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Introduction

The theory of micromorphic bodies, developed by Eringen in [1,2], considers

a material point as endowed with three deformable directors. When the di-

rectors are constrained to have only breathing-type microdeformations, then

the body is a microstretch continuum [3–5]. The points of these materials can

stretch and contract independently of their translations and rotations. The

microstretch continuum defines a model useful for the study of composite

materials reinforced with chopped elastic fibers, porous media whose pores

are filled with gas or liquid, asphalt, etc. Further, the theory of microstretch

continua is an adequate tool to describe the behavior of porous materials. In

fact, if the microrotation vector field is neglected, then the linear equations

that describe the behavior of a microstretch elastic body become similar to

the equations of an elastic material with voids, as established by Cowin and

Nunziato [6].

In [7] Iesan and Quintanilla establish existence and uniqueness results for

the basic boundary-value problems of elastostatics for the microstretch elastic

solids. Moreover, they use some results of the semigroups theory to prove

an existence theorem in the dynamic theory. In the context of the theory of

thermo-microstretch elastic solids, Bofill and Quintanilla studied existence
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and uniqueness results [8] and for a semi-infinite cylinder with the boundary

lateral surface at null temperature Quintanilla [9] established a spatial decay

estimate controlled by an exponential of a polynomial of second degree.

The problem of asymptotic partition of energy has been studied by Gold-

stein [10,11]; applying the semigroup theory the author proves an equiparti-

tion theorem. Using the Lagrange identity method, Levine [12] shows that

the difference of Cesaro means of kinetic and potential energies vanishes as

time goes to infinity. Day [13] establishes the asymptotic equipartition of ki-

netic and strain energies in linear elastodynamics. This last result is extended

by Chirita [14] to the theory of linear thermoelasticity.

Following the methods developed by Chirita [14], and Chirita e Ciar-

letta [15], Ciarletta and Scalia [16] obtain a complete analysis of the spatial

behavior of the solutions with time-dependent and time-independent decay

and growth rates. In this context they study the spatial behavior for large

and short values of time.

On the other hand, the backward in time problems have been initially

considered by Serrin [17] who established uniqueness results for the Navier-

Stokes equations. Explicit uniqueness and stability criteria for classical

Navier-Stokes equations backward in time have been further established by

Knops and Payne [18] and Galdi and Straughan [19] (see also Payne and

Straughan [20] for a class of improperly posed problems for parabolic partial

differential equations). Such back in time problems have been considered also

by Ames and Payne [21] in order to obtain stabilizing criteria for solutions of

the boundary-final value problem. It is well known that this type of problem

is ill posed.
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In [22], Ciarletta established uniqueness and continuous dependence re-

sults upon mild requirements concerning the thermoelastic coefficients; in

particular the author considers hypotheses not realistic from the physical

point of view, such as a positive semidefinite elasticity tensor or a non positive

heat capacity. Moreover, introducing an appropriate time-weighted volume

measure, Ciarletta and Chirita [23] established the spatial estimate describ-

ing the spatial exponential decay of the thermoelastic process backward in

time. Recently Quintanilla [24, 25] improved the uniqueness result obtained

by Ciarletta, giving a proof based on more concrete assumptions, in par-

ticular considering a strictly positive heat capacity. The author use such a

proof to show in an elegant way the impossibility of localization in time of

the solutions of the forward in time problem for the linear thermoelasticity

of Green and Naghdi (see [26, 27]), and for the linear thermoelasticity with

voids (see [6, 28,29]).

In the context of the linear theory of thermoelasticity, in [22] and [30]

Ciarletta and Chirita investigate the past history of a thermoelastic process

by using the final set of data. In particular, in [30] the authors introduce

the Cesaro means of various parts of the total energy and then establish

the relations that describe the asymptotic behavior of the mean energies,

provided suitable constraint restriction is supposed on the backward in time

process.

The backward in time problem for porous elastic materials has been stud-

ied by Quintanilla [25] and by Iovane and Passarella [31]; such backward

in time problem has never been studied for the general case of thermo-

microstretch elastic solids.
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In this work we consider the boundary-final value problem associated with

the linear theory of thermo-microstretch elastic materials. In Chapter 1 we

give a brief introduction to the basic concepts of machanics of continua. In

Chapter 2 we extend these concepts to the theory of microstretch materials.

In Chapter 3, we formulate the backward in time problem for such material,

where the final data are given at t = 0 and then we are interested in ex-

trapolating the solution to all previous times, and we present some auxiliary

Lagrange identities [32, 33] which will be used in the following chapters. In

Chapter 4, using some of these Lagrange identities and energy arguments,

we prove the uniqueness of the solutions for the backward in time problem

assuming that the heat capacity a is strictly positive. This result implies

the impossibility of the localization in time of the solutions of the forward in

time problem, and this is proved in Theorem 12. In Chapter 5, the Cesaro

means of various parts of the total energy are introduced. Then, extending

the method developed by Chirita [14] for the classical case, the relations de-

scribing the asymptotic behavior of the mean energies follow, provided some

mild restrictions are imposed on the backward in time process.

We have to outline that the present paper considers nonstandard problems

concerning the general theory of microstretch thermoelastic materials. Such

important nonstandard problems are intensively studied in literature (see,

for example, the paper by Quintanilla and Straughan [34] and the papers

cited there).
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Chapter 1

A Short Introduction to

Continuum Mechanics

In this first chapter a short survey on the fundamental concepts of the Con-

tinuum Mechanics will be given.

1.1 Kinematics

1.1.1 Description of motion

A continuum body is a set of particles in one-to-one relation with points

of a three-dimensional domain. We assume at time t0 the body occupies a

domain B0 of the three-dimensional space, called the reference configuration.

The motion of the body is given by the time evolution of the position of

each of his points. Let be Xi, i = 1, 2, 3, the coordinates with respect to an

orthogonal frame of the point P0 where a given particle is located at time t0,

and xi the coordinates of the point P where the same particle is located at
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time t. The description of the motion of the body is given by

xi = xi (X1, X2, X3, t)

We assume such set of functions is sufficiently smooth and has inverse for

each fixed value of t, so that

J = det

(
∂xi
∂Xj

)
6= 0;

for t = t0 we have J = 1, so for continuity it should be positive for each

t ≥ t0.

The domain B occupied by the body at time t is called the current config-

uration. The transformation from the reference configuration to the current

configuration is called deformation of the body. The coordinates Xi are called

material or lagrangian coordinates, the coordinates xi are called spatial or

eulerian coordinates. Each physical quantity can be equivalently expressed

in terms of Xi or in terms of xi; the first description is called material or

lagrangian, the second is called spatial or eulerian, and is particularly useful

in describing the motion of fluids.

The displacement vector field is defined as

ui = xi −Xi.
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1.1.2 Deformation tensors

The tensor defined by

Fij =
∂xi
∂Xj

is called material gradient of deformation; its inverse

F−1
ij =

∂Xi

∂xj

is called spatial gradient of deformation. We can express the square length

of a deformed infinitesimal vector as

(dx)2 = dxidxi =
∂xi
∂Xr

∂xi
∂Xs

dXrdXs = F T
riFisdXrdXs

and the tensor

Crs = F T
riFis

is called Cauchy-Green tensor of deformation (or Cauchy right tensor).

The difference of square length of a deformed and undeformed infinitesiam

vector is given by

(dx)2 − (dX)2 = (Cij − δij) dXidXj = 2EijdXidXj

where we have defined the Green tensor of deformation (or Green strain

tensor).

Eij =
1

2
(Cij − δij) .
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1.1.3 Velocity of deformation

Another important tensor useful in many questions is the gradient of velocity

Lij =
∂vi
∂xj

.

