figure, the World Coordinate System is defined as the
reference frame whose z-axis is opposite to the gravity vector, g.

III.2 State-of-the-art solutions to the device-orientation problem

In this paragraph, many solutions to the device-orientation problem will
be presented. Three different cases can be detected based on the sensors
which are used in the system: accelerometer + magnetometer, accelerometer
+ gyroscope, only accelerometer.

III.2.1 Accelerometer + Magnetometer

As explained above, the raw measurements need to be transformed from
the DCS to the WCS to cancel the dependence from the sensor orientation. A
solution can be to exploit the measurement of the north direction provided
by a magnetometer. In the paper by Ustev et al. (2013), the orientation angle
is computed by using both the accelerometer and the magnetometer
embedded in a smartphone. When the device is not subject to an external
acceleration, it measures the gravity acceleration pointing towards the center
of the Earth. This allows computing the tilt angles. At the same time, the
magnetometer provides the magnetic vector in the three axes of the DCS. By

 Orientation Estimation in Inertial Sensors

 47

fusing data from the accelerometer and magnetometer, it is possible to detect
the orientation of the device. The authors collected data from 20 participants,
who were asked to perform locomotive activities (i.e., running, standing,
biking, sitting, walking). All activities were performed for 3 minutes and a
total of 15 minutes of movement data was collected from every participant.
Different kinds of tests were performed using a k-NN classifier to measure
accuracy. During the orientation tests, the device was carried in different
orientations to investigate the orientation dependency. Three different
orientation tests were performed based on the input data:

1. in the first test, the input data was the raw measurement from the
accelerometer;

2. in the second test, data from the accelerometer was fused with the
magnetometer data to detect the orientation of the device. Then,
the gravity component on each axis can be isolated to obtain the
linear acceleration;

3. in the third test, the linear acceleration was converted from the
DCS to the WCS.

The accuracy results are summarized in Table III.1. The highest accuracy
is obtained when the conversion from the DCS to the WCS is performed.

Table III.1 Results from the orientation test for different input data (Ustev,
2013).

Test Accuracy
1 83%
2 93%
3 97%

III.2.2 Accelerometer + Gyroscope

Another solution to perform the transformation from the DCS to the WCS
can be to use both an accelerometer and a gyroscope. Florentino-Liaño et al.
(2012) computed the inclination of the sensor in terms of the angles of roll,

x, and pitch, y, by using the following formulas:

 (38)

 (39)

Chapter III

48

where , , and are the means of the measured

acceleration in the DCS obtained during periods of little or no linear
acceleration. It should be noticed that it is not possible to determine the
angle of yaw, z, by using only an accelerometer and gyroscope. However,
this is not an issue in HAR, because it is not important if the user is facing
towards North or in any other direction. Using (38) and (39), and assuming a
yaw angle of zero, a rotation matrix is defined to partially transform the
measurements from the DCS to the WC as in (40).

 (40)

Once the initial orientation has been computed in this manner, the angular
velocity can be integrated over time to update the rotation matrix.
Florentino-Liaño et al. (2012) point out that always transforming the data
from the DCS to the UCS does not help to distinguish between low-motion
activities, such as standing, sitting, and lying. Indeed, the only acceleration
that is measured in those cases is the gravity acceleration, which will always
be contained in the zt direction (zt is defined in Figure III.1). To solve this
problem, the transformation can be only performed once, while the user is
standing still.

III.2.3 Only Accelerometer

The problem of the device orientation can also be solved by using only an
accelerometer. This can be the best choice when there are power and area
constraints. In the work of Mizell (2003), a solution was proposed to
estimate the accelerometer orientation using a single tri-axial accelerometer
only. For a chosen sampling interval, typically a few seconds, an estimate of
the gravity component on each axis is obtained by averaging all the
measurements in the sampling interval on the respective axis. This
corresponds to estimate the gravity vector g = (gx, gy, gz), where gx, gy, and gz
are the averages of all the measurements in the sampling interval on the x, y,
and z axis respectively. Let a = (ax, ay, az) be the vector made up of the three
acceleration measurements taken at a given point in the sampling interval.
Thus, the linear acceleration can be computed as:

 (41)

Then, the linear acceleration in (41) is projected on the gravity vector g
using the dot product, thus obtaining p:

 Orientation Estimation in Inertial Sensors

 49

 (42)

In other words, p is the component of the linear acceleration in the
direction of the gravity vector, i.e. the vertical component of the linear
acceleration. Since a 3D vector is the sum of its vertical component and
horizontal component, the latter can be computed simply by vector
subtraction.

III.3 Proposed Solution

A solution to the device-orientation problem is proposed in this thesis.
Considering that the aim is to develop an ultra-low power smart sensor, a
signal processing technique has been defined which takes in input data from
a single 3D accelerometer. The application that has been considered is HAR.
In the proposed solution, the measured acceleration is transformed from the
DCS to the WCS in two stages: the filtering stage and the vector rotation
stage. In the first one, the gravity acceleration is isolated from the measured
acceleration, and it is used as a reference in the vector rotation stage to
define the WCS. In particular, the WCS has been defined as the reference
frame in which the z-axis is opposite to the gravity vector.

III.3.1 Filtering Stage

In the filtering stage, the components of the acceleration acquired by the
tri-axial accelerometer are filtered to separate the high-frequency component
from the low frequency/DC component. The latter roughly corresponds to
the gravity acceleration, while the former is related to human motion. The
filter is a 4th order high-pass IIR Butterworth filter, with a cutoff frequency
of 0.4 Hz. The main characteristics of the filter are summarized in Table
III.2, where f 3dB is the 3 dB cutoff frequency, and fc is the sampling
frequency. The sampling frequency has been selected considering the typical
ones in HAR (Bulling, 2014).

Table III.2 Initial filter specifications

Filter Response Frequency Behavior f 3dB Order fc
IIR Butterworth High-pass 0.4 Hz 4 25 Hz

IIR Filters

A causal IIR filter (Mitra, 2000) is described in (43):

Chapter III

50

 (43)

where x[n] is the input sequence, y[n] is the output sequence, h[n] is the
impulsive response, {dk} and {pk} are real coefficients. The equation in (43)
can be rewritten as:

 (44)

From (44), it is clear that the output of the filter can be computed using a
recursive method. Applying the Z-transform to (43), the transfer function of
an IIR filter is obtained:

 (45)

Using (45), the filter can be described using l and l, which are zeros and
poles of the transfer function H respectively. For values of z in the region
|z| = 1, known as the unit circle, the transfer function can be expressed as a
function of a single real variable, , by defining z = ej . This corresponds to
the Discrete-Time Fourier Transform (DTFT).

Structure Identification

The structure of the filter has been identified to minimize the required
HW resources. In particular, a Coupled-All Pass structure has been adopted,
in which the number of the required multipliers and registers is equal to the
order of the filter. A comparison with other well-known filter structures is
shown in Table III.3, in which N is the order of the filter. The comparison
shows that the Couple All-Pass structure requires about N multipliers less,
and about N adders more than the other two structures. Since a multiplier
requires much more resources than an adder, the Coupled All-Pass form is
the most convenient structure in terms of required resources. The scheme of
a Coupled All-Pass filter is represented in Figure III.2.

Table III.3 Required HW resources for different filter structures.

Filter Structure #Mult #Reg #Adders
II Direct Form

Transposed
2N+1 2N+1 2N

Cascaded Form 2N+1 2N+1 2N
Coupled All-Pass N N 3N+2

 Orientation Estimation in Inertial Sensors

 51

Figure III.2 Coupled All-Pass realization of G(z) and its power
complementary function H(z).

Coupled All-Pass filters

A Coupled All-Pass filter is based on the concept of power
complementary property of the transfer functions (Vaidyanathan, 1986).
Consider the following transfer function:

 (46)

In (46), assume that P(z) is symmetric, i.e. pk = pN k. If G(z) is either a
high-pass or low-pass Butterworth, Chebyshev, or elliptic filter, and if the
has odd order, it can be expressed as the sum of two all-pass transfer
function A1(z) and A2(z):

 (47)

Also, we can define the transfer function H(z) as:

 (48)

The two transfer functions G(z) and H(z) are power complementary, that
is:

 (49)

In the same way as G(z), H(z) can be written as:

1 (1)
0 1 1

1 (1)
0 1 1

...()
()

() ...

N N
N N

N N
N N

q q z q z q zQ z
H z

D z d d z d z d z
 (50)

In (50), Q(z) is symmetric, i.e. qk = qN k. The equations (47) and (48) are
represented by the scheme in Figure III.2. The all-pass transfer functions can
be easily identified using the following method: if 0, 1, , N, are the poles

Chapter III

52

of G(z), and if they are ordered so that , the odd-indexed

poles belong to A2(z), while the even-indexed poles and the zero-indexed
poles belong to A1(z). Also, thanks to the power complementary property, if
G(z) is a low-pass transfer function, then H(z) is a high-pass filter function,
and vice versa. Moreover, the power complementary property guarantees
that the two transfer functions have the same cutoff frequency. Based on the
above, the problem of identifying the structure for the desired filter is
converted to the problem of identifying the structures of the all-pass filters.
Whatever filter structure, in principle, could be used for this purpose.
However, to minimize the required hardware resources and obtain the
advantages shown in Table III.3, the two pair extraction approach
(Vaidyanathan, 1986) has been used. This approach is described in the
following. Consider an mth all-pass transfer function:

 (51)

In an all-pass transfer function, the coefficients in the numerator are the
same coefficients of the denominator but with the opposite order. From (51),
it is possible to obtain an (m 1)th all-pass transfer function using the
following relationship:

 (52)

where:

 (53)

Thus, Am(z) can be obtained from (52):

 (54)

At this point, a two pair can be considered, i.e. a discrete-time Linear
Time-Invariant (LTI) system with two inputs and two outputs. Say X1, X2 the
inputs and Y1, Y2 the outputs, and assume that X2 = AY2, as represented in
XXX. It can be shown that the behavior of such a system can be described
by the equations:

 (55)

 Orientation Estimation in Inertial Sensors

 53

Defining V1 = km(X1 z 1X2), the equations in (55) can be rewritten as:

 (56)

In the end, the mth order all-pass transfer function, Am(z), has been
represented as a function of the (m 1)th order all-pass transfer function,
Am 1(z), as depicted in Figure III.4. In Figure III.5, the structure that
implements the equations (55) is shown.

Figure III.3 Schematic representation of a two-pair with a constraint on the
second port.

Figure III.4 Two pair representation of Am(z).

Figure III.5 Realization of the two-pair using a single multiplier.

The procedure described above can be repeated recursively until the all-

pass function A0(z) is realized. As a result, Am(z) is realized using m all-pass
cascaded cells as shown in Figure III.6. From Figure III.6, it is evident that
using the two-pair extraction approach, the realization of an mth order all-

Chapter III

54

pass filter requires m registers and m multipliers. Since the realization of an
Nth order coupled all-pass filter requires two all-pass filters, whose orders
sum up to N, the realization of the whole filter requires N registers and N
multipliers, according to Table III.3.

Figure III.6 Realization of an mth order all-pass filter using the two-pair
extraction approach, in which the two-pair is realized using a single
multiplier.

Filter Design

Starting from the specifications in Table III.2, the filter has been
implemented using a Coupled All-Pass structure. However, the
implementation of a Coupled All-Pass filter requires the order to be odd,
while the order specified in Table III.2 is even (and equal to 4). This
problem has been addressed by changing the order to 5. The modified
specifications are reported in Table III.4.

Table III.4 Filter specifications for a coupled all-pass implementation.

Filter Response Frequency Behavior f 3dB Order fc
IIR Butterworth High-pass 0.4 Hz 5 25 Hz

The frequency response has been approximated using fdatool, a tool

available in MATLAB for the design of filters. Using the specifications in
Table III.4, the following transfer function has been obtained:

(57)

In Figure III.7, the amplitude of the transfer function is represented as a
function of the normalized frequency (with respect to the sampling
frequency).

 Orientation Estimation in Inertial Sensors

 55

Figure III.7 Ideal frequency response of the filter; the frequency response
around the normalized cutoff frequency is shown in detail.

Sizing the wordlength

The original SW model performed the filtering operation using a FP
double-precision (64-bit) encoding but, in order to minimize the area
occupation and the power consumption of the proposed HW solution, the
filter has been implemented using a Fixed-Point encoding. However, the
resolution of a FP encoding is much lower than the resolution of a FI one.
Thus, using a FI encoding, an error is introduced in the representation of the
filter coefficients. As a consequence, also poles and zeros of the filter
experience variations with respect to their theoretical value, and in the worst-
case scenario the filter could become unstable. In Figure III.8, the
comparison between the ideal frequency response of the high-pass Coupled
All-Pass filter and the quantized ones is shown. The frequency response
obtained with a FP 64-bit encoding can be considered as the ideal one.
Decreasing the number of bits used to represent the coefficients from 32 to
20, the difference becomes larger. By carrying out the same analysis for the
low-pass frequency response, analogous results have been obtained (Figure
III.9). The filter is stable for all the considered word-length. Based on this
analysis, a 24-bit FI encoding has been chosen to represent the coefficients.
In this case, for both the high-pass and the low-pass frequency responses, the
cutoff frequency has an error of the 0.19%, which can be considered
negligible.

Using (53), the coefficients k1, , k5 for the Coupled All-Pass filter have
been obtained, which scheme is represented in Figure III.10.

Chapter III

56

Figure III.8 Comparison between the high-pass frequency response
obtained using filter coefficients represented in FP 64-bit encoding (H-
FL64), assumed as the ideal frequency response, and the high-pass
frequency responses obtained using filter coefficients represented in FI 32-
bit (H-FI32), FI 28-bit (H-FI28), FI 24-bit (H-FI24), FI 20-bit (H-FI20).
The filter is realized using a Coupled All-Pass structure.

Figure III.9 Comparison between the high-pass frequency response
obtained using filter coefficients represented in FP 64-bit encoding (H-
FL64), assumed as the ideal frequency response, and the high-pass
frequency responses obtained using filter coefficients represented in FI 32-
bit (H-FI32), FI 28-bit (H-FI28), FI 24-bit (H-FI24), FI 20-bit (H-FI20).
The filter is realized using a Coupled All-Pass structure.

 Orientation Estimation in Inertial Sensors

 57

Figure III.10 Realization of the filter using a Coupled All-Pass structure.

III.3.2 Vector Rotation Stage

The operations performed during the vector rotation stage aim to obtain a
vector representation of the measured acceleration in a coordinate system
where the z-axis has the same direction as the gravity vector. As depicted in
Figure III.1, the tri-axial accelerometer defines the DCS as S = {x, y, z},
while gravity defines the WCS as T = {xt, yt, zt}. When the sensor lies in a
plane parallel to the ground surface, the overlap between S and T occurs. In
all the other cases, acceleration data from the sensor are expressed by three
coordinates in S. The three associated coordinates in T are computed during
the vector rotation stage. In geometric terms, T is obtained through a rotation
of S around the rotation axis u by an angle , where u and are defined in
terms of the gravity vector g as follows:

 (57)

 (58)

Rotation algorithms

The mathematical operation performed in the vector rotation stage is a 3D
rotation. The first step in the signal processing definition has been to identify
the most suitable rotation algorithm. Four approaches are mainly used in the
literature for vector orientation recalculation (Kok, 2017), (Janota, 2015): the

Chapter III

58

Euler angles, which express the rotation of a vector in the space as three
consecutive rotations around coordinate axes; the rotation matrix, which is
calculated from the Euler angles but it is often preferred to them because of
singularities, as happens in the work of Wu et al. (2016) for attitude
estimation; ro (Dai,
2015), which expresses the rotation between two coordinate frames in terms
of an angle and a unit vector around which the rotation takes place, as in the
work of Ginting et al. (2018) for the attitude control of a quadrotor; the unit
quaternions, which use an alternative 4-dimensional representation of the
orientation to avoid the gimbal lock issue of Euler angles (Kok, 2017), as in
the paper by Emokpae et al. (2018) for the estimation of finger orientations
in a smart glove for rehabilitation therapy. It is worth noting that all the
above approaches describe the same quantities and, hence, can be used
interchangeably. Regardless of the specific issues, the differences between
them are essentially in the computational effort to process raw data from the
sensors.

Proposed rotation algorithm

All these techniques require a large number of arithmetical operations
and they also involve the computation of trigonometric functions, divisions,
and square roots. Thus, a new hardware-friendly algorithm has been
developed which aims to define a modular calculation scheme. Modularity
allows identifying a minimum set of operations per cycle to carry out the
entire GR operation. Therefore, a very reduced set of operations can be
identified, and, taking advantage of the very low sample rate (25 Hz) of the
LIS2DW12 accelerometer, many cycles can be executed before a new
sample is acquired.

The proposed algorithm assumes that is defined by , namely:

 (59)

To obtain , must rotate in the same way as . To this end, can be
expressed as:

 (60)

where is the component of parallel to , and is the component

of perpendicular to . Finally:

 Orientation Estimation in Inertial Sensors

 59

 (61)

where (59) has been redefined as for convenience. The

WCS, T, is completely defined by (59)-(61). So, the components of the
acceleration vector in T, (vxr, vyr, vzr), can be obtained by projecting the
acceleration vector in S, v = (vx, vy, vz), onto {xt, yt, zt}:

, ,xr t yr t zr tv v x v v y v v z (62)

In Figure III.11 a block diagram of the derived algorithm is represented,
where the divisions in (59)-(61) have been grouped as a unique final step. In
this way, the scheme reveals a repetition pattern: 2 or 3 parallel
multiplications are followed by either a sum or two cascaded sums. This
pattern can be used as a basic building block to implement the entire scheme.
To this purpose, (59)-(61) must be rewritten in terms of de-normalized
vectors:

 (63)

 (64)

 (65)

As a consequence, also (62) must be rewritten as:

 (66)

In Table III.5, the computational effort of many rotation techniques has
been compared with the proposed one in terms of the number of additions,
multiplications, and additional mathematical functions required to process a
generic rotation, starting from raw data provided by a tri-axial
accelerometer.

Chapter III

60

Figure III.11 Proposed calculation scheme for the vector rotation stage.

Table III.5 Comparison of the number of operations and functions required
to perform a reference frame transformation between the proposed
algorithms and state-of-the-art methods.

Method Type of functions #Add #Mult #Func

Euler angles
arctg, div, sqrt, sin,

cos
12 27 13

Rodrigues
rotation formula

Arcsin, div, sqrt, sin,
cos

18 27 7

Quaternions
Arcsin, div, sqrt, sin,

cos
32 54 9

Proposed sqrt, div 13 25 4

Square root algorithm

The circuit for the reference frame rotation has been implemented with
both a FP and a Fixed-Point (FI) architecture. In each case, two different
algorithms have been developed to perform the square root and division
operations.

FP square root has been implemented by using the Taylor series
expansion. Considering that the standard 32-bit floating-point coding (FP32)
has been used (IEEE, 2019), the square root of a number n can be expressed
as:

 (67)

 Orientation Estimation in Inertial Sensors

 61

where ex is the exponent and significand is the significand for the FP
number n. The significand can be approximated using the Taylor series. To
keep the error below the precision of the significand (2 23 = 1.19×10 7), the
square root function has been expanded around 11 different points using a
third-order Taylor series. For the exponent, a division by two must be
performed. If the exponent is an even number a right shift is performed,
otherwise the exponent is decreased by 1, right-shifted by 1, and then

multiplied by .
FI square root has been implemented by using the Taylor series

expansion too. During GR, such operation is only used to calculate the norm

of the gravity vector, , from the square of the norm of the gravity vector,

. Since values are represented as a multiple of the acceleration due to

gravity, the following assumption can be made:

 (68)

where is the variation around the nominal value . Based on (68),

the following equality has been exploited:

 (69)

where r is the radicand, x is the variation around 1, and x0 is the point
around which the series is calculated. In particular, the square root function
has been approximated using a third-order Taylor series. To keep the error
below the precision of the adopted fixed-point encoding (= 2 16), the
function has been expanded around 10 different points over the range
[0.8, 6]. In Figure III.12 the approximation error is represented. As one may
notice, the range is not symmetrical about 1. In fact, for r values lower than
0.8, the curve becomes too steep, and too many points would be required to
keep the error below . However, because of the low frequency associated
with the human motion acceleration signal, the low-frequency component
resulting from the filtering operation may be affected by significant
fluctuations around the nominal value, based on the value of the cutoff

frequency of the filter. For values lower than 1, this can cause to go out

of the range [0.8, 6]. To address this problem, the radicand is multiplied by 4
when its value is lower than 0.8, then the square root operation is performed,
and the result is divided by 2. This allows expanding the range to [0.2, 6],
and gives more flexibility for the use of this technique compared to the
cutoff frequency of the filter. Moreover, the multiplication by 4 and the
division by 2 can be easily performed through shifting operations.

Chapter III

62

Figure III.12 Approximation error in square root function computation
using a third-order Taylor series expansion over the range [0.8, 6]. The

function has been expanded around 10 points: { 0.12, 0, 0.28,
0.60, 0.93, 1.30, 1.80, 2.53, 3.42, 4.50}.

Division algorithm

For both FP and FI encoding, the division algorithm is based on a
conventional restoring algorithm (Richards, 1956). Nevertheless, some
differences exist between the two cases. In the FP case, the restoring division
algorithm needs to be applied to the significands only, and the division
operation is completed by subtracting the exponents. In the FI case, the
restoring algorithm can be applied to the two operands directly. However, to
avoid the problem of starting the division process, the reciprocal value of the
divisor is calculated through a restoring division algorithm, and the resulting
value is then multiplied by the dividend.

Sizing the wordlength

In this section, the impact of reduced precision due to the use of fixed-
point encoding is shown. The rotation algorithm has been tested on 70
datasets. Each dataset is composed of the acceleration data acquired by a
LIS2DW12 tri-axial accelerometer and is associated with one of the
following activities: stationary, walking, running, biking, and driving. Five
different word-lengths have been investigated, which are 16-, 20-, 24-, 28-,
and 32-bits. To represent the integer part 8 bits have been used to guarantee
that no overflow occurs during the GR operation, while the remaining part is
associated with the fractional part.

Using MATLAB, the input data have been converted to fixed-point using
the fi function, while the behavior of the fixed-point arithmetic circuits has
been emulated using the setfimath function. To evaluate the impact of the

 Orientation Estimation in Inertial Sensors

 63

reduced precision, an ANN, composed of 5 layers, has been fed with fixed-
point outputs from the vector rotation stage. The resulting predictions from
the ANN have been compared with the predictions obtained using floating-
point double-precision GR outputs (as required by the original model). In
Figure III.13, the maximum error rate is shown for each activity and each
word-length. The error rate experiences a very significant reduction when
increasing the word-length from 16-bits to 20-bits and from 20-bits to 24-
bits, but this reduction starts to slow down when further increasing the
number of bits. Thus, a 24-bit fixed-point encoding has been chosen to
implement the vector rotation stage. It should be noticed that this choice
allows using the same number of bits both in the filtering and the vector
rotation stages. This will be later exploited in the HW design, by using a
sharing circuitry for the filtering and the vector rotation operations.

Figure III.13 Maximum predictions error rate when an ANN is fed with
fixed-point results from the vector rotation stage. Predictions obtained when
the ANN is fed with floating-point double-precision outputs are taken as
reference.

Chapter III

64

Chapter IV
Hybrid Binary Neural Network

A new NN model has been studied to classify human activities. The
model has been named Hybrid Binary Neural Network (HBN) because it
exploits the low complexity of BNNs, but it uses non-binarized output
activations for some layers in order to preserve accuracy compared to a 32-
bit FP implementation. The HBN has been built and tested in Lasagne
(Lasagne, 2018), which is a lightweight library to build and train neural
networks. A custom dataset and 2 public datasets have been used to train and
test the HBN. The custom dataset has been created by the System Research
and Application group in STMicroelectronics, Agrate Brianza, Italy. Five
activities were performed during the data collection, i.e. standing, walking,
running, biking, and driving. The dataset is composed of 1,443,958 samples
for training and 922,287 for testing. The public datasets that have been used
are PAMAP2 and SHL, which have been described in paragraph II.5.

IV.1 Proposed HAR systems

The HBN has been used to perform the HAR task. Considering that
inertial sensors usually embed both an accelerometer and a gyroscope, three
possible configurations for the HAR system have been proposed and tested:

1. In the first configuration, the input comes from a 3-axis
accelerometer only. Data is pre-processed using the algorithm
proposed in paragraph III.3 before being classified by the HBN.
The system is represented in Figure IV.1. Pre-processing
operations aim to remove the uncertainties due to the unknown
orientation of the sensor.

2. In the second configuration, the input comes from a 3-axis
accelerometer only, and raw data is classified by the HBN
without any pre-processing operations. The system is represented
in Figure IV.2. This is the solution that requires the lowest
number of resources among the proposed ones.

Chapter IV

66

3. In the third configuration, the input comes from a 3-axis
accelerometer and a 3-axis gyroscope. No data pre-processing is
performed. The system is represented in Figure IV.3. In this case,
higher accuracy can be expected because more information is
provided as input. However, it should be noticed that higher
resources and power consumption has to be expected as well.
Indeed, 6 input channels are used as input for the HBN, against
the 3 input channels used in configurations 1 and 2. Also,
gyroscopes usually have higher power consumption than
accelerometers. As an example, the current absorption of the
accelerometer in the iNEMO inertial module
(STMicroelectronics, 2018), produced by STMicroelectronics, is
170 A in high-performance mode. When using both the
accelerometer and the gyroscope in high-performance mode, the
current absorption increases to 550 A.

The details of each configuration are summarized in Table IV.1.

Figure IV.1 Configuration 1 for the proposed HAR system. The input comes
from a 3-axis accelerometer only. Data is pre-processed to remove the
uncertainties due to the unknown orientation of the sensor. The classification
is achieved by the HBN model.

Figure IV.2 Configuration 2 for the proposed HAR system. The input comes
from a 3-axis accelerometer only. No pre-processing operations are
performed. The classification is achieved by the HBN model.

 Hybrid Binary Neural Network

 67

Figure IV.3 Configuration 3 for the proposed HAR system. The input comes
from a 3-axis accelerometer and a 3-axis gyroscope. No pre-processing
operations are performed. The classification is achieved by the HBN model.

Table IV.1 Summary of the 3 configurations for the proposed HAR systems.

Configuration Input Pre-Processing
1 3-axis acc Yes
2 3-axis acc No
3 3-axis acc + 3-axis gyro No

IV.2 Hybrid Binary Neural Network architecture

The HBN is a CNN composed of two CONV layers and two FC layers,

For the layers whose output activations are binarized, the activation function
is the sign function in (26). For the remaining layers, the activation function
is the ReLU function in (21). The block diagram of the HBN model is shown
in Figure IV.4, where 3 input channels and 5 classes are assumed. The inputs
of the HBN are the components of the acceleration vector, pre-processed as
shown in the following. An input window of 24 samples has been
considered. Four sequential stages can be identified. The first stage is made
up of a CONV layer and a normalization layer. The CONV layer applies a
set of 8 filters (each one represents a channel) with length 5 on the signal,
thus producing 8 different outputs per axis. In the normalization layer, each
sample is scaled by a factor p and a mean value m is subtracted. Values for p
and m are learned during the training phase. In the first stage, the output
activations are binarized. The second stage is made up of a CONV layer and
a Max-Pool layer. In this case, the input activations are composed of 8
channels that have been binarized considering that most of the operations are
performed in this stage (Table IV.2 and Table IV.3). As for the first stage,
each axis is processed separately. The CONV layer applies a set of 8 filters
of size 8×5, while the Max-Pooling has size 4×1. Successively the ReLU
activation function is applied. The structure of the third stage is similar to the
first one, but in place of the CONV layer, there is a FC layer made up of 64
neurons. Even though weights are binarized, parameters needed for this
stage require most of the memory size (Table IV.2 and Table IV.3). The last

Chapter IV

68

stage of the HBN is made up of a FC layer and a SoftMax classifier. The
output of this last stage represents the probability of belonging to each class,
therefore the number of units of the fully connected corresponds to the
number of classes considered. Thus, the number of neurons in the last layer
has been modified according to the dataset used to train and test the HBN.
The complexity of the HBN is summarized in Table IV.2 and Table IV.3 in
terms of memory required to store parameters and the number of operations
to be performed. In particular, data in Table IV.2 reports the complexity of
the HBN in configurations 1 and 2, when a single 3-axis accelerometer is
used as input. Instead, data in Table IV.3 reports the complexity of the HBN
in configurations 3, when a 3-axis accelerometer and a 3-axis gyroscope are
used as input. In the latter case, the memory required to store parameters and
the number of operations per sample are is 1.75 and 1.94 times higher,
respectively.

Figure IV.4 Architecture of the exploited HBN. The (Binarization) label
indicates where binarization occurs for the output activations. A 16-bits
fixed-point format is assumed as input.

Table IV.2 Complexity of the proposed HBN model. Data refer to
configuration 1 and configuration 2, i.e. when data from a single 3-axis
accelerometer are provided as input. 5 output classes are assumed.

Layer
Output
shape

Parameters
[bytes]

Number of
parameters

Op. per
sample

Type of op.

Conv1 20×3×8 5 40 2400 16b Add
Norm1 20×3×8 16 16 480 16b Add
Conv2 16×3×8 40 320 15360 1b Add
Max Pool 4×3×8 0 0 576 16 Add + Comp
FC1 64 768 6144 6144 16b Add
Norm2 64 128 128 64 16b Add
FC2 5 40 320 320 1b Add

Total: 1021 6968 25736

 Hybrid Binary Neural Network

 69

Table IV.3 Complexity of the proposed HBN model. Data refer to
configuration 3, i.e. when data from a single 3-axis accelerometer and a 3-
axis gyroscope are provided as input. 5 output classes are assumed.

Layer
Output
shape

Parameters
[bytes]

Number of
parameters

Op. per
sample

Type of op.

Conv1 20×6×8 5 40 2400 16b Add
Norm1 20×6×8 16 16 480 16b Add
Conv2 16×6×8 40 320 15360 1b Add
Max Pool 4×6×8 0 0 576 16 Add + Comp
FC1 64 1536 12288 6144 16b Add
Norm2 64 128 128 64 16b Add
FC2 5 40 320 320 1b Add

Total: 1789 13112 49920

IV.3 Accuracy performance of the proposed HAR systems

IV.3.1 Training settings

The 3 configurations for the proposed HAR systems have been tested to
measure the accuracy in the classification of human activities. To do so, the
HBN has been trained and the following training settings and
hyperparameters have been used:

 Optimization method: Adam (Kingma, 2015)
 Loss function: squared hinge loss
 Number of epochs: 30
 Batch size: 100
 Learning rate: from 3×10 3 to 3×10 7

The mathematical expression of the squared hinge loss is the following:

 (70)

where is the predicted value and y is either 1 or 1. Also, the learning
rate is not constant, but it decreases with a constant decay factor that is
obtained by the following formula:

 (71)

where lr_end is the learning rate at the end of the training process, i.e.
during the last epoch, lr_start is the learning rate at the beginning of the
training process, i.e. during the first epoch, and num_epochs is the number of

Chapter IV

70

epochs specified for the training process. Considering the above
hyperparameters, the learning rate decay is equal to 0.736.

IV.3.2 Accuracy on PAMAP2 dataset

The public dataset PAMAP2 (Reiss, 2012) has been used to test the
proposed HAR system. The dataset is described in paragraph II.5.1 It
provides data from 9 users performing 12 standard human activities. The
accuracy performance has been evaluated in 2 different conditions:

1. In the first case, the accuracy of the HAR system has been tested
in classifying 5 human activities (standing, walking, running,
cycling, rope jumping) among the 12 activities provided in
PAMAP2.

2. In the second case, the accuracy of the HAR system has been
evaluated in classifying all 12 activities provided by the
PAMAP2 dataset.

In both cases, k-fold cross-validation with k = 5 has been performed to
measure accuracy. Also, 3 different sensor positions can be chosen in the
PAMAP2 dataset, and 2 different accelerometer ranges can be selected. In
total 6 different combinations of sensor positions and accelerometer ranges
have been considered for both case 1 and case 2. These are specified in
Table IV.4.

Table IV.4 Possible combinations between sensor position and
accelerometer range in the PAMAP2 dataset.

ID Sensor Position Acc range
ankle16g ankle ±16g
ankle6g ankle ±6g
hand16g hand ±16g
hand6g hand ±6g
chest16g chest ±16g
chest6g chest ±6g

Accuracy Performance on 5 classes

In Figure IV.5, the accuracy performance of the proposed HAR system is
graphed for each combination listed in Table IV.4 and for each configuration
of the proposed HAR system. The numerical values are provided in Table
IV.5. Results show that the best accuracy is always obtained with
configuration 3 when both accelerometer and gyroscope are used. The
highest accuracy, 99.94%, is obtained for the chest6g combination. By
comparing configurations 1 and 2, it turns out that pre-processing operations
allow increasing the accuracy at the ankle and hand positions, whereas no

 Hybrid Binary Neural Network

 71

improvement is obtained at the chest position. This behavior can be
explained by considering that no rotational movements are experienced by
the sensor when it is located at the chest of the user, whereas they are present
at the hand and ankle locations.

Accuracy Performance on 12 classes

The same evaluation performed on 5 classes has been repeated on all 12
classes provided in the PAMAP2 dataset. The accuracy performance is
graphed in Figure IV.6, whereas the numerical values of the accuracy are
provided in Table IV.6. In this case, only configurations 2 and 3 have been
considered because the preprocessing operations in configuration 1 would
have made indistinguishable some activities. In particular, when
transforming the acceleration measurements from the DCS to the WCS,
activities such as lying, sitting, and standing would have been
indistinguishable. Even in this case, the best accuracy is always obtained
with configuration 3, and the highest accuracy, 70.99%, is obtained for the
chest6g combination.

IV.3.3 Accuracy Performance on the SHL dataset

The public dataset SHL (Ciliberto, 2017) has been also used to test the
proposed HAR system. The dataset is described in paragraph II.5.2. It was
by 3 users engaging in 8 different modes of transportation. The accuracy
performance has been evaluated in 2 different conditions:

1. In the first case, the accuracy of the HAR system has been tested
in classifying 5 modes (car, walk, run, bike, still) among the 8
ones provided in SHL.

2. In the second case, the accuracy of the HAR system has been
evaluated in classifying all 8 transportation modes provided by
the SHL dataset.

