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Abstract

Combinatorial optimization-based methods are widely used to solve complex real life problems.
In this thesis, we use some of these methods for addressing several emerging combinatorial opti-
mization problems on graphs that can be classified in two macro areas: i) graph substructures
identification problems; ii) combinatorial optimization problems with conflict constraints.
In graph theory, graphs are defined as mathematical structures that describe entities of inter-
est (as nodes) and their relationships (as edges). Many real-world problems can be described
through the use of a graph. For example, graph theory finds application in: i) the context of
social network analysis, where graphs are used to represent the interactions (edges) between users
(nodes); and in ii) the study of biological networks, such as protein-protein interaction, where
the nodes are proteins, and the edges represent their physical interactions. In graph analysis one
common application is the identification of clusters (or communities) of nodes that are tightly
connected. In social networks, a community could represent a set of users sharing the same
interest, while in the protein-protein interaction networks it could represent a set of very similar
proteins forming a protein complex.

In this thesis, three problems related to identifying graph substructures have been tackled.

The first problem addresses the 2-Edge-Connected Minimum Branch Vertices, that finds ap-
plication in the design of optical networks. A graph is 2-Edge-Connected if by removing one
edge, the graph is still connected. The problem looks for a spanning 2-edge connected subgraph
having the minimum number of branch vertices that is vertices with degree strictly greater than
two. In these networks, branch vertices are associated with switch devices that split the light
signals and send them to the adjacent vertices. For this NP-complete problem we developed a
genetic algorithm using ad-hoc designed operators.

The second addressed problem arise in the social network analysis and aims to study how
users influence the choices of their neighbours. In particular, we addressed the Collapsed k-Core
Problem that seeks to identify a subset of critical users in the network whose choices would
alter the cohesiveness of a community. To the best of our knowledge, this is the first attempt
to formulate this problem using mathematical programming. We implemented multiple solution
approaches and compared them on a set of benchmark instances.

The last case studied is related to network clustering, where a cluster graph is a disjoint union
of cliques. The Cluster Deletion problem is defined as the identification of the minimum number
of edges to remove from a network to produce a cluster graph. This is a well-known NP-hard
problem and we faced it using integer linear programming formulation and a heuristic approach
based on edge contraction operation. Our results show the effectiveness of our methodology both
on artificial and real-world biological networks.
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Currently, the definition of many real-life problems, doesn’t always fully capture their com-
plexity. Indeed, classical optimization problems encountered over the years, although extensively
studied, do not always take into account additional limitations, such as incompatibility situa-
tions, encountered in real-world problems. In this context, two or more elements of the problem
cannot be chosen together to compose a feasible solution. Such incompatibilities are modelled
by introducing conflict constraints in classical combinatorial optimization problems, leading to
more realistic but often harder problems.

Finally, three different combinatorial optimization problems with conflicts constraints are
addressed.

The first one is a variant of the set cover problem where pairwise conflicts are added among
the subsets. In the formulation of this problem, two sets in conflict can belong to the same
solution, provided that a non-negative penalty is paid. We introduced two mathematical formu-
lations for the problem and offered a parallel Greedy Randomised Adaptive Search Procedure
for its solution. The performance of our algorithm was evaluated through an extensive set of
experiments. The results shown the effectiveness and efficiency of our methodology compared to
the mathematical model solutions.

The second problem is related to the Maximum Flow Problem with Conflict constraints on
the edges, for which we present a matheuristic method based on the combination of two different
approaches: Carousel Greedy and Kernel Search. The results shown that the Carousel Greedy
selection substantially improves the effectiveness of the Kernel Search.

The last problem is the Minimum Spanning Tree with Conflicts, that we solved by using a
Kernel Search method. Also in this case, the results on benchmark instances shown that our
methods identifies a better solution compared with existing methods.
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Chapter 1

Introduction

Graphs are abstract models to represent connections between different entities and are success-
fully applied to solve real instances of optimization problems. A graph can be i) undirected, in
this case no direction is assigned to each edge ii) directed, in this case a direction is assigned to
each edge. An undireceted (directed) graph is defined by a pair of sets, i.e. G(V,E) (G(V,A)),
where V is the set of the nodes and E (A) is the set of the undirected (directed) edges.

Graphs have long been used to solve problems and challenges humanity has faced. One of the
firsts formulation and definition of the Graph Theory can be traced back to Euler’s resolution
of the problem of the Königsberg bridges in the 18th century, in this problem the river Pregel
and its tributaries cross the city of Königsberg. The city is distributed along the river on the
mainland and on two large islands connected to each other and to the two remaining areas of
the city by seven bridges. The problem that arose was whether it was possible to build a path
that ended at the point where it started by crossing each bridge exactly once.

Another exciting application of graphs that laid the foundations of part of modern graph
theory is the icosahedron game proposed by Hamilton in 1859. Hamilton assigned the name of a
city to each vertex and tried to find a route that visited all the cities only once and then returned
to the starting point. Hence the term Hamiltonian circuit or Hamiltonian cycle was coined as
the precursor of the modern problem of the TSP (Travelling Salesman Problem), considered one
of the hardest problem in combinatorial optimization. The TSP consists in finding the minimum
length cycle that traverses each node exactly once in a complete weighted graph.

Mathematics has undergone enormous development in the decades that separated the last
quarter of the 19th century from the Second World War, profoundly transforming its nature and
image. New research areas were born, including operations research, triggered by the need to
face logistical problems with limited resources.

An essential part of operations research is optimization or mathematical programming, whose
spread accelerated with the increasing amount of computers available. Optimization covers thou-
sands of applications in multiple fields such as chemistry and physics, computer networking, most
branches of engineering, manufacturing, public policy, social systems, scheduling and routing,

12
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telecommunications, and transportation. Many problems related to operations research, can be
modelled using graphs. One of the first important problems studied through graph theory is
the Maximum Flow problem. The Maximum Flow problem was first formulated in 1954 by T.
E. Harris and F. S. Ross to solve the problem of simplify the flow model of the Soviet railway
system [Sch02]. In 1955, Lester R. Ford, Jr. and Delbert R. Fulkerson published the first known
algorithm to solve Max Flow problem (Ford-Fulkerson algorithm [FF56]). Since that time many
graph problems have been solved, formulated as maximum flow problems (management of elec-
tricity networks, water networks, traffic networks, etc.).

Graphs certainly represent an efficient way to represent complex problems. Currently, the
solution approaches of many real problems are based on their representation through graphs.

This thesis deals with new optimization problems defined on graphs; in particulare we will
face problems in which we need to identify particular substructures in graphs. These problems
include the design of wired optical networks, interdiction problems in social networks and clus-
tering problems in biological networks.

Moreover, we will study combinatorial optimization problems in which there are conflict
constraints. Conflict constraints are used to describe real-world incompatibility situations that
sometimes make the classical solutions unfeasible.

In the following we briefly describe the two classes of graphs problems that we studied: i)
Identification of substructures in graphs; ii) Combinatorial optimization problems with conflict
constraints.

Identification of substructures in graphs

In this thesis we faced three important problems, related to the Identification of substructures in
graphs: i) 2-Edge-Connected Minimum Branch Vertices Problem; ii) Collapsed k-core Problem;
iii) Cluster Deletion Problem.

i) The Minimum Branch Vertices problem (MBV), introduced by Gargano et al. [GHSV02],
has applications in optical network design. Given an undirected graph, the goal of the MBV
problem is to find a spanning tree with the minimum number of branch vertices. A vertex is
called branch if it has more than two incident edges. This type of vertex in an optical network
represents an expensive connection. An interesting variant of the MBV problem has been dealt
with in this thesis and consists of the 2-Edge-Connected Minimum Branch Vertices Problem
(2ECMBV), proposed for the first time by Laureana [Lau19] in her PhD thesis, for which Lau-
reana proposed a Branch and Cut algorithm able to solve small size instances. The 2ECMBV
problem consists in the identification of a 2-edge-connected spanning sub-graph having the mini-
mum number of branch vertices. A graph is said to be 2-edge-connected if, in any way we remove
strictly less than two edges, the graph is still connected. To address this problem, we implement
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a genetic algorithm (GA), that we test on a set of instances proposed by Laureana [Lau19] and
a new set of instances randomly generated.

ii) In recent years the study of the behaviour of users in social networks has gained increasing
interest. In this context particularly important are the so-called critical users, i.e., the ones who
have many connections with other users and whose departure from the network might potentially
cause the exit of many other users. Users who leave a community potentially affect the cardi-
nality of its k-core, i.e., the maximal induced subgraph of the network with a minimum degree
of at least k. In social network analysis, the size of the k-core is frequently adopted as a typical
metric to evaluate the cohesiveness of a community. We focus on the Collapsed k-Core Problem,
which seeks to find a subset of b users, namely the most critical users of the network, the removal
of which results in the smallest possible k-core. We model the Collapsed k-Core Problem as
a natural deletion-round-indexed Integer Linear programming formulation and we provide two
bilevel programs for the problem, which differ in how they formulate the k-core identification
problem. We reformulate the first bilevel formulation as a single-level sparse model, exploiting
a Benders-like decomposition approach. To derive the second bilevel model, we first provide a
linear formulation for finding the k-core of a network and use it to state the lower-level prob-
lem and then dualize the lower level and obtain a compact Mixed-Integer Nonlinear single-level
problem reformulation. Moreover we derive a combinatorial lower bound on the value of the
optimal solution and describe some pre-processing procedures and valid inequalities for all three
formulations. The performance of the solution approaches of the two proposed formulations are
compared on a set of instances using several network data sets available in the literature. Fur-
thermore, we compare our approaches with the existing state-of-the-art solver for mixed-integer
bilevel problems proposed in [FLMS17].

iii) Clustering can be used to identify substructures in graphs. We refer to a cluster graph
as a disjoint union of cliques obtained by clustering the nodes of a given network and removing
the edges that not belong to any clique. A clique is a collection of nodes in an undirected
graph, such that every two different nodes in the clique are connected through an edge. We
addressed the Cluster Deletion Problem (CD), which asks for the minimum number of edges to
be removed from a network to produce a cluster graph (this problem is equivalent to determining
the maximum number of edges to be preserved). Many fields could benefit from the CD problem:
computational biology, bioinformatics, wireless sensor networks, etc. To solve this problem we
provide two Integer Linear Programming formulations and we provide an heuristic approach.

Combinatorial optimization problems with conflict constraints

Conflict constraints, also named incompatibility constraints, are widely used in various combi-
natorial problems, such as knapsack problems [CFSS21, HM07, PS09], shortest path problems
[DPSW11], matching problems [ÖKA18, OZP13], arc routing problems [CCM+17], bin packing
problems [Eki21, EFL11, SV13], minimum spanning tree problems [CCP19, CCPR21b, CG21a]
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and maximum flow problems [PS13a, cAA20].

In this thesis we faced three combinatorial optimization problems with conflict constraints:
i) The Set Covering Problem with Conflicts on Sets; ii) The Maximum Flow Problem with Con-
flicts; iii) The Minimum Spanning Tree Problem with Conflicts.

i) We analyze a new variant of the well-known Set Cover Problem characterized by pairwise
conflicts among subsets. Two conflicting sets can belong to the same solution, provided that
a non-negative penalty is paid. To solve this problem we want to identifies the optimal collec-
tion of subsets representing a cover that minimizes the sum of covering and penalty costs. For
this problem called the Set Covering problem with Conflicts on Sets (SCCS), we propose two
mathematical formulations and we design a GRASP technique approach. Computational results
show that the GRASP algorithm is highly effective compared whit the solution obtained using
mathematical model.

ii) We address a variant of the Maximum Flow Problem, in which given pairs of arcs are not
allowed to bring positive flow simultaneously. This problem is known to be strongly NP-hard,
and some exact approaches has been proposed in the literature [cAA20]. To address this problem
we design a heuristic and matheuristic approach: the heuristic approach is based on a variant
of Greedy algorithm called Carousel Greedy algorithm; the matheuristic combines the Carousel
Greedy and the Kernel Search approach together.

iii) The Minimum Spanning Tree Problem with Conflicts consists of finding the minimum
conflict-free spanning tree of a graph, i.e., the spanning tree of minimum cost, whit no pairs of
conflicting edges. For this problem we design a tailored Kernel Search.

The remaining chapters of this thesis are dedicated to the addressed problems, while the
readers are reminded to Appendix A for a detailed description of the solution approaches, used
to solve the optimization problems addressed in this thesis. In particular: in Chapter 2, we
study the 2-Edge-Connected Minimum Branch Vertices Problem (2ECMBV); in Chapter 3 we
study the Collapsed k-Core Problem; in Chapter 4 we study the Cluster Deletion Problem; in the
Chapter 5 we study the Set Covering Problem with Conflicts on Sets; in Chapter 6 we study the
Max Flow Problem with Conflicts; in Chapter 7 we study the Minimum Spanning Tree Problem
with Conflicts and in Chapter 8, we report the conclusion of the thesis.
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Identification of substructures in graphs
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Chapter 2

2-Edge-Connected Minimum Branch
Vertices Problem

In this chapter we deal with the first substructure identification problem, which is the 2-
Edge-Connected Minimum Branch Vertices Problem (2ECMBV). A graph is said to be 2-edge-
connected if, in any way we remove one edge, the graph is still connected. This problem has
already been described in Chapter 1 and looks for a spanning 2-edge connected subgraph hav-
ing minimum number of vertices with degree strictly greater than two (branch vertex). This
problem finds application in the design of optical networks. In an optical network, the wave
division multiplexing technology, enables the transmission of multiple light beams with various
fixed wavelengths over the same optical fiber. Through the use of a network device called a
switch, multicast technology on an optical network enables the replication of the optical signal
from a single source to numerous destination vertices. This allows the network device to split an
incoming light signal and send it to more adjacent vertices. To enable multicasting communica-
tions, a light-tree connects the network’s vertices. The vertices of the tree with a degree greater
than two are referred to as branch vertices and need a switch to split and propagate the light
signal to the neighboring vertices, so this types of nodes are generally expensive. The number of
switches should be kept to a minimum due to budgetary restrictions, so the goal of the problem
is to identify the network’s spanning tree with the fewest possible branch vertices.

The search for a 2-edge-connected structure is motivated by the will to obtain a structure
that remains connected when a single connection loss occurs. Similar problems have already
been addressed in the literature through the identification of a weaker structure, such as a tree,
which is unable to cope with failure..

2ECMBV is a variant of the Minimum Branch Vertices (MBV) problem introduced for the
first time by Gargano et al. [GHSV02]. MBV consists of finding a spanning tree, with the
minimum number of branch vertices, which are vertices having a degree greater than two in the
spanning tree.

Carrabs et al. [CCGG13], introduced four IP formulations for the MBV problem. Silvestri
et al. [SLC17] proposed a Branch-and-cut approach for MBV and they introduced some valid
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inequalities for this problem. Some heuristic approaches for the MBV have also been proposed
in the literature, such as an edge-swap heuristic algorithm proposed by Silva et al. [SSR+14],
Cerulli et al. [CGI09] while Marín [Mar15] experimented both exact and heuristic approaches.
In this Chapter, we demonstrate that 2ECMBV is NP-complete through a polynomial reduction
from the MBV problem. Furthermore, we developed an algorithm that finds and eliminates
redundant edges from a feasible solution in order to reduce the number of its branch vertices by
using some 2-edge connectivity properties. Finally we propose a genetic algorithm (GA) based on
ad-hoc operators designed to widely explore the solution space. The computational results carried
out on benchmark and new instances, show that our algorithm is fast and effective because, in
the worst case, it returns solutions having one branch vertex more than the optimal/best ones.

2.1 Notation and Definitions

Let G = (V,E) be an undirected, unweighted, connected graph, where V is the set of vertices,
E is the set of edges, |V | = n and |E| = m. Given a vertex v ∈ V , we denote by dG(v) the
degree of v in G and by δG(v) the set of edges incident to v in G. Moreover, given a collection
of vertices W ⊂ V , we indicate by δG(W ) the set of edges of G that connect any vertex in W
with a vertex in V \ W , and by G[W ] the subgraph of G induced by the vertices in W . A
vertex v ∈ V is a branch vertex if it has a degree more than two. Furthermore, G is 2-edge-
connected if and only if, the resulting subgraph is still connected, by removing one edge. The
edge connectivity version of Menger’s theorem [RTJ93] leads to a further characterization of the
2-edge-connectivity property: a graph results to be 2-edge-connected if at least two edge-disjoint
paths between each pair of vertices exist. In the following, we only consider simple paths, i.e.
paths without repeated vertices. The 2-Edge-Connected Minimum Branch Vertices (2ECMBV)
problem consists in finding a 2-edge-connected spanning subgraph G′ of G having the smallest
number of branch vertices.

Figure 2.1: (a) A connected, undirected and unweighted graph G. The branch vertices are
shown in red. (b) A 2-edge-connected spanning subgraph of G with two branch vertices. (c) A
2-edge-connected spanning subgraph of G with one branch vertex.
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Given the graph G in Figure 2.1(a), there are two feasible solutions for the 2ECMBV problem
presented in Figures 2.1(b) and 2.1(c). We can note that, the subgraph in Figure 2.1(c) represents
a better solution compared to the one in Figure 2.1(b) because it contains one branch vertex
less.

2.2 Complexity analysis

We prove that the 2ECMBV belongs to the class of problems NP-complete. To this end, we
take into account the corresponding decision version of the problem and, after showing that it
is in NP, we provide a polynomial reduction from the MBV problem, which is known to be
NP-complete [GHSV02].

Here we report the decision version of the 2ECMBV and MBV problems:

MBVd: Given a connected, undirected graph G, is there a spanning tree T of G, having at most
b branch vertices?

2ECMBVd: Given a connected, undirected graph G = (V,E), is there a 2-edge-connected sub-
graph G′ = (V,E′), with at most b branch vertices?

Is easy to verify the feasibility of a given solution of the 2ECMBV problem and it can be done
in polynomial time. To certify the feasibility of a solution we have to: i) check the subgraph
2-edge-connectivity; ii) check the subgraph spanning property; and iii) count the number of
branch vertices in the subgraph.
The step i) can be done in O(m + n) using Tarjan algorithm [Tar74] to find bridge edges in a
graph; The step ii) can be performed with a breadth-first search of the subgraph, while step iii)
is linear in the number of vertices.

We transform in polynomial time an instance of MBVd into an instance of 2ECMBVd in order
to demonstrate the hardness of the 2ECMBV problem. The idea is that, the answer of the
2ECMBVd problem on this instance is Yes if and only if the answer of the MBVd problem is
Yes on the original instance.

Proposition 2.2.1. Given an instance (G, b) of MBVd, such that G contains at least two
vertices, MBVd ≤p 2ECMBVd.

Proof. Given an instance of MBVd (G, b), we build an instance (G′, b′) of 2ECMBVd as follows.
We put in G′ three copies of G: G1 = (V1, E1), G2 = (V2, E2) and G3 = (V3, E3). In addition,
three vertices are added to G′ that are directly connected to each other: one for each copy of
G. Each vertex vi is connected, with additional edges, towards each vertex of its corresponding
copy Gi. This procedure is illustrated in Figure 2.2. The value of b′ is set to 3b+ 3.
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Figure 2.2: (a) Input graph G of theMBVd problem (or instance grap). (b) Instance graph G′ of
the 2ECMBVd problem built from G, in order to support the reduction MBVd ≤p 2ECMBVd.
The vertices v1, v2 and v3 are used to connect three copies of G.

Let T a spanning tree for G supposing having at most b branch vertices and let T1, T2 and T3

be the three copies of T respectively in G1, G2 and G3. By construction, each Ti has at most
b branch vertices. By linking each leaf of Ti with the corresponding vertex vi, the subgraph
induced by Ti ∪ {vi} is 2-edge-connected with at most b+ 1 branch vertices because the selected
edges from vi to the leaves do not transform these last vertices in branch vertices. It is easy to
see that the subgraph induced by T1 ∪T2 ∪T3 ∪{v1, v2, v3} is a 2-edge-connected subgraph of G′

and has 3b+ 3 branch vertices, at most.
Let T = (VT , ET ) be a 2-edge-connected spanning subgraph of G′ having at most b′ branch

vertices. It is easy to see that v1, v2 and v3 are branch vertices in T . This means that the
number of branch vertices in the subgraph of T induced by

⋃3
i=1 Vi is at most equal to (b′ − 3).

As a consequence, among the sets of vertices V1, V2 and V3, there must be at least one of them,
w.l.o.g let us suppose V1, such that the subgraph of T induced by V1 contains at most (b′− 3)/3
branch vertices. Then, this subtree is a solution for MBVd (G, b).

2.3 2-Edge-Connectivity Operators

In this section we analyze two operators implemented in our GA in order to ensure the feasibility
of the chromosomes in the genetic population. The first operator verifies the 2-edge-connectivity
of a solution, while the latter restores this property, when needed.

The first operator is the 2-Edge-Connectivity Checker Operator. There are various algo-
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rithms in the literature for determining if a graph is 2-edge-connected. Tarjan [Tar72] proposed
an algorithm that run in O(m + n) time, that find biconnected components of a graph. This
approach may be used to detect whether a graph is 2-vertex-connected. Galil et al. [GI91]
polynomially reduced 2-edge-connectivity to 2-vertex-connectivity, which means that any known
procedure for verifying 2-vertex-connectivity, including the algorithm proposed by Tarjan, may
also be used to check 2-edge-connectivity. Tarjan [Tar74] also developed a O(m + n) technique
for determining graph bridges. If the number of connected components in (V,E \ e) is strictly
higher than the number of connected components in G, an edge e ∈ E is a bridge in G = (V,E).
This approach may also be used to assess 2-edge-connectivity since a connected graph with at
least two vertices is 2-edge-connected if and only if it has no bridges. Furthermore, the Schmidt
[Sch13] algorithm, which exploits chain decomposition to find bridges and cut vertices in a graph,
can check 2-connectivity and 2-edge-connectivity in O(m + n) time. More precisely, after per-
forming a depth-first search, the fundamental cycles in the resulting depth-first search tree are
considered, and each one if it does not overlap with any previously added cycle is added to the
chain decomposition; otherwise, only the initial non-overlapping segment is taken into account.
A bridge is an edge that is not contained in any chain of the decomposition; similarly, a con-
nected graph with at least two vertices is 2-edge-connected if its chain decomposition splits its
set of edges. We use the Schmidt approach to evaluate the 2-edge-connectivity of subgraphs in
the construction of our genetic algorithm.

The second operator is the: 2-Edge-Connectivity Restorer Operator. We can restore the
2-edge-connectivity property for a subgraph of G = (V,E), when it does not hold, by adding
edges from E \ E′ to the E′. Eswaran et al. [ET76] demonstrated that when every edge in the
complement graph of G′ is available, the least number of edges to be added into E′ to make
the subgraph G′ 2-edge-connected, can be found in O(m + n). However, because we need to
avoid selecting non-existing edges in the original graph G and we want to minimize the number
of branch vertices in the new subgraph, we solve the weighted version of this problem, which is
NP-hard and aims to identify a minimum-weight edge set that makes G′ 2-edge-connected.
Despite the fact that graphs in the 2ECMBV problem are unweighted, we give every edge e ∈ E
a weight by doing the following: (i) we = ∞ if e /∈ E \ E′; (ii) we = 1 + β otherwise, where
β ∈ {0, 1, 2} is the number of no branch vertices incident on e. By doing this, we promote
choosing edges that coincide with vertices that are already branches since they reduce the cost
of a solution. We use an implementation of the 2-approximation technique suggested by Khuller
et al. [KT93], which accomplishes the task of selecting high-quality edge augmentations for G′

in a short time (O(m + n log n)). In the remaining of the thesis, we refer to the invocation of
such procedure as the restorer operator, and denote it by Restore2EC.

2.4 Reducing Branch Vertices

In this section, we present an algorithm called BranchReduction, that seeks to cut down the
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number of branch vertices in a sub-graph. Given a starting 2-edge-connected graph G = (V,E),
an edge subset Ē ⊂ E is considered redundant if the graph G′(V,E \ Ē) is still 2-edge-connected.
Note that G′ has the same set of edges of G. The aim of the BranchReduction algorithm is
to identify and remove this unnecessary edge set Ē, removing only the ones incident to branch
vertices of G. The algorithm is based on the 2-edge-connected subgraph properties that was
proposed by Laureana [Lau19]; for easy of read, her claims and proofs are presented below.
Given a starting graph G and a branch vertex v, by removing v from G we obtain a sub-graph
G′ = (V ′, E′), where the set of vertices is V ′ = V \ {v} and the set of edges is E′ = E \ {e : e ∈
δG(v)}, only one of the following three situations can occurs:

(1) G′ is not connected;

(2) G′ is 2-edge-connected;

(3) G′ is connected but not 2-edge-connected.

Since in case (3) the set of bridges B(G′) in G′ is not empty, by deleting all the bridges from G′,
we can differentiate two further cases investigating the connected components C1, . . . , Ct left in
the subgraph of G′ induced by the set of edges E′ \B(G′):

(3a) |δ(Ci) ∩B(G′))| ≤ 2, for any i ∈ {1, . . . , t};

(3b) there exists i ∈ {1, . . . , t}, such that |δ(Ci) ∩B(G′))| ≥ 3.

In case (1), v is said to be a cut vertex in G and, by Lemma 1, it is necessarily branch in any
feasible solution to the 2ECMBV problem. In case (2), (3a) and (3b), Lemma 2, Lemma 3 and
Lemma 4 hold, respectively.

Lemma 1. Given a 2-edge-connected graph G = (V,E) and a vertex v ∈ V , if v is a cut vertex
in G, then it is branch in any 2-edge-connected spanning subgraph of G.

Proof. G[V \{v}] consists of several connected components by definition of cut vertex, C1, . . . , C`,
` ≥ 2. At least two of the edges in δG(v) having one endpoint in Ci belong to any spanning
2-edge-connected subgraph Ḡ of G, otherwise the subset of vertices Ci ∪ {v} would not be 2-
edge-connected in Ḡ. Since this holds for every i ∈ {1, . . . , `}, the number of edges in δḠ(v) is
at least equal to 2`, which implies that v is a branch vertex in Ḡ.

Lemma 2 ([Lau19]). Given a 2-edge-connected graph G = (V,E) and a branch vertex v ∈ V , if
G[V \ {v}] is 2-edge-connected, then there exists a 2-edge-connected spanning subgraph Gv of G,
such that v is not branch in Gv.

Proof. Since G[V \ {v}] is 2-edge-connected, the subgraph Gv = (V, (E \ δ(v)) ∪ {e, f}) is 2-
edge-connected for any e, f ∈ δ(v). Furthermore, v is not branch in Gv, as it has degree two in
it.
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Let us denote by G/v the component graph associated to G′, defined as follows. The set
of vertices of G/v contains a vertex for each connected component Ci in the subgraph obtained
by removing from G′ the bridges B(G′). Furthermore, two vertices of G/v are connected by an
edge if and only if the associated components Ci and Cj are connected by a bridge in G′. By
construction, the edges incident on Ci are the edges in δ(Ci) ∩B(G′), and G/v is a tree.

Lemma 3 ([Lau19]). If (3a) holds, then there exists a 2-edge-connected spanning subgraph Gv
of G, such that v is not branch in Gv.

Proof. If (3a) holds, the graph G/v is a path, with exactly two leaves in it, namely there are
two connected components Ci and Cj with i, j ∈ {1, . . . , t}, such that |δ(Ci)∩B(G′)| = |δ(Cj)∩
B(G′)| = 1, while |δ(Ck) ∩B(G′)| = 2, for any k 6= i, j. Since G is 2-edge-connected, there exist
e ∈ δ(v)∩ δ(Ci) and f ∈ δ(v)∩ δ(Cj). The subgraph Gv = (V,Ev), where Ev = E \ δ(v)∪{e, f},
is 2-edge-connected and v is not branch in it.

Lemma 4 ([Lau19]). If (3b) holds, vertex v is branch in any feasible solution to the 2ECMBV
problem.

Proof. When (3b) holds, there is at least one vertex of degree three in the graph G/v, there
are at least three leaves, namely there are three connected components Ci, Cj and Ck such that
|δ(Ci)∩B(G′)| = |δ(Cj)∩B(G′)| = |δ(Ck)∩B(G′)| = 1. Since G is 2-edge-connected, there exist
e ∈ δ(v)∩ δ(Ci), f ∈ δ(v)∩ δ(Cj) and g ∈ δ(v)∩ δ(Ck). To ensure 2-edge-connectivity e, f and g
must be selected in any feasible solution, thus v is branch in any feasible 2ECMBV solution.

Algorithm 1 contains the pseudocode of the BranchReduction procedure, which takes as
input a sub-graph G′ of G which is 2-edge-connected, with the aim to reducing the number
of branch vertices removing redundant edges. At line 1-4, the procedure processes the branch
vertices in G′ one by one according to their degree (in ascending order) using a priority queue
Q. For each vertex v extracted from the queue, at line 5, the procedure check whether v is still
a branch vertex, in this case, at line 6, the algorithm remove v from G′ and on line 7 it compute
the connected components C of the graph G′′. At lines 8-9, if |C| contains more than a single
connected component, v is considered as a cut vertex in G′ and, by Lemma 1, it is not possible to
obtain a 2-edge-connected sub-graph where v is not branch, so we do nothing. Otherwise on line
10, the algorithm compute the bridges B in G′′. By Lemma 2, if no bridge exists, we can remove
from G′ all the edges in δG′(v), except for the two edges whose other endpoints have highest
degree, this is done on the lines 11-12; in addition to making v not branch, this option may
reduce the number of branch vertices in the neighborhood of v. Otherwise on lines 14-21, the
algorithm remove existing bridges from G′′ and recompute on line 15 the connected components
C1, C2, . . . , Ck in G′′: for Ci on which a single bridge in B is incident, we remove all the edges
in δG′(v) except the edge (v, z) which maximizes the degree of z. This implies minimizing the
number of edges that are incident on v: when each discovered component has no more than two
incident bridges, Lemma 3 holds and only two edges in δG′(v) are selected; otherwise, we know
from Lemma 4 that v is necessarily a branch vertex. As a result, at least three edges in δG′(v)
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are chosen. For each branch vertex in the input sub-graph G′, the procedure executes at most
one iteration. The most costly operation in each cycle is computing the connected components
of G”. A breadth-first search of the sub-graph is used to find connected components, hence in
the worst case, the algorithm’s time complexity is O(b(n+m)), where b is the number of branch
vertices in the sub-graph.
Algorithm 1: BranchReduction

Input: A 2-edge-connected graph G′ = (V ′, E′)
1 Q← {v : dG′(v) > 2}
2 while |Q| > 0 do
3 v ← v ∈ Q : dG′(v) ≤ dG′(u), ∀u ∈ Q
4 Q← Q \ {v}
5 if dG′(v) > 2 then
6 G′′ ← (V ′ \ {v}, E′ \ {e : e ∈ δG′(v)})
7 C ← connected components of G′′

8 if |C| > 1 then
9 continue

10 B ← bridges in G′′

11 if |C| == 1 ∧ |B| == 0 then
12 G′ ← (V ′, E′′ ∪ arg max(v,x),(v,y)∈δG′ (v) {min (dG′′(x), dG′′(y))})
13 else
14 G′′ ← (V ′′, E′′ \B)
15 C1, C2, . . . , Ck ← connected components of G′′

16 F = ∅
17 for i = 1 . . . k do
18 if |δG′(Ci) ∩B| == 1 then
19 e = arg maxe=(v,z)∈δG′ (v){dG′′(z)}
20 F ← F ∪ {e}

21 G′ ← (V ′, E′′ ∪ F )

22 else
23 break

24 return G′

2.5 Finding Feasible Solutions

In this section, we introduce a randomized algorithm called BuildSolution, designed to quickly
produce diversified solutions for the 2ECMBV problem. Different executions of the algorithm
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are likely to produce different solutions. A collection of these solutions supports the generation
of a diversified starting population for the GA. The algorithm is founded on the following 2-edge-
connectivity property.

Proposition 2.5.1. Given a graph G = (V,E) and two vertices u, v ∈ V : u 6= v, if u and v
are connected by k ≥ 2 edge-disjoint paths P1, P2, . . . , Pk, any pair of vertices in P1, P2, . . . , Pk
is connected by at least 2 edge-disjoint paths.

Proof. Given a graph G = (V,E), u, v ∈ V : u 6= v, and k dge-disjoint paths between u and v
(P = {P1, P2, ..., Pk}), with k ≥ 2. Given a generic vertex x in Pi and a a generic vertex y in Pj ,
with Pi, Pj ∈ P , the next step is to show that there are at least two edge-disjoint pathways that
connect x and y. The following two cases may occur:

Figure 2.3: (a) In this scenario the vertices x and y are on the same path that connects u and v.
(b) Scenario in which they are on different paths. In both (a) and (b) there are 2 edge-disjoint
paths between x and y, highlighted by different colors.

• Pi = Pj: In this scenario, the vertices x and y are on the same path and, let’s assume
that x comes before y, that is Pi has the following structure: (u, ..., x, ..., y, ..., v) (Figure
2.3(a)). A first path p′ : (x, ..., y) can be identified between x to y (that are along Pi )
in green in Figure 2.3(a). A second path p′′ : (x, ..., u, ..., v, ..., y) in red in Figure 2.3(a),
where the edges from x to u and from v to y belong to Pi, and the edges from u to v belong
to a path Pt ∈ P , with Pt 6= Pi, that exists because, by hypothesis, k ≥ 2. p′ and p′′ do
not share edges.

• Pi 6= Pj: In this scenario, the vertices x and y are located on two different paths, Pi and
Pj . The first path between x and y has the form p′ : (x, ..., u, ..., y) in red in Figure 2.3(b)
and it includes the vertices from x to u along Pi and the vertices from u to y along Pj .
The second path between the vertices x and y has the form p′′ : (x, ..., v, ..., y) in green in
Figure 2.3(b), which contains the vertices from x to v along Pi and the vertices from v to y
along Pj . By hypothesis Pi and Pj are edge-disjoint paths, then p′ and p′′ are edge-disjoint
paths, too.
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By using Proposition 2.5.1, we designed the constructive procedure BuildSolution which
incrementally builds a set S of vertices inducing a 2-edge-connected subgraph of G, by adding
edge-disjoint paths between vertices in S and vertices in V \ S, until S contains all the vertices
of G. The pseudocode of this procedure is given in Algorithm 2.

The algorithm takes as input the original 2-edge-connected graph G. After initializing the
output graph G′ with an empty set of edges (line 1), a first vertex of G is randomly selected
and added to S (line 2). By now, the algorithm adds a vertex u ∈ V \ S to S only if u is
2-edge-connected with some vertex in S. To this end, at each iteration, the following operations
are performed: (i) vertices x and y are randomly selected from S and V \ S, respectively (lines
4-5); (ii) a path P1 in G between x and y is found and the edges in P1 are temporarily removed
from G (line 6-7); (iii) a second x-y path P2 in G is found (line 8) and, since the edges of P1

have been removed from G, P1 and P2 are edge-disjoint paths connecting x and y; (iv) the edges
in P1 are re-added to G (line 9); (v) finally, all the edges in P1 and P2 are added to G′ and, since
we know from Proposition 2.5.1 that every pair of vertices in P1 and P2 is 2-edge-connected in
G′, we add every vertices in P1 and P2 to G′ (lines 10-11).
Algorithm 2: BuildSolution

Input: The original 2-edge-connected graph G = (V,E)
1 G′ ← (V,E′ = ∅)
2 S ← {a random vertex in V }
3 while |V \ S| > 0 do
4 x← random vertex in S
5 y ← random vertex in V \ S
6 P1 ← x-y path in G
7 E ← E \ {edges in P1}
8 P2 ← x-y path in G
9 E′ ← E′ ∪ {edges in P1} ∪ {edges in P2}

10 S ← S ∪ {vertices in P1} ∪ {vertices in P2}

11 return G′

When V \S is empty, the algorithm return G′. The complexity of the Algorithm 2 depend on
which vertices are randomly chosen during each iteration. In the ideal scenario, only one iteration
is necessary, the two computed disjoint paths cover all nodes; however, in the worst scenario,
when only one vertex is added to S in every iteration, the main loop takes n − 1 iterations,
which is O(n). Finding a path between two graph vertices, which is done precisely twice in every
iteration, is the most expensive operation. This can be achieved with several algorithms. We
adopt a simple visit of the graph, which takes time O(n+m). As a result, in the worst case, the
algorithm’s complexity is O(n(n+m)). Due to the 2-edge-connected nature of the input graph
m > n, the worst case time complexity is equal to O(nm).

When investigating the complexity of a randomized algorithm, the estimated running time
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is typically addressed based on the random decisions made by the algorithm [CLRS22]. In fact,
the worst scenario can only be decided by the random selections chosen; it cannot be calculated
based on the input. A recurrence relation allows us to describe the time complexity of the
algorithm. We establish the following recurrence relation by denoting with T (n) the quantity of
iterations required to construct a solution for a network with n vertices (where S(i) denotes set
S at iteration i, with |V \ S(0)| = n.):

T (|V \ S(i)|) = 2 ·O(n+m) + T (|V \ S(i+1)|),

The total number of operations performed by the algorithm to construct a solution for an instance
of size n are: i) 2 · O(n + m) operations to obtain two edge-disjoint paths between a vertex in
S and one in V \ S(i) in the starting graph G; ii) the operations required to complete the next
iterations depends on the number of vertices in V \S(i+1). The set V \S(i) is split into V \S(i+1)
and (V \ S(i)) \ (V \ S(i + 1)) at each step. The running time recurrence is impacted by the
correlation of this partitioning. A single iteration is sufficient if the best case partitioning occurs,
which is when |V \ S(1)| = ∅, and the recurrence has the solution in O(m + n) time. On the
contrary, if the partitioning in every step is unbalanced (it adds in each iteration only one node
in S), i.e. |V \ S(i+1)| = |V \ S(i)| − 1 ∀i, the recurrence require O(n(m + n)) = O(nm) time
in order to obtain a solution, which correspond to the worst case. Finally, the BuildSolution
procedure has an estimated running time of O ((n+m) log2 n) in the average case on random
2-edge-connected graphs.
A logarithmic number of steps is needed to solve the resulting recurrence, when after each step
of the recurrence relation, the number of vertices remaining in V \ S(i+1) is a fraction of n. The
only prerequisite is that we do not remove a predetermined number of vertices from V \ S(i) at
each step i, regardless of how small this fraction is. We indicate with n

αi the number of vertices
remaining in V \ S(i+1) after each iteration i, with α > 1 and α ∈ R.

T (|V \ S(0)|) = 2c(n+m) + T
(n
α

)
(2.1)

= 2c(n+m) + 2c (n+m) + T
( n
α2

)
(2.2)

= 2c(n+m) + 2c (n+m) + · · ·+ 2c (n+m) + T
( n
αj

)
, (2.3)

Where j is the number of iterations required to solve the relation and S(0) = ∅. To obtain the
value of j we put n/αj equal to 1, thus j = logα n = log2 n/log2 α = O(log2 n). While it is
obvious that the partitioning does not always result in divides with constant proportionality at
each stage, but sufficiently well balanced and fairly unbalanced splits are expected to be randomly
distributed in the recursion tree. It has been demonstrated that even in this scenario, O(log2 n)
is the anticipated number of rounds until a best-case partitioning occurs [CLRS22].



CHAPTER 2. 2-EDGE-CONNECTED MINIMUM BRANCH VERTICES PROBLEM 28

2.6 Genetic Algorithm

In this section, we describe our resolution approach for the 2ECMBV problem which is a genetic
algorithm. General aspects of Genetic Algorithms can be found in Section A.3.2 of Appendix A.

2.6.1 Chromosome representation and fitness function

In our algorithm, each chromosome C is associated to a feasible solution of the 2ECMBV problem
on G. For this reason, C is a binary vector whose size is equal to the number of edges of G and
the ith gene in it is equal to 1 if the edge ei of G belongs to the solution and zero otherwise. We
denote by C[i] the value of ith gene of chromosome C.

Figure 2.4: (a) The original graph G and (b) a 2-edge-connected subgraph of G with their
corresponding encodings, C1 and C2, respectively.

An example of a feasible solution encoding is shown in Figure 2.4. Here C1[i] = 1 for all
i = 1, . . . , 9 while C2[i] = 1, for i={1,2,5,6,7,8} and C2[i] = 0, for i={3,4,9}. From now on, we
denote by G(C) the subgraph of G induced by selected edges in C. According to this definition,
G(C2) is the subgraph of G depicted in Figure 2.4(b).

The chromosomes of the population are ranked according to a fitness function F . In our
algorithm, the fitness function F(C) of a chromosome C is equal to the number of branch vertices
in G(C). The lower is the number of branch vertices the better is the fitness value. In Figure 2.4,
we have that F(C1) = 5 while F(C2) = 0 and then G(C2) is a better solution than G(C1).

2.6.2 Initial population

The initial population is generated by using the BuildSolution procedure described in Section
2.5. Thanks to its randomized nature, the algorithm is able to generate, from the same input
graph, different and heterogeneous feasible solutions. We repeatedly invoke this procedure until
a fixed number of individuals, equal to the size N of the population, is obtained.
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2.6.3 Selection, Crossover and Mutation operators

The selection of two parents for the reproduction is carried out by using the Tournament Selection
policy. This technique consists of randomly choosing t chromosomes from the current population
and then the one with the best fitness function value is chosen as first parent. The process is
iterated to select the second parent. In our implementation, t is equal to 3.

Two crossover operators, both taking as input two parent chromosomes and generating a
new child chromosome, were designed: the former focuses on feasibility and naturally guarantees
the 2-edge-connectivity and spanning properties, while the latter tries to reduce the number
of branch vertices and exploits the restorer operator to assure that the child chromosome is a
feasible solution. More in detail, the first crossover operator generates the child chromosome by
copying one of two parents and then by adding to it some edges of the other parent. Let C1 and
C2 be the two parent chromosomes and let G(C1) = (VC1 , EC1) and G(C2) = (VC2 , EC2) be the
two induced subgraphs. To produce the child chromosome Cc, the crossover operator randomly
select one of two parents, w.l.o.g. let us suppose C1, and makes Cc a copy of this parent. Then,
each edge in EC2 is added to E(Cc), i.e., the related gene is set to 1 in Cc, with probability 0.5.
Figure 2.5 shows how this crossover works. As said, this first operator focuses on feasibility,
indeed it always produces feasible solutions whose values are worse than or equal to those of
the reference parents: the improvement of such values is left to the next operators. On the
other hand, the second crossover operator generates the child chromosome CC by performing
the following three steps: (i) initially, all the edges in EC1 ∩ EC2 are added to ECC ; then (ii)
the edges incident on branch vertices in G(CC) are removed; and finally the restorer operator is
invoked on G(CC). Figure 2.6 depicts an example of this crossover. Considering the edges from
both the parents which do not lead to branch vertices and then completing the solution is more
expensive, but is more likely to produce promising child chromosomes. In our implementation,
the two designed crossover operators are performed alternatively, with probabilities of 30% and
70%, respectively.

Figure 2.5: First crossover: the arrows represent how parents’ genes influence those of their
children CC . The special character ∗ means random choice between 0 and 1.
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Figure 2.6: Second crossover. (a) The first parent G(C1). (b) The second parent G(C2). (c)
The subgraph induced by the set of common edges EC1 ∩ EC2 . (d) The subgraph remaining
after removing the edges incident on branch vertices. The child chromosome CC is obtained by
executing the Restore2ECoperator on the last graph.

Generally, in genetic algorithms, after the generation of a new individual from two parents,
a mutation operation is invoked with a certain probability. The goal is to introduce new genetic
material into the population allowing to consider unexplored areas of the feasible region and thus
reduce the probability to be trapped in local optima. Let’s denote with 1C and 0C respectively
the number of genes equal to one and equal to zero in C. In our GA, the mutation operation,
performed with probability Pm, randomly chooses dJm · 1Ce bits equal to one and dJm · 0Ce bits
equal to zero and inverts them, where Jm ∈ [0, 1] is the mutation impact parameter, indicates
the percentage of these bits that must be inverted.

2.6.4 Local Search

After the application of the crossover and mutation operators, the new individual can contain
much more branch vertices than its parents. For this reason, we implemented a LocalSearch
procedure which aims to reduce the number of these branch vertices by performing a sequence
of edge replacements.

The idea behind the LocalSearch approach is the following. Given the current solution G(C),
let u and v be two branch vertices in G(C); The local search removes an edge (u,w) ∈ δG(C)(u)
and inserts in G(C) a new edge (w, v) ∈ δG(w) \ δG(C)(w), currently not in C, to try to preserve
the the 2-edge-connectivity. As consequence, the degree of u in G(C) is decreased by one while
the degree of v is increase by one. thanks to these replacements, the aim of LocalSearch is
to remove the branch vertices from G(C) by reducing their degree to 2. This type of operation
cannot assure the 2-edge-connectivity of the new solution so, as last step, LocalSearch invokes
the Restore2EC procedure in order to restore the 2-edge-connectivity if this had been lost.
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Figure 2.7: (a) A starting graph G with four branch vertices u, b, a and v; (b) a sub-graph G′ of G with
three branch vertices: u, b and a; (c) a sub-graph G′′ of G with two branch vertices, a and b, obtained
from G′ by replacing the edge (v, u) with the edge (v, b).

For instance, let us consider the graph G = (V,E) shown in 2.7(a) and the 2-edge connected
subgraph G′ = (V ′, E′) in 2.7(b) with three branch vertices a, b and u. By invoking LocalSearch
procedure on G′, it removes from the branch vertex u the edge (u, v) ∈ E′ and adds to the branch
vertex b the edge (v, b) ∈ E \ E′ (Figure 2.7(c)). In this way, b remains a branch vertex while u
is no longer a branch vertex. It is easy to see that, according to this strategy, the LocalSearch
procedure never introduces new branch vertices but it could reduce their number.

The pseudocode of the LocalSearch procedure is reported in Algorithm 3.
Given the graph G and the chromosome C, the procedure sets G(C) as the subgraph of G

associated to C and sets B to the empty set (line 1-2). All the branch vertices in G(C) are then
added to B (line 3-4). The while loop, in line 5, iterates until the set B gets empty. In this loop
a branch vertex b of B is randomly selected (line 6) and for each edge (b, v) incident to b that is
not in EC , the procedure looks for another edge (v, u) in EC having u as branch vertex (line 10).
If this last edge is found, LocalSearch adds (b, v) to EC , removes (v, u) from EC and stops the for
loop of line 9 (lines 11-12). In order to increase the possibility to preserve the 2-edge-connectivity
while keeping the fitness value unchanged, in line 13 the procedure adds to EC all the edges in
E \ EC which endpoints are both branch vertices. Finally, LocalSearch invokes Restore2EC to
assure that the solution returned satisfy the 2-edge-connectivity constraint.

2.6.5 Shaking and Cleaning

A shaking operator has been implemented to escape from the local optimum and to encourage
a wider exploration of the solution space. After ISH iterations of the genetic algorithm without
improvements of the incumbent solution, bN · JSHc random individuals are replaced with new
individuals generated from scratch. Here, JSH ∈ [0, 1] is the shaking impact parameter, which
determines the number of individuals of the population to be replaced.
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Algorithm 3: LocalSearch

Input: G and C
1 G(C) = (VC , EC) //subgraph of G associated to C
2 B ← ∅
3 foreach vertex u ∈ VC do
4 if dG(C)(u) > 2 then B ← B ∪ {u}
5 while B is not empty do
6 b← random branch vertex in B
7 for (b, v) ∈ δG(b) do
8 if (b, v) /∈ EC then
9 for (v, u) ∈ δG(C)(v) do

10 if dG(C)(u) > 2 then
11 EC ← EC \ {(v, u)} ∪ {(b, v)}
12 break

13 add in EC all (u, v) edges with u and v branch.
14 return Restore2EC(G,G(C))

When the genetic algorithm ends its execution, a cleaning policy is applied by carrying out
the BranchReduction procedure on all the individuals of the final population. As previously
described, this allows to decrease the number of branch vertices by removing a large number of
redundant edges.

2.6.6 Termination criteria

GA iterates until one of the two following stopping criteria is reached.

• The first criterion is based on IMAX parameter, representing the maximum number of
iterations that the algorithm can carry out;

• The second criterion is based on the ISH parameter: if, after the application of the shaking
operator, a new sequence of ISH iterations not improving the best chromosome fitness value
occur, the algorithm stops.

2.7 Computational Tests

In this section we present the computational results of the tests we made in order to evaluate the
effectiveness and the performance of GA. The algorithm was coded in Python by using NetworkX
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[HSS08] library on a Linux platform running on an Intel Xeon E5 2.3 GHz processor with 128
GB of RAM.

In the following two subsections, we describe how we generated the instances for the 2ECMBV
and how the parameters of GA were chosen. The computational results are reported in subsec-
tion 2.7.3.

2.7.1 Test instances

To the best of our knowledge, the only instances available in the literature for the 2ECMBV
problem are the ones presented in [Lau19]. However, since these instances were generated to test
the B&C algorithm, presented in that work, they are too small to be used to test the effectiveness
and performance of a metaheuristic. For this reason, we extended this dataset with new larger
instances generated by using the same strategy proposed in [Lau19]. The idea behind the instance
generation procedure is to obtain a non-Hamiltonian and 3-connected graph, ensuring that there
are not essential edges or vertices which must necessarily be branch.

More in detail, given a starting clique graph G′ = (V ′, E′) with |V ′| = n′ ≥ 4, let q be
an integer such that n′ ≥ 3q. The procedure defines q disjoint subsets W1, . . . ,Wq of V ′ with
|Wi| = 3, i = 1 . . . , q. Then it generates q disjoint sets, T1, . . . , Tq, of new vertices, not in V ′, with
|Ti| ≥ 3, i = 1, . . . , q. Finally, the procedure build the graph G = (V,E) with V = V ′ ∪

⋃q
i=1 Ti

and E = E′ ∪
⋃q
i=1{(u, v) : u ∈ Ti, v ∈Wi}. The graph G = (V,E) just built is 3-connected and

non-Hamiltonian (the proof is provided in [Lau19]).
Note that |V | = n′ − n̄ where n̄ =

∑q
i=1 |Ti| is the number of vertices that are added to the

starting graph G′. In our computational tests, we grouped the instances in two sets: the Small
instances where n′ ∈ {20, 30, 40, 50}, which are the same used in [Lau19] and the Large instances
where n′ ∈ {60, 70, 80, 90, 100}. For each combination of n′, n̄, and q, five different instances
were generated that together represent a scenario. Thus, in total, this first set consists of 630
individual instances, grouped in 126 scenarios.

To further investigate the effectiveness of GA, we generated a set of random Hamiltonian
instances. Since the optimal solution of 2ECMBV is always zero in these instances, then we
can compare the solutions found by GA with the optimal ones. The generation of the instances
is carried out as follows. Given n vertices and a probability d, we first create a Hamiltonian
cycle randomly and then, for every couple of vertices i and j we introduce the edge (i, j) in
the graph with probability d. For the generation of the instances we used the following values:
n ∈ {100, 150, 200, 250, 300, 350, 400} and d ∈ {0.3, 0.5, 0.7}. For each combination of these two
parameters, we generated five different instances for a total of 105 Hamiltonian instances grouped
in 21 scenarios.

2.7.2 Parameters tuning

To find the best performing values for the parameters of the GA, we used the IRACE pack-
age [LIDLPC+16], an automatic configuration tool for parameter setting. IRACE was executed
on a subset of 147 instances selected according to all the possible combinations of the n and
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m parameters values. In particular, 126 instances were selected from the non-Hamiltonian and
3-connected set, while the remaining 21 instances were selected from the Hamiltonian set. Ta-
ble 2.1 reports, for each parameter, the set of tested values (Values) and the corresponding target
value (Target) in the best configuration found by IRACE.

Parameter Values Target
N {30, 50, 70} 30
IMAX {30, 50, 70} 50
Pm {0.05, 0.1, 0.15} 0.1
Jm {0.02, 0.04} 0.02
ISH {3, 5, 7} 7
JSH {1, 1/3, 1/4} 1/3

Table 2.1: Tested sets of values and IRACE choices for GA parameters.

