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Introduction

This thesis is organized in two intertwined parts whose second represents the natural prosecution

of the other. In chapter one we extend a model appeared in Marra & Radice (2020) to then, in the

second, propose a variable ranking method based on the same category of model(s).

In the first chapter, we extend the copula link-based time-to-event model originally proposed

in Marra & Radice (2020) to a general censoring scheme, which includes mixtures of left-, right-

, interval- and uncensored data. Among the features of the proposed model: The possibility to

manage different mixtures of censoring; the baseline survival levels are modelled by monotonic P-

splines; margins are included via transformations (e.g., proportional hazards, proportional odds);

interactions among the covariates can be explored and splines can be applied if needed; a wide

range of copula (rotation included) are implemented and ready to use. The algorithm is based on

a computationally efficient and stable penalised maximum likelihood estimation approach, whose

added valued is the analytical derivation of the gradient and Hessian matrix (expressions in Ap-

pendix A). This last aspect dramatically improved the procedure in terms of speed and stability,

allowing any user to obtain an estimate in reasonable computational times with quantitative and

qualitative outputs. The approach is illustrated via a simulation study, as well as using data from

the Age-Related Eye Disease Study (AREDS), a multi-centered randomised clinical trial explor-

ing the development and progression of Age-related Macular Degeneration (AMD), sponsored by

the National Eye Institute. Finally, the modelling framework is incorporated into an R package

named GJRM. In the second chapter, a variable ranking procedure based on copula bivariate time-

to-event margins under right- and mixed censoring scheme is proposed. The procedure is based

on a generalisation of the RBVS algorithm (Baranowski et al., 2020). The authors have extended

the algorithm to include two sets of important variables and more importantly by proposing a new
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metric based on the Fisher information matrix. In brief, the algorithm uses subsampling to iden-

tify the sets of covariates which appear at the top of the variable ranking with a non-negligible

probability. The method discussed in the second chapter is of particular interest because there

is no such variable ranking proposal in the literature for copula bivariate time-to-event models.

Furthermore, the method permits the identification of two non-necessarily overlapping sets of im-

portant variables for each margin, with an almost zero false positive rate. The potential of the

approach is illustrated via a simulation study and an application based on a modified versione of

the AREDS dataset. Finally, the algorithm has been made available in a free repository, allowing

any practitioner to apply the method with minimal effort.



Chapter 1

Copula link-based Survival additive models

extended to a general censoring scheme

Declaration

Part of the following chapter (sections 1.2, 1.2.1, 1.2.3-1.2.8) have been used in a MSc thesis

at University College London, UK. Furthermore, part of the following chapter (1.3, 1.4)

contains content published in Copula link-based additive models for bivariate time-to-event

outcomes with general censoring scheme, Computational Statistics & Data Analysis, Danilo

Petti, Alessia Eletti, Giampiero Marra, Rosalba Radice, Volume 175, 2022, 107550, ISSN 0167-

9473, https://doi.org/10.1016/j.csda.2022.107550.

1.1 Motivation

Age-related Macular Degeneration (AMD) is an eye disease that results in blurred or even loss

of vision in the centre of the visual field. Technically, it happens when the small central portion

of the retina, called the macula, wears down (Salimiaghdam et al., 2019). AMD is currently the

leading cause of blindness in wealthy countries and the third leading cause overall. Despite being

characterised by a progressive loss of central vision, usually bilateral, degenerative maculopathy

never leads to complete blindness, which is caused by the terminal phases of retinal maculopathy.
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Among the numerous causes of blindness, maculopathy occupies a prominent place, and about

8-7% is associated with AMD (41% in wealthy countries). Recent studies confirmed that this

pathology is particularly widespread in people older than 60 years. Not to motion that its preva-

lence is likely to increase as a consequence of exponential population ageing. Although there have

been clear steps forward to counter this visual disease (e.g., anti-angiogenesis therapy, intravitreal

injections, effective treatments that can prevent blindness), the treatments are often expensive and

not available to all patients in many countries (Wong et al., 2014). AMD can be classified in the

following variants, i) exudative maculopathy, ii) senile maculopathy, iii) myopia maculopathy, iv)

diabetic maculopathy, v) cellophane maculopathy.

Exudative maculopathy can be classified into two distinct types, the dry and wet form. The

former has a slow progression (Only 10% of people with AMD develop this form), while the latter

(far more widespread) is characterised by a sudden onset of retinal haemorrhage, which causes

loss of vision. Senile maculopathy, or macular degeneration related to the patient’s age, is the

most frequent form of maculopathy, that affects 25 to 30 million people in the western world. My-

opia maculopathy is a schisis-like thickening of the retina in eyes with high myopia with posterior

staphyloma. The pathologic features may also include lamellar or full-thickness macular holes,

shallow foveal detachments, and inner retinal fluid. Estimated to affect between 9 and 34% of

highly myopic eyes with posterior staphyloma, it is more prevelant in populations with high my-

opia and may be more prevalent in women, (Panozzo & Mercanti, 2004, 2007; Baba et al., 2003).

Diabetic maculopathy happens when the blood vessels in the part of the eye called the macula

become leaky or are blocked. It is usually encountered in older non-insulin-dependent diabetics

with mainly nonproliferative diabetic retinopathy (Ivaniševic & Stanic, 1990). Cellophane macu-

lopathy is characterised by fine membranes that grow on the surface of the retina. This membrane

can distort and contort retinal structures resulting in vision being blurred and distorted. As these

membranes grows they can affect the structure of the retina, resulting in blurred and distorted vi-

sion of variable degrees. Patients may also complain of differences in the size of objects between

both eyes1

AMD, which affects the ocular system, is particularly notorious for having a tendency to man-

1 source: Kirti M Jasani’s blog

https://kirtijasani.com/what-are-epiretinal-membranes
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ifest itself without symptoms. This aspect not only makes diagnosis very difficult but also makes

prevention a huge challenge in biomedical sciences. Usually in patients affected by the disease,

blurred vision begins to manifest gradually. It is also fair to say that, when blurred vision occurs,

the condition is irreversible in most cases. This brings to light the importance of prevention in the

fight against AMD and in the development of statistical predictive tools.

Two significant aspects of the disease motivate the model formulation discussed in section 1.2:

i) the lack of symptoms in affected patients; ii) the fact that it occurs mainly in the over 60s. There-

fore, we believe that the model proposed in this chapter may actively contribute to a diagnosis of

the disease. Typically, datasets on AMD are affected by censoring (e.g., left-censoring, interval-

censoring, right-censoring and any combination of them). For this reason, we decided to extend

the model presented in Marra & Radice (2020) in such a way to accommodate a more general

censoring scheme. We recall that the content of this chapter has been published in Computational

Statistics & Data Analysis (see, Petti et al., 2022).

1.1.1 Risk Factors

There are numerous factors that over the years have proved to be dominant in the development of

AMD. The aim of this section is to discuss the main risk factors useful for predicting AMD, some

of which are included in the Age-Related Eye Disease Studies dataset (AREDS), that we used in

the analysis presented in section 1.3.2. We refer the reader to Schultz et al. (2021) for a recent

literature overview.

Starting from age, Salimiaghdam et al. (2019) and Yonekawa et al. (2015) discussed the role

played by age factors in AMD progression. Pooled data from seven population-based studies

reveal that the prevalence of geographic atrophy in the US is 0.3% in 60- to 64-year-olds, 0.5%

in 65- to 69-year-olds and 0.9% in 70- to 74-year-olds. Moreover, it is almost 7% in people 80 or

older.

Smoking seems to play a role in disease progression, especially among women. It affects

AMD progression both in active and passive smokers. The decrease in serum antioxidant levels,

caused by smoke, affects the macula which is highly sensitive to oxidative stress. Salimiaghdam
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et al. (2019) suggests that as a result of the oxidative stress generated by smoking, mitochondrial

DNA can be damaged, which induces retinal pigment epithelium degradation and contributes to

the formation of drusen. Smoking enhances atherosclerosis susceptibility and induces damage to

choroidal vessels. The choroid is the vascular layer of the eye, containing connective tissue and

lying between the retina and the sclera.

Single nucleotide metamorphisms (SNPs) are genetic variations present in the human genome

whose total number exceed 100 million, making them the most common type of genetic variation

in the world population. The abundance of SNPs allowed them to become a reference point in

studies involving sequence variations to phenotype changes. It has been proved that SNPs can be

employed to spot genes associated to a particular disease, with this directly affecting the gene’s

function. Recent studies have also confirmed their role in the molecular mechanisms of sequence

evolution. An organism’s response to certain drugs and ability to track the inheritance of disease

genes within families can be better understood by studying individual SNPs. The role of SNPs in

the study of genetic diseases has had the opportunity to consolidate in recent years.

Studies on AREDS data have demonstrated the negative impacts of genetic factors on AMD

progression (e.g., CFH, CFB, HTRA1/ARMS2). Wang et al. (2016) proved that multiple single-

nucleotide polymorphisms (SNPs) were sufficient to assess the AMD lifetime risk. This was

achieved through a new prediction model based on 25 highly associated SNPs from 15 genes.

RJ et al. (2007) discussed the association of certain SNPs to the AMD development in patients,

They successfully identified in CFH, BF-C2, PLEKHAI/ARMS2/HtrA1 genetic factors capable

of playing a dominant role in AMD prediction. Chen et al. (2006) analysed six different genetic

facotors and found differences in the association between the CFH gene and exudative AMD

in Chinese from Caucasians and Japanese, detecting SNP rs3753394, rs800292 and rs1329428

associated to a significantly increased risk for exudative AMD.

1.1.2 State of the Art

From a historical point of view, the analysis of survival emerged with the creation of life tables,

which date back to the 1600s. Since then, this approach has focused on obtaining more accurate
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tables. More modern analysis has been made possible by Aalen (1980), who adopted the theory

of martingales.

Aalen’s work not only allowed for the implementation of censored and truncated cases but also

allowed for new methodologies in both Bayesian and Frequentist statistics. In this section, we

present state-of-the-art multivariate survival models, which, during recent decades, have focused

on three main groups of models. The first model types are founded on the marginal distributions

basing their structure on the independence assumptions. Within this domain, joint and condi-

tional distributions cannot be defined. The second category concerns the frailty models, which are

mixed-effect models with a latent frailty variable applied to the conditional hazard functions. Fi-

nally, the third group refers to those based on copulas. The copula-based models directly connect

the two marginal distribution using the so-called copula function.

Regarding the first method, Kim & Xue (2002) considered a marginal approach to model the

effects of the covariates on multivariate interval-censoring survival data. To account for the de-

pendence among the survivals, they proposed a robust estimate of the covariance matrix able to

account for correlation between events. Wang et al. (2008) proposed a hazard model based on

copula function for joint survival function. Furthermore, the score and the Hessian are derived an-

alytically, which makes the implementation efficient. Chen et al. (2007) proposed a proportional

odds model in which they specify covariates with multiplicative effects on the odds function. The

authors applied the proportional odds model to multivariate interval-censored failure time data.

The authors did not consider all possible censoring. Furthermore, the authors adopted the in-

dependence assumption, emphasising that the application can be unstable when involving a low

sample size and a high percentage of censoring. Chen et al. (2014) proposed a multivariate model

when several correlated survival times of interest exist. Moreover, they focused their work only

on the interval-censoring case, and the estimation equations were derived using working indepen-

dence assumption.

As for the second method, Oakes (1982) proposed a frailty model for survival based on Clayton

(1978). A frailty model is a random effect model for time variables, where the random effect has

a multiplicative effect on the hazard function. The peculiarity of the work concerns the informa-
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tion matrix that is derived explicitly. Furthermore, the author proved that the reparameterization

successfully introduces orthogonality between the association parameter and the two-scale param-

eters. Chen et al. (2009) and Chen et al. (2014) proposed a full-likelihood approach based on

the proportional hazards model. Concerning the estimation process, an expectation-maximization

(EM) algorithm is used. In the simulation study, the algorithm works well in most situations

despite revealing limitations, including hazard rates varying considerably among different types

of failure time. Wen & Chen (2013) proposed a semiparametric maximum-likelihood estimation

for the gamma frailty Cox model under interval censoring. The authors, extending their previous

work, developed a computational algorithm utilising the self-consistency equations and contrac-

tion principle, which provides stability and efficiency to the convergence. Wang et al. (2015)

proposed a gamma frailty PH model and an EM algorithm for the estimation task. The pro-

posed algorithm is based on a three-stage process, which is easy to implement and stable in terms

of convergence. Concerning the simulation study, the authors proved that the proposed method

efficiently and quickly estimates the unknown parameters. Zhou et al. (2017) discussed a regres-

sion analysis of bivariate interval-censored failure time based on a flexible class of semiparametric

transformation models. The use of a sieve maximum-likelihood approach based on Bernstein poly-

nomials makes the model easy to implement. In addition, the authors discussed some theoretical

results as asymptotically normal and the efficiency of the estimators. Zhang (2004) investigated

the effects of possibly time-dependent covariates on multivariate failure times by considering a

broad class of semiparametric transformation models with random effects. They developed an

EM algorithm algorithm that is used for both parameter and variance estimation. The simulation

study reveals how the algorithm performed well in all situations explored in the paper, encounter-

ing no non-convergence with any simulated or empirical data sets.

The third class of models is based on the copula. One of the pioneering works for this class

of models is that of Clayton (1978). The copula function allows for modelling the association

and the dependence between two survival. This allows for the modelling of the survival marginals

and their association in a separate and highly flexible way. Cook & Tolusso (2009) proposed a

method of estimating the baseline marginal distributions and association parameters for clustered
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status based on second-order generalized estimating equations, where the model is based on the

assumption that the inspection time is conditionally independent of the underlying failure time.

Hu et al. (2017) discussed a regression analysis of bivariate status in interval censoring, and the

estimators proposed are proven to be strongly consistent, asymptotic normal and efficient. Kor

et al. (2013) used Cox’s proportional hazards model to analyse clustered interval-censored data.

The proposed model framework is more general and flexible as: i) any combination of cen-

soring types can be accommodated, ii) we can adopt a variety of copula functions, iii) the model

allows the user to specify all the model parameters as functions of flexible covariate effects via the

penalized regression spline, iv) the margin of the copula are modelled via transformations of the

survival functions. P-splines which are tractable and theoretically advantageous are employed in

modelling the baseline survival. Not to mention that the model has been tediously implemented in

R in the GJRM package.

1.2 Methodology

In this section we want to introduce some fundamental elements of the model presented in this

work. The model discussed is an extension of the methodological framework presented in Marra

& Radice (2020). For this reason the notation as well as the model specification remain consistent

with what is discussed there. In this chapter we have extended the Copula link-based time-to-

event model to a general censoring scenario, this has been achieved by writing from scratch the

likelihood function and by the analytical derivation of the gradient and the hessian matrix. Finally,

the model has been implemented in the R package GJRM.

First we will introduce in section 1.2.1, 1.2.2,and 1.2.3 the concept of survival analysis, cen-

soring and copula function. These are the fundamental building blocks on which the model is

built. Then we will discuss the proposed model in section 1.2.4 which has been already imple-

mented in the package GJRM freely available in R. In 1.2.7 and 1.2.8 we will describe the predictor

specification and the estimation procedure.

It is worth mentioning that the procedure is based on the analytical expressions of the gradient

and the Hessian of the log-likelihood associated, which have been meticulously derived by the
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author with the aim of improving not only the instability of numerical integration, but also the

computation time of these two quantities (see Appendix B and Appendix C for further discussion

about the implementation’s computational aspects and some tests that we carried out before to up-

load the package on CRAN). These quantities, as well as the full details of derivation, are presented

in detail in Appendix A.

1.2.1 Survival function

The aim of this section is to briefly discuss the survival analysis framework and introduce some

useful notation in order to make the reading of the following work as immediate as possible.

The survival function, which is commonly used to represent the probability that the time to

event of interest T is not earlier than a specified time t, is traditionally denoted as

S(t) = P (T > t) = 1− F (t) =
∫ ∞

t

f(s)ds,

where T is a continuous random variable which represents the time to event of interest. With

regard to the properties, the survival function is non negative and non-increasing, when t = 0 we

have that S(0) = 1. In other terms, at the beginning of the time under consideration, the patient is

alive with probability equals to one. Meanwhile, at time t =∞ we have that S(∞) = 0, meaning

that as the time goes to infinity the probability that no one survives is one. In mathematical

terms, as time goes to infinity, the survival curve goes to 0. The cumulative distribution function

represents the probability that the event of interest has occurred before time t. This can be denoted

as

F (t) = P (T ≤ t) = 1− S(t).

The death density function can be defined as the variation of the cumulative distribution func-

tion over a small interval of time. If F (t) is continuous, then the death density function will be

given by
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f(t) = lim
∆t→0

F (t+∆t)− F (t)
∆t

=
d

dt
F (t) = F ′(t),

while if F (t) is discrete, we can approximate the slope of the tangent line with a finite differ-

ence as follows

f(t) =
F (t+∆t)− F (t)

∆t
,

where ∆t denotes a small time interval. In survival analysis the hazard function and the cu-

mulative hazard function are usually the objects of interest. The hazard rate then can be defined

as

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
= lim

∆t→0

1

S(t)
· F (t+∆t)− F (t)

∆t
=
f(t)

S(t)
,

The hazard rate can be expressed with h(t). It is a non-negative function. It can be proved

to be monotonic and can take different shapes. Furthermore, it can be proved that the following

relationships hold

h(t) =
f(t)

S(t)
= − d

dt
S(t) · 1

S(t)
= − d

dt
[logS(t)],

with log(·) we denote the natural logarithm. Another quantity of interest is the cumulative

hazard function, traditionally denoted as H(·)

H(t) =

∫ t

0

h(s)ds,

one can simply verify that the relation S(t) = exp [−H(t)] exists between the cumulative

hazard function and the survival function. An interesting characteristic of the survival analysis

are the relationships that relate S(t), H(t),and h(t). In fact, having even one of these quantities,

we can immediately obtain the others. Using the quantities discussed so far, we can obtain the

following relationships
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h(t) = −S
′(t)

S(t)
,

H(t) = − logS(t),

S(t) = exp (−H(t)).

It is evident that the univariate case, although widely used, is completely ineffective in the

contexts in which for each patient we want to observe two different quantities, in our case t1 and

t2. The simplest way to extend the results discussed above would be to use a bivariate probability

distribution. The joint survival function can be written as

S(t1, t2) = P (T1 ≥ t1, T2 ≥ t2),

As before, S(t1, t2) can be viewed as the probability that both eyes of a given patient are

healthy respectively at t1 and t2. The marginal survival function are

S(t1) =P (T1 ≥ t1) = S(t1,−∞)

S(t2) =P (T2 ≥ t2) = S(−∞, t2),

Similarly to the univariate case, associated to each of these survival functions there is a cumu-

lative hazard function

H(t1) = − logS(t1)

H(t2) = − logS(t2).
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The joint hazard function is

h(t1, t2) = lim
∆t

P (t1 < T1 ≤ t1 +∆t, t2 < T2 ≤ t2 +∆t|T1 ≥ t1, T2 ≥ t2)

∆t2
,

this quantity can be viewed as the instantaneous risk that in the first eye the symptom occurs

at t1, while at the second one the event of interest occurs at t2 given that both had no symptoms

just before the times t1 and t2. We can also define the conditional hazard functions as

h(t1|T2 = t2) = lim
∆t1

P (t1 < T1 ≤ t1 +∆t1|T1 ≥ t1, T2 = t2)

∆t1
,

which denotes the risk for T1, given that the other failed at t2. Similarly

h(t1|T2 ≥ t2) = lim
∆t1

P (t1 < T1 ≤ t1 +∆t1|T1 ≥ t1, T2 ≥ t2)

∆t1
,

denotes the risk for T1, given that the other survived just before t2.

1.2.2 Censoring

In the following section, we are going to introduce a very common problem affecting survival

analysis, censoring. Readers unfamiliar with the following topic can consult two excellent texts

Marubini & Valsecchi (2004) or Kleinbaum & Klein (2004). The following brief introduction is

extracted from them.

One important problem in which any researcher incurs when dealing with survival analysis is

censoring. In essence, censoring occurs when we have some information about individual survival

time, but we don’t know the survival time exactly. To better understand the censoring event,

we can consider a simple example discussed in Kleinbaum & Klein (2004). Let’s consider a

leukaemia patient. She is followed until the remission which will be denoted by t2. If for a given,

but unknown, reason, the study ends while the patient is still in remission, meaning that the event

is not observed, then the patient’s survival time is considered censored. We know that for this

person, the survival time is at least as long as the period that the person has been followed, but if

the person goes out of remission after the study ends, we do not know the complete survival time.
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Figure 1.1: Types of point-censored observations. source: Leung et al. (1997)

In clinical and epidemiological studies, censoring is mainly caused by a time restriction. In

clinical trials on chronic diseases the study continues until a pre-specified time point (cut off date).

This means that the time to event is known only on those subjects whose events happened before

the cut off date. For the remaining group, it is only known that the time to event is greater then the

observation time. What has been just described takes the name of right censoring and the subjects

are called withdrawn alive from the study.

In medical and epidemiological studies the censoring mechanism usually becomes even more

complicated. Compared to the case described above, it is common to observe subjects unwilling

or unable to continue participating in the study. These subjects are usually denoted as lost to

follow-up (Marubini & Valsecchi, 2004).

Let us suppose having subjects under observation from T0 to T1 and that the censoring time

is known exactly (Figure 1.1). The solid line denotes the risk period for each subject, the line

ending with an asterisk is an occurrence of the event of interest, and the line ending with an open

point is an occurrence of an event other than the event of interest. Subject A falls within the

observation period and the time of occurrence of the event is known, no censoring here. For B the

risk starts during the observation period and the event occurs after follow-up is terminated at T1,

right censored. For C the observation is right censored as well, but the motivation is different. It

is so because an event other than the event of interest occurred during the observation period and

takes the subject out of the risk set. Subject D is an example of left-truncation. Such a problem

is common in AIDS studies when the patient is already HIV-1 seropositive prior to enrollment

and the time variable of interest is the incubation period. As for subject E, the observation is
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both left and right censored (doubly censored). Finally, in most applications there are cases where

the origin and the event both occur prior to the start of follow-up or after follow-up ends. Such

cases are represented by subjects F and G and are known as completely right and completely left

censored, (Leung et al., 1997). Finally, survival data can also be interval censored. This can occur

if a subject’s true survival time is within a certain known specified time interval. Interval censoring

incorporates both right and left censoring as special cases.

1.2.3 Copula function

In this section we are going to introduce the concept of the copula function. In this section we do

not claim to be exhaustive, the purpose is only to discuss the copula and its main properties at an

introductory level. This section is extracted from Nelsen (2006).

Intuitively, the copulas are functions that join or "couple" multivariate distribution functions

to their one-dimensional marginal distribution. In order to make the discussion coherent and

consistent, we introduce some notation. We will let R denote the ordinary real line and R̄ denote

the extended real plane R̄×R̄. A rectangle in R̄2 is the Cartesian productA of two closed intervals:

A = [x1, x2] × [y1, y2]. The vertices of the rectangle A are the points (x1, y1), (x1, y2), (x2, y1),

and (x2, y2). With DomH , we denote a subset of R̄2 and whose range, denoted with RanH , is a

subset of R.

Before properly introducing the concept of copula, it is instructive to first discuss the concept

of subcopulas. Subcopulas can be defined as a certain class of grounded 2-increasing functions

with margins; then subcopulas can be defined as copulas with domain I2. Where I2 is the unit

square I × I, where I = [0, 1]. A two-dimensional subcopula is a function C ′ with the following

properties:

1. DomC ′ = S1 × S2, where S1 and S2 are subsets of I containing 0 and 1;

2. C ′ is grounded and 2-increasing;

3. For every u in S1 and every ν in S2,

C ′(u, 1) = u and C ′(1, ν) = ν.
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Note that for every (u, ν) in DomC ′, 0 ≤ C ′(u, ν) ≤ 1, so that RanC ′ is also a subset of I. A

two-dimensional copula is a 2-subcopula C whose domain is I2. Or equivalently the definition just

enunciated can be restated as: A copula is a function C from I2 to I with the following properties:

1. For every u, ν ∈ I

C(u, 0) = 0 = C(0, ν),

and

C(u, 1) = u and C(1, ν) = ν.

2. For every u1, u2, ν1, ν2 ∈ I such that u1 ≤ u2 and ν1 ≤ ν2,

C(u2, ν2)− C(u2, ν1)− C(u1, ν2) + C(u1, ν2) ≥ 0.

The distinction between copula and subcopula may appear to be a minor one, but it is of

fundamental importance in Sklar’s theorem, which is one of the milestone theorems concerning

copula theory.

We can now provide the definition of n-copula and then state and discuss Sklar’s theorem.

Let X1, . . . , Xn be n ≥ 2 random variables with Fn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

their joint cumulative distribution function and Fi(xi) = P (Xi ≤ xi) the marginal cumulative

distribution function associated to random variable i = 1, . . . , n. Let I = [0, 1] be the unit interval

and In = [0, 1]n be the unit n-cube.

An n-dimensional copula is an n-place real function C : In → I which satisfies the following

conditions

1. C(1, . . . , 1, xm, 1 . . . , 1) = xm ∀m = 1, . . . , n ∀xm ∈ I;

2. C(x1, . . . , xn) = 0 if ∃m = 1, . . . , n s.t. xm = 0;

3. C is n-increasing;

From the definition stated it follows that there is a single unique 1-copula and that it is the

identity function on I.
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An important result reported in Sklar (1973) is what is known as Sklar’s theorem. This theorem

defines the role that copulas play in the relationship between multivariate distribution functions

and their univariate margins.

Theorem 1. Let Fn(·) be the joint CDF with margins F1(·), . . . , Fn(·). There then exists a copula

C such that for all (x1, . . . , xn) ∈ Rn

Fn(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If Fi(·) for i = 1, . . . , n are continuous then C is unique, otherwise C is uniquely determined on

Ran(F1)×, . . . ,×Ran(Fn), where Ran() represents the range of the function given as argument.

Conversely. If C is a copula and F1(·), . . . , Fn(·) are CDFs, then the function Fn(·) defined

above is a joint CDF with margins F1(·), . . . , Fn(·).

Finally, we can introduce the survival copulas so as to make clear the connection between the

theory of copulas and the model presented in this work. Without loss of generality, we will refer

to the 2-copula case, which in the following will be simply referred to as copula. Let S(t1, t2) =

P (T1 > t1, T2 > t2) be the joint survival function of the two random variables T1 and T2. The

margins of S(t1, t2) are S(t1,−∞) and S(−∞, t2) which are the univariate survival functions S1

and S2. Using Sklar’s theorem we can define a relationship between univariate and join survival

functions, after some algebraic manipulation it can be shown that.

S(t1, t2) = 1− F1(t1)− F2(t2) + F (t1, t2)

= S1(t1) + S2(t2)− 1 + C(F1(t1), F2(t2))

= S1(t1) + S2(t2)− 1 + C(1− S1(t1), 1− S2(t2)),

where it has been used the Sklar’s theorem for the second to last equality. We can thus define

a function.

Ĉ(u, ν) = u+ ν − 1 + C(1− u, 1− ν),
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which enables us to rewrite the survival as

S(t1, t2) = Ĉ(S1(t1), S2(t2)),

It is immediate to verify that Ĉ : I2 → I and that it verifies the point 1-3 of the definition of

copula functions given above. It follows that Ĉ is a copula, which is often referred to as a survival

copula. By definition Ĉ couples the joint survival function to its univariate margins in a manner

completely analogous to the way in which a copula connects the joint distribution function to its

margins (Nelsen, 2006).

1.2.4 Model formulation

Let us consider the case of bivariate-censored data. For each individual i, let (C1i, C2i) be a

vector of bivariate censoring times which by assumption is assumed to be independent of the

pair of survival times (T1i, T2i) that are conditioned on a generic xi, which is the vector of non-

informative covariates. We observe (Y1i, Y2i) = (min{T1i, C1i} ∈ R+,min{T2i, C2i} ∈ R+) and

the corresponding vector of censoring indicator {δl1i , δl2i}ni=1. Let also δ ∈ RW be a generic vector

of parameters of dimension W , and i = 1, 2, . . . , n where n represents the sample size.

Let T1i and T2i have conditional marginal survival functions generically defined as:

Sν(tνi|xνi;βν) = P (Tνi > tνi|xνi;βν) ∈ (0, 1) for ν = 1, 2 and conditional joint survival func-

tion expressed as: S(t1i, t2i)|xi; δ) = P (Ti1 > t1i, T21 > t2i|xi; δ). We then assume that T1i and

T2i are linked by a copula function expressed with the following formulation

S(t1i, t2i|xi; δ) = C(S1(t1i|x1i;β1), S2(t2i|x2i;β2);m{η3i(x3i;β3)}),

where δT = (βT1 ,β
T
2 ,β

T
3 ), x1i,x2i, and x3i are vectors of covariates (they can all be equal

to xi but not necessarily ). We define the coefficient vectors as β1,β2, and β3 with respective

dimensions of W1,W2 and W3 such that W = W1 +W2 +W3, the copula function can be defined

as C : (0, 1)2 → (0, 1) is a uniquely defined 2-dimensional copula function with coefficient

θi = m{η3i(x3i;β3)} capturing the (possibly varying) conditional dependence of (T1i T2i) across
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observations (see, e.g., Marra & Radice (2017); Patton (2006), Sklar (1973)), η3i(x3i;β3) ∈ R

is a predictor which includes a generic additive covariate effect, and m is an inverse monotonic

differentiable link function which ensures that the dependence parameter lies in a proper range.

We can observe this from Table 1.1 at page 27. The table refers to the package GJRM in which the

presented model has been implemented. The margins are modelled using generalized survival

or link-based models (Liu et al., 2018; Royston & Parmar, 2002). That is, Sν(tνi|xνi;βν) is

defined as Gν{ηνi(tνi,xνi;βν)}, where Gν is an inverse link function and the additive predictor

ηνi(tνi,xνi;βν) ∈ R, for ν = 1, 2, must include the baseline function of time or, as discussed

in Marra & Radice (2020), a stratified set of functions of time, It is evident taking attention to

the notation used. The set up used for the additive prediction is discussed in detail in the next

section. It may not be immediate to understand the magnitude of the association between T1i and

T2i from the knowledge of θ. In such a situation, the Kendall’s τ , which takes values in [−1, 1],

can be employed. The above construction shows that the copula framework allows us to model

jointly the survival function from the knowledge of the marginal survival function and with the

help of a function C that binds them together. The model and derived expressions presented in

Appendix A have been implemented in GJRM with the possibility of using the counter-clockwise

rotated versions of coupulae, such as Clayton, Gumbel and Joe. These can be obtained using the

following expressions:

C90 = p2 − C(1− p1, p2)

C180 = p1 + p2 − 1 + C(1− p1, 1− p2)

C270 = p1 − C(p1, 1− p2),

The subscript denotes the degree of rotation, p1 and p2 are margins and θ has been dropped to

simplify the notation. More details on copulae and their theoretical foundation can be found in

Nelsen (2006). FunctionGν{ηνi(tνi,xνi;βν)} can e specified as showed in Table 1.2 The marginal
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cumulative hazard functions Hν and hν for ν = 1, 2, are given by

Hν(tνi|xνi;βν) = − log[Gν{ηνi(tνi,xνi;βν)}],

and

hν(t|xνi;βν) = −
G′
ν{ηνi(tνi,xνi;βν)}
Gν{ηνi(tνi,xνi;βν)

∂ηνi(tνi,xνi;βν)

∂tνi
, (1.1)

The joint function can be defined in a similar way.

1.2.5 Predictor specification

This section introduces some details on the set up of the three model’s predictors. The main

difference between ηνi(tνi,xνi;βν) for ν = 1, 2 and η3i(x3i;β3) is that the first two must include

smooth functions of time. Apart from that, the design matrix setup is the same across the three

additive predictors since tνi can be treated as a regressor. Let us consider a generic ηνi (ν =

1, 2, 3), where the dependence on the covariates and the parameters is momentarily dropped, and

an overall covariate vector zνi made up of xνi as well as tνi when ν = 1, 2. For simplicity,

the dimensions of z1i and z2i are assumed to be W1 and W2 since t1i and t2i can be treated as

covariates.

The indisputable advantage of using additive predictors lies in the fact of being able to use

different types of covariate effects. Furthermore, these effects do not need constraints regarding

their forms to be applied (Wood, 2006). However, note that the additive assumption here involves

that not all the interaction terms among covariates may be included in the predictor (e.g. Hastie &

Tibshirani, 1993; Ruppert et al., 2003). An additive predictor can be defined as

ηνi = βν0 +
Kν∑
kν=1

sνkν (zνkν i), i = 1, . . . , n, (1.2)

where βν0 ∈ R is an overall intercept, zνkν i denotes the kthν sub -vector of the coplete vector

zνi and the Kν functions sνkν (zνkν i) are the generic effects which are chosen according to the type

of covariates considered. Each sνkν (zνkν i) can be represented as a linear combination of Jνkν basis

functions bνkνjνkν (zνkν i) and regression coefficients βνkνjνkν ∈ R, that is (Wood, 2017).
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Copula C(p1, p2, θ) Range of θ Link Kendall’s τ

AMH ("AMH") p1p2
1−θ(1−p1)(1−p2) θ ∈ [−1, 1] tanh−1(θ) − 2

3θ2
{θ + (1− θ)2

log(1− θ)}+ 1
Clayton ("CO") (p−θ1 + p−θ2 − 1)−1/θ θ ∈ (0,∞) log(θ) θ

θ+2

FGM ("FGM") p1p2{1 + θ(1− p1)(1− p2)} θ ∈ [−1, 1] tanh−1 (θ) 2
9
θ

Frank ("F") −θ−1 log{1 + (exp{−θp1} − 1)
(exp {−θp2} − 1)/(exp {−θ} − 1)} θ ∈ R\{0} - 1− 4

θ
[1−D1(θ)]

Gaussian ("N") Φ2(Φ
−1(p1),Φ

−1(p2); θ) θ ∈ [−1, 1] tanh−1 (θ) 2
π
arcsin(θ)

Gumbel ("GO") exp [−{(− log p1)
θ θ ∈ [1,∞] log(θ − 1) 1− 1

θ

+(− log p2)
θ}1/θ]

Joe ("JO") 1− {(1− p1)θ + (1− p2)θ θ ∈ (1,∞) log(θ − 1) 1 + 4
θ2
D2(θ)

−(1− p1)θ(1− p2)θ}1/θ
Plackett ("PL") (Q−

√
R)/{2(θ − 1)} θ ∈ (0,∞) log (θ) -

Student-t ("T") t2,ζ(t
−1
ζ (p1), t

−1
ζ (p2); ζ, θ) θ ∈ [−1, 1] tanh−1 (θ) 2

π
arcsin (θ)

Table 1.1: In this table are defined the different copulae functions implemented in GJRM, with corresponding parame-
ter ranges of association parameter θ, and relations between Kendall’s τ and θ. Φ2(·, ·; θ) denotes the cumulative distri-
bution function (cdf) of a standard bivariate normal distribution with correlation coefficient θ, and Φ(·) the cdf of a uni-
variate standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the cdf of a standard bivariate Student-t distribution with
correlation θ and fixed ζ ∈ (2,∞) degrees of freedom, and tζ(·) denotes the cdf of a univariate Student-t distribution
with ζ degrees of freedom. D1(θ) =

1
θ

∫ θ

0
t

exp (t)−1dt is the Debye function and D2(θ) =
∫ 1

0
t log (t)(1− t)

2(1−θ)
θ dt.

