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ABSTRACT 

 

Protein-protein interactions are at the basis of many of the most important molecular 

processes in the cell, which explains the constantly growing interest within the 

scientific community for the structural characterization of protein complexes.1 

However, experimental knowledge of the 3D structure of the great majority of such 

complexes is missing, and this spurred their accurate prediction through molecular 

docking simulations, one of the major challenges in the field of structural 

computational biology and bioinformatics.2,3 

 

My PhD work aims to contribute to the field, by providing novel computational 

instruments and giving useful insight on specific case studies in the field. In 

particular, in the first part of my PhD thesis, I present novel methods I developed: i) 

for analysing and comparing the 3D structure of protein complexes, to immediately 

extract useful information on the interaction based on a contact map visualization 

(COCOMAPS4 web tool, Chapter 2), and ii) for analysing a set of multiple docking 

solutions, to single out the key inter-residue contacts and to distinguish native-like 

solutions from the incorrect ones (CONS-COCOMAPS5 web tool and CONS-RANK 

program, Chapter 3 and 4, respectively). 

In the second part of the thesis, these methods have been applied, in combination with 

classical state-of-art computational biology techniques, to predict and analyse the 

binding mode in real biological systems, related to particular diseases. This part of the 

work has been afforded in collaboration with experimental groups, to take advantage 

of specific biological information on the systems under study. In particular, the 

interaction between proteins involved in the autoimmune response in celiac disease6,7 

(Chapters 5 and 6) has been studied in collaboration with the group directed by Prof. 

Sblattero, University of Piemonte Orientale (Italy) and the group directed by Prof. 

Esposito, University of Salerno (Italy). In addition, recognition properties of the FXa 

enzymatic system8 has been studied through dynamic characterization of a FXa 

pathogenic mutant that causes problems in the blood coagulation cascade (Chapter 7). 

This study has been performed in collaboration with the group directed by Prof. De 

Cristofaro, Catholic University School of Medicine, Rome (Italy) and the group 
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directed by Prof. Peyvandi, Ospedale Maggiore Policlinico and Università degli Studi 

di Milano (Italy). 

 

Finally, during my PhD I spent seven months in the groups of Prof. Charlotte Deane, 

Department of Statistics, University of Oxford (UK). During this period I studied the 

geometrical features of the proteins’ regions most recurrent in the protein-protein 

interaction, the loops, clarifying some structural aspects of them in one of the most 

important and huge class of proteins: the membrane proteins (Appendix 1).  

 

 

 

 

Web tools and programs: 

 

COCOMAPS4 web tool freely available at: 
https://www.molnac.unisa.it/BioTools/cocomaps/ 
 

CONS-COCOMAPS5 web tool freely available at: 
https://www.molnac.unisa.it/BioTools/conscocomaps/ 
 

CONS-RANK program available upon request from the autors.  
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CHAPTER 1 - Protein-protein interactions and molecular 

docking 
 

 

1.1 - Introduction to the protein-protein interaction 
 

Biological complexes: preliminary remarks 

The thousands of proteins expressed in the cells perform many of their functions 

through interactions with other proteins. The protein-protein interactions are intrinsic 

to every cellular process; in fact, protein complexes have been implicated as an 

essential component in the major research topics in biology and medicine, such as 

DNA replication, transcription, translation, splicing, secretion, cell cycle control, 

signal transduction, and intermediary metabolism.1,9 Therefore, the analysis at a 

molecular level of proteins in complexes is a matter of interest for biochemists, but 

also geneticists, cell biologists, developmental biologists, molecular biologists and 

biophysicists.10 

Protein-protein interactions play diverse roles and differ based on the composition, 

affinity, lifetime and nature of the association. In the permanent/obligate complexes 

the interactions are usually very stable and the interacting proteins are not found as 

stable structures on their own in vivo, while in the transient/non-obligate complexes 

there are transient interactions that associate and dissociate in vivo and the interacting 

proteins can also exist in the unbound form. Obligate complexes can be further 

divided into homodimers, i.e. interactions occurring between identical chains, 

heterodimers and multimers.11 It has been observed that different classes of 

association exhibit different physical and chemical properties in their interaction sites 

and different functions.12-14 So, for example, interactions in intracellular signaling are 

expected to be transient, since their function requires a ready association and 

dissociation, while an antigen-antibody interaction is generally permanent. Anyway, it 

is important to note that many protein-protein interactions do not fall into distinct 

types. Rather, a continuum exists between non-obligate and obligate interactions, and 

the stability of all complexes very much depends on the physiological conditions and 

the environment.11  

In the last years, experimental and theoretical work has been devoted to unravel the 
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principles of protein-protein interactions.15-20 

The formation of biological complexes is driven by the free energy of the complex 

(determined by physicochemical and geometrical interface properties) and the 

concentration of the protein components.11 The association of two proteins, in fact, 

relies on an encounter of the interacting surfaces, requiring co-localization in time and 

space. Generally a protein resides in a crowded environment with many potential 

binding partners with different surface properties; therefore, during the evolution the 

surfaces presumably evolve to optimize the interacting efficacy.21 When proteins 

collide, they do not diffuse away immediately (kinetic experimental evidence from 

Northup et al.22 and Wells23); instead, they are held loosely, rolling on one another 

and thereby sampling considerably more surface area than would be the case for a 

single elastic collision; this allows them time to become reorientated and 

repositionated on the surface or to adjust their shape to fit together more tightly 

(Figure 1).24 Recent studies are beginning to describe the dynamic of the assembly 

processes and to show that these non specific collisions producing transient 

‘encounter complexes’ play an important role in macromolecular associaction.25 The 

role of long-range forces in bringing molecules together has been studied from both 

experimental and theoretical viewpoints,26,27 suggesting the electrostatic interactions 

to be predominant.25 

 
Figure 1. Protein-protein interactions 
Equilibrium steps in a possible mechanism for protein–protein association. a) 
Formation of transient encounter complexes by nonspecific collisions, guided mostly 
by electrostatic interactions. b) Many encounter complexes separate rapidly. c) Some 
productive encounter complexes reorientate and come closer to the final, specific 
orientation, guided mostly by desolvation, as water molecules move away from the 
protein surfaces. d) Formation of the specific complex, with final fitting of interacting 
surfaces.24 
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In this scenario, it is extremely valuable to obtain structural information for a 

complete understanding of both the biochemical nature of the process for which the 

components come together, and the facilitated design of compounds that might 

influence it. In particular, the structural characterization of a protein-protein interface 

includes the identification of interatomic hydrogen bonds, of salt bridges, of 

hydrophobic interactions, determination to the interaction surface area and possibly 

the presence of bridging water molecules28,29 The combination of all this information 

about the network of interactions defines the nature of the binding site and makes it 

possible to point out the residue-residue contacts with a key role in the interaction. 

Here below it is reported an example of a protein-protein interface characterization 

for the complex between the hemagglutinin (HA) and its antibody HC45.30 This 

antigen-antibody complex has a fundamental role in one of the most common world 

diseases: the influenza. Hemagglutinin, in fact, is the influenza virus glycoprotein that 

interacts with infectivity-neutralizing antibodies. It has a primary role in influenza 

infection mediating the binding of the virus to its cellular receptor. Over the years, 

amino acids substitution that arise by mutations in the genes for HA lead to escape of 

immune surveillance and recurrent epidemics - this process is called antigenic drift. 

So, the structural study of the complexes between HA and its antibodies is 

fundamental to understand the mechanism of the infection and to ensure the 

development vaccines of variants closely related to the circulating virus. Fleury at 

al.30 reported the structure of the X31 HA-HC45 Fab complex (PDB entry: 1QFU; 

resolution 2.8 Å), describing the atomic characteristics of their interactions (Figure 2). 

Upon complex formation, a surface area of 1.840 Å2 is buried; 36 amino acids 

participate in the intermolecular contacts, and 10 hydrogen bonds are established, 

involving antigen’s residues such as Asp36 and Arg94. The HC45 epitope, i.e. the 

antigen binding site, comprises in total 17 residues. It was also proved that the 

mutation Asp63Asn (Figure 2, right) leads to escape from neutralization by HC45, 

underlining the importance of this residue in the interaction.  
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Figure 2 
The X31 HA–HC45 Fab complex. Left: Ribbon diagram of the complex showing one 
HA monomer (the two domains HA1 and HA2 in blue and res, respectively) and the 
HC45 Fab (in green); the receptor binding site is shown in yellow. Right: Stick view 
of the HC45–HA interface (HA in blue, Fab in green). Of the 17 amino acids in the 
epitope, 12 are in the four polypeptide stretches of the HA1 chain (residues 59–63, 
78–79, 90–94 and 271–273) and are represented here. HA residues substituted in 
mutants with decreased affinity for the HC45 antibody (Asp63 and Arg94) are 
highlighted in cyan; their nitrogen and oxygen atoms are colored in cyan and red, 
respectively. Hydrogen bonds involving atoms of these HA residues are shown as 
dotted lines.30 
 

Structure of protein complexes 

As shown in the example, the structural characterization of biological complexes has 

a supreme significance in the study of the system and in all the possible 

pharmaceutical and medicinal applications,31 and although experimental methods for 

protein-structure determination have improved over the past decade, the number of 

structures for protein complex determined is still very little. Protein structures have 

been mainly achieved by two methods so far: X-ray crystallography and nuclear 

magnetic resonance (NMR). X-ray and NMR encounter difficulties to prepare 

complexes suitable for structural studies: by X-ray, the dynamics of the complex 

formation makes the crystallization difficult, while complexes of high molecular 

weight are difficult to deal with NMR.18,32,33  

Due to the greater difficulty in obtaining suitable protein-protein complexes for the 

experimental determination, there is relatively little structural information available 
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about them compared to the proteins that exist as single chains or form permanent 

oligomers.33 Hence, experimental studies are faced with outstanding technical 

difficulties and the number of solved complexes deposited in the Protein Data Bank34 

(PDB: www.rcsb.org/pdb) is still orders of magnitude smaller than structures of 

individual proteins, as show in Figure 3.18,31 

 

 
Figure 3 
Number of X-ray structures of protein-protein complexes (in green) and single chain 
proteins (in blues) deposited in the wwPDB34 within October 2011. 
 

Despite this disproportion, the growing number of available experimental structures 

for protein-protein complexes in the years has allowed a statistical study of the 

properties and the chemical-physical forces that regulate protein-protein interactions 

(hydrophobicity, hydrogen bonding, electrostatic interactions, van der Waals 

interactions, and so on), that are useful information in the development of 

computational strategies helping in the structural prediction and characterization.35 In 

fact, notwithstanding the practical difficulties, for a better understanding of the 

biological function of a protein, knowledge of its three-dimensional structure is 

fundamental. Therefore, it would be quite rewarding to have efficient and reliable 

computational algorithms available to predict correctly conformations of protein 

complexes based on the structures of the free molecules. Indeed, in the past two 

decades there was an emergence of a large variety of theoretical algorithms designed 

to predict the structures of protein-protein and protein-ligand complexes: a procedure 
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named molecular docking.36 

Interest in protein docking is growing within the scientific community, and many 

interdisciplinary approaches are being applied to model, predict, and understand 

protein-protein interactions, one of the major challenge in the field of structural 

bioinformatics. 37 

 

 

1.2 - Approaches to the docking problem 
The docking technique has the task of assembling two separate protein components 

(as the ones seen in Figure 4a and Figure 4b) into their biologically relevant complex 

structure (Figure 4c), giving a model of the way the two proteins bind each other.38,39 

Computational docking, if accurate and reliable, can therefore play an important role, 

both to infer functional properties and to guide new experiments. So, due to its 

potential applications in generating models of molecular complexes, it has attracted a 

vast deal of attention.40  

 

 
  

Figure 4. Schematic representation of the protein-protein docking technique 
X-ray structure of (a) FAB Hyhel63 antibody (PDBID: 1DQQ), (b) HEW lysozyme 
(PDBID: 3LZT) and (c) the biological complex formed between the two (PDBID: 
1DQJ). 
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The docking in general, and the protein-protein docking in particular, is not a simple 

problem. The objective of it is to predict the three-dimensional arrangement of a 

protein-protein complex from the coordinates of its component molecules, hopefully 

pointing out most of the residue-residue contacts involved in the interaction.41-47 

There are no general rules to predict a binding interface. Basically, all docking 

approaches assume that the native complex is near the global minimum of the energy 

landscape. In fact, based on thermodynamic hypothesis, at fixed temperature and 

pressure the Gibbs free energy of the macromolecule-solvent system reaches its 

global minimum at the native state of the complex.48 It has been established over the 

last two decades that the energy landscape of a foldable protein resembles a many-

dimensional funnel with a free energy gradient toward the native structure (Figure 

5).21,49,50 A number of studies suggest that the landscape theory also applies to 

protein-protein association.51-54 This theory states that the assembly of two proteins is 

initiated by the formation of nonspecific encounter complexes,24 followed by 

rearrangements of them driven by stronger and more specific interactions. Taking into 

account that it is the structural features that determine if two proteins interact,55 then 

such hypothesis implies that not only the ‘final’ binding but also other parts of the 

surface contain information for interacting with the partner. The size of the funnel 

will be determined by the length scales of the long-range electrostatic and 

hydrophobic interactions and the geometry of the proteins, and hence the funnel is 

restricted to a neighborhood of the native complex.56 There is a free energy gradient 

toward the native state, but the funnel is rough, giving rise to many local minima.21,57  

 
Figure 5. Protein-protein complex energy landscape 
The many-dimensional funnel representing the energy landscape of a protein-protein 
complex. With “N” the native conformation is indicated.  
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Therefore, all the current docking methods are based on the optimization of a function 

approximating the free energy of the complex. 

In all the docking algorithms, there are two crucial steps to generate possible models 

of the three-dimensional arrangement of a complex:  

 

1. Searching (low-resolution search), consisting in the generation of thousands 

of alternative poses (decoys) to sample the rotational/translational space; 

 

2. scoring and ranking (high-resolution refinement), consisting in scoring these 

poses using a ‘pseudo-energy’ function in order to rank the poses and so to 

identify the native-like solutions. 

 

A simple docking algorithm may fail predicting the native complex. Anyway, a recent 

work58 shows that the docking technique is able to distinguish between binding and 

non-binding partners, based on their score distributions. This may indicate that 

although protein surface morphology is not enough to find the native interface, it at 

least contains sufficient information to identify a ‘bona fide’ interactor.58 

Anyway, it has been shown in CAPRI that, whereas approximately correct solutions 

are generated by the first step of the docking, scoring functions unfortunately often 

fail to correctly rank them.58,59 

 

Step 1: sampling the conformational space 

The searching step involves an exhaustive search of the conformational space of one 

protein with respect to the other, resulting in a six-dimensional search (6D). The 

search of through the entire conformational space of the complex geometry makes the 

calculation expensive, so it is necessary to simplify the system preserving the 

geometrical and physicochemical properties of the atoms, using mathematical models, 

such as geometrical shape descriptors or a grid.42 Once having the easier 

representation of the system, almost all the docking programs use the same approach 

for the searching step: one protein is fixed in space (usually the bigger one) and the 

second one is rotated and translated around the first one. To minimize the degrees of 

freedom, both molecules are treated as rigid bodies, but still a simple systematic 

search is usually impracticable because the searching algorithm entails evaluating in 

the order of billions (109) distinct possibilities.60 
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Although geometric complementarity of the protein surface is the filtering criterion 

most commonly used to eliminate a large number of solutions with poor surface 

matching,47 the docking problem is not simply matching two irregular shapes, but 

there are also other geometric, electrostatic or hydrophobic factors to take into 

account.61  

So, there are a lots of possible search methods that have been used in protein-protein 

docking programs. Most methods that perform well in CAPRI are based only on three 

approaches. Some programs use grid-based spatial searches that are sped up with a 

Fast Fourier Transform (FFT), a method first applied in 1992 by Katchalski-Katzir 

and co-workers.62 The other approaches for docking searches include instead Monte 

Carlo based searching63,64 and geometric hashing.65 

 

Step2: scoring and ranking docking decoys 

The initial stage, which treats proteins as rigid bodies and generates many prediction 

(10.000 or more), is followed by the refinement stage, which performs any 

combination of detailed scoring, energy minimization, side chain optimization to the 

aim of valuate the energies of protein-protein docking poses in order to identify the 

one with the lowest energy as the predicted binding mode.47  

A fundamental point of any docking method is to be computationally efficient, having 

a scoring scheme able to evaluate a huge number of solutions and discriminate the 

native-like binding modes from the wrong decoy complex structures in a reasonable 

computational time.42  

The free energy of binding, ΔGbinding, is not easily accessible but other and faster 

scoring functions that model ΔGbinding as accurately as possible, i.e. provide good 

correlations with experimental binding affinities, can be used.60 Considering the 

energy function as a funnel-like function, as described above, the original free energy 

function is extremely rugged with huge number of local minima even in a small 

region of conformational space. Yet its approximated scoring function is much 

smoother and still capture the overall funnel-like landscape, which provides an easier 

free energy minimization (see Figure 6).66 Further, according to the general idea of 

the funnel-shaped binding energy, there are an ensemble of encounter complexes 

from which the binding process initiates and precedes, that follow different pathways 

to converge in native state defined by the global minimum. So, there are many 
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possible routes for downhill in the binding funnel, and these are determined by 

transient interactions in the encounter complexes, which carry a track of the native 

interactions.24 

 
Figure 6 
The schematic representation of a funnel-like function (dark line) and an 
approximated scoring function (dotted line), still catching some of the local minima 
(indicated as small squares). 
 

Whether this ensemble of orientations reflects the true binding-energy landscape will 

depend on the accuracy of the energy description and the efficiency of the sampling 

method. Most of the docking algorithms developed so far use the extent of geometric 

complementarity of the protein surfaces because it is a fast filter to eliminate a large 

number of solutions with poor surface matching. It is, however, usually recognized 

that a criterion based exclusively on geometric complementarity is far from being 

enough to distinguish among native and non-native docked geometries, except for a 

very a small number of cases.67 Numerous criteria have been implemented with 

different levels of success: steric complementarity of the shapes of the interaction 

sites, electrostatic interactions, hydrogen bonding, van der Waals, pair potential, 

desolvation, rotamer probabilities, contact pair potential and knowledge-based 

potentials. Different docking programs can use different combinations of these terms 

in a weighted sum. Furthermore, exclusion of the solvent from the interface and the 

associated solvent entropy change play an important role in the stabilization of protein 

interactions, and can be estimated from empirical potentials or database derived 

functions.18,68  

 

Finally, the scoring part is generally followed by a final post-processing stage, in 

which a large number of low energy conformations (usually 2000 to 20000) are 
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retained and ranked. A common way to rank the retained decoys is clustering them 

using pairwise root mean square deviation (RMSD, a number that quantifies the 

structural diversity between two structures) as the distance measure, and then ranks 

the clusters according to their size, i.e., identifying conformations that have large 

numbers of neighbors.56,57 The method is based on the observation that, in the free 

energy landscapes of partially solvated receptor-ligand complexes, the free energy 

attractor at the binding site generally has the greatest breadth among all local 

minima.69 Hence, following the uniform sampling of the conformational space 

defined by translations and rotations of the ligand, the docked conformations that are 

below an energy threshold are expected to form the largest cluster around the native 

complex. 

 

Biological information 

Although important progresses, protein-protein docking remains a quite difficult 

procedure, due to the complex nature of the problem it tries to solve. One of the most 

useful approach to improve the quality of the docking simulations is the use of 

biological information about the complex interface to confine the search of allowed 

configurations or filter out wrong solutions.42,70 Biological information available from 

experiments or from computational methods on the regions or residues likely involved 

in the interaction are one of the key points for the improvement of a docking 

simulation. Almost all the docking programs have a section in which it is possible to 

exclude regions not involved in the interaction, or driving the docking towards the 

ones involved (for example, the software HADDOCK32 dedicate a section to express 

the NMR data such as chemical shift perturbation and residual dipolar couplings in 

terms of ambiguous interactions restrains). If experimental data are not available for 

the protein-protein system that is simulated, it is also very helpful to carry out 

structural comparisons of the same protein family.42,70 Fox example, the binding 

crevice centered on the catalytic triad of serine proteases (His, Asp, Ser)71,72 (see 

Chapter 7), as well as the complementarity defining regions of immunoglobulins 

(CDRs), which are part of the biological surface involved in the interaction with 

protein interactors (see Chapter 5 and Chapter 6), are both well characterized; 

although in general, a protease-inihibitor interface is more static and consequently 

more easily predicted than an antibody-antigen interface.73 
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1.3 - The CAPRI experiment: what is the state of protein-protein 

docking 
As described above, protein-protein docking procedure is a very helpful method to 

model biological complexes and to guide biochemical experiments. A general 

docking algorithm can be briefly described as an initial searching step yields a long 

list of candidate structures; the following step requires some forms of post-processing, 

which may include: i) scoring or re-scoring of the docked conformations using a more 

accurate energy function, or ii) refining the conformations followed by re-scoring.74 

These treatments usually improve the number of near-native conformations among 

the 10 to 100 lowest energy structures, but in most cases are unable to eliminate all 

false positives (steps showed in Figure 7). 

 

 
Figure 7 
The stages of protein-protein docking.  
 

A variety of approaches have been used in docking programs that mostly differ in the 

stages of the algorithms, showing different performances depending on the approach 

and the nature of the biological system. In this scenario, the comparison of different 
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docking programs to establish their relative performances is very important. Indeed, it 

is required an objective valuation of the model quality. To this aim, the international 

Critical Assessment of Prediction of Interactions (CAPRI) experiment was designed, 

precisely to evaluate current computational approaches of protein–protein docking.75 

The CAPRI is a community-wide experiment designed according to the model of the 

Critical Assessment of Techniques for Protein Structure Prediction (CASP).76 It was 

designed in June 2001 at the Conference on Modeling Protein Interactions in 

Genomes organized in Charleston, SC, by Ilya Vakser (Medical University of South 

Carolina) and Sandor Vajda (Boston University). CAPRI targets are protein–protein 

complexes and it is data-driven, meaning that it can start whenever an experimentalist 

offers an adequate target and ends 6–8 weeks later with the submission of predicted 

structures.76-78 Computational researchers are given the three-dimensional coordinates 

of the unbound structures for a given target before the experimental structure of the 

complex is published. The researchers are then given a few weeks to dock the two 

structures together, possibly using biological information and literature searches. 

Therefore, CAPRI challenge provides the docking community with a unique blind 

setting of simultaneously assessing of all docking algorithms, and has led to 

significant advances in the field.79,80 

 

From the analysis of CAPRI results, it can be noted that there are some docking 

programs that give globally better predictions, such as ICM,81 ZDOCK,79 

HADDOCK,32 RosettaDock,64,82 ClusPro56 and Camacho group’s Smooth-Dock.75 

Furthermore, in Figure 8, the number of citations per year of the most common 

docking programs joining to CAPRI is plotted (references took from ISI Web). From 

the plot it is possible to observe that only after 2003 there was an increase of the 

number of citations of the protein–protein docking software. Since their publication 

the most cited programs are HADDOCK,32 RosettaDock,64 three-dimensional-Dock,83 

BIGGER,67 and Dot.53 It is possible to observe an increase of the number of citations 

per year of the Patch-Dock,44,45 ClusPro,56 HADDOCK,32 RosettaDock64 and 

ZDOCK.79 When considering only papers that apply the different software to specific 

biological problems (represented in Figure 8b) HADDOCK results to be the most 

popular one, followed by ClusPro, PatchDock and RosettaDock. 
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Figure 8 
Number of citations per year of the docking programs described earlier. Data taken 
from ISI Web of Science (February of 2007).; only the articles with experimental 
predictions were considered. 
 

Four of the most common docking programs are RosettaDock,64 ZDOCK,79 

HADDOCK32 and ClusPro.56 The advantage of RosettaDock compared with the other 

three programs is the close correspondence of the lowest free energy structures with 

the X-ray complex, the disadvantage is that using a Monte Carlo technique in the 

searching step and a detailed energy function, it is quite slower than the others. 

Instead, ZDOCK is a FFT based algorithm, so it is faster but it does not perform well 

in the cases of complexes with large conformational change. HADDOCK seems 

combine the rapidity with the fact that the both side chains and backbone are allowed 

to move, and this increase the accuracy of the scoring if compared with classical rigid 

body docking programs. The big disadvantage in HADDOCK is that it is data-driven, 

so its performance closly depends on the availability and the level of confidence of 

experimental information. Compared with the other programs, ClusPro has the 

advantage to be a fully automated algorithm that rapidly docks, filters and ranks 

potential models within a short amount of time, using only the structures of the 

component proteins, and eventually adding experimental data if available.  

A more detailed description of these methods is reported in the Appendix 2.  
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1.4 - The PhD project 
My PhD work has been focused on the study of protein-protein interactions, taking 

advantage of computational techniques. The study has been devoted to two main 

aspects: i) the development of new methods to analyse and rank docking solutions 

(Chapters 2,3,4), and ii) the application of these methods, in combination with 

classical state-of-art computational biology simulations, to predict and analyse the 

binding mode in real biological systems, which are related to particular diseases 

(Chapters 5,6,7). As availability of biological information is guarantee of a better 

success rate in the docking simulations, we afforded the latter part of the work in 

collaboration with experimental groups. In particular, interaction between proteins 

involved in the autoimmune response in celiac disease has been studied in 

collaboration with the group directed by Prof. Daniele Sblattero, University of 

Piemonte Orientale (Italy) and the group directed by Prof. Carla Esposito, University 

of Salerno (Italy). In addition, recognition properties of the FXa enzymatic system has 

been studied through dynamic characterization of a FXa pathogenic mutant that 

causes problem in the process of blood coagulation. This study has been performed in 

collaboration with the group directed by Prof. Raimondo De Cristofaro, Catholic 

University School of Medicine, Rome (Italy) and the group directed by Prof. Flora 

Peyvandi, Ospedale Maggiore Policlinico and Università degli Studi di Milano (Italy). 