In both cases, k-fold cross-validation with k = 5 has been performed to
measure accuracy. Also, 4 different sensor positions can be chosen in the
SHL dataset, i.e. Bag, Hand, Hips, and Torso.

Accuracy Performance on 5 classes

In Figure IV.7, the accuracy performance of the proposed HAR system is
graphed for each sensor position and each configuration of the proposed
HAR system. The numerical values of accuracy are provided in Table IV.7.
As for the PAMAP2 dataset, results show that the best accuracy is always
obtained with configuration 3, except for the Torso position where
configuration 2 gives slightly higher accuracy. However, the difference is
only 0.21 percentage points, which can be attributed to random variations.
To prove that, the capacity of the proposed HAR system has been measured.

Chapter IV

72

For this experiment, the dataset has not been split between the training and
testing dataset, whereas the same data has been used both during training and
testing. This allows getting the maximum achievable accuracy because the
system is tested on the same data used for training.

Results are graphed in Figure IV.8 and they show again that the best
configuration in terms of accuracy is always configuration 3. The numerical
values of capacity are provided in Table IV.8. The highest values of
accuracy and capacity are 98.73% and 98.82%, respectively, and they are
both obtained with configuration 3 at the Bag position. By comparing
configurations 1 and 2, it turns out that pre-processing operations allow
increasing the accuracy only at the Hand position. This result reinforces the
argument that pre-processing operations are not useful when no rotational
movements are experienced by the sensor, as it happens for the Bag, Hips,
and Torso positions.

Accuracy Performance on 8 classes

The same evaluation performed on 5 classes has been repeated on all 8
classes provided in the SHL dataset. The accuracy performance is graphed in
Figure IV.9, whereas the numerical values of the accuracy are provided in
Table IV.9. Even in this case, the capacity of the proposed HAR system has
been measured as well. The capacity is graphed in Figure IV.10, whereas the
numerical values are provided in Table IV.10. The highest values of
accuracy and capacity are 97.33% and 97.50%, respectively, and they are
both obtained with configuration 3 at the Bag position, as for the case of 5
classes.

IV.3.4 Accuracy on custom dataset

The proposed HAR system has been also tested on a custom dataset. Data
were collected with a 3-axis accelerometer. Five activities were performed
during the data collection, i.e. standing, walking, running, biking, and
driving. The dataset is composed of 1,443,958 samples for training and
922,287 for testing. In this case, only configurations 1 and 2 have been
tested, due to the absence of data from a 3-axis gyroscope. Also, k-fold cross
validation has not been performed because data were already packed in .pkl
files. The results show an accuracy of 97.46% for configuration 1, while the
accuracy of 93.60% is achieved with configuration 2.

 Hybrid Binary Neural Network

 73

Figure IV.5 Graph of the accuracy of the 3 configurations for the proposed
HAR system on 5 classes from the PAMAP2 dataset. All combinations of
sensor position and accelerometer range are considered.

Table IV.5 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 5 classes from the PAMAP2 dataset. All
combinations of sensor position and accelerometer range are considered.

Combination Conf 1 Conf 2 Conf 3
ankle16g 98.33% 97.78% 99.56%
ankle6g 99.64% 98.46% 99.55%
hand16g 99.57% 97.87% 99.78%
hand6g 99.52% 98.78% 99.76%
chest16g 96.97% 98.42% 99.93%
chest6g 98.15% 98.32% 99.94%

Chapter IV

74

Figure IV.6 Graph of the accuracy of the proposed HAR system
(configurations 2 and 3 are considered) on 12 classes from the PAMAP2
dataset. All combinations of sensor position and accelerometer range are
considered.

Table IV.6 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 12 classes from the PAMAP2 dataset. All
combinations of sensor position and accelerometer range are considered.

Combination Conf 1 Conf 2 Conf 3
ankle16g - 54.31% 63.95%
ankle6g - 54.57% 64.77%
hand16g - 54.25% 67.92%
hand6g - 57.01% 67.90%
chest16g - 56.08% 70.01%
chest6g - 58.08% 70.99%

 Hybrid Binary Neural Network

 75

Figure IV.7 Graph of the accuracy of the 3 configurations for the proposed
HAR system on 5 classes from the SHL dataset. All sensor positions are
considered.

Figure IV.8 Graph of the capacity of the 3 configurations for the proposed
HAR system on 5 classes from the SHL dataset. All sensor positions are
considered.

Chapter IV

76

Figure IV.9 Graph of the accuracy of the 3 configurations for the proposed
HAR system on all 8 classes from the SHL dataset. All sensor positions are
considered.

Figure IV.10 Graph of the capacity of the 3 configurations for the proposed
HAR system on all 8 classes from the SHL dataset. All sensor positions are
considered.

 Hybrid Binary Neural Network

 77

Table IV.7 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on 5 classes from the SHL dataset. All sensor
positions are considered.

Position Conf 1 Conf 2 Conf 3
Bag 92.47% 98.22% 98.73%
Hand 88.89% 88.25% 93.54%
Hips 89.84% 98.07% 98.15%
Torso 87.77% 96.51% 96.30%

Table IV.8 Numerical values of the capacity of the 3 configurations for the
proposed HAR system on 5 classes from the SHL dataset. All sensor
positions are considered.

Position Conf 1 Conf 2 Conf 3
Bag 94.02% 98.42% 98.82%
Hand 89.70% 89.34% 94.35%
Hips 93.57% 97.98% 98.49%
Torso 91.08% 96.39% 97.18%

Table IV.9 Numerical values of the accuracy of the 3 configurations for the
proposed HAR system on all 8 classes from the SHL dataset. All sensor
positions are considered.

Position Conf 1 Conf 2 Conf 3
Bag 72.28% 92.49% 97.33%
Hand 66.06% 78.23% 82.28%
Hips 71.39% 85.16% 90.86%
Torso 64.63% 64.63% 78.43%

Table IV.10 Numerical values of the capacity of the 3 configurations for the
proposed HAR system on all 8 classes from the SHL dataset. All sensor
positions are considered.

Position Conf 1 Conf 2 Conf 3
Bag 71.90% 94.78% 97.50%
Hand 65.92% 77.46% 82.49%
Hips 72.41% 87.21% 93.41%
Torso 68.98% 78.60% 79.48%

IV.3.5 Summary of the accuracy performance results

Summing up all the results presented in the previous paragraphs, it turns
out that the best configuration in terms of accuracy performance is always

Chapter IV

78

Conf3. Also, pre-processing operations are convenient only for sensor
positions that are affected by significant rotations during human activities,
such as the ankle or the hand.

In Table IV.11 and Table IV.12 a summary of all the presented results is
reported.

Table IV.11 Summary of the accuracy performance for the PAMAP2 and
the SHL dataset. Both the best configuration and the best sensor position are
reported for each dataset.

Dataset #classes
Best

Configuration
Best

Position
Accuracy

PAMAP2 5 Conf 3 Chest 99.94%
PAMAP2 12 Conf 3 Chest 70.99%
SHL 5 Conf 3 Bag 98.73%
SHL 8 Conf 3 Bag 97.33%

Table IV.12 Summary of the accuracy performance for the PAMAP2 and
the SHL dataset. Both the worst configuration and the worst sensor position
are reported for each dataset.

Dataset #classes
Worst

Configuration
Worst

Position
Accuracy

PAMAP2 5 Conf 1 Chest 96.97%
PAMAP2 12 Conf 2 Hand 54.25%
SHL 5 Conf 1 Torso 87.77%
SHL 8 Conf 1 Torso 64.63%

Chapter V
HW accelerator design

During the last part of this research activity, a custom HW accelerator for
the HAR system proposed in paragraph IV.1 has been designed. The
architecture has been designed to be compliant with the specifications of an
ultra-low power smart sensor. Thus, ultra-low power consumption and a
small footprint are mandatory. A custom HW architecture has been designed
to implement the reference frame transformation from the DCS to the WCS,
i.e. the pre-processing operations required in the system represented in
Figure IV.1. This custom HW architecture is the pre-processing module in
the overall HW accelerator. It should be noticed that the pre-processing
module allows implementing both the filtering stage and the vector rotation
stage. Then, a custom HW architecture has been also designed to execute the
HBN model, which is the HBN accelerator.

All the HW architectures that have been designed have been both
implemented with FPGA and synthesized with CMOS standard cells. A
Xilinx Artix-7 (xc7a35tfgg484-1) FPGA (Xilinx, 2020) has been used for
the FPGA implementation, and the Xilinx Vivado toolchain has been used to
design and simulate the circuit. The Cadence toolchain has been used to
design and simulate the CMOS standard cells implementation: Cadence
Genus has been used to synthesize the design, Cadence NCSIM has been
used to simulate the design, and Cadence Joules has been used to estimate
the power consumption at the RTL level. To increase the accuracy of the
power estimation, Value Change Dump (VCD) files have been extracted
from post-synthesis simulations using Standard Delay Format (SDF) files.

Also, a FPGA-based demo board has been developed to prove the real-
time operation of the proposed HAR system.

V.1 Pre-processing module

The pre-processing module is the custom HW architecture that executes
the pre-processing operations. As explained in paragraph III.3, the pre-
processing operations can be divided into two stages: the filtering stage and

Chapter V

80

the vector rotation stage. Considering the very low sampling frequency
associated with HAR systems, the main contribution to the power
consumption is given by leakage power. Thus, the main criterion in the
design of the HW circuitry has been to reduce the number of required
resources, i.e. the area of the circuit. In the following, it will be shown that a
shared reconfigurable architecture has been designed to execute both the
filtering stage and the vector rotation stage.

V.1.1 Gravity Rotation Unit

HW module description

The architecture designed to implement the reference frame
transformation is schematized in Figure V.1. The core is the Gravity
Rotation Unit (GRU), which implements the repetition pattern described in
paragraph III.3.2. An iterative structure has been implemented, which allows
reducing the mapped resources and, hence, the overall power density, at the
cost of multicycle processing. This approach makes use of the reduced
bandwidth of typical human activities, which allows lowering timing and
keeping power consumption low. Furthermore, all the partial results are
stored in distributed registers, avoiding the energy-consuming write/read
operations associated with SRAMs or external DRAMs, typically required in
general-purpose microcontrollers and processors. Inputs to the GRU, namely
the vectors (gx, gy, gz, vx, vy, vz) or the outputs fed back through a bank of
registers, are simply selected by a MUX. Each output feeds a shift register
made up of 4 Flip-Flops (FFs), which allows storing partial results from
previous cycles. Outputs from each register, in turn, are provided as inputs to
the MUX. Each new input requires a certain number of cycles to be
processed. Since an onerous pipeline structure has been avoided, a 6-bit
counter is used to manage the MUX. Three divisors complete the
normalization step (66), while the initial square root circuitry is embedded
into the GRU module, schematized in Figure V.2. The GRU is composed of
three multipliers operating in parallel, two cascaded adder/subtractors, and
three multiplexers. The module operates on the inputs i1-i6 and provides
three outputs at each cycle, which can be alternatively taken from the outputs
of multipliers and adders. During the processing, the six inputs assume the
values in Table V.1, which refer to the equations presented in
paragraph III.3. In the table, ox_y ox (with
x = {1, 2, 3}) taken y cycles before the current one (with y = {1, 2, 3, 4}).
The operations of GRU require 18 iterations, 8 of which (3 to 10) are
devoted to the square root for the norm calculation.

 HW accelerator design

 81

Table V.1 Sequence of GRU operations.

cnt Inputs Outputs
 i1 i2 i3 i4 i5 i6 o1 o2 o3

1 gx gx gy gy gz gz a2 m2 a1
2 gx gx gy gy gz gz a2 m2 a1
3

Square root calculation to compute the norm of the gravity
vector

10
11 -gx

2 gz gz gy -gygx 1 m1 m2 m3
12 o2_1 -gx o3_1 g g gy

2 a1 a2 -
13 gx gxy

2 o1_1 gy o2_1 -gx m1 a1 -
14 o1_1 gx o1_2 -gz - - a1 - -
15 o1_3 gz o1_2 -gz - - a1 - -
16 vx o1_4 vy o2_4 vz o1_3 a2 - -
17 vx o1_2 vy o1_3 vz o2_4 a2 - -
18 vx -gx vy -gy vz -gz a2 - -

Differences between FP and FI implementations

Despite Figure V.1 and Figure V.2 describe well the architecture for both
the FP case and the FI case, some differences must be taken into account.

In the FP architecture, the multipliers are 32-bit Booth multipliers, while
the adders are 32-bit carry-ripple adders. The final divisions require 27
additional cycles, leading to 45 overall cycles to complete the processing.
Therefore, if the accelerometer frequency is set to fs = 25 Hz, the lower limit
for the clock frequency is 45×fs = 45×25 Hz = 1125 Hz.

In the FI architecture, the multipliers are 24-bit Booth multipliers, while
the adders are 24-bit carry ripple adders. This choice is justified by the word-
length sizing described in paragraph III.3.2. In this case, to further reduce the
area occupation, and, hence, the power dissipation due to leakage, the
multipliers have been implemented in an iterative fashion. Each multiplier is
made up of a Booth cell only, and 12 cycles are required to carry out the
multiplication. To synchronize the multipliers with the operation of the
whole architecture, a dedicated clock signal (clk_mult) has been used, whose
frequency is 12 times higher than the frequency of the general clock signal
(clk). The final divisions require 23 additional cycles, leading to 41 overall
cycles to complete the processing. Therefore, if the accelerometer frequency
is set to fs = 25 Hz, the lower limit for the main clock frequency is
41×fs = 41×25 Hz = 1025 Hz. Then, the lower limit for the frequency of the
clk_mult signal is 12.3 kHz.

Chapter V

82

Figure V.1 Block diagram of the HW module used to execute the reference
frame transformation from DCS to WCS. The core of the HW module is the
Gravity Rotation Unit (GRU).

Figure V.2 Block diagram of the Gravity Rotation Unit. The module is made
up of 3 multipliers, 2 adders, and MUXs to properly manage the dataflow.

Results

The proposed design has been implemented on the Xilinx
xc7z020clg484-1 FPGA to test its functionalities and synthesized in TSMC
65 nm CMOS technology for both the FP case and the FI case. The main
results are reported in Table V.2. The absence of comparisons with
alternative designs is justified by the absence in the literature of HW designs
with the same characteristics of low power consumption and reduced
occupied area.

In the FP case, most of the resources (6460 LUTs = 75.2% of the overall
resources) are required by the GRU. In turn, each multiplier occupies about
20% of the GRU. The remaining 2134 LUTs are mainly used by the divisors.
Results from the synthesis in 65 nm CMOS technology report an area
occupation of 0.05 mm2 and power consumption of about 1.7 when the
clock frequency is set to 1.125 kHz and clock gating is enabled. Thus,
energy per cycle is 1.5 nJ, while energy per GR operation is 68 nJ. For low

 HW accelerator design

 83

power aims, technology is the limiting factor since about 60% of the power
consumption is due to leakages, although low-leakage libraries and devices
with a High Voltage Threshold (HVT) have been used. Output values from
the implemented design have been compared with the expected results from
the test model. The comparison reveals a maximum error of 4×10-6 in the
significand representation. This little discrepancy is justified by the
propagation of the FP32 representation error during the 45 clock cycles
needed to complete the elaboration of a sample. To verify the irrelevancy of
this error, the neural network has been tested using the output values from
the circuits. The test has shown that results perfectly match up with the
predictions obtained in the test model.

Table V.2 Comparison between FP and FI implementation of the HW
architecture to execute the reference frame rotation operation. Results from
both the FPGA implementation and the CMOS standard cell synthesis are
reported.

 Floating-Point (32-bit) Fixed-Point (24-bit)
 FPGA CMOS 65 nm FPGA CMOS 65 nm
Dynamic
power [mW]

< 1 1.7 10-3 <1 0.89 10-3

Static power
[mW]

104 0.68 10-3 104 0.26 10-3

Total power
[mW] 104 1.02 10-3 104 0.63 10-3

#LUTs 8594 - 2760 -
#FFs 1285 - 1305 -
Area [mm2] - 0.05 - 0.024

In the FI case, a significant amount of resources is required to implement

the dividers, which use about 45% of the LUTs. Despite the GRU is the core
unit of the proposed accelerator, it requires 28% of the LUTs only. This is
achieved thanks to the iterative implementation of the multipliers. The
remaining resources are needed to implement the glue logic, i.e. the input
MUX. The FPGA implementation shows that the delay associated with the
critical path is 15.417 ns for clk_mult intra-clock paths, while it is 28.380 ns
for clk intra-clock paths. Thus, the maximum operating frequency for the
clk_mult signal is 64.86 MHz. As a consequence, the maximum operating
frequency for the clk signal is 5.40 MHz, which is much higher than the
specified lower limit. Results from the synthesis in 65 nm CMOS technology
report an area occupation of 0.024 mm2 and a dissipated power of about
0.89 clk) frequency is set to 1.025 kHz. Thus,
the energy per clock cycle is 0.87 nJ, while energy per GR operation is
35.6 nJ. For low power aims, technology is the limiting factor since more

Chapter V

84

than 70% of the dissipated power is due to leakages, although low-leakage
libraries and devices with a HVT have been used. The results show a 2×
reduction compared to the FP implementation both in area occupation and
power consumption, with minimum impact on the overall accuracy of the
system.

V.1.2 Filter stage circuitry

Coupled-All pass filter realization

As shown in Figure III.6, a highly regular structure is obtained when all-
pass filters are realized through the two-pair extraction approach. This
allows obtaining an iterative implementation of the filter, in which the same
fundamental cell (see Figure III.5) is re-used a number of times equal to the
order of the filter. Based on this method, a Coupled All-Pass filter also can
be implemented in an iterative fashion. Considering what has been explained
in paragraph III.3.1, the same fundamental cell can be used to emulate A1(z)
first and then A2(z). Considering Figure V.3, first, the cells I, II, and III of the
filter A1(z), and then the cells IV and V of the filter A2(z) are emulated using
the fundamental all-pass cell. Lastly, cell VI is emulated using the same
fundamental cell in which only the adder is used. How the all-pass
fundamental cell must be used is described by the following equations:

 (72)

Figure V.3 Realization of the filter using a Coupled All-Pass structure and
iterating on an All-pass fundamental cell. The latter is detailed in the dark
black box in the upper right corner of the figure. Each used cell is identified
with a Roman numeral.

 HW accelerator design

 85

Re-using the Gravity Rotation Unit resources

Noting that V1 is required for the computation of both Y1 and Y2, the
circuitry for its calculation is implemented once but its result is used to
calculate Y1 and Y2 in two consecutive cycles. The scheme representing the
computation of V1 is represented in Figure V.4, while the scheme for the
computation of Y1 and Y2 is represented in Figure V.5. In both cases, the
scheme can be realized using part of the GRU described earlier. In the end,
the whole fundamental cell can be realized using part of the circuitry of the
GRU, as shown in Figure V.6.

Having used an iterative implementation, 12 cycles are needed to process
a single sample from the accelerometer. However, the accelerometer
provides three outputs in parallel, each related to a different axis. As a
consequence, in order to process the three samples, 36 total cycles are
needed. If the sampling frequency of the 3-axis accelerometer is 25 Hz, the
minimum allowable clock frequency for the filter is 36×25 Hz, which is
900 Hz.

Figure V.4 (a) Scheme for the calculation of V1 and (b) part of the GRU
needed to implement the scheme.

Figure V.5 (a) Scheme for the calculation of Y1, Y2 and (b) part of the GRU
needed to implement the scheme.

Chapter V

86

Figure V.6 (a) Fundamental all-pass cell, (b) HW implementation for its
realization, and (c) the corresponding part of the GRU needed to implement
the scheme.

V.1.3 Pre-processing module architecture

As shown in the previous paragraph, the filtering stage and the vector
rotation stage can be implemented using a shared circuitry. This allows
obtaining filtering
mode GR mode configurability is obtained through
multiplexers (MUXs) that allow proper routing of the signals. To minimize
the power consumption of the architecture, FI 24-bit coding has been used.
The scheme of the designed reconfigurable architecture is shown in Figure
V.7, where the MUXs in black are the ones that allow switching from one
mode to another. Using this scheme, 36 cycles are required to filter the input
samples from the ADC of the sensor (from sensor in the figure). Then, the
GR operation requires 34 cycles, where the last 18 cycles are needed to
perform the normalizations in (66). Considering that the divisions are
implemented through a dedicated circuitry, only the first 16 cycles of the GR
operation need to be serialized with the 36 cycles of the filtering operation,
while the remaining 18 cycles can be run in parallel. Thus, the total number
of cycles required to perform the whole pre-processing pipe is 52. If the
sampling frequency of the accelerometer is 25 Hz, the minimum allowable
clock frequency for the design in Figure V.7 is 25×52 Hz = 1.3 kHz
(12×1.3 kHz = 15.6 kHz for the clk_mult signal).

The design in Figure V.7 has been synthesized using Cadence in TSMC
65 nm CMOS technology. The results are summarized in Table V.3. The
power consumption has been estimated at 15.6 kHz.

 HW accelerator design

 87

Figure V.7 Block diagram of the HW architecture which implements the
overall preprocessing module.

Table V.3 Synthesis results of the pre-processing module.

Technology
Dynamic

power [uW]
Leakage

power [uW]
Total power

[uW]
Area

[mm2]
65 nm HVT 0.45 0.81 1.26 0.030

V.2 HBN accelerator

A custom HW accelerator to execute the HBN model proposed in
paragraph IV.2 has been designed as well. Generally, Two aspects are
critical in the HW implementation of ANNs: the large number of arithmetic
operators and the allocation of a large amount of memory for storing weights
and partial results, as well as the power dissipation related to the numerous
memory accesses (Sze, 2017). In the proposed implementation, weight
binarization has reduced the MAC operations to simple ADD/SUB
operations, namely each CONV layer calculates the following quantities:

 (72)

where wi and xi are the weights and the inputs to a certain neuron,
respectively, and b is the bias. Since the energy cost of data read/write
operations from off-chip memories can be up to 200× higher than on-chip
data transfer (Sze, 2017), an effort has been done to use only on-chip
memories.

V.2.1 Architecture of the HBN accelerator

Two designs of the HNN accelerator are proposed. The first one is the
FIFO-based design, where memories have been implemented by using

Chapter V

88

distributed FIFOs and RAM has been completely avoided. A second version
is the RAM-based design, which uses RAM to store weights and biases,
while FIFOs continue to be used to store the output activations. The choice
to present both solutions derive from the need to find different optimal
area/power trade-off in different utilization scenarios. Auxiliary circuitry of
sensors, indeed, are equipped with a very limited amount of RAM, which
could be insufficient for the HAR operations, and compel to use FIFOs. In
turn, FIFOs permit higher operation frequencies than RAM, and the
associated dynamic power scale up with a lower slope than RAM. This
makes FIFOs convenient for higher frequencies applications. On the
contrary, RAM could be a convenient choice for target platforms such as
FPGA, which could advantage of distributed memories and the lower power
dissipation for data transfers, due to the locality of data. The block diagram
of both HBN designs is shown in Figure V.8. The architecture exploits 3
cores since this is the minimum number of cores that can process in parallel
the 3 components of the pre-processed acceleration. In Figure V.9 and
Figure V.11, the architectures of the cores of the FIFO-based and the RAM-
based HNN accelerator are detailed. Thanks to weight binarization, the
processing element (PE) is a 3-levels adder tree that uses 16-bits FI
arithmetic in both cases. The first level of the adder tree is made up of 3
adders so that a dot product between vectors of length 5 can be performed in
one cycle, and a bias or a result from the previous cycle can be summed up
as well.

Figure V.8 Block diagram of the proposed HBN accelerator. The RAM
module is present in the RAM-based design only. The structure of the cores
is different for the two versions.

Another aspect of the proposed design is scalability. If higher throughput

were required by the target application, the number of cores can be increased
with a very low design effort. Indeed, the strategy of storing the model
weights locally in each core mitigates the bandwidth-related issues that
normally would arise when scaling up the design (Chen, 2019). Thus, we can
expect that the performance varies linearly with the number of cores. For

 HW accelerator design

 89

example, by doubling the number of cores we can expect a doubling of
power, area, and throughput.

Architecture of the cores in the FIFO-based HBN accelerator

The block diagram of each core in the FIFO-based HBN accelerator is
shown in Figure V.9 In the FIFO-based design, each core embeds 800 bytes
of FIFO memories in which weights, biases, and partial results are stored.
Each core locally stores all the parameters needed to run the model. Also,
output activations from CONV layers are locally reused in each core. Thus,
the emory hierarchy, where there is
no need to execute high-cost access operations to higher levels in a memory
hierarchy. To make this possible, FIFOs must be initialized during the
system start-up by an external data stream. Successively, FIFOs work as a
circular buffer, carefully managed by a Control Unit (CU). In particular, in
the design in Figure V.9, the FIFO_w structures store the weights of the
model, whereas the FIFO_b structures store the biases. The structure of the
circular FIFOs is represented in Figure V.10 for both the FIFO_w and the
FIFO_b structures. At the startup of the system, the CU sets the LDP

signal to 1 so that FIFOs are loaded with the parameters of the model by an
external stream of data. During the normal operation of the systems, the CU
sets the LDP signal to 0, so that, each time that a parameter is read and used,
it is sent back to the first element of the FIFO. By doing so, there is no need
to access a higher memory hierarchy level to re-load the parameters.

As shown in Figure V.9, two different
are needed in each core and used when the circuit implements a CONV layer
or a FC layer, respectively. Indeed, CONV layers must be processed 16
times to get new input for the FC layers. Thus, considering that in FIFO
structures we cannot have random accesses to the memory locations, we
should have had to swipe all the weights of the CONV and the FC layers
even when the latter would have not been useful. This would have been a
drawback for the design because the number of weights of the FC layers
requires 77% of the total memory required to store the network parameters,
as reported in Table IV.2. In particular, considering that each weight in the
HBN is represented by a single bit and that each CONV layer has a filter
with dimension proportional to 5 (5 or 5×8), FIFOs for CONV layers have
dimensions 80×5 bits, which corresponds to 50 bytes, while those for FC
layers are 608x5 bits, which corresponds to 380 bytes. The same applies to

ith FI 16-bits, FIFOs
require 16×16 bits (32 bytes) and 64×16 bits (128 bytes), respectively.

output FIFO is divided into up to 5 blocks, in order to provide up to 5
different output activations in parallel to the PE, designed to perform a dot
product between vectors of length 5 in one cycle. In Figure V.9, the 3

Chapter V

90

CONV layer and the Max-Pool layer, respectively. Each axis is processed
separately in CONV layers, thus the memory for the output activations is
locally associated with each core. As shown in Figure V.8, a unique external
FIFO memory is also used to store the output activations of the first FC
layer, since in this case, all the input activations from the previous layer
cannot be separated. Considering that the scheme in Figure V.8 iteratively
implements all the layers of the HBN, the complex signal routing is managed
by the devoted CU, which in turn has been implemented with a Finite State
Machine (FSM) having a state for each layer.

Figure V.9 Block diagram of a core in the FIFO-based design. In this case,
weights and biases are stored in FIFO memories locally. FIFO_w are the
FIFOs where weights are stored, whereas FIFO_b are the FIFOs where
biases are stored. Output activations from CONV layers are stored in
FIFO_o and are re-used locally in each core.

Figure V.10 Detail about the management of the circular FIFOs. At the
startup of the system, the CU sets the LDP signal to 1, and FIFOs are loaded
with parameters by an external stream of data. During normal operations,
the CU sets the LDP signal to 0 so that each parameter is sent back to the
first element of the FIFO after having been used.

 HW accelerator design

 91

Architecture of the core in the RAM-based HBN accelerator

The block diagram of each core in the RAM-based HBN accelerator is
shown in Figure V.11. In the RAM-based design, a RAM has been
instantiated to store weights and biases in place of FIFOs. The RAM is
external to the core, as represented in Figure V.8. This choice is
advantageous in terms of power dissipation since it avoids the data shifts that
FIFOs do at each read operation, although the highest advantage is obtained
with the availability of on-chip distributed RAM typical of FPGAs. The
cores of the RAM-based HNN accelerator in Figure V.11 have a similar
structure to the FIFO-based ones, but a RAM module of 31x696 bits, which
corresponds to 2.63 KB, reduces the FIFOs dimensions to 200 bytes. The
most significant 15 bits of each word of the RAM are used to store weights,
therefore again each core receives 5 binarized weights at each cycle. The
remaining 16 bits are used for the biases. The proposed architecture has been
prototyped with a Xilinx Artix-7 FPGA and, for ease of comparison also
with standard cells (std_cells) implementation. In the latter case, a larger
SRAM of 32x704 bits has been instantiated due to the limitations of the
memory compiler.

Figure V.11 Block diagram of a core in the FIFO-based design. In this case,
weights and biases are stored in a RAM, which is external and shared by
each core. Output activations from CONV layers are stored in FIFO_o and
are re-used locally in each core.

V.2.2 Architecture of the processing element

The Processing Element (PE) is made up of a 3-levels 16-bits fixed-point
adder-tree and the circuitry to implement the activation functions (sign
function (26) and ReLU (21)).

Chapter V

92

Adder Tree

Thanks to binarization multipliers are not required to process the layers in
the HBN. In layers where inputs and weights are both binarized, a XNOR-
popcount circuitry could have been used. However, this would have been an
additional circuitry, which would have required additional resources and,
hence, power. Thus, even for these layers, the processing is performed in the
PE by using the adder tree. Nevertheless, it must be considered that the sign
of o
by using the circuitry in Figure V.12 for the implementation of the adders in
the first level of the adder tree. The truth table for the signals s_A, s_S, C_in,
and RC is reported in Table V.4
binary) the result needs a further sum up of +1 to provide the correct results.
This is accomplished by propagating a carry bit (RC) to the next level of the
adder tree.

Figure V.12 Circuitry for the sign management for the first level of the
adder tree in the PE.

Table V.4 Signals for the sign management in the adder-tree.

Required
Operation
(weights)

s_A C_in s_S RC Result (S)

A+B (1, 1) 0 0 0 0 A+B
A B (1, 0) 1 0 1 0 A B

A+B (0, 1) 1 1 0 0 A+B
A B (0, 0) 0 0 1 1 A B 1

Non-linearities implementation

A small circuitry has been deployed in each core to evaluate the non-
linear functions, namely the ReLU function (21) and the sign function (26).
The circuitry is represented in Figure V.13. The result of both the ReLU
function and the sign function (used to implement the binarization) depends
on the sign of the input operand, which is the sign AT_RES . The sign is
deduced by looking at the Most Significant Bit (MSB). Thus, the multiplexer
M_ReLU implements the ReLU function by selecting between AT_RES

 HW accelerator design

 93

and 0 based on MSB(AT_RES) . Instead, the multiplexer M_BIN
implements the binarization by selecting between +

-bits fixed point coding, with an 8-bit fractional part)
based on MSB(AT_RES) . The signal s_NL is then used to select the
desired non-linearity, and the signal s_RES is used to choose if applying
the selected non-linearity or not. Finally, the non-linearities are simply
performed using MUXs.

Figure V.13 Block diagram of the circuitry for the implementation of ReLU
function and binarization.

V.3 Results

The performance of the HW accelerator, which consists of the pre-
processing module and the HBN accelerator, has been measured both with
FPGA and CMOS standard cells.

V.3.1 Results from FPGA implementation

In Table V.5, the results from the FPGA implementation are summarized
for both the FIFO-based and the RAM-based designs, and the proposed
design has been compared to state-of-the-art works (Jafari, 2019), (Gaikwad,
2019), which are oriented to custom HW implementation. The FPGA takes
advantage of the presence of RAM since the LUT utilization is reduced by
about 3% compared to the FIFO-based counterpart, namely from 31.7% to
28.8% of the total number of the available LUTs on the FPGA. Analogously,
the FF utilization is reduced by about 2.3% since 1017 FFs are used to store
weights and biases of the HBN. The maximum clock frequency for both
designs is 41 MHz, corresponding to a maximum Output Data Rate (ODR)

Chapter V

94

of the sensor of 3.2 kHz However, when the ODR of the sensor is set to
25 Hz, normally used in HAR systems, considering that 12600 clock cycles
are needed to process a data, the minimum clock frequency required for real-
time operation is 315 kHz, indicated as the operating frequency (OpFreq) in
Table V.5. At this frequency, considering that 16 input samples are required
to obtain a prediction, the delay (Delay@OpFreq) is equal to
16×(1/25 Hz) = 640 ms. As shown in Table V.5, the value is higher than the
ones obtained by Jafari et al. (2019) and Gaikwad et al. (2019). However,
this is justified by the higher operating frequencies used in those works,
which is not actually required in the proposed HAR system. However, if the
proposed FPGA implementation would work at its maximum frequency, the
delay will decrease to 5 ms, which is lower than the one achieved by Jafari et
al. (2019). The delay obtained by Gaikwad et al. (2019) is orders of
magnitude lower than the one achieved by the proposed solution. However,
this is justified by the execution of a simpler model that can only achieve
94.6% accuracy. In contrast, the proposed design can achieve 99.5%
accuracy (this result refers to the classification of 5 classes from the
PAMAP2 dataset by using configuration 1 and hand16g combination, Table
IV.5).

To estimate the power consumption, the power tool provided by Vivado
has been set up at a high level of confidence by using Switching Activity
Interchange Format (SAIF) files generated from post-implementation
simulations. The power estimation returns for both designs a total power
consumption of 72.04 mW at the OpFreq. This is almost all composed of
static power, equal to the quiescent power dissipation of the FPGA. Dynamic
power is under the sensitivity of the tool, which returns a generic <1 mW.
Therefore, for the FPGA implementation, there are no significant differences
between the two designs, and the RAM-based design could be preferred
since it takes advantage of the primitives of the FPGA, while LUTs and FFs
can be saved for other purposes. This should be considered in the economy
of the whole system both in terms of power consumption and area
occupation. A lower number of resources is required by our designs,
although we do not instantiate DSP modules in order to provide results that
are independent of the specific target platform, and for a fair comparison
with std_cell implementations. The total RAM requirement for our RAM-
based design is equivalent to 1 BRAM and 0 for the FIFO-based, while
Jafari et al. (2019) use a significant number of BRAMs. The power
consumption has been compared at the OpFreq of each system. The
proposed design shows a reduction of the power consumption of 37% and
70% compared to the one obtained by Jafari et al. (2019) and Gaikwad et al.
(2019) respectively. However, to make comparisons independent from the
OpFreq, the normalized dynamic power consumption has been compared,
where the proposed designs achieve a reduction of 70% compared to the
results obtained by Gaikwad et al. (2019).

