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A B S T R A C T

To date, has been the primary driver of global innovation, compet-
itiveness and cultural development. It is also a powerful engine
for creating new job opportunities, expanding market segments
and inspiring new horizons where new skills and specialties can
compete. From this perspective, we are constantly pushed to
investigate the ICT industry and its interconnections with other
areas, such as new biomedical technology.

In the past twenty years, the development and increase of new
diagnostic methods in the medical field has made available a
huge amount of data capable of being stored and analyzed in
order to extract important new knowledge.

In the biological field, the data produced by the sequencing
techniques and the available databases provide a lot of informa-
tion on multiple levels that can be integrated with each other.
The ability to integrate and analyze data from multiple sources is
vital in order to collect real benefits and speed up outputs thanks
to the high computational possibilities of some tools.

Technology has the potential to dramatically change the con-
ception of medicine and, at the same time, it plays a critical role
in advanced diagnostics systems in making decisions intrinsic to
patient care. Developing high-quality, accurate Artificial Intelli-
gence (AI) resources improves work of clinicians by intervening
on prevention, diagnosis and treatment of many pathologies.
Some modern AI and computer science technologies, in general,
encompass the power of clinical laboratory devices, allowing
diagnostic activity to be carried out even outside of laboratories.
Medical aids and new advanced diagnostic equipment are in-
creasingly relying on qualified experts in the field to supplement
medical evaluations and assist in diagnosis.

In this context, the focus of this work was on two main topics.
First one, we explored additional Machine Learning and Deep
Learning techniques that can guarantee a better classification
of melanoma images even on clinical datasets with lower im-
age quality. The goal is to improve melanoma early detection,
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which is now a limiting factor for first-line therapies in this tumor
pathology. Many of the research in the literature utilize similar
strategies but use various approaches: some try to extract infor-
mation directly from the image (such as color, plot and pixel
density), while others try to extract functions based on guided
lines of dermatologists (such as ABCDE and the Seven-Point
Checklist). The majority of these researches are conducted us-
ing higher-resolution dermoscopic pictures. The purpose of the
research is to identify novel features for melanoma classifica-
tion that may be applied to less detailed images using advanced
learning techniques.

The second contribution of this thesis is addressed to the clas-
sification of proteins. Researches focused on the possibility of
exploring further molecular descriptors in addition to those al-
ready present in the literature to classify these proteins and to
build new tools able to explore the complex interaction between
proteins in a visual and intuitive way. In this line of research,
the visualization of biological data was also taken into considera-
tion. The work has mostly concentrated on the presentation tools
of biological ontologies in order to develop user-friendly sys-
tems that allow end users to interact and extrapolate information
more easily. This is useful for the complexity of the biological
system that can be explored by the integration of omics disci-
plines. These sciences attempt to analyze the biological system
holistically using biological Big Data, mainly proteomic, genomic,
transcriptomic and metabolomic data. The latter are the most
important groupings of organic compounds for the study of the
functioning of living organisms.

A B S T R A C T I N I TA L I A N O

Finora, la tecnologia è stata il motore principale dell’innovazione,
della competitività e dello sviluppo culturale globali. È anche un
potente motore per creare nuove opportunità di lavoro, espande-
re segmenti di mercato e ispirare nuovi orizzonti in cui nuove
competenze e specialità possono competere. Da questo punto di
vista, siamo costantemente spinti a indagare l’industria ICT e
le sue interconnessioni con altre aree, come le nuove tecnologie
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biomediche. Negli ultimi vent’anni, lo sviluppo e l’incremento di
nuove metodiche diagnostiche in campo medico ha reso dispo-
nibile un’enorme quantità di dati in grado di essere archiviati e
analizzati al fine di estrarre nuove importanti conoscenze. In cam-
po biologico, i dati prodotti dalle tecniche di sequenziamento e le
banche dati disponibili forniscono molte informazioni su più li-
velli che possono essere integrate tra loro. La capacità di integrare
e analizzare dati provenienti da più fonti è fondamentale per rac-
cogliere benefici reali e velocizzare gli output grazie alle elevate
possibilità computazionali di alcuni strumenti. La tecnologia ha il
potenziale per cambiare radicalmente la concezione della medici-
na e, allo stesso tempo, svolge un ruolo fondamentale nei sistemi
diagnostici avanzati nel prendere decisioni intrinseche alla cura
del paziente. Lo sviluppo di risorse di intelligenza artificiale (AI)
accurate e di alta qualità migliora il lavoro dei medici interve-
nendo sulla prevenzione, la diagnosi e il trattamento di molte
patologie. Alcune moderne tecnologie di intelligenza artificiale e
informatica, in generale, racchiudono la potenza dei dispositivi
di laboratorio clinico, consentendo di svolgere attività diagnosti-
che anche al di fuori dei laboratori. I presidi medici e le nuove
apparecchiature diagnostiche avanzate si affidano sempre più a
esperti qualificati del settore per integrare le valutazioni mediche
e assistere nella diagnosi. In questo contesto, il focus di questo
lavoro è stato su due temi principali. Innanzitutto, abbiamo esplo-
rato ulteriori tecniche di Machine Learning e Deep Learning in
grado di garantire una migliore classificazione delle immagini
del melanoma anche su set di dati clinici con una qualità del-
l’immagine inferiore. L’obiettivo è migliorare la diagnosi precoce
del melanoma, che ora è un fattore limitante per le terapie di
prima linea in questa patologia tumorale. Molte delle ricerche in
letteratura utilizzano strategie simili ma usano approcci diversi:
alcune cercano di estrarre informazioni direttamente dall’immagi-
ne (come colore, trama e densità di pixel), mentre altre cercano di
estrarre funzioni basate su linee guidate dai dermatologi (come l’
ABCDE e la Seven-Point Checklist). La maggior parte di queste
ricerche viene condotta utilizzando immagini dermoscopiche ad
alta risoluzione. Lo scopo della ricerca è identificare nuove carat-
teristiche per la classificazione del melanoma che possono essere
applicate a immagini meno dettagliate utilizzando tecniche di
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apprendimento avanzate. Il secondo contributo di questa tesi è
rivolto alla classificazione delle proteine. La ricerca si è concen-
trata sulla possibilità di esplorare ulteriori descrittori molecolari
oltre a quelli già presenti in letteratura per classificare queste
proteine e per costruire nuovi strumenti in grado di esplorare
la complessa interazione tra proteine in modo visivo e intuitivo.
In questo filone di ricerca è stata presa in considerazione anche
la visualizzazione dei dati biologici. Il lavoro si è concentrato
principalmente sugli strumenti di presentazione delle ontologie
biologiche al fine di sviluppare sistemi user-friendly che consen-
tano agli utenti finali di interagire ed estrapolare le informazioni
più facilmente. Ciò si inserisce nell’ottica della complessità del
sistema biologico che può essere esplorato dall’integrazione delle
discipline omiche. Queste scienze tentano di analizzare il sistema
biologico olisticamente utilizzando Big data biologici, principal-
mente dati proteomici, genomici, transcriptomici e metabolomici.
Questi ultimi sono i raggruppamenti più importanti di composti
organici per lo studio del funzionamento degli organismi viventi.

x



C O N T E N T S

1 introduction 1

1.1 Introduction to Big Data 1

1.2 How Big Data can change know-how 2

1.3 Fields of Applications 4

1.4 Contributions of This Thesis 5

1.5 Thesis Outline 6

2 related works 9

2.1 Skin structure 9

2.2 Melanoma 10

2.3 Proteins structure 11

2.3.1 Traditional experimental methods 13

2.4 Classification Methods 14

2.4.1 Machine learning algorithms 14

2.4.2 Deep Neural Networks 16

2.4.3 Performance measures 19

2.5 Deep learning for Melanoma Detection 20

2.5.1 Pre-processing 21

2.5.2 Lesion segmentation 22

2.5.3 Clinical features 22

2.6 Deep Learning and Machine Learning for proteins
classification 27

3 melanoma detection 31

3.1 State of The Art 31

3.2 Classification Methods 34

3.2.1 Related Works 34

3.3 Dataset and training options 36

3.4 The proposed design of a hybrid architecture 38

3.4.1 Related Works 39

3.5 Research Questions 40

3.5.1 First goal: Transfer Learning reliability eval-
uation 40

3.5.2 Second goal: Impact of the three-layers ar-
chitecture 41

3.6 Experimental Results 43

3.7 Exploration of genetic algorithms 48

xi



xii contents

3.7.1 Related Works 49

3.7.2 Methodology 50

3.7.3 Experimental Results 53

3.8 Discussion 54

4 reconstruction of 3d proteins structure 57

4.1 Introduction 57

4.2 Related Works 58

4.3 Methods 59

4.3.1 Dataset e Features Description 59

4.3.2 Data Preparation 61

4.4 LSTM approach 62

4.5 Performance Measures 65

4.6 Preliminary Considerations 66

4.7 Results 68

4.8 Visualization of results 69

4.9 Concluding remarks 71

5 snarer 73

5.1 Background 73

5.2 SNARE proteins 74

5.3 Related Works 76

5.4 Classification algorithms 77

5.5 Proteins descriptors 78

5.6 Methods 80

5.6.1 Data Preparation 80

5.6.2 Performance evaluation of classification al-
gorithms 82

5.7 Experimental Results 82

5.7.1 Results on the unbalanced dataset DUNI 83

5.7.2 Results on the balanced dataset D128 87

5.7.3 Comparison between the DUNI and the
D128 datasets 89

5.8 Results and Discussion 93

6 go terms visualization 95

6.1 Introduction 95

6.2 Gene Ontology 96

6.3 State of the Art about protein information visual-
ization 97

6.4 Methods 98

6.4.1 Dataset 98



contents xiii

6.4.2 Similarity Measures 99

6.5 K-means visualization 100

6.5.1 Results with k-means 101

6.6 Alternative approach to visualize Gene Ontology
Terms 102

6.6.1 Results with dynamic build cyclic distance
graph 105

6.7 Similarity between AD and PD 106

6.8 Conclusion 107

7 conclusions and future works 111

7.1 Summary 111

7.2 Future Works 113

bibliography 115



L I S T O F F I G U R E S

Figure 2.1 Four types of protein structures. 12

Figure 2.2 Torsional angles in proteins. 13

Figure 2.3 CNN architecture. 16

Figure 3.1 Melanoma images in MED-NODE dataset. 37

Figure 3.2 Nevi images in MED-NODE dataset. 37

Figure 3.3 The sequential pipeline used in experi-
ment one for performing the continuous
retraining. 41

Figure 3.4 The setup of the second experiment simu-
lates a three layers architecture. 42

Figure 3.5 Performance for all used networks by ap-
plying Otsu segmentation. 45

Figure 3.6 Performance for all used networks with-
out Otsu segmentation. 46

Figure 3.7 Several SDs values computed for all net-
works. 47

Figure 3.8 Performance of GACNN over 100 itera-
tions. 54

Figure 4.1 Proteins 1C7E and 1ODL in PDB and HPAP
dataset. 60

Figure 4.2 LSTM model. 63

Figure 4.3 M3 variant. 64

Figure 4.4 Pair-wise alignment. 70

Figure 4.5 Comparison between predicted and origi-
nal chains of three residues. 71

Figure 4.6 Comparison between original and pre-
dicted Proline residue. 71

Figure 5.1 Visualization of the layers of the bundle of
the fusion complex between the 4 parallel
α-helices of the SNARE: 7 upstream layers
(layers from -1 to -7) and 8 downstream
layers (layers from +1 to +8) of the ionic
layer (the layer 0) [52]. 75

xiv



Figure 5.2 Comparison between GAAC, CTDT, CK-
SAAP and 188 D ACC with related ex-
tended classes with SNARER (on DUNI
dataset). 84

Figure 5.3 Comparison between GAAC, CTDT, CK-
SAAP and 188D ACC with related ex-
tended classes with SNARE (on D128 dataset). 89

Figure 5.4 Graphic visualization of MCC for RF,KNN
and ADA algorithms. 92

Figure 6.1 K-means for BP for AD with Lin’s mea-
sure (K=3 on the left and K=5 on the right). 102

Figure 6.2 K-means for BP for PD with Lin’s measure
(K=3 on the left and K=5 on the right). 102

Figure 6.3 K-means for MF for AD with Lin’s mea-
sure (K=3 on the left and K=5 on the right). 103

Figure 6.4 K-means for MF for PD with Lin’s mea-
sure (K=3 on the left and K=5 on the right). 103

Figure 6.5 The contextual menu is available for each
node. 104

Figure 6.6 The result of Q9BX80 expansion by BP
dataset. 105

Figure 6.7 The result of Q8IZY2 and Q9P0L2 expan-
sion by BP dataset. 106

Figure 6.8 Similarity of BP (on left) and MF (on right)
for the protein P03886 in AD. 108

Figure 6.9 Similarity of BP (on left) and MF (on right)
for the protein P03886 in PD. 109

Figure 6.10 Similarity of BP (on left) and MF (on right)
in AD. 109

Figure 6.11 Similarity of BP (on left) and MF (on right)
in PD. 109

L I S T O F TA B L E S

Table 2.1 Results without pre-processing. 27

xv



xvi list of tables

Table 2.2 Results with pre-processing. 27

Table 3.1 Performance on MED-NODE dataset for
ACCs with Otsu segmentation and with
and without data augmentation. 44

Table 3.2 Performance on MED-NODE dataset for
ACCs without Otsu segmentation and with
and without data augmentation. 44

Table 3.3 Performance drop after 100 training steps
(related to Training and Validation steps). 47

Table 3.4 Clock time (in seconds) measured for both
the experiments 48

Table 3.5 Performance of AlexNet on the MED-NODE
dataset. 54

Table 4.1 Details on conducted experiments 66

Table 4.2 ACC, MAE e MAE variation for φ 67

Table 4.3 ACC, MAE e MAE variation for ψ 68

Table 4.4 ACC e MAE for 37 and 73 angles classes 68

Table 4.5 Comparison with other works 69

Table 5.1 The SNARER descriptors. 80

Table 5.2 Performance of average ACC on the DUNI
dataset. 83

Table 5.3 Performance for average SN and SP on the
DUNI dataset. 84

Table 5.4 Performance of the average ACC on the
DUNI dataset with oversampling and sub-
sampling. 86

Table 5.5 Performance for average SN and SP on the
DUNI dataset with oversampling. 86

Table 5.6 Performance for average SN and SP on the
DUNI dataset with subsampling. 87

Table 5.7 Performance of average ACC for the D128

dataset. 88

Table 5.8 Performance for average SN and SP on the
D128 dataset. 88

Table 5.9 Comparision of MCC for the DUNI and
D128 datasets. 90

Table 5.10 Comparison with reference literature 93

Table 6.1 Similarity values for AD and PD. 107

Table 6.2 Common proteins in AD and PD. 108



1
I N T R O D U C T I O N

The Chapter provides an overview of the content of this work,
the main issues addressed, and how the thesis is structured. We
start with a brief description of Big Data (see Section 1.1) and
how they can modify our perception and understanding of the
world (in Section 1.2), in particular in relation to treated fields of
application (Section 1.3). This research adds to the fields of Big
Data mining because the processed data represent a great oppor-
tunity to improve our knowledge and encourage further progress
in the biomedical field. Then, we discuss our contributions in
Section 1.4 and how the thesis is organized (Section 1.5).

1.1 introduction to big data

Big Data has revolutionized the world we live in over the previ-
ous few decades, opening up new opportunities in a variety of
fields, from business to industry and public sectors [27]. Today,
the world is saturated with information like it has never been
before and the amount of knowledge available is growing at an
exponential rate, particularly in the last twenty years. The expan-
sion of Big data has been made possible by three basic conditions:
an increase in the availability of information, an improvement in
the processing and storage capacity of the data and, finally, the
economic convenience of obtaining the two aspects mentioned
above, as compared to the past [64]. Two factors are causing an
increase in the availability of information: datization and the
Internet of Things (IoT). The process of transforming given phe-
nomena into a quantitative form so that it may be tabulated and
examined is known as datification. It reflects the driving force
behind the Big Data phenomena, enriching the information with
new forms of value, including economic ones [59]. IoT extends
the ability to collect, process and exchange data from a multitude
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2 introduction

of sources to real-world objects, which are often equipped with
ubiquitous intelligence [187].

The exploration of this large amount of data poses several
challenges due to some of their properties [40], including:

• Variety: Many data are semi-structured, raw, structured
and even unstructured, and they often come from different
sources;

• Volume: Big Data are considerably voluminous, and it is
assumed that in the future they will reach the size of the
zettabytes. These dimensions cannot be analyzed with cur-
rent traditional systems;

• Complexity: Connect the data from different sources and
different formats is one of the intrinsic complexities of the
large volumes of data;

• Velocity: In some contexts, Big Data are generated in real-
time and this is advantageous for some types of analy-
sis, but this opens up a challenge to current realities and
technologies to exploit data coming at high speeds just as
quickly;

• Value: It refers to the process of finding a high value hidden
within numerous different and rapidly growing data. This
is closely related to the veracity and quality of the data.

All of these traits, as well as other aspects of Big Data, make
traditional methodologies less efficient in terms of analysis [92].

1.2 how big data can change know-how

Big Data and, in particular, the Internet of Things (IoT) allow us
to make data more accessible to better understand and enhance
our understanding of the real world. They enable us to extract
data for decision-making processes, assist firms in pursuing digi-
tal business innovation paths, generate new knowledge, get new
insights and convert and reuse metadata in a new productive fac-
tor. In the context of this thesis, we are interested in the concept
of Data Science, namely the combination of different disciplines
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such as statistics, data mining, databases and distributed systems
that represents a new data-intensive approach to scientific dis-
covery [179]. It is especially in the field of healthcare that Big
Data opens up to new opportunities of value, especially for their
possibility of being used in decision support systems. Adding
value and enhancing competence are the main consequences of
extracting new knowledge. This concept is particularly prevalent
in the medical industry, as gaining new knowledge can also im-
ply improving the quality of life for a patient. This adding value
is possible with the use of the Big data analytics, the applica-
tion of advanced analytics techniques to large data sets. In this
field, several applications are widely used, including predictive
models, statistical tools, algorithms trained on this large amount
of data [44]. These applications must take into account the na-
ture (structured, unstructured, and semi-structured data) of the
big data on which they operate. In fact, they can be complex to
manage, especially when they come from multiple resources. In
healthcare, where biomedical data is processed, the many steps of
pre-processing, selection, transformation, extraction, assessment,
and representation of data are becoming increasingly significant.

Generally, biological big data has qualities similar to the 4Vs
of Big data. We can summarize their characteristics in [115]:

• hierarchy: Biological big data reflect the normal structural
hierarchy (molecules, cells, tissues, and systems) present in
our body;

• heterogeneicity: Because they are generated in different meth-
ods ranging from genetics, physiology, anatomy to imaging;

• complexity: Biological big data are multi-level information
formed by relationships between many molecular interac-
tors, atomic or even more;

• dynamics: Each process changes over time depending on
the conditions of each part of the biological system.

One of the greatest issues of biological big data is represented
by the great effort employed in analyzing the complex networks
of the living organism and their connections to discover new
non-casual relationships. The goal of contemporary challenges
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is to provide relevant tools to the scientific community, as well
as infrastructure such as cloud computing, in order to study
biological big data. The ability of diverse methodologies to pro-
cess heterogeneous data, to employ algorithms that guarantee
efficiency and scalability to optimize the potential value of the
data, all affect the analytical phases in this field. This study of
bioinformatics data adds value in the form of increased know-how,
the amount of knowledge and skills required to understand a
biological phenomenon. Because biological data is so extensive
and heterogeneous, new knowledge derived from it aids in a
better understanding of gene expression, regulation, and hered-
itary disorders associated with them in the case of mutations
or metabolic dysfunctions. This allows to developing a global
vision (also defined as holistic) of the biological system. This new
knowledge must be part of the cultural heritage of every medical
actor, as they will involve more and more the appearance of new
scenarios and new diagnostic and therapeutic approaches.

1.3 fields of applications

Over the last two decades, the creation and expansion of new
diagnostic procedures in the biomedical field have created an
immense amount of data that may be saved and analyzed to ex-
tract new significant knowledge in this field of application. This
exponential increase began with the sequencing of the human
genome, a project that aimed to map the nucleotides contained in
a human genome. Over time, this has permitted the development
of online databases containing biological Big Data, primarily
proteomics, transcriptomics, genomics, and metabolomics data
(considered as omics sciences), frequently accompanied by mas-
sive data tables of experimental observations. At the same time,
the diffusion of Electronic Health Records (EHR), appropriately
anonymized, has made greater availability of information on
the health of individuals or a population. These records include
demographic information, medical history, diagnosis, potential
therapies, laboratory test results, biomedical images (processed
using radiodiagnostics, computerized tomography, ultrasound,
nuclear medicine techniques and magnetic resonance), vital signs,
and personal information such as age and weight. So, also the
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value of digitized medical images has grown over time since their
processing and analysis using advanced mathematical algorithms
allows researchers to obtaining information about underlying
physiopathological events that are not detectable by visual exami-
nation alone. The ability to capture in vivo snapshots of common
physiological or alternative pathological processes using specific
and advanced sensors and computerized technology has high-
lighted the significance of being able to apply virtual reality,
computer vision and robotics to biomedical imaging problems.
Biomedical research is rapidly responding to the convergence of
the biomedical and Information Technology (IT) sectors, which
opens up new perspectives and opportunities to expand existing
knowledge. Machine learning (ML), in particular Deep Learning
(DL), is supporting traditional biomedical research by develop-
ing new features extraction techniques from images and new
statistical classifiers for the detection and diagnosis of patholo-
gies through the use of instruments. This provides for a better
representation of accessible data and subsequent analysis, thanks
to an integrated strategy that ensures capturing information at
different levels.

1.4 contributions of this thesis

The biological networks of the omics science are very large and
complex. We are in the presence of extremely complex prob-
lems for the number of combinations of possibilities to be an-
alyzed. In the works presented in this thesis, it was necessary
to perform a training and study phase on large datasets (such
as ISIC1, HAM10000 [175] and so on) in order to examine the
small datasets presented here (i.e, MED-NODE [68]). Then, we
employed the Transfer Learning to boost our performance.