 

Finally, during my PhD I spent seven months in the groups of the Prof. Charlotte 

Deane, Department of Statistics, University of Oxford (UK). In that period, I studied 

the geometrical features of the proteins’ regions most recurrent in the protein-protein 

interaction, the loops, clarifying some structural aspects of them in one of the most 

important and huge class of proteins: the membrane proteins (Appendix 1).  
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CHAPTER 2 - COCOMAPS: a web tool for analyzing, 

visualizing and comparing the interface in protein-protein 

and protein-nucleic acid complexes 
 

 

2.1 - Introduction 
Interaction between biomolecules is at the basis of many of the most important 

molecular processes in the cell. As described in Chapter 1, protein-protein interactions 

underlie for instance signaling, regulation, immunogenic recognition, whereas 

protein-nucleic acid interactions under- lie processes such as DNA transcription, 

repair, replication, as well as post-transcriptional events, including RNA splicing and 

editing. 

Availability of a 3D structure for a complex allows detailed analysis of the interaction 

at atomic level between the molecular partners, which is a fundamental step for 

possible biomedical and biotechnological applications. Moreover, the recent 

development of well performing docking software (see Chapter 1 and Appendix 2) to 

predict the 3D structure of macromolecular complexes requires, in the analysis step, 

the accurate and tedious screening of all the best solutions. It is indeed well accepted 

that the correct solution, if any, can be found within the 10-20 best ranked ones (e.g. 

the CAPRI assessment accepts 10 different models per target from each predictor). 

It is therefore of timely interest, both for bioinformaticians and wet biologists, to have 

programs and tools able to automatically analyse features of a complex interface, and 

to easily and intuitively discriminate between similar and different binding solutions 

Several valuable web tools have been made available for the analysis of the interface 

in biomolecular complexes.84-92 However, no available web tool has been 

implemented to provide interactive contact maps from the 3D structure of a 

biomolecular complex. 

Introduced to provide a reduced representation of a protein structure, contact maps 

have been successfully exploited for describing similarity between protein structures. 

Analogously, an intermolecular contact map between two or more interacting 

molecules could identify uniquely and intuitively the surface of interaction, 

representing a sort of fingerprint of the complex and reporting the crucial information 
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in a ready-to-read form. Interesting work has in fact been done to demonstrate the 

advantages of using contact map representations for the alignment of protein-protein 

interfaces.93,94 

For this reason, during my PhD study my groups and I have implemented 

COCOMAPS (bioCOmplex Contact MAPS).4 It is a novel web tool to easily and 

effectively analyse and visualize the interface in biological complexes, such as 

protein-protein, protein-DNA and protein-RNA complexes, by making use of 

intermolecular contact maps.  

 

 

2.2 - Methods 
All the programs under COCOMAPS have been written in python, taking advantage 

of python libraries such as SciPy and Matplotlid. We made it available at the URL: 

http://www.molnac.unisa.it/BioTools/cocomaps. 

 

 

2.3 - Results and Discussion 
Description of the tool 

The tool takes in input the PDB type file of the complex, that contains the Cartesian 

coordinates of the complex. Usually, the two interacting parts of the complex are 

distinguished by different names of the chains, indicate by a single letter. In fact, a 

user-friendly interface of the tool allows to download input files directly from the data 

bank wwPDB95 (for the experimental structures) or to upload locally stored PDB 

formatted files. The user is requested to specify the chain identifiers for the molecules 

involved in the interaction to be analyzed. More chains can be selected for each 

interacting partner, which overcomes a limitation of the other available tools that 

either work on all the chains present in a PDB file, or on one pair of them at a time. 

Therefore, COCOMAPS can be used to analyze the interface between two molecules, 

between one molecule and an ensemble (made by two or more molecular chains) or 

between two ensemble, depending on how many chains are specified.  

COCOMAPS outputs are displayed on the results HTML page for one month and 

archived as downloadable compressed files. A link to the online resource is also 

emailed to the user, if requested.  
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COCOMAPS provides three graphical contact maps defining the interface of the 

complex: 

 

1. Black and white contact map; 

2. Distange range contact map; 

3. Properties contact map. 

 

 The first one is a classical intermolecular contact map (Figure 9, a) where a black dot 

is present at the crossover of residues i and j, belonging to molecule/assembly 1 and 

molecule/assembly 2, respectively, if any pair of atoms belonging to the two residues 

is closer than a cut-off distance chosen by the user (default value being 8 Å). The 

second map (Figure 9, b), named “distance range contact map”, reports in different 

colors inter-residues contacts at increasing distances. Red, yellow, green and blue 

indicate contacts within 7 Å, 10 Å, 13 Å and 16 Å, respectively. The third contact 

map (Figure 9, c), named “properties contact map”, is similar to the first one, but 

each contact is colored according to the physico-chemical nature of the two 

interacting residues: hydrophobic-hydrophobic in green, hydrophilic-hydrophilic in 

violet and hydrophobic-hydrophilic in yellow. 

By mousing over the maps, it is possible to visualize the identity of the residues pairs 

corresponding to the dots. 
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Figure 9.  
A sample of COCOMAPS contact maps for the complex Ibalizumab antibody 
(chains L and H) with the CD4 antigen (chain A), PDBcode: 3O2D. a) Black and 
white contact map; b) Distance range contact map; c) Properties contact map. 
 

Our tool also provided detailed information, organized in table (Figure 10, a and b), 

about: 

 

1) interacting residues, defined on the basis of a cut-off distance that can be 

customized by the user; 

2)  residues at the interface, defined on the basis of the buried surface upon 

complex formation; 

3) intermolecular H-bonds, with specification of the acceptor and donor atoms.  

 

A 3D visualization of the complex in JMol (http://www.jmol.org) (Figure 10, c) is 

also provided online, with the interacting residues highlighted. Finally, a ready-to-run 

Pymol96 script, which generates a visualization of the interface in the corresponding 

3D-structure, is downloadable. Accessible surfaces and H-bonds are calculated by 

NACCESS97 and HBPLUS,98 respectively. 
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All the programs under the COCOMAPS web tool have been written in python, 

taking advantage of python libraries such as SciPy and Matplotlib. 

 

 
Figure 10.  
Sample COCOMAPS outputs for the complex Ibalizumab antibody (chains L and H) 
with the CD4 antigen (chain A), PDBcode: 3O2D. a) First part of the table of 
interacting residues, defined on the basis of the cut-off distance; b) Overview table of 
the interaction properties ; c) 3D visualization of the complex in Jmol 
 

 

The example 

Although COCOMAPS provides a complete characterization of the interfaces in 

biological complexes, the real novelty that we have introduced is the generation of 

intermolecular contact maps. Contact maps give an immediate view of which regions 

of the two partners are in contact.  From the properties map, it is also possible to 

immediately appreciate the physico-chemical nature of the interaction.  

As an example, in Figure 11 properties contact maps are reported for the biological 

complexes of the antigen hen egg lysozyme (HEL) with two different antibodies, 

namely D1.3 (PDBcode: 1VFB)99 and F10.6.6 (PDBcode: 1P2C)100, together with the 

corresponding Pymol 3D representation of the complexes, as generated by 

COCOMAPS.  

The 2D contact-maps of the HEL-antibody complexes reported in Figure 11 show in a 

glance that the two binding solutions are completely alternative, and the 
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corresponding epitopes present no overlap. In addition, contact maps specify which 

regions of the antibodies and of the antigen are in contact.  

As expected, both the antibodies contact HEL with their six hypervariable loops (L1, 

L2, L3, H1, H2 and H3, also labeled in the figure, for the sake of clarity). As for the 

HEL antigen, it contacts the D1.3 antibody with about 30 N- and 30 C-terminal 

residues and the F10.6.6 antibody with its central region (residues 40-85). The same 

information could of course be extracted either from lists of interacting residues or 

from the 3D view of the complexes (such as that in Figure 11). However, differently 

from the contact-map view, which is immediate, in both of the above cases, manual 

intervention by the user would be required to extract the needed information. Further, 

the contact maps in Figure 11 immediately indicate that the H3 loop of the D1.3 

antibody is more involved in the interaction with HEL than the F10.6.6 H3 loop, and 

that it mostly gives hydrophilic-hydrophilic contacts (magenta dots). This is a 

consequence of the D1.3 H3 loop amino-acids sequence, (one code amino-acids 

sequence: ERDYRLDY), which is longer than the F10.6.6 one (one code amino-acids 

sequence: GDGFYVY), and much more hydrophilic, presenting five charged 

residues. 
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Figure 11.  
Comparison of the complexes of HEL with two different antibodies: D1.3 (PDBcode: 
1VFB) and F10.6.6 (PDBcode: 1P2C). Left: COCOMAPS “properties contact maps”. 
Labels have been added for the antibody hypervariable loops L1-L3 and H1-H3. 
Magenta, green and yellow dots indicate hydrophilic-hydrophilic, hydrophobic-
hydrophobic and hydrophobic-hydrophilic contacts, respectively. The cut-off distance 
is set to 10 Ǻ. Right: A Pymol visualization of the complexes based on the automatic 
COCOMAPS script .pml; residues at the interface are shown as "sticks". 
 

 

2.4 - Conclusion 
In conclusion, this first study has been focused on the development of a tools able to 

automatically analyze, visualize and compare the interfaces both in experimental and 

predicted 3D structures of protein-protein and protein-nucleic acids complexes. 

COCOMAPS combines in a single tool the traditional analysis and 3D visualization 

of interfaces in biocomplexes with the effectiveness of the contact map view. It can 

straightforwardly be applied to the analysis of interfaces both in experimental and 

predicted 3D structures of biological complexes.  
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CHAPTER 3 - CONS-COCOMAPS: a novel web tool to 

measure and visualize the conservation of inter-residue 

contact in multiple docking solutions 
 

 

3.1 - Introduction 
As described in Chapter 1, most important molecular processes in the cell rely on the 

interaction between biomolecules. Understanding the molecular basis of the 

recognition in a functional biological complex is thus a fundamental step for possible 

biomedical and biotechnological applications. However, the 3D structure of a 

significant fraction of biomolecular complexes is difficult to solve experimentally. In 

this scenario, the development of accurate protein-protein docking programs is 

making this kind of simulations an effective tool to predict the 3D structure and the 

surface of interaction between the molecular partners in macromolecular 

complexes.101 Unfortunately, correctly scoring the obtained solutions to extract 

native-like ones is still an open problem 95,102, which is recently also object of 

assessment in CAPRI (Critical Assessment of PRedicted Interactions), a community-

wide blind docking experiment 59. As a consequence, the confidence to have a near-

native solution among the ten best ranked ones is still an unreached task 102. This 

requires the accurate and tedious screening of many docking models in the analysis 

step.  

Typically, as described in Chapter 1 and Appendix 2, the first step of a docking 

simulation generates a large number, around 105-106, of 3D models (decoys). Such 

decoys are then clusterized on the basis of RMSD values, usually calculated on the 

atoms of the smaller molecular partner (or “ligand”) 56,64,103. The different solutions 

are ranked according to the cluster population: the most populated the cluster, the 

higher the rank. However, RMSD has two major limitations: i) its statistical 

significance is length dependent and ii) it is a global metric, that may not be able to 

characterize local similarities. As a consequence, solutions belonging to different 

RMSD-based clusters may share a notable number of intermolecular contacts, 

pointing essentially to the same interface. Therefore, as already reported 50,102,104,105, 

RMSD cannot be the only descriptor for the similarity of multiple docking solutions. 
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Indeed, in the CAPRI experiment the correctness of a prediction, i.e. its similarity to 

the native structure, is assessed not only by means of RMSD based criteria, but also 

from the conservation of ligand-receptor contacts, as compared to the native structure 
50. Alternative scores have also been proposed to evaluate the correctness of a docking 

prediction, based on the geometric distance between the interfaces, and the residue-

residue contact similarity 104.  

However, the normal case in real-life research is having many different docking 

solutions to analyse and obviously no native structure to compare them to. Therefore, 

it would be of great utility both for bioinformaticians and wet biologists to have 

programs and tools to easily and effectively analyse and compare multiple docking 

solutions, based on criteria other than ‘simple’ RMSD. Most of all, it would be useful 

to visualize the consensus of multiple docking solutions, in order to appreciate at a 

glance which is the conservation rate of the predicted interface and which are the 

residues most often predicted as interacting.  

As a matter of fact, if different docking solutions, especially from a series of well 

recognized programs, point to the same interacting regions, it is likely that the 

prediction can be better trusted. Consequently, it will be reasonable to focus attention, 

as for instance in site-directed mutagenesis experiments, on the residues most 

frequently predicted to be involved in the interaction. The concept of “consensus” has 

indeed been widely demonstrated to improve the performance of bioinformatics tools 

in many fields, including the prediction of protein and RNA secondary structure 106-

112, of membrane protein topology 113, of protein retention in bacterial membrane 114, 

of docking small ligands to proteins 115,116, etc. Recently, consensus interface 

prediction has also been used to improve the performance of macromolecular docking 

simulations 117-119.  

However, although many valuable tools have been made available to analyse the 

interface in biomolecular complexes 4,84-88,90-92, no tool has been developed to the aim 

of measuring and visualizing the consensus of multiple docking solutions. In Chapter 

2 there is the description of COCOMAPS (bioCOmplexes COntact MAPS, available 

at the URL 90), a comprehensive tool that my group and I developed to analyse and 

visualize the interface in biological complexes, by making use of intermolecular 

contact maps 4. We have shown that intermolecular contact maps can be very 

effective in providing an immediate 2D-view of the interaction, allowing to easily 
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discriminate between similar and different binding solutions. They represent a sort of 

fingerprint of the complex, providing the crucial information in a ready-to-read form. 

Then, we used intermolecular contact maps to develop the second novel tool, CONS-

COCOMAPS (CONSensus-COCOMAPS), to measure and visualize the conservation 

of inter-residue contacts in multiple docking solutions. CONS-COCOMAPS provides 

both numerical values of the contacts conservation and a graphical representation in 

the form of a “consensus map”. To show its performance, here we applied CONS-

COCOMAPS to the analysis and visualization of a few test cases taken from recent 

CAPRI rounds.  

 

 

3.2 - Methods 
Given an ensemble of N models of the same biomolecular complex, the pairwise 

contacts conservation score, 
ij
pairC , between models i and j is calculated as in Eq. 1. 
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where nci and ncj are the total number of inter-residue contacts in models i and j, 

respectively, and ncij is the total number of inter-residue contacts common to models i 

and j. Following this definition, the average pairwise contacts conservation score 

av
pairC  simply is the value of 

ij
pairC  averaged over all the possible pairs of models in 

the considered ensemble, see Eq. 2. 
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However, Eq 1. can be generalized to a conservation score defined over all the N 

models in the considered ensemble, as in Eq.3. 
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where nc100 is the total number of inter-residue contacts common to all (100%) the 

models in the ensemble. The contacts conservation score of Eq. 3 can be extended to 

measure any amount of inter-residue contacts common to a given percentage of 

analysed models. For instance, C70 is calculated as in Eq. 4, where nc70 is the total 

number of inter-residue contacts conserved in 70 % of the analysed models. 
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 (4). 

 

The total number of inter-residue contacts in an ensemble of N models, Nt, is 

calculated as in Eq. 5. 

 

∑=
N

i
incNt . (5) 

 

Finally, on a residue level we define the conservation rate, CRkl, of Eq. 6, where nckl 

is the total number of models where residues k and l are in contact. 

 

N
ncCR kl

kl = . (6) 

 

Within this work, two residues are defined in contact if any pair of atoms belonging to 

the two residues is closer than a cut-off distance of 5 Å, which is the threshold 

distance adopted in the assessment of CAPRI predictions to define native residue-

residue contacts 50. Conservation rates can be plotted in the form of consensus contact 

maps, which are depicted in a grey scale. The highest conservation corresponds to a 
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black dot, absence of conservation corresponds to white, and contacts at increasing 

conservation appear in darker grey.  

All the programs under CONS-COCOMAPS have been written in python, taking 

advantage of python libraries such as SciPy and Matplotlib. It is freely available as a 

web tool at the URL 92). 

3.3. CAPRI models 
The docking models for recent CAPRI targets were downloaded from the official web 

site (at the URL 88). We selected seven recent protein-protein targets (T24-T26, T28-

T29, T32, T36) for which the docking models were made available to the public. Four 

of them, T25, T26, T29 and T32, have at least one medium quality prediction and are 

more extensively discussed in the text. A total of 2130 CAPRI models have been 

analysed, 300 for target T24, round 9, 300 for target 25, round 9, 310 for target 26, 

round 10, 320 for target 28, round 12, 350 for target 29, round 13, 350 for target 32, 

round 15, and 200 for target 36, round 15 (see Table 1). Note that targets T24 and T25 

refer to the same native complex. The quality score (Q-score) for each Predictor was 

calculated by summing 0, 1, 2 and 3 for each incorrect, acceptable, medium quality 

and high quality solution, respectively, as assessed in CAPRI 59. Predictors which 

submitted less than the ten allowed models and those who submitted models with a 

ligand and/or receptor sequence not corresponding to the target were excluded from 

the analysis. L_rmsd is the pair-wise RMSD calculated on all the heavy atoms of the 

ligand after a LSQ RMS fit of the receptor invariant residues backbone, as in the 

CAPRI assessment 50.  

Target 
CAPRI 

Round 
Incorrect Acceptable 

Medium 

quality 

High 

quality 
All 

T24 R 09 296 4 0 0 300 

T25 R 09 268 19 12 1 300 

T26 R 10 276 19 15 0 310 

T28 R 12 320 0 0 0 320 

T29 R 13 333 8 9 0 350 

T32 R 15 316 6 13 15 350 

T36 R 15 199 1 0 0 200 

 

Table 1. Analysed models 
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3.4 - Results and Discussion  
Given a number of multiple docking solutions, we calculated the conservation score 

of the inter-residue contacts at different percentages, from 0 to 100%. For instance, 

C70 gives the amount of inter-residue contacts which are conserved in 70% of the 

compared models. When only two models are compared, the pair-wise conservation 

score, 
ij
pairC , is calculated. CONS-COCOMAPS then plots the inter-residue contacts 

conservation to an intermolecular contact map, that we call “consensus map”.  

The conservation of inter-residue contacts has been here measured and visualized 

with CONS-COCOMAPS for a total of 2130 models submitted to CAPRI for seven 

different targets: T24, T25, T26, T28, T29, T32 and T36 (see Table 1). The 

percentage of correct solutions among those submitted is 10-11% for T25, T26 and 

T32 and 5% for T29. For the remaining targets, T24, T28 and T36, it is instead much 

lower: 1% and 0% and 0.5%, respectively (see Table 1). 

 

 Inter-residue conservation versus L_rmsd 

The pair-wise conservation score, 
ij
pairC , between all the models within each of the 

CAPRI targets T25, T26, T29 and T32 have been plotted versus the corresponding 

L_rmsd values in Figure 12. As expected, 
ij
pairC  rapidly decreases as the L_rmsd 

increases, with 
ij
pairC  approaching to zero at L_rmsd higher than 30-40 Å. The 

ij
pairC  

distribution is significantly spread out, even at 
ij
pairC  values around 0.5 (which means 

that one out of two contacts at the interface is conserved in the two considered 

models), and several outliers are indeed observed that contemporarily show either low 

ij
pairC  and low L_rmsd values or high 

ij
pairC  and high L_rmsd values. As an 

example, the 3D representation of the models M03 and M07 submitted by the P86 

predictor for T26, responsible for the point outlined by the arrows, is shown in the 

same Figure. The L_rmsd for their superimposition is as high as 19.6 Å, 

notwithstanding a pair-wise conservation score 
ij
pairC  of 0.47 is calculated. This is 

due to a significant conformational change undergone by both the receptor and the 

ligand in the two models (RMSD for the best superposition of the two receptors and 
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the two ligands is 4.8 Å and 2.8 Å, respectively), which causes a remarkably different 

orientation of the ligand. Nevertheless, regions involved in the interaction are 

substantially the same, because the ligand somehow “follows” the receptor in its 

conformational change. This case and many others demonstrate once more that the 

RMSD cannot be selected as the only descriptors for the similarity of two docking 

solutions and that descriptors directly describing the property of interest, in this case 

the interface, should be used 50,102,104,105. 

 

 

Figure 12. 
ij
pairC versus L_rmsd 

Chart of the 
ij
pairC  values versus L_rmsd values for targets T25, T26, T29 and T32. A 

comparison of the M03 and M07 models submitted by the P86 predictor for T26 and 
corresponding to the point indicated by the arrows is also shown with the ligand 
coloured in cyan and blue, respectively; residues involved in the contacts common to 
the two models are shown as red sticks. 
 

 

Conservation and Consensus maps for the multiple solutions submitted by each 

predictor 

Conservation scores have also been calculated for each set of ten models submitted 

for each CAPRI target by the same predictor. C30, C50 and C70 (data not showed). 

They correspond to amount of inter-residue contacts which are conserved in 30%, 
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50% and 70% of the models, respectively. The average av
pairC  and the quality score, 

Q-score, for each predictor, obtained on the basis of the CAPRI assessment, are also 

reported.  

As expected, the inter-residue conservation rate within each set of multiple solutions 

submitted by each predictor is very variable. As an illustrative example, in Figure 

13a-b, the graphical CONS-COCOMAPS outputs (consensus maps) are shown for the 

set of ten predictions submitted by predictors P04 and P49 for target T32. For 

comparison, the intermolecular contact map for the native structure (PDB code 

3BX1120) is also reported (Figure 13c). The calculated av
pairC  values are 0.003 and 

0.400 for predictors P04 and P49, respectively. Visual inspection of Figure 13a-b 

immediately indicates that the solutions proposed by predictor P49 are very 

conservative as concerns the predicted inter-residue contacts, whereas the predicted 

inter-residue contacts in the solutions proposed by predictor P04 are extremely 

diverse and spread out all over the map. Further, the maps of Figure 13b-c also 

immediately show that the consensus contact map of predictor P49 is extremely 

similar to the contact map of the native complex structure. In fact, predictor P49 

performed very well in this test case, having one acceptable, two medium quality and 

five high quality predictions. On the contrary, predictor P04 had only incorrect 

predictions. 
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Figure 13. Consensus maps 
a-b) CONS-COCOMAPS consensus maps obtained from the 10 models submitted for 
the CAPRI target T32 by the P04 and P49 predictors. c-j) Comparison between the 
CONS-COCOMAPS consensus maps (d,f,h,j) obtained from all the 300, 310, 350 
and 350 models submitted to CAPRI for the targets T25, T26, T29 and T32, 
respectively, and the intermolecular contact maps (c,e,g,i) of the corresponding native 
structures (PDB codes: 2J59, 2HQS, 2VDU and 3BX1).  
 

We noted that there is indeed a nice correlation, especially for targets T26 and T32, 

between the success of the predictor and a high conservation of the inter-residue 

contacts. However, it is worth to remark that the opposite does not hold true, i.e. we 

also observed cases where a predictor submitted very similar predictions in terms of 

inter-residue contacts but they were far away from the native structure. For instance, 

the ten predictions submitted by predictor P89 for target T25 share an average av
pairC  

as high as 0.772, notwithstanding all the predictions have been assessed as incorrect. 
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The corresponding consensus map is shown and compared with the native structure 

contact map in the Figure 14. 

 

 
Figure 14. Consensus map from the P89 predictor for T25. 
Comparison between the CONS-COCOMAPS consensus map (b) obtained from the 
10 models submitted for the CAPRI target T25 by the P89 predictor, and the 
intermolecular contact map (a) of the corresponding native structure (PDB code: 
2J59). 
 

Consensus maps for the multiple solutions submitted by all the predictors 

Overall conservation scores of the inter-residue contacts in all the models submitted 

for the analysed targets are quite low. Conservation scores at 5, 10, 15 and 20 % are 

reported in Table 2, both for all the docking models and for only the incorrect 

solutions. They correspond to the number of inter-residue contacts which are 

conserved in 5, 10, 15 and 20 models out of 100, divided by the average number of 

contacts per model. From Table 2 it is apparent that the conservation of inter-residue 

contacts in T24, T28, T29 and T36 is particularly low. The conservation score of 

contacts common to the 5% of all the models, including the correct ones, is indeed 

below 0.7 (0.398, 0.056, 0.176 and 0.643, respectively). At higher percentages the 

conservation scores for these targets are zero, with the only exception of T36, whose 

C10 value is 0.016. 

On the contrary, C5 assumes higher and similar values for the other three targets, 

from 2.274 for target T32 to 2.455 for target T25. These values are remarkably lower 

when the correct predictions are excluded from the analysis. C10 values are also quite 

similar and range from the 0.420 for target T32 to 0.576 for target T26. C15 values 
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are more variable, ranging from 0.078 for target T25 to 0.183 for target T26. 

Exclusion of the correct predictions causes a dramatic decrease of the C15 values, 

which approach to zero. At percentages of 20% or more, the conservation score is not 

higher than 0.027 for any of the analysed targets. 

 

Target Nt C5 C10 C15 C20 
T24 15818 0.398 0.000 0.000 0.000 
T24-incorrect 15618 0.322 0.000 0.000 0.000 

T25 15399 2.455 0.448 0.078 0.000 
T25-incorrect 13613 1.477 0.020 0.000 0.000 

T26 22063 2.318 0.576 0.183 0.020 
T26-incorrect 19825 2.019 0.125 0.014 0.000 

T28 29360 0.056 0.000 0.000 0.000 
T29 23890 0.176 0.000 0.000 0.000 

T29-incorrect 22923 0.000 0.000 0.000 0.000 

T32 25859 2.274 0.420 0.081 0.027 
T32-incorrect 23420 1.754 0.202 0.027 0.000 

T36 12750 0.643 0.016 0.000 0.000 
T36-incorrect 12673 0.628 0.016 0.000 0.000 

a Calculations performed upon excluding all the correct predictions. 

 

Table 2. 
Inter-residue conservation scores at different percentages for all the models submitted 
for each target. 
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Figure 15. 
Comparison between the CONS-COCOMAPS consensus maps (b,d,f) obtained from 
all the 300, 320 and 200 models submitted to CAPRI for the targets T24, T28 and 
T36, respectively, and the intermolecular contact maps (a,c,e) of the corresponding 
native structures (PDBcodes: 2J59, 2ONI and 2W5F).  
 

Conservation rates at the residue level have been plotted in consensus maps and are 

reported in Figure 13 for T25, T26, T29 and T32 and in the Figure 15 for T24, T28 

and T36, together with the intermolecular contact map of the corresponding native 

structures (PDB codes: 2J59 121, 2HQS 122, 2ONI, 2VDU 123, 3BX1 120 and 2W5F 124 

for T24/T25, T26, T28, T29, T32 and T36, respectively). The consensus maps 

reported in Figure 13d-f-h-j and Figure 14b-d-f therefore represent the consensus 

emerging from the analysis of 200 to 350 different solutions, for each target, 

submitted by different predictors and obtained and selected on the basis of different 

methods and criteria. 