 HW accelerator design

 95

Table V.5 Results from FPGA implementation of the proposed HW
accelerator. The HW accelerator is made up of the pre-processing module
and the HBN accelerator. The results are compared with state-of-the-art
solutions as well.

Proposed

FIFO-based
design

Proposed
RAM-based

design

Jafari et al.
(2019)

 Gaikwad et
al. (2019)

Platform Artix-7 Artix-7 Artix-7 Artix-7
Accuracy 99.5% 99.5% 98.0% 94.6%
Dynamic Power
[W/MHz]

137 134 460 N.A.

Static Power
[mW]

72 72 71 N.A.

Total Power @
OpFreq [mW]

72.04 72.04 116 241

#slices 2093 1856 982 N.A.
#LUTs 6601 5988 N.A. 3466
#FFs 5272 4299 N.A. 569
#DSPs 0 0 3 81
#BRAMs 0 1 14 0
Max Frequency
[MHz]

41 41 N.A. N.A.

Max Sensor ODR
[kHz]

3.2 3.2 N.A. N.A.

Delay@OpFreq
[ms]

640 640 14.8 2.7×10 4

Minimum Delay
[ms]

5 5 N.A. N.A.

Energy per
inference [mJ]

46 46 N.A. N.A.

V.3.2 Results from CMOS standard cells synthesis

In Table V.6, the results of synthesis with TSMC CMOS 90 nm std_cells
are summarized for both the FIFO-based and the RAM-based designs and
compared with the solution in the paper by Jafari et al. (2019), which only
presents ASIC results. The power consumption has been estimated by
extracting Value Change Dump (VCD) files from post-synthesis simulations
using Standard Delay Format (SDF) files. The power consumption has been
estimated using Cadence Joules. The dynamic power consumption of the
RAM-based design is 2.8 times higher compared to the FIFO-based design,
while the leakage power is 1.8 times lower. However, the dynamic power
consumption is negligible at the OpFreq. Therefore, despite the shifting of

Chapter V

96

the data in the FIFOs does not represent an issue for the dynamic power
consumption, the best solution to reduce the power consumption at the
considered frequencies is the RAM-based design. On the contrary, being the
memory distributed in the FIFO-based design, the maximum frequency is
1.6 times higher than the one of the RAM-based design. This could be
considered for applications in which a high throughput is the first
specification. Moreover, to verify the scaling capabilities and the actual
impact of leakages, the proposed design has been synthesized with TSMC
CMOS 65 nm low-power (LP) high-voltage-threshold (HVT). The HVT
feature allows to strongly reduce the leakage power, at the cost of reduced
speed. The results are reported in Table V.6. Unfortunately, the lack of a
memory compiler for the 65 nm technology prevented the possibility to
synthesize a RAM-based design with the more shrunk technology. Results
show that the power consumption is only 6.3 which is 3
orders of magnitude lower than the above results. Despite this, 86% of the
total power is leakage power. The overall area occupation is 0.20 mm2. A
detail of the various components of the design is shown in Figure V.14 and
Figure V.15. In Figure V.14, it is shown that most of the area is required for
the HNN accelerator module. In particular, each core occupies 26% of the
architecture, whereas the pre-processing module occupies 16% of the total
area. The remaining area is mainly used for the external FIFO (see Figure
V.8), the SIPO, and the CU. Also, in Figure V.15 the breakdown of the
various modules in each core is shown. 96.9% of the area occupation in each
core is due to FIFO memories, and only the remaining 3.1% is required to
implement the PE. In fact, thanks to weight binarization, the PE has been
implemented avoiding multipliers, whose implementation requires large and
power-hungry circuits. In Figure V.14 and Figure V.15, also a breakdown of
the power consumption has been reported. Considering that power
dissipation is mostly due to leakages, the power consumption breakdown
exactly follows the one of the area occupation. In Table V.6 the proposed
design has also been compared to one proposed by Jafari et al. (2019). To
have a fair comparison of power consumption, we have considered results at
the same throughput. In the work of Jafari et al. (2019) a throughput of 67
label/s is achieved at a clock frequency of 100 MHz. In the proposed
solution, 202k clock cycles are required to produce a label. Thus, a lower
clock frequency of (67×202k) Hz = 13.5 MHz is required to have a
throughput of 67 label/s. At this frequency, the FIFO-based design and the
RAM-based design dissipate 2.54 mW and 1.52 mW, which corresponds to a
reduction of 7.3 times and 12.2 times respectively compared to the power
consumption obtained by Jafari et al. (2019). The delay required to produce
a label and the area occupation of the proposed designs are almost the same
as the one obtained by Jafari et al. (2019). The maximum frequency
achieved by Jafari et al. (2019) is 5.4 times higher and 8.8 times higher than
the FIFO-based design and the RAM-based design, respectively. Despite

 HW accelerator design

 97

this, the proposed design is able to provide a 1.4 times higher throughput in
the case of the FIFO-based design.

It is interesting to note that the proposed design is not just competitive in
terms of total power consumption, but in terms of the dynamic one. Indeed,
the dynamic power consumption is up to 42 times lower than the one
achieved by Jafari et al. (2019). This suggests that the proposed design
might be reused for other applications as well, where higher throughput is
required.

Table V.6 Results from CMOS standard cell synthesis of the proposed HW
accelerator. The HW accelerator is made up of the pre-processing module
and the HBN accelerator. The results are compared with a state-of-the-art
solution as well.

Proposed FIFO-based

design

Proposed
RAM-based

design

Jafari et al.
(2019)

Technology
CMOS

65 nm LP
HVT

CMOS
90 nm GP

CMOS
90 nm GP

CMOS
65 nm

Dynamic Power
[W/MHz]

2.6 3.1 8.8 111

Leakage Power
[mW]

5.4×10 3 2.5 1.4 7.4

Total Power @
OpFreq [mW]

6.3×10 3 2.5 1.4 N.A.

Total Power @
67 labels/s [mW]

N.A. 2.54 1.52 18.5

Area [mm2] 0.20 0.36 0.39 0.40
Max Frequency
[MHz]

105 158 97 857

Max Throughput
[label/s]

N.A. 784 480 574

Energy [J] N.A. 38 23 274
Max Sensor ODR
[kHz]

8.7 12.5 7.7 N.A.

Chapter V

98

Figure V.14 Breakdown of the area occupation and the power consumption
of the various submodules of the proposed HW accelerator. All values refer
to the FIFO-based version for the HBN accelerator.

Figure V.15 Breakdown of the area occupation and the power consumption
of the components in a core of the FIFO-based HBN accelerator.

V.4 FPGA-based demo board

To prove the real-time operation of the proposed HW accelerator, this has
been deployed on an Artix-7 FPGA, and a FPGA-based demo board has
been realized. The HAR system prototype is shown in Figure V.16. A small
Digilent CMOD A7-35T has been used to implement the entire circuitry,
while the X-NUCLEO-IKS01A1 (STMicroelectonics, 2015), which mounts
the LSM6DSO IMU (STMicroelectronics, 2018), is used as the 3-axis

 HW accelerator design

 99

accelerometer. The STM32F411RE microcontroller is used to manage the
data transfer between IMU and FPGA and to display the processed results.
The internal 12 MHz clock of the FPGA board has been used to synchronize
the HW accelerator, while the microcontrollers used their own clock. Thus,
an asynchronous handshake protocol has been implemented with the
microcontroller to manage the data transfer between the FPGA-board and
the sensor. A dedicated CU has been implemented on the FPGA side to
manage the signals used to implement the data transfer. Also, the available
pins on the FPGA board were not enough to allow the transfer of all data at
the same time. Indeed, the proposed design is fed with data input from the 3-
axis accelerator, which sums up to 3×16 bits = 48 bits. The output of the HW
accelerator consists of 3×16 bits = 48 bits because each core provides a 16-
bit output. Also, additional pins are required for the implementation of the
handshake protocol, which in turn sum up to the 96 pins required for input
and output data. Thus, an input buffer and an output buffer have been
designed and implemented with the FPGA. The microcontroller sends the
input data by packing it 4-bits at once, which are progressively stored in the
input buffer on the FPGA. When the input buffer is full, data starts to be
elaborated by the HW accelerator. The results of the data processing are
stored in the output buffer, where they are packed 4-bits at once and sent to
the microcontroller. Thus, only 8 bits are required for the input and output
data.

Measurements on the CMOD board return a maximum current of about
100 mA in both cases, which is increased by the additional components of
the board.

Chapter V

100

Figure V.16 FPGA-based demo board. The scores for each one of the 5
classes and the consequent classification are printed to video in real-time.

Conclusions

In this work, an ultra-low power HAR system has been proposed. The

design has been carried out starting from the model to its HW
implementation. IS-HAR has been selected as a case study, where the input
data comes from inertial sensors.

A custom HW-friendly algorithm has been developed to solve the device-
orientation problem in 3-axis accelerometers. The algorithm has been used
as a possible pre-processing stage in the proposed system. The proposed
solution allows implementing filtering and vector rotation with a lower
number of arithmetic operators, avoiding complex trigonometric functions,
and reducing the number of normalization. The algorithm has been
implemented with Fixed-Point coding to reduce the number of required
resources. The word-length has been sized to obtain an optimal tradeoff
between the number of bits and precision, resulting in a 24-bit Fixed-Point
coding, where the 8 MSBs are the integer part.

Also, a new HBN model has been proposed to achieve the classification
of human activities. The HBN exploits the advantages of BNNs, but it brings
an improvement in terms of accuracy without affecting the size of the model.
Three different configurations have been proposed for the HAR system,
based on the types of input sensors and the presence of pre-processing
operations. The accuracy of the system has been measured for each
configuration, where the HBN has been trained with data from 2 public
datasets and 1 custom dataset. The results show an accuracy of up to 99% in
classifying 5 human activities. The pre-processing operations bring an
advantage in terms of accuracy only when the sensor is located at parts of
the body that are subject to relevant rotational movements, such as hand and
ankle.

A custom HW accelerator has been designed to implement both the pre-
processing operations and the HBN model. A pre-processing module has
been designed to implement the pre-processing operations. The architecture
can be configured to perform either filtering operations or vector rotation
operations. Then, the HBN accelerator has been designed to execute the
HBN model. It is made up of 3 cores, each one processing one axis of the
sensor individually. Two different versions of the design have been

102

investigated. The first version is the FIFO-based design, where weights and
biases are stored in FIFOs that are local to each core. The second version is
the RAM-based design, where weights and biases are stored in a shared
RAM. The results show that the RAM-based design allows achieving lower
power consumption but at the cost of a lower maximum frequency. The
proposed design has been both synthesized with CMOS standard cells and
implemented with FPGA. The results from synthesis with TSMC CMOS
65 nm LP-HVT standard cells show a power consumption of only 6.3 W,
which is orders of magnitude lower than the custom HW implementations
proposed in the literature. Also, the design has been implemented with
TSMC CMOS 90 nm GP standard cells, and also in this case the power
consumption is up to 12 times lower than state-of-the-art solutions.

The proposed HAR system has been also deployed on FPGA in order to
realize a demo board. The demo board has allowed showing the real-time
operation of the system.

In conclusion, during the Ph.D. project, the combination of reduced-
precision NN models and custom HW design has been widely investigated.
The results show that this allows integrating the classification stage in the
sensor node, thanks to a low area occupation and power consumption in the
order of tens of W. Also, some pre-processing features can be integrated as
well with low impact on the system performance. However, the advantage
introduced by the pre-processing operations should be assessed based on the
sensor position. Thus, the results from this Ph.D. project can be a starting
point for the industrial development of efficient AI-based edge computing
devices.

Considering that the maximum frequency of the proposed system is far
higher than the operating frequency, future works might aim to extend the
proposed design to other applications that require higher throughputs, such
as anomaly detection for industrial machines. Even in this case, inertial
sensors are used to sample data, but the sampling frequency is in the range of
tens of kHz rather than tens of Hz.

References

Abdi, H., Williams, L. J. (2010) Principal component analysis. In WIREs

Comp Stat, 2, pp. 433-459.
Doi: https://doi.org/10.1002/wics.101

Abobakr, A., Hossny, M., Nahavandi, S. (2018) A Skeleton-Free Fall
Detection System From Depth Images Using Random Decision Forest. In
IEEE Systems Journal, 12, pp. 2994-3005.
Doi: 10.1109/JSYST.2017.2780260

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J. L. (2012)

Human Activity Recognition on Smartphones Using a Multiclass Hardware-
Friendly Support Vector Machine. In Ambient Assisted Living and Home
Care, pp 216-223.
Doi: 10.1007/978-3-642-35395-6_30

Bankman, D., Yang, L., Moons, B., Verhelst, M., Murmann, B. (2018)

An always- -10 mixed-signal binary CNN processor
with all memory on chip in 28nm CMOS. In 2018 IEEE International Solid -
State Circuits Conference - (ISSCC), pp. 222-224.
Doi: 10.1109/ISSCC.2018.8310264

Banos, O., Galvez, J. M., Damas, M., Pomeras, H., Rojas, I. (2014)

Window Size Impact in Human Activity Recognition. In Sensors, 14, pp.
6474-6479.
Doi: 10.3390/s140406474

Bao, L., Intille, S. S. (2004) Activity Recognition from User-Annotated

Acceleration Data. In Pervasive Computing, pp. 1-17.
Doi: 10.1007/978-3-540-24646-6_1

Bengio, Y., Léonard, N., Courville, A. (2013) Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation
[Online]. Available at: https://arxiv.org/abs/1308.3432

104

Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M.,
De Munari, I. (2019) IoT Wearable Sensor and Deep Learning: An
Integrated Approach for Personalized Human Activity Recognition in a
Smart Home Environment, 6, pp. 8553-8562.
Doi: 10.1109/JIOT.2019.2920283

Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A. (2016) Enabling IoT

for In-Home Rehabilitation: Accelerometer Signals Classification Methods
for Activity and Movement Recognition. In IEEE Internet of Things Journal,
4, pp. 135-146.
Doi: 10.1109/JIOT.2016.2628938

Blanke, U., Schiele, B., Kreil, M., Lukowicz, P., Sick, B., Gruber, T.

(2010) All for one or one for all? Combining Heterogeneous Features for
Activity Spotting. In 2010 8th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops), pp. 18-
24.
Doi: 10.1109/PERCOMW.2010.5470597.

Blott, M., Preußer, T., Fraser, N. J., Gambardella, G., O brien, K.,

Umuroglu, Y., Leeser, M., Vissers, K. (2018) FINN-R: An End-to-End
Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks. In ACM Transactions on Reconfigurable Technology and
Systems, 11.
Doi: 10.1145/3242897

Bulling, A., Ward, J. A., Gellersen, H., Troster, G. (2011). Eye

Movement Analysis for Activity Recognition Using Electrooculography. In
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, pp.
741-754.
Doi: 10.1109/TPAMI.2010.86

Bulling, A., Blanke, U., Schiele, B. (2014) A tutorial on human activity

recognition using body-worn inertial sensors. In ACM Computing Surveys,
46.
Doi: 10.1145/2499621

Chen, L. L., Zhang, J., Zou, J. Z., Zhao, C. J., Wang, G. S. (2014) A

framework on wavelet-based nonlinear features and extreme learning
machine for epileptic seizure detection. In Biomedical Signal Processing and
Control, 10, pp 1-10.
Doi: 10.1016/j.bspc.2013.11.010

 References

 105

Chen, Y., Yang, T., Emer, J., Sze, V. (2019) Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices. In
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9,
pp. 292-308.
Doi: 10.1109/JETCAS.2019.2910232

Chinimilli, P. T., Redkar, S., Zhang, W. (2017) Human Activity
Recognition Using Inertial Measurement Units and Smart Shoes. In 2017
American Control Conference (ACC), pp. 1462-1467.
Doi: 10.23919/ACC.2017.7963159.

Cilibero, M., Ordonez Morales, F. J., Gjoreski, H., Roggen, D., Mekki,

S., Valentin, S. (2017) High reliability Android application for multidevice
multimodal mobile data acquisition and annotation. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems.
Doi: 10.1145/3131672.3136977

Cola, G., Avvenuti, M., Vecchio, A. (2017) Real-Time Identification

Using Gait Pattern Analysis on a Standalone Wearable Accelerometer. In
The Computer Journal, 60, pp. 1173-1186.
Doi: 10.1093/comjnl/bxw111

Courbariaux, M., Bengio, Y., David, J. P. (2015) BinaryConnect:

Training Deep Neural Networks with binary weights during propagations. In
Proceedings of the 28th International Conference on Neural Information
Processing Systems (NIPS), 2, pp. 3123-3131.
Doi: 10.5555/2969442.2969588

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y. (2016)

Binarized Neural Networks: Training Neural Networks with Weights and
Activations Constrained to +1 or 1 [Online]. Available at:
https://arxiv.org/abs/1602.02830

Cybenko, G. (1989) Approximation by superpositions of a sigmoidal

function. In Mathematics of Control, Signals and Systems, 2, pp. 303-314.
Doi: 10.1007/BF02551274

Dai, J. S. (2015) Euler Rodrigues formula variations, quaternion

conjugation and intrinsic connections. In Mechanism and Machine Theory,
92, pp. 144-152.
Doi: 10.1016/j.mechmachtheory.2015.03.004

106

David, J. P., Kalach, K., Tittley, N. (2007) Hardware Complexity of
Modular Multiplication and Exponentiation. In IEEE Transactions on
Computers, 56, pp. 1308-1319.
Doi: 10.1109/TC.2007.1084

De, P., Chatterjee, A., Rakshit, A. (2018) Recognition of Human
Behavior for Assisted Living Using Dictionary Learning Approach. In IEEE
Sensors Journal, 18, pp. 2434-2441.
Doi: 10.1109/JSEN.2017.2787616

Deng, J., Dong, W., Socher, R., Li, L. J., Kai, L., Fei-Fei, L. (2009)

ImageNet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248-255.
Doi: 10.1109/CVPR.2009.5206848.

Dinarevi , E. C., Husi , J. B., Barakovi , S. (2019) Step by Step Towards

Effective Human Activity Recognition: A Balance between Energy
Consumption and Latency in Health and Wellbeing Applications. In Sensors,
19, pp. 5206-5233.

Doi: 10.3390/s19235206

Emokpae, L. E., Emokpae, R. N., Emokpae, B. (2018) Flex Force Smart

Glove Prototype for Physical Therapy Rehabilitation. In 2018 IEEE
Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4.
Doi: 10.1109/BIOCAS.2018.8584774

Eskofier et al. (2016) Recent machine learning advancements in sensor-

based mobility analysis: Deep learning for Parkinson's disease assessment.
In 2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 655-658.
Doi: 10.1109/EMBC.2016.7590787

Finkelstein, A., Almog, U., Grobman, M. (2019) Fighting Quantization

Bias With Bias [Online]. Available at: https://arxiv.org/abs/1906.03193

Florentino-Liaño, V., O Mahony, N., Artés-Rodríguez, A. (2012) Human

activity recognition using inertial sensors with invariance to sensor
orientation. In 2012 3rd International Workshop on Cognitive Information
Processing (CIP), pp. 1-6.
Doi: 10.1109/CIP.2012.6232914

 References

 107

Fraser, N. J., Umuroglu, Y., Gambardella, G., Blott, M., Leong, P., Jahre,
M., Vissers, K. (2017) Scaling Binarized Neural Networks on
Reconfigurable Logic. In Proceedings of the 8th Workshop and 6th
Workshop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures and Design Tools and Architectures for
Multicore Embedded Computing Platforms, pp. 25-30.
Doi: 10.1145/3029580.3029586

Gaikwad, N. B., Tiwari, V., Keskar, A., Shivaprakash, N. C. (2019)
Efficient FPGA Implementation of Multilayer Perceptron for Real-Time
Human Activity Classification. In IEEE Access, 7, pp. 26696-26706.
Doi: 10.1109/ACCESS.2019.2900084

Gao, X., Luo, H., Wang, Q., Zhao, F., Ye, L., Zhang, Y. (2019) A Human
Activity Recognition Algorithm Based on Stacking Denoising Autoencoder
and LightGBM. In Sensors, 19, p. 947.
Doi: 10.3390/s19040947

Ghasemzadeh, M., Samragh, M., Koushanfar, F. (2018) ReBNet:

Residual Binarized Neural Network. In 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 57-64.
Doi: 10.1109/FCCM.2018.00018

Ginting, A., Wahyunggoro, O. (2018) Attitude Control of Quadrotor

Using PD Plus Feedforward controller on SO(3). In International Journal of
Electrical and Computer Engineering, 8, pp. 566-575.
Doi: 10.11591/ijece.v8i1.pp566-575

Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G. (2019) A survey of

deep learning techniques for autonomous driving. In Journal of Field
Robotics, 37, pp. 362-386.
Doi: 10.1002/rob.21918

Guo, P., Ma, H., Chen, R., Li, P., Xie, S., Wang, D. (2018) FBNA: A
Fully Binarized Neural Network Accelerator. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL), pp. 51-
513.
Doi: 10.1109/FPL.2018.00016

108

Hanai, Y., Hori, Y., Nishimura, J., Kuroda, T. (2009) A versatile
recognition processor employing Haar-like feature and cascaded classifier.
In 2009 IEEE International Solid-State Circuits Conference - Digest of
Technical Papers, pp. 148-149,149a.
Doi: 10.1109/ISSCC.2009.4977351

He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep Residual Learning for

Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778.
Doi: 10.1109/CVPR.2016.90

Hinton et al.(2012) Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups. In IEEE
Signal Processing Magazine, 29, pp. 82-97.
Doi: 10.1109/MSP.2012.2205597

Horowitz, M. (2014) Computing's energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC).
Doi: 10.1109/ISSCC.2014.6757323

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y. (2016)
Binarized neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS), pp. 4114
4122.
Doi: 10.5555/3157382.3157557

IEEE (2019) IEEE Standard for Floating-Point Arithmetic. In IEEE Std

754-2019 (Revision of IEEE 754-2008).
Doi: 10.1109/IEEESTD.2019.8766229.

Ioffe, S., Szegedy, C. (2015) Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, 37, pp. 448-456
[Online]. Available at: http://proceedings.mlr.press/v37/ioffe15.html

Jafari, A., Ganesan, A., Thalisetty, C. S. K., Sivasubramanian, V., Oates,

T., Mohsenin, T. (2019) SensorNet: A Scalable and Low-Power Deep
Convolutional Neural Network for Multimodal Data Classification. In IEEE
Transactions on Circuits and Systems I: Regular Papers, 66, pp. 274-287.
Doi: 10.1109/TCSI.2018.2848647

 References

 109

Janota, A., ák, V., Nemec, D., , J. (2015) Improving the
Precision and Speed of Euler Angles Computation from Low-Cost Rotation
Sensor Data. In Sensors, 15, pp. 7016-7039.
Doi: 10.3390/s150307016

Jiang, W., Yin, W. (2015) Human Activity Recognition Using Wearable

Sensors by Deep Convolutional Neural Networks. In Proceedings of the
23rd ACM international conference on Multimedia, pp. 1307-1310.
Doi: 10.1145/2733373.2806333

Jimenez, A. R., Seco, F. (2018) Multi-Event Naive Bayes Classifier for

Activity Recognition in the UCAmI Cup. In Proceedings, 2, p. 1264.
Doi: 10.3390/proceedings2191264

Jahn, A., Bachmann, M., Wenzel, P., David, K. (2017) Focus on the

User: A User Relative Coordinate System for Activity Detection. In
Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer
Science, 10257, pp 582-595.
Doi: 10.1007/978-3-319-57837-8_47

Kang, W. J., Shiu, J. R., Cheng, C. K., Lai, J. S., Tsao, H. W., Kuo, T. S.

(1995) The Application of Cepstral Coefficients and Maximum Likelihood
Method in EMG Pattern Recognition. In IEEE Transactions on Biomedical
Engineering, 42, pp. 777-785.
Doi: 10.1109/10.398638

Kingma, D. P., Ba, J. (2015) Adam: A Method for Stochastic

Optimization [Online]. Available at: https://arxiv.org/abs/1412.6980

Kodali, S., Hansen, P., Mulholland, N., Whatmough, P., Brooks, D., Wei,

G. Y. (2017) Applications of Deep Neural Networks for Ultra Low Power
IoT. In 2017 IEEE International Conference on Computer Design (ICCD),
pp. 589-592.
Doi: 10.1109/ICCD.2017.102.

Kok, M., Hol, J. D., Schön, T. B. (2017) Using Inertial Sensors for

Position and Orientation Estimation.
Doi: 10.1561/2000000094.

Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny

Images [Online]. Available at: https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf

110

Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012) ImageNet
classification with deep convolutional neural network. In Neural Information
and Processing Systems (NIPS) [online]. Available at:
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b
-Paper.pdf

Kunze, K., Barry, M., Heinz, E. A., Lukowicz, P., Majoe, D., Gutknecht,
J. (2006) Towards Recognizing Tai Chi - An Initial Experiment Using
Wearable Sensors. In 3rd International Forum on Applied Wearable
Computing 2006, pp. 1-6 [Online]. Available at:
https://ieeexplore.ieee.org/document/5758288

Lasagne (2018) lasagne Documentation [Online]. Available at:

https://lasagne.readthedocs.io/en/latest/user/tutorial.html

LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. In Nature,

521, pp. 436-444.
Doi: 10.1038/nature14539

Lester, J., Choudhury, T., Kern, N., Borriello, G. (2005) A Hybrid
Discriminative/Generative Approach for Modeling Human Activities. In
Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pp. 766-772 [Online]. Available at:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.5829&rep=r
ep1&type=pdf

Li, D., Zhao, D., Zhang, Q., Chen, Y. (2019) Reinforcement Learning

and Deep Learning Based Lateral Control for Autonomous Driving
[Application Notes]. In IEEE Computational Intelligence Magazine, 14, pp.
83-98.
Doi: 10.1109/MCI.2019.2901089

Li, Y., Liu, Z., Liu, W., Jiang, Y., Goh, W. L., Yu, H., Ren. F. (2019) A
34-FPS 698-GOP/s/W Binarized Deep Neural Network-Based Natural Scene
Text Interpretation Accelerator for Mobile Edge Computing. In IEEE
Transactions on Industrial Electronics, 66, pp. 7407-7416.
Doi: 10.1109/TIE.2018.2875643

Lin, X., Zhao, C., Pan, W. (2017) Towards Accurate Binary

Convolutional Neural Network. In Advances in Neural Information
Processing Systems, 30, pp. 345-353 [Online]. Available at:
https://papers.nips.cc/paper/2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5
-Abstract.html

 References

 111

McCarthy, J. (2007) What is Artificial Intelligence? [Online]. Available
at: http://jmc.stanford.edu/articles/whatisai.html

Mitra, S. K. (2000) Digital Signal Processing: A Computer Based

Approach. 2nd edn. New York: Mc-Graw Hill Education.

Mizell, D. (2003) Using Gravity to Estimate Accelerometer Orientation.

In Seventh IEEE International Symposium on Wearable Computers, 2003.
Proceedings, pp. 252-253.
Doi: 10.1109/ISWC.2003.1241424

Nakahara, H., Yonekawa, H., Sasao, T., Iwamoto, H., Motomura, M.

(2016) A memory-based realization of a binarized deep convolutional neural
network. In 2016 International Conference on Field-Programmable
Technology (FPT), pp. 277-280.
Doi: 10.1109/FPT.2016.7929552

Nakahara, H., Fujii, T., Sato, S. (2017) A fully connected layer
elimination for a binarizec convolutional neural network on an FPGA. In
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), pp. 1-4.
Doi: 10.23919/FPL.2017.8056771

Nassif, A. B., Shanin, I., Attili, I. (2019) Speech Recognition Using Deep

Neural Networks: A Systematic Review. In IEEE Access, 7, pp. 19143-
19165.
Doi: 10.1109/ACCESS.2019.2896880

Nicosia, A., Pau, D., Giacolone, D., Plebani, E., Bosco, A., Iacchetti, A.

(2018) Efficient light harvesting for accurate neural classification of human
activities. In 2018 IEEE International Conference on Consumer Electronics
(ICCE), pp. 1-4.
Doi: 10.1109/ICCE.2018.8326103.

Normani, N., Urru, A., Abraham, L., Walsh, M., Tedesco, S., Cenedese,

A., Susto, G. A., O Flynn, B. (2018) A Machine Learning Approach for
Gesture Recognition with a Lensless Smart Sensor System. In 2018 IEEE
15th International Conference on Wearable and Implantable Body Sensor
Networks (BSN), pp. 136-139.
Doi: 10.1109/BSN.2018.8329677

112

Ordóñez, F. J., Roggen, D. (2016) Deep Convolutional and LSTM
Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
In Sensors, 16, p. 115.
Doi: 10.3390/s16010115

Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, F. (2020)

Forward and Backward Information Retention for Accurate Binary Neural
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2250-2259 [Online]. Available at:
https://arxiv.org/abs/1909.10788

Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A. (2016) XNOR-Net:

ImageNet Classification Using Binary Convolutional Neural Networks. In
Computer Vision ECCV 2016.
Doi: 10.1007/978-3-319-46493-0_32

Rault, T., Bouadballah, A., Challal, Y., Marin, F. (2017) A survey of

energy-efficient context recognition systems using wearable sensors for
healthcare applications. In Pervasive and Mobile Computing, 37.
Doi: 10.1016/j.pmcj.2016.08.003

Ravi, N., Dandekar, N., Mysore, P., Littman, M. L. (2007) Activity

Recognition from Accelerometer Data. In Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, pp. 1541-1546
[Online]. Available at: https://www.aaai.org/Papers/IAAI/2005/IAAI05-
013.pdf

Reiss, A., Stricker, D. (2012) Introducing a New Benchmarked Dataset

for Activity Monitoring. In 2012 16th International Symposium on Wearable
Computers, pp. 108-109.
Doi: 10.1109/ISWC.2012.13

Richards, R. K. (1956) Arithmetic operations in digital computers. 4th pr.

Princeton: D. Van Nostrand Company Inc.

Simons, T., Lee, D. J. (2019) A Review of Binarized Neural Networks. In

Electronics, 8, p. 661.
Doi: 10.3390/electronics8060661

Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks

for Large-Scale Image Recognition [Online]. Available at:
https://arxiv.org/abs/1409.1556

 References

 113

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. (2014) Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. In Journal of Machine Learning Research, 15, pp. 1929-1958
[Online]. Available at: http://jmlr.org/papers/v15/srivastava14a.html

STMicroelectronics (2015) X-NUCLEO-IKS01A1 Motion MEMS and

environmental sensor expansion board for STM32 Nucleo [Online].
Available at: https://www.st.com/resource/en/datasheet/x-nucleo-iks01a1.pdf

STMicroelectronics (2018) iNEMO inertial module: always-on 3D

accelerometer and 3D gyroscope [Online]. Available at:
https://www.st.com/resource/en/datasheet/lsm6dsm.pdf

Sze, V., Chen, Y. H., Yang, T. J., Emer, J. S. (2017) Efficient Processing

of Deep Neural Networks: A Tutorial and Survey. In Proceedings of the
IEEE, 105, pp. 2295-2329.
Doi: 10.1109/JPROC.2017.2761740

Tompson, J., Jain, A., LeCun, Y., Bregler, C. (2014) Joint Training of a

Convolutional Network and a Graphical Model for Human Pose Estimation.
In Neural Information and Processing Systems (NIPS) [online]. Available at:
https://arxiv.org/abs/1406.2984

Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre,

M., Vissers, K. (2017) FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 65-74.
Doi: 10.1145/3020078.3021744

Ustev, Y. E., Incel, O. D., Ersoy, C. (2013) User, device and orientation

independent human activity recognition on mobile phones: challenges and a
proposal. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing, pp. 1427-1436.
Doi: 10.1145/2494091.2496039

Vaidyanathan, P., Mitra S. K., Neuvo, Y. (1986) A new approach to the

realization of low-sensitivity IIR digital filters. In IEEE Transactions on
Acoustics, Speech, and Signal Processing, 34, pp. 350-361.
Doi: 10.1109/TASSP.1986.1164829

114

Valavi, H., Ramadge, P. J., Nestler, E., Verma, N. (2018) A Mixed-
Signal Binarized Convolutional-Neural-Network Accelerator Integrating
Dense Weight Storage and Multiplication for Reduced Data Movement. In
2018 IEEE Symposium on VLSI Circuits, pp. 141-142.
Doi: 10.1109/VLSIC.2018.8502421

VanKasteren, T., Noulas, A., Englebienne, G., Krose, B. (2008) Accurate

activity recognition in a home setting. In Proceedings of the 10th
international conference on Ubiquitous computing, pp. 1-9.
Doi: 10.1145/1409635.1409637

Wu, Z., Sun, Z., Zhang, W., Chen, Q. (2016) A Novel Approach for

Attitude Estimation Based on MEMS Inertial Sensors Using Nonlinear
Complementary Filters. In IEEE Sensors Journal, 16, pp. 3856-3864.
Doi: 10.1109/JSEN.2016.2532909

Xian, Y., Rong, X., Yang, X., Tian, Y. (2017) Evaluation of Low-Level

Features for Real-World Surveillance Event Detection. In IEEE
Transactions on Circuits and Systems for Video Technology, 27, pp. 624-
634.
Doi: 10.1109/TCSVT.2016.2589838

Xilinx (2020) 7 Series FPGAs Data Sheet: Overview [Online]. Available

at:
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_
Overview.pdf

Yang, L., He, Z., Fan, D. (2018) A Fully Onchip Binarized Convolutional

Neural Network FPGA Impelmentation with Accurate Inference. In
Proceedings of the International Symposium on Low Power Electronics and
Design.
Doi: 10.1145/3218603.3218615

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., Hua, X.