The first contribution of this thesis regards the development
and exploration of new techniques for extracting features from
images and data and new classifiers for the detection and early
diagnosis of the melanoma through Machine Learning and Deep
Learning. In particular, we explored the use of deep neural net-
works and its combination with genetic algorithms, and an ap-

1 https://challenge.isic-archive.com/
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proach based on a hybrid architecture system. The ability to
employ classification algorithms on clinical images is one of the
issues that has emerged in the field of melanoma detection. Un-
like dermoscopic images, these clinical images are low-resolution
images whose use is more prevalent and is directly tied to their
use via Smart Device. It is precisely this open challenge that
guides the search in the following chapters of this thesis. The
second contribution relates to new insights for extracting charac-
teristics in order to classify and visualize some protein families.
We concentrated on the application of deep learning and machine
learning to the problem of protein classification and prediction
of protein angles, as well as an interactive system for visualizing
biological data. The significance of tracing back to the structure
of a protein from its amino acid sequence is due to the intimate
relationship between structure and function. Structure is thought
to affect the function and properties of proteins, as well as their
functioning within biological processes [138, 140]. At the same
time, improving the classification of a protein and tracing it back
to a family of proteins is advantageous for the evolutionary re-
construction of the protein itself. In fact, a family of proteins is
made up of proteins that perform slightly similar functions and,
over time, preserve the three-dimensional conformation rather
than the sequence of amino acids. This information is useful for
finding significant sites, patterns, and profiles that affect the func-
tionality of the protein, even if the sequence similarity between
multiple proteins of the same family is low. The visualization
of biological data occurs in the context of the overall vision pro-
vided by systems biology, which considers how an organism
functions as a whole. In different domains of systems biology,
bioinformatics tools for analysis, interpretation, and prediction
of biological data provide this omic vision of biology and allow
us improving our knowledge of produced data.

1.5 thesis outline

The rest of the thesis is organized as follows:

• In Chapter 2 there is a general overview of the state of the art
relating to the classification problems faced for melanoma
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and for proteins. We discuss some general concepts indis-
pensable for understanding the following chapters of our
work. It begins with a review of some processes required for
melanoma detection and protein identification, and ends
with a description of the classification algorithms utilized
to address these issues.

• In Chapter 3, the state of the art on the detection of melanoma
and the approaches explored in this work are presented.
The proposal of a Fog/Cloud/Edge hybrid architecture
can handle the pre-processing and the next classification
of melanoma clinical images, reducing the execution time
and continuous iterations of the training set necessary to
provide robust models of forecasting. Secondly, the experi-
mental results obtained using the functions of genetic algo-
rithms (selection, mutation, and crossover) are presented
with the Neural AlexNet network in an evolutionary Con-
volutional Neural Network (CNN) design approach.

• In Chapter 4, the use of a bidirectional Long Short-Term

Memory (LSTM) neural network is proposed for prediction
of protein torsional angles. In this context, the addition of
four new molecular descriptors is examined to improve
the performance of the network. In details, the chapter
describes the LSTM architecture and all details related to
the implementation of three variants of this structure for
our experiments. Furthermore, we apply two methods to
visualize the data obtained from the predictions of the two
torsional angles.

• In Chapter 5, the introduction of new molecular descrip-
tors, called SNARER descriptors, is evaluated to improve
the quality and efficiency of binary classifiers focused on
the protein family called SNARE (Soluble N±ethylmaleimide

sensitive factor Attachment protein Receptor). In particular, we
used three classification algorithms, Random Forest, Ad-
aBoost and k-nearest neighbors in order to compare their
performance on balanced and unbalanced datasets.

• In Chapter 6, based on the components of the Gene Ontol-
ogy (cellular component, molecular function and biological
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process), the largest resource accessible for enriching biolog-
ical analyses, we presented a way to assess graphically the
similarity data between Parkinson’s and Alzheimer’s pro-
teins. In this work we compare a partitional group analysis
method, the K-Means, with our Dynamic Distance-Graph-
based approach that takes into account the similarities
between the components of the Ontology Gene. In this
method, we hope to retrieve the biological information
of proteins from a global perspective, which ties together
the three ontological domains and allows us for a more
comprehensive overall view.

• Finally, conclusions and future studies follow in Chapter

7. In this chapter, the contributions proposed by this work
and any future directions are highlighted.



2
R E L AT E D W O R K S

This Chapter starts with a description of the skin structure (see
Section 2.1) and melanoma (see Section 2.2), in order to address
the key point of melanoma detection. The prediction of the pro-
teins’ structure remains one of the most interesting and most
complex arguments in structural biology and bioinformatics. So,
we present an overview of the structural characteristics of pro-
teins in Section 2.3, necessary to understand the motivations
underlying two of the topics covered in the following chapters.
Then, we discuss the most commonly used classification methods
for the classification of melanoma and proteins (in Section 2.4),
with particular attention to deep learning methods for skin le-
sions and proteins classification (see Section 2.5 and Section 2.6).

2.1 skin structure

The skin is a protective covering that surrounds and protects the
human body. Appearance, thickness, color, elasticity, and extensi-
bility are its key macroscopic features. The skin is characterized
by a stratified structure articulated in:

• epidermis, which is the most superficial layer;

• dermis, under the epidermis;

• hypoderma, the deeper layer.

In addition to having multiple sensory terminations, the skin
has a barrier role that protects the body from potentially dan-
gerous substances, a thermoregulation function that helps to
maintain body temperature, a secretory, a metabolic and im-
munological functions [126]. Melanin is a dark brown pigment
produced by melanocytes, which are a type of cell present in
the basal layer of epidermis. It regulates the color of the skin, of
the hair and of the eyes, absorbs solar radiation and protects the

9
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genome from UV rays while neutralizing free radicals. Melanin
has been discovered to play a role in determining the behavior
of skin cancer in recent years, owing to its role in controlling
epidermal homeostasis [164].

2.2 melanoma

Skin cancer is described as the uncontrollable proliferation of skin
cells caused by DNA damage. Melanoma is a form of skin cancer
that arises from melanocytes and is one of the deadliest tumor in
the world [110] because it has the ability to rapidly metastasize
to different tissues [45]. Melanoma development is influenced
by both genetic and environmental risk factors. Caucasian race,
light-colored skin, the number, and kind of nevi and a positive
family history of melanoma are all genetic variables. We prior-
itized burns, UV rays exposure which has genotoxic effect and
sunburn history among the environmental risk variables [148].
In most cases, a first visual assessment of a dermatologist is used
to diagnose melanoma, in clinical practice. The capacity of a
physician to distinguish between different forms of skin lesions
is also dependent on his level of experience. The tumor thickness,
ulceration, and metastasis to lymph nodes or other regions of the
body are all taken into account when determining the stage of
melanoma. It has five main stages, based on the American Joint

Committee on Cancer Staging Manual [66]:

• Stage 0, also called melanoma in situ, where the epidermis,
the outer layer of the skin, contains abnormal melanocytes.
These cells have the potential to become cancerous;

• Stage I, divided in Stage IA and Stage IB, where we can
consider thickness and ulceration. In Stage IA, there is no
ulceration and the tumor is less than 1 mm thick, but we
can see the formation of a skin break. In Stage IB, either the
tumor has ulceration, but it is not more than 1 mm thick, or
it is between 1 and 2 mm thick, but there is no ulceration;

• Stage II. This stage is divided into Stage IIA, Stage IIB and
Stage IIC. In Stage IIA, the tumor has ulceration, but it is not
more than 1 mm thick, or it is between 1 and 2 mm thick,
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but it does not have ulceration. In Stage IIB, the tumor is
ulcerated and it is greater than 2 mm thick but not more
than 4 mm thick, or it is thicker than 4 mm but does not
have ulceration. In Stage IIC, the tumor is thicker than 4

mm and exhibits ulceration;

• Stage III: we can consider the spread of cancer, a process
called metastasis. With or without ulceration, a tumor might
be any thickness. It could have spread to one or more lymph
nodes or cancer cells could be at least 2 cm away from the
initial tumor in a lymph vessel or there could be smaller
tumors on/under the skin in a 2 cm radius surrounding
the primary tumor;

• Stage IV: melanoma may have progressed to other regions
of the body, such as the lungs, brain and liver, which are
often far from the main tumor.

It is critical to understand the stages of tumors in order to
evaluate its therapy and prognosis. To assess the stages of melan-
otic cancer, a variety of approaches can be used: lymph node
mapping [12], Computed Tomography (CT) scan and Positron
Emission Tomography (PET) scan [159], Magnetic Resonance
Imaging (MRI), blood chemistry tests [43]. The excision of the
lesion alone is insufficient for treating a melanoma in Stage III or
Stage IV. In this case, chemotherapy [6], radiation therapy [186],
immunotherapy [157] and targeted therapy [15] are required
treatments. For prevention, the more effective treatment is surgi-
cal removal of the original tumor before tumor cells detach the
lymph nodes, causing the tumor to spread quickly.

2.3 proteins structure

Proteins are biopolymers made up of 20 separate components,
all of which are known as amino acids. The set of amino acid
symbols are: {a, r, n, d, c, e, q, g, h, l, i, k, m, f, p, s, t, w, y, v}.

Covalent connections (peptide links), various types of ties
(disulfide bridges) and non-covalent bonds (saline bridges, hy-
drogen links, van der Waals interactions and hydrophobic forces)
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Figure 2.1: Four types of protein structures.

hold amino acids together. Proteins are characterized by four
fundamental structures [19], as depicted in Figure 2.1 [132]:

1. primary structure is the sequence of various amino acids,
which is determined by the nucleotide sequence in the
coding gene;

2. secondary structure: α-helix, β-sheet and coiled coils are three
different types of secondary structure. The angles must be
taken into account when the protein is folded locally. The
main angles are:

• φ angle between N and Cα;

• ψ angle between Cα and carbonyl carbon;

• ω angle between carbonyl carbon and N, commonly
fixed at 180°.

The φ and ψ angles, called torsional or dihedral (showed in
Figure 2.2 [69]) , do not take random values; instead, they
must distribute in a highly exact range in order for the
proteins to fold correctly. These ranges are explained by
the Ramachandran plot [23], which showing the combina-
tions of the two torsional angles admitted inside a protein
structure, according to the different secondary structures;

3. tertiary structure: it indicates the three-dimensional orga-
nization of the protein. In a single protein, it reflects the
folding of multiple secondary structural parts. At this level,
a correctly folded protein is correlated to its own specific
function;



2.3 proteins structure 13

Figure 2.2: Torsional angles in proteins.

4. quaternary structure: the spatial organization of several pro-
tein molecules in multi-subunit complexes can be seen at
this level of protein organization. Each protein represents a
subunit and proteins interacting in the quaternary complex
can be similar or dissimilar.

2.3.1 Traditional experimental methods

The process of determining the primary structure of a biopoly-
mer is referred to as sequencing. The sequencing of genetic ma-
terial has paved the ground for modern biotechnology in recent
decades. If the sequenced material is a nucleic acid (DNA or
RNA), this sequence is made up of nucleotides. If it is a protein,
it is made up of amino acids. Over time, a series of advancements
in sequencing techniques have enabled them to become simple
enough to integrate into a laboratory’s routine. The current tech-
niques work in parallel, simultaneously performing millions of
reactions and generating a large amount of data [76]. Bioinfor-
matics has enabled the development of tools for generating and
maintaining data from other sources, in addition to sequencing
techniques. It has enabled the creation of calculation programs
for sequence analysis, the creation of specialized and integrated
database structures and the provision of IT tools such as software,
hardware, and algorithms for data organization and analysis [14].
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It is critical to comprehend the structure of the gene or protein
sequence after it has been obtained. The term folding refers to the
process by which proteins are molecularly folded into their final
three-dimensional structure starting from its primary structure.
It’s crucial to know a protein structure in order to comprehend
its role in biological processes [39].

The structure of a protein can be determined using a variety of
traditional approaches. X-ray crystallography [87] provides very
detailed information on the atomic arrangement within a protein.
Electronic microscopy [174] studies these complexes in their phys-
iological environment. Nuclear magnetic resonance spectroscopy
(NMR) [24] allows characterizing the structure and dynamics of
biological macromolecules with atomic resolution. These meth-
ods are among the most commonly used techniques. There are
some experimental procedural issues with these approaches. This
is the case with X-ray crystallography, which involves forcing
structures into crystals that do not necessarily represent accurate
representations of proteins in their active conformation. Further-
more, the variability of experimental conditions (temperature,
concentration, presence of solutes and cofactors and so on) makes
this passage long and difficult, and it is a limiting factor in the
application of this technique. NMR structures are not as precise
as those obtained with X-rays, but they do utilize proteins in
solution, in their natural habitat. The dimension of the residues
studied, which cannot exceed 300, is the limiting element in
this scenario. As a result, these approaches can be costly, labor-
intensive, time-consuming and not always feasible.

2.4 classification methods

During this thesis, various classification approaches are employed
throughout for melanoma and proteins classification, which we
shall discuss in more detail in the following sections.

2.4.1 Machine learning algorithms

Machine learning is a growing field of computational algorithms
that aims to mimic human intelligence by learning from their
surrounding environment and generalizes the results in tasks still
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not seen. Pattern recognition, computer vision, spacecraft engi-
neering, finance, entertainment, computational biology and many
other fields have all benefited from machine learning techniques.
The performance of traditional Machine Learning algorithms is
highly dependent on the data representation provided to them
during the training phase, which is derived from a set of charac-
teristics extracted for the specific executed task [17].

We have three main learning paradigms, indicated below:

• Supervised Learning: in presence of a set of learning data,
which form the training set, with relative outputs, the net-
work can use the training set in order to learn to infer
the relationship between related inputs and outputs. Subse-
quently, the network is trained by an appropriate algorithm,
which uses data to modify the weights and other parame-
ters of the network to minimize the prediction error. The
network is able to recognize the relationship that links
the input data and output data, and it is able to make
predictions on unknown data, having an adequate abil-
ity to generalize. This paradigm is used for regression or
classification. The most common used supervised learn-
ing methods are decision trees, Support Vector Machines
(SVM), Naive Bayes;

• Unsupervised Learning: a learning of this type uses training
algorithms which modify the weights of the network by re-
ferring only to the presence of input data. These algorithms
attempt to group the incoming data and group them in
appropriate clusters. These algorithms learn few features
from the data, using topological or probabilistic methods.
This approach is mainly used for clustering and feature
reduction. The most famous unsupervised learning are
Principal Component Analysis (PCA), K-Means Clustering
and Self-Organizing Maps (SOM);

• Semi Supervised Learning: this paradigm draws its basis from
both the supervised and non-supervised learning. Semi-
supervised models aim to use a small amount of training
data labeled together with a large amount of input data
without label. This often occurs in real situations where
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data labeling is very expensive and we can obtain a constant
flow of data.

2.4.2 Deep Neural Networks

This research focuses on a subset of Machine Learning models
known as Convolutional Neural Networks in order to classify
images. We give an overview about this method.

Artificial Neural Networks (ANN) are mathematical models in-
spired by the biological neurons of the human visual cortex. In
an ANN, an artificial neuron is the essential unit for processing
information. [83]. ANN with multiple layers are referred to as
deep neural networks (DNN). Convolutional Neural Network is one
of the most often used deep neural networks in image classifica-
tion, object detection, semantic segmentation and so on [108]. A
CNN, as depicted in Figure 2.3 [7], has a hierarchical structure
consisting of:

• input layer, connected to the pixels of the image;

• intermediate layers, in which there are three repeated layers:
convolutional, pooling and RELU layer;

• fully-connected layers, which represents the completely con-
nected layer acting as a classifier;

• output layer that processes the output class as result.

Figure 2.3: CNN architecture.

The primary goal of training a neural network is to optimize
the synaptic weights of each layer in order to determine the
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parameters that allow the network to achieve the desired map-
ping between inputs and outputs. A number of filters, known
as kernels, are slid over the input images in each convolutional
layer to build a number of feature maps. As a result, this tech-
nique separates the image into numerous overlaid fragments,
which are then examined to determine the unique character-
istics of the images before being transferred to the next layer.
Convolutional layers can be thought as feature extractors that
learn the typical representations of the images they receive. Each
neuron in a feature map has a receptive field that is related to
the previous layer’s neighborhood of neurons through a set of
training weights. All neurons in a feature map have weights
that are the same. In this way, different features maps in the
same convolutional layer have different weights and the essential
characteristics of the image can be recovered at each position. A
two-dimensional kernel is used to implement the convolution
operation in the simplest situation of images with gray levels.
The filter will be three-dimensional in the case of a color image
stored by a combination of the three RGB (Red, Green, and Blue)
basic colors. A two-dimensional activation map can be created
by doing the sum element for element along the depth of the
obtained volume.

The pooling layer is used to aggregate the properties of the
previous layer by downsampling them into features of smaller
size. As a result, the goal is to reduce dimensionality while
keeping the most relevant discrimination information. There are
two typical operations for pooling: the max pooling, that considers
the maximum input from a fixed region, called window, and the
mean pooling, that takes the average of the window inputs.

The RELU layer employs a sigmoid activation function, which
is difficult to implement in deep networks due to the vanish-

ing gradient problem [100]. The sigmoid function has a lower
derivative than 1 and this helps to reduce the gradient values in
distant levels from the output. As a result, it saturates as it moves
away from 0 and the gradient is neutralized in the saturation
regions. The derivative hence has a value of 0 for all negative or
null values and 1 for all positive values. This sigmoid tendency
results in scattered activations with portion of neurons which
are off throughout the network, which can help to increase the
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robustness of the network (lower overfitting). One of the most
typical issues with deep neural networks is overfitting. In certain
circumstances, networks store training data rather than learning
characteristic features from it, reducing its capacity to generalize.

The fully-connected layer employs a softmax activation function,
which conducts a normalization for each neuron k, with output
values ranging from 0 to 1 and interpreted them as a probability.
Cross-entropy is used as a cost function between two discrete p

and q distributions and, fixed p, measures the difference between
the two distributions.

It is required using data that is not included in the training
set to evaluate generalization capacity of a model. Generally,
datasets are divided into three portions:

• training set, typically 80% for network training;

• test set in order to evaluate the performance of the trained
network;

• validation set, used to search for better hyperparameters.

It is tough to construct these three datasets when the training
data have small sizes. As a result, the K-fold cross-validation tech-
nique is employed, which divides the dataset into k equal-sized
subgroups. K training cycles are completed as a result of this
method. Each fold is then used once as a validation, while the
k-1 remaining folds form the training set.

2.4.2.1 Transfer Learning

The training of complex CNNs on very large datasets is an
expensive time process. Transfer learning is a method in which a
model created for one task is utilized as the basis for a model for
a different task. It is a popular approach in deep learning where
pre-trained models are used as the starting point on computer
vision and natural language processing (NLP) tasks. A transfer
learning problem can be solved using a variety of methodologies
and implementations. In particular, this technique can be used
when a network trained to solve problem A is re-used to solve a
new problem B that must be related to problem A. As an example,
we can consider the network N trained to classify whether an
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image contains or not a car: following the working hypothesis
of TL, we could re-use the same network to check if an image
contains or not truck. In general, when TL is used, there is the
possibility of performance degradation: to increase performance,
we could perform an additional step called fine-tuning. Fine-
tuning is the action related to re-train a pre-trained network by
using the pre-trained weights into network filters instead of using
random values. In that case, only eventual additional filter added
to the network will start with random weights.

Most homogeneous transfer learning solutions use one of three
general strategies: attempting to correct for the source’s marginal
distribution difference, attempting to correct for the source’s
conditional distribution difference, or attempting to correct both
the marginal and conditional distribution differences. The bulk
of heterogeneous transfer learning systems rely on aligning the
source and target domain input spaces under the premise that
the domain distributions are the same [191].

Deep Learning algorithms, particularly CNNs, have become
increasingly significant in clinical practice, particularly in bio-
imaging analysis.

2.4.3 Performance measures

In order to systematically evaluate various classifiers, different
metrics are used. The chosen metrics are described in the equa-
tions below (Equations 2.2-2.6).

Accuracy =
TP + TN

TN + FP + FN + TP
(2.1)

Sensitivity(TPR) =
TP

TP + FN
(2.2)

Speci f icity(TNR) =
TN

TN + FP
(2.3)

Precision(PPV) =
TP

TP + FP
(2.4)
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FDR =
FP

FP + TP
(2.5)

FPR =
FP

FP + TN
(2.6)

FNR =
FN

FN + TP
(2.7)

where TP, TN and FP are the numbers of properly predicted true
positives and true negatives, respectively and FP and FN are the
numbers of incorrectly predicted false positives and false nega-
tives. We have reported the metrics most used in this contribution.
Accuracy indicates the degree to which a quantity’s measured
value matches its true value. Sensitivity or True Positive Rate (TPR)
is a measurement of how well a test can detect true positives.
Specificity or True Negative Rate is a measure of how well a test
can detect true negatives. Precision or Positive Predictive Value

is a statistical measure which indicates the proportions of true
positive values in a test. When conducting multiple comparisons,
this is a means of conceptualizing the rate of type I errors in null
hypothesis testing. When performing multiple comparisons, False

Discovery Rate identifies the rate of type I error in null hypothesis
testing. During the verification of a statistical hypothesis, a type
I error arises when the hypothesis nothing, which is actually
true, is incorrectly rejected. Type I errors are sometimes known
as ªfalse positives" because they occur when a positive effect is
detected when it is not actually present. False Positive Rate (FPR)
and False Negative Rate (FNR) are the percentage of all negative
results that result in positive test outcomes and the proportion
of positives which yield negative test outcomes with the test,
respectively.

2.5 deep learning for melanoma detection

Early detection of melanoma is still a limiting issue for first-line
therapy in this tumor pathology. The presence of regions that
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can display anatomical-morphological characteristics that are
extremely similar to those of a benign nevus can make early
detection of melanoma difficult. Visually sifting images is a chal-
lenging task and there is a good possibility that mistakes they can
be made in the evaluation. In fact, diagnostic images frequently
contain noise and the contrast between tissues may not always
be sufficient for a clear interpretation.

Computer-Aided Decision systems (CAD) that operate as assis-
tance for clinical decisions are currently one of the most prevalent
lines of action for using acquired melanoma biomedical informa-
tion and facilitating diagnosis. The adoption of a computerized
system, characterized by excellent reproducibility and stability
that supports the dermatologist, can result in a faster diagnosis
and a higher standard of accuracy. This enables for the auto-
matic detection of melanoma using IT systems that take lesion
images as input and output with a melanoma or non-melanoma
diagnosis.

The melanoma detection process workflow consists of the
following five computationally expensive basic steps:

1. a pre-processing phase with removal of all artifacts from
the images;

2. segmentation of the lesion in order to separate the melanoma
from its background;

3. a post-processing phase to further improve the image qual-
ity of images;

4. a phase of selection of clinical characteristics for the recogni-
tion of melanoma on the basis of dermatological guidelines
and on Computer Vision techniques;

5. classification phase with a validation step and a test step
performed in order to measure the model performance.