As a consequence of their very low conservation scores, the consensus maps of T24, 

T28, T29 and T36 are quite spread out and only for T24 a week signal emerges from 

the background noise (Figure 13h and Figure 14b-d-f). On the contrary, in case of 

targets T25, T26 and T32, some darker hot spots, due to the best conserved inter-

residue contacts in the multiple solutions, clearly emerge (Figure 13b-d-f).  
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 CRkl Receptor Ligand Distance (Å) 

T25       

 0,173 TYR 35 TYR 999 3,48 

 0,167 PHE 51 ASP 996 5,82 

 0,163 PHE 51 ILE 1053 4,00 

 0,150 ASN 52 ASP 996 3,84 

 0,147 THR 44 TYR 999 2,60 

 0,140 ASN 52 TYR 999 4,20 

 0,140 ILE 46 ILE 997 3,65 

 0,137 THR 45 TYR 999 3,49 

 0,133 ILE 49 GLN 1035 6,09 

 0,130 ILE 49 ILE 995 5,29 

T26       

 0,232 GLU 293 GLU 116 3,62 

 0,210 GLU 293 THR 114 2,66 

 0,197 PHE 424 PRO 115 3,43 

 0,190 ALA 249 GLU 116 2,92 

 0,187 SER 205 GLU 116 2,66 

 0,174 PHE 424 GLU 116 5,55 

 0,174 HIS 246 GLU 116 2,79 

 0,168 MET 204 GLU 116 3,75 

 0,158 GLN 336 THR 114 2,94 

 0,158 GLY 248 GLU 116 3,94 

T29       

 0,069 TRP 236 PHE 165 7,67 

 0,063 HIS 221 PHE 165 3,65 

 0,063 VAL 195 ARG 195 6,53 

 0,060 TRP 236 GLU 204 3,03 

 0,057 PHE 231 PRO 236 3,88 

 0,057 LYS 223 THR 200 5,73 

 0,054 VAL 195 PHE 165 7,28 

 0,051 PHE 231 LEU 237 3,35 

 0,051 TRP 236 TYR 207 3,67 
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 0,051 VAL 233 THR 200 6,82 

T32       

 0,223 LEU 126 TYR 87 3,71 

 0,200 GLY 127 TYR 87 3,74 

 0,183 SER 125 TYR 87 7,68 

 0,169 GLY 100 TYR 87 4,03 

 0,160 ASN 62 TYR 87 9,91 

 0,157 SER 128 TYR 87 3,49 

 0,146 ASN 62 THR 89 4,65 

 0,143 ASN 155 THR 89 4,56 

 0,140 LEU 96 TYR 87 3,52 

 0,137 GLY 127 LEU 91 3,51 

 

Table 3. Ten most conserved inter-residue contacts. 
The ten most conserved inter-residue contacts are reported for targets T25, T26, T29 
and T32, together with corresponding distances in the native structures 120-123. 
Distances above 5 Å are outlined in bold. 
 

Interestingly, analysis of the CONS-COCOMAPS outputs indicates that among the 

ten inter-residue contacts with highest conservation rates, reported in Table 3, several 

correspond to native inter-residue contacts. Indeed, for targets T25, T26 and T32, 

seven, nine and eight of the ten most conserved contacts correspond to distances 

within 5 Å in the native structure 120-123 (see again Table 3). Considering that only 

~10% of the CAPRI models for the three targets was assessed to be correct (Table 1), 

this indicates that focusing on the consensus of predicted inter-residue contacts, rather 

than on the correctness of the entire models, can significantly increase the success rate 

of the prediction. Importantly, hot spots of the interactions are highlighted by this 

approach, such as for instance residue Tyr87 of the T32 ligand (the barley a-

amylase/subtilisin inhibitor), whose mutation to alanine has been experimentally 

shown to dramatically decrease the ligand-receptor affinity 120. A useful consensus, 

five correct contacts among the ten most conserved contacts, also emerges for T29, 

for which only 5% of the models was assessed to be correct (Table 3). Further, when 

drawing the consensus maps for targets T25, T26 and T32 using only the incorrect 

solutions, some inter-residue contacts corresponding to the native ones still emerge, 

and are clearly distinguishable from the noise (Figure 16). In particular, considering 
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only the incorrect models submitted for T25, T26 and T32, two, seven and four 

contacts, respectively, correspond to native ones (data not shown). Surprisingly, even 

T24, having no medium/high quality prediction, presents three native contacts among 

the ten most conserved ones (Table 4). Quite strikingly, these findings indicate that 

the consensus of many solutions, even incorrect according to the CAPRI definition, 

may point to the correct inter-residue contacts. If confirmed, this result could be of 

great interest and utility in applications such as mutagenesis experiments design, 

considering that the main aim of bioinformaticians and wet biologists, when 

performing macromolecular docking simulations, is often to predict the residues at the 

interface, more than the fine details of the biomolecular complex.  

 

 
Figure 16. 
Comparison between the CONS-COCOMAPS consensus maps (b,d,f) obtained from 
the 268, 276 and 316 incorrect models submitted to CAPRI for the targets T25, T26 
and T32, respectively, and the intermolecular contact maps (a,c,e) of the 
corresponding native structures (PDBcodes: 2J59, 2HQS and 3BX1). 
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 CRkl Receptor Ligand Distance (Å) 

T24       

 0,093 PHE 51 ASP 996 5,82 

 0,083 PHE 51 ILE 997 8,11 

 0,080 PHE 51 LEU 994 6,47 

 0,073 PHE 51 ILE 995 9,16 

 0,073 ILE 49 TYR 999 9,50 

 0,070 ILE 49 ILE 997 8,59 

 0,067 GLY 50 ASP 996 6,17 

 0,060 ASN 52 ASP 996 3,84 

 0,057 ASN 52 TYR 999 4,2 

 0,057 ILE 49 ASP 996 4,92 

 

Table 4 
Ten most conserved inter-residue contacts for the target T24 and corresponding 
distances in the native structure 120-123.  
 

3.5 - Conclusions  
Here I described the second computational method I developed during my PhD work 

to easily measure and visualize the consensus in multiple docking solutions. Our 

novel tool CONS-COCOMAPS uses the conservation of inter-residue contacts as an 

estimate of the similarity between different docking solutions. The conservation of 

ligand-receptor contacts is indeed used as one of the fundamental criteria in CAPRI 

for assessing the similarity of a predicted complex to the native structure, and recently 

it has been emphasized that it can be the most useful descriptor when looking at the 

biological significance of the prediction, i.e. the individuation of the interface area 102. 

To visualize the conservation, CONS-COCOMAPS uses intermolecular contact maps, 

that we recently showed to be a very effective way to visualize a biomolecular 

complex interface 4. There is virtually no limit on the number of models that can be 

compared by CONS-COCOMAPS. This novel tool is freely available to the scientific 

community (at the URL 92) and can straightforwardly be applied to the analysis of the 

outputs of one or more docking programs. 
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The application of CONS-COCOMAPS to some test-cases taken from recent CAPRI 

rounds shows that it is efficient in highlighting even a very weak consensus. 

Interestingly, in three out of the seven analysed cases, T25, T26 and T32, consensus 

maps clearly point to the native contacts (Figure 13 and Table 3). In other two cases, 

T24 and T29, although the consensus is less visually apparent from the maps (Figure 

13 and Figure 15), three and five native contacts, respectively, are included among the 

ten most conserved inter-residue contacts (Table 3 and Table 4). Importantly, in none 

of the analysed cases a false-positive consensus emerged. This opens the road to 

further studies to test and prove whether the consensus of a large number of docking 

solutions may be used to successfully predict residue-residue contacts in biomolecular 

complexes. 
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CHAPTER 4 - CONS-RANK: a novel tool to rank multiple 

docking solutions based on the conservation of inter-residue 

contacts 
 

 

 

4.1 - Introduction  
Although most proteins fulfil their functions through interaction with other proteins, a 

dramatic disproportion still exists between the number of experimental structures 

solved for protein complexes and the number of structures available for single 

proteins.125 In this scenario, molecular docking, i.e. the prediction of a protein 

complex structure starting from the two separate components, is the method of choice 

for investigating the molecular basis of the recognition in many functional biological 

systems (see Chapter 1 and Appendix 2 for details about the docking technique). In a 

docking process, a large number of possible conformations (docking decoys) are 

sampled, from which native-like solutions, i.e. solutions close to the native structure, 

should be extracted. Unfortunately, correctly scoring the obtained solutions to rank 

native-like conformations before the incorrect ones is still an open problem, which is 

also object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), a 

community-wide blind docking experiment.59 In the last CAPRI edition it was shown 

that, although signs of progress are evidenced, correctly ranking models to single out 

the best ones from a decoys ensemble remains a challenge.126 

During my PhD work, my group and I developed CONS-RANK (CONSensus-

RANKing), a novel method to rank multiple docking solutions. CONS-RANK deeply 

differs from other valuable algorithms developed to the aim,95,127-141 as it uses neither 

knowledge-based nor physics-based energy functions. Instead, it relies on the 

conservation of inter-residue contacts in the analysed decoys ensemble.  

The importance of inter-residue contacts when analysing docking decoys is well 

established. In the CAPRI experiment, for instance, the correctness of a prediction, 

i.e. its similarity to the native structure, is assessed based on a combination of RMSD 

criteria and of conservation of inter-residue contacts, as compared to the native 

structure.50 Interestingly, the fraction of common inter-residue contacts among a set of 
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docking decoys has been recently shown by Bonvin and colleagues142 to successfully 

apply to their clustering, and a similar concept, i.e. the atom contact frequency in a set 

of predictions, has also been recently added to the ZRANK docking pipeline.143 

Here we introduce the use of the conservation of inter-residue contacts to the task of 

ranking multiple docking solutions. The basic idea behind our approach is to move 

away from ranking methods based on the analysis of the single model per se. Rather, 

we first decompose the whole ensemble of decoys into an inter-residue contacts 

matrix (that can be visualized as a contact map, see below). Contacts that occur more 

frequently can be seen as “hot spots” for the interaction, and the decoys in the 

ensemble are ranked according to their ability to match the more frequently observed 

contacts. We had this idea when analysing several CAPRI targets to extract the most 

conserved inter-residue contacts for visualization in a “consensus map” (i.e. an 

intermolecular contact map where absence of conservation corresponds to white and 

contacts at increasing conservation appear in darker grey).5 Quite strikingly, we 

observed that even if a small fraction of native-like solutions was present in the 

decoys ensemble, a clear native-like consensus in terms of inter-residue contacts 

emerged from the background noise and, more importantly, a significant fraction of 

native contacts was included within the ten contacts with highest conservation rate. 

This finding clearly indicates that also incorrect solutions may point to some correct 

inter-residue contacts and is in line with results of the analysis that Lensink and 

Wodak performed on 20 CAPRI targets to the aim of evaluating the ability of docking 

calculations in predicting the interface in protein-protein complexes.144 Lensink and 

Wodak interestingly showed that about one quarter of the interfaces in incorrect 

docking models are in fact correctly predicted and that 70% of all the submissions 

with correct interface predictions are contributed by incorrect models. On the other 

hand, analogously to regular or irregular arrays of atoms when scattering X-ray 

beams, correct contacts, which can also be present in incorrect solutions, add 

constructively towards the native consensus, whereas incorrect contacts are expected 

to be wrong in a different way (unless the underlying docking algorithm is biased 

towards a specific wrong interface) and thus to give destructive interference, 

cancelling one another and not contributing to a false consensus. 

With these considerations on mind, we developed a simple and fast algorithm to rank 

docking decoys according to their ability to match the most conserved inter-residue 

contacts in the analysed decoys ensemble. In the following, we illustrate the algorithm 
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and demonstrate its performance on over 100 targets from three benchmarks: 

RosettaDock,64 DOCKGROUND145 and CAPRI.146,147  

 

 

4.2 - Methods 
The algorithm we have implemented is split into two sections. In the first, we analyse 

the decoys ensemble to find the most conserved inter-residue contacts. In the second, 

we rank the decoys in the ensemble according to their ability to match the most 

conserved contacts.   

Given an ensemble of N models of the same biomolecular complex, to find the most 

conserved contacts, we define the conservation rate, CRkl, of each inter-residue 

contact as in Eq. 1,  

 

, (1) 

 

where nckl is the total number of models where residues k and l are in contact.  

To rank the models in the ensemble according to their ability to match the most 

conserved inter-residue contacts according to their conservation rate, we first 

calculate a score per each model i, as in Eq. 2: 

 

, (2) 

 

where Mi is the total number of contacts in model i. Then, we calculate a normalized 

score, , as in Eq. 3: 

 

. (3) 

 

Note that the normalized score  of Eq. 3 coincides with the average conservation of 

the inter-residue contacts in each model. Models are ranked according to their  
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value. Within this work, two residues are defined in contact if any pair of atoms 

belonging to the two residues is closer than a cut-off distance of 5 Å. Conservation 

rates were plotted in the form of consensus contact maps as in the CONS-

COCOMAPS program.5 Contact maps for the corresponding native structures were 

obtained by COCOMAPS.4 

All the programs under CONS-RANK have been written in python, taking advantage 

of python libraries such as SciPy and Matplotlib. The program is freely available 

upon request from the authors. ROC curves were obtained by plotting the fraction of 

true positives (FTP) against the fraction of false positives (FFP).  

 

RosettaDock benchmark 

A total of 6270 decoys for the 35 targets of the Global-Unbound RosettaDock 

benchmark having at least one native-like solution64 (available at 

http://graylab.jhu.edu/docking/decoys/) have been downloaded and analysed. Models 

having a ligand RMSD (Lrmsd) <= 5 Å were classified as high/medium quality (HM). 

All models having a ligand RMSD (Lrmsd) <= 10 Å, i.e. high/medium quality plus 

acceptable ones, were classified as native-like (NL). On average, each target 

presented 179 decoys, including 6 high/medium quality models and 16 native-like 

models.  

 

DOCKGROUND benchmark 

A total of 6605 decoys for the 61 targets of the DOCKGROUND benchmark145 

(available at http://dockground.bioinformatics.ku.edu/) have been downloaded and 

analysed. For the decoys classification into high/medium quality and native-like, see 

the above section. Each target presented on average 108 decoys, including about 8 

high/medium quality models and 10 native-like models.  

 

CAPRI models 

The docking models for recent CAPRI targets146,147 were downloaded from the 

official web site (available at: ftp://ftp.ebi.ac.uk/pub/databases/msd/capri/). We 

analysed all the 6 recent protein-protein targets having at least one acceptable quality 

prediction (T24, T25, T26, T29, T32 and T36, round 9 on), for which the docking 

models were made available to the public. A total of 1810 CAPRI models have been 

analysed, 300 for target 24, round 9, 300 for target 25, round 9, 310 for target 26, 
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round 10, 350 for target 29, round 13, 350 for target 32, round 15, and 200 for target 

36, round 15. Models were classified as incorrect, acceptable, medium quality or high 

quality, according to the CAPRI assessment.50,59 

 

 

4.3 - Results and Discussion  
We tested CONS-RANK on three different benchmarks: RosettaDock (global-

unbound), DOCKGROUND and CAPRI. We remind that decoys in the RosettaDock 

benchmark were obtained by Rosetta global docking searches,64 those in 

DOCKGROUND were generated by the GRAMM-X docking procedure,145 whereas 

the CAPRI decoys were submitted by different predictors using different programs 

and procedures. A total of 14685 models, corresponding to 102 targets, were 

downloaded (6270 from RosettaDock, 6605 from DOCKGROUND and 1810 from 

CAPRI) and analysed.  

Given an ensemble of multiple docking solutions for a specific target, CONS-RANK 

first calculates the conservation rate, CRkl, of each observed inter-residue contact in 

the ensemble (see Methods). Then, it calculates the average inter-residue contact 

conservation rate, or normalized score,  for each model. Models are ranked 

according to their  values: the higher the , the better the rank. A consensus map5 is 

also obtained for the ensemble of decoys provided in each benchmark for a given 

target, to possibly compare with the intermolecular contact map of the corresponding 

native structure. 

After ranking the models, the number of high/medium quality and native-like 

(acceptable or better) solutions ranked within the top five, ten and twenty positions 

was counted. To further investigate the performance of the method, we also calculated 

the Receiver Operating Characteristics (ROCs) curve for each target by plotting the 

fraction of true positives vs. the fraction of false positives. The Area Under the ROC 

Curve (AUC), compared to the 0.5 value for a random function, was used to assess 

the overall performance of the method.  
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Ranking of decoys in the Global-Unbound RosettaDock benchmark  

A total of 6270 models from the RosettaDock global-unbound benchmark were 

analysed, corresponding to 35 targets, which included 20 enzyme-inhibitor, 10 

antibody-antigen and 5 other complexes. Results of the ranking of RosettaDock 

decoys are summarized in Table 5. 

CONS-RANK proved to be effective in correctly ranking the docking solutions in the 

benchmark. It was indeed able to rank 16.8% of all the native-like solutions among 

the top ten positions, and 31.6% of them among the top twenty positions (Table 5), 

which is a striking difference from the random fraction of native-like solutions in the 

top ten positions, 1.6%. Furthermore, CONS-RANK proved to be able to specifically 

single out the high/medium quality solutions. In fact, as it is apparent from Table 5 

(columns 5-10), the percentage of high/medium quality solutions ranked among the 

top five, ten and twenty positions is consistently larger for high/medium quality 

solutions than for the total native-like ones (13.5 vs. 8.2 %, 26.5 vs. 16.8 % and 46.2 

vs. 31.6 %, in the top five, ten and twenty positions, respectively). Remarkably, 

almost half of the high/medium quality solutions are ranked within the top twenty 

positions. 

For 17 out of the 35 analysed targets (shadowed in the table), the performance of our 

ranking method is excellent (AUC values above 0.9). Except for the 1PPE target, 

having almost all correct solutions (150 out of the total 179 ones), these targets, 

including examples of enzyme-inhibitor, antibody-antigen and other complexes, 

presented a total of native-like solutions ranging from 9 to 78, corresponding to 5.3% 

and 41% of the total solutions, respectively. In two cases, targets 1ATN and 1UGH, 

all the native-like solutions were correctly ranked before any incorrect solution, 

dealing to an AUC value of 1. In these two cases the correct solutions were 13 and 65, 

corresponding to 7.0 and 36 % of the total decoys, respectively. 

Two factors may concur in explaining such a good performance of our ranking 

method when applied to the above targets: i) the incorrect solutions are instead near-

native, at least in terms of inter-molecular contacts (i.e. even the incorrect solutions 

point to some native contacts); ii) the provided solutions are really unbiased, i.e. all 

the wrong solutions are wrong in a different way, thus not pointing to a false 

consensus and making the native consensus to easily emerge. 

We have examples where either one or the other of the two factors clearly prevails. 

As it can be seen from Figure 17, the consensus map obtained using only the 162 
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incorrect solutions for the 1ATN target is completely spread, not highlighting any 

consensus. Therefore, the few (13) native-like solutions are sufficient to highlight a 

consensus towards the native contacts. On the contrary, in the case of the 2SIC target 

(AUC value 0.965), a consensus roughly corresponding to the native contacts is also 

observed in the consensus map drawn by using the 162 incorrect solutions, which 

means that a significant fraction of native contacts are also found in the solutions 

classified as incorrect (Figure 17f). 

 
Figure 17. Consensus maps for the RosettaDock 1ATN and 2SIC targets 
Comparison between the COCOMAPS4 intermolecular contact maps of the 1ATN 
and 2SIC native structures (a,d), the consensus maps obtained from all the 185 and 
179 models in the RosettaDock Global-Unbound benchmark (b,e) and the consensus 
maps obtained by only the 172 and 162, respectively, incorrect models (c,f). 
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The average AUC value over the 35 RosettaDock targets is 0.758, with 22 of them 

having an AUC value higher than 0.8. The average AUC value is significantly 

improved (to 0.799), when excluding from the analysis the 1AVZ and 1DQJ targets, 

having only two native-like solutions. For these targets our method ranked the two 

correct solutions at positions 76th - 107th and 88th - 169th, respectively, resulting in the 

particularly low AUC values of 0.174 and 0.015. A bad AUC value (0.114) was also 

obtained for target 1FBI, having only 3 native-like solutions. 

The method performed badly in only four additional cases. In particular, AUC values 

worse that random (i.e. below 0.5) were obtained for the 1ACB and 2PTC targets, 

whereas AUC values around 0.5 were obtained for the 1CSE and 1MLC targets. Of 

these, 1ACB and 1MLC/2PTC present 5 and 7 native-like solutions, corresponding to 

2.8 and 3.7/3.6 % of the total solutions. In Figure 18, a comparison between the 

consensus map for the 2PTC target (7 native-like solutions, AUC value of 0.202) and 

the native contact map is reported, from which it is apparent that the available 

solutions are biased because they point to a consensus that does not correspond to the 

native contacts. In particular, wrong regions of the ligand are docked to the receptor 

binding site. See for instance the four dark spots at the crossover of residues 30 to 45 

of the ligand, with the receptor residues around the positions 60, 150, 190 and 220, 

which are absent in the native structure contact map. However, we note that for other 

targets having a comparable or even lower fraction of native-like solutions, for 

instance 1QFU, 1FSS or 1WQ1, significantly better results are obtained. For instance 

the AUC value for the 1QFU target, having only 3 native-like solutions, is as high as 

0.886.  
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Figure 18. Consensus map for the RosettaDock 2PTC target.  
Comparison between the COCOMAPS4 intermolecular contact map of the 2PTC 
native structure (a) and the consensus map obtained from all the 192 models in the 
RosettaDock Global-Unbound benchmark (b). 
 

Finally, the 1CSE target deserves a special mention. As said above, it presents the 

disappointingly low AUC value of 0.492, although having 19 native-like solutions 

(10% of the total). However, beside the 19 native-like models, with a Lrmsd < 10 Å, 

there are other 28 models with a Lrmsd < 12 Å. As a matter of fact, many of the 



 58 

solutions classified as incorrect are instead “near native”, both in terms of Lrmsd and 

of inter-molecular contacts. Therefore, it is not surprising that CONS-RANK ranks 

several of these “near native” solutions in the top positions, thus decreasing the AUC 

value. To clarify the concept, in Figure 19, the center of mass of all the ligand heavy 

atoms in contact with the receptor is shown both for the native structure148 (gold) and 

for the native-like (hot pink) and non native-like (light pink) docking solutions. From 

the figure it clearly appears that, apart from two dozens of outliers, the ligand 

interface of most of the 171 ‘incorrect’ solutions is indeed correctly centered on the 

receptor binding site.  

 

 
Figure 19. 3D representation of the native structure and docking decoys for the 
RosettaDock 1CSE target.  
Receptor of the 1CSE target is shown in a light blue ribbon and surface 
representation. The center of mass of the ligand heavy atoms in contact with the 
receptor is shown as a gold sphere for the native structure (a,b), as a hot-pink sphere 
for the 19 native-like solutions (a,b) and a light-pink sphere for the 171 non native-
like solutions (b). The figure was prepared with Pymol (www.pymol.org). 
 

 

Ranking of decoys in the DOCKGROUND benchmark  

A total of 6605 decoys from the DOCKGROUND benchmark were analysed, 

corresponding to a total of 61 targets. Results of the ranking of DOCKGROUND 

decoys are summarized in Table 6  

The overall performance of the method is quite good, since it is able to rank 9.2% of 

all the native-like solutions within the top five positions, and 17.8% and 32.9% of 

them, respectively, within the top ten and twenty positions (Table 6). As in this 
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benchmark the 505 high/medium quality solutions represent almost the totality of all 

the 589 native-like ones, comparable results were obtained when considering only the 

high/medium quality solutions (Table 6 , columns 5-10) 

The method performs in an excellent way, AUC values above 0.9, on 11 targets 

(shadowed in the table), and very well for additional 10 targets, AUC values between 

0.8 and 0.9. Except the 1T6G target, having more than half native-like solutions (57 

out of the total 110 ones), these targets, presented a number of native-like solutions 

ranging from 10 to 18, corresponding to 9% to 16% of all the solutions.  

Also for this benchmark, in three cases, targets 1FM9, 1GPW and 1UGH, all the 

native-like solutions were correctly ranked before any incorrect solution, dealing to an 

AUC value of 1. In these three cases the native-like solutions were 13, 18 and 12, 

corresponding to 12, 16 and 11% of the total decoys, respectively. Analogously to 

results obtained on the RosettaDock benchmark, in some of the above cases, like for 

target 1GPW, the native consensus disappears from the consensus map when native-

like solutions are excluded from the analysis, whereas in other cases, like target 1PPF, 

spots corresponding to native contacts are also observed in the consensus map 

obtained using only the incorrect solutions (see Figure 20). 
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Figure 20. Consensus maps for the DOCKGROUND 1GPW,1PPF, 1TX6 and 
1F6M targets.  
Comparison between the intermolecular contact maps of the 1GPW, 1PPF, 1TX6 and 
1F6M native structures (a,d,g,i) and the consensus maps obtained from all the 110 
models in the DOCKGROUND benchmark (b,e,h,j). Consensus maps obtained by 
only the 92 and 100, respectively, incorrect models are also shown for 1GPW and 
1PPF (c,f). 
 

The average AUC value over the 61 targets is 0.654 and rises to 0.743 when 

excluding from the analysis the nine targets having only one or two native-like 

solutions. Analogously to results on the RosettaDock benchmark, the method 

performs badly on targets having only 1-2 native-like solutions (maximum AUC 

value 0.295). AUC values around 0.5 (ranging from 0.390 to 0.552) were also 

obtained for the 1OOK, 1P7Q and 1S6V targets, having only 4 native-like solutions 

(3.8% of the total solutions). Bad AUC values were obtained in four additional cases, 

in particular for the 1EZU, 1F6M, 1G6V and 1TX6 targets, having 8/10 native-like 

solutions out of 108/110. In all these cases, the decoys in the benchmark are biased 
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toward a wrong solution. This can be easily seen for the 1TX6 and 1F6M targets from 

Figure 20, where corresponding consensus and native contact maps are reported.  