Quantiles Q and R are given by 1 + (θ − 1)(p1 + p2) and Q2 − 4θ(θ − 1)p1p2, respectively. The Kendall’s τ for
"PL" is computed numerically as no analytical expression is available. Argument BivD of gjrm() in GJRM allows
the user to employ the desired copula function and can be set to any of the values within brackets next to the copula
names in the first column. For Clayton, Gumbel and Joe, the number after the capital letter indicates the degree of
rotation required: the possible values are 0, 90, 180 and 270.

Model Link g(S) Inverse link g−1(η) = G(η) G′(η)

Prop.hazards ("PH") log{− log(S)} exp{− exp(η)} −G(η) exp(η)
Prop.odds("PO") − log(S/(1− S)) exp−η

1+exp(−η) −G2(η) exp(−η)
probit("probit") -Φ−1(S) Φ(−η) -ϕ(−η)

Table 1.2: In this table are shown the link functions implemented in GJRM. Argument margins of gjrm() in GJRM
allow the user to define the desired marginal models and can be set to any of the values within brackets next to the
models’ names in the first column. Φ and ϕ are the cumulative distribution and density functions of a univariate
standard normal distribution. The first two functions are typically known as log-log and -logit links, respectively.
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Jνkν∑
jνkν=1

βνkνjνkν bνkνjνkν (zνkν i). (1.3)

The above formulation implies that the vector of evaluations
{
sνkν (zνkν1), . . . , sνkν (zνkνn)

}T
can be written as Zνkν βνkν with βνkν = (βνkν ,1, . . . , βνkνJνkν )

T and the design matrix Zνkν [i, jνkν ] =

bνkνjνkν (zνkν i). This allows the predictor in equation (1.2) to be written as

ην = βν01n +Zν1βν1 + · · ·+ZνKνβνkν , (1.4)

where 1n is a n-dimensional vector made up of ones. Equation (1.4) can be also be written in a

more compact way as ην = Zνβν , where Zν = (1n,Zν1, . . . ,ZνKν ) and βν = (β0,β
T
ν1, . . . ,β

T
νKν

)T .

Each βνk is associated to a quadratic penalty λνkνβ
T
νkν

Dνkνβνkν , whose role is to enforce

specific properties of the kthν function, such as smoothness. Note that the Dνkν only depends

on the choice of the basis functions. Smoothing parameter λνkν ∈ [0,∞) controls the trade-

off between fit and smoothness, and has an essential role in determining the shape of the es-

timated smooth function ŝνkν (zνkν i). The overall penalty can be defined as βTνDνβν , where

Dν = diag(0, λν1Dν1, . . . , λνkνDνkν ). Finally, smooth functions are typically subject to cen-

tering constraints (see Wood (2017) for more details).
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1.2.6 Penalized likelihood

In the case of bivariate censoring, there are sixteen possible combinations of censoring to deal with

in the log-likelihood. Despite the length of the expression, it has an great advantage, its additive

nature. Each component can be treated independently from the other, meaning that the model can

be adapted to any type of dataset the user has to deal with. Let Tvi denote the true event time, for

v = 1, 2. In the case of censoring, Tvi is only known to lie within the interval (Lvi, Rvi), where

Lvi and Rvi represent left and right censoring times. If Lvi = 0 then the ith observation for the v

margin is defined as left-censored. When Rvi =∞, the observation is classified as right-censored.

If Lvi and Rvi take on finite distinct non-zero values then the observation is interval-censored.

Exact observations relate to the case Lvi = Rvi. Since we are dealing with a bivariate response,

there will be sixteen possible censoring combinations to account for; these can be characterised

through the indicator functions γUvi
= 1{Tvi=lvi=rvi} and γIvi = 1{Tvi∈(lvi,rvi)

} which take a value

of one when a give observation is Uvi (uncensored) or Ivi (interval-censored). Let us assume that

a random i.i.d. sample {(l1i, r1i, l2i, r2i, γI1i , γU1i
, γI2i , γU2i

, xi)}ni=1 is available, that there are no

competing risks and that censoring is independent and non-informative conditional on xi. Using a

simplified notation to avoid clutter, the log-likelihood function can be written in an elegant way as

ℓ(δ) = γU1i
γU2i

n∑
i=1

log f(t1i, t2i) + γI1iγI2i

n∑
i=1

logP (T1i ∈ (l1i, r1i], T2i ∈ (l2i, r2i]) (1.5)

+ γU1i
γI1i

n∑
i=1

log

[ r2i∫
l21

f(t1i, y)dy

]
+ γI1iγU1i

n∑
i=1

log

[ r1i∫
l1i

f(y, t2i)dy

]
.

The case of interval censoring incorporates both right and left censoring. So, if the ith observation

for the v margin is right-censored then rvi = ∞. If it is left-censored then lvi = 0. The reader

is referred to Appendix A for the more explicit version of the log-likelihood. The likelihood is

constructed in such a way as to take into account all possible combinations of censoring. The

notation ηνi stands for ηνi(yνi,xνi;βν). The terms {(U1i, U2i), (U1i, R2i), (R1i, U2i), (U1i, L2i),

(L1i, U2i)} involve ∂ηνi/∂yνi (ν = 1, 2) which can be calculated using z′νiβν and must be positive
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to ensure that the hazard functions are positive. For the complete derivation of the presented

likelihood, we refer the reader to Appendix A, where starting from the definition of bivariate

probability, each piece is derived by developing all the theoretical steps necessary to arrive at the

final result.

To this end, we model the time effects using B-splines with coefficients constrained such that

the resulting smooth functions of time are monotonically increasing. Specifically, let sν(yνi) =∑Jν
jν=1 γνjνbνjν (yνi) where the bνjν are B-spline basis functions of at least second order built over

the interval [a,b], based on equally spaced knots, and γνjν are spline coefficients. A sufficient

condition for s′ν(yνi) ≥ 0 over [a, b] is that γνjν ≥ γνjν−1 ∀j (e.g. Leitenstorfer & Tutz, 2007).

Such condition can be imposed by re-parametrizing the spline coefficient vector so that γν =

Σνβν , where βTν = (βν1, . . . , βνjν ), βTν = (βν1, exp (βν2), . . . , exp (βνjν )) and Σν [tν1, tν2] = 0

if tν1 < tν2 and Σν [tν1, tν2] = 1 if tν1 ≥ tν2, with tν1 and tν2 denoting the row and the column

entries of the respective matrix. When setting up penalty term we penalize the square differences

between adjacent βνjν , starting from βν2, using Dν = D∗T
ν D∗

ν where D∗
ν is a (Jν − 2)× Jν matrix

made up of zeros except that D∗
ν [tν , tν + 1] = −D∗

ν [tν , tν + 2] = 1 for tν = 1, . . . , Jν − 2 (Pya &

Wood, 2015). Matrix Σν can be absorbed into Zν .

The proposed model allows for a high degree of flexibility in modeling data. If an unpenalized

approach is employed to estimate δ then the resulting smooth function estimates are likely to be

unduly wiggly (Ruppert et al., 2003). To prevent overfitting we maximise

ℓp(δ) = ℓ(δ)− 1

2
δTSδ, (1.6)

where ℓp is the penalized log-likelihood, S = diag(D1,D2,D3), Di i = 1, 2, 3 are overall

penalties which contain λ1, λ2, λ3, and λν = (λν1, . . . , λνKν )
T . The smoothing parameter vectors

can be collected in the overall vector λ = (λT1 ,λ
T
2 ,λ

T
3 )

T .

1.2.7 Estimation δ

As it can bee seen from the formulation of the likelihood shown above, it is made up of sixteen

main components. This because of the right, left and interval-censoring. This makes the struc-
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ture of the score vector and Hessian matrix more involved and lengthy to compute analytically

compared to the case of right-censoring only.

For this work, the entire analytical formulations were derived and implemented in the package

GJRM. However, the time spent in the derivation and for the implementation of these quantities

paid off. In fact, as can be appreciated in Appendix B, this procedure has made it possible to

considerably reduce the time required for fitting, respective to the numerical integration.

The structure of the gradient and the Hessian matrix is made even more complicated by the

non-linear dependence of γν on the coefficients contained in βν that correspond to the B-spline

bases of yνi. This particular aspect creates the need to take into account terms like ∂2ηνi(yνi,xνi;βν)
∂yνi∂βν

=

z
′T
νiEν and ∂ηνi(yνi,xνi;βνi)

∂βν
= zTνiEν , where Eν is a vector such that Eν [νkνjνkν ] = 1 is β̃νkνjνkν =

βνkνjνkν and exp (βνkνjνkν ) otherwise. Furthermore, the non-linear dependence of γν on βν makes

the optimisation problem more difficult than in the case of unconstrained B-spline coefficients.

Preliminary experimentation revealed that the use of various optimisation schemes (Marra &

Radice, 2020), including those based on derivative free and quasi-Newton methods, is generally

problematic, even with more simple model specifications. Marra & Radice (2020) found that

several gradient and Hessian components are poorly approximated by the numerical differentiation

techniques. To make the fitting problem easier to deal with, we also experimented with a two-stage

estimation approach as often seen in several copula contexts. In this case, the estimation of the

marginal models and of the copula function is carried out in two separate steps; the use of a

two-stage algorithm resulted in inefficient and (on occasion) unstable computations as compared

to the joint approach. Eventually, we opted for a simultaneous estimation approach based on

fully analytical first and second order derivatives. In practice, this was implemented using a trust

region algorithm which was found to be efficient and well suited for the problem at hand. For

a more detailed discussion of the topic, we refer the reader to Marra & Radice (2020), where

Supplementary Material C reports some simulation-based evidence of the method’s performance.

Holding λ fixed at a vector of values and for a given δ[a], where a is an iteration index, we

maximise the equation (1.6) using
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δ[a+1] = δ[a] + argmin
e:||e||≤∆[a]

ℓ̆p(δ
[a]), (1.7)

where ℓ̆p
[a]

= −{ℓp(δ[a])+eTgp(δ
[a])+ 1

2
eTHp(δ

[a])e}, gp(δ[a]) = g(δ[a])−Sδ[a] and Hp(δ
[a]) =

H(δ[a]) − S. Vector g(δ[a]) consists of g1(δ
[a]) = ∂ℓ(δ)

∂β1

∣∣∣∣
β1=β

[a]
1

, . . . ,g3(δ
[a]) = ∂ℓ(δ)

∂β3

∣∣∣∣
β3=β

[a]
3

,

the Hessian matrix has elements H(δ[a])o,h = ∂2ℓ(δ)

∂βo∂βT
h

∣∣∣∣
βo=β

[a]
o ,βh=β

[a]
h

where o, h = 1, 2, 3, ||.||

denotes the Euclidean norm, and ∆[a] is the radius of the trust region which is adjusted through the

iterations. The first line of (1.7) uses a quadratic approximation of −ℓp about δ[a] (the so-called

model function) in order to choose the best e[a+1] within the ball centered in δ[a] of a radius ∆[a],

the trust region. Note that, near the solution, the region method typically behaves as a classic

Newton- Raphson unconstrained algorithm (e.g. Nocedal & Wright, 2006). The expressions of

g(δ) and H(δ) are very tedious (due to censoring and the non-linear dependence of γν on βν)

and have been analytically and modularity derived for all choices reported in Tables 1.1 and 1.2.

Modularity here means that it is easy to extend our algorithm to other parametric copulae and

marginal link functions.

1.2.8 Estimation of λ

As argued in Marra & Radice (2017), automatic multiple smoothing parameter estimation in the

context of complex joint models is more successfully achieved if the smoothing criterion is based

on g(δ) and H(δ).

For notation convenience, let us denote g
[a]
p , g[a], H[a]

p and H[a] the shorthand notations for

gp(δ
[a]), g(δ[a]), Hp(δ

[a]) and H(δ[a]) defined in the previous section. Let us first express the

parameter estimator in terms of gradient and Hessian. The procedure is as follows. A first order

Taylor expansion of g[a+1]
p about δ[a] yields 0 = g

[a]
p ≈ g

[a]
p + (δ[a+1] − δ[a])H

[a]
p . We then have

0 = g
[a]
p + (δ[a+1] − δ[a])(H[a] − S) which leads to δ[a+1] = (−H[a] + S)−1

√
−H[a]M[a], where

M[a] = µ
[a]
M + ϵ[a], µ[a]

M =
√
−H[a]δ[a] and ϵ[a] =

√
−H[a]

−1
g[a], The square root of −H [a] and its

inverse are obtained by the eigen-value decomposition. From likelihood theory, ϵ ∼ N(0, I) and

M ∼ N(µM , I) where I is an identity matrix, µM =
√
−Hδ0 and δ0 is the true parameter vector.



1.2 METHODOLOGY 33

The predicted value vector for M is µ̂M =
√
−Hδ̂ = AM, where A =

√
−H(−H+S)−1

√
−H.

The main aim here is to estimate λ so that the smooth terms’ complexity which is not supported

by the data is suppressed. Therefore, we use the following criterion.

E
(
||µM − µ̂M ||2

)
= E

(
||M −AM ||2

)
− n̆+ 2tr (A) , (1.8)

where n̆ = 3n and tr (A) is the number of effective degrees of freedom of the penalized model.

In practice, λ is estimated by minimising an estimate of (1.8)

|| ̂µM − µ̂M||2 = ||M−AM||2 − n̆+ 2tr (A) . (1.9)

The RHS of (1.9) depends on λ through A while M is associated with the un-penalized part of

the model. Note that (1.9) is approximately equivalent to the Akaike information criterion (AIC,

Akaike (1973)), as shown at the end of this section. This means that λ is estimated by minimising

what is effectively the AIC with the number of parameters given by tr (A). Holding the model’s

parameter vector value fixed at δ[a+1], we solve problem

λ[a+1] = argmin
λ
||M[a+1] −A[a+1]M[a+1]||2 − n̆+ 2tr

(
(A[a+1])

)
, (1.10)

using the automatic stable and efficient computation routine by Wood (2003). This approach is

based on Newton’s method and can evaluate in an efficient and stable way the components in

(1.10) and their first and second derivatives respect to log(λ) (since the smoothing parameters can

only take positive values).

The methods of estimating δ and λ are iterated until the algorithm satisfies the criterion

|ℓ(δ[a+1])−ℓ(δ[a])|
0.1+ℓ(δ[a+1])

≤ 1e-07. The selection of starting values is crucial, as in the majority of opti-

misation problems.

In this case, values for the marginal models are obtained by employing the gamlss() func-

tion within GJRM. An initial value for the copula parameter is obtained by using a transformation

of the empirical Kendall’s association between the responses.
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1.3 Simulation study and Case study

1.3.1 Simulation Study

In this section, we are going to discuss in detail the main findings of the simulation study carried

out on the model structure proposed. The margins in this section will be denoted as Tνi, ν = 1, 2.

The first margin T1i was generated from a proportional hazards (PH) model defined as T1i =

log[− logS10(t1i)] + β11z1i + s11(z2i) where S10i(t1i) = 0.9 exp (−0.4t2.51i ) + 0.1 exp (−0.1t1i).

In the formulation expressed above we can note that for the covariate z2i has been applied a

smooth function. Time T2i was generated from a proportional odds (PO) model defined as

T2i = log

[
{1−S20(t2i)}
S20(t2i)

]
+ β21z1i + β22z3i where S20(t2i) = S10(t2i) = 0.9 exp (−0.4t2.51i ) +

0.1 exp (−0.1t1i). The random censoring were obtained through uniform distributions so that

censoring rates were about 42% and 33% for the first group of simulation and 75% and 50% for

the second one. Observations were generated using the Brent’s univariate-finding root. The two

survival times were joined using a Clayton copula C0 where the predictor for the dependence

parameter was specified as η3i = β31z1i + s31(z2i). The specification of η3i allowed the depen-

dence to vary across the observations. In practice this was achieved using the conditional sampling

approach. The setup of η3 allowed dependence to vary across observations, with Kendall’s τ val-

ues ranging approximately from 0.10 to 0.90. The smooth functions were s11(zi) = sin(2πzi),

s31 = 3 sin(πzi). The parameters were defined as β11 = −1.5, β21 = β22 = 1.2, β31 = −1.5.

The correlation structure among the covariates was generated using multivariate normal distribu-

tion with a correlation parameter ρ = 0.5, and then transformed using the distribution function

of a standard normal distribution. As concern the covariate z1i, this was rounded to obtain a di-

chotomous random variable. The random censoring times were generated using the lower and

upper bounds from two uniform random variables. Specifically, this was achieved by comparing

such bounds with the simulated times. Uncensored observations were obtained from a subset of

the interval- and left-censored observations, using a binomial random variable. Table 1.3 shows

the censoring rates for two scenarios: mild and high censoring. In the former case, the overall

percentage of censoring for the two outcomes is 62.86% and 44.98%, and in the latter we have
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84.82% and 77.13%.

The sample sizes were set up at 1000, 1500, 2000. An example of a simulation study with

n = 300 is discussed in Petti et al. (2022) Supplementary Material D. While the number of

replicates to 1000. The models were fitted using gjrm() in GJRM using all the marginal links and

copulae presented in Tables 1 and 2. The smooth components of the covariates were represented

using penalized low rank thin plane splines with second order penalty and 10 basis function,

and smooths of times using monotonic penalized B-splines with penalty and 10 basis. For each

replicate, curve estimates were constructed using 200 equally spaced fixed values in the (0,8) for

the monotonic functions and (0,1) otherwise.

Mild High
II 2.29 9.01
IL 2.81 10.14
IR 1.15 2.09
IU 7.95 6.04
LI 1.60 5.47
LL 2.38 8.18
LR 0.48 0.86
LU 5.70 4.53
RI 6.46 11.98
RL 7.54 13.70
RR 4.15 4.15
RU 20.35 8.67
UI 6.06 4.58
UL 7.62 5.85
UR 2.44 1.12
UU 21.02 3.63

I L R U
Mild cens1 14.20 10.16 38.50 37.14

cens2 16.41 20.35 8.22 55.02
High cens1 27.28 19.04 38.50 15.18

cens2 31.04 37.87 8.22 22.87

Table 1.3: Proportions of censoring rates by type, for two scenarios: mild and high censoring. These have been
obtained by averaging the censoring rates obtained over 1000 simulated datasets. Source: Petti et al. (2022)

The main findings of the simulation study are:

• Parametric effects: Figures 1.2 and 1.3 show that the bias and the variability computed

across different sample sizes is very low for all the parameters estimated. Both the bias
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and the variability seem to decrease as the sample size increase. The β31(z1i) (the effect

of z1i contained in the additive predictor of the copula parameter) under the same sample

size resulted to be the more variable. In (Marra & Radice, 2020) it is discussed how the

profile likelihood tends to be less sharp around the optimum. This difficulty in estimating

the dependence parameter is discussed in (Romeo et al., 2018) and reference therein who

found the same difficulty in the estimation procedure.

• Smooth effects: Figures 1.4 and 1.5 with Tables 1.4 and 1.5 show that the true smooth

functions are recovered well by the estimation method employed. Moreover, the results, in

terms of bias and RMSE, improve as the sample size increases. The estimation of s31(z1i) is

more challenging, doubling the sample size we observe a decrease in RMSE of 91% (mild

censoring scenario) and 99% (high censoring scenario)

• Impact of censoring rates: From Figures 1.2 and 1.3 we can appreciate the impact of cen-

soring on the estimation performance. The impact of high censoring affects mainly the

estimation variability. The most effected are the copula’s additive predictor. These results

can be explained by the fact that as the censoring rates increase less and less observations

contribute to the corresponding piece of the likelihood. As for β31, passing from n = 1000

to n = 2000 we observe a decrease in terms of RMSE of 50% (mild censoring) and 99%

(high censoring). As for the convergence rate, in all the simulations carried out it has always

been greater than 90%.
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Figure 1.2: Linear coefficient estimates obtained by applying gjrm to bivariate survival data with mild censoring rates
(about 42% and 33% for the two responses). Circles indicate mean estimate, bars are the estimates’ range (5%-95%
quantiles). True values are represented by black solid lines. Black circles and vertical bars refer to the results obtained
for n = 1000, in dark grey and light grey are represented respectively the results for n = 1500 and n = 3000. Source:
Petti et al. (2022)

Bias RMSE
n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

β11 0.008 0.004 0.009 0.082 0.072 0.063
β21 0.003 0.008 0.011 0.124 0.104 0.088
β31 -0.038 -0.031 -0.031 0.209 0.161 0.139
h10 0.040 0.034 0.028 0.154 0.115 0.110
h20 0.026 0.018 0.015 0.144 0.115 0.104
s11 0.021 0.016 0.014 0.073 0.058 0.050
s31 0.087 0.060 0.045 0.279 0.196 0.146

Table 1.4: Bias and root mean squared error (RMSE) obtained by fitting with gjrm to bivariate survival data with
mild censoring rates (about 42% and 33% for the two responses). Bias and RMSE for the smooth terms are calculated

using the following expressions Bias=n−1
s

∑ns

i=1 | ¯̂si−si| and RMSE=n−1
s

∑ns

i=1

√
n−1
rep
∑nrep

rep=1(ŝrep,i − si)2, where
¯̂si = n−1

rep

∑nrep

rep=1 ŝrep,i, ns is the number of equally spaced sized values in the (0,8) or (0,1) range, and nrep is the
number of simulation replicates. The bias for the smooth terms is based on absolute differences in order to avoid
compensating effects when taking the sum. Source: Petti et al. (2022)
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Figure 1.3: Linear coefficient estimates obtained by applying gjrm to bivariate survival data with high censoring
rates (about 75% and 50% for the two responses). Further details are given in the caption of Figure 1.2. Source: Petti
et al. (2022)

Bias RMSE
n = 1000 n = 1500 n = 2000 n = 1000 n = 1500 n = 2000

β11 0.006 0.007 0.010 0.095 0.077 0.066
β21 0.001 0.009 0.006 0.146 0.123 0.099
β31 -0.100 -0.073 -0.055 0.344 0.259 0.204
h10 0.051 0.036 0.030 0.149 0.122 0.105
h20 0.038 0.027 0.019 0.164 0.137 0.124
s11 0.022 0.017 0.017 0.086 0.068 0.059
s31 0.075 0.044 0.036 0.379 0.254 0.190

Table 1.5: Bias and root mean squared error (RMSE) obtained by fitting with gjrm to bivariate survival data with
high censoring rates (about 75% and 50% for the two responses). Further details are given in the caption of Table 1.4.
Source: Petti et al. (2022)
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1.3.2 Application to the AREDS dataset

Exploratory Data Analysis

The AREDS dataset is formed by participants aged between 55 to 80 years old, with 650 obser-

vations. To be included in this study, participants were checked to be free from any pathology,

disease or precarious health condition. An important feature of the AREDS study is that only

patients who, at the time of inclusion in the study program, were using supplements are included.

About 5% of the participants were taking a multivitamin with about half of them taking the recom-

mended daily allowance (RDA). The RDAs are nothing more than guidelines issued by the Food

and Nutrition Board. They define the essential levels of micronutrients that must be taken by a

person to be healthy. The data discussed in this section are a sample of the full dataset, available

in the package CopulaCenR.

The data used are affected by interval, right and mixed censoring (e.g., right eye interval-

censored and left eye right-censored), the covariates are: Age (enrollment age), SNP (genetic

factors highly associated with late AMD progression, coded as 0, 1, 2), SScore1 (the severity

score for the first eye. This is a measure of the progression of the disease and is scaled from 1 to

12. This was determined for each eye of the patients at every examination. The higher the score,

the higher the progress of the disease), SScore2 (severity score for the second eye) , time (two

times for each eye namely, t11, t12, t21, t22).

A preliminary Exploratory Data Analysis (EDA), revealed that in 43% of the patients both eyes

are interval-censored, in 35% both eyes are right-censored, in 10% the first eye is interval while the

other is right-censored, the remaining 12% has the first eye right and the second interval-censored.

Concerning the SNP, it takes value 1 in 47% of the cases, value 2 in 15% of the patients, and

38% assumes value 0. It seems that the two eyes do not progress perfectly synchronously. Not

only, one eye, on average, is in a more advanced state of AMD progression on average than the

other one, but also the eye with higher progression also presents greater variability. Finally, it is

interesting to note that in 22% of cases, the two eyes are affected by different types of censoring.

This increases the value from a scientific point of view of the model framework proposed in this

chapter. Furthermore, there appears to be no interaction between the severity scores (Sscore1,
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Sscore2) and the SNP variable. The conditional distributions seem to overlap (density plot not

shown), excluding a potential interaction between the two variables. Finally, regarding the severity

score’s distribution, it seems that one of the eyes is in a more advanced progression than the other.

Analysis

The proposed approach is applied to a dataset from the AREDS available through the R package

CopulaCenR. Late AMD, the most common cause of blindness, is the fulcrum of the analysis

presented in this section. Due to the intermittent assessment times (every 6 months up to the

first 6 years and every 1 year thereafter) these data are affected by censoring. Furthermore, as

discussed in the EDA, the two eyes do not have a simultaneous progression. Censoring combined

with the intuition that the event is determined differently in the two eyes motivates the use of

the model framework presented above. The dataset contains three covariates, whose impact on

AMD has been discussed in section 1.1.1: SevScaleBL for baseline AMD severity score (a

factor variable with values between 4 and 8 with a higher value indicating more severe AMD),

ENROLLAGE for baseline age (a numeric variable), and rs2284665 for a genetic variant (a factor

variable with levels 0, 1 and 2 which represent GG, GT and TT, respectively). For the marginal

equations, the smooth functions of ENROLLAGE and the time variables were represented using

penalised thin plate regression splines with second order penalty (Wood, 2017) and monotonic

penalised B-splines (see section 1.2.6), respectively. The number of bases used for each smooth

was 10. Increasing this value did not lead to visible changes in the estimated curves. The remaining

variables entered the predictors of the marginals linearly. All link functions shown in Table 1.2

were considered in the modelling. As for the copula, we started off with the Gaussian and then,

based on the (negative or positive) sign of the dependence, we tried out alternative specifications

that were consistent with this initial finding. Using a 2.60-GHz Intel(R) Core(TM) computer

running Windows 10, the average computing time to fit a model was about 9 seconds and the

length of the model parameter vector was 43. Using the AIC and BIC, where, in their construction,

the model edf was used in place of the number of model parameters, the chosen model is based

on the Plackett copula with PO margins. The R code used to fit the models, and to produce all
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the numerical and visual summaries commented below, can be found in Appendix H. The model

specification used for this fit is

T1i = log(1− S(t1i)/S(t1i)) + s(ENROLLAGE) + β11SEvScale1E2i + β12rs22846653i

T2i = log(1− S(t2i)/S(t2i)) + β21ENROLLAGE1i + β22SEvScale2E2i + β23rs22846653i

All coefficients in the two marginal equations as well as the dependence parameter are signifi-

cant. The estimated regression coefficients of SevScaleBL, which are 0.67, 1.00, 1.93, 2.82 in

the equation for the left eye and 0.82, 1.21, 2.43, 3.28 in that for the right eye, imply, as expected,

that the subjects with higher baseline AMD severity score have a higher risk than the subjects

with lower baseline AMD severity score. As for the genetic variant, rs2284665, the estimated

parameters are 0.33 and 0.61 for the left eye equation, and 0.46 and 0.79 for the right one. This

is consistent with the interpretation that participants with the TT genotype group have the highest

risk of developing the disease, followed by participants with the GT genotype group.

Figure 1.6 shows the estimated functional forms for the effect of ENROLLAGE and times of

the selected model. Note that the smooth function for ENROLLAGE in the second equation has not

been reported as the effect was linear (edf = 1), which indeed indicates that there is a constantly

increasing risk associated with age. As for the first equation, the estimated smooth function con-

firms this increasing trend. Also, since there are few subjects who are younger than 60 and older

than 80, the point-wise intervals are larger at lower and higher age values. The plots for the time

variables exhibit increasing monotonic trends, suggesting again that the risk increases with time.

The estimated Kendall’s τ is 0.36 which implies moderate dependence in AMD progression

between the two eyes. Given the capabilities of the proposed modelling framework, we also spec-

ified a model where the dependence parameter is expressed as a flexible function of the covariates.

This feature can help understand how and which covariates modify the strength of the dependence

across observations. In this case, however, the coefficients were found not to be significant (see

Appendix H).

Using the chosen model, we produced joint survival functions under several scenarios. The left

panel of Figure 1.7 displays the joint progression-free probability contours for subjects who are
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Figure 1.6: AREDS data. Baseline risks and smoothed effect of ENROLLAGE (for the first equation only). 95%
point-wise intervals are based on the result discussed in Marra & Radice (2020). The rug plot, at the bottom of
each graph, shows the values of the considered variable. The number in brackets in the y-axis caption of each plot
represents the edf of the respective estimated smooth function. Source: Petti et al. (2022)

69 years old, with an AMD severity score equal to 6 for both eyes, but with different rs2284665

genotypes. The middle panel of Figure 1.7 shows the joint progression-free probability contours

for subjects who are 69 years old, with the GT genotype but with different severity scores (4, 6 and

8). Finally, the right panel of the figure plots the joint progression-free probability contours for

GT genotype subjects, with an AMD severity score equal to 6 in both eyes, but different ages (56,

69 and 81). In the left panel, it can be clearly seen that the three genotype groups are separated,

with the GG group having the largest progression-free probabilities. In the middle panel, the

difference between the three AMD severity groups is rather pronounced, with the highest AMD

severity group having the smallest progression-free probabilities. Finally, the right panel shows

how the progression-free probabilities are higher for younger subjects compared to older subjects.

The scenarios considered here illustrate how valuable the proposed modelling framework is in

characterising and identifying AMD patients at a higher risk of developing late AMD. Of course,

several other scenarios can be considered and other quantities of interest worked out. For example,

one could be interested in visualising conditional and marginal survival probabilities.
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Figure 1.7: AREDS data. Joint progression-free probability contours under different scenarios. In the left panel, age
is set to 69 and AMD severity score to 6 for both eyes. In the middle panel, age is set to 69 and genotype to GT. In
the right panel, genotype is set to GT and AMD severity score to 6 in both eyes. Source: Petti et al. (2022)



46 COPULA LINK-BASED SURVIVAL ADDITIVE MODELS EXTENDED TO A GENERAL CENSORING SCHEME

1.4 Discussion

We have introduced a copula link-based additive model for bivariate time-to-event outcomes un-

der a general domain in which all the bivariate censoring combinations can be employed. As

has extensively been discussed in the methodology section, model fitting is structured around the

simultaneous estimation of all model parameters and relies on a penalised maximum likelihood

approach with integrated stable and efficient automatic multiple smoothing parameter selection.

Inferential results are also readily available. Once the model has been fitted, a complete summary

of the model can be obtained using the corresponding R command. All developments have been in-

tegrated within the R package GJRM whose modularity allows for easy inclusion of potentially any

parametric link marginal function and copula. The proposed approach makes a significant contri-

bution in applied statistics as it is methodologically flexible, computationally sound and practically

usable. The simulation study has shown that the approach recovers the model parameters well and

the real application using data on progression to late AMD has highlighted the methodological,

computational and practical features of the model.

Although the literature in this area is reasonably ample, to the best of our knowledge, only

Sun & Ding (2021) provided a methodological framework together with software for modelling

bivariate censored data. Unlike their copula approach, which allows the margins to be specified

through semi-parametric transformation models, the baseline survival functions to be modelled us-

ing Bernstein polynomials and the dependence between events to be captured via one-parameter

and two-parameter copulae, our proposal permits to specify all model parameters (including the

dependence parameter) as flexible functions of covariate effects, models the baseline survival func-

tions by means of monotonic P-splines which are theoretically and computationally advantageous,

and conveniently characterises the marginals via links of the survival functions. Methodologically

speaking, both approaches have been conceived to handle any combination of censoring mecha-

nisms as well as have two different sets of regression coefficients for the marginal survival func-

tions. However, from a computational point of view, the implementation provided by Sun & Ding

(2021) does not simultaneously support all possible bivariate combinations of censoring types and

forces the two sets of regression parameters to be the same.



Chapter 2

Bivariate Variable Ranking procedure for

Copula Link-Based Survival additive

models via Fisher Information metric

2.1 Motivation

Technologies have had a deep impact on society and on data collection in a wide range of scientific

areas. With a relatively low cost we are able to collect massive amounts of information (and

noise). This has led to the high dimensional data phenomenon. Pivotal examples are genome-

wide association studies, biomedical imaging, tomography, and tumor classification. In disease

classification tens of thousands of expressions of molecules or ions are potential predictors. In

geno-wide association studies hundreds of thousands of SNPs are potential covariates. In the

biomedical field, huge numbers of magnetic resonance images (MRI) and functional data are

collected for each subject. Satellite imagery has been used in natural resource discovery and

agriculture, collecting thousands of high resolution images. When interactions are considered the

distinction between important and unimportant variables becomes even more dramatic.