2.7.3 Computational results

In this section, we verify the effectiveness of GA algorithm by comparing it with the B&C
proposed in [Lau19]. The two algorithms are executed on the same machine and for the B&C
we set a time limit equal to 2 hours.
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B&C GA
n′ n q n m Obj Time Obj Time Gap
20 10 2 30 220 3.40 0.04 3.40 10.50 0.0

3 30 220 3.00 0.06 3.00 9.56 0.0
16 3 36 238 4.40 0.07 4.40 12.11 0.0

5 36 238 5.00 2.60 5.00 9.68 0.0
20 4 40 250 6.00 0.12 6.00 12.67 0.0

6 40 250 7.00 12.55 7.00 10.19 0.0
30 4 50 280 7.20 0.21 7.20 17.85 0.0

6 50 280 8.60 2.33 8.60 14.26 0.0
40 4 60 310 6.60 0.23 6.60 24.38 0.0

6 60 310 8.40 1.47 8.40 19.99 0.0
50 4 70 340 7.80 0.40 7.80 33.32 0.0

6 70 340 10.40 5.92 10.40 26.91 0.0
60 4 80 370 7.40 0.33 7.40 42.35 0.0

6 80 370 10.40 2.61 10.40 33.41 0.0
30 15 3 45 480 4.40 0.17 4.40 22.35 0.0

5 45 480 5.00 2.13 5.00 18.04 0.0
24 4 54 507 6.60 0.34 6.60 24.94 0.0

8 54 507 8.00 25.43 8.00 19.29 0.0
30 6 60 525 8.40 7.15 8.40 24.06 0.0

10 60 525 10.00 1030.81 10.00 19.30 0.0
45 6 75 570 10.40 2.72 10.40 36.49 0.0

10 75 570 11.00 605.38 11.00 30.54 0.0
60 6 90 615 10.40 8.94 10.40 49.90 0.0

10 90 615 15.40 248.00 15.40 37.15 0.0
75 6 105 660 11.60 9.97 11.60 67.43 0.0

10 105 660 15.40 646.42 15.40 50.79 0.0
90 6 120 705 11.20 11.91 11.20 84.79 0.0

10 120 705 18.20 617.87 18.20 65.67 0.0
40 20 4 60 840 7.00 1.73 7.00 37.00 0.0

6 60 840 7.00 11.34 7.00 32.43 0.0
32 6 72 876 7.60 10.75 7.60 39.98 0.0

10 72 876 11.00* 7201.41 11.00 32.33 0.0
40 8 80 900 11.40 509.73 11.40 43.49 0.0

13 80 900 13.00* 7215.75 13.00 34.25 0.0
60 8 100 960 13.60 111.74 13.60 58.73 0.0

13 100 960 14.00* 7214.94 14.00 59.44 0.0
80 8 120 1020 13.40 173.60 13.40 80.98 0.0

13 120 1020 20.20* 4262.95 20.20 61.63 0.0
100 8 140 1080 13.80 211.74 13.80 109.36 0.0

13 140 1080 22.40* 6289.50 22.40 84.20 0.0
120 8 160 1140 14.20 149.54 14.20 148.16 0.0

13 160 1140 22.60* 3559.44 22.60 111.85 0.0
50 25 5 75 1300 6.00 2.84 6.00 58.27 0.0

8 75 1300 8.00 364.32 8.00 52.12 0.0
40 8 90 1345 9.00 713.76 9.00 61.05 0.0

13 90 1345 13.00* 6810.18 13.00 57.51 0.0
50 10 100 1375 11.00* 2492.98 11.00 72.03 0.0

16 100 1375 17.00* 7218.56 17.20 58.70 0.2
75 10 125 1450 11.00* 3271.07 11.00 101.91 0.0

16 125 1450 17.00* 7218.50 17.00 78.62 0.0
100 10 150 1525 11.00* 4580.52 11.00 132.02 0.0

16 150 1525 17.00* 7218.60 17.00 116.93 0.0
125 10 175 1600 11.00* 2496.49 11.00 191.37 0.0

16 175 1600 17.00* 7218.80 17.00 156.33 0.0
150 10 200 1675 11.00* 1557.97 11.00 258.74 0.0

16 200 1675 17.00* 7218.64 17.00 211.11 0.0
Avg 10.87 1759.89 10.88 60.15 0.004
#Best 55

Table 2.2: Comparison between the solutions of B&C and GA on the Small instances.
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Table 2.2 reports the results of GA and B&C on the Small instances. The first five columns
show the characteristics of the instances: the number n′ of vertices of the graphG′, the cardinality
n̄ of T1 ∪ · · · ∪ Tq, the value q, the number n of vertices and the number m of edges of G.

The next four columns report the solution value (Obj) and the computational time (Time),
in seconds, of B&C and GA, respectively. Whenever B&C reaches the time limit of two hours,
the related solution value is marked with a “*” symbol to highlight that this value is an upper
bound of the optimal solution value. Each row in the tables represents a scenario composed of five
instances with the same characteristics but different seed (used to initialize the random number
generator), and the results shown in each line are the average values of these five instances.
The last column shows the gap (Gap) between the solution found by GA and the best/optimal
solutions. This gap is computed by using the formula: Gap = Obj(GA) − Obj(B&C). Finally,
at the bottom of the table, the Avg row reports the average values of Obj, Time and Gap while
the #Best row shows how many times GA finds the best/optimal solution.

The results of Table 2.2 show that B&C provides the optimal solution on 39 out of 56 scenarios
with an average time equal to 1759 seconds. On 55 out of 56 scenarios, GA returns the same
solutions of B&C and, in particular, it always finds the optimal solution in the scenarios where
this solution is known. In the remaining scenario (50-50-16) the gap from the optimal/best
solution is equal to 0.2. The results of the Avg row show that the difference between the average
Obj values of the two algorithms is equal to 0.01. Moreover, the average computational time of
GA in the Small instances is equal to 60.15 seconds, and it never exceeds the 3 minutes in this
set of instances. However, it is worth noting that there are several scenarios where GA is slower
than B&C. This occurs because, despite the stopping criteria used by GA, it has to always carry
out a minimum number of iterations before stopping, even when it finds the best solution at the
first iteration.
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B&C GA B&C GA
n′ n q n m Obj Time Obj Time Gap n′ n q n m Obj Time Obj Time Gap
60 30 6 90 1860 8.20 40.05 8.20 84.16 0.0 90 45 9 135 4140 10.00* 1595.33 10.00 199.60 0.0

10 90 1860 10.00 1169.83 10.00 68.67 0.0 15 135 4140 15.00* 5689.53 15.00 171.51 0.0
48 9 108 1914 13.60 727.07 13.60 87.42 0.0 72 14 162 4221 15.00* 6113.03 15.00 208.69 0.0

16 108 1914 16.00* 7218.46 16.00 67.82 0.0 24 162 4221 24.00* 7219.43 24.00 163.24 0.0
60 12 120 1950 16.60* 7217.62 16.60 101.83 0.0 90 18 180 4275 19.00* 7212.73 19.00 218.79 0.0

20 120 1950 20.00* 7219.04 20.00 69.26 0.0 30 180 4275 30.00* 7212.53 30.00 184.76 0.0
90 12 150 2040 19.40* 5893.34 19.40 122.03 0.0 135 18 225 4410 19.00* 7212.18 19.00 337.66 0.0

20 150 2040 21.00* 7218.70 21.20 117.73 0.2 30 225 4410 31.00* 7212.78 31.00 297.96 0.0
120 12 180 2130 21.20* 5057.12 21.20 177.71 0.0 180 18 270 4545 19.00* 7212.54 19.00 537.10 0.0

20 180 2130 30.80* 7211.34 30.80 129.99 0.0 30 270 4545 31.00* 7212.27 31.00 385.45 0.0
150 12 210 2220 21.20* 5643.38 21.20 236.21 0.0 225 18 315 4680 19.00* 7213.94 19.00 736.06 0.0

20 210 2220 34.20* 7201.44 34.20 173.92 0.0 30 315 4680 31.00* 7214.27 31.00 565.67 0.0
180 12 240 2310 22.60* 4318.54 22.60 320.99 0.0 270 18 360 4815 19.00* 7215.76 19.00 857.13 0.0

20 240 2310 35.00* 7199.04 35.00 228.70 0.0 30 360 4815 31.00* 7216.75 31.00 750.56 0.0
70 35 7 105 2520 8.00 106.44 8.00 113.83 0.0 100 50 10 150 5100 11.00* 5003.63 11.00 222.28 0.0

11 105 2520 12.00* 1834.72 12.00 106.95 0.0 16 150 5100 17.00* 7218.58 17.00 210.87 0.0
56 11 126 2583 12.00 823.36 12.00 130.54 0.0 80 16 180 5190 17.00* 7219.34 17.20 254.29 0.2

18 126 2583 19.00* 7219.10 19.00 114.08 0.0 26 180 5190 27.00* 7219.55 27.20 219.37 0.2
70 14 140 2625 15.00* 6739.40 15.00 137.69 0.0 100 20 200 5250 21.00* 7214.37 21.00 296.72 0.0

23 140 2625 23.00* 7213.12 23.00 129.46 0.0 33 200 5250 33.00* 7214.10 33.00 238.51 0.0
105 14 175 2730 15.00* 7208.77 15.00 191.50 0.0 150 20 250 5400 21.00* 7209.18 21.00 423.98 0.0

23 175 2730 24.00* 7209.88 24.00 174.34 0.0 33 250 5400 34.00* 7209.86 34.20 325.13 0.2
140 14 210 2835 15.00* 7215.04 15.00 271.18 0.0 200 20 300 5550 21.00* 7210.20 21.00 582.60 0.0

23 210 2835 24.00* 7215.46 24.00 244.17 0.0 33 300 5550 34.00* 7210.07 34.00 481.60 0.0
175 14 245 2940 15.00* 5266.06 15.00 418.21 0.0 250 20 350 5700 21.00* 7214.75 21.00 955.59 0.0

23 245 2940 24.00* 7212.86 24.00 292.64 0.0 33 350 5700 34.00* 7215.47 34.20 684.00 0.2
210 14 280 3045 15.00* 7214.44 15.00 532.53 0.0 300 20 400 5850 21.00* 7212.96 21.00 1169.45 0.0

23 280 3045 24.00* 7214.29 24.00 406.82 0.0 33 400 5850 34.00* 7213.10 34.00 1013.71 0.0
80 40 8 120 3280 9.00* 2052.80 9.00 140.54 0.0 Avg 21.00 6270.12 21.01 319.12 0.014

13 120 3280 13.00* 7217.67 13.00 144.72 0.0 #Best 65
64 12 144 3352 13.00* 5661.32 13.00 167.71 0.0

21 144 3352 21.00* 7217.17 21.00 148.49 0.0
80 16 160 3400 17.00* 7218.16 17.00 171.42 0.0

26 160 3400 27.00* 7218.77 27.00 149.07 0.0
120 16 200 3520 17.00* 7219.19 17.00 281.02 0.0

26 200 3520 27.00* 7219.76 27.00 205.11 0.0
160 16 240 3640 17.00* 7219.22 17.00 374.10 0.0

26 240 3640 27.00* 7219.73 27.00 329.79 0.0
200 16 280 3760 17.00* 7219.35 17.00 605.52 0.0

26 280 3760 27.00* 7220.03 27.00 420.54 0.0
240 16 320 3880 17.00* 7219.19 17.00 672.45 0.0

26 320 3880 27.00* 7219.82 27.00 585.43 0.0

Table 2.3: Comparison between the solutions of B&C and GA on the Large instances.

Table 2.3 shows the computational results of the two algorithms on the Large instances.
Table headings have the same meaning that they have for Table 2.2. The results show that
B&C provides the optimal solution only in 5 scenarios, while, on the remaining ones, it reaches
the time limit. GA finds the same solutions of B&C on 65 out of 70 scenarios and, in the
remaining five scenarios, its gap is always equal to 0.2. Moreover, the average gap is very low
(0.014). These results highlight the effectiveness of GA which very often finds the best/optimal
solution and when this does not occur, its gap from this solution is very low. Regarding the
computational time, GA requires on average 319 seconds and never exceeds 1170 seconds. As
expected, by increasing the size of the instances the computational time of the two algorithms
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is not comparable anymore.
Since in the scenarios where B&C reaches the time limit GA never finds a better solution,

even in the largest instances, we suspect that the solutions provided by B&C could be the optimal
ones or very close to the optimal ones but the algorithm fails to certify this optimality within
the time limit.

As described in Section 2.7.1, we generated a new random set of instances to further inves-
tigate the effectiveness of our algorithm. To this end, we have chosen to generate Hamiltonian
instances to know a priori the optimal solution value that is zero. Table 2.4 reports the results
of GA on this new set of instances.

The first three columns show the characteristics of the instance: the number n of vertices
of the graph, the probability d used to generate the edges (see Section 2.7.1) and the number
of edges m. This last column reports an interval of values representing the minimum and the
maximum number of edges contained inside the graphs of that scenario. Indeed, each line in
the tables represents a scenario composed of five instances with the same characteristics but a
different seed, and the results shown in each line are the average values of these five instances.
The remaining three columns show the optimal solution value (Opt), the solution value (Obj)
and the computational time (Time), in seconds, of GA, respectively. Notice that we do not
report the column Gap in this table because, having an optimal solution value always equal to
zero, this column coincides with the column Obj. Finally, at the bottom of the table, the Avg
row reports the average values of Obj and Time.
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GA
n d m Opt Obj Time
100 0.3 [1554 - 1615] 0.00 2.20 91.19
100 0.5 [2494 - 2550] 0.00 1.80 111.40
100 0.7 [3464 - 3566] 0.00 1.40 133.46
150 0.3 [3493 - 3587] 0.00 2.60 192.94
150 0.5 [5694 - 5747] 0.00 2.60 264.18
150 0.7 [7846 - 7935] 0.00 1.60 334.73
200 0.3 [6174 - 6307] 0.00 3.00 356.46
200 0.5 [10155 - 10262] 0.00 2.60 482.03
200 0.7 [13970 - 14134] 0.00 2.00 607.44
250 0.3 [9631 - 9779] 0.00 3.80 435.34
250 0.5 [15818 - 16026] 0.00 3.20 749.63
250 0.7 [21870 - 22083] 0.00 2.00 1106.88
300 0.3 [13753 - 14135] 0.00 3.20 763.16
300 0.5 [22649 - 22852] 0.00 3.00 1135.25
300 0.7 [31517 - 31622] 0.00 2.40 1552.63
350 0.3 [18838 - 19004] 0.00 3.20 1168.42
350 0.5 [30846 - 31038] 0.00 3.00 1749.42
350 0.7 [42757 - 42932] 0.00 2.60 2128.46
400 0.3 [24630 - 24776] 0.00 4.20 1457.40
400 0.5 [40340 - 40678] 0.00 3.80 2032.20
400 0.7 [56119 - 56498] 0.00 3.20 2646.19
Avg 2.73 928.51

Table 2.4: Computational results for the Hamiltonian instances.

The results of Table 2.4 show that these new instances are harder to solve for GA. Indeed, the
algorithm does not find the optimal solution in these instances. However, the average gap value
from the optimal solution is equal to 2.73 and only in one case this gap is over 4. From these
results, we derive that GA remains effective even on this type of instance but less effective if
compared with the results obtained on the previous benchmark instances. It is worth noting that
as the density of the instances increases as the solution quality, provided by GA, improves. For
instance, in scenario 100-0.3 the gap is equal to 2.20 while in scenario 100-0.7 this gap decreases
to 1.40. We suspect that this occurs because, by increasing the number of edges inside the
graph, we increase the chance to have more Hamiltonian cycles and then more optimal solutions.
Even the computational time increases in these instances with an average value equal to 928.51
seconds and a peak equal to 2646.19 seconds in the largest scenario 400-0.7. Overall, GA remains
sufficiently fast despite the density of these graphs.



Chapter 3

Collapsed k-Core Problem

A problem of fundamental importance today, which concerns the identification of substructures
in graphs, is the problem of the Collapsed k-Core. The study of this problem is linked to the
great diffusion of social networks and to the attention that today we have towards the so-called
influential users.The idea is that the decision of a user to leaving or remaining in the network,
is influenced by that of her connected friends. A popular assumption is that a user remains in
the network if she has at least a certain number of connections, say k, in the network [BKL+15].
On the contrary, a user is driven to leave the social network if she has less than k connections.
Given this assumption, if a user leaves the network, the degree of her neighbors decreases by
one, eventually becoming smaller than k for some of them. Thus, a cascade phenomenon is
observed each time a user drops out from the network, until a stable configuration is obtained,
which corresponds to the k-core of the social network graph. In this context, we study the
Collapsed k-Core Problem, which has been introduced in [ZZQ+17] to identify the critical users
to be eventually incentivized not to leave the network. This problem indeed consists in finding
the set of a given number b of users, the exit of whom from the network minimizes the number
of the remaining users in the network itself, i.e., leads to the minimal k-core. First of all, we
propose a formulation of the problem modeling the cascade effect which determines the with-
drawal of a certain number of users from the network. In such approach, a time index is used
to represent the subsequent deletion rounds of this process. Beyond that, the tools of bilevel
optimization have been recently used for developing exact methods for several critical node/edge
detection problems [FLSSM19, FLMP20, FLSSZ21a, FLSSZ21b]. These chapter show that novel
and computationally effective mathematical programming formulations can be derived thanks to
the bilevel interpretation of the problems. Motivated by these studies, we use bilevel program-
ming to model the Collapsed k-Core Problem, discarding the time index.

A bilevel program is an optimization problem where one problem is nested into another

40



CHAPTER 3. COLLAPSED K-CORE PROBLEM 41

[VC94, CS07, Dem02, Cer21, KLLS21]. The formulation of a classical bilevel problem reads

min
x∈X ,y

F (x, y)

s.t. G(x, y) ≥ 0 (P)
y ∈ arg min

y′∈Y
{f(x, y′) | g(x, y′) ≥ 0}

The outer optimization problem in the variables x and y is the so-called upper-level problem.
The inner optimization problem in the variable y′, parameterized with respect to the upper-level
variables x, is the so-called lower-level problem. In formulation (P), we implicitly assume that
the lower-level problem has only one optimal solution for each value of x. If this is not the
case, this formulation is the one obtained with the so-called optimistic approach [Dem02], which
consists in selecting the lower-level optimal solution corresponding to the best outcome for the
upper level that minimizes it. The whole bilevel problem can be seen as a hierarchical decision
process: in the upper level, a leader makes a decision while anticipating the optimal reaction
of the lower-level decision maker, the follower, whose decision depends on the decision of the
leader. Another way to formulate problem (P) is

min
x∈X ,y

F (x, y)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0

f(x, y) ≤ ϕ(x),

where ϕ(x) = min
y′∈Y
{f(x, y′) | g(x, y′) ≥ 0} is the so called value function of the lower level.

In the Collapsed k-Core Problem, the hierarchical structure can be described as follows. We
can see the follower as an entity who is computing the collapsed k-core resulting after the decision
of the leader on the b nodes to interdict from the network. So, the follower aims at identifying
the subgraph of maximum cardinality, resulting from the interdiction of the b nodes selected
by the leader, satisfying the property that each node of the subgraph has at least k neighbors.
The leader instead aims at detecting the set of b nodes for which the cardinality of the associ-
ated subgraph is minimized, which corresponds to the set of the most critical users in the network.

It is well-known that the problem of finding the k-core of a graph, denoted as k-Core Detection
Problem in the following, can be solved in polynomial time (see [BZ03]), and one can easily model
the problem using binary variables. However, to the best of our knowledge, prior to the current
work, no Integer Linear Programming (ILP) or Linear Programming (LP) formulation (and, thus,
a polynomial approach based on LP) for the k-Core Detection Problem was known. In this work
we provide a first compact LP formulation for calculating the k-core. In addition, as far as we
know, no mathematical programming formulations for the Collapsed k-Core Problem have ever
been investigated in the existing literature. We provide three integer programming formulations,
and propose to enhance them with a combinatorial lower bound and valid inequalities. The
first formulation is a compact time-expanded model that mimics the iterative node “collapsing”
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process. The two other models are based on the bilevel interpretation of the problem. The first
is a sparse formulation that projects out the lower-level variables and exploits a Benders-like
decomposition. The second exploits the LP-based formulation of the k-Core Detection Problem,
and the LP-duality. All the three formulations are implemented and computationally evaluated
against a state-of-the-art bilevel solver from [FLMS17]. The obtained results demonstrate the
efficiency of the proposed approaches, with the model using the LP-duality exhibiting the best
performances, both in terms of computing times and gaps at termination.

3.1 Literature Review

We consider the following definition of the k-core:

Definition 1. Given an undirected graph G = (V,E), and a positive integer k, the k-core of G
is the maximal induced subgraph of G in which all the nodes have degree at least k.

The k-core may be calculated as the resulting graph obtained by iteratively deleting from
G all the nodes that have degree less than k, in any order. This procedure is known as the
k-core decomposition [SP16], the basic theory of which is surveyed in [MGPV20]. We point
out that the original definition of the k-core given by [Sei83] requires the connectedness of the
k-core. In [MB83], this original definition is used, and an algorithm, named Level Component
Priority Search, is introduced for finding all the maximal connected components of a graph
with degree at least k. However, in most of the recent papers in the field, the connectedness
requirement is relaxed, starting from [BZ03], where an algorithm with time complexity O(|E|)
for core decomposition is proposed. This is why in Definition 1 we also assume that the k-core
may contain multiple connected components.

The Anchored k-Core Problem is studied by [BKL+15]. It consists in anchoring b nodes (nodes
that remain engaged no matter what their friends do) to maximize the size of the corresponding
anchored k-core, i.e., the maximal subgraph in which every non-anchored node has degree at
least k. It may be useful to incentivize key individuals to stay engaged within the network,
preventing the cascade effect. The Anchored k-Core Problem is solvable in polynomial time for
k ≤ 2, but is NP-hard for k > 2 [BKL+15]. In [ZZZ+16] a greedy algorithm, called OLAK, is
proposed to solve this problem, while in [LSER+20] the so-called Residual Core Maximization
heuristic is introduced. Another paper focusing on the maximization of the k-core is [CFG13],
where improved complexity results for the Anchored k-Core Problem are given.

From an antagonistic perspective, a natural question associated with the Anchored k-Core
Problem is how to maximally collapse the engagement of the network by incentivizing the b most
critical users to leave. This problem is called the Collapsed k-Core Problem, and was introduced
in [ZZQ+17]. The aim is to find the set of b nodes the deletion of which leads to the smallest k-
core (i.e., the k-core with minimum cardinality), obtained from G by iteratively removing nodes
with degree strictly lower than k. In [ZZQ+17], it is showed that the Collapsed k-Core Problem
is NP-hard for any k ≥ 1, and a greedy algorithm to compute feasible solutions for the problem is
proposed. In [LMS21], the parameterized complexity of the Collapsed k-Core Problem is studied
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with respect to the parameters b, k, as well as another parameter, which represents the maximum
allowed cardinality of the remaining k-core (i.e., it should not have more than this number of
nodes). A further study on the k-core minimization was conducted in [ZCWL18], where the
focus was on edges instead of nodes. Indeed, the aim of the problem in this case is to identify
a set of b edges, so that the minimal k-core is obtained by deleting these edges from the graph.
This problem is proven to be NP-hard, and a baseline greedy algorithm is proposed.

In [YLR+19], the Collapsed k-Core Problem is applied to determine the key scholars who
should be engaged in various tasks in science and technology management, such as experts
finding, collaborator recommendation, and so on. More recently, in [ZY20], a related problem
is studied: the Collapsed (α, k)-NP-community in signed graph. Given a signed graph, which
is a graph where each edge has either a “+” sign if representing a friendship or a “−” sign if
representing an enemy relationship, the (α, k)-NP-community is made of the users having not
less than α friends and no more than k enemies in the community. This problem aims at finding
the set of nodes the removal of which from the graph will lead to the minimum cardinality of
the remaining (α, k)-NP-community.

In this study, we focus on the Collapsed k-Core Problem introduced by [ZZQ+17], for which
we propose three mathematical programming formulations. The first one uses variables indexed
on the deletion rounds following the removal of b nodes from the graph. The other two are
bilevel formulations, very similar in the basic idea, but different in the solution approaches. The
lower-level problems of both the two bilevel formulations, which may be solved in polynomial
time, consist in computing the k-core, i.e. model the so-called k-Core Detection Problem. To the
best of our knowledge, this is the first time a mathematical programming formulation is proposed
for the k-Core Detection Problem. Furthermore, this is the first work proposing mathematical
programming formulations of the Collapsed k-Core Problem, and using bilevel optimization to
deal with it.

3.2 Notation

Let us consider an undirected graph G = (V,E), with n = |V |, and two positive integers
k and b. Denote by N(i) the set of neighbors of node i in graph G, i.e., the set of nodes
{j ∈ V : {i, j} ∈ E}. Furthermore, denote by δ(G) the minimum degree of the graph G, which
is the minimum of its nodes’ degrees. For a given set of nodes S ⊆ V , let G[S] denote the
subgraph of G induced by S, and thus δ(G[S]) its minimum degree. Moreover, let G\S denote
the subgraph of G induced by V \S, i.e., G[V \S]. Let Ck(G) be the k-core of graph G, i.e., the
maximum cardinality subgraph in which every node has a degree at least k. In the following, we
will refer to the number of nodes in a given k-core as its size or cardinality. Let us further define
the k-subcores of G as the induced subgraphs of G in which all the nodes have degree at least k,
but not necessarily of maximum cardinality. Finally, we say that a node v of G has coreness (or
core number) k if it belongs to a k-subcore, but not to any (k + 1)-subcore.
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Figure 3.1: Example of coreness distribution.

In Figure 3.1, a graph is shown and each node is colored according to its core number. In
particular, the two orange nodes have coreness 1, meaning that they do not belong to any k-
subcore with k ≥ 2; the five green nodes, instead, have coreness two, since 2 is the maximum
value of k such that there exist a k-subcore including any of them; finally, the remaining seven
cyan nodes have coreness 3, indeed they together form a 3-subcore.

3.3 Mathematical formulations for the k-Core Detection Problem

In this section we propose two formulations for the k-Core Detection Problem. The first one
is an ILP model defined in the space of binary variables associated with the set of nodes. The
second one is a compact, extended formulation which models the subgraph induced by the set
of nodes that are outside the k-core. In this second model, which uses node and edge variables,
the integrality constraints can be relaxed, and hence we obtain a LP formulation.

3.3.1 ILP Formulation

The binary variables involved in the first formulation are defined as:

yi =

{
1 if node i belongs to the k-core
0 otherwise

i ∈ V. (3.1)

Let

Y =

y ∈ {0, 1}n : kyi ≤
∑
j∈N(i)

yj , ∀ i ∈ V

 (3.2)
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be the set of incident vectors of any subgraph in G the nodes of which have degree at least k.
With each ỹ ∈ Y we can associate a subset of nodes K = {i ∈ V : ỹi = 1}, and with the whole
set Y of y vectors, we can associate the set K. For a given K ∈ K, any node i ∈ K has a
degree at least k in the induced subgraph G[K], i.e., δ(G[K]) ≥ k. Note that, in this case, by
definition, G[K] is the k-core of G[K] itself. In Section 3.2, we defined such subgraphs G[K], for
each K ∈ K, as k-subcores of G.

The k-Core Detection Problem corresponds to finding the k-core of graph G, and can be
modeled as the following integer program:

max
y∈Y

∑
i∈V

yi. (3.3)

Note that constraints kyi ≤
∑

j∈N(i) yj (in Eq. (3.2)) ensure, when maximizing
∑

i∈V yi, that no
node with induced degree lower than k is selected in the k-core.

Figure 3.2: Nodes in the 3-core of graph in Figure 3.1.

In Figure 3.2, using the graph in Figure 3.1 with k = 3, we report in black the nodes for which
the variables yi of formulation (3.3) are 1 (in the optimal solution), i.e., the nodes belonging to
the 3-core of the graph.

3.3.2 LP Formulation

In this section, we propose an alternative formulation of the k-Core Detection Problem by fo-
cusing on the subgraph of G induced by the subset of nodes which are outside the k-core. Let
us define the variables ui which identify the nodes outside of the k-core of the graph:

ui =

{
1 if node i does not belong to the k-core
0 otherwise

i ∈ V. (3.4)

Note that that variable ui corresponds to 1− yi in formulation (3.3). Expressed in the space of
u variables, the formulation (3.3) reads:
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max
u

n−
∑
i∈V

ui (3.5a)

s.t.
∑
j∈N(i)

uj + k − |N(i)| ≤ k ui ∀ i ∈ V (3.5b)

u ∈ {0, 1}n (3.5c)

Indeed, we want to find the k-subcore of maximum cardinality, which means that, in the
objective function (3.5a), we maximize the difference between n and the sum of ui, that is the
sum of the vertices which are outside the k-core. Constraints (3.5b) imply that ui is 1 (i.e., node
i is in not in the k-core) iff the difference between its degree and the number of neighbors not
in the k-core (where this difference corresponds to the number of its neighbors in the k-core), is
less than k.

Following the idea proposed in [GVPP21, Lemma 1], we can modify the right-hand side of
constraints (3.5b) as: ∑

j∈N(i)

uj + k − |N(i)| ≤
( ∑
j∈N(i)

uj + k − |N(i)|
)
ui. (3.6)

If |N(i)| −
∑

j∈N(i) uj < k (i.e., the difference between degree of node i and the number of its
neighbors not in the k-core is less than k), ui will be set to 1. Otherwise, if |N(i)|−

∑
j∈N(i) uj ≥ k,

ui can be set either to 0 or 1, but, since we are minimizing the sum of all ui, it will be set to
0. The resulting formulation is bilinear, and thus, possibly difficult to solve, due to the presence
of the bilinear terms uiuj . We therefore linearize it through the McCormick technique, i.e., by
introducing additional binary variables xij = uiuj associated with the edges of G. Problem (3.5)
can be thus reformulated as:

max
x,u

n−
∑
i∈V

ui (3.7a)

s.t.
∑

j∈N(i)

uj + k − |N(i)| ≤
∑

j∈N(i)

xij + (k − |N(i)|)ui ∀ i ∈ V (3.7b)

xij ≤ ui ∀ i ∈ V, j ∈ N(i) (3.7c)
xij ≤ uj ∀ i ∈ V, j ∈ N(i) (3.7d)
xij − ui − uj ≥ −1 ∀ i ∈ V, j ∈ N(i) (3.7e)

u ∈ {0, 1}n, x ∈ {0, 1}|E| (3.7f)

The x variables represent the set of edges of the subgraph induced by the nodes outside of
the k-core. Indeed, due to constraints (3.7c)–(3.7e), in any feasible solution of the model, two
nodes i and j are connected by an edge (i.e., xij = 1) if and only if ui = uj = 1. Moreover,
if ui = 0 (i.e., the node i is in the k-core) the right-hand-side of constraints (3.7b) becomes
zero because of constraints (3.7c), implying that |N(i)| −

∑
j∈N(i) uj ≥ k, which is equivalent to
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∑
j∈N(i)(1 − uj) ≥ k, guaranteeing that the number of neighbors of any node i in the k-core is

at least k.

Figure 3.3: Nodes and edges in the subgraph induced by the nodes outside of the 3-core of graph
in Figure 3.1.

In Figure 3.3, using the graph in Figure 3.1 with k = 3, we report in black the nodes i for which
ui = 1 and the edges {i, j} for which xij = 1 in the optimal solution of formulation (3.5), i.e.,
the nodes and the edges of the subgraph induced by the nodes outside of the 3-core.
We now claim that the optimal solution of the continuous relaxation of the model (3.7) (i.e., the
formulation obtained by replacing constraints (3.7f) with u ∈ [0, 1]n, x ∈ [0, 1]|E|) is integer.

Theorem 1. Any optimal solution (x∗, u∗) of the continuous relaxation of formulation (3.7) is
integer.

Proof. Any optimal solution of the continuous relaxation of formulation (3.7) is feasible, i.e., it
satisfies the following constraints∑

j∈N(i)

u∗j + (k − |N(i)|) ≤
∑
j∈N(i)

x∗ij + (k − |N(i)|)u∗i , ∀ i ∈ V. (3.8)

For a certain node i, let N1(i) be the set of nodes j ∈ N(i) such that u∗j = 1. For the nodes in
the set N1(i), x∗ij = u∗i because of constraints (3.7c) and (3.7e). We can thus write∑

j∈N(i)

u∗j =
∑

j∈N1(i)

u∗j +
∑

j∈N(i)\N1(i)

u∗j = |N1(i)|+
∑

j∈N(i)\N1(i)

u∗j ,

and∑
j∈N(i)

x∗ij =
∑

j∈N1(i)

u∗i +
∑

j∈N(i)\N1(i)

x∗ij = |N1(i)|u∗i +
∑

j∈N(i)\N1(i)

x∗ij ≤ |N1(i)|u∗i +
∑

j∈N(i)\N1(i)

u∗j ,

the last inequality coming from the McCormick constraint (3.7d). We can thus reformulate (3.8)
as:

|N1(i)|+
∑

j∈N(i)\N1(i)

u∗j + (k − |N(i)|) ≤ |N1(i)|u∗i +
∑

j∈N(i)\N1(i)

u∗j + (k − |N(i)|)u∗i , (3.9)
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which can be reduced to [
|N1(i)|+ (k − |N(i)|)

]
(1− u∗i ) ≤ 0. (3.10)

If |N1(i)| + (k − |N(i)|) > 0, then u∗i = 1. Otherwise, if |N1(i)| + (k − |N(i)|) ≤ 0 u∗i can have
any value in [0, 1], but since we are minimizing, and reducing the value of ui does not impact
on the feasibility of McCormick constraints, it will be set to 0. Thus, in the optimal solution of
the continuous relaxation of (3.7), each ui has value equal to either 0 or 1, thus the solution is
integer.

Thus, the linear relaxation of problem (3.7) provides the optimal solution of formulation (3.5).
We can further notice that constraints (3.7e), and x ≤ 1, can be dropped. Indeed, they are

redundant and guaranteed by the remaining constraints. The resulting relaxed problem is

max
x,u

n−
∑
i∈V

ui (3.11a)

s.t.
∑
j∈N(i)

uj + k − |N(i)| ≤
∑
j∈N(i)

xij + (k − |N(i)|)ui ∀ i ∈ V (3.11b)

xij ≤ ui ∀ i ∈ V, j ∈ N(i) (3.11c)
xij ≤ uj ∀ i ∈ V, j ∈ N(i) (3.11d)

u ∈ [0, 1]n, x ∈ R+
|E| (3.11e)

which is linear in the variables x and u.

3.4 Mathematical formulations for the Collapsed k-Core Problem

Leveraging on the formulations presented above for the k-Core Detection Problem, in this section,
we propose three models for the Collapsed k-Core Problem, which is defined as follows.

Definition 2. Given an undirected graph G = (V,E) and two positive integers k and b, the
Collapsed k-Core Problem consists of finding a subset W ∗ ⊂ V of b nodes, the removal of which
minimizes the size of the resulting k-core (i.e., for which |Ck(G\W ∗)| is minimum).

In the following, we will refer to these b nodes as collapsers.
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Figure 3.4: Example graph for the Collapsed k-Core.

In Figures 3.4, and 3.5 some of the introduced concepts are visualized through examples.
The graph G with 14 nodes in Figure 3.4 is a 3-core. Indeed, every node has degree at least 3.
The subgraph induced by the set S = {6, 7, 10, 11, 12, 13, 14} is a 3-subcore, i.e., S is a set of
nodes such that the degree of G[S] is three, but its cardinality is not maximum. Assume that
we want to determine the Collapsed 3-core Problem on this graph with budget b = 1, i.e., we
can remove one node only. Two possible feasible solutions of this Collapsed 3-core Problem are
represented in Figure 3.5 and Figure 3.6. The first one in Figure 3.5, which consists in removing
node 13 from the graph, leads to a 3-core of cardinality 13 (no node follows node 13, because no
node has less than 3 neighbors in the remaining graph). The second one in Figure 3.6, which
consists in removing node 1 from the graph, leads to a better solution, since the obtained 3-core
after the cascade effect following node 1 removal consists in 7 nodes. In fact, this is the optimal
solution of the Collapsed 3-core Problem for the graph in Figure 3.4.

(a) Selection of the node 13 to remove. (b) Node 13 leaving.

Figure 3.5: Feasible and suboptimal solutiom.
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(a) Selection of the node 1 to remove. (b) Node 1 leaving.

(c) Nodes 2 and 9 leaving. (d) Nodes 3 and 8 leaving.

(e) Node 4 leaving. (f) Node 5 leaving.

Figure 3.6: Optimal solution for the input graph in Figure 3.5.
In the rest of this section, we propose three formulations for the problem: the first one relies

on the iterative process used to determine the collapsed k-core, after the removal of the b nodes;
the other two formulations are bilevel formulations, considering two agents, a leader who selects
the nodes to remove and a follower who computes the resulting k-core, solving either formulation
(3.3) or (3.11). The bilevel structure of the problem comes from the fact that the k-core is defined
as the induced subgraph with all nodes having degree at least k of maximum size. Given that,
the aim of the problem is to find the set of b nodes to remove, s.t. the maximal induced k-subcore
is of minimum cardinality.
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3.4.1 Time-Dependent Formulation

In this section, we describe a “natural” ILP formulation for the Collapsed k-Core Problem. This
formulation models the so-called cascade effect deriving from the removal of b nodes, which are
removed at time 0. At each deletion round (corresponding to a time instant t), all the nodes the
degree of which becomes less than k are removed from the graph. Assuming that the problem
instance is feasible, i.e., that the considered graph has at least b nodes, the deletion rounds are
at most T = n− b.

We introduce the binary variables ati, defined for each node i ∈ V and time t = 0, . . . , T , such
that:

ati =

{
1 if node i belongs to the induced subgraph at time t
0 if node i does not belong to the induced subgraph at time t

In the example shown in Figure 3.6, e.g., a0
1 = 0 and a0

i = 1 for i ∈ V \{1}, while, as shown
in Figure 3.6f, aTi = 1 for i = {6, 7, 10, 11, 12, 13, 14} and aTi = 0 for i = {1, 2, 3, 4, 5, 8, 9}, where
T = 4.

The Collapsed k-Core Problem can be formulated as:

min
a

∑
i∈V

aTi (3.12a)

s.t.
∑
i∈V

a0
i = n− b (3.12b)

ati ≤ at−1
i ∀ i ∈ V, t = 1, . . . , T (3.12c)∑

j∈N(i)

at−1
j − k + 1 ≤ d(i)ati + d(i)(1− a0

i ) ∀ i ∈ V, t = 1, . . . , T (3.12d)

ati ∈ {0, 1} ∀ i ∈ V, t = 0, . . . , T (3.12e)

where d(i) = |N(i)| − k + 1. The objective function minimizes the number of nodes remaining
in the last time instant T . The first constraint (3.12b) imposes that at the beginning (first time
instant) exactly b nodes are removed. Constraints (3.12c) state that if node i is not in the graph
at time t − 1, it cannot be in the graph at time t. Finally, constraints (3.12d) ensure that, if
the node is not removed at time 0, it must stay in the graph at time t iff more than k − 1
of its neighbors “survived” at time t − 1. Constraint (3.12d), for a given i ∈ V , and a given
t ∈ {1, . . . , T}, imposes that

• if the node is not a collapser, i.e., it is not removed at time 0, and thus a0
i = 1

• and
∑

j∈N(i)

at−1
j ≥ k, i.e.,

∑
j∈N(i)

at−1
j − k + 1 ≥ 1 (with

∑
j∈N(i)

at−1
j ≤ |N(i)|)

then ati is set to 1. The term (|N(i)| − k + 1)(1 − a0
i ) is thus needed to guarantee that, for the

collapsers, the constraints (3.12d) are still satisfied. For these nodes indeed a0
i and ati will be 0.
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The obtained ILP formulation is polynomial in size and can be solved using existing state-
of-the-art solvers. It is indeed a compact formulation, which is the main advantage of this first
natural approach. However, because of time index t, the number of variables is large, thus
requiring a long computational time to be solved. For this reason, we present in the following
sections two alternative formulations for the Collapsed k-Core Problem.

3.4.2 A first bilevel formulation

In this section, we formulate the Collapsed k-Core Problem using bilevel programming where the
leader aims at minimizing the cardinality of the k-core obtained by removing exactly b nodes.
The follower instead aims at detecting the k-core obtained after the removal of the b nodes chosen
by the leader, which corresponds to finding the maximal induced subgraph where all the nodes
have degree at least k. The follower’s problem is modeled as in formulation (3.3), with additional
linking constraints imposing that the k-core is computed in the graph resulting after the removal
of b nodes by the leader.

We consider the upper-level binary variables wi and the lower-level binary variables yi (already
defined in formulation (3.1)), both defined for each node i ∈ V :

wi =

{
1 if node i is removed by the leader
0 otherwise

yi =

{
1 if node i is in the collapsed k-core of the follower
0 otherwise

Variable wi is 1 iff node i is a collapser. We remark that it corresponds to 1 − a0
i in the time-

dependent formulation (3.12), presented in Subsection 3.4.1. Variable yi, instead, is 1 iff node i
is in the resulting k-core, thus corresponds to aTi in the time-dependent formulation (3.12).
In the example shown in Figure 3.6, e.g., w1 = 1 and wi = 0 for i ∈ V \{1}, while, as shown in
Figure 3.6f, yi = 1 for i = {6, 7, 10, 11, 12, 13, 14} and yi = 0 for i = {1, 2, 3, 4, 5, 8, 9}.
The set of all possible leader’s policies W (removing exactly b nodes) is

W =

{
w ∈ {0, 1}n :

∑
i∈V

wi = b

}
. (3.13a)

Let Ω denote the set of all subsets W ⊆ V such that |W | = b. There is a one-to-one correspon-
dence between each elementW ∈ Ω and its incidence vector w ∈ W. The set of all possible nodes
subsets inducing k-subcores of G is K, defined in Section 3.3.1. If no node is interdicted by the
leader, the problem of the follower corresponds to finding the k-core in the original graph, defined
in Section 3.3.1. The resulting Collapsed k-Core Problem can be formulated as the following
bilevel problem:

min
w∈W

max
y∈Y

{∑
i∈V

yi : yi ≤ 1− wi, ∀ i ∈ V

}
. (3.14)
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Constraints yi ≤ 1−wi exclude from the k-core the collapsers. Problem (3.14) does not consider
the optimal solutions of the follower’s problem, but only its optimal objective function value.
Thus, we do not need to distinguish between optimistic and pessimistic concepts.

3.4.3 Sparse Formulation

Formulation (3.14) exhibits the structure of so-called interdiction problems, which is a well-known
class of bilevel optimization problems (see [KLLS21, SS20] for recent surveys on interdiction
problems). This structure allows us to apply a Benders-like reformulation technique in which we
project out the lower-level variables and introduce an auxiliary integer variable z to represent
the objective value of the lower-level problem. We refer to this formulation as sparse, because it
is given in the natural space of w variables (required to describe the removed set of nodes) and
a single auxiliary variable. We start by reformulating the problem (3.14) as follows:

min
z∈Z,w∈{0,1}n

z (3.15a)

s.t. z ≥ max
y∈Y

{∑
i∈V

yi : yi ≤ 1− wi,∀ i ∈ V

}
(3.15b)∑

i∈V
wi = b. (3.15c)

Following the ideas from, e.g., [Woo11, FLMS19, LLM+22], we can then reformulate (3.15b),
given sufficiently large Mi for all i, as:

z ≥ max
y∈Y

{∑
i∈V

yi −
∑
i∈V

Miyiwi

}
(3.16)

which is equivalent to the following Benders-like constraints:

z ≥
∑
i∈V

ŷi −
∑
i∈V

Miwiŷi ∀ ŷ ∈ Y. (3.17)

In terms of sets K ∈ K inducing the k-subcores of G, we can rewrite Ineqs. (3.17) as

z ≥ |K| −
∑
i∈K

Miwi ∀K ∈ K. (3.18)

The value of Mi needs to be set in such a way that, for a given K, in case node i (possibly
together with some other nodes from K) is interdicted, the value |K|−Mi gives the lower bound
on the size of the k-core of G[K]. Since, in the extreme case, the interdiction can lead to an
empty k-core, we set Mi = |K|, resulting into

z ≥ |K|

[
1−

∑
i∈K

wi

]
∀K ∈ K. (3.19)
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Alternatively, since the upper-level decisions are binary, we can reformulate constraint (3.15b)
using the following

(
n
b

)
many no-good-cuts:

z ≥ |Ck(G\W )|

[∑
i∈W

wi − b+ 1

]
, ∀W ∈ Ω. (3.20)

Indeed, for any given W , the cardinality of the k-core Ck(G\W ), when the nodes from W are
removed by the leader, provides a valid lower bound on z. If at least one of the nodes in W is
not a collapser, the related constraint of type (3.20) turns out to be redundant, since the right
hand side becomes less than or equal to 0.

In Subsection 3.6.2, we will present a separation procedure to solve the single-level reformu-
lation of (3.15) given as

min
z∈Z,w∈W

z (3.21a)

s.t. (3.19), (3.20) (3.21b)

which has exponentially many constraints.

3.4.4 A second bilevel formulation

In this section, we propose an alternative bilevel formulation by considering lower-level variables
ui defined in equation (3.4), complementary with respect to variables yi, and formulating the
lower-level problem as in formulation (3.11).

We recall that ui represent the lower-level variables identifying the nodes not belonging to
the collapsed k-core of the graph:

ui =

{
1 if node i does not belong to the collapsed k-core of the follower
0 otherwise

We remark that variable ui corresponds to 1 − yi in the former bilevel formulation. Indeed,
in the example shown in Figure 3.6, ui = 1 for i = {1, 2, 3, 4, 5, 8, 9}, and ui = 0 for i =
{6, 7, 10, 11, 12, 13, 14}.

The problem of detecting the k-core of the graph, given a leader’s decision w ∈ W, can be
modelled as the problem of determining the set of nodes outside of the k-core:

Ψ(w) := min
u

∑
i∈V

ui (3.22a)

s.t.
∑
j∈N(i)

uj + k − |N(i)| ≤ k ui ∀ i ∈ V (3.22b)

wi ≤ ui ∀ i ∈ V (3.22c)
u ∈ {0, 1}n (3.22d)
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This formulation differs from formulation (3.5) only for constraints (3.22c), which state that
a node i cannot be in the k-core if it is interdicted/removed.

The corresponding bilevel formulation of the Collapsed k-Core Problem is:

min
v∈Z,w∈{0,1}n

n− v (3.23a)

s.t. v ≤ Ψ(w) (3.23b)∑
i∈V

wi = b. (3.23c)

The objective function expresses the fact that we want to find the minimal collapsed k-core,
computed by solving Ψ(w).

In Section 3.3.2, we proved that problem Ψ(w) can be reformulated as the following LP
formulation:

min
u

∑
i∈V

ui (3.24a)

s.t.
∑
j∈N(i)

uj + k − |N(i)| ≤
∑
j∈N(i)

xij + (k − |N(i)|)ui ∀ i ∈ V (3.24b)

xij ≤ ui ∀ i ∈ V, j ∈ N(i) (3.24c)
xij ≤ uj ∀ i ∈ V, j ∈ N(i) (3.24d)
ui ≥ wi ∀ i ∈ V (3.24e)

u ∈ [0, 1]n, x ∈ R+
|E| (3.24f)

The addition of constraints (3.24e), indeed, has no impact on the proof of Theorem 1. Since
formulation (3.24) is linear in the variables x, and u, we can replace it by its dual, as detailed in
the following subsection.

3.4.5 Compact nonlinear formulation

An approach to deal with the bilevel formulation (3.23) consists in dualizing the lower level
continuous formulation (3.24). Let us define the following dual variables for all i ∈ V :

• αi associated with the constraints (3.24b),

• βij ,∀ j ∈ N(i) associated with the constraints (3.24c),

• γij , ∀ j ∈ N(i) associated with the constraints (3.24d),

• λi associated with the constraints (3.24e),

• τi associated with the constraints ui ≤ 1.
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The dual of the the lower-level problem (3.24) is:

max
α,β,γ,λ,τ

∑
i∈V

[(k − |N(i)|)αi + wiλi − τi] (3.25a)

(k − |N(i)|)αi + λi − τi +
∑

j∈N(i)

(−αj + βij + γji) ≤ 1 ∀ i ∈ V (3.25b)

αi − βij − γij ≤ 0 ∀ i ∈ V, j ∈ N(i) (3.25c)
αi, λi, τi ≥ 0 ∀ i ∈ V (3.25d)
βij , γij ≥ 0 ∀ i ∈ V, j ∈ N(i) (3.25e)

For any value of w, problem (3.24) (i) admits at least one feasible solution, (ii) is bounded
because both variables x and u are bounded. Thus, strong duality holds between problem (3.24)
(the LP relaxation of Ψ) and its dual (3.25). Given what we discussed before, in (3.23), we can
replace Ψ(w) by its linear relaxation (3.24) since their optimal values are the same as proved in
Theorem 1, and then replace problem (3.24) by (3.25), since their optimal values are the same by
strong duality. We can further drop the maximum operator, obtaining the following single-level
formulation:

min
v,w,α,β,γ,λ,τ

n− v (3.26a)

s.t. v ≤
∑
i∈V

[(k − |N(i)|)αi + wiλi − τi] (3.26b)∑
i∈V

wi = b (3.26c)

(k − |N(i)|)αi + λi − τi +
∑
j∈N(i)

(−αj + βij + γji) ≤ 1 ∀ i ∈ V (3.26d)

αi − βij − γij ≤ 0 ∀ i ∈ V, j ∈ N(i) (3.26e)
αi, λi, τi ≥ 0 ∀ i ∈ V (3.26f)
βij , γij ≥ 0 ∀ i ∈ V, j ∈ N(i) (3.26g)
v ∈ Z, w ∈ {0, 1}n. (3.26h)

This single-level formulation is a Mixed-Integer Nonlinear Programming (MINLP) problem, that
has bilinear terms in (3.26d), given by

∑
i∈V wiλi. One could linearize these bilinear terms

using again McCormick reformulation, and/or applying other specialized techniques. However,
most of the these state-of-the-art techniques are integrated in modern MINLP solvers, thus we
decided to hand over the compact model (3.26) as it is to the solver used in the experiments (see
Section 3.6.3 for details).
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3.5 Valid inequalities

In this section, we describe different classes of valid inequalities which are used to strengthen the
formulations presented above. We point out that an initial pre-processing procedure is applied
to G which consists of removing all nodes not belonging to its k-core.

3.5.1 Dominance and symmetry breaking inequalities

For any node u ∈ V , we can compute the k-core of G \ {u} and define Ju as the set of nodes,
including u itself, which leave the graph when node u is removed (say, the followers of u, not to
be confused with the follower agent solving the lower level):

Ju = {v ∈ V : v /∈ Ck(G\{u})}.

In the example graph in Figure 3.4, as shown in Figures 3.5 and 3.6, with k = 3, J13 = {13},
while J1 = {1, 2, 3, 4, 5, 8, 9}. Using these sets, defined for each node in the graph, we can add
dominance inequalities to our formulations. In the same example as before, J3 = {2, 3, 4, 5} and
we can observe that J3 ⊂ J1, meaning that every node that leave the network when node 3 is
removed, would also leave the network when node 1 is removed. In general, if Ji ⊂ Jj , i.e., the
set of followers of node i is strictly contained in the set of followers of node j, node j should
be removed first. This can be imposed adding to the time-dependent formulation (3.12) the
following inequalities:

a0
j ≤ a0

i ∀ i, j ∈ V : Ji ⊂ Jj (3.27)

which corresponds to adding the following inequalities to the upper level of the bilevel formula-
tions:

wj ≥ wi ∀ i, j ∈ V : Ji ⊂ Jj . (3.28)

An additional family of valid inequalities is related to breaking symmetries among nodes which
have the same set of followers. Let S = {i1, . . . , i|S|} be an inclusion-wise maximal subset of
nodes such that Jir = Jis for all ir, is ∈ S, i.e., S contains all the nodes of the graph having a
given set of followers, and there exist no superset of S the nodes of which have the same set of
followers. For example, in the graph in Figure 3.4, when k = 3, nodes 4 and 5 have the same set
of followers which is {4, 5} (if 4 leaves the network, 5 leaves it too and vice versa), thus a possible
set S is {4, 5}. Let the indices ir, with r ∈ {1, . . . , |S|}, be given in increasing order. Then we
can break the symmetries by imposing that the node with the lowest index is removed first, i.e.,

a0
i1 ≤ · · · ≤ a

0
i|S|

∀S ⊂ V : Jir = Jis , ∀ ir, is ∈ S (3.29)

for the time-dependent formulation (3.12), and

wi1 ≥ · · · ≥ wi|S| ∀S ⊂ V : Jik = Jis , ∀ ir, is ∈ S (3.30)

for the upper level of formulations (3.15) and (3.23) (as well as its single-level reformulations (3.21)
and (3.26)).
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3.5.2 Valid inequalities to consider the cascade effect

We present in this section a family of valid inequalities, related to the nodes which leave the
network as a consequence of a single node or a set of nodes leaving. Such inequalities can be
added to both the time-dependent formulation (3.12) and the leader’s problem of the two bilevel
formulations.