Its symmetric part

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
is called velocity of deformation tensor ; the antisymmetric part

Wij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)

is called spint tensor

1.1.4 Linear theory of deformation

If we assume that the motion of the body depends upon some parameter ε,

supposing the value of this parameter is sufficiently small, we can expand

in Taylor series each physical quantity and take only first order terms with

respect to ε. In this view, the Green tensor of deformation is reduced to the

infinitesimal strain tensor

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)

that is the symmetric part of the material gradient of ui.
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1.2 Laws of balance

1.2.1 Conservation of the mass

We assume that on the current configuration is defined a positive real function

ρ, called mass density, such that

m (P ) =

ˆ
P

ρdv

where P is a part of the domain B, and m (P ) is its mass. The conservation

of mass in the deformation of the body imply

ρJ = ρ0

where ρ0 is the density function in the reference configuration. It can be seen

that, in the spatial description, the law of conservation of mass is written

ρ̇+ ρ div v = 0

where v is the eulerian velocity vector field and the divergence is with respect

to eulerian coordinates.

1.2.2 Balance of the inpulse

The law of balance of inpulse state that for each part P we have

d

dt

ˆ
P

ρvdv =

ˆ
P

ρfdv +

ˆ
∂P

tda
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where f is the body force per unit mass and t the force per unit surface acting

on the boundary of P and due to the contact with the rest of B, also called

stress vector. It can be shown that t is linear with respect to the surface

normal unit vector n (Cauchy theorem)

ti (n) = tjinj

and the tensor tij is the Chauchy stress tensor. The local formulation of the

conservation of impulse is

∂tji
∂xj

+ ρfi = ρüi

An analogous expression can be given in the lagrangian formulation, yield-

ing

∂Tji
∂Xj

+ ρ0fi = ρ0üi

where Tij is the first Piola-Kirchhoff stress tensor.

1.2.3 Balance of the angular momentum

The law of balance of angular momentum state that for each part P we have

d

dt

ˆ
P

ρx× vdv =

ˆ
P

ρx× fdv +

ˆ
∂P

x× tda.

The local form of such law state the symmetry of the stress tensor

tij = tji.
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The lagrangian formulation of this conservation law is

Sij = Sji

where Sij is the second Piola-Kirchhoff stress tensor, defined in terms of the

first through the relation

Tki =
∂xi
∂Xj

Skj.

1.2.4 Conservation of the energy

The conservation of energy expresses the first law of thermodynamics, and

can be written as

d

dt

ˆ
P

ρ

(
1

2
v2 + ε

)
dv =

ˆ
P

ρ (f · v + s) dv +

ˆ
∂P

(t · v + h) da,

where ε is the density of internal energy per unit mass, s the density of heat

sources per unit mass and per unit time and h the heat flux through ∂P per

unit surface and per unit time. The heat flux can be expressed as

h (n) = qini

where the vector qi is called heat flux vector.

The local form of the conservation of the energy is

ρε̇ = tji
∂vi
∂xj

+ ρs+
∂qi
∂xi
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or also

ρε̇ = tjiDij + ρs+
∂qi
∂xi

.

The local form in lagrangian formulation is

ρ0ε̇ = Tji
∂vi
∂Xj

+ ρ0s+
∂Qi

∂Xi

or also

ρ0ε̇ = SjiĖij + ρ0s+
∂Qi

∂Xi

,

where Qi is the heat flux vector in the lagrangian representation.

1.2.5 Clausius-Duhem inequality

The second law of thermodynamics state that

d

dt

ˆ
P

ρηdv ≥
ˆ
P

ρ
s

T
dv +

ˆ
∂P

h

T
da

where η is the entropy per unit mass and T the absolute temperature. The

local form of this law is called Clausius-Duhem inequality, and its expression

in eulerian and lagrangian form is, respectively,

ρT η̇ ≥ ρs+
∂qi
∂xi
− qi
T

∂T

∂xi
,

ρ0T η̇ ≥ ρ0s+
∂Qi

∂Xi

− Qi

T

∂T

∂Xi

.
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1.3 Constitutive equations

1.3.1 Introduction

The equation introduced in the preceding sections should be satisfied during

the motion of a continuum body. But such equations are not sufficient to

determine the motion of the body, as can be seen making a simple check of

the balance among number of unknown functions and equations.

In the development of general equation until here, we have not taken into

account the characteristics of the material of the body. So it is not a surprise

the indetermination we have to deal to, and it is clear that to have a well

posed problem we must to consider some other equations that give us the

mathematical representation of the behaviour of the material.

Such equation are called constitutive equation and define classes of ma-

terial that represent, up to some limitations and under suitable conditions,

the behaviour of real materials.

1.3.2 Elastic solids

An elastic solid is defined by the following constitutive equations


ε = ε

(
∂xi
∂Xj

, Xk

)
,

Spq = Spq

(
∂xi
∂Xj

, Xk

)
.

If such equations do not depend on Xk the material is said homogeneous.

Because of the objectivity principle, one of the most important postulates
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constitutive equations bust obey, the first of these equations became

ε = ε (Eij, Xk) ,

while for a purely mechanic theory the second equation became

Sij =
1

2
ρ0

(
∂ε

∂Eij

+
∂ε

∂Eji

)
.

1.3.3 Linear theory of elasticity

In the linear theory of deformation the internal energy has the form

ε =
1

2
Cijrsεijεrs.

This can be interpreted as a Taylor series expansion of ε with respect to

the component of the infinitesimal strain tensor εij; the zero order term is

null with a suitable choice of the additive constant of the energy; the first

order term is null if we assume the stress tensor is null in the reference

configuration.

From this we deduce the contitutive equations

tij = Cijrsεrs

known as generalized Hooke law. The elasticity tensor Cijrs does not depend

on Xi for a homogeneous material, and has the following symmetry properties

Cijrs = Crsij = Cjirs.
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1.3.4 Elastic moduli

In the linear theory of elasticity, the internal energy of an isotropic body is

a function of the invariants of the tensor εij. The expression of the elasticity

tensor is

Cijrs = λδijδrs + µ (δirδjs + δisδjr)

where λ, µ are the Lam elastic moduli, and for physical reason is commonly

assumed that they obey the following conditions

µ > 0, 3λ+ 2µ > 0.

The constitutive equation for the stress tensor became

tij = λεrrδij + 2µεij,

and can be inverted to obtain the deformation in function of stresses

εij =
1 + ν

E
tij −

ν

E
trrδij,

where

E =
µ (3λ+ 2µ)

λ+ µ

is the Young modulo, and

ν =
λ

2 (λ+ µ)

is the Poisson ratio.

If the continuum is homogeneous λ, µ are constants, and the equations
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of motion can be written

µ∆ui + (λ+ µ)ur,ri + ρ0fi = ρ0üi,

called Navier-Chauchy equations.
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Chapter 2

Microstretch matrials

In the atomic scale, crystalline solids possess primitive cells in the form of geo-

metrical figures (lattice structures) like cubes, hexagonsm, etc. In crystalline

solids there are many different arrangements with ions occupying many dif-

ferent positions in their primitive lattices. This is also true for more complex

structures consisting of molecules. There exist also fluids characterized by

oriented molecules. For example liquid crystals possess dipolar elements in

the form of short bars and platelets. As an example, we can talk about ani-

mal blood which carry deformable platelets. In general all these media, such

as blood, clouds with smoke, bubbly fluids, granular solids, concrete, com-

posite materials, can be all considered examples of media characterized by

microstrucures. In alla these examples we notice that the primitive elements

of the media are stable elements. These stable elements are considered de-

formable but not destructible. For brevity we shall call these stable elements

particles.

Definition 1. A microcontinuum is a continuous collection of deformable
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point particles.

Physically, the particles are point particles, i.e., they are infinitesimal in

size. They do not violate continuity of matter and yet, they are deformable.

Clearly, the deformability of the material point places microcontinuum the-

ories beyond the scope of the classical continuum theory. We want represent

the intrinsic deformation of point particles.