In such areas, researchers have to deal with a ridiculous amount of information (with signals

associated with noise). This makes not only the data exploration phase (see Gazis et al., 2010;

Donoho et al., 2000; Giradi & Holzinger, 2018), but also the model building process far more

47
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challenging than in the past.

The ease of obtaining so much information with such minimal effort has contributed to re-

shaping statistical thinking and data analysis paradigms, pushing the existing statistical methods

to the extreme of computational capabilities. This has driven researchers to think of new ways of

making inferences in such high and ultra-high dimensional contexts. Donoho et al. (2000) con-

vincingly demonstrated the need of developments in high dimensional data analysis, presenting

the curse and blessing of dimensionality. Fan & Li (2006) give a comprehensive grasp of statistical

challenges in high dimensionality.

2.1.1 State of the Art

Variable selection methods play a central role in contemporary statistical learning methods. During

the model building process, the question of which variable suits better to explain the phenomenon

often arises. This is even more true in the case of bivariate copula survival models under a cen-

soring scheme (presence of two outcomes and missing information). Under this domain we are

interested in identifying two sets of relevant covariates for the first and second random time to

event respectively (T1i and T2i). This can intuitively be achieved by ranking, in order of impor-

tance, the covariates using a metric (say ω) to assess the contribution of each independent variable

in the dataset. Variable selection procedures, in such a bivariate domain, take a different flavour.

We have two distinct but dependent survival margins and we want to select two sets of relevant

variables for each of them. Having said this, this is a different and potentially more complicated

task than doing variable selection under a more conventional univariate domain. Furthermore, the

challenge is made even more difficult because of a lack of solid bibliographic references. As far

as the authors are aware there is no valuable variable selection or variable ranking method nor

implementation available in the literature for the class of Bivariate Copula Survival models.

The main and the most used variable selection approaches (see Fan & Lv, 2010; Desboulets,

2018) usually rely on metrics. Metrics that have the role of evaluating the contribution that a single

covariate Xj has on the outcome Y , for instance: Based on a standardised design matrix, Fan &

Lv (2007) proposed in the linear regression context the correlation coefficient. Their application



2.1 MOTIVATION 49

orthogonal design leads to XTX = I and as a consequence β̂ = XTY, which can be interpreted

as the vector consisting in the sample Person correlation coefficients. The screening procedure

based on this metric is commonly known as Sure Independent Screening (SIS). Hall & Miller

(2009) considered a generalized version of correlation coefficient which is able to capture non-

linear dependencies. This is achieved by applying a functional h(·) : R → H where H is a class

of cubic splines applied at all the covariates. Following the same intuition, Fan & Song (2010)

proposed a procedure based on the magnitude of spline approximation of Y over each Xj . In

Cho & Fryzlewicz (2012), the variable screening is accomplished using the tilted correlation. It is

obtained in practice by “tilting” each column X∗
j ← g(Xj) where g(·) is a linear application that

projects each variable onto a subspace chosen in the hard-thresholding step, such that the impact

of other variables Xk, k ̸= j on the “tilted” correlation between X∗
j and Y is reduced and thus

the relationship between the jth covariate and the response can be identified more accurately. Li

et al. (2012) proposed to rank the covariates according to the distance correlation (Székely et al.,

2007). He et al. (2013) applied a ranking procedure based on a marginal quantile of Y given

X = (X1, . . . , Xp)
T such that Qα = inf{y : P(Y ≤ y|X) ≥ α}, proving that the sure screening

property remains valid when the response is subject to random right censoring. Shao & Zhang

(2014) proposed a martingale difference correlation ranking.

In a bivariate survival copula domain, any metric measuring the association between outcomes

and covariates is bound to fail, namely: i) these metrics capture the association between Y and

Xj , in survival models we observe a time to event for each margin. This aspect makes the above

measures (i.e. Person correlation, Kendall’s τ , generalized correlation and generalization) com-

pletely ineffective; ii) most of the quoted methods are based on measuring only linear dependence

between outcomes and covariates. This is too restrictive for our domain (i.e. splines, archimedian

and non-archimedian copula structures) as we would not be able to exclusively handle linear de-

pendencies; iii) the metrics mentioned above have not been derived taking into account the copula

structure; iv) they do not allow us to obtain distinct sets of important variables for each margin.

For all these reasons, in the bivariate survival copula context the selection of relevant variables can

not be achieved by any metric so far discussed in literature.
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In this chapter, we contribute in developing and implementing in R a first attempt of a variable

ranking procedure by extending the Ranking-Based Variable Selection algorithm (RBV S) (Bara-

nowski et al., 2020) in the scenario of two different sets of important variables. This has been

practically achieved by generalizing the algorithm and more importantly by proposing a metric

able to assess, in a specific way, which covariate is important for T1 and T2. The procedure dis-

cussed in this work has been implemented from scratch in GJRM package in R to facilitate and

encourage the use of such a method in industry and academia and enhance reproducible research.

The following section is structured as follows. In section 2.2 the algorithm framework is

introduced as well as our metric proposal based on the Fisher Information matrix. In section 2.3.1

a simulation study has been conducted to validate the variable ranking procedure discussed.

2.2 Methodology

The Ranking-Based Variable Selection (RBV S) algorithm from Baranowski et al. (2020) is a

screening procedure based on bootstrap and permutations of indexes. This technique is particularly

suited when p ≫ n, with the advantage that it does not rely on weak assumptions but on the

properties of the metric employed.

The main idea is the following. Given the model Y = f(X1, . . . , Xp)+ ϵ and a given metric ω

to assess the importance that each Xj for j = 1, . . . , p has on Y , using the m out of n bootstrap of

Bickel et al. (2012) constructs a permutation ranking R = {R1, . . . , Rp} satisfying ωR1 ≥ ωR2 ≥

· · · ≥ ωRp . The covariates that result on top of this ranking are the ones with the higher value of

ω. The strength of this algorithm is that the metric can be any type (e.g., Person correlation, Lasso

coefficient, generalized correlation) as long as it retains the k- top ranked, locally-top-ranked and

the top-ranked set properties (see, section 2.2 Baranowski et al., 2020). The probability that a set

of k variables A is ranked at the top is defined as π(A) = P({R1, . . . , Rp} = A) where this value

is computed using a bootstrap approach. Under this domain, a top-ranked set A is a set with not

a negligible probability associated with it. Under the conditions stated in Baranowski et al. (2020)

it can be proved to be unique.

The RBV S procedure just introduced manifests some limitations if applied in a Bivariate
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Copula Survival domain (see Marra & Radice, 2020; Petti et al., 2022). Since we are dealing

with Sν(tνi|xνi;βν) = P (Tνi > tνi|xνi;βν) ∈ (0, 1) for ν = 1, 2 where each survival has its

own set of covariates. We would like to obtain from the procedure two different rankings and

two distinct top-ranked sets. The aim of this section is to extend the RBV S procedure to the

case of two not necessarily overlapping sets A1 and A2. Therefore we are not only interested in

selecting the most informative covariates for the model, but we would like to assess which of the

p (in)dependent variables contribute to explain one or both time to events. For this reason, the

RBV S algorithm as is originally presented produces results not appropriate in such a bivariate

context. The generalization proposed in the following section does not alter the properties of the

algorithm, k- top ranked, locally top ranked and the top ranked set property stated in Baranowski

et al. (2020). In fact, we can always think of the set of important variables A as the union of A1

and A2.

Unfortunately the package that originally accommodated the RBV S procedure is no longer

available on CRAN. With the aim to facilitate the use of the procedure for practitioners, the authors

decided to implement the extended procedure from scratch in GJRM package.

2.2.1 Notation

Let X = (X1, . . . , Xp) constitute a set of random variables which potentially influence either

T1i or T2i, or even both of them. Unless specified, all quantities presented in this section are

computed on n observations. Therefore, we observe Zi = {T1i, T2i, Xi1, . . . , Xip}, i = 1, . . . , n,

as independent copies of Z = {T1, T2, X1, . . . , Xp}. Let Aν , ν = 1, 2 be a set of covariates for

the ν-th outcome and |Aν | its cardinality. For any of the k out of p covariates, we denote with

Ων
k = {Aν ⊂ {1, . . . , p} : |Aν | = k} the set of important covariates of size k selected using n

observations. For notation convenience we have dropped the dependence of this set from p and

thus from n. Furthermore, the k covariates in Ων
k are ranked using a variable raking defined as a

permutation of indexes Rν = (Rν
1 , . . . , R

ν
k) computed on Z based on a known metric such that

ω̂νRν
1
≥ · · · ≥ ω̂νRν

k
, where ω̂ν is an estimate of ων . This implies that both ω̂ and the variable ranking

can vary with Z. In other words, using a specified metric, we are assessing the importance that
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the k covariates, for each time to event.

This allows us to select which covariate is important for T1 and which one contributes in

explaining T2. The approach just introduced turns out to be particularly valuable from a casual

inference point of view as we are able to assess which of the covariates contribute in explaining

marginally the outcomes.

In general, when |Aν | = k, for any Aν ∈ Ων
k, k = 1, . . . , p, we are interested in obtaining the

probability of being ranked at the top, that can be defined as

πν(Aν) = P

(
{Rν

1 , . . . , R
ν
|Aν |} = Aν

)
, (2.1)

The quantity just presented allows us to associate to each column in the design matrix the

probability of being exactly in the j−th position in the ranking. For convenience, we assume that

when k = 0 then πν(Aν) = πν(∅) = 1. Under our framework we are interested in the probability

of being ranked at the top using only a subset of m observations. This probability will be denoted

as πνm(Aν).

To estimate πνm(Aν) Baranowski et al. (2020) used a bootstrap approach such that for each

b = 1, . . . , B (with B the number of bootstrap replicates) and given r = ⌊n/m⌋, extracts from Zi,

for i = 1, . . . , n, r independent subsets without replacement (Ib1 , . . . , Ibr) and for each bootstrap

replicate computes the empirical relative frequency of Aν , given by r−1
∑r

j=1 1(Aν |Ibj), with 1

taking value one when Aν = {Rν
1({Zi}i∈Ibj ), . . . , R

ν
|Aν |({Zi}i∈Ibj )} and zero otherwise. Then,

the estimate of πνm(Aν) is obtained from:

π̂νm(Aν) = B−1

B∑
b=1

r−1

r∑
j=1

1(Aν |Ibj), (2.2)

The probability introduced avoids the fact that the covariates are ordered according to a par-

ticularly lucky sample. This is by calculating for each of them the probability of being exactly in

the j-th position in the ranking. Therefore, the procedure tends to select the set of variables that

has the greatest value of (2.2), the top-ranked variables. In general, it is not equal to compute (2.2)

on m rather than on n observations. Baranowski et al. (2020) showed that under the condition
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that m is not too small with respect to n there is a negligible difference between the probabilities

computed on m with respect to the ones computed on n observations. In other words, their ratio

tends asymptotically to one. With that said, in combination with some bounds on the estimation

accuracy of (2.2), we can conclude that π̂νm(Aν) is a good candidate to estimate the k-top-ranked

set. The variable selection procedure implemented from scratch in R in GJRM package can be

divided in two distinct macro steps.

1. ( screening step) given by:

Âνk,m = argmax
Aν∈Ων

k

π̂νm(Aν),

with Ων
k being the set of all permutations of {1, . . . , k}. We need to detect the important variables

for T1 and T2. Using gjrm() function in GJRM package, for each covariate in the dataset we fit

a Copula Link-Based Survival model. The set of equations specified are:

η1i = g(S10(t1i)) + β10 + xTijβ11,

η2i = g(S20(t2i)) + β20 + xTijβ21, (2.3)

η3i = β30,

for j = 1, . . . , p, b = 1, . . . , B, i = 1, . . . , n,

where with g(·) : (0, 1) → (−∞,∞) we denote a differentiable and invertible link function

that can be any type (table 1.2), while Sν0(tνi) is a background survival function estimated using

monotonic splines and ten basis (see Tables 1.1 and 1.2 in section 1.2.4 for details about copulas

and link functions implemented in the GJRM package). The set of equations defined in (2.3)

allowed us to obtain two rankings for the p covariates based on ω̂νj j = 1, 2. From (2.3) we note

that a) we are evaluating the same xj in η1 and η2 in the equations modelling the two time to event;.

b) in the equation controlling the dependence parameter η3 only the intercept is estimated; c) since

we are evaluating the p covariates one by one, correlation should not impact the variable ranking

algorithm. To better clarify the fitting procedure, the following simplified example is provided.

Example 1. For the sake of simplicity let ν = 1, our aim is to assess which of p columns is
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important in explaining T1. With p different fits, we will end up with a ranking where each xj is

sorted in order of importance according to ω̂j(xj). After having repeated the procedure B times

we finally have to verify the frequency that the j-th covariate resulted in the j′-th position using

the probability in (2.2).

Finally, this first step has the aim of associating each set of important variables a not null

probability, such that to retain only the ones with the maximum values of π̂νm(Aν).

2. ( selection step). The size of the top-ranked set sν = |Sν |, ν = 1, 2 is unknown so it

should be estimated. It is common at this stage to introduce a threshold or in general a stopping

rule. In Baranowski et al. (2020) the following ratio is proposed (π̂νm(Âνk+1,m))
τ/π̂νm(Âνk,m) with

τ ∈ (0, 1] such that the relevant covariates are the s top-ranked variables where:

ŝν = argmin
k=0,...,kmax−1

(
π̂νm(Âνk+1,m)

)τ
π̂νm(Âνk,m)

, (2.4)

where τ is a tuning parameter. The intuition of this ratio can be caught from the following

argument presented in Baranowskiet al. (2020)

(
π̂νn,m(Âνk+1,m)

)τ
π̂νm(Âνk,m)

=

(
π̂νm(Âνk+1,m)

π̂νm(Âνk,m)

)τ(
1

π̂νm(Âνk,m)

)1−τ

.

For τ = 1, we look for k where π̂νm(Âνk+1,m) declines drastically. For a general value of τ ,

we are looking for k that is a trade off between the most drastic decline in proportion and the hard

thresholding rule.

In practice, given the estimated probabilities of π̂νm(Âνk,m), for k = 0, . . . , kmax−1, with kmax

a fixed large integer, the number of relevant variables is related to the evaluation of the magnitude

of the estimated probability and ŝν which corresponds to the case where the ratio in (2.4) has the

greatest decrease. In other words, the set’s sizes of relevant variables have not to be specified

ex ante. In our experience the criterion expressed in (2.4) works well (evidence can be found in

Baranowski et al. (2020)). Furthermore, we are assuming that |Sν | is much smaller than p, it is

computationally efficient to optimise over {0, . . . , kmax} instead of {0, . . . , p− 1} in (2.4).
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2.2.2 Metric proposal

From the discussion in section 2.2.1 emerged, in a clear way, the crucial role of the metric in the

variable ranking procedure. Unfortunately as far as the authors are aware, there is no measure able

to accommodate a bivariate survival copula setting. The aim of this section is to propose a metric

able to perform the Bivariate Ranking-Based Variable Screening (BRBV S) in an effective way

without altering the screening properties discussed in Baranowski et al. (2020). The impatient

reader can jump straight to section 2.3.1 for evidence of the effectiveness of the metric proposed.

Firstly, we want to present the reasoning that led us to the definition of our metric idea for the

class of model(s) discussed in section 1.2.4 (see. Marra & Radice, 2020; Petti et al., 2022). A first

attempt has been made by thinking about a metric able to capture the association between the two

outcomes. The Mutual Information (MI) has several remarkable properties that motivate its use

in a variable ranking procedure. The first one is the relation with the Copula Entropy (CE) and

thus with the copula structure itself. It can be proved that MI is equivalent to negative CE. The

second remarkable property is its monotonic increasing association with the copula dependence

parameter. Finally, MI is zero if and only if we are under orthogonality condition (a discussion

about the MI properties is in Appendix I). For the reasons just stated, MI seemed to be a suitable

candidate to solve our task, as it captures the relation between two or more random variables,

taking into account the copula structure. It turns out that we are under the conditions stated in

section 2.3 of Baranowski et al. (2020). A sketch of proof that the concentration bound holds for

MI is in Appendix I. The intuition is as follows: when a couple of noisy covariates (say Xj and

Xj′) are added to the model setting, they should increase the entropy between the two dependent

time to events. This implies that an MI-based variable ranking procedure has the potential to

be far more effective than other metrics (e.g., Pearson correlation, tilted correlation, generalized

correlation). The procedure has been practically achieved by computing MI on the fitted values.

Let ω̂j(x
(1)
j ,x

(2)
j′ ) = Î(ŷ1, ŷ2|x(1)

j ,x
(2)
j′ ) the MI estimate resulting form the following model setup
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B = 1 B = 50
p # of fit time (hours) # of fit time (hours)
2 1 0.0016 50 0.083
5 10 0.0167 500 0.83
10 45 0.075 2250 3.75
100 4950 8.25 247500 412.5
1000 49950 83.25 2497500 4165.5

Table 2.1: MI-based variable ranking computational times obtained by considering an average fitting time of 6 sec-
onds.

η1i = g(S10(t1i)) + β10 + xTijβ11,

η2i = g(S20(t2i)) + β20 + xTij′β21,

η3i = β30,

for j′j = 1, . . . , p, i = 1 . . . , n,

where xj has been included in the equation modelling the first time to event, while x′
j models

the second time to event. This setting requires to fit
(
p
2

)
models to evaluate all the independent vari-

ables. Although this procedure has given satisfactory results, its computational cost is prohibitive,

especially when the size of p is high. This considering that under a 2.60-GHz Intel(R) Core(TM)

Windows 10 configuration the average computing time to fit a model using gjrm() function is

about 6 seconds. Furthermore, MI-based variable ranking does not allow us to obtain A1 and A2.

Some evidence of the MI-variable ranking procedure applied to a general case of Bivariate Copula

model(s) is discussed in Appendix J. Despite the MI seeming to perform well, it has two main pit-

falls. Firstly, it fails in defining two different and not necessarily overlapping rankings. Secondly,

when applied to time to events it fails in recovering the set of important variables. Evidence can be

found in Appendix J, where selected simulation studies results are presented. These aspects make

the procedure inapplicable in the domain discussed in section 1.2. Table 2.1 shows an example of

the computational time that the MI-based procedure requires.
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The ideal metric, for the class of bivariate copula survival models, should not only be a measure

capable of taking into account the likelihood and the copula probabilistic structure, but also a

quantity able to marginally evaluate the contribution that each dependent variable has on T1 and

T2. In other words, our goal is to obtain two non-necessarily overlapping sets. Under the model

framework discussed in section 1.2, it seems reasonable to use a measure of goodness of fit as a

starting point. Marra & Radice (2020) derived an expression of the Akaike Information Criterion

(AIC) for the class of Bivariate Copula Survival models

AIC = 2ψ + ||M −
√
−Hδ̂||2. (2.5)

Where M = µM + ϵ, µM =
√
−Hδ0, ϵ =

√
−H−1

g, with g we denoted the gradient vector

such that g1 =
∂ℓ(δ)
∂β1

∣∣∣
β1=β̂1

,g2 =
∂ℓ(δ)
∂β2

∣∣∣
β2=β̂2

, g3 =
∂ℓ(δ)
∂β3

∣∣∣
β3=β̂3

,and H is the Hessian matrix whose

elements are Hij =
∂2ℓ(δ)
∂βi∂βj

∣∣∣
βi=β̂iβj=β̂j

i, j = 1, 2, 3, δ̂ = (β̂1, β̂2, β̂3)
T is the estimated parameter

vector, δ0 is the vector of parameters such that minimises the Kullback-Lieber distance between

the true likelihood and the observed one. Finally, ψ represents the effective degree of freedom.

The expression (2.5) can be obtained in two steps. First, a Taylor series expansion of the likelihood

around δ0 ∈ Θ, to then dropping all the terms not affected by λ.

The Bivariate Ranking Based Variable Screening (BRBV S) procedure has been implemented

using the model setting defined in Sections 1.2 and 2.2 (see equations (2.3)). Therefore, under

this setting all the fitted models in the ranking algorithm are bound to have the same degree of

freedom. In other words, ψ does not have a role in identifying the best model. Recalling some

well-known quantities and asymptotic results explored in Supplementary Material B in Marra &

Radice (2020), the expression (2.5) can be written as

AIC ∝ ||M −
√
−Hδ̂||2

= ||
√
−Hδ0 +

√
−H−1

g −
√
−Hδ̂||2

∝ ||
√
−Hδ0 −

√
−Hδ̂||2. (2.6)
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Noting that δ, δ0 ∈ RW , where W = W1+W2+W3 such that β1 ∈ RW1 , β2 ∈ RW2 and β3 ∈

RW3 . The last line can be interpreted as the ℓ2 norm between two W dimensional points adjusted

for information contained in a given sample. Unless in some degenerative cases, the quantity

(δ0− δ̂) is unknown, meaning that we would never be able to evaluate how much our estimates are

distant from the KL minimizer. Having said that, some interesting geometric considerations can

be made on the Hessian matrix. It is a standard result to note that the accuracy of some estimates

is measured by the sharpness of the underlying log-likelihood ℓ(δ). In differential geometry, the

curvature is related to the second derivatives of a function, the components of the main diagonal

of the hessian matrix. The diagonal elements of the Hessian matrix can be seen as directional

derivatives with respect to the vectors of the canonical basis. Using the plug-in principle, we

can evaluate ||
√
−Hδ̂||2 with respect to −E(H) = I . Furthermore, it is well known that I is

symmetric, positive semi-definite and not singular. Then, by the spectral theorem there exists an

orthogonal system such that I can be diagonalized, in which the cross derivatives are zero. Finally,

noting that every geometric quantity must be independent of the reference system, it follows that

it seems reasonable to use only the information on the main diagonal of the Fisher information

matrix. Recalling that δ̂ = (β̂T1 , β̂
T
2 , β̂

T
3 ) and that the Fisher information matrix can be written as

a 3× 3 block matrix in the following way

I(δ̂) =


I(δ̂)11 I(δ̂)12 I(δ̂)13

I(δ̂)21 I(δ̂)22 I(δ̂)23

I(δ̂)31 I(δ̂)32 I(δ̂)33

 where I(δ̂)ij = −E
[
∂2ℓ(δ)

∂βi∂βj

∣∣∣βi=β̂i

βj=β̂j

]
i, j = 1, 2, 3.

After having estimated the vector of parameters and the standard errors, following the same

notation used in (2.3), reasonable metrics would be

ω̂1
j (xj) = β̂2

11i11(β̂11)

ω̂2
j (xj) = β̂2

21i22(β̂21), j = 1, . . . , p, (2.7)
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where β̂ν [Jνkν + 2] = β̂ν1, ν = 1, 2 is the parametric effect extracted from the coeffi-

cients vector (containing smooth and parametric effects) associated with the ν−th margin. While,

I(δ̂)νν [Jνkν + 2, Jνkν + 2] = iνν(β̂ν1) is the corresponding element of the Fisher Information

matrix extracted from the appropriate block diagonal element. Intuitively, we are associating to

our estimates β̂ν1 a measure of information given by iνν(β̂ν1). A high value of iνν(β̂ν1) denotes

a sharp curvature of the likelihood in the direction of the estimated parameter. On the contrary,

a low value denotes a lower sharpness. With (2.7) we are not only attributing a high score to the

parameters that are different from zero, but we are also taking into account the associated log-

likelihood sharpness. This leads the algorithm not to just deal with sparsity, but to make a more

complete evaluation of the parameters taking into account the information extracted from the b−th

bootstrap sample and used in the estimation process.

2.2.3 Bivariate RBVS and Computational aspects

The algorithm is based on four main steps, where step 1 in BRBV S corresponds to step 1 in

RBV S (Baranowski et al., 2020). In step 1 we draw B sub-samples from the data of size m.

In Step 2 for each sub-sample we estimate a Copula Link-based Survival model using the model

specification just introduced. This leads us to obtain an estimate of ω1
j (xj) and ω2

j (xj) based on

the Ibl sub-sample for both margins, such that the measures so computed {ω̂νj ({Zi}i∈Ibl)}
p
j=1 are

sorted in a non-increasing order to identify the set of permutation indexes Rν({Zi}i∈Ibl). Here the

algorithm has been modified to accommodate not only the fitting with gjrm() using the setup

presented in (2.3), but also with the main objective to obtain two distinct permutation rankings. In

step 3, for k = 1, . . . , kmax we find Âνk,m the k-element set with the highest frequency in the top

Rν
n({Zi}i∈Ibl) for all b = 1, . . . , B and l = 1, . . . , r. In step 4 π̂νn,m(Âk,m) are employed to find

ŝν . Also with regards to step 3 and 4, the algorithm has been modified to obtain two distinct sets

of important variables as output.

As concerns the computational aspects of the procedure, we denote c(p) the computational

cost (time) in obtaining {ω̂1
j (xj)}

p
j=1 and {ω̂2

j (xj)}
p
j=1. Taking B times of random partition of n

observations into r subsets takesO(Br) operations. Computing all the ω̂νj ’s for allBr takes c(p)×
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Algorithm 1 Variable Ranking based on Copula Link-based additive models
Input Standardised Random sample Zi i = 1, . . . , n subsample of dimension m,

positive integer kmax, number of bootstrap replicates B, predetermined
value τ ∈ (0,1].

Output The estimated set of important variables
Start
Step 1 Set r = ⌊n/m⌋, for b = 1, . . . , B draw uniformly without replacement from zi m−

element subsets Ib1, . . . , Ibl, l = 1, . . . , n
Step 2 Calculate ω̂νj ({Zi}i∈Ibl) and define the variable ranking Rν

n({Zi}i∈Ibl)
for all b = 1, . . . , B , l = 1, . . . , r , j = 1, . . . , p , ν = 1, 2

Step 3 for k = 1, . . . , kmax, find Âνk,m and compute π̂n,m(Âνk,m)
Step 4 Find ŝν

return ŝ1 and ŝ2

End procedure

Br manipulations. Evaluating the rankings based on each subset takesO(p+ p log(p)) operations

via the selection algorithm and QuickSort partition scheme, doing so for Br subsets ends up with

O((p+ p log(p))Br). In the BRBV S algorithm implemented in GJRM we sort the ranking based

on p covariates. Originally in Baranowski et al. (2020), once estimated ω the procedure cuts the

ranking to kmax. We have modified the algorithm such that the sorting procedure takes place on

the p covariates and not only a pre-specified number kmax. According to the authors, the choice to

cut the ranking at a certain level kmax is sub optimal. In fact, there is a concrete risk of arbitrarily

cutting off important covariates from the ranking procedure. Furthermore, we believe that the risk

of ignoring valuable information from the data does not compensate the computational benefit. It

is fair to say that the kmax value still plays a role in the definition of ŝ1 and ŝ2. Step 3 can be

carried out using O(Brk2max) basic operations. The remaining step calls for O(kmax) operations.

Finally, the total computational cost is c(p)×Br +O(max{p, k2max}Br).

The BRBV S requires the choice of the same number of tuning parameters as its univariate

version, B, m, kmax, and τ . The parameter B plays a crucial role as it decreases the randomness

of the method discussed. However, the computational complexity of BRBV S increases linearly

withB. In our simulation experiments we setB = 50 as in Baranowski et al. (2020). The problem

of the choice of the subsample m is more challenging. As in a finite sample case m cannot be too

small as this implies incapacity in selecting informative covariates. In practice Baranowski et al.

(2020) proposed to set m = ⌊n/2⌋ that resulted to give satisfactory performance. As concerns
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kmax, it turns out that this has a limited impact on the overall performance of the algorithm, as

long as it is not too small. We recommend to set kmax = min{n, p}. Finally, the proposed

procedure seems not to be sensitive to the choice of τ , in our experiments, following what is stated

in Baranowski et al. (2020) we set τ = 0.5.

2.3 Simulation Study

2.3.1 Simulation Study

Let X ∈ Rn×p be a multivariate random variable partitioned in blocks such that X = [X11 :

X12], where X11 ∈ Rn×3 contains the covariates generated from a multivariate standard normal

distribution with correlation ρX11 = 0.2, and then transformed using the distribution function

of a standard normal distribution, while the remaining (non-informative) independent variables

X12 ∈ Rn×(p−3) ∼ Np−3(0,Φ) have been generated using a multivariate normal distribution with

null mean vector and a ρX12 = 0. The first margin T1i was generated from a proportional hazards

(PH) using the following formulation

T1i = log[− logS10(t1i)] + β11x1i + β21x2i, i = 1, . . . , n,

where S10(t1i) = 0.9 exp (−0.4t2.51i ) + 0.1 exp (−0.1t1i). T2i was generated from a proportional

odds (PO) model

T2i = log

[
{1− S20(t2i)}

S20(t2i)

]
+ β21x1i + β22x3i, i = 1, . . . , n,

where S20(t2i) = S10(t2i) = 0.9 exp (−0.4t2.51i ) + 0.1 exp (−0.1t1i). With a vector of population

parameters such that βT1 = (−1, 5, 1.7)T and βT2 = (−1.5, 2.1)T . The right-censoring observa-

tions were obtained through uniform distributions so that the censoring rates were about 0.16%

and 0.40%. The random censoring times were generated using the lower and upper bounds from

two uniform random variables. Specifically, this was achieved by comparing such bounds with

the simulated times. Observations were generated using the Brent’s univariate-finding root. The
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two survival times were joined using a Clayton copula C0. In practice this was achieved using the

conditional sampling approach, where the predictor for the dependence parameter was specified

in two different configurations:

• (A) η3i = β30, with β30 = 3.

• (B) η3i = β30 + β31x1i + β32x2i + β33x3i, with βT3 = (3,−1.5, 1.7,−1.3).

The setup of η3 allowed dependence to vary across observations, with Kendall’s τ values ranging

approximately from 0.10 to 0.90. The smooth components of the times were represented using

using monotonic penalized B-splines and 10 basis function. The set of tuning parameters was

specified such that the number of replicates to be nsub = 100 , B = 50, τ = 0.5, kmax = 6.

The sample sizes was set as n = {500, 750}, while the number of covariates p = {20, 30}, to

have a total of 8 simulation scenarios. Finally, the models were fitted using the function gjrm()

in GJRM package in R. Results are shown in Figure 2.1 and in Table 2.2. The goodness of the

Bivariate variable ranking procedure has been evaluated by averaging the false positive (FP) and

negative (FN) obtained for each nsub, FP = n−1
sub

∑
i FPi and FN = n−1

sub

∑
i FNi to obtain

unconditional estimates.

The main findings of the simulation study are:

• sample size: Recalling that, in each estimate, the effective sample size was m = ⌊n
2
⌋, hence

m = {250, 375}. There seems to be no noticeable difference between the two sample

sizes. In other words, even with a sample size of 250 the metric seems to obtain satisfactory

results in terms of selection. The reader should note that for each permutation, the algorithm

requires an estimation of 22 parameters.

• noisy information: Figure 2.1 and Table 2.2 seem to show that with an increase in the amount

of noisy information, from 20 to 50, the false positive rates and false negative rates do not

seem to increase. Indeed, for both margins we notice a decrease in both

• dependent parameter: The way in which the dependency parameter is generated seems to

play an important role in the ability of the metric to select the relevant covariates. In fact,
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the false positives and false negatives when the parameter is simulated using configuration

B are smaller than A.

A n = 500 n = 750
p = 20 p = 50 p = 20 p = 50

FPS1 0.07 0.01 0.07 0.02
FPS2 0.15 0.02 0.16 0.07
FNS1 0.00 0.00 0.00 0.00
FNS2 0.00 0.00 0.00 0.00

B n = 500 n = 750
p = 20 p = 50 p = 20 p = 50

FPS1 0.03 0.01 0.04 0.00
FPS2 0.05 0.04 0.06 0.03
FNS1 0.00 0.00 0.00 0.00
FNS2 0.00 0.00 0.00 0.00

Table 2.2: False Positive (FP) and False Negative (FN) estimates for T1 obtained by applying the (Bivariate)RBVS
algorithm employing the metric discussed in section 2.7. Where FP = n−1

sub

∑
i FPi and FN = n−1

sub

∑
i FNi.

The fitting procedures within (Bivariate)RBVS have been computed using m = {250, 375} observations, detailed in
section 2.7.
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2.4 Application of the BRBVS algorithm to AREDS dataset

The global behavior of theBRBV S using the Fisher Information metric is assessed in comparison

with the naive metric (absolute values of the coefficients). The two metrics will be evaluated

under different setups, one in which the covariates have been standardized while in the other they

haven’t. In both cases, 100 independent realizations of standard Gaussian random variables have

been added to the original columns of the dataset.

The AREDS data is available through the R package from CopulaCenR (Sun & Ding, 2021).

This dataset includes 629 Caucasian participants. The event of interest is the progression to late-

AMD disease, which is currently considered the most common cause of blindness in developed

countries. Due to intermittent assessment times (every 6 months up to the first 6 years and every

1 year thereafter), the data are affected by right-censored, interval-censored, and mixed-censored

observations.

Less than half of the subjects developed late-AMD in both eyes (bivariate interval-censored);

around 20% of the subjects developed late-AMD in one eye and did not develop late-AMD in the

other eye before the end of the study (mixed interval- and right-censored); and more than one-

third of the subjects did not develop late-AMD in both eyes (bivariate right-censored). The dataset

contains some covariates that have been proven to be related to AMD, and recent examples of

applications based on this dataset are discussed in Sun & Ding (2021); Pettifor et al. (2012).