 

 

Ranking of CAPRI targets  

A total of 1688 models for 6 CAPRI targets were ranked by CONS-RANK. Results 

are summarized in Table 7  

Performance of CONS-RANK on the CAPRI targets is strikingly good. It ranks 

32.0% of all the native-like solutions in the top ten positions, and 59.0% of them in 

the top twenty positions (Table 7). Like for the RosettaDock benchmark, the method 

specifically singles out the high/medium quality solutions. Analysis of the data in 

Table 7 (columns 5-10) indicates that the percentage of high/medium quality solutions 

ranked among the top five, ten and twenty positions is consistently larger for 

high/medium quality solutions than for the total native-like ones (20.0 vs. 18.0 %, 

43.1 vs. 32.0 % and 72.3 vs. 59.0 %, in the top five, ten and twenty positions, 

respectively). Therefore, about three quarters of all the high/medium quality solutions 

are ranked within the top twenty positions. 

The average AUC value is 0.870, and only for target T36, having one native-like 

solution out of 199 (0.5%), the performance of the method is not better than random 

(AUC value of 0.490). Instead AUC values approximate to 1 for the T25, T26, T29 

and T32 targets, having a number of native-like solutions ranging from 17 to 34 (from 

5% to 12% of the total solutions). For targets T25, T26 and T32, it is pretty clear that 

also incorrect solutions point to native contacts, as can be easily seen from the 

corresponding consensus maps (see Figure 21). In the case of target T29, the map is 

pretty spread and it is not easy to visually distinguish the native contacts from the 

background noise. However, we have previously shown that five out of the ten best 

conserved inter-residue contacts are native, i.e. correspond to distances within 5 Å in 

the native structure (while the remaining five are within a maximum distance of 7.7 

Å).5 

Target T24, having only four native-like solutions (1.3 % of the total) also has an 

AUC value as high as 0.818 (the four native-like solutions are ranked at positions 40, 

57, 62 and 66 out of 296). Also in this case, we have previously shown that the ten 

best conserved contacts among the available models correspond to an average 
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distance in the native structure below 7 Å. 5 Therefore, these and other contacts with 

high conservation rate can correctly drive the ranking of the docking decoys.5  

 

 
Figure 21. Consensus maps for the CAPRI T25, T26 and T32 targets. 
 Comparison between the consensus maps (b,e,h) obtained from all the 300, 310, and 
350 models submitted to CAPRI for the targets T25, T26 and T32, respectively, the 
consensus maps (c,f,i) obtained from only the incorrect models and the intermolecular 
contact maps (a,d,g) of the corresponding native structures (PDBcodes: 2J59, 2HQS 
and 3BX1).  
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Dependence of the method performance on the percentage of native-like solutions 

In Figure 22a, the obtained AUC values are reported vs. the percentage of native-like 

solutions available for each analysed target. As expected, AUC values are low for 

those targets having a very low percentage of native-like solutions and significantly 

increase for targets having a higher percentage of correct solutions. As a general rule, 

a percentage of 10% or better is guarantee of a performance better than random. 

However, AUC values approaching to 1 have also been found for many targets, 

especially in the RosettaDock and CAPRI benchmarks, having a percentage of native-

like solutions as low as 5% or below. It is worth noticing that for the CAPRI targets a 

percentage of native solutions of 1.3 % or more leads to AUC values above 0.80 (and 

higher than 0.96 when considering targets with a percentage of correct solutions 

above 5%).  

We also tried to correlate the maximum score obtained for each target, i.e. the  score 

of the top ranked decoy (ranging from 0.04 to 0.66), with the percentage of native-like 

solutions available. As it can be seen from Figure 22b, however, a linear correlation 

seems to emerge only for  values above 0.35 and percentages of native-like 

solutions higher than 40%. At lower values, instead, no clear correlation emerges and 

 values of 0.2 or 0.3 may correspond to a range of native-like percentages from 1 to 

40%. Therefore, unless assuming very high values (above 0.35), the  absolute value 

alone is not sufficient to recognize decoy ensembles containing a significant faction 

of correct solutions. 
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Figure 22. AUC value and Maximum score vs. the number of native-like 
solutions (%) 

 Charts of: a) the AUC-ROC value and b) the calculated Maximum score ( ) versus 
the percentage of native-like solutions for the analyzed targets in the RosettaDock, 
DOCKGROUND and CAPRI benchmarks.  
 

 

Analysis of merged decoys from RosettaDock and DOCKGROUND  

The previous analysis clearly indicated that our method outperforms on the CAPRI 

targets as compared to the RosettaDock and DOCKGROUND ones. It is reasonable to 

think that this depends on the fact that the CAPRI decoys have been obtained by 

several docking algorithms, whereas decoys in the other two analysed benchmarks 

came from single docking programs. In case this hypothesis is correct, merging 

decoys from different programs should improve the performance of the method. 

Luckily, this hypothesis could be tested as the DOCKGROUND and RosettaDock 

benchmarks have six common targets. For two of them, 1CHO and WQ1, AUC 
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values below 0.8 were obtained when using decoys from the single benchmarks, and 

no native-like solution was ranked within the top twenty positions. Therefore, we 

collected all the available decoys for these two targets and analyzed the augmented 

number of decoys (285 for target 1CHO and 296 for the target 1WQ1). Results 

summarized in Table 8, clearly show a significant improvement over results obtained 

when the single benchmarks were analyzed (Table 5 and Table 6). In particular, the 

twenty available native-like solutions for 1WQ1 were ranked between position 21 and 

70, leading to an AUC value of 0.862 (it was 0.766 and 0.697 for RosettaDock and 

DOCKGROUND, respectively). For 1CHO the prediction power of the method 

improves even more, with 18 native-like solutions, out of the total 49, ranked in the 

top 20 positions and an AUC value as high as 0.898 (it was 0.644 and 0.688 for 

RosettaDock and DOCKGROUND, respectively). 

A comparison of the native 1CHO intermolecular map with consensus maps obtained 

from the single RosettaDock and DOCKGROUND benchmarks and from the merged 

decoys is reported in Figure 23. It is pretty clear that in the RosettaDock and 

DOCKGROUND maps false contacts emerge, whose conservation competes with that 

of native-like ones. As hypothesized, such false contacts are different for the two 

benchmarks, and their conservation is consequently weakened when the decoys are 

analysed all together, allowing the native consensus to more easily emerge.  
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Figure 23. Consensus maps for the RosettaDock and DOCKGROUND 1CHO 
target.  
Comparison between the COCOMAPS4 intermolecular contact map of the 1CHO 
native structure (a), the consensus map obtained from all the 175 models in the 
RosettaDock Global-Unbound benchmark (c), the consensus map obtained from the 
110 models in the DOCKGROUND benchmark (d) and the consensus map obtained 
from the 285 merged decoys from the two benchmarks (b). 
 

 

4. Conclusions  
In this chapter I described CONS-RANK, a simple and effective method to rank 

multiple docking solutions that I developed during my PhD project. The novelty and 

strength of the method is that it is based on the conservation of contacts at the 

complex interface: decoys are ranked according to their ability to match the most 

conserved contacts. We applied CONS-RANK to 102 targets from three different 

benchmarks, finding it to perform consistently well. CONS-RANK also proved able 

to specifically single out the high/medium quality solutions from the docking decoys 

ensemble. Remarkably,  46.2% and 72.3% of the total high/medium quality 
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predictions available for the RosettaDock and CAPRI targets, respectively, were 

ranked within the top twenty positions. Due to its philosophy, CONS-RANK 

performs particularly well when applied to decoys coming from different docking 

programs and procedures, as in the case of CAPRI targets, since the noise of the 

incorrect solutions from the specific docking procedures cancels, whereas the signal 

of the correct contacts gets stronger. For instance, an AUC value of 0.818 was 

obtained for the CAPRI target T24, having only 1.3% of acceptable solutions. We 

proved this concept on the 1WQ1 and 1CHO targets, which are common to the 

RosettaDock and DOCKGROUND benchmarks. Analysis of the merged decoys from 

the two benchmarks (AUC of 0.862 and 0.989 for 1WQ1 and 1CHO) indeed offers a 

clear improvement over analysis of the single benchmarks (AUC of 0.766 and 0.697 

for 1WQ1 and of 0.644 and 0.688 for 1CHO), due to an increased signal to noise ratio 

in the analysis of the conserved contacts. 

The main drawback of CONS-RANK is probably that it depends by its nature on the 

presence of correct solutions in the decoys ensemble. However, this seems to be a 

common feature to scoring algorithms, as evidenced in the last CAPRI edition, where 

it was shown that the success rate of scoring algorithms strongly depends on the 

percentage of available models of acceptable or better quality. We remind that a 

significant enrichment of native-like solutions by scoring algorithms was observed 

only in few cases, among those having a percentage of correct solutions of 5% or 

higher.126  

Nevertheless, the approach to the ranking of docking solutions we have presented is 

very well performing and robust, thus offering a valid alternative to the ranking 

methods already available. Our approach can be particularly useful to analyse docking 

solutions collected from different docking procedures. Analysis is extremely fast, and 

hundreds of docking decoys can be reliably ranked in minutes on a standard PC.  
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Table 5 
Summary of the ranking of RosettaDock targets. N-decoys is the total number of 
decoys; N-HM is the number of high or medium quality models; N-NL is the number 
of native-like, i.e. acceptable or better, models; R5-HM and R5-NL are the number of 
HM and NL models ranked in the top 5 positions, respectively.; R10-HM and R10-
NL are the number of HM and NL models ranked in the top 10 positions, 
respectively.; R20-HM and R20-NL are the number of HM and NL models ranked in 
the top 20 positions, respectively. 
 

Target N 

decoy

s 

N 

HM 

N 

NL 

R5 

HM 

R5 

NL 

R10 

HM 

R10 

NL 

R20 

HM 

R20 

NL 

AUC 

1A0O 184 1 36 0 4 0 9 0 16 
0.93

1 

1ACB 181 1 5 0 0 0 0 0 0 
0.18

6 

1AHW 171 0 9 0 0 0 3 0 5 
0.92

3 

1ATN 185 9 13 5 5 9 10 9 13 
1.00

0 

1AVW 177 1 12 0 0 0 0 0 1 
0.85

6 

1AVZ 177 0 2 0 0 0 0 0 0 
0.17

4 

1BQL 178 18 31 4 5 9 10 17 20 
0.99

1 

1BRS 179 2 28 1 2 2 4 2 8 
0.86

4 

1BVK 99 0 76 0 5 0 10 0 20 
0.93

0 

1CGI 182 18 37 4 5 8 10 13 20 
0.97

9 

1CHO 175 5 34 0 0 0 0 0 0 
0.64

4 

1CSE 190 0 19 0 0 0 0 0 0 
0.49

2 
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1DQJ 197 0 2 0 0 0 0 0 0 
0.01

5 

1FBI 190 3 3 0 0 0 0 0 0 
0.11

4 

1FSS 179 6 7 0 0 0 0 0 0 
0.71

8 

1JHL 186 0 12 0 0 0 0 0 0 
0.60

9 

1MAH 169 9 10 0 0 2 2 4 5 
0.90

6 

1MEL 181 9 36 2 5 5 10 8 18 
0.98

4 

1MLC 187 5 7 0 0 0 0 0 0 
0.50

1 

1PPE 179 43 150 1 5 2 10 8 20 
0.94

5 

1QFU 176 2 3 0 0 0 0 2 2 
0.88

6 

1SPB 174 8 14 0 0 0 0 0 0 
0.68

6 

1STF 184 16 18 5 5 10 10 14 15 
0.93

8 

1TAB 185 25 43 5 5 10 10 20 20 
0.92

0 

1TGS 185 12 46 2 5 4 10 7 20 
0.89

5 

1UDI 163 10 18 4 5 7 10 10 16 
0.99

4 

1UGH 181 33 65 3 5 6 10 11 20 
1.00

0 

1WQ1 186 0 8 0 0 0 0 0 0 
0.76

6 

2JEL 192 31 78 4 5 6 10 13 20 0.94
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5 

2KAI 180 56 77 5 5 10 10 19 20 
0.99

6 

2PTC 192 4 7 0 0 0 0 0 0 
0.20

2 

2SIC 179 14 17 5 5 7 7 10 11 
0.96

5 

2SNI 184 5 18 0 1 1 4 1 6 
0.82

2 

2TEC 183 15 21 0 0 0 0 0 0 
0.77

6 

4HTC 180 9 36 0 5 0 9 3 19 
0.99

4 

TOT 

% 

6270 

 

370 

5.9a 

998 

15.9a 

50 

13.5b 

82 

8.2c 

98 

26.5b 

168 

16.8c 

171 

46.2b 

315 

31.6c 

 

averag

e 

179.1 10.6 28.5 1.4 2.3 2.8 4.8 4.9 9.0 0.75

8 

0.79

9d 

ST-

DEV 

15.5 13.1 30.4 2.0 2.4 3.7 4.7 6.3 8.8 0.29

2   

0.24

7d 
 

a Compared to N-decoys. b Compared to N-HM. c Compared to N-NL. d Values 

obtained by excluding the 2 targets having only two native-like solutions. 
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Table 6 
Summary of the ranking of the DOCKGROUND targets. N-decoys is the total 
number of decoys; N-HM is the number of high or medium quality models; N-NL is 
the number of native-like, i.e. acceptable or better, models; R5-HM and R5-NL are 
the number of HM and NL models ranked in the top 5 positions, respectively.; R10-
HM and R10-NL are the number of HM and NL models ranked in the top 10 
positions, respectively.; R20-HM and R20-NL are the number of HM and NL models 
ranked in the top 20 positions, respectively. 
 

Target N 

decoy

s 

N 

HM 

N 

NL 

R5 

HM 

R5 

NL 

R10 

HM 

R10 

NL 

R20 

HM 

R20 

NL 

AUC 

1A2K 102 2 2 0 0 0 0 0 0 0.295 

1A2Y 110 10 10 0 0 0 0 0 0 0.536 

1AKJ 110 10 10 0 0 1 1 9 9 0.894 

1AVW 110 10 10 0 0 0 0 0 0 0.656 

1BTH 101 1 1 0 0 0 0 0 0 0.190 

1BUIa 110 10 10 2 2 4 4 5 5 0.854 

1BUIb 110 10 10 0 0 1 1 4 4 0.822 

1BVN 110 10 12 0 0 0 0 0 0 0.770 

1CHO 110 10 15 0 0 0 0 0 0 0.688 

1DFJ 109 9 10 0 0 0 0 1 1 0.774 

1E96 110 10 10 0 0 0 0 5 5 0.839 

1EWY 110 10 10 0 0 0 0 0 0 0.624 

1EZU 110 10 10 0 0 0 0 0 0 0.190 

1F51 110 10 10 0 0 0 0 2 2 0.735 

1F6M 110 10 10 0 0 0 0 0 0 0.360 

1FM9 110 10 13 5 5 9 10 10 13 1.000 

1G20 110 10 10 0 0 0 0 0 0 0.746 

1G6V 108 8 8 0 0 0 0 0 0 0.286 

1GPQ 110 10 10 2 2 4 4 7 7 0.911 

1GPW 110 10 18 3 5 7 10 10 18 1.000 

1HE1 110 10 13 5 5 9 9 10 12 0.979 

1HE8 101 1 1 0 0 0 0 0 0 0.000 

1HXY 102 2 2 0 0 0 0 0 0 0.145 
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1JPS 110 10 10 0 0 0 0 4 4 0.829 

1KU6 110 10 10 0 0 0 0 0 0 0.706 

1L9B 110 10 10 0 0 0 0 0 0 0.557 

1MA9 110 10 10 0 0 0 0 6 6 0.849 

1NBF 110 10 10 0 0 0 0 0 0 0.713 

1OOK 104 4 4 0 0 0 0 0 0 0.552 

1OPH 110 10 10 0 0 1 1 7 7 0.888 

1P7Q 104 4 4 0 0 0 0 0 0 0.440 

1PPF 110 10 10 5 5 9 9 10 10 0.992 

1R0R 110 10 12 0 0 0 0 0 0 0.722 

1R4M 101 1 1 0 0 0 0 0 0 0.070 

1S6V 104 4 4 0 0 0 0 0 0 0.390 

1T6G 110 10 57 1 5 1 10 1 18 0.951 

1TMQ 110 10 10 0 0 0 0 0 0 0.586 

1TX6 110 10 10 0 0 0 0 0 0 0.482 

1U7F 110 10 10 0 0 2 2 8 8 0.847 

1UEX 101 1 1 0 0 0 0 0 0 0.210 

1UGH 110 10 12 5 5 9 10 10 12 1.000 

1W1I 104 4 4 0 0 0 0 0 0 0.742 

1WEJ 110 10 10 0 0 0 0 0 0 0.729 

1WQ1 110 10 12 0 0 0 0 0 0 0.697 

1XD3 110 10 10 0 0 0 0 0 0 0.722 

1XX9 102 2 2 0 0 0 0 0 0 0.255 

1YVB 110 10 10 0 0 0 0 0 0 0.650 

1ZY8c 110 10 10 5 5 9 9 10 10 0.999 

1ZY8d 110 10 10 5 5 5 5 8 8 0.955 

2A5T 101 1 1 0 0 0 0 0 0 0.090 

2BKR 110 10 11 0 0 0 0 2 2 0.788 

2BNQ 101 1 1 0 0 0 0 0 0 0.000 

2BTF 110 10 10 5 5 9 9 10 10 0.998 

2CKH 110 10 10 0 0 0 0 0 0 0.722 

2FI4 110 10 10 0 0 1 1 3 3 0.837 

2GOO 110 10 10 0 0 0 0 1 1 0.734 
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2KAI 110 10 11 0 0 0 0 0 0 0.700 

2SNI 110 10 10 0 0 0 0 0 0 0.692 

3FAP 110 10 10 0 0 0 0 3 3 0.734 

3PRO 110 10 17 4 5 6 10 8 14 0.967 

3SIC 110 10 10 0 0 0 0 2 2 0.817 

TOT 

% 

6605 

 

505 

7.6e 

589 

8.9e 

47 

9.3f 

54 

9.2g 

87 

17.2f 

105 

17.8
g 

156 

30.9f 

194 

32.9
g 

 

averag

e 

108.3 8.3 9.7 0.8 0.9 1.4 1.7 2.6 3.2 0.654 

0.743h 

ST-

DEV 

3.3 3.3 7.3 1.7 1.9 2.9 3.4 3.7 4.9 0.280 

0.191h 

 
a 1BUI_A:C. b 1BUI_B:C. c 1ZY8_AB:K1. d 1ZY8_AB:K2. e Compared to N-decoys. 
f Compared to N-HM. g Compared to N-NL. h Values obtained by excluding the 9 

targets having only one or two native-like solutions. 
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Table 7 
Summary of the ranking of the CAPRI targets. N-decoys is the total number of 
decoys; N-HM is the number of high or medium quality models; N-NL is the number 
of native-like, i.e. acceptable or better, models; R5-HM and R5-NL are the number of 
HM and NL models ranked in the top 5 positions, respectively.; R10-HM and R10-
NL are the number of HM and NL models ranked in the top 10 positions, 
respectively.; R20-HM and R20-NL are the number of HM and NL models ranked in 
the top 20 positions, respectively. 
 

Target N 

decoy

s 

N 

HM 

N 

NL 

R5 

HM 

R5 

NL 

R10 

HM 

R10 

NL 

R20 

HM 

R20 

NL 

AUC 

T24 296 0 4 0 0 0 0 0 0 0.818 

T25 268 13 32 2 5 5 10 9 19 0.990 

T26 276 15 34 3 8 10 10 13 20 0.986 

T29 333 9 17 4 5 5 10 9 16 0.965 

T32 316 28 34 4 4 8 9 16 17 0.969 

T36 199 0 1 0 0 0 0 0 0 0.490 

TOT 

% 

1688 65 

3.9a 

122 

7.2

%a 

13 

20.0
b 

22 

18.0c 

28 

43.1
b 

39 

2.0c 

47 

72.3
b 

72 

59.0c 

1688 

Averag

e 

281.3 10.8 20.3 2.2 3.7 4.7 6.5 7.8 12.0 0.870 

ST-

DEV 

47.1 10.5 15.2 1.8 3.1 4.1 5.0 6.6 9.4 0.197 

 

a Compared to N-decoys. b Compared to N-HM. c Compared to N-NL.  
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Table 8 
Summary of the ranking of merged decoys from RosettaDock and DOCKGROUND 
for the 1CHO and 1WQ1 targets. N-decoys is the total number of decoys; N-HM is 
the number of high or medium quality models; N-NL is the number of native-like, i.e. 
acceptable or better, models; R5-HM and R5-NL are the number of HM and NL 
models ranked in the top 5 positions, respectively.; R10-HM and R10-NL are the 
number of HM and NL models ranked in the top 10 positions, respectively.; R20-HM 
and R20-NL are the number of HM and NL models ranked in the top 20 positions, 
respectively. 
 

Target N 

decoys 

N 

HM 

N 

NL 

R5 

HM 

R5 

NL 

R10 

HM 

R10 

NL 

R20 

HM 

R20 

NL 

AUC 

1CHO 

% 

285 15 

5.3a 

49 

17a 

1 5 2 9 6 18 0.898 

1WQ1 

% 

296 10 

3.4a 

20 

6.8a 

0 0 0 0 0 0 0.862 

a Compared to N-decoys.   

 

 

 



 76 

CHAPTER 5 - Study of the interaction between celiac auto-

antibodies and the auto-antigen Tissue Transglutaminase 

(TG2)  
 

 

5.1 - Introduction 
 

The immune system 

One of the most important and fascinating example of protein-protein interaction is 

the complex made by an antigen and its antibody. 

The antibodies, or immunoglobulins, are a class of protein at the basis of the immune 

system. The immune system, in fact, provides a defense mechanism against foreign 

parasites such as virus and bacteria. Foreign invaders, the antigens, are recognized 

through specific binding of the antibodies. The site on foreign molecules that are 

specifically recognized by the antibody is called antigenic determinant or epitope.  

Structurally, an antibody is a “Y”-shaped protein composed by a light (L) and a heavy 

(H) chain linked together by disulfide bonds (see Figure 24). There are two different 

classes, or isotypes, of light chains, λ and κ, but there is no known functional 

distinction between them. Heavy chains, by contrast, have five different isotypes that 

divide the antibodies into different functional classes: IgG, IgM, IgA, IgD and IgE, 

each with different effector properties in the elimination of the antigen. Each class of 

heavy chain can combine with either of the two different classes of the light chain. 

The IgG class is the major type of immunoglobulin in normal human serum, and it 

has the simplest structure. 
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Figure 24. Schematic representation of an antibody. 
On the left: The heavy (in green and gray) and light (in orange and gray) chains are 
represented, connetected by disulphide bonds (in black). The variable region is 
highlight in green and orange for the H and L chains, respectively. On the right: the 
detail of the CDR region, interacting with the antige, is represented.  
 

Both light and heavy chains are built up from one amino-terminal variable domain 

(VL and VH, respectively) (the two “arms” of the Y) and one carboxy-terminal 

constant domain (CL and CH1, CH2 and CH3) (see Figure 24) . The variable domains 

are not uniformly variable throughout their length; in particular, three small regions 

for both L and H chains show much more variability than the rest of it: they are called 

complementary determining regions (CDRs), made by six hypervariable loops, as 

showed in Figure 25. They are indicated with L1, L2, L3, H1, H2, H3 depending on 

the chain, and represent the binding site for the antibody, presenting a specific and 

complementary structure for the antigen recognition. 

 

 
Figure 25. Schematic representation of the six hypervariable loops 
Side (on the left) and top (on the right) view of a schematic representation of 
arrangement of the CDR and the six hypervariable loop. Labels to each loop have 
been addes. 
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This six loops show a variability in the length and in the amino acids composition, 

being specific for the antigen. In particular, the loop H3 is the most variable in 

sequence and structure, having a key role in the antigen recognition.  

Therefore, the study of a binding between and an antibody and its can be focused on 

the analysis of the six hypervariable loops.149  

 
The autoimmunity and celiac disease 

The antibody-antigen recognition is an high precise and specific interaction, but 

sometimes the immune system mistakes parts of the body as a pathogen, attacking its 

own cells and proteins. When the body arise an immune response against a self 

antigen, there is the development of a peculiar class of disease, termed autoimmune 

disease. This is a quite common pathologies (involving more than the 5% of the 

population), and their gravity can vary on the basis of the organ and tissue that is 

erroneously recognize by auto-antibodies, i.e. antibodies direct against a self antigen. 

Multiple sclerosis, Mellitus diabetes, some kind of allergies are all examples of 

autoimmune disease, and are that characterized by the presence of auto-

antibodies.150,151  

 

One of the most common food intolerance in Europe has been classified as auto-

immune disease, being characterized by the presence of auto-antibodies: the celiac 

disease.150Celiac disease is a multifactorial disorder affecting approximately 1 in 100 

individual in the European population.152 It is a long-life food intolerance affecting 

susceptible individuals  and caused by the exposure to the gluten, the constituent 

protein in wheat and cereal.153 The presence of gluten causes an abnormal immune 

response not only against the gluten’s proteins, but also againt the self antigen Tissue 

Transglutaminase (or type 2 Transglutaminase TG2).154 The clinical consequence is 

an intestinal mucosal injury and malabsorption; the absence of typical symptoms 

makes the celiac disease not easy to diagnose. 155 

Therefore, the disease is characterized by the presence of specific antibodies 

recognizing gliadins (the food proteins comes from the gluten digestion) and the 

autoantigen TG2. TG2 is a member of a family of seven isoforms of enzymes 

involved in protein cross-linking. It is a Ca2+ -dependent ubiquitous intracellular 

enzyme that catalyzes the covalent and irreversible formation of gamma glutamyl-
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lysine bonds. Furthermore, TG2 plays a role in the transduction of extracellular 

signals, mediated by its additional GTP-hydrolyzing activity.156  

Human TG2 consists of four domains: 

- the N-terminal domain, with a β -sandwich structure; 

- the enzyme Core domain, formed by a series of α-helices; 

- two C-terminal domains, β1 and β2, containing β-structures arranged in 

barrel-like conformations. 