A particle P is identified by its position vector (or its coordinates XK)

K = 1, 2, 3, in the reference state B and vectors attached to P, representing

the inner structure of P by Ξ. Both X and Ξ have their own motion.

2.1 Motions and deformations

A physical body B is considered to be a collection of a set of material particles

{P}. The body is embedded in a three dimensional Euclidean space E3, at

all times. A material point P (X,Ξ) ∈ B is characterized by its centroid

C and vector Ξ attached to C. The point C is identified by its rectangular

coordinates X1, X2, X3 in a coordinate frame XK , K = 1, 2, 3 and the vector

Ξ by its components Ξ1,Ξ2,Ξ3 ( in short ΞK ) in the coordinate frame XK .

Deformation carries P (X,Ξ) to p (x, ξ) in a spatial frame of reference b so

that XK −→ xk, ΞK −→ ξk (K = 1, 2, 3; k = 1, 2, 3). These mappings are

expressed by

X −→ x = x̂ (X, t) or xk = x̂k (XK , t) , (2.1)

Ξ −→ ξ = ξ̂ (X,Ξ, t) or ξk = ξ̂k (XK ,ΞK , t) . (2.2)
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The mapping 2.1.1 is called the macromotion (or simply the motion) and

2.1.2 the micromotion. Material particles are considered to be of very small

size as compared to macroscopic scales of the body. Consequently a linear

approximation in Ξ is permissible for the micromotion 2.1.2 replacing it by

ξk = χkK (X, t) ΞK , (2.3)

where, hanceforth, the summation convention on repeated indices is un-

derstood.

Definition 2. A material body is called a micromorphic continuum if its mo-

tions are described by 2.1.1 and 2.1.3 which posses continuous partial deriva-

tives with respect to XK and t, and they are invertible uniquely.

The tensor χkK is called microdeformation. The matemathical idealiza-

tion 2.1.3 is valid from the continuum viewpoint, only when the particles

are considered to be infinitesimally small, so that the continuity of matter

is not violated. In order to retain the right-hand screw orientations of the

frames-of-reference we assume

J = det

(
∂xk
∂XK

)
> 0, j = detχkK>0. (2.4)

A material point in the body is now considered to possess three de-

formable directors, which represent the degrees of freedom arising from mi-

crodeformation of the physical particle. Thus, a micromorphic continuum is

none other than a classical continum endowed with extra degrees of freedom

represented by the deformable directors χK .
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2.2 Rotation

According to a theorem of Cauchy, a non singular matrix F may be decom-

posed as a product of two matrices, one of which is ortogonal and the other

is a symmetric matrix

F = RU = VR, (2.5)

with

U2 = FTF, V2 = FFT , (2.6)

where a superscript T denotes transpose. If we take FkK = xk,K , then R

represent a classical macrorotation tensor. U and V are called right and left

stretch tensors for macro and microdeformations. In the case of microdefor-

mations the above equations read:

χ = ru = vr, (2.7)

and

u2 = χTχ, v2 = χχT . (2.8)

Definition 3. (Microstretch continuum) A micromorphic continuum is called

microstretch if satisfy

χkKχlK = j2δkl, χkKχkL = j2δKL. (2.9)

A microstretch continuum is a micromorphic continuum that is con-

strained to undergo microrotation and microstretch (expansion and contrac-

tion) without microshearing (breathing microrotations).
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Definition 4. (Micropolar continuum). A micromorphic continuum is called

micropolar if its directors are orthonormal, i.e.

χkKχlK = δkl. (2.10)

Amongst the substancies that can be modeled by Microstrech Continua

Model we can classify: animal lungs, bubbly fluids, polluted air, slurries,

springy suspension, mixtures with breathing elements, porous media, lattices

with base, biological fluids, smal animal etc.

As a consequence, a micromorphic continuum, that is constrained to un-

dergo a uniform microstretch (a breathing motion) represented with ν and

rigid microrotation, represented with νk, is a microstretch continuum.

2.3 The balance laws of microstretch continua

The balance laws of microstretch continua may be obtained by imposing the

Galilean invariance requirement to the energy equation, see [5].

So we obtain the conservation of mass:

·
ρ+ ρ∇ · v = 0, (2.11)

the conservation of microstretch inertia:

Dj0

Dt
− 2j0ν = 0, (2.12)
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Djkl
Dt
− 2νjkl + (εkprjlp + εlprjkp) νr = 0, (2.13)

the balance of momentum:

tkl,k + ρ
(
fl −

·
vl

)
= 0, (2.14)

and finally the balance of momentum moments:

mkl,k + εlmntmn + ρ (ll − σl) = 0, (2.15)

mk,k + t− s+ ρ(l − σ) = 0. (2.16)
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Chapter 3

Backward in time Problem for

Microstretch Materials

3.1 Formulation of the problem

Throughout this paper we shall denote by B a bounded regular region of

the physical space E3, whose boundary is the piecewise smooth surface ∂B.

Identifying E3 with the associated vector space, we introduce an orthonor-

mal system of reference so that vectors and tensors will have components

denoted by the usual Latin subscripts ranging over 1, 2, 3. Summation over

repeated subscripts and other typical conventions for differential operations

are implied, such as a superposed dot or a comma followed by a subscript

to denote partial derivative with respect to time or the corresponding Carte-

sian coordinate. All involved functions are supposed sufficiently regular as

necessary.

We suppose that B is filled by an anisotropic and inhomogeneous ther-
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moelastic material with stretch. We consider the problem associated with

the linear theory of thermo-microstretch elastic solids, as established by Erin-

gen [4], on the time interval I. Thus, in the absence of supply terms, the

fundamental system of field equations consists of the evolution equations, in

B × I
ρüi = tji,j , Iijφ̈j = mji,j + εirstrs ,

Jφ̈ = λi,i − ω , ρT0η̇ = qi,i ,

(3.1)

the constitutive equations, in B̄ × I

tij = Aijrsers +Bijrsκrs +Dijrγr + Aijφ− βijθ ,

mij = Brsijers + Cijrsκrs + Eijrγr +Bijφ− Cijθ ,

3λi = Drsiers + Ersiκrs +Dijγj + diφ − ξiθ ,

3ω = Arsers +Brsκrs + diγi +mφ − ζθ ,

ρη = βrsers + Crsκrs + ξiγi + ζφ + aθ ,

qi = kijθ,j ,

(3.2)

and the geometrical relations, on B̄ × I

eij = uj,i + εjikφk , κij = φj,i , γi = φ,i . (3.3)

In the above equations we have used the following notations: tij is the stress

tensor, mij is the couple stress tensor, λi is the microstress vector, ω is the

microstress function, ui is the displacement, φi is the microrotation, φ is the

microstretch function, η is the specific entropy, ρ is the mass density, T0 is

the absolute temperature in the reference configuration, qi is the heat flux
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vector, θ is the temperature variation from the temperature T0, Iij is the

symmetric microinertia tensor, J is equal to Iii/2 and εijk is the alternating

symbol.

The constitutive coefficients and Iij are prescribed functions of the spatial

variables with the following symmetries

Aijrs = Arsij , Cijrs = Crsij , Dij = Dji , kij = kji . (3.4)

The internal energy density W associated with the kinematic fields ui, φi, φ

is defined by

W =
1

2

(
Aijrseijers + Cijrsκijκrs +Dijγiγj +mφ2

)
+

+Bijrseijκrs +Dijkeijγk + Aijeijφ+ Eijrκijγr +Bijκijφ+ diγiφ .

(3.5)

We denote by Im(x) the minimum eigenvalue of Iij(x).

We assume that ρ and Iij are continuous functions and the constitutive

coefficients are continuously differentiable functions on B̄. Furthermore, we

suppose that

[(i)]

1. ρ(x) > ρ0, Im(x) > I0, J(x) > J0, a(x) > a0, where ρ0, I0, J0, a0 are

positive constants;

2. kij is a positive definite tensor;

3. W is a positive definite quadratic form.

It is obvious to see that, as a consequence of (1), Iij is a positive definite
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tensor.