(2019) Quantization Networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7300-7308.
Doi: 10.1109/CVPR.2019.00748

Yin, S., Ouyang, P., Zheng, S., Song, D., Li, X., Liu, L., Wei, S. (2018)

A 141 UW, 2.46 PJ/Neuron Binarized Convolutional Neural Network Based
Self-Learning Speech Recognition Processor in 28NM CMOS. In 2018
IEEE Symposium on VLSI Circuits, pp. 139-140.
Doi: 10.1109/VLSIC.2018.8502309

 References

 115

Yu, H., Cang, S., Wang, Y. (2016) A review of sensor selection, sensor
devices and sensor deployment for wearable sensor-based human activity
recognition systems. In 2016 10th International Conference on Software,
Knowledge, Information Management & Applications (SKIMA), pp. 250-
257.
Doi: 10.1109/SKIMA.2016.7916228

Zhang, L., Wu, X., Luo, D. (2015) Recognizing Human Activities from

Raw Accelerometer Data Using Deep Neural Networks. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA),
pp. 865-870.
Doi: 10.1109/ICMLA.2015.48

Zhang, D., Yang, J., Ye, D., Hua, G. (2018) LQ-Nets: Learned

Quantization for Highly Accurate and Compact Deep Neural Networks
[Online]. Available at: https://arxiv.org/abs/1807.10029

Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D. (2017) Convolutional neural

networks for time series classification. In Journal of Systems Engineering
and Electronics, 28, pp. 162-169.
Doi: 10.21629/JSEE.2017.01.18

Zhou, Y., Redkar, S., Huang, X. (2017) Deep learning binary neural
network on an FPGA. In 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 281-284.
Doi: 10.1109/MWSCAS.2017.8052915

Zinnen, A., Blanke, U., Schiele, B. (2009) An Analysis of Sensor-

Oriented vs. Model-Based Activity Recognition. In 2009 International
Symposium on Wearable Computers, pp. 93-100.
Doi: 10.1109/ISWC.2009.32.

Appendix A
Confusion Matrixes for the HBN

In this section, the confusion matrixes of the HBN model for all the

results presented in paragraphs IV.3.2 and IV.3.3 are detailed. The results
have been obtained with k-fold cross-validation, with k = 5. Thus, for each
combination of configuration and position, all 5 confusion matrixed are
reported.

Confusion matrixes for 5 classes on the PAMAP2 dataset

In this paragraph, the confusion matrixes obtained when testing the HBN
model to classify 5 activities for the PAMAP2 dataset are reported. In the
following, the list of the human activities used in this paragraph is specified:

1. stationary
2. walking
3. running
4. cycling
5. rope jumping

Conf 1 - 3D accelerometer (with pre-processing)

Position: ankle16g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.840 0.000 0.000 0.160
3 0.000 0.000 95.067 0.000 4.933
4 0.000 0.000 0.000 99.515 0.485
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.884%

 Appendix A

 117

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 91.852 0.000 8.148
4 0.516 0.065 0.065 98.839 0.516
5 0.000 0.138 0.069 0.000 99.793

Average Recall: 98.097%

Actual
class

Predicted class
1 2 3 4 5

1 99.931 0.000 0.000 0.069 0.000
2 0.000 99.812 0.000 0.000 0.188
3 0.000 0.000 97.357 0.000 2.643
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.420%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.923 0.000 0.077 0.000
3 0.000 0.000 90.960 0.000 9.040
4 0.000 0.000 0.000 98.160 1.840
5 0.000 0.207 0.138 0.000 99.655

Average Recall: 97.740%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 89.412 0.000 10.588
4 0.000 0.000 0.000 98.320 1.680
5 0.000 0.312 0.000 0.000 99.688

Average Recall: 97.484%

Mean Average Recall: 98.325%
Standard Deviation: 0.808

Position: ankle6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 1.130 0.000 98.609 0.261
5 0.000 0.000 0.067 0.000 99.933

Average Recall: 99.708%

118

Actual
class

Predicted class
1 2 3 4 5

1 99.951 0.000 0.000 0.049 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 99.923 0.000 0.077
4 0.065 0.000 0.000 98.452 1.484
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.665%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.929 0.000 0.000 0.071
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.188 0.000 99.812

Average Recall: 99.948%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.926 0.000 0.000 0.074
3 0.000 0.000 99.652 0.000 0.348
4 0.059 0.353 0.000 97.000 2.588
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.316%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.655 0.000 0.345 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.067 0.467 0.000 99.467 0.000
5 0.000 0.125 1.125 0.062 98.688

Average Recall: 99.562%

Mean Average Recall: 99.640%
Standard Deviation: 0.230

Position: hand16g

Actual
class

Predicted class
1 2 3 4 5

1 99.684 0.316 0.000 0.000 0.000
2 0.000 98.421 0.000 1.579 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.176 0.471 0.000 99.353 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.492%

 Appendix A

 119

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.357 99.214 0.000 0.286 0.143
3 0.000 0.000 100.000 0.000 0.000
4 0.095 1.429 0.000 98.476 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.538%

Actual
class

Predicted class
1 2 3 4 5

1 98.645 1.355 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 99.833 0.000 0.167
4 0.000 0.897 0.000 99.103 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.516%

Actual
class

Predicted class
1 2 3 4 5

1 99.938 0.062 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.500 0.562 0.000 98.938 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.775%

Actual
class

Predicted class
1 2 3 4 5

1 99.481 0.519 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.857 0.857 0.000 98.286 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.553%

Mean Average Recall: 99.575%
Standard Deviation: 0.114

Position: hand6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.080 99.920 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.324 0.486 0.000 99.189 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.822%

120

Actual
class

Predicted class
1 2 3 4 5

1 98.485 1.394 0.000 0.121 0.000
2 0.414 98.069 0.000 1.517 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.250 0.750 0.000 99.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.111%

Actual
class

Predicted class
1 2 3 4 5

1 99.714 0.286 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 99.862 0.000 0.138
4 0.000 0.722 0.000 99.278 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.771%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.421 99.579 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 2.190 0.286 0.000 97.524 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.421%

Actual
class

Predicted class
1 2 3 4 5

1 99.294 0.706 0.000 0.000 0.000
2 0.000 99.920 0.000 0.080 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.154 0.615 0.000 98.231 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.489%

Mean Average Recall: 99.522%
Standard Deviation: 0.288

Position: chest16g

Actual
class

Predicted class
1 2 3 4 5

1 98.667 0.000 0.000 1.333 0.000
2 0.000 95.655 0.000 4.345 0.000
3 0.000 0.000 99.929 0.000 0.071
4 0.083 0.000 0.000 99.917 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.834%

 Appendix A

 121

Actual
class

Predicted class
1 2 3 4 5

1 99.545 0.000 0.000 0.455 0.000
2 0.000 96.000 0.000 4.000 0.000
3 0.000 0.000 98.667 0.000 1.333
4 5.704 6.889 0.000 87.407 0.000
5 0.000 0.065 0.452 0.000 99.484

Average Recall: 96.221%

Actual
class

Predicted class
1 2 3 4 5

1 99.407 0.000 0.000 0.593 0.000
2 0.000 98.207 0.000 1.793 0.000
3 0.000 0.000 93.826 0.000 6.174
4 0.647 0.176 0.000 99.176 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.123%

Actual
class

Predicted class
1 2 3 4 5

1 99.576 0.000 0.000 0.424 0.000
2 0.000 87.724 0.000 12.276 0.000
3 0.000 0.000 99.739 0.000 0.261
4 0.914 0.000 0.000 99.086 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 97.225%

Actual
class

Predicted class
1 2 3 4 5

1 99.154 0.000 0.000 0.846 0.000
2 0.000 89.862 0.000 10.138 0.000
3 0.000 0.000 83.471 0.000 16.529
4 0.167 0.000 0.000 99.833 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 94.464%

Mean Average Recall: 96.973%
Standard Deviation: 1.711

Position: chest6g

Actual
class

Predicted class
1 2 3 4 5

1 98.968 0.000 0.000 1.032 0.000
2 0.000 99.000 0.000 1.000 0.000
3 0.000 0.000 99.517 0.000 0.483
4 0.000 0.069 0.000 99.931 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.483%

122

Actual
class

Predicted class
1 2 3 4 5

1 98.000 0.000 0.000 2.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.516 0.000 99.484

Average Recall: 99.497%

Actual
class

Predicted class
1 2 3 4 5

1 98.971 0.000 0.000 1.029 0.000
2 0.000 85.833 0.000 14.167 0.000
3 0.000 0.000 96.516 0.000 3.484
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 96.264%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 87.625 0.000 11.562 0.812
3 0.000 0.000 97.231 0.000 2.769
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.057 99.943

Average Recall: 96.960%

Actual
class

Predicted class
1 2 3 4 5

1 99.037 0.000 0.000 0.963 0.000
2 0.000 96.690 0.000 3.310 0.000
3 0.000 0.000 100.000 0.000 0.000
4 2.615 0.000 0.000 97.385 0.000
5 0.000 0.000 0.500 0.000 99.500

Average Recall: 98.522%

Mean Average Recall: 98.145%
Standard Deviation: 1.475

Conf 2 - 3D accelerometer (no preprocessing)

Position: ankle16g

Actual
class

Predicted class
1 2 3 4 5

1 99.800 0.000 0.000 0.200 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.364 2.182 0.000 97.455 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.451%

 Appendix A

 123

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.938 0.000 0.062 0.000
3 0.000 0.000 95.143 0.000 4.857
4 0.000 3.760 0.000 94.240 2.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 97.864%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.935 0.000 0.065 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.485 20.485 0.000 76.970 2.061
5 0.000 0.323 1.161 0.000 98.516

Average Recall: 95.084%

Actual
class

Predicted class
1 2 3 4 5

1 95.625 0.000 0.000 4.375 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 99.576 0.000 0.424
4 0.276 3.172 0.000 95.241 1.310
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.088%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 4.686 2.457 0.000 92.000 0.857
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.400%

Mean Average Recall: 97.778%
Standard Deviation: 1.624

Position: ankle6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.459 0.000 0.000 0.541
3 0.000 0.000 100.000 0.000 0.000
4 2.286 0.000 0.000 97.000 0.714
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.292%

124

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 95.455 0.000 4.545
4 0.000 4.412 0.000 95.059 0.529
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.103%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 99.846 0.154
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.969%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.697 0.000 0.303 0.000
3 0.000 0.000 100.000 0.000 0.000
4 3.543 0.457 0.000 94.229 1.771
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.785%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 99.939 0.000 0.061
4 1.143 16.667 0.000 80.762 1.429
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 96.140%

Mean Average Recall: 98.458%
Standard Deviation: 1.465

Position: hand16g

Actual
class

Predicted class
1 2 3 4 5

1 98.182 1.091 0.000 0.727 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.769 0.000 99.231 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.483%

 Appendix A

 125

Actual
class

Predicted class
1 2 3 4 5

1 98.560 1.440 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 8.160 1.840 0.000 90.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 97.712%

Actual
class

Predicted class
1 2 3 4 5

1 86.071 2.000 0.000 11.929 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.400 0.600 0.000 98.000 0.000
5 0.000 0.000 1.037 0.000 98.963

Average Recall: 96.607%

Actual
class

Predicted class
1 2 3 4 5

1 98.364 0.273 0.000 1.364 0.000
2 0.148 99.037 0.000 0.667 0.148
3 0.000 0.000 100.000 0.000 0.000
4 0.688 0.062 0.000 99.250 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.330%

Actual
class

Predicted class
1 2 3 4 5

1 97.667 2.222 0.000 0.111 0.000
2 14.880 85.120 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.806 0.000 0.000 98.194 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 96.196%

Mean Average Recall: 97.866%
Standard Deviation: 1.513

Position: hand6g

Actual
class

Predicted class
1 2 3 4 5

1 96.733 3.267 0.000 0.000 0.000
2 0.080 99.920 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.652 0.783 0.000 97.565 0.000
5 0.000 0.000 3.500 0.000 96.500

Average Recall: 98.144%

126

Actual
class

Predicted class
1 2 3 4 5

1 99.929 0.071 0.000 0.000 0.000
2 0.061 99.939 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 2.846 0.000 0.000 97.154 0.000
5 0.000 0.000 0.778 0.000 99.222

Average Recall: 99.249%

Actual
class

Predicted class
1 2 3 4 5

1 98.741 1.259 0.000 0.000 0.000
2 1.143 98.857 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 2.500 0.312 0.000 97.188 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.957%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.538 99.462 0.000 0.000 0.000
3 0.000 0.000 99.926 0.000 0.074
4 3.189 0.649 0.000 96.162 0.000
5 0.000 0.000 1.538 0.000 98.462

Average Recall: 98.802%

Actual
class

Predicted class
1 2 3 4 5

1 99.290 0.000 0.000 0.710 0.000
2 0.000 99.920 0.000 0.000 0.080
3 0.000 0.000 100.000 0.000 0.000
4 5.385 0.000 0.000 94.615 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.765%

Mean Average Recall: 98.783%
Standard Deviation: 0.405

Position: chest16g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 95.655 0.000 4.345 0.000
3 0.000 0.000 100.000 0.000 0.000
4 3.333 0.000 0.000 96.667 0.000
5 0.000 0.000 0.519 0.000 99.481

Average Recall: 98.361%

 Appendix A

 127

Actual
class

Predicted class
1 2 3 4 5

1 97.636 0.000 0.000 2.364 0.000
2 1.071 98.929 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.313%

Actual
class

Predicted class
1 2 3 4 5

1 97.630 0.000 0.000 2.370 0.000
2 1.241 79.931 0.000 18.828 0.000
3 0.000 0.000 100.000 0.000 0.000
4 2.588 0.000 0.000 97.412 0.000
5 0.000 0.000 0.065 0.000 99.935

Average Recall: 94.982%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.500 0.000 99.500

Average Recall: 99.900%

Actual
class

Predicted class
1 2 3 4 5

1 98.154 0.000 0.000 1.846 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.452 0.000 99.548

Average Recall: 99.540%

Mean Average Recall: 98.419%
Standard Deviation: 2.004

Position: chest6g

Actual
class

Predicted class
1 2 3 4 5

1 99.548 0.000 0.000 0.452 0.000
2 0.000 92.400 0.000 7.600 0.000
3 0.000 0.000 100.000 0.000 0.000
4 13.034 0.000 0.000 86.966 0.000
5 0.000 0.400 0.160 0.080 99.360

Average Recall: 95.655%

128

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 91.655 0.000 8.345 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.879 0.000 0.000 98.121 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 97.955%

Actual
class

Predicted class
1 2 3 4 5

1 99.771 0.000 0.000 0.229 0.000
2 0.000 99.833 0.000 0.167 0.000
3 0.000 0.000 98.258 0.000 1.742
4 0.759 0.000 0.000 99.241 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.421%

Actual
class

Predicted class
1 2 3 4 5

1 99.250 0.000 0.000 0.750 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 97.923 0.000 2.077
4 1.630 0.074 0.000 98.296 0.000
5 0.000 0.000 0.629 0.000 99.371

Average Recall: 98.968%

Actual
class

Predicted class
1 2 3 4 5

1 98.667 0.000 0.000 1.333 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.077 0.000 0.000 99.923 0.000
5 0.000 0.000 0.571 0.000 99.429

Average Recall: 99.604%

Mean Average Recall: 98.320%
Standard Deviation: 1.621

Conf 3 - 3D accelerometer + 3D gyroscope

Position: ankle16g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 98.963 1.037
5 0.000 0.000 1.724 0.000 98.276

Average Recall: 99.448%

 Appendix A

 129

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 5.111 0.000 94.889

Average Recall: 98.978%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 2.667 0.000 97.333

Average Recall: 99.467%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.867 0.000 0.000 99.133 0.000
5 0.000 0.000 0.444 0.000 99.556

Average Recall: 99.738%

Mean Average Recall: 99.526%
Standard Deviation: 0.381

Position: ankle6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.914 0.000 99.086 0.000
5 0.000 0.000 1.333 0.000 98.667

Average Recall: 99.551%

130

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 1.034 0.000 98.966

Average Recall: 99.793%

Actual
class

Predicted class
1 2 3 4 5

1 99.688 0.000 0.000 0.312 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.148 0.000 0.000 99.852 0.000
5 0.000 0.000 2.000 0.000 98.000

Average Recall: 99.508%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 2.769 0.000 97.231

Average Recall: 99.4462%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.143 0.000 0.000 99.000 0.857
5 0.000 0.000 1.778 0.000 98.222

Average Recall: 99.444%

Mean Average Recall: 99.548%
Standard Deviation: 0.144

Position: hand16g

Actual
class

Predicted class
1 2 3 4 5

1 99.931 0.000 0.000 0.069 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.986%

 Appendix A

 131

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

Actual
class

Predicted class
1 2 3 4 5

1 99.857 0.000 0.000 0.143 0.000
2 0.071 98.857 0.000 1.071 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.897 0.000 0.000 99.103 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.563%

Actual
class

Predicted class
1 2 3 4 5

1 97.714 0.000 0.000 2.286 0.000
2 0.061 99.818 0.000 0.121 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.506%

Actual
class

Predicted class
1 2 3 4 5

1 99.926 0.000 0.000 0.074 0.000
2 0.483 99.517 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.182 0.000 0.000 99.818 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.852%

Mean Average Recall: 99.782%
Standard Deviation: 0.233

Position: hand6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.897 0.000 0.000 99.103 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.821%

132

Actual
class

Predicted class
1 2 3 4 5

1 99.533 0.000 0.000 0.467 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.657 0.000 0.000 98.343 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.575%

Actual
class

Predicted class
1 2 3 4 5

1 98.875 0.000 0.000 1.125 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.775%

Actual
class

Predicted class
1 2 3 4 5

1 99.714 0.057 0.000 0.229 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.083 0.000 0.000 98.917 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.726%

Actual
class

Predicted class
1 2 3 4 5

1 99.429 0.171 0.000 0.400 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.886%

Mean Average Recall: 99.757%
Standard Deviation: 0.117

Position: chest16g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

 Appendix A

 133

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.276 0.000 0.000 99.724 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.945%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.590 0.000 0.410 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.918%

Mean Average Recall: 99.973%
Standard Deviation: 0.039

Position: chest6g

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.733 0.000 0.000 99.267 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.853%

134

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.188 0.000 0.000 99.812 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.962%

Actual
class

Predicted class
1 2 3 4 5

1 99.714 0.000 0.000 0.286 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.943%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.214 99.786 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.957%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 100.000 0.000 0.000 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.000 0.000 100.000 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 100.000%

Mean Average Recall: 99.943%
Standard Deviation: 0.054

Confusion matrixes for 12 classes on the PAMAP2 dataset

In this paragraph, the confusion matrixes obtained when testing the HBN
model to classify all 12 standard activities for the PAMAP2 dataset are
reported. In the following, the list of the human activities used in this
paragraph is specified:

1. lying
2. sitting
3. standing
4. walking
5. running
6. cycling
7. Nordic walking

 Appendix A

 135

8. ascending stairs
9. descending stairs
10. vacuum cleaning
11. ironing
12. rope jumping

Conf 2 - 3D accelerometer (no pre-processing)

Position: ankle16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.805 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.195 0.000 0.000
2 2.222 32.346 62.716 0.000 0.000 0.000 0.000 0.000 0.000 2.716 0.000 0.000
3 0.000 10.215 81.900 0.179 0.000 0.179 0.000 0.000 0.000 7.527 0.000 0.000
4 0.000 0.000 0.166 35.655 4.478 7.463 27.197 4.809 11.774 1.161 0.000 7.297
5 0.000 0.000 0.000 0.188 88.701 0.188 0.377 0.000 7.910 0.000 0.000 2.637
6 0.000 0.000 3.457 4.444 2.222 56.790 5.679 1.728 5.185 17.037 0.000 3.457
7 0.000 0.000 0.188 35.782 7.156 4.143 32.768 2.072 12.618 1.130 0.000 4.143
8 0.000 0.176 0.529 11.464 5.820 23.810 8.995 9.171 14.991 6.526 0.000 18.519
9 0.000 0.000 0.546 5.647 16.393 1.457 8.015 1.821 51.913 2.550 0.000 11.658

10 0.404 2.424 16.364 2.828 0.000 6.465 0.808 1.616 0.404 67.677 0.000 1.010
11 0.000 1.613 78.853 0.000 0.000 0.358 0.000 0.000 0.000 19.176 0.000 0.000
12 0.000 0.000 0.000 3.145 3.145 0.210 0.629 1.048 7.757 1.887 0.000 82.180

Average Recall: 54.310%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.790 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.210
2 4.520 23.917 56.497 0.000 0.000 8.851 0.188 0.000 0.000 6.026 0.000 0.000
3 0.000 5.461 78.343 0.000 0.565 4.331 0.000 0.000 0.000 11.299 0.000 0.000
4 0.000 0.000 0.000 76.329 0.483 1.691 17.874 0.000 2.174 0.966 0.000 0.483
5 0.000 0.000 0.000 0.473 89.835 0.236 1.655 0.000 4.019 0.000 0.000 3.783
6 0.000 0.000 0.000 10.764 2.257 63.194 6.076 0.347 0.868 13.368 0.000 3.125
7 0.000 0.000 0.000 61.953 2.020 2.525 29.293 0.000 2.357 0.168 0.000 1.684
8 0.000 0.000 1.149 35.824 8.621 14.559 12.261 1.149 13.985 1.724 0.000 10.728
9 0.000 0.000 0.000 23.679 21.494 1.821 7.104 0.000 29.144 2.186 0.000 14.572

10 0.195 4.288 12.281 3.899 0.585 14.620 1.559 0.000 0.000 62.573 0.000 0.000
11 0.000 5.197 52.688 0.000 0.000 1.971 0.538 0.000 0.358 39.247 0.000 0.000
12 0.000 0.000 0.198 5.159 4.762 0.198 0.794 0.000 2.976 0.794 0.000 85.119

Average Recall: 53.224%

136

Actual
class

Predicated class

1 2 3 4 5 6 7 8 9 10 11 12
1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 11.111 24.670 56.685 0.000 0.000 1.883 0.000 0.000 0.000 3.390 2.260 0.000
3 0.000 5.926 83.704 0.000 0.000 0.000 0.370 0.000 0.000 7.037 2.963 0.000
4 0.000 0.000 0.000 28.460 4.094 2.339 56.725 4.094 1.365 1.365 0.000 1.559
5 0.000 0.000 0.000 0.364 89.071 0.364 4.007 0.364 4.007 0.000 0.000 1.821
6 0.000 2.254 0.483 9.501 0.483 52.657 8.213 9.340 1.932 13.527 0.000 1.610
7 0.000 0.000 0.000 23.868 8.230 2.058 59.259 1.440 3.086 0.412 0.000 1.646
8 0.000 0.383 0.000 17.625 2.682 16.858 10.728 27.778 6.130 3.831 0.000 13.985
9 0.000 0.214 0.000 6.624 18.803 0.855 9.615 3.632 47.863 1.709 0.000 10.684

10 0.000 6.043 14.230 0.585 0.195 4.483 2.144 1.170 0.585 64.717 5.458 0.390
11 0.000 6.197 69.231 0.000 0.000 0.000 0.214 0.214 0.000 17.521 6.624 0.000
12 0.000 0.000 0.000 2.914 2.186 0.000 2.368 1.457 3.461 2.550 0.000 85.064

Average Recall: 55.822%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 6.327 38.580 50.309 0.000 0.000 0.309 0.154 0.000 0.000 2.623 1.698 0.000
3 0.000 5.442 82.313 0.000 0.000 0.000 0.680 0.000 0.000 6.122 5.442 0.000
4 0.000 0.000 0.546 13.843 2.732 0.911 61.931 3.643 9.107 0.000 0.000 7.286
5 0.000 0.000 0.000 0.000 84.615 0.000 1.197 0.171 3.419 0.000 0.000 10.598
6 0.000 0.188 0.753 3.390 2.448 35.405 12.053 6.780 6.968 21.281 1.130 9.605
7 0.000 0.000 0.000 12.500 7.870 0.926 65.278 3.472 3.704 0.694 0.000 5.556
8 0.000 0.000 0.000 6.584 3.086 4.733 20.576 22.840 19.959 1.440 0.412 20.370
9 0.000 0.198 0.000 3.373 5.952 0.000 17.857 1.984 46.627 1.984 0.000 22.024

10 0.206 2.058 7.202 0.617 0.206 5.144 3.909 1.029 1.440 67.284 10.494 0.412
11 0.000 2.083 59.259 0.000 0.000 0.000 0.231 0.000 0.000 21.065 17.361 0.000
12 0.000 0.000 0.000 0.182 2.368 0.000 1.639 1.275 9.472 0.911 0.000 84.153

Average Recall: 54.858%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.980
2 5.769 24.359 57.479 0.000 0.000 1.923 0.427 0.000 0.000 9.402 0.641 0.000
3 0.000 4.167 81.151 0.000 0.000 1.190 0.595 0.000 0.000 12.897 0.000 0.000
4 0.000 0.000 0.000 29.293 2.222 0.606 58.586 1.818 6.263 0.606 0.000 0.606
5 0.000 0.000 0.000 0.000 84.848 0.000 8.687 0.202 3.434 0.000 0.000 2.828
6 0.000 0.222 0.889 8.444 3.556 48.222 9.556 4.889 1.556 19.778 0.444 2.444
7 0.000 0.000 0.000 25.370 7.963 0.185 61.296 0.741 3.704 0.000 0.000 0.741
8 0.206 0.412 0.000 11.934 7.202 10.494 26.955 18.724 12.346 2.675 0.000 9.053
9 0.000 0.000 0.000 7.143 9.524 0.198 23.214 0.595 54.762 1.190 0.000 3.373

10 0.000 1.058 8.642 1.587 0.529 6.878 4.762 0.705 0.353 74.956 0.353 0.176
11 0.000 2.998 60.847 0.000 0.000 0.000 0.000 0.000 0.000 36.155 0.000 0.000
12 0.000 0.000 0.000 0.397 1.984 0.000 5.556 1.190 12.302 2.381 0.000 76.190

Average Recall: 54.402%

Mean Average Recall: 54.310%
Standard Deviation: 1.109

 Appendix A

 137

Position: ankle6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 7.345 25.989 55.932 0.000 0.000 0.000 0.000 0.000 0.000 6.403 4.331 0.000
3 0.000 1.932 74.396 0.000 0.000 0.000 0.161 0.000 0.000 7.085 16.425 0.000
4 0.000 0.000 0.000 69.615 2.041 0.000 19.501 4.989 0.227 0.454 0.000 3.175
5 0.000 0.000 0.000 0.000 97.917 0.000 0.231 0.000 0.694 0.000 0.000 1.157
6 0.000 4.007 2.186 9.290 3.279 44.080 4.554 10.383 2.550 16.940 1.275 1.457
7 0.000 0.000 0.327 56.863 4.902 0.817 23.039 7.516 1.961 2.124 0.000 2.451
8 0.000 0.192 0.575 29.693 9.195 6.513 12.069 25.479 3.065 5.747 0.000 7.471
9 0.000 0.000 0.741 11.852 44.444 0.556 4.815 9.630 12.037 4.444 0.000 11.481

10 0.000 7.475 4.848 1.414 0.202 0.808 0.808 0.808 0.000 74.141 9.495 0.000
11 0.000 3.778 44.000 0.000 0.000 0.000 0.000 0.000 0.000 29.333 22.889 0.000
12 0.000 0.000 0.000 3.704 8.497 0.871 1.307 1.089 1.089 1.525 0.871 81.046

Average Recall: 54.219%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 5.455 26.869 53.333 0.000 0.000 0.000 0.202 0.000 0.000 14.141 0.000 0.000
3 0.000 7.265 77.991 0.000 0.000 1.068 0.641 0.214 0.000 12.821 0.000 0.000
4 0.000 0.000 0.000 44.618 0.000 0.868 48.090 5.903 0.000 0.347 0.000 0.174
5 0.000 0.000 0.000 0.529 94.709 0.000 1.940 0.529 1.587 0.000 0.000 0.705
6 0.000 0.992 0.595 7.738 0.992 56.944 8.929 11.508 0.000 9.127 0.000 3.175
7 0.000 0.000 0.000 41.808 0.188 0.565 53.861 1.883 0.565 0.753 0.000 0.377
8 0.000 0.000 0.000 17.234 3.175 17.687 19.501 33.333 0.907 2.948 0.000 5.215
9 0.000 0.000 0.000 16.880 24.573 0.214 15.385 12.607 9.188 1.709 0.000 19.444

10 0.000 5.761 10.700 2.058 0.000 4.115 3.292 1.029 0.000 72.222 0.000 0.823
11 0.000 3.351 57.143 0.000 0.000 0.176 0.176 0.000 0.000 38.977 0.000 0.176
12 0.000 0.000 0.000 6.771 3.472 0.174 2.257 1.042 2.951 0.868 0.000 82.465

Average Recall: 54.350%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 8.961 33.154 45.341 0.000 0.000 1.075 0.000 0.000 0.000 7.527 3.943 0.000
3 0.000 12.667 54.222 0.000 0.000 0.444 0.000 0.000 0.000 23.333 9.333 0.000
4 0.000 0.000 0.000 15.984 0.585 0.195 79.532 0.390 0.780 1.754 0.000 0.780
5 0.000 0.000 0.000 0.000 90.675 0.198 0.992 0.000 6.548 0.000 0.000 1.587
6 0.166 5.141 0.166 8.292 0.332 45.937 7.794 0.829 1.493 24.046 0.829 4.975
7 0.000 0.000 0.000 10.082 0.000 0.206 85.185 0.412 2.675 0.617 0.000 0.823
8 0.000 0.185 0.000 21.852 0.741 10.000 29.259 5.926 6.852 7.593 0.370 17.222
9 0.000 0.000 0.000 9.167 6.944 0.000 8.889 0.278 57.500 3.333 0.000 13.889

10 0.163 7.680 2.778 0.817 0.000 3.595 2.451 0.000 0.817 74.673 5.229 1.797
11 0.000 9.524 29.960 0.000 0.000 0.198 0.198 0.000 0.198 43.254 16.667 0.000
12 0.000 0.000 0.000 4.242 0.404 0.000 3.232 0.404 9.091 2.626 0.000 80.000

Average Recall: 54.994%

138

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 4.082 28.571 57.370 0.000 0.000 0.000 0.227 0.000 0.000 7.256 2.494 0.000
3 0.000 5.848 84.211 0.000 0.000 0.000 0.000 0.000 0.195 6.823 2.924 0.000
4 0.000 0.000 0.000 56.497 3.766 3.578 18.079 0.188 12.053 0.377 0.000 5.461
5 0.000 0.000 0.000 0.751 92.793 0.000 0.901 0.000 4.204 0.000 0.000 1.351
6 0.000 0.210 3.354 12.369 2.516 58.071 1.677 0.629 1.258 14.885 2.306 2.725
7 0.000 0.000 0.000 52.778 6.151 2.976 24.008 0.000 8.333 0.397 0.000 5.357
8 0.000 0.000 0.896 34.409 3.405 24.373 7.348 0.538 14.516 3.943 0.000 10.573
9 0.000 0.000 0.000 15.620 16.425 3.221 3.382 0.000 54.911 1.771 0.000 4.670

10 0.000 0.889 9.778 0.667 0.000 2.000 0.000 0.000 0.444 76.222 10.000 0.000
11 0.000 2.976 68.056 0.000 0.000 0.794 0.000 0.000 0.000 19.643 8.532 0.000
12 0.000 0.000 0.000 5.241 3.354 0.210 2.516 0.000 6.918 1.677 0.000 80.084

Average Recall: 55.370%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 5.735 21.505 61.828 0.000 0.000 2.151 0.179 0.000 0.000 8.423 0.179 0.000
3 0.000 6.215 72.316 0.000 0.000 0.565 0.000 0.000 0.000 20.904 0.000 0.000
4 0.000 0.000 0.000 44.834 0.195 0.195 49.318 2.534 0.000 0.780 0.000 2.144
5 0.000 0.000 0.000 0.000 88.647 0.483 2.899 0.242 3.623 0.000 0.000 4.106
6 0.000 0.231 0.000 12.037 0.231 49.769 12.269 5.324 0.231 15.046 0.000 4.861
7 0.000 0.000 0.000 37.556 0.667 0.667 54.889 1.778 0.889 0.222 0.000 3.333
8 0.000 0.192 0.000 21.456 0.958 8.812 26.628 21.264 2.490 4.598 0.000 13.602
9 0.000 0.000 0.000 10.943 20.539 1.178 17.677 4.545 23.737 2.020 0.000 19.360

10 0.185 1.111 3.889 2.222 0.000 6.296 5.926 0.370 0.000 79.444 0.000 0.556
11 0.000 0.546 55.009 0.000 0.000 0.729 0.000 0.000 0.000 43.352 0.364 0.000
12 0.000 0.000 0.000 1.736 2.257 0.000 2.778 0.174 1.389 1.562 0.000 90.104

Average Recall: 53.906%

Mean Average Recall: 54.568%
Standard Deviation: 0.598

Position: hand16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 81.548 18.452 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 7.292 52.431 36.285 0.000 1.215 0.694 0.347 0.000 0.000 0.174 0.000 1.562
3 5.201 7.092 77.778 3.546 0.946 2.364 0.473 1.182 0.000 0.236 0.236 0.946
4 0.242 0.000 8.937 60.628 0.725 1.932 8.937 18.116 0.000 0.000 0.000 0.483
5 0.000 0.000 0.000 0.000 93.968 0.317 3.016 0.000 0.000 0.000 0.000 2.698
6 0.174 4.514 5.729 6.250 0.868 79.167 2.604 0.000 0.000 0.000 0.000 0.694
7 0.000 2.614 1.089 5.447 3.050 3.486 65.577 8.715 0.000 0.000 0.218 9.804
8 0.000 0.926 13.519 30.185 3.333 2.222 8.333 39.074 0.000 0.556 0.000 1.852
9 4.630 3.009 4.167 8.565 10.417 34.954 17.130 6.481 0.926 0.000 1.157 8.565

10 0.673 2.862 11.111 22.222 2.020 12.795 15.825 24.579 0.168 0.168 0.000 7.576
11 4.586 24.868 25.573 1.235 1.587 30.159 5.291 3.527 0.000 0.176 1.235 1.764
12 0.000 0.000 0.210 1.258 12.998 1.887 4.822 4.612 0.000 0.000 0.210 74.004

Average Recall: 52.209%

 Appendix A

 139

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 96.595 3.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.358
2 12.159 56.813 29.140 0.000 1.048 0.419 0.000 0.000 0.000 0.000 0.000 0.419
3 13.757 2.822 75.485 4.409 0.000 0.529 0.176 0.882 0.000 1.764 0.000 0.176
4 0.000 0.206 2.469 72.016 0.617 1.029 8.848 10.494 0.412 3.909 0.000 0.000
5 0.000 0.000 0.000 0.000 96.914 0.000 0.206 0.000 0.000 0.000 0.000 2.881
6 0.179 8.602 3.226 8.781 2.867 72.581 1.971 1.075 0.000 0.000 0.000 0.717
7 0.000 4.520 0.188 6.215 5.273 10.923 57.627 2.825 0.000 0.565 0.000 11.864
8 0.206 2.469 12.551 30.864 1.235 1.029 14.609 19.342 3.086 13.580 0.000 1.029
9 6.080 2.096 3.774 6.709 10.692 39.623 13.836 5.660 4.822 1.677 0.000 5.031