The dataset includes the following variables: SevScaleBL for baseline AMD severity score (a

variable with values between 4 and 8, with a higher value indicating more severe AMD). In detail,

the patients underwent an ophthalmic exam, at the end of which the doctor assigned a score to

both eyes, SevScale1E (right) and SevScale2E (left). ENROLLAGE represents baseline age

(a numeric variable), and rs2284665 represents a genetic variant (a factor variable with levels 0

(GG), 1 (GT), and 2 (TT)). A full description of the dataset is presented in Table 2.3
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Notation Characteristic Allowed values Description
z1 SevScale1E 4− 9 Severity scale associated with the right eye
z2 ENROLLAGE 1− 99 Age at baseline
z3 rs2284665 0, 1, 2 SNP covariate highly associated

with late-AMD progression
z4 SevScale2E 4− 9 Severity scale associated with the left eye
t11 enrollment_day decimal Start of follow-up in days right eye
t12 AMD_recurrence_RightEye decimal Time to recurrence or

last follow-up in days
t21 enrollment_day decimal Start of follow-up in days left eye
t22 AMD_recurrence_LeftEye decimal Time to death or last follow-up in days
cens1 censoring_status_RightEye recurrence, no recurrence Recurrence censoring variable
cens2 censoring_status_LeftEye recurrence, no recurrence Overall survival censoring variable

Table 2.3: AREDS data, data description.
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Before applying the BRBVS algorithm and comparing the sets of important variables obtained

using the Fisher information metric ωj = β2
j i(βj)j = 1p and the naive metrics ψj = |βj|j = 1p,

the best combination of copula and margins had been selected (see., Table 1.1 and 1.2). This

was achieved by fitting a full model Mfull where ENROLLAGE, rs2284665, SevScale1E,

and SevScale2E were included in the equations controlling the margins (η1 and η2) and the

parameter of dependence (θ). The copulas employed in this experiment were ( AMH ’AMH’,

Clayton ’C0’, FGM ’FGM’, Frank ’F’, Gaussian ’N’, Gumbel ’G0’, Joe ’J0’, Plackett ’PL’, T-

student ’T’), the margins ( Proportional hazards ’PH’, Proportional odds ’PO’, Probit ’probit’).

From these preliminary fittings, emerged that C0, POPO was the combination with the lowest

BIC (4330.08). The results are shown in Table 2.4.

POPO PHPH probprob POPH PHPO probPO POprob probPH PHprob
AMH 4338.05 4356.95 4350.49 4350.75 4344.96 4346.15 4343.08 4359.26 4350.15
C0 4330.08 4355.71 4343.66 4347.60 4339.84 4339.46 4334.97 4357.27 4344.96
FGM 4368.67 4386.19 4379.54 4379.82 4374.87 4374.82 4373.47 4385.84 4379.66

F 4333.73 4352.73 4342.50 4346.03 4341.40 4338.65 4337.96 4351.16 4345.91
N 4348.39 4369.10 4360.09 4362.75 4356.50 4354.78 4354.09 4369.87 4362.91
G0 4367.58 4383.04 4381.22 4378.91 4373.61 4375.21 4374.41 4387.28 4381.16
J0 4392.15 4406.13 4406.04 4402.34 4397.40 4400.00 4399.05 4410.89 4404.98
PL 4334.80 4353.36 4343.92 4347.00 4342.67 4340.01 4339.18 4352.44 4347.38
T 4353.31 4372.16 4365.00 4366.51 4361.68 4359.84 4359.29 4373.57 4368.27

Table 2.4: BIC values obtained by fitting gjrm() under the full model configurationMfull such that η1 = η2 =
η3 = β0 + β1ENROLLAGE+ β2rs2284665+ β3SevScale1E+ β4SevScale2E. In bold the lowest BIC.

Standardized AREDS perturbed with N (0, 1)

Under this scenario the covariates in AREDS had been standardized. In a variable selection proce-

dure the domain of the covariates can have an impact on the magnitude of the coefficient and then

invalidate the method. Standardizing is the solution to compare the coefficients within a model.

We coded rs2284665 as 0/1, such that to have three new covariates one for each rs2284665

level , z30 = 1{z3=0}, z31 = 1{z3=1}, z32 = 1{z3=2}. The other numeric inputs were centered and

then divided by their standard deviations. The tuning parameters has been specified as follows:

kmax = 10, m = 328, τ = 0.5, n.rep = 50, Clayton copula (C0) and Proportional odds (PO,PO).

The results of the BRBVS procedure are showed in Table 2.5.



68
BIVARIATE VARIABLE RANKING PROCEDURE FOR COPULA LINK-BASED SURVIVAL ADDITIVE MODELS VIA

FISHER INFORMATION METRIC

1st margin (right eye) 2nd margin (left eye) BIC AIC LogLik

Mω {z1, z4, z30 , z32} {z30 , z4, z32 , z1, z31} 4325.849 4225.385 −2090.079

Mψ {z1, z4} {z4, z1, z30 , z32 , z31} 4324.518 4220.659 −2086.951

Table 2.5: BRBVS results using clayton copula, porportional hazard margins kmax = 10, m = 328, τ = 0.5,
n.rep = 80 using ω = β2i(β) and ψ = |β| as metrics. The covariates are ordered according to their importance. The
BIC, AIC and LogLik are obtained by applying gjrm() function to a non standardized AREDS.

Using ω, in order of importance we have that SevScale1E, SevScale2E, GG and TT

resulted to be relevant variables for the progression of the right eye, while GG, SevScale2E, TT,

SevScale1E,GT, are relevant covariates to explain the progression of the left eye. Using ψ we

end up with a similar selection of covariates ( GG, TT were not selected in the first margin). Also

in terms of AIC and BIC we obtained comparable results.

Despite both the Fisher information metric (ω) and the naive metric (ψ) yielding almost the

same values for BIC (4325.85 for ω and 4324.52 for ψ ) and AIC (4225.38 for ω and 4220.66 for

ψ) , the selection based on ω = β2
j i(β), resulted in a greater number of covariates in the set of

important variables. Notably, the covariates included are known genetic factors that play a role in

the progression of AMD, as highlighted in the literature (Sun & Ding, 2021; Petti et al., 2022).

This finding provides compelling evidence of the effectiveness of the Fisher information metric in

capturing important characteristics associated with the event of interest.

AREDS perturbed with N (0, 1)

Under this framework we perturbed the AREDS dataset adding 100 realizations of independent

standard Gaussian random variables Zi
ind.∼ N (0, 1) i = 5, . . . , 104, leaving the covariates in

AREDS (ENROLLAGE, rs2284665, SevScale1E, SevScale2E) in their original space. Us-

ing the same argument of the previous section where we have coded rs2284665 as 0/1, such

that to have three new covariates one for each rs2284665 level , z30 = 1{z3=0}, z31 = 1{z3=1},

z32 = 1{z3=2}. .We then applied the BRBVS using both ω = β2i(β) and ψ = |β| as metrics, the

tuning parameters have been specified as follows: kmax = 10, m = 328, τ = 0.5, n.rep = 50.
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The combination Clayton copula (C0) and Proportional odds (PO,PO), this combination has been

chosen using the procedure discussed in the previous section. The results of the BRBVS procedure

are shown in Table 2.6.

Applying theBRBV S based on ω, the set of important covariates are SevScale1E, SevScale2E,

ENROLLAGE for the first margin, while SevScale2E, SevScale1E, ENROLLAGE, GG, GT,

TT were included in the set of important covariates for the left eye. Using ψ, the genes GG and GT

were incuded in the set of important covariates for the first margin, while for the second margin

under the naive metric ENROLLAGE was not selected.

1st margin (right eye) 2nd margin (left eye) BIC AIC LogLik

Mω {z1, z4, z2} {z4, z1, z2, z30 , z32 , z31} 4321.327 4218.106 −2085.819

Mψ {z1, z4, z30 , z32} {z4, z30 , z1, z32 , z31} 4335.383 4222.823 −2086.074

Table 2.6: BRBVS results using clayton copula, porportional hazard margins kmax = 10, m = 328, τ = 0.5,
n.rep = 80 using ω = β2i(β) and ψ = |β| as metrics. The covariates are ordered according to their importance.
The BIC, AIC and LogLik were obtained by applying gjrm() function to the AREDS dataset perturbed using
Zi

ind.∼ N (0, 1) i = 5, . . . , 104
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2.5 Discussion

We have introduced a variable ranking procedure based on an information matrix for the class

of Bivariate Copula Survival model(s). As discussed in the methodology section, the algorithm

is based on a boostrap procedure executed to identify the sets of important covariates for the

two (in)dependent time to events. The approach discussed makes a significant contribution in

applied and methodological statistics not only as it represents the first concrete proposal of a

variable selection procedure in the bivariate domain, but also for the introduction of a new metric.

Considering that no references are available in the state of the art, the preliminary results discussed

in this second chapter take on a completely different connotation. Overall both in simulation and

real data setting, the Bivariate RBVS procedure performed surprisingly well, recovering the set of

important variables for both time to events.

To the best of our knowledge, the Bivariate variable ranking proposed in this chapter is the

first attempt to apply a ranking procedure to a bivariate domain. At the time of writing there is no

package or implementation available in any programming language able to perform such task in

a bivariate survival domain. This makes our proposal the only ready-to-use implementation of a

bivariate survival variable ranking. Although the literature about the variable selection metrics is

reasonably ample, as far as we know the Fisher information metric proposed is an absolute novelty

in the literature, both in the univariate and multivariate domains.
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A.1 Complete log-likelihood function

In this section we will present the full derivation of the complete log-likelihood function. First the

log-likelihood composed of its sixteen pieces will be presented, to then guide the reader towards

its derivation. According to the standard notation, we will denote with ℓ the logarithm of the
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likelihood function.

ℓ(δ) =
n∑
i=1

δU1i
δU2i

log

[
∂2C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·G′

2(η2i(t2i)) ·
∂η1i(t1i)

∂t1i
· ∂η2i(t2i)

∂t2i

]
+

+ δR1i
δR2i

log

[
C{G1(η1i(r1i)), G2(η2i(r2i))}

]
+

+ δL1i
δL2i

log

[
1−G1(η1i(l1i))−G2(η2i(l2i)) + C{G1(η1i(l1i)), G2(η2i(l2i))}

]
+



87

+ δI1iδI2i log

[
C{G1(η1i(l1i)), G2(η2i(l2i))} − C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(r1i)), G2(η2i(l2i))}+ C{G1(η1i(r1i)), G2(η2i(r2i))}
]
+

+ δU1i
δR2i

log

[
− ∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

]
+

+ δR1i
δU2i

log

[
− ∂C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂t2i

]
+

+ δU1i
δL2i

log

[(
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− 1

)
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

]
+

+ δL1i
δU2i

log

[(
∂C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))
− 1

)
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂t2i

]
+

+ δU1i
δI2i log

[(
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))

)
·

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂t1i

]
+

+ δI1iδU2i
log

[(
∂C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))
− ∂C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))

)
·

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂t2i

]
+ δR1i

δL2i
log

[
G1(η1i(r1i))− C{G1(η1i(r1i)), G2(η2i(l2i))}

]
+

+ δL1i
δR2i

log

[
G2(η2i(r2i))− C{G1(η1i(l1i)), G2(η2i(r2i))}

]
+

+ δR1i
δI2i log

[
C{G1(η1i(r1i)), G2(η2i(l2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

]
+

+ δI1iδR2i
log

[
C{G1(η1i(l1i)), G2(η2i(r2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

]
+

+ δL1i
δI2i log

[
G2(η2i(l2i))−G2(η2i(r2i)) + C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(l1i)), G2(η2i(l2i))}
]
+

+ δI1iδL2i
log

[
G1(η1i(l1i))−G1(η1i(r1i)) + C{G1(η1i(r1i)), G2(η2i(l2i))}+

− C{G1(η1i(l1i)), G2(η2i(l2i))}
]
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A.1.1 Derivation

As per usual notation we have for ν = 1, 2 and i = 1, ..., n

• δUνi = 1 if uncensored and δUνi = 0 otherwise

• δLνi = 1 if left-censored and δLνi = 0 otherwise

• δRνi = 1 if right-censored and δRνi = 0 otherwise

• δIνi = 1 if interval-censored and δIνi = 0 otherwise

In the bivariate case the log-likelihood function is made of 16 terms corresponding to the following

combinations of the indicator functions

Uncens Left-cens Right-cens Interval-cens
Uncens δU1i

δU2i
δU1i

δL2i
δU1i

δR2i
δU1i

δI2i

Left-cens δL1i
δU2i

δL1i
δL2i

δL1i
δR2i

δL1i
δI2i

Right-cens δR1i
δU2i

δR1i
δL2i

δR1i
δR2i

δR1i
δI2i

Interval-cens δI1i δU2i
δI1i δL2i

δI1i δR2i
δI1i δI2i

The derivation of each of these terms follows.

• T1i uncensored and T2i uncensored (note: in this case t1i = r1i = l1i and t2i = r2i = l2i)

f(t1i, t2i) =
∂2

∂t1i∂t2i
F (t1i, t2i)

=
∂2

∂t1i∂t2i
[1− S(t1i)− S(t2i) + S(t1i, t2i)] =

=
∂2

∂t1i∂t2i
C{G1(η1i(t1i)), G2(η2i(t2i))} =

=
∂2C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·G′

2(η2i(t2i)) ·
∂η1i(t1i)

∂t1i
· ∂η2i(t2i)

∂t2i

• T1i right-censored and T2i right-censored

P (T1i > r1i, T2i > r2i) = S(r1i, r2i) = C{G1(η1i(r1i)), G2(η2i(r2i))}
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• T1i left-censored and T2i left-censored

P (T1i < l1i, T2i < l2i) = F (l1i, l2i) = P (T1i < l1i)− [P (T2i > l2i)− S(l1i, l2i)] =

= 1− S1(l1i)− S2(l2i) + S(l1i, l2i) =

= 1−G1(η1i(l1i))−G2(η2i(l2i)) + C{G1(η1i(l1i)), G2(η2i(l2i))}

• T1i interval-censored and T2i interval-censored

P (l1i < T1i < r1i, l2i < T2i < r2i) =

= P (T1i < r1i, T2i < r2i)− P (T1i < l1i, T2i < r2i)−

− P (T1i < r1i, T2i < l2i) + P (T1i < l1i, T2i < l2i) =

= F (r1i, r2i)− F (l1i, r2i)− F (r1i, l2i) + F (l1i, l2i) =

= [1− S1(r1i)− S2(r2i) + S(r1i, r2i)]− [1− S1(l1i)− S2(r2i) + S(l1i, r2i)]+

− [1− S1(r1i)− S2(l2i) + S(r1i, l2i)] + [1− S1(l1i)− S2(l2i) + S(l1i, l2i)] =

= S(l1i, l2i)− S(l1i, r2i)− S(r1i, l2i) + S(r1i, r2i) =

= C{G1(η1i(l1i)), G2(η2i(l2i))} − C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(r1i)), G2(η2i(l2i))}+ C{G1(η1i(r1i)), G2(η2i(r2i))}

• T1i uncensored and T2i right-censored

+∞∫
r2i

f(t1i, y)dy =

+∞∫
0

f(t1i, y)dy −
r2i∫
0

f(t1i, y)dy =

= f1(t1i)−
∂

∂t1i
F (t1i, r2i) = f1(t1i)−

∂

∂t1i
[1− S1(t1i)− S2(t2i) + S(t1i, r2i)] =

= f1(t1i)− f1(t1i)−
∂

∂t1i
S(t1i, r2i) = − ∂

∂t1i
C{G1(η1i(t1i)), G2(η2i(r2i))} =

= −∂C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂t1i
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• T1i uncensored and T2i left-censored

l2i∫
0

f(t1i, y)dy =
∂

∂t1i
F (t1i, l2i) =

=
∂

∂t1i
[1− S1(t1i)− S2(l2i) + S(t1i, l2i)] =

= − ∂

∂t1i
G1(η1i(t1i)) +

∂

∂t1i
C{G1(η1i(t1i)), G2(η2i(l2i))} =

= −G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂t1i
+
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i
=

=

[
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− 1

]
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

• T1i uncensored and T2i interval-censored (the symmetric case follows by switching the sub-

scripts where needed)

r2i∫
l2i

f(t1i, y)dy =

r2i∫
0

f(t1i, y)dy −
l2i∫
0

f(t1i, y)dy =

=
∂

∂t1i
F (t1i, r2i)−

∂

∂t1i
F (t1i, l2i) =

=
∂

∂t1i
[1− S1(t1i)− S2(r2i) + S(t1i, r2i)]−

∂

∂t1i
[1− S1(t1i)− S2(l2i) + S(t1i, l2i)] =

=
∂

∂t1i
C{G1(η1i(t1i)), G2(η2i(r2i))} −

∂

∂t1i
C{G1(η1i(t1i)), G2(η2i(l2i))} =

=

[
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))

]
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

• T1i right-censored and T2i left-censored (the symmetric case follows by switching the sub-

scripts where needed)

P (T1i > r1i, T2i < l2i) = P (T2i < l2i)− P (T1i < r1i, T2i < l2i) = F2(l2i)− F (r1i, l2i) =

= 1− S2(l2i)− [1− S1(r1i)− S2(l2i) + S(r1i, l2i)] =

= G1(η1i(r1i))− C{G1(η1i(r1i)), G2(η2i(l2i))}

• T1i right-censored and T2i interval-censored (the symmetric case follows by switching the
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subscripts where needed)

P (T1i > r1i, l2i < T2i < r2i) =

= P (T2i < r2i)− P (T2i < l2i)− P (T1i < r1i, T2i < r2i) + P (T1i < r1i, T2i < l2i) =

= F2(r2i)− F2(l2i)− F (r1i, r2i) + F (r1i, l2i) =

= 1− S2(r2i)− 1 + S2(l2i)− [1− S1(r1i)− S2(r2i) + S(r1i, r2i)]+

+ [1− S1(r1i)− S2(l2i) + S(r1i, l2i)] =

= S(r1i, l2i)− S(r1i, r2i) =

= C{G1(η1i(r1i)), G2(η2i(l2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

• T1i left-censored and T2i interval-censored (the symmetric case follows by switching the

subscripts where needed)

P (T1i < l1i, l2i < T2i < r2i) = F (l1i, r2i)− F (l1i, l2i) =

= [1− S1(l1i)− S2(r2i) + S(l1i, r2i)]− [1− S1(l1i)− S2(l2i) + S(l1i, l2i)] =

= S2(l2i)− S2(r2i) + S(l1i, r2i)− S(l1i, l2i) =

= G2(η2i(l2i))−G2(η2i(r2i))}+ C{G1(η1i(l1i)), G2(η2i(r2i))} − C{G1(η1i(l1i)), G2(η2i(l2i))}
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A.2 The Gradient

In the following the derivatives of the complete log-likelihood with respect to the parameters of

the survival of the first time-to-event, β1, to the the parameters of the survival of the second time-

to-event, β2, and to the parameters of the copula coefficient, β3, are reported separately. The

quantities of the type Dζ;l1i,l2i , where ζ ∈ N and i = 1, . . . , n have been introduced to make more

compact and readable the expression of the Gradient.

Derivative with respect to β1

∂ℓ(δ)

∂β1

=δU1i
δU2i

{
D−1

1;δU1i
δU2i

[
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

]
+

+D−1
2;δU1i

δU2i

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
4;δU1i

δU2i

[
∂2η1i(t1i)

∂t1i∂β1

]}
+ δR1i

δR2i
D−1
δR1i

δR2i

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
+

+ δL1i
δL2i

D−1
δL1i

δL2i

{
−G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
+

+ δI1iδI2iD
−1
δI1iδI2i

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
+

+ δU1i
δR2i

{
D−1

1;δU1i
δR2i

∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂2G1(η1i(t1i))

·G′
1(η1i(t1i) ·

∂η1i(t1i)

∂β1

+

+D−1
2;δU1i

δR2i

[
−G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+D−1

3;δU1i
δR2i

∂2η1i(t1i)

∂t1i∂β1

}
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δR1i
δU2i

D−1
1;δR1i

δU2i

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
+ δU1i

δL2i

{
D−1

1;δU1i
δL2i

∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

+

+D−1
2;δU1i

δL2i
G′′

1(η1i(t1i))
∂η1i(t1i)

∂β1

+D−1
3;δU1i

δL2i

∂2η1i(t1i)

∂t1i∂β1

}
+

+ δL1i
δU2i

{
D−1

1;δL1i
δU2i

∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}
+

+ δU1i
δI2i

{
D−1

1;δU1i
δI2i

[
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

]
+

+D−1
2;δU1i

δI2i

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
+

+D−1
3;δU1i

δI2i

[
∂2η1i(t1i)

∂t1i∂β1

]}
+

+ δI1iδU2i
D−1

1;δI1iδU2i

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

}
+

+ δR1i
δL2i

D−1
δR1i

δL2i

{
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
+

+ δL1i
δR2i

D−1
δL1i

δR2i

{
− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
+

+ δR1i
δI2iD

−1
δR1i

δI2i

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
+

+ δI1iδR2i
D−1
δI1iδR2i

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

}
+

+ δL1i
δI2iD

−1
δL1i

δI2i

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
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δI1iδL2i
D−1
δI1iδL2i

{
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

−G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}



95

Derivative with respect to β2

∂ℓ(δ)

∂β2

=δU1i
δU2i

{
D−1

1;δU1i
δU2i

∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

+

+D−1
3;δU1i

δU2i
G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

+

+D−1
5;δU1i

δU2i

∂2η2i(t2i)

∂t2i∂β2

}
+

+ δR1i
δR2i

D−1
δR1i

δR2i

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
+

+ δL1i
δL2i

D−1
δL1i

δL2i

{
−G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
+

+ δI1iδI2iD
−1
δI1iδI2i

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
+

+ δU1i
δR2i

D−1
1;δU1i

δR2i

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+ δR1i

δU2i

{
D−1

1;δR1i
δU2i

[
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂2G2(η2i(t2i))
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
2;δR1i

δU2i

[
−G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
3;δR1i

δU2i

∂2η2i(t2i)

∂t2i∂β2

+

}
+ δU1i

δL2i
D−1

1;δU1i
δL2i

{
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
+

+ δL1i
δU2i

{
D−1

1;δL1i
δU2i

[
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
2;δL1i

δU2i

[
G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
+

+D−1
3;δL1i

δU2i

[
∂2η2i(t2i)

∂t2i∂β2

]}
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+ δU1i
δI2iD

−1
1;δU1i

δI2i

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
+ δI1iδU2i

{
D−1

1;δI1iδU2i

[
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

]
+

+D−1
2;δI1iδU2i

G′′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

+D−1
3;δI1iδU2i

∂2η2i(t2i)

∂t2i∂β2

}
+ δR1i

δL2i
D−1
δR1i

δL2i

{
− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
+ δL1i

δR2i
D−1
δL1i

δR2i

{
G′

2(η2i(r2i))
∂η2i(r2i)

∂β2

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+ δR1i

δI2iD
−1
δR1i

δI2i

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+

δI1iδR2i
D−1
δI1iδR2i

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
+

+ δL1i
δI2iD

−1
δL1i

δI2i

{
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

−G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
+

δI1iδL2i
D−1
δI1iδL2i

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i)

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

}
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Derivative with respect to β3

∂ℓ(δ)

∂β3

=δU1i
δU2i

D−1
1;δU1i

δU2i

{
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+ δR1i

δR2i
D−1
δR1i

δR2i

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}

+ δL1i
δL2i

D−1
δL1i

δL2i

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

+ δI1iδI2iD
−1
δI1iδI2i

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+

+ δU1i
δR2i

D−1
1;δU1i

δR2i

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+ δR1i

δU2i
D−1

1;δR1i
δU2i

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+ δU1i

δL2i
D−1

1;δU1i
δL2i

{
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

+ δL1i
δU2i

D−1
1;δL1i

δU2i

{
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

+ δU1i
δI2iD

−1
1;δU1i

δI2i

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+

+ δI1iδU2i
D−1

1;δI1iδU2i

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+ δR1i

δL2i
D−1
δR1i

δL2i

{
− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

+ δL1i
δR2i

D−1
δL1i

δR2i

{
− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

}
+

+ δR1i
δI2iD

−1
δR1i

δI2i

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+
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+ δI1iδR2i
D−1
δI1iδR2i

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+ δL1i

δI2iD
−1
δL1i

δI2i

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
+

+ δI1iδL2i
D−1
δI1iδL2i

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

}
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Symbols

D1;δU1i
δU2i

=
∂2C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))

D2;δU1i
δU2i

= G′
1(η1i(t1i))

D3;δU1i
δU2i

= G′
2(η2i(t2i))

D4;δU1i
δU2i

=
∂η1i(t1i)

∂t1i

D5;δU1i
δU2i

=
∂η2i(t2i)

∂t2i

DδR1i
δR2i

= C{G1(η1i(r1i)), G2(η2i(r2i))}

DδL1i
δL2i

=

[
1−G1(η1i(l1i))−G2(η2i(l2i)) + C{G1(η1i(l1i)), G2(η2i(l2i))}

]
DδI1iδI2i

=

[
C{G1(η1i(l1i)), G2(η2i(l2i))} − C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(r1i)), G2(η2i(l2i))}+ C{G1(η1i(r1i)), G2(η2i(r2i))}
]

D1;δU1i
δR2i

=
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))

D2;δU1i
δR2i

= −G′
1(η1i(t1i))

D3;δU1i
δR2i

=
∂η1i(t1i)

∂t1i

D1;δR1i
δU2i

=
∂C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))

D2;δR1i
δu2i

= −G′
2(η2i(t2i))

D3;δR1i
δU2i

=
∂η2i(t2i)

∂t2i

D1;δU1i
δL2i

=

(
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− 1

)
D2;δU1i

δL2i
= G′

1(η1i(t1i))

D3;δU1i
δL2i

=
∂η1i(t1i)

∂t1i

D1;δL1i
δU2i

=

(
∂C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))
− 1

)
D2;δL1i

δU2i
= G′

2(η2i(t2i))
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D3;δL1i
δU2i

=
∂η2i(t2i)

∂t2i

D1;δU1i
δI2i

=

(
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))

)
D2;δU1i

δI2i
= G′

1(η1i(t1i))

D3;δU1i
δI2i

=
∂η1i(t1i)

∂t1i

D1;δI1iδU2i
=

(
∂C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))
− ∂C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))

)
D2;δI1iδU2i

= G′
2(η2i(t2i))

D3;δI1iδU2i
=
∂η2i(t2i)

∂t2i

DδR1i
δL2i

= G1(η1i(r1i))− C{G1(η1i(r1i)), G2(η2i(l2i))}

DδL1i
δR2i

= G2(η2i(r2i))− C{G1(η1i(l1i)), G2(η2i(r2i))}

DδR1i
δI2i

= C{G1(η1i(r1i)), G2(η2i(l2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

DδI1iδR2i
= C{G1(η1i(l1i)), G2(η2i(r2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

DδL1i
δI2i

=

[
G2(η2i(l2i))−G2(η2i(r2i)) + C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(l1i)), G2(η2i(l2i))}
]

DδI1iδL2i
=

[
G1(η1i(l1i))−G1(η1i(r1i)) + C{G1(η1i(r1i)), G2(η2i(l2i))}+

− C{G1(η1i(l1i)), G2(η2i(l2i))}
]
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A.3 Hessian of complete log-likelihood

Symbols for the Hessian

In this section are introduced some quantities useful in order to express the Hessian in a more

concise and clear way. In the following paragraphs, all the quantities useful for the derivation of

the Hessian have been derived. In detail, the first and mixed derivatives of the quantities of the

type Dζ;l1i,l2i were introduced, where ζ ∈ N and i = 1, . . . , n. The introduction of these quantities

is necessary in order to make the writing of the Hessian much more compact and readable for the

reader.

First Derivative respect with β1

∂D1;δU1i
δU2i

∂β1

=

[
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

]
∂D2;δU1i

δU2i

∂β1

=

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D4;δU1i

δU2i

∂β1

=

[
∂2η1i(t1i)

∂t1i∂β1

]
∂DδR1i

δR2i

∂β1

=

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
∂DδL1i

δL2i

∂β1

=

{
−G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DδI1iδI2i

∂β1

=

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+
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− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

}
∂D1;δU1i

δR2i

∂β1

=
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

∂D2;δU1i
δR2i

∂β1

=

[
−G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D3;δU1i

δR2i

∂β1

=
∂2η1i(t1i)

∂t1i∂β1

∂D1;δR1i
δU2i

∂β1

=
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂D1;δU1i
δL2i

∂β1

=
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

∂D2;δU1i
δL2i

∂β1

= G′′
1(η1i(t1i))

∂η1i(t1i)

∂β1

∂D3;δU1i
δL2i

∂β1

=
∂2η1i(t1i)

∂t1i∂β1

∂D1;δL1i
δU2i

∂β1

=
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂D1;δU1i
δI2i

∂β1

=

[
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

]
∂D2;δU1i

δI2i

∂β1

=

[
G′′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

]
∂D3;δU1i

δI2i

∂β1

=

[
∂2η1i(t1i)

∂t1i∂β1

]
∂D1;δI1iδU2i

∂β1

=

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

}
∂DδR1i

δL2i

∂β1

=

{
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
∂DδL1i

δR2i

∂β1

=

{
− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DδR1i

δI2i

∂β1

=

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

}
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∂DδI1iδR2i

∂β1

=

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

}
∂DδL1i

δI2i

∂β1

=

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

}
∂DδI1iδL2i

∂β1

=

{
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

−G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

}
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First Derivative respect to β2

∂D1;δU1i
δU2i

∂β2

=
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂D3;δU1i
δU2i

∂β2

= G′′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂D5;δU1i
δU2i

∂β2

=
∂2η2i(t2i)

∂t2i∂β2

∂DδR1i
δR2i

∂β2

=

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
∂DδL1i

δL2i

∂β2

=

{
−G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
∂DδI1iδI2i

∂β2

=

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
1(η2i(l2i)) ·

∂η2i(l2i)

∂β2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

1(η2i(r2i)) ·
∂η2i(r2i)

∂β2

}
∂DδU1i

δR2i

∂β2

=

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂D1;δR1i

δU2i

∂β2

=

[
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D2;δR1i

δU2i

∂β2

=

[
−G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D3;δR1i

δU2i

∂β2

=
∂2η2i(t2i)

∂t2i∂β2

∂D1;δU1i
δL2i

∂β2

=
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂D1;δL1i
δU2i

∂β2

=

[
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D2;δL1i

δU2i

∂β2

=

[
G′′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

]
∂D3;δL1i

δU2i

∂β1

=

[
∂2η2i(t2i)

∂t2i∂β2

]
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∂D1;δU1i
δI2i

∂β2

=

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
∂D1;δI1iδU2i

∂β2

=

[
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

]
+

∂D2;δI1iδU2i

∂β2

= G′′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂D3;δI1iδU2i

∂β2

=
∂2η2i(t2i)

∂t2i∂β2

∂DδR1i
δL2i

∂β2

=

{
− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

}
∂DδL1i

δR2i

∂β2

=

{
G′

2(η2i(r2i))
∂η2i(r2i)

∂β2

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂DδR1i

δI2i

∂β2

=

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂DδI1iδR2i

∂β2

=

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

}
∂DδL1i

δI2i

∂β2

=

{
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

−G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

}
∂DδI1iδL2i

∂β2

=

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

}
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First Derivative respect to β3

∂D1;δU1i
δU2i

∂β3

=

{
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂DδR1i

δR2i

∂β3

=

{
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}

∂DδL1i
δL2i

∂β3

=

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
+

∂DδI1iδI2i

∂β3

=

{
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂D1;δU1i

δR2i

∂β3

=

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂D1;δR1i

δU2i

∂β3

=

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂D1;δU1i

δL2i

∂β3

=

{
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂D1;δL1i

δU2i

∂β3

=

{
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂D1;δU1i

δI2i

∂β3

=

{
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
∂D1;δI1iδU2i

∂β3

=

{
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
∂DδR1i

δL2i

∂β3

=

{
− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}
∂DδL1i

δR2i

∂β3

=

{
− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

}



107

∂DδR1i
δI2i

∂β3

=

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
∂DδI1iδR2i

∂β3

=

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
∂DδL1i

δI2i

∂β3

=

{
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
∂DδI1iδL2i

∂β3

=

{
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂η3i(x3i, β3)

∂β3

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂η3i(x3i, β3)

∂β3

}
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Cross derivative: ∂2D′s/∂β1∂β1

∂2D1;δU1i
δU2i

∂β1∂βT1
=

{
∂4C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))3∂G2(η2i(t2i))

(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))

·G′′
1(η1i(t1i))

(
∂η1i(t1i)

∂β1

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))

·G′
1(η1i(t1i)) ·

∂2η1i(t1i)

∂β1∂βT1
∂2D2;δU1i

δU2i

∂β1∂βT1
=

{
G′′′

1 (η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i)) ·

∂2η1i(t1i)

∂β1∂βT1

}
∂2D4;δU1i

δU2i

∂β1∂βT1
=

∂3η1i(t1i)

∂t1i∂β1∂βT1
∂2DδR1i

δR2i

∂β1∂βT1
=

{
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))2

(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂2η1i(r1i)

∂β1∂βT1

}
+

∂2DδL1i
δL2i

∂β1∂βT1
=

{
−G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

−G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂β1
T
+

+
∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂2η1i(l1i)

∂β1∂βT1

}
∂2DδI1iδI2i

∂β1∂βT1
=

{
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂2η1i(l1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))2

·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))2

·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+
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− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1
+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))2
·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂2η1i(r1i)

∂β1∂βT1

}
∂2D1;δU1i

δR2i

∂β1∂βT1
=

{
+
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))3
·
(
G′

1(η1i(t1i) ·
∂η1i(t1i)

∂β1

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′′

1(η1i(t1i) ·
(
∂η1i(t1i)

∂β1

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i) ·
∂2η1i(t1i)

∂β1∂βT1

}
∂2D2;δU1i

δR2i

∂β1∂βT1
=

{
−G′′′

1 (η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

−G′′
1(η1i(t1i)) ·

∂2η1i(t1i)

∂β1∂β1

}
∂2D3;δU1i

δR2i

∂β1∂βT1
=

∂3η1i(t1i)

∂t1i∂β1∂βT1
∂2D1;δR1i

δU2i

∂β1∂βT1
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))2

·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂β1

}
∂2D1;δU1i

δL2i

∂β1∂βT1
=

{
+
∂3C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))3
·
(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))2
·G′′

1(η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i)) ·
∂2η1i(t1i)

∂β1∂βT1

}
∂2D2;δU1i

δL2i

∂β1∂βT1
=

{
G′′′

1 (η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i))

∂2η1i(t1i)