For any node u ∈ V , we can compute the k-core of G\{u} and the set of followers Ju. Given
that by removing u, all nodes in Ju will be removed as well, we can add a valid inequality stating
that at most one node should be removed from Ju, that is:∑

j∈Ju

a0
j ≥ |Ju| − 1 ∀u ∈ V, (3.31)

for the time-dependent formulation, and∑
j∈Ju

wj ≤ 1 ∀u ∈ V, (3.32)

for the upper level of the bilevel formulations. We assume that the removal of less than b nodes
(together with the related followers) is not enough to empty the network. Under this assumption,
Ineqs. (3.12b), (3.15c), (3.23c), requiring that exactly b nodes are removed, as well as Ineqs. (3.19)
and (3.20), remain still valid when introducing constraints (3.31) and (3.32).

Valid inequalities (3.31) and (3.32) can be generalized to the case in which more than a single
node is removed. Let S ⊆ V , with |S| < b, be such set of nodes. Assume

|Ck(G\S)| ≥ b− |S|

holds, i.e., in the remaining k-core there are enough nodes to remove according to the budget
left. The set JS of followers of S (including S) can be defined as follows

JS = {j ∈ V : j /∈ Ck(G\S)}

and the inequality (3.31) is generalized into:∑
j∈JS

a0
j ≥ |JS | − |S| ∀S ⊆ V : |S| < b, (3.33)

while the inequality (3.32) into:∑
j∈JS

wj ≤ |S| ∀S ⊆ V : |S| < b. (3.34)

The number of constraints (3.31) and (3.32) is equal to the number of nodes in the graph.
For each node u ∈ V , the set Ju, i.e., the followers of u, can be easily obtained by computing
the k-core of G \ {u} and the related constraint can be added to the model. On the other hand,
the number of constraints (3.33) and (3.34) is

(
n
b−1

)
. Thus a separation routine is required.
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3.5.3 Lower bound on the solution value

Let {Li}i∈{k,...,`} be a series of layers, each one containing the nodes of G with coreness (a node v
of G has coreness (or core number) k if it belongs to a k-subcore, but not to any (k+1)-subcore)
equal to i, with i being at least k and at most `, where ` is the maximum coreness of any node
in the graph. For instance, in the graph in Figure 3.1, with k = 1, we have ` = 3, L1 contains
the cyan nodes, L2 contains the green nodes, while L3 contains the orange nodes.

Let us consider the h-core
⋃
i∈{h,...,`} Li, where h = k + b. Even by removing any subset of b

nodes from such h-core, the remaining nodes still constitute a k-core. The size of the remaining
k-core is a valid lower bound to the solution value of the Collapsed k-Core Problem. Let us
denote as m :=

∣∣∣⋃i∈{h,...,`} Li

∣∣∣ − b this lower bound. This means that we can restrict the set Y
of the incident vectors of all the k-subcores of the graph (over which we optimize the lower-level
problem) as follows:

Ỹ =

y ∈ {0, 1}n ∈ Y :
∑

j∈
⋃

i∈{h,...,`} Li

(1− yj) ≤ b

 . (3.35)

Indeed the number of nodes which are not in the feasible k-cores belonging to the layers
⋃
i∈{h,...,`} Li

will not be greater than the budget b.
This corresponds to adding the following constraint to the time-dependent model (3.12)∑

i∈V
aTi ≥ m. (3.36)

Furthermore, a tighter upper bound on the number of deletion rounds can be defined as T =
n− b−m.

Similarly, for the bilevel formulations, constraint

z ≥ m, (3.37)

can be added to the upper level of formulation (3.15) and

v ≤ n−m, (3.38)

to (3.23), as well as to (3.26).
According to the defined lower bound, in a similar fashion as it is done in stochastic integer

programming (see, e.g. [LL93]), we can also tighten the constraints of the sparse formula-
tion (3.21), presented in Subsec. 3.4.3. Inequalities (3.19) can be restated as follows:

z ≥ m+ (|K| −m)

[
1−

∑
i∈K

wi

]
∀K ∈ K : |K| > m (3.39)

and inequalities (3.20) as follows:

z ≥ m+ (|Ck(G\W )| −m)

[∑
i∈W

wi − b+ 1

]
∀W ∈ Ω. (3.40)
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3.5.4 Valid inequalities derived from k-subcores

For a given K ∈ K, assume that δ(G[K]) ≥ k + 1 (the degree of nodes in the subgraph of G
induced by K is at least k + 1). Assume we are given an interdiction policy W̃ ⊂ Ω such that
at most one of the nodes in K is interdicted, then we have that |Ck(G\W̃ )| ≥ |K| − 1. Thus we
can impose:

z ≥ m+ (|K| − 1−m)

[
1−

∑
i∈K

wi
2

]
∀K ∈ K : δ(G[K]) ≥ k + 1 (3.41)

in the upper-level of formulation (3.15).
This can be easily generalized to the case in which δ(G[K]) = h ≥ k + 1 as follows:

z ≥ m+ (|K| − h+ k −m)

[
1−

∑
i∈K

wi
h− k + 1

]
∀K ∈ K : δ(G[K]) = h ≥ k + 1. (3.42)

3.6 Separation procedures

The inequalities (3.27), (3.28), (3.29), and (3.30) introduced in Section 3.5.1, as well as the
inequalities (3.31) and (3.32) modeling the cascade effect following the leaving of a single node,
introduced in Section 3.5.2, and the ones related to the combinatorial lower bound m, i.e., (3.36),
(3.37) and (3.38), introduced in Section 3.5.3, are added to the corresponding models during the
initialization phase as they are in polynomial number. Specifically, we add the following |V |+ 1
inequalities: the |V | inequalities (3.31), or (3.32), and the inequality (3.36), or (3.37), or (3.38)
(just one inequality for each model). As regards inequalities (3.27), (3.28), (3.29), and (3.30), we
add them from the beginning following an heuristic procedure here described. After computing
the set of followers Jj for each node j ∈ V , a dominance inequality of type (3.27) or (3.28) is
added to the corresponding formulation for each node i ∈ Jj such that Ji ⊂ Jj . Similarly, a
partitioning P of the set of nodes V into at most |V | disjoint subsets is constructed, by iteratively
assigning each node i ∈ V to the subset which contains nodes having exactly the same followers
of node i. Formally, for any S in P, Ji = Jj ,∀ i, j ∈ S and Ji 6= Jj , ∀ i ∈ S,∀ j /∈ S. Hence, a
symmetry breaking inequality of type (3.29) or (3.30) is added to the appropriate formulation
for each set S of the partition P.

Instead, the other valid inequalities introduced in Section 3.5 need a procedure to be sep-
arated. In this section, we first present the separation procedure associated with compact for-
mulations (3.12) and (3.26) and used to separate valid inequalities (3.33) and (3.34). We then
describe the separation procedures for the non-compact formulation (3.21) used to separate con-
straints constraints (3.39), (3.40) and inequalities (3.34), and (3.42). We note that separation is
made on integer solutions only.
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3.6.1 Separation procedures for the compact formulations

A heuristic procedure for detecting violated inequalities (3.34) added to formulation (3.26) is
here described.

1. Consider an interdiction policy w̄ of the leader and let W̄ denote the related set of collapsers;

2. For each node j ∈ W̄ do the following:

(a) Compute the k-core of G\W̄ ∪ {j}, i.e. Ck(G\W̄ ∪ {j})
(b) If j /∈ Ck(G\W̄ ∪ {j}), then j ∈ JW̄\{j} and add a violated inequality of type (3.34)

with S = W̄ \ {j} to formulation (3.26).

Given a set W̄ of collapsers, this routine is able to identify violated constraints of type (3.34)
where S is given by the set of collapsers W̄ excluding exactly one of them. An analogous
separation procedure is used to separate constraints (3.33) for formulation (3.12), where we
consider variables ā0 and the related set Ā of collapsers instead of w̄ and set W̄ used in the
procedure above.

3.6.2 Separation procedures for the single-level formulation (3.21)

In the following, we explain how to heuristically separate constraints (3.34), (3.39), (3.40) and
(3.42). The procedure to separate (3.34) is the same as the one described above. We repeat it
here for the ease of reading.

We start initializing the relaxation of problem (3.21), obtained by dropping constraints (3.19)
and (3.20). Then, every time a feasible integer solution ŵ of such relaxation is found, we compute
the corresponding Ck(G\Ŵ ) and:

1. For each node j ∈ Ŵ do the following:

(a) Compute the k-core of G\Ŵ ∪ {j}, i.e. Ck(G\Ŵ ∪ {j});
(b) If j /∈ Ck(G\Ŵ ∪ {j}), i.e. j ∈ JŴ\{j}, add a violated inequality of type (3.34) with

S = Ŵ\{j}.

2. If no violated inequality of type (3.34) is identified, go to step 3, otherwise go to step 4.

3. If z < |Ck(G\Ŵ )|, add to the current relaxation a cut of the family (3.39) with K =
Ck(G\Ŵ ) and a cut of the family (3.40) with W = Ŵ.

4. Set U = ∅, and iteratively perform the following steps:

(a) Select a node u ∈ V \ U to remove and set U := U ∪ {u};
(b) Compute the k-core Ck({G\Ŵ} \ U);



CHAPTER 3. COLLAPSED K-CORE PROBLEM 62

(c) If |Ck({G\Ŵ} \ U)| > m, and z < |Ck({G\Ŵ} \ U)| add a cut of the family (3.39)
with K = Ck({G\Ŵ} \ U). Otherwise, go to step 5.

(d) If |U | is over a given threshold, go to step 5.

5. For h ∈ {k + 1, . . . , `}:

(a) consider the set K =
⋃
h≤i≤` Li of nodes of Ck(G\Ŵ ) having coreness at least h.

(b) If |K| ≥ m, then add cut (3.42).

At step 1 of the above presented procedure, we check if the collapsers are all really useful. Indeed,
we verify whether each j ∈ Ŵ is a follower of the other nodes in Ŵ ; if this is the case, removing
j is not useful for the leader: it will anyway disappear as follower of the other collapsers.

At step 2, we verify if it is needed to perform step 3. Indeed, if at least one of the inequal-
ities (3.34) has been added to the relaxation, there is no need to cut off the current solution
by means of (3.39) and (3.40), being this solution already excluded by adding constraints of
type (3.34).

At step 4, we add a certain number (at most |U |) of Bender’s like cuts of type (3.39) with K
of increasingly smaller dimension. In order to obtain diversified sets of valid inequalities, nodes
in V \ U are selected in each iteration of step 4 according to decreasing order of the number
of previously added constraints in which they are involved. This heuristic selection procedure
means that the more a node is involved in the previous steps, the less it will be considered in
step 4.

At step 5, at most ` − k inequalities of type (3.42) are added. In particular, for any given
h ∈ {1, . . . , `}, the set of nodes in Ck(G\Ŵ ) having core number at least h is computed and used
as the set K in (3.42).

3.6.3 Numerical experiments

In this section, we analyse the computational performances of the following four exact approaches:

• Time-Dependent Model, corresponding to the compact ILP formulation (3.12), see Sec-
tion 3.4.1

• Nonlinear Model, corresponding to the compact MINLP formulation (3.26) presented in
Section 3.4.5

• Sparse Model, corresponding to the non-compact formulation (3.21) (cf. Section 3.4.3) for
which we implemented a Branch&Cut (B&C) approach, and

• Bilevel Solver, corresponding to the bilevel formulation (3.15) which is solved using a
general purpose intersection-cut based solver for Mixed-Integer Bilevel Linear Problems
proposed in [FLMS17].
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On the one hand, the two compact formulations (3.12) and (3.26) are solved using a state-of-
the-art MINLP solver together with the separation procedures proposed in Section 3.6.1. On the
other hand, formulation (3.21) is solved using a Branch&Cut method which iteratively builds
the feasible set of the original bilevel formulation (3.15), by adding cuts of type (3.19), (3.20) as
well as separating the valid inequalities proposed in Section 3.5 through the separation procedure
illustrated in Section 3.6.2.

The proposed formulations were implemented in Python 3.8 and solved by using the Gurobi
solver (version 9.5.2). The bilevel solver of [FLMS17] uses Cplex 12.7. The separation procedures
presented in the paper are implemented within lazy callbacks, with the threshold on |U | used in
step 4d of separation procedure presented in Section 3.6.2 set to 10, and ` set to k + 2.

All the experiments were conducted in single-thread mode, on a 2.3 GHz Intel Xeon E5 CPU,
128 GB RAM. A time limit of two hours of computation and a memory limit of 10 GB were
imposed for every run.

3.6.4 Benchmark Instances

In order to test and compare the performances of the discussed methods, a set of 136 instances
was arranged starting from 14 different networks collected from the literature.

For each network, several combinations of values for k and b were selected by reasoning on
the core number distribution of the nodes. Table 3.1 reports, for each network, the bibliographic
source from which it was collected, the number of its nodes, the number of its edges, the core
number distribution of its nodes with respect to the selected values for k, as well as the associated
sizes of the network after pre-processing and, finally, the selected values for the budget b.
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network #nodes #edges k #nodes after pre-processing #edges after pre-processing budget

adjnoun [New06] 112 425

5 63 298 {3}
4 79 359 {3, 4, 5}
3 89 389 {3, 4, 5}
2 102 415 {3, 4, 5}

as-22july06 [Uni04] 22963 48436
15 168 3115 {3, 4, 5}
10 322 4845 {3, 4, 5}
5 1087 9493 {3, 4, 5}

astro-ph [New01] 16706 121251
42 400 10552 {3, 4, 5}
32 936 23433 {3, 4, 5}
28 1393 32375 {3, 4, 5}

cond-mat [New01] 16726 47594

9 943 6573 {3, 4, 5}
8 1487 9544 {3, 4, 5}
7 2227 13280 {3, 4, 5}
6 3442 18713 {3, 4, 5}

cond-mat-2003 [New01] 31163 120029

13 1132 12732 {3, 4, 5}
12 1609 17327 {3, 4, 5}
10 2901 28339 {3, 4, 5}
9 4071 36920 {3, 4, 5}

cond-mat-2005 [New01] 40421 175692

14 1793 24595 {3, 4, 5}
13 2151 28640 {3, 4, 5}
12 2808 35214 {3, 4, 5}
11 3555 42346 {3, 4, 5}

dolphins [LSB+03] 62 159
4 36 109 {3}
3 45 135 {3, 4, 5}
2 53 150 {3, 4, 5}

football [GN02] 115 613 8 114 606 {3, 4, 5}
7 115 613 {3, 4, 5}

hep-th [New01] 8361 15751

7 137 885 {3, 4, 5}
6 358 1847 {3, 4, 5}
5 851 3775 {3, 4, 5}
4 1735 6552 {3, 4, 5}

karate [Zac77] 34 78 2 33 77 {3, 4, 5}

lesmis [Knu93] 77 254

6 38 186 {3, 4, 5}
4 41 197 {3, 4, 5}
3 48 215 {3, 4, 5}
2 59 236 {3, 4, 5}

netscience [New06] 1589 2742

5 247 976 {3, 4, 5}
4 470 1511 {3, 4, 5}
3 751 2045 {3, 4, 5}
2 1141 2535 {3, 4, 5}

polbooks [Kre99] 105 441

5 65 300 {3, 4}
4 98 422 {3, 4, 5}
3 103 437 {3, 4, 5}
2 105 441 {3, 4, 5}

power [WS98] 4941 6594
4 36 106 {3, 4, 5}
3 231 479 {3, 4, 5}
2 3353 5006 {3, 4, 5}

Table 3.1: Detailed description of the instance set.

3.6.5 Effectiveness of the Collapsed k-Core formulations

In the following, we will report some summary tables and charts which let us analyse and compare
the tested methods. Because of the imposed memory limits, the Time-Dependent Model can be
solved only for 87 instances while, for the remaining 48, even the relaxation at the root node
is not solved to optimality. For this reason, we summarize in Table 3.2 the results obtained
by testing the four methods on such subset of 87 instances, reporting for each of them: #opt,
the number of optimal solutions found by the method within the limits; LB, the average lower
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bound; UB, the average upper bound; gap[%], the average percentage gap, where the gap is
calculated as 100∗(UB−LB)

UB per each instance; time[s], the average time in seconds; B&C nodes,
the number of nodes of the branch-and-cut tree used to solve the models; LBr, the average lower
bound computed by solving the relaxation at the root node; gapbest[%], the average gap w.r.t. the
best known solution (dimension of the k-core), calculated as 100∗(UB−UBbest)

UBbest
per each instance;

gapr[%], the average percentage gap w.r.t. the root bound, calculated as 100∗(UB−LBr)
UB per each

instance.

#opt LB UB gap[%] time[s] B&C nodes LBr gapbest[%] gapr[%]
Time-Dependent Model 34 84.6 207.0 41.2 5234 79084 68.7 4.66 71.5

Sparse Model 42 98.2 207.4 32.2 4081 30432 81.6 1.91 70.8
Nonlinear Model 52 112.3 201.7 20.4 3347 1110881 81.6 0.38 70.4

Bilevel Solver 26 23.1 212.1 55.8 5297 18263 2.67 4.68 96.5

Table 3.2: Summary of the computational performances of the four exact methods on the set of
87 instances solved by all the approaches.

The results show a clear superiority of the Nonlinear Model, both in terms of time and
solution quality. Indeed, the Nonlinear Model provides the highest number of optimal solutions
among the tested methods, yielding 52 out of 87 instances solved to optimality. Furthermore,
the average computing time required by the Nonlinear Model is considerably lower than the
amount of time required by the other formulations; accordingly, the provided average final lower
and upper bounds values and gaps are tighter. On average, the number of nodes explored by
the branch-and-cut approach solving the Nonlinear Model is greater than the number of nodes
explored by the one solving the Sparse Model and the number of nodes explored by the Bilevel
Solver. This reflects the fact that the problems considered at each node of the branch-and-cut
tree solving the Nonlinear Model are easier to solve w.r.t. the ones of the other models, so that
in the same amount of time, more nodes are explored. All the three proposed problem-specific
methods exhibit better performing behaviors than the general purpose Bilevel Solver.

Since the imposed memory limits prevented the Time-Dependent Model from solving the
remaining instances, from now on we restrict the comparison to the other three methods and
consider the whole instance set described in Subsection 3.6.4. In particular, in Table 3.3, we
report the same information as in Table 3.2, but this time for the whole set of 136 instances,
with respect to the three following methods: Sparse Model, Nonlinear Model and Bilevel Solver.

#opt LB UB gap[%] time[s] B&C nodes LBr gapbest[%] gapr[%]
Sparse Model 47 264.0 911.4 47.5 5205 21871 253.3 1.89 72.1

Nonlinear Model 57 274.0 892.8 39.6 4735 744905 253.3 0.04 71.6
Bilevel Solver 26 22.4 915.9 71.3 5984 11892 3.80 3.76 97.7

Table 3.3: Summary of the computational performances of Sparse Model, Nonlinear Model and
Bilevel Solver on the whole set of 136 instances.
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The results on the whole set of instances confirm the computational dominance of the Non-
linear Model, which solves 57 out of the 136 instances to optimality and almost always provides
solutions values which are better or equal to the ones found by the other methods, with an
average gap of 0.04%, computed with respect to the best known feasible solutions. Again, the
number of branch-and-cut nodes reflects the faster resolution of the continuous relaxation of the
Nonlinear Model at branching nodes.

We further provide three summary charts related to the three methods solving all the 136
instances. The first chart, shown in Figure 3.7, reports the number of instances solved to opti-
mality within a given computational time. The second one, in Figure 3.8a, shows the optimality
gap at termination, i.e., what we called gap[%]. In particular, the plot shows the number of in-
stances (on the vertical axis) for which the gap at termination is smaller or equal than the value
reported on the horizontal axis. Figure 3.8b reports the gap between the feasible solution at
termination, and the best found feasible collapsed k-core among the three compared approaches,
i.e., what we called gapbest[%]. Again, the chart shows the number of instances (on the vertical
axis) for which the value of gapbest is smaller or equal than the value reported on the horizontal
axis.

Figure 3.7: Number of instances solved to optimality within a certain computational time.
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(a) Cumulative chart of percentage gap at termi-
nation.

(b) Cumulative chart of percentage gap with re-
spect to the best feasible k-core at termination.

Figure 3.8: Cumulative charts of two different percentage gaps.

Overall, all the three charts show that the two approaches proposed in this paper are much
more effective than the bilevel solver, which is largely outperformed by each of them. In the
first chart (Figure 3.7), it can be observed that, only when the computational time is strictly
below 20 seconds, the number of instances solved to optimality by the Sparse Model is slightly
greater than the number of instances solved to optimality by the Nonlinear Model. However,
when the considered time is larger than 20 seconds, the Nonlinear Model dominates the other
two approaches. The chart in Figure 3.8a demonstrates that the Nonlinear Model produces a
gap at termination which is always lower than the one returned by the other approaches. Finally,
Figure 3.8b shows that, for more than 130 instances out of 136, the Nonlinear Model produces
the best feasible solution, and, for the remaining 4 instances, the gap w.r.t. the best feasible
solution found by one of the other models is below 3%. As regards Sparse Model, it returns the
best feasible solution for about 50 instances, and the gap for the remaining instances is less than
17%. Finally, the bilevel solver finds the best feasible solution only for about 30 instances out of
136, and a gap w.r.t. the best one that can be as high as 25%.

Finally, we provide two sensitivity analysis tables in which we group instances into three
groups: Small (with n ≤ 100), Medium (with 100 < n ≤ 1000) and Large (with n > 1000),
where n is the number of nodes of the network after pre-processing procedures. For each group,
we consider three values of the budget b ∈ {3, 4, 5}, thus obtaining nine classes of instances. For
each class, we report in both Tables 3.4 and 3.5 the following values:#total, the total number of
instances in the class; LBc, the average of the combinatorial lower bounds m (see Section 3.5.3)
that we precalculate. Moreover, in Table 3.4, for each method we report some common ex-
ploration indicators, such as the number of instances solved to optimality (#opt), the average
computing time in seconds (time[s]) and the average number of nodes of the branch-and-cut tree
(B&C nodes); additionally, for the Sparse Model we also report the average number of added
cuts. In Table 3.5, instead, we report for each class gap[%], gapr[%], and gapbest[%]. The re-
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ported values show how increasing the budget affects the different methods. As expected, when
the value of b increases, the number of instances solved to optimality decreases for each method,
while the average resolution time and the average gap value increase. Specifically, all the in-
stances of the first class, i.e., small instances with b = 3, are solved to optimality by both the
Sparse and Nonlinear models, while the Bilevel Solver provides the optimal certified solution for
all except two of them. The Nonlinear Model solves to optimality also all the instances of the
second class, i.e., small instances with b = 4. For the remaining classes, instead, no method is
able to certify the optimality of all the instances from a given subclass. In particular, no optimal
solution is found for any of the instances from the group “large”, within the imposed time limit.
Overall, this analysis shows that the difficulty of an instance is highly affected by the budget
value, in addition to the network size, but, for non-large instances, the Nonlinear Model confirms
its superiority w.r.t. the remaining approaches.

Class details Sparse Model Nonlinear Model Bilevel Solver
size b #total LBc #opt time[s] B&C nodes cuts #opt time[s] B&C nodes #opt time[s] B&C nodes

3 14 11 14 102 5481 1719 14 27.6 26633 12 1623 10455
4 12 6 11 1296 31205 5409 12 242 332382 7 3574 32115Small
5 11 4 6 3820 53377 9226 10 1413 1960571 4 4805 45443
3 17 139 7 4633 23344 16707 9 3961 353716 1 6884 11410
4 17 117 3 6431 34573 19101 6 5544 1381271 1 6863 10923Medium
5 17 97 1 6777 39951 16420 1 6938 2460756 1 6817 10669
3 16 776 0 7200 5750 11795 0 7200 90644 0 7200 573
4 16 566 0 7200 4393 9417 0 7200 80239 0 7200 492Large
5 16 419 0 7200 6881 6206 0 7200 82350 0 7200 474

Table 3.4: Sensitivity analysis showing the effect of different budget values on the number of
instances solved to optimality, the resolution time and other exploration indicators.

Class details Sparse Model Nonlinear Model Bilevel Solver
size b #Total LBc gap[%] gapr[%] gapbest[%] gap[%] gapr[%] gapbest[%] gap[%] gapr[%] gapbest[%]

3 14 11 0.00 75.1 0.00 0.00 75.1 0.00 7.40 92.5 0.28
4 12 6 6.40 82.4 0.11 0.00 82.4 0.00 20.2 95.6 1.28Small
5 11 4 34.5 87.7 1.40 3.10 87.7 0.00 34.4 97.2 2.19
3 17 139 31.2 57.3 0.46 22.6 57.1 0.17 78.0 97.0 5.35
4 17 117 50.5 65.5 2.52 34.2 64.9 0.12 84.2 97.9 6.89Medium
5 17 97 66.5 73.3 3.43 56.5 72.5 0.00 85.8 99.0 7.87
3 16 776 64.0 64.0 2.14 63.0 63.1 0.00 98.8 99.7 2.06
4 16 566 73.4 73.4 2.69 72.3 72.4 0.00 99.1 99.8 2.62Large
5 16 419 79.8 79.8 3.38 78.9 78.9 0.00 99.5 99.9 3.22

Table 3.5: Sensitivity analysis showing the effect of different budget values on the gaps.



Chapter 4

Cluster Deletion Problem

Clustering consists in partitioning a given set into disjoint subsets of items, by considering the
similarities between them and producing homogeneous and well-separated clusters. The graph
theoretic approach to clustering involves creating a similarity graph, whose nodes are associated
to the items to be clustered and such that two nodes of the graph are linked by an edge if and only
if the similarity between the related items is higher than a predefined threshold [HJ97]; clusters
of nodes are then identified with respect to such graph. The known class of edge modification
problems [NSS01] studies how to perform as few modifications as possible on the edge set of a
graph in order to satisfy a given property Π. Such modifications typically include adding, deleting
or replacing edges. When the constraint Π is to obtain a cluster graph, namely a disjoint union
of cliques, we talk about cluster graph modification problems [RRD04].

The Cluster Deletion (CD) problem, which consists in determining the minimum number of
edges whose removal from a graph produces a cluster graph, is addressed. Since each node is
connected to all the nodes belonging to its same cluster in any feasible solution to the problem,
this setting privileges homogeneity over separation of clusters. Beyond typical clustering scenar-
ios, the problem finds application in several areas, including wireless sensor networks [MGKP09],
where the nodes hosting sensor devices are often grouped into clusters to match scalability and
efficiency requirements, and bioinformatics, in the context of the detection of remote homologues
of protein sequences [PSS+02]. In the last scenario, proteins are generally compared by align-
ing their amino acid sequences with techniques such as BLAST and FASTA [KV98], which rely
on the computation of similarity matrices. Such matrices are exploited to identify groups of
homologous proteins, namely proteins descending from the same ancestor in the evolution hi-
erarchy. Indeed, high similarity values are associated with proteins sharing the same ancestor
and cluster analysis is crucial to classify cross-domain proteins, which simultaneously belong to
more functional groups. Interesting applications also arise in DNA clone classification scenarios,
where the cluster analysis of fingerprint data is a key step in the application of DNA array-based
fingerprinting methods, used to characterize cDNA and rDNA [FBJ04]. More in detail, using
control DNA clones, fingerprint data are first normalized and binarized. Then, the clustering
of binary oligonucleotide fingerprints is modeled as a CD problem, whose resolution allows to

69



CHAPTER 4. CLUSTER DELETION PROBLEM 70

resolve the missing values resulting from the binarization process.
The complexity of the CD problem has been extensively studied. On generic graphs, the

problem has been proved to be NP-complete and NP-hard to approximate to within some constant
factor [RRD04]. When the number of clusters to be contained in a solution is fixed a priori, the
problem becomes polynomially solvable with two clusters, while it is still NP-complete with
three or more clusters. Furthermore, a dichotomy based on the maximum degree of the graph
has been identified in [KU12]: solving the problem on graphs with maximum degree three requires
polynomial time, but the problem is NP-hard even on graphs with maximum degree four.

Iteratively finding maximum cliques in the graph yields a 2-approximated solution to the
optimal cluster deletion on generic graphs [DAE+07]. Although, in general, the maximum clique
problem is NP-hard, it is polynomially solvable on some specific graph classes. By exploiting
this observation, it has been shown that the optimal solution of the CD problem can be found
in polynomial time on cographs [GHN13]. Additional polynomial-time solvable graph classes
include split graphs, proper interval graphs and block graphs [BDVP15], as well as graphs that
do not contain butterfly and diamond subgraphs [MN19].

The CD problem has been also examined in the context of parameterized complexity. In
particular, it is classified as fixed-parameter tractable with respect to the number of edge deletions
[BBBT09, Bö12, BBK11], as well as to the cluster vertex deletion number of the input graph,
which is the number of nodes to be removed from the graph to produce a cluster graph [KU11,
Uhl11]. Moreover, the problem is fixed-parameter tractable also with respect to the combination
of the maximum number of clusters allowed in the cluster graph and the local modification bound,
namely the maximum number of edge deletions affecting a single node of the graph [KU12].

It is known that minimizing the total number of edges between the clusters is equivalent to
maximizing the total number of edges within the clusters [DAE+07]. In this work, we provide
two mathematical formulations for the CD problem, suitable for finding in reasonable time the
optimal solution when dealing with small-size networks. Furthermore, we propose a heuristic
algorithm to efficiently solve larger instances of the problem. The proposed approaches are
tested and compared on both real and artificially generated networks.

4.1 Notation and problem statement

Given an undirected graph G = (V,E), being V and E the set of nodes and the set of edges of
G, respectively, we denote by N(i) the set of neighbours of node i, that is the set of nodes j ∈ V
such that (i, j) ∈ E, and by δ(i) the set of edges incident to node i.

A clique is a set of pairwise adjacent nodes, therefore a subset of nodes S ⊆ V is a clique
in G if and only if any couple of nodes i, j ∈ S, s.t. i 6= j, is linked by and edge of G, i.e.
(i, j) ∈ E. We shortly refer to a clique of size k as a k-clique. A connected component of G is any
connected subgraph Ḡ = (V̄, Ē) of G such that the original set of edges E does not contain any
edge between a node in V̄ and a node in V \ V̄ . G is a cluster graph if any connected component
of G is a clique.



CHAPTER 4. CLUSTER DELETION PROBLEM 71

The Cluster Deletion (CD) problem, asks for the smallest subset of edges S ⊆ E such that
G \ S is a disjoint union of cliques, namely a cluster graph.

Furthermore, a partitioning Q of the set of nodes V is a collection of disjoint subsets of V such
that the union of such subsets is V , i.e. (i) Q1 ∩Q2 = ∀Q1, Q2 ∈ Q; (ii)

⋃
Qi∈QQi = V . When

discussing the heuristic algorithm in Section 4.3, we will refer to G(i) as the graph obtained after
performing the i-th iteration of the algorithm, and to QG(i) as the partitioning of G built from
G(i). Finally, we will define and denote by G[QG(i) ] the cluster graph generated by such partition.

4.2 Mathematical formulations

Let us denote by x the vector of the decision variables of the problem, associated to the edges
of G. For any arbitrary edge (i, j) ∈ E, the related xij binary variable is defined as follows:

xij =

{
1 if i and j belong to the same clique
0 otherwise.

Note that, by definition, when xij = 1, both the endpoints of the edge are in the same clique;
this directly implies the presence of the edge (i, j) in the resulting cluster graph. In the following,
we introduce an Integer Linear Programming (ILP) formulation for the problem:

Formulation 1.

max
∑

(i,j)∈E

xij (4.1a)

s.t. xij + xik ≤ xjk + 1 ∀ i ∈ V, ∀j, k ∈ N(i) : j < k, (j, k) ∈ E (4.1b)
xij + xik ≤ 1 ∀ i ∈ V, ∀j, k ∈ N(i) : j < k, (j, k) /∈ E (4.1c)
xij ∈ {0, 1} ∀ (i, j) ∈ E. (4.1d)

The objective function (4.1a) maximizes the number of edges belonging to the cluster graph,
which is equivalent to minimizing the number of the removed edges.

Both families of constraints (4.1b) and (4.1c) work on the neighborhood N(i) of each node i ∈ V .
For any couple of adjacent nodes j, k ∈ N(i), we must distinguish two cases:

• The edge (j, k) exists in the graph (i.e. (i, k) ∈ E). If it belongs to some clique (i.e.
xjk = 1), no restriction on the value of xij and xik is required. Otherwise, if (j, k) is not
selected in the solution (i.e. xjk = 0), nodes i, j and k cannot constitute a clique, and at
most one between the edges (i, j) and (i, k) can be selected. Constraints (4.1b) force this
requirement to be satisfied, when needed.
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• The edge (j, k) does not exists in the original graph (i.e. (i, k) /∈ E). If this is the case, the
edges (i, j) and (i, k) cannot be simultaneously selected. Constraints (4.1c) require that at
most one between xij and xik is equal to 1.

In order to provide a proof of correctness for the introduced ILP formulation, let us state and
prove the following property.

Lemma 5. Given three arbitrary nodes of G, let say i, j, k ∈ V , any cluster graph C of G such
that (j, k) /∈ C contains at most only one edge between (i, j) and (i, k).

Proof. The statement can be easily proven by contradiction. Let us suppose that there exists a
cluster graph C̄ of G such that (j, k) does not belong to C̄ while both (i, j) and (i, k) do. Since
(i, j) ∈ C̄, then nodes i and j belong to the same clique. The same holds for nodes i and k,
since also (i, k) ∈ C̄, by hypothesis. Consequently, nodes i, j and k all belong to the same clique.
However, there is no edge between nodes j and k in C̄, thus {i, j, k} is not a clique in C̄ and C̄
is not a cluster graph.

An alternative formulation, based on the enumeration of all possible cliques of size equal to three,
i.e. triangles of the graph, can be designed by exploiting the following property.

Lemma 6. Given a 3-clique C ⊂ V, |C| = 3, the number of edges between any two nodes of C
belonging to any possible cluster graph C̄ of G is zero, one or three.

Proof. Let C = {i, j, k} and C̄ be any 3-clique and cluster graph of G, respectively. Depending
on the number η of edges between any two nodes of C belonging to C̄, four cases can occur: (i)
η = 0, if all the edges have been removed from G in order to obtain C̄ and the nodes i, j, k ∈ C
do not belong to the same clique in C̄; (ii) η = 1, when a single edge is left, and its endpoints
belong to the same clique in C̄, while the remaining node does not; (iii) η = 2, i.e. exactly two
edges are left, which leads to a contradiction because i, j and k cannot constitute a clique in C̄;
(iv) meaning that no edge is removed and the original 3-clique is preserved in C̄.

Let us denote by C3 the set of triangles (3-cliques) in G:

C3 = {S ⊂ V : |S| = 3, (i, j) ∈ E, ∀ i, j ∈ S, i 6= j}

In addition to the previously defined xij decision variables, associated to the edges of G, we
introduce the y vector of binary auxiliary variables, defined for each triangle {i, j, k} ∈ C3 of G,
as follows:

yijk =

{
1 if xij + xik + xjk ≥ 3

0 if xij + xik + xjk ≤ 1.

According to Lemma 6, xij+xik+xjk ∈ {0, 1, 3}must be required for every triangle {i, j, k} ∈ C3.
To this aim, xij + xik + xjk is constrained to be either less or equal to 1 or greater or equal to
3, when the yijk auxiliary variable related to {i, j, k} assumes value 0 or 1, respectively. The
resulting ILP formulation follows.
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Formulation 2.

max
∑

(i,j)∈E

xij (4.2a)

s.t. xij + xik + xjk ≤ 1 + 2yijk ∀ {i, j, k} ∈ C3, i < j < k (4.2b)
xij + xik + xjk ≥ 3yijk ∀ {i, j, k} ∈ C3, i < j < k (4.2c)
xij + xik ≤ 1 ∀ i ∈ V, ∀j, k ∈ N(i) : j < k, (j, k) /∈ E (4.2d)
yijk ∈ {0, 1} ∀ {i, j, k} ∈ C3, i < j < k (4.2e)
xij ∈ {0, 1} ∀ (i, j) ∈ E. (4.2f)

The objective function (4.2a) and the family of constraints (4.2d) specifying the edges that
cannot be simultaneously selected have the same effect of (4.1a) and (4.1c) in Formulation 1,
respectively. Furthermore, constraints (4.2b) and (4.2c) force the number of unremoved edges
between the nodes of each triangle to be different from two.

4.3 Heuristic approach

In this section, we present a heuristic algorithm for the CD problem and formally study its
complexity. The algorithm repeatedly removes an edge from the graph and collapses its endpoints
into a single new node, ensuring that the resulting graph is a cluster graph.

The edge contraction operation is formally defined in Subsection 4.3.1, while the algorithm
is presented, along with the related pseudo-code, in Subsection 4.3.2.

4.3.1 Edge contraction operations

The edge contraction operation consists in removing an edge from the graph and then merging
the two nodes previously linked by it. Such operation is fundamental in the theory of graph
minors, i.e., obtained by removing nodes and edges and by contracting edges from the original
graph.

Given a simple undirected graph G = (V,E) and an edge (u, v) ∈ E, contracting (u, v) on G
produces a new graph G′ = (V ′, E′), where:

• V ′ = V \ {u, v} ∪ {W};

• E′ = E \ {(u, z) : z ∈ N(u)} \ {(v, z) : z ∈ N(v)} ∪ {(W, z) : z ∈ NG(u) ∨ z ∈ NG(v)}.

The new node W replaces u and v in G′ and new edges incident on W are added to G′ in place
of the edges incident on u and v in G. We call W a super-node, since it represents more than a
single node of the original graph. More in general, we define a super-node as a subset of nodes
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of the original graph, i.e., W ∈ P(V ), and we use calligraphic letters to denote super-nodes.
According to this definition, every singleton of a node in V is a super-node.

As a result of the edge contraction operation, the creation of multi-graphs can be allowed
or not. In our case, there not exist multiple edges between any two nodes. This means that,
when contracting (u, v) in W, if there is a node z ∈ V such that both (u, z) ∈ E and (v, z) ∈ E,
only a single edge replaces them in the resulting graph, i.e. (W, z) ∈ E′. However, for each edge
(U ,V) ∈ E′, with U and V super-nodes, we store the number of edges of the original graph which
connect a node in U with a node in V.

4.3.2 The algorithm

In order to produce a cluster graph, the proposed algorithm iteratively performs edge contraction
operations on contractible edges. By doing so, at each iteration of the algorithm, the super-nodes
represent a partitioning of V into disjoint cliques.

Definition 1. An edge (U ,V), with U ,V ∈ P(V ) super-nodes, is said to be contractible if and
only if U ∪ V is a clique in G.

Algorithm 4 shows the simple high-level pseudo-code of the proposed approach. The pro-
cedure takes as input the original graph G. At the beginning of the computation (line 1), the
set Et of contractible edges is set equal to the whole set of edges of the original graph. In the
main cycle (lines 2-5), the algorithm iteratively selects a contractible edge (U ,V) from Et and
performs the contraction operation, updating the current graph G and the set of contractible
edges. Finally, the set V of super-nodes of the last current graph is returned.

Algorithm 4: ECHeuristic

Input: The original graph G = (V,E)
1 Et ← E
2 while |Et| > 0 do
3 (U ,V)← a contractible edge from Et
4 G← G/(U ,V)

5 Et ← contractible edges in G

6 return V

The execution of ECHeuristic on a graphG identifies a sequence of graphsG(0), G(1), . . . , G(p),
where G(0) = G and G(i) = (V (i), E(i)) is the current graph at the end of the i-th iteration.

Observation 1. The number p of iterations performed by ECHeuristic on a graph G is upper
bounded by the number of nodes in G minus one, i.e. 1 ≤ p ≤ |V | − 1.

Starting from any of the graphs G(i),∀ i ∈ {0, . . . , p}, it is possible to build a partitioning
QG(i) of the set V of nodes of the original graph G, in which the nodes in the same super-node
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are assigned to the same partition. Formally, QG(i) = {V : V ∈ V (i)}. Given a node v ∈ V , let
us denote by QG(i)(v) the partition of QG(i) containing v. By removing from G all the edges
(u, v) ∈ E such that QG(i)(u) 6= QG(i)(v), that is the edges whose endpoints are assigned to
different partitions of QG(i) , a spanning subgraph of G is obtained. We denote such subgraph by
G[QG(i) ] and say that QG(i) generates G[QG(i) ].

Lemma 7. All the partitionings {QG(i)}i∈{0,...,p} of the set of nodes produced by executing ECHeu-
ristic on a graph G generate cluster graphs.

Proof. Let G[QG(i) ] be the subgraph generated by the partitioning QG(i) associated to the i-
th iteration of the algorithm. We show, by induction, that G[QG(i) ] is a cluster graph, for all
i ∈ {0, 1, . . . , p}. Clearly, since |QG(0) | = |V |, each partition is a singleton and all the edges
are removed, then G[QG(0) ] is a trivial cluster graph. On the other hand, let us assume that
G[QG(i−1) ] is a cluster graph, meaning that every partition in QG(i−1) is a clique in G, with
i ∈ {1, . . . , p}. The partitioning produced at iteration i can be expressed in terms of the one
produced at iteration i−1, like QG(i) = QG(i−1) \{U ,V}∪W, where (U ,V) is the edge contracted
at iteration i andW = U∩V is the new partition. From Definition 1, every node in U is linked by
an edge in E with every node in V, otherwise (U ,V) would not be contractible. As a consequence,
W is a clique in G, thus every partition in QG(i) is a clique in G. It follows that G[QG(i) ] is a
cluster graph.

4.3.3 Determining the set of contractible edges

Let us observe that the edge contraction operation modifies the graph locally: when contract-
ing an edge, only the part of the graph related to its endpoints and their neighbors is affected.
Starting from this intuition, we deduce an efficient way to keep track of the contractible edges
throughout the iterations of the algorithm.

When an edge (U ,V) is contracted on a graph G = (V,E), with respect to a third super-node
Z ∈ N(U) ∪N(V), three cases can occur:

1. both U and V are connected to Z in G, i.e. (U ,Z), (V,Z) ∈ E;

2. U is connected to Z in G, while V is not, i.e. (U ,Z) ∈ E, (V,Z) /∈ E;

3. V is connected to Z in G, while U is not, i.e. (U ,Z) /∈ E, (V,Z) ∈ E;

In case (1), (U ,Z) and (V,Z) are replaced by (W,Z), where W = U ∪ V is the newly intro-
duced super-node; the weight of such edge, indicating the number of edges of the original graph
with an endpoint in W and the other in Z, is the sum of the weights of the original edges, i.e.
w(W,Z) = w(U ,Z)+w(V,Z). In case (2), w(W,Z) = w(U ,Z), since no node in V is connected
to any node in Z. Similarly, in case (3), w(W,Z) = w(V,Z).
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In the resulting graph G/(U ,V), the contractibility of an edge can be determined by checking
its weight. Indeed, by Definition 1, an edge is contractible iff its endpoints form a clique in G.
An equivalent characterization, in terms of the weights of the edge, is given in Definition 2.

Definition 2. An edge (U ,V), with U ,V ∈ P(V ) super-nodes, is said to be contractible if and
only if w(U ,V) = |U||V|.

Let us denote by E(i)
t and E(i)

f the sets of contractible and non-contractible edges at iteration

i, respectively. Note that E(i)
f = E(i) \ E(i)

t .

Observation 2. For i = 1, . . . , p, |E(i)
t | < |E

(i−1)
t |, while |E(i)

f | ≥ |E
(i−1)
f |.

Observation 3. The cluster graph identified by the algorithm is obtained by removing the edges
in E(p)

f from the original graph G. As a result, the number of edges that need to be removed from
G in order to obtain such cluster graph is given by

∑
(U ,V)∈E(p)

f

w(U ,V).

Lemma 8. After the contraction of an edge (U ,V) in W = U ∪ V, an edge (W,Z),Z ∈
N (i−1)(U) ∩ N (i−1)(V) is contractible at iteration i if and only if the edges (U ,Z) and (V,Z)

were contractible at iteration i− 1, i.e. (W,Z) ∈ E(i)
t ⇐⇒ (U ,Z), (V,Z) ∈ E(i−1)

t .

Proof. Let us assume that (W,Z) is contractible at iteration i, i.e. (W,Z) ∈ E(i)
t . Definition 1

implies that W ∪Z is a clique in G. This means that every node in W is linked with every node
in Z, i.e. (w, z) ∈ E,∀ w ∈ W,∀ z ∈ Z. SinceW = U∪V, the same holds for any couple of nodes
in U ×Z and V ×Z, respectively. As a consequence, (U ,Z) and (V,Z) are both contractible at
iteration i− 1, i.e. (U ,Z), (V,Z) ∈ E(i−1)

t .
On the other hand, if (U ,Z), (V,Z) ∈ E

(i−1)
t , from Definition 2 follows that w(U ,Z) =

|U||Z| and w(V,Z) = |V||Z|. When contracting (U ,V) at iteration i, since Z ∈ N(U) ∩ N(V),
w(W,Z) = w(V,Z) + w(V,Z) = |U||Z| + |V||Z| = (|U| + |V|)|Z| = |W||Z|. By Definition 2,
w(W,Z) = |W||Z| means that (W,Z) is contractible at iteration i, i.e. (W,Z) ∈ E(i)

t .

By Lemma 8, the set of contractible edges at iteration i can be efficiently determined starting
from the set of contractible edges at iteration i− 1, as follows:

E
(i)
t = E

(i−1)
t \ E(U) \ E(V) ∪ {(W,Z) : Z ∈ N (i−1)(U) ∩N (i−1)(V)}

Indeed, the edges with no endpoint in {U ,V}, which were contractible at iteration i− 1, are not
affected by the contraction of the edge (U ,V). After removing from E

(i−1)
t the edges removed by

the contraction operation, in order to obtain the new set of contractible edges E(i)
t , it is sufficient

to add the newly added edges incident on W whose other endpoint was incident on both U and
V.
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4.3.4 Choosing the next contractible edge

By Observation 3, the value of a solution can be expressed as
∑

(U ,V)∈E(p)
f

w(U ,V), where p is

the last iteration of the algorithm. Based on such observation, we define a greedy criterion for
the choice of the contractible edge at each iteration. Given the sets of contractible and non-
contractible edges E(i)

t and E(i)
f at iteration i, we select among the contractible edges E(i)

t the
one whose contraction minimizes the number of non-contractible edges at iteration i+ 1. More
in detail, the edge to contract at iteration i is identified by:

arg min
(U ,V)∈E(i)

t
|E(i+1)

f /(U ,V)|.

4.4 Computational experiments

In order to extensively test and evaluate the performance of the proposed approaches, we gener-
ated a set of 120 instances according to the Barabási–Albert model [BA99, Bar09], which relies
on preferential attachment and growth mechanisms to obtain random scale-free networks charac-
terized by relatively few nodes with unusually high degree with respect to the remaining nodes.
More in detail, the procedure iteratively adds new nodes and connections to the network: the
more the connections of a node, the higher the probability of establishing new connections in
which such node is involved as the network enlarges. Furthermore, a smaller set of real bench-
mark networks [RA15] was also considered in the test phase, in order to analyze the behavior of
the proposed approach on biological networks, where the problem finds relevant application.

All the experiments have been conducted on the same machine, equipped with a 2.3 GHz
Intel Xeon E5 CPU and 128 GB of RAM. The three proposed solution approaches have been
implemented in Python and, in particular, the two mathematical models have been solved by
using the IBM ILOG CPLEX 12.10.0 solver and imposing a computation time limit of one hour.

4.4.1 Barabási–Albert networks

By adopting the Barabási–Albert scheme, we generated instances of several sizes and densities.
In particular, n ∈ {100, 200, 400, 600, 800, 1 000} and d ∈ {2%, 4%, 6%, 8%}, where d is the ratio
between the actual number m of edges in the network and the total number of potential edges,
i.e. d = 2m/(n(n − 1)). For each combination of n and d values, we generated 5 instances, by
obtaining 24 different scenarios.

Tables 4.1 and 4.2 report detailed information about the performances of the proposed ap-
proaches on each of the instances with a number of nodes up to 400 and starting from 600,
respectively. More in detail, the number of nodes n, the number of edges m and the density
d of a given network are reported in the associated row of the first three columns, while the
fourth column reports random seeds which uniquely identify the instances, since they are used in
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Formulation 1 Formulation 2 EC Heuristic
Nodes Edges Density Seed Best Time Status Value Gap Time Status Value Gap Time Value Gap
100 99 2% 1531 66 0,00172 101 66 0,00% 0,00168 101 66 0,00% 0,00685 66 0,00%
100 99 2% 1561 63 0,00236 101 63 0,00% 0,00162 101 63 0,00% 0,00455 63 0,00%
100 99 2% 4146 64 0,00187 101 64 0,00% 0,00194 101 64 0,00% 0,00932 64 0,00%
100 99 2% 8899 65 0,00184 101 65 0,00% 0,00190 101 65 0,00% 0,00577 65 0,00%
100 99 2% 9323 66 0,00184 101 66 0,00% 0,00182 101 66 0,00% 0,00679 66 0,00%
100 196 4% 1018 154 0,08356 101 154 0,00% 0,01296 101 154 0,00% 0,01260 154 0,00%
100 196 4% 2785 150 0,00898 101 150 0,00% 0,01049 101 150 0,00% 0,01200 152 1,33%
100 196 4% 3894 143 0,00898 101 143 0,00% 0,01153 101 143 0,00% 0,01213 143 0,00%
100 196 4% 6356 147 0,00898 101 147 0,00% 0,01010 101 147 0,00% 0,01132 148 0,68%
100 196 4% 9890 152 0,00972 101 152 0,00% 0,01078 101 152 0,00% 0,02095 152 0,00%
100 291 6% 1192 227 0,01754 101 227 0,00% 0,02055 101 227 0,00% 0,03116 231 1,76%
100 291 6% 3706 227 0,03633 101 227 0,00% 0,02995 101 227 0,00% 0,02616 229 0,88%
100 291 6% 8400 235 0,02043 101 235 0,00% 0,03233 101 235 0,00% 0,03563 236 0,43%
100 291 6% 9236 228 0,01533 101 228 0,00% 0,01796 101 228 0,00% 0,02008 232 1,75%
100 291 6% 9578 233 0,03536 101 233 0,00% 0,03447 101 233 0,00% 0,02084 237 1,72%
100 384 8% 1364 307 0,08794 101 307 0,00% 0,13286 101 307 0,00% 0,04241 311 1,30%
100 384 8% 3566 316 0,07926 101 316 0,00% 0,11339 101 316 0,00% 0,02927 322 1,90%
100 384 8% 4040 311 0,03348 101 311 0,00% 0,03291 101 311 0,00% 0,02940 315 1,29%
100 384 8% 6016 315 0,03363 101 315 0,00% 0,09355 101 315 0,00% 0,03094 318 0,95%
100 384 8% 7282 307 0,04967 101 307 0,00% 0,08649 101 307 0,00% 0,03094 314 2,28%
200 396 2% 1999 306 0,03438 101 306 0,00% 0,02633 101 306 0,00% 0,02822 307 0,33%
200 396 2% 2797 304 0,02130 101 304 0,00% 0,02012 101 304 0,00% 0,04274 304 0,00%
200 396 2% 3174 310 0,03492 101 310 0,00% 0,02378 101 310 0,00% 0,03185 312 0,65%
200 396 2% 3761 305 0,01447 101 305 0,00% 0,01630 101 305 0,00% 0,02761 306 0,33%
200 396 2% 6802 301 0,01323 101 301 0,00% 0,01751 101 301 0,00% 0,02467 303 0,66%
200 784 4% 2309 650 0,22450 101 650 0,00% 0,23380 101 650 0,00% 0,07858 658 1,23%
200 784 4% 4114 649 0,16566 101 649 0,00% 0,08795 101 649 0,00% 0,07636 661 1,85%
200 784 4% 6804 654 0,27230 101 654 0,00% 0,52382 101 654 0,00% 0,07337 667 1,99%
200 784 4% 7864 650 0,22538 101 650 0,00% 0,48369 101 650 0,00% 0,07421 660 1,54%
200 784 4% 8883 652 0,29544 101 652 0,00% 0,15381 101 652 0,00% 0,07165 663 1,69%
200 1164 6% 2108 1003 1,26888 101 1003 0,00% 2,31309 101 1003 0,00% 0,14209 1022 1,89%
200 1164 6% 4085 999 1,84259 101 999 0,00% 1,89349 101 999 0,00% 0,13442 1018 1,90%
200 1164 6% 5984 1005 1,24284 101 1005 0,00% 1,22939 101 1005 0,00% 0,14184 1021 1,59%
200 1164 6% 6812 1003 1,65287 101 1003 0,00% 1,02836 101 1003 0,00% 0,14720 1019 1,60%
200 1164 6% 8199 1003 3,33555 101 1003 0,00% 2,73854 101 1003 0,00% 0,14033 1019 1,60%
200 1536 8% 6079 1346 6,08327 101 1346 0,00% 4,64867 101 1346 0,00% 0,22907 1371 1,86%
200 1536 8% 6083 1340 7,64292 101 1340 0,00% 6,51846 101 1340 0,00% 0,21920 1374 2,54%
200 1536 8% 6243 1340 11,28444 101 1340 0,00% 5,70559 101 1340 0,00% 0,20965 1370 2,24%
200 1536 8% 6341 1347 27,84275 101 1347 0,00% 19,08941 101 1347 0,00% 0,21606 1367 1,48%
200 1536 8% 8705 1340 11,07558 101 1340 0,00% 6,37973 101 1340 0,00% 0,21326 1365 1,87%
400 4656 6% 1547 4244* 3600,01613 107 4244 0,00% 3600,02691 107 4249 0,12% 1,05018 4302 1,37%
400 4656 6% 1992 4255* 3600,01522 107 4255 0,00% 3600,01416 107 4256 0,02% 1,07520 4311 1,32%
400 4656 6% 3708 4245* 3600,02152 107 4248 0,07% 3600,00570 107 4245 0,00% 1,05052 4297 1,22%
400 4656 6% 3894 4239* 3600,00365 107 4240 0,02% 3600,00433 107 4239 0,00% 1,04515 4304 1,53%
400 4656 6% 6033 4244* 3600,00280 107 4245 0,02% 3600,02396 107 4244 0,00% 1,04795 4301 1,34%
400 6144 8% 2944 5673* 3600,04475 107 5675 0,04% 3600,06056 107 5673 0,00% 1,66061 5746 1,29%
400 6144 8% 3004 5672* 3600,06578 107 5672 0,00% 3600,00630 107 5686 0,25% 1,64912 5738 1,16%
400 6144 8% 6593 5676* 3600,05217 107 5676 0,00% 3600,10692 107 5697 0,37% 1,66080 5749 1,29%
400 6144 8% 7816 5663* 3600,04927 107 5663 0,00% 3600,00790 107 5669 0,11% 1,68958 5746 1,47%
400 6144 8% 9172 5674* 3600,05297 107 5674 0,00% 3600,09185 107 5680 0,11% 1,67379 5756 1,45%
400 1584 2% 4537 1340 0,71252 101 1340 0,00% 0,62024 101 1340 0,00% 0,17874 1356 1,19%
400 1584 2% 4859 1344 0,69652 101 1344 0,00% 0,48717 101 1344 0,00% 0,20954 1361 1,26%
400 1584 2% 4905 1331 0,20476 101 1331 0,00% 0,16927 101 1331 0,00% 0,17694 1348 1,28%
400 1584 2% 6463 1335 0,38771 101 1335 0,00% 0,37347 101 1335 0,00% 0,18136 1350 1,12%
400 1584 2% 9979 1335 0,55882 101 1335 0,00% 0,43771 101 1335 0,00% 0,18565 1357 1,65%
400 3136 4% 4938 2807 59,38488 101 2807 0,00% 261,64278 101 2807 0,00% 0,57112 2843 1,28%
400 3136 4% 6094 2798 18,76451 101 2798 0,00% 15,50639 101 2798 0,00% 0,51734 2843 1,61%
400 3136 4% 8404 2799 18,44189 101 2799 0,00% 13,85526 101 2799 0,00% 0,51362 2835 1,29%
400 3136 4% 8716 2796 26,83602 101 2796 0,00% 18,65516 101 2796 0,00% 0,53707 2837 1,47%
400 3136 4% 9424 2796 31,01732 101 2796 0,00% 23,11187 101 2796 0,00% 0,54765 2833 1,32%

Table 4.1: Performance results on Barabási–Albert instances with n ∈ {100, 200, 400}.

the generation process. The fifth column (Best) reports, for each instance, the smallest known
number of edges to be removed from the network in order to obtain a cluster graph.

