Context-aware knowledge extraction for UV scene understanding
Abstract
In the surveillance systems, Unmanned Vehicle (UV) scene inter-
pretation is a non-trivial problem, because UVs need to possess
human-like common-sense knowledge to correctly interpret events
and situations occurring in the monitored environment. Mobile
camera-related issues, such as motion blur, can further complicate
scene interpretation, causing a lack of reference points that bad-
ly a ects the interpretation of scene entities and situations. To
this purpose, this thesis investigates the synergistic combination
of video tracking with Semantic Web technologies to enhance UVs
at the interpretation of dynamic scenarios.
The rst part of the thesis provides a survey conducted on
the methods employed to extract knowledge from the acquired
structured and unstructured data. When dealing with unstruc-
tured data, there is the need to de ne and process contextual
data to extract high-level concepts from text. To this purpose, an
approach is introduced to mine concepts from texts by building
layered contextual knowledge on document terms exploiting a geo-
metrical structure, called Simplicial Complex. Then, the focus
switches to the knowledge extraction from multimedia data, and
more speci cally, video data. To this purpose, an ontology-based
approach is presented to represent the video scene as composed
of mobile (i.e., people, vehicles) and xed entities (i.e., environ-
mental sites and features), along with the spatio/temporal rela-
tions among them. The use of the ontology reasoning can support
alerting event detection... [edited by Author] I veicoli autonomi (Unmanned Vehicles o UVs) vengono sempre
pi u usati per monitorare un ambiente nell'ambito dei sistemi di
sorveglianza. Per il monitoraggio automatico, gli UV necessitano
di comprendere cosa accade nella scena. Tale compito non e bana-
le in quanto richiede macchine in grado di ragionare come essere
umani per interpretare eventi e situazioni. Inoltre, siccome tali
vecioli impiegano telecamere per il monitoraggio della scena, sono
soggetti a problemi legati al video, come lo sfocamento (motion
blur), che mina un corretto rilevamento degli oggetti della scena
e fa perdere punti di riferimento complicando l'interpretazione di
eventi e situazioni. Di conseguenza, l'obiettivo di questa tesi e
analizzare l'impiego sinergistico della Computer Vision con le tec-
nologie del Web Semantico per astrarre conoscenza dai dati video
e supportare l'interpretazione di scenari dinamici... [a cura dell'Autore]