The catalytic site, the so called triad,157 formed by Cys 277, His 335 and Asp 358, as 

well as the Ca2+ and the GTP binding sites, are located in the Core domain and the 

nearby first β-barrel domain. 158 

Experimental x-ray structures of several transglutaminase have been crystallized,158-

161 proving that the four TG2’s domains can organize themselves in two different 

ways. In one case, named closed conformation, the two C-terminal domains are 

folded on the Core domain, hiding the active site; in the other one, named open 

conformation, the four domains are straight on an axis, exposing the active site (see 

Figure 26). From the superimposition of the two TG2’s conformations is so apparent 

that the conformational change is not changing the 3D orientation of the first two 

domains between the closed and open conformation. To crystallize and so to solve the 

structure of the two conformations of the TG2, it was required the stabilization of the 

two transient state. Then, the human TG2 open conformation has been crystallized in 

a GDP-bound state, while the TG2 closed conformation has been crystallized in an 

inhibitor-bound state. 
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Figure 26. Overall structures of CDP-bound and inhibitor-bound TG2 
The crystal structures are shown as ribbons, and simplified cartoons are included for 
clarity.(A and B) The N-terminal β-sandwich is shown in blue (N), the catalytic 
domain (Core) in green, and the C-terminal β -barrels (β1 and β2) in yellow and red, 
respectively. (A) GDP-bound TG2 (PDB ID: 1KV3158). (B) TG2 inhibited with the 
active-site inhibitor Ac-P(DON)LPF-NH2 (PDB ID: 2Q3Z162).(C) The N-terminal β-
sandwich and catalytic domains of the two structures are superimposed, highlighting 
the conformational change. The GDP-bound structure (named “TG2-closed”) is 
shown in blue and the inhibitor-bound structure (named “TG2-open”) in gold. 
 

Studies conducted on celiac patients have demonstrated the presence of the auto-

antibodies against the TG2 in the blood of the patients as a peculiarity of this illness.  

The TG2/auto-antibody interaction has so a fundamental role in the study of the 

disease, founding a substantial role in the diagnosis.154,163 In the previous year, in fact, 

the only way to diagnose this illness was through an intestinal biopsy, to check an 

eventual tissue damage. Nowadays, a blood test is enough for a first diagnosis of it, 

checking the presence of auto-antibody specific for the TG2 through an ELISA 

test.154,163  

Due to the key role that TG2 seems to have in the pathogenesis of celiac disease, and 

the fundamental role in the diagnosis strategy, it is of great importance the 

characterization at atomic levels of the TG2’s epitope and, consequently, the binging 

mode of the complex TG2/auto-antibody. 

 

Experimental studies 

For this reason, in the last decades, some experimental studies have been performed. 

Sblattero et al. isolated and characterized in sequence some anti-transglutaminase 
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antibodies from blood of celiac patients,7 and then, using transglutaminase gene 

fragments, they identified a region of TG2 recognized by these antibodies (in 

particular three, called clone 2.8, clone 4.1 and clone 3.7) as being conformational 

and located in the Core domain of the enzyme; in particular, they proved the epitope 

belong to the fragment 140-376, showed in Figure 27 in red and in blue for the TG2-

closed and TG2-open, respectively.155 

 
Figure 27. Representation of the Core domain of TG2 
The closed (on the left) and open (on the right) conformation of TG2 are showed in 
cartoon. The fragment 140-376 in which the epitope is located is highlighted in red 
(for the TG2-closed) and in blue (for the TG2-open). 
 

Due to the importance of anti-TG2 antibodies in diagnosis and pathogenesis of the 

celiac disease, we believe that the characterization at atomic level of the interaction 

between the TG2 (both closed and open conformation) with clone 2.8, clone 3.7 and 

clone 4.1 could be of great interest. For this reason, we performed docking simulation 

between the autoantibody the two TG2’s conformations and the three Abs from CD 

patients, taking in account the experimental data. 
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5.2 - Methods 
Abs and TG2 strucutres 

The structures of both TG2’s closed and open conformation were experimental solved 

and deposited in the Protein Data Bank, with the code 1KV3 and 2Q3Z, respectively. 

The three anti-TG2 antibodies clone 2.8, clone 3.7 and clone 4.1 were isolated from 

celiac patients blood and the sequences were characterized by the group of the prof. 

Sblattero, University of Piemonte Orientale (Italy). Then, the variable domain 

structures of clone 2.8, clone 3.7 and clone 4.1 were modeled by the RosettaAntibody 

Fv homology modeling server,164 using the full refinement protocol option.  

 

Docking simulations 

The TG2s crystal structures and the obtained Abs models were then used for protein-

protein docking simulations, performed by the ClusPro 2.0 server (see Chapter 1 and 

Appendix 2 for details about docking technique).56 By default, ClusPro server docks 

the two proteins using PIPER rigid-body docking algorithm. The top 2000 complexes 

generated by PIPER are then filtered according to electrostatic and desolvation 

energies and retained for further processing. The retained 2000 conformations are 

then clustered according to interface RMSD values and the top 10 docked models, 

following a short Charmm10 energy minimization, are made available for download. 

In all the simulations, all the Abs’ residues that do not fall into the Complementary 

Determining Region (CDR) were masked (ClusPro Antibody Mode). Differently, for 

the two TG2 conformations all the residues were considered on an equal basis. 

 

Analysis 

The representative structures of the top clusters for each simulation were analyzed. To 

analyze the docking results we used script on the basis of COCOMAPS web tool. 

 

 

5.3 - Results and Discussion 
We performed docking simulations to obtain the structure of the complex between the 

TG2 and the antibodies anti-TG2 isolated from CD patients. For both closed 

(TG2closed) and open (TG2open) conformation of TG2, the experimental structures 

from Protein Data Bank were used, while the Abs structure of clone 2.8, clone 3.7 and 
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clone 4.1 were reliably predicted by homology modeling using Rosetta Antibody. The 

docking simulations were performed by ClusPro 2.0.  

 

In the first moment, we ran a set of six docking simulation, testing all the combination 

between the three Abs (clone 2.8, clone 3.7 and clone 4.1) with the two possible 

experimental conformation of the antigen TG2 (closed and open conformation). 

However, as experimental data showed that TG2 interacts with these Abs using only 

the Core domain, indicating that the epitope should be in that region, we additionally 

ran another set of docking simulations in according with the experimental data, for a 

total of twelve simulations. In fact, for the same systems, we repeated the docking 

using only the 1-376 fragment for the two TG2open and TG2closed structures. 

     

FIRST SET OF SIMULATION  SECOND SET OF SIMULATION 

TG2closed + clone 2.8  TG2closed (fragment 1-376)+ clone 2.8 

TG2closed + clone 4.1  TG2closed (fragment 1-376)+ clone 4.1 

TG2closed + clone 3.7  TG2closed (fragment 1-376)+ clone 3.7 

TG2open + clone 2.8  TG2open (fragment 1-376)+ clone 2.8 

TG2open + clone 4.1  TG2open (fragment 1-376)+ clone 4.1 

TG2open + clone 3.7  TG2open (fragment 1-376)+ clone 3.7 

 

Table 9 
List of the TG2-Ab systems used in the first (on the left) and second (on the right) set 
of simulations. 
 

In our ClusPro simulations, as generally done for antibodies, the Abs were fixed and 

all their residues not falling into the CDR were masked, while all the antigen’s 

residues were considered unmasked, and therefore available for the interaction. 

For each of the twelve simulations, we then analyzed the representative structure of 

the top three clusters, that should capture most of the important rigid-body binding 

geometries, and we compared the results.  

The docking results of the first set of simulations (using the whole TG2s’ residues) 

corresponded to the ones obtained from the second set (using only the 1-376 fragment 

of the two TG2 conformation - Figure 27), therefore the data and analysis show below 

concern the simulations using only the second set of them (see Table 9). 
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To easily and intuitively compare the solutions came from the various simulations, we 

made intermolecular contact maps for the best three clusters for each of the six 

systems (see Table 9), reported in Figure 28. 
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Figure 28. Contact maps 
Contact maps for the best three clusters between the Abs (clone 2.8, clone 4.1 and 
clone 3.7) and the TG2 1-376 fragment for both the closed and the open 
conformation. Labels and titles have been added of each contact map. The population 
of each cluster is also indicated on the top of the map. 
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Abs/TG2 open systems 

In the simulations involving the open conformation of TG2, the analysis of clone 

2.8/TG2open system showed that: 

- the first and second top solutions are very populated; 

- the top three solutions present more o less the same epitope, made up of three 

interacting zones: the first zone is around the amino acids 200-210, the second 

one is around the amino acid 230, and the third one is around the amino acid 

365. We defined this epitope as “EP1”. 

Summing the population of these three clusters, we obtained more than 500/2000, 

increases our confidence in the EP1 solution as a close-native one. 

Looking at the results for clone 4.1/TG2open complex, the first best solution 

(population: 111) clearly pointed in the N-terminal domain of TG2, so we excluded 

the this solution as disagreement with the experimental data. The second best solution 

(population: 96) presented EP1 as epitope, while the third one pointed in the Core, but 

in a region different from EP1.  

Finally, in the clone 3.7/TG2 open solutions, the second one is the only one involving 

the Core domain in the interaction, but is a different region from EP1. 

 

Abs/TG2 closed systems 

In the simulations involving the closed conformation of TG2, the first top solution for 

clone 2.8/TG2closed showed again EP1 as epitope, even though the preference (in 

terms of population) is less if compared with the clone 2.8/TG2 open.  

The clone 4.1/TG2closed presented similar results, again with a preference for EP1, 

while the clone 3.7/TG2closed system seed to prefer other interaction regions.  

 

In conclusion, the analysis of the contact maps showed that the complexes involving 

clone 2.8 and clone 4.1 preferred to interact through EP1, and this solution is 

preferential in particular for the clone 2.8/TG2open system, in clear accord with the 

experimental data. Therefore, this increases our confidence in proposing EP1 as 

possible epitope for TG2. 

 

Finding the key-residues for the interaction 

To characterize the interaction interface and have a clue about the most common TG2 

residues at the interface, we performed a statistical analysis counting how many times 
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a TG2 residue is at the interface with the Ab in the best top twenty solutions for each 

simulation. In particular, a TG2 residue is at the interface if any atom is closer than 

the cut-off distance of 5 Å from any Ab’s residue. In Table 10 are reported the 

residues that are at the interface at least in the 20% of the models analyzed.  

 

The analysis of Table 10, such as the contact maps in Figure 28, shows that the TG2’s 

regions involved in the interaction are the same in both the complexes TG2/clone 2.8 

and TG2/clone 4.1, in according with the experimental data. In particular, it is 

possible to identify three specific regions: 

- region 200-230; 

- region around the residue 345; 

- region around the residue 365 

 

Therefore, the statistical analysis of the top twenty clusters for the systems involving 

clone 2.8 and clone 4.1, interacting with both open and closed conformation of TG2, 

converges towards EP1 (defined of the basis of the best solution for the system 

clone2.8/TG2-open), with the only addition of the region around the residue 345. This 

result increases our confidence in EP1 as native-like epitope.  
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aa TG2  Clone2.8 Clone4.1 Clone3.7 
TRP 142 2.5 0.0 22.5 
TYR 149 2.5 7.5 27.5 
SER 152 7.5 15.0 27.5 
GLU 153 7.5 5.0 40.0 
GLU 154 7.5 17.5 35.0 
GLU 155 7.5 15.0 22.5 
ARG 156 2.5 2.5 35.0 
GLN 157 2.5 10.0 32.5 
GLU 158 2.5 12.5 27.5 
TYR 159 5.0 7.5 20.0 
THR 162 2.5 17.5 20.0 
GLN 166 0.0 10.0 20.0 
LYS 173 10.0 20.0 15.0 
PRO 201 20.0 12.5 5.0 
LYS 202 35.0 20.0 5.0 
LYS 205 40.0 30.0 7.5 
ASN 206 30.0 30.0 2.5 
ARG 209 35.0 35.0 5.0 
ARG 213 25.0 25.0 0.0 
TYR 219 27.5 15.0 0.0 
ARG 222 27.5 20.0 2.5 
ASN 231 27.5 20.0 7.5 
ASP 232 32.5 17.5 15.0 
ASP 233 25.0 17.5 7.5 
ARG 296 5.0 10.0 20.0 
ASN 308 20.0 2.5 17.5 
SER 309 20.0 5.0 10.0 
GLU 314 20.0 5.0 10.0 
TYR 315 20.0 10.0 7.5 
PHE 316 22.5 2.5 17.5 
SER 328 20.0 2.5 17.5 
GLU 329 22.5 12.5 17.5 
ARG 344 17.5 22.5 2.5 
PRO 345 22.5 22.5 0.0 
ASP 346 20.0 30.0 0.0 
LEU 347 22.5 25.0 0.0 
GLN 348 25.0 25.0 10.0 
PRO 349 20.0 20.0 10.0 
TRP 354 5.0 12.5 22.5 
GLU 363 35.0 15.0 20.0 

LYS 364 35.0 17.5 17.5 
SER 365 45.0 22.5 20.0 
GLU 366 52.5 25.0 15.0 
GLY 367 45.0 22.5 17.5 
THR 368 37.5 17.5 17.5 
TYR 369 22.5 15.0 7.5 

Table 10 
List of TG2’s amino acids numbering and typology at the interface with the Abs at 
least in the 20% of all the models analyzed (columns 1-2), with the corresponding 
percentage (column 3-5). 
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Simulations on the mutants 

A valid experimental approach to identify and verify the nature of a binding site is 

testing the affinity of mutants of the protein. A mutant has the same structure of the 

wild-type protein itself, with exception of the amino acids that are considered 

involved in the binding site; in fact, these residue are mutated in a different amino 

acid with different chemical-physical properties. If the mutated residues are involve in 

the interactions, their mutation will compromise the binding with the molecule 

partner. 

Then, to test the reliability of our result (EP1 as binging site), we performed docking 

simulations testing mutants of the TG2. The simulations were so performed on the 

system that showed the highest selectivity for EP1: clone2.8/TG2-open. The method 

is based on the idea that if the mutations are able to decrease a so strong affinity in 

silico, probably they can give the same result in experimental tests too. So, we should 

be able to identity the most promising mutants. 

Considering the residues in Table 10 with a high frequence at the interface, we 

designed the list of mutants reported in Table 11, in which all the key residues were 

muted in alanine, and the region 360-369 (corresponding to a loop) was deleted.  
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Mutant Mutated residues 

M1 202+205 mutati in A 

M2 209+213 mutati in A 

M3 232+366 mutati in A 

M4 202+205+232 mutati in A 

M5 202+205+209+213 mutati in A         

M6 202+205+232+366 mutati in A 

M7 202+205+209+213+222 mutati in A 

M8 360-369 deleted 

M9 202+205 mutati in A e loop 360-369 deleted 

M10 202+205+209+232 mutati in A e loop 360-369 deleted  

M11 202+205+206+209+232+346 mutati in A e loop  360-369 deleted 

M12 202+205+206+209+213+231+232+233+346+347+348 mutati in A e  

loop  

360-369 deleted M13 365+366+368 mutati in A 

M14 365+366 mutati in A    368 mutato in V 

M15 202+205+232+365+366+368 mutati in A 

M16 202+205+232+365+366 mutati in A    368 mutato in V 

M17 202+205+232+365+366+368+346 

M18 202+205+209+232+365+366+368 

M19 202+205+209+232+365+366+368 mutato in V 

M20 202+205+209+232+346+348+365+366+368 

M21 202+205+209+232+346+348+ loop(360-369) deleted 

 

Table 11 
List of the mutants of the 1-376 TG2-open’s fragment used in the docking simulations 
with clone 2.8 
 

In Figure 29 are reported the results of the docking simulations between clone 2.8 and 

the TG2’s mutants (listed in Table 11) compared with the wild-type (WT) TG2 result. 

In particular, we looked at the population of the cluster reporting EP1 as 

representative solution, due to the fact that in the docking technique the cluster’s 

population is generally a signal about how preferential is the solution. From FIGX it 

is apparent that the mutants involving only one of the three regions characterizing 

EP1, i.e. the one around 200-210 (M1 and M2 mutants) or around 360-369 (M8 

mutant), show again EP1 as preferential binding mode. In fact, in these cases EP1 is 
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the most populated cluster if compared with the other solution, showing only a little 

reduction in the affinity (the EP1’s cluster population in these cases is less than the 

EP1’s cluster population in the WT). Again, the mutants M5 and M7 have only one 

key-region of EP1 changed in alanine but a major number of residues compared with 

M1, M2 and M8. In fact, the mutations have a stronger negative effect on the binding 

affinity, as showed by the fall of EP1’s cluster position and population (becoming the 

third/fourth cluster in order of population).  

We can observe a similar effect also for the mutant M3, that is characterized by one 

mutation in two of the EP1’s key-regions (see Table 11). 

Therefore, looking at the results of the TG2 mutants’ simulations, it is apparent that 

the most strong effect on the TG2/clone 2.8 binding is performed by the mutants that 

have mutations in all the three key-regions of EP1. In fact, the mutant M6, M15, M16 

and in particular M18, M19, M20 and M21 present a disappearance of the solution 

EP1 between the top 30 models. 

 
Figure 29 
The histrogram’s bars report the cluster population corresponding to EP1 epitope (in 
green) and the population of the most populated cluster (in red) if the solution does 
not correspond to EP1. In this case, the number reported on the green bar indicates the 
rank of the cluster presenting EP1 as solution. For example, in the case of M6 mutant, 
the most populated cluster has a population of 83 (as indicated by the high of the red 
bar), while the cluster presenting EP1 as binding mode has a population of 27 (as 
indicated by the high of the green bar) and it is th 12th cluster ranked in order of 
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population. The WT is indicated as 0, and the mutants are labels with the numeration 
reported in Table 11. 
 

On the basis of the results and the effect of the mutations, the idea is that TG2 binds 

the antibody through epitope EP1, characterized by three anchor regions: the region 

200-230, the region around 345 and the one around the loop 365. Due to the topology 

of the binding site, made by three anchor sites, the mutation of only one site decrease 

the affinity between the two proteins but it is not enough to prevent the binding. Only 

the mutation of all the three site is able to compromise the binding, destroying the 

interacting network of the three anchor points (Figure 29).  

The mutants that in silico showed the most promising performance were suggested to 

prof. Daniele Sblattero, Department of Medical Science, University of Piemonte 

Orientale (Italy), for experimental tests. 

 

 

5.4 - Conclusion 
In this chapter I described the docking study I performed to obtain a molecular model 

of the complex between the celiac autoantibodies (clone 2.8, clone 4.1 and clone 4.1) 

and the auto-antigen TG2.  The present investigation provides better picture and gives 

useful insight into the orientation and characterization of the complex’s binding site, 

showing that the interaction involve the TG2 epitope made of three anchor sites, all of 

them fundamental for the binding.  

The improvement achieved in recent years by methods for predicting structures and 

protein-protein interaction give us the confidence in the results of our computational 

approach. Most importantly, the model is validated by its ability to explain the 

experimental data, its coherence resulting by different docking simulations (with 

clone 2.8, clone 4.1 and clone 3.7) and by the comparison with the simulations 

performed on 21 mutants of TG2. 

Due to the crucial involvement of the complex TG2-antoantibody in the celiac 

disease, the diagnosis application and the promising therapeutic applications, the 

proposed model could help rationalizing the experiments as crucial step for the study 

of the celiac disease mechanism, the improvement of diagnosis strategies and the 

rational design of molecules for pharmacological and therapeutic purposes.  
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CHAPTER 6 - Prediction and analysis of an idiotype - anti-

idiotype antibody complex associated to celiac disease 
 

 

6.1 - Introduction  
 

The idiotypic network 

The antigenic determinants of antibodies is named “idiotype” and it is located in the 

variable region of the antibodies.165,166 The 1984 Nobel laureate Jerne proposed an 

idiotypic network theory,167 predicting that the idiotypic determinants of each 

antibody are recognized by those of another antibody, thus creating an “idiotypic 

network” through which immunoglobulins expression might be controlled. In fact, 

under physiological conditions, each antigenic stimulation (due to an antigen Ag) 

leads to the production of idiotype antibodies (termed Ab1) against Ag and then the 

unique structure of its antigen-binding site triggers the immune system to produce a 

series of anti-idiotypes directed against the Ab1’s antigenic-determinant, termed Ab2 

(Figure 30). Finally, anti- anti-idiotypes antibodies (Ab3) are induced by the presence 

of Ab2, which may have binding capabilities similar to those of Ab1, recognizing the 

original Ag.168,169 

This idiotypic Ab1-Ab2-Ab3 network has a crucial role in the regulation of immune 

response to external and self antigens. For example, in a healthy subject and after 

eradication of the invading organism (the Ag), anti-idiotype antibodies Ab2 are useful 

to decrease the idiotype Ab1 titers to lower levels,168 and their presence can maintain 

B cell memory during the absence of antigen in the system, helping in the 

maintenance of immunological memory.170 
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In some cases Ab2 can also act inhibiting the binding of Ab1 to the original antigen. 

On the basis of this “inhibiting” property, the Ab2 are classified as follows (Figure 

30): 

• “Ab2-alpha” (Ab2α are directed against idiotypes which are distinct from the 

antigen-binding site on Ab1. In this case, the idiotype/anti-idiotype interaction 

does not inhibit the Ab1-Ag binding.  

• “Ab2-beta” (Ab2 β) binds exactly the antigen-binding site of the Ab1 

antibody, inhibiting the Ab1-Ag binding. In fact, this class of anti-idiotypes 

interacts with Ab1 through structures that resemble the epitope of the antigen, 

carrying a so defined “internal image” of it.  

• “Ab2-gamma” (Ab2γ) refers to antibodies directed against idiotypes close to, 

rather than within, the antigen-binding site. So, they can sterically inhibit the 

Ab1-Ag binding such as Ab2β, but they do not carry an internal image of the 

antigen. 165,168  

 

 
 

Figure 30. The idiotypic network 
An antigen Ag is recognized by its antibody Ab1. The Ab1 becomes itself an antigen 
eliciting the production of anti-antibodies Ab2. This response can be divided into: i) 
an antigen-noninhibitable group (Ab2α), ii) an antigen-inhibitable group bringing an 
internal image of the Ag (Ab2β), and iii) an antigen-inhibitable group due to steric 
hindrance with the antigen binding-site (Ab2γ).  
 

The theory of the “internal image” was then experimentally proved, showing that an 

anti-idiotypic antibody can provide an approximate topological and binding-group 

mimicry of an external antigen in different ways. Ban et al.171 determined the crystal 

structure of an anti-idiotypic antibody 409.5.3 raised against the antibody that 
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neutralizes E2 peplomer, a large glycoprotein of feline infectious peritonitis virus 

FIPV (wwPDB code: 1IAI), describing also the mimicry of the Ab2 409.5.3 for the 

original antigen E2. The experimental data, in fact, showed that Ab2, when injected 

back into mice, elicited the production of Ab3s that had FIPV neutralizing properties. 

A comparison of the sequence of the Ab2’s CDR loops with the antigen showed 

sequence homology in two regions of about six amino acids, both regions providing 

important contacts with Ab1. This evidence was also consistent with experimental 

tests, showing that Ab1 recognizes an epitope on the E2 peplomer even when the E2 

protein is completely denaturated.172 This suggests that Ab1 may be specific not 

strictly for a structurally unique epitope but for a sequence-unique epitope on the 

antigen. 

 

However, other cases of Ab2 mimicry for the Ag was proved even though there is no 

sequence homology between the anti-idiotype and the antigen. Bradford et al.173 

determined the crystal structure of an anti-hen-egg-white lysozyme antibody (D1.3) 

complexed with an anti-idiotypic antibody (E5.2) (wwPDB34 code: 1DVF) and they 

discussed the molecular mimicry of E5.2 for the original antigen HEL, showing that 

the mimicry did not depend on amino acid sequence homologies between the Ag and 

Ab2. In fact, they compared the structure of E5.2 and HEL both in complex with 

Ab1-D1.3. After superimposition of D1.3, they did not found a similar topology 

between the E5.2 and HEL, but they did find similar size of the solvated cavities, 

almost the same number of van der Waals contacts, the same patterns in the 

hydrophilic interaction, and six of the 14 interface hydrogen bonds in D1.3-E5.2 

conserved also in D1.3-HEL complex. In particular, they found that much of the 

mimicry of E5.2 for HEL resides in the similar interaction made by the CDR loop H3 

of the anti-idiotype and two particular residues of the Ag. Finally, also previous 

experimental data about CDR side-chain mutations of D1.3174 are consistent with the 

structural/functional mimicry of E5.2 for HEL. 

Even though internal image on anti-idiotypes are three-dimensional amino acid 

constructs, they can mimic also peptides epitopes. This is the case of the complex 

between an antibody and the angiotensin II peptide. The elicited Ab3 recognizes the 

original antigen with high affinity. Backbone atoms of this peptides closely resemble 

a CDR loop belongin to the canonical structure of the CDR loop L3.175 This suggest 
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that the Ab2 has a CDR-L3 that resembles angiotensis II, mimicking the peptide with 

this single hypervariable loop.176  

 

Applications of anti-idiotypic antibodies in medicine  

Due to the key role of the immune system in the defence against diseases, the 

idiotypic network can be harnessed to develop new therapeutic strategies in many 

possible ways. 

First of all, the anti-idiotype Ab2 offers an elegant concept for developing vaccines 

not based on the conventional approach of using nominal antigens. In particular, 

because of the Ab2β  anti-idiotype brings the internal image of the Ag, it can induce 

specific immune responses similar to response induced by nominal Ag and it can be 

used to surrogate Ag. In fact, immunization with Ab2β  can lead to the generation of 

anti - anti-Id antibodies Ab3 that recognize the corresponding original Ag identified 

by the Ab1. These so called anti-idiotype vaccines (anti-Id vaccines) have many 

advantages over conventional vaccines. For example, they contain neither nominal Ag 

nor its fragments. This exclude the possibility that anti-Id vaccines would have the 

same undesired effects which are sometimes associated with conventional antigen 

vaccines. There are also practical, economical and biological advantages.177 In fact, 

anti-Id vaccines do not depend on the availability of large amounts of pure Ag, which 

often is a limiting economical factor in vaccine production and, by virtue of their 

being proteins, they can be easily manipulated.178 

 

Anti-idiotypic antibody for cancer immunotherapy 

Vaccination can become a decisive factor in situation where the responding immune 

system is immature or suppressed, such as in cancer patients, who may be 

immunodeficient or tolerant against their own tumour. 