∂β1∂βT1

}
∂2D3;δU1i

δL2i

∂β1∂βT1
=

∂3η1i(t1i)

∂t1i∂β1∂βT1
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∂2D1;δL1i
δU2i

∂β1∂βT1
=

{
+
∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))2

·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂βT1

}
∂2D1;δU1i

δI2i

∂β1∂βT1
=

{
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))3
·
(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′′

1(η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2
·G′

1(η1i(t1i)) ·
∂2η1i(t1i)

∂β1∂βT1
+

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))3

·
(
G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂β1

)2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2

·G′′
1(η1i(t1i)) ·

(
∂η1i(t1i)

∂β1

)2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2

·G′
1(η1i(t1i)) ·

∂2η1i(t1i)

∂β1∂βT1

}
∂2D2;δU1i

δI2i

∂β1∂βT1
=

{
G′′′

1 (η1i(t1i)) ·
(
∂η1i(t1i)

∂β1

)2

+G′′
1(η1i(t1i)) ·

∂2η1i(t1i)

∂β1∂βT1

}
∂2D3;δU1i

δI2i

∂β1∂βT1
=

∂3η1i(t1i)

∂t1i∂β1∂βT1
∂2D1;δI1iδU2i

∂β1∂βT1
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))2∂G2(η2i(t2i))

·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))

·G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1
+

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)2∂G2(η2i(t2i))

·
(
G′

1(η1i(l1i) ·
∂η1i(l1i)

∂β1

)2

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′′
1(η1i(l1i) ·

(
∂η1i(l1i)

∂β1

)2

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))

·G′
1(η1i(l1i) ·

∂2η1i(l1i)

∂β1∂βT1

}
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∂2DδR1i
δL2i

∂β1∂βT1
=

{
G′′

1(η1i(r1i)) ·
(
∂η1i(r1i)

∂β1

)2

+G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))2

·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1

}
∂2DδL1i

δR2i

∂β1∂βT1
=

{
− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂βT1

}
∂2DδR1i

δI2i

∂β1∂βT1
=

{
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))2
·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂2η1i(r1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))2

·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1

}
∂2DδI1iδR2i

∂β1∂βT1
=

{
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂2η1i(l1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))2

·
(
G′

1(η1i(r1i))
∂η1i(r1i)

∂β1

)2

+
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− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′′
1(η1i(r1i))

(
∂η1i(r1i)

∂β1

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))

·G′
1(η1i(r1i))

∂2η1i(r1i)

∂β1∂βT1

}
∂2DδL1i

δI2i

∂β1∂βT1
=

{
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂2η1i(l1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))2
·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))
·G′

1(η1i(l1i)) ·
∂2η1i(l1i)

∂β1∂βT1

}

∂2DδI1iδL2i

∂β1∂βT1
=

{
G′′

1(η1i(l1i)) ·
(
∂η1i(l1i)

∂β1

)2

+G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂βT1
+

−G′′
1(η1i(r1i)) ·

(
∂η1i(r1i)

∂β1

)2

−G′
1(η1i(r1i)) ·

∂2η1i(r1i)

∂β1∂βT1
+

+
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))2
·
(
G′

1(η1i(r1i)) ·
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′′

1(η1i(r1i)) ·
(
∂η1i(r1i)

∂β1

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))
·G′

1(η1i(r1i)) ·
∂2η1i(r1i)

∂β1∂βT1
+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))2

·
(
G′

1(η1i(l1i)) ·
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′′
1(η1i(l1i)) ·

(
∂η1i(l1i)

∂β1

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))

·G′
1(η1i(l1i)) ·

∂2η1i(l1i)

∂β1∂βT1

}
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Cross derivative: ∂2D′s/∂β1∂β2

∂2D1;δU1i
δU2i

∂β1∂βT2
=
∂4C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))2

·G′
2(η2i(t2i) ·

∂η2i(t2i)

∂β2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2DδR1i
δR2i

∂β1∂βT2
=
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2DδL1i
δL2i

∂β1∂βT2
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2DδI1iδI2i

∂β1∂βT2
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2D1;δU1i
δR2i

∂β1∂βT2
=
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))2∂G2(η2i(r2i)

·G′
2(η2i(r2i) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(t1i) ·

∂η1i(t1i)

∂β1

∂2D1;δR1i
δU2i

∂β1∂βT2
=
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2∂G1(η1i(r1i))

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2D1;δU1i
δL2i

∂β1∂βT2
=
∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2∂G2(η2i(l2i))

·G′
2(η2i(l2i))

∂η2i(l2i)

∂β2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2D1;δL1i
δU2i

∂β1∂βT2
=
∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2∂G1(η1i(l1i))

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2D1;δU1i
δI2i

∂β1∂βT2
=
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))2∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

+

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2D1;δI1iδU2i

∂β1∂βT2
=
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β1

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

∂2DδR1i
δL2i

∂β1∂βT2
= −∂

2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2DδL1i
δR2i

∂β1∂βT2
= −∂

2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1
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∂2DδR1i
δI2i

∂β1∂βT2
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2DδI1iδR2i

∂β1∂βT2
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

∂2DδL1i
δI2i

∂β1∂βT2
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2DδI1iδL2i

∂β1∂βT2
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))∂G2(η2i(l2i)

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1
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Cross derivative: ∂2D′s/∂β1∂β3

∂2D1;δU1i
δU2i

∂β1∂βT3
=

∂4C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))2∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2DδR1i
δR2i

∂β1∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2DδL1i
δL2i

∂β1∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2DδI1iδI2i

∂β1∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

+
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2D1;δU1i
δR2i

∂β1∂βT3
=
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(t1i) ·

∂η1i(t1i)

∂β1

∂2D1;δR1i
δU2i

∂β1∂βT3
=

∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2D1;δU1i
δL2i

∂β1∂βT3
=
∂3C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2D1;δL1i
δU2i

∂β1∂βT3
=

∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2D1;δU1i
δI2i

∂β1∂βT3
=
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

+

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂β1

∂2D1;δI1iδU2i

∂β1∂βT3
=

∂3C{G1(η1i(r1i)), G2(η2i(t2i))}
∂G1(η1i(r1i))∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G1(η1i(l1i)∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i) ·

∂η1i(l1i)

∂β1

∂2DδR1i
δL2i

∂β1∂βT3
= −∂

2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

∂2DδL1i
δR2i

∂β1∂βT3
= −∂

2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2DδR1i
δI2i

∂β1∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1
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∂2DδI1iδR2i

∂β1∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G1(η1i(r1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i))

∂η1i(r1i)

∂β1

∂2DδL1i
δI2i

∂β1∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G1(η1i(l1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1

∂2DδI1iδL2i

∂β1∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G1(η1i(r1i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
1(η1i(r1i)) ·

∂η1i(r1i)

∂β1

+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G1(η1i(l1i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
1(η1i(l1i)) ·

∂η1i(l1i)

∂β1



117

Cross derivative: ∂2D′s/∂β2∂β3

∂2D1;δU1i
δU2i

∂β2∂βT3
=

∂4C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂2DδR1i
δR2i

∂β2∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

∂2DδL1i
δL2i

∂β2∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂2DδI1iδI2i

∂β2∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

∂2DδU1i
δR2i

∂β2∂βT3
=

∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

∂2D1;δR1i
δU2i

∂β2∂βT3
=
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂2D1;δU1i
δL2i

∂β2∂βT3
=

∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))∂m(η3i

) ·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂2D1;δL1i
δU2i

∂β2∂βT3
=
∂3C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂2D1;δU1i
δI2i

∂β2∂βT3
=

∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))∂m(η3i)

m′(η3i) ·
∂η3i(x3i,β3)

∂β3

· ·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂2D1;δI1iδU2i

∂β2∂βT3
=
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

+

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(t2i)) ·

∂η2i(t2i)

∂β2

∂2DδR1i
δL2i

∂β2∂βT3
= −∂

2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂2DδL1i
δR2i

∂β2∂βT3
= −∂

2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2
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∂2DδR1i
δI2i

∂β2∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

∂2DδI1iδR2i

∂β2∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

∂2DδL1i
δI2i

∂β2∂βT3
=
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(r2i)) ·

∂η2i(r2i)

∂β2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

∂2DδI1iδL2i

∂β2∂βT3
=
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))∂m(η3i)
·m′(η3i) ·

∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i)) ·

∂η2i(l2i)

∂β2

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i)∂m(η3i)

·m′(η3i) ·
∂η3i(x3i,β3)

∂β3

·G′
2(η2i(l2i) ·

∂η2i(l2i)

∂β2
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Cross derivative: ∂2D′s/∂β3∂β3

∂2DδU1i
δU2i

∂β3∂βT3
=

{
∂4C{G1(η1i(t1i)), G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}

∂G1(η1i(t1i))∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδR1i

δR2i

∂β3∂βT3
=

{
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδL1i

δL2i

∂β3∂βT3
=

{
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδI1iδI2i

∂β3∂βT3
=

{
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3
+
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+
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
∂2DδU1i

δR2i

∂β3∂βT3
=

{
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδR1i

δU2i

∂β3∂βT3
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδU1i

δL2i

∂β3∂βT3
=

{
∂3C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδL1i

δU2i

∂β3∂βT3
=

{
∂3C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

}
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∂2DδU1i
δI2i

∂β3∂βT3
=

{
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′′(η3i)

(
· ∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδI1iδU2i

∂β3∂βT3
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδR1i

δL2i

∂β3∂βT3
=

{
− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδL1i

δR2i

∂β3∂βT3
=

{
− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
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∂2DδR1i
δI2i

∂β3∂βT3
=

{
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδI1iδR2i

∂β3∂βT3
=

{
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
∂2DδL1i

δI2i

∂β3∂βT3
=

{
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
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∂2DδI1iδL2i

∂2β3∂βT3
=

{
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)2
·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′′(η3i) ·

(
∂η3i(x3i, β3)

∂β3

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂m(η3i)
·m′(η3i) ·

∂2η3i(x3i, β3)

∂β3∂βT3
+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)2

·
(
m′(η3i) ·

∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′′(η3i) ·
(
∂η3i(x3i, β3)

∂β3

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂m(η3i)

·m′(η3i) ·
∂2η3i(x3i, β3)

∂β3∂βT3

}
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Cross derivative: ∂2D′s/∂β2∂β2

∂2D1;δU1i
δU2i

∂β2∂βT2
=

{
∂4C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))3

·
(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2

·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

+
∂3C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i))∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂βT2

}
∂2D3;δU1i

δU2i

∂β2∂βT2
= G′′′

2 (η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂βT2
∂2D5;δU1i

δU2i

∂β2∂βT2
=

∂3η2i(t2i)

∂t2i∂β2∂βT2
∂2DδR1i

δR2i

∂β2∂βT2
=

{
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))2
·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂2η2i(r2i)

∂β2∂βT2

}
∂2DδL1i

δL2i

∂β2∂βT2
=

{
−G′′

2(η2i(l2i)) ·
(
∂η2i(l2i)

∂β2

)2

−G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂β2
T
+

+
∂2C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))2
·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂2η2i(l2i)

∂β2∂βT2

}
∂2DδI1iδI2i

∂β2∂βT2
=

{
∂2C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))2
·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂2η2i(l2i)

∂β2∂βT2
+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2
+

− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))2

·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+
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− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2

+
∂2C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))2
·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂2η2i(r2i)

∂β2∂βT2

}
∂2DδU1i

δR2i

∂β2∂βT2
=

{
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2

}
∂2D1;δR1i

δU2i

∂β2∂βT2
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))3
·
(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′′

2(η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂2η2i(t2i)

∂β2∂βT2

}
∂2D2;δR1i

δU2i

∂β2∂βT2
= −G′′′

2 (η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

−G′′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂βT2
∂2D3;δR1i

δU2i

∂β2∂βT2
=

∂3η2i(t2i)

∂t2i∂β2∂βT2
∂2D1;δU1i

δL2i

∂β2∂βT2
=

{
∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))2

·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2

}
∂2D1;δL1i

δU2i

∂β2∂βT2
=

{
∂3C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))3
·
(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′′

2(η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+
∂2C{G1(η1i(l1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂2η2i(t2i)

∂β2∂βT2

}
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∂2D2;δL1i
δU2i

∂β2∂βT2
= G′′′

2 (η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂βT2
∂2D3;δL1i

δU2i

∂β2∂βT2
=

∂3η2i(t2i)

∂t2i∂β2∂βT2
∂2D1;δU1i

δI2i

∂β2∂βT2
=

{
∂3C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

+
∂2C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2

− ∂3C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))2

·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂2C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2

}
∂2D1;δI1iδU2i

∂β2∂βT2
=

{
∂3C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))3
·
(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′′

2(η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+
∂2C{G1(η1i(r1i)), G2(η2i(t2i))}

∂G2(η2i(t2i))2
·G′

2(η2i(t2i)) ·
∂2η2i(t2i)

∂β2∂βT2

− ∂3C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))3

·
(
G′

2(η2i(t2i)) ·
∂η2i(t2i)

∂β2

)2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2

·G′′
2(η2i(t2i)) ·

(
∂η2i(t2i)

∂β2

)2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(t2i))}
∂G2(η2i(t2i))2

·G′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂β2
2

}
∂2D2;δI1iδU2i

∂β2∂βT2
= G′′′

2 (η2i(t2i)) ·
(
∂η2i(t2i)

∂β2

)2

+G′′
2(η2i(t2i)) ·

∂2η2i(t2i)

∂β2∂βT2
∂2D3;δI1iδU2i

∂β2∂βT2
=

∂3η2i(t2i)

∂t2i∂β2∂βT2
∂2DδR1i

δL2i

∂β2∂βT2
=

{
− ∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))2
·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

− ∂C{G1(η1i(r1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2

}
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∂2DδL1i
δR2i

∂β2∂βT2
=

{
G′′

2(η2i(r2i)) ·
(
∂η2i(r2i)

∂β2

)2

+G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2
+

− ∂2C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

− ∂C{G1(η1i(l1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2

}

∂2DδR1i
δI2i

∂β2∂βT2
=

{
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i)2
·
(
G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′′

2(η2i(l2i) ·
(
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i)
·G′

2(η2i(l2i) ·
∂2η2i(l2i)

∂β2∂βT2
+

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

+

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2

}
∂2DδI1iδR2i

∂β2∂βT2
=

{
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))2
·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂2η2i(r2i)

∂β2∂βT2

− ∂2C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))2

·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

− ∂C{G1(η1i(r1i)), G2(η2i(r2i))}
∂G2(η2i(r2i))

·G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2

}
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∂2DδL1i
δI2i

∂β2∂βT2
=

{
G′′

2(η2i(l2i)) ·
(
∂η2i(l2i)

∂β2

)2

+G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2
+

−G′′
2(η2i(r2i)) ·

(
∂η2i(r2i)

∂β2

)2

−G′
2(η2i(r2i)) ·

∂2η2i(r2i)

∂β2∂βT2
+

+
∂2C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))2
·
(
G′

2(η2i(r2i)) ·
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′′

2(η2i(r2i)) ·
(
∂η2i(r2i)

∂β2

)2

+

+
∂C{G1(η1i(l1i)), G2(η2i(r2i))}

∂G2(η2i(r2i))
·G′

2(η2i(r2i)) ·
∂2η2i(r2i)

∂β2∂βT2
+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i)) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i)) ·

∂2η2i(l2i)

∂β2∂βT2

}
∂2DδI1iδL2i

∂β2∂βT2
=

{
∂2C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))2
·
(
G′

2(η2i(l2i)) ·
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′′

2(η2i(l2i)) ·
(
∂η2i(l2i)

∂β2

)2

+

+
∂C{G1(η1i(r1i)), G2(η2i(l2i))}

∂G2(η2i(l2i))
·G′

2(η2i(l2i)) ·
∂2η2i(l2i)

∂β2∂β2
2

+

− ∂2C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))2

·
(
G′

2(η2i(l2i) ·
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′′
2(η2i(l2i) ·

(
∂η2i(l2i)

∂β2

)2

+

− ∂C{G1(η1i(l1i)), G2(η2i(l2i))}
∂G2(η2i(l2i))

·G′
2(η2i(l2i) ·

∂2η2i(l2i)

∂β2∂βT2
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The Hessian

∂2ℓ(δ)

∂β1∂βT1
=δU1i

δU2i

{
(−1)D−2

1;δU1i
δU2i

·
(
∂D1;δU1i

δU2i

∂β1

)2

+D−1
1;δU1i

δU2i
·
∂2D1;δU1i

δU2i

∂β1∂βT1
+

(−1)D−2
2;δU1i

δU2i
·
(
∂D2;δU1i

δU2i

∂β1

)2

+D−1
2;δU1i

δU2i
·
∂2D2;δU1i

δU2i

∂β1∂βT1
+

(−1)D−2
4;δU1i

δU2i
·
(
∂D4;δU1i

δU2i

∂β1

)2

+D−1
4;δU1i

δU2i
·
∂2D4;δU1i

δU2i

∂β1∂βT1

}
+

+ δR1i
δR2i

{
(−1)D−2

δR1i
δR2i

·
(
∂DδR1i

δR2i

∂β1

)2

+D−1
δR1i

δR2i
·
∂2DδR1i

δR2i

∂β1∂βT1

}
+

+ δL1i
δL2i

{
(−1)D−2

δL1i
δL2i

·
(
∂DδL1i

δL2i

∂β1

)2

+D−1
δL1i

δL2i
·
∂2DδL1i

δL2i

∂β1∂βT1

}
+

+ δI1iδI2i

{
(−1)D−2

δI1iδI2i
·
(
∂DδI1iδI2i

∂β1

)2

+D−1
δI1iδI2i

·
∂2DδI1iδI2i

∂β1∂βT1

}
+

+ δU1i
δR2i

{
(−1)D−2

1;δU1i
δR2i

·
(
∂D1;δU1i

δR2i

∂β1

)2

+D−1
1;δU1i

δR2i
·
∂2D1;δU1i

δR2i

∂β1∂βT1
+

(−1)D−2
2;δU1i

δR2i
·
(
∂D2;δU1i

δR2i

∂β1

)2

+D−1
2;δU1i

δR2i
·
∂2D2;δU1i

δR2i

∂β1∂βT1
+

(−1)D−2
3;δU1i

δR2i
·
(
∂D3;δU1i

δR2i

∂β1

)2

+D−1
3;δU1i

δR2i
·
∂2D3;δU1i

δR2i

∂β1∂βT1

}
+

+ δR1i
δU2i

{
(−1)D−2

1;δR1i
δU2i

·
(
∂D1;δR1i

δU2i

∂β1

)2

+D−1
1;δR1i

δU2i
·
∂2D1;δR1i

δU2i

∂β1∂βT1

}
+

+ δU1i
δL2i

{
(−1)D−2

1;δU1i
δL2i

·
(
∂D1;δU1i

δL2i

∂β1

)2

+D−1
1;δU1i

δL2i
·
∂2D1;δU1i

δL2i

∂β1∂βT1
+

(−1)D−2
2;δU1i

δL2i
·
(
∂D2;δU1i

δL2i

∂β1

)2

+D−1
2;δU1i

δL2i
·
∂2D2;δU1i

δL2i

∂β1∂βT1
+

(−1)D−2
3;δU1i

δL2i
·
(
∂D3;δU1i

δL2i

∂β1

)2

+D−1
3;δU1i

δL2i
·
∂2D3;δU1i

δL2i

∂β1∂βT1

}
+

+ δL1i
δU2i

{
(−1)D−2

1;δL1i
δU2i

·
(
∂D1;δL1i

δU2i

∂β1

)2

+D−1
1;δL1i

δU2i
·
∂2D1;δL1i

δU2i

∂β1∂βT1

}
+ δU1i

δI2i

{
(−1)D−2

1;δU1i
δI2i

·
(
∂D1;δU1i

δI2i

∂β1

)2

+D−1
1;δU1i

δI2i
·
∂2D1;δU1i

δI2i

∂β1∂βT1
+

(−1)D−2
2;δU1i

δI2i
·
(
∂D2;δU1i

δI2i

∂β1

)2

+D−1
2;δU1i

δI2i
·
∂2D2;δU1i

δI2i

∂β1∂βT1
+

(−1)D−2
3;δU1i

δI2i
·
(
∂D3;δU1i

δI2i

∂β1

)2

+D−1
3;δU1i

δI2i
·
∂2D3;δU1i

δI2i

∂β1∂βT1

}
+

+ δI1iδU2i

{
(−1)D−2

1;δI1iδU2i
·
(
∂D1;δI1iδU2i

∂β1

)2

+D−1
1;δI1iδU2i

·
∂2D1;δI1iδU2i

∂β1∂βT1

}
+

+ δR1i
δL2i

{
(−1)D−2

δR1i
δL2i

·
(
∂DδR1i

δL2i

∂β1

)2

+D−1
δR1i

δL2i
·
∂2DδR1i

δL2i

∂β1∂βT1

}
+
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+ δL1i
δR2i

{
(−1)D−2

δL1i
δR2i

·
(
∂DδL1i

δR2i

∂β1

)2

+D−1
δL1i

δR2i
·
∂2DδL1i

δR2i

∂β1∂βT1

}
+

+ δR1i
δI2i

{
(−1)D−2

δR1i
δI2i

·
(
∂DδR1i

δI2i

∂β1

)2

+D−1
δR1i

δI2i
·
∂2DδR1i

δI2i

∂β1∂βT1

}
+

+ δI1iδR2i

{
(−1)D−2

δI1iδR2i
·
(
∂DδI1iδR2i

∂β1

)2

+D−1
δI1iδR2i

·
∂2DδI1iδR2i

∂β1∂βT1

}
+

+ δL1i
δI2i

{
(−1)D−2

δL1i
δI2i

·
(
∂DδL1i

δI2i

∂β1

)2

+D−1
δL1i

δI2i
·
∂2DδL1i

δI2i

∂β1∂βT1

}
+

+ δI1iδL2i

{
(−1)D−2

δI1iδL2i
·
(
∂DδI1iδL2i

∂β1

)2

+D−1
δI1iδL2i

·
∂2DδI1iδL2i

∂β1∂βT1

}
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∂2ℓ(δ)

∂β1∂βT2
=δU1i

δU2i

{
(−1)D−2

1;δU1i
δU2i

·
∂D1;δU1i

δU2i

∂β2

·
∂D1;δU1i

δU2i

∂β1

+D−1
1;δU1i

δU2i
·
∂2D1;δU1i

δU2i

∂β1∂βT2
+

(−1)D−2
2;δU1i

δU2i
·
∂D2;δU1i

δU2i

∂β2

·
∂D2;δU1i

δU2i

∂β1

+D−1
2;δU1i

δU2i
·
∂2D2;δU1i

δU2i

∂β1∂βT2
+

(−1)D−2
4;δU1i

δU2i
·
∂D4;δU1i

δU2i

∂β2

·
∂D4;δU1i

δU2i

∂β1

+D−1
4;δU1i

δU2i
·
∂2D4;δU1i

δU2i

∂β1∂βT2

}
δR1i

δR2i

{
(−1)D−2

δR1i
δR2i

·
∂DδR1i

δR2i

∂β2

·
∂DδR1i

δR2i

∂β1

+D−1
δR1i

δR2i
·
∂2DδR1i

δR2i

∂β1∂βT2

}
δL1i

δL2i

{
(−1)D−2

δL1i
δL2i

·
∂DδL1i

δL2i

∂β2

·
∂DδL1i

δL2i

∂β1

+D−1
δL1i

δL2i
·
∂2DδL1i

δL2i

∂β1∂βT2

}
δI1iδI2i

{
(−1)D−2

δI1iδI2i
·
∂DδI1iδI2i

∂β2

·
∂DδI1iδI2i

∂β1

+D−1
δI1iδI2i

·
∂2DδI1iδI2i

∂β1∂βT2

}
δU1i

δR2i

{
(−1)D−2

1;δU1i
δR2i

·
∂D1;δU1i

δR2i

∂β2

·
∂D1;δU1i

δR2i

∂β1

+D−1
1;δU1i

δR2i
·
∂2D1;δU1i

δR2i

∂β1∂βT2
+

(−1)D−2
2;δU1i

δR2i
·
∂D2;δU1i

δR2i

∂β2

·
∂D2;δU1i

δR2i

∂β1

+D−1
2;δU1i

δR2i
·
∂2D2;δU1i

δR2i

∂β1∂βT2
+

(−1)D−2
3;δU1i

δR2i
·
∂D3;δU1i

δR2i

∂β2

·
∂D3;δU1i

δR2i

∂β1

+D−1
3;δU1i

δR2i
·
∂2D3;δU1i

δR2i

∂β1∂βT2

}
δR1i

δU2i

{
(−1)D−2

1;δR1i
δU2i

·
∂D1;δR1i

δU2i

∂β2

· ∂D1;δR1i
δU2i

∂β1

+D−1
1;δR1i

δU2i
·
∂2D1;δR1iδU2i

∂β1∂βT2

}
δU1i

δL2i

{
(−1)D−2

1;δU1i
δL2i

·
∂D1;δU1i

δL2i

∂β2

·
∂D1;δU1i

δL2i

∂β1

+D−1
1;δU1i

δL2i
·
∂2D1;δU1i

δL2i

∂β1∂βT2
+

(−1)D−2
2;δU1i

δL2i
·
∂D2;δU1i

δL2i

∂β2

·
∂D2;δU1i

δL2i

∂β1

+D−1
2;δU1i

δL2i
·
∂2D2;δU1i

δL2i

∂β1∂βT2
+

(−1)D−2
3;δU1i

δL2i
·
∂D3;δU1i

δL2i

∂β2

·
∂D3;δU1i

δL2i

∂β1

+D−1
3;δU1i

δL2i
·
∂2D3;δU1i

δL2i

∂β1∂βT2

}
δL1i

δU2i

{
(−1)D−2

1;δL1i
δU2i

·
∂D1;δL1i

δU2i

∂β2

·
∂D1;δL1i

δU2i

∂β1

+D−1
1;δL1i

δU2i
·
∂2D1;δL1i

δU2i

∂β1∂βT2

}
+

δU1i
δI2i

{
(−1)D−2

1;δU1i
δI2i

·
∂D1;δU1i

δI2i

∂β2

·
∂D1;δU1i

δI2i

∂β1

+D−1
1;δU1i

δI2i
·
∂2D1;δU1i

δI2i

∂β1∂βT2
+

(−1)D−2
2;δU1i

δI2i
·
∂D2;δU1i

δI2i

∂β2

·
∂D2;δU1i

δI2i

∂β1

+D−1
2;δU1i

δI2i
·
∂2D2;δU1i

δI2i

∂β1∂βT2
+

(−1)D−2
3;δU1i

δI2i
·
∂D3;δU1i

δI2i

∂β2

·
∂D3;δU1i

δI2i

∂β1

+D−1
3;δU1i

δI2i
·
∂2D3;δU1i

δI2i

∂β1∂βT2

}
δI1iδU2i

{
(−1)D−2

1;δI1iδU2i
·
∂D1;δI1iδU2i

∂β2

·
∂D1;δI1iδU2i

∂β1

+D−1
1;δI1iδU2i

·
∂2D1;δI1iδU2i

∂β1∂βT2

}
δR1i

δL2i

{
(−1)D−2

δR1i
δL2i

·
∂DδR1i

δL2i

∂β2

·
∂DδR1i

δL2i

∂β1

+D−1
δR1i

δL2i
·
∂2DδR1i

δL2i

∂β1∂βT2

}
+
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δL1i
δR2i

{
(−1)D−2

δL1i
δR2i

·
∂DδL1i

δR2i

∂β2

·
∂DδL1i

δR2i

∂β1

+D−1
δL1i

δR2i
·
∂2DδL1i

δR2i

∂β1∂βT2

}
+

δR1i
δI2i

{
(−1)D−2

δR1i
δI2i

·
∂DδR1i

δI2i

∂β2

·
∂DδR1i

δI2i

∂β1

+D−1
δR1i

δI2i
·
∂2DδR1i

δI2i

∂β1∂βT2

}
+

δI1iδR2i

{
(−1)D−2

δI1iδR2i
·
∂DδI1iδR2i

∂β2

·
∂DδI1iδR2i

∂β1

+D−1
δI1iδR2i

·
∂2DδI1iδR2i

∂β1∂βT2

}
+

δL1i
δI2i

{
(−1)D−2

δL1i
δI2i

·
∂DδL1i

δI2i

∂β2

·
∂DδL1i

δI2i

∂β1

+D−1
δL1i

δI2i
·
∂2DδL1i

δI2i

∂β1∂βT2

}
+

δI1iδL2i

{
(−1)D−2

δI1iδL2i
·
∂DδI1iδL2i

∂β2

·
∂DδI1iδL2i

∂β1

+D−1
δI1iδL2i

·
∂2DδI1iδL2i

∂β1∂βT2

}
+
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∂2ℓ(δ)

∂β1∂βT3
=δU1i

δU2i

{
(−1)D−2

1;δU1i
δU2i

·
∂D1;δU1i

δU2i

∂β3

·
∂D1;δU1i

δU2i

∂β1

+D−1
1;δU1i

δU2i
·
∂2D1;δU1i

δU2i

∂β1∂βT3
+

(−1)D−2
2;δU1i

δU2i
·
∂D2;δU1i

δU2i

∂β3

·
∂D2;δU1i

δU2i

∂β1

+D−1
2;δU1i

δU2i
·
∂2D2;δU1i

δU2i

∂β1∂βT3
+

(−1)D−2
4;δU1i

δU2i
·
∂D4;δU1i

δU2i

∂β3

·
∂D4;δU1i

δU2i

∂β1

+D−1
4;δU1i

δU2i
·
∂2D4;δU1i

δU2i

∂β1∂βT3

}
δR1i

δR2i

{
(−1)D−2

δR1i
δR2i

·
∂DδR1i

δR2i

∂β3

·
∂DδR1i

δR2i

∂β1

+D−1
δR1i

δR2i
·
∂2DδR1i

δR2i

∂β1∂βT3

}
δL1i

δL2i

{
(−1)D−2

δL1i
δL2i

·
∂DδL1i

δL2i

∂β3

·
∂DδL1i

δL2i

∂β1

+D−1
δL1i

δL2i
·
∂2DδL1i

δL2i

∂β1∂βT3

}
δI1iδI2i

{
(−1)D−2

δI1iδI2i
·
∂DδI1iδI2i

∂β3

·
∂DδI1iδI2i

∂β1

+D−1
δI1iδI2i

·
∂2DδI1iδI2i

∂β1∂βT3

}
δU1i

δR2i

{
(−1)D−2

1;δU1i
δR2i

·
∂D1;δU1i

δR2i

∂β3

·
∂D1;δU1i

δR2i

∂β1

+D−1
1;δU1i

δR2i
·
∂2D1;δU1i

δR2i

∂β1∂βT3
+

(−1)D−2
2;δU1i

δR2i
·
∂D2;δU1i

δR2i

∂β3

·
∂D2;δU1i

δR2i

∂β1

+D−1
2;δU1i

δR2i
·
∂2D2;δU1i

δR2i

∂β1∂βT3
+

(−1)D−2
3;δU1i

δR2i
·
∂D4;δU1i

δR2i

∂β3

·
∂D4;δU1i

δR2i

∂β1

+D−1
3;δU1i

δR2i
·
∂2D3;δU1i

δR2i

∂β1∂βT3

}
δR1i

δU2i

{
(−1)D−2

1;δR1i
δU2i

·
∂D1;δR1i

δU2i

∂β3

· ∂D1;δR1i
δU2i

∂β1

+D−1
1;δR1i

δU2i
·
∂2D1;δR1iδU2i

∂β1∂βT3

}
δU1i

δL2i

{
(−1)D−2

1;δU1i
δL2i

·
∂D1;δU1i

δL2i

∂β3

·
∂D1;δU1i

δL2i

∂β1

+D−1
1;δU1i

δL2i
·
∂2D1;δU1i

δL2i

∂β1∂βT3
+

(−1)D−2
2;δU1i

δL2i
·
∂D2;δU1i

δL2i

∂β3

·
∂D2;δU1i

δL2i

∂β1

+D−1
2;δU1i

δL2i
·
∂2D2;δU1i

δL2i

∂β1∂βT3
+

(−1)D−2
3;δU1i

δL2i
·
∂D3;δU1i

δL2i

∂β3

·
∂D3;δU1i

δL2i

∂β1

+D−1
3;δU1i

δL2i
·
∂2D3;δU1i

δL2i

∂β1∂βT3

}
δL1i

δU2i

{
(−1)D−2

1;δL1i
δU2i

·
∂D1;δL1i

δU2i

∂β3

·
∂D1;δL1i

δU2i

∂β1

+D−1
1;δL1i

δU2i
·
∂2D1;δL1i

δU2i

∂β1∂βT3

}
+

δU1i
δI2i

{
(−1)D−2

1;δU1i
δI2i

·
∂D1;δU1i

δI2i

∂β3

·
∂D1;δU1i

δI2i

∂β1

+D−1
1;δU1i

δI2i
·
∂2D1;δU1i

δI2i

∂β1∂βT3
+

(−1)D−2
2;δU1i

δI2i
·
∂D2;δU1i

δI2i

∂β3

·
∂D2;δU1i

δI2i

∂β1

+D−1
2;δU1i

δI2i
·
∂2D2;δU1i

δI2i

∂β1∂βT3
+

(−1)D−2
3;δU1i

δI2i
·
∂D3;δU1i

δI2i

∂β3

·
∂D3;δU1i

δI2i

∂β1

+D−1
3;δU1i

δI2i
·
∂2D3;δU1i

δI2i

∂β1∂βT3

}
δI1iδU2i

{
(−1)D−2

1;δI1iδU2i
·
∂D1;δI1iδU2i

∂β3

·
∂D1;δI1iδU2i

∂β1

+D−1
1;δI1iδU2i

·
∂2D1;δI1iδU2i

∂β1∂βT3

}
δR1i

δL2i

{
(−1)D−2

δR1i
δL2i

·
∂DδR1i

δL2i

∂β3

·
∂DδR1i

δL2i

∂β1

+D−1
δR1i

δL2i
·
∂2DδR1i

δL2i

∂β1∂βT3

}
+
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δL1i
δR2i

{
(−1)D−2

δL1i
δR2i

·
∂DδL1i

δR2i

∂β3

·
∂DδL1i

δR2i

∂β1

+D−1
δL1i

δR2i
·
∂2DδL1i

δR2i

∂β1∂βT3

}
+

δR1i
δI2i

{
(−1)D−2

δR1i
δI2i

·
∂DδR1i

δI2i

∂β3

·
∂DδR1i

δI2i

∂β1

+D−1
δR1i

δI2i
·
∂2DδR1i

δI2i

∂β1∂βT3

}
+

δI1iδR2i

{
(−1)D−2

δI1iδR2i
·
∂DδI1iδR2i

∂β3

·
∂DδI1iδR2i

∂β1

+D−1
δI1iδR2i

·
∂2DδI1iδR2i

∂β1∂βT3

}
+

δL1i
δI2i

{
(−1)D−2

δL1i
δI2i

·
∂DδL1i

δI2i

∂β3

·
∂DδL1i

δI2i

∂β1

+D−1
δL1i

δI2i
·
∂2DδL1i

δI2i

∂β1∂βT3

}
+

δI1iδL2i

{
(−1)D−2

δI1iδL2i
·
∂DδI1iδL2i

∂β3

·
∂DδI1iδL2i

∂β1

+D−1
δI1iδL2i

·
∂2DδI1iδL2i

∂β1∂βT3

}
+
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∂2ℓ(δ)