10 0.794 5.026 6.349 22.487 1.323 10.847 15.344 8.995 2.116 20.635 0.000 6.085
11 6.046 25.980 21.895 5.556 2.778 23.693 2.778 3.595 0.000 2.288 0.654 4.739
12 0.000 0.000 0.000 0.347 2.257 0.694 3.993 0.000 0.521 2.083 0.000 90.104

Average Recall: 55.299%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.421 2.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.397
2 15.556 51.852 25.185 0.000 0.926 1.111 0.741 0.926 0.370 2.222 0.185 0.926
3 7.533 3.766 70.245 2.825 0.000 1.883 0.565 3.955 0.188 9.040 0.000 0.000
4 0.000 0.000 4.406 50.192 1.341 3.640 4.598 31.992 0.000 3.065 0.000 0.766
5 0.000 0.000 0.000 0.000 94.856 0.000 1.029 0.000 0.000 0.000 0.000 4.115
6 0.000 4.321 2.881 1.440 0.000 84.979 4.321 0.000 0.206 0.000 0.206 1.646
7 0.000 0.000 0.192 5.747 3.257 0.383 77.011 4.981 0.000 0.575 0.000 7.854
8 0.741 0.556 2.407 12.037 2.037 2.222 22.222 45.185 0.000 8.889 0.000 3.704
9 3.351 2.469 1.411 1.587 8.818 43.739 24.691 7.055 0.176 3.880 0.176 2.646

10 0.766 2.490 3.831 12.261 2.107 12.069 24.904 20.690 0.000 18.391 0.000 2.490
11 5.556 15.598 12.393 1.496 2.778 44.231 4.915 3.419 0.855 4.274 0.641 3.846
12 0.198 0.000 0.000 0.198 1.984 0.595 1.786 0.794 0.000 2.381 0.000 92.063

Average Recall: 56.918%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.737 2.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 19.923 79.119 0.000 0.766 0.000 0.000 0.000 0.192 0.000 0.000 0.000 0.000
3 4.487 50.000 0.000 20.085 0.214 1.923 0.214 23.077 0.000 0.000 0.000 0.000
4 0.176 1.587 0.000 54.497 0.353 7.760 14.286 20.811 0.000 0.000 0.000 0.529
5 0.000 0.000 0.000 0.000 96.032 0.397 1.389 0.198 0.000 0.000 0.000 1.984
6 2.614 5.882 0.000 2.397 1.089 84.749 2.832 0.000 0.000 0.000 0.000 0.436
7 0.992 10.317 0.000 5.556 3.770 10.714 60.913 5.159 0.000 0.000 0.000 2.579
8 1.029 4.733 0.000 27.366 2.675 2.675 14.198 45.062 1.235 0.000 0.000 1.029
9 5.947 2.347 0.000 8.764 6.729 40.689 16.119 9.546 6.416 0.000 0.000 3.443

10 1.130 3.578 0.000 17.137 0.942 17.891 19.209 35.782 0.753 0.000 0.000 3.578
11 6.709 40.671 0.000 6.080 0.419 28.721 6.080 9.015 0.000 0.000 0.839 1.468
12 0.182 0.000 0.000 0.364 7.286 0.546 0.729 1.457 0.182 0.000 0.000 89.253

Average Recall: 51.218%

140

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 77.401 22.599 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 4.487 81.624 5.128 0.000 1.068 5.556 0.000 0.427 0.000 0.000 0.214 1.496
3 3.125 25.694 55.382 5.208 0.000 5.382 0.868 3.646 0.000 0.347 0.174 0.174
4 0.505 0.168 1.852 62.626 0.505 4.882 8.081 15.993 0.000 5.051 0.000 0.337
5 0.000 0.000 0.000 0.000 94.549 0.000 2.096 0.000 0.000 0.000 0.000 3.354
6 0.000 3.770 0.397 4.762 0.595 85.119 5.357 0.000 0.000 0.000 0.000 0.000
7 0.179 1.434 0.000 0.717 1.075 8.065 74.014 3.763 0.000 1.075 0.000 9.677
8 0.377 0.753 2.260 36.911 0.942 1.507 6.968 31.827 0.000 14.878 0.000 3.578
9 1.496 0.427 1.923 7.692 2.564 46.154 13.034 9.402 0.000 8.333 0.214 8.761

10 0.896 5.914 12.366 15.233 1.075 11.290 18.817 13.082 0.000 16.846 0.179 4.301
11 5.778 34.000 15.778 0.222 1.556 30.667 3.778 4.222 0.000 1.556 0.889 1.556
12 0.000 0.000 0.000 0.419 3.983 1.887 4.612 0.000 0.000 2.096 0.000 87.002

Average Recall: 55.607%

Mean Average Recall: 54.250%
Standard Deviation: 2.420

Position: hand6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.893 2.107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 14.747 60.404 18.788 0.202 1.212 0.404 0.000 0.000 0.000 3.232 0.000 1.010
3 4.733 2.058 87.449 0.206 0.000 1.235 0.000 2.263 0.206 1.852 0.000 0.000
4 0.000 0.000 2.534 39.571 0.390 1.949 11.306 41.326 0.390 2.339 0.000 0.195
5 0.000 0.000 0.000 0.000 96.057 0.358 1.434 0.000 0.358 0.000 0.000 1.792
6 0.195 7.407 5.458 1.949 1.170 81.287 1.754 0.195 0.000 0.000 0.195 0.390
7 0.842 10.606 0.168 0.842 1.684 8.754 65.488 10.438 0.000 0.000 0.000 1.178
8 0.427 0.214 3.632 18.590 3.205 0.855 13.675 45.940 4.915 7.265 0.000 1.282
9 5.263 0.585 1.754 5.653 9.357 38.791 15.010 12.671 4.094 2.339 0.000 4.483

10 2.004 4.189 3.825 10.565 0.364 16.211 17.304 18.033 2.004 20.036 0.000 5.464
11 8.386 21.593 26.625 1.468 1.258 27.463 1.677 3.564 0.000 4.612 1.677 1.677
12 0.000 0.000 0.000 1.587 5.754 2.183 2.381 0.000 1.190 2.381 0.000 84.524

Average Recall: 57.035%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 75.772 24.074 0.000 0.000 0.000 0.000 0.000 0.000 0.154 0.000 0.000 0.000
2 3.241 86.343 7.176 0.000 0.926 0.463 0.000 0.000 0.463 0.926 0.463 0.000
3 5.128 16.410 69.231 1.197 0.342 1.197 0.855 2.735 0.855 1.197 0.513 0.342
4 0.159 0.317 4.127 54.603 2.222 0.952 6.349 25.079 1.270 2.063 2.063 0.794
5 0.000 0.000 0.000 0.000 98.925 0.000 0.358 0.000 0.000 0.000 0.000 0.717
6 0.000 3.704 3.009 4.167 0.000 82.639 3.241 0.231 0.231 0.000 2.778 0.000
7 0.000 1.449 0.000 2.415 4.106 5.556 64.251 8.937 7.246 0.242 0.242 5.556
8 0.000 1.361 8.390 19.728 5.215 0.454 6.122 51.474 0.000 2.494 1.134 3.628
9 0.709 2.364 0.709 2.128 19.385 27.660 8.511 17.730 9.456 2.600 3.546 5.201

10 0.370 3.333 5.185 15.185 2.407 14.259 15.556 19.074 1.296 17.963 2.222 3.148
11 2.867 24.373 14.695 1.075 3.943 22.401 3.047 9.857 3.226 4.659 8.423 1.434
12 0.000 0.000 0.000 0.753 11.676 0.565 0.753 0.565 0.000 1.130 0.000 84.557

Average Recall: 58.636%

 Appendix A

 141

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 78.723 21.277 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 2.381 92.659 2.778 0.000 0.595 0.397 0.000 0.595 0.198 0.000 0.198 0.198
3 7.819 27.160 51.852 7.819 0.000 0.206 0.206 3.909 0.000 0.000 1.029 0.000
4 0.227 0.227 1.814 82.086 0.000 0.000 0.680 14.059 0.000 0.000 0.000 0.907
5 0.000 0.000 0.000 0.000 95.455 0.000 0.673 0.000 0.337 0.000 0.000 3.535
6 0.182 2.732 0.729 3.643 2.004 81.967 2.732 0.000 1.457 0.000 4.189 0.364
7 0.000 2.951 0.174 18.056 2.257 2.431 53.299 5.208 0.694 0.000 0.174 14.757
8 0.926 0.000 4.259 45.370 3.148 0.741 5.000 32.778 0.185 0.000 0.000 7.593
9 2.593 0.556 2.593 12.407 7.407 30.926 13.333 8.519 5.926 0.185 0.556 15.000

10 0.629 4.822 5.451 27.254 0.629 9.644 15.933 25.367 1.258 0.000 1.677 7.338
11 5.370 30.741 10.556 1.481 4.444 23.333 3.704 3.889 1.111 0.000 12.963 2.407
12 0.000 0.000 0.000 0.766 2.682 0.000 1.341 0.575 0.000 0.000 0.000 94.636

Average Recall: 56.862%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 16.204 44.907 34.877 0.000 0.772 1.852 0.000 0.154 0.000 0.926 0.000 0.309
3 7.654 3.951 78.025 2.963 0.000 1.975 0.741 1.481 0.000 3.210 0.000 0.000
4 0.505 0.000 9.428 50.337 0.337 4.040 7.407 17.340 0.000 10.101 0.000 0.505
5 0.000 0.000 0.000 0.000 90.703 0.227 0.454 0.000 0.000 0.227 0.000 8.390
6 0.000 5.556 6.548 3.175 0.000 82.937 1.786 0.000 0.000 0.000 0.000 0.000
7 0.565 2.825 1.695 3.013 0.942 9.793 69.303 6.026 0.000 0.753 0.000 5.085
8 0.179 0.179 16.667 16.846 1.613 1.434 15.412 30.466 0.000 14.695 0.000 2.509
9 2.604 0.347 10.590 8.507 2.083 41.319 17.708 4.340 0.000 7.465 0.347 4.688

10 0.195 3.509 7.018 10.526 1.170 15.205 14.620 11.891 0.000 32.359 0.000 3.509
11 6.584 19.547 24.691 1.852 2.058 29.835 4.527 3.292 0.000 5.144 0.000 2.469
12 0.202 0.000 0.000 0.404 1.414 1.414 0.808 0.404 0.000 1.818 0.000 93.535

Average Recall: 56.048%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 77.231 22.404 0.000 0.000 0.364 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 7.879 70.909 19.192 0.000 0.202 0.606 0.000 0.000 0.000 0.000 0.404 0.808
3 4.831 9.662 70.048 4.992 0.000 6.119 0.805 1.127 1.288 0.805 0.161 0.161
4 0.000 0.000 5.432 69.383 0.741 2.222 7.160 11.605 0.000 3.210 0.000 0.247
5 0.000 0.000 0.000 0.000 98.582 0.000 0.000 0.000 0.000 0.000 0.000 1.418
6 0.171 6.325 4.274 6.154 2.222 78.974 1.538 0.000 0.000 0.000 0.171 0.171
7 0.427 0.427 0.000 5.128 4.060 4.701 75.427 3.205 0.000 1.923 0.214 4.487
8 0.694 1.562 6.424 34.028 2.083 2.604 13.021 24.306 0.000 11.806 0.000 3.472
9 8.429 1.916 0.766 10.345 9.004 41.571 10.153 5.364 0.192 2.107 0.766 9.387

10 0.992 3.770 6.746 24.802 0.397 10.317 19.444 9.325 0.000 21.429 0.397 2.381
11 5.364 24.330 17.816 2.874 0.958 30.268 3.640 4.981 0.000 5.939 1.149 2.682
12 0.000 0.000 0.000 0.000 4.023 0.192 4.789 0.000 0.000 0.958 0.000 90.038

Average Recall: 57.011%

Mean Average Recall: 54.310%
Standard Deviation: 0.985

142

Position: chest16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.484 0.000 0.000 0.000 0.419 0.000 0.000 0.000 0.000 2.096 0.000 0.000
2 5.903 17.882 60.069 0.694 0.000 0.000 0.000 0.174 0.000 0.000 15.278 0.000
3 0.000 0.370 58.704 2.407 0.000 0.000 0.000 0.926 0.000 0.370 37.222 0.000
4 0.000 0.000 2.626 30.707 0.202 0.000 49.495 9.293 7.677 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 90.395 0.000 0.000 0.000 0.377 0.000 0.000 9.228
6 0.000 0.000 6.944 0.000 0.595 23.214 0.397 9.325 1.389 5.159 52.976 0.000
7 0.000 0.364 0.000 20.765 0.000 0.000 62.295 2.368 14.026 0.000 0.000 0.182
8 0.000 0.000 4.444 15.960 0.808 0.000 13.333 53.333 7.071 2.222 2.626 0.202
9 0.000 0.000 8.230 11.728 2.263 0.000 21.811 7.613 34.156 0.000 3.704 10.494

10 0.000 0.000 6.557 0.364 0.000 5.647 0.364 7.832 0.000 32.787 46.448 0.000
11 0.000 0.000 15.443 0.753 0.000 0.000 0.000 2.448 0.000 1.318 80.038 0.000
12 0.000 0.218 0.436 0.000 4.357 0.000 0.436 1.089 2.397 0.000 0.654 90.414

Average Recall: 55.951%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.923 0.000 0.000
2 0.206 53.086 0.000 2.263 0.000 0.206 0.412 0.000 0.000 1.852 41.975 0.000
3 0.000 21.088 0.000 1.814 0.000 0.000 0.000 0.000 0.000 0.680 76.417 0.000
4 0.000 0.000 0.000 20.468 2.534 0.585 52.827 19.883 3.509 0.195 0.000 0.000
5 0.000 0.000 0.000 0.000 95.993 0.000 0.729 0.000 0.729 0.000 0.000 2.550
6 0.000 0.000 0.000 0.000 0.332 63.350 0.000 6.302 0.829 8.126 21.061 0.000
7 0.000 0.000 0.000 9.793 1.318 0.188 77.778 5.273 5.273 0.000 0.188 0.188
8 0.000 0.000 0.000 5.128 8.889 2.051 11.453 57.607 12.308 2.564 0.000 0.000
9 0.000 0.753 0.000 3.955 8.475 3.766 14.313 15.443 40.866 1.695 1.507 9.228

10 0.000 1.029 1.235 0.412 0.206 15.432 0.412 4.321 0.000 43.827 33.128 0.000
11 0.000 2.881 0.000 3.086 0.000 0.000 0.412 0.000 0.000 7.819 85.802 0.000
12 0.000 0.000 0.000 0.975 5.068 0.000 1.559 1.754 1.559 0.390 0.195 88.499

Average Recall: 60.446%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.851 0.000 0.000 0.000 0.192 0.000 0.000 0.000 0.000 0.958 0.000 0.000
2 1.613 26.703 1.434 0.000 0.000 0.538 0.000 0.000 0.000 0.000 69.713 0.000
3 0.000 5.008 1.565 0.000 0.000 0.313 0.469 2.034 0.000 0.313 90.297 0.000
4 0.000 0.000 0.000 9.977 8.163 7.710 48.299 15.646 6.803 0.227 0.000 3.175
5 0.000 0.000 0.000 0.000 88.679 0.000 1.048 0.000 0.000 0.000 0.000 10.273
6 0.000 0.000 0.000 0.236 0.000 95.035 0.000 2.600 0.000 0.473 1.418 0.236
7 0.000 0.000 0.000 5.018 7.168 1.075 61.649 5.556 8.423 0.179 0.000 10.932
8 0.000 0.000 0.000 4.918 6.011 18.761 6.011 50.820 8.015 4.554 0.364 0.546
9 0.000 0.000 0.000 1.821 10.018 26.047 7.286 12.750 22.404 0.000 0.182 19.490

10 0.000 0.444 2.667 0.222 1.111 29.556 0.000 10.889 0.000 45.778 9.333 0.000
11 0.000 0.000 1.949 0.195 0.000 6.628 0.000 3.314 0.000 0.780 87.135 0.000
12 0.000 0.000 0.000 0.000 6.433 1.365 1.559 0.975 0.975 0.000 0.000 88.694

Average Recall: 56.441%

 Appendix A

 143

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 77.273 21.212 0.000 0.000 0.000 0.000 0.000 1.515 0.000 0.000 0.000 0.000
2 0.000 28.571 0.595 1.587 0.000 0.000 0.000 1.190 0.198 0.000 67.857 0.000
3 0.000 3.909 2.058 3.909 0.000 0.000 0.000 6.173 0.617 0.000 83.333 0.000
4 0.000 0.000 1.471 39.706 0.000 0.000 30.882 8.987 18.301 0.000 0.654 0.000
5 0.000 0.000 0.000 0.000 97.670 0.000 0.000 0.000 0.000 0.000 0.000 2.330
6 0.000 0.000 9.644 17.400 0.210 12.788 0.419 3.145 15.933 0.000 40.461 0.000
7 0.000 0.000 0.000 16.667 0.000 0.000 50.595 2.976 29.762 0.000 0.000 0.000
8 0.000 0.000 0.966 22.464 0.725 0.000 8.937 50.725 14.976 0.000 0.966 0.242
9 0.000 0.000 1.533 15.517 2.682 0.000 16.475 3.065 51.724 0.000 1.916 7.088

10 0.000 0.000 2.675 3.704 0.412 5.556 0.000 23.663 0.823 33.128 30.041 0.000
11 0.000 0.000 1.677 4.822 0.000 0.000 0.000 7.338 0.210 0.000 85.954 0.000
12 0.000 0.179 0.000 0.538 7.706 0.000 0.896 0.358 2.867 0.000 0.896 86.559

Average Recall: 51.396%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.724 0.000 0.000
2 1.111 31.778 10.667 0.444 0.000 0.222 0.000 2.444 0.222 0.000 53.111 0.000
3 0.000 2.564 17.094 1.282 0.000 0.000 0.000 6.410 0.855 0.214 71.581 0.000
4 0.000 0.000 0.000 14.176 2.107 0.766 62.644 13.410 6.513 0.000 0.000 0.383
5 0.000 0.000 0.000 0.000 78.205 0.214 0.427 0.000 0.000 0.000 0.000 21.154
6 0.000 0.000 2.293 0.353 0.529 78.307 1.411 5.644 0.882 0.353 9.347 0.882
7 0.000 0.000 0.000 8.163 2.268 0.680 62.812 7.483 16.780 0.000 0.000 1.814
8 0.000 0.000 0.000 5.461 8.286 1.318 22.411 53.484 5.273 0.000 0.188 3.578
9 0.000 0.000 0.404 1.616 4.646 3.636 18.788 5.657 34.141 0.000 0.202 30.909

10 0.000 0.000 7.843 1.797 0.000 14.869 0.490 23.856 0.000 33.170 17.974 0.000
11 0.000 0.174 6.424 1.215 0.000 0.347 0.000 7.986 0.000 1.215 82.639 0.000
12 0.000 0.000 0.000 1.296 3.889 0.370 0.926 0.926 2.037 0.000 0.370 90.185

Average Recall: 56.189%

Mean Average Recall: 56.085%
Standard Deviation: 3.208

Position: chest6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 93.376 6.624 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 5.556 30.000 0.000 2.222 0.000 0.000 0.317 2.063 3.492 0.000 56.349 0.000
3 0.000 0.839 0.839 4.403 0.000 0.000 0.000 4.403 2.935 0.629 85.954 0.000
4 0.000 0.000 0.000 58.945 0.000 0.000 9.416 20.151 2.072 0.000 9.416 0.000
5 0.000 0.000 0.000 0.000 94.624 0.000 0.000 0.000 0.000 0.000 0.000 5.376
6 0.000 0.000 0.377 4.143 0.188 16.949 0.000 0.377 10.546 0.377 67.043 0.000
7 0.000 0.000 0.606 41.212 0.000 0.000 26.465 9.697 8.889 0.000 13.131 0.000
8 0.000 0.000 0.000 34.222 0.889 0.000 0.444 45.556 1.778 5.333 11.111 0.667
9 0.000 0.000 0.546 23.497 3.279 0.546 4.736 5.647 38.434 0.000 18.215 5.100

10 0.000 0.000 0.218 10.022 0.000 5.447 0.000 11.983 2.832 35.076 34.423 0.000
11 0.000 0.192 0.000 5.747 0.000 0.000 0.192 5.747 2.490 1.341 84.291 0.000
12 0.000 0.575 0.000 0.766 6.513 0.000 0.000 0.958 1.916 0.000 0.383 88.889

Average Recall: 51.120%

144

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.694 0.000 0.000 0.000 0.210 0.000 0.000 0.000 0.000 2.096 0.000 0.000
2 4.167 33.532 22.421 0.000 0.000 0.000 0.000 0.000 0.000 0.794 39.087 0.000
3 0.000 5.065 48.856 2.124 0.000 0.000 0.000 0.000 0.000 2.614 41.340 0.000
4 0.000 0.000 0.000 75.505 0.000 0.000 9.091 9.343 5.808 0.253 0.000 0.000
5 0.000 0.000 0.000 0.000 86.667 0.000 0.202 0.000 0.808 0.000 0.000 12.323
6 0.000 0.000 0.717 0.896 0.538 52.509 0.000 6.093 0.896 18.817 18.817 0.717
7 0.000 0.000 0.000 50.912 0.166 0.166 38.474 2.985 6.136 0.000 0.000 1.161
8 0.000 0.000 0.000 37.100 2.260 0.188 6.780 41.431 8.851 3.390 0.000 0.000
9 0.000 0.000 0.926 18.750 1.389 1.157 9.722 6.481 53.241 1.852 1.157 5.324

10 0.000 0.000 6.011 1.639 0.000 16.940 0.000 4.918 0.000 52.459 18.033 0.000
11 0.000 0.206 28.807 2.263 0.000 0.206 0.000 0.000 0.000 11.111 57.407 0.000
12 0.000 0.000 0.000 0.729 2.732 0.182 0.729 0.000 4.007 0.000 0.729 90.893

Average Recall: 60.722%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 88.889 4.873 0.000 0.000 0.195 0.000 0.000 0.000 0.000 6.043 0.000 0.000
2 0.000 41.348 18.215 0.000 0.000 0.000 0.000 0.364 0.000 3.279 36.794 0.000
3 0.000 20.202 27.273 7.071 0.000 0.000 0.000 1.414 0.000 4.040 39.798 0.202
4 0.000 0.000 0.179 60.573 0.000 2.151 13.978 19.713 2.509 0.538 0.358 0.000
5 0.000 0.000 0.000 0.000 95.473 0.000 0.000 0.412 0.000 0.000 0.000 4.115
6 0.000 0.000 0.179 0.538 0.000 44.265 2.330 13.799 0.358 2.330 36.022 0.179
7 0.000 0.000 0.000 22.222 0.000 0.839 60.797 8.805 6.709 0.000 0.419 0.210
8 0.000 0.000 0.000 7.051 1.282 2.991 14.530 60.043 6.410 4.915 2.778 0.000
9 0.000 1.093 3.097 12.386 2.004 1.275 16.758 6.193 51.002 0.546 3.279 2.368

10 0.000 0.000 0.444 1.556 0.000 13.333 0.000 7.778 0.000 42.667 34.222 0.000
11 0.000 0.185 2.222 2.037 0.000 0.185 0.000 4.074 0.000 6.852 84.444 0.000
12 0.000 0.364 0.000 2.004 6.740 0.000 0.546 0.729 0.729 0.000 1.093 87.796

Average Recall: 62.048%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 84.722 15.278 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 29.140 44.864 1.468 0.000 0.210 0.000 0.210 0.629 3.145 20.335 0.000
3 0.000 9.111 41.111 4.667 0.000 1.778 0.000 1.111 0.889 2.444 38.889 0.000
4 0.000 0.000 0.000 74.074 0.185 0.000 22.222 1.667 1.852 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 93.957 0.000 0.390 0.390 1.365 0.000 0.000 3.899
6 0.000 0.000 0.000 1.691 0.000 51.208 3.865 7.246 0.000 1.208 32.850 1.932
7 0.000 0.000 0.000 44.444 0.000 0.000 49.630 0.556 5.370 0.000 0.000 0.000
8 0.000 0.000 0.000 24.521 1.341 0.000 35.249 32.567 3.640 2.682 0.000 0.000
9 0.000 0.000 0.000 19.397 0.753 0.377 30.320 2.448 41.808 0.188 2.825 1.883

10 0.000 0.000 0.000 1.389 0.347 9.375 0.174 3.819 0.000 49.479 35.243 0.174
11 0.000 1.212 2.424 2.222 0.000 0.000 0.000 2.222 0.000 4.848 87.071 0.000
12 0.000 0.000 0.000 1.852 6.584 0.000 3.704 1.029 6.173 0.823 0.823 79.012

Average Recall: 59.482%

 Appendix A

 145

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.161 0.839 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.473 42.317 0.473 1.891 0.000 0.236 0.000 0.473 0.000 0.000 54.137 0.000
3 0.000 16.667 0.926 7.222 0.000 0.000 0.000 0.741 0.741 0.000 73.704 0.000
4 0.000 0.000 0.000 40.073 0.000 0.182 32.969 20.765 5.647 0.000 0.364 0.000
5 0.000 0.000 0.000 0.000 81.871 0.000 0.000 0.000 0.195 0.000 0.000 17.934
6 0.000 0.383 0.000 7.471 0.383 35.441 0.383 5.172 10.345 0.000 40.421 0.000
7 0.000 0.000 0.000 12.607 0.000 0.000 56.410 11.325 19.017 0.000 0.427 0.214
8 0.000 0.163 0.000 7.190 1.307 2.124 10.294 56.699 17.647 0.817 2.451 1.307
9 0.000 0.000 0.000 10.153 1.533 0.383 13.027 7.088 58.621 0.000 2.107 7.088

10 0.000 0.000 0.000 4.918 0.546 10.018 0.000 11.475 0.364 39.344 33.333 0.000
11 0.000 0.926 0.000 10.185 0.000 0.370 0.185 1.667 0.000 1.852 84.815 0.000
12 0.000 0.000 0.000 0.629 4.403 0.000 0.839 1.258 3.564 0.000 0.629 88.679

Average Recall: 57.030%

Mean Average Recall: 58.080%
Standard Deviation: 4.308

Conf 3 - 3D accelerometer + 3D gyroscope

Position: ankle16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 95.940 0.000 1.068 0.000 0.000 0.000 0.000 0.000 0.000 1.923 1.068 0.000
2 5.674 20.804 50.355 0.000 0.000 0.473 0.000 0.000 0.000 15.603 7.092 0.000
3 0.000 9.357 73.294 0.585 0.000 0.585 0.780 0.000 0.000 7.602 7.797 0.000
4 0.000 0.000 0.000 47.670 1.434 0.179 48.387 0.179 1.971 0.179 0.000 0.000
5 0.000 0.000 0.000 0.185 95.370 0.370 0.741 0.185 3.148 0.000 0.000 0.000
6 0.000 0.958 0.766 8.046 0.575 75.287 2.874 0.958 4.789 4.023 1.724 0.000
7 0.000 0.000 0.000 34.116 1.408 0.000 62.441 0.000 1.878 0.156 0.000 0.000
8 0.000 0.000 0.000 3.640 1.341 7.854 7.854 56.322 2.107 5.747 0.000 15.134
9 0.000 0.000 0.000 10.758 10.229 4.586 8.995 2.116 58.907 1.058 0.000 3.351

10 0.000 5.653 6.433 1.559 0.000 7.018 3.899 5.263 0.975 56.725 11.696 0.780
11 0.000 1.307 64.924 0.000 0.000 0.436 0.000 0.436 0.000 17.429 15.468 0.000
12 0.000 0.000 0.000 0.641 3.846 0.000 0.214 2.137 1.923 1.709 0.000 89.530

Average Recall: 62.313%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 88.525 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.375 5.100 0.000
2 7.692 28.205 52.137 0.000 0.000 0.171 0.000 0.171 0.000 6.838 4.786 0.000
3 0.000 3.846 71.154 0.214 0.000 0.000 0.000 0.427 0.000 6.838 17.521 0.000
4 0.000 0.000 0.000 47.443 3.175 0.176 38.095 4.409 6.349 0.000 0.000 0.353
5 0.000 0.000 0.000 0.397 91.071 0.000 0.397 0.992 6.944 0.000 0.000 0.198
6 0.000 2.778 1.111 3.889 0.185 71.481 0.741 2.037 3.704 12.963 0.926 0.185
7 0.000 0.000 0.000 32.037 2.407 0.741 57.222 5.000 2.407 0.000 0.000 0.185
8 0.000 0.000 0.000 0.694 2.315 3.009 9.722 61.111 6.944 0.231 0.000 15.972
9 0.000 0.000 0.000 3.578 4.896 6.026 4.143 1.507 75.518 2.072 0.000 2.260

10 0.000 1.743 7.190 1.307 0.218 2.614 3.050 5.882 0.218 70.806 5.011 1.961
11 0.000 0.694 51.389 0.000 0.000 0.521 0.000 0.694 0.000 27.951 18.750 0.000
12 0.000 0.000 0.000 0.000 1.587 0.000 0.454 2.041 1.814 1.134 0.000 92.971

Average Recall: 64.521%

146

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 93.791 0.163 0.817 0.000 0.000 0.000 0.000 0.000 0.000 5.065 0.163 0.000
2 8.081 31.515 51.919 0.000 0.000 1.616 0.000 0.000 0.000 3.232 3.636 0.000
3 0.000 6.989 80.645 0.179 0.000 0.179 0.179 0.000 0.000 6.631 5.197 0.000
4 0.000 0.000 0.000 26.325 4.615 0.000 55.385 2.735 9.402 0.000 0.000 1.538
5 0.000 0.000 0.000 0.000 93.617 0.000 2.128 0.000 3.783 0.000 0.000 0.473
6 0.000 1.940 0.353 3.527 0.176 67.725 2.822 3.351 4.762 14.109 0.705 0.529
7 0.000 0.000 0.000 13.333 4.667 0.222 64.444 8.000 7.333 0.000 0.000 2.000
8 0.000 0.000 0.202 1.212 3.636 3.434 7.273 69.293 4.242 2.020 0.000 8.687
9 0.000 0.000 0.000 3.205 11.966 2.778 4.701 3.205 67.521 0.641 0.000 5.983

10 0.000 6.289 10.901 0.210 0.000 1.677 2.096 1.887 0.000 74.214 2.725 0.000
11 0.000 3.060 63.768 0.000 0.000 1.288 0.161 0.000 0.000 25.121 6.602 0.000
12 0.000 0.000 0.000 0.454 4.308 0.000 0.454 0.907 1.587 1.814 0.000 90.476

Average Recall: 63.847%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 9.444 33.333 46.667 0.370 0.000 0.000 0.000 0.370 0.000 3.333 6.481 0.000
3 0.000 8.249 69.697 0.673 0.000 1.178 0.168 0.168 0.000 9.933 9.933 0.000
4 0.000 0.000 0.000 74.074 0.463 1.389 21.991 0.231 1.620 0.000 0.000 0.231
5 0.000 0.000 0.000 1.080 93.364 0.000 0.926 0.463 1.543 0.000 0.000 2.623
6 0.000 2.067 0.517 3.101 1.034 72.610 0.517 1.292 0.775 16.279 0.258 1.550
7 0.000 0.000 0.000 41.026 1.068 0.427 54.274 1.282 1.282 0.214 0.000 0.427
8 0.000 0.000 0.556 4.074 2.222 3.333 4.630 47.778 1.296 4.259 0.000 31.852
9 0.000 0.000 0.000 13.082 8.244 3.943 4.122 1.434 65.591 0.896 0.000 2.688

10 0.436 7.843 5.447 2.397 0.000 8.932 1.307 2.832 0.218 62.527 6.100 1.961
11 0.000 3.205 43.376 0.427 0.000 0.427 0.000 0.000 0.000 29.274 23.291 0.000
12 0.000 0.000 0.000 0.457 4.566 0.000 0.152 0.000 1.065 2.588 0.000 91.172

Average Recall: 65.643%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 85.965 7.407 2.729 0.000 0.000 0.000 0.000 0.000 0.000 0.585 3.314 0.000
2 7.037 34.815 51.667 0.185 0.000 1.111 0.000 0.370 0.000 0.556 4.259 0.000
3 0.000 4.535 83.673 0.000 0.000 0.227 0.000 0.000 0.000 4.989 6.576 0.000
4 0.000 0.000 0.000 76.620 2.546 0.000 19.676 0.694 0.463 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 95.299 0.000 0.000 1.068 3.632 0.000 0.000 0.000
6 0.000 3.880 0.882 5.644 0.176 73.369 0.000 0.176 9.347 4.586 1.940 0.000
7 0.000 0.000 0.000 63.103 0.629 0.419 31.447 2.935 1.258 0.000 0.000 0.210
8 0.000 0.168 1.178 6.397 1.347 9.764 4.040 51.178 6.397 4.209 0.505 14.815
9 0.000 0.000 0.000 7.843 8.061 3.268 0.000 0.000 77.996 0.871 0.000 1.961

10 0.296 8.741 9.481 2.519 0.000 13.037 1.333 5.037 0.444 44.741 14.222 0.148
11 0.000 5.011 54.684 0.000 0.000 4.357 0.218 0.000 0.000 17.647 17.647 0.436
12 0.000 0.000 0.000 0.353 5.291 0.000 0.000 1.235 1.411 3.175 0.353 88.183

Average Recall: 63.411%

Mean Average Recall: 63.947%
Standard Deviation: 1.242

 Appendix A

 147

Position: ankle6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 9.950 33.333 52.405 0.000 0.000 0.332 0.000 0.332 0.000 1.990 1.658 0.000
3 0.000 5.914 84.946 0.179 0.000 1.971 0.000 0.000 0.000 4.122 2.867 0.000
4 0.617 0.000 0.000 79.424 1.646 0.000 14.609 1.440 2.058 0.206 0.000 0.000
5 0.000 0.000 0.000 0.000 97.386 0.000 0.000 0.000 2.397 0.000 0.000 0.218
6 0.988 1.728 2.469 8.642 0.494 71.111 0.000 0.741 4.691 7.654 0.988 0.494
7 0.000 0.000 0.000 59.649 3.899 0.000 32.554 1.559 2.144 0.000 0.000 0.195
8 0.473 0.000 1.182 1.891 0.946 5.910 3.073 65.485 5.910 0.946 0.000 14.184
9 0.000 0.000 0.000 7.906 10.256 4.060 0.000 0.427 73.077 1.282 0.000 2.991