The hypotheses (2) and (3) imply that there exist positive constants km,

kM , µm and µM such that

kmθ,iθ,i 6 kijθ,iθ,j 6 kMθ,iθ,i , (3.6)

µm

(
eijeij + φ2 +

I0

ρ0

κijκij +
3J0

ρ0

γiγi

)
6 2W 6 µM

(
eijeij + φ2 +

I0

ρ0

κijκij +
3J0

ρ0

γiγi

)
.

(3.7)

Now we consider I = (−∞, 0] and so we study the boundary-final value

problem P defined by the relations (3.1) to (3.3), the homogeneous boundary

conditions

ui = 0 on Σ
(1)
1 × (−∞, 0] , ti = 0 on Σ

(1)
2 × (−∞, 0] ,

φi = 0 on Σ
(2)
1 × (−∞, 0] , mi = 0 on Σ

(2)
2 × (−∞, 0] ,

φ = 0 on Σ
(3)
1 × (−∞, 0] , h = 0 on Σ

(3)
2 × (−∞, 0] ,

θ = 0 on Σ
(4)
1 × (−∞, 0] , q = 0 on Σ

(4)
2 × (−∞, 0] ,

(3.8)

and the final conditions in B̄

ui(x, 0) = u0
i (x) , φi(x, 0) = φ0

i (x) , φ(x, 0) = φ0(x) , θ(x, 0) = θ0(x) ,

u̇i(x, 0) = u̇0
i (x) , φ̇i(x, 0) = φ̇0

i (x) , φ̇(x, 0) = φ̇0(x) ,

(3.9)

where

ti = tjinj , mi = mjinj , h = 3λjnj , q = qjnj .
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In these relations, nj is the outward unit normal vector to the boundary

surface and, for each i = 1, . . . , 4, we have that Σ
(i)
1 , Σ

(i)
2 are subsurfaces of

∂B such that

Σ
(i)
1 ∩ Σ

(i)
2 = ∅ , Σ̄

(i)
1 ∪ Σ̄

(i)
2 = ∂B ,

where the closure is relative to ∂B, and where u0
i , u̇

0
i , φ

0
i , φ̇

0
i , φ

0, φ̇0, θ0 are

prescribed continuous functions compatible with (3.8) on the appropriate

subsurfaces of ∂B.

For further convenience, we use an appropriate change of variables and

notations suitably chosen in order to transform the boundary-final value

problem P into the boundary-initial value problem P∗. In particular, for

every function depending on time f(t) we set f ∗(t∗) = f(t), with t∗ = −t.

Removing the star signs from notations for sake of simplicity, we have the

boundary-initial value problem P∗ defined by the following equations

ρüi = tji,j , Iijφ̈j = mji,j + εirstrs ,

Jφ̈ = λi,i − ω , ρT0η̇ = −qi,i ,
(3.10)

in B × [0,+∞), equations (3.2) in B̄ × [0,+∞), and equations (3.3) on

B̄ × [0,+∞), with the boundary conditions

ui = 0 on Σ
(1)
1 × [0,+∞) , ti = 0 on Σ

(1)
2 × [0,+∞) ,

φi = 0 on Σ
(2)
1 × [0,+∞) , mi = 0 on Σ

(2)
2 × [0,+∞) ,

φ = 0 on Σ
(3)
1 × [0,+∞) , h = 0 on Σ

(3)
2 × [0,+∞) ,

θ = 0 on Σ
(4)
1 × [0,+∞) , q = 0 on Σ

(4)
2 × [0,+∞) ,

(3.11)
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and the initial conditions (3.9).

An array field U = (u,φ, φ, θ) meeting equations (3.10), (3.2), (3.3),

(3.11) and (3.9) will be referred to as a solution of the boundary-initial value

problem P∗.

3.2 Auxiliary integral identities

In this section we establish some integral identities of Lagrange type [32,33],

that we will use in the next sections. To this end, we introduce the following

energetic terms

K(t) =
1

2

[
ρu̇i(t)u̇i(t) + Iijφ̇i(t)φ̇j(t) + 3Jφ̇2(t)

]
, (3.12)

E(t) =

ˆ
B

[
K(t) +W (t) +

1

2
aθ2(t)

]
dv , (3.13)

E∗(t) =

ˆ
B

[
K(t) +W (t)− 1

2
aθ2(t)

]
dv . (3.14)

We can prove the following lemmas

Lemma 5. Let U be a solution of the boundary-initial value problem P∗.

Then, for all t > 0, we have

E(t) = E(0) +

ˆ t

0

ˆ
B

1

T0

kijθ,i(s)θ,j(s) dv ds . (3.15)

Proof. Starting from the expression of K

K(t) =
1

2

[
ρu̇i(t)u̇i(t) + Iijφ̇i(t)φ̇j(t) + 3Jφ̇2(t)

]
, (3.16)
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if we consider the time rate of the kinetic energy per unit volume K

∂K
∂t

= ρu̇i(t)üi(t) + Iijφ̇i(t)φ̈j(t) + 3Jφ̇φ̈(t) (3.17)

and take into account the equations of motion (3.10) and the geometric re-

lations (3.3), we have

∂K
∂t

= u̇i(tji,j) + φ̇i(mji,j + εirstrs) + 3φ̇(λi,i − ω).

∂K
∂t

= (u̇itji),j− u̇i,jtji+(φ̇imji),j− φ̇i,jmji+ φ̇iεirstrs+3(φ̇λj)j−3φ̇,iλi−3φ̇ω.

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj],j − u̇i,jtji − φ̇i,jmji + φ̇iεirstrs − 3φ̇,iλi − 3φ̇ω.

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj],j − tij(u̇j,i − φ̇kεkij)− φ̇j,imji − 3φ̇iλi − 3φ̇ω.

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj],j − tij ėij −mjik̇ij − 3λiγ̇i − 3φ̇ω.

if we observe that

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω = (Aijrsers +Bijrsκrs +Dijrγr + Aijφ− βijθ)ėij+

+ (Brsijers + Cijrsκrs + Eijrγr +Bijφ− Cijθ)k̇ij+

+ (Drsiers + Ersiκrs +Dijγj + diφ− ξiθ , )γ̇i+

+ (Arsers +Brsκrs + drγr +mφ− ζθ)φ̇,

and

∂W
∂t

= Aijrsėijers + Cijrsκ̇ijκrs +Dij γ̇iγr +mφ
.

φ+
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+Bijrs
.
eijκrs +Bijrseij

.
κrs +Dijr

.
eijγr +Dijkeij

.
γr+

+ Aij
.
eijφ+ Aijeij

.

φ+ Eijr
.
κijγr + Eijrκij

.
γr+

+Bij
.
κijφ+Bijκij

.

φ+ dr
.
γrφ+ drγr

.

φ,

then we have

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂W
∂t
− (βij ėij + Cij k̇ij + ξiγ̇i + ς

.

φ)θ,

and also

ρ
.
η = βrsėrs + Crsk̇rs + ξiγ̇i + ς

.

φ+ a
.

θ,

ρ
.
η − a

.

θ = −qi,i
T0

− a
.

θ.

So

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂W
∂t
−
(
qi,i
T0

− a
.

θ

)
θ,

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂W
∂t

+ a
.

θθ +
1

T0

qi,iθ,

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂W
∂t

+
∂

∂t

1

2
aθ2 +

1

T0

[(qiθ),i − qiθ,i],

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂

∂t

(
W +

1

2
aθ2

)
+ (

1

T0

qjθ),j −
1

T0

qiθ,i

tij ėij +mjik̇ij + 3λiγ̇i + 3φ̇ω =
∂

∂t

(
W +

1

2
aθ2

)
+

(
1

T0

qjθ

)
,j

− 1

T0

kijθ,iθ,j.