∂β2∂βT2
=δU1i

δU2i

{
(−1)D−2

1;δU1i
δU2i

·
(
∂D1;δU1i

δU2i

∂β2

)2

+D−1
1;δU1i

δU2i
·
∂2D1;δU1i

δU2i

∂β2∂βT2
+

(−1)D−2
3;δU1i

δU2i
·
(
∂D3;δU1i

δU2i

∂β2

)2

+D−1
3;δU1i

δU2i
·
∂2D3;δU1i

δU2i

∂β2∂βT2
+

(−1)D−2
5;δU1i

δU2i
·
(
∂D5;δU1i

δU2i

∂β2

)2

+D−1
5;δU1i

δU2i
·
∂2D5;δU1i

δU2i

∂β2∂βT2

}
+

+ δR1i
δR2i

{
(−1)D−2

δR1i
δR2i

·
(
∂DδR1i

δR2i

∂β2

)2

+D−1
δR1i

δR2i
·
∂2DδR1i

δR2i

∂β2∂βT2

}
+

+ δL1i
δL2i

{
(−1)D−2

δL1i
δL2i

·
(
∂DδL1i

δL2i

∂β2

)2

+D−1
δL1i

δL2i
·
∂2DδL1i

δL2i

∂β2∂βT2

}
+

+ δI1iδI2i

{
(−1)D−2

δI1iδI2i
·
(
∂DδI1iδI2i

∂β2

)2

+D−1
δI1iδI2i

·
∂2DδI1iδI2i

∂β2∂βT2

}
+

+ δU1i
δR2i

{
(−1)D−2

1;δU1i
δR2i

·
(
∂D1;δU1i

δR2i

∂β2

)2

+D−1
1;δU1i

δR2i
·
∂2D1;δU1i

δR2i

∂β2∂βT2

}
+

+ δR1i
δU2i

{
(−1)D−2

1;δR1i
δU2i

·
(
∂D1;δR1i

δU2i

∂β2

)2

+D−1
1;δR1i

δU2i
·
∂2D1;δR1i

δU2i

∂β2∂βT2
+

(−1)D−2
2;δR1i

δU2i
·
(
∂D2;δR1i

δU2i

∂β2

)2

+D−1
2;δR1i

δU2i
·
∂2D2;δR1i

δU2i

∂β2∂βT2
+

(−1)D−2
3;δR1i

δU2i
·
(
∂D3;δR1i

δU2i

∂β2

)2

+D−1
3;δR1i

δU2i
·
∂2D3;δR1i

δU2i

∂β2∂βT2

}
+

+ δU1i
δL2i

{
(−1)D−2

1;δU1i
δL2i

·
(
∂D1;δU1i

δL2i

∂β2

)2

+D−1
1;δU1i

δL2i
·
∂2D1;δU1i

δL2i

∂β2∂βT2

}
+ δL1i

δU2i

{
(−1)D−2

1;δL1i
δU2i

·
(
∂D1;δL1i

δU2i

∂β2

)2

+D−1
1;δL1i

δU2i
·
∂2D1;δL1i

δU2i

∂β2∂βT2
+

(−1)D−2
2;δL1i

δU2i
·
(
∂D2;δL1i

δU2i

∂β2

)2

+D−1
2;δL1i

δU2i
·
∂2D2;δL1i

δU2i

∂β2∂βT2
+

(−1)D−2
3;δL1i

δU2i
·
(
∂D3;δL1i

δU2i

∂β2

)2

+D−1
3;δL1i

δU2i
·
∂2D3;δL1i

δU2i

∂β2∂βT2

}
+

+ δU1i
δI2i

{
(−1)D−2

1;δU1i
δI2i

·
(
∂D1;δU1i

δI2i

∂β2

)2

+D−1
1;δU1i

δI2i
·
∂2D1;δU1i

δI2i

∂β2∂βT2

}
+

+ δI1iδU2i

{
(−1)D−2

1;δI1iδU2i
·
(
∂D1;δI1iδU2i

∂β2

)2

+D−1
1;δI1iδU2i

·
∂2D1;δI1iδU2i

∂β2∂βT2
+

(−1)D−2
2;δI1iδU2i

·
(
∂D2;δI1iδU2i

∂β2

)2

+D−1
2;δI1iδU2i

·
∂2D2;δI1iδU2i

∂β2∂βT2
+

(−1)D−2
3;δI1iδU2i

·
(
∂D3;δI1iδU2i

∂β2

)2

+D−1
3;δI1iδU2i

·
∂2D3;δI1iδU2i

∂β2∂βT2

}
+

+ δR1i
δL2i

{
(−1)D−2

δR1i
δL2i

·
(
∂DδR1i

δL2i

∂β2

)2

+D−1
δR1i

δL2i
·
∂2DδR1i

δL2i

∂β2∂βT2

}
+
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+ δL1i
δR2i

{
(−1)D−2

δL1i
δR2i

·
(
∂DδL1i

δR2i

∂β2

)2

+D−1
δL1i

δR2i
·
∂2DδL1i

δR2i

∂β2∂βT2

}
+

+ δR1i
δI2i

{
(−1)D−2

δR1i
δI2i

·
(
∂DδR1i

δI2i

∂β2

)2

+D−1
δR1i

δI2i
·
∂2DδR1i

δI2i

∂β2∂βT2

}
+

+ δI1iδR2i

{
(−1)D−2

δI1iδR2i
·
(
∂DδI1iδR2i

∂β2

)2

+D−1
δI1iδR2i

·
∂2DδI1iδR2i

∂β2∂βT2

}
+

+ δL1i
δI2i

{
(−1)D−2

δL1i
δI2i

·
(
∂DδL1i

δI2i

∂β2

)2

+D−1
δL1i

δI2i
·
∂2DδL1i

δI2i

∂β2∂βT2

}
+

+ δI1iδL2i

{
(−1)D−2

δI1iδL2i
·
(
∂DδI1iδL2i

∂β2

)2

+D−1
δI1iδL2i

·
∂2DδI1iδL2i

∂β2∂βT2

}
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∂2ℓ(δ)

∂β2∂βT3
=δU1i

δU2i

{
(−1)D−2

1;δU1i
δU2i

·
∂D1;δU1i

δU2i

∂β3

·
∂D1;δU1i

δU2i

∂β2

+D−1
1;δU1i

δU2i
·
∂2D1;δU1i

δU2i

∂β2∂βT3
+

(−1)D−2
3;δU1i

δU2i
·
∂D2;δU1i

δU2i

∂β3

·
∂D3;δU1i

δU2i

∂β2

+D−1
3;δU1i

δU2i
·
∂2D3;δU1i

δU2i

∂β2∂βT3
+

(−1)D−2
5;δU1i

δU2i
·
∂D5;δU1i

δU2i

∂β3

·
∂D5;δU1i

δU2i

∂β2

+D−1
5;δU1i

δU2i
·
∂2D5;δU1i

δU2i

∂β2∂βT3

}
+

+ δR1i
δR2i

{
(−1)D−2

δR1i
δR2i

·
∂DδR1i

δR2i

∂β3

·
∂DδR1i

δR2i

∂β2

+D−1
δR1i

δR2i
·
∂2DδR1i

δR2i

∂β2∂βT3

}
+

+ δL1i
δL2i

{
(−1)D−2

δL1i
δL2i

·
∂DδL1i

δL2i

∂β3

·
∂DδL1i

δL2i

∂β2

+D−1
δL1i

δL2i
·
∂2DδL1i

δL2i

∂β2∂βT3

}
+

+ δI1iδI2i

{
(−1)D−2

δI1iδI2i
·
∂DδI1iδI2i

∂β3

·
∂DδI1iδI2i

∂β2

+D−1
δI1iδI2i

·
∂2DδI1iδI2i

∂β2∂βT3

}
+

+ δU1i
δR2i

{
(−1)D−2

1;δU1i
δR2i

·
∂D1;δU1i

δR2i

∂β3

·
∂D1;δU1i

δR2i

∂β2

+D−1
1;δU1i

δR2i
·
∂2D1;δU1i

δR2i

∂β2∂βT3

}
+

+ δR1i
δU2i

{
(−1)D−2

1;δR1i
δU2i

·
∂D1;δR1i

δU2i

∂β3

·
∂D1;δR1i

δU2i

∂β2

+D−1
1;δR1i

δU2i
·
∂2D1;δR1i

δU2i

∂β2∂βT3
+

(−1)D−2
2;δR1i

δU2i
·
∂D2;δR1i

δU2i

∂β3

·
∂D2;δR1i

δU2i

∂β2

+D−1
2;δR1i

δU2i
·
∂2D2;δR1i

δU2i

∂β2∂βT3
+

(−1)D−2
3;δR1i

δU2i
·
∂Dδ3;R1i

δU2i

∂β3

·
∂D3;δR1i

δU2i

∂β2

+D−1
3;δR1i

δU2i
·
∂2D3;δR1i

δU2i

∂β2∂βT2

}
+

+ δU1i
δL2i

{
(−1)D−2

1;δU1i
δL2i

·
1; ∂DδU1i

δL2i

∂β3

·
∂D1;δU1i

δL2i

∂β2

+D−1
1;δU1i

δL2i
·
∂2D1;δU1i

δL2i

∂β2∂βT3

}
+ δL1i

δU2i

{
(−1)D−2

1;δL1i
δU2i

·
∂D1;δL1i

δU2i

∂β3

·
∂D1;δL1i

δU2i

∂β2

+D−1
1;δL1i

δU2i
·
∂2D1;δL1i

δU2i

∂β2∂βT3
+

(−1)D−2
2;δL1i

δU2i
·
∂D2;δL1i

δU2i

∂β3

·
∂D2;δL1i

δU2i

∂β2

+D−1
2;δL1i

δU2i
·
∂2D2;δL1i

δU2i

∂β2∂βT3
+

(−1)D−2
3;δL1i

δU2i
·
∂D3;δL1i

δU2i

∂β3

·
∂D3;δL1i

δU2i

∂β2

+D−1
3;δL1i

δU2i
·
∂2D3;δL1i

δU2i

∂β2∂βT3

}
+

+ δU1i
δI2i

{
(−1)D−2

1;δU1i
δI2i

·
∂D1;δU1i

δI2i

∂β3

·
∂D1;δU1i

δI2i

∂β2

+D−1
1;δU1i

δI2i
·
∂2D1;δU1i

δI2i

∂β2∂βT3

}
+

+ δI1iδU2i

{
(−1)D−2

1;δI1iδU2i
·
∂D1;δI1iδU2i

∂β3

·
∂D1;δI1iδU2i

∂β2

+D−1
1;δI1iδU2i

·
∂2D1;δI1iδU2i

∂β2∂βT3
+

(−1)D−2
2;δI1iδU2i

·
∂D2;δI1iδU2i

∂β3

·
∂D2;δI1iδU2i

∂β2

+D−1
2;δI1iδU2i

·
∂2D2;δI1iδU2i

∂β2∂βT3
+

(−1)D−2
3;δI1iδU2i

·
∂D3;δI1iδU2i

∂β3

·
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Appendix B

Computational Aspects

Declaration

This section has been used in a MSc thesis at University College London, UK. Furthermore,

part of the following section it is published content in Copula link-based additive models

for bivariate time-to-event outcomes with general censoring scheme, Computational Statistics

& Data Analysis, Danilo Petti, Alessia Eletti, Giampiero Marra, Rosalba Radice, Volume 175,

2022, 107550, ISSN 0167-9473, https://doi.org/10.1016/j.csda.2022.107550.

A.1 Complete log-likelihood function

The scope of this section is to illustrate some relevant computational aspects of the wok. We first

introduce the procedure used to verify analytical quantities derived in Appendix A. We finally dis-

cuss some computational advantages deriving from the implementation of the analytical quantities

introduced in Appendix A,

The correctness of the analytical expressions for the gradien and Hessian have been checked

through numderiv package in R which allowed to compute the numerical expressions and com-

pare them with the analytical ones. For the data generating process, a proprietary function was

used, a seed was set and a sample of 3000 was generated. Part of the code used for the experiment

is the following
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#fixing the seed

set.seed(24)

# Generating a sample of size 3000

output= datagenCopulaMixCens(n = 3000)

# Computing the relative frequencies

table(output$dataSim$cens)/nrow(output$dataSim)*100

> II IL IR IU LI

12.4667 5.8667 7.2667 4.3667 8.1333

LL LR LU RI RL

5.6667 2.2667 3.3667 13.2000 5.8333

RR RU UI UL UR

14.7333 4.4333 5.0000 2.4333 2.6667

UU

2.3000

# Setting the two equations

eq1 <- t11 ~ s(t11, bs = "mpi") + z1 + z2

eq2 <- t21 ~ s(t21, bs = "mpi") + z3

#Allocation into a list

f.list = list(eq1, eq2)

# Separate censoring indicator as

# this is how the function takes it in ****

cens1 = as.factor(substr(as.character(dataSim$cens),

start = 1, stop = 1))
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cens2 = as.factor(substr(as.character(dataSim$cens),

start = 2, stop = 2))

dataSim$cens1 = cens1

dataSim$cens2 = cens2

# Call gjrm function

out <- gjrm(f.list, data = dataSim, surv = TRUE,

BivD = "T", margins = c("PH", "PH"),

cens1 = cens1, cens2 = cens2, Model = "B",

upperBt1 = ’t12’, upperBt2 = ’t22’)

To carry out this comparison we have generated a sample of size 3000, a t-student copula ("T")

and proportional hazards ("PH") has been specified for both margins. The comparison analysis

between numerical and analytical quantities was carried out individually on all 16 pieces and for

each of the copula functions presented in Chapter 1. Either for the Gradient and the Hessian, the

analysis has shown that the two quantities match over 1e− 5. The only exception is the t-student

copula ("T") whose, for the IU and UI pieces, showed some small discrepancies that we report in

the table for completeness.

The discrepancies were found for the δIU and δUI pieces as we can see from the tables above.
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(Intercept)
z1

z2
s(t11).1

s(t11).2
s(t11).3

s(t11).4
s(t11).5

s(t11).6
s(t11).7

s(t11).8
s(t11).9

-0.00010
-0.00010

-0.00005
-0.00210

-0.00007
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00000
0.00000

-0.00010
-0.00010

-0.00005
-0.00210

-0.00007
-0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
0.00000

-0.00005
-0.00005

-0.00003
-0.00109

-0.00004
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00210
-0.00210

-0.00109
-0.04258

-0.00138
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00007
-0.00007

-0.00004
-0.00138

-0.00005
-0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

0.00000
-0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

0.00000
-0.00000

0.00000
0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00000
0.00000

-0.00000
-0.00000

0.00000
-0.00000

0.00000
-0.00000

-0.00000
0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

0.00000
0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00000
-0.00000

0.00000
-0.00000

0.00000
0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00015
-0.00015

-0.00008
-0.00306

-0.00010
-0.00000

-0.00000
-0.00000

0.00000
-0.00000

0.00000
0.00000

-0.00008
-0.00008

-0.00004
-0.00171

-0.00006
-0.00000

0.00000
0.00000

-0.00000
-0.00000

0.00000
0.00000

-0.00329
-0.00329

-0.00173
-0.06680

-0.00219
-0.00000

-0.00000
0.00000

0.00000
0.00000

-0.00000
0.00000

-0.00027
-0.00027

-0.00014
-0.00556

-0.00018
-0.00000

0.00000
0.00000

-0.00000
-0.00000

-0.00000
0.00000

-0.00001
-0.00001

-0.00001
-0.00025

-0.00001
-0.00000

0.00000
-0.00000

-0.00000
0.00000

-0.00000
-0.00000

-0.00000
-0.00000

0.00000
-0.00000

0.00000
-0.00000

0.00000
0.00000

-0.00000
0.00000

-0.00000
-0.00000

-0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

-0.00000
-0.00000

0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

-0.00000
-0.00000

0.00022
0.00022

0.00012
0.00447

0.00015
0.00000

0.00000
-0.00000

0.00000
0.00000

-0.00000
0.00000
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150 COMPUTATIONAL ASPECTS

Another fundamental part of this work concerns the reduction of computational times for the

calculation of the parameters of the survival and hazard functions of the proposed model. For

this reason we present a table showing the time required to compute the Hessian matrix for each

of the sixteen pieces present in the log-likelihood. It can be clearly seen that the method based

on the analytical calculation takes on average 6 seconds ( time refers to a model with copula T,

and margins PH, P0) for each of the pieces, a limited amount of time compared to the seconds

required in the case of the numerical quantities. For this test we analyzed the pieces individually

and calculated the computational time with the package microbenchmark, the results in table

have been obtained running the function 10 times to then computing the computational time. The

following table shows the minimum, first quartile, average, median, third quartile and maximum.
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Appendix C

Detailed discussion about the mm() function

The aim of this section is to explore and discuss the application of the mm() function implemented

in GJRM package. This function plays a crucial role in the correct log-likelihood, Gradien and

Hessian imprementation in GJRM. In detail, mm() avoids situation in which specific quantities

can cause an unexpected error. If not applied it can happen to have quantities like log(0) witch

result in Inf values not allowing the function to work properly.

In the following we are going to discuss whether the application of mm() is theoretically

founded or not, this will help us to not omit any sensible information in the log-likelihood. To do

so, we need to introduce some important results about the copula functions, to then discuss the

application for each piece in the log-likelihood presented in the previous chapter.

Theoretical results

Theorem 1. (Theorem 2.2.8 in Nelsen (2016)), LetC be a copula. if ∂C(u, ν)/∂ν and ∂2C(u, ν)/∂u∂ν

are continous on I2 and ∂C(u, ν)/∂u exist for all u ∈ (0, 1) when ν = 0, then ∂C(u, ν)/∂u and

∂2C(u, ν)/∂u∂ν exist in (0, 1)2.

Theorem 2. (Theorem 2.2.3 in Nelsen (2016)), Let C a copula, then for every (u, ν) in DomC

max{u+ ν − 1, 0} ≤ C(u, ν) ≤ min{u, ν}
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154 DETAILED DISCUSSION ABOUT THE MM() FUNCTION

Theorem 3. (lemma 2.1.3 in Nelsen (2016)) Let S1 and S2 be nonempty subsets of R̄, and let H

be a 2-increasing function with domain S1 × S2. Let x1, x2 be in S1 with x1 ≤ x2 and let y1, y2

be in S2 with y1 ≤ y2. Then the function t→ H(t, y2)−H(t, y1) is nondecreasing on S1, and the

function t→ H(x2, t)−H(x1, t) is nondecreasing on S2.

In the following we are going to discuss all the pieces of the log-likelihood function.

Uncensored- Uncensored

T1i uncensored T2i uncensored. As concern the part δUi,Ui we have the following piece

logP (T1i = t1i, T2i = t2i) = log

[
∂2C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i)), ∂G2(η2i(t2i))

G′
1(η1i(t1i))G

′
2(η2i(t2i))

∂η1i(t1i)

∂t1i

∂η2i(t2i)

∂t2i

]

The corresponding code implemented in R is

VC$indUU*( log(c.copula2.be1be2) + log(-dS1eta1) + log(-dS2eta2)

+ log(Xd1P) + log(Xd2P)

In order to prove some results we can use the Theorem 2.2.8 in Nelsen (2016), using this

theorem we can state that

∂2C{G1(η1i(t1i)), G2(η2i(t2i))}
∂G1(η1i(t1i)), ∂G2(η2i(t2i))

∈ [0, 1]

we can conclude that this quantity is bounded ∈ [0, 1]2. We can apply mm() with no damage.

Right censored - Right censored

T1i right censored and T2i right censored. As concern the part δRi,Ri we have the following piece

log(P (T1i > r1i, T2i > r2i)) = log S(r1i, r2i) = log

[
C{G1(η1i(r1i)), G2(η2i(r2i))}

]
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The corresponding code in R is

VC$indRR*log(mm(p00))

In this case we are considering a probability which has been rewritten as a copula function. Cop-

ulas are by definition in ∈ [0, 1]2. Therefore,

C{G1(η1i(r1i)), G2(η2i(r2i))} ∈ [0, 1]

We can apply mm() with no damage.

Left censored - Left censored

T1i left censored and T2i left censored. As concern the piece δLi,Li we have the following piece

logP (T1i < l1i, T2i < l2i) = log

[
1− S1(l1i)− S2(l2i) + S(l1i, l2i)

]
= log

[
1−G1(η1i(l1i))−G2(η2i(l2i)) + C{G1(η1i(l1i)), G2(η2i(l2i))}

]

The implemented code in R is

&VC$indLL*log(mm(1-p1-p2+p00))

Form some well known results in probability and the Theorem 2.2.8 in Nelsen (2016) we

know that S1 ∈ [0, 1], S2 ∈ [0, 1] and C(S1, S2) ∈ [0, 1]× [0, 1].

However, in order to define the domain of this quantity we need to discuss two different in-

equities:

The first inequality that we need to discuss is

1− S1 − S2 + C(S1, S2) ≥ 1

C(S1, S2) ≥ S1 + S2
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Meaning that to have the quantity on the left hand side greater than one, we need to have neces-

sarily C(S1, S2) > S1 + S2

the second inequality

1− S1 − S2 + C(S1, S2) ≤ 0

C(S1, S2) ≤ S1 + S2 − 1

At this point we can use the Theorem 2.2.3 in Nelsen (2016) which states that for every (u, ν)

in DomC

max{u+ ν − 1, 0} ≤ C(u, ν) ≤ min{u, ν}

This theorem makes the two inequalities false.

1−G1(η1i(l1i))−G2(η2i(l2i)) + C{G1(η1i(l1i)), G2(η2i(l2i))} ∈ (0, 1)

We can apply mm() with no damage.

Interval censored - Interval censored

T1i interval censored and T2i interval censored. As concern the piece δIi,Ii we have

logP (l1i < T1i < r1i, l2i < T2i < r2i) = log

[
C{G1(η1i(l1i)), G2(η2i(l2i))} − C{G1(η1i(l1i)), G2(η2i(r2i))}+

− C{G1(η1i(r1i)), G2(η2i(l2i))}+ C{G1(η1i(r1i)), G2(η2i(r2i))}
]

the R code implemented in GJRM

VC$indII*log( mm(p00-p00.mix1-p00.mix2+p00.2) )

In this part we are considering a bivariate probability, it is well known that P (l1i < T1i < r1i, l2i <

T2i < r2i) ∈ [0, 1]. Therefore, no damage in applying mm()
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Uncensored- Right censored

T1i uncensored and T2i right censored. As concern the piece δUi,Ri we have

logP (T1i = t1i, T2i > r2i) = log

[
− ∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

]

The R code is

VC$indUR*(log(c.copula.be1)+log(-dS1eta1)+log(Xd1P))

Using the Theorem 2.2.8 in Nelsen (2016), we can state that ∂C{G1(η1i(t1i)),G2(η2i(r2i))}
∂G1(η1i(t1i))

∈ (0, 1).

Taking into account the fact that G′
1(η1i(t1i)) < 0 and the minus sign we can conclude that

−∂C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))

·G′
1(η1i(t1i)) ·

∂η1i(t1i)

∂t1i
∈ (0, 1)

Therefore, can apply mm() with no damage.

Uncensored-Left censored

T1i uncensored and T2i left censored. As concern the piece δUi,Li we have

log

[(
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− 1

)
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

]

In R code

VC$indUL*(log(mm( (c.copula.be1-1) * (dS1eta1) * Xd1P)))

Form the Theorem 2.2.8 in Nelsen (2016) we know that ∂C(u, ν)/∂u ∈ (0, 1). Therefore,

[
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− 1

]
∈ (−1, 0)

Finally
l2i∫
0

f(t1i, y)dy ∈ (0, 1) as G′
1(η1i(t1i)) < 0

Therefore, can apply mm() with no damage.
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Uncensored- Interval censored

T1i uncensored and T2i interval censored. As concern the piece δUi,Ii we have

log

[
∂

∂t1i
F (t1i, r2i)−

∂

∂t1i
F (t1i, l2i)

]
=

log

[(
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))

)
·G′

1(η1i(t1i)) ·
∂η1i(t1i)

∂t1i

]

The R code implemented in GJRM is

VC$indUI*( log( c.copula.be1.mix1-c.copula.be1)

+ log(-dS1eta1)+ log(Xd1P))

We are mainly interested in get the range of the following quantity:

(
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))

)
∂

∂G1(η1i(t1i))

[
C{G1(η1i(t1i)), G2(η2i(r2i))} − C{G1(η1i(t1i)), G2(η2i(l2i))}

]

From the theory of copulas we know that a copula is a 2-increasing function. Given c ≤ d

a ≤ b, a, b, c, d ∈ I. Let a = 0. Computing the volume and using the fact that C(0, c) = 0 we end

up with.

C(b, c) ≤ C(b, d)

in our case we have that G2(η2i(r2i)) = S2(r2i) = P (T2i ≥ r2i) and G1(η1i(t1i)) = P (T2i ≥

l2i). Where P (T2i ≥ l2i) > P (T2i ≥ r2i)

C{G1(η1i(t1i)), G2(η2i(r2i))} ≤ C{G1(η1i(t1i)), G2(η2i(l2i))}

as G2(η2i(r2i)) < G2(η2i(l2i)). Hence

C{G1(η1i(t1i)), G2(η2i(r2i))} − C{G1(η1i(t1i)), G2(η2i(l2i))} ∈ [−1, 0]
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However, we are interested in the derivative of the argument in square brackets. Using the

Lemma 2.1.3 in Nelsen (2016) we have that the function u ≡ C(u, ν2)− C(u, ν1) ≥ 0 is nonde-

cresing. Hence ∂(C(u,ν2)−C(u,ν1))
∂u

is defined and non-negative almost everywhere on I

According to the lemma we have that

[
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))

]
≥ 0

As consequence we have that

∂C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))

≥ ∂C{G1(η1i(t1i)), G2(η2i(r2i))}
∂G1(η1i(t1i))

For the Theorem 2.2.8 we can assert that

∂C{G1(η1i(t1i)), G2(η2i(l2i))}
∂G1(η1i(t1i))

,
∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))
∈ [0, 1]

Therefore the Theorem 2.2.8 and the Lemma 2.1.3 stated before leads to

[
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))

]
∈ [0, 1]

Finally

−
[
∂C{G1(η1i(t1i)), G2(η2i(l2i))}

∂G1(η1i(t1i))
− ∂C{G1(η1i(t1i)), G2(η2i(r2i))}

∂G1(η1i(t1i))

]
∈ [−1, 0]

In conclusion, we cannot apply mm() here as we are not dealing with a quantity in [0,1].

Right censored- Left censored

T1i right censored and T2i left censored. As concern the piece δRi,Li we have
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logP (T1i > r1i, T2i < l2i) = log

[
G1(η1i(r1i))− C{G1(η1i(r1i)), G2(η2i(l2i))}

]

VC$indRL*log(mm(p1-p00))

From what as been discussed so far, it is well known that G1(η1i(r1i)) ∈ [0, 1] and that

C{G1(η1i(r1i)), G2(η2i(l2i)) ∈ [0, 1]. In order to be sure that the quantity in square brackets is

in [0,1], we need to prove that C{G1(η1i(r1i)), G2(η2i(l2i))} ≤ G1(η1i(r1i))

From the Theorem 2.2.3 in Nelsen (2016). It is well known that for every (u, ν) in DomC

max{u+ ν − 1, 0} ≤ C(u, ν) ≤ min{u, ν}

In this case min{G1(η1i(r1i)), G2(η2i(l2i))} = G1(η1i(r1i)), G1(η1i(r1i)) = P (T1 ≥ r1i) and

G2(η2i(l2i)) = P (T2 ≥ l2i), this means that G2(η2i(l2i)) > G1(η1i(r1i))

we have that

C{G1(η1i(r1i)), G2(η2i(l2i))} ≤ G2(η2i(r2i)). Therefore, the difference is ∈ [0, 1]. We can

apply safely mm() here.

Right censoring- Interval censoring

T1i right censored and T2i interval censored. As concern the piece δRi,Ii we have

logP (T1i > r1i, l2i < T2i < r2i) = log

[
F2(r2i)− F2(l2i)− F1(r1i, r2i) + F1(r1i, l2i)

]
= log

[
C{G1(η1i(r1i)), G2(η2i(l2i))} − C{G1(η1i(r1i)), G2(η2i(r2i))}

]

In R code we have
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VC$indRI*log(mm(p00-p00.mix1))

In this case inside the square bracket there is a probability in its own right. For this reason

there is no need for further discussion. We can apply mm().

Left censoring - Interval censoring

T1i left censored and T2i interval censored

logP (T1i < l1i, l2i < T2i < r2i) = log

[
F (l1i, r2i)− F (l1i, l2i)

]
log

[
G2(η2i(l2i))−G2(η2i(r2i)) + C{G1(η1i(l1i)), G2(η2i(r2i))} − C{G1(η1i(l1i)), G2(η2i(l2i))}

]

In R code we have

VC$indLI*log(mm(p2-p2.2+p00.mix1-p00))

In this case inside the square bracket there is a probability in its own right. For this reason there is

no need for further discussion. We can apply mm().





Appendix D

Testing

In order to implement the Copula link based additive model in the R package GJRM we had to

derive analitically the expression for the log-likelihood first, and for the Grandient and the Hessian

then. These expressions have been also carefully implemented and tested. The aim of this section

is to present a selected set of tests that have been meticulously carried out before the complete

intergation into the GJRM package.

Testing: Computational time

The computational timing is the central part of this section. To test the code we set three different

seeds 1, 24, 124 to make the tests reproducible. For each copula implemented in the package

GJRM we have fitted three types of models. The first one with proportional hazards for both

margins (PH,PH), the second with proportional odds (PO,PO), the last one with probit (probit,

probit). The sample size has been set to be n = 1500. The data have been simulated using the

following set-up:

The time, denoted as T1i, was generated from a proportional hazards model defined, on the

survival function scale defined as

T1i = log[− logS10(t1i)] + β11z1i + s11(z2i)

where S10i(t1i) = 0.9 exp (−0.4t2.51i ). Time T2i was generated from a proportional odds model
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defined as

T2i = log

[
{1− S20(t2i)}

S20(t2i)

]
+ β21z1i + β22z3i

where S20(t2i) = S10(t2i) = 0.9 exp (−0.4t2.51i ). The random censoring was obtained using

uniform distributions in such a way to have a good proportion of censoring for each of the sixteen

combinations in each simulation. Observations were generated using the Brent’s univariate-finding

root. The two survival times were joined using a Clayton copula. The predictor for the dependence

parameter was specified as

η3i = β31z1i + s31(z2i)

The specification of η3i allowed the dependence to vary across the observations. In practice

this was achieved using the conditional sampling approach. The set up of η3 allowed dependence

to vary across observations, with Kendall’s τ values ranging approximately from 0.10 to 0.90.

The smooth functions were s11(zi) = sin(2πzi), s31 = 3 sin(πzi), β11 = −1.5, β21 = β22 =

1.2, β31 = −1.5.

The correlation structure among the covariates was generated using multivariate Normal distri-

bution with a correlation parameter ρ = 0.5, and then transformed using the distribution function

of a standard Normal distribution.