In particular, active immunotherapy is a really attractive therapeutic approach for 

tumours because it harnesses the body’s immune potential to attack malignant cells in 

an antigen-specific manner and have immunological memory, but normally cancer 

patients are immunodeficient or tolerant against their own tumour. A common 

explanation for the absence of anti-tumour immunity is that the immune system has 

been tolerized by the tumour antigen. An effective method of breaking tolerance is to 

present the critical epitope in a different molecular environment to the tolerized host. 
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This is impossible to do with most tumour antigens because they are chemically  

elaborate and difficult to purify.179 In this contest anti-Id Ab2β, mimicking the three-

dimensional shapes of antigens, can present the antigen in a different molecular 

environment and it can be considered a powerful approach to generate targeted 

antigen immunity.178  

This strategy has been used for the last decades180. In particular, anti-idiotype 

antibodies have been usefully used to implement active immunotherapy in patients 

with breast cancer,181,182 colorectal carcinoma,183 melanoma and ovarian 

lymphoma.184,185 Nowadays, induction of adaptive tumour-antigen-specific immune 

responses continues to hold great promise for cancer prevention and therapy. 

Ab2 anti-idiotypes are having great application in the development of new therapeutic 

approaches in cancer treatment, but they seem promising also in a lot of other 

important applications, such us the design of future anti-HIV strategies against AIDS, 

one of the deeply challenged in the case of persistent infections,186,187 or as potent 

anticoagulant as an ideal antidote in restoring normal hemostasis.188  

 

Although the Ab2b class of anti-idiotype has been receiving the most attention in the 

development of new vaccines, also the Ab2γ seem promising in the induction of an 

anti-viral response. In fact, Bryson et al. 2008186 reported the crystal structure of the 

complex between the mouse antibody anti-HIV-1 Ab1/2F5 and its anti-idiotype 

Ab2/3H6 (wwPDB code: 3BQU), in which they showed that Ab2/2F5 does not 

resemble the structure of the original Ab1/2F5’s antigen, but still interferes with the 

Ag-Ab1 binding189, classifying the Ab2 as γ. Anyway, it is still uncertain if this 

information can concretely help the attempts at creating a vaccine targeting human 

immunodeficiency virus (HIV). 

 

The role of the anti-idiotypic antibodies in autoimmune diseases 

The idiotypic network has also a fundamental role in the autoimmune diseases. The 

regulation of the autoimmune response is still an intriguing and largely explored area. 

The factors leading to the onset of the autoimmune response remain obscure, but the 

idiotypic dysregulation is now recognized as a major mechanism for autoimmunity. In 

fact, in subjects susceptible to autoimmune diseases as a result of genetic 

predisposition and environmental factors, the immune response to a particular self 
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antigen involves an uncontrolled production of idiotypic antibodies (autoantibodies) 

that recognize pathogenic epitopes. Deficient idiotypic regulation of autoantibodies 

has been considered responsible for a number of autoimmune diseases190 such as 

systemic lupus erythematosus (SLE)191, autoimmune thyroiditis,192 systemic 

vasculitis193 and the Guillain-Barrè syndrome194. Furthermore, it has been 

demonstrated that autoimmune patients show a large ratio of autoantibody to anti-

idiotype concentration whereas this ratio is small in healthy controls.195 

Therefore, the use of anti-idiotype could be very promising in the study and the 

treatment of auto-immune disease. It is still very hard to find a definitive cure for this 

kind of diseases, due to the fact that the pathogen triggering the immune response is a 

self antigen, but in vivo study have indicated that anti-idiotypic antibodies might be 

able to downregulate the autoantibodies. In type 1 diabetes, for example, it was shown 

that anti-idiotypes may play a protective role in the immune response, by preventing 

that the auto-antibody binds its antigen.196 

Another important application is creating animal models to study autoimmune 

diseases, by inducing them in animals through the usage of pathogenic idiotypes of 

autoantibodies. Following immunization with Ab1 and production of Ab2, the 

animals develop Ab3 having original autoantibodies properties and are associated 

with the respective serological and clinical manifestations of the disease.168,197  

 

The celiac diseases 

One of the most common disease with autoimmune features that suffers from a lack 

of animal models is celiac disease (CD). It is a disorder affecting approximately 1 in 

100 individuals in the European population150 occurring as a result of the interplay 

between genetic and environmental factors.198 It is a long-life inflammatory condition 

characterized by flattering of the intestinal mucosa and malabsorption. The 

pathogenesis involves dietary exposure to gliadins, specific antigenic determinants 

found in gluten. The disease is characterized by presence of specific antibodies 

recognizing gliadins, food proteins and an endomysial autoantigen identified as tissue 

transglutaminase 2 (TG2).154 The antibody level against gliadins and TG2 increase 

upon exposure to gluten, and decrease during the course of a gluten-free diet. 

Although considerable scientific progress has been made in understanding celiac 

disease and in preventing or curing its manifestations, a strict gluten-free diet is the 

only treatment for celiac disease to date. 
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Recently, celiac antibodies recognizing TG2 have also been shown to elicit the 

production of anti-idiotypes antibodies in mouse.6 To the aim of developing an animal 

model in order to verify the possibility of expressing human anti-TG2 antibodies in 

vivo, Di Niro et all.6 injected in mice non predisposed to gluten-intolerance two anti-

TG2 antibodies isolated from patients with CD, both recognizing human TG2, but 

only one autoantibody (clone 2.8) is cross-reactive to mouse TG2. Since the other 

antibody (clone 3.7) does not recognize murine TG2, and so presumably had no in 

vivo immunological effect, it was used as a negative control.  

What they found was a clear proof of an anti-idiotypic response in mice treated with 

clone2.8 (the only one able to recognize mouse TG2), in which the production of anti-

TG2 antibodies was counterbalanced by the production of anti-Id antibodies. In 

particular, the results showed that all the anti-Id antibodies competed strongly with 

TG2 for clone 2.8 binding, indicating that both interact with the antigen-binding site. 

To the aim of better understand the role and the characteristics of the interaction 

between the autoantibody anti-TG2 and its anti-idiotype, the sequence of the anti-

idiotype antibody (AIT2) from mouse was characterized. 

 

Aim of the  work 

Due to the growing importance of anti-idiotype antibodies in the development of new 

strategies for the treatment and the study of celiac disease (and diseases in general), 

we believe that the characterization at atomic level of the interaction between the 

autoantibody anti-TG2 clone 2.8 (Ab1) and its anti-idiotype (Ab2) could be of great 

interest. For this reason, we performed docking simulation between the autoantibody 

clone 2.8 and its anti-idiotype AIT2 isolated from mouse. We also compared the 

obtained solutions with available experimental Ab1-Ab2 structures.171,186,188,199-201 

Finally, we searched for local structural similarities between the Ab2 and the original 

Ab1’s antigen TG2. 
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6.2 - Methods 

Abs modeling 

The variable domain structures of clone 2.8 and Ab2-mouse AIT2 were modeled by 

the RosettaAntibody Fv homology modeling server,164 using the full refinement 

protocol option.  

The PDB codes of the templates for Ab2 AIT2 are as follows: 1MH5 for the heavy-

chain framework (97,01%) and 1AY1 for the light chain (96,77%); 1AY1 for L1 

(100,00%), 1SEQ for L2 (100,00%), 1AY1 for L3 (77,78%); 1IQW for H1 (90,00%), 

1IQW for L2 (100%) and 1A2Y for H3 (same length, no identity).  

 

Docking 

The obtained models were then used for Ab1/Ab2 protein-protein docking 

simulations, performed by the ClusPro 2.0 server.56 By default, ClusPro server docks 

the receptor (Ab2) and the ligand (clone2.8) structures using DOT rigid-body docking 

algorithm. The top 20.000 complexes generated by DOT are then filtered according to 

electrostatic and desolvation energies, and then the top 2000 complexes are retained 

for further processing. The retained 2000 conformations are then clustered according 

to interface RMSD values and the top 10 docked models, following a short Charrm10 

energy minimization, are made available for download. In all the simulations, all the 

Ab2’s residues that do not fall into the Complementary Determining Region (CDR) 

were masked (ClusPro Antibody Mode). Differently, for clone2.8 two situations were 

explored. In the former, indicated as ‘blind’ docking, all the clone 2.8 residues were 

considered on an equal basis; in the latter, indicated as ‘active’ docking, all but CDR 

residues were marked, to have only CDR interacting.  

 

Analysis 

The representative structures of the ten best clusters for each simulation were 

analysed. To analyze the docking results we used the CONS-COCOMAPS5 web tool, 

that uses the conservation of inter-residue contacts as an estimate of the similarity 

between different docking solution. Then, the visualization and comparison of the 

interface in the docking models and crystallographic complexes were performed with 

the COCOMAPS4 web tool, through intermolecular contact maps. Finally, a local 
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structural similarity between the Ab2 and the original clone 2.8’s antigen TG2 was 

perfomed by RASMOT 3D PRO202 and ProBis 2012203 web tools. 

 

 

6.3 - Results and Discussion 
We performed docking simulations to obtain the structure of the complex between the 

idiotype clone 2.8 and its anti-idiotype AIT2, both isolated from CD patients. The 

structures of both Ab1 and Ab2 were reliably predicted by homology modeling using 

Rosetta Antibody,164 while protein-protein docking simulations were performed by 

ClusPro 2.0.56 

In our ClusPro Ab1-Ab2 simulations, Ab2-AIT2 acts as the antibody (i.e the 

recognizing molecule), while Ab1-clone2.8 acts as the antigen (i.e. the recognized 

molecule). Therefore, as generally done for antibodies, Ab2-AIT2 was fixed and all 

its residues not falling into the CDR were masked. As for the Ab1-clone 2.8, in a first 

‘blind’ docking approach, all residues were considered unmasked, and therefore 

available for the interaction. However, as experimental data showed that AIT2 

strongly competes with the original TG2 antigen for the clone 2.8 binding, indicating 

that it also binds to the clone 2.8 CDR region, we additionally ran ‘active’ 

simulations, where the non-CDR regions of clone 2.8 were masked. For each docking 

approach, we then analyzed the representative structure of the ten best clusters, that 

should capture most of the important rigid-body binding geometries, providing good 

starting structures for further analyses.  

 

‘Blind docking’ 

The ‘blind’ docking simulations gave solutions with relative low population (86/2000 

for the first cluster). However, although no constrains were applied, all the ten 

models, with the only exception of model 6, pointed to the CDR region of clone 2.8 

(in particular to its light chain), (see Figure 28a and Figure 28c). 
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Figure 31. ‘Blind’ and ‘active’ docking clusters population and 3D visualization 
(a) and (b): Table reporting the population of the top ten clusters, and the score of the 
representative model of each cluster; the values are reported for both ‘blind’ (a) and  
‘active’ docking simulations (b). (c) and (d): Pymol204 visualization of the 
representative models of the top ten clusters in both ‘blind’ (c) and the ‘active’ 
docking simulations (d), after superimposition of clone 2.8. The clone 2.8’s light 
chain is colored in cyan, its heavy chain is colored in blue and its CDR loops are 
highlighted in dark blue. All the models involving the clone 2.8’s CDR region for the 
interaction have AIT2 colored in silver, while the only one pointing in the other 
direction has it colored in copper. 
 

Furthermore, running CONS-COCOMAPS5 on the top ten solutions, a significant 

consensus was found in terms of intermolecular contacts. In particular, CONS-

COCOMAPS5 gives in output: i) a ‘consensus’ map, i.e. a 2D map were inter-

molecular contacts are shown in a scale of grays were the more conserved the contact, 

the darker the spot, and ii) a list of the most conserved contacts.  

The consensus map (Figure 32a) showed at a glance the similarity among these ten 

best docking solutions; in fact, the map was not spread but the dark spots converged 

in well defined and conserved regions, most of them located at the crossover of the 

CDR loops of both clone 2.8 and AIT2. Please note that involvement in the 
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interaction of the clone2.8 CDR loops was not obvious as a result of the ‘blind’ 

simulations, where all its residues were treated on an equal basis. This consensus was 

also quantified by the CONS-COCOMAPS’ table that reports the list of the most 

conserved inter-residue contacts, in which it was evident that all the clone 2.8’s CDR-

loops were involved in the interaction in more that one model (reaching a maximum 

of seven models on ten having the L1 and L2 loops at the interface, and a minimum of 

three models on ten having the H1 at the interface, see Figure 32).  

 

 
Figure 32. Consensus maps and consensus lists 
 (a) and (b): The CONS-COCOMAPS consensus map between clone 2.8 and AIT2 
for the ten best ‘blind’ (a) and the ‘active’ (b) docking. Labels have been added for 
clone 2.8 CDR loops L1-L3 and H1-H3. (c) and (d): List of the number of models 
presenting the clone 2.8’s CDR loop at the interface of interaction, in the case of the 
‘blind’ and the active ‘docking’. 
 

So, overall the ‘blind’ simulation clearly show that the region recognized by the anti-

idiotype antibody AIT2 involved the clone 2.8’s CDR loops, in agreement with the 

experimental data.6 
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‘Active’ docking 

We therefore ran the ‘active’ docking simulation, where the CDR residues of clone 

2.8 were the only ones not masked in the docking. The results do not vary greatly. 

Comparing the ‘blind’ and ‘active’ consensus maps (see Figure 32a and b) it is 

apparent that the ‘active’ solutions represent a subset of the ‘blind’ ones. In fact, 

almost all the spots showed in the ‘active’ consensus map are included in the spots 

showed in the ‘blind’ consensus map, and darker in same cases. The first cluster 

coincides with the first most populated ‘blind’ solution and its population is about 

doubled (Figure 28a and Figure 28b). 

Analyzing and characterizing the interaction interface for these docking models by the 

COCOMAPS4 web tool, one preferred solution clearly emerges finding a significant 

consensus among the most populated ‘blind’ and ‘active’ solutions (and also the ones 

of lowest score), involving about 20% of all the solutions. In fact, by the comparison 

of the COCOMAPS4 contact maps it is apparent at a glance the overlap of the 

epitopes (corresponding in an overlap of the spots in the contact maps), in particular 

between model 1 of the ‘blind’ docking and model 1 and model 2 of the ‘active’ one 

(cluster population of 86, 152 and 118, respectively) (Figure 33). Also the 

resemblance of the accessible surface area in the three complexes, the lists of residues 

at the interaction interface and of the intermolecular H-bonds given by COCOMAPS4 

confirmed the similarity between them (data not shown). 
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Figure 33. Comparison of the COCOMAPS’s property contact maps and the 
CONS-COCOMAPS’s consensus map. 
(a), (b) and (c): the distance range contact maps by COCOMAPS4, calculated for the 
model 1 of the ‘blind’ docking (c) and model 1 (a) and model 2 (b) of the ‘active’ one. 
Labels have been added for clone 2.8 CDR loops L1-L3 and H1-H3. The dots at the 
crossover of two residues are colored in red, yellow, green and blue if any pair of 
atom is closer than 7, 10, 13 and 16 Å, respectively. (d) Consensus map calculated on 
the blind simulation’s model 1, active simulation’s model 1 and model 2. Also, labels 
have been added for clone 2.8 CDR loops L1-L3 and H1-H3. 
 

6.4 - Study of experimental cases from literature: comparison with 

other Ab1-Ab2 X-ray structures 
We than decided to analyze the features of the complex interface in all the available 

experimental structures of Ab1-Ab2 complexes (in the wwPDB: 1CIC,201 1IAI,171 

1DVF,199 1PG7,188 3BQU186; experimental structure of Ab1 YsT9.1 in complex with 

the Ab2 T91AJ5 determinated by Evans et al.,200 ) and to compared these with the 

AIT2-clone 2.8 ‘consensus’ complex we selected upon the docking simulations. We 
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found that there is one recurrent binding solution in the experimental structures, that 

interestingly closely resembles the one we found for clone2.8 and AIT2. This 

increases our confidence in the proposed orientation of the molecules in the complex.  

 

First, the RMSD between the experimental case and the proposed model is of only 3.2 

Å. In Figure 34 the contact maps of both AIT2/clone 2.8 ‘consensus’ model and the 

crystallographic structure between an anti-hen-egg-white lysozyme antibody (Ab1-

D1.3) and an anti-idiotypic antibody (Ab2-E5.2) (wwPDB code: 1DVF)199 are 

reported. Comparing the two contact maps, it is evident that the AIT2/clone 2.8 model 

provides similar binding interaction to the x-ray structure. In fact, both complexes 

seems stabilized preferentially by contacts between:  

- Ab1’s loops L1, L3 and H2 interacting with the light chain of Ab2; 

- Ab1’s loops L1, L2, L3 and H3 interacting with the heavy chain of Ab2. 

The chemical-physical nature of the interaction residue involved in the interaction 

seems similar among the two complexes, showing in both cases a major involvement 

of hydrophilic residues. In fact, using the COCOMAPS default cutoff value to define 

the interaction residues (i.e. 8 Å), the clone 2.8/AIT2 model present 68,6% of 

hydrophilic/hydrophilic interaction, similar to the 60,9% of D1.3/E5.2 x-ray structure. 

On the contrary, the percentage of hydrophobic/hydrophobic interaction is of 2,2% for 

the model and 4,2% for the experimental structure we are considering, in both cases 

centered on the Ab1’s H3 – Ab2’s H3 interactions. Also the number of intermolecular 

H-bonds results the same in both cases. 

Finally, we found similarity also in the values of the interface area, being of 816.4 Å2 

for clone 2.8-AIT2 complex and of 839.6 Å2 for D1.3-E5.2 complex. 
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Figure 34. Comparison with x-ray 
(a) and (b): the distance range contact maps by COCOMAPS4, calculated for the 
clone 2.8/AIT2 model (a) and the experimental structure of E5.2/D1.3 complex (PDB 
code: 1DVF) (b). The dots at the crossover of two residues are colored in red, yellow, 
green and blue if any pair of atom is closer than 7, 10, 13 and 16 Å, respectively. (c) 
and (d): Pymol204 visualization of clone 2.8/AIT2 model (c) and the experimental 
structure E5.2/D1.3 (d). The color code is the same in both figures: the Ab1 light and 
heavy chains are colored in light and dark blues, respectively; the Ab1 light and heavy 
chains are colored in light and dark pink, respectively. Labels have been added for the 
Ab1’s and Ab2’s light and heavy chains.  
 

6.5 - Searching for structural similarities between Ab2 and Ag 
The last step in the characterization of a Ab1-Ab2 complex is to identify possible 

structural similarities between the anti-idiotype Ab2 and the original antigen TG2. 

Unfortunately an experimental structure for the TG2-clone2.8 complex (the 

corresponding Ag-Ab1 complex) is missing, therefore we could just search for a 

possible local structural similarity between Ab2 and the original Ab1’s antigen TG2. 

However the two web tools used to the aim, RASMOT 3D PRO202 and ProBis 

2012,203 were unable to detect any significant similarity between them. 
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6.6 - Conclusion 
Here we report a molecular model of the complex between the mouse anti-idiotype 

antibody Ab2-AIT2 elicited against the celiac autoantibody Ab1-clone 2.8. The 

present investigation provides better picture and gives useful insight into the 

orientation and characterization of the complex’s binding site, showing that the 

interaction involves the Ab2-clone 2.8’s binding site specific for the original antigen 

TG2, in according with the experimental data. Unfortunately, the experimental 

structure for the corresponding Ag-Ab1 is missing, and the only searching for 

structural similarity between Ab2 and original Ab1’s antigen did not detect significant 

similarity. So, on the basis of this property, Ab2 can be classify the Ab2β or Ab2γ. 

The improvement achieved in recent years by methods for predicting structures and 

protein-protein interaction give us the confidence in the results of our computational 

approach. Most importantly, the model is validated by its ability to explain the 

experimental data, its coherence resulting by different docking simulations and by the 

comparison with experimental structure complexes of the same typology, resembling 

the most recurrent binding mode of the experimental Ab1-Ab2 complexes. 

Due to the crucial involvement of the idiotypic network in the autoimmune diseases 

and the promising therapeutic applications, the proposed model could help 

rationalizing the experiments as crucial step for the study of the celiac disease and the 

development of new possible therapeutic strategies. 
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CHAPTER 7 - Dynamic properties of a pathogenic mutant 

of the blood coagulation Factor X activated (FXa) and their 

effect on the substrate recognition and the catalytic 

efficiency 
 

 

7.1 - Introduction 
As described in Chapter 1, protein-protein interactions are intrinsic to every cellular 

process. Protein complexes underline for instance signaling, regulation, immunogenic 

recognition, as well as post-transcriptional events.58 Apart from the antibody-antigen 

interactions described in Chapter 5 and 6, another fascinating biological complex 

typology is the one between an enzyme and its substrate. The enzymes are large 

proteins responsible for thousands of chemical interconversions occurring in the cells. 

An enzyme, in fact, acts as a highly selective biological catalyst, increasing the 

velocity and the rate of the reaction. Most enzymes act specifically with one reactant 

(called substrate) to produce products. On the basis of the function and the reaction 

that the enzymes catalyze, they are divided in families. A family of enzyme that is an 

interesting case in the field of the protein-protein interaction study is the serine 

protease one. These enzymes catalyze the cleavage of the peptide bonds in proteins 

and they are involved in a lot of fundamental processes, such as blood coagulations, 

digestion, immune response and reproduction. There are many experimental data 

available about the structure, the nature of the binding site (made of the catalytic triad 

His, Asp and Ser) and the function of the serine protease that helps to carry out 

structural study. In this scenario, my group and I focused the attention on a study 

about the recognizing properties of the serine protease factor X and its pathogenic 

mutant that causes problems in the blood coagulation cascade, taking advance of the 

molecular dynamics technique.  

 

Factor X 

The factor X (FX) is a vitamin K-dependent glycoprotein synthesized in the liver as a 

precursor molecule.71,72 FX plays a pivotal role in the coagulation cascade being the 

point of convergence between intrinsic and extrinsic pathway of blood coagulation. 
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The FX activation results from the cleavage of the peptide bond Arg194-Ile195 

(Arg15-Ile16 in the chymotrypsinogen numbering) that transforms the inactive 

zymogen of FX in a fully active enzyme (FXa). Upon its activation, FXa assembles 

into the prothrombinase complex to convert prothrombin (its substrate) to thrombin in 

the final stage of the blood coagulation cascade.205,206 

FX circulates in plasma, at a concentration of 8-10 µg/mL, as a two chain protein: a 

light chain of 17 kDa linked with a disulphide bond to a 45 kDa heavy chain. FX 

shares extensive amino acid sequence identity to other vitamin-K-dependent serine 

proteases such as prothrombin, FVII, FIX, protein C and protein S.207 In particular, 

the catalytic sites of the hemostatic proteinases share the same fold of the trypsin-like 

serine proteinases.208 This allowed the use of the chymotrypsinogen numbering 

system for residues of the catalytic domains, which facilitate comparison of the 

various factors. The FXa catalytic domain is composed of two six- strand β−barrels 

and four short helices. The three serine protease catalytic residues His57, Asp102 and 

Ser195 (chymotrypsinogen numbering) are located at the crevice of the two β−barrels 

(Figure 35). The catalytic Ser195, together with the adjacent Gly193, forms the 

“oxyanion hole”, helping to stabilize the tetrahedral intermediate during catalysis. 

Inherited FX deficiency is a rare (1:1,000,000) coagulopathy with severe bleeding 

symptoms presenting early in life in homozygous patients.209,210 About 105 causative 

mutations have been described in the FX gene so far, the majority of which are 

missense. The study of naturally occurring mutants in FX offers considerable insight 

into the structure and function of FX molecule. However, only few FX mutants have 

been expressed and characterized so far, and among them, only four located in the 

catalytic domain, were analyzed, namely Val342Ala, Arg347His, Gly366Ser and 

Gly381Asp.8,211-213 Expression studies showed that all recombinant proteins were 

normally synthesized and secreted, but further functional characterization revealed 

that all of them had reduced coagulant activity, even those having a rate of activation 

similar to the wild type protein. All these studies confirmed the existence of a strict 

correlation between the localization of the mutation and protein function.214 

 

In the present study, my group and I focused our attention on the molecular 

characterization of a recurrent p.Gly262Asp mutation (Gly43Asp in the 

chymotrypsinogen nomenclature; to better localize the amino acid residues in the 
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molecular modeling of the mutant FX, the chymotrypsin numbering system was used 

throughout the text) in the catalytic domain of mature FX protein, performing 

molecular dynamic simulations. We performed the present investigation to the aim of 

provide an explanation about the influence of the mutation on the structure and 

function of the protein ant its consequence on the interaction with the substrate. The 

study was conducted in collaboration with the experimental groups of the Prof. De 

Cristofaro (Hemostasis Research Centre, Institute of Internal Medicine and Geriatrics, 

Catholic University School of Medicine, Rome, Italy) and Prof. Peyvandi 

(Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli 

Studi di Milano and Luigi Villa Foundation, Milan, Italy), that performed in vitro 

expression analyses and steady state kinetic studies of the wild type FXa and of its 

Gly43Asp mutant. The current name of the mutation refers to initiating methionine 

numbered as +1, but it was originally reported as Gly222Asp.215 Gly43 is a buried 

residue located in the β3-strand (residues 40-46) of the N-terminal β-barrel, under the 

oxyanion hole formed by the Ser195 and Gly193 residues. It also gives an H-bond 

with the Ser195 backbone. Its spatial position relative to the catalytic triad is pretty 

fixed, as a disulphide bridge connects the immediately upstream Cys42 to Cys58 that 

follows the catalytic His57 (Figure 35). 

Therefore, to investigate the effect of the naturally occurring Gly43Asp mutation on 

the FXa structure and dynamics, in vitro expression analyses, steady state kinetic 

studies and molecular dynamics (MD) simulations of the wild type FXa and of its 

Gly43Asp mutant were performed. This is the first report of the cellular fate 

characterization of a mutation located in the so-called loop-40 of the FXa, a 

conserved region of serine proteases including the catalytic His57.216 
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Figure 35 

Cartoon representation of the crystallographic structure of the catalytic domain of 
human FXa (PDB code: 2BOH). In this orientation, the N-terminal β-barrel is up 
(colored gray) and the C-terminal β-barrel is down (colored copper). Gly43 and the 
catalytic residues are shown as red and yellow sticks, respectively. The bound 
calcium ion and oxygens of the two crystallographic waters close to Gly43 are shown 
as large magenta and small red spheres, respectively. The H-bond between Ser195(O) 
and Gly43(N) is also shown and a stick representation of the Cys42-Cys58 disulfide 
bridge is given. 
 