2.5.1 Pre-processing

Pre-processing is the initial step in the image processing process.
Noise reduction, shutting and opening, increasing or decreasing
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operational degree of contrast and saturation and so on are com-
mon steps in order to improve the quality of image. It is possible
to apply image pre-processing [182] to the original image or post-
processing to the segmented lesion, or both. The main aim is to
remove some typical artifacts such as dark corners, marker ink,
gel bubbles, color chart, ruler marks and skin hairs. Many ap-
proaches can be utilized at this level: median filtering can be used
for noise reduction and smoothing, histogram adjustment, color
correction and contrast enhancement methods, border expansion
and region merging [135].

2.5.2 Lesion segmentation

Lesion segmentation is the first step in automating melanoma
detection and it is also the most crucial. At this stage, the lesion
is isolated from its background (i.e., skin) and other artifacts. As
a result, segmentation is a procedure that divides an image into
meaningful regions (separating foreground and background),
which are useful for analyzing and recognizing an object in the
image. For lesion segmentation, several approaches have been
developed: thresholding [25], clustering [122], fuzzy logic [11],
graph theory [200], deep learning based approaches [10, 35, 36,
116] and combination of these methods [135].

2.5.3 Clinical features

A typical melanoma case can be recognized once the lesion has
been segmented by looking for numerous clinical features that
may exist in the segmented region. These characteristics can be
global or local. Local features appear on a single area or a group
of spots on the lesion, whereas global features exist all across the
lesion. Texture, Shape and Color are the three basic categories in
which these clinical aspects can be classified. Different feature
selection techniques can be applied. The statistics of the gray-
scale version of the input dermoscopic image, for example, can
be used to detect texture features. Clustering algorithms can be
used to extract color features [135].
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Dermatoscopy, which allows the observation of patterns not
visible to the human eye, is the most commonly used and non-
invasive approach for the early identification of melanoma [20].

When evaluating a suspected melanotic lesion, the ABCDE
rule is an appropriate monitor control. A represents the symme-
try of the lesion. B indicates its regular or irregular border. C

captures the colors and the D is the diameter of the lesion. These
properties of a lesion are all explained by this basic dermato-
logical guideline. The E in this case stands for evolution, which
refers to signals that the lesion is rapidly expanding. The evolu-
tion is widely acknowledged as the most distinguishing feature
for early diagnosis, but it is also the most difficult to quantify.
Follow-up with the patient over time can help identify lesions
that are described as featureless, without atypical dermoscopic
criteria, which could be false negatives. [152].

The Menzies technique is based on a set of 11 characteristics
that are either present or absent. This approach employs negative

and positive characteristics. Negative features are symmetry of
pigmentation pattern and the single color (black, gray, blue, red,
dark brown and tan). Because malignant melanocytes generally
retain cellular melanin and can be found at different depths in the
skin, melanomas usually appear in multiple colors. Positive fea-
tures are: blue-white veil, multiple brown dots, pseudopods (foot-
like projections present at the edge of a lesion), radial streaming,
scar-like depigmentation, peripheral black dots/globules, multi-
ple colors, multiple blue-gray dots and broadened network [124].
To diagnose melanoma, at least one of the nine positive features
must be present and none of the two negative features must be
present.

Another methods dermatologists use to evaluate lesions is the
7-point Checklist. This method uses minor and major criteria for
the melanoma detection. Major criteria are: atypical pigment
network, gray-blue areas and atypical vascular pattern, all with
scores equal to 2. Minor criteria have score equal to 1 and they
are: radial streaming (streaks), irregular diffuse pigmentation
(blotches), irregular dots and globules and regression pattern.
The ability of each criterion to increase the likelihood of a positive
melanoma diagnosis is measured using odds ratios. The odds
ratio is used to calculate the score for criterion existence. A total
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score of 3 is necessary for the diagnosis of melanoma based on
the simple adding of the criterion scores [184].

Many studies in recent decades focused on the use of Deep
Learning and, in particular, CNNs are used for the classification
of melanoma.

Yu et al. [198] have proposed a two stage approach with a very
deep fully convolutional residual network (FCRN) with more 50

layers and residual learning technique to overcome the degra-
dation problem. They first have segmented and then classified
lesions in melanoma/not melanoma output. The used dataset
is a public challenge released with ISBI 2016. In the proposed
FCRN is incorporated a multi-scale contextual information inte-
gration scheme. Then, for the classification stage, Yu et al. have
explored Softmax classifier and SVM classifier in order to obtain
their average predictions value. The proposed method was im-
plemented with C++ and Matlab based on Coffee library. They
have compared the performance of FCRN with different depths,
in particular 38, 50 e 101, the VGG-16 network and fully convo-
lutional GoogleNet. The better accuracy (ACC), sensibility (SE)
and specificity (SP) is reached by FCRN-50. They have also es-
tablished the importance of the multi-scale integration scheme
to retrieve local image information and that the fusion of the
simple average performance of SVM and Softmax can improve
the classification performance.

In 2018, Li and Shen [116] improved deep learning network
for segmentation, feature extraction and classification for skin
lesion analysis. Using the ISIC 2017 dataset 1, they proposed
two deep learning frameworks: the Lesion Indexing Network
(LIN) and the Lesion Feature Network (LFN), inserting more
internal convolutional layers and an extra residual link in ResNet.
They obtained 85.7%, 49% and 96.1% for accuracy, sensitivity and
specificity, respectively.

In 2018, Yu et al. [199] introduced a deep residual neural net-
work, ResNet, consisting of a set of residual blocks, composed of
several stacked convolutional layers. They chose this architecture
because residual links can speed up deep network convergence
while maintaining accuracy advantages obtained by significantly
increasing network depth. They also used a local descriptor en-

1 https://www.isic-archive.com
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coding strategy. Deep representations of a rescaled dermoscopic
images are recovered first using the deep residual neural network.
Then, using orderless visual statistic features based on Fisher
vector (FV) encoding, these local deep descriptors are combined
to provide a global image representation. Finally, using a support
vector machine with a Chi-squared kernel, the FV encoded rep-
resentations are employed in order to classify melanoma images.
They reached 86.81% of accuracy. For performance comparison,
Yu et al. explored many alternative CNN models with varying
depths, including 8-layer AlexNet, 16-layer VGGNet (VGG-16),
and considerably deeper 101-layer ResNet (ResNet-101).

In 2019, Albahar explored the use of a deep CNN with a novel
regularizer technique for skin classification, based on the stan-
dard deviation of the weight matrix of the classifier. In particular,
this regularizer penalizes the dispersion of the weight matrix
values. The used dataset was taken from ISIC archives, which
contains 4533 malignant and 19373 benign skin lesion images.
This network uses pooling and dropout layers that follow two
convolution layers in this architecture. The term dropout refers to
units in a neural network that are no longer active (both hidden
and apparent). This filter is used to prevent overfitting in particu-
lar. During training, units (and their connections) are dropped
randomly from the neural network. This action should keep units
from over-adapting to one other [167]. In addition, a new hyper-
parameter is introduced, which determines the likelihood of the
layer’s outputs being dropped out or, conversely, the probability
of the layer’s outputs being maintained. After dropout, the 2-D
outputs are flattened in a 1-D array and fully coupled with the
following layer, which has 128 neurons. Each class has one output
neuron in the last layer. The innovative regularizer is integrated
in each convolution layer [5]. This CNN reached an accuracy of
97.49%, a sensitivity of 94.3% and a specificity of 93.6%.

Fujisawa et al. [58] used a GoogLeNet DCNN model archi-
tecture trained on a dataset of clinical images with malignant
melanoma (MM), squamous cell carcinoma (SCC), Bowen dis-
ease, actinic keratosis, basal cell carcinoma (BCC), naevus cell
naevus (NCN), blue naevus, congenital melanocytic naevus, spitz
naevus, sebaceous naevus, poroma, seborrhoeic keratosis, naevus
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spilus and lentigo simplex. In particular, there are 540 malignant
melanoma images in total and they reached an accuracy of 72.6%.

Kawahara et al. [94], have proposed a multitask deep con-
volutional neural network trained on multimodal data (clini-
cal and dermoscopic images and patient metadata). They used
the 7-point melanoma checklist criteria. Their neural network
generated multimodal feature vectors for image retrieval and
identification of clinical discriminant regions, using numerous
multitask loss functions, each of which takes into account distinct
combinations of input modalities.

Sarkar et al. [158], presented a model of neural network with
two main methodologies: residual learning and depthwise sepa-
rable 3D convolution, which is faster and needs less parameter
space, proving itself a more effective alternative to its traditional
counterpart. On a dermoscopic dataset with 4000 dermoscopic
images (1950 of melanoma images and 2050 benign images),
they reached an accuracy of 99.5%, a sensitivity of 99.3% and a
precision of 99.6%.

Zhang et al. [201] have constructed an attention residual learn-
ing convolutional neural network, called ARL-CNN, in order
to avoid the problem of little data available, the interclass sim-
ilarity and intra-class variation. They based their network on
an attention mechanism capable of increasing the possibility of
discriminating the information available by focusing on their
semantic meaning. No new extra learnable layers are introduced
in the network, but the possibility of grasping the semantic mean-
ing is delegated to the more abstract feature maps of the higher
layers. For the experiments, dataset ISIC 2017 was used and
1320 additionally dermoscopy images, including 466 melanoma.
The proposed ARL-CNN network, consisting of 50 layers, in the
melanoma classification, has obtained an ACC of 85% a specificity
of 89.6% and a sensitivity of 65.8%.

In 2020, the study of [89] used a dataset of more than 12000 skin
images between malignant and benign tumors, from which they
extracted 5846 clinical images of pigmented skin lesions from
3551 patients. The dataset contains 1611 malignant melanoma
images. A faster, region-based CNN (FRCNN) model was chosen
because it consistently demonstrated good classification accuracy,
robustness, and speed. The authors consider the accuracy of the
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classification of the FRCNN model overall for the prediction
of six classes, two malignant (malignant melanoma and basal
cell carcinoma) and benign tumors (nevus, seborrheic keratosis,
senile lentigo and hematoma / hemangioma). They achieve an
accuracy of 86.2%. The accuracy, sensitivity, and specificity for
two-class classification (benign or malignant) were 91.5 % 83.3 %
and 94.5%, respectively.

In 2020, we presented a comparison of neural network ap-
proaches for melanoma classification [56] on HAM10000 (Hu-
man Against Machine with 10.000 training images) dataset [175],
where we compared three different neural networks, with and
without pre-processing: 2D-CNN, ResNet and Self-Organizing
Map (SOM).

Approach Accuracy Sensitivity Specificity

2D-CNN 71.9% 69% 92.8%

ResNet 79% 80% 78%

SOM 66.8% 61.7% 63.5%

Table 2.1: Results without pre-processing.

Approach Accuracy Sensitivity Specificity

2D-CNN 74.1% 89.4% 72.1%

ResNet 81.5% 85% 79%

SOM 69% 64% 68%

Table 2.2: Results with pre-processing.

The result are reported in Table 2.1 and Table 2.2. The ResNet
network shows greater accuracy on the dataset than the other
competing approaches. In particular, it is evident that the pre-
processing increases the accuracy up to 2.5% for the ResNet.

2.6 deep learning and machine learning for pro-
teins classification

Because of the need of determining the structure of a protein in
order to understand its function, significant resources and en-
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ergy have been devoted to the development of IT approaches for
predicting protein structure that can guide traditional methods
of research. The fundamental advantage of computational tech-
niques is that they are generally simple and quick, allowing them
to avoid the time-consuming and tedious experimental processes
required for protein structure determination.

We can consider comparative or homology modeling as one
of the most prevalent computational methods. It is used when
there are known structures, defined templates with sequences
comparable to the target protein, with the unknown structure.
In this case, the method is template based, and it is based on the
concept that, during evolution, structures are most preserved
in comparison to primary sequences of proteins, which might
change over time. So, proteins with a good level of sequence
similarity are also structurally equivalent [103]. When a target
protein does not have a strong sequence similarity to a protein
with a known structure, a method called as fold recognition is
used. The core idea is that a protein has a finite number of folds
it can assume. In this case, the two most used approaches are
those based on structural profiles and so called threading [54].

Profile-based approaches are based on the possibility of deduc-
ing some properties features for each amino acid from protein
structure analysis [54]. In threading methods, many possible pro-
tein models are generated utilizing a reference (template) struc-
ture of a known protein and a vast number of possible alignments.
The best models are picked from among these obtained by doing
energy evaluations on the structures [154].

Different bioinformatic tools are developed from these differ-
ent approaches for folding recognition, making it possible for
researchers to predict the structure of a protein starting with its
sequence [73].

Proteins have a variety of functions in the cell. All proteins play
a role in the operation of biological systems in a broad sense. The
goal of the post-genomic era is to learn more about the molecular
mechanisms that control the biological activity of all the proteins
encoded by each sequenced genome. In this direction, one of
the most successful research subjects has been the prediction
of the 3D structure of proteins. This problem, like any other,
can be broken down into subproblems. In order to resolve the
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protein structure, in this thesis, we focused on determining one of
these subproblems in this thesis: the classification of the torsional
angles of the proteins backbone.

Following the advancement of sequencing, a collection of pro-
tein sequences is compiled. The torsional angles (φ and ψ angles)
of proteins can be determined using a variety of experimental
and computational techniques. This vast amount of data is fed
into systems that use automated learning computational models.

In bioinformatics and computational biology research, deep
learning and machine learning have become highly popular.
Nowadays, we are witnessing an important exponential increase
rate of biomedical data from various sources. We can count data
from patients level such as electronic medical records, to mi-
cro molecular level (gene functions, protein interactions, etc.),
available through experimental studies or data acquired by tech-
nologies. These heterogeneous data are sent to ML and DP, which
create predictive models in medicine and health care [4]. Pro-
tein data, like all sorts of data, has missing values, noise and
anomalous values that compromise the validity of the data. As
a result, a data cleaning process must be performed prior to
their use. In order to merge data from numerous sources, data
integration algorithms are frequently required. Through smooth
aggregation, data generalization and normalization, data can be
turned into a specific form that is ideal for mining. The substi-
tution of a latent pattern distribution shape or connection for
the sake of computational ease is the nature of transformation.
As a result, more powerful theoretical techniques and practical
tools for evaluating and extracting useful information from the
complex biological Big data outlined above are required [106].
One of the major challenges is deducing the properties correlated
to function, secondary structure and 3D structure of a protein
from its amino acid sequence (primary structure). This received
a huge boost as a result of technological advancements in se-
quencing, which have made a lot of protein data with more
unknown features available. Protein classification tasks can be
based on protein feature discovery, as well as the analogy of
amino acids to words, protein domains to sentences and proteins
to text paragraphs [168]. These last methods are often annotation-

based, where there is the use most homology information from
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different types of annotation, including Gene Ontology [65]. Ap-
propriate descriptors for the protein sequences are required for
the application of machine learning and deep learning to pro-
tein classification. Some of these descriptors have already been
successfully applied to sequence-based protein classification [34].
Among these, we can consider: amino acid composition (dipep-
tide, tripeptide composition), predicted secondary structure and
predicted solvent accessibility, k-Spaced Amino Acid Pairs and
Conjoint Triad, other physio-chemical features [95]. Feature rep-
resentation remains a research challenge that necessitates the use
of customized labels [188].

Many of the new computational approaches are utilized to
solve two fundamental problems: protein classification and pre-
diction of a protein’s fold from its sequence. Different features
of the latter can be investigated. In this thesis, we focused on
the prediction of the torsional angles of the protein backbone.
The challenge of predicting the secondary structure of a pro-
tein include the prediction of these angles, which are likewise
described as dihedral angles (indicated as φ and ψ). Permitted
protein conformations are generated by specific combinations
of these angles in each secondary structure. Early techniques
of protein classification depended on pairwise sequence com-
parisons, which were based on sequence alignment [131] and
used exhaustive dynamic programming approaches or heuristic
algorithms [181]. More recently, deep learning has demonstrated
the ability to acquire valuable feature representations from input
data, and it is extremely useful for describing linear, nonlin-
ear and complex interactions. In particular, we can note some
common classification techniques, such as k-nearest neighbor
(KNN) [96], Naïve Bayes (NB) [166], decision tree (DT) [127],
support vector machine (SVM) [133], neural network (NN) and
ensemble (EM) [106] and Hidden Markov Models (HMM) [47].
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M E L A N O M A D E T E C T I O N

In this Chapter, our contribution to the melanoma detection
search lodging is proposed. We concentrate on two important
themes in particular. The first work is based on the use of smart
tools for health that are driven by the so-called Internet of Medical

Things (IoMT), which is a collection of integrated medical data
that has to do with both individual health and, in a broader sense,
health organizations. This work contributes to a Smart Health-
care that is becoming increasingly connected, in which all data,
particularly the Electronic Health Record (EHR), represents digital
information that allows the AI to construct prediction models
capable of identifying diseases. So, we start with an overview
about the early diagnosis of melanoma in Section 3.1 and the
used classification methods 3.2. Then, we describe the dataset
and training options 3.3, the proposed design of the hybrid archi-
tecture 3.4 and our research questions 3.5. Experimental results
of this work follow in Section 3.6.

The second focus is on using genetic algorithms in combination
with neural networks in order to identify melanoma. Despite the
abundance of diagnostic technologies currently in use, we always
start with the hypothesis of work that early melanoma detection
remains an open challenge. As a result, experimenting with new
ideas in this field can help to improve predictive models.

3.1 state of the art

Melanoma is a type of skin cancer that arises from melanocytes,
the epidermal cells responsible for the synthesis of melanin pig-
ment. Despite the fact that this type of tumor accounts for a small
percentage of all cutaneous malignancies, it is the leading cause
of death [49].

Melanoma of the skin has increased rapidly in the last 30 years,
however the trends differ according to the age group. Between

31
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2007 and 2016, the rate for those under 50 years old declined by
1.2% each year, while the rate for those 50 and up grew by 2.2%.
According to the American Cancer Society, 100350 new cases and
6850 deaths in both sexes were estimated in 2020, only in the
United States1.

Early detection of melanoma is well established in the litera-
ture, yet it is still a difficult task [2]. The physician’s ability to
distinguish between different forms of skin lesions is also depen-
dent on his level of experience. A biopsy is still required to give
the final word on a poor diagnosis. Early detection of melanoma
is becoming increasingly important, especially in those who have
a high risk of acquiring cancer, as it allows for a higher cure rate.
In most cases, a dermatologist’s first visual assessment, typically
with the help of polarized light magnification dermoscopy, is uti-
lized to diagnose melanoma in clinical practice [26]. Technology
has the potential to transform the way we think about medicine,
while also playing a crucial role in sophisticated diagnostics sys-
tems that make judgments that are critical to patient care [125].
Simultaneously, as technology advances, the number of intelli-
gent devices connected to the Internet capable of creating large
amounts of data has increased exponentially. This parallelism
might be seen in dermatology, with the possibility of using basic
devices like cellphones to take clinical photos and as sensors for
remote skin abnormality screening [85]. In recent years, a variety
of computer software has been created with the goal of assisting
dermatologists in better (and faster) determining if a skin lesion
is, is not or could become a melanoma [71, 160]. The majority
of this software is based on computer vision techniques such as
boundary detection, symmetry/asymmetry analysis, color anal-
ysis and dimension detection [71]. Other types of information,
such as EHR, are also used by some technologies to improve pre-
diction accuracy. Overall, existing melanoma detection methods
must account for the complexity of the images to be processed,
which may result in challenges such uneven fuzzy lesions bound-
aries, noise and artifact presence, low contrast, or poor image
lighting [3].

1 https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-
and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-
2020.pdf
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The following is a summary of how these systems are con-
structed. The initial step is to download or construct an image
dataset with melanoma and non-melanoma images. Dermoscopic,
clinical and histological images are available: the first are more
detailed, but the need for a dermoscopy may limit the dataset’s
size; the second are less detailed, but more readily available;
and the third are related to the highest image resolution. The
images are then processed using one or more Computer Vision
and image processing algorithms to extract features. These char-
acteristics will serve as training inputs. Unfortunately, the prior
workflow may have at least two significant flaws. The first is
related to the amount of storage space and computational power
required to train a sophisticated model on massive datasets and
obtain satisfactory results. To converge, the pure segmentation
approach based on k-means clustering, for example, may require
a Running Time (RT) of O(2n) [63]. When the amount of data
increases, we need more computing power and better technology
(such as GPUs) to get the results of some computations in human
time.

The second disadvantage is the time and effort necessary to
maintain one or more models. There are no simple ways to
update and improve the performance of a model once it has
been trained and deployed without going through the training
process again. It’s worth noting what happened in the ISIC 2019

Challenge: the performance of the winning algorithm in ISIC
2018 dropped from 88.5% to 63.6% only due to the addition of
new categories and images [71]. The authors proposed three
reasons for this finding:

• the quality of the images and the training dataset structure
(balanced/unbalanced) which affect the performance of the
deep learning techniques;

• intra-class dissimilarities and interclass similarities can have
an impact on the performance of the system;

• in order to learn how to discriminate the same item from
diverse points of view, deep learning demands that the
input undergo a data augmentation procedure (stretched,
rotated, illuminated and so forth).
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Before network training, the three datasets (training, validation,
and test) are frequently fixed. It’s possible that the fact that a
small change in the subsets can affect prediction accuracy is
hidden. This indicates that Transfer Learning, which involves
using a pre-trained network to solve additional issues, is still
unreliable [141].

In this work, we study how the two drawbacks impact the
design and implementation of an AI-based detection system and
we propose a three layers architecture that can be used in a real
environment and not only in a controlled one. We show how a
simple dataset modification can impact the classifier performance,
and that a distributed and cooperative system is needed to enable
deploying a melanoma classifier usable into the real world.

3.2 classification methods

For the high accuracy scores provided, we used the following
neural networks. We downloaded the Google InceptionV3 [171],
GoogleNet neural network [171] and AlexNet [84], publicly avail-
able. These networks were pre-trained to deal with a wide range
of image types. Instead of 1000 classes, we changed the last layers
to classify between two classes. This phase entails replacing the
original SoftLayer and ClassificationLayer of the networks
with a new layer that has two output classes (melanoma/non-
melanoma).

3.2.1 Related Works

There have been numerous methods developed for the automatic
detection and classification of melanoma. We can count deci-
sion trees [203], Support Vector Machines (SVM) [67], logistic
regression [173] and Bayesian classifiers [155]. In the image-based
detection of a pathology, Convolutional Neural Networks (CNNs)
are crucial [85]. Their utility in the detection [130], segmentation,
and categorization of melanocytic lesions has been well docu-
mented [202].

