Show simple item record

dc.contributor.authorBurbano, Rudy Alexis Guejia
dc.date.accessioned2024-09-30T11:16:16Z
dc.date.available2024-09-30T11:16:16Z
dc.date.issued2022-09-06
dc.identifier.urihttp://elea.unisa.it/xmlui/handle/10556/7443
dc.description2020 - 2021it_IT
dc.description.abstractI sistemi fotovoltaici sono diventati uno dei pi`u promettenti fonti di energia rinnovabile negli ultimi anni. Inevitabilmente, questi sistemi affrontano differenti effetti di degradazione associati con le condizione ambientali e le condizione operative, difetti di fabbricazione, e condizione di mismatch che accelerano la degradazione. Il diagnostico di processi di degradazione `e diventato un’importante argomento per incrementare la affidabilit`a e l’efficienza degli dispositivi fotovoltaici. Questo cerca di massimizzare il performance degli dispositivi solari e contribuire per l’individuazione precoce per migliorare le attivit`a di manutenzione ad evitare perdite di energia e soldi. La contribuzione di questa tesi `e rivolta a proporre strumenti metodologici per realizzare individuazione precoce di effetti di degradazione in dispositivi fotovoltaici. Implementazioni online sono nel faretto perch´e loro portano il beneficio d’evitare modificazioni nella condizione operativa nominale degli dispositivi fotovoltaici. Per raggiungere quest’obbiettivo, questa tesi ha affrontato tre proposte principali per realizzare individuazione precoce di processi di degradazione in dispositivi fotovoltaici. Il primo approccio ha analizzato una selezione di metodologie analitiche oppure espliciti validati in studi precedenti con un buon performance nella modellazione di dispositivi fotovoltaici in buoni condizioni. In questa situazione, l’obbiettivo era testare la capacit`a per individuare effetti di degradazione in panelli fotovoltaici. L’approccio ha concentrato nella estimazione del resistore in serie dovuto a che molti fenomeni di degradazioni che succedono negli panelli fotovoltaici sono riflessi in variazioni del resistore in serie del modello elettrico di diodo singolo. Una comparazione di diversi metodi espliciti per stimare i parametri del modello usando curve tensione-corrente esperimentali di un pannello fotovoltaico operando in condizione normale e degradato `e stata proposta. Questo ha dimostrato che soltanto pochi metodi espongono sufficiente affidabilit`a per estimare di maniera giusta i parametri del modello in presenza di degradazione e bassa sensibilit`a agli fattori ambientali di operazione. Il secondo approccio si ha spostato a metodi di estimazione di parametri pi`u complessi come le tecniche di ottimizzazione. In questo ambito, le rete neurali (ANNs) sono usati per isolare difetti e fenomeni di degradazione succedendo negli panelli fotovoltaici. Nella letteratura `e conosciuto che i valori degli parametri del diodo singolo (SDM) associati col dispositivo fotovoltaico sono fortemente relazionati con effetti di degradazione e le sue variazione sono indicatori di degradazione nel pannello fotovoltaico. D’altra parte, i valori degli parametri che permettono identificare le condizione di degradazione sono sconosciuti a priori. Loro sono diversi da pannello a pannello e fortemente dipendente delle condizione ambientali, il tipo di tecnologia fotovoltaica, ed i processi di fabbricazione. Per questi motivi, per individuare di maniera giusta la presenza di degradazione, gli effetti ambientali ed i processi di fabbricazione devono essere correttamente filtrati. Questo approccio sfrutta la capacit`a intrinseca delle rete neurali perceptron multilayer per mappare due effetti nella sua architettura: 1) la relazione non-lineare che esiste tra i parametri di diodo singolo e le condizione ambientali, 2) gli effetti degli fenomeni di degradazione nella curva tensione-corrente (I-V), e pertanto negli parametri di diodo singolo. La variazione di ogni parametri, calcolate come la differenza tra l’uscita delle due fasi somministra una identificazione diretta del tipo di degradazione succedendo nel pannello fotovoltaico. Il metodo `e stato inizialmente testato usando le curve esperimentale di tensione-corrente fornite per il database del National Renewable Energy Laboratory (NREL) dove gli effetti di degradazione sono stati introdotti artificialmente e poi testati usando pochi curve esperimentali tensione-corrente con effetti di degradazione. [a cura dell'Autore]it_IT