 

7.2 - Methods 
Molecular dynamics simulations and electrostatic potential calculations 

For the MD simulations of FXa, the 2.2 Å resolution crystal structure corresponding 

to the PDB code 2BOH217 was selected. For the MD simulations of the heavy chain of 

FXa, the 2.2 Å resolution crystal structure corresponding to the PDB code 2BOH was 

selected.218  Since missing crystallographic waters may lead to artifacts in the FXa 

dynamics,219 we selected a starting structure with a large set of well- determined 

water molecules,217 which were included in the simulations. Interestingly, in the X-

ray structure two buried water molecules are located close to the Gly43 residue. The 

starting structure for the FXa43Asp mutant was generated by the Mutagenesis PyMol 

module.96 Insertion of the quite bulky aspartate side chain did not cause any dramatic 
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clash with the rest of the molecule, and the oxygens of the carboxylate group replaced 

the two aforementioned crystallographic waters. 

 

All the MD simulations were performed using GROMACS ver. 4.5.4 220 that adopts 

the AMBER99SB221 force-field for energy minimization and molecular dynamics 

simulations. Both the WT and MT structures were solvated in a periodic cubic box 

with about 12500 TIP3P222 water molecules, and at least 10 Å between the protein 

and the box sides. Electroneutrality was achieved by random replacement of water 

molecules with enough counter ions. The Particle-Mesh Ewald algorithm was applied 

to treat electrostatic interactions. The systems were first energy minimized, then a 

short 100 ps NVT MD simulation at 300 K was run to equilibrate them. These 

structures were used as the reference in the analysis of the MD trajectories. For better 

sampling, four different 60 ns long NPT MD simulations for each protein were 

performed assigning different initial velocities. A Berendsen thermostat with a time 

constant of 0.1 ps was used to control temperature of protein and of solvent. Pressure 

was controlled with a Parrinello-Rahman barostat with a time constant of 2 ps. The 

time step of the simulations was set to 2 fs, coordinates were saved every 10 ps. 

Analysis was performed on the last 10 ns. 

Structural properties, such as root mean-square deviation (RMSD), root-mean square 

fluctuation (RMSF) and hydrogen bond interactions, were calculated with the built-in 

functions of GROMACS. Essential dynamics analysis was based on the 

diagonalization of the covariance matrix of the protein alpha-carbon atomic 

fluctuations. To calculate the H-bonds occupancy, the cut-offs on the Donor-Acceptor 

heavy atoms distance and on the Hydrogen-Donor-Acceptor angle were set at 3.5 Å 

and 30°, respectively. A representative structure for each system was also extracted, 

to be used for visualization and electrostatic potential calculations, by selecting the 

nearest frame to the average coordinates during the last 10-ns. Electrostatic potentials 

were calculated by solving the Poisson-Boltzmann equation using the APBS program 
223 and visualized with PyMOL 224. Calculations were carried out on a grid spacing 

between 0.31 and 0.37 Å, with a temperature of 298.15 K. The dielectric constrants 

were set to 4 for the protein and to 78 for the solvent. The solvent probe radius used 

was 1.4 Å.  
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7.3 - Results 
To investigate the effect of the naturally occurring Gly43Asp mutation on the FXa 

structure and dynamics, we performed molecular dynamics (MD) simulations of the 

wild type FXa (WT) and of its Gly43Asp mutant (MT). We selected a starting 

structure with a large set of well-determined water molecules 217, which were included 

in the simulations. Interestingly, in the X-ray structure two buried water molecules are 

located close to the Gly43 residue. When we modeled the Gly43Asp mutant, the 

insertion of the quite bulky aspartate side chain did not cause any dramatic crash with 

the rest of the molecule, and the oxygens of the carboxylate group replaced the two 

above crystallographic waters.  

 

RMSD and RMSF analysis 

Four 60-ns-long MD simulations have been performed both for the WT and MT FXa 

with different initial velocities, to ensure better sampling. The overall stability of the 

proteins throughout the simulations were monitored through the RMSD of Ca atoms 

from the appropriate starting structures for each of the eight simulations. The systems 

remain stable during the 60-ns both in WT and MT (see Figure 36), and reach the 

equilibrated structures after 30-ns of simulation time based on the pleateuing of the 

RMSD curves, both for the WT and MT simulations. 

To investigate how the mutation affects the overall flexibility of the protein, we also 

calculated the RMSF of the C-alpha atoms during the last 10-ns of the simulations 

(Figure 36). The Cα-RMSF values reveal the same trend among the four different 

simulations for each system. The trend and overlap of the RMSD curves and also of 

the RMSF profiles are clear indicators of the similarity between the spaces sampled 

by the four simulations for both the systems. Due to convergence of these simulations, 

in the following the results of one simulation per system will be discussed in detail. 
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Figure 36.  
The time dependence of RMSDs for the Cα of WT (on the left) and MT FXa (on the 
right) in the 60-ns MD simulations. The four simulations are shown in different colors 
in both the WT and MT systems. 
 

From the RMSD values and the RMSF trends (Figure 37c), it is apparent that the 

Gly43Asp mutation does not dramatically affect the FXa structure, neither globally 

nor locally. This is also confirmed by the conservation of the secondary structure in 

the two systems, monitored during the last 10-ns of MD simulation (data not shown). 

It is worth noting that the fluctuation of residue 43, both in WT and MT is particularly 

low (see Figure 37c). As already said, this is related to the presence of a disulphide 

bridge connecting Cys42 and Cys58, both in the WT and MT FXa.  
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Figure 37 
The calculated RMSF of Cα atoms vs protein residue number during the last 10-ns of 
simulation for : a) WT and b) MT FXa. The four simulations are shown in different 
colors in both the WT and MT systems. c) A comparison between the RMSF plot for 
simulation 1 of WT (in black) and MT FXa (in red).  
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Catalytic hydrogen bonds 

A notable difference between the two systems is however observed, when looking at 

the protein H-bonds. Interestingly, on average four more H-bonds are found in the 

MT as compared to the WT (total number 167,4 vs. 163,6). To investigate whether 

this involve the catalytic site, all the H-bonds involving the catalytic triad and/or the 

Gly/Asp43 residue were monitored during the last 10-ns of the MD simulations. In 

Table 12, the occupancy of these “catalytic H-bonds” is reported for WT and MT; in 

Figure 38a view of the “catalytic H-bond network” is also given for the two systems. 

 

Acceptor Donor WT G43D mutant 

43D/G(O) T54(OG1) 97,9 0,0 

43D(OD1) Q30(NE2) - 100,0 

43D/G(OD2) F141(N) - 98,6 

S195(O) 43D/G(N) 98,7 66,2 

D102(OD1/OD2) H57(ND1) 86,5 95,7 

D102(OD1/OD2) H57(N) 99,0 96,9 

H57(O) Y60(N) 73,2 70,3 

H57(NE) S195(OG) 0,3 11,8 

D102(OG) T229(OG) 97,2 1,7 

D102(OD1) S214(OG) 99,4 99,7 

D102(O) A56(N) 2,3 81,1 

S195(OG) G193(N) 12,8 19,3 

S214(O) S195(OG) 0,8 29,2 

I227(O) S214(N) 81,1 78,9 

A104(O) T54(OG1) 0,0 69,3 

Table 12 
The occupancy percentage (%) of WT and MT FXa hydrogen bond interactions 
involving mutated and/or catalytic residues, during the last 10-ns of simulation. 
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Figure 38 
The H-bonds network around the catalytic site, as calculated during the last 10-ns of 
simulation for WT (on the left) and MT FXa (on the right). H-bonds which are 
remarkably different between the two systems are shown in red, those conserved are 
instead shown in blue. The mutated residue (Gly/Asp43) is colored red, the catalytic 
triad is colored yellow. Remaining residues are colored gray if belonging to the N-
terminal and copper if belonging to the C-terminal β-barrel. Note that for the sake of 
simplicity, the Gly193(N)-Ser195(O) H-bond, whose occupancy is comparable 
between the two systems, is not reported. 
 

Both from Table 12 and Figure 38, it can be easily seen that the mutation modifies the 

H-bonds network around the catalytic residues, by thickening it in the MT, as 

compared to the WT. In particular, in the WT the Gly43 backbone acts as acceptor in 

a high-occupancy H-bond with the side-chain of Thr54. Such H-bond is lost in the 

MT, however it is here compensated by a H-bond between the Thr54 side chain and 

the Ala104 backbone (see Figure 38). Importantly, MT Asp43 uses its additional H-

bond acceptors (the oxygens of the carboxylate group) to give two novel H-bonds, as 

compared to the WT, with the side chain of Gln30 and with the backbone amide 

proton of Phe141 (from the opposite C-terminal β-barrel), respectively. It is 

interesting that one of these H-bonds substitutes a WT H-bond involving the Phe141 

backbone and one of the above crystallographic waters.  

As a possible conseguence, the backbone-backbone H-bond between residue 43 and 

the catalytic Ser195, which is very stable in the WT (occupancy 98.7%), becomes 

weaker in the MT (occupancy 66.2%). Other two ”catalytic H-bonds” are also 



 120 

significantly affected by the mutation: one involves the side chains of His57 and 

Ser195, while the other involves the Ser195 side chain together with the Ser224 

backbone. Both these hydrogen bonds are observed in a significant fraction of MT 

structures (occupancy 11.8 and 29.2%, respectively), whereas they are absent in the 

WT (occupancy below 1%). Finally, a backbone-backbone H-bond between the 

catalytic Asp102 and Ala56 is observed in the MT, instead of the side chain-side 

chain H-bond between Asp102 and Thr229 of the WT. 

 

Essential dynamics 

It is commonly accepted that essential degrees of freedom (or correlated motions) of a 

protein describe motions relevant for its function,31-33 with the first several 

eigenvectors normally representing most of the correlated motions.31 Therefore, 

essential dynamics analysis was carried out on the C-alpha  atoms of wild type and 

mutant FXa. For both systems, the last 10 ns trajectories were projected onto their 

eigenvectors and the RMSF curve of the C-alpha  atoms of the protein along the first 

eigenvector was plotted (Figure 39a). The regions show similar fluctuation for wild 

type and mutant, except in same peripheral parts of the proteins and in a region 

involved in the binding of the substrate. Specifically, the loop containing residues 94-

97, at the border between the S2 and S4 binding pockets, shows a larger correlated 

motion in the wild type than in the mutant (Figure 39b) 
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Figure 39 
a) Comparison of the RMSF curves for the Cα atoms of WT (black line) and MT FXa 
(red line) along the first eigenvector. b) Cα ribbon representation of the ensemble 
structures representing the movement of the first eigenvector for WT (colored blue) 
and MT. (colored magenta). The Cα atoms of Gly/Asp43 and of the catalytic triad are 
shown as red and yellow balls, respectively. Binding regions showing a different 
behavior in terms of correlated motions are also indicated. 
 

Electrostatic potentials 

To investigate the possible effect of the negative charge introduced by Asp43 in the 

MT, in proximity of the catalytic site, we also calculated continuum Poisson-

Boltzmann electrostatic potentials for the two systems. 

In Figure 40, representative structures are shown for WT and MT FXa, colored 

according to the calculated electrostatic potentials. The structures are oriented with 

the N-terminal and C-terminal β-barrels up and down, respectively. The crevices 

hosting the substrates are in the middle and cross the proteins horizontally. It is 

apparent that the potential along the crevice is predominantly negative for both the 

systems. However, in the MT the negative character of the electrostatic potential 
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around the active site is accentuated and, importantly, in correspondence of the 

oxyanion hole it is reversed from the positive values of the WT to negative ones.  

 
 

Figure 40 
Representative structures are shown for WT and MT FXa, with the Van der Waals 
surface colored according to the calculated electrostatic potentials. The crevice 
hosting the substrate crosses the proteins horizontally. The color scale (in kT/e) is also 
reported. A yellow circle is used to indicate the position of the oxyanion hole.  
 

 

7.4 - Discussion  
Several natural FX variants due to missense mutations were previously reported in the 

literature.206,207 These FX mutants, through different molecular mechanisms, are 

responsible for mild to severe reduction of FX procoagulant activity but only a few 

naturally occurring variants have been characterized so far. Hence, functional 

consequences of the majority of them remain largely unexplained. In addition, among 

naturally occurring FX mutations, only those compatible with normal or reduced 

biosynthesis and secretion are appropriate tools to investigate the molecular 

mechanisms underlying the disease, the structure-function relationships and bleeding 

tendency.  

Previous in vitro expression studies were performed only on 10 mutations (out of the 
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82 missense mutations hitherto identified); each of these studies elucidated the effect 

of the mutation, providing information on the involved molecular mechanisms. In 

particular, those located in the catalytic domain, Val342Ala [Val160], Gly366Ser 

[Gly183] and Gly381Asp [Gly197] mutations, led to normally synthesized proteins 

with variable reduction of the activity due to the disruption of the native 

conformational structure of the catalytic domain with rearrangements of the 

molecule,8,211,213 except for Arg347His [Arg165] that provokes the attenuation of FVa 

binding.212 All these mutations but Val342Ala [Val160] are predictive of a clinically 

severe FX deficiency characterized by absence of FX procoagulant activity.  

This work provides information about one of these naturally-occurring recurrent FX 

variants, the Gly43Asp mutation, that was firstly identified in two patients from 

Iran,17 and subsequently in 13 other patients from Turkey (unpublished data). All of 

them had a severe clinical phenotype, with such symptoms as hematomas and 

hemarthroses, hematuria and epistaxis, associated to a coagulant activity <1%.209 

The Gly43 is a buried residue at the core of a completely inaccessible β-strand  in the 

mature FX protein. The Gly43Asp substitution occurs at the highly conserved 42-58 

residues region (loop-40) shared among all trypsinogen-like proteins (Table 13). In 

addition, Krawczak et al., through a homology modeling study of the catalytic domain 

of the ancestors of the present-day serine proteinases, showed that sequence and 

structure of this region is maintained despite the processes of duplication and 

divergence that the genes coding for coagulation proteins have undergone during their 

evolution.225 These findings emphasize the importance of the loop-40 in the context of 

the functional architecture of blood coagulation serine proteinase. 

 

 
Table 13 
Aminoacids sequences from residue 42 to 58 (chymotrypsin numbering) of thrombin, 
FXa, FIXa and FVIIa and anticoagulant protein C. 
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Mutations occurring at this region have been shown to be causative of severe type I 

prothrombin, FVII, FIX or protein C deficiency.226-229 The mechanism responsible for 

the severe FX deficiency caused by the Gly43Asp substitution was previously 

investigated showing a partial defect in secreting FX43Asp. Then, the experimental 

part of the present study on FX43Asp confirmed a secretion defect due to an 

alteration in the secretion efficiency of the mutant recombinant protein.  

It is clear that in the process of secreted proteins is orchestrated by a group of 

molecules with a quality control function. The proteins involved in the folding system 

are lectins such as calreticulin, calnexin and Erp57.230 These molecules (chaperons) 

facilitate protein folding231 and ensure that correctly folded, assembled and modified 

proteins are transported along the secretory pathway. Therefore, the partial defect in 

secreting FX43Asp probably occurs due to the introduction of a charged hydrophilic 

Asp residue instead of a neutral Gly into the protein core, altering the recognition site 

involved in the intracellular trafficking. 

In order to understand why the reduced amount of secreted mutant protein did not 

conserve its procoagulant activity, additional kinetic studies were performed in this 

study. In fact, the Gly43Asp substitution seemed to affect the amidolityc activity of 

the FX protein. These findings suggested that the Gly43Asp substitution does not 

totally disrupt the architecture and thus the catalytic function of the enzyme 210 but 

causes a more discrete change of the active site conformation. The Gly43 residue is 

sunk in the core of the protein, and is far from binding sites known to directly interact 

with substrates and/or cofactors to facilitate the specific assembly of the coagulation 

activation complexes.232,233 Gly43 is also located at the N-terminus of the region 

referred to as loop-40, an exosite strongly conserved in the family of serine proteases.  

Usually, a single point mutation affecting the activity of an enzyme is expected to 

compromise its native fold. However, our MD simulations clearly indicate that the 

Gly43Asp mutation neither disrupts nor destabilizes the FXa native structure. Rather, 

it makes it someway more rigid, by thickening the H- bonding network around its 

catalytic site and by affecting the correlated motions involving the substrate binding 

site. This should not be surprising, considering that the mutant shows a residual 

catalytic activity that would be incompatible with a completely misfolded protein. 

Moreover, it is now definitely established that enzymes have evolved under 

synergistic pressure between structure and dynamics and that their motions underlie 

catalysis.234 Experimental evidences for the correlation between the dynamic 
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flexibility of the active site and its catalytic activity have also been specifically 

collected for α-chymostrypsin, a prototype serine protease.235 Therefore, 

compromising the FXa enzyme flexibility, the mutation may also compromise its 

catalytic efficiency. The increased rigidity of the mutant FX might also affect the 

molecular recognition by chaperone proteins inside the cell, thus causing the retention 

and defective secretion. Further, we have shown  that introducing a negative charge 

(Asp43) spatially close to the FXa catalytic Ser195, results in a negative electrostatic 

potential around the oxyanion hole, where the negative charge of the tetrahedral 

intermediate needs to be accommodated and stabilized. This is also expected to 

dramatically affect the enzyme catalytic efficiency. 

 

 

7.5 - Conclusion 
In conclusion, this work was focused on the study of the structural and functional 

aspects of a severe FX deficiency due to the frequent Gly43Asp mutation occurring at 

a highly conserved region (residues 42-58) shared among all trypsinogen-like 

proteins. This region of the FX protein has never been studied before and the 

replacement of the Gly43 by an Asp is like to cause a stiffening of the protein due to 

an altered distribution of H-bonds network as well as to a change of the electrostatic 

potential around the active site. These structural changes, although not dramatic, lead 

to the impairment of protein secretion and to a drastic reduction of its coagulant 

activity, proved by kinetic studies performed by the laboratories of the Prof. De 

Cristofaro and Prof. Peyvandi.  

This study can help the emergence of new therapeutic products for the treatment of 

coagulation deficiencies. 
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APPENDIX 1 - Differences between membrane and soluble 

protein loop structures 
 

During the third year of my, I spent seven months in the group of Prof. Charlotte 

Deane, Department of Statistics, University of Oxford (UK). In this period I studied 

the geometrical features of the proteins’ regions most recurrent in the protein-protein 

interaction, the loops, clarifying some structural aspects of them in one of the most 

important and huge class of proteins: the membrane proteins. Here below there is the 

description of this work.  

 

Introduction 
Membrane proteins (MPs) represent about one third of all known proteins. They 

regulate the transport of molecules and information into and out of every living cell. 

Due to their involvement in many medically relevant processes, they comprise over 

half of current drug targets.236 

Unlike globular soluble proteins (SPs), whose natural environment is an aqueous 

solution (such as the cytoplasm), MPs sit inside a lipid bilayer. Thus, a large 

proportion of a MP's amino acids are in direct contact with the hydrophobic fatty acid 

tails of the membrane lipids. The presence of the membrane around the protein 

creates a very different physicochemical environment that has direct effects upon a 

MP's three-dimensional (3D) structure. Transmembrane (TM) segments are usually 

one of two structure types: α helices or β strands. These TM segments are connected 

to each other by stretches of amino acids with irregular structure, known as loops. 

Especially in helical TM proteins, the geometry of secondary structure elements is 

often well conserved, with approximately parallel helices being oriented 

perpendicular to the membrane plane (parallel to the membrane normal) and spanning 

the entire width of the membrane. The structure of the loop regions connecting the 

TM segments can vary greatly between homologues.237 Therefore, loops tend to be 

the parts of MPs that are the hardest to model. 

In MPs loops can interact with the polar head groups of the membrane lipids as well 

as with water molecules and thus tend to contain many hydrophilic and charged 

residues. Positively charged amino acids such as Lys and Arg are especially common 

in loops protruding into the cytosol (the positive inside rule).238,239 In addition to their 
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chemical properties, MP loops can also be expected to have characteristic shapes. The 

typical MP loop connects two roughly parallel TM segments and protrudes from the 

membrane into a polar environment. 

Due to the physical crowding of the membrane, the loop tends not to interact with 

other parts of the protein, except other loops, but might be found touching the polar 

head groups of the membrane lipids. Loops in SPs, on the other hand, can interact 

with sequentially distant residues and often lie on the surface of the protein rather 

than protruding from it. 

 

Due to the biological and medical importance of membrane proteins, they have 

become a major focus in structure prediction. Nevertheless, there is a lack of fast and 

reliable methods that specialize in modeling of membrane protein loops. Often 

methods designed for soluble protein are directly applied to membrane proteins, but 

obviously the difference between the structures of membrane and soluble protein 

loops influences their accuracy. 

The group of Prof. Deane has showed an evidence of this difference, and how this can 

influence the performance of a structure prediction. In fact, using FREAD240 program 

for loop modeling they have found that it is possible to predict accurately the structure 

of membrane protein loops using database of membrane protein fragments, (achieving 

an accuracy of 0.5-1 Å median RMSD), rather than using fragments of soluble 

proteins (achieving on accuracy of only 1-4 Å median RMSD). In fact, they found 

many fragments of soluble proteins with similar shapes to their membrane protein 

counterparts but with a very different sequence.  

The aim of my work in the Prof. Deane’s group was of exploring the reasons for the 

membrane and soluble protein loops difference by analyzing statistical and 

geometrical properties of both classes of loops. I have identified two features of loop 

structures that appear to differ between membrane and soluble proteins: the angle 

between the loop and flanking helices, as well as the contacts between residues and 

the remainder of the protein.  
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Methods 
To understand how the conformations of membrane and water-soluble loops differ, I 

performed a series of tests on two sets of loops. 

 

Test set 

This study uses two sets of X-ray structures: one containing only water-soluble 

proteins (SPs), another containing only membrane proteins (MPs). An initial list of 

potential MPs was culled from PDB_TM241. An initial list of potential SPs was 

created using PISCES server242 under the below criteria: 

- Only X-ray crystallographic determined structure 

- Resolution ≤ 3Å 

- R-factor ≤ 0.3 

- Each chain sharing less than 99% in sequence identity 

For both sets, residues annotated by JOY243 as being anything but helices and sheets 

were treated as loop residues. For the MPs, only loops within the membrane, or close 

to it, were considered. Loops close to the membrane were defined as those residues 

less than 40Å from the central plane of the membrane.244 For each loop length, loops 

were clustered by sequence identity and made non-redundant at the 40% identity 

level. Lengths range from 3 to 15 residues. Only loops connecting two helices were 

considered. 

 

Loop angle θ 

I calculated the loop angle θ, which we define as the angle between the “loop” plane 

and the “helix” plane. First, the centres of mass (average co-ordinates) of the loop and 

the helices were calculated (the points labelled as “A” and “B” in Figure 41, 

respectively). To calculate the centre of mass of the “loop” A, all the Cα atoms of the 

loop were used, while to calculate the centre of mass of the “helices” B the Cα atoms 

of the six residues before and after the loop in the sequence were considered. The 

loop plane was defined as the plane passing through the two anchor residues (points 

labelled “C” and “D” in Figure 41) and the centre of mass of the loop A. In the same 

way, the helix plane was defined as the one passing through the two anchor residues 

and the centre of mass of the helices B. The loop plane’s orthogonal vector “a” and 
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the helix plane’s orthogonal vector “b” were calculated as the cross product between 

the vectors AC◦DA, and CB◦BD, respectively (Figure 41b). 

a = AC◦DA 

b = CB◦BD 

Finally, the angle θ was calculated using the scalar product between the two 

orthogonal vectors a and b, which corresponds to the angle between the helix plane 

and the loop plane. 

 

 
Figure 41 
Geometrical representation of a loop connecting two helices. A) side view, B) front 
view. The two red points “A” and “B” correspond to the loop’s centre of mass and 
helices’ centre of mass, respectively; the two red lines are the side projection/section 
of the loop plane and helix plane; the blue points “C” and “D” correspond to the 
positions of the two anchor residues’ Cα atoms; the green vectors “a” and “b” are the 
orthogonal vectors of the loop plane and helix plane, respectively, that are pointing 
out of the page plane. The angle θ between the two planes is also indicated. 
 

Contact number Ncontact 

For each residue in the loop, the number of residues within a cut-off distance of 4Å is 

calculated (only backbone atoms N, Ca, C, O are considered). Potentially interacting 

residues include any residues that are outside the loop itself and are further than two 

residues from the beginning and end of the loop along the protein sequence. Ncontact is 

defined as the number of contacts between the loop and its surroundings (where any 
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particular pair of residues counts only once), divided be the total number of loop 

residue is in contact. Ncontact can be interpreted as the average number of residue than 

an interacting loop residue is in contact with. A higher Ncontact would indicate tighter 

contact, i.e. any single interacting loop residue in closely surrounded by many 

sequentially distant residues.  

 

 

Results and Discussion 
The hypothesis developed in the Prof. Deane’s group was that the shapes of 

membrane loops tend to be biased, due to the presence of nearly parallel TM 

segments and the crowded environment of the membrane lipids. We propose that MP 

loops will favour a straight conformation, sticking out of the membrane, away from 

the remainder of the protein’s transmembrane domain. In contrast, while some SP 

loops might have similar shapes, they are not confined by the membrane and will be 

more often able to “lie down” on the surface of the protein, in contact with 

sequentially distant residues, thus forming a more globular shape. 

In order to test this hypothesis, I performed several tests on datasets of membrane and 

soluble protein loops. All loops, in both datasets, connected two helices. The first 

measure to assess this hypothesis is the loop angle θ, which is calculated as the angle 

between the plane of the loop and the plane of the two adjacent helices (Figure 41). 