The study of Haenssle et al. [74] reports on a comparison of
the performance of dermatologists with that of a widely used
convolutional neural network in detecting skin lesions in order
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to give a diagnosis conclusion and management decision. Der-
matologists were divided into three categories based on their
dermoscopy experience (beginner, less than two years; skilled,
between two and five years; expert, more than five years) and had
access to two levels of information: dermoscopic image (level I)
and dermoscopic image with clinical close-up image and textual
information (level II). Finally, the study found that dermatolo-
gists and convolutional neural networks had identical outcomes
when dealing with a broader range of diagnoses. In addition,
dermatologists have demonstrated their capacity to synthesize
data from a variety of sources in order to give an accurate diag-
nosis. This information validates the surge in research towards
melanoma diagnosis using Machine/Deep Learning techniques.

Simoyan [163] demonstrated how the architecture of the deeper
Visual Geometry Group model (VGG), which is based on the
learning of models with a bigger number of picture descriptors
used as inputs (such as color, symmetry, contour and so on), can
provide superior melanoma detection efficacy. The VGGs can
also be applied to the search box in question, depending on the
blocks and the filter used. The most popular models are VGG
11, 16 and 19, which differ in the number of convolutional layers
they contain: 8, 13 and 16, respectively.

The use of AlexNet, an eight-layer convolutional neural net-
work, is demonstrated in [84]: the first five levels were convo-
lutional, some of them followed by max-pooling layers and the
last three layers were completely connected. It used the non-
saturating RELU activation function, which outperformed tanh

and sigmoid in terms of training performance. The accuracy of the
network with these parameters was 96.86%, 97.70% and 95.91%,
respectively, utilizing Transfer Learning and the data augmenta-
tion approach, testing and verifying it on the three MED-NODE,
Derm (IS-Quest) and ISIC datasets.

GoogleNet is a deep convolutional neural network made up of
around 100 different types of building blocks, including convolu-
tions, average pooling, max pooling and contacts. This network
is based on the primary Inception architecture, which was first
introduced in 2015 as a computationally efficient network that
could run on constrained resources. Google Cloud Platforms
offers GoogleNet executions on Cloud TPU [171].
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Esteva et al. compared the performance of the Google Incep-
tionV3 network in skin cancer classification to the knowledge
of 21 dermatologists, indicating how the network outperformed
specialists in this endeavor [49]. Google InceptionV3 is based on
the Inception Architecture’s advancement. It is a widely used
image recognition model that has been found to achieve higher
than 75% accuracy on the ImageNet dataset. Convolutions, av-
erage pooling, max pooling, concerts, dropouts and fully linked
layers are among the symmetric and asymmetric building blocks
of Google InceptionV3. In this network, the batchnorm filter is
applied to activation inputs and is used extensively throughout
the model: batchnorm pruning goal is to find and eliminate irrel-
evant filters from the CNN to make them more efficient without
sacrificing performance by finding information that can help es-
tablish how significant or useful each filter is concerning the final
output of neural networks. Finally, Softmax is used to calculate
loss [171].

3.3 dataset and training options

The used dataset is MED-NODE, presented in computer-assisted
system for melanoma diagnosis [68]. It consists of 170 clinical
photos (70 melanoma images and 100 nevi images) from the
Department of Dermatology’s digital image repository at the
University Medical Center Groningen (UMCG). These are clinical
images taken with a Nikon D3 or Nikon D1x camera and a Nikkor
2.8/105 mm microlens, with an average distance of roughly 33

cm between the lens and the lesion in 95% of the images in the
collection. An example of MED-NODE images are depicted in
Figure 3.1 and Figure 3.2.

Dermatologists double-checked each photograph to ensure
it was appropriately labeled. The photos were taken from a
variety of Caucasian patients and have been anonymized and pre-
processed. Hair removal has already been accomplished using
the Dullrazor software [109].

The Otsu method was used for the segmentation process,
which can minimize intra-class variance separating the two
classes (melanoma and non-melanoma) [139].

Otsu segmentation was performed using the following code:
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Figure 3.1: Melanoma images in MED-NODE dataset.

Figure 3.2: Nevi images in MED-NODE dataset.

[input_image,map] = imread(F);

bw_input = rgb2gray(input_image);

[T, EM] = graythresh(bw_input);

BW = imbinarize(bw_input, T);

mask_otsu = BW;

mask_otsu= ~mask_otsu;

new_image = input_image * mask_otsu;

In order to avoid the problem of unbalanced dataset, we chose
the data augmentation technique [162] to gain additional vari-
ations through artificial alterations of the images because the
dataset we used only had 170 total images (70 malignant and
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100 benign). Data augmentation was performed by using Matlab
imageDataAugmenter object, with the following configuration:

’RandRotation’, [-180, 180], ...

’RandScale’, [1, 10], ...

’RandXTranslation’, [-180, 180], ...

’RandYTranslation’, [-180, 180]

To decrease noise, a Gaussian filter was applied before each
network training: the imgaussfilt function was employed with a
dynamic sigma value between 1 and 7 [13].

The training options were the following, with 30 epochs, a N
initial learning rate of 10−4 and the stochastic gradient descent with

momentum (SGDM) [120]:

(’sgdm’, ...

’MaxEpochs’, 30, ...

’MiniBatchSize’, 12, ...

’Shuffle’, ’every-epoch’, ...

’InitialLearnRate’, 0.0001, ...

’Verbose’, true, ...

’ValidationData’, imdsValidation, ...

’ValidationFrequency’, 1, ...

’VerboseFrequency’, 1, ...

’Plots’, ’training-progress’,

’ExecutionEnvironment’, ’gpu’)

3.4 the proposed design of a hybrid architecture

The proposed hybrid architecture for the melanoma detection is
divided into:

• Edge layer: consists of all smart devices (Edge Devices) of
the IoT architecture. At this level, the data are processed
by the edge device (smartphone) or transmitted via a local
server to the Fog Layer;

• Fog layer: includes server systems distributed on the net-
work which receive data from the Edge layer, pre-process
and upload them into the cloud;

• Cloud layer represents the central management level of data
from previous levels.
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Within the Cloud, data buckets are maintained and systems
training is performed. The orchestrator takes care of the distri-
bution of the optimized services after each formation in the Fog
area. The offered services are performed in the Fog area. Local
calculations on IoTM devices (smartphones) are performed in the
Edge area. The generic user uses the services to get the output,
and he contributes to the growth of the knowledge base of the
system, while loading data.

We may deduce that imagining a distributed architecture could
bring a number of advantages to the end user by allowing:

• the collecting and aggregation of data ªon the networkº to
aid in the early detection of melanoma, while also supple-
menting image databases with additional information;

• processing critical data locally, at the network’s edge, with
local data storage, resulting in lesser bandwidth, faster data
access and reduced data processing delay;

• a huge number and mobility of Fog nodes, as well as inter-
operability, allow for widespread distribution of resources
and computing services.

In the pre-processing and classification of melanoma images,
this sort of architecture implementation responds to a fresh need
and data management methods that are more advantageous than
standard methods. It specifically handles the issue of transferring
images for processing to a central data server or Cloud service.
Furthermore, decentralizing them increases capacity and, as a
result, reduces calculation times.

3.4.1 Related Works

In the framework of the IoMT, the first architectures built of Edge,
Fog and Cloud resources that facilitate anticipatory learning sur-
faced in 2017 [22]. A recent research offered an architecture that
permits modeling solutions for lung and skin illness classification
without confining itself to IoMT data security testing, bringing
the possibility of offering flexibility in the adoption and integra-
tion of AI techniques [145].
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The majority of IoMT data management and analysis ap-
proaches in the literature are based on Cloud computing. In-
dividual user data security, resolution in the exchange of medical
images, data archiving and the ability to improve diagnosis re-
sponse times by decentralizing computing power for Machine
and Deep learning techniques on network nodes, which are used
as microdata center mesh networks, are the fundamental prob-
lems that remain unsolved in this field. There is still a scarcity
of knowledge on three-layer hybrid architectures that allow for
specialized computational operations on melanoma images and
the creation of a real-time database, starting with access to more
user-friendly equipment such as a smartphone. As a result, this
awareness was the driving force of our recent work.

3.5 research questions

3.5.1 First goal: Transfer Learning reliability evaluation

We have conducted two experiments to reach two goals in this
work: the first one is to show how changes to the dataset struc-
ture can decrease overall system performance. In particular, we
want to show that, to address the melanoma detection problem,
Transfer Learning is not completely trustworthy if we rely only
on final layers fine-tuning and the pre-trained weights provided
with the pre-trained network. Small changes can impact the gen-
eralization capabilities of the network, causing high-performance
degradation. On the contrary, we suggest that a global network,
subject to continuous retraining, should be used to address the
melanoma detection problem. We ran continuous retraining on
three classifiers while slightly changing the dataset’s structure.
We determine the dataset structure term’s training, validation,
and test set compositions in this scenario.

For this purpose, we created four new datasets (MDS) as a
result of our assumption on Transfer Learning reliability:

1. MD1 - contains MED-NODE original images;

2. MD2 - contains MED-NODE images segmented with the
Otsu method;
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Figure 3.3: The sequential pipeline used in experiment one for perform-
ing the continuous retraining.

3. MD3 - contains MED-NODE images and augmented im-
ages without segmentation;

4. MD4 - contains MED-NODE images and augmented im-
ages segmented with the Otsu method.

The primary hypothesis is that the marginal distributions of the
source and destination domain data may differ when evaluating
the four datasets generated, but the reference labels are always
the same. This experiment was used to collect data on classifier
performance and assess the effort (measured in time) required
to retrain without using the distributed technique. The system
training pipeline is depicted in Figure 3.3. In the setup, we used
a single Intel Scientific Workstation with 16 core, 16GB RAM,
and one GPU GTX980. This experiment involved the execution of
8400 training steps (each with 30 epochs) on a single workstation
environment.

We simulated continuous retraining for each dataset D in MDS
by repeating the training phase 700 times. The dataset was split
into three parts for each iteration: 0.5 for the training set, 0.3 for
the validation set and 0.2 for the test set. With the randomized
option enabled, we utilized the splitEachLabel method. The train-
ing set then includes 50% melanoma and 50% non-melanoma
images, chosen randomly from the starting image collection, for
each cycle. Although with different ratios, the identical technique
was employed in both the validation and test sets.

3.5.2 Second goal: Impact of the three-layers architecture

The performance of the architecture was measured in the sec-
ond experiment. To demonstrate that a distributed and coopera-
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Figure 3.4: The setup of the second experiment simulates a three layers
architecture.

tive system is required to deploy a melanoma classifier resilient
against Transfer Learning difficulties, we specifically design the
architecture to allow automatic classifier retraining and deploy-
ment. Our working hypothesis is based on the necessary signifi-
cant reiteration required to find the optimal classifier if the data
structure changes. We created a three-layer design, in which the
Cloud layer performs the training and retraining, as we can see
in Figure 3.4.

This setup was built with the GRIMD framework [143], allow-
ing us to distribute each iteration upon multiple instances. The
GRIMD instances were first deployed on Amazon AWS. After
then, the steps of training, retraining, validation, testing and
performance comparison were shifted to the Cloud layer. The
essential concept is that when a new model is ready, it is only
deployed into Fog if and only if it exceeds the preceding one in
terms of accuracy. The Layer Agents, which we developed as a
simple CROND instance, maintain the synchronization between
each layer. First, we isolated the Cloud layer, which is completely
unaffected by the classification issue. The Agent layer was then
set up to send a new trainer classifier to the Fog layer if and
only if the average accuracy of the new classifier outperforms
the old. The training of the classifiers is then separated from
their execution for prediction purposes. Finally, the classification
and prediction functions were transferred to the Fog layer, which
houses the web server and trained models. Every end-user in this
scenario uses an app that communicates with the Fog layer. This
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second experiment involves the same computations as the first
one, but it allowed GRIMD to scale up to 128GB and multiple
GPU, using Ec2 instance from type t2 (micro-instances: t2.micro)
and m5 (balanced computation instances: m5a.2xlarge), to type
c6 (optimized computation instances: c6g.16xlarge). Different
instance families designed for certain tasks are available on Ama-
zon EC2. T-instances are general-purpose instances type that
provide high capabilities in terms of CPUs and medium RAM
memory capabilities. The t stands for tiny and the m stands for
micro or medium. The c-instances are optimized calculation in-
stance that has a higher CPU to memory ratio. Here, c stands for
compute. They are used for applying applications for calculation
in the high performance computing (HPC), for high-performance
analytics workloads, media transcoding and rendering, building
complex machine learning models and scientific modeling [114].

In order to computationally optimize instances, we configured
the training session as follows, due to the presence of t-instances
and c-instances:

(’sgdm’, ...

’MaxEpochs’, 30, ...

’MiniBatchSize’, 12, ...

’Shuffle’, ’every-epoch’, ...

’InitialLearnRate’, 0.0001, ...i

’Verbose’, false, ...

’ValidationData’, imdsValidation, ...

’ValidationFrequency’, 1, ...

’VerboseFrequency’, 1, ...

’Plots’, ’none’,

’ExecutionEnvironment’, ’auto’)

3.6 experimental results

We used the accuracy to estimate the performance of the three
networks (denoted with ACC).

Following the equations in Subsection 2.4.3, we also calculated
sensitivity (TPR), specificity (TNR), precision (PPV), false dis-
covery rate (FDR), false-negative rate (FNR) and false-positive
rate (FPR), shown graphically in Figures 3.5(a)-3.5(c) with Otsu
segmentation and in Figures 3.6(a)-3.6(c) without Otsu.
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According to the method in Equation 3.1, we also took into
consideration the standard deviation (SD) to calculate, on average,
how much the accuracy measures differ from one another:

SD =

√

1
n − 1

n

∑
i=1

(xi − x)2 (3.1)

where n is the size of the dataset and x is 1
n ∑

n
i=i xi the arithmetic

mean of x. In Figures 3.7(a)-3.7(c) are reported the SD values for
all three used networks.

The results with and without Otsu segmentation on the MED-
NODE dataset have been provided in Table 3.1 and Table 3.2.

WITH OTSU SEGMENTATION

Net Data Augmentation ACC (min) ACC (max) ACC (mean) ACC (sd)

AlexNet
None 0.65 0.94 0.78 0.06

Yes 0.44 0.91 0.68 0.08

Google InceptionV3
None 0.56 0.94 0.76 0.07

Yes 0.32 0.74 0.53 0.09

GoogleNet
None 0.60 0.91 0.75 0.07

Yes 0.32 0.74 0.55 0.09

Table 3.1: Performance on MED-NODE dataset for ACCs with Otsu
segmentation and with and without data augmentation.

WITHOUT OTSU SEGMENTATION

Net Data Augmentation ACC (min) ACC (max) ACC (mean) ACC (sd)

AlexNet
None 0.68 1 0.89 0.05

Yes 0.76 0.97 0.87 0.05

Google InceptionV3
None 0.56 0.94 0.74 0.07

Yes 0.32 0.71 0.55 0.07

GoogleNet
None 0.65 0.94 0.80 0.06

Yes 0.30 0.76 0.55 0.09

Table 3.2: Performance on MED-NODE dataset for ACCs without Otsu
segmentation and with and without data augmentation.

The greatest values attained by the networks in the compu-
tations of the average, maximum, minimum, and standard de-
viation values of the ACC have been highlighted in bold. The
AlexNet network achieves the best outcome for the average ACC
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(a) Performance with Otsu segmentation and with
and without data augmentation for AlexNet.

(b) Performance without Otsu segmentation and
with and without data augmentation for Google
InceptionV3.

(c) Performance with Otsu segmentation and with
and without data augmentation for GoogleNet.

Figure 3.5: Performance for all used networks by applying Otsu seg-
mentation.

without using data augmentation and with and without using
segmentation (highlighted in red).

For each dataset, we assessed the performance of the networks
by examining their behaviors. The results, as shown in Table 3.3,
indicate that GoogleNet is the most robust network, with a mean
prediction of accuracy which declines of -19.60 percent. Also,
the data appear to back with what happened in the ISIC 2019
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(a) Performance without Otsu segmentation and
with and without data augmentation for
AlexNet.

(b) Performance without Otsu segmentation and
with and without data augmentation for Google
InceptionV3.

(c) Performance without Otsu segmentation and
with and without data augmentation for
GoogleNet.

Figure 3.6: Performance for all used networks without Otsu segmenta-
tion.

challenge, where the ISIC 2018 winners saw their performance
plummet by up to 28%.

In Table 3.4, we explore the clock time for GoogleNet, Google
Inception V3 and AlexNet, in the single, GRIMD (t2), GRIMD
(m5) and GRIMD (c6) environments. In this case, under the two
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(a) SDs values for AlexNet.

(b) SDs values for Google InceptionV3.

(c) SDs values calculated for GoogleNet.

Figure 3.7: Several SDs values computed for all networks.

Net Measure MD1 MD2 MD3 MD4 Mean Drop

AlexNet
Best 0.97 0.91 0.97 0.89

Average 0.81 0.72 0.81 0.73

Drop -19.75 -26.38 -19.75 -21.91 -21.95

Google InceptionV3
Best 0.91 0.88 0.90 0.89

Average 0.75 0.72 0.75 0.74

Drop -21.33 -22.22 -20.0 -20.27 -20.96

GoogleNet
Best 0.94 0.93 0.91 0.89

Average 0.81 0.77 0.75 0.74

Drop -16.04 -20.77 -21.33 -20.27 -19.60

Table 3.3: Performance drop after 100 training steps (related to Training
and Validation steps).



48 melanoma detection

conditions of the tests, we intended to assess the amount of time
saved by data scientists.

Environment GoogleNet Google InceptionV3 AlexNet

Single 82710 115200 19724

GRIMD(t2) 55140 94348 13327

GRIMD(m5) 20677 37105 6872

GRIMD(c6) 7519 17710 3171

Table 3.4: Clock time (in seconds) measured for both the experiments

We gathered the time and effort required to keep a classifier
performing at its best. We spent up to 82000 seconds per retrain-
ing to achieve good results for the MED-NODE datasets, for just
170 images. The last results suggest that a tree layers hybrid ar-
chitecture based on Cloud, Fog and Edge Computing must deal
with the amount of data to be analyzed by reducing the running
time of the continuous retrain. This step should improve the de-
coupling between data scientists and model training. Also, using
user-generated images can speed up new model deployment.

3.7 exploration of genetic algorithms

Skin cancer is one of the most dangerous and deadly cancers.
Unfortunately, the incidence of skin cancer has been rising in
recent years and, for some subtypes, the biggest problem is a
lack of early detection, a limiting issue for first-line therapy in
cases of this malignant pathology [128].

Following the results reported in [71] regarding the perfor-
mance degradation in the case of small dataset changes, we
started preliminary experimentation that aimed to understand if
a hybrid approach merging Genetic Algorithms (GA) and stan-
dard Convolutional Neural Network (CNN) training routines
could result in more robust classifier, even with a simplest NN
structure. In particular, despite the CNN architectures available
in the literature, in [41], we observed that small changes in the
dataset could impact performance, with a mean drop of around
20%. Therefore, we assumed as a working hypothesis that for
melanoma classification, current CNN architecture could be im-
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proved. With what we call an Evolutionary-based CNN design
approach (GA-CNN), we specifically avoided defining the NN
structure a priori. In particular, we do not want to use GA to
improve hyperparameter determination on a defined (and static)
NN. Instead, we want to create a self-assembling NN population
motivated by how effectively it solves a certain problem. Our
working hypothesis is that a NN population using the GA ap-
proach can converge to a satisfactory solution (high prediction
and confusion matrices accuracy), driving the NN development
of layers by a scoring function: we used the accuracy parameter as
the scoring algorithm of the GA evolution process. Furthermore,
we used a clinical dataset (i.e., MED-NODE) for training and val-
idation. Also, we compared the performance of the GA-CNN to
that of AlexNet, both with and without Otsu segmentation. The
initial findings obtained with this hybrid approach by merging
the main capabilities of GA and CNN to handle the melanoma
detection problem are reported in this contribution.

3.7.1 Related Works

In the latest years, new competitions, such as ISIC2 and new
melanoma detection tools, implemented as a statistical tool, ma-
chine/deep learning software or expert system and techniques
were proposed. The most common tool’s output is a binary an-
swer: melanoma/ non-melanoma, but often, a percentage of
confidence is provided.

Based on our working hypothesis, we do not intend to em-
ploy GA to improve the determination of hyperparameters on
a defined (and static) NN. Instead, we want to create a self-
assembling NN population motivated by how effectively it solves
a certain problem.

Genetic algorithms are based on the principle of biological evo-
lution and are used to optimize a variety of processes. Starting
with a random population of network designs, the method iter-
ates through three stages: selection, crossover and mutation [102].
Although attempts to combine neural networks and evolutionary
algorithms can be found dating back to 1990 [192], the compu-

2 https://challenge.isic-archive.com/
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tational efforts required to combine these techniques have only
recently become more tractable thanks to a major cloud provider
that allows users to borrow high computational architecture with-
out having to build it from scratch. Over the last two decades,
many studies in a variety of domains have used a mix of neural
networks and evolutionary algorithms to address optimization
and classification problems, ranging from river water quality pre-
diction [42] to the most recent tuning of many hyperparameters
at the same time [105].

3.7.2 Methodology

Genetic algorithms have been developed based on Darwin’s
evolutionary theories, presented in his book on the Origin of

Species by Means of Natural Selection and the Preservation of Favoured

Races in the Struggle for Life of 1859, and they were treated for the
first time from John Holland in 1975.

Following the Darwinian principle that the most suitable el-
ements of the environment have greater chance to survive and
transmit their characteristics to the successors, these algorithms
mimic these modes of evolution. Therefore, there is a popula-
tion of individuals (n chromosomes), initialized randomly, which
evolve from generation to generation through mechanisms simi-
lar to the natural evolutionary process. The binary string format
is commonly used for chromosomes. Each locus (particular loca-
tion on chromosome) has two alleles (variant versions of genes)
in chromosomes: 0 and 1. Chromosomes can be seen as points in
the solution space [93].

Evolution takes into account three fundamental processes:

• selection: the selection phase plays an important role in driv-
ing the search towards better individuals and maintaining
high genotypic diversity in the population. The selection
represents the choice of the most promising solutions, dis-
carding the worst ones that do not generate individuals
suitable for the environment;

• cross over: in order to explore other points in the search
space, variation is introduced into the intermediate popu-
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lation using some genetic recombination operator, such as
cross over;

• mutation: some individual may undergo random variations
or mutations. A mutation invariably causes a shift in the
space of solutions, resulting in the generation of new in-
formation and in the recovery of knowledge lost in the
population over time.

These evolutionary algorithms carry out heuristic exploration
for new solutions to issues in which there is no complete knowl-
edge of the search area and they explore all of it. Then, starting
with the first solution, they tweak it, combine it and evolve it
until they find a better result. So, GA dynamically changes the
search process until it reaches an ideal solution through the prob-
abilities of crossover and mutation. The full process is driven by
the fitness function that assesses the survival of the chromosomes
in the population.