The remaining columns of both the tables are grouped by the associated solution methods.
With respect to Formulation 1 and Formulation 2, the tables report: the run time in seconds
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Formulation 1 Formulation 2 EC Heuristic
Nodes Edges Density Seed Best Time Status Value Gap Time Status Value Gap Time Value Gap
600 7056 4% 4368 6486* 3600,02676 107 6486 0,00% 3600,02485 107 6487 0,02% 1,72893 6559 1,13%
600 7056 4% 6596 6478* 3600,02499 107 6478 0,00% 3600,03310 107 6481 0,05% 1,77811 6569 1,40%
600 7056 4% 7686 6483* 3600,03521 107 6483 0,00% 3600,03087 107 6486 0,05% 1,75355 6586 1,59%
600 7056 4% 8191 6495* 3600,04858 107 6495 0,00% 3600,00466 107 6497 0,03% 1,78506 6573 1,20%
600 7056 4% 8728 6484* 3600,03490 107 6486 0,03% 3600,03020 107 6484 0,00% 1,79210 6567 1,28%
600 10476 6% 2905 9890* 3600,25301 107 9960 0,71% 3600,16089 107 9951 0,62% 3,44522 9890 0,00%
600 10476 6% 4340 9890* 3600,23111 107 9942 0,53% 3600,01493 107 9935 0,46% 3,48582 9890 0,00%
600 10476 6% 6591 9882* 3600,18233 107 9930 0,49% 3600,23875 107 9934 0,53% 3,51074 9882 0,00%
600 10476 6% 6698 9886* 3600,09389 107 9938 0,53% 3600,21389 107 9972 0,87% 3,45336 9886 0,00%
600 10476 6% 6865 9898* 3600,20801 107 9947 0,50% 3600,22602 107 9992 0,95% 3,51977 9898 0,00%
600 13824 8% 1598 13148* 3690,53612 107 13824 5,14% 3676,62744 107 13824 5,14% 5,68697 13148 0,00%
600 13824 8% 4019 13169* 3684,39407 107 13824 4,97% 3670,02102 107 13824 4,97% 5,63253 13169 0,00%
600 13824 8% 4399 13167* 3600,26506 107 13324 1,19% 3672,06708 107 13824 4,99% 5,68386 13167 0,00%
600 13824 8% 4486 13163* 3690,74541 107 13824 5,02% 3672,00909 107 13824 5,02% 5,62442 13163 0,00%
600 13824 8% 8841 13156* 3600,32661 107 13313 1,19% 3676,05070 107 13824 5,08% 5,76818 13156 0,00%
600 3564 2% 3595 3157 10,84976 101 3157 0,00% 9,73925 101 3157 0,00% 0,55653 3194 1,17%
600 3564 2% 4888 3142 9,01697 101 3142 0,00% 6,18206 101 3142 0,00% 0,59686 3186 1,40%
600 3564 2% 7204 3142 9,01759 101 3142 0,00% 6,33457 101 3142 0,00% 0,53630 3180 1,21%
600 3564 2% 7629 3147 8,12684 101 3147 0,00% 6,10780 101 3147 0,00% 0,55879 3186 1,24%
600 3564 2% 9736 3141 4,79167 101 3141 0,00% 4,02185 101 3141 0,00% 0,53101 3184 1,37%
800 12544 4% 1036 11864* 3600,17970 107 11922 0,49% 3600,16091 107 11887 0,19% 4,19278 11864 0,00%
800 12544 4% 1582 11867* 3600,21947 107 11918 0,43% 3600,12744 107 11867 0,00% 4,13305 11869 0,02%
800 12544 4% 4704 11852* 3600,20922 107 11917 0,55% 3600,12585 107 11976 1,05% 4,17858 11852 0,00%
800 12544 4% 8177 11860* 3600,13144 107 11916 0,47% 3600,18231 107 11925 0,55% 4,12746 11860 0,00%
800 12544 4% 8746 11865* 3600,11666 107 11932 0,56% 3600,18539 107 11950 0,72% 4,17969 11865 0,00%
800 18624 6% 4844 17809* 3600,49858 107 17996 1,05% 3600,41282 107 18624 4,58% 8,43388 17809 0,00%
800 18624 6% 7892 17784* 3600,48287 107 17995 1,19% 3600,38517 107 17993 1,18% 8,41124 17784 0,00%
800 18624 6% 8325 17811* 3600,50613 107 18004 1,08% 3600,46701 107 18014 1,14% 8,26219 17811 0,00%
800 18624 6% 8965 17822* 3600,54814 107 18034 1,19% 3600,34857 107 18172 1,96% 8,28237 17822 0,00%
800 18624 6% 8996 17757* 3600,46816 107 17964 1,17% 3600,39491 107 17975 1,23% 8,26202 17757 0,00%
800 24576 8% 1562 23640* 3600,66115 107 23839 0,84% 3601,34051 107 24576 3,96% 13,42387 23640 0,00%
800 24576 8% 1701 23596* 3600,85330 107 24151 2,35% 3601,31008 107 24576 4,15% 13,42896 23596 0,00%
800 24576 8% 8183 23629* 3600,77345 107 24159 2,24% 3600,07099 107 24576 4,01% 13,43441 23629 0,00%
800 24576 8% 9320 23646* 3601,07822 107 23842 0,83% 3601,34101 107 24576 3,93% 13,33178 23646 0,00%
800 24576 8% 9837 23680* 3602,55857 107 23861 0,76% 3601,22140 107 24576 3,78% 13,69588 23680 0,00%
800 6336 2% 2111 5729 87,87187 101 5729 0,00% 59,40477 101 5729 0,00% 1,32234 5800 1,24%
800 6336 2% 2123 5733 74,53751 101 5733 0,00% 49,89538 101 5733 0,00% 1,25029 5802 1,20%
800 6336 2% 5620 5732 92,89899 101 5732 0,00% 57,67675 101 5732 0,00% 1,25432 5801 1,20%
800 6336 2% 5909 5734 140,58885 101 5734 0,00% 124,08900 101 5734 0,00% 1,30032 5810 1,33%
800 6336 2% 7760 5739 1373,18027 101 5739 0,00% 1126,28710 101 5739 0,00% 1,24351 5798 1,03%
1000 9900 2% 1372 9076 816,22444 101 9076 0,00% 298,46308 101 9076 0,00% 2,40482 9190 1,26%
1000 9900 2% 1912 9095 3600,02067 107 9095 0,00% 481,23288 101 9095 0,00% 2,47602 9209 1,25%
1000 9900 2% 3522 9136* 3600,19534 107 9147 0,12% 3600,08206 107 9136 0,00% 2,40871 9195 0,65%
1000 9900 2% 3672 9098 2291,69276 101 9098 0,00% 1645,71847 101 9098 0,00% 2,36529 9214 1,28%
1000 9900 2% 7114 9127* 3600,11672 107 9154 0,30% 3600,16561 107 9127 0,00% 2,40562 9198 0,78%
1000 19600 4% 1233 18693* 3600,61999 107 18864 0,91% 3600,32997 107 18895 1,08% 7,92907 18693 0,00%
1000 19600 4% 6400 18669* 3600,77487 107 18886 1,16% 3600,42399 107 18871 1,08% 7,90791 18669 0,00%
1000 19600 4% 7392 18694* 3600,80622 107 18903 1,12% 3600,41892 107 18902 1,11% 7,98831 18694 0,00%
1000 19600 4% 7696 18689* 3600,52217 107 18902 1,14% 3600,42015 107 18934 1,31% 7,97740 18689 0,00%
1000 19600 4% 9570 18717* 3600,43984 107 18897 0,96% 3600,43455 107 18920 1,08% 7,98703 18717 0,00%
1000 29100 6% 2867 28039* 3600,83060 107 28296 0,92% 3600,89929 107 28319 1,00% 16,27523 28039 0,00%
1000 29100 6% 3177 28038* 3600,91162 107 28582 1,94% 3600,85727 107 28524 1,73% 16,15439 28038 0,00%
1000 29100 6% 3708 28037* 3600,99056 107 28243 0,73% 3601,24830 107 28293 0,91% 16,42042 28037 0,00%
1000 29100 6% 4441 28008* 3601,49785 107 28585 2,06% 3601,14618 107 28260 0,90% 16,17299 28008 0,00%
1000 29100 6% 7918 28015* 3601,09408 107 28260 0,87% 3601,06337 107 28307 1,04% 16,25776 28015 0,00%
1000 38400 8% 3819 37202* 3601,57106 107 37882 1,83% 3600,16216 107 37535 0,90% 26,94874 37202 0,00%
1000 38400 8% 4940 37191* 3602,59315 107 37869 1,82% 3600,12356 107 37510 0,86% 26,71472 37191 0,00%
1000 38400 8% 6235 37173* 3601,95774 107 38400 3,30% 3600,22133 107 37409 0,63% 26,57302 37173 0,00%
1000 38400 8% 8397 37196* 3602,49115 107 37420 0,60% 3603,35665 107 38400 3,24% 26,76940 37196 0,00%
1000 38400 8% 8632 37163* 3601,07574 107 37448 0,77% 3600,27340 107 37489 0,88% 26,63642 37163 0,00%

Table 4.2: Performance results on Barabási–Albert instances with n ∈ {600, 800, 1000}.

spent by the solver to obtain such solution (Time); the status code reported by CPLEX at the
end of the computation (Status), which mainly equals to 101 when the problem has been solved
to optimality, to 107 when the given time limit has been reached after computing a feasible
solution and to 108 when no feasible solution has been produced before reaching the time limit;
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the value associated with the returned solution (Value); and finally the relative percentage gap
of the returned solution with respect to the best known one (Gap). Finally, the Time, Value
and Gap columns are also reported for the edge contraction heuristic, with analogous meanings
to those of the exact methods. Note that, by construction, the value of the solution provided by
the heuristic also represents the actual number of iterations carried out by the algorithm.

Although the objective functions (4.1a) and (4.2a) of both the formulations express the
number of edges belonging to the resulting cluster graph, for the sake of readability we report,
in the Value columns, its complement with respect to the total number of edges, i.e. the number
of edges to be removed. By doing so, the Value columns of the two formulations are directly
comparable to the one associated with the heuristic. Consequently, the relative gap of each
method is computed as 100% · (Value − Best)/Best. Such gap is zero when the related method
finds a solution whose value is lower or equal to the ones provided by the other methods. If this
is the case, the gap is reported in bold style. Clearly, on a given instance, at least one method
has 0.00% gap and it is possible that more than a single method find equivalent or identical
solutions whose value is the best known one.

Note that the best known solution value necessarily coincides with the value of the solution
provided by one of the two formulations if such formulation completed the computation by return-
ing the optimal solution. On the other hand, in case the execution of both the formulations led
to early termination due to time limit budget, the best known solution value is the one associated
to the best known feasible solution, i.e., the minimum one among the values of the three solutions
returned by the two formulations and the heuristic. Since, in the latter case, the optimality of the
best known solution is not certified, an asterisk is added alongside such value in the Best column.

Table 4.3 summarizes the quality and time performances of the proposed methods on the ad-
dressed Barabási-Albert networks, by aggregating the results associated with instances belonging
to the same scenario. As a result, the table contains 24 rows, each one reporting the average
values computed with respect to the instances of the scenario identified by a given combination
of the number of nodes, the number of edges and the density of the network. For each method,
the required computation times and the relative gaps of the returned solutions are reported.
Additionally, the overall average time and gap values, as well as the number of best solution
identified by each method, are shown in the very last rows of the table.

According to the average computation time, Formulations 1 and 2 are almost equivalent. The
former exhibits a slightly better relative gap value (0.47% versus 0.67%) and identifies two more
best solution than the latter (73 versus 71). However, Tables 4.1 and 4.2 show that the subsets
of instances on which each formulation finds the best solutions do not perfectly overlap and the
total number of instances for which at least one of them identifies the best solution is 81. Among
these, 63 is the number of certified optimal solutions.

On the other hand, the heuristic identifies the best known solution on a subset of 48 instances.
In particular, in 9 cases, the returned solution is equivalent to the optimal one returned by one
or both the exact formulations, while for the remaining 39 instances the heuristic produces a
solution whose value is better than the one obtained with the exact methods. The performance
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Formulation 1 Formulation 2 EC Heuristic
Nodes Edges Density Best Time Gap Time Gap Time Gap
100 99 2% 64,8 0,00193 0,00% 0,00179 0,00% 0,00666 0,00%
100 196 4% 149,2 0,02404 0,00% 0,01117 0,00% 0,01380 0,40%
100 291 6% 230 0,02500 0,00% 0,02705 0,00% 0,02677 1,31%
100 384 8% 311,2 0,05679 0,00% 0,09184 0,00% 0,03259 1,54%
200 396 2% 305,2 0,02366 0,00% 0,02081 0,00% 0,03102 0,39%
200 784 4% 651 0,23665 0,00% 0,29661 0,00% 0,07483 1,66%
200 1164 6% 1002,6 1,86855 0,00% 1,84057 0,00% 0,14118 1,72%
200 1536 8% 1342,6 12,7858 0,00% 8,46837 0,00% 0,21745 2,00%
400 4656 6% 4245,4 3.600,01 0,02% 3.600,02 0,03% 1,05380 1,36%
400 6144 8% 5671,6 3.600,05 0,01% 3.600,05 0,17% 1,66678 1,33%
400 1584 2% 1337 0,51207 0,00% 0,41757 0,00% 0,18644 1,30%
400 3136 4% 2799,2 30,8889 0,00% 66,5543 0,00% 0,53736 1,39%
600 7056 4% 6485,2 3.600,03 0,01% 3.600,02 0,03% 1,76755 1,32%
600 10476 6% 9889,2 3.600,19 0,55% 3.600,17 0,68% 3,48298 0,00%
600 13824 8% 13160,6 3.653,25 3,50% 3.673,36 5,04% 5,67919 0,00%
600 3564 2% 3145,8 8,36057 0,00% 6,47711 0,00% 0,55590 1,28%
800 12544 4% 11861,6 3.600,17 0,50% 3.600,16 0,50% 4,16231 0,00%
800 18624 6% 17796,6 3.600,50 1,14% 3.600,40 2,02% 8,33034 0,00%
800 24576 8% 23638,2 3.601,18 1,41% 3.601,06 3,97% 13,4630 0,00%
800 6336 2% 5733,4 353,8155 0,00% 283,4706 0,00% 1,27415 1,20%
1000 9900 2% 9106,4 2.781,65 0,08% 1.925,13 0,00% 2,41209 1,04%
1000 19600 4% 18692,4 3.600,63 1,06% 3.600,41 1,13% 7,95794 0,00%
1000 29100 6% 28027,4 3.601,06 1,31% 3.601,04 1,12% 16,2562 0,00%
1000 38400 8% 37185 3.601,94 1,66% 3.600,83 1,30% 26,7285 0,00%

Avg 1785,3870 0,47% 1748,7633 0,67% 4,0024 0,80%
#Best 73 71 48

Table 4.3: Aggregated quality and time performances of the two exact and one heuristic proposed
approaches on the 24 Barabási–Albert instances scenarios.

is significantly promising, since the overall relative gap collected by the heuristic algorithm is
0.80%, with a peak of 2.54%, while the average computation time is ∼4 seconds and the algo-
rithm never requires more than 27 seconds to solve a single instance of the CD problem.

In Figure 4.1, we investigate how the number of acceptable solutions found by each method
increases with respect to both a maximum computation time and an adjustable threshold τ on
the solution quality. We consider τ ∈ {0, 0.01, 0.02, 0.03}, meaning that, in order to be taken into
account, the generated solutions must have relative gap values at most equal to 0%, 1%, 2% and
3% from the best known ones, respectively. As we can see, when τ ≤ 0.01, i.e. in the two graphics
above, the exact formulations are more effective, since they solve, in one hour of computation,
a larger number of instances according to the quality requirements. The situation completely
changes when we consider τ = 0.02 in the left below graphic: in this case, the convenience of
using the heuristic algorithm is clear, since it is able to solve almost the whole set of instances
according to the specified quality criterion within ∼28 seconds. The described behavior is even
more evident when considering τ = 0.03 in the right below graphic: indeed, this threshold value
is enough for the heuristic algorithm to solve the whole set of 120 instances always identifying an
acceptable solution; the two exact formulations, instead, solve a few less instances, since there
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Figure 4.1: Number of solutions found by Formulation 1, Formulation 2 and ECHeuristic having
values lower or equal to (1 + τ) times the best known one, τ ∈ {0, 0.01, 0.02, 0.03}.

exist instances for which the heuristic provides solutions which are at least 3% more convenient
than the solutions identified by the exact formulations.

In Figure 4.2, we further analyze how the number of the best solutions identified by each of the
proposed methods changes as the number of nodes (left) and the network density (right) increase.
As previously described, we have six different values of n ∈ {100, 200, 400, 600, 800, 1 000}, each of
which is associated with a set of 20 instances, and four different values of d ∈ {2%, 4%, 6%, 8%},
resulting in four sets of 30 instances each. As one may expect, the higher the values of n and d,
the larger the number of best solutions identified by ECHeuristic. In particular, the algorithm
finds a larger number of best solutions than both the exact formulations for n ≥ 400 and d ≥ 6%.

Finally, Figure 4.3 shows the clear convenience of the heuristic method with respect to the
time required for solving an instance of the CD problem. Computational times are reported,
in log-scale, on the y-axis of the graphic, while the values on the x-axis are the number of
nodes of the several subsets of instances. Because of the time limit of one hour imposed for the
exact formulations, the related curves never go over log(3 600). Nevertheless, the increase in the
required time, with respect to the increase in the number of nodes in the network, is evidently
more pronounced for the two ILP formulations than for the heuristic algorithm.
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4.4.2 Biological networks

Biological networks were collected from Network Repository [RA15], which provides a large
selection of real-world scientific network datasets from several domains. More in detail, a set of
28 biological networks was addressed in our experiments, with number of nodes n ∈ [453, 15 229],
number of edges m ∈ [1 129, 245 952] and density d ∈ [0.07%, 2.90%].

Formulation 1 Formulation 2 EC Heuristic Relative Gap
Instance Nodes Edges Density Value Time Value Time Value Time Best Form. 1 Formu. 2 EC Heur.
bio-DM-LC 658 1129 0,52% 865 0,06 865 0,07 870 0,06 865 0,00% 0,00% 0,58%
bio-diseasome 516 1188 0,89% 495 0,39 495 0,33 496 0,09 495 0,00% 0,00% 0,20%
bio-grid-mouse 1450 1636 0,16% 1171 0,06 1171 0,07 1173 0,14 1171 0,00% 0,00% 0,17%
bio-CE-LC 1387 1648 0,17% 1197 0,07 1197 0,08 1202 0,08 1197 0,00% 0,00% 0,42%
bio-yeast 1458 1948 0,18% 1413 0,14 1413 0,10 1422 0,12 1413 0,00% 0,00% 0,64%

bio-celegans 453 2025 1,98% 1634 152,76 1634 145,47 1669 0,45 1634 0,00% 0,00% 2,14%
bio-CE-HT 2617 2985 0,09% 2150 0,06 2150 0,06 2154 0,21 2150 0,00% 0,00% 0,19%

bio-grid-plant 1717 3098 0,21% 2269 0,34 2269 0,45 2300 0,31 2269 0,00% 0,00% 1,37%
bio-CE-GT 924 3239 0,76% 2589 3,95 2589 3,21 2618 0,48 2589 0,00% 0,00% 1,12%
bio-SC-TS 636 3959 1,96% 1217 6,21 1217 9,66 1228 0,43 1217 0,00% 0,00% 0,90%
bio-DM-HT 2989 4660 0,10% 3634 0,13 3634 0,16 3642 0,31 3634 0,00% 0,00% 0,22%
bio-grid-worm 3507 6531 0,11% 5740 5,38 5740 5,91 5759 2,10 5740 0,00% 0,00% 0,33%

bio-grid-fission-yeast 2026 12637 0,62% 11619 3600,48 11746 3600,26 11484 6,75 11484* 1,18% 2,28% 0,00%
bio-HS-HT 2570 13691 0,41% 10621 565,18 10621 391,19 10874 2,52 10621 0,00% 0,00% 2,38%
bio-SC-LC 2004 20452 1,02% 20428 3659,41 18229 3600,22 18213 5,31 18213* 12,16% 0,09% 0,00%

bio-grid-fruitfly 7274 24894 0,09% 21823 44,89 21823 29,68 21972 7,45 21823 0,00% 0,00% 0,68%
bio-dmela 7393 25569 0,09% 22754 8,79 22754 9,07 22873 4,74 22754 0,00% 0,00% 0,52%

bio-grid-human 9436 31182 0,07% 26723 2737,98 26971 3600,31 27010 11,12 26723 0,00% 0,93% 1,07%
bio-SC-GT 1716 33987 2,31% 30651 3601,94 31323 3601,35 30488 15,33 30488* 0,53% 2,74% 0,00%
bio-SC-CC 2223 34879 1,41% 30146 3601,68 30127 3602,57 29510 17,31 29510* 2,16% 2,09% 0,00%
bio-HS-LC 4227 39484 0,44% 36080 3601,08 37727 3600,96 34168 14,40 34168* 5,60% 10,42% 0,00%
bio-CE-PG 1871 47754 2,73% 46073 3600,54 45939 3600,14 46061 39,51 45939* 0,29% 0,00% 0,27%
bio-CE-GN 2220 53683 2,18% 51597 3602,72 51712 3600,19 51146 31,40 51146* 0,88% 1,11% 0,00%
bio-SC-HT 2084 63027 2,90% 58438 3600,83 63020 3606,33 56767 53,55 56767* 2,94% 11,02% 0,00%
bio-DM-CX 4040 76717 0,94% 70532 3600,89 76700 3651,44 68668 41,88 68668* 2,71% 11,70% 0,00%
bio-DR-CX 3289 84940 1,57% 81424 3601,43 84939 3606,75 77690 62,97 77690* 4,81% 9,33% 0,00%
bio-HS-CX 4413 108818 1,12% 102503 3601,45 108810 3611,24 98681 77,61 98681* 3,87% 10,26% 0,00%
bio-CE-CX 15229 245952 0,21% 245735 3676,82 245735 3670,54 221228 150,98 221228* 11,08% 11,08% 0,00%

1674,13 1698,14 19,56 1,72% 2,61% 0,47%

Table 4.4: Comparison of the performances of the proposed approaches on real biological net-
works.

Table 4.4 reports the results obtained by running the three proposed solution approaches

Figure 4.2: Number of best solutions found by Formulation 1, Formulation 2 and ECHeuristic
with respect to the number of nodes (on the left) and the network density (on the right).
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Figure 4.3: Increasing trends of the running times of Formulation 1, Formulation 2 and
ECHeuristic as the number of nodes increases.

on the set of biological networks, sorted by increasing number of edges. For each method, the
value of the returned solution, in terms of number of edges to be removed, as well as the total
computation time in seconds, are reported. As before, the Best column shows which is the value
of the best solution found and the subsequent columns report the relative gaps with respect to
such value.

The experiments emphasize the efficiency and effectiveness of the proposed heuristic, which
with an average computation time of ∼20 seconds and peak of ∼150 seconds on the larger
instance, exhibits a relative gap of 0.47%, lower than the ones associated to both the exact
formulations, equal to 1.72% and 2.61%, respectively. Furthermore, the algorithm finds the best
known solution on 11 instances of this set, never exceeding the 2.38% gap in the remaining cases.

As for the two exact formulations, which together solve 16 instances to optimality, these
tests show that when the size of the network significantly increases, Formulation 2 becomes
less effective than Formulation 1, which, excluding a very restricted subset of instances, results
slightly faster and produces considerably better solutions.



Part II

Combinatorial optimization problems
with conflict constraints
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Chapter 5

The Set Covering problem with
Conflicts on Sets

The first computational optimization problem with conflict constraints analyzed in this thesis
is the Set Cover problem with Conflicts on Sets (SCCS), it represents a particular extension of
the classic Set Cover problem. Unlike the other problems with conflict treated in this thesis,
the starting problem (without conflict constraints), in this case the classic Set Cover problem
(SCP) is already NP-Hard. We study an extension of the SCP that is better suited to some
real-world problems, introducing the concept of conflict not in a hard way as it is already used
in the literature, but allowing the use of conflicts when necessary, paying a penalty.
The aim of the problem is to find the best combination of subsets to represent a cover of minimum
cost, trying to reduce the cost of conflicts as well. We present two mathematical formulations
for the SCCS problem and a parallel GRASP approach, which solves it heuristically. The typical
structure of a GRASP algorithm is described in Section A.3.1 of Appendix A. A large set of
instances were used to test our approach. The instances were created from instances already
present in the literature, which were built to be challenging for the classic set cover proposed.
The proposed heuristic is far more effective and efficient than Gurobi solver, according to com-
putational tests, which solves the mathematical formulations in a much longer time.

Given a finite set of elements (items) U = {1, . . . ,m} and {Uj ⊆ U | j ∈ N } be a collection of
subsets of U where N = { 1, . . . , n }. With each Uj , j ∈ N , a non-negative cost cj is associated.
We say that W ⊆ N covers U if

⋃
j∈W Uj = U . The Set Covering Problem (SCP) asks for the

cheapest cover. A bibliography of applications can be found in the appendix of [BP76] and in
the book edited by [DMM97]. The problem is well known to be NP-hard and has been exten-
sively studied in a variety of application contexts, including manufacturing and crew scheduling
problems in railways to location. Also a variety of solution approaches, both exact and heuristic,
have been proposed for the problem (Caprara et al. [CTF00]).

Another version instead, if an element remains uncovered a penalty has to be paid, as it
happens in the prize-collecting version of partial SCP.
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As for other combinatorial problems, a relevant role is played in the literature by variants.
In recent years several variants has been studied including Set Covering generalizations or the
introduction of additional features such as profits, budget constraint or conflicts. In the partial
SCP it is either not necessary or not possible to cover all of the elements of the set U due to
other constraints or objectives. Each element i ∈ U is associated with a profit pi, whereas each
subset Uj has a cost. The problem aims to find a minimum cost collection of subsets such that
the combined profit of the elements covered by the collection is at least equal to a predefined
profit bound. In the prize-collecting version of partial SCP, elements should not be all strictly
covered; however, if an element remains uncovered a penalty has to be paid. The problem looks
for a collection of subsets such that the cost of selected subsets plus the penalties of uncovered
elements is minimized (see Könemann et al. [KPS11] and references therein). In Bilal et al.
[BGG14], the authors analyze a variant of the partial SCP where subsets are partitioned into
groups. The selection of a subset in a solution implies the activation of its group and the payment
of the cost associated with that group (negative profit). The objective is to maximize the total
profit while it is not necessary to cover all the elements.
Here, we tackle a different problem called Set Covering with Conflicts on Sets (SCCS), where
the meaning of conflict is determined by the total number of elements that any given pair of
subsets cover together. If the number of elements in common between two sets exceeds the k
threshold, then they are in conflict; these can still be selected by paying a penalty. This penalty
is determined by how much the intersection cardinality of the subsets exceeds a certain threshold
k. An interesting application of the SCCS concerns the location of radio antennas, (radio base
station RBS), for mobile communication, taking into account not only the coverage through the
signal of a certain area, but also the radioactive pollution that these antennas generate.

The growth in the number of Internet users and applications that make massive use of net-
worked data exchange, such as online games, video streaming, telemedicine, lessons via videocon-
ferencing and the Internet of Things (IoT), has led to increasing connectivity between devices of
different types. Future communication networks will have to be implemented in order to create
an infrastructure capable of simultaneously supporting various services and a large number of
users connected to the service [ALL11],[GWC+13].
To support users and ensure high performance in densely populated urban areas, many small
cells need to be located to provide good coverage. Nowadays people are more attentive and
sensitive to the problem of possible dangers due to electromagnetic pollution generated by the
use of these antennas [STM17].
Although no scientific evidence has been demonstrated of any relationship between electromag-
netic fields and human disease, all precautionary measures against an uncontrolled rise in the
electromagnetic field level must be taken. This choice is not only linked to a general precau-
tionary principle, but also to specific legislation: in fact, the Italian regulations, in the field of
electromagnetic emissions, impose a limit of 6 V/m for long-term exposed persons, and affirm
that, however, the e.m. emissions in the field must be reduced to a minimum compatibly with the
quality of services [CDLMR02]. In recent years the interest in the reduction of electromagnetic
pollution has also spread to the scientific community of optimization; here are some articles that
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deal with this topic [ACMS02],[WJG13].
Having also ensured a good quality of service (QoS), which to many may seem contrary to the
precautionary principle, we want to cover all areas of interest avoiding installing the antennas
(RBS) too close to each other in order to reduce the radiation exposure of people living near
these antennas.
Suppose we want to cover a large city, the places where antennas can be placed are limited by
physical and natural limits but they are not necessarily few. Considering the signal coverage of an
antenna, we identify a specific region served by an RBS, which will have intersection points that
will not only benefit from better signal reception but also from greater electromagnetic exposure.
We could choose a subset of areas avoiding overlaps and minimizing radiation exposure, however,
this leads to a reduction in the quality of the service, there may be coverage holes.
So our goal is to define a coverage of the city by allowing the intersections of the areas but paying
a penalty proportional to the size of the intersection, so we want to add a new RBS only when
it is strictly necessary.
In order to deal, with the coverage of the entire city but also with the electromagnetic pollution,
we introduce a threshold k, which defines the maximum number of elements that two areas can
have in common without paying a penalty.
The introduction of this threshold allows not only to reducing the intersection areas but also to
ensure a good quality of service, having a strong impact on traffic and the quality of the con-
nection. A configuration that completely eliminates intersections does not necessarily guarantee
good coverage, so it is possible to modify this threshold, allowing the design of energy efficient
systems with controlled levels of electromagnetic pollution, without compromising the quality of
the experience of the user.

5.1 Mathematical Models

Given a finite set of elements U = { 1, . . . ,m } and a collection of subsets {Uj ⊆ U | j ∈ N },
where N = { 1, . . . , n } contains the indices of the subsets of U . A non-negative cost cj is
associated with each subse, j ∈ N . Two subsets Uj and Ul are in conflict when they have more
than k elements in common, i.e., |Uj ∩Ul| > k, where k is an integer called the conflict threshold.
We define B as the set of all unordered pairs { j, l }, j, l ∈ N , j 6= l of subsets and by D ⊆ B the
set of pairs { j, l } such that the subsets Uj and Ul are in conflict. A non-negative conflict cost
djl must be paid each time a conflict arises between two sets Uj and Ul in order to choose both
of them as part of the solution. We set djl = max { |Uj ∩ Ul| − k, 0 }, and we multiply it by γ
which is a unitary cost:

γ := max

{ ⌈
max
i∈U

ci
|Ui|

⌋
, 1

}
.

To avoid the cost of conflicts being overlooked by the cost of coverage, we multiply the cost of
conflicts by γ. Where γ is chosen in an adaptive way for each instance, setting it to the maximum
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of the subset cost ratios for covered items. That is, it grows in relation to the cost of coverage.
A cover of U that minimizes the sum of covering and conflict costs is aimed by the Set Covering
Problem with Conflict on Sets (SCCS).

5.1.1 Binary Linear Programming Formulation

A pure binary model with two sets of binary variables is the simplest formulation. The first set
of variables, is represented by the xj variables, which is one for each sub-set Uj ,

xj =

{
1 if Uj is selected

0 otherwise

The second set of variables is represented by yjl (j < l) for each possible pair { j, l } ∈ D of
subsets in conflict.

yjl =

{
1 if both Uj and Ul are selected

0 otherwise

The variable yjl takes value 1 when both subsets are selected and zero otherwise. In order to
define the integer linear programming model, we make use of a matrix A which has the elements
ui on the rows and the subsets Uj on the columns:

aij =

{
1 if ui ∈ Uj
0 otherwise

The mathematical formulation is as follows:

(SCCS_BIN) min
∑
j∈N

cjxj +
∑
{ j,l }∈D

djlyjl (5.1)

∑
j∈N

aijxj ≥ 1, i ∈ U, (5.2)

xj + xl ≤ yjl + 1, { j, l } ∈ D, j < l, (5.3)
xj ∈ { 0, 1 } , j ∈ N, (5.4)
yjl ∈ { 0, 1 } , { j, l } ∈ D, j < l. (5.5)

Constraints (5.2) are classical set covering constraints and constraints (5.3) model the conflict:
when both subsets Uj and Ul are used in the solution, variable yjl is forced to 1, it means
{ j, l } ∈ D are selected, i.e., xj = xl = 1. This model has O(n2) binary variables since the size
of D is bounded by O(n2), and O(n2 +m) constraints.
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5.1.2 Integer Linear Programming Formulation

The previous model (SSCS_BIN) can be reformulated using binary and integer variables. We
define an integer variable wij defined for each pair of subsets Uj and Ul such that { j, l } ∈ B,
equal to the number of elements jointly belonging to both subsets if larger than threshold k and
zero in all the other cases, thanks to objective function minimization.

(SCCS_MIP) min
∑
j∈N

cjxj + γ
∑
{ j,l }∈B

wjl (5.6)

∑
j∈N

aijxj ≥ 1, i ∈ U, (5.7)

m∑
i=1

aijail(xj + xl − 1)− k ≤ wjl, { j, l } ∈ B (5.8)

xj ∈ { 0, 1 } , j ∈ N, (5.9)
wjl ≥ 0 integer, { j, l } ∈ B. (5.10)

Constraints (5.8) model the conflicts, so model the integer variable wjl setting it to max{|Uj∩Ul|
−k, 0} if both sets Uj and Ul are selected and zero otherwise. Since the number of integer variables
grows as the square of the number of available subsets n, the model consists of O(n2) integer
variables, O(n) binary variables and O(n2 +m) constraints.

5.2 The parallel GRASP algorithm

In this section, we describe an algorithm based on the GRASP (Greedy Randomized Adaptive
Search Procedure) strategy that we implemented to solve the SCCS problem. It is a two-step
procedure: first, an initial feasible solution is discovered using a combination of random and
greedy selections, and then, in the second phase, a local search is used to enhance the solution
found in the first step. We want to use a parallel implementation of the GRASP algorithm
where common information is shared among different processes, each of which is performing
the identical single-process GRASP. The parallel execution allows for a much broader range
of the search space to be explored within the same time constraint, resulting in a significant
improvement in the final solution, allowing to make the most of the hardware of the machine on
which the tests are performed.
The single-process GRASP is first presented in the next section, after which its parallel version
is introduced and we offer a data structure analysis with space and temporal complexity.

5.2.1 Single process GRASP

As for a regular GRASP there are two main phases to the method:
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1. a feasible solution is built starting from an empty one by adding a subset Uj , j ∈ N at a
time.

2. A local search is conducted in the second stage, which involves sequentially exploring three
different neighborhoods and involves a growing computational burden.

The first phase works in the following way. In order to select the next subset to add, all subsets are
ranked using a greedy function that measures the benefit of each subset selection, obviously it is
only an indicative value. Precisely the various sub-sets Uj are ordered in non-decreasing order of
the ratio of their costs plus the conflicts costs with the subsets that already belong to the current
partial solution (it is initially empty, so the first choice does not include any conflict costs), over
their cardinality excluding the items already covered by the current solution (we refer to this
list as Candidate List). The heuristic is adaptive because the benefits related to each subset are
updated based on the subsets already chosen in the partial solution at each iteration. A candidate
is selected at random from Restricted Candidate List (RCL) that contains a predetermined
number of the most promising subsets. As a result, various solutions might be obtained at
the conclusion of each GRASP iteration. The local search in the second phase, as already
mentioned, uses three types of moves, which allows to explore three types of neighborhoods,
these are respectively one more expensive than the other. The algorithm stops using the first
neighborhood only when it remains blocked in a local minima, so it can no longer improve, and
move on to the second neighborhood, in the same way when the second neighborhood fails to
explore more new solutions, it moves to the third.
In writing the pseudo-code, we used the following conventions:

• For simple numerical values, we adopted lower case letters (a, b, c, . . . );

• For array containing simple numerical values, upper case letters (A, B, C, . . . );

• For the associative arrays containing sets of numerical values we used upper case letters
with calligraphic font (A, B, C, . . . ).

Te value associated to a given key-index k is denoted placing k as subscript to the name of the
data structure, in both cases: (Ak, Bk, Ck, . . . , Ak, Bk, Ck, . . . ).
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Algorithm 5: Single-process-GRASP
Data: instance, imax, tmax, S, sharedCache, incumbentCost
Result: Incumbent solution W ∗ and its objective value w∗

1 I ← BuildIncidenceStructure(instance) ;
2 C ← BuildConflictStructure(instance) ;
3 (W ∗, w∗)← (N,+∞) ;
4 while (i < imax) and (t < tmax) do
5 (W,w)← (∅, 0) ;
6 (R,V,Q)← InitStateStructures(instance) ;
7 GraspPhase1(instance, C, I,W,w,R,V,Q, S, sharedCache) ;
8 GraspPhase2(instance, C, I,W,w,R,V,Q) ;
9 if w < w∗ then

10 (W ∗, w∗)← (W,w);
11 i← 0;
12 else
13 i← i+ 1;
14 end
15 t← ElapsedTime()

16 end
17 return (W ∗, w∗)

Algorithm 5 describe the procedure behind our parallel algorithm. The algorithm takes as input:

• instance: the data related to a problem, (i.e., the set of elements U , all subsets Uj , j ∈ N ,
the cost of each subset and the non-zero conflict costs);

• imax,indicates the maximum number of iterations without improvement after which the
algorithm terminates (the stopping rule parameters).

• tmax is the time limit assigned to the algorithm;

• S, S ⊆ N refers to the family of subsets selected to build the initial cover during the first
phase of GRASP (at the beginning of execution S is empty);

• sharedCache is the data structure that contains common information that is shared by all
processes;

• incumbentCost is the objective function value of the best solution found among all pro-
cesses at any time (if we run the parallel variant of the algorithm).

Note that, the data used by the parallel algorithm variant is already included in our description
even though the algorithm run in a single process. Since this information is only relevant if the
algorithm is executed in parallel, we assume that S = N .
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Lines 1–3 of the Algorithm 5 are initialization steps. BuildIncidenceStructure is a function
that builds and returns, the array I that associates with each element i ∈ U the subsets Uj
containing i, i.e. Ii := { j ∈ N | i ∈ Uj }. This set can be immediately used to check if the
input instance is infeasible, checking if any subset Ii, i ∈ U is empty. Similarly the function
BuildConflictStructure builds the associative array C that maps each index j ∈ N to the
set Cj , and we define it in the following way: Cj = { l ∈ N | djl > 0 }, j ∈ N the set of those
subsets of U that are in conflict with Uj . At Line 3, the incumbent solutionW ∗ and its objective
function value w∗ are initialized.

Algorithm 5 include a main cycle (Lines 4–16) which stops as soon as one of the two stopping
rules, controlled by imax and tmax, holds. During each iteration we initialize an empty set W
that will contain the indexes of the cover we are going to build and we set its initial cost w
equal to 0. At line 6 we use the procedure InitStateStructures, which initializes structures
which are: R,V,Q. Let’s define Rj = cj +

∑
l∈W djl to represent the current cost for each subset

Uj , j ∈ N , corresponding to the partial cover W . We say that Rj represents the increase of
the objective function value if j were added to the current working cover W , only if j 6∈ W ,
then. While if j ∈ W , then Rj represents the decrease of the objective function value if j were
removed from the current working cover W . In order to implement this mechanism, we make
use of the associative array R. Since W is empty at the start of each cycle, the current cost of
each subset Uj equals its subset cost, i.e. Rj = cj for each j ∈ N ; thus, array R is initialized
with the instance initial costs C. As for the structure V, we denote by Vi := { j ∈W | i ∈ Uj }
for each element i ∈ U , the set of subsets Uj , j ∈ W that cover i. Similarly, the Q structure is
thus defined: by Qj = { i ∈ U | Vi = { j } } the set of elements of U uniquely covered by subset
Uj for a given j ∈W . Data structures V and Q are implemented as associative arrays mapping
each element i ∈ U to Vi and each subset Uj , j ∈ W to Qj . Furthermore, because they rely on
W , they are updated anytime W changes and since W is initially empty, the data structures V
and Q are initially empty as well.
The two phases of our algorithm, are reported in lines 7-8, using the two functions GraspPhase1
and GraspPhase2. The first function tries to populate the working cover W in order to get
an initial, possibly good solution. The latter tries to improve the initial solution exploring a
sequence of neighbourhoods. At lines 9–14 the algorithm checks if the new solution found is
better than the upcoming one, in which case it updates it. After that, the counter i, which
counts the number of iterations without improvement, and the variable t, which counts the time
since the execution began, are updated. When the stopping condition holds and therefore the
main loop ends, line 17 the algorithm returns the best cover found.

5.2.2 Phase 1: building an initial solution

Algorithm 6 shows the pseudo-code for the iterative procedure GraspPhase1. The working cover
W is initially empty and its objective function value w is set to 0. At each iteration, a new
subset is randomly chosen from the Restricted Candidate List (RCL). At Line 1, we use the
procedure InitializeCandidates to initialize the associative array U that contains the subsets
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to be selected to enter the current cover W . To be more clear, each subset U j is initialized with
the subset Uj , j ∈ N specified by instance, and after each update of the current partial cover
W , U j will only include the elements of Uj that have not yet been covered by W . The RCL
includes the p most promising subsets that were determined by ordering in non-decreasing value,
the candidates based on the ratio’s Rj

|Uj |
. The order is adaptive because it depends on the size of

U j (which only contains the elements of Uj not yet covered by the current partial cover W ) and
the value of Rj (includes the cost of the conflicts between the subset Uj and the subsets that
already belong to the current partial cover W ). In order to efficiently implement this strategy
we need a specialized data structure (Z) that during each iteration keeps track of the repeated
changes of the ratios that determines the RCL (using the procedure BuildCandidateStructure
in line2).
Until the selected collection of subsets whose indexes are inserted into W provides a cover for
U , the while loop (Lines 3–40) is repeated. The algorithm randomly chooses a subset from
the RCL function PopRandomCandidate, adds it to the current cover W and removes it from U
(lines 4–6). The algorithm then determines if the current collection of subsets inside W has
previously been met in previous iterations (Line 7). If so, the procedure obtains the information
that was previously calculated from the sharedCache object and set the updated values of all
data structures (Line 8), otherwise we update data structures accordingly (Lines 10–38). Until U
is empty, this operation is repeated, indicating that W is a cover of U . The procedure operates
as follows each time the addition of a subset to the working cover W results in a never seen
partial cover:

1. At line 10, The selected subset’s cost Rj , is added to the working cover cost w;

2. The structure Z is updated by the current cost of those subsets that are in conflict with
j, using the UpdateCandidateStructure function at lines 11–14, where the index of the
subset that is in conflict with j is l;

3. The subsets that have become redundant after the addition of subset Uj are removed from
W (Lines 15–29). To achieve this goal we note that a subset Ul inside the current cover is
redundant when all its elements are covered by at least another subset (i.e., when set Ql
is empty). To this aim, we iterate on elements i in Uj . If i was previously uncovered, Uj
is recorded as the unique subset that covers i (Lines 16–17); otherwise, if i was previously
covered by only one other subset l in the working cover, i.e. Vi contains exactly one index
(the value returned by Peek(Vi), we keep track that such subset is no more the only one
that covers i (Lines 19–26). If this action makes Ul redundant, we add l to the list T of
redundant subsets that may be eliminated (Lines 22–24). In any case, index j is added
to the collection of the subsets in the working cover W that cover element i (Line 27).
Finally, the PruneWorkingCover function actually removes from W some of the redundant
subsets in T and updates all the other data structures accordingly (Line 29). Note that
when T contains more than one redundant subset, they may have non-empty pairwise
intersection. In turn, this may imply that only some of them can be removed without
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uncovering some already covered elements. In this situation, making the best choice would
require a cumbersome computational analysis of all the possibilities. However, since the
goal of the current phase is to generate a feasible initial solution, we randomly remove as
many redundant subsets as possible using a first in first out strategy and delegating any
refinement to the second phase of the algorithm. The pseudo-code of function
textttPruneWorkingCover is provided at the end of Algorithm 6.

4. U j is subtracted from each subset U l inside U .If U j contains U l we remove l from U and
from Z, otherwise we replace U l with U l \ U j (Lines 30–37).

5. The details regarding the new working cover w are stored in sharedCache object for
potential future use.
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The subsets in W offer a feasible solution with value w at the conclusion of GraspPhase1.
Algorithm 6: GraspPhase1
Data: instance, C, I,W,w,R,V,Q, S, sharedCache

1 U ← InitializeCandidates(instance) ;
2 Z ← BuildCandidateStructure(S,U , R) ;
3 while U 6= ∅ do
4 j ← PopRandomCandidate(Z) ;
5 W ←W ∪ j;
6 U ← U \ j ;
7 if sharedCacheW 6= null then
8 (U , w,R,V,Q, Z)← sharedCacheW ;
9 else

10 w ← w +Rj ;
11 for l in Cj do
12 Rl ← Rl + djl;
13 Z ← UpdateCandidateStructure(Z, l, Rl/|U l|) ;
14 end
15 T ← ∅ for i in Uj do
16 if |Vi| = 0 then
17 Qj ← Qj ∪ { i } ;
18 else
19 if |Vi| = 1 then
20 l← Peek(Vi);
21 Ql ← Ql \ { i };
22 if |Ql| = 0 then
23 T ← T ∪ { l };
24 end
25 end
26 end
27 Vi ← Vi ∪ { j } ;
28 end
29 PruneWorkingCover(instance, C, I,W,w,R,V,Q,U , Z, T );
30 for l in U do
31 if U l \ U j = ∅ then
32 U ← U \ l;
33 Z ← RemoveCandidate(Z, l) ;
34 else
35 U l ← U l \ U j ;
36 end
37 end
38 Put(sharedCache,W, (U , w,R,V,Q, Z)) ;
39 end
40 end
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Algorithm 7: PruneWorkingCover
Data: instance, C, I,W,w,R,V,Q,U , Z, T

1 for j in T do
2 if |Qj | > 0 then
3 W ←W \ { j };
4 Qj ← ∅;
5 w ← w −Rj for i in Uj do
6 Vi ← Vi \ { j };
7 if |Vi| = 1 then
8 l← Peek(Vi);
9 Ql ← Ql ∪ { i };

10 end
11 end
12 for l in Cj do
13 Rl ← Rl − djl;
14 Z ← UpdateCandidateStructure(Z, l, Rl/|U l|);
15 end
16 end
17 end

5.2.3 Phase 2: Local Search

Function GraspPhase2 employs a sequential local search strategy (pseudo-code is shown in Al-
gorithm 8).

Let r, s ∈ N, we define a (r , s)-exchange move as a function that exchanges r subsets in the
cover W with s subsets not belonging to W and preserves feasibility.
Let M = N+ × { 0, 1 } ∪ { 1 }, we define NeighM (W ) as the neighborhood of W containing all
the covers that can be obtained fromW applying once any (r, s)-exchange move with (r, s) ∈M .
Since M can be written as the disjoint union of the following subsets

M0 = N+ × { 0 } ,
M1 = N+ × { 1 } ,

M2 = { 1 } × { k | k ∈ N, k ≥ 2 } ,
M = M0 qM1 qM2,

we can partitionNeighM (W ) into three smaller disjoint neighbourhoodsNeigh0(W ), Neigh1(W )
and Neigh2(W ) corresponding to the (r, s)-exchange moves with (r, s) belonging to M0, M1 or
M2, respectively.

The proposed local search strategy consists of the following steps.
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1. Explore Neigh0(W ) using a best improvement strategy (function ExploreNeigh0). This
neighborhood contains all the feasible covers of U that can be obtained removing one or
more subsets from the current solution W . A necessary and sufficient condition to be able
to remove a single subset Uj with index j from W is that the set of elements covered only
by such subset must be empty, i.e. Qj = ∅. Let F ⊆ W be the set of removable subsets
belonging to the current cover that satisfy this condition. Note that it may not be possible
to remove all the subsets in F at once. We apply a procedure to determine the subfamily
of F that once removed maintains the feasibility and produces the highest decrease of the
objective function value.

2. The function ExploreNeigh1, explore the neighborhood of Neigh1(W ) and it is a (r, 1)-
exchange. If we obtain a new cover that improves the incumbent solution, we update
the best solution found and restart the search from step 1, then returning to explore the
neighborhood of Neigh0(W ).