We expected SPs to have a wide variety of θ angles, perhaps biased more towards a 

“lying down” conformation (larger θ values), we expected MPs to be biased towards a 

“straight” conformation (smaller θ values). We did indeed observe such a bias in 

loops up to 6 residues in length (Figure 42a), although only length-6 loops achieved a 

significant P value (p < 0.05) in a Kolmogorov-Smirnov test. MP loops have smaller 

θ angles than SP loops, indicating that they tend to “stand straighter”, away from the 

protein, than the average soluble loop. Loops with lengths above 6 residues showed 

no clear difference. One concern was that this might be due to the way we calculate 

the angle θ. Given that our definition of θ includes the center of mass of all loop C-

alpha atoms, longer loops might produce unpredictable behaviours. I thus repeated the 

calculations while calculating θ by only considering the first and last loop residue. 

The results obtained were virtually identical to the previous test (Figure 42b). While 

this validates our results, it also raises an interesting point: the difference observed in 
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the θ angles for short MP and SP loops (≤6 residues) is entirely due to changes in the 

conformation of the first and last loop residues. 

 
Figure 42. 
Loop angle θ vs loop length. A) Angle θ calculated using the centre of mass of the 
entire loop; B) Angle θ calculated using the centre of mass of only the first and last 
loop residue. 
 

I also investigated a second feature of membrane and soluble protein loops, namely 

their contacts with the rest of the protein. For this purpose I defined the contact 

number Ncontact (see Methods). A high contact number indicates “tight” contacts, 

where a single loop residue is in contact with many residues in the rest of the protein, 

a contact number close to 1 indicates “loose” contacts, where a single loop residue is 

in contact with only a single residue in the rest of the protein. We would expect MP to 

have lower average contact numbers, since their loops tend to stick out of the 

membrane, away from the bulk of the transmembrane domain. SP loops are expected 



 132 

to have higher contact number, as they are not constrained by the membrane and can 

bend to be in closer contact with the bulk of the globular protein. On average, we do 

observe a small difference in Ncontact between MP (Ncontact = 1.53) and SP loops 

(Ncontact = 1.60). As Figure 43 shows, Ncontact tends to be smaller for MP loops when 

compared to SP loops of the same length, although some loop lengths show identical 

behaviour in the two datasets. Given the low numbers of example in the case of MP 

loops it is unlikely that this fluctuation is meaningful. We assume that, as more MP 

structure become known, this curve will smooth out to resemble that of SP loops, but 

shifted towards lower values of Ncontact.  

 

 
Figure 43 
Contact number Ncontact vs loop length in membrane proteins (MP) and soluble 
proteins (SP). 
 

I performed further investigations into the differences between the shapes of MP and 

SP loops. My results indicate a difference in the average conformations of the first 

and last loop residues resulting in a difference in loop angle θ. Short MP loops of up 

to 6 residues in length tend to have a lower θ, meaning they “stick out” away from the 

rest of the protein, rather than lying flat against it. We also observed a difference in 

the contacts between MP or SP loops and the remainder of the protein (Figure 43). 
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The results suggest that MP loops are more loosely connected to the rest of the protein 

structure than their soluble counterparts. 

 

 

Conclusion 
It thus seems that the loop sequence, shape of the first and last residues, as well as the 

loop’s contacts with the remainder of the protein all contribute to the difference 

between MP and SP loops. It should be possible to engineer a statistical scoring 

scheme that utilizes measures similar to those defined here to identify fragments of 

soluble proteins that can be used to model the shape of membrane protein loops. 

This is the first case in which a parameter to define, describe and quantify the 

difference between membrane and soluble protein loops is reported.  
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APPENDIX 2 - Docking technique: details 
 

 

Docking tecnique 
Due to the importance of protein-protein interactions in nature and the difficulty to 

obtain experimental data about the 3D structure of such complexes, the interest in 

protein docking is growing within the scientific community, and is currently one of 

the major challenges in the field of structural computational biology and 

bioinformatics.36  

 

As described in Chapter 1, the docking technique has the task of assembling two 

separate protein components into their biologically relevant complex structure giving 

a model of the way the two proteins bind each other.38,39 

Computational docking, if accurate and reliable, can therefore play an important role, 

both to infer functional properties and to guide new experiments. So, to its potential 

applications generating models of molecular complexes, although being a demanding 

problem, has attracted a vast deal of attention.40  

There are no general rules to predict a binding interface. Basically, all docking 

approaches assume that the native complex is near the global minimum of the energy 

landscape. Therefore, all the current docking methods are based on optimization and 

attempt to find the global minimum of a function approximating the free energy of the 

complex. For details see Chapter 1. 

 

Docking steps 

In all the docking algorithms, there are two crucial steps to generate possible models 

of the three-dimensional arrangement of a complex:  

 

3. Searching (low-resolution search), consisting in the generation of thousands 

of alternative poses (decoys) to sample the rotational/translational space; 

 

4. scoring and ranking (high-resolution refinement), consisting in scoring these 

poses using a ‘pseudo-energy’ function in order to rank the poses and so to 

identify the native-like solutions. 
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Sampling the conformational space 

The searching step involves an exhaustive search of the conformational space of one 

protein with respect to the other, resulting in a six-dimensional search (6D). The 

search of through the entire conformational space of the complex geometry makes the 

calculation expensive, so it is necessary to simplify the system. 

First of all, the protein surface is represented in an easier way than the full-atoms 

representation, preserving the geometrical and physicochemical properties of the 

atoms. The basic description of the protein surface is the atomic representation of 

exposed residues, which can be usually achieved by mathematical models, such as 

geometrical shape descriptors or a grid.42 The geometrical shape descriptors are 

widely used, in which each amino acid is represented by a sphere. As an alternative, a 

grid representation may be used, in which the points are calculated on the basis of 

force field potentials for van der Waals and electrostatic interactions.245 The protein 

interior, the surface and the outer space can be differentiated by the use of grid-based 

molecular representations in combination with Fourier correlation algorithms. 

Once having the easier representation of the system, almost all the docking programs 

use the same approach for the searching step: one protein is fixed in space (usually the 

bigger one) and the second one is rotated and translated around the first one. To 

minimize the degrees of freedom, both molecules are treated as rigid bodies, but still a 

simple systematic search is usually impracticable because the searching algorithm 

entails evaluating in the order of billions (109) distinct possibilities.60 

Although geometric complementarity of the protein surface is the filtering criterion 

most commonly used to eliminate a large number of solutions with poor surface 

matching,47 the docking problem is not simply matching two irregular shapes, but 

there are also other geometric, electrostatic or hydrophobic factors to take into 

account.61 So, there are a lots of possible search methods that have been used in 

protein-protein docking programs. Most methods that perform well in CAPRI (see 

Chapter 1 and paragraph below) are based only on two approaches. These approaches 

are rigid body exhaustive search, involving Fast Fourier Transforms (FFT) and Monte 

Carlo Minimization.  
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Fast Fourier Transform 

The Fast Fourier Transform (FFT) correlation approach, introduced in 1992 by 

Katchalski-Katzir and co-workers,62 revolutionized rigid body protein-protein 

docking. The basic idea of the method is to represent one of the proteins (which will 

be identified as the receptor) on a fixed grid, the second protein (which will be 

referred to as the ligand) on a movable grid, and consider an interaction energy 

written in the form of a correlation function (or as a sum of a few correlation 

functions).246 Since such energy functions can be efficiently calculated via Fast 

Fourier Transforms, it is possible to exhaustively sample the conformational space of 

protein-protein complexes evaluating the energies for billions of conformations on the 

grids, and thus to dock proteins without any a priori information on the expected 

structure.50,247 The original scoring function, introduced by Katchalski-Katzir et al.,62 

accounted only for shape complementarity, but was later extended to include 

additional terms representing electrostatic interactions,53,248 or both electrostatic and 

solvation contributions.79 Since the FFT correlation method performs exhaustive 

sampling on a dense grid, it necessarily samples near-native conformations, 

independently of the shape of the energy surface. Anyway, as said before, even if 

correct solutions are generated, scoring functions often fail to rank them properly, so 

the structures that are close to the native conformation do not necessarily have the 

lowest energies. 

 

Monte Carlo method 

While the rigid body search based on FFT is global but has to rely on simplified 

energy functions defined on a grid, the Monte Carlo analyses involve more detailed 

energy functions and more thorough searches, possibly accounting for side chain 

flexibility. However, Monte Carlo is a statistical method, and due to the improved 

energy evaluation, the Monte Carlo based algorithms (such as the ones at the basis of 

RosettaDock64 and ICM81 docking programs) requires extensive calculations, and the 

simulations can explore only limited regions of the conformational space on 

reasonable time scales. Although the Monte Carlo minimization (MCM) trajectories 

can move ”uphill” and thus cross energy barriers, there is no guarantee that the search 

converges to the global minimum. In fact, the Monte Carlo based docking methods 

include a first stage that uses simplified protein models and energy functions to 

explore the conformational space, and only then switch to simulations that involve 
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models with more detailed geometry and more accurate energy functions. Thus, 

results provided by Monte Carlo minimization may heavily depend on the initial 

points of the simulations. For this reason, quite often this method is preceded by a 

perturbation of the ligand’s position by random translations and rotations.  

 

Scoring and ranking docking decoys 

After a first low-resolution search step, a high-refinement scoring step is required to 

evaluate the energies of protein-protein docking poses in order to identify the one 

with the lowest energy as the predicted binding mode.47 Docking algorithms can be 

classified on the basis of the position of the scoring phase in the algorithm flow, into 

two groups: integrated and edge functions. In integrated algorithms, scoring is 

integrated into the search stage and is thus used to filter emerging solutions. In edge 

algorithms, scoring is applied at the end of the search stage. The major difference is 

therefore that the scoring function is part of the design of the binding solutions in 

integrated algorithms, but not in edge algorithms.42 

The fundamental point of any docking method is to be computationally efficient, 

having a scoring scheme able to evaluate a huge number of solutions and discriminate 

the native-like binding modes from the wrong decoy complex structures in a 

reasonable computational time.42 Most of the docking algorithms developed so far use 

the extent of geometric complementarity of the protein surfaces as an initial filter to 

eliminate a large number of solutions with poor surface matching. It is, however, 

usually recognized that a criterion based exclusively on geometric complementarity is 

far from being enough to distinguish among native and non-native docked geometries, 

except for a very a small number of cases.67 Numerous criteria have been 

implemented with different levels of success: steric complementarity of the shapes of 

the interaction sites, electrostatic interactions, hydrogen bonding, van der Waals, pair 

potential, desolvation, rotamer probabilities, contact pair potential and knowledge-

based potentials. Different docking programs can use different combination of this 

terms in a weighted sum. Furthermore, exclusion of the solvent from the interface and 

the associated solvent entropy change play an important role in the stabilization of 

protein interactions, and can be estimated from empirical potentials or database 

derived functions.18,68  

Resuming the docking procedure and scoring, the initial searching step yields a long 

list of candidate structures; the following step requires some forms of post-processing, 
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which may include: i) scoring or re-scoring of the docked conformations using a more 

accurate energy function, or ii) refining the conformations followed by re-scoring and, 

eventually, clustering.74 These treatments usually improve the number of near-native 

conformations among the 10 to 100 lowest energy structures, but in most cases are 

unable to eliminate all false positives.  

 

The flexibility problem 

One of the most important difficulties in protein docking is that the interface residues 

of both interacting molecules may undergo a conformational change on complex 

formation. Although often the conformational change is limited to side-chains, a 

comparison of bound and unbound structures from PDB34 reveals significant changes 

also in backbone conformation upon binding.249 In protein-protein docking, because 

of the large number of atoms and degrees of conformational freedom involved, it 

would be impracticable to treat molecular flexibility in an explicit way with the 

current available computers, so flexibility is still the major challenge in protein-

protein docking in terms of computational time.250 

Since it is infeasible to explore all possible conformations, protein flexibility is 

introduced into docking protocols only in some steps, and in a variety of ways. As it 

is not feasible to execute extensive conformational searches during docking, unless 

the binding site is known, it has been generally adopted the two-stage approach. 

Initially the interacting molecules are treated as rigid bodies and a fully exploration of 

the six-dimensional rotational and translational space is made. At a second stage, a 

much smaller number of structures acquired in the initial stage are refined and re-

ranked by more scrupulous energy functions that include small backbone and side-

chain movements as well as rigid-body adjustments to take into account 

conformational changes.79 Quite often among docking programs, both backbone and 

side-chain flexibility are being introduced using molecular dynamics (MD) in 

combination with some form of rigid-body docking, either before or after the MD 

simulations.33,251 

In addition, the backbone flexibility can be modeled implicitly as a pregenerated 

ensemble of rigid structures generated from the unbound structure. The ensembles can 

be achieved by using different solved experimental structures from X-ray or NMR 

studies of diverse conformations of the same protein. If the experimental ensembles 

structures are not available, MD and Monte Carlo simulations have been used to 
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generate full protein ensembles and so to incorporate protein flexibility in docking 

(but only for small-scale movements).46,252 

In alternative, normal-mode analysis can also be used to calculate the normal modes 

that are related with the flexibility of the protein and therefore may be used to model 

large global motion.253 Is this way, only backbone motions are studied because the 

model used to calculate the normal modes considers C-alpha atoms only.254 

In addition to inducing flexibility in the backbone, also the side-chain flexibility has a 

fundamental role and it can permit an efficient docking if some interfacial residues are 

in incorrect conformation.39 In 1994 Totrov et al. published one of the first successful 

ab initio predictions of a complex that combined pseudo Brownian Monte Carlo 

minimization with a biased-probability global side-chain placement procedure. They 

showed that side-chain optimization was fundamental for discrimination of near-

native conformations from false positives.255 

The majority of the docking methods adjust side chain conformations explicitly 

during a refinement stage following the rigid-body search, which is characteristically 

performed only for a selected set of protein side chains close to the putative binding 

site and side chain conformations are represented as a discrete set of rotamers from 

libraries. These libraries are derived from statistical analysis of side-chain 

conformations in known high-resolution protein structures.256 In fact, the 20 amino 

acids do not show the same degree of freedom. Amongst the protein complexes, 

arginine, lysine, glutamate and methionine present the highest frequency and 

amplitude of movements between the structures of free and co-crystallized proteins. 
257 In contrast, many of the smaller polar or charged residues, such as asparagine, 

aspartate and histidine, and the large aromatics, phenylalanine, tyrosine and 

tryptophan, are markedly inflexible. So, for example, the lysine side chains flex 25 

times more often than do phenylalanine side chains.253,258-260  

 

Critical Assessment of Prediction of Interactions (CAPRI) 

A variety of approaches have been used in docking programs have that mostly differ 

in the stages of the algorithms, showing different performances depending on the 

approach and the nature of the biological system. In this scenario, the comparison of 

different docking programs to establish their relative performances is very important. 

Indeed, it is required an objective valuation of the model quality. To this aim, the 

international Critical Assessment of Prediction of Interactions (CAPRI) experiment 
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was designed, precisely to evaluate current computational approaches of protein–

protein docking (details in Chapter 1).75  

To assess the quality of the models in CAPRI, after a least-square superimposition of 

the receptor in the model and target, three aspects are analyzed:  

1. the RMSD distance Lrms between Ca atoms of the ligand (L) in the model and 

target;  

2. the interface RMSD distance Irms, calculated with the Ca’s of the epitopes 

only;  

3.  the fraction of native contacts fnc = nc/Nc, where Nc is the number of residue 

pairs in contact in the target, and nc the number of those native contacts that 

are present in the model.  

These parameters Irms, Lrms, and fnc are then combined to classify and rank the models 

in correct and incorrect ones. In models of the ‘‘high-quality’’ and ‘‘medium’’ 

categories, fnc is higher than 0.3, Irms is lower than 2 Å and Lrms is lower than 5.0 Å. 

Models with 10–30% of the native contact pairs and Irms between 2 Å and 4 Å, are 

placed in the ‘‘acceptable’’ category. Although their geometry is poor, they should 

still be useful for site-directed mutagenesis and other experiments, because a large 

part of the epitopes must be correctly identified to yield fnc >= 0.1.Table 14 

summarizes the criteria available for ranking the CAPRI predictions.68 

 

 
Table 14. Criteria for ranking CAPRI predictions. 

 

Four of the most common docking programs are RosettaDock,64 ZDOCK,79 

HADDOCK32 and ClusPro.56 The present different advantages and disadvantages 

described in Chapter 1. Here a brief description of these methods is reported. 
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Docking programs 
 

RosettaDock 

RosettaDock64 starts with a step in which the position of the ligand is perturbed by 

random translation and rotations. Next, a fast Monte Carlo minimization optimize the 

complex orientation with respect to features that do not depend on the explicit 

conformations of the side-chains (e.g. amino acid propensity at the interface, amino 

acid pair preferences, etc;64). After this step, explicit side chains are added back  

using a backbone-dependent rotamer packing algorithm and an all-atom optimization 

locates the local minimum energy conformation. No filters are applied to filter out 

promising models; in fact, the sampling problem is attacked creating a very large 

numbers of poses (decoys), which are then discriminated using a detailed scoring 

function including van der Waals and solvation interactions, hydrogen bonding, 

desolvation energy, residue-residue pair statistics, rotamer probabilities and a simple 

electrostatic term across the interface.261 While the weights of most of the terms in the 

scoring function are of the same order of magnitude, the dominant contributions to 

discrimination are the van der Waals (packing) interactions, followed by solvation.64 

In this procedure, no backbone flexibility is allowed. Decoys are then ranked and 

clustered. To select final models, the decoy with the highest score is selected for each 

of the top ten largest clusters. 

Predictions are usually performed without including any a priori biological 

information, being the energy of a model the primary criterion for the selection of the 

possible models. However, in some cases, biological information constrains can be 

used. 64 

 

ZDOCK 

ZDOCK is a rigid body Fast Fourier Transform (FFT) based algorithm. It 

exhaustively samples the rigid body mutual orientations of the docking partners79 and 

this stage could be filtered introducing biological structural information. In fact, 

ZDCOK procedure allows the definition of blocking residues (which in contrast with 

interfacial residues would be given zero desolation energy). The scoring function of 

ZDOCK is a weighted sum of energy terms representing shape complementarity, van 
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der Waals energy, Coulombic electrostatics and a simplified implementation of the 

atomic contact potential score, which essentially measure the solvation/desolvation 

function contributions to the binding free energy. A protocol on CHARMm removes 

possible clashes, optimize the polar interface and optimize the charge interaction. 

Finally, a cluster of the top predictions is performed to reduce structural redundancy.  

 

HADDOCK 

The searching step in HADDOCK32 algorithm starts with a randomization of the 

orientation of the two interacting molecules, followed by a rigid body docking and 

energy minimization. After this step, in which the two proteins are treated as rigid 

bodies, there is a semirigid simulated annealing in torsion angle space, and a final 

refinement in Cartesian space with explicit solvent. During the last two steps, the 

amino acids at the interface (both side chains and backbone) are allowed to move to 

optimize the interface packing.32 The filtering applied in the searching stage take in 

account experimental information. In fact, an HADDOCK’s peculiar approach is the 

possibility to use biochemical and/or biophysical interaction data, such as chemical 

shift perturbation data resulting from NMR experiments or mutagenesis data, to 

reduce the conformational search space and filter the solutions. In particular, the most 

fundamental differences in comparison with other algorithms is that HADDOCK 

translates information about the interface into highly ambiguous inter-molecular 

distance restraints used to directly drive the docking process.32,262 

Flexibility is introduced at several levels in the algorithm: in the searching stage, it is 

introduced by docking from ensembles of structures (coming from experimental data 

or short MD simulation in explicit solvent263) and taking all possible pairwise 

combinations and by introduction of flexibility in the side chain at the interface; 

instead, at the final refinement stage the algorithm allows both side chains and 

backbone flexibility by simulated annealing MD and steepest descent minimization.  

The final structures are clustered using the pairwise backbone RMSD at the interface 

and they are scored as a sum of electrostatic, van der Waals, electrostatic, buried 

surface area, desolvation energy and Ambiguous Interaction Restraints (AIR) that are 

derived from any kind of experimental information available concerning the residues 

involved in the inter-molecular interaction.32 Recently, explicit inclusion of interfacial 

water was incorporated in the docking protocol and incorporated in CAPRI 

predictions,264 observing a improvement in the fnat.103  
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ClusPro 

The ClusPro56 is a fully-automated docking program that includes three main steps. 

First, it runs PIPER, a rigid body docking program based on the Fast Fourier 

Transform (FFT) correlation approach. The major advantage of PIPER is the 

inclusion of pairwise interaction potentials.246 The top 1000 structures are retained 

from PIPER to the second step consisting in clustering.57 The clustering of the 

retained conformations is based on the pairwise RSMD of ligand structures, 

calculated for the atoms that are within 10 Å of any atom of the fixed receptor. It uses 

a simple greedy algorithm to find the structures with the largest number of neighbors 

within a clustering radius RC. The choice of RC depends on a clustering parameter 0 

≤ Δ ≤1, which is based on the histogram of pairwise RMSD values, and measures the 

depth of the separation between clusters. Once a clustering radius RC is selected 

(default value of 9 Å), the structure with the highest number of neighbors within RC 

is considered as the center of the first cluster and is the representative structure for the 

cluster. The members of this cluster are removed, and the algorithm selects the next 

structure with the highest number of neighbors from the remaining ligands until the 

set is exhausted, thereby generating 10 to 30 rank ordered clusters.57 The 30 largest 

cluster centers are then subjected to a straightforward (300 step and fixed backbone) 

van der Waals minimization using CHARMm265,266 to remove potential side chain 

clashes. 

 

 

Conclusive notes 
The success of docking algorithms has consistently improved over the last years, as 

measuring by the CAPRI blind docking experiment. Due to such efforts, on one hand 

the applicability of in silico created complexes is becoming widly accepted, and on 

other hand the various available docking programs can be objective compared.  
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CONCLUSIONS 

The aim of my PhD work has been to provide novel computational instruments and to 

give useful insight into one of the most crucial topics in nature: the protein-protein 

interaction (Chapter1). 

In particular, my research has been devoted to two main aspects: i) the development 

of new methods to analyse protein complexes, and to compare and rank multiple 

docking solutions (Chapters 2, 3 and 4), and ii) the application of these methods, in 

combination with classical state-of-art computational biology techniques, to predict 

and analyse the binding mode in real biological systems, which are related to 

particular diseases. The second part of the work has been afforded in collaboration 

with experimental groups (Chapters 5, 6 and 7), in order to take advantage of specific 

biological information on the systems under study. 

 

Part 1: development of new methodologies 

Due to the importance of protein-protein interactions, the interest in their structural 

characterization is constantly growing within the scientific community.1 However, 

due to the difficulty to obtain experimental 3D structures for protein-protein 

complexes, their accurate prediction through molecular docking simulations has 

become one of the major challenges in the field of structural computational biology 

and bioinformatics.2,3 Unfortunately, although success in docking algorithms has 

consistently improved over the last years,59 correctly ranking predicted models to 

single out the best ones from a decoys ensemble remains an open challenge. 

In this scenario, it is of timely interest, both for bioinformaticians and wet biologists, 

to have programs and tools able to: i) automatically analyze features of a complex 

interface, and to easily and intuitively discriminate between similar and different 

binding solutions, ii) compare multiple docking solutions, in order to appreciate at a 

glance which are the residues most often predicted as interacting and iii) accurately 

rank hundreds of docking solutions to distinguish native-like from incorrect ones.. 

On this basis, in my PhD work I developed three web tools to automatically analyze 

biological complex structures, COCOMAPS4, and to compare and rank multiple 

docking solutions, CONS-COCOMAPS5 and CONS-RANK. The web tool 

COCOMAPS (available at https://www.molnac.unisa.it/BioTools/cocomaps/, details 
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in Chapter 2) analyzes the interfaces of protein-protein and protein-nucleic acids 

complexes, combining in a single tool the traditional analysis and 3D visualization of 

biocomplexes with the effectiveness of the contact map view.  

The web tool CONS-COCOMAPS (available at 

https://www.molnac.unisa.it/BioTools/conscocomaps/, details in Chapter 3), instead, 

easily measures and visualizes the consensus in multiple docking solutions. This 

novel tool uses the conservation of inter-residue contacts as an estimate of the 

similarity between different docking solutions.  

CONS-RANK (available upon request from the authors, details in Chapter 4) is a 

simple and effective method to rank multiple docking solutions; it is well performing 

and robust, thus offering a valid alternative to the ranking methods already available.  

 

Part 2: study of protein-protein interactions in real biological systems 

Firstly, I studied two cases of biological complexes involved in the celiac disease; 

both studies were afforded in collaboration with the group directed by Prof. Daniele 

Sblattero, University of Piemonte Orinteale (Italy) and the group directed by Prof. 

Carla Esposito, University of Salerno (Italy).  

In the first study (Chapter 5), I performed docking simulation to obtain the molecular 

model for a biological complex involved in the celiac disease, made up by celiac 

autoantibodies isolated from celiac patients, and its auto-antigen Tissue 

Transglutaminase type 2 (TG2).7,154 

In the second study (Chapter 6), instead, I performed docking simulation and the 

following analysis to the complex between the celiac autoantibody Ab1-clone 2.8 and 

the mouse anti-idiotype antibody Ab2-AIT2 elicited against Ab1. These 

investigations provided useful insight into orientation and characterization of the 

complexes’ binding site. 6  

Due to the crucial involvement of the complex TG2-antoantibody and the idiotypic 

network in the celiac disease causes, the diagnosis applications and the promising 

therapeutic applications, the proposed models could help rationalizing the 

experiments as crucial step for the study of the celiac disease mechanism, the 

improvement of diagnosis strategies and the rational design of molecules for 

pharmacological and therapeutic purposes.267 

In addition, I worked on a project regarding a pathogenic mutant of the enzymatic 

system FXa, that causes problem in the process of blood coagulation, taking 
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advantage of the computational molecular dynamic technique.8 The study was 

afforded in collaboration with the Prof. De Cristofaro’s group, Catholic University 

School of Medicine, Rome (Italy) and the group directed by Prof. Peyvandi, Ospedale 

Maggiore Policlinico and Università degli Studi di Milano (Italy). 

This study can help the emergence of new therapeutic products for the treatment of 

coagulation deficiencies (for details see Chapter 7) 

 

 

Visiting PhD at University of Oxford 

Finally, during my PhD I spent seven months in the groups of the Prof. Charlotte 

Deane, Department of Statistics, University of Oxford (UK). In that period, I studied 

the geometrical features of the proteins’ regions most recurrent in the protein-protein 

interaction, the loops, clarifying some structural aspects of them in one of the most 

important and huge class of proteins: the membrane proteins (details in Appendix 1).  
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