10 0.000 1.507 15.819 0.942 0.188 9.793 1.130 5.650 0.377 54.802 9.228 0.565
11 0.322 1.610 66.667 0.000 0.161 1.610 0.000 0.483 0.000 20.612 8.535 0.000
12 0.000 0.000 0.000 0.626 2.034 0.156 0.000 2.660 1.095 1.095 0.156 92.175

Average Recall: 66.069%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 100.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 10.870 29.952 51.449 0.000 0.000 0.242 0.000 0.242 0.000 1.449 5.797 0.000
3 0.000 6.130 72.605 0.192 0.000 0.192 0.192 0.383 0.000 5.364 14.943 0.000
4 0.000 0.000 0.000 42.424 0.505 0.000 50.842 1.515 4.040 0.673 0.000 0.000
5 0.000 0.000 0.000 0.358 92.473 0.000 0.717 0.000 5.376 0.000 0.000 1.075
6 0.000 1.587 1.429 3.016 0.000 65.238 1.905 0.952 4.921 8.571 11.429 0.952
7 0.000 0.000 0.000 29.690 1.457 0.000 61.202 3.279 3.643 0.000 0.000 0.729
8 0.000 0.000 0.370 4.815 1.481 6.481 7.222 55.000 1.111 4.815 0.000 18.704
9 0.000 0.000 0.242 2.174 5.072 0.966 4.831 0.483 78.261 1.691 0.483 5.797

10 0.253 1.768 5.556 1.010 0.000 2.778 4.545 2.020 0.253 63.384 18.182 0.253
11 0.000 2.604 52.778 0.000 0.000 1.910 0.347 0.174 0.000 14.062 28.125 0.000
12 0.000 0.000 0.000 0.000 2.825 0.188 0.565 0.377 0.565 2.637 0.188 92.655

Average Recall: 65.110%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 94.359 0.000 3.248 0.000 0.000 0.000 0.000 0.000 0.000 1.026 1.368 0.000
2 13.148 27.037 55.000 0.000 0.000 0.000 0.000 0.000 0.000 0.556 4.259 0.000
3 0.000 3.013 83.239 0.000 0.000 0.753 0.000 0.000 0.000 4.708 8.286 0.000
4 0.000 0.000 0.000 52.675 0.823 0.412 39.712 0.617 5.350 0.000 0.000 0.412
5 0.000 0.000 0.000 0.000 98.788 0.000 0.202 0.000 0.808 0.000 0.000 0.202
6 0.000 1.587 0.000 0.595 0.198 86.905 0.000 0.198 0.595 9.325 0.595 0.000
7 0.000 0.000 0.000 30.135 2.357 0.337 59.428 2.189 4.882 0.168 0.000 0.505
8 0.000 0.000 0.463 2.315 2.546 5.324 12.037 37.500 7.176 5.324 0.000 27.315
9 0.000 0.000 0.000 2.778 11.806 1.736 6.424 1.736 70.833 2.778 0.000 1.910

10 0.546 7.650 6.557 0.364 0.000 7.104 0.911 1.821 1.093 61.749 11.658 0.546
11 0.000 0.231 54.861 0.000 0.000 3.472 0.000 0.000 0.000 23.148 18.287 0.000
12 0.000 0.000 0.000 0.641 4.274 0.000 0.855 0.000 2.350 2.778 0.000 89.103

Average Recall: 64.992%

148

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.177 0.000 0.206 0.000 0.000 0.000 0.000 0.000 0.000 0.206 0.412 0.000
2 8.081 28.620 55.724 0.000 0.000 0.168 0.000 0.000 0.000 0.168 7.239 0.000
3 0.000 9.293 75.354 0.606 0.000 1.616 0.000 0.000 0.000 2.424 10.707 0.000
4 0.000 0.000 0.000 70.598 0.513 0.513 24.274 1.026 2.222 0.855 0.000 0.000
5 0.000 0.000 0.000 0.000 93.762 0.000 1.170 0.195 4.678 0.000 0.000 0.195
6 0.000 0.546 1.639 8.925 0.000 71.038 0.364 0.364 4.007 10.200 2.732 0.182
7 0.000 0.000 0.000 55.991 0.218 1.089 35.294 3.922 3.050 0.436 0.000 0.000
8 0.000 0.000 0.171 5.812 3.248 10.427 2.222 51.966 4.103 5.299 0.000 16.752
9 0.000 0.000 0.000 15.079 10.119 4.365 3.373 2.976 59.921 0.000 0.000 4.167

10 1.389 4.167 4.563 2.381 0.000 13.095 1.190 4.762 0.992 58.730 8.333 0.397
11 0.000 0.855 53.846 0.000 0.000 2.350 0.000 0.000 0.000 17.308 25.427 0.214
12 0.000 0.000 0.000 0.444 5.778 0.444 0.667 2.000 0.000 1.778 0.000 88.889

Average Recall: 63.231%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.104 0.000 0.896 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 7.176 35.417 48.148 0.000 0.000 0.000 0.231 0.463 0.000 2.315 6.250 0.000
3 0.000 9.434 75.681 0.419 0.000 1.048 0.000 0.210 0.000 3.983 9.224 0.000
4 0.000 0.000 0.000 56.738 2.600 0.000 37.825 0.236 1.655 0.473 0.000 0.473
5 0.000 0.000 0.000 0.179 96.416 0.000 1.075 0.000 1.792 0.000 0.000 0.538
6 0.202 2.828 0.606 3.838 0.202 70.909 0.808 0.404 9.899 7.475 2.626 0.202
7 0.000 0.000 0.000 32.265 2.137 0.214 62.821 0.855 1.496 0.000 0.000 0.214
8 0.000 0.168 0.337 2.694 3.367 5.556 4.882 45.118 3.872 2.694 0.842 30.471
9 0.000 0.000 0.000 8.213 5.475 1.771 3.865 0.483 75.523 2.093 0.322 2.254

10 0.663 5.307 9.950 2.156 0.000 7.297 4.478 3.648 0.332 44.113 21.559 0.498
11 0.210 2.516 58.491 0.000 0.000 1.468 0.000 0.210 0.000 16.352 20.755 0.000
12 0.000 0.000 0.000 0.000 4.321 0.000 0.000 0.823 1.235 3.086 0.000 90.535

Average Recall: 64.428%

Mean Average Recall: 64.766%
Standard Deviation: 1.041

Position: hand16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 74.491 25.352 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.156 0.000 0.000
2 7.088 68.199 17.816 0.000 0.192 1.724 0.575 0.000 0.958 2.299 0.766 0.383
3 5.144 5.144 72.222 1.235 0.000 1.029 0.412 2.263 2.469 2.469 7.202 0.412
4 0.427 0.000 1.282 80.769 0.855 0.855 4.487 8.333 1.496 0.641 0.641 0.214
5 0.000 0.000 0.000 0.000 98.380 0.000 0.000 0.000 0.231 0.000 0.000 1.389
6 0.195 0.975 9.552 0.390 0.195 77.778 0.585 0.390 3.314 0.195 6.433 0.000
7 0.000 0.412 0.823 2.469 2.263 0.206 90.947 1.440 1.029 0.206 0.206 0.000
8 0.358 0.000 8.423 16.487 1.075 0.717 6.452 49.821 4.301 5.914 4.659 1.792
9 5.838 0.377 2.448 4.331 1.507 22.222 4.708 0.942 42.373 4.520 7.721 3.013

10 1.440 0.823 2.469 8.642 0.617 11.728 12.140 12.140 15.226 29.630 2.881 2.263
11 4.938 6.878 19.224 5.115 0.705 12.875 2.646 4.938 7.584 8.289 26.102 0.705
12 0.000 0.000 0.000 0.397 1.587 0.000 0.595 0.794 1.190 1.190 0.000 94.246

Average Recall: 67.080%

 Appendix A

 149

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 96.017 3.774 0.000 0.000 0.000 0.000 0.000 0.000 0.210 0.000 0.000 0.000
2 24.713 56.513 15.326 0.000 0.000 0.192 0.958 0.000 1.149 0.383 0.192 0.575
3 7.568 0.322 71.981 1.288 0.000 2.415 0.483 1.288 2.254 4.509 7.407 0.483
4 0.000 0.000 0.444 77.111 0.667 0.444 7.556 3.778 7.556 1.333 0.444 0.667
5 0.000 0.000 0.000 0.000 97.175 0.000 0.188 0.000 0.565 0.000 0.000 2.072
6 0.206 0.000 5.144 0.823 1.235 78.601 2.058 0.617 5.350 0.000 5.967 0.000
7 0.202 0.000 0.000 3.232 2.626 0.202 90.707 1.616 1.212 0.202 0.000 0.000
8 0.454 0.000 1.814 18.367 0.000 3.401 8.844 43.764 9.070 7.256 6.349 0.680
9 5.031 0.000 0.000 2.935 3.354 12.369 6.499 0.000 61.845 2.516 4.193 1.258

10 0.817 0.000 2.288 5.719 1.471 5.556 14.379 11.601 13.399 39.052 3.758 1.961
11 5.848 9.552 7.602 1.559 0.390 8.382 2.339 3.119 20.273 5.458 31.579 3.899
12 0.000 0.000 0.000 0.353 2.998 0.000 0.000 0.000 1.587 0.882 0.000 94.180

Average Recall: 69.877%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 95.322 3.899 0.000 0.000 0.000 0.000 0.000 0.000 0.585 0.195 0.000 0.000
2 14.657 39.480 39.243 0.000 0.473 1.418 0.236 0.000 1.655 0.000 2.837 0.000
3 11.111 0.595 70.040 0.992 0.000 1.389 0.992 3.373 1.786 1.389 8.333 0.000
4 0.195 0.000 0.195 69.786 0.195 0.195 9.747 13.840 0.780 0.390 4.678 0.000
5 0.000 0.000 0.000 0.000 98.182 0.000 0.404 0.202 0.202 0.000 0.000 1.010
6 0.000 0.222 1.778 0.000 0.444 87.111 0.000 0.222 4.444 0.000 5.778 0.000
7 0.626 0.000 0.000 2.191 0.782 0.313 92.332 1.565 0.782 0.782 0.156 0.469
8 0.741 0.370 0.556 16.852 0.185 0.000 4.630 49.630 5.556 10.370 9.815 1.296
9 2.407 0.000 0.000 3.333 2.037 9.074 10.185 0.741 51.111 8.148 10.556 2.407

10 0.473 0.709 1.182 4.019 0.000 5.201 21.513 11.348 14.657 33.097 6.383 1.418
11 3.013 3.390 11.488 3.013 1.507 8.286 1.507 2.448 14.124 10.734 39.171 1.318
12 0.000 0.000 0.000 0.161 1.932 0.000 0.000 0.805 0.805 0.805 0.000 95.491

Average Recall: 68.396%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.866 1.134 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 16.239 48.376 28.205 0.000 0.171 1.026 0.684 0.000 0.855 0.513 3.590 0.342
3 10.913 6.349 68.254 1.190 0.000 1.786 0.397 0.992 1.786 2.778 5.357 0.198
4 0.182 0.000 0.182 75.410 0.000 0.182 4.736 12.568 0.911 3.643 0.911 1.275
5 0.000 0.000 0.000 0.000 97.374 0.000 0.202 0.000 0.000 0.000 0.000 2.424
6 0.174 0.347 2.778 2.083 0.174 80.382 0.521 0.347 7.639 0.000 4.861 0.694
7 0.383 0.000 0.192 9.770 1.724 1.149 77.203 2.874 4.023 1.533 0.000 1.149
8 0.000 0.000 1.556 23.111 0.222 1.556 7.111 42.000 7.111 11.556 4.444 1.333
9 6.591 0.000 0.188 1.695 3.013 7.721 4.520 0.565 58.380 5.650 6.026 5.650

10 0.397 0.595 3.571 8.532 0.397 5.159 14.286 12.897 10.714 37.302 3.175 2.976
11 6.173 8.818 9.877 1.587 1.235 6.173 3.880 1.411 15.520 6.349 33.862 5.115
12 0.641 0.000 0.000 0.641 2.991 0.000 0.000 0.214 1.068 1.709 0.000 92.735

Average Recall: 67.512%

150

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.610 0.000 0.000 0.000 0.195 0.000 0.000 0.000 0.195 0.000 0.000 0.000
2 31.801 53.448 9.387 0.000 0.383 0.383 0.383 0.000 1.149 0.958 1.916 0.192
3 5.128 35.684 47.009 1.068 0.000 1.923 0.000 0.641 1.709 1.068 5.556 0.214
4 0.166 0.000 0.000 78.275 0.498 0.663 5.307 9.453 0.829 1.161 2.322 1.327
5 0.000 0.000 0.000 0.000 97.101 0.000 0.644 0.000 0.000 0.000 0.000 2.254
6 2.151 0.358 3.047 1.971 0.896 77.419 0.896 1.613 3.763 0.000 7.885 0.000
7 0.000 0.000 0.000 7.710 2.268 2.268 82.766 2.268 1.587 0.680 0.227 0.227
8 0.000 0.000 4.209 25.758 0.505 2.525 6.566 44.613 7.407 5.051 1.515 1.852
9 5.556 0.000 0.000 4.960 3.571 12.103 6.746 0.595 53.571 7.341 2.579 2.976

10 1.971 0.896 3.584 12.545 0.179 6.631 16.129 11.111 11.111 27.599 5.914 2.330
11 8.395 2.222 16.296 0.741 3.457 3.457 2.222 3.210 9.136 3.210 45.926 1.728
12 0.000 0.000 0.000 0.494 3.457 0.000 0.000 0.000 0.741 1.728 0.000 93.580

Average Recall: 66.743%

Mean Average Recall: 67.922%
Standard Deviation: 1.256

Position: hand6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 96.599 3.401 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 16.179 56.725 21.637 0.000 0.000 0.585 0.585 0.195 0.000 2.729 0.975 0.390
3 4.127 0.317 78.889 1.429 0.000 1.429 0.159 3.968 1.587 0.794 7.143 0.159
4 0.222 0.000 0.000 79.778 0.444 0.000 8.222 8.444 0.667 1.556 0.667 0.000
5 0.000 0.000 0.000 0.000 99.247 0.000 0.377 0.000 0.188 0.000 0.000 0.188
6 1.341 0.000 3.065 2.490 0.383 78.544 0.766 0.766 4.789 0.000 7.663 0.192
7 0.182 0.000 0.000 5.829 1.093 0.000 88.342 3.461 0.911 0.000 0.182 0.000
8 0.210 0.000 1.048 16.562 2.516 2.306 7.966 57.442 4.193 2.516 3.774 1.468
9 5.556 0.383 0.192 5.939 1.724 11.111 12.644 2.682 49.234 2.682 5.556 2.299

10 1.471 0.327 2.778 9.150 1.797 7.516 13.562 17.647 13.399 24.510 5.719 2.124
11 8.772 2.924 7.018 2.144 0.975 9.162 2.924 7.018 9.162 6.043 41.715 2.144
12 0.000 0.000 0.000 0.694 0.926 0.000 0.926 0.463 0.926 1.620 0.000 94.444

Average Recall: 70.456%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 96.881 2.534 0.000 0.000 0.000 0.000 0.000 0.000 0.390 0.195 0.000 0.000
2 15.556 46.263 33.131 0.000 1.010 1.212 0.606 0.404 0.404 0.202 1.010 0.202
3 9.091 2.222 75.556 0.606 0.000 4.040 0.404 2.020 0.808 2.828 2.424 0.000
4 0.182 0.000 3.097 77.960 0.000 0.546 3.825 8.925 0.546 1.639 3.097 0.182
5 0.000 0.000 0.000 0.390 94.737 0.000 1.170 0.195 2.144 0.000 0.000 1.365
6 0.000 0.000 8.135 0.595 0.595 83.135 0.595 1.587 1.786 0.000 3.571 0.000
7 0.390 0.000 0.585 13.255 0.585 0.390 78.947 4.288 1.170 0.195 0.000 0.195
8 0.163 0.000 5.065 21.569 0.327 0.980 4.412 50.163 2.451 5.556 8.007 1.307
9 3.175 0.595 0.397 6.349 1.786 8.730 7.738 1.190 53.175 7.143 7.540 2.183

10 1.887 1.887 11.111 11.530 0.210 7.128 10.063 14.885 10.273 27.673 2.306 1.048
11 6.709 11.321 18.449 2.516 2.096 12.579 2.096 5.031 14.675 3.983 18.449 2.096
12 0.000 0.000 0.000 1.667 1.481 0.000 0.185 0.000 1.111 2.407 0.000 93.148

Average Recall: 66.341%

 Appendix A

 151

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 93.303 6.697 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 15.152 57.172 25.859 0.000 0.000 0.000 0.404 0.000 0.202 0.000 0.808 0.404
3 7.176 2.546 78.472 0.926 0.694 2.546 0.926 0.926 0.694 3.241 1.620 0.231
4 0.412 0.000 0.000 65.844 0.000 2.675 13.374 9.053 4.733 2.675 0.823 0.412
5 0.000 0.000 0.000 0.000 94.747 0.000 1.818 0.606 0.000 0.000 0.000 2.828
6 0.202 0.404 2.828 0.202 0.202 86.465 1.414 0.202 3.434 0.000 4.646 0.000
7 0.000 0.000 0.000 1.565 0.782 0.156 94.679 0.939 0.626 0.000 0.000 1.252
8 0.000 0.000 2.424 10.707 1.212 5.859 11.919 49.697 6.869 7.273 3.434 0.606
9 3.704 0.161 0.000 1.932 0.322 20.773 5.958 0.483 52.818 5.314 5.636 2.899

10 0.202 0.404 3.434 5.051 0.202 12.323 13.535 10.101 9.293 38.586 5.859 1.010
11 3.783 4.255 21.040 0.473 0.236 18.440 3.073 2.364 11.820 5.201 26.478 2.837
12 0.000 0.000 0.000 0.000 1.307 0.000 0.000 0.000 1.089 0.436 0.000 97.168

Average Recall: 69.619%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 92.172 7.071 0.000 0.000 0.253 0.000 0.000 0.000 0.505 0.000 0.000 0.000
2 18.182 26.094 34.007 0.000 0.842 1.684 0.000 0.000 1.010 2.357 15.657 0.168
3 10.185 0.741 73.519 1.481 0.000 2.963 0.926 2.593 1.296 3.519 2.222 0.556
4 0.000 0.000 0.000 76.882 0.179 0.538 7.706 10.215 2.867 0.896 0.358 0.358
5 0.000 0.000 0.000 0.000 96.539 0.000 0.911 0.000 0.364 0.000 0.000 2.186
6 0.000 0.000 4.643 0.995 0.000 84.245 0.663 2.985 5.307 0.000 0.995 0.166
7 0.483 0.242 0.000 5.314 0.483 0.483 86.232 4.831 0.966 0.242 0.000 0.725
8 0.694 0.463 2.083 15.509 0.463 4.167 9.491 48.611 9.491 4.167 0.926 3.935
9 8.176 0.419 0.210 3.354 2.306 7.757 8.386 1.468 61.216 2.306 2.096 2.306

10 1.341 0.383 6.130 6.705 0.766 7.280 18.582 15.517 9.962 29.119 1.916 2.299
11 4.225 3.286 22.379 1.252 0.782 11.268 2.347 9.077 12.520 9.546 21.909 1.408
12 0.427 0.000 0.000 0.000 0.427 0.000 1.282 0.000 0.214 0.214 0.000 97.436

Average Recall: 66.165%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.479 0.347 0.000 0.000 0.000 0.000 0.000 0.000 0.174 0.000 0.000 0.000
2 19.287 48.008 27.883 0.210 0.419 0.419 0.000 0.210 1.048 0.419 2.096 0.000
3 11.317 1.029 76.132 1.852 0.206 2.263 0.000 0.823 1.029 1.852 3.292 0.206
4 0.000 0.000 1.481 70.185 0.370 1.296 12.037 6.111 2.407 2.593 2.222 1.296
5 0.000 0.000 0.000 0.000 97.980 0.000 0.404 0.000 0.202 0.000 0.000 1.414
6 0.436 0.654 7.407 4.139 1.525 71.678 0.871 1.089 8.061 0.000 4.139 0.000
7 0.214 0.000 0.000 7.265 3.419 0.214 77.991 5.342 4.487 0.000 0.427 0.641
8 0.179 0.179 4.480 18.817 3.943 0.896 7.168 37.097 8.423 7.885 6.989 3.943
9 4.357 0.000 0.000 2.614 1.525 10.458 4.793 0.218 68.192 1.307 3.704 2.832

10 0.839 0.839 3.774 13.627 1.887 9.015 10.273 9.644 15.304 26.415 5.241 3.145
11 5.172 8.429 16.667 2.682 2.299 6.897 1.724 1.724 11.303 4.406 35.057 3.640
12 0.296 0.000 0.000 0.000 1.333 0.000 0.000 0.000 0.000 2.963 0.296 95.111

Average Recall: 66.944%

Mean Average Recall: 67.905%
Standard Deviation: 1.990

152

Position: chest16g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 95.906 1.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.729 0.000 0.000
2 0.000 26.415 59.539 0.000 0.000 5.451 0.000 0.000 0.000 2.725 5.870 0.000
3 0.176 1.235 86.243 0.176 0.000 4.056 0.000 0.000 0.882 2.646 4.586 0.000
4 0.000 0.000 0.000 40.042 1.048 1.677 40.252 11.950 1.677 0.839 0.000 2.516
5 0.000 0.000 0.000 0.000 99.034 0.000 0.000 0.242 0.000 0.000 0.000 0.725
6 0.000 0.000 2.124 0.000 0.000 86.111 0.490 2.288 1.797 3.105 3.922 0.163
7 0.000 0.000 0.000 8.286 0.942 1.883 73.823 2.637 5.085 0.000 0.000 7.345
8 0.000 0.000 0.000 5.115 1.587 4.586 10.935 65.256 5.291 5.291 0.705 1.235
9 0.000 0.000 0.000 1.646 2.058 0.823 16.255 4.527 67.695 1.029 0.000 5.967

10 0.000 0.000 3.030 0.000 0.000 8.081 0.202 2.828 1.818 50.505 33.535 0.000
11 0.156 0.313 14.085 0.469 0.000 12.520 0.000 1.408 1.252 9.233 60.563 0.000
12 0.000 0.483 0.000 0.483 4.589 0.000 0.000 2.657 2.415 1.208 0.000 88.164

Average Recall: 69.980%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.148 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.852 0.000 0.000
2 31.197 0.000 63.248 0.000 0.000 1.709 0.000 0.000 0.000 1.496 2.350 0.000
3 1.134 0.000 83.220 2.494 0.227 2.268 0.227 0.680 0.227 4.308 4.535 0.680
4 0.000 0.000 0.000 45.062 0.000 1.389 35.185 12.037 6.019 0.309 0.000 0.000
5 0.000 0.000 0.000 0.000 98.384 0.000 0.000 1.010 0.202 0.000 0.000 0.404
6 0.000 0.000 2.397 0.654 0.218 66.231 1.307 14.815 1.525 2.614 10.240 0.000
7 0.000 0.000 0.168 11.785 0.000 0.505 71.549 5.051 10.438 0.337 0.000 0.168
8 0.000 0.000 0.000 3.831 0.958 1.341 6.897 80.268 4.981 1.533 0.000 0.192
9 0.000 0.000 1.034 4.134 0.258 2.584 23.514 6.202 59.690 1.292 0.000 1.292

10 0.000 0.000 1.411 0.529 0.176 6.702 0.353 10.053 0.529 62.257 17.989 0.000
11 0.412 0.000 22.016 0.412 0.000 7.819 0.412 1.235 0.000 6.996 60.700 0.000
12 0.000 0.000 0.000 0.156 3.286 0.000 2.191 1.565 3.756 0.313 0.000 88.732

Average Recall: 67.853%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.506 0.454 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.041 0.000 0.000
2 0.198 58.929 18.651 1.984 0.000 10.516 0.198 0.000 4.365 4.167 0.992 0.000
3 1.587 30.864 38.448 10.229 0.000 4.938 0.176 0.705 2.822 3.880 6.349 0.000
4 0.000 0.000 0.000 65.278 0.000 3.770 17.857 5.754 7.143 0.198 0.000 0.000
5 0.000 0.000 0.000 0.000 97.636 0.000 0.000 0.473 0.236 0.000 0.000 1.655
6 0.000 1.525 1.307 0.871 0.000 78.214 0.436 0.871 2.179 2.179 12.200 0.218
7 0.000 0.000 0.805 30.113 0.000 2.254 51.691 3.543 10.950 0.000 0.000 0.644
8 0.000 0.364 0.911 16.576 0.729 10.565 8.197 56.102 3.643 1.821 1.093 0.000
9 0.000 0.342 5.812 5.812 1.538 0.342 9.402 0.171 72.650 0.000 1.538 2.393

10 0.218 0.218 1.307 1.961 0.000 7.843 0.000 4.139 0.436 61.002 22.876 0.000
11 0.000 2.778 6.349 0.595 0.000 15.476 0.000 1.389 0.000 9.921 63.294 0.198
12 0.347 0.000 0.000 1.562 0.174 0.000 0.868 0.347 1.042 1.389 0.000 94.271

Average Recall: 69.585%

 Appendix A

 153

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 84.211 15.497 0.000 0.000 0.146 0.000 0.000 0.000 0.000 0.146 0.000 0.000
2 0.565 32.203 64.218 0.377 0.000 0.753 0.188 0.000 0.188 0.188 1.318 0.000
3 0.390 1.949 90.253 0.585 0.000 0.780 0.000 1.170 0.390 1.754 2.729 0.000
4 0.000 0.000 0.595 43.056 0.000 2.381 43.254 5.556 4.563 0.000 0.595 0.000
5 0.000 0.000 0.000 0.000 97.937 0.000 0.000 1.270 0.317 0.000 0.000 0.476
6 0.000 0.000 3.486 0.000 0.000 78.867 0.436 3.704 3.050 2.397 7.843 0.218
7 0.000 0.000 0.542 20.325 0.271 0.813 63.957 3.252 10.569 0.000 0.271 0.000
8 0.000 0.000 0.000 2.116 1.587 5.026 10.582 71.429 5.820 3.175 0.265 0.000
9 0.000 0.163 3.758 3.758 0.163 2.778 14.706 2.778 69.935 0.163 0.000 1.797

10 0.000 0.000 4.736 0.182 0.000 7.650 0.000 6.557 0.000 59.016 21.676 0.182
11 0.000 0.210 20.964 0.000 0.000 9.434 0.210 0.839 0.000 5.660 62.683 0.000
12 0.000 0.000 0.206 0.000 1.852 0.000 2.469 0.206 1.852 0.617 0.000 92.798

Average Recall: 70.529%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 98.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.961 0.000 0.000
2 0.829 29.353 63.184 0.000 0.000 0.332 0.000 0.166 0.332 2.819 2.985 0.000
3 1.029 0.823 87.449 1.029 0.000 0.412 0.000 0.823 0.412 2.058 5.967 0.000
4 0.000 0.000 0.222 60.889 0.000 2.667 27.333 4.667 3.333 0.222 0.222 0.444
5 0.000 0.000 0.000 0.000 97.712 0.000 0.163 0.163 0.163 0.000 0.000 1.797
6 0.000 0.000 5.051 0.842 0.168 78.956 0.337 3.872 0.168 1.515 8.586 0.505
7 0.000 0.000 0.000 20.261 0.436 0.436 75.381 1.743 1.525 0.000 0.000 0.218
8 0.000 0.000 0.000 10.394 2.688 11.649 7.885 57.706 3.584 3.943 0.896 1.254
9 0.000 0.000 1.170 3.509 0.975 2.339 16.764 1.170 65.887 0.390 0.585 7.212

10 0.000 0.000 2.534 0.780 0.000 5.848 0.000 7.018 0.975 50.292 31.189 1.365
11 0.000 0.000 19.078 1.258 0.000 2.096 0.000 2.725 0.000 5.031 69.602 0.210
12 0.000 0.000 0.000 0.214 2.137 0.427 1.496 0.427 1.068 0.214 0.000 94.017

Average Recall: 72.107%

Mean Average Recall: 70.011%
Standard Deviation: 1.541

Position: chest6g

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.175 0.942 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.883 0.000 0.000
2 0.546 20.401 59.199 0.546 0.000 10.018 0.000 0.182 0.000 2.368 6.740 0.000
3 0.000 0.926 78.148 1.296 0.000 8.704 0.000 0.926 0.000 0.370 9.630 0.000
4 0.000 0.000 0.377 58.004 0.000 6.968 22.411 7.156 4.896 0.188 0.000 0.000
5 0.000 0.000 0.000 0.000 99.383 0.000 0.000 0.000 0.000 0.000 0.000 0.617
6 0.000 0.000 0.946 1.182 0.473 81.797 0.236 7.329 0.946 0.709 6.383 0.000
7 0.000 0.000 0.000 20.947 0.000 2.732 65.209 2.732 8.379 0.000 0.000 0.000
8 0.000 0.000 1.533 5.939 0.958 12.835 9.579 64.176 2.490 1.916 0.575 0.000
9 0.000 0.000 1.449 5.797 1.208 2.657 12.077 2.174 71.256 0.000 0.966 2.415

10 0.000 0.000 2.293 0.705 0.000 9.700 0.000 7.760 0.353 40.212 38.977 0.000
11 0.000 0.322 13.849 2.738 0.000 19.646 0.000 3.221 0.161 7.568 52.496 0.000
12 0.218 0.654 0.000 0.654 2.397 2.179 0.871 0.871 1.307 0.218 0.000 90.632

Average Recall: 68.241%

154

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 96.768 0.606 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.626 0.000 0.000
2 2.998 24.691 64.903 0.000 0.000 0.176 0.000 0.000 0.000 0.176 7.055 0.000
3 0.210 1.887 84.906 0.000 0.000 1.258 0.000 0.419 0.000 0.210 11.111 0.000
4 0.000 0.000 0.258 64.341 0.000 0.775 19.897 6.460 8.269 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 99.042 0.000 0.000 0.000 0.000 0.000 0.000 0.958
6 0.000 0.000 1.093 0.000 0.000 76.321 0.000 10.018 0.364 2.186 9.836 0.182
7 0.000 0.000 0.000 28.341 0.000 0.322 53.784 3.865 13.688 0.000 0.000 0.000
8 0.000 0.000 0.358 5.018 0.717 2.330 6.810 75.806 8.065 0.538 0.000 0.358
9 0.000 0.663 1.327 4.975 0.166 2.985 9.453 4.478 74.461 0.332 0.000 1.161

10 0.000 0.000 2.268 0.454 0.000 7.256 0.000 8.617 0.227 65.533 15.646 0.000
11 0.000 0.000 21.248 0.000 0.000 1.365 0.000 2.534 0.000 5.458 69.396 0.000
12 0.000 0.218 0.218 0.436 3.486 0.218 0.000 0.654 1.743 0.654 0.000 92.375

Average Recall: 73.119%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 97.872 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.128 0.000 0.000
2 1.258 54.927 20.545 0.000 0.000 15.094 0.000 0.000 1.048 0.210 6.918 0.000
3 0.347 13.889 66.319 0.000 0.000 10.764 0.000 0.347 0.521 1.215 6.597 0.000
4 0.000 0.000 0.206 37.654 0.000 2.675 44.239 4.115 10.905 0.206 0.000 0.000
5 0.000 0.000 0.000 0.000 98.659 0.000 0.000 0.766 0.000 0.000 0.000 0.575
6 0.000 0.176 0.176 0.705 0.000 95.944 0.000 0.176 0.353 1.587 0.882 0.000
7 0.000 0.000 0.000 15.254 0.000 1.695 72.881 3.390 6.780 0.000 0.000 0.000
8 0.000 0.000 0.444 6.444 0.000 8.667 14.889 64.889 3.333 1.333 0.000 0.000
9 0.000 0.538 0.358 1.254 0.717 4.659 21.864 2.688 65.771 1.075 0.000 1.075

10 0.000 0.000 1.212 0.606 0.000 17.374 0.404 2.626 0.404 63.434 13.939 0.000
11 0.000 0.444 11.111 0.000 0.000 23.556 0.444 0.889 0.667 5.778 57.111 0.000
12 0.000 0.000 0.000 0.000 0.913 0.913 0.609 0.761 3.653 0.152 0.000 92.998

Average Recall: 72.372%

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 99.824 0.176 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.818 31.919 64.646 0.202 0.000 0.808 0.000 0.000 0.000 0.606 0.000 0.000
3 0.000 0.444 87.333 2.889 0.000 2.444 0.222 2.889 0.000 1.111 2.667 0.000
4 0.000 0.000 0.168 52.189 0.000 3.872 23.737 15.152 4.882 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 99.234 0.000 0.000 0.575 0.000 0.000 0.000 0.192
6 0.000 0.000 0.000 0.000 0.192 88.123 0.000 3.448 0.000 5.172 3.065 0.000
7 0.000 0.000 0.517 9.302 0.000 3.101 66.150 7.235 13.437 0.000 0.258 0.000
8 0.000 0.000 0.188 3.955 1.507 6.403 4.520 78.154 4.708 0.565 0.000 0.000
9 0.000 0.000 1.457 3.279 2.368 0.546 14.754 3.643 64.663 0.182 0.911 8.197

10 0.000 0.000 2.222 1.010 0.000 14.343 0.202 9.091 0.606 56.364 15.758 0.404
11 0.168 0.000 14.646 0.673 0.000 16.330 0.000 3.872 0.337 11.448 52.525 0.000
12 0.000 0.000 0.000 0.000 1.029 1.029 1.852 0.412 1.852 0.000 0.000 93.827

Average Recall: 72.525%

 Appendix A

 155

Actual
class

Predicated class
1 2 3 4 5 6 7 8 9 10 11 12

1 81.834 16.578 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.587 0.000 0.000
2 0.000 56.162 10.707 0.000 0.000 0.808 0.202 0.000 0.606 1.212 30.303 0.000
3 0.195 22.807 40.936 0.585 0.000 0.585 0.780 1.559 1.170 0.780 30.604 0.000
4 0.000 0.000 0.347 42.014 0.000 8.333 40.278 6.944 1.910 0.174 0.000 0.000
5 0.000 0.000 0.000 0.000 97.175 0.000 0.000 1.130 0.000 0.000 0.000 1.695
6 0.000 0.192 0.000 0.192 0.000 82.759 0.000 8.812 0.192 0.192 7.471 0.192
7 0.000 0.000 0.000 13.131 0.000 0.606 78.788 4.040 3.030 0.000 0.000 0.404
8 0.000 0.000 0.000 4.023 0.192 23.946 8.429 58.238 0.958 3.257 0.575 0.383
9 0.000 0.000 0.436 1.525 0.218 5.011 27.887 1.743 57.734 1.307 1.743 2.397