3. Explore Neigh2(W ) (function ExploreNeigh2). This neighborhood is defined by the set
of (1, s)-exchange moves (s ≥ 2), namely the moves that replace exactly one subset in
the current cover W with two or more external subsets while preserving feasibility. Fully
exploring all these possibilities may require a large amount of time since restoring feasibility
after the removal of a subset from a feasible solution amounts to solve a smaller SCCS
instance. As a consequence, we explore this neighbourhood only partially, starting from
the most promising move and setting a time threshold τ to the evaluation of the moves that
replace a given subset inside W (we forcefully stop the analysis when the time threshold is
reached and move to the next one). More precisely, for each subset Uj , j ∈W , we retrieve
the set Qj of elements covered only by Uj and, for each such an element, we sort its incident
subsets by increasing current cost. We iterate over all possible Cartesian products of the
subsets that cover the elements previously covered only by Uj and, if their addition to W
improves the best value found so far, we save this move as the incumbent one. Once all
subsets inW have been evaluated for removal, if we have found at least one cover improving
the current one, we update W and restart from step 1, otherwise the local search ends.
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Algorithm 8: GraspPhase2
Data: instance, C, I,W,w,R,V,Q

1 (W ∗, w∗)← (W,w);
2 exit← false;
3 repeat
4 (W,w)← ExploreNeigh0(instance, C, I,W,w,R,V,Q);
5 if w < w∗ then
6 (W ∗, w∗)← (W,w);
7 else
8 (W,w)← ExploreNeigh1(instance, C, I,W,w,R,V,Q);
9 if w < w∗ then

10 (W ∗, w∗)← (W,w);
11 else
12 (W,w)← ExploreNeigh2(instance, C, I,W,w,R,V,Q);
13 if w < w∗ then
14 (W ∗, w∗)← (W,w);
15 else
16 exit← true;
17 end
18 end
19 end
20 until exit;

The procedure continues to iterate until the cover W can no longer be improved.
To efficiently implement the above procedure, we use information stored inside the associative

arrays V and Q. To remove a subset Uj , j ∈ N , from the current solution, a necessary and
sufficient condition to restore the feasibility of the current cover W is to add a (possibly empty)
collection of available subsets that covers the elements inside Qj . Data structures required during
these steps are mainly needed to track the local changes of their global counterparts.

As far as time complexity is concerned, we observe that the size of the neighborhood in Step
1 depends on the cardinality of W which is at most O(n) (although one may expect that on
average |W | � n). To detect the best possible (r, 0)-exchange move, during each iteration the
procedure goes through all the elements of a given subset and through all the subsets that have
a non-zero conflict costs with such subset. Determine whether a subset can be added to the
collection of removable subsets requires a time complexity of O(s+ t), where s is the maximum
cardinality of a subset (bounded by m) and t is the maximum number of conflicts that involve
a fixed subset in U (bounded by n − 1). Neigh1(W ) contains all covers that can be obtained
adding one external subset to W and removing the most convenient ones. Once the external
subset is inserted, finding the best collection of subsets that can be removed preserving feasibility
amounts to evaluate all possible (r, 0)-exchange moves and we apply the same strategy adopted
for Neigh0(W ). Finally, as already described, when exploring neighbourhood Neigh2(W ) we
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set a time limit for the evaluation of each collection of moves that removes a given subset from
W preserving feasibility.

5.2.4 Parallel GRASP

Parallel processing can greatly improve the outcome of the single-process GRASP. Due to its
randomly-restart nature, the higher the number of restarts and thus of feasible solutions the
algorithm is able to evaluate, the higher the chance it has to improve the value of the final
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solution.
Algorithm 9: GraspCoordinator
Data: instance, imax, tmax, cpuCount
Result: Incumbent solution W ∗ and its objective value w∗

1 (workers, inbound, outbound, sharedCache, incumbentCost)←
InitMultiprocessing(cpuCount) ;

2 forall worker in workers do
3 Run(worker,

GraspWorker,(instance, imax, tmax, inbound, outbound, sharedCache, incumbentCost));

4 end
5 S ← ∅ ;
6 forall i in 1, . . . , |workers| do
7 W ← Poll(outbound) ;
8 S ← S ∪W ;
9 end

10 Clear(sharedCache);
11 forall i in 1, . . . , |workers| do
12 Put(inbound, S);
13 end
14 W ∗ ← N ;
15 w∗ ← +∞;
16 forall i in 1, . . . , |workers| do
17 (W,w)← Poll(outbound);
18 if w < w∗ then
19 W ∗ ←W ;
20 w∗ ← w;
21 end
22 end
23 return (W ∗, w∗)

Algorithm 10: GraspWorker
Data: instance, imax, tmax, inbound, outbound, sharedCache, incumbentCost

1 (W,w)← Grasp(instance, imax, tmax, N, sharedCache, incumbentCost) ;
2 Put(outbound,W ) ;
3 S ← Poll(inbound) ;
4 (W,w)← Grasp(instance, imax, tmax, S, sharedCache, incumbentCost) ;
5 Put(outbound, (W,w)) ;

A naive application of parallel computing would be to spawn as many processes as the
number of available CPUs on the machine where the program is executed, each one carrying out
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the algorithm previously described. After the termination of all executions, the main procedure
would gather the individual result of each process and select the best solution among all the
available ones. However, since each process executes the same optimization steps, it is beneficial
to save and share among all processes the information computed during each execution (especially
for computationally intensive tasks). This prevents each process from performing exactly the
same operations that others have done before. This strategy can be usefully adopted during the
first phase of the single-process GRASP. When building the initial feasible solution the procedure
starts from an empty collection and iteratively add one subset randomly chosen from the RCL.
Each time this action is carried out we are forced to update many data structures (namely U ,
W , w, R, V, Q and Z) to reflect the effect of the inclusion of a new subset inside the cover
that is currently being built. However, the outcome after each iteration of the first phase of the
algorithm solely depends on which subsets belong to the partial cover that we have constructed
so far. This is a type of information that can be easily shared among all processes. Therefore, in
the parallel implementation of our algorithm, once the new state of each data structure has been
computed for a given (partial) cover W , it is stored in a hash table (sharedCache) available
to all the processes. In this way, when any iteration of the first phase of the single-process
GRASP needs to evaluate an already analyzed partial cover W , no additional computational
effort is required. Note that this may come out to be particularly convenient when we need to
retrieve the state of the data structures associated with partial covers containing a few (typically
of high quality) subsets: they have a high probability to appear more than once across different
processes.

In order to reduce the overall running time, during the execution of the algorithm we also
share among all workers the value of the best cover found at any given time. To this aim, we
must replace Lines 9–14 in Algorithm 5 with the ones contained in Algorithm 11.
Algorithm 11: Parallel GRASP: change to Algorithm 5
9 if w < incumbentCost then

10 (W ∗, w∗, incumbentCost)← (W,w,w) i← 0
11 else
12 i← i+ 1
13 end

The benefits provided by multiprocessing are not limited to information sharing. The pos-
sibility to run the same instance multiple times in parallel has also been exploited to develop a
two stage algorithm. Performing the same non-deterministic task in multiple processes leads to
(most likely) different solutions. In our case a solution consists of a cover of U that, although
not optimal, can be expected to contain at least some of the subsets that belong to an optimal
solution. The union of all such solutions is likely to contain most (if not all) the subsets needed
to build an optimal cover. Therefore, at the end of the first stage we collect the best solutions
found by each process and during the first phase of the second stage we restrict the candidate
list to the collection of subsets selected in this way. This is the goal of the data structure S that
appears in the signature of function Grasp in Algorithm 5
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An algorithm that leverages parallel processing needs a coordinator (at an outer layer) to han-
dle and coordinate the work of each sub-process. The sole purpose of function GraspCoordinator
in Algorithm 9, (from now on the main process) is to orchestrate the execution of a pool of sub-
processes (from now on the workers) in charge of running function Grasp (Algorithm 5).

Function GraspCoordinator takes as input the instance data and the stopping rule param-
eters already discussed plus the integer value cpuCount, that represents the number of CPUs
the algorithm can use during the execution. At Line 1, function InitMultiprocessing is called
to instantiate the workers, two queue-like data structure (inbound and outbound) used to col-
lect the individual worker result at the end of the first and second stage of the algorithm, the
associative array sharedCache, accessible by all workers, used to share the output of the most
expensive computations, and the best incumbent objective function value incumbentCost found
among all workers up to a given instant of time.

At Lines 2–4, Algorithm 9 calls the Run function that instructs each worker (the first argu-
ment) to execute the single-process GRASP (the second argument) on the necessary input data
(the third argument). At Lines 5–9, Algorithm 9 gathers the results of the first stage of each
worker (the best covers found) and computes their union, storing the result inside the array S.
Note that the main process (the GraspCoordinator function) will block waiting for all workers
to put their results inside the outbound queue (Line 7). Once all workers have completed the
first stage, the method exits the loop and goes to Lines 11–13 where the union of all the best
covers found previously is added to the inbound queue (shared with each worker). Adding such
information inside the inbound data structure provides the signal to each worker to start running
the second stage of GRASP, using as available subsets for the first phase only those contained
inside the set S. Eventually, at Lines 14–22, the algorithm waits for each worker to complete
the execution of the second stage by querying the outbound queue. Once all results have been
collected, the best one is returned as the final solution (Line 23).

5.2.5 Data structures and time and space complexity

Our single-process GRASP makes use of different data structures. Since most of the times we
need to store and retrieve information associated to an element or a subset (both represented by
an integer) the most common data structures (used many times in the algorithm) are specific kind
of associative arrays, namely arrays and hash maps. Both these data structures are very well-
known and we simply recall that they both provide O(1) complexity when retrieving, inserting
or updating an entry. However, in the first phase of our algorithm there is a step that requires to
track the topmost p subsets ranked according to the value of Rj

|Uj |
(that depends on the current

partial cover) as discussed in Section 5.2.2. This situation can not be effectively handled by using
arrays or hash maps, since they do not provide efficient ways to sort their entries and to keep
them sorted when the value of any of them changes. To address this issue we use a pair (H1, H2)
of key-value binary heaps. The former is a maximum key-value binary heap with maximum size
equal to p and at any given time during the execution of the algorithm it holds the subsets that
have the lowest current costs. The latter, instead, is a minimum key-value binary heap that
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contains all the remaining subsets (those with higher current costs). Whenever the current cost
of any subset changes, we locate the heap that contains suck subset with O(1) time complexity
and update its value with O(log2(p)) time complexity if it belongs to H1 and O(log2(n − p))
complexity if it belongs to H2. Finally, we compare the top elements of H1 and H2 (which can
be both retrieved in O(1)) and, if the former is greater than the latter, we swap them. At the
end of this procedure H1 will contain the p subsets with lowest current costs. One can easily
check that in the worst-case scenario the time complexity of one iteration of the first phase of
our algorithm is O(n + m log2(n)). Data structures involved in the second phase are just plain
arrays and hash maps. As a final remark we note that adding the parallel processing to our
algorithm has a space and time complexity that do not depend on the size of the input instance.

5.3 Experimental analysis

In this section, we first describe the data set and the algorithm parameters setting, then we
provide the results obtained solving both mathematical formulations using Gurobi (with conflict
threshold k = 1 and k = 2) and compare their performance with that of our parallel GRASP.
The same machine has been used to execute all algorithms: an Intel Xeon Gold 6140M CPU
2.30GHz with 8 physical cores and 16 logical cores paired with 64 GB of RAM. The machine
runs the operative system Microsoft Windows 10 Pro.

5.3.1 Parameters setting

The GRASP algorithm has been implemented using CPython 3.10. In particular, the parallel
variant has been achieved using the multiprocessing module provided by the Python Standard
Library. No other external software packages have been used. The main process in charge of
handling the execution of all the subprocesses has been initialized with a number of workers
equal to 15 (the number of available machine cores minus one used to handle the inter process
communication workload and to provide to the operative system a free spot to execute all the
other programs). We set GRASP parameters as follows:

• the size p of the RCL has been set to
√
n;

• the stopping rules parameters have been set to imax = 50 and tmax = 600 seconds (equally
divided between the first and second stage);

• the threshold time τ for the evaluation of each subfamily of moves in Neigh2(W ) has been
set to 0.01 seconds.

To solve the mathematical formulations, we used Gurobi 9.5 without changing its default param-
eters setting except for the TimeLimit parameter which has been set to 1 hour (in particular,
the default value of the MIPGap parameter is 10−4). As for GRASP, all logical cores have
been made available to Gurobi that independently decided how many of them to use during the
optimization process.
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5.4 Instance generation

Since SCCS problem has not been previously studied in the literature, no benchmark instances
exist. We decided to generate them by adapting the instances for the set covering problem made
available by Beasley in the OR-library [Bea90a, Bea90b]. In Beasley’s instances the size and the
number of overlaps between subsets are not high enough to determine a consistent number of
conflicts even when k = 1 (the value max {maxj,l∈N,j 6=l { |Uj ∩ Ul| − k } , 0} is often very low or
equal to zero). For this reason, for each instance in the OR-library we generated a new instance
obtained by merging three consecutive subsets (as appearing inside Beasley’s original instance)
into a single one with cost equal to the sum of the costs of the merged subsets. Thanks to
this operation, the number of conflicts in each instance increased to a meaningful value for our
purposes. As a consequence of this adaptation, the new instances contain a number of subsets
that is about one third of the number of subsets in the original ones. Moreover, to compute the
conflict costs we set

γ := max

{ ⌈
max
i∈U

ci
|Ui|

⌋
, 1

}
.

To distinguish the new generated instances from the original ones we append the suffix ‘-3 ’ to
the name of the former ones (e.g., the name of the original instance ‘scp42 ’ from the OR-library
becomes ‘scp42-3 ’).
Computational tests have been carried out on 80 instances partitioned into three sets. Set-A,
consisting of 50 instances, has been obtained by adapting the instances proposed in [Bea87]. Set-
B contains 10 instances and has been obtained by modifying the instances proposed in [GW97].
Finally, Set-C has 20 instances obtained by merging instances proposed in [Bea92]. The main
features of these three sets are summarized in Tables 5.1-5.2 where the first column shows the
name of the instance, the second and third columns show the number of elements (|U |) and of
subsets (|N |), whereas the last two columns show the number of pairs of subsets in conflict when
k = 1 and k = 2, respectively.

5.4.1 Computational results

In Table 5.3 we compare the performance of the two mathematical formulations (SCCS_BIN and
SCCS_MIP) solved with Gurobi. Since we set a time limit, Gurobi’s execution may terminate
with either an OPTIMAL status (when an optimal solution has been found) or a TIME LIMIT status
(when the 1 hour time limit has been reached and the incumbent feasible solution is returned).
The table is partitioned into two parts, one devoted to the comparison of the two models when
k = 1 and the other when k = 2. For each model, column Obj provides the solution value,
column ObjC indicates the sum of all conflict costs and shows into brackets the corresponding
number of conflicts #conf. Column Time contains the computational time in seconds. Finally,
the last two lines of the table report the average objective and time values Avg and the number
of optimal solutions #Opt found by the two models out of all instances, respectively. When
analyzing these last two lines, it is evident how both mathematical formulations allow to obtain
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the same number of optimal solutions when k = 1 and k = 2 and that such number is larger
for k = 2 (29 instances solved to optimality vs. 18). Moreover, the average computational time
decreases from around 2940 seconds, for k = 1, to around 2340 seconds, for k = 2. Thus,
instances with k = 2 seem to be easier to solve than instances with k = 1: this is probably due
to the lower number of conflicts in the instances when k = 2 (cf. Tables 5.1-5.2). Instances in
Set-C are the ones with the highest number of conflicts and this is, probably, the reason why no
optimal solutions have been found by Gurobi in any of these instances.

Figure 5.1: SCCS_BIN vs. SCCS_MIP: percentage of instances solved to optimality for (a)
k = 1 and (b) k = 2.

In Figure 5.1, we show the results reported in Table 5.3 in a way that better highlights the
performance of the models. In Figure 5.1, we show the results reported in Table 5.3 in a way that
better highlights the performance of the models. The horizontal axis reports the computational
time in seconds and the vertical one the number of instances optimally solved within that time.
In other words, the (x, y) point on this plot shows the percentage of optimally solved instances
(y value) in less than or equal to x seconds. This implies that the faster the growth of a curve,
the better the performance. The blue curve is associated with SCCS_BIN model, whereas the
orange one with SCCS_MIP. Figure 5.1a certifies the similar performance of the two models
that we have already observed. However, we note that, overall, around 23% of the instances are
solved to optimality by SCCS_BIN within 2280 seconds, while SCCS_MIP reaches the same
result in 1950 seconds. This means that SCCS_MIP is 15% faster than SCCS_BIN in reaching
the optimal solution. This trend is even more clear in Figure 5.1b. Here, the number of optimal
solutions found is equal to 36% and most of them are found by both models in less than 75
seconds. However, the performance gap between the two models for k = 2 is more evident as
SCCS_MIP reaches the highest percentage in about 1250 seconds while SCCS_BIN requires
around 2000 seconds to achieve the same result. To summarize, the effectiveness of the two
models is the same, but SCCS_MIP is, on average, more efficient than SCCS_BIN.
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In Table 5.4 we compare the solutions found by our parallel variant of GRASP with the ones
found by the two models. Also in this case the table is partitioned into two parts providing
results for k = 1 and k = 2, respectively. Column Gurobi shows the best (possibly optimal)
solution found by Gurobi within the time limit of 1 hour. Optimal solutions are emphasized
by a trailing asterisk. Columns ObjB and ObjMed report the best and the median objective
values of parallel GRASP out of 10 runs for each instance. The next four columns provide
statistics on the best solution out of the ten runs: column ObjC shows the sum of all conflict
costs and the corresponding number of conflicts #conf ; column TBest reports the time to best
that represents the time in seconds required to find the best solution, column Time shows the
total computational time in seconds and, finally, the Gap column provides the percentage gap
between ObjB and Gurobi values. This percentage value is computed as 100 × Obj−Gurobi

Gurobi . In
each row, the best value is marked in bold. At the bottom of the table, the Avg row reports
the average values of the computational time and of the percentage gap, while #Best shows how
many times parallel GRASP finds a solution that is better than or equal to the one found by
Gurobi. Finally, the row AvgRSD contains the average value of the relative standard deviation
of the objective value computed using the results of the 10 runs. The results in row #Best show
that parallel GRASP is extremely effective finding, for k = 1, in 75 out of 80 instances a solution
better than or equal to the best one (the value is strictly better in 55 instances with an average
improvement of 40.8%); on the remaining 5 instances, the percentage gap is lower than 3.7%.
Similar results are observed for k = 2 where for 76 instances the solution provided by parallel
GRASP is the best one (the value is strictly better in 44 instances with an average improvement
of 46.0%); the percentage gap in the remaining 4 instances is lower than 3.8%. It is worth noting
that GRASP always finds the optimal solution in the 47 instances where this solution is known
with the only exception of instances scp41-3 and scp410-3 for k = 1. Moreover, the average
percentage gaps equal to −28% for k = 1 and −23% for k = 2 further highlight the effectiveness
of our algorithm. Finally, the standard deviation values show that our algorithm is also stable
with an average relative standard deviation equal to 1.65% and 1.22%, respectively.

The results of the Gap column confirm that the hardest instances to solve using the math-
ematical formulations are the ones in Set-C. Indeed, in these instances parallel GRASP finds
solutions that are from 38% to 58% better than the solutions provided by Gurobi for k = 1, and
from 41% to 69% for k = 2.
Finally, regarding the computational time, GRASP requires on average less than 400 seconds for
k = 1 and less than 380 seconds for k = 2. In more than half of the instances the algorithm
stops before reaching the time limit of 600 seconds.

We conclude this section providing some charts that allow to better understand the contri-
bution of the different components of the GRASP algorithm and to highlight how the structural
differences of the test instances at hand reflect on the internal workload.
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Figure 5.2: Average percentage improvement of incumbent solution value between one stage and
two stage GRASP.

Figure 5.3: Average percentage number of times precomputed data has been retrieved from the
shared cache.
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(a) Average number of repetitions of phase 1

(b) Average number of repetitions of phase 2

Figure 5.4: Average number of repetitions of each phase of the GRASP algorithm
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Figure 5.2 shows the performance impact of the second stage (when GRASP is rerun restrict-
ing the subsets taken into account during the first phase) that consistently improves the value of
the final solution. Each bar represents the percentage improvement of the average solution value
computed on the instances of a given family (each instance has been run ten times). The family
that benefits the most by the second stage is the scpc family that has an average improvement
of 9%. A notable exception is given by the scpe family that never improves the final solution
during the second stage: this is due to the fact that the instances of this family are the smallest
ones (with |U | = 50 and |U| = 167) and both Gurobi and our heuristic algorithm always find the
optimal solutions within a short computing time.

Figure 5.3 quantifies the benefit yielded from the adoption of the shared cache objects during
the first phase (see Section 5.2.2). Each bar of the Figure represents for each family of instances
the average percentage number of times when parallel GRASP has been able to retrieve data
from the shared cache object avoiding further computations (each instance has been run ten
times). Again, the particular nature of scpe family leads to an extremely high number of times
that the GRASP algorithm reuses previously computed information. For all the other families
this value ranges between 1% and 15% (recall that each time the required information is retrieved
from the shared cache object the algorithm is able to replace a procedure with temporal cost
O(n+m log2 n) with a simple read from memory with cost O(1)).

Figures 5.4a and 5.4b show how many times the main loop of the first and second phase of
the GRASP algorithm have been repeated on average in order to complete a single iteration of
the GRASP algorithm. Recall that one iteration of the main loop of the first phase of the parallel
GRASP amounts to the addition of a subset to the current partial cover, while one iteration of
the main loop of the second phase of the algorithm corresponds to searching the neighbourhood
of the current solution for a better cover. Each bar of the figure shows the average number
of times that a given phase has been repeated across all instances belonging to a given family
(each instance has been run ten times). The particularly high values of the scpcyc family in
Figures 5.4a and 5.4b are due to the fact that each subset Uj that belongs to the instances of
this family has at most 5 elements and the total number of elements of U ranges from 240 in
instance scpcyc06-3 up to 28160 in instance scpcyc11-3.



CHAPTER 5. THE SET COVERING PROBLEM WITH CONFLICTS ON SETS 111

Set-A

Instance |U | |U| #conf
(k = 1)

#conf
(k = 2)

scp41-3 200 334 8351 1908
scp42-3 200 334 8306 1848
scp43-3 200 334 8258 1791
scp44-3 200 334 8596 1977
scp45-3 200 334 8136 1789
scp46-3 200 334 8826 2055
scp47-3 200 334 7843 1711
scp48-3 200 334 8526 1860
scp49-3 200 334 8195 1807
scp51-3 200 667 33962 8238
scp52-3 200 667 34092 8047
scp53-3 200 667 34153 8104
scp54-3 200 667 33893 7913
scp55-3 200 667 32490 7376
scp56-3 200 667 34551 8355
scp57-3 200 667 34832 8393
scp58-3 200 667 33285 7784
scp59-3 200 667 33094 7597
scp61-3 200 334 49416 40825
scp62-3 200 334 49916 41855
scp63-3 200 334 49827 41583
scp64-3 200 334 49404 40723
scp65-3 200 334 49830 41733
scp410-3 200 334 7944 1793
scp510-3 200 667 34476 8321
scpa1-3 300 1000 139239 49629
scpa2-3 300 1000 139174 49455
scpa3-3 300 1000 139351 49665
scpa4-3 300 1000 139104 50086
scpa5-3 300 1000 139255 49635
scpb1-3 300 1000 485873 457826
scpb2-3 300 1000 486022 458275
scpb3-3 300 1000 485654 457218
scpb4-3 300 1000 485276 456577
scpb5-3 300 1000 485595 457456
scpc1-3 400 1334 347270 152214
scpc2-3 400 1334 345511 150739
scpc3-3 400 1334 345621 151469
scpc4-3 400 1334 346553 150846
scpc5-3 400 1334 346137 151744
scpd1-3 400 1334 883245 867920
scpd2-3 400 1334 883605 869019
scpd3-3 400 1334 883254 868280
scpd4-3 400 1334 883136 868196
scpd5-3 400 1334 883471 868775
scpe1-3 50 167 13810 13707
scpe2-3 50 167 13837 13756
scpe3-3 50 167 13755 13666
scpe4-3 50 167 13818 13707
scpe5-3 50 167 13839 13790

Table 5.1: Benchmark instances: Set A

Set-B

Instance |U | |U| #conf
(k = 1)

#conf
(k = 2)

scpclr10-3 511 70 2415 2415
scpclr11-3 1023 110 5995 5995
scpclr12-3 2047 165 13530 13530
scpclr13-3 4095 239 28441 28441
scpcyc06-3 240 64 281 153
scpcyc07-3 672 150 806 443
scpcyc08-3 1792 342 2173 1230
scpcyc09-3 4608 768 5660 3267
scpcyc10-3 11520 1707 14370 8401
scpcyc11-3 28160 3755 35487 21072

Set-C

scpnre1-3 500 1667 1388611 1388611
scpnre2-3 500 1667 1388611 1388611
scpnre3-3 500 1667 1388611 1388611
scpnre4-3 500 1667 1388611 1388611
scpnre5-3 500 1667 1388611 1388611
scpnrf1-3 500 1667 1388611 1388611
scpnrf2-3 500 1667 1388611 1388611
scpnrf3-3 500 1667 1388611 1388611
scpnrf4-3 500 1667 1388611 1388611
scpnrf5-3 500 1667 1388611 1388611
scpnrg1-3 1000 3334 4628203 3574676
scpnrg2-3 1000 3334 4626736 3574156
scpnrg3-3 1000 3334 4623974 3574347
scpnrg4-3 1000 3334 4630196 3579650
scpnrg5-3 1000 3334 4625519 3575142
scpnrh1-3 1000 3334 5555947 5555602
scpnrh2-3 1000 3334 5555936 5555589
scpnrh3-3 1000 3334 5555946 5555566
scpnrh4-3 1000 3334 5555937 5555574
scpnrh5-3 1000 3334 5555925 5555576

Table 5.2: Benchmark instances: Set B and
Set C
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GUROBI

k=1 k=2
SCCS_BIN SCCS_MIP SCCS_BIN SCCS_MIP

Instance Obj ObjC (#conf) Time Obj ObjC (#conf) Time Obj ObjC (#conf) Time Obj ObjC (#conf) Time

Set-A

scp41-3 2037* 350 (7) 253.69 2037* 350 (7) 200.33 1108* 50 (1) 1.50 1108* 50 (1) 1.47
scp42-3 1977* 700 (14) 81.81 1977* 700 (14) 84.44 1209* 100 (2) 22.47 1209* 100 (2) 1.42
scp43-3 2583* 500 (5) 1314.28 2583* 500 (5) 1428.64 1113* 0 (0) 0.86 1113* 0 (0) 0.94
scp44-3 2543* 686 (7) 1033.85 2543* 686 (7) 824.51 1192* 98 (1) 2.64 1192* 98 (1) 2.62
scp45-3 2247* 413 (7) 400.11 2247* 413 (7) 363.55 1279* 59 (1) 2.00 1279* 59 (1) 1.78
scp46-3 2602* 666 (9) 1550.40 2602* 666 (9) 1535.76 1302* 74 (1) 3.23 1302* 74 (1) 3.22
scp47-3 2128* 590 (8) 778.80 2128* 590 (8) 731.50 1116* 118 (2) 2.36 1116* 118 (2) 2.30
scp48-3 2647* 567 (7) 2220.35 2647* 567 (7) 1756.22 1149* 0 (0) 1.69 1149* 0 (0) 1.53
scp49-3 2604* 564 (6) 705.27 2604* 564 (6) 968.81 1398* 0 (0) 4.83 1398* 0 (0) 4.83
scp51-3 1532 304 (4) 3601.05 1615 76 (1) 3600.84 618* 0 (0) 4.94 618* 0 (0) 5.39
scp52-3 1547 219 (3) 3600.77 1446 73 (1) 3606.41 602* 0 (0) 1.19 602* 0 (0) 1.20
scp53-3 1506 300 (3) 3600.72 1423 0 (0) 3602.14 627* 0 (0) 5.14 627* 0 (0) 5.36
scp54-3 1501 196 (2) 3601.05 1360 196 (2) 3601.83 546* 0 (0) 2.14 546* 0 (0) 2.09
scp55-3 1375 201 (3) 3601.73 1375 201 (3) 3602.23 528* 0 (0) 0.78 528* 0 (0) 0.81
scp56-3 1410 91 (1) 3601.16 1410 91 (1) 3601.00 511* 0 (0) 0.56 511* 0 (0) 0.47
scp57-3 1551 0 (0) 3601.06 1551 0 (0) 3601.41 764* 0 (0) 7.58 764* 0 (0) 7.73
scp58-3 1574 77 (1) 3600.43 1662 231 (3) 3600.60 650* 0 (0) 3.45 650* 0 (0) 3.34
scp59-3 1518 200 (2) 3601.19 1535 100 (1) 3601.18 660* 0 (0) 3.23 660* 0 (0) 3.34
scp61-3 5608 3572 (84) 3601.09 4846 3078 (74) 3601.16 2537 1406 (42) 3600.55 2462 1653 (50) 3600.55
scp62-3 4998 3211 (67) 3601.06 4379 2850 (63) 3601.03 2805 1520 (44) 3600.60 2805 1520 (44) 3600.42
scp63-3 6455 3900 (77) 3601.16 6227 4150 (69) 3601.12 3103 2000 (41) 3600.47 3103 2000 (41) 3600.66
scp64-3 4905 3880 (84) 3600.97 4905 3880 (84) 3601.08 2554 1760 (47) 3600.59 2905 1980 (52) 3600.78
scp65-3 4508 3145 (73) 3601.05 4636 3230 (78) 3601.02 2512 1785 (51) 3600.54 2590 1496 (46) 3600.67
scp410-3 2501* 290 (5) 903.23 2501* 290 (5) 911.93 1404* 0 (0) 2.81 1404* 0 (0) 2.31
scp510-3 1547 178 (2) 3600.70 1547 178 (2) 3601.01 642* 0 (0) 1.86 642* 0 (0) 1.87
scpa1-3 4784 2080 (34) 3600.95 4784 2080 (34) 3601.44 963 52 (1) 3602.77 963 52 (1) 3603.54
scpa2-3 4516 2006 (29) 3601.14 4395 1947 (26) 3601.40 1048 59 (1) 3601.59 1071 118 (2) 3602.25
scpa3-3 4189 1500 (26) 3601.31 4189 1500 (26) 3600.96 910 0 (0) 3604.48 910 0 (0) 3604.49
scpa4-3 4242 952 (14) 3601.00 4242 952 (14) 3601.74 946 0 (0) 3602.87 946 0 (0) 3603.09
scpa5-3 5423 2077 (27) 3600.82 5000 2278 (31) 3600.82 894* 0 (0) 2010.28 894* 0 (0) 697.61
scpb1-3 10857 8853 (115) 3600.14 10857 8853 (115) 3600.13 6697 5772 (140) 3600.17 6697 5772 (140) 3600.14
scpb2-3 10581 9408 (235) 3600.12 10581 9408 (235) 3600.11 6109 5432 (178) 3600.17 6109 5432 (178) 3600.15
scpb3-3 9324 8772 (160) 3600.13 9324 8772 (160) 3600.13 5864 5112 (182) 3600.82 5864 5112 (182) 3600.88
scpb4-3 9576 8820 (257) 3600.11 9576 8820 (257) 3600.13 5145 4596 (151) 3600.42 5145 4596 (151) 3600.46
scpb5-3 10922 9758 (217) 3600.12 10922 9758 (217) 3600.13 6178 5614 (174) 3600.11 6178 5614 (174) 3600.14
scpc1-3 17478 13100 (96) 3601.28 17478 13100 (96) 3600.94 1771 0 (0) 3633.25 1645 0 (0) 3602.65
scpc2-3 7473 4785 (111) 3601.70 7473 4785 (111) 3602.05 1744 396 (12) 3629.31 1744 396 (12) 3638.22
scpc3-3 10699 7100 (107) 3601.10 10699 7100 (107) 3602.40 1625 100 (2) 3601.88 1625 100 (2) 3602.29
scpc4-3 7997 5206 (107) 3601.81 7997 5206 (107) 3601.83 1636 190 (5) 3626.54 1636 190 (5) 3629.82
scpc5-3 10557 7150 (105) 3601.31 10557 7150 (105) 3601.92 1640 100 (2) 3627.07 1640 100 (2) 3603.43
scpd1-3 12601 10845 (136) 3600.19 12601 10845 (136) 3600.22 8882 8181 (241) 3600.21 8882 8181 (241) 3600.23
scpd2-3 11682 10746 (304) 3600.25 11682 10746 (304) 3600.20 9258 8361 (279) 3600.21 9258 8361 (279) 3600.23
scpd3-3 11049 9432 (152) 3600.22 11049 9432 (152) 3600.21 9181 7218 (136) 3600.17 9181 7218 (136) 3600.22
scpd4-3 13535 12320 (120) 3600.39 13535 12320 (120) 3600.22 13738 12586 (231) 3600.18 13738 12586 (231) 3600.21
scpd5-3 13176 12366 (329) 3600.22 13176 12366 (329) 3600.24 8403 7659 (237) 3600.18 8403 7659 (237) 3600.20
scpe1-3 26* 17 (3) 72.41 26* 17 (3) 71.23 23* 14 (3) 69.64 23* 14 (3) 50.59
scpe2-3 28* 19 (3) 94.54 28* 19 (3) 93.20 25* 16 (3) 63.08 25* 16 (3) 71.44
scpe3-3 24* 18 (1) 33.94 24* 18 (1) 23.81 23* 11 (5) 42.39 23* 11 (5) 54.05
scpe4-3 25* 16 (3) 88.23 25* 16 (3) 88.88 22* 13 (3) 30.17 22* 13 (3) 45.31
scpe5-3 28* 19 (3) 85.77 28* 19 (3) 85.64 25* 16 (3) 73.84 25* 16 (3) 73.78

Set-B

scpclr10-3 1926* 1893 (55) 412.10 1926* 1893 (55) 271.49 1871* 1838 (55) 331.91 1871* 1838 (55) 258.75
scpclr11-3 4215 4182 (55) 3600.43 4394 4358 (66) 3600.62 4034 3998 (66) 3600.26 3890 3854 (66) 3600.25
scpclr12-3 10143 10104 (78) 3601.17 11148 11106 (91) 3600.27 7728 7692 (66) 3600.23 10573 10534 (78) 3600.68
scpclr13-3 29504 29462 (91) 3600.45 25138 25098 (91) 3600.24 31803 31766 (78) 3600.17 29272 29224 (120) 3600.16
scpcyc06-3 126* 42 (27) 1.23 126* 42 (27) 2.41 99* 15 (9) 0.83 99* 15 (9) 0.72
scpcyc07-3 335* 136 (74) 2273.54 335* 136 (74) 1942.80 250* 49 (42) 1688.08 250* 49 (38) 1246.73
scpcyc08-3 911 434 (183) 3600.78 919 442 (176) 3600.22 662 182 (160) 3600.16 668 185 (152) 3600.16
scpcyc09-3 2332 1234 (485) 3600.83 2748 1635 (948) 3601.43 1678 565 (453) 3600.27 1721 608 (476) 3600.16
scpcyc10-3 6755 4214 (1966) 3600.70 7770 5145 (2742) 3600.74 4462 1966 (1136) 3600.58 4441 1909 (1376) 3600.38
scpcyc11-3 19422 13539 (6650) 3600.28 24296 17958 (9511) 3600.27 12771 6888 (4124) 3600.18 14998 8591 (5837) 3600.17

Set-C

scpnre1-3 7424 7149 (78) 3600.35 7424 7149 (78) 3600.35 7047 5724 (55) 3600.29 7047 5724 (55) 3600.38
scpnre2-3 9054 8826 (78) 3618.44 9054 8826 (78) 3600.36 8820 8592 (78) 3600.31 8820 8592 (78) 3600.35
scpnre3-3 8211 7440 (105) 3600.28 8241 7551 (105) 3600.36 6581 6213 (78) 3601.35 6581 6213 (78) 3600.79
scpnre4-3 7230 7158 (78) 3601.18 7230 7158 (78) 3601.00 6327 6273 (66) 3600.33 6327 6273 (66) 3600.37
scpnre5-3 7488 6288 (55) 3600.30 7488 6288 (55) 3600.41 7323 6123 (55) 3600.32 7323 6123 (55) 3600.37
scpnrf1-3 2145 1608 (15) 3601.12 2145 1608 (15) 3601.24 2798 2777 (21) 3601.01 2798 2777 (21) 3601.10
scpnrf2-3 2324 1748 (15) 3601.03 2366 1736 (15) 3601.14 2276 1835 (15) 3601.17 2276 1835 (15) 3601.05
scpnrf3-3 2241 1836 (15) 3601.09 2241 1836 (15) 3601.08 2228 1865 (15) 3601.11 2503 1777 (15) 3610.04
scpnrf4-3 2484 2370 (21) 3601.12 2609 2524 (21) 3601.99 2657 1885 (15) 3601.02 2440 1725 (15) 3601.07
scpnrf5-3 2591 2425 (21) 3616.89 2499 1665 (15) 3601.20 2327 2048 (21) 3601.00 2328 1944 (21) 3601.11
scpnrg1-3 33276 32210 (1125) 3600.98 33276 32210 (1125) 3601.00 21735 21240 (794) 3600.78 21735 21240 (794) 3601.28
scpnrg2-3 34828 34560 (1039) 3601.02 34828 34560 (1039) 3601.03 15524 14020 (770) 3600.75 15524 14020 (770) 3600.75
scpnrg3-3 28168 26620 (1104) 3601.02 28168 26620 (1104) 3601.07 17639 15906 (771) 3600.69 17639 15906 (771) 3600.82
scpnrg4-3 30665 28740 (1324) 3600.96 30665 28740 (1324) 3601.42 17604 15940 (819) 3600.72 17604 15940 (819) 3601.21
scpnrg5-3 26931 24960 (1234) 3600.95 26931 24960 (1234) 3601.07 15825 15270 (755) 3602.36 15825 15270 (755) 3601.19
scpnrh1-3 19313 15684 (253) 3601.29 19313 15684 (253) 3601.54 20124 20019 (351) 3602.75 20124 20019 (351) 3601.32
scpnrh2-3 20580 20436 (351) 3601.26 18537 14442 (253) 3601.48 19527 19383 (351) 3601.27 19704 19566 (351) 3601.35
scpnrh3-3 17982 17889 (300) 3601.29 17982 17889 (300) 3601.40 18873 15234 (253) 3601.30 18873 15234 (253) 3601.35
scpnrh4-3 16749 14646 (253) 3601.27 16749 14646 (253) 3601.37 16815 16716 (300) 3601.39 16815 16716 (300) 3601.69
scpnrh5-3 17361 17268 (300) 3601.26 17361 17268 (300) 3601.43 16461 16368 (300) 3601.31 16461 16368 (300) 3601.34

Avg 7861.38 2944.89 7849.26 2933.15 5231.85 2351.80 5268.25 2328.50
#Opt 18 18 29 29

Table 5.3: Computational results of SCCS_BIN and SCCS_MIP.
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GRASP

k=1 k=2
Instance Best/Opt ObjB ObjMed objC (#conf) TBest Time Gap Best/Opt ObjB ObjMed objC (#conf) TBest Time Gap

Set-A

scp41-3 2037* 2097 2097.00 650 (13) 79.00 119.25 2.95% 1108* 1108 1108.00 50 (1) 3.09 73.83 0.00%
scp42-3 1977* 1977 1977.00 700 (14) 15.95 106.19 0.00% 1209* 1209 1209.00 50 (1) 5.08 98.97 0.00%
scp43-3 2583* 2583 2613.00 500 (5) 60.25 113.95 0.00% 1113* 1113 1113.00 0 (0) 8.22 79.70 0.00%
scp44-3 2543* 2543 2575.00 686 (7) 3.88 111.17 0.00% 1192* 1192 1192.00 98 (1) 2.25 93.08 0.00%
scp45-3 2247* 2247 2247.00 413 (7) 4.70 97.88 0.00% 1279* 1279 1279.00 59 (1) 2.36 85.21 0.00%
scp46-3 2602* 2602 2650.50 666 (9) 74.17 115.00 0.00% 1302* 1302 1302.00 74 (1) 22.94 111.15 0.00%
scp47-3 2128* 2128 2128.00 590 (8) 4.84 107.97 0.00% 1116* 1116 1116.00 118 (2) 4.23 78.84 0.00%
scp48-3 2647* 2647 2673.00 567 (7) 33.81 130.66 0.00% 1149* 1149 1149.00 0 (0) 2.50 93.55 0.00%
scp49-3 2604* 2604 2658.00 564 (6) 90.04 128.35 0.00% 1398* 1398 1398.00 0 (0) 62.16 103.25 0.00%
scp51-3 1532 1466 1645.50 152 (2) 54.69 256.65 -4.31% 618* 618 618.00 0 (0) 3.34 154.99 0.00%
scp52-3 1446 1446 1496.00 73 (1) 164.63 249.99 0.00% 602* 602 602.00 0 (0) 1.81 133.85 0.00%
scp53-3 1423 1423 1497.00 0 (0) 157.61 257.41 0.00% 627* 627 627.00 0 (0) 34.41 180.89 0.00%
scp54-3 1360 1360 1471.00 196 (2) 149.83 247.57 0.00% 546* 546 546.00 0 (0) 86.25 140.69 0.00%
scp55-3 1375 1382 1429.00 335 (5) 176.09 268.44 0.51% 528* 528 528.00 0 (0) 7.34 127.00 0.00%
scp56-3 1410 1457 1534.00 182 (2) 177.64 266.15 3.33% 511* 511 511.00 0 (0) 4.98 105.06 0.00%
scp57-3 1551 1551 1646.50 0 (0) 242.93 339.66 0.00% 764* 764 764.00 0 (0) 16.17 159.22 0.00%
scp58-3 1574 1517 1610.00 231 (3) 160.74 257.72 -3.62% 650* 650 650.00 0 (0) 7.03 157.00 0.00%
scp59-3 1518 1574 1597.50 100 (1) 221.89 309.58 3.69% 660* 660 660.00 0 (0) 10.88 153.91 0.00%
scp61-3 4846 2930 3029.50 2166 (63) 7.59 63.25 -39.54% 2462 1733 1733.00 969 (30) 35.61 67.94 -29.61%
scp62-3 4379 3327 3468.00 2337 (58) 16.75 63.70 -24.02% 2805 2037 2037.00 1482 (52) 31.39 62.17 -27.38%
scp63-3 6227 4105 4406.00 3125 (70) 39.03 67.14 -34.08% 3103 2485 2573.00 1325 (34) 58.02 86.91 -19.92%
scp64-3 4905 3211 3382.50 2460 (63) 48.58 75.66 -34.54% 2554 1899 1899.00 940 (32) 2.39 68.44 -25.65%
scp65-3 4508 3138 3223.00 2142 (65) 1.02 55.67 -30.39% 2512 1979 1994.50 1020 (38) 3.25 68.64 -21.22%
scp410-3 2501* 2511 2515.00 522 (9) 69.59 111.25 0.40% 1404* 1404 1404.00 0 (0) 5.66 98.97 0.00%
scp510-3 1547 1338 1435.00 178 (2) 233.04 321.06 -13.51% 642* 642 642.00 0 (0) 97.39 154.60 0.00%
scpa1-3 4784 2901 3056.50 1144 (19) 325.19 511.34 -39.36% 963 976 1006.00 52 (1) 327.52 469.33 1.35%
scpa2-3 4395 2842 3247.00 1062 (17) 413.80 - -35.34% 1048 1048 1101.50 59 (1) 95.30 431.34 0.00%
scpa3-3 4189 2691 2842.00 1050 (20) 268.83 448.55 -35.76% 910 910 933.00 0 (0) 331.54 494.48 0.00%
scpa4-3 4242 2888 2990.00 680 (9) 403.96 - -31.92% 946 946 954.00 0 (0) 225.69 399.25 0.00%
scpa5-3 5000 2980 3192.00 804 (11) 346.36 553.25 -40.40% 894* 894 894.00 0 (0) 257.72 421.49 0.00%
scpb1-3 10857 4586 5018.50 3692 (98) 255.92 373.42 -57.76% 6697 3159 3254.00 2535 (94) 244.88 389.52 -52.83%
scpb2-3 10581 4925 5214.50 3962 (98) 70.36 289.29 -53.45% 6109 3336 3470.00 2408 (94) 247.46 396.47 -45.39%
scpb3-3 9324 4028 4563.00 3396 (104) 126.55 262.64 -56.80% 5864 2609 2851.50 1776 (77) 302.82 446.05 -55.51%
scpb4-3 9576 4279 4642.00 3564 (105) 47.21 276.72 -55.32% 5145 2811 3064.50 1824 (81) 339.11 500.77 -45.36%
scpb5-3 10922 4768 5175.00 3682 (89) 51.97 294.25 -56.34% 6178 2933 3421.00 2072 (74) 190.47 357.29 -52.53%
scpc1-3 17478 7562 8061.50 3600 (36) 554.82 - -56.73% 1645 1608 1668.50 0 (0) 351.85 - -2.25%
scpc2-3 7473 4158 4431.50 2541 (70) 341.92 - -44.36% 1744 1301 1372.50 330 (10) 523.38 - -25.40%
scpc3-3 10699 4958 5135.00 2200 (41) 354.67 - -53.66% 1625 1372 1459.00 150 (3) 508.60 - -15.57%
scpc4-3 7997 4437 4882.50 2584 (54) 365.07 - -44.52% 1636 1406 1448.50 114 (3) 600.98 - -14.06%
scpc5-3 10557 5041 5575.50 2250 (40) 434.66 - -52.25% 1640 1370 1442.50 50 (1) 582.99 - -16.46%
scpd1-3 12601 5900 6187.00 5436 (106) 144.55 524.91 -53.18% 8882 4383 4782.00 3456 (127) 415.66 503.97 -50.65%
scpd2-3 11682 6017 6164.50 5310 (130) 349.14 523.48 -48.49% 9258 4268 4825.00 3654 (123) 262.83 525.81 -53.90%
scpd3-3 11049 6055 6344.50 5373 (127) 403.17 525.33 -45.20% 9181 4536 4847.00 3312 (128) 162.69 569.60 -50.59%
scpd4-3 13535 8213 9022.00 6482 (130) 126.30 511.43 -39.32% 13738 6393 6938.50 5334 (123) 133.36 561.40 -53.46%
scpd5-3 13176 6181 6269.00 5580 (145) 407.39 590.85 -53.09% 8403 4704 4868.00 3618 (136) 53.63 486.80 -44.02%
scpe1-3 26* 26 26.00 17 (3) 3.55 12.34 0.00% 23* 23 23.00 14 (3) 0.39 12.11 0.00%
scpe2-3 28* 28 28.00 19 (3) 0.19 12.50 0.00% 25* 25 25.00 16 (3) 0.62 11.88 0.00%
scpe3-3 24* 24 24.00 18 (1) 0.06 10.83 0.00% 23* 23 23.00 17 (1) 0.03 10.28 0.00%
scpe4-3 25* 25 25.00 16 (3) 0.81 12.22 0.00% 22* 22 22.00 13 (3) 2.08 12.48 0.00%
scpe5-3 28* 28 28.00 19 (3) 1.02 12.42 0.00% 25* 25 25.00 16 (3) 0.70 11.56 0.00%

Set-B

scpclr10-3 1926* 1926 1926.00 1893 (55) 1.75 24.59 0.00% 1871* 1871 1871.00 1838 (55) 0.39 24.75 0.00%
scpclr11-3 4215 3501 3501.00 3468 (55) 0.25 30.97 -16.94% 3890 3446 3446.00 3413 (55) 4.34 31.11 -11.41%
scpclr12-3 10143 6429 6429.00 6396 (55) 6.36 45.56 -36.62% 7728 6374 6374.00 6341 (55) 21.97 45.61 -17.52%
scpclr13-3 25138 13267 13677.50 13234 (55) 5.03 81.02 -47.22% 29272 13212 14033.00 13179 (55) 8.98 85.83 -54.86%
scpcyc06-3 126* 126 126.00 42 (27) 0.30 14.02 0.00% 99* 99 99.00 15 (9) 0.47 15.60 0.00%
scpcyc07-3 335* 335 335.00 136 (74) 3.81 43.02 0.00% 250* 250 251.00 49 (38) 28.31 51.17 0.00%
scpcyc08-3 911 908 911.00 434 (192) 57.19 463.93 -0.33% 662 666 688.00 180 (154) 370.07 596.71 0.60%
scpcyc09-3 2332 2320 2328.50 1228 (487) 86.30 - -0.51% 1678 1741 1758.50 607 (474) 172.80 - 3.75%
scpcyc10-3 6755 5718 5766.50 3270 (1234) 736.04 - -15.35% 4441 4486 4539.00 1900 (1426) 41.88 - 1.01%
scpcyc11-3 19422 13668 13905.50 8265 (2979) 858.34 - -29.63% 12771 11140 11308.00 5347 (3885) 338.55 - -12.77%

Set-C

scpnre1-3 7424 3987 4095.00 3447 (36) 552.57 - -46.30% 7047 3858 3970.50 3303 (36) 20.72 578.23 -45.25%
scpnre2-3 9054 3863 4010.50 3603 (36) 76.56 597.94 -57.33% 8820 3768 3964.00 3447 (36) 429.05 - -57.28%
scpnre3-3 8211 3888 4017.50 3288 (36) 4.61 579.29 -52.65% 6581 3714 3916.50 3207 (36) 135.05 - -43.56%
scpnre4-3 7230 3891 4089.00 3360 (36) 40.36 593.94 -46.18% 6327 3713 3915.00 3144 (36) 191.94 - -41.31%
scpnre5-3 7488 3870 4115.00 3615 (36) 12.86 568.54 -48.32% 7323 3685 3906.00 3456 (36) 220.39 - -49.68%
scpnrf1-3 2145 1185 1215.00 1098 (10) 378.10 - -44.76% 2798 1175 1191.00 1088 (10) 193.77 - -58.01%
scpnrf2-3 2324 1220 1243.00 1124 (10) 149.39 - -47.50% 2276 1210 1232.00 1114 (10) 230.88 - -46.84%
scpnrf3-3 2241 1184 1205.00 1088 (10) 476.99 - -47.17% 2228 1186 1195.00 1048 (10) 144.09 - -46.77%
scpnrf4-3 2484 1183 1230.00 1105 (10) 10.83 - -52.38% 2440 1173 1225.50 1095 (10) 341.07 - -51.93%
scpnrf5-3 2499 1226 1230.00 1138 (10) 388.18 - -50.94% 2327 1216 1231.00 1128 (10) 55.44 - -47.74%
scpnrg1-3 33276 15011 15434.00 12650 (671) 595.02 - -54.89% 21735 6657 6941.00 4230 (282) 519.77 - -69.37%
scpnrg2-3 34828 14731 15155.50 12180 (600) 239.76 - -57.70% 15524 6963 7356.50 4520 (317) 579.98 - -55.15%
scpnrg3-3 28168 16381 16891.50 12859 (624) 354.27 - -41.85% 17639 7574 7961.00 5522 (311) 492.17 - -57.06%
scpnrg4-3 30665 14860 15580.00 11710 (619) 281.20 - -51.54% 17604 7145 7600.50 5010 (306) 248.52 - -59.41%
scpnrg5-3 26931 14862 15442.50 11570 (603) 67.70 - -44.81% 15825 7255 7672.50 5070 (329) 527.78 - -54.15%
scpnrh1-3 19313 10252 10560.50 9363 (171) 241.14 - -46.92% 20124 9516 9810.50 8187 (210) 307.50 - -52.71%
scpnrh2-3 18537 10342 10482.00 9243 (190) 179.18 - -44.21% 19527 9654 9899.50 8742 (190) 70.70 - -50.56%
scpnrh3-3 17982 9996 10495.50 8775 (210) 161.74 - -44.41% 18873 9635 9907.00 8796 (190) 116.36 - -48.95%
scpnrh4-3 16749 10341 10568.00 9315 (190) 123.13 - -38.26% 16815 9036 9975.50 8346 (210) 306.42 - -46.26%
scpnrh5-3 17361 10291 10487.00 9417 (190) 61.38 - -40.72% 16461 9309 9736.50 8352 (171) 213.13 - -43.45%

Avg 392.73 -27.90% 376.33 -22.71%
#Best/Opt 75 76
AvgRSD 1.65% 1.22%

Table 5.4: Gurobi vs. parallel GRASP: computational results



Chapter 6

Max Flow with Conflicts

Maximum Flow Problems (MFPs) have been extensively studied over the years by researchers
in optimization theory, and were used to support real-world problems related to transportation
and communications. In this chapter, we face a variant of the MFP problem in which a list of
conflicting edge pairs is available and the maximum flow is computed by assuring that there are
no edges in conflict used to carry this flow.
To the best of our knowledge, Pferschy et al. [PS13b] have introduced the variant of the maximum
flow problem by considering positive and negative disjunctive constraints and they prove the
NP-hardness of these variants. The variant of our interest is the one with negative disjunctive
constraints, which are the constraints used to model conflicts between arc pairs, named Maximum
Flow with Conflicts constraints (MFPC). Suvak et al. [cAA20] proposed several mixed-integer
linear programming formulations for MFPC.
MFPC consists in determining the maximum flow that can be sent on a flow network from a
source node to a sink node respecting the classical capacity constraints over the arcs (already
present in the original problem) and the conflict constraints, that forbid to carry flow through two
arcs in conflict. To face the problem, we propose some heuristic approaches. Firstly, we introduce
a modification of the well-known augmenting-paths algorithm, commonly used to solve the classic
MFP, which is based on a greedy criterion, that quickly allows to identify a feasible solution in
presence of conflicting arcs. Then, we present a more accurate algorithm, obtained by embedding
the introduced greedy algorithm into a Carousel Greedy (CG) framework. To further address
the problem, we design an algorithm based on the Kernel Search (KS) scheme, which contains
inside our CG approach; we called this approach Kernousel. The readers can find a description
of CG and KS methodologies in Sections A.2.1 and A.5.1 of Appendix A, respectively.