Then, finally we have

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj],j −
∂

∂t

(
W +

1

2
aθ2

)
−
(

1

T0

qjθ

)
,j

+
1

T0

kijθ,iθ,j,
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∂

∂t

(
K +W +

1

2
aθ2

)
=

(
u̇itji + φ̇imji + 3φ̇λj −

1

T0

qjθ

)
,j

+
1

T0

kijθ,iθ,j.

Since

E(t) =

ˆ
B

[
K(t) +W (t) +

1

2
aθ2(t)

]
dv ,

∂

∂t
E(t) =

ˆ
B

[
u̇itji + φ̇imji + 3φ̇λj −

1

T0

qjθ

]
,j

dv +
1

T0

ˆ
B

kijθ,iθ,j dv

Then, by an integration of the result over B̄ × [0, t] and by using the

divergence theorem and the boundary conditions (3.11), we deduce:

∂

∂t
E(t) =

ˆ

∂B

[
u̇itji + φ̇imji + 3φ̇λj −

1

T0

qjθ

]
nj d a+

1

T0

ˆ
B

kijθ,iθ,j dv

[E(t)]t0 =
1

T0

tˆ

0

ˆ
B

kijθ,iθ,j dv ds

and the proof is complete.

By the same procedure we can obtain the identity expressed in the fol-

lowing result.

Corollary 6. Let U be a solution of the boundary-initial value problem P∗.

Then, for all t > 0, we have

E∗(t) = E∗(0)−
ˆ t

0

ˆ
B

{
2
[
u̇i(s) [βjiθ(s)],j + φ̇k(s) [Cjkθ(s)],j + εjikβjiφ̇k(s)θ(s) +

+ φ̇(s) [ξjθ(s)],j − ζφ̇(s)θ(s)
]

+
1

T0

kijθ,i(s)θ,j(s)
}

dv ds .

(3.18)
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Proof. As we have already seen

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj],j −

[
∂W

∂t

(
1

T0

qjθ

)
j

+ a
.

θθ − 1

T0

kijθ,iθ,j

]

∂K
∂t

= [u̇itji + φ̇imji + 3φ̇λj −
1

T0

qjθ],j −
[
∂W

∂t
+ 2a

.

θθ − a
.

θθ

]
j

+
1

T0

kijθ,iθ,j

∂

∂t

(
K +W − 1

2
aθ2

)
= [u̇itji + φ̇imji + 3φ̇λj −

1

T0

qjθ],j − 2a
.

θθ +
1

T0

kijθ,iθ,j

where

−2a
.

θθ +
1

T0

kijθ,iθ,j = −2θ
[
ρ
.
η − βrsėrs − Crs

.

krs − ξi
.
γi − ζ

.

φ
]

+
1

T0

kijθ,iθ,j

−2a
.

θθ+
1

T0

kijθ,iθ,j = −2θρ
.
η+2θ

[
βrs

(
u̇s,r + εsrk

.

φk

)
+ Crs

.

φs,r + ξi
.

φ,i + ζ
.

φθ
]
+

1

T0

kijθ,iθ,j

−2a
.

θθ+
1

T0

kijθ,iθ,j = 2θ
1

T0

qi,i+2

[
βrsθu̇s,r + εsrk

.

βrsθ
.

φk + Crs

.

φs,rθ + ξi
.

φ,iθ + ζ
.

φθ

]
+

1

T0

kijθ,iθ,j

−2a
.

θθ +
1

T0

kijθ,iθ,j =
2

T0

(qiθ),i −
2

T0

qiθ,i+ (3.19)

+ 2

[
(βrsθu̇s),r − (βrsθ),r u̇s +

(
Crs

.

φsθ
)
,r
− (Crsθ),r

.

φs +
(
ξi

.

φsθ
)
,r
− (ξiθ),r

.

φs + εsrkβrs
.

φkθ + ζ
.

φθ

]
+

+
1

T0

kijθ,iθ,j − 2a
.

θθ +
1

T0

kijθ,iθ,j =
2

T0

(qiθ),i −
2

T0

qiθ,i+

+ 2

[
(βrsθu̇s),r − (βrsθ),r u̇s +

(
Crs

.

φsθ
)
,r
− (Crsθ),r

.

φs +
(
ξi

.

φsθ
)
,r
− (ξiθ),r

.

φs + εsrkβrs
.

φkθ + ζ
.

φθ

]
+

+
1

T0

kijθ,iθ,j
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∂

∂t
E∗(t) =

∂

∂t

(
K +W − 1

2
aθ2

)
= [u̇itji + φ̇imji + 3φ̇λj −

1

T0

qjθ],j + 2

[
(βrsθu̇s),r +

(
Crs

.

φsθ
)
,r

+
(
ξi

.

φsθ
)
,r

]
+

− 2

[
− 1

T0

(qiθ),i + (βrsθ),r u̇s + (Crsθ),r
.

φs + (ξiθ),r
.

φs − εsrkβrs
.

φkθ − ζ
.

φθ

]
− 2

T0

qiθ,i +
1

T0

kijθ,iθ,j

[E∗(t)]t0 = −
tˆ

0

ˆ

B

2

{
(βrsθu̇s),r +

(
Crs

.

φsθ
)
,r

+
(
ξi

.

φsθ
)
,r

+ εsrkβrs
.

φkθ − ζ
.

φθ +
1

T0

kijθ,iθ,j

}
dvds

and the proof is complete.

Another useful result is expressed in the following Lemma

Lemma 7. Let U be a solution of the problem determined by (3.10), (3.2),

(3.3), boundary conditions (3.11) and null initial conditions. Then, for all

t > 0, we have

ˆ
B

(
K(t)− 1

2
aθ2(t)

)
dv =

ˆ
B

W (t) dv . (3.20)

Proof. Using the Lagrange identity method and the identity

∂

∂s

{
ρu̇i(s)u̇i(2t− s) + Iijφ̇i(s)φ̇j(2t− s) + 3Jφ̇(s)φ̇(2t− s)− aθ(s)θ(2t− s)

}
=

= ρüi(s)u̇i(2t− s) + Iijφ̈i(s)φ̇j(2t− s) + 3Jφ̈(s)φ̇(2t− s) + aθ(s)θ̇(2t− s)−

− ρu̇i(s)üi(2t− s)− Iijφ̇i(s)φ̈j(2t− s)− 3Jφ̇(s)φ̈(2t− s)− aθ̇(s)θ(2t− s)
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for a fixed t ∈ (0, T ), the equations (3.10), (3.2), (3.3) and (3.4) imply

∂

∂s

{
ρu̇i(s)u̇i(2t− s) + Iijφ̇i(s)φ̇j(2t− s) + 3Jφ̇(s)φ̇(2t− s)− aθ(s)θ(2t− s)

}
=

= 2
∂

∂s
L(s, 2t− s) +

[
tji(s)u̇i(2t− s)− tji(2t− s)u̇i(s) +mji(s)φ̇i(2t− s)−

−mji(2t− s)φ̇i(s) + 3λj(s)φ̇(2t− s)− 3λj(2t− s)φ̇(s)− 1

T0

θ(s)qj(2t− s) +

+
1

T0

θ(2t− s)qj(s)
]
,j

(3.21)

where

2L(r, s) = Aijrseij(s)ers(r) + Cijrsκij(s)κrs(r) +Dijγi(s)γj(r) +mφ(s)φ(r) +

+Bijrs [eij(s)κrs(r) + eij(r)κrs(s)] +Dijk [eij(s)γk(r) + eij(r)γk(s)] +

+ Aij [eij(s)φ(r) + eij(r)φ(s)] + Eijr [κij(s)γr(r) + κij(r)γr(s)] +

+Bij [κij(s)φ(r) + κij(r)φ(s)] + di [γi(s)φ(r) + γi(r)φ(s)] .