3.7.2.1 Experimental setting

For the following experiment, the MED-NODE dataset was em-
ployed, which contains 170 clinical images, including 70 images
of melanoma and 100 images of benign nevi [68]. We used the
Matlab 2021 environment and we defined our working objects
following the GA terminology. The notation F(t) indicates an
object’s composition at the time t. In particular, we define an
entity Ei as a vector Ei = {F1, . . . , Fm} of m features. We called
each feature Fj of a generic entity Ei a gene of Ei. The entire set
of genes is called the Genome of Ei.

In order to allow the experiment to reach a sufficiently ex-
tended network architecture, the start size of the genome was set
to ten to allow at least the presence of the minimal layers needed
to execute a CNN (input, convolution, RELU, softmax and Fully
Connected). In addition, we allowed the genome size to grow
using the merge operation (not related to the GA fundamental) to
make network architecture more complex: merge operation sticks
two different genomes, doubling the size of an entity genome.
In our simulation, each gene can represent a Matlab CNN core
object (network layer) or a pre-processing routine, specifically
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Otsu segmentation [146]. Consequently, each chromosome is rep-
resented by an array in which each cell represents the presence
or not of a feature within the entity. Feature indicates one of the
possible layers of which a CNN can be composed. If the feature
(array cell) is active, we consider the feature as expressed and
therefore the layer belonging to the network. If it is not active,
we consider the feature not expressed and the layer does not
belong to the network, even if it could belong in the future in
some evolutionary cycle. So, each feature Fj can be expressed or
not by Ei. This mean that a new entity Ek could inherit a gene Fe

from Ei starting to express it. Then, in our simulation, we have
a silent and expressed gene. In addition, because the merging
procedure has been implemented and it admits junction of two
chromosomes, each chromosome does not have a fixed length. In
this way, we did not want to limit the final size of the network to
a fixed number. We have related the selection to the score func-
tion and to the capacity of the entity to survive in the execution
environment. Therefore, if an entity (which represents a date
structure of a CNN) allows the train function, without crash-
ing, is temporarily selected as potential survivor. For cross over

and mutation, the chromosomes to be recombined or to change
(deactivate/activate or change their layer) are chosen randomly.

The set P(t) = {E1, . . . , En} is called Population at time t.
The population size n(t) might vary related to t. We defined
the following constraints: the first gene of each entity must be
an image input (II) or one of the pre-processing routines we
defined before; if the gene g is a pre-processing routine, then
the gene g + 1 must be a II layer or another pre-processing layer;
the latest gene of an entity must be a classification layer. The
population in our experiment is made up of all living entities. We
limited the gene types that an entity might use in the experiment
to: Convolution, RELU, Cross Channel Normalization, Max Pooling

Grouped Convolution, Fully Connected Layer, Dropout and Softmax.
All entities with expressed genes that are incompatible with the
environment die at the end of each evolutionary phase. Then,
if an entity exposes a genes pipeline that the training function
of Matlab does not allow, it will die immediately. The following
configuration was used to train each compatible entity:

(’sgdm’, ...
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’MaxEpochs’, 16, ...

’MiniBatchSize’, 12, ...

’Shuffle’, ’every-epoch’, ...

’InitialLearnRate’, 0.0001, ...

’ExecutionEnvironment’, ’auto’)

We employed the maximizing of global population accuracy as
the function to drive population evolution. Therefore, accuracy
(calculated with the formula presented in Subsection 2.4.3) indi-
cates our fitness function, which is currently a simple decreasing
order of the accuracy of all the networks of an evolutionary cycle.
We calculated the highest accuracy from each survived entity
for each evolutionary phase. As a result, all entities that expose
an accuracy at time t equal to or better than the maximum ac-
curacy of the previous generation’s t − 1 will survive for each
generation. In addition, a random 10% of entities were picked at
random in each step to live, regardless of the accuracy at time
t. The GA was terminated if no improvement in accuracy was
noticed for ten consecutive evolution stages. We were obliged to
limit the conceivable crossover and mutation due to the physical
limitations on the cloud platform. As a result, each surviving
creature was restricted to only 10 mutations and 100 crossovers.
An initial randomized population of 10K entities was used to try
to alleviate these restrictions. After 100 iterations, we caused the
stop of evolution process.

3.7.3 Experimental Results

We ran the AlexNet network with and without Otsu segmentation
on MED-NODE 100 times, each time repeating the training step.
Then we ran the GACNN for 100 iterations, enabling the system
to evolve. As a reference parameter, we used Accuracy (ACC).
For the standard AlexNet execution, we computed average ACC
(mean ACC), maximum ACC (max ACC), minimum ACC (min

ACC) and Standard Deviation (SD), as reported in Table 3.5.
The best AlexNet performance was 0.97%, while the mean ACC
was 0.81%. For GACCN, we evaluated the ACC trend over the
evolution steps, as reported in Figure 3.8. The max ACC reached
by GACNN is 0.97 before reaching the 100th iteration.
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MED-NODE

Net Segmentation min ACC max ACC mean ACC SD

AlexNet
- 0.68 0.97 0.81 0.06

Otsu 0.50 0.91 0.72 0.07

GACNN - 0.68 0.97 - -

Table 3.5: Performance of AlexNet on the MED-NODE dataset.

Figure 3.8: Performance of GACNN over 100 iterations.

3.8 discussion

Despite the great performance showed in the literature, the data
provided in these two study approaches imply some final con-
siderations. The Transfer Learning technique, which is widely
used currently, may not be reliable. In fact, based on the first
contribute to the melanoma detection in [41], the results reveal
that modest changes in the training dataset cause a fluctuating
performance of the classifiers, which drops substantially, and that
constant retraining is essential to limit this loss. These findings
suggest that a hybrid architecture based on Cloud, Edge, and
Fog layers can effectively contribute to computationally onerous
operations in the field of melanoma detection and classification.
Moreover, when no segmentation was applied, the CNN net-
works performed better. According to our results, as future work
we plan to design more robust neural network models to better
learn from the images (and generalize from them).

According to preliminary findings in the second contribute,
allowing GA to drive the design of a NN structure could result in
performance comparable to traditional NN training approaches.
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Also, our preliminary results suggest that the NN architecture
found by GACNN is more stable than standard CNN, in this
particular case, AlexNet. We observed that the GACNN outper-
forms AlexNet mean accuracy (computed over 100 executions),
reducing the mean drop in performance caused by small dataset
changes. A plateau set is also shown in Figure 3.8 that demon-
strates a decreasing trend per nine iterations in mean. These
findings could indicate that the population is approaching the
convergence to the optimal solution. In contrast, we discovered a
significant death ratio (up to 95 percent for each evolution step).
This observation may indicate that finer definitions of beginning
population or recombination stages are required. In addition, the
execution times are quite long. About 8 minutes are needed to
train each network. For this reason, the entire project has taken
advantage of the ability to run experiments on the cloud. At the
current state of the experimentation, we discovered that execution
times scale linearly with the complexity of the network (chromo-
some length). From this work, we obtained the main advantage
which derives from the observation that the drop consequent to
changes in the composition of the training dataset is lower than
the drop reported in our previous study in [41]. A more in-depth
investigation of population evolution and behavior, particularly
the death ratio, is required. In fact, because the work is still exper-
imental and in progress, we are attempting to test many options
(ranging from fitness to the optimum population definition) that
meet the computational and temporal performance requirements
for achieving the solution.
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R E C O N S T R U C T I O N O F 3 D P R O T E I N S
S T R U C T U R E

This Chapter explains the use of a Bidirectional Long Short-Term

Memory (BLSTM) neural network and discrete classes for predic-
tion of torsional angles of a protein. First, we have an overview
about the function of these angles (see Section 4.1) and some
methods common used in literature in the last years (see Sec-
tion 4.2). Then, we explored the dataset we used, data preparation
and features used as input for BLSTM (Section 4.3). Following,
we present the basic architecture of the neural network LSTM
and the approach investigated in this work (Section 4.4). Then,
we describe the adopted performance measures (Section 4.5) and
the preliminary considerations from which our work originates
(see Section 4.6). In Section 4.7 we present the final results of
this work and we apply two methods for their visualization (Sec-
tion 4.8). In Section 4.9, we discuss the obtained results and the
concluding remarks.

4.1 introduction

The exploration of produced protein sequences has become in-
creasingly relevant as a result of current genome sequencing
studies and the ever-increasing deposition of protein structures
in the Protein Data Bank (PDB) [169]. In the subject of proteomics,
research has focused on the creation of algorithms and bioin-
formatic tools that take a protein sequence as input and extract
information about its structure and function, as well as its fea-
tures, fold and interactions with ligands and other proteins. The
protein fundamental structure, or the sequence of amino acids
from which it is made, plays a critical role in this regard, as it
provides the information required for protein folding in its three-
dimensional structure. In structures with well-defined angles,
the secondary structure tells how the protein backbone is folded
locally [39]. The φ angle between N and Cα, ψ angle between
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Cα and carbonyl carbon and ω angle between carbonyl carbon
and N, commonly fixed at 180°, all characterize the structural
protein backbone. These angles do not have arbitrary values;
instead, they fall into specified Ramachandran plot areas for
proper protein folding. The Ramachandran plot is a graph that
highlights the primary chain conformation angles and assigns
them to the related secondary structures [98]. Helixes, strands,
and coils are the three basic types of protein secondary structures.
New methodologies and tools for predicting dihedral angles have
emerged over time. To improve protein torsional angle identifi-
cation, techniques based on Support Vector Machine (SVM) and
neural networks were developed.

4.2 related works

There are two sorts of methodologies in the scientific literature for
predicting φ and ψ torsional angles as discrete and continuous:
methods based on sin and cos prediction and methods based on
discrete class prediction.

Heffernan et al. [78] presented a Bidirectional Recurrent Neural
Network (BRNN) to capture non-local interactions that spread
along a protein sequence between the residues with the ma-
jor long-range connections. The first set of predictors are seven
representative amino-acids physio-chemical properties (PP) [51],
20-dimensional Position Specific Substitution Matrices (PSSM) from
PSI-BLAST [8] and 30-dimensional hidden Markov Model sequence
profiles from HHBlits [149] per residue. They obtained predic-
tions for secondary structure, Accessible Surface Area (ASA) [32],
backbone angles, Half Sphere Exposure (HSE) and Contact Number

(CN) [75]. The outputs of this first iteration are added to the
PSSM, PP and HMM profile features as input for a second itera-
tion. The model is used to predict Accessible Surface Area (ASA),
Half Sphere Exposure (HSE), Contact Number (CN) and angles
ψ, φ, θ and τ, with a total of 14 outputs: the first for ASA, the
following eight for sin φ, cos φ, sin ψ, cos ψ, sin θ, cos θ, sin τ and
cos τ; the four successes for HSEα-up, HSEα-down, HSEβ-up,
and HSEβ-down; the last for CN [78].

The second model received as input the output of SPIDER2 and
the PSSM. The SPIDER2 [77] output includes expected secondary
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structures, probability for the three types of secondary structures,
relative solvent accessibility (RSA), sin and cos functions of the
backbone angles ψ and φ, angle θ based on the Cα atom and
rotation angle τ, contact numbers based on the Cα and Cβ atoms
and up-and-down half-sphere exposures (HSE) based on the Cα

vector -Cβ and on the vector Cα-Cα. The backbone angles are
divided into 5° bin.

Raptor X-Angle is a new method which combines deep learn-
ing and clustering techniques to predict the real values of protein
backbone dihedral angles. In RaptorX-Angle it is assumed that
the angle pairs follow a bivariate von Mises distribution in order
to take into account the circular nature of the angles [61].

4.3 methods

4.3.1 Dataset e Features Description

The entire dataset consists of 173 protein sequences for a total of
34,721 residues downloaded from the PDB [169] and belonging to
Homo Sapiens organism. Based on this, we proposed a system for
the prediction of torsional angles called Human Proteins Angles

Prediction (HPAP).
The selection criteria for proteins in the PDB (two examples of

proteins are reported in Figure 4.1) were as follows:

• X-Rays as a method used to determine the structure of the
protein;

• a resolution between 1.5 and 2.0 Å to return details at the
atomic level;

• R-free values, a measure of the quality of a structure, was
chosen between 0.25 and 0.30 [98];

• content of the secondary Structure from minimum of 40%
to maximum of 100% for both α-helix and β-sheet.

To reduce duplicated sequences, only proteins with a 30 per-
cent pair sequence identity were chosen and only chain A was
selected. For each protein, the PDB file and sequence in FASTA
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format1 have been downloaded, containing the atomic coordi-
nates of the residues and the calculated torsion angles values for
each amino acid. To estimate the distribution of errors between
the expected torsion angles and their real values, 100 proteins
were randomly picked from the source dataset. The proteins have
an average length of 201 residues.

Figure 4.1: Proteins 1C7E and 1ODL in PDB and HPAP dataset.

We have used a total of 34 input features per residues:

• the protein sequence (one letter for each of the 21 amino
acids);

• the three types of secondary structures (H for α-helix, E for
β sheet and C for coil) calculated using the hydrogen bond

estimation (DSSP) algorithm [91], extracted from the files
PDB;

• chemical-physical properties (steric parameter, polarizabil-
ity, van der Waals normalized volume, isoelectric point, α-
helix and β sheet probabilities) obtained from [121] which
represent universal descriptors for amino acid side chains;

• degree of hydropathy and aliphatic index [86];

• PSSM (Position-specific Scoring Matrix), obtained by multiple
alignment with PSI-BLAST with 3 iterations, performing

1 https://zhanglab.ccmb.med.umich.edu/FASTA



4.3 methods 61

the search against the NR database and with an E-value of
0.001 [90];

• accessible surface area (ASA) [32] both at residual level (in-
dicated with RES.ASA) and fractional ASA (FRAC.ASA) and
occupied volume (VOL) both at residual level (RES.VOL) and
fractional volume (FRAC.VOL), calculated with VADAR [193].

ASA represents the protein area exposed to the solvent, while
FRAC.ASA is determined by dividing the observed ASA by a given
residue from the ASA calculated for that residue in the Gly-X-Gly

tripeptide. VOL represents the volume occupied by a residue
defined by its atomic radius and its neighbors and is measured in
cubic Å. The volume defines the packaging density of the protein
in correlation with the spatial arrangement of the atomic groups.
The calculation of this parameter is useful for finding hollow
areas within the protein, atomic overlaps or problematic protein
regions [151].

In this work, we have introduced four new features:

1. RES.ASA;

2. FRAC.ASA;

3. RES.VOL;

4. FRAC.VOL.

These features represent the ASA and VOL values, each re-
ferred to for the single amino acid residue and in fractional
value.

4.3.2 Data Preparation

The one-hot scheme was used to code the features that represent
the sequence and secondary structure. The scheme provides
that a vector of zeros has only a value of 1 at the index of the
class [161].

The PSSM matrix was normalized according to the function in
Eq. 4.1:

f (x) =
1

1 + e−x
(4.1)
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The values of the other features have been standardized to
a range of 0 to 1. The residue samples from each unique pro-
tein sequence were normalized. Similar findings were obtained
using a different normalization on the complete population of
residues. To standardize the lengths of the protein sequences,
fictional values were created to act as a divider between the
various remaining sequences. We explored a maximum length
protein of 456 residues, and we settled on a fixed length of
480 residues because this figure is easily divisible by batch size.
480 − sequence length is the number of fictional x values added
at the beginning of each sequence. In order to recognize this
fictive data, a dummy class was added to the network models.
Batch sizes of 10, 32, 64, 128, 200, 256 were investigated for single
output models trained on sequences without padding. Batch
sizes close to the average sequence length produced the greatest
results. The batch sizes that generated the greatest results when
using the same models trained on padded sequences were those
that split the new protein size. The same assumptions applied to
the models with numerous outputs. The dataset was split using
the following best ratios: 79% training set and 21% validation set,
after trying multiple random breakdowns of the sequences in
order to preserve protein sequences intact.

Below, the input size for the stateless model is reported:

(input_layer = Input(shape=data_x.shape[1:])

The input size for stateful model follows:

model.add(Bidirectional(

LSTM(256, return_sequences=True, stateful=True),

batch_input_shape=(batch_size, data_x.shape[1], data_x.shape

[2]))

We can see how the size of the rows and the size of the columns
are taken as input for both models.

4.4 lstm approach

The long short-term memory (LSTM) is a specific recurrent neural

network (RNN) architecture consisting of memory cells organized
in memory blocks, recurrently connected. Each of these contain
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three multiplicative units: an input gate, an output gate and for-
get gate. The input and output gates supervise the input and
output activation in order to control information flow into the
blocks. Through the gates, the net can decide whether to access or
override the memory cell’s information content. Every memory
cell has a core consisting of a recurrently self-connected linear
unit-Constant Error Carousel (CEC) which allows us to maintain
the network error constant. These networks were created to over-
come the problem of gradient decay over long sequences [80]
and in order to find the optimal time lag for time series prob-
lems [81]. Compared to RNNs, LSTM networks allow evaluating
the evolution of inputs by capturing dependencies in long-range
distances [156]. In this work, a BLSTM system is proposed, in-
spired by the neural network presented by [78].

The basic neural network architecture includes two BLSTM lay-
ers, with 256 nodes, followed by two fully connected layers (FC),
with 1024 and 512 nodes respectively. In Figure 4.2 is represented
the basic LSTM model.

Figure 4.2: LSTM model.

For the construction and training of neural networks, the Deep
Learning Keras library2, a high-level API of TensorFlow [1], under
the Python language3, was used. To reduce training times, the
Google Colab platform4 is used, which provides an NVIDIA Tesla

2 Keras: https://keras.io
3 Python: https://www.python.org
4 Google Colab: https://colab.research.google.com
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K80 GPU5 as a hardware accelerator for processing. Pandas6 and
Scikit-learn libraries7 are used for dataset management and data
normalization.

We have built three variants of the proposed neural network:

• M1: it outputs the class prediction of a single angle;

• M2: it provides the classes of φ and ψ angles in a parallel
way;

• M3: it foresees a pair of BLSTM layers for each input fea-
ture.

In Fig. 4.3 the structure of the most complex variant M3.

Figure 4.3: M3 variant.

In each variant, fully connected nodes use the Rectified Linear

Unit (RELU) activation function, which allows working with
large numbers as it maps the inputs x into the interval (0,x).

The output nodes use the Softmax function, which forces the
network to output a range of values whose sum is 1. Therefore,
the output values of the Softmax function can be considered
as part of a probability distribution. The outputs represent the
classes to which the angles φ and ψ belong. Each class provides
the value of the angle amplitude with a maximum error of ±
2.5°.

For the prediction, the Categorical Crossentropy Loss function is
used, which compares the distances between the outputs of the

5 GPU Tesla K80: https://www.nvidia.it/object/tesla-k80-dual-gpu
6 Pandas: https://pandas.pydata.org
7 Scikit-learn: https://scikit-learn.org
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Softmax function and the values encoded with the one-hot scheme,
following the Eq. 4.2:

Loss = −
outputsize

∑
i=1

yiŷi (4.2)

where ŷi is the i-th value in the model output, yi is the corre-
sponding target value and output size is the number of values in
the model output.

The model is trained with the Adam optimizer [97]. We searched
for the optimal batch size able to best represent the average length
of the protein sequences. The monitoring of the loss function on
the validation data avoided training set overfitting. The M1 and
M2 variants were trained with both stateless and stateful LSTM
cells [101].

The ψ and φ angles prediction is treated as a classification
problem, according to the study of [60]. The angle amplitudes
are first divided into classes of 5° intervals. We’ve created a total
of 73 classes, with 72 of them coding angles between -180° and
180° and a third class coding free angles. These angles can have
any value in the range [-180°, 180°] at the start of a series. At
the second scenario, we divided the angles into 37 classes by
grouping them in 10-degree intervals.

In addition to training the networks with LSTM stateful and
LSTM stateless cells, two types of normalization were tested: in
the first we normalized the values of all features between [0,
1] and we have indicated this stage with NORM1; while in the
second case we have normalized the PSSM as in Eq. 4.1, referred
as NORM2. Later, we have introduced padding techniques (called
here PAD480).

4.5 performance measures

In order to compare the results, we have chosen the mean absolute

error (MAE), whose formula is indicated in Eq. 4.3:

MAE =
∑

n
i=1 |yi − xi|

n
(4.3)

where yi is the expected value, xi is the real value and n is the
total number of observations.
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We have also calculated the accuracy (ACC) as measurement
criteria, as reported in Equation 2.1 in Subsection 2.4.3.

The ACC indicates the angle classes percentage correctly pre-
dicted by the model. Correct prediction implies an error of ±
2.5° on the continuous angle value. The MAE, instead, indicates
the error in absolute terms on the continuous value of the an-
gle amplitude between predicted angles and calculated angles
experimentally.

4.6 preliminary considerations

In Table 4.1, we have reported the various combinations of tested
variables. M1, M2 and M3 represent the proposed neural net-
works variants. S1-S10 indicate the performed experiments, with
the relative two types of normalization used, the type of training
(stateful or stateless), the number of introduced angular classes
(37 o 73) and the padding addition.