6.1 Problem description and formulations

The Maximum Flow problem with additional conflict constraints (MFPC) is defined on a directed
graph G = (V,A), with V denoting the set of vertices and A denoting the set of directed arcs of
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G. Along with the given network, a source vertex s and a sink vertex t are indicated. A function
u : A→ N∪{0} is provided, with uij indicating the maximum allowed flow on the arc (i, j) ∈ A.
Two arcs (i, j), (k, `) ∈ A, (i, j) 6= (k, `), are conflicting if, in any feasible solution of MFPC, at
most one of them can have positive flow. Let δ(i, j) be the set of arcs conflicting with the arc
(i, j) ∈ A. The aim of the problem is to identify the maximum flow from s to t without violating
any conflict restriction.

6.2 Mathematical Models

The Kernel Search described in Section 6.3 uses two Mixed-Integer Linear Programming for-
mulations of MFPC, proposed in [cAA20], named MFPCs and MFPCw, respectively. Since the
polyhedron of MFPCs is contained in that of MFPCw, its LP relaxation produces better bounds
and then it is referred as strong formulation, while MFPCw is named weak formulation.

Formulation 3. MFPCs (Strong Formulation)

max v (6.1a)

s.t.
∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =


v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

∀ i ∈ V (6.1b)

xij + xk` ≤ 1 ∀ (i, j) ∈ A, ∀ (k, `) ∈ δ(i, j) (6.1c)
0 ≤ fij ≤ uijxij ∀ (i, j) ∈ A (6.1d)
xij ∈ {0, 1} ∀ (i, j) ∈ A. (6.1e)

Formulation 4. MFPCw (Weak Formulation)

max v (6.2a)

s.t.
∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =


v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

∀ i ∈ V (6.2b)

|δ(i, j)|xij +
∑

(k,`)∈δ(i,j)

xk` ≤ |δ(i, j)| ∀ (i, j) ∈ A (6.2c)

0 ≤ fij ≤ uijxij ∀ (i, j) ∈ A (6.2d)
xij ∈ {0, 1} ∀ (i, j) ∈ A. (6.2e)

Both Formulations 3 and 4 rely on the linear decision variables f ∈ R+
0
|A|, indicating the

flow assigned to each arc, the linear auxiliary variable v, representing the overall flow from s to
t, and the binary auxiliary variables x ∈ {0, 1}|A|, equal to 1 if and only if the related arcs carry
some flow. Furthermore, both the formulations make use of the classical flow-balance equality
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constraints (6.1b) and (6.2b), as well as the classical flow capacity constraints, modified in order
to correctly set the values of the auxiliary variables x to 1 if the flow on the related arcs is
positive, (6.1d) and (6.2d) respectively.

The two formulations only differ in how they prevent conflict violations. In particular, con-
straints (6.1c) guarantee, for each pair of conflicting arcs (i, j) and (k, `), that at most one of
them has positive flow, while constraints (6.2c) impose that every arc (i, j) ∈ A has flow equal
to zero if positive flow is assigned to any of the arcs conflicting with (i, j), i.e., the arcs in δ(i, j).

In the following, we denote by LP-MFPCs and LP-MFPCw the linear relaxations of the
strong and weak formulations, respectively. Given a subset of arcs F ⊆ A, we further denote by
MFPCs(F ) and MFPCw(F ) the strong and the weak formulations, in which the set of variables
is restricted to those associated with the arcs in F , while LP-MFPCs(F ) and LP-MFPCw(F )
are their linear relaxations, respectively.

6.3 Heuristic approaches for MFPC

In this section, a detailed description of the heuristic and matheuristic methods designed to
address the MFPC is given. In particular, Subsection 6.3.1 introduces an adaptation of the well-
known augmenting path algorithm for the MFPC, while Subsection 6.3.2 describes an enhanced
algorithm, obtained by embedding the greedy algorithm described in Subsection 6.3.1 in the
Carousel Greedy (CG) framework. In Subsection 6.3.3, a Kernel Search (KS) based algorithm
is described. Finally, in Subsection 6.3.4, the novel Kernousel approach, consisting of a KS
algorithm which incorporates the previously described CG algorithm, is presented.

6.3.1 Greedy algorithm

The greedy algorithm described in this section is a heuristic adaptation of the classic augmenting
path algorithm used to solve the classical maximum flow problem. The key restrictions of such
adaptation concern (i) the update of the residual network after a given number of units flows
along a path P , which implies the exclusion of all the arcs in conflict with the ones traversed
by P ; and (ii) the ad-hoc strategy according to which every augmenting path is detected, that
prevents any violation with respect to the given set of conflicts. The algorithm makes use of
the well-known capacity scaling approach, in order to find the augmenting paths with highest
capacity first, motivated by the aim of faster obtaining higher flow values.

Formally, given a capacitated networkG = (V,A) and a flow f = {fij}, i.e., a vector satisfying
constraints (6.1b) and (6.1d), the residual capacity associated with any pair of vertices (i, j) ∈
V ×V , with respect to f , is denoted by r(f)

ij = uij−fij+fji. Furthermore, the residual network of

G induced by f is defined as Gf = (Vf , Af ), where Vf = V and Af = {(i, j) ∈ V ×V : r
(f)
ij > 0}.

Any directed s-t path in Gf is an augmenting path.
According to the given definition, Af potentially includes arcs conflicting with some of the

arcs used by f , i.e., arcs (i, j) ∈ A s.t. fij > 0, as well as further pairs of arcs in conflict
with each other. Selecting any augmenting path using one of those arcs/pairs would result in
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Algorithm 12: MFPC-Greedy
Data: Original graph G; source vertex s; sink vertex t.
Result: Ordered sequence of the identified conflict-free augmenting paths

S = 〈Pk〉k∈{1,...,|S|}; augmenting paths capacities ∆ = 〈∆Pk
〉k∈{1,...,|S|}; final

residual graph Gf .
1 S ←− 〈〉; ∆←− 〈〉;
2 fij ←− 0, ∀ (i, j) ∈ V × V ;
3 Gf ←− residual graph of G w.r.t. f ;
4 while ComputeNextPath identifies an augmenting path do
5 (P,∆P )←− ComputeNextPath(G,Gf , s, t, 〈〉, None);
6 augment ∆P units of flow along P and update f and Gf , accordingly;
7 remove from Gf all the arcs in

⋃
(i,j)∈Af :f(i,j)>0

δ(i, j);
8 add P to S and ∆P to ∆;
9 end

10 return S, ∆, Gf

violating the conflict constraints of the problem. Such violation is prevented in two stages. First,
whenever Gf is updated, all the arcs conflicting with some of the arcs in

⋃
(i,j)∈Af :f(i,j)>0

δ(i, j) are
removed from Af . Second, the ComputeNextPath procedure is left to identify a non-conflicting
augmenting path in the resulting residual network Gf .

By iterating these two stages until an additional augmenting path is detected, the de-
signed greedy algorithm incrementally builds an ordered sequence S = 〈P1, P2, . . . , P|S|〉 of non-
conflicting augmenting paths, along with a vector ∆, indexed by the identified paths, such that
∆Pk

is the augmenting capacity associated with Pk, k ∈ {1, . . . , |S|}.
The pseudocode of the high-level procedure is reported in Algorithm 12, which takes as input

a graph G = (V,A), a source vertex s ∈ V and a sink vertex t ∈ V such that s 6= t. In the
initialization phase, the empty sequences S and ∆, as well as the zero-flow f , are initialized, and
the auxiliary graph Gf is built (lines 1-3).

An iteration of the main loop (lines 4-9) is performed until the ComputeNextPath procedure
detect an augmenting path, that does not violate any conflict, in the residual graph Gf . In each
iteration, such procedure is invoked (line 5), generating a non-conflicting augmenting path P , as
described in Algorithm 13. Then, the amount of flow ∆P is sent along P and the flow and the
residual network are updated accordingly (line 6). Subsequently, all the arcs that conflict with
some of the arcs such that fij > 0 are removed from the residual network (line 7), while S and
∆ are updated (line 8).

At the end of the k-th iteration, S stores exactly k conflict-free augmenting paths, according
to the order in which they have been generated by the algorithm, i.e., S = 〈Pi〉i∈{1,...,k}, while
∆ = {∆Pi}i=1,...,k reports the associated augmenting capacities. In the style of a constructive
algorithm, once a path is added to the solution, it is no longer modified or removed. How-
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ever, it is worth noting that updating the residual network can still possibly make previously
excluded arc(s) available again. This happens when the conflicting arc(s) used in the solution no
longer carry flow. As a trivial example, consider S = 〈P1, P2〉, where P1 = 〈(s, i), (i, j), (j, t)〉,
P2 = 〈(s, j), (j, i), (i, t)〉 and ∆P1 = ∆P2 . It is easy to see that the actual flow fij carried by
the arc (i, j) is ∆P1 after the first iteration, and zero after the second one. Accordingly, when
updating Gf after the first iteration, all the arcs in δ(i, j) are removed from Af , while each of
them is re-added after the second iteration, unless it is in conflict with some other arc of P1 or
P2 with associated positive flow.

The ComputeNextPath procedure, used in line 5 of Algorithm 12, applies a greedy strategy
in order to identify an augmenting path satisfying all the conflict constraints in Gf which locally
seems to be the most preferable, i.e., the one with the highest associated augmenting capacity.
The well-known capacity scaling approach [CLRS22] is adopted to compute the first s-t aug-
menting path, and a series of recursive iterations is performed if the produced path contains
conflicting arcs. In this case, indeed, part of the initial path is stored and the source vertex
is progressively moved to the tail of one of the conflicting arcs, referred to as pivot arc, in the
following. The s-t path is then completed with different arcs and the whole process is iterated
until a conflict-free path is obtained.

Figure 6.1 provides an example of the generation process. In particular, Figure 6.1a shows a
flow graph with conflicting arc pairs, which cannot be used on the same path, namely {(s, 1), (8, 6)}
and {(1, 5), (5, 7)}. Graphically, the arcs involved in the same conflict are depicted using the same
color, while the source and the sink vertices s and t are circled in red. Figure 6.1b shows in bold
the first s-t path of high capacity computed by ComputeNextPath by temporarily ignoring the
conflict constraints, i.e., 〈(s, 1), (1, 5), (5, 7), (7, t)〉. Once computed, the algorithm checks if both
arcs of any conflicting pair are in the path by scanning it from the source to the sink. If such pair
is found, one of the two arcs is randomly chosen to stay and the other one is removed from the
path. In the example, conflict {(s, 1), (8, 6)} is not violated, because only (s, 1) belongs to the
identified path, while {(1, 5), (5, 7)} is violated, since both the arcs are traversed. Among the two
arcs, (1, 5) is chosen to stay and (5, 7) is removed, as shown in Figure 6.1c. Subsequently, a new
path is computed from vertex 5, i.e., the tail of the removed arc, to the sink. The obtained path,
i.e., 〈(5, 6), (6, t)〉, is shown in Figure 6.1d. Finally, the conflict check is repeated with respect to
the whole resulting path, i.e., 〈(s, 1), (1, 5), (5, 6), (6, t)〉. As no conflict violation is detected, the
procedure stops, after returning the computed path.
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(a) Example of flow graph with conflicts.
The vertices s and t are the source and sink
of the graph, respectively. Arcs with the
same color are conflicting.

(b) Augmenting path from s to t containing
conflicting arcs

(c) Partial path obtained from 6.1b by dis-
carding (5, 7) and subsequent arcs. Vertex
5 is the new source.

(d) Complete path from s to t which does
not contain conflicting arcs

Figure 6.1: Identification of an augmenting path without conflicts by the greedy algorithm.
The pseudocode of the ComputeNextPath procedure is reported in Algorithm 13. It receives

as input the residual graph Gf , the source and the sink vertices s and t, together with two
optional parameters: a partial solution PINIT and a pivot arc (p, q), i.e., an arc in the outgoing
star of the last vertex of PINIT in Gf which must not belong to the identified path. If any partial
solution is provided, i.e., PINIT is not empty, the pivot arc is required. The computed path P ,
together with the associated amount of flow ∆P , constitutes the output of the algorithm if such
path is found. Otherwise, the algorithm does not return any solution. ComputeNextPath is a
recursive procedure. In the very first call of the recursion process, no partial solution nor pivot arc
are provided. The algorithm searches for an augmenting path P in Gf and then validates it with
respect to the set conflicting arcs. If a violation is detected, ComputeNextPath is recursively
invoked by specifying both a conflict-free portion of P and the first arc (p, q), which causes some
conflict violation, as pivot. The path is incrementally completed through a series of recursion
steps, until no violation is detected.

More in detail, the first operation performed by the algorithm is to check whether a partial
path PINIT is provided (line 1). If this is the case, the residual capacities of the pivot arc (p, q)
and those of the arcs belonging to PINIT , as well as the opposite arcs, are stored and temporarily
set to zero in Gf , in order to exclude them from the computation of the new path (lines 2-3). The
original residual capacities are afterwards restored on line 10. In order to compute an augment-
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Algorithm 13: ComputeNextPath
Data: Residual graph Gf ; source vertex s; sink vertex t; possibly empty partial solution

path PINIT ; pivot arc (p, q), required in case a non-empty PINIT is provided.
Result: Conflict-free s-t path P with the associated capacity ∆P , if such path is found.

None otherwise.
1 if |PINIT | > 0 then
2 r̂ ←− current vector of the residual capacities of the arcs in Gf ;
3 set rpq = 0 and rij = rji = 0 in Gf , ∀ (i, j) ∈ PINIT ;
4 end
5 (P̂,∆P̂ )←− CapacityScaling(Gf , s, t);
6 if P̂ = None or ∆P̂ = 0 then return None;
7 else
8 (P, sN , (pN , qN ))←− ValidatePath(P̂, PINIT );
9 if pN 6= None then (P,∆P )←− ComputeNextPath(Gf , sN , t, P, (pN , qN ));

10 set rpq = r̂pq, rij = r̂ij and rji = r̂ji in Gf , ∀ (i, j) ∈ PINIT ;
11 return P,∆P ;
12 end

ing s-t path, the well-known capacity scaling approach [CLRS22] is adopted (line 5), consisting
in imposing a limit on the minimum amount of flow sent along the desired path and iteratively
decreasing such limit until a path is found. If it is not possible to send additional flow from s
to t on Gf , the path P̂ and the flow ∆P placeholders are assigned no value. In this case, the
ComputeNextPath procedure stops and returns None (line 6). Otherwise, in order to check for
conflicting arcs, potentially included in P̂ , the ValidatePath procedure is exploited (line 8). If P̂
contains two conflicting arcs, (pN , qN ), sN and P are the selected pivot arc, the new source ver-
tex, namely the tail of the pivot arc, and the partial conflict-free solution path P , which contains
all the arcs of the previous partial path PINIT and all the arcs preceding pN in P̂ , respectively.
In order to obtain a sub-path from the new source sN to the sink t, to be concatenated to P ,
ComputeNextPath is recursively invoked (line 9). Otherwise, if no conflict violation is detected
in P̂ , no value is assigned to (pN , qN ) and sN , while P becomes the concatenation of PINIT and
P̂ and is in the end returned (line 11).

Finally, the ValidatePath procedure, whose pseudocode is reported in Algorithm 14, is used
to validate the generated augmenting paths, with respect to the defined set of conflicts. The
algorithm takes as input two paths Psk and Pkt: the former is a partial path going from the
source vertex s to some intermediate vertex k 6= t, which does not contain any conflicting arc
pairs and can possibly be empty; the latter, instead, is a candidate completing path going from
vertex k to the target vertex t and potentially violates conflicts. Clearly, if Psk is empty, k = s,
i.e., Pkt starts from the source vertex s. The output of the algorithm consists of a conflict-free



CHAPTER 6. MAX FLOW WITH CONFLICTS 121

Algorithm 14: ValidatePath
Data: Conflict-free partial path Psk; candidate completing path Pkt.
Result: Conflict-free s-t solution path P if no conflict is detected in 〈Psk, Pkt〉;

conflict-free partial path P with a new pivot arc (pN , qN ) and a new source sN ,
otherwise.

1 P ←− Psk; sN ←− None; (pN , qN ) ←− None;
2 for (i, j) in Pkt do
3 if δ(i, j) ∩ P = ∅ then P .append((i, j));
4 else
5 if random(0, 1) = 0 then (pN , qN ) ←− (i, j); sN ←− i;
6 else
7 (k, l)←− first arc in δ(i, j) ∩ P ;
8 P ←− 〈(p, q) ∈ P : (p, q) precedes (k, l)〉;
9 (pN , qN ) ←− (k, l); sN ←− k;

10 end
11 return P, sN , (pN , qN );
12 end
13 end
14 return P, sN , (pN , qN );

path P , which is a s-t path if no conflicting arc pair has been detected among all the arcs of Psk
and Pkt. If any conflict is detected, P is a partial path, instead, and a pivot arc (pN , qN ), i.e.,
the first excluded arc of Pkt, along with its tail vertex sN , are returned.

In the initialization phase, P is assigned the partial path Psk, while (pN , qN ) and sN assume
no value (line 1). Then, the arcs in the candidate path Pkt are processed in the order they appear,
until a violated conflict has been detected or the whole path has been analysed (lines 2-13). In
particular, each arc (i, j) ∈ Pkt is added to P if such insertion does not compromise the feasibility
of P , i.e., if (i, j) does not conflict with any of the arcs currently in P (line 3). Otherwise, with
a half probability, (i, j) becomes the first excluded arc of Pkt, i.e., (pN , qN ) = (i, j) and sN = i;
with the same probability, the choice falls on the first arc (k, l) ∈ δ(i, j) ∩ P , namely the first
arc of P conflicting with (i, j), and all the arcs placed after (k, l) are removed from P (lines
5-10); in both cases, the execution stops and the extended partial path is returned, along with
the selected pivot arc and its tail (line 11). If no conflicting arcs are detected in any iteration, at
the end of the execution P is a conflict-free s-t path, coinciding with the concatenation of Psk
and Pkt. Such complete path is returned along with the unassigned sN and (pN , qN ) (line 14).

6.3.2 Carousel Greedy

In the following, we provide a detailed description of the CG algorithm that we designed for the
MFPC, which incorporates the greedy procedure introduced in Subsection 6.3.1.
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The CG framework allows designing enhanced greedy algorithms, which generally exhibit
higher accuracy than the underlying greedy algorithms, with very reduced computational over-
head. More in detail, provided a starting solution of a greedy algorithm, a noteworthy im-
provement is obtained by iteratively discarding the oldest choices made by the algorithm and by
performing some new choices. By doing so, the very final phase of the algorithm, where choices
are made taking into account significant information gained throughout the computation, is ex-
tended, as opposite to what happens at the beginning of the computation, when few information
is available and the performed choices have higher impact on the future ones.

Designing a CG algorithm involves specifying the values of two parameters, namely the num-
ber of iterations to be performed w.r.t. the starting solution size (α) and the percentage of
the items, composing the tail of the starting solution, to be removed at the beginning of the
computation (β).

The scheme shown in Figure 6.2 graphically visualizes the main idea behind the CG algo-
rithm designed for the MFPC. The whole process starts from obtaining a feasible solution by
executing the MFPC-Greedy algorithm. As described in Section 6.3.1, such solution is composed
of a sequence S of non-conflicting augmenting paths, i.e., S = 〈P1, P2, . . . , P|S|〉, appearing in
the order they have been selected by the greedy algorithm. As long as the CG algorithm is
executed, such sequence is progressively updated. Firstly, the last β|S| augmenting paths are
removed from S, obtaining the so-called carousel start. Then, the α|S| iterations of the CG
algorithm are performed. In each iteration, the left-most item, i.e., the oldest selected aug-
menting path, is discarded and the ComputeNextPath procedure is exploited to obtain another
conflict-free augmenting path, if any, with respect to the updated S. After the last iteration,
the resulting collection of non-conflicting augmenting paths S is completed by performing the
MFPC-Greedy procedure.

Unlike the classical CG approach, introduced in [CCG17], where a feasible solution is obtained
only at the end of the computation, the designed CG algorithm for the MFPC, by construction,
yields a feasible solution at the end of each iteration. Additionally, to further intensify the
exploration of the solution space, in the designed CG algorithm, whenever an augmenting path
is removed from the current solution, its first arc is temporarily assigned zero capacity in the
residual network, thus preventing the greedy procedure from selecting the just excluded path in
the same iteration. In the same vein, a frequency vector storing the occurrences of each generated
path is maintained and a capacity equal to zero is temporarily assigned to the arcs of the most
chosen path. Nonetheless, the MFPC-Greedy algorithm is run at the end of each iteration, thus
obtaining an intermediate complete solution, i.e., a collection of paths that the algorithm is no
longer able to extend with additional augmenting paths. Although the paths generated by the
algorithm to obtain such solution are not added to S, the value of the obtained solution is still
compared with the incumbent solution, resulting in a possible update of the best solution found.
Contextually, a collection P of all the paths computed by the algorithm is built and returned at
the end of the computation.

The pseudocode of the designed CG algorithm is reported in Algorithm 15, which takes as
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Figure 6.2: Scheme of the Carousel Greedy algorithm designed for the MFPC.

input the original graph G, the source vertex s, the sink vertex t and the α and β parameters.
At the end of the computation, the output of the algorithm consists of the best found solution
S∗, i.e., an ordered list of conflict-free augmenting paths yielding the highest known flow, along
with the collection P of all the generated augmenting path and a frequency vector τ , where τP
indicates the number of times that path P has been considered by the algorithm, for each P ∈ P.

In the initialization phase, the MFPC-Greedy procedure is used to obtain a starting initial
solution S = 〈P1, . . . , P|S|〉, along with the associated flow vector ∆ and residual graph Gf (line
1). Then, the best solution found S∗, the related flow value z∗, the collection of generated paths
P and the frequency vector τ are initialized, accordingly (lines 2-3). At this point, τ indicates
that each path of the starting solution has been chosen exactly once. Subsequently, the so-called
carousel start SC is obtained, by removing from S the last β% of its paths (line 4), and the α|S|
CG iterations are performed (lines 5-20).

At the beginning of each iteration, the oldest path chosen according to the greedy strategy,
denoted by PO, is removed from SC (line 6), then the residual graph Gf associated to the flow
induced by the resulting solution SC is computed and all the arcs conflicting with some of the
used arcs are removed from Gf (lines 7-8); subsequently, the first arc of PO and all the arcs
belonging to the most frequently chosen path Pτ are set to zero (lines 9-10), which guarantees
that the next selected path is different from the just removed one, encouraging the exploration
of the solution space. At this point, the ComputeNextPath procedure is used to identify the
next most promising non-conflicting path (line 11). If any augmenting path P is found, it is
added to the collection P and the number τP of times P has been chosen is updated, as well as
the current solution SC , the current flow f and the resulting residual graph Gf . Furthermore,
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Algorithm 15: MFPC-CarouselGreedy
Data: Original graph G; source vertex s; sink vertex t; α and β parameters.
Result: Best found solution S∗; collection P of all the augmenting paths generated

during the computation and frequency vector τ .
1 (S,∆, Gf ) ←− MFPC-Greedy(G, s, t);
2 S∗ ←− S; z∗ ←− f(S);
3 P ←− {Pi : Pi ∈ S}; τPi ←− 1, ∀ Pi ∈ S;
4 initialize the carousel start SC with the first b(1− β)|S|c paths in S;
5 for i ∈ {1, . . . , α|S|} do
6 remove the oldest path PO from SC ;
7 compute the residual network Gf of G w.r.t. the flow induced by SC ;
8 remove from Gf all the arcs in conflict with some of the arcs of any path in SC ;
9 let Pτ be the path in P with highest frequency, i.e., Pτ := arg maxP∈P{τP };

10 set rij = rji = 0 in Gf the first arc of PO and all the arcs in Pτ ;
11 (P,∆P )←− ComputeNextPath(G,Gf , s, t, 〈〉, None)
12 if P 6= None and ∆P > 0 then
13 P ←− P ∪ {P}; τP ←− τP + 1;
14 add P to SC and update f and Gf , accordingly;
15 if z∗ ≤ f(SC) then S∗ ←− SC ; z∗ ←− f(SC);
16 end
17 obtain an intermediate complete solution SC+ by running MFPC-Greedy(G, s, t)

with the starting partial solution S = SC ;
18 P ←− P ∪ {P}, τP ←− τP + 1, ∀ P ∈ SC+ \ SC ;
19 if z∗ ≤ f(SC+) then S∗ ←− SC+; z∗ ←− f(SC+);
20 end
21 return S∗, P, τ ;

if the flow value associated to the current solution is higher than the best known one, the best
solution is updated (lines 12-16). Finally, the MFPC-Greedy algorithm is used to obtain an
intermediate complete solution starting from SC (line 17). According to the resulting solution,
denoted by SC+, the occurrences of each path and, possibly, the best found solution, are updated
(lines 18-19). Note that, since SC is not modified, this operation has no impact on the current
solution, however it may influence the computation of the most frequently chosen path Pτ at the
next iteration. In the end, the algorithm returns the best solution found S∗, the collection of
generated paths P and the frequency vector τ .

6.3.3 Kernel Search

In this subsection, we describe the KS-based algorithm developed for the MFPC. As already
mentioned, the founding idea of the KS framework is to identify a subset of promising items
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which compose the kernel set (Λ), based on the information gained by solving the continuous
relaxation of the problem. All the items initially excluded from Λ are instead organized in a
collection of buckets B = 〈B1, . . . , B|B|〉. The size of Λ, as well as the size of each Bi ∈ B,
constitute the two key parameters of a KS-based algorithm. In the following, we will denote
by λ and γ the kernel size and the bucket size, respectively. The choice of such parameters is
crucial for the effectiveness and the performance of the resulting algorithm. Indeed, a series of
mixed-integer linear programs, restricted to the variables associated with the items in Λ and
one of the buckets at time, are solved by using state-of-the-art solvers. The larger the size of
the restricted problems, the higher the quality of the final solution. Clearly, larger subproblems
require more computing time to be solved. Lastly, a necessary condition for the applicability of
KS is the meaningfulness of the solution provided by the continuous relaxation of the problem,
w.r.t. the optimal integer solution.

The KS framework consists of two phases:

• Initialization phase, where the initial kernel is identified, along with the collection of
buckets;

• Extension phase, where the kernel set is iteratively extended, by moving items from the
buckets, whose inclusion improves the best known solution.

Figure 6.3 shows the content of such two phases w.r.t. the KS-based algorithm developed
for the MFPC. In the initialization phase, the continuous relaxation LP-MFPCs is solved, thus
obtaining a realization (

¯
f,

¯
x) of the flow and activation variables. Then, the arcs of G are sorted

in non-increasing order by considering, for each arc (i, j) ∈ A, the value of the associated variable

¯
fij , when

¯
fij > 0, and its reduced cost coefficient, when

¯
fij = 0. The first λ arcs, according to

the resulting order, constitute the kernel set Λ, while the remaining ones are orderly partitioned
into buckets of size γ. This process has been shown to generally produce, for the MFPC, a kernel
set Λ with a reduced number of conflicting pairs. The first integer solution is then obtained by
solving MFPCw(Λ), if the restricted problem is feasible. Nevertheless, in the extension phase, Λ
is iteratively extended by solving several instances of MFPCw(Λi), where each superset Λi ⊇ Λ is
obtained at iteration i, by considering the bucket Bi ∈ B and setting Λi = Λ∪Bi. When solving
the i-th subproblem, i.e., MFPCw(Λi), the following two additional constraints are imposed:∑

(i,j)∈Bi

xij ≥ 1 (6.3)

v ≥ w∗. (6.4)

Constraint (6.3) requires that at least one of the activation variables whose associated arcs are
in Bi assumes value 1 in the solution, while constraint (6.4) impose that the value of the solution
identified at iteration i is higher than the one found at iteration i− 1. If the resulting problem
is feasible, Λ is extendend by including every arc from Bi which has been assigned positive flow
in the provided solution.
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Figure 6.3: Kernel Search diagram.

6.3.4 Kernousel

In this section, we propose an hybrid heuristic algorithm for the MFPC, based on a novel reso-
lution paradigm, named Kernousel (KO), which consists in enhancing a KS-based algorithm by
exploiting a CG algorithm in the initialization phase.

The idea behind the proposed approach is to combine the optimality guarantee provided by
the KS for restricted subproblems with the knowledge gained by the CG algorithm during its
exploration of the solution space, including information about items which are not included in
the final solution. We argue that, for highly constrained problems, where the inclusion of an
item highly affects the rest of the solution, as it occurs for the MFPC, such paradigm may yield
higher quality solutions than the singular approaches applied separately.

More in detail, in the Kernousel framework, all the paths generated during the execution of
the CG algorithm, including the ones which do not actually belong to the final solution, are
stored and then used to improve the composition of both the kernel set and the collection of
buckets. Due to the given conflicting arc pairs, the discarded paths represent alternatives to the
ones included in the solution provided by the CG and the arcs belonging to such paths are likely
to be part of an optimal solution. Once the kernel set and the buckets have been initialized by
considering the information collected by the CG algorithm, the remaining steps of the classical
KS are performed.

The pseudocode of the resulting MFPC-Kernousel algorithm, which mostly reflects the high-
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Algorithm 16: MFPC-Kernousel
Data: Graph G, source vertex s, sink vertex t, GC parameters α and β, kernel size λ

and bucket size γ.
Result: Best found solution (f∗, x∗), along with its associated value w∗.

1 S, P, τ ←− MFPC-CarouselGreedy(G, s, t, α, β)
2 Λ, B,w∗ ←− MFPC-Kernousel-Initialization(G, s, t, λ, γ,P, τ)
3 f∗, x∗, w∗ ←− MFPC-Kernousel-Extension(Λ, B,w∗)
4 return f∗, x∗, w∗

level KS scheme shown in Figure 6.3, is reported in Algorithm 16, which takes as input the graph
G, the source vertex s and the sink vertex t, as well as the CG parameters α and β, the kernel
size λ and the bucket size γ. The output of the algorithm consists of the best found solution
(f∗, x∗), along with its associated objective value w∗. Before performing the initialization phase,
the CG algorithm is run, by obtaining an initial solution S, as well as the collection of analyzed
paths P and their associated frequency τ (line 1). Then, the initialization phase, tailored for the
Kernousel approach, is performed (line 2), thus composing the kernel set Λ and the collection B
of buckets, on the basis of both the optimal solution of the continuous relaxation of the problem
and the collection of paths generated by the CG algorithm. Finally, after performing the classical
KS extension phase (line 3), the best found solution (f∗, x∗) and the associated objective value
w∗ are returned.

Algorithm 17 initializes the kernel set and the buckets collection. It takes as input the graph
G, the source vertex s, the sink vertex t, the kernel size λ, the bucket size γ and the collection P
of all the paths generated by the CG algorithm, along with their frequency vector τ . The output
of the algorithm consists of the initialized kernel set Λ and buckets collection B, along with the
best known objective value w∗, computed by solving the restricted MILP w.r.t. the variables
included in the starting kernel set. After initializing the best known objective value w∗ to −∞,
the continuous relaxation of the original problem is solved by using the strong formulation LP-
MFPCs, by obtaining the solution (f, x) and the reduced cost coefficients ρ associated to the
out-of-base flow variables (lines 1-3). A sorted sequence L of the arcs (i, j) of G is then built,
by concatenating the sequence of arcs with strictly positive flow, sorted by non-increasing order
of fij , and the sequence of arcs with associated zero flow, sorted on the basis of non-increasing
values of the associated reduced cost coefficients (lines 4-6). The kernel set Λ is then initialized
with all the arcs appearing in any of the paths of the collection P stored by the CG algorithm
(line 7). If they are not enough to populate the kernel, i.e., if the so-obtained number of arcs is
less than λ, the remaining λ− |Λ| arcs are taken from L, in the order they appear (lines 8-11).
Then, the collection of buckets B is built, by considering γ arcs at time from the sequence L,
until zero or strictly less than γ arcs are left; in the latter case, the remaining arcs are included
in an additional bucket, smaller than the previous ones (line 12). Finally, the restricted MILP,
w.r.t. the variables included in the starting kernel set, is solved by using the weak formulation
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Algorithm 17: MFPC-Kernousel-Initialization
Data: Graph G, source vertex s, sink vertex t, kernel size λ, buckets size γ, CG paths

collection P and frequency vector τ .
Result: Kernel set Λ and buckets collection B, along with the best known objective

value w∗, i.e., the optimal solution of MFPCw(Λ).
1 w∗ ←− −∞
2 f, x←− optimal solution of LP-MFPCs
3 ρij ←− reduced cost coefficient of fij
4 L> ←− sequence of the arcs (i, j) ∈ A s.t. fij > 0, sorted according to non-increasing fij

values
5 L= ←− sequence of the arcs (i, j) ∈ A s.t. fij = 0, sorted according to non-increasing ρij

values
6 L←− L> + L=

7 Λ←− {(i, j) ∈ P : P ∈ P}
8 if |Λ| < λ then
9 Λ←− Λ ∪ {L1, . . . , Lλ−|Λ|}

10 L←− 〈Lλ−|Λ|+1, . . . , L|L|〉
11 end
12 B ←− collection of d|L|/γe buckets s.t. each Bi contains the next γ arcs from L
13 (f∗, x∗)←− optimal solution of MFPCw(Λ)
14 if (f∗, x∗) is feasible then w∗ ←− objective value associated to (f∗, x∗)
15 return Λ, B,w∗

and the best known objective value is possibly updated, before returning the initialized sets and
objective value (lines 13-15).

The pseudocode of the MFPC-Kernousel-Extension procedure, implementing the KS logic,
is reported in Algorithm 18, which takes as input the kernel set Λ, the collection of buckets B
and the starting objective value w∗ obtained by solving the restricted MILP w.r.t. the variables
added to Λ during the initialization phase. Each bucket Bi ∈ B is processed a single time (line 1)
and, with respect to each of them, the Λi set, containing all the variables of the previous kernel
plus the variables of the i-th bucket, is considered (line 2). The associated restricted MILP
is solved by using the weak formulation, i.e., MFPCw(Λi), with the additional requirements of
constraints (6.3) and (6.4) (line 3). If the resulting problem is not feasible, no action is performed,
otherwise it means that a solution with higher value than the best known one has been found,
and the value of w∗ is updated accordingly. Furthermore, the subset of variables of Bi associated
with a positive flow in the solution are moved to the kernel set (lines 4-7). In the end, the best
found solution variables (f∗, x∗) and objective value w∗ are returned.
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Algorithm 18: MFPC-Kernousel-Extension
Data: Kernel set Λ, bucket collection B and starting objective value w∗.
Result: Best known solution (f∗, x∗) and related objective value w∗.

1 for Bi ∈ B do
2 Λi ←− Λ ∪Bi
3 (f∗, x∗)←− optimal solution of MFPCw(Λi) + constraints (6.3) and (6.4)
4 if (f∗, x∗) is feasible then
5 w∗ ←− objective value associated to (f∗, x∗)
6 Λ̄i ←− {(i, j) ∈ Bi : f∗ij > 0}
7 Λ←− Λ ∪ Λ̄i
8 end
9 end

10 return f∗, x∗, w∗

6.4 Computational tests

The algorithms described in this work have been tested on the collection of benchmark instances
provided by Şuvak et al. [cAA20]. By construction, each instance admits at least one non-zero
flow feasible solution, and its size is described by three parameters: the number of nodes (n);
the arc density (p = m

n(n−1) , where m denotes the number of edges); and the conflict density
(d = 2w

m(m−1) , where w denotes the number of conflicting arc pairs). The instance set is composed
by 160 instances, two of which are generated for each combination of the n, p and d values,
with n ∈ {40, 50, 60, 70, 80}, p ∈ {0.3, 0.4, 0.5, 0.6} and d ∈ {0.3, 0.4, 0.5, 0.6}. Each instance is
assigned an ID between 1 and 160. Furthermore, according to the number of nodes, instances
1-96 (with n ∈ [40, 60]) and instances 97-160 (with n ∈ [70, 80]) are classified as Small and Large
instances, respectively.

In this section, we compare the results and performances of the CG, KS and MFPC-Kernousel
approaches against the ones of the best performing approach proposed in [cAA20], i.e., a Ben-
ders Decomposition (BD) algorithm based on Formulation 4. Since the computational results
of the BD algorithm, reported in [cAA20], refer to tests carried out by using a Intel Xeon CPU
E5-2687W 3.10 GHz processor with 315.4 gigaflops, while we conducted the numerical experi-
ments related to all the methods presented in this work using a Intel(R) Core i9-9880H CPU
@ 2.30GHz processor with 432.22 gigaflops, we scale all the running times of BD by dividing
them for the conversion ratio µ = 432.22

315.4 ≈ 1.37. Clearly, by applying this conversion, the one
hour time limit, imposed by Şuvak et al., corresponds to 2627.7 seconds in our setting.

In our experiments, α = 40, β = 40, λ = 200 and γ = 250.Compared with the typi-
cal values of α and β from the CG literature, the selected values are noticeably higher. The
motivation for this lies in the aim of generating as many paths as possible during the MFPC-
Kernousel initialization phase, resulting in a larger kernel set. Another reason is that, compared
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with the problems addressed in the literature with CG, such as the Minimum Label Spanning
Tree Problem [CGDC18], the Close-Enough Traveling Salesman Problem [CCCG20], the first
choices performed by the GC algorithm in combinatorial optimization problems with conflict
constraints are generally highly more impacting, since they lead to the exclusion of whole sub-
sets of items from the ground set. As a result, a higher number of iterations is required. Clearly,
the higher the number of conflicts, whose density is up to 60% in the addressed set of instances,
the higher the impact of the first choices. On the other hand, the value of λ has been selected
with a view of obtaining kernel sets able to give initial feasible solutions for all the instances of
the problem, while the value of γ results from a trade-off between the number of variables in
each bucket and the resulting number of subproblems to be solved.
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BDw CG KS Kernousel
id Istanza Best Value Time Gap Value Time Gap Value Time Gap Value Time Gap

1 40_30_30_10_15 37 37 11,93 0.00% 37 6.61 0.00% 37 10.7 0.00% 37 15.75 0.00%
2 40_30_30_15_20 49 49 3,73 0.00% 37 6.74 24.49% 49 6.7 0.00% 49 13.22 0.00%
3 40_30_40_10_15 24 24 8,02 0.00% 15 2.17 37.50% 24 10.61 0.00% 24 11.62 0.00%
4 40_30_40_15_20 33 33 4,60 0.00% 33 5.73 0.00% 33 10.29 0.00% 33 15.19 0.00%
5 40_30_50_10_15 12 12 6,26 0.00% 12 1.93 0.00% 12 12.98 0.00% 12 15.51 0.00%
6 40_30_50_15_20 34 34 5,56 0.00% 34 2.92 0.00% 34 9.92 0.00% 34 14.59 0.00%
7 40_30_60_10_15 13 13 13,84 0.00% 13 2.41 0.00% 13 13.58 0.00% 13 15.06 0.00%
8 40_30_60_15_20 15 15 19,39 0.00% 15 2.01 0.00% 15 15.52 0.00% 15 13.86 0.00%
9 40_40_30_10_15 35 35 13,86 0.00% 34 7.88 2.86% 34 14.1 2.86% 34 20.44 2.86%
10 40_40_30_15_20 51 51 165,45 0.00% 49 3.21 3.92% 51 26.97 0.00% 51 37.81 0.00%
11 40_40_40_10_15 26 26 18,93 0.00% 26 11.45 0.00% 26 16.54 0.00% 26 29.84 0.00%
12 40_40_40_15_20 50 50 16,33 0.00% 50 9.39 0.00% 50 17.32 0.00% 50 28.35 0.00%
13 40_40_50_10_15 13 13 28,22 0.00% 13 3.30 0.00% 13 19.89 0.00% 13 23.61 0.00%
14 40_40_50_15_20 19 19 20,61 0.00% 19 2.77 0.00% 19 19.01 0.00% 19 19.11 0.00%
15 40_40_60_10_15 25 25 24,05 0.00% 25 5.61 0.00% 25 16.49 0.00% 25 22.83 0.00%
16 40_40_60_15_20 19 19 27,18 0.00% 19 2.81 0.00% 19 21.17 0.00% 19 27.63 0.00%
17 40_50_30_10_15 43 43 132,96 0.00% 35 22.99 18.60% 36 73.83 16.28% 37 104.82 13.95%
18 40_50_30_15_20 55 55 23,58 0.00% 54 14.02 1.82% 52 17.24 5.45% 55 32.85 0.00%
19 40_50_40_10_15 33 33 26,96 0.00% 33 11.98 0.00% 33 24.75 0.00% 33 34.85 0.00%
20 40_50_40_15_20 35 35 37,47 0.00% 33 13.51 5.71% 33 18.15 5.71% 33 33.77 5.71%
21 40_50_50_10_15 27 27 50,04 0.00% 26 3.87 3.70% 27 32.86 0.00% 27 33.67 0.00%
22 40_50_50_15_20 34 34 34,87 0.00% 32 7.78 5.88% 34 26.56 0.00% 34 36.22 0.00%
23 40_50_60_10_15 15 15 23,51 0.00% 13 4.85 13.33% 15 12.83 0.00% 15 18 0.00%
24 40_50_60_15_20 34 34 24,46 0.00% 34 6.23 0.00% 34 13.18 0.00% 34 20.58 0.00%
25 40_60_30_10_15 45 45 479,46 0.00% 41 20.45 8.89% 45 23.39 0.00% 45 59.68 0.00%
26 40_60_30_15_20 80 80 72,87 0.00% 69 22.20 13.75% 80 25.86 0.00% 80 50.5 0.00%
27 40_60_40_10_15 30 30 120,64 0.00% 24 11.97 20.00% 30 36.03 0.00% 30 54.29 0.00%
28 40_60_40_15_20 48 48 120,80 0.00% 35 20.34 27.08% 38 23.12 20.83% 48 48.31 0.00%
29 40_60_50_10_15 26 26 52,23 0.00% 24 9.47 7.69% 26 26.31 0.00% 26 37.19 0.00%
30 40_60_50_15_20 36 36 59,77 0.00% 35 6.69 2.78% 34 34.96 5.56% 35 47.61 2.78%
31 40_60_60_10_15 24 24 17,98 0.00% 24 4.49 0.00% 24 25.24 0.00% 24 29.25 0.00%
32 40_60_60_15_20 37 37 6,74 0.00% 37 13.48 0.00% 37 12.68 0.00% 37 27.03 0.00%

33 50_30_30_10_15 37 37 16,53 0.00% 37 13.65 0.00% 37 17.64 0.00% 37 31.59 0.00%
34 50_30_30_15_20 48 48 31,91 0.00% 48 17.02 0.00% 47 17.06 2.08% 48 36.85 0.00%
35 50_30_40_10_15 24 24 29,55 0.00% 20 6.74 16.67% 24 16.75 0.00% 24 26.3 0.00%
36 50_30_40_15_20 33 33 43,10 0.00% 33 3.92 0.00% 33 14.26 0.00% 33 21.01 0.00%
37 50_30_50_10_15 21 21 30,47 0.00% 21 5.05 0.00% 21 18.27 0.00% 21 26.85 0.00%
38 50_30_50_15_20 33 33 28,92 0.00% 30 7.02 9.09% 33 21.78 0.00% 33 30.63 0.00%
39 50_30_60_10_15 13 13 18,75 0.00% 13 4.02 0.00% 13 8.39 0.00% 13 12.62 0.00%
40 50_30_60_15_20 37 37 9,62 0.00% 37 5.34 0.00% 37 7.76 0.00% 37 13.23 0.00%
41 50_40_30_10_15 37 37 570,34 0.00% 36 18.13 2.70% 31 31.4 16.22% 36 65.01 2.70%
42 50_40_30_15_20 53 53 115,33 0.00% 53 11.37 0.00% 38 30.19 28.30% 53 33.58 0.00%
43 50_40_40_10_15 35 35 185,13 0.00% 35 10.15 0.00% 35 32.21 0.00% 35 47 0.00%
44 50_40_40_15_20 38 38 53,69 0.00% 37 5.48 2.63% 37 26.65 2.63% 37 32.64 2.63%
45 50_40_50_10_15 21 21 72,35 0.00% 14 12.31 33.33% 21 34.19 0.00% 21 54.03 0.00%
46 50_40_50_15_20 18 18 44,01 0.00% 17 7.41 5.56% 17 19.16 5.56% 17 30.37 5.56%
47 50_40_60_10_15 24 24 14,72 0.00% 24 8.73 0.00% 24 21.55 0.00% 24 30.92 0.00%
48 50_40_60_15_20 37 37 24,22 0.00% 37 8.63 0.00% 37 24.61 0.00% 37 35.29 0.00%
49 50_50_30_10_15 40 40 352,72 0.00% 40 23.65 0.00% 39 44.72 2.50% 40 72.96 0.00%
50 50_50_30_15_20 57 57 127,67 0.00% 55 21.04 3.51% 55 30.21 3.51% 55 72.15 3.51%
51 50_50_40_10_15 40 40 163,82 0.00% 38 17.72 5.00% 40 30.31 0.00% 40 51.72 0.00%
52 50_50_40_15_20 53 53 134,36 0.00% 53 17.53 0.00% 53 28.61 0.00% 53 55.14 0.00%
53 50_50_50_10_15 25 25 64,95 0.00% 25 23.27 0.00% 25 31.87 0.00% 25 59.48 0.00%
54 50_50_50_15_20 38 38 61,36 0.00% 38 5.88 0.00% 38 32.89 0.00% 38 41.73 0.00%
55 50_50_60_10_15 25 25 38,60 0.00% 11 5.78 56.00% 25 21.07 0.00% 25 27.67 0.00%
56 50_50_60_15_20 18 18 17,43 0.00% 18 7.86 0.00% 18 20.75 0.00% 18 29.49 0.00%
57 50_60_30_10_15 49 45 2627,74 8.16% 48 65.62 2.04% 49 140.14 0.00% 49 412.85 0.00%
58 50_60_30_15_20 73 73 1986,50 0.00% 70 29.88 4.11% 73 60.9 0.00% 73 159.58 0.00%
59 50_60_40_10_15 38 38 294,45 0.00% 37 17.40 2.63% 34 82.64 10.53% 37 74.82 2.63%
60 50_60_40_15_20 51 51 679,74 0.00% 50 34.59 1.96% 49 62.49 3.92% 50 108.07 1.96%
61 50_60_50_10_15 39 39 123,31 0.00% 38 16.77 2.56% 38 40.02 2.56% 38 62.84 2.56%
62 50_60_50_15_20 37 37 183,23 0.00% 37 21.73 0.00% 37 47.4 0.00% 37 67.42 0.00%
63 50_60_60_10_15 26 26 67,36 0.00% 26 9.41 0.00% 26 29.99 0.00% 26 46.1 0.00%
64 50_60_60_15_20 33 33 58,24 0.00% 33 13.37 0.00% 33 37.96 0.00% 33 57.25 0.00%

65 60_30_30_10_15 36 36 850,40 0.00% 36 23.43 0.00% 34 30.31 5.56% 36 72.29 0.00%
66 60_30_30_15_20 53 53 418,12 0.00% 39 7.61 26.42% 50 19.88 5.66% 53 36.25 0.00%
67 60_30_40_10_15 22 22 56,08 0.00% 21 12.23 4.55% 22 22.21 0.00% 22 36.48 0.00%
68 60_30_40_15_20 34 34 22,39 0.00% 33 19.11 2.94% 34 16.24 0.00% 34 35.87 0.00%
69 60_30_50_10_15 27 27 16,67 0.00% 27 14.31 0.00% 27 23.63 0.00% 27 51.18 0.00%
70 60_30_50_15_20 33 33 31,44 0.00% 33 6.40 0.00% 33 25.41 0.00% 33 33.21 0.00%
71 60_30_60_10_15 12 12 19,94 0.00% 12 6.57 0.00% 12 20.78 0.00% 12 28.75 0.00%
72 60_30_60_15_20 19 19 21,45 0.00% 17 11.37 10.53% 18 22.51 5.26% 18 35.38 5.26%
73 60_40_30_10_15 39 39 2627,74 0.00% 36 27.16 7.69% 36 38.82 7.69% 36 91.87 7.69%
74 60_40_30_15_20 64 64 716,82 0.00% 64 27.17 0.00% 64 33.95 0.00% 64 67.04 0.00%
75 60_40_40_10_15 26 26 113,15 0.00% 26 19.47 0.00% 26 25.09 0.00% 26 47.22 0.00%
76 60_40_40_15_20 38 38 602,89 0.00% 37 15.33 2.63% 37 39.16 2.63% 37 59.99 2.63%
77 60_40_50_10_15 29 29 87,02 0.00% 28 15.39 3.45% 28 51.42 3.45% 29 70.69 0.00%
78 60_40_50_15_20 37 37 58,60 0.00% 37 17.55 0.00% 37 45.57 0.00% 37 64.69 0.00%
79 60_40_60_10_15 14 14 52,82 0.00% 12 8.57 14.29% 14 27.35 0.00% 14 42.95 0.00%
80 60_40_60_15_20 37 37 36,19 0.00% 34 7.95 8.11% 37 27.27 0.00% 37 39.37 0.00%
81 60_50_30_10_15 53 40 2627,74 24.53% 53 47.90 0.00% 41 55.92 22.64% 53 130.19 0.00%
82 60_50_30_15_20 68 52 2627,74 23.53% 64 49.82 5.88% 52 89.24 23.53% 64 200.59 5.88%
83 60_50_40_10_15 40 40 1322,13 0.00% 40 19.64 0.00% 36 71.58 10.00% 40 95.05 0.00%
84 60_50_40_15_20 39 39 550,96 0.00% 39 23.01 0.00% 39 41.43 0.00% 39 76.64 0.00%
85 60_50_50_10_15 26 26 494,15 0.00% 26 35.52 0.00% 26 56.48 0.00% 26 99.48 0.00%
86 60_50_50_15_20 37 37 197,58 0.00% 35 16.41 5.41% 37 51.69 0.00% 37 73.86 0.00%
87 60_50_60_10_15 25 25 70,09 0.00% 25 24.44 0.00% 25 43.68 0.00% 25 68.91 0.00%
88 60_50_60_15_20 19 19 129,96 0.00% 18 11.94 5.26% 19 43.24 0.00% 19 58.9 0.00%
89 60_60_30_10_15 54 53 2627,74 1.85% 54 46.95 0.00% 51 110.05 5.56% 54 238.59 0.00%
90 60_60_30_15_20 67 51 2627,74 23.88% 63 61.17 5.97% 51 161.29 23.88% 67 630.81 0.00%
91 60_60_40_10_15 41 41 1931,83 0.00% 41 65.82 0.00% 41 68.37 0.00% 41 166.78 0.00%
92 60_60_40_15_20 53 53 2100,13 0.00% 53 36.08 0.00% 53 66.86 0.00% 53 124.27 0.00%
93 60_60_50_10_15 27 27 719,36 0.00% 26 16.04 3.70% 27 65.94 0.00% 27 96.99 0.00%
94 60_60_50_15_20 53 53 406,50 0.00% 53 53.68 0.00% 53 69.61 0.00% 53 142.01 0.00%
95 60_60_60_10_15 24 24 177,19 0.00% 24 29.23 0.00% 24 59.86 0.00% 24 93.19 0.00%
96 60_60_60_15_20 33 33 201,56 0.00% 33 28.90 0.00% 33 63.14 0.00% 33 98.53 0.00%

AVG 359.23 0.85% 16.19 4.71% 34.80 2.61% 63.84 0.71%

Table 6.1: Small instances
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BDw CG KS Kernousel
ID Instance Best Value Time Gap Value Time Gap Value Time Gap Value Time Gap