It is trivial to observe that

L(s, r) = L(r, s) and L(t, t) = W (t) .

Since the initial and boundary conditions are null, integrating (3.21) over

B̄ × [0, t] and using definitions (3.5) and (3.12), we arrive to (3.20).

Lemma 8. Let U be a solution of the boundary-initial value problem P∗.

36



Then, for all t > 0, we have

ˆ
B

[(
ρui(t)u̇i(t) + Iijφi(t)φ̇j(t) + 3Jφ(t)φ̇(t)

)
− 1

2T0

kijτ,i(t)τ,j(t)

]
dv =

=

ˆ
B

(
ρui(0)u̇i(0) + Iijφi(0)φ̇j(0) + 3Jφ(0)φ̇(0)

)
dv +

ˆ t

0

ˆ
B

ρη(0)θ(s) dv ds+

+ 2

ˆ t

0

ˆ
B

[
1

2

(
ρu̇i(s)u̇i(s) + Iijφ̇i(s)φ̇j(s) + 3Jφ̇2(s)

)
−W (s)− 1

2
aθ2(s)

]
dv ds ,

(3.22)

where we have defined

τ(t) =

ˆ t

0

θ(s) ds .

Proof. If we take into account the equations of motion (3.10), the constitutive

equations (3.2) and the geometric relations (3.3), we have

∂

∂t

(
ρuiu̇i + Iijφiφ̇j + 3Jφφ̇

)
=
(
ρu̇iu̇i + Iijφ̇iφ̇j + 3Jφ̇2

)
+

+
(
tjiui +mjiφi + 3λjφ

)
,j
−
(
tjieij +mjiκij + 3λjγj + 3ωφ

)
.

The last term in parentheses can be expressed as

tjieij+mjiκij+3λjγj+3ωφ = 2

(
W +

1

2
aθ2

)
+

(
1

T0

Qjθ

)
,j

− 1

T0

kijτ,iτ,j−ρη(0)θ ,

where we have defined

Qi =

ˆ t

0

qi ds ,

and used the expression of η obtained by integrating with respect to time

its evolution equation. Then, by an integration of the result over B̄ × [0, t]

and by using the divergence theorem and the boundary conditions (3.11), we

deduce the relation (3.22) and the proof is complete.
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Lemma 9. Let U be a solution of the boundary-initial value problem P∗.

Then, for all t > 0, we have

2

ˆ
B

[(
ρui(t)u̇i(t) + Iijφi(t)φ̇j(t) + 3Jφ(t)φ̇(t)

)
− 1

2T0

kijτ,i(t)τ,j(t)

]
dv =

=

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t) + 3Jφ̇(0)φ(2t)

)
dv +

+

ˆ
B

(
ρui(0)u̇i(2t) + Iijφi(0)φ̇j(2t) + 3Jφ(0)φ̇(2t)

)
dv −

−
ˆ t

0

ˆ
B

ρη(0)
(
θ(t+ s)− θ(t− s)

)
dv ds ,

(3.23)

where we have defined τ as in Lemma 8.

Proof. Using the equations of motion (3.10), and the geometric relations

(3.3), we have

∂

∂s

{
ρ
[
u̇i(t+ s)ui(t− s) + ui(t+ s)u̇i(t− s)

]
+ Iij

[
φ̇i(t+ s)φj(t− s) +

+ φi(t+ s)φ̇j(t− s)
]

+ 3J
[
φ̇(t+ s)φ(t− s) + φ(t+ s)φ̇(t− s)

]}
=[

tji(t+ s)ui(t− s)− tji(t− s)ui(t+ s) +mji(t+ s)φi(t− s)−

−mji(t− s)φi(t+ s) + 3λj(t+ s)φ(t− s)− 3λj(t− s)φ(t+ s)
]
,j
−

−
[
tji(t+ s)eij(t− s)− tji(t− s)eij(t+ s) +mji(t+ s)κij(t− s)−

−mji(t− s)κij(t+ s) + 3λj(t+ s)γj(t− s)− 3λj(t− s)γj(t+ s) +

+ 3ω(t+ s)φ(t− s)− 3ω(t− s)φ(t+ s)
]
.

Using the constitutive equations (3.2) and (3.4), the last term in parentheses
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can be expressed as

[
tji(t+ s)eij(t− s)− tji(t− s)eij(t+ s) +mji(t+ s)κij(t− s)−mji(t− s)κij(t+ s) +

+ 3λj(t+ s)γj(t− s)− 3λj(t− s)γj(t+ s) + 3ω(t+ s)φ(t− s)−

− 3ω(t− s)φ(t+ s)
]

=
1

T0

[
θ(t+ s)Qj(t− s)− θ(t− s)Qj(t+ s)

]
,j
−

− ρη(0)
(
θ(t+ s)− θ(t− s)

)
− 1

T0

kij
[
τ̇,i(t+ s)τ,j(t− s)− τ,i(t+ s)τ̇,j(t− s)

]
,

where we have defined Qi as in the proof of Lemma 8 and used the expression

of η obtained by integrating with respect to time its evolution equation.

Then, by an integration of the result over B̄×[0, t] and by using the divergence

theorem and the boundary conditions (3.11), we deduce the relation (3.23)

and the proof is complete.

Corollary 10. Let U be a solution of the boundary-initial value problem P∗.

Then, for all t > 0, we have

2

ˆ t

0

ˆ
B

[(
ρu̇i(s)u̇i(s) + Iijφ̇i(s)φ̇j(s) + 3Jφ̇2(s)

)
− 2W (s)− aθ2(s)

]
dv ds =

= −2

ˆ
B

(
ρui(0)u̇i(0) + Iijφi(0)φ̇j(0) + 3Jφ(0)φ̇(0)

)
dv +

+

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t) + 3Jφ̇(0)φ(2t)

)
dv +

+

ˆ
B

(
ρui(0)u̇i(2t) + Iijφi(0)φ̇j(2t) + 3Jφ(0)φ̇(2t)

)
dv −

−
ˆ t

0

ˆ
B

ρη(0)
(

2θ(s) + θ(t+ s)− θ(t− s)
)

dv ds ,

(3.24)

Proof. A combination of (3.22) and (3.23) implies the identity (3.24) and the

proof is complete.
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Chapter 4

Uniqueness and Impossibility of

time localization

The aim of this section is to establish the uniqueness of the backward in

time problem, and, consequently, to prove the impossibly of localization of

the solutions of the forward in time problem.

We begin by proving the following uniqueness theorem.

Theorem 11. The boundary-initial value problem P∗ has at most one solu-

tion.

Proof. Thanks to the linearity of the problem in concern, we only need to

show that null data imply null solution or, in other words, that the null

solution is the solution corresponding to null data. Taking into account

(3.14) and (3.20) we obtain

E∗(t) =

ˆ
B

2W (t) dv . (4.1)
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If we consider the following function

F (t) = E∗(t) + εE(t) ,

we have from (3.13) and (4.1)

F (t) =

ˆ
B

[
εK(t) + (ε+ 2)W (t) +

ε

2
aθ2(t)

]
dv , (4.2)

where ε is a positive constant, and in what follows we take 0 < ε < 1.

The hypotheses (1)-(3) imply that F is a positive function and it defines a

measure of the solution. On the other side, since the initial and boundary

conditions are null, we can rewrite (3.15) and (3.18) as

E(t) =

ˆ t

0

ˆ
B

1

T0

kijθ,i(s)θ,j(s) dv ds ,

E∗(t) = −
ˆ t

0

ˆ
B

{
2
[
u̇i(s)[βjiθ(s)],j + φ̇k(s)[Cjkθ(s)],j + εjikβjiφ̇k(s)θ(s) +

+ φ̇(s)[ξjθ(s)],j − ζφ̇(s)θ(s)
]

+
1

T0

kijθ,i(s)θ,j(s)
}

dv ds ;

consequently, it is

F (t) = −
ˆ t

0

ˆ
B

{
2
[
u̇i(s)[βjiθ(s)],j + φ̇k(s)[Cjkθ(s)],j + εijkβjiφ̇k(s)θ(s)

+ φ̇(s)[ξjθ(s)],j − ζφ̇(s)θ(s)
]

+
1− ε
T0

kijθ,i(s)θ,j(s)
}

dv ds .