When we compared the outcomes of the first and second
studies (S1 and S2) using the same M1 model, we found that S2

performed better. As a result, we concentrated on S2 experiments
rather than S1. Starting with the S3 experiment, the addition of
padding has resulted in an average improvement in results. In
parallel, grouping of angles into 37 classes (S4), we have noticed a
clear improvement in the ACC. It was hypothesized that this was

Table 4.1: Details on conducted experiments

Experiment Model Angle class Normal. Training Padding

S1 M1 73 classes NORM1 Stateless -

S2 M1 73 classes NORM2 Stateless -

S3 M1 73 classes NORM2 Stateless PAD480

S4 M1 37 classes NORM2 Stateless PAD480

S5 M1 73 DISTR NORM2 Stateless PAD480

S6 M2 37 classes NORM2 Stateless PAD480

S7 M2 73 classes NORM2 Stateless PAD480

S8 M2 37 classes NORM2 Stateful PAD480

S9 M2 73 classes NORM2 Stateful PAD480

S10 M3 73 classes NORM2 Stateless PAD480
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Table 4.2: ACC, MAE e MAE variation for φ

Exp. BS
With new features Without new features

Var(°)
ACC MAE(°) ACC(%) MAE(°)

S2 200 17.13 21.3 18.26 20.78 0.52

S3 240 17.76 21.27 17.8 21.37 -0.1

S3 480 17.63 21 17.9 21.61 -0.61

S7 120 17.85 21.33 17.96 21.26 0.07

S7 240 17.76 21.34 17.73 21.05 0.29

S7 480 18.21 20.68 18.11 20.82 -0.14

Average Variation 0.005

due to the reduction of the classes to be foreseen and the merging
of several angles in a larger class. In the S5 trial, we have tested
clusters which allowed for classes with a more evenly distributed
average population (DISTR). Experiments S6 and S7 respectively
resume experiments S3 and S4 using the M2 variant of the model.
The multiple output of this model allows us to reduce training
and forecasting times. In the S8 and S9 trials, a different approach
was tried: adapting the model to the data. Iterative training was
tested on stateful versions of both models. For this training,
the data no longer requires a preliminary processing step to
add separators between the various sequences, as data groups
with heterogeneous lengths are allowed. However, the results
obtained were equivalent, except for a performance degradation
due to more time for training and forecasting. In the description
of the subsequent results, we will exclude these experiments.
In the experiment S10, the achieved ACC by the M3 variant
was found to be, in the testing phase, lower than that of the
M1 and M2 models. In addition, training and forecasting times
have grown exponentially. These reasons have led to discard
the development of this variant. Following these considerations
already encountered in the experimentation phase, we therefore
relied on the following experiments: S2, S3 and S7.
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Table 4.3: ACC, MAE e MAE variation for ψ

Exp. BS
With new features Without new features

Var(°)
ACC MAE(°) ACC(%) MAE(°)

S2 200 15.66 35.18 15.78 36.95 -1.77

S3 240 16.01 34.75 16.06 36.13 -1.38

S3 480 15.58 34.68 15.7 36.69 -2.01

S7 120 16.03 35.04 15.48 36.61 -1.57

S7 240 16.13 34.87 15.46 37.45 -2.58

S7 480 15.58 34.91 15.53 37.24 -2.33

Average Variation -1.94

Table 4.4: ACC e MAE for 37 and 73 angles classes

Class
Angle φ Angle ψ

ACC(%) MAE(°) ACC(%) MAE(°)

73 18.28 20.65 16.76 34.40

37 32.01 20.44 29.20 34.40

4.7 results

Tables 4.2 and 4.3 show the results of the experiments carried out.
We have considered batch size (BS), type of experimentation, the
calculation of the ACC and of the MAE with and without adding
the new features and the variation with respect to the MAE for
both angles φ and ψ.

Considering only the ACC, the contribution of the new fea-
tures is negligible. However, some differences are found when
examining the MAE. The addition of the new features involves
an average reduction of the MAE relative to ψ angles of -1.94°
(see Table 4.3). The same is not true for the angle φ. In this case,
the addition of the new features is irrelevant, with an average
MAE’s variation of 0.005° (see Table 4.2).

Reducing the classes of angles to be predicted, from 73 to 37,
there is a net increase in the ACC, almost double and a small
improvement in the MAE, as shown in Table 4.4. However, with
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37 classes, the expected output admits an error of ± 5° on the
continuous angle values. For this reason, for the purpose of
comparison with other studies, the results obtained with a finer-
grained grouping in 73 classes were taken into account. There
has not been a single model that has simultaneously achieved
the maximum ACC and the minimum MAE, but the M2 variant
ensures better results on average and reduction of forecast time.

For the comparison with the results present in the literature,
we have considered the MAE and the ACC, reported in Table 4.5
and with our best results declared in this work. The proposed M2

model provides an ACC of 18.3% for φ and 16.8% for ψ, not far
from the results in the literature. For the MAE, we stand at 20.65°
and 34.40° for φ and ψ, respectively. The introduction of the new
features RES.ASA, RES.VOL, FRAC.ASA, FRAC.VOL improves
the angle ψ prediction, reducing the MAE of about 2°.

4.8 visualization of results

Our predictor produces a pair of angles, each of which corre-
sponds to a prediction for a single amino acid in the sequence.
In order to make the reading of the data more immediate, we
opted to incorporate two graphic representations to show the
accurate and incorrect predictions of angles ψ and φ. For this
purpose, we aligned two identical copies of each protein, based
on their intrinsic nature to be represented by a string. In the first
copy, residue character with the experimental φ and ψ pair values
are represented. These experimental values were extracted from
PDB files of the PDB site [169] for each individual protein in the
dataset. Each second copy residue character reported predicted

Table 4.5: Comparison with other works

Study Dataset size ACC φ ACC ψ MAE φ MAE ψ

Heffernan et al. [78] 5789 - - 18.3° 27°

Gao et al. [60] 5789 19.6% 17.4% - -

Li et al. [112] 1652 - - 20.49° 29.06°

HPAP (our method) 173 18.3% 16.8% 20.65° 34.40°
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Figure 4.4: Pair-wise alignment.

values for the two angles. The maximum error for both torsional
angles is ± 2.5° degrees, according to our preliminary experiment
results. This threshold was used to distinguish between correct
(in green) and incorrect predictions. We distinguish between cor-
rect prediction, incorrect prediction and disaster prediction. The
disaster prediction is connected to the condition where the pre-
dicted angles have an inverse sign in terms of experimental value,
and this condition disrupts the three-dimensional structure of
the protein.

Figure 4.4 shows a partial pair-wise alignment. The protein
sequence and phi and psi angles predictions are represented in
the rows. The classes that the system accurately predicts are
shown in green, with a maximum expected error of ± 2.5°.

We also created a Yanaconda macro 8 to plot the predictor
output in 3D space so that the discrepancies between real and
predicted angles can be seen in a more understandable and im-
mediate visualization. The Yanaconda macro was executed by
YASARA9, a molecular modeling program [104]. Yanaconda al-
lows us to extend the capabilities and behaviors of YASARA. We
used YASARA in interactive mode to provide the user complete
control over each step of the visualization process. The macro
allows the user to load each structure into the 3D space (one
at a time, from the test-set). It also gives the user the option of
applying (or undoing) the projected angles for each structure
residue (still one at a time). Finally, the macro can be paused to
allow the user to view or manipulate the structure. Because the
predictor’s chemical limitations are not fully generalized, some
predictions require user involvement with the viewer.

In Figure 4.5 we showed a series of three residues with pre-
dicted torsional angles, the third of which has a significant dis-
placement in the opposite direction of the real value. As another

8 Yanaconda scripting language: http://www.yasara.org/yanaconda.htm
9 Yasara View: http://www.yasara.org/viewdl.htm
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example, in Figure 4.6, the φ and ψ angles of a Proline residue
are compared to the original residue on the left. On the right,
the identical Proline when the predicted torsional angles is de-
picted. Because the molecular structure of the amino acid Proline
involves a cycle, applying the expected angles causes the cycle
design to fall apart. Due to our model’s lack of generalization,
this flaw can only be overcome by user intervention, which will
reverse the application of predicted angles.

Figure 4.5: Comparison between predicted and original chains of three
residues.

Figure 4.6: Comparison between original and predicted Proline residue.

4.9 concluding remarks

This chapter has presented an approach for prediction of torsional
angles of proteins based on BLSTM neural network system, called
HPAP, since trained only on human proteins. We have divided
the angles into classes of 5° each, with a maximum expected
error of ± 2.5°. In relation to the ASA and the Volume, four
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additional features have been included. The dataset contains 173

human proteins (for a total of 6001 amino acid residues) and
is 33 times smaller than those previously studied. Despite this,
the obtained results, albeit lower, are not significantly different
from those obtained by other literature investigations. In general,
the usage of a BLSTM system for discrete class prediction has
proven to be highly dynamic, as training on the supplied dataset
only takes a few minutes. Furthermore, the addition of the new
features allows us to lower the average absolute error on the ψ

angle value prediction. In the future, expanding the dataset with
new samples, including non-species-specific ones, could aid in
the optimization of the model and improve accuracy for both
torsional angles.



5
S N A R E R

In this Chapter, we present new molecular descriptors for a
specific family of proteins, called SNAREs. We start with the
introduction of related biological background (see Section 5.1)
and this protein family (Section 5.2). Then, we discussed the
studies already presented in literature in Section 5.3, the used
classification algorithms (see section 5.4) and our contribution
in terms of SNARE descriptors (Section 5.5). We described the
methods for this work (Section 5.6), the experimental results
(Section 5.7) and finally the discussion about our contribution
and future works concludes the chapter (Section 5.8).

5.1 background

The process of determining the exact sequence of nucleotides
that make up the whole genome of distinct living organisms is
referred to as genome sequencing. Gene sequencing is becoming in-
creasingly important, particularly as precision medicine develops.
The latter highlights the prospect of increasingly personalized
preventive, diagnosis and treatment protocols that are focused on
the patients and are based on their genomic constitution [153].

Technology for genetic sequencing has advanced significantly
in recent years. Parallel to this, the demand for new bioinfor-
matic technologies to help in data acquisition, retention, analysis,
and interpretation arose. These data to be analyzed range from
the whole genes of an organism (genome) to the set of proteins
produced (proteomics). Protein sequencing is one of the many
biological disciplines where high-throughput sequencing tech-
niques generate a lot of huge data [150]. For the identification of
different genomic and protein regions, these massive amounts of
data (up to petabytes) must be computationally evaluated using
ever newer approaches. The current task is to contribute to this
post-sequencing analysis and classification, as well as to assure

73



74 snarer

improved precision in the discriminating of accessible protein
sequences.

In fact, the collection of protein sequences is constantly grow-
ing. There is a requirement for effective categorization meth-
ods that can characterize a protein’s functionality based on its
chemical-physical properties and label the sequence with greater
precision. The more data we have on a protein, the better we will
be able to fit it into a more sophisticated biological framework.
This is clear and beneficial, especially when dealing with a pro-
tein whose function was initially unknown. The most common
method involves determining whether the protein contains func-
tional motifs and domains that allow it to be characterized from
its amino acid sequence and determining whether it belongs to a
protein family with members that have similar three-dimensional
structures, functions and significant sequence similarities. To es-
tablish their role and mechanisms in a certain physiological and
pathological biological path, knowledge of the protein family
representatives is required.

5.2 snare proteins

SNARE (Soluble N±ethylmaleimide sensitive factor Attachment pro-

tein Receptor) is a protein superfamily involved in the molecular
trafficking between the different cellular compartments [176].
The evolutionary significance of the SNAREs superfamily is in-
extricably linked to their role in many cellular functions and
pathological states, prompting researchers to further investigate
their role in biological pathways [82, 123]. SNARE proteins con-
sist of motifs of 60-70 amino acids containing hydrophobic hep-
tad repeats, which form coiled-coil structures. The core of the
SNARE complex is represented by 4 α helix bundle, as evidenced
by the available crystallographic structures [170]. The center of
the bundle contains 16 stacked layers which are all hydrophobic,
except the central layer "0", which is called ionic layer and which
contains 3 highly conserved glutamines (Q) and a conserved
arginine (R) residue (see Figure 5.1).

Evolutionarily conserved members of this protein family can
be found in yeasts through mammalian cells. Basic cellular func-
tions such as the production of proteins and hormones, the
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release of neurotransmitters, the immune system’s phagocytosis
of pathogens and the movement of molecules from one compart-
ment of the cell to another rely on vesicle-mediated transport.
Membrane receptors are involved in vesicular transport, which
involves the identification of vesicles, the activation of membrane
fusion and restructuring and the subsequent release of vesic-
ular content into the extracellular environment (exocytosis) or
inside the cell (endocytosis). SNARE complexes, in particular,
facilitate membrane fusion during diffusion processes by form-
ing a bridging connection between SNARE proteins on both
membranes [29]. Initially, SNARE proteins were split into two
categories: vesicle or v-SNARE proteins that are incorporated
into vesicle membranes and target or t-SNARE proteins that are
connected with target membranes. R-SNARE and Q-SNARE are
two more recent subdivisions that are based on structural char-
acteristics. R-SNARE proteins have an arginine residue (R) that
aids in the formation of the complex, whereas Q-SNARE proteins
have a glutamine residue (Q) and are categorized in order of their
location in the bundle of four helices. They are classified in turn
as Qa, Qb or Qc [52]. Scientific investigations have indicated that
SNARE proteins are involved in several brain diseases due to
their critical involvement in neuronal and neurosensory release
at the synaptic level [147]. The release of neurotransmitters is
a highly regulated process that occurs thousands of times each
minute in both time and space. The formation and disassem-
bly of SNARE complexes is closely regulated in this situation.
Impaired neurotransmitter release at any stage might cause dys-

Figure 5.1: Visualization of the layers of the bundle of the fusion com-
plex between the 4 parallel α-helices of the SNARE: 7 up-
stream layers (layers from -1 to -7) and 8 downstream layers
(layers from +1 to +8) of the ionic layer (the layer 0) [52].
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functions that jeopardize synaptic communication equilibrium.
These compounds appear to play a role in the progression of neu-
rodegenerative diseases (such as Alzheimer’s and Parkinson’s),
neurodevelopment (autism) and psychiatric disorders, such as
bipolar disorder and schizophrenia as well as depression. Dif-
ferent studies have shown the involvement of mutated or not
properly regulated SNARE genes in the development of these
disorders [50, 62, 72, 129, 165, 197].

5.3 related works

Since SNARE proteins are involved in numerous biological pro-
cesses, studies have slightly increased in recent decades in order
to identify and classify these proteins, but the papers dealing
with this topic are still few. In the literature, there are documents
that are based on different techniques, ranging from statistical
models to the use of convolutional neural networks.

Kloepper et al. [99] have implemented a web-based interface
which allows the new sequences submission to the Hidden
Markov Models (HMM) for the four main groups of the SNARE
family, in order to classify SNARE proteins based on sequence
alignment and reconstruction of the phylogenetic tree. For their
study, a set of ∼150 SNARE proteins is used in conjunction with
the highly conserved motif, which is the sequence pattern sig-
nature representing the family of SNARE proteins. For SNARE
proteins, this motif is an extended segment arranged in heptad
repeats, a structural motif consisting of a seven-amino-acid re-
peating pattern. The extraction of HMM profiles, which allow
identifying evolutionary changes in a set of correlated sequences,
returns information on the occupancy and position-specific fre-
quency of each amino acid in the alignment. Using this method,
the authors are able to obtain a classification accuracy of at least
95% for nineteen of the twenty HMM profiles generated and to
perform a cluster analysis based on functional subgroups.

Nguyen et al. [107] have disclosed a model with two-dimensional
convolutional network and position-specific scoring matrix pro-
files for the SNARE proteins identification.The authors used
multiple hidden layers for their models, in particular 2D sub-
layers such as zero padding, convolutional, max pooling and
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fully-connected layers with different number of filters. Their
model achieves a sensitivity of 76.6%, an accuracy of 89.7% and
a specificity of 93.5%.

More recently, in 2020, Guilin Li [111] has proposed an hybrid
model which combines the random forest algorithm with the
oversampling filter and 188D feature extraction method. His work
proposes different combinations of feature extraction methods,
filtering methods and classification algorithms such as KNN, RF
and AdaBoost for the classification of SNARE proteins. Since
those results are shown only graphically, it is not possible to have
a clear comparison with our results.

5.4 classification algorithms

To see how accuracy varies with the use of SNARER descriptors,
we employed the same three classification methods presented
in [111], given the high performance reported. Thus, we have
compared three different ML algorithms: AdaBoost (ADA) K-
Nearest Neighbor classifier (KNN) and Random Forest (RF).

• AdaBoost is a machine learning meta-algorithm used in
binary classification. AdaBoost is an adaptive algorithm
which generates a model that is overall better than the
single weak classifiers, adapting to the weak hypothesis
accuracy and generating one weighted majority hypothesis
in which the weight of each weak hypothesis is a function
dependent of its accuracy. At each iteration, a new weak
classifier is sequentially added, which corrects its prede-
cessor until a final hypothesis with a low relative error is
found [57].

• KNN is a supervised learning algorithm used for predictive
classification and regression problems. The basis of the
operation of this algorithm is to classify an object based
on the similarity between the data, generally calculated by
means of the Euclidean distance. In this way, the space is
partitioned into regions according to the learning objects
similarity. This algorithm identifies a collection of k objects
in the training set that are the most similar to the test
object. So, a parameter k, chosen arbitrarily, allows us to
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identify the number of nearest neighbors, considering the
k minimum distances. The prevalence of a certain class in
this neighborhood becomes a forecast in order to assign a
label to the object [194].

• RF is a supervised learning algorithm that combines many
decision trees into one model by aggregation through bag-
ging. The final result of the RF is represented by the class
returned by the largest number of decision trees. In partic-
ular, the random forest algorithm learns from a random
sample of data and trains on random characteristics subsets
by splitting the nodes in each tree [79].

5.5 proteins descriptors

To use ML approaches to analyze data derived from protein se-
quences, each amino acid in the protein must have a numerical
representation. As a result, a set of numerical parameters that
operate as chemical-physical and structural descriptors of pro-
teins are frequently used. The use of a diverse set of properly
chosen descriptors improves classification efficiency [142] and
allows functional protein families to be predicted [136].

In the literature, over the years, many indices and features
of amino acids have been identified for classification methods,
such as amino acid composition (AAC), auto-correlation func-
tions [118] or pseudo amino acid composition (PseAAC) [33].

To compare our SNARER descriptors to those already uti-
lized in the classification of SNARE proteins, we chose the four
descriptors below.

• GAAC (Grouped amino acid composition) groups the 20 amino
acids into five groups based on their chemical-physical
properties and calculates the frequency for each of the five
groups in a protein sequence. Specifically, the five groups
are the following: positive charge (K, R, H), negative charge
(D, E), aromatic group (F, Y, W), aliphatic group (A, G, I, L,
M, V) and uncharge (C, N, P, Q, S, T) [30].

• CTDT (Composition/Transition/Distribution) represents the
amino acid composition patterns distribution of a specific
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chemical-physical or structural property in the protein se-
quence. The final T represents the transition between three
types of patterns (neutral group, hydrophobic group and
polar group) of which the percentage of occurrence fre-
quency is calculated [30].

• CKSAAP are sequence-based features which, given a se-
quence, count all adjacent amino acid pairs, considering
k-spaced amino acid pairs. Since there are 20 amino acids,
for each value of k (from 0 to 5) there are 400 possible pairs
of amino acids, for a total of 2400 features [28].

• 188D features constitute a features vector of which the first
20 represent the frequencies of each amino acid while eight
types of chemical-physical properties (such as hydrophobic-
ity, polarizability, polarity, surface tension, etc) allow us to
calculate the remaining 168 features. In fact, for each type
of property, 21 features are extracted [21].

Our proposed SNARE descriptors are 24 and 19 of them are
selected by AAindex, i.e., the Amino Acid index database [95], on
the basis of the chemical-physical, electrical and energy charge
characteristics of the SNARE proteins. We chose features that
consider the propensity of individual amino acids to create he-
lixes, sheets and coils. Since there is mainly an helix structure
in the SNARE proteins, we opted to evaluate features related to
this structure. Others features are related to solvent accessibility,
to the ability to interact with the surrounding environment and
energy effects of amino acid residues in SNARE proteins. They
are listed in Table 5.1.

The others (i.e., Steric parameter, polarizability, Volume, Iso-
electric point, Helix probability, Sheet probability and Hydropho-
bicity) are the amino acid parameter sets defined by Fauchere et

al. [51]. We used iFeature [30] for feature extraction of GAAC,
CKSAAP and CTDT and MSFBinder [liu2018model] for 188D.
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Table 5.1: The SNARER descriptors.
Code Description Source

ARGP820102 Signal sequence helical potential%

AAindex [95]

CHAM830101 The Chou-Fasman parameter of the coil conformation

CHAM830107 A parameter of charge transfer capability

CHAM830108 A parameter of charge transfer donor capability

CHOP780204 Normalized frequency of N-terminal helix

CHOP780205 Normalized frequency of C-terminal helix

EISD860101 Solvation free energy

FAUJ880108 Localized electrical effect

FAUJ880111 Positive charge

FAUJ880112 Negative charge

GUYH850101 Partition energy

JANJ780101 Average accessible surface area

KRIW790101 Side chain interaction parameter

ZIMJ680102 Bulkiness

ONEK900102 Helix formation parameters (delta delta G)

Steric parameter

Fauchere et al. [51]

Polarizability

Volume

Isoelectric point

Helix probability

Sheet probability

Hydrophobicity

5.6 methods

5.6.1 Data Preparation

We have constructed two datasets, respectively named DUNI and
D128. In order to prevent learning bias in classification training,
both datasets were utilized to assess each classifier’s robustness in
both an imbalanced and balanced training environment. SNARE
proteins were downloaded from UNIPROT1. For this purpose,
we selected all the proteins with molecular function ªSNAP re-
ceptor activity", identified with the unique GENE Ontology [38]
alphanumeric code GO: 0005484. The dataset DUNI consists of
276 SNAREs and 806 non-SNAREs. On this unbalanced dataset,
we applied the subsampling and ovesampling techniques used in
[111]. The balanced dataset D128 is composed of 64 SNARE from
UNIPROT and 64 non-SNARE protein sequences downloaded

1 https://www.uniprot.org/
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from the PDB database2. All SNARE protein sequences in FASTA
format3 have been processed with the CD-HIT tool4, which re-
turns a set of non-redundant representative sequences as output,
in order to create a balanced and non-redundant dataset and
improve dataset quality. The incremental clustering approach
is used by CD-HIT. It sorts the sequences in length order and
constructs the first cluster in which the longest sequence is the
representative one in the initial analysis. The sequences are then
compared to the representatives of the clusters. The sequence will
be grouped in that cluster if the similarity with a representative is
greater than a specific threshold. Alternatively, a new cluster with
that sequence as the representative can be constructed [113]. The
criterion for similarity was set at 25The fraction of comparable
residues between two sequences is used to determine sequence
similarity. The smaller the sequence similarity, the more likely it
is that the collection will contain representative proteins with no
redundancy [137].

5.6.1.1 Training and validation session

All training sessions were conducted with Weka ML Platform
(Waikato Environment for Knowledge Analysis), a software envi-
ronment written in Java which allows the application of ma-
chine learning and data mining algorithms [183]. In order to
speed-up analysis, an ad-hoc grid, based on the map/reduce
paradigm, were used in order to distribute the work across mul-
tiple slaves [143]. Both data sets were used as the input for the
training step for AdaBoost, KNN e RF classifiers. There were
only two possible output classes: SNARE/ NON SNARE. Then,
for each training session, we used the following cross-validation
values: the range between 10 and 100 for k-fold and between 20 to
80% for hold out. As a result, the ratio of the samples in training
and validation set is variable. Moreover, based on the parameters
configured as in [111] in order to be able to compare with the
results of the authors, we set k equal to 1 and Euclidean distance
for the distanceFunction of KNN; for the AdaBoost algorithm,

2 https://www.rcsb.org/

3 https://zhanggroup.org/FASTA/
4 http://weizhongli-lab.org/cd-hit/
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default values are weightThreshold = 100 and numIterations

equal to 10, whilst for RF numIterations = 100.
The complete working set was composed of four logical parts: i)

DUNI non-filtered; ii) DUNI oversampled; iii) DUNI subsampled;
iv) D128 non-filtered. For each training session, we generated 10

k-fold variants and 7 hold out variants. Then, for each variant, we
computed 100 training sessions of each of the three classifiers for
each of the four descriptors. Thus, we distributed up to 836.000

training sessions among the distributed computing environment.