For all the models fitted in this section 1 we employed the following set of equations

T1i = ψ(S10(t1i)) + β11z1i + s11(z2i)

T2i = ψ(S20(t2i)) + β21z1i + β22z3i

η3i = β31z1i + s31(z2i)

Where ψ(·) : [0, 1] → R denotes a generic link function. In R code we have

1All the information in tables have been extracted using the function conv.check(gjrm.fitted), where
gjrm.fitted is a gjrm object
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# Model specification

eq1 <- t11 ~ s(t11, bs = "mpi") + z1 + s(z2)

eq2 <- t21 ~ s(t21, bs = "mpi") + z1 + z3

eq3 <- ~ s(z2)

Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 22 7 26 None 19.9599
C0 14 10 37 None 22.45187
C90 22 1 6 None 15.02519
C180 37 7 80 None 36.54183
C270 22 1 9 None 15.71901
FGM 18 7 20 None 18.27255
F 15 8 33 None 21.55298
N 23 5 26 None 22.18613
G0 37 8 34 None 30.43247
G90 14 1 1 None 13.03001
G180 25 9 46 None 31.04879
G270 14 1 1 None 13.50349
J0 35 9 44 None 30.96297
J90 15 1 1 None 13.2069
J180 62 12 745 None 185.0906
J270 15 1 1 None 11.85245
PL 17 8 25 None 20.3481
T 29 8 29 None 474.675

Table D.1: Fitting results. Model PH, PH and seed=1, in the problem colums we denote if any issue during the fitting
process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is expressed
in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 16 11 54 None 27.59977
C0 22 7 47 None 28.03658
C90 21 1 6 None 16.86469
C180 200 50 10000 None 2202.085
C270 21 1 6 None 16.57513
FGM 19 7 25 None 20.45774
F 13 10 55 None 26.62456
N 19 9 30 None 24.45876
G0 40 9 47 None 35.47162
G90 14 1 1 None 14.69865
G180 33 9 200 None 69.77589
G270 14 1 1 None 14.85373
J0 43 8 50 None 33.82469
J90 14 1 1 None 14.65545
J180 110 16 3063 None 688.2158
J270 14 1 1 None 14.5273
PL 11 10 41 None 26.75597
T 31 9 39 None 570.216

Table D.2: Fitting results. Model PH, PH and seed=24, in the problem colums we denote if any issue during the
fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is
expressed in seconds



167

Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 200 18 1601 None 341.2036
C0 22 3 600 IM N PD 135.5123
C90 23 40 478 None 131.3181
C180 121 13 684 None 176.4275
C270 22 50 531 IM N PD 144.0548
FGM 200 50 10000 None 1725.037
F 15 21 199 None 58.18854
N 22 14 87 None 37.68124
G0 32 8 34 None 51.60512
G90 15 1 1 None 73.90189
G180 163 9 46 None 173.699
G270 21 1 1 None 75.4445
J0 38 9 44 None 41.37823
J90 16 1 1 None 68.26537
J180 19 12 754 None 20.56588
J270 16 1 1 None 67.63905
PL 17 8 25 None 126.0556
T 34 50 456 None 3655.559

Table D.3: Fitting results. Model PH, PH and seed=124, in the problem colums we denote if any issue during the
fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is
expressed in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 22 7 24 None 16.1143
C0 16 9 30 None 18.31315
C90 21 1 6 None 11.33788
C180 54 50 7613 None 1583.681
C270 21 1 6 None 12.05801
FGM 20 6 20 None 16.37437
F 16 6 26 None 17.80727
N 16 6 24 None 19.17481
G0 31 8 35 None 32.07566
G90 13 1 1 None 12.81056
G180 25 8 39 None 32.04177
G270 13 1 1 None 11.76854
J0 33 10 47 None 30.36208
J90 14 1 1 None 9.565875
J180 29 12 168 None 52.34302
J270 14 1 1 None 8.929115
PL 15 6 23 None 16.23262
T 27 7 27 None 426.07

Table D.4: Fitting results. Model PO, PO and seed=1, in the problem colums we denote if any issue during the fitting
process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is expressed
in seconds



169

Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 18 7 15 None 14.02403
C0 14 9 38 None 19.91496
C90 20 1 6 None 11.31615
C180 200 8 1271 None 304.9001
C270 23 1 7 None 12.46988
FGM 21 7 25 None 15.54671
F 16 7 38 None 18.15703
N 13 8 38 None 19.24094
G0 29 7 45 None 26.65045
G90 20 1 5 None 11.97756
G180 38 11 922 None 237.5011
G270 14 1 1 None 9.843499
J0 27 6 103 None 36.35251
J90 14 1 1 None 9.169414
J180 48 9 290 None 81.19933
J270 14 1 1 None 9.12127
PL 17 50 153 None 62.29843
T 21 8 28 None 430.891

Table D.5: Fitting results. Model PO, PO and seed=24, in the problem colums we denote if any issue during the
fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is
expressed in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 200 3 600 None 147.8308
C0 19 6 27 None 17.8257
C90 22 1 7 None 12.47949
C180 200 50 1786 None 423.1166
C270 20 1 7 None 11.78485
FGM 200 50 10000 None 1703.115
F 15 8 27 None 16.58173
N 14 9 33 None 18.99228
G0 25 9 30 None 23.1339
G90 14 1 1 None 10.19137
G180 26 10 58 None 30.8066
G270 14 1 1 None 10.21193
J0 28 8 32 None 22.03917
J90 15 1 1 None 9.884204
J180 180 10 77 None 64.63412
J270 15 1 1 None 9.847507
PL 13 9 31 None 19.25955
T 28 9 28 None 479.5751

Table D.6: Fitting results. Model PO, PO and seed=124, in the problem colums we denote if any issue during the
fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting time is
expressed in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 19 8 30 None 16.91084
C0 12 9 30 None 16.71748
C90 22 1 6 None 10.91304
C180 49 11 1803 None 376.8869
C270 22 1 6 None 11.18474
FGM 19 6 20 None 13.27417
F 15 6 23 None 14.32711
N 19 6 22 None 16.129
G0 26 8 30 None 22.01072
G90 14 1 1 None 9.130165
G180 20 9 37 None 22.68738
G270 14 1 1 None 9.214166
J0 28 10 47 None 25.54413
J90 15 1 1 None 8.933424
J180 31 12 342 None 89.0127
J270 15 1 1 None 9.039403
PL 13 6 22 None 16.15924
T 33 3 57 None 605.8231

Table D.7: Fitting results. Model Probit, Probit and seed=1, in the problem colums we denote if any issue
during the fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting
time is expressed in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 13 8 17 None 17.94738
C0 17 10 30 None 23.87917
C90 19 1 7 None 15.06983
C180 116 13 2600 None 576.5965
C270 24 1 7 None 15.47423
FGM 26 7 24 None 19.82227
F 17 8 42 None 24.161
N 7 3 40 None 19.93499
G0 19 9 53 None 29.59136
G90 15 1 1 None 13.10216
G180 31 12 666 None 179.262
G270 15 1 1 None 12.58143
J0 25 8 42 None 26.04726
J90 17 1 1 None 12.46699
J180 45 10 727 None 176.7257
J270 17 1 1 None 12.87111
PL 14 10 46 None 25.02405
T 16 10 31 None 436.2744

Table D.8: Fitting results. Model Probit, Probit and seed=24, in the problem colums we denote if any issue
during the fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting
time is expressed in seconds
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Copula

Trust region
iterations before
smoothing
parameter estimation

Loops for
smoothing parameter
estimation

Trust region
iterations within
smoothing loops

Problem
Average
Fitting time

AMH 200 7 1383 None 289.5252
C0 21 3 442 None 100.6697
C90 22 1 8 None 12.01577
C180 160 50 10000 None 2064.035
C270 24 1 7 None 12.88474
FGM 200 50 10000 None 1713.78
F 10 9 31 None 16.6117
N 15 9 32 None 19.38031
G0 25 9 34 None 23.93471
G90 23 1 5 None 13.0579
G180 44 12 64 None 37.35579
G270 17 1 1 None 10.53458
J0 23 10 40 None 23.84282
J90 16 1 1 None 9.868283
J180 200 12 67 None 67.29565
J270 16 1 1 None 9.747149
PL 11 10 30 None 19.15415
T 25 10 32 None 501.6783

Table D.9: Fitting results. Model Probit, Probit and seed=124, in the problem colums we denote if any issue
during the fitting process occurred. With (IM N PD) we denote Information Matrix not definite positive. The fitting
time is expressed in seconds
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From the table presented we can clearly appreciate the advantage, in terms of computational

times, of having implemented the analytical expression of the Gradient and Hessian in GJRM.

However, a careful reader will surely have noticed that the copula T, with the same model specifi-

cation, is the most time consuming. This is particularly evident if we compare the T with the AMH

that takes a comparable amount of steps to converge.

To investigate further, we decided to debug the function trust in order to evaluate the good-

ness of the starting values chosen when using a copula T. The results of these test will be discussed

in the following paragraph.
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Testing: Trust region debug

In this section we show the results of some debugging sessions of the trust function used to

carry out the fitting procedure of the Copula link base additive model in GJRM. As the name of the

function suggest trust implements the trust region algorithm.

In the following we present the debug of the models fitted for three different copula function

T-student (T), Ali-Mikhail-Haq (AMH) and Clayton (C0). We have the T and AMH as they are

comparable in terms of trust region steps. On the other hand, the Clayton C0 is explored as is the

copula used in the data generating process. Therefore, it can be considered as being a benchmark.

For sake of completeness, we report the part of the code debugged during these sessions.

for (iiter in 1:iterlim) {

if (blather) {

theta.blather <- rbind(theta.blather, theta)

r.blather <- c(r.blather, r)

if (accept)

val.blather <- c(val.blather, out$value)

else val.blather <- c(val.blather, out.value.save)

}

if (accept) {

B <- out$hessian

g <- out$gradient

f <- out$value

out.value.save <- f

if (rescale) {

B <- B/outer(parscale, parscale)

g <- g/parscale

}

if (!minimize) {
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B <- (-B)

g <- (-g)

f <- (-f)

}

eout <- eigen(B, symmetric = TRUE)

gq <- as.numeric(t(eout$vectors) %*% g)

}

is.newton <- FALSE

if (all(eout$values > 0)) {

ptry <- as.numeric(

-eout$vectors %*% (gq/eout$values))

if (norm(ptry) <= r)

is.newton <- TRUE

}

if (!is.newton) {

lambda.min <- min(eout$values)

beta <- eout$values - lambda.min

imin <- beta == 0

C1 <- sum((gq/beta)[!imin]^2)

C2 <- sum(gq[imin]^2)

C3 <- sum(gq^2)

if (C2 > 0 || C1 > r^2) {

is.easy <- TRUE

is.hard <- (C2 == 0)

beta.dn <- sqrt(C2)/r

beta.up <- sqrt(C3)/r

fred <- function(beep) {

if (beep == 0) {
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if (C2 > 0)

return(-1/r)

else

return(sqrt(1/C1) - 1/r)

}

return(

sqrt(1/sum((gq/(beta + beep))^2))

- 1/r

)

}

if (fred(beta.up) <= 0) {

uout <- list(root = beta.up)

}

else if (fred(beta.dn) >= 0) {

uout <- list(root = beta.dn)

}

else {

uout <- uniroot(

fred, c(beta.dn, beta.up)

)

}

wtry <- gq/(beta + uout$root)

ptry <- as.numeric(-eout$vectors %*% wtry)

}

else {

is.hard <- TRUE

is.easy <- FALSE

wtry <- gq/beta
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wtry[imin] <- 0

ptry <- as.numeric(-eout$vectors %*% wtry)

utry <- sqrt(r^2 - sum(ptry^2))

if (utry > 0) {

vtry <- eout$vectors[, imin,

drop = FALSE]

vtry <- vtry[, 1]

ptry <- ptry + utry * vtry

}

}

}

preddiff <- sum(ptry * (g + as.numeric(B %*% ptry)/2))

if (rescale) {

theta.try <- theta + ptry/parscale

}

else {

theta.try <- theta + ptry

}

out <- try(objfun(theta.try, ...))

if (inherits(out, "try-error"))

break

check.objfun.output(out, minimize, d)

ftry <- out$value

if (!minimize)

ftry <- (-ftry)

rho <- (ftry - f)/preddiff

if (ftry < Inf) {

is.terminate <-
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abs(ftry - f) < fterm || abs(preddiff) < mterm

}

else {

is.terminate <- FALSE

rho <- (-Inf)

}

if (is.terminate) {

if (ftry < f) {

accept <- TRUE

theta <- theta.try

}

}

else {

if (rho < 1/4) {

accept <- FALSE

r <- r/4

}

else {

accept <- TRUE

theta <- theta.try

if (rho > 3/4 && (!is.newton))

r <- min(2 * r, rmax)

}

}

if (blather) {

theta.try.blather <-

rbind(theta.try.blather, theta.try)

val.try.blather <-
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c(val.try.blather, out$value)

accept.blather <-

c(accept.blather, accept)

preddiff.blather <-

c(preddiff.blather, preddiff)

stepnorm.blather <-

c(stepnorm.blather, norm(ptry))

if (is.newton) {

mytype <- "Newton"

}

else {

if (is.hard) {

if (is.easy) {

mytype <- "hard-easy"

}

else {

mytype <- "hard-hard"

}

}

else {

mytype <- "easy-easy"

}

}

type.blather <- c(type.blather, mytype)

rho.blather <- c(rho.blather, rho)

}

if (is.terminate)

break
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In the following we present some interesting results based on some quantity extracted during

the debug. In argpath and argtry are saved the set of parameters used and tried during each

iteration. the quantity rho correspond to the expression ρk =
f(xk)−f(xk+pk)
mk(0)−mk(pk)

, where mk is a Taylor-

series expansion of f around xk, which is

f(xk + p) = fk + gTk p+ 1/2pT∇2f(xk + tp)p

where fk = f(xk) and gk = ∇f(xk), and t is a scalar in (0,1). Using an approximation Bk to the

Hessian we have mk in the following way

mk(p) = fk + gTk p+ 1/2pTBkP

WhereBk is some symmetric matrix. The difference betweenmk(p) and f(xk+p) is O(||p||2).

When Bk = ∇2f(xk) leads to the trust-region Newton method. To obtain each step. we seek a

solution of the subproblem

min
p∈Rn

mk(p) = fk + gTk p+ 1/2pTBkP s.t.||p|| ≤ δk

where δk > 0 is the trust region radius that in the code is stored within the object r. Where

|| · || is as usual the Euclidean norm.

One important ingrediant in the receip of the trust region is the strategy behind the choice of

the trust-region radius δk. The choice is based on the agreement between the model function mk

and the objective function f at previous iterations. Given a step pk we can define the ratio

ρk =
f(xk)− f(xk + pk)

m(0)−m(pk)

This quantity, as the code above reveals, is stored at each step into the object called rho.
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T Copula

In the following are presented convergence path of the rho, radius and parameters for the copula

(T)
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Figure D.1: Path of the ρk = f(xk)−f(xk+pk)
m(0)−m(pk)

during the trust region. Model with T, margins PH, PH, seed =1 and
n = 1500.
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Figure D.2: Radius’ path during the trust region. Model with T, margins PH, PH, seed =1 and n = 1500.
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Figure D.3: Parameters’ convergence path during the trust region. the red solid line represents the argument of the
argpath object while in black solid line there is the argtry object. Model with T, margins PH, PH, seed =1 and
n = 1500. pt.1
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Figure D.4: Parameters’ convergence path during the trust region. the red solid line represents the argument of the
argpath object while in black solid line there is the argtry object. Model with T, margins PH, PH, seed =1 and
n = 1500. pt.2
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Figure D.5: Parameters’ convergence path during the trust region. the red solid line represents the argument of the
argpath object while in black solid line there is the argtry object. Model with T, margins PH, PH, seed =1 and
n = 1500. pt.3
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AMH Copula

In the following are presented convergence path of the rho, radius and parameters for the copula

(AMH)
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Figure D.6: Path of the ρk = f(xk)−f(xk+pk)
m(0)−m(pk)

during the trust region. Model with AMH, margins PH, PH, seed =1
and n = 1500.
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Figure D.7: Radius’ path during the trust region. Model with AMH, margins PH, PH, seed =1 and n = 1500.
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Figure D.8: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with AMH, margins PH, PH, seed =1
and n = 1500. pt1
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Figure D.9: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with AMH, margins PH, PH, seed =1
and n = 1500. pt2
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Figure D.10: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with AMH, margins PH, PH, seed =1
and n = 1500. pt3
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Clayton Copula

In the following are presented convergence path of the rho, radius and parameters for the copula

(C0)
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Figure D.11: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with C0 margins PH, PH, seed =1 and
n = 1500. pt1
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Figure D.12: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with C0 margins PH, PH, seed =1 and
n = 1500. pt2
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Figure D.13: Parameters’ convergence path during the trust region. the red solid line represents the argument of
argpath object while in black solid line there is the argtry object. Model with C0 margins PH, PH, seed =1 and
n = 1500. pt3
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Figure D.14: Path of the ρk = f(xk)−f(xk+pk)
m(0)−m(pk)

during the trust region. Model with C0, margins PH, PH, seed =1
and n = 1500.
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Figure D.15: Radius’ path during the trust region. Model with copula C0, margins PH, PH, seed =1 and n = 1500.
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In this table we summarize the quantities of the type ∆δ̂i = δ̂start,i− δ̂end,i, i ∈ {T,AMH,C0}.

Whith the symbol δ̂start we denote the parameter vector tried by the trust region during the first

iteration, while with δ̂end we denote the parameter vector tried by the trust region during it last

iteration. Concerning the model specification, we have that the following quantities have been

obtained from a fitting with n = 1500, margins PH,PH and seed= 1.

The investigation of these quantities is particularly relevant as it helps to evaluate the range of

values that every single parameter takes during the algorithm. An awkward range of value could

be a symptom of poor convergence.

From the table does not emerge any strange behaviour of the parameters. This is a symptom

that the starting values, which in GJRM are the parameters of two univariate gam models, are good

enough to not cause an erratic change in the parameters’ path.

(Intercept) z1 s(t11).1 s(t11).2 s(t11).3 s(t11).4 s(t11).5 s(t11).6 s(t11).7
T -4.59 0.05 0.25 0.06 0.02 0.08 -0.02 -0.15 -0.23
A 0.05 0.08 -0.00 -0.00 -0.01 0.04 -0.03 -0.16 -0.24
C 0.51 0.10 -0.03 0.05 0.00 0.14 0.02 -0.18 -0.29

s(t11).8 s(t11).9 s(z2).1 s(z2).2 s(z2).3 s(z2).4 s(z2).5 s(z2).6 s(z2).7
T -0.27 -0.28 -0.07 -0.15 -0.05 -0.04 0.05 0.01 0.02
A -0.27 -0.27 0.03 -0.06 -0.04 -0.11 0.03 0.04 0.00
C -0.34 -0.34 0.02 -0.07 -0.03 -0.17 0.03 0.08 0.04

s(z2).8 s(z2).9 (Intercept) z1 z3 s(t21).1 s(t21).2 s(t21).3 s(t21).4
T 0.03 0.09 -4.35 0.04 -0.02 0.19 -0.11 -0.02 0.10
A -0.10 0.05 -0.02 0.06 -0.01 -0.00 -0.02 -0.03 0.07
C -0.18 0.01 -0.70 0.10 -0.03 0.03 -0.01 -0.04 0.20

s(t21).4 s(t21).5 s(t21).6 s(t21).7 s(t21).8 s(t21).9 (Intercept) s(z2).1 s(z2).2
T 0.10 0.09 0.12 0.12 0.12 0.11 -1.00 0.00 0.00
A 0.07 0.07 0.10 0.10 0.10 0.10 -8.94 0.00 -0.00
C 0.20 0.16 0.17 0.15 0.14 0.14 -4.43 0.00 0.00

s(z2).2 s(z2).3 s(z2).4 s(z2).5 s(z2).6 s(z2).7 s(z2).8 s(z2).9
T 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.11
A -0.00 -0.00 0.00 0.00 -0.00 -0.00 0.00 0.12
C 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.01

Table D.10: Let θ the parameter vector, in table are shown the quantities ∆δ̂i = δ̂start,i − δ̂end,i, i ∈ {T,AMH,C0},
where δ̂start represents the parameter vector at the beginning of the trust region algorithm, while δ̂end the one at the
end. T=T, A=AMH e C=C0



Appendix E

Asymptotic Results

Declaration

This section has been used in a MSc thesis at University College London, UK.

A.1 Complete log-likelihood function

In this section we present some asymptotic results for the model discussed above. We will firstly

introduce some notation. The following section is based on Jason (2010).

Big O and small o notation

This asymptotic notation concerns the rate at which the functions changes rather than the exact

shape of them. Let give an informal intuition of the concept. Let f and g be two functions,

f(x) = O(g(x)) means that the two function are of the same order, i.e. they grow or shrink

at the same rate. For instance, we can say that f(x) = 2x2 + 3x + 5 is O(x2) as in the long

run, as x grows, the predominant term in this function will be the quadratic term. Conversely,

f(x) = o(g(x)) means that f is negligible in asymptotic terms compared to g. In other words, g

grows at a faster rate or shrinks at a slower rate. This concept are extremely important if we are

interested to study the asymptotic behaviour of random sequence.

Definition 1. Let bn and an be two sequences, then bn = O(an) if there exist a constant C and n0
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such that bn ≤ Can for n ≥ n0.

Definition 2. Let bn and an be two sequences, then bn = o(an) if for every ϵ > 0 there exist nϵ

such that bn ≤ ϵan, for n ≥ nϵ

Big OP and small oP

In this section we will extend the above asymptotic concepts to the case where we are dealing

with random variables. In the probabilistic setting we will indicate the above as OP (.) and oP (.)

respectively. Let start from the intuition first to then introduce the formal definitions. Given a

sequence of r.v’s Xn and a sequence of numbers an, Xn = O(an) means that the fraction Xn/an

is bounded up to an exceptional event of arbitrarily small probability. For this reason it is also

referred to as being bounded in probability. On the other hand, Xn = o(an) means that the

fraction Xn/an is negligible up to an exceptional event of arbitrarily small probability.

Definition 3. Let Xn be a sequence of real valued random variables and an be a sequence of

numbers. Xn = O(an) if for every ϵ > 0 there exist constant Cϵ and nϵ such that P (|Xn| ≤

Cϵan) > 1− ϵ for every n ≥ nϵ.

Definition 4. Let Xn be a sequence of real valued random variables and an be a sequence of

numbers. Xn = o(an) if for every ϵ > 0 there exist nϵ such that P (|Xn| ≤ ϵan) > 1− ϵ for every

n ≥ nϵ

Convergence of random variables

In this section we recall the notions of convergence in distribution, probability an the concept of

almost sure convergence.

Definition 5. Let {Xn}∞n=1 be a sequence of real valued random variables and let Fn(x) be the

cumulative distribution function of Xn. The sequence is said to converge in distribution to a

random variable X with cumulative distribution F (x) if

lim
n→∞

Fn(x) = F (x)
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for every x ∈ R at which F is continuous. We indicate this by Xn
d−→ X

Definition 6. Let {Xn}∞n=1 be a sequence of real valued random variables. The sequence is said

to converge in probability to a random variables X if

lim
n→∞

P (|Xn −X| > ϵ) = 0 ∀ϵ > 0

We indicate this by Xn
p−→ X

Definition 7. Let {Xn}∞n=1 be a sequence of real valued random variables. The sequence is said

to converge almost surely to a random variables X if

P ( lim
n→∞

Xn = X) = 1

We denote this convergence as Xn
a.s.−−→ X





Appendix F

Details on model building

For the model building procedure we encourage the use of AIC, BIC, Cox-Snell residuals and

hypothesis testing. The AIC and BIC are given by −2ℓ(δ̂) + 2edf and −2ℓ(δ̂) + log(n)edf ,

where the log-likelihood is evaluated at the penalized parameter estimates and edf = tr(Â). The

residuals are defined as rvi = − log{Sv(yvi|xvi; β̂)} ∼ Exp(1) v = 1, 2 i = 1, . . . , n. Assuming

to have the observed cumulative hazard Ĥrv(rvi), which can be derived using a Kaplan-Meier

estimate). If the model is correct then the plot {rvi,, Ĥrv(rvi)} will have a 45o slope, providing

then an assessment of the model’s goodness of fit. However, this procedure is not useful to suggest

any clue about the mis-specification when the points do not follow the reference line.

A possible strategy that we suggest is to use the same set of covariates in all the three equations

and choose the copula function using the AIC, BIC and Cox-Snell residuals. The same procedure

can be use to select a relevant set of covariates (using stepwise, backward and/or forward selec-

tion). The model building can be simplified is the researcher wishes to include variables in the

model based on some prior belief, or wishes to employ a particular set of link functions.
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Appendix G

Software

As extensively discussed, the proposed model can be fitted using the gjrm function in the R

package GJRM. A very basic example of syntax is as follows.

# set of three equations

eq1 <- t11 ~ s(t11, bs = "mpi") + z1 + s(z3)

eq2 <- t21 ~ s(t21, bs = "mpi") + z1 + s(z3)

eq3 <- ~ z2 + s(z3)

f.list = list(eq1, eq2, eq3)

# call of gjrm on dataset dta

out <- gjrm(f.list, data = dta, surv = TRUE,

BivD = "C0", margins = c("probit", "probit"),

cens1 = cens1, cens2 = cens2, Model = "B",

upperBt1 = ’t12’, upperBt2 = ’t22’)

In the R code example the covariates that we intend to use to model the time are z1, z2 and

z3. The time variables for the first margin and the second margin are respectively denominated

t11, t12 and t21, t22, the three equations created are then allocated in f.list which is a
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list.While the first and second equations are dedicated to the two time margins, the third equation

is for the copula dependence parameter θ. Symbols s() refers to the smooth function, whose have

been specified with bs=’mpi’ as a monotonic smooth of time is needed, k=10 the number of

basis function by default are set to 10 and m=2 the order of derivative is set to 2.

The dataset used in this fitting is stored in the object dta. the option surv = TRUE denotes

that we are fitting a bivariate survival function. The option BivD is needed to specify the copula

function (in this case C0 stands for Clayton). Model="B" stands for bivariate model. The

margins have to be specified using the option margins which requires a concatenation of two

strings (in the example two probit link function were applied). In upperBt1 and upperBt2 the

user have to specify the variable names of right bounds when interval censored observation are

used.

Functions such as AIC(), BIC(), summary(), predict() can be used in the usual

manner to extract the information criterion, to print a summary of the model fitted and make

prediction. It can be either plotted the survival and the hazard function using hazsurv.plot in

GJRM. Furthermore, to check the convergence conv.check() can be used.



Appendix H

Analysis AREDS data: R code

Declaration

This section it is published content in Copula link-based additive models for bivariate time-

to-event outcomes with general censoring scheme, Computational Statistics & Data Analysis,

Danilo Petti, Alessia Eletti, Giampiero Marra, Rosalba Radice, Volume 175, 2022, 107550,

ISSN 0167-9473, https://doi.org/10.1016/j.csda.2022.107550.

The proposed modelling framework has been implemented within the R package GJRM (Marra

& Radice, 2022), which required extending the gjrm() function. This package has been created

to enhance reproducible research and to disseminate results in a straightforward and transparent

way. The function is generally very easy to use, especially if the user is already familiar with the

syntax of (generalized) linear and additive models in R. For instance, one of the calls used for

modelling data from the AREDS is

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + s(ENROLLAGE) + SevScale2E + rs2284665

eq3 <- ~ s(ENROLLAGE) + rs2284665

f.list <- list(eq1, eq2, eq3)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

where t11 and t12 represent the lower and upper bounds, respectively, of the time interval where
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the left eye progressed to late-AMD. If t12 = NA, then the left eye did not progress to late-AMD

by the end of the study and hence the outcome is not observed (right censoring). cens1 is a factor

variable indicating the type of censoring (in this case, either interval or right in accordance with

t12). Similarly, t21 and t22 represent the lower and upper bounds of the time interval for the

right eye and cens2 is the censoring indicator. AREDS is a data frame containing the variables,

including the three covariates, ENROLLAGE, SevScale1E and rs2284665, already defined in

Section 4 of the main paper. Model must be set to = "B" and surv to TRUE in order to employ a

joint bivariate survival model. The possible choices for BivD and margins are given in Section

2 of the paper, f.list is a list of equations for the survival outcomes and the copula dependence

parameter, s denotes the use of a smooth term and argument bs specifies the type of spline basis

(e.g., tp for thin plate regression spline (the default) and mpi for monotonic P-spline). Monotonic

P-splines must always be used for the smooth terms of the time variables, otherwise the program

will produce an error message. After fitting the model, function conv.check() can be used to

check that convergence has been achieved.

conv.check(out)

Largest absolute gradient value: 2.646634e-05

Observed information matrix is positive definite

Eigenvalue range: [0.008631199,1.983189e+13]

Trust region iterations before smoothing parameter estimation: 55

Loops for smoothing parameter estimation: 9

Trust region iterations within smoothing loops: 22

Estimated overall probability range: 0.0209511 0.9999631

Estimated overall density range: 3.687044e-05 5.944891

The function provides various information about the estimation process. Convergence is assessed

by checking that the maximum of the absolute value of the score vector is virtually equal to 0 and

that the observed information matrix is positive definite.

To obtain summary statistics, we can use summary() which works in a similar fashion as

that of (generalised) linear and additive models.
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summary(out)

COPULA: Plackett

MARGIN 1: survival with -logit link

MARGIN 2: survival with -logit link

EQUATION 1

Formula: t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.0019 4.3929 -4.098 4.17e-05 ***

SevScale1E5 0.6709 0.2413 2.781 0.00542 **

SevScale1E6 0.9975 0.2226 4.482 7.40e-06 ***

SevScale1E7 1.9248 0.2303 8.358 < 2e-16 ***

SevScale1E8 2.8320 0.3163 8.954 < 2e-16 ***

rs22846651 0.3196 0.1667 1.918 0.05517 .

rs22846652 0.5950 0.2337 2.546 0.01090 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t11) 6.680 7.697 1867.11 < 2e-16 ***

s(ENROLLAGE) 1.545 1.923 14.46 0.00173 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Formula: t21 ~ s(t21, bs = "mpi") + s(ENROLLAGE) + SevScale2E + rs2284665
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Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -30.7363 10.7534 -2.858 0.004260 **

SevScale2E5 0.7855 0.2555 3.075 0.002107 **

SevScale2E6 1.1900 0.2383 4.994 5.92e-07 ***

SevScale2E7 2.4208 0.2527 9.578 < 2e-16 ***

SevScale2E8 3.2760 0.3284 9.977 < 2e-16 ***

rs22846651 0.4452 0.1689 2.635 0.008403 **

rs22846652 0.7772 0.2263 3.434 0.000595 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t21) 7.452 8.266 3933.136 < 2e-16 ***

s(ENROLLAGE) 1.000 1.000 6.714 0.00957 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 3

Link function for theta: log

Formula: ~s(ENROLLAGE) + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4190 0.2387 5.946 2.75e-09 ***

rs22846651 0.3915 0.3058 1.280 0.200

rs22846652 0.3023 0.4032 0.750 0.453
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(ENROLLAGE) 1 1 0.003 0.954

theta = 5.27(3.31,9.12) tau = 0.353(0.253,0.456)

n = 628 total edf = 34.7

Since the copula parameter does not seem, on this instance, to be influenced by covariates and the

effect of ENROLLAGE is linear (edf= 1) in the second margin, a more parsimonious model, the

one reported in Section 4 of the manuscript, was specified:

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + ENROLLAGE + SevScale2E + rs2284665

f.list <- list(eq1, eq2)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

summary(out)

COPULA: Plackett

MARGIN 1: survival with -logit link

MARGIN 2: survival with -logit link

EQUATION 1

Formula: t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + SevScale1E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.0368 4.3965 -4.103 4.09e-05 ***
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SevScale1E5 0.6707 0.2419 2.773 0.00556 **

SevScale1E6 1.0049 0.2235 4.497 6.90e-06 ***

SevScale1E7 1.9255 0.2309 8.338 < 2e-16 ***

SevScale1E8 2.8208 0.3165 8.914 < 2e-16 ***

rs22846651 0.3269 0.1665 1.963 0.04966 *

rs22846652 0.6058 0.2328 2.602 0.00927 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t11) 6.633 7.658 1879.02 < 2e-16 ***

s(ENROLLAGE) 1.604 2.007 12.89 0.00159 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Formula: t21 ~ s(t21, bs = "mpi") + ENROLLAGE + SevScale2E + rs2284665

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -33.28111 10.89158 -3.056 0.002246 **

ENROLLAGE 0.03643 0.01443 2.524 0.011592 *

SevScale2E5 0.81869 0.25569 3.202 0.001365 **

SevScale2E6 1.20579 0.23953 5.034 4.81e-07 ***

SevScale2E7 2.42703 0.25287 9.598 < 2e-16 ***

SevScale2E8 3.27930 0.32983 9.942 < 2e-16 ***

rs22846651 0.45890 0.16852 2.723 0.006467 **

rs22846652 0.78741 0.22556 3.491 0.000481 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(t21) 7.404 8.227 3872 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

theta = 5.26(4.06,6.87) tau = 0.356(0.304,0.408)

n = 628 total edf = 31.6

Refer to Section 4 of the manuscript for the interpretation of these summaries. Function plot()

can be used to visualise results.

par(mfrow = c(1, 3), mar = c(4, 5, 2, 0) + 0.1 )

plot(out, eq = 1, scale = 0, select = 1)

plot(out, eq = 1, scale = 0, select = 2)

plot(out, eq = 2, scale = 0, select = 1)

They correspond to the three estimated smooth functions reported in Figure 1 of Section 4.

To obtain 3D plots, such as the one reported in the left panel of Figure 2 of Section 4 which

represents the joint progression-free probability contours for subjects who are 69 years old with

AMD severity score equal to 6 for both eyes but with different genotypes of rs2284665, the

following R code chunk was used

size <- 40

x <- y <- seq(from = 0, to = 12, length.out = size)

t11 <- rep(x = x, each = size)

t21 <- rep(x = y, times = size)

newd0 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 4,
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SevScale2E = 4, rs2284665 = 1)

newd1 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 6,

SevScale2E = 6, rs2284665 = 1)

newd2 <- data.frame(t11 = t11, t21 = t21, ENROLLAGE = 69, SevScale1E = 8,

SevScale2E = 8, rs2284665 = 1)

res0 <- jc.probs(out, type = "joint", newdata = newd0)

res1 <- jc.probs(out, type = "joint", newdata = newd1)

res2 <- jc.probs(out, type = "joint", newdata = newd2)

z0 <- matrix(data = res0$p12, nrow = size, byrow = TRUE)

z1 <- matrix(data = res1$p12, nrow = size, byrow = TRUE)

z2 <- matrix(data = res2$p12, nrow = size, byrow = TRUE)

persp3D(x = x, y = y, z = z0, zlim = c(0, 1), box = TRUE, plot = TRUE,

theta = 50, phi = 10, expand = 1, col = "grey90",

xlab = "Years (Left)", ylab = "Years (Right)",

zlab = "Progression-free Probability", ticktype = "detailed",

facets = FALSE, bty = "b2")

persp3D(x = x, y = y, z = z1, zlim = c(0, 1), box = FALSE, plot = TRUE,

add = TRUE, theta = 50, phi = 10, expand = 1, col = "grey50",

facets = FALSE)

persp3D(x = x, y = y, z = z2, zlim = c(0, 1), box = FALSE, plot = TRUE,

add = TRUE, theta = 50, phi = 10, expand = 1, col = "grey5",

facets = FALSE)

legend(x = 0.2, y = 0.3, legend = c("4", "6", "8"),

fill = c("grey90","grey50","grey5"), bty = "n")

The remaining 3D plots of Figure 2 were obtained by modifying the above code accordingly.
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Interaction terms can also be included in the model by using the same syntax employed for

generalised linear and additive models. One example is give below

eq1 <- t11 ~ s(t11, bs = "mpi") + s(ENROLLAGE) + ti(t11, ENROLLAGE) +

SevScale1E * rs2284665

eq2 <- t21 ~ s(t21, bs = "mpi") + ENROLLAGE * rs2284665 +

SevScale2E

f.list <- list(eq1, eq2)

out <- gjrm(f.list, data = AREDS, surv = TRUE, BivD = "PL",

margins = c("PO", "PO"), cens1 = cens1, cens2 = cens2,

Model = "B", upperBt1 = "t12", upperBt2 = "t22")

Finally, other familiar functions such as AIC(), BIC(), predict() can be used in the usual

manner to extract the information criteria and to make prediction. Further details can be found in

the documentation of the GJRM package in R.