(4.3)
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If we consider the time rate of (4.3), we obtain

Ḟ (t) = −2

ˆ
B

[
u̇i(t)[βjiθ(t)],j + [Ckjθ(t)],jφ̇k(t) + εjikβjiφ̇k(t)θ(t) +

+ φ̇(t)[ξjθ(t)],j − ζφ̇(t)θ(t) +
1− ε
2T0

kijθ,i(t)θ,j(t)
]

dv .

Using the arithmetic-geometric mean inequality we have

− 2
[
βji,ju̇i + (Ckj,j + εjikβji)φ̇k + (ξj,j + ζ)φ̇

]
θ 6 δ1(ρ0u̇iu̇i + I0φ̇kφ̇k + 3J0φ̇

2) +
A

δ1

a0θ
2 ,

− 2
[
βjiu̇i + Ckjφ̇k + ξjφ̇

]
θ,j 6 δ2(ρ0u̇iu̇i + I0φ̇kφ̇k + 3J0φ̇

2) +
B

δ2

km
T0

θ,iθ,i ,

(4.4)

where δ1, δ2 are positive constants, and

A =
1

a0

max
B̄

{
βji,jβki,k

ρ0

+
(Ckj,j + εjikβji)(Ckr,r + εrskβrs)

I0

+
(ξj,j + ζ)2

3J0

}
,

B =
T0

km
max
B̄

{√
βjiβkiβjhβkh

ρ0

+

√
CkjCkiChjChi

I0

+
ξjξj
3J0

}
.

We set δ1 and δ2 as follow

δ1 =
A

κ
, δ2 =

B

ε1

,

where ε1 is an arbitrary positive constant and κ is the positive solution of

the equation

ε1κ2 −Bκ − ε1a = 0 .

We note that the constant κ is expressed in terms of the constitutive coeffi-

cients and in terms of ε1. We can see that, with this choice of δ1, δ2, κ and
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considering (1), (2), and (4.4), we have

Ḟ (t) 6 2κ
ˆ
B

[
K(t) +

1

2
aθ2(t)

]
dv +

ε1 − (1− ε)
T0

ˆ
B

kijθ,i(t)θ,j(t) dv .

If we take into account (4.2), hypothesis (3) and choose ε1 6 1 − ε, we can

obtain

Ḟ (t) 6
2κ
ε

ˆ
B

ε

[
K(t) +

1

2
aθ2(t)

]
dv 6

2κ
ε
F .

A solution of this differential inequality is such that

0 6 F (t) 6 F (0)e(2κ/ε)t .

Since we are considering homogeneous boundary-initial data, we have F (0) =

0, and so

F (t) = 0 ∀t > 0 .

In conclusion, the definition of F as a measure imply that the only solution

of the considered problem is

ui(t) = 0 , φi(t) = 0 , φ(t) = 0 ∀t > 0 .

We now consider the boundary-initial value problem P̂ defined by the

relations (3.1) to (3.3), homogeneous boundary conditions and initial con-

ditions (3.9). We can show the impossibility of localization in time of this

problem. In particular we can prove that the only solution for this problem

that vanishes after a finite time is the null solution.

Theorem 12. Let U be a solution of the boundary-initial value problem P̂
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that vanishes after a finite time T > 0

ui(t) = 0 , φi(t) = 0 , φ(t) = 0 , ∀t > T .

Then, this solution is the null solution.

Proof. We can consider the corresponding backward in time problem in the

time interval (−∞, T ], defined by the relations (3.1) to (3.3), homogeneous

boundary conditions and null final conditions:

ui(x, T ) = 0 , φi(x, T ) = 0 , φ(x, T ) = 0 , θ(x, T ) = 0 ,

u̇i(x, T ) = 0 , φ̇i(x, T ) = 0 , φ̇(x, T ) = 0 .

According to Theorem 11 the only solution is the null solution.
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Chapter 5

The asymptotic partition of

energy

In this section we derive the relations which exhibit the asymptotic partition

of the energy, provided only that the thermoelastodynamics process is con-

strained to lie in the set M of all thermoelastodymanics processes defined

on B × [0,+∞) which satisfy

ˆ t

0

ˆ
B

1

T0

kijθ,i(s)θ,j(s) dv ds 6M , (5.1)

where M is a positive constant.

If U is a solution of the boundary-initial value problem P∗, then, for the
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various associated energies, we introduce the following Cesaro means:

KC(t) =
1

t

ˆ t

0

ˆ
B

1

2

(
ρu̇i(s)u̇i(s) + Iijφ̇i(s)φ̇j(s) + 3Jφ̇2(s)

)
dv ds ,

SC(t) =
1

t

ˆ t

0

ˆ
B

W (s) dv ds ,

TC(t) =
1

t

ˆ t

0

ˆ
B

1

2
aθ2(s) dv ds ,

DC(t) =
1

t

ˆ t

0

ˆ s

0

ˆ
B

1

T0

kijθ,i(ι)θ,j(ι) dv dι ds .

(5.2)

We observe that if meas
(
Σ

(1)
1

)
= meas

(
Σ

(2)
1

)
= 0, then there exists a set

of rigid motions, null temperatures and null microstretch functions such that

the equations (3.2), (3.3), (3.10), (3.11) are satisfied, so that it is possible to

write the initial data u0
i , u̇

0
i , φ

0
i , φ̇

0
i as

u0
i = u∗i + U0

i , φ0
i = φ∗i + Φ0

i ,

u̇0
i = u̇∗i + U̇0

i , φ̇0
i = φ̇∗i + Φ̇0

i ,

(5.3)

where u∗i , u̇
∗
i , Φ∗i , Φ̇∗i are rigid displacements determined in such a way that,

defined

I
(1)
i (v) =

ˆ
B

ρvi dv , I
(2)
i (v,ψ) =

ˆ
B

ρ (εijkxjvk + ψi) dv ,

we have

I
(1)
i

(
U0
)

= 0 , I
(2)
i

(
U0,Φ0

)
= 0 ,

I
(1)
i

(
U̇0
)

= 0 , I
(2)
i

(
U̇0, Φ̇

0)
= 0 ,

(5.4)
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Let us introduce the following notations

Ĉ1 (B) =
{

(v,ψ) ∈ C1
(
B̄
)3 × C1

(
B̄
)3

: vi = 0 on Σ
(1)
1 and ψi = 0 on Σ

(2)
1

and if meas
(
Σ

(1)
1

)
= meas

(
Σ

(2)
1

)
= 0 then I

(1)
i (v) = I

(2)
i (v,ψ) = 0

}
,

Ĉ1 (B) =
{
ϕ ∈ C1

(
B̄
)

: ϕ = 0 on Σ
(3)
1

}
,

C̃1 (B) =
{
ϑ ∈ C1

(
B̄
)

: ϑ = 0 on Σ
(4)
1

}
,

and

Ŵ1 (B) the completion of Ĉ1 (B) by means of the norm of W1 (B)2,

Ŵ1 (B) the completion of Ĉ1 (B) by means of the norm of W1 (B) ,

W̃1 (B) the completion of C̃1 (B) by means of the norm of W1 (B) ,

where C1(B̄) represents the set of continuously differentiable functions on B̄;

moreover Wm (B) represents the familiar Sobolev space [35] and Wm (B) =

Wm (B)3.