5.6.2 Performance evaluation of classification algorithms

We evaluated the ML models (Random Forest, AdaBoost and
KNN) on the unbalanced dataset DUNI and on the balanced
dataset D128. In order to estimate the prediction performance of
the three ML algorithms, accuracy (ACC), sensitivity (SN) and
specificity (SP) were used. The formulas of these equations have
been shown in Subsection 2.4.3.

Sensitivity is the percentage of positive entities correctly identi-
fied. Specificity measures the proportion of negative entities that
are correctly identified. In a biological sense, having a TP in our
experiment means finding that a protein cataloged as a SNARE
is recognized by the classifier as a SNARE.

The four sets of protein descriptors were initially evaluated
separately (GAAC, CKSAAP, CTDT and 188D) on the datasets
D128 and DUNI and subsequently these feature sets were ex-
tended with the SNARER descriptors addition disclosed in this
work, here identified as extended classes ªext".

5.7 experimental results

On the unbalanced dataset DUNI and the balanced dataset D128,
we employed the SNARER descriptors and three different ML
methods.

We looked at four feature sets separately (GAAC, CTDT, CSKAAP,
and 188D) before combining them with the SNARER descriptors
class (designated by ª.ext"). Three criteria were used to assess
categorization performance: average accuracy (ACC), average
sensibility (SN) and average specificity (SP).
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5.7.1 Results on the unbalanced dataset DUNI

The experimental results obtained using the DUNI dataset are
presented below. The average ACCs for the ML algorithms for
the four protein feature sets GAAC, CTDT, CKSAAP, and 188D
are in the range of 76% to 94.9%. For the graphical comparison of
the three ML approaches, histograms are employed in Figure 5.2.

Table 5.2: Performance of average ACC on the DUNI dataset.

Accuracy

RF KNN ADA

GAAC 76.1% 85.1% 77.9%

GAAC.ext 90.4% 91% 86.1%

CTDT 76.1% 83.1% 76.7%

CTDT.ext 91.5% 92.6% 81.6%

CKSAAP 91.1% 90.04% 83.7%

CKSAAP.ext 91.7% 90.02% 87.4%

188D 93.9% 94.8% 88.1%

188D.ext 94.1% 94.9% 88.7%

In combination with all of the protein feature descriptors stud-
ied, the introduction of the SNARER class results in a significant
improvement, as shown in Table 5.2. Overall, the KNN model,
the 188D feature set, and the SNARER class combination produce
the best average accuracy. The best average SP is obtained with
this combined model, while the best average SN is obtained with
the RF model trained independently utilizing both GAAC and
CTDT features (see Table 5.3).

In the enlarged classes with the additional descriptors, SN low-
ers imperceptible for RF, but remains unchanged for the CKSAAP
method. SP for RF, on the other hand, rises with the extended
classes, particularly for the GAAC and CTDT descriptors.

In the enlarged classes referred to as GAAC and CTDT, the
SN of KNN increases greatly, whereas CKSAAP and 188D stay
largely unaltered. The SP of KNN follows the same pattern,
with a modest improvement in the extended 188D class. We see
an increase in SN for the AdaBoost algorithm, mainly for the
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Figure 5.2: Comparison between GAAC, CTDT, CKSAAP and 188 D
ACC with related extended classes with SNARER (on DUNI
dataset).

Table 5.3: Performance for average SN and SP on the DUNI dataset.

Sensitivity Specificity

RF KNN ADA RF KNN ADA

GAAC 99.8% 90.3% 83.6% 7% 7% 61%

GAAC.ext 97.2% 94.5% 94.8% 70.7% 80.6% 60.6%

CTDT 99.8% 89.1% 83.3% 7.1% 65.6% 57.6%

CTDT.ext 96.6% 94.6% 91.1% 76.4% 87% 54%

CKSAAP 97.8% 98% 89.9% 71.7% 66.7% 65.5%

CKSAAP.ext 97.8% 98% 92% 74% 66.7% 74%

188D 97% 96.6% 92% 85% 89.5% 76.7%

188D.ext 96.8% 96.5% 92.4% 86.3% 90.1% 78%

extended GAAC and CTDT classes, but a loss in SP. Instead,
for the extended classes CKSAAP and 188D, the SP ADA rises.
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The usage of extended classes using our SNARER descriptors
improves accuracy for the GAAC, CTDT, CKSAAP and 188D
classes of all three ML models on the unbalanced dataset, with
the exception of KNN trained with CKSAAP. All selected ML
algorithms achieve SN greater than 83%, with the best SN of
99.8% RF achieved by GAAC and CTDT without extension.

The SN settles in a region between 91.1% of the ADA algorithm
with the CTDT class and 98% of the KNN algorithm with the
extended CKSAAP class by incorporating the SNARER class for
all four feature sets. Without the SNARER’s descriptor extension,
the SP ranges from a minimum of 7% of RF and KNN algorithms
for the GAAC class to a maximum of 89.5% of KNN trained with
the 188D feature set.

With the SNARER class addition, an SN of 54% of ADA with
CTDT feature set is obtained at a maximum of 90.1% of KNN
trained on the dataset with 188D feature set. More specifically,
the KNN model using the 188D extended class with SNARER
descriptors, achieves better performance in all metrics except for
SN, where the RF model trained with the GAAC features obtains
the highest value. In particular, the KNN model employing the
188D extended class with SNARER descriptors outperforms the
RF model trained with the GAAC features in all metrics except
SN, where the RF model outperforms the KNN model.

Finally, on the unbalanced DUNI dataset, the novel SNARER
descriptors class assures an increase in terms of ACC when used
in conjunction with all four evaluated feature sets, as well as a
significant improvement in SN and SP for the tested ML methods.

5.7.1.1 Results on the unbalanced dataset DUNI with oversampling

and with subsampling

We used subsampling and oversampling techniques because the
dataset DUNI is imbalanced.

The SNARER class improves accuracy significantly with the
oversampling strategy on the DUNI dataset, particularly so for
the enlarged GAAC and CTDT classes for the three ML mod-
els RF, KNN and ADA, while the contribution to the CKSAPP
and 188D feature sets remains mostly constant (as shown in
Table 5.4). The average SN and average SP determined for RF,
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Table 5.4: Performance of the average ACC on the DUNI dataset with
oversampling and subsampling.

Oversampling Subsampling

RF KNN ADA RF KNN ADA

GAAC 94.7% 96.3% 73.12% 75.2% 79.2% 72.6%

GAAC.ext 98.03% 98.44% 85.02% 91.8% 86.4% 82.6%

CTDT 93.9% 96.1% 70.4% 74.6% 78.1% 71.7%

CTDT.ext 98% 98% 86.3% 90.6% 89.7% 86.4%

CKSAAP 99.07% 98.67% 84% 93.1% 84.4% 83.5%

CKSAAP.ext 99.01% 98.6% 89.1% 79% 84.2% 87.3%

188D 98.5% 98.90% 89.5% 93.1% 95% 86.6%

188D.ext 98.5% 98.95% 89.6% 93.5% 94% 89.3%

Table 5.5: Performance for average SN and SP on the DUNI dataset
with oversampling.

Sensitivity Specificity

RF KNN ADA RF KNN ADA

GAAC 91.9% 95% 74.9% 97.5% 97.6% 71.3%

GAAC.ext 96.6% 97.8% 88.4% 99.4% 99.1% 81.6%

CTDT 88.9% 94% 68.8 98.8% 98.2% 72%

CTDT.ext 96.4% 96.9% 78.4% 99.5% 99.2% 94.3%

CKSAAP 99% 99.2% 80.8% 99.2% 98.2% 87.2%

CKSAAP.ext 98.7% 99.1% 86.2% 99.3% 98.2% 92%

188D 97.5% 98.3% 90.2% 99.7% 99.5% 88.8%

188D.ext 97.7% 98.3% 89.4% 99.3% 99.7% 89.9%

KNN and ADA show the same pattern (see Table 5.5). Applying
the subsampling technique to the DUNI dataset, we observe the
same trend for SN but with a slight decrease, around 2% -4%, of
the values when considering the extended classes CKSAAP and
188D. The same decrease value is also present for the average
SPs of the same classes (see Table 5.6).
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Table 5.6: Performance for average SN and SP on the DUNI dataset
with subsampling.

Sensitivity Specificity

RF KNN ADA RF KNN ADA

GAAC 75.7% 76.1% 73.6% 74.6% 82.2% 71.7%

GAAC.ext 88.8% 85.5% 80.8% 94.9% 87.3% 84.4%

CTDT 78.3% 76.4% 73.9% 71% 79.7% 69.6%

CTDT.ext 86.6% 88.4% 81.9% 94.6% 90.9% 90.9%

CKSAAP 90.9% 98.6% 83.3% 95.3% 70.3% 83.7%

CKSAAP.ext 76.4% 98.2% 83.7% 81.5% 70.3% 90.9%

188D 90.9% 95.3% 88% 95.3% 94.6% 85.1%

188D.ext 92% 93.1% 88.8% 94.9% 94.9% 89.9%

5.7.2 Results on the balanced dataset D128

The classification results achieved on the balanced dataset D128,
with and without the addition of the SNARER descriptors, are
presented below. Table 5.7 shows the average accuracy of the
ML algorithms in the balanced D128 dataset without taking into
account the SNARER descriptors. In addition, histograms are
depicted graphically in Figure 5.3: RF varies from a minimum of
71.1% with the use of the GAAC class to a maximum of 95.4%
with the 188D class; KNN settles between a minimum of 64.2%
with the use of GAAC to a maximum of 90% with the 188D
class; ADA varies from a minimum of 70% with GAAC to a
maximum of 90.2% trained on the 188D class. Extended classes
with SNARER descriptors shift these average ACC rates. In par-
ticular, RF varies from a minimum of 84% using the extension
with GAAC to a maximum of 95.3% with the 188D class. KNN
starts from a minimum of 65.4% with the extended GAAC class
and reaches a maximum of 88.6% with the extended 188D class.
ADA varies in a range between 84% with the GAAC.ext class
to a maximum of 90% with the combined class 188D. When
comparing the evaluated average ACCs, the SNARER class addi-
tion enhances classification performance when compared to the
GAAC, CKSAAP and CTDT feature sets, whereas the average
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ACCs for the 188D class decrease slightly. To figure out why
there has been a drop, more research should be done. The RF
algorithm, in particular, produces the best classification results.

Table 5.7: Performance of average ACC for the D128 dataset.

Accuracy

RF KNN ADA

GAAC 71.1% 64.2% 70%

GAAC.ext 84% 65.4% 84%

CTDT 73.4% 66.4% 70.3%

CTDT.ext 88% 68.7% 84.1%

CKSAAP 92.2% 72.4% 80.7%

CKSAAP.ext 92.3% 74.1% 89.4%

188D 95.4% 90% 90.2%

188D.ext 95.3% 88.6% 90%

Table 5.8: Performance for average SN and SP on the D128 dataset.

Sensitivity Specificity

RF KNN ADA RF KNN ADA

GAAC 80.1% 65.7% 74.5% 62.2% 63% 65.4%

GAAC.ext 84% 62.2% 88.6% 83.9% 69% 79.2%

CTDT 74.7% 70.4% 70% 72.2% 62.3% 70.5%

CTDT.ext 87.6% 64.7% 84.7% 88.3% 73% 83.4%

CKSAAP 89.7% 55.4% 80.2% 95% 89.4% 81.3%

CKSAAP.ext 90.1% 57% 89.5% 95% 91.2% 89.4%

188D 95.7% 89% 88.5% 95.1% 91% 92%

188D.ext 95.5% 88% 88.8% 95.1% 89.2% 91.2%

With the combinated feature sets with SNARER descriptors ,
we can see that the SN of RF algorithm grows with GAAC and
CTDT, while the SN of the other two descriptor classes remains
essentially the same (see Table 5.8). SP grows as well, exhibiting
the same pattern. For the KNN algorithm, SN decreases for the
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Figure 5.3: Comparison between GAAC, CTDT, CKSAAP and 188D
ACC with related extended classes with SNARE (on D128

dataset).

GAAC and CTDT classes by 3% and 1% for the 188D class while
it increases by 2% for the CKSAAP class. The SP of KNN instead
increases for all classes except 188D, with a decrease of about
2%. ADA improves in terms of SN on all extended classes, while
it decreases in SP by 0.8% when applied to the extended class
188D.

5.7.3 Comparison between the DUNI and the D128 datasets

Experiments on unbalanced or balanced datasets have an im-
pact on the automated learning of different ML algorithms. In
reality, it has been discovered that when tests are run on an
unbalanced dataset, more accuracy is gained because each test
sample is classified towards the majority class [190]. As a result,
using a balanced dataset for training tests can result in better
classification predictions. In the case of binary classifications, the
coefficient of correlation between the true class and the expected
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class can be calculated, dealing with them as two binary variables.
Following the introduction of the SNARER descriptors, we used
the Matthews Correlation Coefficient (MCC) [18] to compare
the DUNI and D128 datasets because the ACC computation is
susceptible to the imbalance class. In this context, we started
from the hypothesis that the proportion of correct predictions
(accuracy) are not useful when the two classes have different
sizes. In this case, the use of MCC is useful. It represents a qual-
ity measure also in cases where the datasets have different sizes.
MCC is a classification quality metric that ranges from [−1; 1].
A perfect forecast is indicated by an MCC value of 1. A perfect
negative correlation is represented by a value of -1, whereas a
value of 0 indicates that the classifier produces just a forecast
that is no better than a random one (see Equation 5.1). So, MCC
considers all four values in the confusion matrix (TP, TN, FP and
FN) and a high value (around 1) indicates that both classes are
adequately covered, even if one is disproportionately under (or
over) represented.

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.1)

Table 5.9: Comparision of MCC for the DUNI and D128 datasets.

Matthews correlation coefficient

Dataset MCC RF MCC KNN MCC ADA

GAAC.ext
DUNI 0.74 0.76 0.61

D128 0.69 0.32 0.70

CTDT.ext
DUNI 0.77 0.81 0.49

D128 0.77 0.39 0.70

CKSAAP.ext
DUNI 0.77 0.73 0.69

D128 0.86 0.53 0.80

188D.ext
DUNI 0.84 0.87 0.70

D128 0.91 0.81 0.81

In Table 5.9, the MCC metrics for RF, KNN and ADA trained
on the DUNI and D128 datasets with the extended descriptors
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classes are compared. The MCC (see Figure 5.4) of RF improves
on the balanced dataset, except for a decrease with the GAAC
discriminant features and for no change on the CTDT class. The
MCC of KNN is lowered for all combined descriptors, signifi-
cantly for GAAC, CTDT and CKSAAP. In contrast, ADA’s MCC
is significantly improved in all four conditions. As a result, we
can see how the values of MCC reflect the quality of the classi-
fier input data. Only if the classifier successfully predicted the
majority of positive data instances and the majority of negative
data instances, MCC can generate a high score. In the presence
of DUNI, which is a negatively imbalanced dataset, we have
high values in terms of ACC, SN and SP compared to the bal-
anced dataset. Since it ignores the proportion of positive and
negative items, accuracy can produce misleading values for un-
balanced datasets [31]. In Table 5.9, we showed how many MCC
values are greater when we evaluate the algorithms on a bal-
anced dataset with no positive and negative samples imbalance.
In some circumstances, MCC values remain constant, owing to
the classifier’s ability to produce accurate predictions regardless
of the ratio between classes. The MCC is lower in the case of the
KNN algorithm, which reflects the worst performance measured
by other measures.

In Table 5.10, we presented the comparison between our pro-
posed method and the literature. The method by [99] is based on
Hidden Markov Models (HMM), sequence alignment and phylo-
genetic tree reconstruction in order to classify SNARE proteins.
Nguyen et al. [107] used a model with 2D-CNN and position-
specific scoring matrix profiles, while the study of Guilin Li [111]
has suggested a hybrid model that incorporates the random for-
est algorithm, oversampling filter and the 188D feature extraction
approach. How can we see in Table 5.7, on the basis of the com-
parison between extended classes of the four descriptors, our
best results are the combination of SNARER descriptors with
CKSAAP feature on the dataset D128 with 92.3% of accuracy,
90.1% for sensitivity and 95% for specificity with the RF. Our
highest performance on the D128 dataset with SNARE descrip-
tors is achieved by the RF algorithm in combination with the
188D features. We did not consider this last result as a better
result, since there is a slight decrease in the metrics used for
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Figure 5.4: Graphic visualization of MCC for RF,KNN and ADA algo-
rithms.

performance measures when we use the extended class 188D in
comparison with not extended class 188D.

188D features include the 20 characteristics about frequencies
of each amino acid and 168 features based on using eight types of
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chemical-physical properties. These features probably strengthen
the biological properties of the proteins, allowing to reach high
levels of the tested classification algorithms. Further studies are
needed to understand the intrinsic reasons for the improvement
or decay of some parameters when using 188D features.

Table 5.10: Comparison with reference literature

Authors Methods ACC SP SN

Kloepper et al. HMM 95% - -

Nguyen et al. 2D-CNN 89.7% 93.5% 76.6%

Guilin Li 188D-RF-oversample 90-95% 95-100% 75-80%

Our methods

(highest value) RF-188D.ext (D128) 95.3% 95.1% 95.5%

(best value) RF-CKSAAP.ext (D128) 92.3% 95% 90.1%

5.8 results and discussion

In order to investigate the role of balanced and unbalanced train-
ing in the classification of SNARE proteins, we examined four
sets of protein descriptors with and without the addition of
SNARER descriptors. As a result, we compared the performance
of three machine learning algorithms (RF, KNN and ADA) on
homogeneous and heterogeneous datasets. The ACC, SN and SP
average values were used to evaluate the ML models. The per-
formance of the ML algorithms improved on both datasets when
the SNARER descriptors were extended to the feature sets em-
ployed, according to our findings. With the addition of SNARER
descriptors to the 188D class, this increase is much bigger for
RF, KNN and ADA algorithms. Our best results with the RF
algorithm and the extended class CKSAAP.ext on the balanced
and non-redundant dataset D128 are 92.3% of ACC, 90.1% for
SN and 95% for SP. The ADA algorithm profited from improved
performance on the balanced dataset when the MCC for RF, KNN
and ADA was evaluated on both datasets trained with enlarged
feature sets. KNN, on the other hand, has deteriorated in terms
of performance, except the 188D class, attaining a higher value.
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In particular, the algorithms trained on the balanced dataset yield
a better MCC, particularly for RF and much more so for ADA,
which recovers both in terms of ACC, SP and SN in all the tests
studied. In comparison to the other algorithms evaluated, KNN
appears to have lesser performance in terms of MCC.
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G O T E R M S V I S UA L I Z AT I O N

In this Chapter, we suggest a human-interaction system for view-
ing similarity data for proteins/genes of Alzheimer and Parkin-
son disease based on the three functions of the Gene Ontology

(Cellular Component, Molecular Function and Biological Pro-
cess). We start with an introduction about the importance of the
representation of multilevel data and the Gene Ontology (see Sec-
tion 6.1 and Section 6.2), then we present the related works in
this field (Section 6.3). We discuss the methods in Section 6.4 and
in particular the used similarity measures for the examined pro-
teins in Section 6.4.2. Then, the proposed system of visualization
follows in Section 6.6.

6.1 introduction

The graphical depiction of information and data is known as
data visualization. Data visualization tools make it easy to see
and analyze trends, outliers and occurrences in the data by using
visual elements like charts, graphs and maps. In the world of big
data, where data visualization tools and technologies allow you to
examine massive volumes of data, this is becoming increasingly
crucial.

In recent years, having an omic vision has become increas-
ingly important in order to characterize biological systems at
ever-more-granular levels. The purpose of omic sciences is to
produce relevant information that can be used to characterize
and comprehend biological systems [178]. We refer to genomics,
transcriptomics, proteomics and metabolomics as omic sciences,
which encompass a wide spectrum of biomolecular disciplines
distinguished by the suffix -omics. Biological information is mul-
tifaceted and extremely interconnected. The present challenge
is to provide a more detailed integrative understanding of the
dynamics of cellular processes in a cell or organism that is rich
in biological and spatio-temporal data [180]. As O’Donoghue et

95
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al. point out, the display of biological data has grown increas-
ingly important in the Biosciences because it allows researchers
to comprehend diverse data more quickly and easily [134]. One
of the most pressing problems in omic data analysis right now is
the inability to study links between multi-omic states in order to
incorporate and combine higher-level expertise [196].

Due to interclass dissimilarities and inter-class similarity [9],
protein similarity visualization that is not based on sequence
alignment might be difficult. Clustering and Machine Learning
approaches may be ineffective in extracting interdependencies
across objects [70]. This fact frequently prevents us from creating
a clear visual representation of the data.

When a typical clustering technique fails, we want to show
how a human-assisted dynamic graph construction can help
abstract functional links between proteins and provide a clear
data representation.

6.2 gene ontology

The Gene Ontology (GO) is a bioinformatics project, used for gene
enrichment analysis, that supports the standardization of bio-
logical information about attributes of genes and gene products
through the use of ontology. It is organized as an acyclic oriented
graph, with a word or strings and a unique alphanumeric code
for each GO-term [65]. The Gene Ontology is based on two types
of relationships between objects: instances and part of. All organ-
isms have three biological domains that can be thought of as
vocabularies that are structured and controlled, indicates as:

• Biological Process (BP) which refers to all the activities that
occur within an organism as a result of a well-organized
set of molecular processes;

• Molecular Function (MF) which describes the molecular pro-
cesses that take place in an organism;

• Cellular Component (CC) relates to the position of the subject
entity at the cellular and/or subcellular level.
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6.3 state of the art about protein information vi-
sualization

Several web interfaces, present in the scientific literature, may
query the Gene Ontology terms.

QuickGO enables us to locate and display GO terms, as well
as provide a list of correspondence results based on the query
of the user. A directed acyclic graph (DAG) containing a single
GO word and its associated terms and annotations is returned
by this tool. JavaScript, Ajax and HTML were used to create
it. On-the-fly statistics, including interactive graphs and views
of term placement tables, are accessible, demonstrating which
terms are commonly mentioned at the same time. The user can
get a subset of annotations based on several factors (e.g., specific
protein, Evidence Codes, Qualifier Data, Taxonomic Data, Go
Terms) [16].