97 70_30_30_10_15 39 39 917.60 0.00% 36 29.82 7.69% 35 33.61 10.26% 38 98.63 2.56%
98 70_30_30_15_20 35 35 2627.74 0.00% 35 18.11 0.00% 34 46.83 2.86% 35 92.15 0.00%
99 70_30_40_10_15 23 23 129.12 0.00% 22 8.68 4.35% 21 30.31 8.70% 22 46.44 4.35%
100 70_30_40_15_20 36 36 81.43 0.00% 36 39.74 0.00% 36 32.85 0.00% 36 75.31 0.00%
101 70_30_50_10_15 25 25 78.10 0.00% 12 8.48 52.00% 25 29.66 0.00% 25 41.21 0.00%
102 70_30_50_15_20 19 19 82.96 0.00% 16 8.16 15.79% 19 30.84 0.00% 19 41.96 0.00%
103 70_30_60_10_15 14 14 43.10 0.00% 14 7.06 0.00% 13 29.07 7.14% 14 38.46 0.00%
104 70_30_60_15_20 20 20 45.20 0.00% 20 15.43 0.00% 20 27.25 0.00% 20 44.96 0.00%
105 70_40_30_10_15 56 45 2627.74 19.64% 46 53.46 17.86% 45 49.31 19.64% 56 172.76 0.00%
106 70_40_30_15_20 65 52 2627.74 20.00% 65 42.01 0.00% 37 121.21 43.08% 65 129.78 0.00%
107 70_40_40_10_15 31 31 821.39 0.00% 31 25.27 0.00% 31 59.82 0.00% 31 92.34 0.00%
108 70_40_40_15_20 36 36 1451.58 0.00% 35 37.58 2.78% 35 41.49 2.78% 35 101.58 2.78%
109 70_40_50_10_15 26 26 359.03 0.00% 24 25.73 7.69% 26 60.72 0.00% 26 93.33 0.00%
110 70_40_50_15_20 33 33 427.15 0.00% 32 24.68 3.03% 20 61.08 39.39% 32 89.66 3.03%
111 70_40_60_10_15 25 25 155.78 0.00% 25 17.63 0.00% 25 50.29 0.00% 25 71.63 0.00%
112 70_40_60_15_20 18 18 107.77 0.00% 16 9.94 11.11% 18 49.69 0.00% 18 63.11 0.00%
113 70_50_30_10_15 41 34 2627.74 17.07% 40 56.68 2.44% 41 79 0.00% 40 373.96 2.44%
114 70_50_30_15_20 52 48 2627.74 7.69% 52 70.66 0.00% 49 61.86 5.77% 52 201.5 0.00%
115 70_50_40_10_15 35 35 2060.04 0.00% 35 75.53 0.00% 35 68.61 0.00% 35 178 0.00%
116 70_50_40_15_20 55 55 2627.74 0.00% 51 48.23 7.27% 54 82.24 1.82% 55 142.41 0.00%
117 70_50_50_10_15 25 25 1831.55 0.00% 21 26.02 16.00% 24 92.96 4.00% 24 122.67 4.00%
118 70_50_50_15_20 50 50 509.68 0.00% 50 14.12 0.00% 50 71.03 0.00% 50 94.79 0.00%
119 70_50_60_10_15 24 24 307.09 0.00% 23 64.10 4.17% 24 75.25 0.00% 24 151.91 0.00%
120 70_50_60_15_20 19 19 593.09 0.00% 18 13.78 5.26% 19 74.09 0.00% 19 93.91 0.00%
121 70_60_30_10_15 54 41 2627.74 24.07% 54 95.74 0.00% 41 238.65 24.07% 54 566.2 0.00%
122 70_60_30_15_20 86 55 2627.74 36.05% 71 92.36 17.44% 58 202.65 32.56% 86 345.7 0.00%
123 70_60_40_10_15 37 34 2627.74 8.11% 36 55.00 2.70% 37 106.03 0.00% 37 201.89 0.00%
124 70_60_40_15_20 54 52 2627.74 3.70% 52 40.21 3.70% 53 93.19 1.85% 52 169.81 3.70%
125 70_60_50_10_15 32 32 1739.77 0.00% 32 59.19 0.00% 28 101.93 12.50% 32 198.19 0.00%
126 70_60_50_15_20 53 53 2403.17 0.00% 51 65.83 3.77% 46 106.13 13.21% 51 201.68 3.77%
127 70_60_60_10_15 25 25 426.82 0.00% 25 79.62 0.00% 25 110.7 0.00% 25 211.27 0.00%
128 70_60_60_15_20 36 36 483.96 0.00% 36 59.57 0.00% 36 108.55 0.00% 36 197.31 0.00%

129 80_30_30_10_15 38 31 2627.74 18.42% 34 51.05 10.53% 32 77.46 15.79% 34 168.43 10.53%
130 80_30_30_15_20 69 69 2081.23 0.00% 68 28.74 1.45% 56 46.08 18.84% 69 101.84 0.00%
131 80_30_40_10_15 23 23 1449.07 0.00% 22 14.85 4.35% 22 48.63 4.35% 22 75.39 4.35%
132 80_30_40_15_20 37 37 545.77 0.00% 34 39.75 8.11% 33 51.51 10.81% 37 111.38 0.00%
133 80_30_50_10_15 15 15 245.84 0.00% 12 11.01 20.00% 14 45.64 6.67% 14 66.85 6.67%
134 80_30_50_15_20 50 50 143.39 0.00% 50 36.66 0.00% 36 51.61 28.00% 50 100.92 0.00%
135 80_30_60_10_15 15 15 90.98 0.00% 15 26.19 0.00% 15 46.84 0.00% 15 85.53 0.00%
136 80_30_60_15_20 34 34 115.27 0.00% 32 21.07 5.88% 18 54.95 47.06% 32 83.21 5.88%
137 80_40_30_10_15 54 54 2627.74 0.00% 54 59.86 0.00% 54 66.38 0.00% 54 157.24 0.00%
138 80_40_30_15_20 65 49 2627.74 24.62% 65 67.17 0.00% 52 76.05 20.00% 65 248.38 0.00%
139 80_40_40_10_15 29 29 2627.74 0.00% 27 58.31 6.90% 29 88.38 0.00% 29 188.85 0.00%
140 80_40_40_15_20 50 50 2627.74 0.00% 45 47.17 10.00% 38 77 24.00% 50 148.68 0.00%
141 80_40_50_10_15 28 28 724.61 0.00% 23 27.12 17.86% 26 75.84 7.14% 26 114.31 7.14%
142 80_40_50_15_20 50 50 1078.21 0.00% 50 50.27 0.00% 36 87.38 28.00% 50 148.08 0.00%
143 80_40_60_10_15 26 26 267.57 0.00% 25 27.67 3.85% 26 83.15 0.00% 26 117.93 0.00%
144 80_40_60_15_20 34 34 387.61 0.00% 32 17.39 5.88% 34 80.13 0.00% 34 106.12 0.00%
145 80_50_30_10_15 56 40 2627.74 28.57% 48 86.57 14.29% 49 101.88 12.50% 56 252.13 0.00%
146 80_50_30_15_20 64 48 2627.74 25.00% 61 137.46 4.69% 50 107.5 21.88% 64 601.95 0.00%
147 80_50_40_10_15 39 38 2627.74 2.56% 38 74.36 2.56% 28 120.29 28.21% 38 209.93 2.56%
148 80_50_40_15_20 55 38 2627.74 30.91% 51 87.08 7.27% 38 110.92 30.91% 51 235.12 7.27%
149 80_50_50_10_15 25 25 2627.74 0.00% 24 41.02 4.00% 25 119.96 0.00% 25 176.54 0.00%
150 80_50_50_15_20 35 35 2482.31 0.00% 35 24.75 0.00% 35 117.68 0.00% 35 149.68 0.00%
151 80_50_60_10_15 23 23 1040.82 0.00% 23 36.08 0.00% 14 130.86 39.13% 23 175.44 0.00%
152 80_50_60_15_20 33 33 1087.28 0.00% 19 24.16 42.42% 19 125.86 42.42% 19 158.79 42.42%
153 80_60_30_10_15 60 41 2627.74 31.67% 57 155.41 5.00% 47 153.39 21.67% 60 1376.66 0.00%
154 80_60_30_15_20 88 68 2627.74 22.73% 85 100.28 3.41% 88 134.35 0.00% 85 501.96 3.41%
155 80_60_40_10_15 38 33 2627.74 13.16% 33 117.96 13.16% 38 155.13 0.00% 38 303.17 0.00%
156 80_60_40_15_20 53 37 2627.74 30.19% 46 93.48 13.21% 53 154.84 0.00% 53 286.24 0.00%
157 80_60_50_10_15 38 38 2627.74 0.00% 38 67.94 0.00% 38 173.85 0.00% 38 253.1 0.00%
158 80_60_50_15_20 48 37 2627.74 22.92% 37 45.70 22.92% 37 181 22.92% 37 241.46 22.92%
159 80_60_60_10_15 26 26 1824.90 0.00% 26 47.24 0.00% 25 183.08 3.85% 26 245.92 0.00%
160 80_60_60_15_20 36 36 1395.80 0.00% 35 58.09 2.78% 36 191.75 0.00% 36 254.18 0.00%

AVG 1536.52 6.05% 47.97 6.49% 89.79 10.37% 190.47 2.18%

Table 6.2: Large instances
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Computational results are shown in Tables 6.1 and 6.2, reporting information about the tests
performed on the Small and Large instances, respectively. The first three columns of Tables 6.1
and 6.2 report the instance ID, the instance name and the value of the best known feasible
solution (Best), respectively. Then, for each of the four compared approach, namely Benders
Decomposition (BDw), Carousel Greedy (GC), Kernel Search (KS) and MFPC-Kernousel, three
additional columns are reported, indicating: the value associated with the solution identified by
that approach (Value), the execution time in seconds (Time), and the percentage gap measuring
how far, in terms of value, the identified solution is from the best known one (Gap). The best
known solution is the one, among the solutions identified by any of the compared approaches,
yielding the higher objective function value.

On Small instances, the average percentage gap of the solutions identified by the CG, with
respect to the best known solutions, is 4.71%, the KS approach achieves a gap of 2.61%, while
the Kernousel approach achieves an average gap of 0.71%. On Large instances, the average per-
centage gap achieved by CG, KS and Kernousel are 6.49%, 10.37% and 2.18%, respectively. The
obtained results show the increase of the solution quality resulting from the combination of CG
and KS. On the other side, the state-of-the-art BDw method reports an average percentage gap,
with respect to the best known solution, of 0.85% on the Small instances and 6.05% on Large in-
stances. The average percentage gap values produced by the Kernousel approach are lower than
the ones yielded by BDw on both classes of instances, even though such difference is more evident
on Large instances. Furthermore, concerning the computational times, the Kernousel requires,
on average, 63.84 seconds to solve a small instance and 190.47 to solve a large one. Thus, the
proposed approach is faster than the state-of-the-art method, which requires, on average, 359.23
and 1536.52 seconds to solve a small and large instance, respectively.

A cumulative chart, is shown in Figure 6.4, reports percentage gap values, on the x-axis, and
the number of instances solved within a given gap value w.r.t the best known feasible solution, on
the y-axis. When the BDw approach does not identify an optimal solution, it generally performs
worse than Kernousel. Indeed, the number of instances for which the produced solution has an
associated gap lower or equal to ρ, with ρ ∈ [3%, 24%], is higher for the Kernousel approach
compared with all the other approaches. Although the BDw method globally identifies more
optima, it generally yields a higher gap value than Kernousel when it does not achieve an optimal
solution.
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Figure 6.4: Cumulative chart of percentage gap with respect to the best known solution.



Chapter 7

Minimum Spanning Tree with Conflicts

The Minimum Spanning Tree Problem (MST) consists in finding the spanning tree of an edge-
weighted graph, with the minimum possible total edge weight. In this chapter, we deal with
an NP-Hard variant of MST, named Minimum Spanning Tree Problem with Conflicts (MSTC),
where, given a list of conflicting edges, the goal is to find the cheapest spanning tree with no
edges in conflict.

MSTC has several practical applications. For instance, this problem arises in the context of
network design of offshore wind farm where the overlap of cables should be avoided. This last
condition can be modeled with the conflict contraints among the edges. Another application
concerns is the analysis of the road maps with forbidden transitions [KLM13], i.e., maps where
some routes are not valid because, for example, there are positions where it is forbidden to turn
left or right. Another example concerns the installation of an oil pipeline system connecting
various countries where conflicts arise because there are several firms and countries involved in
the process. [DPST09].

In [DPST09, DPSW11] the authors faced the MSTC by using a conflict graph to represent
the conflict edge pairs. In a conflict graph, each node represents an edge of the original graph
and two nodes are connected if their corresponding edges, in the original graph, are in conflict.
The authors prove that MSTC is strongly NP-hard, but still polynomially solvable if every con-
nected component of the conflict graph is a single edge (i.e., a path of length one). Other special
cases of MSTC solvable in polynomial time are studied in [ZKP11]. Regarding the heuristic
approaches for MSTC, a GRASP method, coupled with adaptive memory programming, is pre-
sented in [BPOR19], and a multiethnic genetic algorithm is proposed in [CCP19].In [SU15], a
general preprocessing method and a branch-and-cut algorithm are proposed with the generation
of cutting planes corresponding to subtour elimination constraints and odd-cycle inequalities.
Another branch-and-cut method for the MSTC is proposed in [CCPR21a], where a new set of
valid inequalities for the problem is introduced. To obtain upper bounds that help pruning the
search tree, the authors of [CCPR21a] use the genetic algorithm proposed in [CCP19]. As in
[ZKP11], in [CG21b], the Lagrangian relaxation of the MSTC is studied and solved with an ad
hoc dual ascent procedure.

135
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In this chapter we introduce a new solution approach for the MSTC based on the Kernel
Search method [AMS12]. Moreover we introduce a new variant of the problem named Minimum
Spanning Tree Problem with Conflicts Placement (MSTCP). In this new variant, we assume
that the decision on the pairs in conflict is made by a different entity w.r.t. the one deciding
on the minimum spanning tree, and we model this scenario using Mixed-Integer Bilevel Linear
Programming (MIBLP).

To the best of our knowledge, it is the first time that bilevel optimization is used to model
this particular interaction, even if it has been used to deal with MST in different contexts. In
most of the cases, as in our work, the follower is constructing the MST after the decisions of
the leader. What differs in the various problems is the role of the leader. In our approach, the
leader defines the conflicting edges. In [FSO99] two versions of the MST interdiction problem
are presented. In the first one, which is NP-hard, the leader wants to find the set of k edges,
which removal maximizes the MST weight. In the second one, which is polynomially solvable,
the leader wants to find the finite increase in the edges weights that, again, maximizes the MST
weight. In [Gas02, Gas09], the leader can either decrease or increase the edge weights, and
its objective function consists of the weight modification costs. A pricing setting is studied in
[CDF+11], where the leader maximizes its revenue by setting prices for a set of edges.

In [SZP19, BHH22] a completely different bilevel problem is considered: the leader and the
follower choose a spanning tree together, according to different objective functions. This problem
finds applications in the transportation network design problem, where some connections should
be constructed by the central government, and some others should be constructed by a local
government. The two agents have clearly different construction costs and objectives. In [BHH22]
this problem is proved to be NP-hard.

In [SPR22], single-level mixed integer linear programming reformulations for some variants
of bilevel MST are derived.

7.1 Integer Linear Programming Formulation of MSTC

Let us consider an undirected graph G = (V,E), where V = {1, . . . , n} is the set of nodes and
E = {e1, . . . , em} the set of edges. The edge ei can be defined also by its two endpoints u, v ∈ V .
For a given subset of nodes S ⊆ V , E(S) = {{u, v} ∈ E | u, v ∈ S} is the set of edges having
both the two endpoints in S. Let C be the set of conflicting edge pairs, which we call conflict
set :

C = {{ei, ej} : ei, ej ∈ E, and ei is in conflict with ej}.

The general formulation for MSTC uses the following binary variables, defined for each i s.t.
ei ∈ E :

xi =

{
1 if edge ei is included in the tree
0 otherwise.

(7.1)
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The ILP formulation of the MSTC, coming from the Subtour Elimination formulation of the
classical MST, reads:

min
x

∑
i:ei∈E

wixi (7.2a)

s.t.
∑
i:ei∈E

xi = n− 1 (7.2b)

∑
i:ei∈E(S)

xi ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 3 (7.2c)

xi + xj ≤ 1 ∀ i, j : {ei, ej} ∈ C (7.2d)

x ∈ {0, 1}|E| (7.2e)

The objective function (7.2a) is representing the cost of the spanning tree, which we want to
minimize. Constraint (7.2b) imposes that n− 1 edges should be selected, since a spanning tree
should include exactly |V | − 1 edges. The exponentially many constraints (7.2c) are needed to
ensure that no subtour is contained in the selected edges, i.e., no subgraph induced by S contains
a cycle. Finally, constraints (7.2d) impose that, for each pair of edges in conflict, at most one
edge of such pair can be selected.

In the following, we denote by LP-MSTC the Linear Programming (LP) relaxation of model (7.2),
obtained by relaxing constraints (7.2e) to x ∈ [o, 1]|E|. Given a subset of arcs F ⊆ E, we fur-
ther denote by MSTC(F ) the ILP restriction of probem (7.2) obtained by restricting the set of
variables to the arcs in F , i.e., adding constraints

xi = 0 ∀i ∈ E \ F

to formulation (7.2).
A polynomial alternative way to prevent subtours is obtained introducing additional (contin-

uous) variables fij representing the amount of “flow" moved on arc (i, j) of the directed graph
G′ = (V,A) derived from G as follows. Starting from the set of edges E, the set of directed arcs
A is defined by considering, for each edge in E with endpoints u and v, the two corresponding
directed arcs (u, v), and (v, u). Furthermore, the set δ+(u) ⊆ A is the set of all the arcs exiting
from node u, while the set δ−(u) ⊆ A is the set of all the arcs entering in node u.

In order to prevent subtours, one should impose that a flow of one unit is sent from the root
node (arbitrarily set to node 1) to every other node, with the following constraints:∑

(1,v)∈δ+(0)

f1v −
∑

(v,1)∈δ−(1)

fv1 = n− 1 (7.3a)

∑
(u,v)∈δ+(u)

fuv −
∑

(v,u)∈δ−(u)

fvu = −1 ∀i = 2, . . . , n (7.3b)

0 ≤ fuv ≤ (n− 1)xi ∀(u, v) ∈ A : ei = {u, v} ∈ E (7.3c)
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7.2 Kernel Search approach

In this section, we describe the Kernel Search (KS) framework we use to solve MSTC problem.
Given the mathematical formulation (7.2) of MSTC, the starting point of KS algorithm consists
in identifying a subset of promising variables of this model, i.e., variables that have a high
probability of being non-zero in the optimal solution of the problem. These variables are used to
form a subset called kernel, while the remaining ones are partitioned into several subsets called
buckets. We define Λ0 the set of indices of the variables in the initial kernel, with K = |Λ0|, and
Bk the set of indices of the variables in the k-th bucket for k = 1, . . . , b (B is the initial set of all
the buckets), with S = |Bk| for all k, and b = |B|.

The partitioning of the variables indices into the kernel and the buckets is carried out by KS
according to the optimal solution of LP-MSTC. After the definition of these sets, KS seeks for
an initial feasible solution by solving the MSTC restricted to the variables having indices inside
the kernel only, i.e., solving MSTC(Λ0). For this reason, the initial kernel size K should be, at
the same time, large enough to contain as many variables as possible which are likely to be part
of an optimal solution, and not too large to ensure that MSTC(Λ0) can be efficiently solved to
optimality.

The kernel is then updated throughout the KS algorithm (Λk is the kernel at the end of
iteration k), by taking into account the buckets. At each iteration, the MILP formulation
restricted to the current kernel and a bucket from the sequence is solved, trying to obtain
solutions of increasing quality.

The KS algorithm is divided into two phases:

• Initialization phase: The initial set Λ0 and the bucket sequence B = {B1, . . . Bb} are
built. Then, the MSTC(Λ0) is solved and, if a feasible solution is found, its objective
function value is set as the current upper bound w∗ of the optimal solution we are looking
for.

• Extension phase: At each iteration k, new variables from buckets are added to the kernel
iterating (eventually more than once) over the buckets, and the MSTC restricted on the
so-obtained enlarged kernel Λ̃k is solved. If MSTC(Λ̃k) is feasible, if the solution value is
lower than w∗ then w∗ is updated with this new value.

Let us describe in more detail, how these two phases work. The construction of Λ0 and B is
carried out by creating a sorted sequence of the LP-MSTC variables. In particular, the variables
which are basic in the optimal solution of LP-MSTC are sorted according to their values, in
decreasing order, and placed at the beginning of the sequence. Instead, the variables which are
non-basic in the solution of LP-MSTC, are sorted according to their reduced cost coefficient, in
decreasing order, and are added at the end of the sequence.

Once the parameters K and S are set, Λ0 is populated with the first K variables indices of
the previously sorted sequence, and the remaining variables are equally distributed to populate
the buckets B1, . . . , Bb.
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The initialization phase is concluded by solving the MSTC restricted to the variables whose
indices are in Λ0. If a feasible solution is found, its value is set as the upper bound w∗ of the
optimal solution we are looking for.

The optimal value of which is stored as the current upper bound on the MSTC value w∗.
With the initial kernel Λ0 and the initial set of buckets B, the extension phase starts. During
this phase, both the kernel and the set of buckets are updated. The initial kernel Λ0 is enlarged
using the buckets: at each iteration k, an enlarged bucket B̃k is populated in Algorithm 21, and
added to the kernel; the MSTC restricted to the current kernel is solved. At each iteration of the
kernel search the size of the buckets changes; once the buckets have been generated, in the first
iteration (iteration 1), the algorithm uses one bucket at a time, in the second iteration it uses
two buckets at a time (iteration 2), proceeding in this way until it reaches the maximum number
of iterations (in the our implementation equal to 3). If an optimal solution is found then the
subset of variables of the current bucket B̃k, which are nonzero in this optimal solution, is added
to the kernel and removed from the original buckets in Algorithm 22, i.e., the indices belonging
to subset B̂k are added to Λk−1, and removed from Bi with i ∈ 1, . . . , b.

In this way, the algorithm tries to improve the quality of the solution through a refined search
that involves, at each iteration k, the solution of MSTC restricted to the variables in Λ̃k, given
by the union of Λk−1 = Λ0 ∪ B̂1 ∪ · · · ∪ B̂k−1, and the k-th enlarged bucket B̃k. This is done by
adding to MSTC(Λk−1) the following constraint:∑

i∈B̃k

xi ≥ 1. (7.4)

Once the new MSTC restriction is solved, if its optimal value wk is better than the current upper
bound w∗, we update such upper bound setting w∗ = wk.

The iteration over the buckets is performed at most three times. After the first iteration is
concluded (i.e., all the buckets Bk in B are taken into account and updated by excluding the
basic variables in B̂k), another iteration is done by considering two buckets at a time. Finally,
if no feasible solution has been found yet, a third iteration is performed, by considering three
buckets at a time.

The KS method stops if three iterations over the buckets have been performed or if a fixed
number of consecutive iterations are carried out without improving the current best upper bound.

We report a pseudocode of our KS method in Algorithm 19 (Initialization Phase) and Algo-
rithm 20.
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Algorithm 19: KS algorithm: Initialization Phase
Data: Given G = (V,E),K, S,Λ0 = ∅, Bi = ∅ for i = 1, . . . , b, L = ∅.
Result: Initial kernel Λ0, initial buckets set B. First solution found x0 and its optimal value w0.

1 Compute the optimal solution x̄ of LP-MSTC model. Compute sets G = {i ∈ E : x̄i > 0} and
N = {i ∈ E : x̄i = 0}.

2 Sort indices i ∈ G according to the values of x̄i
3 Sort indices i ∈ N according to the values of the reduced cost coefficients of x̄i
4 L = (G,N)
5 Λ0 = L[0 : K]
6 Populate buckets Bi by taking S variables at a time from L[K + 1 : |E|]. Being b the number of

nonempty buckets, let B = {B1, . . . , Bb}.
7 if MSTC(Λ0) is feasible then
8 Compute the optimal solution x0 of MSTC(Λ0), and its optimal value w0.
9 else

10 x0 = 0, and w0 = +∞
11 end
12 return Λ0,B, x0, w0.

Algorithm 19 takes in input a graph G = (V,E), two integer values K and S representing the
size of kernel and buckets respectively, various empty subsets of E, i.e., Λ0, Bi for i ∈ b, and finally
the empty vector L, which will be used to store the ordered variables indices. In line 1 we solve
the LP relaxation of MSTC, i.e., LP-MSTC, obtaining the sets G and N of basic and non-basic
variables indices, respectively. In lines 2 and 3, we order the variables indices w.r.t. the criterion
previously described: the G indices are sorted in decreasing order of corresponding variables
values, the N indices in decreasing order of corresponding variables reduced cost coefficients. In
line 4, L is obtained by concatenating the two ordered sets of indices. In line 5, Λ0 is populated
with the variables indices contained in L from position zero to K. The remaining variables
indices in L are used in line 6 to populate the buckets, taking S indices for each bucket. The
set B is defined as the set of buckets. In line 7, the initialization phase is concluded solving the
MSTC(Λ0) formulation, if feasible. The algorithm returns its optimal value w0 and its optimal
solution x0, as well as sets Λ0 and B.

Then, the extension phase in Algorithm 20 starts. It requires in input the initial solution x0

(which is the best known solution x∗) and value w0 (which is the best known lower bound w∗), the
initial kernel Λ0, the buckets set B, and the δ value which is used as termination criterion. The
outer-iteration index j (representing the iteration over the buckets) and the number of iterations
in which no progress is made k̄ are set to one and zero respectively. The algorithm returns the
best found solution x∗ and its objective function value w∗.
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Algorithm 20: KS algorithm: Extension Phase
Data: Given x0, w0,Λ0,B = {B1, . . . , Bb}, δ > 0, let x∗ = x0, w∗ = w0, j = 1, k̄ = 0, J .
Result: Optimal solution found x∗ and its optimal value w∗.

1 while j ≤ 3 do
2 k = 1
3 while k ≤ b do
4 Define the current bucket B̃k Algorithm 21 Build the k-th kernel Λ̃k = Λk−1 ∪ B̃k
5 if MSTC(Λ̃k) is feasible then
6 Compute the optimal solution xk of MSTC(Λ̃k), and its optimal value wk.
7 else
8 wk = +∞
9 end

10 if wk < w∗ then
11 x∗ = xk, and w∗ = wk

12 Set B̂k = {i ∈ B̃k : xki > 0}
13 Λk = Λk−j ∪ B̂k
14 Update the original buckets in B with Algorithm 22.
15 k̄ = 0

16 else
17 k̄ = k̄ + 1
18 end
19 k = k + j
20 if k̄ ≥ δ and w∗ < +∞ then
21 k = b+ 1
22 j = J + 1

23 end
24 end
25 j = j + 1

26 Λ0 = Λk

27 end
28 return w∗, x∗

Index j is used to indicate the outer-iterations over the buckets. If j = 1, one bucket is
considered at a time. If j = 2, two consecutive buckets are considered at a time. Finally, if
j = 3, three consecutive buckets are taken into account at a time. At each inner-iteration k, the
set Λk−1 is enlarged using bucket B̃k (defined by Algorithm 21), obtaining the set Λ̃k, and the
MSTC(Λ̃k) formulation, if feasible, is solved (line 6). If its optimal value wk is s.t. wk < w∗;
we set x∗ = xk and w∗ = wk; we define Λk as Λk−1 ∪ B̂k, where B̂k is the set of indices of
the variables in B̃k which are nonzero in xk; finally, we remove from set Bk such subset B̂k in
Algorithm 22, being variables in such set already added to the kernel, and set k̄ = 0. If wk ≥ w∗
instead, we increase parameter k̄, which is needed for the stopping criterion of the algorithm.

If k̄ > δ, (lines 20–23) i.e., for more than δ steps, the solution has not been improved, and
at least a feasible solution has been found (the upper bound w∗ is not infinite) the algorithm
terminates.
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We emphasize that, by solving the LP-MSTC, we have a lower bound on the optimal value
of MSTC, and at each iteration of the kernel algorithm, if the current restriction MSTC(Λ̃k) is
feasible, we have a valid upper bound for the problem, with the associated feasible solution.

Algorithm 21: Population of the enlarged bucket B̃k.
Data: Given B = {B1, . . . , Bb}, j, k, and the set B̂k ⊆ B̃k set B̃k = ∅, l = 0.
Result: Enlarged bucket B̃k.

1 while l < j do
2 if k + l ≤ b then
3 B̃k = B̃k ∪Bk+l
4 l = l + 1

5 else
6 break
7 end
8 end
9 l = 0

10 return B̃k

Algorithm 22: Update of the original buckets in B.
Data: Given B = {B1, . . . , Bb}, j, k, set l = 0.
Result: Updated set B.

1 while l < j do
2 if k + l ≤ b then
3 Bk+l = Bk+l \ B̂k
4 l = l + 1

5 else
6 break
7 end
8 end
9 l = 0

10 return B̃k

7.2.1 Valid inequalities and separation procedures

In this section, we present some valid inequalities for the MSTC taken from [CCPR21a] we add
to our model. These inequalities may help in the solution of the subproblems solved throughout
the kernel algorithm. Indeed, at each iteration, a restriction of the MSTC is solved through
branch-and-cut type of algorithms, which make use of valid inequalities or cuts introduced at
the nodes of a branch-and-bound tree to progressively tighten the formulation.

The first type of inequalities, defined degree-cut inequalities, explicitly impose that, for each
node of the graph, at least one incident edge should be selected in the solution:∑

i:ei∈N(u)

xi ≥ 1 ∀u ∈ V (7.5)
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These constraints are not really useful when dealing with integer solutions. However, if solving
a linear relaxation of the original formulation, these may help in finding a better bound of the
optimal value. These |V | inequalities are added to the MSTC model (7.2) as a priori constraints.

The conflict-cycle inequalities are a stronger version of the subtour elimination constraints (7.2c)
obtained by taking into account also the conflicts among the edges. Indeed, given a cycle P ⊂ E,
constraints (7.2c) impose that the edges belonging to P selected in any feasible solution of the
problem should be at most |P |−1 (not all of them can be selected, otherwise a subtour is included
in the solution). If an edge ec outside the cycle P is in conflict with two edges belonging to the
cycle P, then in any feasible solution of MSTC, the number of selected edges in P ∪ {ec} should
be still less than |P | − 1: no cycle, as well as no pairs of edges in conflict should be included in
the solution. This is imposed by the following inequalities:∑

i:ei∈P
xi + xc ≤ |P | − 1 ∀ cycle P ⊂ E, ec ∈ E \ P. (7.6)

These inequalities, as well as the classical subtour elimination constraints (7.2c), are exponentially
many, thus a separation procedure should be implemented for them. In particular, the separation
problem for constraints (7.2c), which consists in finding the violated constraints of type (7.2c)
by a given solution x̄, corresponds to solving a maximum-flow (minimum-cut) problem in a
correspondingly defined capacitated graph as described in [PW83]. As regards conflict-cycle
inequalities (7.6), the heuristic separation procedure proposed in [CCPR21a] is implemented.

Finally, we consider the so-called odd-cycle inequalities, which are obtained by considering
the conflict graph G′, as the graph having nodes corresponding to the edges of the original
graph, and edges representing the conflicts, i.e., two nodes i and j in the conflict graph are
connected by an edge iff they correspond to two conflicting edges ei, ej in the original graph. If
a solution of the MSTC includes two connected vertices in the conflict graph, it violates one of
the constraints (7.2d). Thus, the following inequalities holds:∑

i:ei∈P ′
xi ≤

|P ′| − 1

2
∀P ′ ⊂ E inducing an odd cycle in G′ (7.7)

where P ′ ⊆ E corresponds to the nodes of the conflict graph G′ inducing an odd cycle. These
inequalities are separated by using the exact algorithm proposed in [GS86].

7.3 Bilevel Programming formulation of MSTCP

There may be a situation in which the set of conflicting edges is not given. Instead, there is
an agent who can decide the conflicts among edges with the aim of maximizing the resulting
minimimum spanning tree.

We can model this problem using bilevel programming. A bilevel program can be seen
as a hierarchical game with two players, a leader and a follower, making their decisions in
a hierarchical order. In our case, the leader wants to maximize the weight of the minimum



CHAPTER 7. MINIMUM SPANNING TREE WITH CONFLICTS 144

spanning tree obtained by putting exactly B pairs of edges in conflict. The follower detects the
the cheapest spanning tree with no edges in conflict. The follower’s variables are the xi variables
defined in Eq. (7.1), while the leader’s binary variables are

yij =

{
1 if the pair (ei, ej) is in conflict
0 otherwise.

The lower-level feasible set, without considering the linking constraint modeling the conflict-
ing pairs, is: {

xi ∈ {0, 1}|E| :
∑
i:ei∈E

xi = n− 1,

∑
i:ei∈S

xi ≤ |S| − 1 ∀S ⊆ V, |S| ≤ 3

}

which corresponds to the feasible set of the classical subtour elimination formulation of the MST.
Instead, using the single-commodity flow formulation of the MST, the lower-level feasible set

reads:

X =

{
xi ∈ {0, 1}|E|, fuv ∈ R2|E| :

∑
i:ei∈E

xi = |V | − 1,

∑
(0,v)∈δ+(0)

f0v −
∑

(v,0)∈δ−(0)

fv0 = n− 1,

∑
(u,v)∈δ+(u)

fuv −
∑

(v,u)∈δ−(u)

fvu = −1 ∀i = 1, . . . , n,

0 ≤ fuv ≤ (n− 1)xi ∀ei = {u, v} ∈ E,

0 ≤ fvu ≤ (n− 1)xi ∀ei = {u, v} ∈ E

}
The upper-level feasible set is:

Y =

y ∈ {0, 1}|E|×|E| :

|E|∑
i=1

|E|∑
j=1

yij = B


modeling the fact that the leader must select exactly B conflicts. Since the leader and the
follower share the same objective function, the bilevel formulation of the MSTC problem reads

max
y∈Y

min
x,f∈X

 ∑
i:ei∈E

wixi : xi + xj ≤ 2− yij ∀(ei, ej) ∈ E × E

 . (7.8)
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If, in formulation (7.8), we set B = |C| and add at the upper level the following constraints :
yij = 1 ∀ i, j : (ei, ej) ∈ C, and yij = 0 ∀ i, j : (ei, ej) ∈ E \C, i.e., giving to variable y a specific
value, solving the corresponding bilevel formulation corresponds to solving formulation (7.2).

In order to deal with MIBLP problems, ad-hoc methods for the specific case may be con-
structed, either aiming to reformulate it into a single-level problem or to solve it mainly via
heuristics, branch-and-bound, or branch-and-cut approaches. In our work, we decide to use the
general purpose solver proposed in [FLMS17], which exploits a branch-and-cut framework to
solve Mixed-Integer Bilevel Linear problems.

7.4 Computational Tests

7.4.1 MSTC

In this section, we report the results obtained by solving all the instances proposed in [CCPR21a]with
the Kernel Search Method Algorithms (19–20). The instances introduced in [CCPR21a] have
number of nodes in {25, 50, 75, 100} and number of edges s.t. the density of the graph is equal to
0.2, 0.3, or 0.4. The number of conflicts pairs |C| is equal to 1%, 4%, 7% of m(m− 1)/2 (graph
density). The parameter s is the seed used to initialize the random number generator. For each
combination of these parameters (scenario) the authors generated 5 instances by varying the seed
used for the generation of random numbers, generating in total 180 instances.

We compare our results to the ones obtained on the same instances by using the heuristic
proposed in [CG21b]. This heuristic provides a lower bound on the optimal value of the prob-
lem by solving the Lagrangian dual of the MSTC, and an upper bound through a local search
procedure. Furthermore, we report the value of the optimal solution (for the instances solved
to optimality) or the value of the best known feasible solution (for the instances not solved to
optimality) found by the branch-and-cut methods proposed in [CCPR21a].

In these tests we set:

K = max

{
|V | − 1,

⌊
|E|
2

⌉}
S =

⌊
0.15 ∗ |E|

⌉
.

These parameters have been identified through a tuning phase. The selected value of K ensures
that the starting kernel contains a sufficient number of variables to provide a feasible solution
of the problem plus possible alternatives. The size S of the buckets is chosen in such a way
that the subproblems solved at each iteration are not excessively large. Furthermore, we set
the parameter δ, indicating the maximum number of iterations the KS can perform without
improving, to b|B| × 0.2c. Each subproblem involved in the KS algorithm is solved using the
state-of-the-art solver Cplex.

The KS is coded in Python on an OSX platform, running on an Intel(R) Core(TM) i7-2600
CPU 3.40GHz (family 6, model 42, stepping 7) with 8 GB of RAM, equipped with the IBM
ILOG CPLEX (Version identifier: 22.1.0.0) solver (single thread mode). We set a time limit of
three hours.
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Table 7.1 shows the computational results of the KS on the instances proposed in [CCPR21a],
compared, again, to the results obtained by the branch-and-cut method proposed in [CCPR21a],
but also by the Lagrangian based method proposed in [CG21b].

The headings of Table 7.1 are the following: n is the number of nodes of the graph; m is
the number of edges of the graph; |C| is the number of conflicts; b is the number of created
buckets; B&C is the optimal solution value or the best solution (with the “∗” symbol) found by
the Branch&Cut algorithm proposed in [CCPR21a]; LM is the value of the solution found by
the Lagrangian based method introduced in [CG21b]; w∗ is the value of the best feasible solution
found by the KS algorithm 19–20; time[s] is the computational time (in seconds) required by the
KS; gap_B&C[%] is the percentage gap with respect to the value found by the Branch&Cut,
i.e., gap_B&C = 100w

∗−B&C
w∗ ; gap_LM[%] is the percentage gap with respect to the value found

by the Lagrangian based Methods, i.e., gap_LM = 100w
∗−LM
w∗ ;

As shown in Table 7.1, the KS approach finds, on average, better results than the Lagrangian
based method, with an average gap_LM[%] of −11.60%. Indeed, KS finds 55 optima out of the
107 found by the B&C, against the 45 found by the Lagrangian. For 4 instances (identified by
the red color in Table 7.1) the KS found a better feasible solution value than the one returned
by the B&C. However the KS does not find all the optima found by this exact approach. On the
instances in which the B&C finds an optimal solution, and KS does not, the average gap_B&C
is 0.54%, i.e., the KS gets very close to the optimum. If we consider instead also the instances in
which the B&C finds at least a feasible solution, this average gap value increases up to 12.36%,
i.e., on the instances in which also the B&C struggles in finding the optimal solution, the KS
does not perform better.

Table 7.1: Comparison of the results on the instances proposed in [CCPR21a]

Instance KS Setting Literature KS Comparison
ID n m |C| b B&C LM w∗ time[s] gap_B&C[%] gap_LM[%]
51 25 60 18 4 347 347 347 0.0 0.00 0.00
52 25 60 18 4 389 389 389 0.0 0.00 0.00
53 25 60 18 4 353 353 353 0.4 0.00 0.00
54 25 60 18 4 346 346 346 0.0 0.00 0.00
55 25 60 18 4 336 336 336 0.0 0.00 0.00
56 25 60 71 4 381 381 381 0.4 0.00 0.00
57 25 60 71 4 390 390 393 0.4 0.76 0.76
58 25 60 71 4 372 372 372 0.0 0.00 0.00
59 25 60 71 4 357 357 357 0.1 0.00 0.00
60 25 60 71 4 406 406 406 0.0 0.00 0.00
61 25 60 124 4 385 385 385 0.0 0.00 0.00
62 25 60 124 4 432 432 432 0.0 0.00 0.00
63 25 60 124 4 458 474 458 0.4 0.00 -3.49
64 25 60 124 4 400 400 405 0.4 1.23 1.23
65 25 60 124 4 420 421 420 0.3 0.00 -0.24
66 25 90 41 4 311 311 311 0.5 0.00 0.00
67 25 90 41 4 306 306 306 0.0 0.00 0.00
68 25 90 41 4 299 299 299 0.4 0.00 0.00
69 25 90 41 4 297 297 297 0.5 0.00 0.00
70 25 90 41 4 318 318 320 0.6 0.63 0.63
71 25 90 161 4 305 305 305 0.5 0.00 0.00
72 25 90 161 4 339 339 339 0.0 0.00 0.00
73 25 90 161 4 344 344 344 0.1 0.00 0.00
74 25 90 161 4 329 331 330 0.4 0.30 -0.30
75 25 90 161 4 326 327 330 1.1 1.21 0.91
76 25 90 281 4 349 349 350 0.5 0.29 0.29
77 25 90 281 4 385 385 385 0.8 0.00 0.00
78 25 90 281 4 335 335 335 0.6 0.00 0.00
79 25 90 281 4 348 358 348 0.9 0.00 -2.87
80 25 90 281 4 357 359 356 0.9 -0.28 -0.84
81 25 120 72 4 282 282 282 0.0 0.00 0.00
82 25 120 72 4 294 294 294 0.3 0.00 0.00
83 25 120 72 4 284 284 284 0.0 0.00 0.00
84 25 120 72 4 281 281 281 0.5 0.00 0.00
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Table 7.1: Comparison of the results on the instances proposed in [CCPR21a]

Instance KS Setting Literature KS Comparison
ID n m |C| b B&C LM w∗ time[s] gap_B&C[%] gap_LM[%]
85 25 120 72 4 292 292 292 0.0 0.00 0.00
86 25 120 286 4 321 321 322 0.4 0.31 0.31
87 25 120 286 4 317 317 317 1.2 0.00 0.00
88 25 120 286 4 284 284 284 0.0 0.00 0.00
89 25 120 286 4 311 312 311 0.3 0.00 -0.32
90 25 120 286 4 290 290 290 0.3 0.00 0.00
91 25 120 500 4 329 341 331 1.4 0.60 -3.02
92 25 120 500 4 339 347 342 1.8 0.88 -1.46
93 25 120 500 4 368 383 368 1.4 0.00 -4.08
94 25 120 500 4 311 314 310 0.8 -0.32 -1.29
95 25 120 500 4 321 325 324 1.5 0.93 -0.31
96 50 245 299 5 619 619 619 6.6 0.00 0.00
97 50 245 299 5 604 604 604 4.8 0.00 0.00
98 50 245 299 5 634 634 634 0.0 0.00 0.00
99 50 245 299 5 616 616 616 6.4 0.00 0.00
100 50 245 299 5 595 595 595 4.0 0.00 0.00
101 50 245 1196 5 678 698 687 6.3 1.31 -1.60
102 50 245 1196 5 681 721 702 13.5 2.99 -2.71
103 50 245 1196 5 709 725 718 6.3 1.25 -0.97
104 50 245 1196 5 639 656 651 14.6 1.84 -0.77
105 50 245 1196 5 681 748 689 9.5 1.16 -8.56
106 50 245 2093 5 833* - 821 280.5 -1.46 -100
107 50 245 2093 5 835 - 872 372.0 4.24 -100
108 50 245 2093 5 840* - 824 381.2 -1.94 -100
109 50 245 2093 5 836* - 854 311.4 2.11 -100
110 50 245 2093 5 769 - 809 23.8 4.94 -100
111 50 367 672 5 570 570 570 7.0 0.00 0.00
112 50 367 672 5 561 561 561 17.5 0.00 0.00
113 50 367 672 5 573 573 573 11.6 0.00 0.00
114 50 367 672 5 560 560 560 8.1 0.00 0.00
115 50 367 672 5 549 551 549 11.3 0.00 -0.36
116 50 367 2687 5 612 657 621 36.2 1.45 -5.80
117 50 367 2687 5 615 663 638 8.9 3.61 -3.92
118 50 367 2687 5 587 635 591 7.4 0.68 -7.45
119 50 367 2687 5 634 721 655 12.6 3.21 -10.08
120 50 367 2687 5 643 688 649 18.5 0.92 -6.01
121 50 367 4702 5 726* - 792 1236 8.33 -100
122 50 367 4702 5 770* - 813 1068 5.29 -100
123 50 367 4702 5 786* - 821 1847 4.26 -100
124 50 367 4702 5 711* - 762 1860 6.69 -100
125 50 367 4702 5 764* 868 827 1856 7.62 -4.96
126 50 490 1199 6 548 552 548 24.2 0.00 -0.73
127 50 490 1199 6 530 531 530 24.8 0.00 -0.19
128 50 490 1199 6 549 549 550 32.5 0.18 0.18
129 50 490 1199 6 540 541 549 0.0 1.64 1.46
130 50 490 1199 6 540 540 540 24.5 0.00 0.00
131 50 490 4793 6 594 629 603 43.8 1.49 -4.31
132 50 490 4793 6 579 650 582 49.4 0.52 -11.68
133 50 490 4793 6 589 657 590 27.7 0.17 -11.36
134 50 490 4793 6 577 643 590 40.9 2.20 -8.98
135 50 490 4793 6 592 670 607 37.0 2.47 -10.38
136 50 490 8387 6 678* 812 800 702.9 15.25 -1.50
137 50 490 8387 6 651* - 737 770.2 11.67 -100
138 50 490 8387 6 689* - 734 1726 6.13 -100
139 50 490 8387 6 682* - 801 943.2 14.86 -100
140 50 490 8387 6 674* 828 728 257.0 90.80 -13.74
141 75 555 1538 5 868 869 871 47.1 0.34 0.23
142 75 555 1538 5 871 878 878 106.6 0.80 0.00
143 75 555 1538 5 838 844 839 7.3 0.12 -0.60
144 75 555 1538 5 855 855 858 124.6 0.35 0.35
145 75 555 1538 5 857 859 858 56.7 0.12 -0.12
146 75 555 6150 5 1047* 1236 1161 2908 9.82 -6.46
147 75 555 6150 5 1069* 1207 1129 2604 5.31 -6.91
148 75 555 6150 5 1040* - 1103 1598 5.71 -100
149 75 555 6150 5 998* - 1096 3027 8.94 -100
150 75 555 6150 5 994* - 1038 2260 4.24 -100
151 75 555 10762 5 - - - 2407 - -
152 75 555 10762 5 - - - 2623 - -
153 75 555 10762 5 - - - 2270 - -
154 75 555 10762 5 - - - 2738 - -
155 75 555 10762 5 - - - 2077 - -
156 75 832 3457 6 798 803 800 271.6 0.25 -0.38
157 75 832 3457 6 821 832 823 89.1 0.24 -1.09
158 75 832 3457 6 816 820 816 75.7 0.00 -0.49
159 75 832 3457 6 820 822 823 1251 0.36 0.12
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Table 7.1: Comparison of the results on the instances proposed in [CCPR21a]

Instance KS Setting Literature KS Comparison
ID n m |C| b B&C LM w∗ time[s] gap_B&C[%] gap_LM[%]
160 75 832 3457 6 815 827 817 104.6 0.24 -1.22
161 75 832 13828 6 903* 1131 1029 1521.9 12.24 -9.91
162 75 832 13828 6 953* 1125 1072 830.5 11.10 -4.94
163 75 832 13828 6 892* 1035 989 1635 9.81 -4.65
164 75 832 13828 6 915* 1140 1002 1503 8.68 -13.77
165 75 832 13828 6 896* 1057 1106 1624 18.99 4.43
166 75 832 24199 6 - - - 4873 - -
167 75 832 24199 6 - - - 4563 - -
168 75 832 24199 6 - - - 5048 - -
169 75 832 24199 6 - - - 4988 - -
170 75 832 24199 6 - - - 5404 - -
171 75 1110 6155 6 787 788 787 173.0 0.00 -0.13
172 75 1110 6155 6 785 786 787 1319 0.25 0.13
173 75 1110 6155 6 783 800 784 823.6 0.13 -2.04
174 75 1110 6155 6 784 789 784 336.7 0.00 -0.64
175 75 1110 6155 6 797 809 806 120.3 1.12 -0.37
176 75 1110 24620 6 867* 1036 897 1361 3.34 -15.50
177 75 1110 24620 6 851* 1048 902 3252 5.65 -16.19
178 75 1110 24620 6 892* 1098 922 1282 3.25 -19.09
179 75 1110 24620 6 864* 1076 1017 2116 15.04 -5.80
180 75 1110 24620 6 882* 1073 995 2139 11.36 -7.84
181 75 1110 43085 6 - - - 7620 - -
182 75 1110 43085 6 - - - 7259 - -
183 75 1110 43085 6 1194* - - 7744 100.00 -
184 75 1110 43085 6 - - - 7733 - -
185 75 1110 43085 6 - - - 7530 - -
186 100 990 4896 6 1119 1163 1122 229.3 0.27 -3.65
187 100 990 4896 6 1137 1156 1143 239.3 0.52 -1.14
188 100 990 4896 6 1113 1143 1120 314.9 0.63 -2.05
189 100 990 4896 6 1110 1155 1112 921.7 0.18 -3.87
190 100 990 4896 6 1090 1114 1098 772.9 0.73 -1.46
191 100 990 19583 6 - - - 7322 - -
192 100 990 19583 6 1491* - - 6892 100 -
193 100 990 19583 6 1510* - - 7214 100 -
194 100 990 19583 6 1441* - - 7258 100 -
195 100 990 19583 6 1560* - - 7291 100 -
196 100 990 34269 6 - - - 3920 - -
197 100 990 34269 6 - - - 4158 - -
198 100 990 34269 6 - - - 3960 - -
199 100 990 34269 6 - - - 3881 - -
200 100 990 34269 6 - - - 4148 - -
201 100 1485 11019 6 1079 1136 1081 775.5 0.19 -5.09
202 100 1485 11019 6 1056 1084 1058 619.1 0.19 -2.46
203 100 1485 11019 6 1059 1077 1059 951.9 0.00 -1.70
204 100 1485 11019 6 1046 1059 1047 1021 0.10 -1.15
205 100 1485 11019 6 1072 1109 1074 1556 0.19 -3.26
206 100 1485 44075 6 1374* - - 8077 100 -
207 100 1485 44075 6 1291* - - 7935 100 -
208 100 1485 44075 6 1344* - - 8178 100 -
209 100 1485 44075 6 1286* - - 8075 100 -
210 100 1485 44075 6 1370* - - 7957 100 -
211 100 1485 77131 6 - - - 8948 - -
212 100 1485 77131 6 - - - 8122 - -
213 100 1485 77131 6 - - - 8240 - -
214 100 1485 77131 6 - - - 7455 - -
215 100 1485 77131 6 - - - 8375 - -
216 100 1980 19593 6 1031 1069 1031 1890 0.00 -3.69
217 100 1980 19593 6 1036 1081 1037 2227 0.10 -4.24
218 100 1980 19593 6 1024 1064 1024 1573 0.00 -3.91
219 100 1980 19593 6 1025 1043 1025 1949 0.00 -1.76
220 100 1980 19593 6 1028 1076 1028 1413 0.00 -4.67
221 100 1980 78369 6 1234* - - 9577 100 -
222 100 1980 78369 6 1187* 1680 - 10758 100 100
223 100 1980 78369 6 1213* - - 9361 100 -
224 100 1980 78369 6 1221* - - 10402 100 -
225 100 1980 78369 6 1245* 1686 - 9898 100 100
226 100 1980 137145 6 - - - 10600 - -
227 100 1980 137145 6 - - - 10600 - -
228 100 1980 137145 6 - - - 10600 - -
229 100 1980 137145 6 - - - 10600 - -
230 100 1980 137145 6 - - - 10600 - -
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7.4.2 MSTCP

In order to solve the bilevel formulation (7.8) of MSTCP, we use the general purpose solver for
bilevel problems proposed in [FLMS17]. It is a branch-and-cut approach for solving bilevel prob-
lems, which discard bilevel infeasible solutions by adding intersection cuts on the fly. Since the
follower’s variables are both binary and continuous (f variables are continuous) the hypercube-
type intersection cuts are used.

All experiments in this section are conducted in multi-threaded mode, on a 2.3GHz Intel
Xeon E5 CPU, 128GB RAM, allowing the solver to use 35 out of 40 cores.

We use the bilevel solver to solve formulation (7.8) with B = |C| (i.e. using the same number
of conflicts used for the CMST problem version), using the instances proposed in [CCPR21a],
already described in Section 7.4.1, only with n ∈ {25, 50}, as this version of the problem is
combinatorially more difficult than the CMST. A time limit of three hours of computation and
no memory limit is enforced for each run. The results show that on average the solver fails to
improve the upper bound after two hours of computation.

The computational results are reported in the tables 7.2 and 7.3, which contain the following
columns: n, i.e., number of nodes; m, i.e., number of arches; B, i.e., the budget; UB, i.e.,
upperbound; LB, i.e., lower bound; root_bound, i.e., the root lower bound; time[s], i.e., computing
time in seconds ; root_time[s], i.e., the root time in seconds; root_gap[%], i.e., the gap of the
branch-and-cut root node and final_gap[%], i.e., final gap obtained from the bilevel solver.