10 0.000 0.000 0.171 0.171 0.000 9.915 0.000 5.128 0.855 58.120 25.470 0.171
11 0.000 0.494 6.420 0.494 0.000 4.938 0.247 3.457 0.000 7.901 76.049 0.000
12 0.000 0.000 0.192 0.383 1.533 0.575 0.958 0.958 0.958 0.000 0.192 94.253

Average Recall: 68.672%

Mean Average Recall: 70.986%
Standard Deviation: 2.331

Confusion matrixes for 5 classes on the SHL dataset

In this paragraph, the confusion matrixes obtained when testing the HBN
model to classify 5 activities for the SHL dataset are reported. In the
following, the list of the activities used in this paragraph is specified:

1. still
2. walk
3. run
4. bike
5. car

Conf 1 - 3D accelerometer (with pre-processing)

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 98.393 0.000 0.000 0.000 1.607
2 0.000 99.679 0.000 0.000 0.321
3 0.000 0.166 99.734 0.100 0.000
4 3.161 5.842 0.160 63.185 27.651
5 1.471 0.000 0.000 0.000 98.529

Average Recall: 91.904%

Actual
class

Predicted class
1 2 3 4 5

1 98.729 0.000 0.000 0.000 1.271
2 0.572 98.979 0.082 0.368 0.000
3 0.000 0.143 99.572 0.250 0.036
4 2.384 1.269 0.115 70.396 25.836
5 5.287 0.000 0.000 0.000 94.713

Average Recall: 92.478%

156

Actual
class

Predicted class
1 2 3 4 5

1 90.164 0.225 0.000 0.000 9.611
2 0.000 99.224 0.245 0.000 0.531
3 0.000 0.034 99.415 0.344 0.206
4 1.702 1.147 0.000 80.022 17.129
5 0.654 0.000 0.000 0.621 98.725

Average Recall: 93.510%

Actual
class

Predicted class
1 2 3 4 5

1 96.742 0.000 0.000 0.000 3.258
2 0.000 99.066 0.000 0.047 0.887
3 0.000 0.000 99.922 0.078 0.000
4 0.676 9.162 0.203 67.579 22.380
5 3.240 0.000 0.000 0.000 96.760

Average Recall: 92.014%

Actual
class

Predicted class
1 2 3 4 5

1 96.182 0.172 0.000 0.241 3.406
2 0.000 98.039 0.205 0.380 1.375
3 0.000 0.447 98.865 0.378 0.310
4 0.245 10.609 0.420 73.144 15.581
5 3.318 0.000 0.000 0.754 95.928

Average Recall: 92.432%

Mean Average Recall: 92.467 %
Standard Deviation: 0.635

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 92.285 0.932 0.000 0.032 6.750
2 0.428 98.467 0.000 1.105 0.000
3 0.000 0.399 99.601 0.000 0.000
4 10.364 0.160 0.000 84.514 4.962
5 27.598 1.422 0.000 2.892 68.088

Average Recall: 88.591%

Actual
class

Predicted class
1 2 3 4 5

1 97.386 0.290 0.000 0.000 2.324
2 2.042 95.507 0.000 2.451 0.000
3 0.000 0.570 99.430 0.000 0.000
4 4.306 0.192 0.000 94.156 1.346
5 41.737 0.315 0.000 1.506 56.443

Average Recall: 88.584%

 Appendix A

 157

Actual
class

Predicted class
1 2 3 4 5

1 94.536 1.543 0.000 0.096 3.825
2 1.634 97.345 0.041 0.490 0.490
3 0.344 0.516 99.140 0.000 0.000
4 8.213 2.812 0.000 86.681 2.294
5 26.242 3.529 0.000 2.320 67.908

Average Recall: 89.122%

Actual
class

Predicted class
1 2 3 4 5

1 95.083 0.935 0.000 0.452 3.529
2 0.840 95.565 0.000 3.595 0.000
3 0.000 0.000 100.000 0.000 0.000
4 6.660 1.318 0.000 90.500 1.521
5 34.996 1.194 0.000 0.426 63.384

Average Recall: 88.906%

Actual
class

Predicted class
1 2 3 4 5

93.258 1.720 0.000 0.447 4.575 93.258
1.024 97.191 0.263 1.317 0.205 1.024
0.000 0.516 99.174 0.000 0.310 0.000
2.871 1.120 0.000 94.433 1.576 2.871

35.897 1.131 0.000 0.867 62.104 35.897
Average Recall: 89.232%

Mean Average Recall: 88.887%
Standard Deviation: 0.297

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 96.496 0.000 0.000 0.000 3.504
2 0.178 99.822 0.000 0.000 0.000
3 0.000 0.133 99.867 0.000 0.000
4 7.043 1.761 0.000 81.713 9.484
5 11.029 0.000 0.000 1.765 87.206

Average Recall: 93.021 %

Actual
class

Predicted class
1 2 3 4 5

1 94.481 0.000 0.000 0.000 5.519
2 0.000 97.426 0.163 2.124 0.286
3 0.000 0.535 98.895 0.570 0.000
4 1.499 1.153 0.000 92.234 5.113
5 12.325 0.000 0.000 0.070 87.605

Average Recall: 94.128%

158

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.654 98.611 0.000 0.735 0.000
3 0.000 0.275 99.622 0.103 0.000
4 13.356 0.074 0.000 86.385 0.185
5 99.281 0.000 0.000 0.000 0.719

Average Recall: 77.067%

Actual
class

Predicted class
1 2 3 4 5

1 92.821 0.000 0.000 0.000 7.179
2 0.000 98.273 0.000 1.167 0.560
3 0.000 0.039 99.961 0.000 0.000
4 3.516 1.859 0.000 85.632 8.993
5 13.598 0.000 0.000 0.000 86.402

Average Recall: 92.618%

Actual
class

Predicted class
1 2 3 4 5

1 88.510 0.000 0.000 0.000 11.490
2 0.029 98.654 0.000 0.615 0.702
3 0.000 0.000 99.690 0.000 0.310
4 1.261 2.556 0.315 86.275 9.594
5 11.275 0.000 0.000 0.000 88.725

Average Recall: 92.371%

Mean Average Recall: 89.841%
Standard Deviation: 7.172

Position: Torso

Actual
class

Predicted class
1 2 3 4 5

1 91.868 0.000 0.000 0.000 8.132
2 0.071 99.465 0.071 0.107 0.285
3 0.000 0.000 100.000 0.000 0.000
4 16.647 17.447 0.360 52.741 12.805
5 23.627 0.000 0.000 1.863 74.510

Average Recall: 83.717%

Actual
class

Predicted class
1 2 3 4 5

1 96.550 0.000 0.000 0.000 3.450
2 0.490 97.018 1.062 1.185 0.245
3 0.000 0.535 99.465 0.000 0.000
4 6.228 7.882 0.038 78.739 7.113
5 26.366 0.000 0.000 1.961 71.674

Average Recall: 88.689%

 Appendix A

 159

Actual
class

Predicted class
1 2 3 4 5

1 97.814 0.000 0.000 0.000 2.186
2 0.694 98.448 0.041 0.817 0.000
3 0.000 0.172 99.759 0.000 0.069
4 11.506 14.650 0.259 67.629 5.956
5 18.497 0.000 0.000 2.255 79.248

Average Recall: 88.580%

Actual
class

Predicted class
1 2 3 4 5

1 98.431 0.000 0.000 0.000 1.569
2 0.700 98.926 0.000 0.373 0.000
3 0.000 0.000 100.000 0.000 0.000
4 8.688 1.217 0.203 84.517 5.375
5 28.730 0.000 0.000 3.836 67.434

Average Recall: 89.862%

Actual
class

Predicted class
1 2 3 4 5

1 90.643 0.000 0.000 0.000 9.357
2 0.907 97.483 0.205 0.995 0.410
3 0.000 0.000 99.725 0.000 0.275
4 4.307 10.714 0.035 76.576 8.368
5 24.133 0.000 0.000 0.226 75.641

Average Recall: 88.014%

Mean Average Recall: 87.772%
Standard Deviation: 2.364

Conf 2 - 3D accelerometer (no preprocessing)

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 96.721 0.000 0.000 1.221 2.057
2 0.392 99.216 0.000 0.392 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 1.040 0.000 98.960 0.000
5 5.000 0.000 0.000 0.000 95.000

Average Recall: 97.979%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 98.856 0.000 1.144 0.000
3 0.000 0.036 99.964 0.000 0.000
4 0.115 0.154 0.000 99.731 0.000
5 1.786 0.000 0.000 0.000 98.214

Average Recall: 99.353%

160

Actual
class

Predicted class
1 2 3 4 5

1 94.278 0.032 0.000 0.000 5.689
2 0.368 98.325 0.000 1.307 0.000
3 0.000 0.000 99.656 0.344 0.000
4 0.370 2.960 0.000 96.670 0.000
5 3.333 0.000 0.000 0.000 96.667

Average Recall: 97.119%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.747 98.553 0.000 0.700 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.338 4.970 0.000 94.692 0.000
5 2.472 0.000 0.000 0.000 97.528

Average Recall: 98.155%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.468 98.595 0.000 0.936 0.000
3 0.000 0.000 99.690 0.310 0.000
4 0.000 3.852 0.000 96.148 0.000
5 1.923 0.000 0.000 0.113 97.964

Average Recall: 98.479%

Mean Average Recall: 98.217%
Standard Deviation: 0.810

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 87.207 1.221 0.000 0.161 11.411
2 8.342 77.718 0.820 9.840 3.280
3 0.000 0.000 100.000 0.000 0.000
4 0.000 4.162 0.000 95.838 0.000
5 19.853 0.000 0.000 0.588 79.559

Average Recall: 88.064%

Actual
class

Predicted class
1 2 3 4 5

1 81.409 2.542 0.000 0.000 16.049
2 6.577 77.492 1.511 8.415 6.005
3 0.713 0.143 99.144 0.000 0.000
4 0.192 4.537 0.000 95.271 0.000
5 12.675 1.436 0.000 0.665 85.224

Average Recall: 87.708%

 Appendix A

 161

Actual
class

Predicted class
1 2 3 4 5

1 81.581 0.289 0.096 0.289 17.743
2 3.350 77.737 5.065 12.173 1.675
3 0.344 0.000 99.656 0.000 0.000
4 0.518 4.403 0.000 94.303 0.777
5 15.131 0.523 0.000 0.033 84.314

Average Recall: 87.518%

Actual
class

Predicted class
1 2 3 4 5

1 80.241 1.026 0.000 0.181 18.552
2 4.435 81.466 4.155 9.197 0.747
3 0.000 0.000 100.000 0.000 0.000
4 0.406 5.781 0.169 93.509 0.135
5 12.788 0.426 0.000 0.000 86.786

Average Recall: 88.400%

Actual
class

Predicted class
1 2 3 4 5

1 80.667 1.342 0.000 0.378 17.613
2 4.741 76.149 4.009 10.945 4.156
3 0.069 0.000 99.931 0.000 0.000
4 0.210 0.175 0.000 99.615 0.000
5 8.446 0.189 0.000 0.000 91.365

Average Recall: 89.545%

Mean Average Recall: 88.247%
Standard Deviation: 0.801

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 95.661 0.579 0.000 3.761 0.000
2 0.000 99.964 0.000 0.036 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.680 1.200 0.000 98.119 0.000
5 5.000 0.000 0.000 0.000 95.000

Average Recall: 97.749%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.000 99.265 0.327 0.408 0.000
3 0.000 0.713 99.287 0.000 0.000
4 3.883 0.846 1.461 93.810 0.000
5 1.786 0.000 0.000 0.000 98.214

Average Recall: 98.115%

162

Actual
class

Predicted class

1 2 3 4 5

1 99.518 0.000 0.000 0.482 0.000
2 0.613 99.265 0.082 0.041 0.000
3 0.069 0.344 99.587 0.000 0.000
4 1.443 0.370 0.000 97.003 1.184
5 3.333 0.000 0.000 0.000 96.667

Average Recall: 98.408%

Actual
class

Predicted class

1 2 3 4 5

1 98.793 0.000 0.000 1.207 0.000
2 0.700 98.973 0.000 0.327 0.000
3 0.000 0.118 99.882 0.000 0.000
4 1.995 0.778 0.338 94.861 2.028
5 2.174 0.000 0.000 0.000 97.826

Average Recall: 98.067%

Actual
class

Predicted class

1 2 3 4 5

1 98.796 0.000 0.000 1.204 0.000
2 0.263 99.239 0.000 0.498 0.000
3 0.000 1.032 98.624 0.000 0.344
4 2.486 0.420 0.000 95.308 1.786
5 1.923 0.000 0.000 0.000 98.077

Average Recall: 98.009%

Mean Average Recall: 98.070%
Standard Deviation: 0.236

Position: Torso

Actual
class

Predicted class

1 2 3 4 5

1 89.939 0.000 0.000 0.000 10.061
2 0.285 99.572 0.000 0.143 0.000
3 0.000 0.000 100.000 0.000 0.000
4 16.527 0.000 0.000 83.473 0.000
5 0.882 0.000 0.000 0.000 99.118

Average Recall: 94.420%

Actual
class

Predicted class

1 2 3 4 5

1 97.967 0.000 0.000 0.000 2.033
2 1.593 97.917 0.000 0.490 0.000
3 0.000 0.000 100.000 0.000 0.000
4 5.113 0.000 0.038 94.848 0.000
5 7.948 0.000 0.000 0.000 92.052

Average Recall: 96.557%

 Appendix A

 163

Actual
class

Predicted class
1 2 3 4 5

1 90.325 0.000 0.000 0.000 9.675
2 0.817 98.897 0.000 0.286 0.000
3 0.000 0.344 99.656 0.000 0.000
4 12.172 0.000 0.000 87.828 0.000
5 0.294 0.033 0.000 0.000 99.673

Average Recall: 95.276%

Actual
class

Predicted class
1 2 3 4 5

1 93.876 0.000 0.000 0.000 6.124
2 1.354 98.366 0.000 0.280 0.000
3 0.000 0.000 100.000 0.000 0.000
4 8.891 0.000 0.000 90.264 0.845
5 0.128 0.000 0.000 0.000 99.872

Average Recall: 96.476%

Actual
class

Predicted class
1 2 3 4 5

1 98.555 0.000 0.000 1.445 0.000
2 0.819 97.747 0.000 1.434 0.000
3 0.275 0.000 99.725 0.000 0.000
4 4.132 0.000 0.000 95.868 0.000
5 1.735 0.000 0.000 0.000 98.265

Average Recall: 98.032%

Mean Average Recall: 96.152%
Standard Deviation: 1.376

Conf 3 - 3D accelerometer + 3D gyroscope

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.071 99.073 0.071 0.677 0.107
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.480 0.000 99.520 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 99.719%

Actual
class

Predicted class
1 2 3 4 5

1 97.422 0.436 0.000 0.000 2.142
2 0.000 98.039 0.000 1.961 0.000
3 0.000 0.143 99.857 0.000 0.000
4 0.000 1.423 0.769 97.809 0.000
5 0.000 0.000 0.000 0.000 100.000

Average Recall: 98.625%

164

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.531 97.549 0.000 1.920 0.000
3 0.000 0.000 99.690 0.310 0.000
4 0.000 0.888 0.000 99.112 0.000
5 2.320 1.013 0.000 0.000 96.667

Average Recall: 98.604%

Actual
class

Predicted class
1 2 3 4 5

1 99.910 0.000 0.000 0.000 0.090
2 0.700 98.366 0.000 0.934 0.000
3 0.000 0.000 100.000 0.000 0.000
4 0.000 4.598 0.000 95.402 0.000
5 2.046 0.512 0.000 0.000 97.442

Average Recall: 98.224%

Actual
class

Predicted class
1 2 3 4 5

1 99.209 0.344 0.000 0.000 0.447
2 0.410 98.361 0.000 1.229 0.000
3 0.310 0.000 99.690 0.000 0.000
4 0.000 2.941 0.000 97.059 0.000
5 1.923 0.000 0.000 0.000 98.077

Average Recall: 98.479%

Mean Average Recall: 98.730%
Standard Deviation: 0.575

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 91.000 0.900 0.000 0.000 8.100
2 4.670 93.226 0.250 0.214 1.640
3 0.000 0.000 100.000 0.000 0.000
4 0.000 0.200 0.000 99.800 0.000
5 20.588 0.245 0.000 0.245 78.922

Average Recall: 92.590%

Actual
class

Predicted class
1 2 3 4 5

1 89.216 1.017 0.000 0.182 9.586
2 5.882 92.770 0.000 0.286 1.062
3 0.000 0.000 99.608 0.392 0.000
4 0.000 0.192 0.000 99.808 0.000
5 15.091 0.945 0.000 0.000 83.964

Average Recall: 93.073%

 Appendix A

 165

Actual
class

Predicted class
1 2 3 4 5

1 95.436 1.639 0.000 0.257 2.668
2 1.062 97.712 0.408 0.735 0.082
3 0.310 0.000 99.690 0.000 0.000
4 0.037 3.108 0.000 96.855 0.000
5 15.294 0.980 0.000 0.000 83.725

Average Recall: 94.684%

Actual
class

Predicted class
1 2 3 4 5

1 92.157 2.353 0.000 0.000 5.490
2 2.334 97.292 0.000 0.000 0.373
3 0.000 0.196 99.804 0.000 0.000
4 0.000 4.936 0.000 95.064 0.000
5 14.962 0.213 0.000 0.000 84.825

Average Recall: 93.828 %

Actual
class

Predicted class
1 2 3 4 5

1 89.061 1.926 0.000 0.103 8.910
2 2.692 90.284 0.059 1.141 5.824
3 0.310 0.138 99.415 0.138 0.000
4 0.035 0.455 0.000 99.510 0.000
5 10.483 0.189 0.000 0.000 89.329

Average Recall: 93.520%

Mean Average Recall: 93.539%
Standard Deviation: 0.793

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 99.357 0.000 0.000 0.643 0.000
2 0.000 99.786 0.000 0.214 0.000
3 0.000 0.233 99.767 0.000 0.000
4 5.042 0.000 0.000 94.958 0.000
5 5.000 0.000 0.000 0.000 95.000

Average Recall: 97.774%

Actual
class

Predicted class
1 2 3 4 5

1 98.947 0.000 0.000 1.053 0.000
2 0.000 99.183 0.000 0.817 0.000
3 0.000 1.640 98.360 0.000 0.000
4 0.923 0.000 0.884 97.116 1.077
5 1.786 0.000 0.000 0.000 98.214

Average Recall: 98.364 %

166

Actual
class

Predicted class
1 2 3 4 5

1 98.907 0.000 0.000 1.093 0.000
2 0.245 99.551 0.000 0.204 0.000
3 0.000 0.241 99.656 0.103 0.000
4 4.772 0.000 0.000 94.932 0.296
5 2.614 0.000 0.000 0.000 97.386

Average Recall: 98.086%

Actual
class

Predicted class
1 2 3 4 5

1 97.074 0.000 0.000 2.926 0.000
2 0.280 98.599 0.000 1.120 0.000
3 0.000 0.000 100.000 0.000 0.000
4 1.285 1.623 0.169 95.909 1.014
5 2.174 0.000 0.000 0.000 97.826

Average Recall: 97.882%

Actual
class

Predicted class
1 2 3 4 5

1 100.000 0.000 0.000 0.000 0.000
2 0.176 99.298 0.000 0.527 0.000
3 0.000 1.170 98.590 0.000 0.241
4 0.735 0.560 0.000 97.339 1.366
5 1.923 0.000 0.000 0.000 98.077

Average Recall: 98.661%

Mean Average Recall: 98.153%
Standard Deviation: 0.362

Position: Torso

Actual
class

Predicted class
1 2 3 4 5

1 91.096 0.000 0.000 0.000 8.904
2 0.285 99.643 0.000 0.071 0.000
3 0.000 0.000 100.000 0.000 0.000
4 15.006 0.000 0.000 83.954 1.040
5 1.225 0.000 0.000 0.000 98.775

Average Recall: 94.694%

Actual
class

Predicted class
1 2 3 4 5

1 95.606 0.000 0.000 0.000 4.394
2 0.204 98.897 0.000 0.899 0.000
3 0.000 0.000 99.929 0.000 0.071
4 4.575 0.000 0.000 95.425 0.000
5 3.396 0.000 0.000 0.000 96.604

Average Recall: 97.292%

 Appendix A

 167

Actual
class

Predicted class
1 2 3 4 5

1 86.950 0.000 0.000 0.000 13.050
2 0.572 99.101 0.000 0.327 0.000
3 0.000 0.344 99.656 0.000 0.000
4 10.100 0.000 0.000 89.382 0.518
5 0.229 0.098 0.000 0.000 99.673

Average Recall: 94.952%

Actual
class

Predicted class
1 2 3 4 5

1 97.888 0.000 0.000 0.151 1.961
2 0.093 96.919 0.000 2.241 0.747
3 0.000 0.000 100.000 0.000 0.000
4 6.525 0.000 0.000 92.732 0.744
5 3.282 0.000 0.000 0.000 96.718

Average Recall: 96.851%

Actual
class

Predicted class
1 2 3 4 5

1 95.975 0.000 0.000 0.860 3.165
2 0.322 97.893 0.000 1.785 0.000
3 0.000 0.000 100.000 0.000 0.000
4 3.992 0.000 0.000 96.008 0.000
5 1.244 0.000 0.000 0.000 98.756

Average Recall: 97.726 %

Mean Average Recall: 96.303%
Standard Deviation: 1.389

Confusion matrixes for 8 classes on the SHL dataset

In this paragraph, the confusion matrixes obtained when testing the HBN
model to classify 5 activities for the SHL dataset are reported. In the
following, the list of the activities used in this paragraph is specified:

1. still
2. walk
3. run
4. bike
5. car
6. bus
7. train
8. subway

168

Conf 1 - 3D accelerometer (with pre-processing)

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 89.521 0.000 0.000 0.000 0.000 0.000 3.600 6.879
2 0.000 99.572 0.107 0.321 0.000 0.000 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.120 11.164 0.800 62.305 9.004 0.360 9.684 6.563
5 0.245 0.000 0.000 0.588 66.618 0.098 2.157 30.294
6 4.261 0.339 0.000 0.377 22.021 24.661 18.326 30.015
7 5.689 0.032 0.000 0.579 0.257 0.771 87.046 5.625
8 7.252 0.000 0.000 0.560 3.517 0.000 25.366 63.305

Average Recall: 74.129%

Actual
class

Predicted class
1 2 3 4 5

1 96.659 0.000 0.182 0.000 0.290 0.000 0.690 2.179
2 0.041 97.794 0.613 1.552 0.000 0.000 0.000 0.000
3 0.000 0.606 99.394 0.000 0.000 0.000 0.000 0.000
4 1.769 12.880 0.154 61.669 19.454 0.077 1.230 2.768
5 7.038 0.000 0.000 0.105 86.275 0.210 2.801 3.571
6 4.813 0.000 0.036 0.321 32.121 25.455 14.082 23.173
7 5.184 0.000 0.000 0.266 5.284 1.595 84.380 3.290
8 14.706 0.032 0.000 0.633 17.932 0.032 17.615 49.051

Average Recall: 75.085%

Actual
class

Predicted class
1 2 3 4 5

1 98.554 0.096 0.000 0.129 0.064 1.125 0.032 0.000
2 0.245 99.183 0.327 0.000 0.000 0.245 0.000 0.000
3 0.000 0.000 99.759 0.000 0.000 0.241 0.000 0.000
4 6.844 0.703 0.592 79.467 8.213 3.885 0.296 0.000
5 16.307 0.000 0.000 0.882 76.536 0.980 0.719 4.575
6 27.378 0.000 0.000 7.081 42.338 7.771 3.558 11.874
7 34.143 0.000 0.000 0.000 1.194 0.554 43.223 20.887
8 41.594 0.000 0.000 0.321 4.307 13.404 10.511 29.862

Average Recall: 66.794%

Actual
class

Predicted class
1 2 3 4 5

1 96.259 0.000 0.000 0.000 0.302 0.000 0.965 2.474
2 0.000 98.506 0.000 0.700 0.373 0.000 0.000 0.420
3 0.000 1.569 97.686 0.745 0.000 0.000 0.000 0.000
4 1.826 12.238 0.034 65.213 13.185 0.203 2.637 4.665
5 3.410 0.000 0.000 0.000 74.552 0.000 0.725 21.313
6 3.695 0.038 0.000 0.113 34.766 22.964 16.742 21.682
7 5.362 0.184 0.000 0.000 6.863 0.521 82.935 4.136
8 11.702 0.062 0.000 0.000 11.640 0.156 22.658 53.782

Average Recall: 73.987%

 Appendix A

 169

Actual
class

Predicted class
1 2 3 4 5

1 92.363 0.413 0.000 0.138 0.034 0.138 3.681 3.234
2 0.029 98.917 0.088 0.615 0.117 0.000 0.205 0.029
3 0.000 0.688 97.867 1.135 0.310 0.000 0.000 0.000
4 0.000 9.839 2.031 75.665 7.423 0.000 3.817 1.225
5 3.167 0.000 0.000 0.867 68.891 3.017 8.220 15.837
6 4.885 0.034 0.000 1.617 41.211 9.150 25.112 17.991
7 1.783 0.802 0.000 0.000 2.941 0.936 92.781 0.758
8 10.784 0.000 0.000 0.039 14.510 0.000 38.941 35.725

Average Recall: 71.420%

Mean Average Recall: 72.283%
Standard Deviation: 3.355

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 77.338 1.671 0.000 0.096 0.225 0.000 8.807 11.861
2 0.000 98.289 0.713 0.856 0.000 0.000 0.000 0.143
3 0.000 0.233 99.767 0.000 0.000 0.000 0.000 0.000
4 6.683 0.920 0.000 85.714 1.040 0.000 0.360 5.282
5 22.206 4.118 0.000 4.951 47.255 3.725 13.039 4.706
6 18.665 3.205 0.000 2.715 14.442 30.807 24.925 5.241
7 20.958 2.443 0.000 0.354 1.221 0.129 66.442 8.454
8 35.885 4.046 0.000 2.272 3.610 0.187 36.383 17.616

Average Recall: 65.404%

Actual
class

Predicted class
1 2 3 4 5

1 82.934 2.941 0.000 2.251 4.067 1.089 1.924 4.793
2 0.286 95.384 0.000 4.330 0.000 0.000 0.000 0.000
3 0.000 0.535 99.465 0.000 0.000 0.000 0.000 0.000
4 2.499 0.961 0.000 94.733 1.115 0.192 0.000 0.500
5 23.915 1.996 0.000 5.917 54.867 5.917 6.373 1.015
6 23.708 0.963 0.000 4.349 13.654 46.275 9.875 1.176
7 23.895 2.060 0.000 0.432 4.453 5.184 60.685 3.290
8 37.318 4.807 0.000 4.016 14.168 4.048 27.577 8.065

Average Recall: 67.801%

Actual
class

Predicted class
1 2 3 4 5

1 70.653 2.732 0.000 0.996 1.736 1.221 18.869 3.793
2 0.327 98.570 0.490 0.245 0.000 0.000 0.368 0.000
3 0.000 0.344 99.415 0.000 0.000 0.000 0.241 0.000
4 6.104 2.368 0.000 89.345 0.740 0.000 0.629 0.814
5 19.967 4.575 0.000 4.739 56.405 5.686 8.170 0.458
6 9.840 5.737 0.000 6.318 8.351 39.288 27.560 2.905
7 16.070 1.662 0.000 0.384 0.554 3.410 77.877 0.043
8 33.623 2.154 0.000 2.700 14.401 2.507 41.466 3.150

Average Recall: 66.838%

170

Actual
class

Predicted class
1 2 3 4 5

1 81.388 0.905 0.000 0.483 1.599 0.000 10.860 4.766
2 0.700 97.386 0.000 1.914 0.000 0.000 0.000 0.000
3 0.000 0.235 99.725 0.039 0.000 0.000 0.000 0.000
4 4.632 3.076 0.000 90.095 0.980 0.034 0.101 1.082
5 32.822 1.748 0.000 2.046 45.993 1.108 12.958 3.325
6 17.949 1.508 0.000 2.866 20.098 20.852 31.335 5.392
7 19.240 0.582 0.000 0.153 1.317 0.061 77.819 0.827
8 37.379 2.054 0.000 0.436 10.831 0.467 40.025 8.808

Average Recall: 65.258%

Actual
class

Predicted class
1 2 3 4 5

1 83.832 1.754 0.000 0.275 2.270 0.447 2.993 8.428
2 1.668 96.956 0.059 1.141 0.117 0.000 0.000 0.059
3 0.000 2.167 97.558 0.000 0.069 0.000 0.000 0.206
4 1.576 0.945 0.000 95.763 0.035 0.000 0.000 1.681
5 31.523 1.282 0.000 2.225 48.190 1.584 5.995 9.201
6 33.643 2.133 0.000 2.546 12.384 30.822 11.386 7.086
7 26.471 2.094 0.000 0.490 4.590 2.406 49.599 14.349
8 42.627 2.157 0.000 0.314 14.784 2.157 20.667 17.294

Average Recall: 65.002%

Mean Average Recall: 66.060%
Standard Deviation: 1.207

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 98.264 0.000 0.000 0.161 0.643 0.161 0.418 0.354
2 0.000 99.857 0.036 0.107 0.000 0.000 0.000 0.000

3
0.000 0.000 100.00

0
0.000 0.000 0.000 0.000 0.000

4 8.443 1.240 0.000 81.593 3.681 3.882 1.000 0.160
5 23.775 0.000 0.000 0.196 64.706 6.275 1.176 3.873
6 18.100 0.113 0.000 2.903 23.944 39.894 4.600 10.445
7 33.398 0.000 0.000 0.386 15.976 0.386 35.455 14.401
8 36.321 0.000 0.000 0.965 21.786 2.832 6.660 31.435

Average Recall: 68.901%

Actual
class

Predicted class
1 2 3 4 5

1 97.313 0.000 0.000 0.036 1.344 0.799 0.182 0.327
2 0.000 99.060 0.000 0.776 0.000 0.163 0.000 0.000
3 0.000 0.749 99.144 0.107 0.000 0.000 0.000 0.000
4 2.038 5.075 0.654 82.507 2.653 6.882 0.192 0.000
5 21.709 0.000 0.000 0.000 61.064 7.878 1.155 8.193
6 16.649 0.000 0.000 0.463 15.579 60.820 1.497 4.991
7 25.523 0.000 0.000 0.133 6.979 0.366 51.811 15.188
8 25.838 0.285 0.000 0.316 16.856 7.938 11.765 37.002

Average Recall: 73.590%

 Appendix A

 171

Actual
class

Predicted class
1 2 3 4 5

1 91.803 0.000 0.000 0.000 1.157 0.579 6.236 0.225
2 0.286 99.510 0.000 0.204 0.000 0.000 0.000 0.000
3 0.000 0.206 99.656 0.138 0.000 0.000 0.000 0.000
4 5.475 0.888 0.185 84.388 1.517 4.550 2.960 0.037
5 6.471 0.000 0.000 0.098 77.451 0.882 14.346 0.752
6 4.720 0.036 0.000 0.871 38.126 32.462 20.370 3.413
7 15.814 0.000 0.000 0.298 12.532 0.171 70.716 0.469
8 21.826 0.643 0.000 0.000 27.901 2.443 43.009 4.179

Average Recall: 70.021%

Actual
class

Predicted class
1 2 3 4 5

1 95.385 0.000 0.000 0.121 2.262 1.478 0.603 0.151
2 0.327 99.533 0.000 0.000 0.000 0.140 0.000 0.000
3 0.000 0.196 99.804 0.000 0.000 0.000 0.000 0.000
4 4.970 7.978 0.000 80.325 3.685 2.941 0.000 0.101
5 23.231 0.000 0.000 0.085 69.096 3.026 0.298 4.263
6 13.122 0.226 0.000 0.943 29.299 44.910 4.336 7.164
7 20.006 0.000 0.000 1.042 8.915 0.092 52.298 17.647
8 22.969 0.124 0.000 0.031 26.393 4.949 12.481 33.053

Average Recall: 71.801%

Actual
class

Predicted class
1 2 3 4 5

1 96.113 0.000 0.000 0.000 2.786 0.516 0.378 0.206
2 0.000 98.361 0.000 1.200 0.234 0.205 0.000 0.000
3 0.000 0.275 99.278 0.172 0.275 0.000 0.000 0.000
4 2.486 4.832 0.210 85.679 3.326 3.256 0.175 0.035
5 23.454 0.000 0.000 0.000 72.021 1.395 1.998 1.131
6 7.602 0.000 0.000 0.550 32.852 38.837 13.829 6.330
7 11.720 0.000 0.000 0.178 9.225 0.045 78.209 0.624
8 21.098 0.000 0.000 0.667 21.882 3.176 40.667 12.510

Average Recall: 72.626%

Mean Average Recall: 71.388%
Standard Deviation: 1.911

Position: Torso

Actual
class

Predicted class
1 2 3 4 5

1 92.382 0.000 0.000 0.000 1.832 0.000 0.064 5.722
2 0.178 99.822 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 14.646 17.047 0.000 59.144 5.722 1.761 0.040 1.641
5 26.912 0.000 0.000 3.431 62.549 1.078 0.000 6.029
6 41.742 0.377 0.000 3.356 18.439 12.293 7.730 16.063
7 22.179 0.257 0.000 0.000 1.318 0.000 72.742 3.504
8 39.932 0.000 0.000 0.000 8.248 0.934 5.384 45.503

Average Recall: 68.054%

172

Actual
class

Predicted class
1 2 3 4 5

1 91.830 0.000 0.000 0.000 3.195 0.000 0.000 4.975
2 0.000 99.101 0.041 0.817 0.000 0.041 0.000 0.000
3 0.000 0.570 99.430 0.000 0.000 0.000 0.000 0.000
4 4.614 12.764 0.000 71.972 6.036 4.191 0.077 0.346
5 25.105 0.000 0.000 1.576 60.749 1.401 0.000 11.169
6 31.230 0.357 0.000 3.494 17.219 18.075 5.276 24.349
7 19.807 0.233 0.000 0.000 0.897 0.000 74.111 4.952
8 28.336 0.253 0.000 0.253 6.673 2.119 8.602 53.763