Appendix I

Mutual Information useful results

In this section some useful results about Mutual Information are presented. After having intro-

duced MI, we will prove the concentration bound (condition C1 in Baranowski et al. (2020)),

some well known MI’s properties are discussed.

Mutual Information overview

The intuition behind this metric is the following: when an informative covariate is included in

the estimation equations this should contribute in explaining the relation between the two time-

to-event. On the contrary noisy information should not add any contribution in explaining the

outcomes. The formal definition of Mutual Information is

Definition 8 (Mutual information). Let X = [X1 : X2 : · · · : XN ] such that Xi ∈ Rn, a set of

random variables and let f(x) be their joint density. The mutual information can be defined as

I(x) =

∫
x

f(x) log
f(x)∏n
i=1 fi(xi)

dx,

where the integral sign have to be intended in a multivariate domain.

Most of the copula families are governed by a dependence parameter θ that spans the range

between independence and full dependence. In the bivariate case, this is captured by the relation-

ship between θ and the rank-based correlation measures, such as Spearman’s rho or Kendall’s tau
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(Nelsen, 2006). In information theory, mutual information I(Y, Y ′) measures the reduction in the

uncertainty of Y due to the knowledge of Y ′. Furthermore, it can be proved that I(Y, Y ′) corre-

sponds to the intersection of the information in Y with the information of Y ′ (Cover & Thomas,

2006). Therefore, MI quantifies the strength of the dependence between random variables. Fur-

thermore, MI can be also viewed as the Kullback–Leibler divergence between the density in case

of dependence and in case of independence I(Y, Y ′) = DKL(f(y, y
′)||f(y)⊗ f(y′)).

It turns out that the MI is the entropy of the corresponding copula (Tenzer & Elidan, 2016).

Therefore, we can define Copula Entropy (CE) as

Definition 9 (Copula entropy). Let X = [X1 : X2 : · · · : XN ] such that Xi ∈ Rn, a set of

random variableS with a well defined marginal function u = [F1, . . . , Fn] with associated copula

density c(u) = ∂nC(u)
∂u1···∂un . Therefore, copula entropy can be defined as

Ce(x) = −
∫
u

c(u) log c(u)du. (I.1)

As stated in Ma & Sun (2008) the CE is equivalent to MI except for the minus out of the

integral sign, a sketch of proof is provided, let MI be denoted I(x).

I(x) =

∫
x

f(x) log
f(x)∏n
i=1 fi(xi)

dx∫
x

c(ux)
n∏
i=1

fi(xi) log c(ux)dx = −Ce(x)

= E[log c(ux)].

This shows that the MI of random variables is similar to the negative entropy of their corre-

sponding copula distributions. Furthermore, MI does not depend on the marginal distribution of

the r.v.’s involved. CE and then MI are measures of association of two or more random variables

(e.g., Sun et al., 2019; Embrechts et al., 2003; Jian, 2019; Blumentritt & Schmid, 2012). It turns

out that CE or MI are zero if and only if two random variables are strictly independent. This can

be proved by switching the joint density with the product of marginal densities in equation I.1.
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According to the expressions derived, MI is not necessarily bounded in [0, 1], to overcome this

problem Joe (1989) proposed

C =
√
1− exp(−2× I(x)),

which is a normalizing index. The measure C is properly defined in [0, 1], taking values of 0 when

two or more r.v. are independent and assuming value of 1 when they have maximal dependence.

It is a generalization of the correlation, multiple correlation and partial correlation.

In order to compute expression I.1, we assume that that a r.v. X has a smooth density function

and the integral below the curve exist. No further assumptions are needed to obtain CE.
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Figure I.1: MI computed for different copulas letting Kendall’s τ varying in [0, 1]. Caudras-Auge CA, Clayton C0,
Frank F, Gumbel G0, Gaussian N.

CE and MI have several desirable properties, MI is independent respect to reparametrization.

Invariant to monotonic transformations, if X ′ and Y ′ are homeomorphism with finite jacobian

determinants. It can be proved that I(X, Y ) = I(X ′, Y ′). It also additive, which allows MI to be

decomposed into hierarchical levels. By iterating it, one can decompose I(X1, . . . , Xn) ∀n > 2

and for any partitioning of the set {X1, . . . , Xn} into the MI between elements within one cluster

and MI between clusters, (Appendix I for complete proofs of these results). Theoretically, CE

has several advantages over traditional association measures (Jian, 2019; Tenzer & Elidan, 2016;

Cover & Thomas, 2006; Nelsen, 2006).
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Can be proved that there is a monotonicity dependence between MI and dependence parameter

for bivariate copulas θ, with only exception for Caudras-Auge copula (Bolbolian, 2020), see Figure

I.1. This conjecture has been formally stated by Tenzer & Elidan (2016). This means that the MI

is monotonic increasing (decreasing) in θ if certain conditions hold for the copula family. This

result has been generalized to the multivariate case.

Mutual Information for some bivariate distributions

The analytical derivation of MI is quite involved and some times simulation is required in order to

obtain an estimate. Out of the domain of Caudras-Auge, Gaussian and T copulas, a closed form

does not exist.

The Cuadras & Auge (C & A) copula, was defined in Cuadras & Augé (1981)

C(u, v) = [min(u, v)]θ(uv)1−θ, θ ∈ [0, 1],

this copula family is obtained by considering a weighted geometric mean of the Independence

distribution of the upper Frechet-Hoeffding bounds (Nelsen, 2006). The copula density is defined

c(u, v) = (1− θ)[max(u, v)]−θ + θu1−θ1{u=v},

in case of bivariate random variables, Mercier (2005) derived a closed form for MI

MI = −2(1− θ)

2− θ

[
log(1− θ) +

θ

2− θ

]
.

The Gaussian copula is defined by

C(u, v) = Φθ(Φ
−1(u),Φ−1(v)),

where Φθ is the distribution function of a bivariate standard normal distribution with correlation

parameter θ, Φ−1 denotes the inverse of the univariate normal distribution function (Meyer, 2013).

The Gaussian copula can be expressed as
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C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

exp

(
− t2+s−2θts

2(1−θ2)

)
2π

√
1− θ2

dtds, θ ∈ [0, 1]

The density is

c(u, v) =
√
1− θ2 exp

(
− x2 + y2 − 2θxy

2(1− θ2)
+
x2 + y2

2

)
,

where x = ϕ−1(u) and y = ϕ−1(v). Kullback (1952) proved that MI is

I = −1

2
log(1− ρ2).

The T-copula is defined as

C(u, v) = tθ,ν(t
−1
θ,ν(u), t

−1
θ,ν(v)),

which is completely specified by the correlation parameter θ and ν degree of freedom. With

tθ,ν and t−1
θ,ν we defined the distribution function and its inverse respectively. Therefore, the T−

copula can be explicitly expressed as

C(u, v) =

∫ t−1(u)

−∞

∫ t−1(v)

−∞

1

2π
√
1− θ2

[
1 +

t2 + s2 − 2θts

ν(1− θ2)

]− ν+2
2

dtds θ ∈ [0, 1],

the T−copula density is

c(u, v) =
Γ(ν+2

2
)Γ(ν

2
)

[Γ(ν+1
2
)]2

√
1− θ2

[1 + aθ(t
−1
ν (u),t−1

ν (v)
ν

]−
ν+2
2

[1 + (t−1
ν (u))2

ν
]−

ν+1
2 [1 + (t−1

ν (v))2

ν
]−

ν+1
2

,

where aθ(x, y) = x2+y2−2θxy
1−θ2 and Γ(·) denotes the Euler-Gamma function. It can be proved that

that the MI can be decomposed as

I = IGauss(θ) + IExcess(ν),
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where IGauss(θ) = −0.5 log(1− θ) and

IExcess(ν) = 2 log

[√
ν/2πβ(

ν

2
,
1

2
)

]
− 2 + ν

ν
+ (1 + ν)

[
ψ(
ν + 1

2
)− ϕ(

ν

2
)

]
,

ψ(·) and β(·) are the Digamma and beta functions. For a complete proof of this result Guerrero-

Cusumano (1996b,a); Calsaverini & Vicente (2009). IExcess(ν) does not depend upon the depen-

dence parameter.

Concentration bound

The aim of this section is to state formally that the concentration bound presented in Baranowski

et al. (2020) holds for MI. As far as author knowledge, this result is a novelty in literature.

Proof. (MI concentration bound) Let Y and Y ′ be two random variables defined in Ω and Ω′

respectively. And let f(y, y′), f(y), f(y′) the joint density and the marginals, it a standard result

to prove that the I(Y, Y ′) has an upper bound. A similar proof can be found in Cover & Thomas

(2006).

I(Y, Y ′) =

∫
y∈Ω

∫
y′∈Ω′

log
f(y, y′)

f(y)f(y′)
dydy′

= H(Y ) +H(Y ′)−H(Y, Y ′)

where H(Y ) is Shannon Entropy

= H(Y )−H(Y |Y ′)

≤ H(Y ) = Ey[log f(y)−1]

≤ log
[
E[f(y)−1]

]
= log[

∫
y

f(y)−1f(y)dy] = log |Ω|.

Using the same argument on Y ′ we can conclude that

I(Y, Y ′) ≤ logmin(|Ω|, |Ω′|).
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With the above statement, we have now all the ingredients to prove that the concentration

bound holds for MI

P

(
|Î(Y, Y ′|zi)− I(Y, Y ′)| ≥ γθn

−θ

)
≤ V[Î(Y, Y ′|zi)]

γ2θn
−2θ

=
E(Î(Y, Y ′|zi)2)− I(Y, Y ′)2

γ2θn
−2θ

≤ E(Î(Y, Y ′|zi)2)
γ2θn

−2θ

≤ E[(logmin(|Ω|, |Ω′|))]
γ2θn

−2θ

=
(logmin(|Ω|, |Ω′|))

γ2θn
−2θ

,

where the second line comes from V[Î(Y, Y ′|zi)] = E{[Î(Y, Y ′|zi) − I(Y, Y ′)]2}, noting

that E[Î(Y, Y ′|zi)] = E[E(log fY,Y ′

fY fY ′
|zi)) = E(log fY,Y ′

fY fY ′
), thus we can write the variance as

V[Î(Y, Y ′|zi)] = E[Î(Y, Y ′|zi)2]− I(Y, Y ′)2. The third line is justified by the mutual information

property I(Y, Y ′) ≥ 0. The fourth line comes from the mutual information lower bound.
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Properties

In this section we are going to present some well known results about MI.

Proof. (Invariant) Let X and Y be two random variable with density f(x, y) and X ′, Y ′ be

homeomorphism (smooth and unique invertible maps. Let |∇fX | = ||∂X/∂X ′|| and |∇fY | =

||∂Y/∂Y ′|| be the jacobian determinants. Therefore, f ′(x′, y′) = |∇fX ||∇fY |f(x, y), f ′(x′) =

|∇fX |f(x) and f ′(y′) = |∇fY |f(y). We can write

I(X ′, Y ′) =

∫ ∫
log

f ′(x′, y′)

f ′(x′)f ′(y′)
f ′(x′, y′)dx′dy′

=

∫ ∫
log

f(x, y)

f(x)f(y)
f(x, y)dxy

= I(X, Y )

Proof. (Decomposition) Let us consider an homeomorphism (X ′, Y ′) = F (X, Y ). Therefore

I(X ′, Y ′, Z) = I[(X ′, Y ′), Z] + I(X ′, Y ′)

= I[(X, Y ), Z] + I(X ′, Y ′)

= I(X, Y, Z)− I(X, Y ) + I(X ′, Y ′)

= I(X, Y, Z) + [I(X ′, Y ′)− I(X, Y )]

where the second line comes from the additivity property.

Proof. (Correlation). Let (X1, . . . , Xn)
T ∼ N (µ,Σ), where diag(Σ) = (σ2

1, . . . , σ
2
n), then MI

can be written as I(x) = −0.5 log |Σ|/
∏

i σ
2
i . For n = 2, C = |ρ|, where ρ is the correlation

coefficient.
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(Multiple Correlation). if (Y,X) ∼ N


µY
µX

 ,

 σ2
Y ΣYX

ΣXY ΣXX


 , the C =

√
[ΣYXΣ

−1
XXΣX,Y /σ2

Y ]

which is the square root of the multiple correlation coefficient.

(Partial Correlation). if (Y,X,Z) ∼ N



µY

µX

µZ

 ,


σY Y σY X ΣYZ

σXY ΣXX ΣXZ

ΣZY ΣZX ΣZZ


 , then CY X|Z =

√
(a22/a1a3)

where a1 = σY Y −ΣYZΣ
−1
ZZΣZY , a3 = σXX −ΣXZΣ

−1
ZZΣZX , a2 = σY X −ΣYZΣ

−1
ZZΣZX





Appendix J

Simulation Study: Mutual Information

This section provides evidence that the MI can be a suitable option in the BivariateRBVS algo-

rithm. The simulation experiments discussed refers to a general class of Flexible Copula Regres-

sion models (see. Stasinopoulos & Rigby (2008), Wood (2017)) fitted using gjrm function in

GJRM package in R. This section does not have the ambition or the purpose of being comprehen-

sive, it refers to some preliminary simulation studies reported for completeness. The following

results concern a preliminary study, whose aim was to get the limits of MI as tool in variable

selection procedure.

Let X ∈ Rn×p a partitioned blocks data matrix such that X = [X11 : X12], where X11 ∈ Rn×3

contains the relevant covariates whose have been generated using a multivariate standard normal

distribution with a correlation parameter ρ = 0.5, and then transformed using the distribution

function of a standard normal distribution, while X12 ∈ Rn×(p−3) ∼ Np−3(0,Φ) have been gen-

erated using a multivariate normal distribution with null mean vector and a covariance matrix Φ.

Yi1 and Yi2 have been generated from an Inverse Gaussian distribution iG specified through the

223
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following set of equations.

ηµ1 = β10 + β11x2 + β12x3

ηµ2 = β20 + β21x1 + β22x2

ησ1 = β30

ησ2 = β40

ηθ = β50 + β51x1 + β52x2

where ηµv , ησv v = 1, 2 are the linear predictors used to specify shape and scale parameters, while

ηθ specifies the dependence parameter. Y1 and Y2 were joined using a Joe J0 copula. In prac-

tice this was achieved using iterative conditioning. The sets of population parameters are βT1 =

(0.5,−1.25,−0.8)T , βT2 = (0.1,−0.9, 3)T , β30 = 1.8, β40 = 0.1 and βT5 = (0.2, 0.7,−4.3)T .

The set of tuning parameters was specified such that nsub = 10 , B = 50, τ = 0.5, kmax = 6,

with a sample size of n = 200 and p = 30 covariates.

Finally the algoritm discussed in chapter 2 was carried out by fitting a Copula link Based

Additive Model using gjrm with inverse Gaussian margins iG and Joe copula J0. The set of

equations used internally have been specified in the following way

ηµ1 = β10 + β11xj

ηµ2 = β20 + β21xj′

ησ1 = β30

ησ2 = β40

ηθ = β50

for j′j = 1, . . . , p

From the first simulation scenario we set ρX12 = 0, while for the second ρX12 = 0.2. The

results are showed in Table J.1 and J.2. We can appreciate an overall good performance of the

metric in recovering the important covariates (x1, x2, x3). For the first set up F̂P ≈ 0.105
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and ˆFN ≈ 0, in our second scenario the performance slightly worsened with F̂P ≈ 0.156 and

ˆFN ≈ 0.

ŝ(1) x2 : x3 x1 : x2 0 0 0 0
Freq. 15 9 3 1 1 1
ŝ(2) x2 : x3 x1 : x2 0 0 0 0
Freq. 27 21 4 1 1 1
ŝ(3) x1 : x2 x1 : x3 x2 : x3 0 0 0
Freq. 24 26 15 1 1 1
ŝ(4) x1 : x2 x1 : x3 x1 : x13 x7 : x22 0 0
Freq. 33 6 1 1 1 1
ŝ(5) x2 : x3 x1 : x3 0 0 0 0
Freq. 16 8 1 1 1 1
ŝ(6) x1 : x3 x2 : x3 x1 : x2 x10 : x27 x9 : x10 0
Freq. 27 11 4 1 1 1
ŝ(7) x1 : x3 x1 : x2 x2 : x3 0 0 0
Freq. 16 7 6 2 1 1
ŝ(8) x2 : x3 x1 : x3 x1 : x2 0 0 0
Freq. 19 8 8 1 1 1
ŝ(9) x1 : x3 x1 : x2 x2 : x3 0 0 0
Freq. 19 12 6 1 1 1
ŝ(10) x1 : x2 x1 : x3 x11 : x13 x10 : x30 x10 : x24 0
Freq. 10 5 2 1 1 1

Table J.1: Best subsets with associated frequency results, setup: nsub = 10 , B = 50, τ = 0.5, kmax = 6, n = 200,
p = 30, ρX12

= 0.
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ŝ(1) x2 : x3 x1 : x3 x19 : x23 x1 : x2 0 0
Freq. 15 4 1 1 1 1
ŝ(2) x1 : x2 x2 : x3 x10 : x24 x11 : x12 0 0
Freq. 10 4 1 1 1 1
ŝ(3) x2 : x3 x4 : x9 x1 : x2 0 0 0
Freq. 9 1 1 1 1 1
ŝ(4) x1 : x3 x2 : x3 0 0 0 0
Freq. 17 7 1 1 1 1
ŝ(5) x1 : x2 x2 : x3 x1 : x3 x2 : x27 x14 : x19 0
Freq. 10 4 2 1 1 1
ŝ(6) x1 : x3 x2 : x3 x1 : x2 x19 : x27 x15 : x23 0
Freq. 14 7 3 1 1 1
ŝ(7) x1 : x3 x1 : x2 x2 : x3 0 0 0
Freq. 19 2 5 1 1 1
ŝ(8) x1 : x3 x1 : x2 x12 : x23 x13 : x19 0 0
Freq. 21 3 1 1 1 1
ŝ(9) x1 : x2 x1 : x3 x2 : x3 0 0 0
Freq. 5 1 1 1 1 1
ŝ(10) x2 : x3 0 0 0 0 0
Freq. 25 1 1 1 1 1

Table J.2: Best subsets with associated frequency results, setup: nsub = 10 , B = 50, τ = 0.5, kmax = 6, n = 200,
p = 30, ρX12 = 0.2.



Appendix K

RBVS results

Proof of Proposition 2.1 in Baranowski et al.(2018)

Proposition 2.1 (Baranowski et al., 2020). Let Rn be a variable ranking based on ω̂j , j =

1 . . . , p. Where Rn = (Rn1, . . . , Rnp) be a variable ranking computed on n observations based on

ω̂1, . . . , ω̂p satisfying ω̂1 > · · · > ω̂p. And let ωνj (xj) with j = 1, . . . , p, ν = 1, 2 be the metrics

obtained by considering the j−th covariate in the ν−th margin. Without loss of generality, we can

assume that the metric employed depend on Z = {Y1, Y2, X1, . . . , Xp}. Therefore, it change with

n. Let ω̂νj = ω̂νj (Z1, . . . ,Zn) be an estimator of ωνj . Under the following conditions

(C1) Let Z1, . . . ,Zn be independent random samples, then ∃ θ > 0 and any γθ > 0 such that;

max
j=1,...,p

P

(
|ω̂νj − ωνj | ≥ γθn

−θ

)
≤ Γθ exp{−nψ} ν = 1, 2,

where constants Γθ, ψ does not depend on n;

(C2) The index sets of important variables is denoted as Sν ⊂ {1, . . . , p}. Sν does not depend on

n or p, and could potentially be an empty set;

(C3) ∀ a ̸∈Sν ∃Ma ⊂ {1, . . . , p} \ Sν : a ∈ Ma, the distribution of {ωνj }j∈Mais exchangeable

and |Ma| →
n
∞;

(C4) ∃ η ∈ (0, θ], such that θ is as is (E1), and γη > 0 : min
j∈Sν

ωνj −max
j ̸∈Sν

ωνj ≥ γηn
−η;
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(C5) p ≤ C1 exp{nb1} b1 ∈ (0, γ) and γ is as in (E1) ;

the unique top-ranked set stated in Definition 2.3 of Baranowski et al. (2020) exist and equals

S.

Proof. Firstly, we want to show that πn(S) → 1. Let E = {minj∈S ω̂j > maxj /∈S ω̂j}. If no tie,

E ≡ {{Rn1, . . . , Rns} = S}, meaning that all indeces from S are ranked in front of those do not

belong to S. Using (E4) we can state that

πn(S) ≥ P(E) ≥ P
(

max
j=1,...,p

|ω̂j − ωj| < ϵ

)
,

ϵ = γηn
−η/2. Applying the Bonferroni’s inequality it yields

P
(

max
j=1,...,p

|ω̂j − ωj| < ϵ

)
≥ (1− p) sup

j=1,...,p
P(|ω̂j − ωj| ≥ ϵ),

the last term is of order 1 − O(exp(−nψ)) as (b1 < ψ), which tends to 1 as n → ∞. This

proves that S is a s−top ranked set, where s = |S|.

Secondly, consider any A ∈ Ωs+1. We will prove that πn(A) →
n

0. Note that E implies that

S ⊂ A as all indices from S are ranked in front of those who does not belong to S. Therefore, it

is sufficient to consider the case of S ⊂ A such that A\S has only one element, denoted by a. As

in the previous point, we suppose that there is no tie in the ranking, on the event E , we have

P({min
j∈A

ω̂j > max
j /∈A

ω̂j} ∩ {min
j∈S

ω̂j > max
j /∈S

ω̂j})

=P({ω̂a > max
j /∈A

ω̂j} ∩ E),

we observe that P(ω̂a > maxj /∈A ω̂j) ≤ P(ω̂a > maxj∈Ma\{a} ω̂j). Using E3, we have that

the probability of P(ω̂∗
j > maxj∈Ma\{j∗} ω̂j) is the same of any j∗ ∈ Ma (i.e. any element of

{ω̂j}j∈Ma are equally likely to be the largest). Observing that
∑

j∗∈Ma
P(ω̂∗

j > maxj∈Ma\{j∗} ω̂j) ≤

1, we have that P(ω̂a > maxj∈Ma\{a} ω̂j) ≤ |Ma|−1 →
n
0. Consequently we an argue that

πn(A) ≤ P
(
ω̂a > max

j /∈A
ω̂j

)
+ P(Ē) ≤ P

(
ω̂a > max

j∈Ma\a
ω̂j

)
+ P(Ē) →

a
0.
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Where with Ē we denote the negation event of E . Otherwise, if there is a ties in the ranking, since

we break the ties at random uniformly, it follows from the exchangeability assumption that are we

are equally likely to pick any index from Ma, given that we have picked one of them. Thus we

car argue that is a similar manner to show that πn(A) ≤ 1/|Ma| + P(Ē) →
n

0, i.e. S is always

locally top ranked.

Thirdly, ∀k′ = 1, . . . , s− 1, we can show that ∃A ∈ Ωk′ : lim supn→∞ πn(A) > 0. Note that

∑
{A:A∈Ω′

k andA⊂S}

πn(A) ≥ P
(
min
j∈S

ω̂j > max
j /∈S

ω̂

)
→
n
1,

from the previous argument. However, there are
(
s
k′

)
elements in {A : A ∈ Ω′

k andA ⊂ S}, so

max
{A:A∈Ω′

k andA⊂S}
lim sup
n→∞

πn(A) ≥ 1(
s
k′

) .
This implies that S is indeed a top ranked set.

Finally the uniqueness of S follows from the fact that πn(S) →
n
1 and

∑
A∈Ωs πn(A) = 1



230 RBVS RESULTS

Auxiliary lemmas

Lemma 1. (Hoeffding (1963)). Let W be a binomial random variable with the probability of

success π and r trials. For any 1 > t > π, we have P(W ≥ rt) ≤ (π
t
)rt(1−π

t
)r(1−t). Moreover, for

any 0 < t < π, P(W ≤ rt) ≤ (π
t
)rt(1−π

1−t )
r(1−t)

Lemma 2. Let a1, . . . , al be non-negative numbers s.t.
∑l

i=1 ai ≤ 1 and max ai ≤ t for some

1
l
≤ t ≤ 1. Let N ∈ N be the minimum integer such that there exist mutually sets I1, . . . , In ⊂

{1, . . . , l} with
∑

i∈Ij ai ≤ t and
⋃N
j=1 Ij = {1, . . . , l}. Then, N ≤ ⌊2

t
⌋+ 1.

Proof. Since N is the smallest possible integer, there must be at most one j ∈ {1, . . . , N} with∑
i∈Ij ai ≤

t
2
. Otherwise, such two sets could be combined, leading to a smaller N. So for all

other j ∈ {1, . . . , N}, we have that
∑

i∈Ij ai >
t
2
. Consequently, (N − 1)t/2 ≤

∑l
i=1 ai ≤ 1.

This implies that N ≤ ⌊2
t
⌋+ 1

Lemma 3. Let Ω ⊂ Ωk for some k = 1, . . . , p,m ≤ n,B ≥ 1, and t1, t2 satisfying maxA∈Ω πm,n(A) ≤

t2 < t1 < 1. Then P(maxA∈Ω π̂m,n(A) ≥ t1) ≤ 3B
t2

[(
t2
t1

)t1(
1−t2
1−t1

)1−t1]r
.

Proof. Denote A1, . . . ,Al all the elements of ω. Applying Lemma 2 in Baranowski et al. (2020)

we find a partition I1, . . . , IN such that maxj=1,...,N

∑
i∈Ij πm,n(A

i) ≤ t2 and N ≤ 2
t2
+ 1. Using

the union bound, we have that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1

)
≤ N max

j=1,...,N
P
(∑

i∈Ij

π̂m,n(Ai) ≥ t1

)
.

Note that when B = 1, we have that r
∑

i∈Ij π̂m,n(A
i) is a binomial random variable, which r

is the number of trials with the probability of success denoted by p∗j =
∑

i∈Ij πm,n(A
i). From

Lemma 1 we can conclude that

P
(∑

i∈Ij

π̂m,n(Ai) ≥ t1

)
≤
[(

p∗j
t1

)t1(1− p∗j
1− t1

)1−t1]r
≤
[(

t2
t1

)t1(1− t2
1− t1

)1−t1]r
,
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this chain of inequality can be achieved by recognizing that fact that ( x
t1
)t1( 1−x

1−t1 )
(1−t1) is in-

creasing for x ∈ [0, t1]. When B = 1 and N ≤ 3/t2, lead us to rewrite the expression as

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1

)
≤ 3

t2

[(
t2
t1

)t1(1− t2
1− t1

)1−t1]r
.

Finally, whenB > 1,r
∑

i∈Ij π̂m,n(Aj) is a sample average ofB ( not necessarily independent)

binomial random variables. Since the average of a collection of non-negative numbers is always

no greater that its maximum, we could simply use the union bound again to establish that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1

)
≤ 3B

t2

[(
t2
t1

)t1(1− t2
1− t1

)1−t1]r
.
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Proof of Theorem 2.1 in Baranowski et al.(2018)

Proof. We define ω̂j,m = ω̂(Z1, . . . ,Zm), δ = πm,n(S) and θ = maxA̸⊂S,|A|≤kmax πm,n(A). The

proof start showing that θ and δ are well separated for sufficiently large n.

Take ϵ = γηm−η

2
. using (A1) and E5 combined with Bonferroni’s inequality, we get δ ≥

P(maxj=1,...,p |ω̂j,m − ωj| < ϵ) ≥ 1− Γϵpe
−mψ . Considering (A2) and (A3), since we assume that

ψb2 > b1, we gen that δ = 1−O(e−n
ψb2

), which tends to one as n→ ∞.

For every A ∈ Ωk with k ≤ kmax that contains at least one a ∈ A\S, if there is no tie in the

ranking of {ω̂j,m}j∈[1,p], we have that

πm,n(A) =P
(
min
j∈A

ω̂j,m > max
æ/∈A

ω̂j,m

)
≤ P

(
ω̂a,m > max

j∈Ma\A
ω̂j,m

)
(K.1)

≤ 1

|Ma| − kmax
≤ 1

mina/∈S |Ma| − kmax
≤ 1

Γ3nb3 − Γ4nb4
,

Here we can use the exchangeability of {ω̂j,mj∈Ma\S} together with (A4) and (A7). Even if

there are ties, we still have that πn,m(A) ≤ 1/(Γ3n
b3 −Γ4n

b4) due to exchangeability and since we

break the ties uniformly at random. Notice that K.1 does not depend on A or a, so the inequality

πn,m(A) ≤ 1/(Γ3n
b3 − Γ4n

b4) is valid for ∀A ∈ Ωk with k ≤ kmax and A\S ̸= ∅. As such, we

conclude that θ = maxA/∈S,|A|≤kmaxπm,n(A) = O(n−b3).

Next, to fix the ideas, take δ = (b2+b3−1)/2, t1 = n(−b3+δ)/2 and t2 = t21. For sufficiently

large n we always have θ ≤ t21 ≤ t1 ≤ 1/2 ≤ δ. Then we can define the events

Ek =
{

max
A∈Ωk,A/∈S

π̂m,n(A) < t1

}
, for k = 1, . . . , kmax

B =

{
π̂m,n(S) > 0.5

}
,

E = B
kmax⋂
k=1

Ek,

we are going to prove that P(E) →
n
1 at an exponential rate, and with Âŝ,m = S on the event E .
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To prove the first claim when B = 1, for sufficiently large n, we culd use Lemma 1 and the

fact that 1− δ = O(e−n
ψb2 ) →

n
to bound P(B̄) by

P(B̄) ≤
[(

δ

0.5

)0.5(
1− δ

0.5

)0.5]r
≤ [2(1− δ)]0.5r ≤ exp

(
− Γ′nψb2(1−b2)/2

)
, (K.2)

for some Γ′ ∈ (0, 1). When B > 1, since π̂m,n(S) is the average of B copies of the that with

B = 1, using once again the Bonferroini bound, we have that P(B̄) ≤ B exp (−Γ′nψb2(1−b2)/2).

Moreover by Lemma 3,

P(Ēk) ≤
3B

t2

[(
t2
t1

)t
1

(
1− t2
1− t1

)1−t1]r
=

3B

t21

[(
t1

1 + t1

)t1
(1 + t1)

]r
. (K.3)

Taking the logarithm, using A6 (for details see. Baranowski et al. (2020)), we have

P(Ēk) ≤
3B

t21
exp

(
−rt1
6

)
≤ exp (−Γ′′n(1−b2−b3/2)),

Γ′′ > 0 and for sufficiently large n. We know from A4 that the right hand side of the above

inequality goes to 0.

The remaining arguments used in this proof are valid on E with a sufficiently large n. Notice

that from 1/2 > t1 one concludes thatˆ

As,m is given by Âk,m = argmaxA∈Ωk π̂m,n(A), hence showing that ŝ = s proved Ŝ = S.

Denote Tk =
π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
, then from definition, ŝ = argmink=0,1,...,kmax Tk. Three cases are

considered

• For every k = 0, . . . , s − 1, the event {{Rn(Z1, . . . ,Zm), . . . , Rn,s(Z1, . . . ,Zm)} = S}

implying that the index set {Rn(Z1, . . . ,Zm), . . . , Rn,k+1(Z1, . . . ,Zm)} (i.e. of size k + 1)
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must be one of the elements in {A ∈ Ωk+1 : A ⊂ S}. Therefore,

∑
{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S).

Noting that |{A ∈ Ωk+1 : A ⊂ S}| =
(

s
k+1

)
and π̂m,n(S) > 1

2
imply that

π̂m,n(Âk+1,m) ≥ max
{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S)(
s

k+1

) ≥ 1

2
(

s
k+1

) ,
hence Tk ≥ 1

2( s
k+1)

, for k = 0, . . . , s− 1.

• Directly from the definition of the event Es and B, we bound Ts ≤ 2tτ1 .

• π̂m,n(Âk+1,m) ≥ (Br)−1 for any k. To see this note that
∑

A∈Ωk+1
π̂m,n(A) = 1. Pick-

ing Âk+1,m ∈ argmaxA∈Ωk+1
π̂m,n(A) would mean that π̂m,n(Âk+1,m) > 0, because oth-

erwise it would imply that
∑

A∈Ωk+1
π̂m,n(Â) = 0, leading to a contradiction. Now that

π̂m,n(Âk+1,m) > 0, it must be the case that π̂m,n(Âk+1,m) > (Br)−1. Thus Tk ≥ 1
t1(Br)τ

for

every k = s+ 1, . . . , kmax.

To prove that Tk > Ts for k = 0, . . . , s − 1, it is sufficient to demonstrate that 1

2( s
k+1)

> 2tτ1 ,

which is true for sufficiently large n, as t1 →
n

0 and maxk=0,...,s−1

(
s

k+1

)
is bounded. Similarly, to

claim that Ts < Tk for k = s + 1, . . . , kmax, we need to show 2tτ1 <
1

t1(Br)τ
, which amounts to

2t1+τ1 < (Br)−1, or 21/τ t1+1/τ
1 < (Br)−1. This is true for sufficiently large n, because t21 = n−b3+δ,

Br = O(n1−b2) and b2 + b3 − δ > 1 from A4.

Therefore Tk is necessarily minimized at k = s over E for sufficiently large n, meaning that

ŝ = s, which completes the proof.
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