dc.description.abstractPhotovoltaic (PV) systems have become one of the most promising renewable energy sources in the last years. Inevitable, these systems face different degradation effects associated with environmental and operative conditions, manufacturing defects, and mismatch conditions that accelerate the degradation. The diagnosis of degradation processes has become an important topic for increasing the reliability and efficiency of PV devices. It seeks to maximize the performance of solar devices and contribute to early detection processes for enhancing the maintenance planning tasks saving energy and money losses. The contribution of this thesis is aimed to propose methodological tools for carrying out early detection tasks of degradation effects on PV devices. Online implementations are in the spotlight since they bring the benefit of avoiding modifying the nominal operative condition of the PV devices. For achieving that goal, this thesis has addressed three main proposals for carrying out diagnosis of degradation processes on PV devices. The first approach analyzed a selection of analytical or explicit methods validated in previous studies with good performance modeling photovoltaic devices in healthy conditions. In this case, the aim was to test their capability to detect degradation in photovoltaic modules. The study focused on the series resistance estimation since many degradation phenomena occurring in photovoltaic devices are reflected in a variation of the series resistance of the single diode equivalent circuit. A comparison of different explicit methods, used to estimate the model parameters from experimental I-V curves of a photovoltaic module operating in normal as well as degraded states under outdoor conditions, is proposed. It showed that only few methods exhibit enough reliability to estimate correctly the model parameters in presence of degradation and low sensitivity to the environmental operating conditions. The second approach moved on to more complex parameter estimation methods such as optimization techniques. Here, neural networks (ANNs) are used for isolating faults and degradation phenomena occurring in photovoltaic (PV) panels. In literature, it is well known that the values of the single diode model (SDM) associated with the PV source are strongly related to degradation phenomena, and their variation is an indicator of panel degradation. On the other hand, the values of parameters that allow identifying the degraded conditions are unknown a priori. They are different from panel to panel and strongly dependent on environmental conditions, PV technology, and manufacturing process. For these reasons, to correctly detect the presence of degradation, the effect of environmental conditions and manufacturing processes must be properly filtered out. This approach exploits the intrinsic capability of multilayer perceptron (MLP) ANN to map in its architecture two effects: 1) the non-linear relations existing among the SDM parameters and the environmental conditions, 2) the effect of the degradation phenomena on the I-V curves and consequently on the SDM parameters. The variation of each parameter, calculated as the difference between the output of the two ANN stages, gives a direct identification of the type of degradation occurring on the PV panel. The method has been initially tested by using the experimental I-V curves provided by the National Renewable Energy Laboratory (NREL) database where the degradation effects were introduced artificially, and later tested by using some degraded experimental I-V curves. [edited by Author]it_IT
dc.language.isoenit_IT
dc.publisherUniversita degli studi di Salernoit_IT
dc.subjectDegradazioneit_IT
dc.subjectPannelli fotovoltaiciit_IT
dc.subjectDiagnosiit_IT
dc.titleModels and Methods for the identification of degradation processes in photovoltaic panelsit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurING-IND/31 ELETTROTECNICAit_IT
dc.contributor.coordinatoreChiacchio, Pasqualeit_IT
dc.contributor.coordinatoreAuletta, Vincenzoit_IT
dc.description.cicloXXXIV cicloit_IT
dc.contributor.tutorPetrone, Giovanniit_IT
dc.identifier.DipartimentoIngegneria dell’Informazione ed Elettrica e Matematica Applicatait_IT
 Find Full text

Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record