Average Recall: 71.129%

Actual
class

Predicted class
1 2 3 4 5

1 85.085 0.514 0.000 0.000 14.401 0.000 0.000 0.000
2 0.286 98.815 0.000 0.449 0.449 0.000 0.000 0.000
3 0.000 0.206 99.690 0.034 0.069 0.000 0.000 0.000
4 6.622 16.796 0.000 65.668 5.956 4.846 0.111 0.000
5 20.654 0.000 0.000 2.974 71.275 4.248 0.850 0.000
6 36.347 1.670 0.000 10.857 20.407 28.431 2.288 0.000
7 44.928 0.000 0.000 0.000 14.578 5.627 34.868 0.000
8 51.109 0.000 0.000 0.129 41.144 5.079 2.539 0.000

Average Recall: 60.479%

Actual
class

Predicted class
1 2 3 4 5

1 92.217 0.000 0.000 0.000 7.481 0.000 0.000 0.302
2 0.140 99.346 0.000 0.000 0.187 0.000 0.000 0.327
3 0.000 0.118 99.882 0.000 0.000 0.000 0.000 0.000
4 7.268 20.926 0.270 60.920 5.815 4.733 0.000 0.068
5 22.080 0.000 0.043 2.387 74.552 0.639 0.000 0.298
6 40.988 0.302 0.000 2.225 31.523 14.555 2.903 7.504
7 20.558 0.613 0.000 0.000 5.484 0.582 68.842 3.922
8 27.949 0.000 0.000 0.124 22.378 4.482 7.937 37.130

Average Recall: 68.431%

Actual
class

Predicted class
1 2 3 4 5

1 96.354 0.000 0.000 0.894 2.752 0.000 0.000 0.000
2 0.468 98.390 0.000 0.410 0.732 0.000 0.000 0.000
3 0.000 0.000 99.759 0.000 0.069 0.172 0.000 0.000
4 3.852 5.112 0.140 83.929 3.116 2.871 0.980 0.000
5 78.092 0.000 0.000 0.452 15.385 1.961 4.110 0.000
6 62.779 0.103 0.000 5.435 8.875 8.187 14.620 0.000
7 60.027 0.000 0.000 0.045 1.381 0.000 38.547 0.000
8 85.098 0.000 0.000 0.784 3.569 1.176 9.373 0.000

Average Recall: 55.069%

Mean Average Recall: 64.632%
Standard Deviation: 6.653

 Appendix A

 173

Conf 2 - 3D accelerometer (no pre-processing)

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 82.964 0.000 0.000 0.000 0.000 3.922 0.000 13.115
2 0.000 99.251 0.000 0.250 0.321 0.000 0.000 0.178
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.000 0.960 0.000 97.759 0.000 0.000 0.360 0.920
5 5.000 0.000 0.000 0.000 86.765 8.235 0.000 0.000
6 2.036 0.000 0.000 0.000 1.621 96.342 0.000 0.000
7 0.000 0.000 0.000 0.129 0.000 0.000 99.743 0.129
8 0.000 0.000 0.000 0.218 0.000 0.000 0.871 98.911

Average Recall: 95.217%

Actual
class

Predicted class
1 2 3 4 5

1 80.828 0.000 0.000 0.000 0.000 9.913 0.000 9.259
2 0.449 79.167 0.000 0.163 0.000 18.750 0.000 1.471
3 0.000 0.214 99.679 0.000 0.000 0.107 0.000 0.000
4 0.000 2.230 0.000 97.770 0.000 0.000 0.000 0.000
5 1.786 0.000 0.000 0.000 74.020 24.195 0.000 0.000
6 0.000 0.000 0.000 0.000 1.747 98.253 0.000 0.000
7 0.000 0.166 0.000 0.000 0.000 0.000 99.834 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.00

Average Recall: 91.194%

Actual
class

Predicted class
1 2 3 4 5

1 81.871 0.000 0.000 0.000 0.000 9.932 0.000 8.197
2 0.531 98.080 0.000 1.389 0.000 0.000 0.000 0.000
3 0.000 0.000 99.656 0.344 0.000 0.000 0.000 0.000
4 0.000 3.330 0.000 96.633 0.000 0.000 0.000 0.037
5 4.608 0.000 0.000 0.098 75.033 20.261 0.000 0.000
6 2.651 0.000 0.000 0.000 0.182 97.168 0.000 0.000
7 0.000 0.000 0.000 7.417 0.000 0.000 92.327 0.256
8 0.000 0.000 0.000 0.707 0.000 0.000 0.129 99.164

Average Recall: 92.492%

Actual
class

Predicted class
1 2 3 4 5

1 80.090 0.000 0.000 0.000 0.000 9.140 0.000 10.769
2 0.000 75.817 1.120 0.373 0.000 22.689 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.000 5.612 0.000 94.151 0.000 0.000 0.237 0.000
5 2.174 0.000 0.000 0.000 62.958 34.868 0.000 0.000
6 0.000 0.000 0.000 0.000 1.508 98.492 0.000 0.000
7 0.000 0.092 0.000 0.000 0.000 0.000 99.908 0.000
8 0.000 0.000 0.000 0.280 0.000 0.000 1.712 98.008

Average Recall: 88.678%

174

Actual
class

Predicted class
1 2 3 4 5

1 90.437 0.000 0.000 0.000 0.000 6.054 0.000 3.509
2 0.000 97.717 0.000 0.615 0.000 1.551 0.000 0.117
3 0.000 0.000 99.656 0.000 0.000 0.344 0.000 0.000
4 0.000 3.396 0.000 95.448 0.000 0.000 0.210 0.945
5 1.923 0.000 0.000 0.038 77.225 20.814 0.000 0.000
6 0.000 0.000 0.000 0.000 0.482 99.518 0.000 0.000

7
0.000 0.000 0.000 0.000 0.000 0.000 100.00

0
0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.941 99.059
Average Recall: 94.883%

Mean Average Recall: 92.493%
Standard Deviation: 2.710

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 68.177 0.289 0.129 0.000 5.625 0.675 22.244 2.861
2 1.426 68.770 2.068 17.469 4.207 1.283 1.569 3.209
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 3.201 1.681 0.000 95.118 0.000 0.000 0.000 0.000
5 14.755 0.049 0.000 0.294 83.480 0.000 1.422 0.000
6 2.489 0.000 0.000 1.056 0.000 78.582 10.106 7.768
7 1.639 0.064 0.000 0.000 6.332 0.000 91.385 0.579
8 15.780 3.859 0.000 1.183 1.214 2.148 32.088 43.729

Average Recall: 78.655%

Actual
class

Predicted class
1 2 3 4 5

1 70.733 0.182 0.145 0.000 5.338 4.357 17.611 1.634
2 0.735 63.194 6.863 11.438 6.944 2.247 7.149 1.430
3 0.000 0.000 99.430 0.036 0.000 0.535 0.000 0.000
4 0.346 4.844 0.000 94.771 0.000 0.000 0.000 0.038
5 14.671 0.105 0.000 0.000 82.003 0.000 3.221 0.000
6 1.462 0.570 0.000 0.285 0.357 72.478 13.226 11.622
7 6.215 0.000 0.000 0.000 11.167 0.000 79.827 2.792
8 19.481 2.119 0.190 0.443 1.550 1.645 16.129 58.444

Average Recall: 77.610%

Actual
class

Predicted class
1 2 3 4 5

1 69.495 1.221 0.000 0.257 4.436 1.286 19.994 3.311
2 0.776 77.042 2.369 16.258 1.471 0.776 0.000 1.307
3 0.310 0.000 99.450 0.000 0.000 0.241 0.000 0.000
4 0.518 4.440 0.000 94.303 0.000 0.185 0.000 0.555
5 16.699 2.157 0.000 0.065 78.072 0.294 2.712 0.000
6 2.505 1.525 0.000 1.053 0.000 71.750 11.946 11.220
7 0.469 0.384 0.000 0.000 6.650 0.341 91.858 0.298
8 24.365 3.118 0.000 0.321 1.093 1.189 20.701 49.212

Average Recall: 78.898%

 Appendix A

 175

Actual
class

Predicted class
1 2 3 4 5

1 59.457 1.056 0.000 0.090 6.486 0.513 31.101 1.297
2 1.074 80.719 2.708 12.325 0.327 2.007 0.373 0.467
3 0.000 0.000 99.765 0.000 0.000 0.235 0.000 0.000
4 0.000 4.767 0.237 94.726 0.000 0.000 0.000 0.270
5 13.683 0.639 0.000 0.000 85.507 0.000 0.000 0.171
6 0.377 2.074 0.000 0.754 0.377 73.416 10.935 12.066
7 3.125 0.306 0.000 0.000 18.290 0.000 77.941 0.337
8 18.705 7.314 0.000 0.000 5.011 1.089 22.596 45.285

Average Recall: 77.102%

Actual
class

Predicted class
1 2 3 4 5

1 61.576 0.894 0.000 2.167 6.742 0.034 23.942 4.644
2 1.200 77.319 2.634 12.028 3.746 2.634 0.205 0.234
3 0.000 0.000 99.656 0.000 0.000 0.344 0.000 0.000
4 0.000 1.891 0.000 97.654 0.175 0.175 0.000 0.105
5 9.201 0.679 0.000 0.000 89.517 0.075 0.528 0.000
6 1.548 1.238 0.000 0.757 1.238 59.064 16.340 19.814
7 1.203 0.713 0.045 0.089 6.105 1.070 88.592 2.184
8 13.922 1.294 0.157 0.353 2.235 1.333 22.824 57.882

Average Recall: 78.908%

Mean Average Recall: 78.234%
Standard Deviation: 0.828

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 86.885 0.000 0.000 0.000 0.000 13.115 0.000 0.000
2 0.000 99.501 0.000 0.143 0.000 0.357 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.000 0.480 0.000 96.519 0.000 3.001 0.000 0.000
5 5.000 0.000 0.000 0.000 95.000 0.000 0.000 0.000
6 32.692 0.264 0.000 1.810 0.000 65.234 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 100.00 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 65.079 34.921

Average Recall: 84.758%

Actual
class

Predicted class
1 2 3 4 5

1 87.037 0.000 0.000 0.000 0.000 12.963 0.000 0.000
2 0.000 99.265 0.000 0.000 0.000 0.735 0.000 0.000
3 0.000 0.463 99.465 0.000 0.071 0.000 0.000 0.000
4 1.153 0.231 0.000 89.120 0.000 7.536 0.115 1.845
5 1.786 0.000 0.000 0.000 96.989 1.225 0.000 0.000
6 40.428 0.000 0.000 0.357 0.000 59.216 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 100.00 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 61.290 38.710

Average Recall: 83.725%

176

Actual
class

Predicted class
1 2 3 4 5

1 83.607 0.000 0.000 0.000 0.000 16.393 0.000 0.000
2 0.000 99.265 0.000 0.082 0.000 0.654 0.000 0.000
3 0.000 0.069 99.725 0.000 0.000 0.206 0.000 0.000
4 0.000 0.000 0.000 93.637 0.000 4.477 0.000 1.887
5 3.333 0.000 0.000 0.000 96.667 0.000 0.000 0.000
6 39.107 0.000 0.000 1.344 0.000 59.550 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 77.195 22.805
8 0.000 0.000 0.000 0.000 0.000 0.000 30.537 69.463

Average Recall: 84.889%

Actual
class

Predicted class
1 2 3 4 5

1 86.576 0.030 0.000 3.167 0.000 10.226 0.000 0.000
2 0.000 98.133 0.000 0.327 0.000 1.541 0.000 0.000

3
0.000 0.000 100.00

0
0.000 0.000 0.000 0.000 0.000

4 0.000 0.101 0.372 93.915 0.000 2.535 0.270 2.806
5 1.918 0.000 0.000 0.256 97.826 0.000 0.000 0.000
6 22.247 0.000 0.000 2.074 3.167 72.511 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 85.846 14.154
8 0.000 0.000 0.000 0.000 0.000 0.000 29.318 70.682

Average Recall: 88.186%

Actual
class

Predicted class
1 2 3 4 5

1 82.456 0.000 0.000 0.000 0.000 17.544 0.000 0.000
2 0.000 98.625 0.000 0.234 0.000 1.141 0.000 0.000
3 0.000 0.275 99.381 0.000 0.344 0.000 0.000 0.000
4 0.000 0.000 0.000 95.728 0.000 2.486 0.000 1.786
5 1.923 0.000 0.000 0.000 98.077 0.000 0.000 0.000
6 34.159 0.000 0.000 0.241 0.000 65.600 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 100.00 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 66.000 34.000

Average Recall: 84.233%

Mean Average Recall: 96.303%
Standard Deviation: 1.389

Position: Torso

Actual
class

Predicted class
1 2 3 4 5

1 96.175 0.000 0.000 0.000 0.546 3.279 0.000 0.000
2 0.321 99.572 0.000 0.107 0.000 0.000 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 15.286 0.000 0.000 84.714 0.000 0.000 0.000 0.000
5 0.637 0.000 0.000 0.000 86.373 4.951 0.000 8.039
6 23.454 0.452 0.000 0.075 11.916 54.940 6.938 2.225
7 11.636 0.000 0.000 0.000 3.922 14.497 64.834 5.111
8 22.876 0.000 0.000 0.000 13.072 13.725 7.874 42.453

Average Recall: 78.633%

 Appendix A

 177

Actual
class

Predicted class
1 2 3 4 5

1 92.593 0.000 0.000 0.000 0.036 6.863 0.000 0.508
2 1.225 98.243 0.000 0.286 0.000 0.245 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 4.191 0.000 0.000 95.194 0.308 0.308 0.000 0.000
5 1.821 0.000 0.000 0.000 90.651 1.786 0.000 5.742
6 5.062 0.250 0.000 0.000 24.670 53.832 12.692 3.494
7 8.408 0.066 0.000 0.000 17.647 9.305 64.008 0.565
8 13.662 0.949 0.000 0.253 26.407 16.477 15.655 26.597

Average Recall: 77.640%

Actual
class

Predicted class
1 2 3 4 5

1 92.993 0.000 0.000 0.000 0.000 7.007 0.000 0.000
2 1.021 98.652 0.000 0.286 0.000 0.041 0.000 0.000
3 0.034 0.206 99.690 0.000 0.000 0.069 0.000 0.000
4 10.729 0.000 0.000 89.271 0.000 0.000 0.000 0.000
5 0.817 0.000 0.000 0.000 93.301 1.993 0.229 3.660
6 29.085 2.070 0.000 0.000 17.284 30.138 9.586 11.837
7 18.755 0.000 0.000 0.000 9.037 5.627 57.374 9.207
8 32.883 0.000 0.000 0.000 25.522 9.579 11.443 20.572

Average Recall: 72.749%

Actual
class

Predicted class
1 2 3 4 5

1 86.154 0.000 0.000 0.000 3.409 10.437 0.000 0.000
2 0.980 98.319 0.000 0.000 0.000 0.700 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 6.863 0.034 0.000 90.297 0.000 1.724 0.000 1.082
5 0.000 0.000 0.000 0.000 90.452 8.312 0.000 1.236
6 3.771 0.415 0.000 0.075 2.677 78.544 10.897 3.620
7 10.815 0.000 0.000 0.000 7.261 28.431 39.246 14.246
8 7.656 0.000 0.000 0.000 29.381 34.298 6.754 21.911

Average Recall: 75.615%

Actual
class

Predicted class
1 2 3 4 5

1 95.631 0.000 0.000 0.138 0.550 3.509 0.000 0.172
2 0.468 98.244 0.000 1.083 0.000 0.088 0.000 0.117
3 0.275 0.000 99.725 0.000 0.000 0.000 0.000 0.000
4 4.867 0.000 0.000 95.133 0.000 0.000 0.000 0.000
5 1.357 0.000 0.000 0.000 81.523 3.356 0.075 13.688
6 20.330 0.619 0.000 0.103 12.006 53.044 4.919 8.978
7 16.176 0.000 0.000 0.000 8.021 16.578 48.708 10.517
8 21.922 0.000 0.000 0.000 8.431 8.431 9.843 51.373

Average Recall: 77.923%

Mean Average Recall: 76.512%
Standard Deviation: 2.383

178

Conf 3 - 3D accelerometer (with pre-processing)

Position: Bag

Actual
class

Predicted class
1 2 3 4 5

1 95.596 0.000 0.000 0.000 0.000 4.404 0.000 0.000
2 0.000 99.144 0.000 0.749 0.000 0.107 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.000 0.560 0.000 99.440 0.000 0.000 0.000 0.000
5 5.000 0.000 0.000 0.000 93.137 1.863 0.000 0.000
6 0.000 0.189 0.000 0.000 0.603 99.208 0.000 0.000
7 0.000 0.257 0.000 0.000 0.000 0.000 99.743 0.000
8 0.000 0.031 0.000 0.000 0.000 0.000 1.401 98.568

Average Recall: 98.105%

Actual
class

Predicted class
1 2 3 4 5

1 89.434 0.073 0.000 0.000 2.179 7.698 0.000 0.617
2 0.000 99.755 0.000 0.245 0.000 0.000 0.000 0.000
3 0.000 0.321 99.643 0.000 0.000 0.036 0.000 0.000
4 0.154 1.884 0.000 97.885 0.000 0.000 0.000 0.077
5 1.786 0.000 0.000 0.000 96.008 2.206 0.000 0.000
6 0.000 0.000 0.000 0.000 1.961 98.039 0.000 0.000
7 0.000 0.000 0.000 0.199 0.000 0.000 99.801 0.000
8 2.214 0.032 0.000 0.000 0.000 0.000 2.151 95.604

Average Recall: 97.021%

Actual
class

Predicted class
1 2 3 4 5

1 85.921 0.225 0.000 0.000 5.529 8.325 0.000 0.000
2 0.286 98.529 0.000 1.185 0.000 0.000 0.000 0.000
3 0.000 0.069 99.690 0.241 0.000 0.000 0.000 0.000
4 0.000 2.812 0.000 96.522 0.000 0.000 0.000 0.666
5 3.333 0.000 0.000 0.000 92.778 3.889 0.000 0.000
6 0.000 0.000 0.000 0.000 0.617 99.383 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 100.00 0.000
8 0.000 0.000 0.000 0.611 0.000 0.000 1.639 97.750

Average Recall: 96.322%

Actual
class

Predicted class
1 2 3 4 5

1 92.127 0.000 0.000 0.000 4.615 3.258 0.000 0.000
2 0.233 98.319 0.000 1.214 0.000 0.233 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.000 4.023 0.000 95.301 0.000 0.000 0.000 0.676
5 2.174 0.000 0.000 0.000 94.928 2.899 0.000 0.000
6 0.000 0.000 0.000 0.000 1.320 98.680 0.000 0.000
7 0.000 0.000 0.000 0.092 0.000 0.000 99.908 0.000
8 0.000 0.000 0.000 0.218 0.000 0.000 0.000 99.782

Average Recall: 97.381%

 Appendix A

 179

Actual
class

Predicted class
1 2 3 4 5

1 95.322 0.482 0.000 0.000 0.378 3.818 0.000 0.000
2 0.000 98.771 0.000 0.907 0.000 0.322 0.000 0.000
3 0.000 0.000 99.656 0.000 0.000 0.344 0.000 0.000
4 0.000 2.696 0.000 97.094 0.000 0.000 0.000 0.210
5 1.923 0.000 0.000 0.000 96.418 1.659 0.000 0.000
6 0.000 0.000 0.000 0.000 1.204 98.796 0.000 0.000
7 0.000 0.000 0.000 0.223 0.000 0.000 99.777 0.000
8 3.098 0.157 0.000 0.000 0.000 0.000 0.000 96.745

Average Recall: 97.822%

Mean Average Recall: 97.330%
Standard Deviation: 0.699

Position: Hand

Actual
class

Predicted class
1 2 3 4 5

1 71.681 2.764 0.000 0.000 4.436 0.289 16.136 4.693
2 0.570 94.367 0.428 0.677 1.711 0.463 0.000 1.783
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.320 0.280 0.000 99.400 0.000 0.000 0.000 0.000
5 13.824 0.539 0.000 0.294 84.755 0.000 0.588 0.000
6 2.451 0.189 0.000 2.112 0.000 74.057 9.842 11.350
7 2.122 0.836 0.000 0.000 6.493 0.000 82.064 8.486
8 22.129 1.836 0.000 1.369 2.552 0.685 16.060 55.369

Average Recall: 82.712%

Actual
class

Predicted class
1 2 3 4 5

1 66.231 3.595 0.000 0.000 4.139 3.740 20.261 2.033
2 0.735 97.467 0.490 0.408 0.000 0.735 0.123 0.041
3 0.000 0.000 99.465 0.000 0.000 0.535 0.000 0.000
4 0.000 0.692 0.000 98.847 0.000 0.423 0.000 0.038
5 11.870 1.576 0.000 0.000 82.458 0.000 4.027 0.070
6 1.141 0.963 0.036 0.071 0.000 79.073 13.547 5.169
7 0.100 0.399 0.000 0.000 6.181 0.000 91.758 1.562
8 17.805 2.593 0.000 0.380 0.854 1.202 20.462 56.705

Average Recall: 84.001%

Actual
class

Predicted class
1 2 3 4 5

1 67.181 4.564 0.000 0.225 5.014 1.189 18.611 3.214
2 0.000 96.528 0.858 1.838 0.041 0.449 0.000 0.286
3 0.034 0.275 99.690 0.000 0.000 0.000 0.000 0.000
4 0.000 0.296 0.000 99.260 0.000 0.000 0.000 0.444
5 13.464 1.503 0.000 0.196 81.732 0.196 2.908 0.000
6 1.997 1.743 0.000 1.380 0.000 76.507 11.765 6.609
7 0.426 1.364 0.000 0.000 4.007 0.128 92.796 1.279
8 22.758 3.311 0.000 2.154 0.579 0.096 18.611 52.491

Average Recall: 83.273%

180

Actual
class

Predicted class
1 2 3 4 5

1 59.487 5.189 0.000 0.000 4.706 0.271 26.184 4.163
2 0.654 96.125 0.093 0.840 0.000 2.288 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 0.135 0.879 0.000 98.546 0.000 0.439 0.000 0.000
5 12.106 0.256 0.000 0.000 81.969 0.085 5.584 0.000
6 0.943 1.546 0.000 1.282 0.000 75.943 10.935 9.351
7 3.186 0.674 0.000 0.000 9.589 0.000 78.646 7.904
8 18.643 1.867 0.000 0.622 6.225 1.120 22.004 49.518

Average Recall: 80.029%

Actual
class

Predicted class
1 2 3 4 5

1 65.600 5.573 0.000 0.000 6.570 0.138 20.674 1.445
2 1.054 91.045 0.059 1.902 4.097 0.819 0.176 0.849
3 0.000 0.413 99.243 0.000 0.000 0.344 0.000 0.000
4 0.000 0.560 0.000 99.300 0.000 0.000 0.000 0.140
5 7.919 0.264 0.000 0.000 87.029 0.113 4.676 0.000
6 1.961 1.479 0.034 2.339 0.000 60.062 16.443 17.681
7 2.406 1.961 0.000 0.401 3.699 0.267 90.775 0.490
8 16.235 0.824 0.000 0.471 2.431 0.471 21.569 58.000

Average Recall: 81.382%

Mean Average Recall: 82.279%
Standard Deviation: 1.582

Position: Hips

Actual
class

Predicted class
1 2 3 4 5

1 93.250 0.000 0.000 0.193 0.000 6.557 0.000 0.000
2 0.000 99.715 0.000 0.000 0.000 0.285 0.000 0.000
3 0.000 0.532 99.468 0.000 0.000 0.000 0.000 0.000
4 1.160 0.000 0.000 95.918 0.000 2.921 0.000 0.000
5 1.569 0.000 0.000 0.000 95.000 3.431 0.000 0.000
6 26.885 0.000 0.000 0.302 0.000 72.813 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 97.589 2.411
8 0.000 0.000 0.000 0.000 0.000 0.000 47.401 52.599

Average Recall: 88.294%

Actual
class

Predicted class
1 2 3 4 5

1 79.847 0.000 0.000 0.000 0.000 20.153 0.000 0.000
2 0.000 99.428 0.000 0.327 0.000 0.245 0.000 0.000
3 0.000 1.783 98.217 0.000 0.000 0.000 0.000 0.000
4 0.269 0.000 0.000 96.963 0.000 0.807 0.000 1.961
5 0.000 0.000 0.000 0.000 98.214 1.786 0.000 0.000
6 5.348 0.000 0.000 0.963 3.137 90.553 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 78.465 21.535
8 0.000 0.000 0.000 0.000 0.000 0.000 32.385 67.615

Average Recall: 88.663%

 Appendix A

 181

Actual
class

Predicted class
1 2 3 4 5

1 94.407 0.000 0.000 0.643 0.000 4.950 0.000 0.000
2 0.204 99.510 0.041 0.000 0.000 0.245 0.000 0.000
3 0.000 0.378 99.622 0.000 0.000 0.000 0.000 0.000
4 2.775 0.000 0.000 95.117 0.000 0.222 0.000 1.887
5 0.229 0.000 0.000 0.000 96.667 3.105 0.000 0.000
6 5.882 0.000 0.000 4.321 0.472 89.325 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 94.885 5.115
8 0.000 0.000 0.000 0.000 0.000 0.000 14.529 85.471

Average Recall: 94.376%

Actual
class

Predicted class
1 2 3 4 5

1 87.089 0.000 0.000 5.611 0.000 7.300 0.000 0.000
2 0.000 98.646 0.000 0.327 0.000 1.027 0.000 0.000
3 0.000 0.196 99.804 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 93.915 0.000 2.637 0.000 3.448
5 0.980 0.000 0.000 0.000 97.826 1.194 0.000 0.000
6 17.986 0.000 0.000 0.339 1.772 79.902 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 87.347 12.653
8 0.000 0.000 0.000 0.000 0.000 0.000 15.282 84.718

Average Recall: 91.156%

Actual
class

Predicted class
1 2 3 4 5

1 98.142 0.000 0.000 0.344 0.000 1.514 0.000 0.000
2 0.000 98.712 0.000 0.059 0.000 1.229 0.000 0.000
3 0.000 3.234 96.457 0.000 0.310 0.000 0.000 0.000
4 0.000 0.000 0.000 97.059 0.000 1.155 0.000 1.786
5 0.000 0.000 0.000 0.000 98.077 1.923 0.000 0.000
6 12.109 0.000 0.000 1.204 2.855 83.832 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 97.148 2.852
8 0.000 0.000 0.000 0.000 0.000 0.000 35.098 64.902

Average Recall: 91.791%

Mean Average Recall: 90.856%
Standard Deviation: 2.486

Position: Torso

Actual
class

Predicted class
1 2 3 4 5

1 84.378 0.000 0.000 0.257 7.040 6.075 0.000 2.250
2 0.000 99.537 0.000 0.107 0.000 0.357 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 9.684 0.000 0.000 83.673 0.000 4.442 0.000 2.201
5 0.000 0.000 0.000 0.000 93.627 5.196 0.000 1.176
6 0.641 0.000 0.000 0.226 11.312 71.003 5.204 11.614
7 6.750 0.032 0.000 0.000 4.854 17.840 64.642 5.882
8 4.108 0.747 0.000 0.031 33.302 14.846 6.816 40.149

Average Recall: 79.626%

182

Actual
class

Predicted class
1 2 3 4 5

1 86.275 0.000 0.000 0.363 0.000 7.807 0.000 5.556
2 0.000 98.938 0.000 1.062 0.000 0.000 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 2.499 0.000 0.000 96.732 0.000 0.769 0.000 0.000
5 0.035 0.000 0.000 0.000 71.674 9.944 0.035 18.312
6 1.462 0.071 0.000 0.000 2.852 74.866 16.257 4.492
7 7.644 0.000 0.000 0.000 0.399 21.967 64.706 5.284
8 11.037 0.759 0.000 0.253 7.211 22.138 13.694 44.908

Average Recall: 79.762%

Actual
class

Predicted class
1 2 3 4 5

1 91.578 0.000 0.000 0.129 0.000 8.197 0.000 0.096
2 0.000 98.897 0.000 0.327 0.000 0.776 0.000 0.000
3 0.000 0.206 99.656 0.000 0.000 0.138 0.000 0.000
4 7.325 0.000 0.000 90.011 0.000 2.590 0.000 0.074
5 0.000 0.000 0.000 0.000 84.935 9.869 0.000 5.196
6 3.123 0.508 0.000 0.000 7.662 81.409 5.011 2.288
7 9.165 0.000 0.000 0.000 2.899 23.743 60.273 3.922
8 7.650 0.000 0.000 0.032 16.940 33.269 12.279 29.830

Average Recall: 79.574%

Actual
class

Predicted class
1 2 3 4 5

1 85.882 0.000 0.000 0.000 10.226 3.529 0.000 0.362
2 0.000 98.273 0.000 0.887 0.000 0.840 0.000 0.000
3 0.000 0.000 100.00 0.000 0.000 0.000 0.000 0.000
4 6.051 0.034 0.000 90.061 0.000 2.366 0.000 1.487
5 0.000 0.000 0.000 0.000 92.413 6.394 0.000 1.194
6 3.243 0.566 0.000 0.151 5.279 79.751 5.581 5.430
7 10.938 0.000 0.000 0.000 9.865 30.576 37.163 11.458
8 2.832 0.187 0.000 0.031 34.765 33.987 7.034 21.164

Average Recall: 75.588%

Actual
class

Predicted class
1 2 3 4 5

1 82.215 0.000 0.000 0.172 13.691 1.926 0.000 1.995
2 0.263 97.951 0.000 1.493 0.000 0.029 0.000 0.263
3 0.310 0.000 99.690 0.000 0.000 0.000 0.000 0.000
4 1.751 0.000 0.000 95.238 0.000 0.525 0.000 2.486
5 0.000 0.000 0.000 0.000 93.552 3.469 0.000 2.979
6 3.234 1.926 0.000 0.654 11.524 56.828 3.406 22.429
7 10.918 0.000 0.000 0.000 5.793 28.164 49.332 5.793
8 7.569 1.059 0.000 0.000 22.980 12.275 10.118 46.000

Average Recall: 77.601%

Mean Average Recall: 78.430%
Standard Deviation: 1.822

Ringraziamenti

A conclusione di questo percorso vorrei dedicare un pensiero a tutte le
persone che in qualche modo mi sono state vicino e mi hanno sostenuto.
Questa tesi probabilmente non sarebbe altrimenti potuta esistere.

Ringrazio Romina, la persona che più di tutte mi ha accompagnato in

questi ultimi tre anni (sappiamo che sono di più), con cui ho condiviso non
solo le gioie ma anche le incertezze, le paure e, talvolta, lo sconforto che
spesso hanno minato questo intenso percorso ormai volto al termine. Grazie
per aver cacciato sempre via quei momenti.

Ringrazio i miei genitori, che nemmeno per un istante hanno dubitato di
me e sempre hanno sostenuto e incoraggiato le mie scelte. Grazie per avermi
trasmesso tutti i vostri valori, che ora formano anche il mio modo di essere
uomo.

Ringrazio i miei amici-fratelli Aldo, Antonio, Francesco, Gerardo,
Giovanni, Mattia. Grazie per tutte le risate e i momenti felici passati assieme.

Ringrazio l allegra compagnia dell aula studio: Carmine, Gio, Guido,
Leo, Peppe, Rapesta, Simone. Anche se negli ultimi tre anni mi sono
trasferito di un piano, lo spirito how we made è sempre rimasto con me.

Ringrazio il prof. Licciardo, che prima di tutti ha puntato su di me e che
ha reso possibile non solo la mia crescita professionale, ma anche umana.

Ringrazio Danilo che, insieme al prof. Licciardo, è stato mia guida e
mentore a partire dai miei primi passi nel percorso di dottorato. Grazie per
aver fatto restare sempre accesa in me la passione per la ricerca.

Ringrazio tutti quelli che più o meno stabilmente hanno condiviso con me
le ore di lavoro al laboratorio di Microelettronica.

Ringrazio tutte le persone che ho incontrato al TIMA di Grenoble, in
particolare Frédéric ed Olivier. Grazie per avermi guidato in quei mesi e per
avermi dato nuovi spunti di riflessione. Ringrazio anche Breytner e Bruno
per avermi accolto al TIMA non solo come collega ma anche come amico.

Ringrazio infine tutti i dottorandi del Dipartimento di Ingegneria
Industriale con cui ho condiviso quest esperienza, insieme ai docenti che ci
hanno assistito.

184

Acknowledgements

At the end of this path, I would like to give a thought to all the people
who have always been there to support me. Probably, this thesis could not
have come into existence without them.

Thank you to Romina, who more than anyone else has accompanied me

throughout the last three years (more than three to be honest). With her I
shared not only the joys, but also the uncertainties, the fears, and sometimes
the discouragement, which have often undermined the intensive journey that
has reached its conclusion now. Thanks for always having thrown away
those moments-

Thank you to my parents, who never doubted me, not even for a moment,
and always supported and encouraged my choices. Thanks for having
conveyed to me your values, which have shaped my way to be a man.

Thank you to my friends-brothers Aldo, Antonio, Francesco, Gerardo,
Giovanni, Mattia. Thanks for all the laughter and the happy moments we
shared.

Thank you to the aula studio company: Carmine, Gio, Guido, Leo,
Peppe, Rapesta, Simone. Even though I moved downstairs, the how we made
spirit has always been with me.

Thank you to prof. Licciardo, who before all has bet on me and has made
it possible not only my professional growth, but also my growth from a
human perspective.

Thank you to Danilo, who has been a guide and a mentor starting from
my first steps in the Ph.D. adventure. Thanks for keeping alive in me the
passion for the scientific research.

Thank you to all those who more or less permanently have shared with
me many working hours at the Microelettronica laboratory.

Thank you to all the people who I met at TIMA, in Grenoble, in
particular Frédéric and Olivier. Thanks for having guided me in those
months and for having given me many new insights. I also would like to
thank Breytner and Bruno for having welcome me at TIMA, not only as a
colleague but as friend as well.

Finally, I would like to say thank you to all the Ph.D. students at the
Dipartimento di Ingegneria Industriale, together with all the professors who
always assisted us.