Table 7.2 contains the computational results performed on the instances with n = 25, on
which the bilevel solver identifies only 5 optima, of which 4 are identified on the root node. In
16 out of 45 cases, the optimum is identified in the root node. In the remaining 40 instances it
always identifies a feasible solution obtaining an average final gap of 72.81%. Table 7.3 contains
the computational results performed on the instances with n = 50. in this case the bilevel solver
is able to identify only a few optima solutions 2 out of 45 of which only one is identified in the
root node, obtaining an average final gap of 136,43%.
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n m B UB LB root_bound time[s] root_time[s] root_gap[%] final_gap[%]
25 60 18 590 590 590 129,73 0,13 0,00% 0,00%
25 60 18 423 626 627,67 10800,31 0,13 48,38% 47,99%
25 60 18 408 606 607,36 10800,3 0,14 48,86% 48,53%
25 60 18 407 622 622 10800,34 0,16 52,83% 52,83%
25 60 18 360 600 600 16342,49 0,64 66,67% 66,67%
25 60 71 395 582 582,67 10800,29 0,48 47,51% 47,34%
25 60 71 409 604 607,92 10800,3 0,14 48,63% 47,68%
25 60 71 497 623,74 624,7 10800,21 0,22 25,69% 25,50%
25 60 71 609 609 609 671,67 0,66 0,00% 0,00%
25 60 71 444 611 611 10801,49 0,31 37,61% 37,61%
25 60 124 564 564 564 5879,08 0,39 0,00% 0,00%
25 60 124 621 621 622 2980,14 0,24 0,16% 0,00%
25 60 124 440 629,62 631,98 10800,17 0,16 43,63% 43,10%
25 60 124 631 632 635 10801,86 0,14 0,63% 0,16%
25 60 124 577 610 610 10800,72 0,19 5,72% 5,72%
25 90 41 308 625 625,75 10800,86 0,24 103,17% 102,92%
25 90 41 335 672 672 10801,33 0,22 100,60% 100,60%
25 90 41 302 649 649 10800,93 0,28 114,90% 114,90%
25 90 41 303 638 638 10801,06 0,35 110,56% 110,56%
25 90 41 618 647,93 647,93 10800,51 0,27 4,84% 4,84%
25 90 161 318 650 650,59 10801,09 0,23 104,59% 104,40%
25 90 161 357 655,17 655,91 10800,46 0,24 83,73% 83,52%
25 90 161 340 669 669 10801,01 0,29 96,76% 96,76%
25 90 161 324 645 646 10800,65 0,24 99,38% 99,07%
25 90 161 339 646,71 648,65 10800,52 0,31 91,34% 90,77%
25 90 281 357 638 641 10801,07 0,32 79,55% 78,71%
25 90 281 376 678 678 10801,06 0,26 80,32% 80,32%
25 90 281 337 644 644 10800,8 0,21 91,10% 91,10%
25 90 281 371 644 644 10801,13 0,27 73,58% 73,58%
25 90 281 444 675 675 10800,9 0,28 52,03% 52,03%
25 120 72 660 663 664 10802,09 0,37 0,61% 0,45%
25 120 72 297 661,5 663 10801,55 0,37 123,23% 122,73%
25 120 72 285 683,17 684 10802,03 0,32 140,00% 139,71%
25 120 72 287 680 680 10802,3 0,41 136,93% 136,93%
25 120 72 299 655 656,78 10802,43 0,38 119,66% 119,06%
25 120 286 330 677 677 10802,42 0,37 105,15% 105,15%
25 120 286 306 672 672 10801,99 0,38 119,61% 119,61%
25 120 286 291 676 676 10801,95 1,78 132,30% 132,30%
25 120 286 311 653,94 654 10802,3 0,4 110,29% 110,27%
25 120 286 314 681 681 10802,81 0,38 116,88% 116,88%
25 120 500 317 677 677 10801,93 0,39 113,56% 113,56%
25 120 500 676 676 676 10802,31 1,09 0,00% 0,00%
25 120 500 334 681 682,75 10802,17 0,4 104,42% 103,89%
25 120 500 291 670 670 10801,9 0,37 130,24% 130,24%
25 120 500 302 659,83 659,91 10802,71 0,38 118,51% 118,49%
Average 402,31 643,86 644,52 10179,01 0,35 72,98% 72,81%
#OPT 4 5

Table 7.2: MSTCP problem tests conducted with B = |C|, on instances with n = 25.
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n m B UB LB root_bound time[s] root_time[s] root_gap[%] final_gap[%]
50 245 299 610 1377 1377 10818,95 2,26 125,74% 125,74%
50 245 299 594 1383,27 1385,55 10819,9 1,34 133,26% 132,87%
50 245 299 623 1407,92 1408 10816,36 1,7 126,00% 125,99%
50 245 299 609 1353 1354,02 10815,87 1,57 122,34% 122,17%
50 245 299 585 1362 1362,42 10816,01 1,63 132,89% 132,82%
50 245 1196 610 1365 1365 10818,39 1,58 123,77% 123,77%
50 245 1196 597 1375,86 1376 10827,52 8,74 130,49% 130,46%
50 245 1196 612 1361 1361 10819,25 2,02 122,39% 122,39%
50 245 1196 579 1351,86 1351,93 10820,81 2,69 133,49% 133,48%
50 245 1196 594 1337,94 1338,94 10816,58 1,77 125,41% 125,24%
50 245 2093 590 1370,91 1370,95 10820,33 5,85 132,36% 132,36%
50 245 2093 617 1374,88 1375 10818,5 1,83 122,85% 122,83%
50 245 2093 588 1346 1346 10817,23 1,69 128,91% 128,91%
50 245 2093 1362 1366 1366 10814,25 1,5 0,29% 0,29%
50 245 2093 1309 1381 1381 10819,23 1,44 5,50% 5,50%
50 367 672 562 1410,61 1413,92 10932,86 3,56 151,59% 151,00%
50 367 672 549 1429 1429,76 10934,25 4,08 160,43% 160,29%
50 367 672 556 1402 1402 10960,16 3,22 152,16% 152,16%
50 367 672 553 1418 1418 10913,22 2,78 156,42% 156,42%
50 367 672 543 1382 1382 10934,01 4,28 154,51% 154,51%
50 367 2687 552 1408,95 1408,95 10957,29 4,11 155,24% 155,24%
50 367 2687 546 1422,88 1424 10914,44 2,81 160,81% 160,60%
50 367 2687 530 1420 1420,5 10907,04 3,03 168,02% 167,92%
50 367 2687 553 1412,78 1412,78 10923,37 4,57 155,47% 155,47%
50 367 2687 589 1406,77 1407 10952,14 3,4 138,88% 138,84%
50 367 4702 570 1415,91 1416,16 10937,16 3,59 148,45% 148,41%
50 367 4702 1423 1423 1423,97 326,84 3,31 0,07% 0,00%
50 367 4702 576 1425,99 1426,49 10914,69 4,42 147,65% 147,57%
50 367 4702 549 1405 1405 10939 5,11 155,92% 155,92%
50 367 4702 602 1415 1415 10933,22 2,94 135,05% 135,05%
50 490 1199 539 1422,88 1423 11276,07 6,5 164,01% 163,98%
50 490 1199 525 1435 1435 11240,8 4,59 173,33% 173,33%
50 490 1199 543 1443,73 1443,73 11255,6 5,1 165,88% 165,88%
50 490 1199 533 1443 1443 11372,87 7,99 170,73% 170,73%
50 490 1199 537 1433 1433 11196,03 5,38 166,85% 166,85%
50 490 4793 546 1424,97 1425 11232,55 7,6 160,99% 160,98%
50 490 4793 531 1429 1429 11285,79 5,58 169,11% 169,11%
50 490 4793 541 1440,01 1440,08 11277,16 7,14 166,19% 166,18%
50 490 4793 531 1438 1438 11352,76 6,62 170,81% 170,81%
50 490 4793 529 1430 1430 11240,56 6,31 170,32% 170,32%
50 490 8387 540 1435 1435 11150,13 7,43 165,74% 165,74%
50 490 8387 531 1437 1437 11264,18 12,31 170,62% 170,62%
50 490 8387 1438 1438 1438 4167,85 5,05 0,00% 0,00%
50 490 8387 550 1442 1442 11302,28 5,43 162,18% 162,18%
50 490 8387 551 1425 1425,5 11404,53 6,53 158,71% 158,62%

Average 637,71 1405,07 1405,37 10615,07 4,28 136,49% 136,43%
#OPT 1 2

Table 7.3: MSTCP problem tests conducted with B = |C|, on instances with n = 50.
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In order to further verify the quality of the solution obtained in the bilevel setting, we set the
budget B to a value such that the leader can impose to the follower to return the worst possible
MST, i.e., the maximum spanning tree. This value is given by (n − 1)(m − n + 1) +

(
m−n+1

2

)
,

where the first term represents the number of edge pairs (ei, ej) s.t. ei belongs to a spanning
tree and ej does not, and the second term represent the number of unique pairs in the set of
edges not in the spanning tree. If the budget is set to this value, the leader will thus be able to
put the (m− n+ 1) edges outside the maximum spanning tree in conflict with all the remaining
edges in the graph, forcing the follower to construct the MST equal to the maximum spanning
tree. Given the results recorded in the previous tests (setting B = |C|) the tests were performed
with a time limit of two hours and no memory limit.

The computational results are reported in the tables 7.4 and 7.5, which contain the same
columns as the tables 7.2 and 7.3 plus one more column obj_maxMST, i.e., the objective function
value of the maximum MST.

Table 7.4 contains the computational results performed on the instances with n = 25, on
which the bilevel solver always identifies the optimum (out of 41 instances) except in 4 cases
where it fails to provide a feasible solution. In 16 out of 45 cases, the optimum is identified in
the root node. Table 7.5 contains the computational results performed on the instances with
n = 50. In this case the bilevel solver is able to identify only a few optimal solutions 8 out of
45 of which 5 are identified in the root node, in all other cases it is unable to identify a feasible
solution.

Compared with the tests performed with a value of B = |C|, the bilevel solver has identified
a smaller number of feasible solutions in these last tests, as increasing the budget B, the number
of feasible solutions decreases, at the same time it has identified a greater number of optima.

In future developments, we want to implement an ad-hoc bilevel solution approach for the
MSTCP problem, in order to overcome some weaknesses of the general purpose approaches,
which proves to be a valid tool that allows the fast prototyping of bilevel models managing to
obtain good results on instances of small and medium size.
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n m B UB LB root_bound time[s] root_time[s] root_gap[%] final_gap[%] obj_maxMST
25 60 1494 590 590 591 0,29 0,19 1,7% 0% 590
25 60 1494 626 626 627 1,42 0,17 1,6% 0% 626
25 60 1494 606 606 606,99 2,9 0,16 1,6% 0% 606
25 60 1494 622 622 622 0,53 0,17 0% 0% 622
25 60 1494 600 600 600 0,17 0,17 0% 0% 600
25 60 1494 582 582 582,67 0,75 0,21 1,1% 0% 582
25 60 1494 604 604 607,92 580,16 0,18 6,5% 0% 604
25 60 1494 622,11 624,7 7200,06 0,15 614
25 60 1494 609 609 609 0,41 0,15 0% 0% 609
25 60 1494 611 611 611,5 1,14 0,18 0,8% 0% 611
25 60 1494 564 564 567,67 1,19 0,2 6,5% 0% 564
25 60 1494 621 621 621,95 1,22 0,17 1,5% 0% 621
25 60 1494 628 628 631,6 1509,8 0,16 5,7% 0% 628
25 60 1494 632 632 634,74 4,68 0,16 4,3% 0% 632
25 60 1494 610 610 610 0,21 0,14 0% 0% 610
25 90 3729 625 625 627,75 1,05 0,32 4,4% 0% 625
25 90 3729 672 672 672 0,74 0,28 0% 0% 672
25 90 3729 649 649 649 0,47 0,23 0% 0% 649
25 90 3729 638 638 638,5 0,92 0,29 0,8% 0% 638
25 90 3729 648 649,33 7200,07 0,36 646
25 90 3729 650 650 650,5 2,21 0,29 0,8% 0% 650
25 90 3729 654 654 655,91 6016,47 0,26 2,9% 0% 654
25 90 3729 669 669 669,5 0,88 0,3 0,7% 0% 669
25 90 3729 646 648,42 7200,06 0,27 645
25 90 3729 646,52 648,79 7200,06 0,34 640
25 90 3729 638 638 642,46 871,7 0,34 7,0% 0% 638
25 90 3729 678 678 678 1,87 0,32 0% 0% 678
25 90 3729 644 644 644 0,48 0,23 0% 0% 644
25 90 3729 644 644 644 0,94 0,26 0% 0% 644
25 90 3729 675 675 675,5 1,06 0,24 0,7% 0% 675
25 120 6864 663 663 664 5,47 0,5 1,5% 0% 663
25 120 6864 661 661 664 4059,6 0,48 4,5% 0% 661
25 120 6864 683 683 684 2300,57 0,65 1,5% 0% 683
25 120 6864 680 680 680,09 3,49 0,52 0,1% 0% 680
25 120 6864 655 655 656 7,59 0,44 1,5% 0% 655
25 120 6864 677 677 677 1,06 1,05 0% 0% 677
25 120 6864 672 672 672 1,12 1,12 0% 0% 672
25 120 6864 676 676 676 1,63 0,39 0% 0% 676
25 120 6864 653 653 655 216,52 0,47 3,1% 0% 653
25 120 6864 681 681 681 1,84 0,53 0% 0% 681
25 120 6864 676 676 677 4,6 0,38 1,5% 0% 676
25 120 6864 676 676 676 1,18 1,17 0% 0% 676
25 120 6864 681 681 681 1,22 1,21 0% 0% 681
25 120 6864 670 670 670 3,05 0,52 0% 0% 670
25 120 6864 659 659 659,91 2008,48 0,47 1,4% 0% 659

Average 644,00 643,70 644,79 1031,59 0,37 0,32% 0% 643,31
#OPT 16 41

Table 7.4: Tests carried out in order to obtain the maximum MST with n = 25.
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n m B UB LB root_bound time[s] root_time[s] root_gap[%] final_gap[%] obj_maxMST
50 245 28714 1377 1377 1377 21,26 4,08 0% 0% 590
50 245 28714 1384,36 1385,55 7200,21 3,25 626
50 245 28714 1408 1408 7200,23 5,63 606
50 245 28714 1353,26 1354,02 7200,2 2,22 622
50 245 28714 1362 1363 7200,2 2,96 600
50 245 28714 1365 1365 7200,22 4,04 582
50 245 28714 1376 1376 7200,19 3,42 604
50 245 28714 1361,97 1361,97 7200,21 4,04 614
50 245 28714 1351,93 1352 7200,27 3,66 609
50 245 28714 1339 1339,5 7200,24 3,62 611
50 245 28714 1369,88 1370,42 7200,18 3,41 564
50 245 28714 1374 1374 1374,94 38,01 2,86 0,7% 0% 621
50 245 28714 1346,05 1346,83 7200,18 3,81 628
50 245 28714 1366 1366 1366,5 8,63 3,08 0,4% 0% 632
50 245 28714 1380,71 1381 7200,2 3,83 610
50 367 65985 1413,94 1413,99 7200,43 9,26 625
50 367 65985 1429,95 1430,7 7200,42 7,94 672
50 367 65985 1402 1402 7200,39 8,01 649
50 367 65985 1418 1418 1418 76,1 5,22 0% 0% 638
50 367 65985 1384 1384,5 7200,45 5,22 646
50 367 65985 1409 1409 7200,39 7,67 650
50 367 65985 1423,87 1424 7200,38 5,45 654
50 367 65985 1420 1420 1420,5 66,3 8,31 0,4% 0% 669
50 367 65985 1412 1412,78 7200,39 9,18 645
50 367 65985 1407 1407 7200,44 8,74 640
50 367 65985 1415,74 1416,15 7200,39 9,06 638
50 367 65985 1424,5 1424,5 7200,4 8,66 678
50 367 65985 1427 1427,5 7200,4 8,56 644
50 367 65985 1405 1405 7200,48 11,58 644
50 367 65985 1415 1415 1415 81,12 8,92 0% 0% 675
50 490 118629 1423 1423 7200,63 16,94 663
50 490 118629 1435,94 1435,94 7200,69 11,52 661
50 490 118629 1443,73 1443,73 7200,59 16,41 683
50 490 118629 1442,98 1443 7200,71 22,68 680
50 490 118629 1433 1433 7200,68 13,84 655
50 490 118629 1424 1425,5 7200,65 16,8 677
50 490 118629 1429 1429 1429 348,43 29,47 0% 0% 672
50 490 118629 1440,08 1440,08 7200,67 14,88 676
50 490 118629 1438 1438 1438 219,8 15,71 0% 0% 653
50 490 118629 1430,84 1430,84 7200,71 16,37 681
50 490 118629 1435 1435 7200,62 28,98 676
50 490 118629 1437 1437 7200,61 25,11 676
50 490 118629 1439 1439 7200,7 12,8 681
50 490 118629 1442 1442,5 7200,66 20,32 670
50 490 118629 1425 1425,5 7200,8 13,41 659

Average 1404,63 1405,35 1405,63 5939,46 10,02 1,51% 0% 1403,47
#OPT 5 8

Table 7.5: Tests carried out in order to obtain the maximum MST with n = 50.
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Conclusion

In this thesis, we have addressed two types of combinatorial optimization problems: i) substruc-
ture identification problems in graphs; and ii) combinatorial optimization problems with conflict
constraints. In the context of the substructure identification problems we addresses the 2-Edge-
Connected Minimum Branch Vertices Problem, the Collapsed k-Core Problem and the Cluster
Deletion Problem.

In combinatorial optimization problems, introducing conflict constraints allows for managing
real world’s incompatibility situations. Their introduction to well-known problems makes these
problems closer to the real case. The problems with conflict constraints studied in this thesis are:
the Set Covering problem with Conflicts on Sets, the Max Flow with Conflicts and the Minimum
Spanning Tree with Conflicts.

We developed a genetic algorithm to solve the 2ECMBV problem. This algorithm is based
on a procedure able to find and remove useless edges from the feasible solution and some ad-hoc
operators that increase the effectiveness of the approach by performing a broader exploration of
the solution space. We tested the performance of the genetic algorithm on benchmark and new
instances with respect to accuracy and running time. The computational results show that our
algorithm is very effective in the benchmark instances where only in few cases it doesn’t find the
best/optimal solution. In the Hamiltonian instances, it is less effective, but the gap from the
best/optimal solution remains low. Finally, GA results fast, with a computational time almost
always lower than 1200 seconds.

Identifying the most critical users in terms of network engagement is a compelling topic in
social network analysis. Users who leave a community potentially affect the cardinality of its
k-core, i.e., the maximal induced subgraph of the network with a minimum degree of at least k.
In this thesis, we presented different mathematical programming formulations of the Collapsed
k-Core Problem, consisting in finding the b nodes of a graph, the removal of which leads to
the k-core of minimal cardinality. We started with a time-indexed compact formulation that
models the cascade effect after removing the b nodes. Then, we proposed two different bilevel
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programming models of the problem. In both, the leader aims to minimize the cardinality of the
k-core obtained by removing exactly b nodes. The follower wants to detect the k-core obtained
after the decision of the leader on the b nodes to eliminate, i.e., to find the maximal subgraph of
the new graph where all the nodes have a degree at least equal to k. The two formulations differ
in the way the follower’s problem is modelled. In the first one, the lower level is an ILP model
solved through a Beneders-like decomposition approach. In the second bilevel formulation, the
lower level is modelled through LP, which we dualized to end up with a single-level formulation.
Preprocessing procedures and valid inequalities have been further introduced to enhance the pro-
posed formulations. In order to evaluate the proposed formulations, we tested different existing
instances, showing the superiority of the single-level reformulation of the second bilevel model.
We further compared the approaches with the general purpose solver proposed in [FLMS17],
which is outperformed by our problem-specific solution methods.

We present two exact ILP formulations and a heuristic algorithm, based on edge contrac-
tion operations to solve the Cluster Deletion problem. We tested and compared the proposed
approaches on both artificial instances, generated by exploiting the Barabási–Albert model and
benchmark biological networks. The performed experiments show that the proposed heuristic is
very efficient and effective compared with the exact approaches, which provided the optimal so-
lutions on the part of the instance set. Even when the algorithm does not identify the optimum,
it still provides a high-value solution in a maximum of a few minutes. On a final note, since the
observed relative gaps concerning the best found solutions are always small when the optimal
solutions are available, we expect a similar behavior to apply also to the instances in which the
best-known value is the one associated with the solution identified by the heuristic.

In the context of the combinatorial optimization problems with conflict constraints, in this
thesis we addressed: the Set Covering problem with Conflicts on Sets, the Max Flow with Con-
flicts and the Minimum Spanning Tree with Conflicts.

The Set Covering Problem with Conflicts on Sets is a new variant of the set covering prob-
lem with conflicts among subsets, in which subsets are in conflict when they share a number of
elements that exceeds a given threshold. Two subsets in conflict can belong to the same solu-
tion provided that a cost (proportional to the number of items that exceeds such threshold) is
paid. We provide two mathematical formulations and a parallel variant of GRASP that exploits
information sharing on the most demanding tasks. The proposed solution approach (tested with
a time limit of 600 seconds) is highly effective, and often outperform Gurobi using the same
number of processors and a larger amount of time (1 hour).

We investigated several heuristic approaches to solve the Maximum Flow Problem with Con-
flicts. On the one hand, a greedy algorithm has been designed and then enhanced according to
the Carousel Greedy strategy. We also developed, a Kernel Search algorithm. Furthermore, we
introduced Kernousel, i.e. a combination of Carousel Greedy and Kernel Search which results
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in a fast and effective matheuristic. The proposed methods have been tested on benchmark
instances and compared with the best known solutions from the literature. The computational
tests show that exploiting the information, gathered by the Carousel Greedy to identify the set
of promising variables for the Kernel Search, produces a highly effective solution framework.

Finally, we have dealt with a well-known variant of the Minimum Spanning Tree problem
named Minimum Spanning Tree Problem with Conflicts. In order to address the problem, we
have implemented a Kernel Search approach. We tested our approach making use of some bench-
mark instances already used in the literature. The obtained results show how KS lends itself to
the resolution of this problem, improving the results obtained by some known heuristic methods
and getting very close to the optimal solution. The study of this problem is still in progress and
for future developments we would like to improve the efficiency and effectiveness of the KS ap-
proach, also considering other benchmark instances known in the literature. We also introduced
a new bilevel variant of the problem named Minimum Spanning Tree Problem with Conflicts
Placement. In this new variant we assume that the decision on the pairs of edges in conflict is
made by a different entity w.r.t. the one deciding on the minimum spanning tree, and we model
this scenario using Mixed-Integer Bilevel Linear Programming. We solved the problem using
a general purpose solver for bilevel problems. The computational results have shown that the
solver is able to solve only small and medium-sized. For future developments we would like to
implement an ad hoc bilevel solution approach for the problem.

The study conducted in this thesis showed how the addressed problems can be tackled through
the use of both classic tools of combinatorial optimization and new emerging techniques such
as the Carousel Greedy algorithm, the Kernel Search matheuristic and the Kernousel algorithm
obtained by combining the previous two approaches.

We conclude by specifying that there is still a lot of study to carry out regarding the validation
of the new heuristic approach obtained by the combination of Kernel Search and Carousel Greedy
but the preliminary results, reported in this work, are promising.
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Appendix A

Recall on Solution Approaches for
Optimization Problems

A.1 Basic Concepts: Combinatorial Optimization

Optimization is the study of maximization/minimization of functions (objective functions) whose
variables are constrained to satisfy specific conditions (constraints). In the following, we will refer
to minimization problems. Very often, optimization is linked to combinatorial analysis, which is
the mathematics of discrete structured problems. A combinatorial optimization problem (COP)
consists in finding out the value of a certain combination of variables that optimizes a given
function under various constraints.

Given a function f : Rn → R and X ⊆ Rn, optimization problem can be formulated as:

min f(x)

s.t.

x ∈ X

An optimization problem consists in determining, if it exists, a global minimum point of the
function f among the points of the set X. The function f is called the objective function of the
problem and describes the objective to be pursued, x is the vector of the decision variables of the
problem and represents a possible solution, while X is the set of feasible solutions, and is also
called feasible region. When the set of feasible solutions of an optimization problem is expressed
through a system of equations and inequalities, the problem is referred to as Mathematical
Programming (PM) problem. A PM problem is linear when both the objective function f
and the feasible set of constraints X are expressed in terms of linear relations (equalities and
inequalities). A typical linear MP model has the following form:

min f(x)

170
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s.t.

gi(x) ≥ bi i = 1, . . . ,m

gi(x) is the i-th constraint of the system, and bi is the i-th constant term. It can be rewritten in
compact form using matrix notation:

min
x∈Rn

cTx (A.1a)

s.t. Ax = b (A.1b)
x ≥ 0 (A.1c)

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. The equations A.1b are called constraints of the problem
and define the so-called region X of feasible solutions, constraining the domain within the vari-
ables of the problem can assume values. The model A.1 is the so-called standard form of linear
optimization problem (LP). It can be shown that every LP problem can be written in standard
form by introducing suitable variable splittings and/or slack variables. The objective function
f : X → R allows to orient the search within the set X, associating a value to each potential solu-
tion, which can represent a cost to be minimized or, alternatively, a profit to be maximized. We
are interested in finding a global optimum, i.e. a solution x ∈ X such that f(x) ≤ f(y);∀y ∈ X.
On the other hand, some solutions could turn out to be local optima, i.e. have a better value only
than the solutions belonging to a well-defined neighborhood of x. Furthermore, if the variables of
the problem assume continuous values x ∈ Rn we speak of continuous Linear Programming (LP).
When the variables of the problem are constrained to assume only integer values, the problem is
called Integer Linear Programming (ILP). However, if some decision variables are not discrete,
the problem is known as a Mixed Integer Linear Programming problem (MILP). Although ILP
and MILP formulations are generally harder to tackle, they achieved considerable success over
time, thanks of their properties and the existence of effective methods for their solution, both
heuristic and exact.

An algorithm is said to solve an LP problem if it is capable of correctly determining whether the
given problem has an empty feasible region or is unbounded or, if neither of these two cases is
verified, is capable of identifying an optimal solution. There exist many algorithms for solving
Linear Programming problems. The most used is the Simplex Method, which was the first
practical algorithm for solving Linear Programming problems and is still the most used and one
of the most efficient in practice, despite its computational complexity that is not polynomial
unlike other approaches.
It is not always possible to model a problem through constraints and linear objective functions.
It can be necessary that some of the constraints or the objective function are nonlinear. The
general form of such a nonlinear optimization problem (NLP) reads
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min
x∈Rn

f(x) (A.2a)

s.t. gi(x) ≥ 0, i ∈ I = { 1, . . . ,m } , (A.2b)
hi(x) = 0, j ∈ J = { 1, . . . , p } (A.2c)

We assume that the objective function f : Rn → R as well as the constraint functions gi : Rn → R,
i ∈ I and hj : Rn → R, j ∈ J , are continuously differentiable. The feasible set is denoted by F .

Solution methods for Combinatorial Optimization Problems (COPs) fall into two classes:
heuristic and exact methods.

In the following the various solution approaches studied to address the problems covered
in this thesis are described, which are: Heuristic approaches in Section A.2, Meta-Heuristic
approaches in Section A.3, Exact approaches in Section A.4 and Math-Heuristic approaches in
Section A.5.

A.2 Heuristic approaches

Since COPs are usually NP-hard, it is often necessary to develop heuristic algorithms, i.e. algo-
rithms which do not guarantee obtaining the optimal solution, but in general are able to provide
a good feasible solution for the problem. Normally heuristic algorithms have low complexity,
but in some cases, for large problems and complex structure, it may be necessary to develop
sophisticated and highly complex heuristic algorithms. Furthermore, it is possible, in general,
for a heuristic algorithm to fail and not be able to determine any feasible solution to the problem,
without being able to prove that none exists. Designing an effective heuristic algorithms requires
a careful analysis of the problem to be solved aimed at identifying its structure, ie the specific
useful characteristics, and a good knowledge of the main algorithmic techniques available. In
fact, even if each problem has its specific characteristics, there are a number of general tech-
niques that can be applied, in different ways, to many problems, producing well-defined classes
of optimization algorithms. An example of a heuristic algorithm is the greedy algorithm, which
represents one of the simplest algorithms in the field of optimization. Another kind of sophisti-
cated algorithm is the local search algorithm, which allows to escape from local optima.

A large part of heuristic algorithms fall into the category of constructive algorithms (CA).
CAs start from an empty solution and iteratively determine the new elements to add in the
solution until a complete solution is obtained. Greedy algorithms are part of this category.
Greedy algorithms determine the solution through a sequence of locally optimal decisions, with-
out ever going back and changing the decisions made. These algorithms are easy to implement
and are characterized by a remarkable computational efficiency, but, except for some important
cases, in general they do not guarantee the optimality, and sometimes not even the feasibility, of
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the solution found. The definition we have given of greedy algorithm is very general, and there-
fore algorithms that appear very different from each other can be traced back to this category.
However, it is possible to define a basic schema described by algorithm 23. We denote with E
the set of all possible choices and we denote with F the set of feasible solutions of the problem.
Algorithm 23: Greedy

Input: E, F
1 S = ∅
2 Q = E
3 while |Q| 6= 0 do
4 e = Q.pop()
5 if S ∪ {e} ∈ F then
6 S = S ∪ {e}

7 return S

In the algorithm 23, S is the set of elements of E that have been inserted into the current (partial)
solution, and Q is a priority queue, a data structure that allows access to the elements contained
in it according to a certain order. Q is initially populated with elements of the problem E; for
example, if the items in E have a cost associated with them, the priority queue may choose the
cheapest items first. The pop method of the queue returns the next element to be extracted
following the greedy rule, in this case it is simply an ordering of the elements indicating which
one is more attractive. If the algorithm is not able to construct a feasible solution it fails, i.e. it
is unable to determine a feasible solution of the problem.

Another well-known heuristic algorithm is Local Search (LS). The LS algorithms are based
on a simple and intuitive idea: given a feasible solution, the solutions close to it are examined in
search of a better solution, i.e. with a better value of the objective function. If such a solution is
found, it becomes the current solution and the procedure is iterated, otherwise (i.e. when none of
the nearby solutions is better than the current one) the algorithm terminates having determined
a local optimum of the feasible set.

Of fundamental importance for this type of algorithm is the definition of a neighborhood
function. In general, given the feasible set F of the problem under consideration, we can define
a function N : F → 2F , where the set N(x) is called neighborhood of x, and contains the
solutions considered close to x. Given a neighborhood function, a local search algorithm can be
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schematized as follows:
Algorithm 24: Local Search

Input: F , x
1 x = AmmissibleSolution(F)
2 repeat
3 N(x)←compute neighborhood of x
4 y = best solution in N(x)
5 if f(y) < f(x) then
6 x = y
7 else
8 break

9 until True

Algorithm 24 shows that the method is extremely general and can be applied to solve very
different problems. The salient steps of the algorithm concern: i) the determination of the ini-
tial solution, which can be performed through a greedy algorithm; and ii) the definition of a
neighborhood of the current solution x, also called exploration criterion. At each step of the al-
gorithm a restricted optimization problem is solved in the considered neighborhood. In general,
the solution determined by the local search algorithm is not optimal for the problem, but only
a local optimum related to the chosen neighborhood function N . A neighborhood function is
called an exact neighborhood function if for a given problem the local search algorithm is able to
provide the optimal solution for each instance of the problem however the starting point is chosen.

A particular local search algorithm is the Hill Climbing algorithm, it is a heuristic algorithm
that is often applied in the field of Artificial Intelligence (AI). It is generally assumed that the
problem is maximization of a given objective function. The Hill Climbing algorithm iteratively
increases the value of the current solution until it reaches a peak solution, continuously moving
upward (increasing) until the best local solution is attained (local optimum). It begins with
a non-optimal state (the hill’s base) and upgrades this state until a certain precondition is
met. A heuristic function is used as the basis for this precondition. The process of continuous
improvement of the current state of iteration can be compared to climbing. This explains why
the algorithm is named hill-climbing. A hill-climbing algorithms objective is to attain an optimal
state that is an upgrade of the existing state. When the current state is improved, the algorithm
will perform further incremental changes to the improved state. This process will continue until
a peak solution is achieved. The peak state cannot undergo further improvements.

There are two main regions in which a hill-climbing algorithm cannot reach a global optimum:
local optimum and plateau. In an local optimum point, the state of the neighbors have lower
values than the current state. This will lead to the hill-climbing process’s termination, even
though this is not the best possible solution. This problem can be solved by using momentum.
Momentum allows the hill climbing algorithm to take huge steps that will cause it to exceed
the local optimum. In a plateau region, the values attained by the neighboring states are the
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same. This makes it difficult for the algorithm to choose the best direction. This challenge can
be overcome by taking a huge jump that will lead you to a non-plateau space.

Figure A.1: Scheme of the hill climbing algorithm.

Getting stuck in a local optimum is a typical problem of heuristic algorithms, to overcome
this type of problem metaheuristic algorithms have been developed, some of which used in this
thesis are described in the Section A.3.

A.2.1 Carousel Greedy

In this section we describe the Carousel Greedy approach which is an enhanced greedy algorithm
proposed by Cerrone et.al. [CCG17], with the aim of overcoming the classic weaknesses of greedy
algorithms while maintaining their efficiency. The main idea of the CG approach is to start from
a feasible solution, generated through a greedy algorithm, and modify it by replacing the older
choices made by the greedy algorithm with new choices that produce a new feasible solution.
Since the choices made in the initial and final phases of the starting greedy algorithm are the
most constrained ones, this process naturally enhances such procedure, by actually extending
the exploration phase, with a reduced computational overhead. It allows to resolve large in-
stances in a short time, as it still falls into the category of heuristic algorithms and not into the
category of metaheuristic algorithms, which in order to escape from a local optimum require a
greater computational effort. It can be combined with other approaches to create or support
new metaheuristics.

Several well-known combinatorial optimization problems, like the minimum label spanning
tree, the minimum vertex cover, the maximum independent set, and the minimum weight vertex
cover problems served as first case study for the CG framework [CCG17]. By now, the resulting
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scheme has been applied to a variety of problems, including distribution problems [CGDC18], the
strong generalized minimum label spanning tree problem [CDR19], the knapsack problem with
forfeits [CDRV20, CDP+22], the close-enough traveling salesman problem [CCCG20], and the
maximum network lifetime problem with time-slots [CDIP22]. CG requires as input: an initial
solution provided by a Greedy algorithm and two parameters, α and β, where α is an integer
that determines the number of iterations of the algorithm and β is a percentage that allows us
to cut a part of the initial greedy solution. The main step of carousel greedy algorithm are the
following:

• Use a greedy algorithm to generate a partial solution;

• Apply the same greedy algorithm starting from the partial solution in a deterministic
manner.

• Use the greedy algorithm to complete the solution, obtaining a feasible one.

Figure A.2 shows the Greedy Carousel execution scheme. In the first line a starting solution
S = {e1, . . . , e|S|} (where ei indicates the i-th element contained in the solution S), is built
through a constructive algorithm. Then the CG removes the β% from the elements of the
final solution, obtaining what is called Carousel Start, the real starting point of the CG. This
represents the first phase of the CG algorithm. The algorithm iterates α|S| times where |S|
is the size of the initial solution. At each iteration, the CG removes the oldest element, and
replaces it with a new one, using the rule defined by the starting greedy to choose the next move.
This replacement policy is applied because, when the greedy algorithm starts its computation,
it has few information available and the initial choices are almost never the best. By deleting
the oldest choice, we give the algorithm the chance to replace a wrong choice with one that
at the current iteration seems more advantageous. Indeed, if the removed element is still the
best, the CG choose it again, inserting it into solution. Once arrived at the last iteration, the
algorithm completes the solution by applying the starting greedy algorithm, letting it insert as
many elements as possible.
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Figure A.2: Scheme of the Carousel Greedy algorithm.

A.3 Metaheuristic approaches

Even using large neighborhoods in Local Search approaches, described in the previous section, in
many combinatorial optimization problems one may not be able to identify the optimal solution.
The local search algorithms, for example, stop after having identified a local optimum with
respect to the neighborhood function used, as they are unable to find "moves" that generate
better solutions than the current one. If the current solution identified by a heuristic approach
is not a global optimum, then the problem of trying to determine a different, and possibly
better, local optimum arises. In this section, we will briefly discuss two possible strategies that
allow to do this, used to solve the problems addressed in this thesis. These strategies are called
metaheuristics because they are not specific algorithms for a given problem, but general methods
that can be applied to try to improve the performance of many different local search algorithms.

There exist different types of metahaeristics, that can be grouped into two macro-categories.
The first category contains approaches that are based on a certain type of search strategy [BR01].
They consist of a simple improvement of a local search algorithm. Some metaheuristics of
this type are Simulated Annealing, Tabu Search, Iterated Local Search, GRASP, etc. These
metaheuristics can be classified as local search-based metaheuristics.

The second category concerns global search metaheuristics which are based on the generation
of a population of solutions [Vik17]. Such metaheuristics include: ant colony optimization,
evolutionary computation, particle swarm optimization, etc. This approaches are also based on
a search strategy but which differs from the classic one used in the context of local search.

In the following, we describe two metaheuristics used to solve two of the problems addressed
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in this thesis. The first metaheuristic belongs to the first category and is described in Section
A.3.1, while the second one belongs to the second category and is described in the Section A.3.2.

A.3.1 GRASP

The quality of the local optimum determined by a local search algorithm depends on two factors:
i) the neighborhood used; ii) the initial feasible solution from which the search starts. In the
Section A.2 we assumed that the initial solution was determined by some heuristic, for example
a greedy algorithm. It is possible to define more than one greedy algorithm for the same prob-
lem, and in many cases the algorithms are also very similar, differing only in the order in which
some choices are made, so it is reasonable to think of having more than one available algorithm
capable of producing initial solutions. In this case, the solutions produced will normally be
different; moreover, it is said that the local optimum determined by executing the local search
algorithm starting from the best of the solutions thus obtained is not necessarily the best of the
local optima obtainable by executing the local search algorithm starting from each of the solu-
tions separately. All this suggests an obvious extension of the local search algorithm: generate
several initial solutions, compute the neighborhood of each solution and execute the local search
algorithm starting from each of them, then select the best of the solutions thus obtained. This
procedure is particularly attractive when it is possible, typically through the use of randomized
techniques, to easily generate an arbitrarily large set of different initial solutions.
The combination of a local search algorithm and a randomized heuristic is called the multistart
method. When the randomized heuristic is of the greedy type, it is called a Greedy Randomized
Adaptive Search Procedure (GRASP) [FR89, FR95]. While other metaheuristic algorithms such
as genetic algorithms use strategies with great emphasis on local search, the GRASP approach is
considered constructive because it is focused on the generation of a better quality initial solution
in order to use local search only for small improvements.

The algorithms 25 and 26 describe, respectively, the first phase of GRASP (constructive
greedy) and the second phase of GRASP (local search). Algorithm 25 describe the construction
phase of the GRASP. The solution to be contructed is initialized in line 1 of the pseudo-code.
The while loop from line 2 to 6 is repeated until the solution is fully constructed. In line 3, the
restricted candidate list is built. A candidate from the list is selected, at random, in line 4 and
is added to the solution in line 5. The effect of the selected solution element s on the benefits
associated with every element is taken into consideration in line 6, where the greedy function is
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adapted.
Algorithm 25: GRASPConstructionPhase

Input: P
1 S = {}
2 while Solution construction not done do
3 RCL← build restricted candidate list
4 s← select element at random from RCL
5 S = S ∪ {s}
6 AdaptGreedyFunction(s)

The algorithm 26 the GRASP local search algorithm, which works in an iterative way by
successively replacing the current solution by a better solution in the neighborhood of the current
solution. It terminates when no better solution is found in the neighborhood. The neighborhood
structure N for a problem P relates a solution S of the problem to a subset of solutions N(S).
A solution S is said to be locally optimal if there is no better solution in N(S).
Algorithm 26: GRASPLocalPhase

Input: P , N(P ), S
1 while s not locally optimal do
2 find a best solution t ∈ N(S)
3 s = t

4 return s

A.3.2 Evolutionary algorithms

Evolutionary algorithms (EAs) are optimization techniques that heve become popular over the
last decades. EAs represent an efficient global search solution method, that can be used success-
fully in many highly complex applications.

The peculiar feature of an EA is that does not maintains a single current solution but a
population of solutions; each solution is seen as an individual competing for survival. The idea
of evolutionary algorithms, which is the same as defined by Charles Darwin, is that only the
fittest individual survives within the population and it is only the fittest individual who has the
higher probability of reproducing. The fittest individual is the one that has best adapted to
its habitat. It works on some basic principles: the individuals evolve and compete for limited
resources; the population changes dynamically, passing on only the most promising genes to
future generations. This schema allows to explore the most promising areas of the space of
feasible solution set.

An individual is generally represented through a certain encoding, describing the individual’s
chromosome, which is in turn composed of a series of genes.

The most popular type of EAs are Genetic Algorithms (GAs). Such algorithms proceed in
phases, corresponding to different generational changes of the initial population. In each phase,
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the following operations are applied an appropriate number of times:

• Selection: two (or more) solutions, named parents, are selected within the population,
giving priority to individuals with higher fitness;

• Crossover: starting from the selected solutions, a certain number of descendant solutions
are generated, by mixing the characteristics (genes) of the parent solutions;

• Mutation: some random modifications are applied to each generated solution, with the
aim to introduce into the population new characteristics.

A genetic algorithm is characterized by a certain number of generational changes, simply
called generations and coinciding with an iteration of the algorithm. GAs terminate when some
termination criterion is fulfilled, i.e., after a maximum number of iterations or after a certain
number of iterations in which no improve is recorded (aspiration criterion). An individual is
represented by a special encoding, i.e., its chromosome, in turn the chromosome is composed
of smaller parts called genes which are the items of the instance that can be used to build a
solution. In each iteration to identify the strongest individuals that can be reproduced, the
genetic algorithms uses a function called fitness, which evaluates the goodness of an individual
or its ability to adapt to the habitat in which it lives, therefore the ability to survive. In many
cases the fitness function represents the objective function of the problem under examination.
Subsequently, the individuals of the current population are selected in order to generate a new
population, in a pseudo-random way with a probability depending on the value of their fitness.
In this regard, there are two main techniques which are:

• Roulette wheel selection: The fitness is used to associate a probability of selection to
each individual. If fi is the fitness of individual i in the population, its probability of being
selected is (N is the number of individuals in the population):

pi =
fi∑

j∈{1,...,N} fj

It’s called roulette wheel because it can be seen as a roulette wheel in a casino, where
each section of the roulette wheel is associated with an individual. Each section is larger
or smaller in proportion to the individual’s probability of being selected, individuals with
higher probability will have larger sections and vice versa.

• Tournament selection: Choose few individuals at random from the population (a tour-
nament). The individual with the best fitness (the winner) is selected for crossover.

Once the parents have been selected, through the crossover operation they will produce
the individuals who will compose the next generation. The crossover operation can be seen as a
function that combines the parents’ genes in order to build the chromosome or chromosomes of the
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children (new individuals). The new individuals in this way will inherit the best characteristics
(genes) of the parents. Finally, the mutation operation carries out random modifications by
operating on the chromosomes of the children. A mutation operation can be to reverse the value
of a gene. The purpose of mutation in GAs is to introduce diversity into the sampled population.
Mutation operators are used in an attempt to avoid local minima by preventing the population of
chromosomes from becoming too similar to each other, thus slowing or even stopping convergence
to the global optimum.

All the operations of a GA must be specialized for the problem to be solved, and one of the
most important is to define the coding of a solution, this choice can influence the efficiency of the
algorithm. Although for some problems in literature are used some standard implementations,
for example very often is sufficient to generate an initial population in a random manner, without
even guaranteeing the feasibility, allowing to obtain good solutions at the end of the execution.

A.4 Exact approaches

For the solution of Integer Linear Programming problems there not exist universally efficient
methods. Very often it is necessary to use ad hoc algorithms that are able to exploit the par-
ticular structure of the problem. However, there are methods applicable to a large class of ILP
problems. Among the most successful algorithms for solving ILP there is the Branch and cut
algorithm. The Branch and Cut algorithm is an exact approach that has achieved great success
in solving a large variety of Integer Linear programming problems. It was introduced by Padberg,
Manfred and Rinaldi [PR91] and it combines two techniques: the Branch and Bound algorithm
and the Cutting Plane method.

The cutting plane algorithm, uses valid inequalities in order to cut out the optimal solution
of the linear relaxation, in order to restrict the formulation of the problem as much as possible,
until an integer feasible solution is found. This method can be traced back to the work of Danzig,
Fulkerson and Johnson [DFJ54] who used it to solve the TSP problem with 48 cities. Gomory
[DFJ58] proposed the well-known fractional cuts and mixed integer cuts, a general procedure
for solving mixed 0-1 problems. Branch and bound algorithm is a divide-and-conquer algorithm
that iteratively divides the feasible set of a MILP problem. Implicitly lists the feasible solutions
in search of a proof of optimality. This method was introduced by Land and Doig [LD10] as
a general scheme for MILP problems and by Balas [Bal65] for problems 0-1. The Branch and
bound algorithm was the preferred solution method in the 70s and 80s, and is now implemented
in the main software libraries for solving COPs. During this period, the cutting plane algorithms
were considered of less practical value as independent solution techniques.

A.4.1 Branch and Cut

A basic scheme of the branch-and-cut approach, for a minimization problem, is shown in the
algorithm 27. The algorithm starts with a single subproblem to solve: the starting ILP program.
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During the course of the algorithm, new subproblems are created by the branching operation:
the solution of a subproblem can lead to the creation of two or more child (subproblems). This
process can be represented by a tree where the nodes correspond to the subproblems and the
edges represent the parent-child relationship between them. In this context, the terms node and
subproblem are considered synonymous.

In algorithm 27, at line 1, a queue Q that contains the active nodes, that still need to be
solved is initialized with the initial integer linear program; at line 2, the current solution (in-
cumbent) x∗ is set equal to NULL; at line 3 z∗ which represents the current optimal value is
set equal to +∞. On line 4 the algorithm checks if there are still subproblems to analyze, if Q
is empty on line 5 the algorithm return the optimal solution x∗ with its value z∗, otherwise on
line 7 extract a new subproblem Pi. At line 8 solve the linear relaxation of the subproblem Pi,
named RL(Pi) obtaining the solution of the subproblem xi and its value zi. At line 9-11, check
if the RL(Pi) is infeasible, in that case prune the node node Pi and go to the step 4, moving to
the next subproblem. If instead the subproblem is feasible enter the if 12-28. At lines 13-15, If
the value of the new solution found is not better than the incumbent one the algorithm prune
Pi and go back to 4 in order to extract the next subproblem. At lines 16-20, if the value of
the new solution found is better than the incumbent one and the solution xi has only integer
components, the algorithm update the incumbent solution; prune Pi and return to 4 to extract
the next subproblem. Instead, if the solution found is not composed only of integer components,
at lines 21-25, the algorithm applies a separation procedure to find a violated cut by xi, in this
case the algorithm returns to line 8 and solves the relaxed problem again. At lines 26-28, the
algorithm, apply the branch operation to partition the subproblem Pi into two subproblems, Pj
and Pt with restricted feasible regions. Add these subproblems to Q and go to Step 4.

The order in which we explore the branching tree is of great importance for the effciency of
the branch-and-cut algorithm. This order is enforced by a rule for selecting the next node
to be processed. It is essentially a rule for comparing two nodes. The unsolved, pending
subproblems, also called active nodes, are kept in a pool. It is denoted by Q in algorithm
27. The node selection rule induces ordering of the active nodes and, as a result, the pool
of active nodes can be viewed as a priority queue where the first node is the most preferred.
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Algorithm 27: Branch And Cut

Input : A ILP program
Output: An optimal solution x∗ and its objective value z∗, or z∗ = +∞ if the problem

is infeasible
1 Q = {XLP } #Queue of active subproblems
2 x∗ = NULL
3 z∗ = +∞
4 if Q = ∅ then
5 return x∗ with value z∗

6 else
7 Pi ← Q.pop() #Select a problem Pi from the queue

8 (xi, zi)← solve the linear relaxation of the subproblem RL(Pi)
9 if RL(Pi) is infeasible then

10 prune(Pi)
11 go to line 4

12 if RL(Pi) is feasible then
13 if zi ≥ z∗ then
14 prune(Pi)
15 go to line 4

16 if zi ≤ z∗ and xi ∈ Zn then
17 x∗ = xi
18 z∗ = zi
19 prune(Pi)
20 go to line 4

21 if zi ≤ z∗ and xi ∈ Rn then
22 SeparationProcedure(RL(Pi))
23 if cuts violated by xi exists then
24 add cuts to RL(Pi)
25 go to line 8

26 Pj , Pt ← branch(Pi)
27 Q.push(Pj);Q.push(Pt)
28 go to line 4

A.5 Matheuristic approaches

In the literature, the use of heuristics and metaheuristics to solve real-world problems is widespread.
It is known that when modeled as optimization problems, the majority of real-world complex de-
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cision problems fall into the category of NP-hard problems. This means that exact approaches,
whether in business, engineering, economics or science, are bound to fail when dealing with
large-scale instances. At the same time today’s decision-making processes are becoming more
complex and complete, as nowadays we have the need to bring optimization problems as close as
possible to real-world problems, introducing new constraints and using more decision variables;
at the same time more data and input parameters are available to capture the complexity of the
problems themselves. The need to obtain a truthful solution requires that this must be as close
as possible to the optimal one and very often it is necessary to obtain this information quickly.
Matheuristics combine these two needs, retaining the computational efficiency of metaheuristics
and at the same time using tools typical of exact exact methods to move towards optimality. It
should be noted that the matheuristics do not guarantee the identification of the optimal solution.
One of the main efforts of the scientific community is to design general purpose matheuristics that
do not require specific knowledge of the problem and can be easily applied to a large set of classes
of problems. As for metaheuristics, the strength of these paradigms is their general applicability
on a large set of problems, without requiring major redesigns or any in-depth knowledge of the
problem to be addressed. As a result, general paradigms seem particularly suited to obtaining
a solution of the problem without investing an enormous amount of time in understanding the
mathematical properties of the model and implementing a tailor-made algorithms. However, the
most successful metaheuristics sometimes are also adapted to the problem or refined.

A.5.1 Kernel Search

The Kernel Search (KS) method is a matheuristic that can be used to solve MILP problems.
KS was introduced by Angelelli et al. [AMGS10] in order to address the portfolio selection
problem. Like any mathaeuristic, it tries to combine the strengths of exact approaches and
heuristic methods. Given the set of decision variables of the MILP to be solved, the idea is to
identify a subset of promising variables, i.e. variables which have a high probability of being non-
zero in the optimal solution of the problem. The promising variables are inserted into a set called
kernel, generally indicated with Λ, while the remaining (less promising) variables are grouped
into sets called buckets. The KS requires the definition of two main parameters: kernel_size,
the size of the kernel set, which is the set of promising variables (i.e. how many variables the
kernel set must contain); bucket_size, the size of the buckets (the size of each individual bucket);
this parameter also defines the number of buckets that must be created. The KS algorithm is
divided into two phases:

• Initialization phase, consisting of the initial construction of the kernel and bucket se-
quence;

• Extension phase, during which variables are progressively moved from the buckets to the
kernel if they improve the current solution.

The objective of the KS is to try, through a special rule, to select a set of promising variables,
possibly not too large, which are representative for the problem. KS does this by using the
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information provided by the optimal solution of the continuous relaxation of the input problem.
The classical rule consists in sorting the in-base variables in non-increasing order of their values
and sorting the out-base variables in non-increasing order their reduced cost coefficients. By
giving precedence to the in-base variables, the KS populates the kernel set, taking the first
kernel_size variables according to the performed sorting, and then populating the buckets,
taking bucket_size variables at time. The set Λ should be small enough to allow finding, in a
reasonable time, at each iteration, the optimal solution of the subproblem composed only of the
variables in the kernel set plus the ones in a bucket, but also large enough to include a significant
number of variables that will be part of the optimal solution. Once the initialization phase is
completed, the KS solves the integer linear programming problem considering only the variables
in Λ. Subsequently, the identified solution is improved through a refined search which involves
the resolution of various subproblems containing the variables in Λ plus the variables contained
in the i-th bucket (Bi). When a variable contained in one of the buckets is used to build a
solution that is better than the previous one, this variable is moved into the kernel, so that it
can be used in the next iteration together with the variables of the next bucket.
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