We note that the hypothesis (3.7) assures that, for every V = (v,ψ, ϕ) ∈

Ŵ1 (B)× Ŵ1 (B) the following inequality [36,37] holds

ˆ
B

2W (V) dv > m1

ˆ
B

(
vivi + Iijψiψj + 3Jϕ2

)
dv (5.5)

where m1 is a suitable positive constant and W (V) is defined through the

relation (3.5). Furthermore, from relation (3.6) we obtain, for every ϑ ∈
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W̃1(B), the following Poincar inequality

ˆ
B

kijϑ,iϑ,j dv > m2

ˆ
B

ϑ2 dv (5.6)

where m2 is a suitable positive constant.

If meas
(
Σ

(1)
1

)
= meas

(
Σ

(2)
1

)
= 0, then we can decompose the solution of

the problem P∗ in the form

ui(x, t) = vi(x, t) + u∗i (x) + tu̇∗i (x) , φ(x, t) = ϕ(x, t) ,

φi(x, t) = ψi(x, t) + φ∗i (x) + tφ̇∗i (x) , θ(x, t) = ϑ(x, t) ,

(5.7)

where (v,ψ, ϕ, ϑ) ∈ Ŵ1 (B)×Ŵ1 (B)×W̃1 (B) is the solution of the problem

P∗ according to the following initial conditions

vi(x, 0) = U0
i (x) , ψi(x, 0) = Φ0

i (x) , ϕ(x, 0) = φ0(x) , ϑ(x, 0) = θ0(x) ,

v̇i(x, 0) = U̇0
i (x) , ψ̇i(x, 0) = Φ̇0

i (x) , ϕ̇(x, 0) = φ̇0(x) ,

From the above elements it is possible to derive the asymptotic partition

in terms of the Cesaro means defined by the relations (5.2).

Theorem 13. Let U be a solution of the boundary-initial value problem P∗.

Then, for all choices of initial data

u0 ∈W1(B) , φ0 ∈W1(B) , φ0 ∈ W1(B) , θ0 ∈ W0(B) ,

u̇0 ∈W0(B) , φ̇
0 ∈W0(B) , φ̇0 ∈ W0(B) ,
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we have

lim
t→∞
TC(t) = 0 , (5.8)

and it follows that

P1) if meas
(
Σ

(1)
1

)
6= 0 or meas

(
Σ

(2)
1

)
6= 0, then

lim
t→∞
KC(t) = lim

t→∞
SC(t) , (5.9)

lim
t→∞
DC(t) = 2 lim

t→∞
KC(t)− E(0) = 2 lim

t→∞
SC(t)− E(0) ;

P2) if meas
(
Σ

(1)
1

)
= meas

(
Σ

(2)
1

)
= 0, then

lim
t→∞
KC(t) = lim

t→∞
SC(t) +

1

2

ˆ
B

ρu̇∗i u̇
∗
i dv +

1

2

ˆ
B

Iijφ̇
∗
i φ̇
∗
j dv , (5.10)

lim
t→∞
DC(t) = 2 lim

t→∞
KC(t)− E(0)− 1

2

ˆ
B

ρu̇∗i u̇
∗
i dv − 1

2

ˆ
B

Iijφ̇
∗
i φ̇
∗
i dv =

= 2 lim
t→∞
SC(t)− E(0) +

1

2

ˆ
B

ρu̇∗i u̇
∗
i dv +

1

2

ˆ
B

Iijφ̇
∗
i φ̇
∗
i dv .

(5.11)

Proof. Using the relations (5.2) and (3.15), we deduce

KC(t) + SC(t) + TC(t) = E(0) +DC(t) , t > 0 . (5.12)

On the basis of the relations (5.1), (5.2), (5.6) and (3.13) it results

TC(t) 6
T0M

2m2t
max
B̄
{a(x)} , t > 0 ,

and hence by making t to tend to infinity, we get relation (5.8). On the other
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end, from relations (3.24) and (5.2) we get

KC(t)− SC(t)− TC(t) = − 1

2t

ˆ
B

(
ρui(0)u̇i(0) + Iijφi(0)φ̇j(0) + 3Jφ(0)φ̇(0)

)
dv +

+
1

4t

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t) + 3Jφ̇(0)φ(2t)

)
dv +

+
1

4t

ˆ
B

(
ρui(0)u̇i(2t) + Iijφi(0)φ̇j(2t) + 3Jφ(0)φ̇(2t)

)
dv −

− 1

4t

ˆ t

0

ˆ
B

ρη(0)
(

2θ(s) + θ(t+ s)− θ(t− s)
)

dv ds ,

(5.13)

Further, the relations (3.7), (5.1), (5.6) and (3.15) give

ˆ
B

ρu̇i(t)u̇i(t) dv 6 2
(
E(0) +M

)
, µm

ˆ
B

φ2(t) dv 6 2
(
E(0) +M

)
,

ˆ
B

Iijφ̇i(t)φ̇j(t) dv 6 2
(
E(0) +M

)
, a0

ˆ
B

θ2(t) dv 6 2
(
E(0) +M

)
,

ˆ
B

3Jφ̇2(t) dv 6 2
(
E(0) +M

)
,

ˆ
B

2W (t) dv 6 2
(
E(0) +M

)
.

(5.14)

Thus, by using the Schwarz’s inequality and the relations (5.8) and (5.14)

into relation (5.13), we obtain

lim
t→∞
KC(t)− lim

t→∞
SC(t) = lim

t→∞

1

4t

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t)

)
dv ,

(5.15)

Let us first consider the point P1. Since meas
(
Σ

(1)
1

)
6= 0, meas

(
Σ

(2)
1

)
6= 0 and

(u,φ) ∈ Ŵ1(B), from equations (5.5), (3.13) and (3.15) we deduce that

m1

ˆ
B

ui(t)ui(t) dv 6
ˆ
B

2W (t) dv 6 2
(
E(0) +M

)
,
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m1

ˆ
B

Iijφi(t)φj(t) dv 6
ˆ
B

2W (t) dv 6 2
(
E(0) +M

)
.

so that, by means of the Schwarz’s inequality, we obtain

lim
t→∞

1

4t

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t)

)
dv = 0 . (5.16)

Consequently, the relations (5.15), (5.16) imply the relation (5.9) and, by

taking into account the relation (5.12), we obtain the desired result. Let us

further consider the point P2. Since meas
(
Σ

(1)
1

)
= meas

(
Σ

(2)
1

)
= 0, then the

decompositions (5.3), (5.7) and the relation (5.4) give

1

4t

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t)

)
dv =

1

4t

ˆ
B

ρu̇∗iu
∗
i dv +

1

4t

ˆ
B

ρ(u̇∗i + U̇0
i )vi(2t) dv +

1

2

ˆ
B

ρu̇∗i u̇
∗
i dv +

1

4t

ˆ
B

Iijφ̇
∗
iφ
∗
j dv +

1

4t

ˆ
B

Iij(φ̇
∗
i + Φ̇0

i )ψj(2t) dv +
1

2

ˆ
B

Iijφ̇
∗
i φ̇
∗
j dv .

(5.17)

Now, from relations (5.5), (3.13) and (3.15) we deduce

m1

ˆ
B

vi(t)vi(t) dv 6 2
(
E(0) +M

)
,

m1

ˆ
B

Iijψi(t)ψj(t) dv 6 2
(
E(0) +M

)
,

and from equation (5.17) we obtain

lim
t→∞

1

4t

ˆ
B

(
ρu̇i(0)ui(2t) + Iijφ̇i(0)φj(2t)

)
dv =

1

2

ˆ
B

ρu̇∗i u̇
∗
i dv+

1

2

ˆ
B

Iijφ̇
∗
i φ̇
∗
j dv .

Therefore, if we substitute the last relation into equation (5.15) we deduce
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the relation (5.10). Moreover, taking into account the relations (5.8), (5.10)

and (5.12), we obtain the relation (5.11), thus the proof of the theorem is

complete.
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