GOrilla [48] detects enriched GO words in ordered lists of genes
using simple, clear and informative graphics, without needing the
user to supply specific targets or backdrop sets. It is a GO analysis
tool that uses a statistical approach with adjustable thresholds to
find GO terms that are considerably overrepresented at the top
of a gene list (very useful when genomic data can be represented
as a classified list of genes). The findings of the study are given
in a hierarchical framework, allowing for a clear view of the GO
terms.

Blast2GO is an interactive tool that facilitates functional ge-
nomic research in non-model species. It is a data-sequence-based
tool with a high level of user engagement that combines high-
performance analysis algorithms and assessment statistics. On
direct acyclic graphs, similarity searches yield results [37].

NaviGO [189] uses six different scores to assess semantic sim-
ilarity and GO associations: Resnik, Lin, the relevant semantic
Similarity score for semantic similarity, Co-occurrence Association

Score (CAS), PubMed Association Score (PAS) and Interaction As-

sociation Score (IAS). There is also a Funsim score for functional
similarity.

More recently, the open-source software AEGIS allows us to
visually explore GO data in real-time, with the whole GO dataset
as input. Any Go term can be used as the anchor, with a DAG
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representing the root, leaf, or waypoint. Each source can contain
all the descendants of the anchor term, the leaves will only have
ancestors and the waypoint anchors will contain both ancestors
and descendants.

6.4 methods

6.4.1 Dataset

For this work, we considered two diseases: Alzheimer and Parkin-

son, the two most common neurodegenerative pathologies.
Alzheimer’s disease (AD) is a form of degenerative demen-

tia that occurs after 65 years. The formation of senile plaques
and the intracellular aggregation of tau protein are associated
with the deposition of an Aβ peptide B in this disorder [46].
Parkinson’s disease (PD) is the second most common neurode-
generative condition in the elderly, characterized by neuronal
loss in the substantia nigra and the production of neuropatholog-
ical α-synuclein aggregates [144]. These pathologies show similar
neurodegeneration mechanisms supported by scientific evidence
with genetic, biochemical and molecular studies. Pathological
pathways involving α-synuclein and tau proteins, oxidative stress,
mitochondrial dysfunction, iron pathway and locus coeruleus are
among these findings [195]. They were chosen as an example
for our search workflow because their pathogenic mechanisms
are similar. Intra- and extra-class overlaps are introduced by this
feature, which can fool traditional clustering techniques.

Protein datasets for AD and PD, belonging to Homo Sapiens,
were downloaded from UNIPROT [177]. In order to remove all
duplicates, data cleaning was performed. The reference gene
for each UNIPROT ID has also been retrieved and linked to
the STRING database. The STRING database enables us to con-
sider any protein-protein interaction (PPI) based on a score de-
rived from experimental evidences [172]. We found 216 genes for
Alzheimer’s disease and 137 genes for Parkinson’s disease.
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6.4.2 Similarity Measures

To compute pairwise semantic similarities, we used two types of
metrics: Lin and Wang.

Lin’s measure is based on information content (IC). IC stands
for the negative log of a concept’s probability. The ratio between
the quantity of "common information" and the amount of "total
information" in the descriptions of an item pair is computed
using this method. The similarity of two items is represented by
this ratio [117]. In this scenario, the similarity of the knowledge
content of the GO keywords for each protein dataset, proteins
of AD and proteins of PD, may be measured using this method.
The estimation is based on the frequency of two GO words and
their nearest common ancestor in a corpus of GO annotations.
The term Least Common Subsammer (LCS) suggests the most basic
definition that two concepts share as an ancestor.

For Lin similarity, we can consider the following Equation 6.1:

simlin =
2 ∗ IC(lcs(c1, c2))

IC(c1) + IC(c2)
(6.1)

where c1 and c2 are two concepts, IC is the information con-
tent and lcs is the function that computes the least common
subsammer.

The concepts represented by the GO terms corresponding to
the BP, CC and MF domains are represented by c1 and c2 in our
experiment. For both AD and PD, the similarity is evaluated
across all proteins in the pathological reference dataset.

The Wang method is based on a graph-based semantic similarity.
By aggregating the terms of their ancestors in a GO graph, the
GO terms are turned into a numeric value [185].

Given two GO terms, A and B, we can represent DAGA = (A,
TA, EA) and DAGB = (B, TB, EB), where Tn is the set of GO terms
including the term n and all of its ancestor terms in the GO graph
while En are the semantic relations represented as edges between
the GO terms. The semantic similarity between these two terms
are calculated as in Equation 6.2:

SGO(A, B) =
∑t∈TA∩TB

SA(t) + SB(t)

SV(A) + SV(B)
(6.2)
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where SA(t) and SB(t) denote the S-value of a GO term t related
to term A and term B. Wang measures the semantic meaning of
GO term n, SV(n), after obtaining the S-values for all terms in
DAGn with the Equation 6.3, represented below:

SV(n) = ∑
t∈Tn

Sn(t) (6.3)

We explored two methods for calculating semantic similarity.
In the first scenario, we calculated the similarity between pro-

teins from Alzheimer’s disease and proteins from Parkinson’s
disease for all three ontology gene domains (BP, MF and CC). For
this purpose, we considered both Lin’s similarities and Wang’s
method but, as an example, in this work we only show the results
concerning the similarity of Lin. Subsequently, we clustered the
data obtained for both similarity measures in BPs, CCs and MFs
domains for AD and PD with the K-means algorithm, trying
with n=3 and n=5 clusters.

In the second scenario, we estimated the similarity between
the two sets of protein data of disorders about BPs, DCs and MFs
domains using the Wang and Lin methods in order to compare
these measures.

6.5 k-means visualization

K-means is a partitioning clustering technique that divides a set
of objects into K groups depending on their attributes and it is
one of the most extensively used [119]. A cluster is essentially
a collection of data that has been grouped together based on
simlarities. The division into K clusters is done a priori, based
on the goal to be achieved or using heuristic techniques and
the clusters represent the number of centroids required by the
dataset. A centroid is a real or imaginary point that symbolizes
the center of a cluster and it is modified with each algorithm
iteration. The procedure is composed by four steps:

• Step 1: determine the value of K;

• Step 2: randomly select K points as initial centers of the
clusters;
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• Step 3: assign each new point to the cluster with the closest
Euclidean distance to its center. Formally, if ci is a centroid
of the set of centroids C then each point x will be assigned
to a cluster based on the following equation (Equation 6.4):

arg min
ci∈C

dist(ci, x)2 (6.4)

where dist(.) represents the Euclidean distance;

• Step 4: recalculate the updated cluster centers by averaging
the points associated with each cluster (Equation 6.5):

ci =
1
|Si|

∑
xi∈Si

xi (6.5)

where Si is the cluster’s set of points.

Steps 3 and 4 are repeated until a convergence is attained. The
method enables fast execution while allowing the data to group
and move around freely. Due to the goal of this research, we
limited the max number of clusters to five. No PCA techniques
were used. This constraint is connected to the primary premise
that a lesser number of clusters can be beneficial for biological
scope when the concept of similarity associated with the GO is
addressed. When K is lower, the K-means allows us to save the
information but not to view it intuitively. The end user would
be unable to appropriately evaluate the results without a clear
display of the data. In order to convert such data into knowledge,
it must be represented as clearly as possible.

6.5.1 Results with k-means

Figures 6.1-6.4 report how the GO objects are partitioned regard-
ing the BP and MF features for AD and PD, with K equal to 3 and
5. The axis reports the distance between each item to its centroid.

Clustering with the K-means algorithm causes visually mis-
leading and uninformative overlaps, according to our findings.
This is related to cluster density, which involves extremely short
intra-cluster distances.



102 go terms visualization

Figure 6.1: K-means for BP for AD with Lin’s measure (K=3 on the left
and K=5 on the right).

Figure 6.2: K-means for BP for PD with Lin’s measure (K=3 on the left
and K=5 on the right).

6.6 alternative approach to visualize gene ontol-
ogy terms

We propose a dynamic build cyclic distance graph (DCDG) to visu-
alize and convey knowledge about GO terms in order to address
the problems of overlaps in visualization. Our goal is to visualize
the GO links more clearly than previous visualization approaches
such as clustering or partitioning. To allow the user to explore
this interconnectedness, we created a web-based workspace using
Javascript and SigmaJS, a JavaScript library dedicated to graph
drawing1.

The work environment is intended to be as clean as possible.
It begins as a blank web app with a single callable overlay menu
in the upper left corner that allows users to search datasets for
the entry point protein. The input datasets were the BP, CC and
MF distance matrices based on similarities of Lin and Wang.

1 SigmaJS: https://sigmajs.org
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Figure 6.3: K-means for MF for AD with Lin’s measure (K=3 on the left
and K=5 on the right).

Figure 6.4: K-means for MF for PD with Lin’s measure (K=3 on the left
and K=5 on the right).

When the entry protein is chosen, it becomes the root of the
graph. Users can right-click on any graph node to bring up a
context menu (as shown in Figure 6.5) where they can choose an
extension (explosion) action for the node.

For this contribution, we established three types of extensions,
each of which is tied to a single dataset: BP, CC and MF, whose
definitions are those specified by the three vocabularies of the
GO. On the arcs between each node pair, the distance between
them is written. The reading key for displaying protein through
the dynamic build cyclic distance graph is this value, which es-
tablishes the similarity measure. These values connect proteins,
allowing us to explore the network while considering the simi-
larity values between biological processes, molecular functions,
and cellular components. The distance value can also be used to
divide nodes into spaces. The ForceAtlas2 algorithm is used to
avoid overlapping between near nodes. In particular, we used
ForceAtlas2 embedded into SimgaJS [88].
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Figure 6.5: The contextual menu is available for each node.

For force-directed graphs, we used the layout ForceAtlas2

algorithm. Using the distances between nodes as edge weights,
this approach allows us to place each node in relation to the
others. Because of this, the position of a node must always be
compared to the positions of other nodes. Because the structural
proximity present in the original datasets is transformed to visual
proximity, the primary advantage of adopting ForceAtlas2 for
the representation of protein graphs is an easier view of the
structure.

In order to better empathize the functionality distance between
GO, we defined a spatial distance SD with the following equation
(Equation 6.6). Given two nodes, A and B and their own distance
d:

SD = loge(d) (6.6)

where d is the distance and the loge is the natural logarithm
with the number of Nepero as base. SD is solely utilized in the
rendering processes for graphical purposes. Figure 6.6 shows no
linear proportionality into edge lengths: see the distance between
(Q8IZY2, Q9BS0) and (Q93045, Q9BS0). Still, for graphical pur-
poses, we defined a threshold th_i as the mean of all the distances
into the dataset i used for node expansion. As an example, given
the node Q9BXS0 (see Figure 6.6), the threshold for the protein
Q9BXS0 is the mean of the edge’s weight between Q9BXS0 and
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the related nodes. When the distance SD between two nodes A
and B is greater than th_i, then node A and B are considered
belonging to a different cluster. A dotted line renders each class
separation. For the first prototype of the proposed method, see
the Prototype Page2.

Figure 6.6: The result of Q9BX80 expansion by BP dataset.

A symmetry (or distance) matrix in tab-separeted values (TSV)
format is required as an input. After clustering, the table of coor-
dinates between the individual proteins, displayed graphically as
dynamic dots, can be downloaded. The prototype is constantly
being modified to ensure that the user has complete control over
the visualization process.

6.6.1 Results with dynamic build cyclic distance graph

Protein data based on Lin’s computed similarity were used to
test our approaches. To construct our view of node expansion, we
used the similarity matrices related to the G9BXS0 protein and
we identify the proteins in its neighborhood. Figure 6.6 shows
the BP expansion with the DCDG view for the node G9BXS0,
a protein produced by COL25A1 gene for Homo Sapiens organ-
ism. This protein inhibits the fibrillization of β-amyloid peptide,
which constitutes amyloid plaques present in Alzheimer’s dis-
ease. It also assembles the amyloid fibrils in aggregates which
are resistant to the demerger mechanisms [55]. The DCDG view

2 https://smcovid19.org/simtest
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enables the user to see and understand proteins belonging to two
distinct BP classes: CLASS 1, which is concerned with the orga-
nization of fibrils, microtubules and cytoskeleton structures and
CLASS 2, which is concerned with many biological processes
such as signaling pathways and positive and negative regulation
of cellular and chemical complexes.

Figure 6.7 shows the successive expansion of Q8IZY2 and
Q9P0L2 proteins.

Figure 6.7: The result of Q8IZY2 and Q9P0L2 expansion by BP dataset.

Due to distances, a new class was identified by the system
(CLASS 3). In terms of biological significance, the visualization
clearly illustrates that, in comparison to prior classes, the extra
third class stresses greater participation of proteins indicated in
various biological processes. This class of proteins has a role in
broader biological regulating processes such as energy balance
and cell cycle control.

6.7 similarity between ad and pd

We considered the similarity between Parkinson’s and Alzheimer’s
diseases based on the three domains of the GO. So, we can calcu-
late the molecular function (MF) similarity, the biological process
similarity (BP) and the cellular component similarity (CC).
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We employed Wang’s method to compute semantic similarity
between the two sets of Alzheimer’s and Parkinson’s proteins,
which takes advantage of the graph structure topology for the GO.
We also estimated Lin’s similarity between AD and PD, based
on the IC of the three GO domains, to examine the differences
between these two techniques, as shown in Table 6.1. We can note
as the values are similar for both similarity measure, except for a
5% waste for BP.

Measure BP similarity MF similarity CC similarity

Wang 88.3% 91.3% 96.7%

Lin 93% 92% 96.6%

Table 6.1: Similarity values for AD and PD.

In Table 6.2, we listed the shared proteins between the two
disorders, along with their UNIPROT IDs and descriptions. We
can construct a protein network for each of the three domains
under examination based on the similarities of BP, MF and CC.
This could be in response to a request from a user for similar
proteins to be found in the function, biological process or cellular
location of a group of pathologies.

As an example, in Figure 6.8 and Figure 6.9, the BP and MF
domains of the P03886 protein, which is seen in AD and PD, are
demonstrated to be comparable. The threshold chosen for the
representation is 80%. The protein in question is highlighted in
the chord graph.

With the same threshold, we recovered the similarities between
proteins in PD and AD in Figure 6.10 and Figure 6.11 for BP and
MF.

6.8 conclusion

In many domains, graphs are the most natural approach to model
interactions between entities. The naturally dynamic nature of
such data leads to dynamic graph representations [53]. In this
work, we looked at a different technique to visualize the links be-
tween GO terms based on their information content graphically.
We have presented a human interaction-based viewing system
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UNIPROT ID Description

P03886 NADH-ubiquinone oxidoreductase chain 1

P05067 Amyloid-beta precursor protein

P09936 Ubiquitin carboxyl-terminal hydrolase isozyme L1

P10636 Microtubule-associated protein tau

P25021 Histamine H2 receptor

P37840 Alpha-synuclein

P49754 Vacuolar protein sorting-associated

protein 41 homolog

P61026 Ras-related protein Rab-10

P68036 Ubiquitin-conjugating enzyme E2 L3

P78380 Oxidized low-density lipoprotein receptor 1

Q5S007 Leucine-rich repeat serine/threonine-protein kinase 2

Q9H4Y5 Glutathione S-transferase omega-2

Q96IZ0 PRKC apoptosis WT1 regulator protein

Q00535 Cyclin-dependent-like kinase 5

Q13127 RE1-silencing transcription factor

Q13501 Sequestosome-1

Q16143 Beta-synuclein

Q92508 Piezo-type mechanosensitive ion channel

component 1

Q92876 Kallikrein-6

Table 6.2: Common proteins in AD and PD.

Figure 6.8: Similarity of BP (on left) and MF (on right) for the protein
P03886 in AD.
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Figure 6.9: Similarity of BP (on left) and MF (on right) for the protein
P03886 in PD.

Figure 6.10: Similarity of BP (on left) and MF (on right) in AD.

Figure 6.11: Similarity of BP (on left) and MF (on right) in PD.
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in particular, which allows users to have a complete omic vision
of data. For this purpose, as a GO terms visualization strategy,
we presented a distance cyclic distance graph (DCDG) to imme-
diately illustrate interconnection between elements. Using the
SigmaJS framework, the prototype was created as a web app. We
also explored the differences between the standard cluster view
and the proposed DCDG view. Because of the difficulty of over-
lapping cluster elements, it was not possible to visually recover
the information using a traditional clustering display. The display
with DCDG, on the other hand, allows for a quicker understand-
ing of the relationships that exist between the proteins based on
the similarity representative of the three GO vocabularies (Biolog-
ical Process, Cellular Component and Molecular Function). One
of the goals of our research is to determine whether a system
has well-known protein clusters, as this is a crucial topological
property for understanding the full network of connections. This
subdivision allows us to see the current protein links and provide
a tool to detect and explain why particular structural elements
are grouped at different degrees of in-depth (cellular, biological,
and molecular).



7
C O N C L U S I O N S A N D F U T U R E W O R K S

In this Chapter, we end this thesis discussing in a summary our
contributions of the research work in Section 7.1 and then we
provide some insights for future works (in Section 7.2).

7.1 summary

Over the last few years, there has been a progressive and exponen-
tial increase in the amount of biomedical data of various forms
and origins. The goal of analyzing all of this data is to better
their decoding and our understanding of the biological system.
This enables us to determine the implications of their use in the
biomedical area in order to determine their relationship to spe-
cific disorders. Simultaneously, new IT tools have been developed
that allow us to analyze biological Big Data in order to produce
novel therapies, diagnoses that are more accurate and extract
new knowledge. The ability to combine the calculating power
and analysis of IT tools with the use and interaction between the
numerous available biobanks is critical to the success of research
to discovery of diseases, pathological and functional biological
pathways, new drugs and new therapeutic applications.

In this thesis, we address two main topics in the field of biomed-
ical big data analysis: the first concerns melanoma and the second
concerns proteins. In particular, we started from the challenges
still open in both topics, studying the different approaches and
the techniques used currently.

In this contribution, we propose a scalable three-levels architec-
ture (Cloud, Fog and Edge) for a system with the aim of address-
ing the problem of conservation, training (and re-qualification)
and the problem of the distribution of models for the classifi-
cation of melanoma. Users are able to automatically create and
insert new classification models, without the need to change the
architecture. Accredited users are able to modify the training,
validation, and testing phase databases automatically. We also
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tested three deep neural networks: AlexNet, GoogleNet and In-
ception V3. Our findings also reveal that AlexNet is the most
stable network in terms of Transfer Learning. Furthermore, with-
out segmentation or data augmentation, all the CNN networks
employed improved their average accuracy. These results encour-
age further developments, especially, to reduce the number of
false positives and increase sensitivity. For the classification of
melanoma, we also explored the combination of neural networks
and genetic algorithms. These algorithms allow the paralleliza-
tion of elaboration and the achievement of results close to the
excellent in reasonable times (see Chapter 3). Despite the fact
that this strategy converges to an acceptable solution, a clearer
specification of the initial parameters of the algorithms and re-
lated genetic functions (selection, cross over and mutation) is still
required.

In the case of protein classification, it is critical to solve the
challenge of predicting tertiary structure or assigning chemical-
physical identifying features to specific proteins based on their
amino acid sequence. As a result, we presented new molecular
features to improve the quality of performance of the classifica-
tion system. Starting with this aspect, we added new features to
both the determination of the torsional angles of proteins (Chap-
ter 4) and the classification of proteins in the SNARE family (in
Chapter 5). In particular, memory-based deep neural networks
as Long short-term memory (LSTM) is used in order to inves-
tigate its performance for angles classification. In this context,
with the addition of new descriptors and the use of this network
on a reduced-size human protein dataset, we have obtained an
improvement in the mean absolute error (MAE) on the predic-
tion of the angle ψ. The results show that a gated recurrent unit
requires many instances and larger datasets can contribute to
further improvements also about the accuracy.

The realization that a biological system is more than the sum
of its components, and that its functioning cannot be mirrored
by the function of a single component sparked the development
of holistic research methods. This has aided the advancement
of the omic field, which studies the many classes of biological
components in their whole. In the approach to the study of
biological systems, in the Chapter 6 we have developed a system
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of integrating ontological data of some proteins involved in
Parkinson and Alzheimer diseases. In this example, our goal
was to improve our understanding and knowledge of biological
domains in the face of a significant amount of heterogeneous
data by displaying multilayer data in a more immediate and
interactive way.

The contributions and major achievements of this thesis can
be summarized as follows:

• a system in which the classification of the melanoma data
uses combined AI techniques typical of Computer Vision
for managing, integration, pre-processing and classification
of melanoma data. This system is based on three archi-
tectural levels, in which the cloud level manages the data
centrally, the fog level performs the services offered by the
network and the edge level performs computations at the lo-
cal level, improving resource management, interoperability,
and computing power;

• preliminary results obtained from the combination of ge-
netic algorithms and the neural network AlexNet for the
classification of melanoma;

• presentation of new molecular descriptors for the predic-
tion of the torsional angles of proteins (φ and ψ) and for
the classification of SNARE proteins;

• a new web server which allows us to introduce a more
immediate and interactive display mode of the ontology-
related protein data by similarity between the terms of the
three ontological domains of the Gene Ontology (biological
process, cellular component and molecular function).

7.2 future works

In a variety of fields, deep learning algorithms have achieved
exceptional classification performance. Parallel to the exponential
increase of Big Data, the development of mining algorithms, as
well as the creation of more performant platforms and archi-
tecture for these analyses, must be accelerated. One potential
direction for further research for melanoma classification is to
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increase the accuracy of classification systems based on neural
networks. In our work we used images of melanoma readily avail-
able, thanks to the use of smart devices of common use, bypassing
the problem of having more sophisticated tools. However, even
in this dermatological field, it is still necessary to have a broad
perspective that considers all relevant data in order to provide
an accurate diagnosis. Anamnestic data, related to the patients
and their family history, could be used to improve melanoma
classification performance. Additional clinical features can also
be extrapolated from images at the same time. As a future work
in this direction, we intend to further investigate the possible
correlations between different data, expanding analysis to other
data sources at clinical level. In this context, the heterogeneity
of multi-domain text sources can be taken into consideration
and exploited with new methods of transfer learning. Protein
classification based on related activities, structural patterns, ex-
tended gene annotations and any other multi-class task are all
possible future research topics. Other machine learning methods
can be tested to achieve this goal. Specifically, it is useful to find
new molecular descriptors that allow us to distinguish the great
protein amount produced by sequencing techniques much more
effectively. The representation and probable linkages between
numerous biological domains can be improved in order to im-
prove the omic vision of biological systems. Methods for various
algorithms of clustering, for example, may be encountered, as
well as the building of biological networks from the starting data.
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