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Introduction

The problem of the evaluation of volatility predictions is a challeng-
ing research field. A general formulation of this problem is:

V E = (h, ĥm, F I, EF (·)), (1)

where V E stands for volatility evaluation and:

ã h is the (unobserved) volatility;

ã ĥm represents the volatility predictions of m competing models;

ã FI stands for the Forecasting Issue;

ã EF (·) is the evaluation function comparing each ĥm to (a proxy
of) h.

In this thesis the term volatility refers to the risk related to hold fi-
nancial instruments like assets, bonds, and so forth. Unfortunately, the
volatility is not directly observable. Despite the latent nature of the volatil-
ity, its estimate is fundamental in many empirical problems such as the as-
set allocation and risk management, for instance. During the last decades
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many volatility measures have been proposed. A comprehensive survey
on the volatility measures can be found in Andersen et al. (2002). Even
though h is not directly observable, different proxies have been proposed
in literature. A widely accepted volatility proxy is represented by the re-
alized volatility. See Andersen et al. (2003) and Barndorff-Nielsen and
Shephard (2004) for the theoretical foundations of this approach, while a
review is provided by McAleer and Medeiros (2008). If there are more
than one asset, the term realized volatility is replaced by the term realized
covariance.

With reference to ĥm in (1), the estimate of volatility can be obtained
through different models/approaches. In this work, the attention is fo-
cused on the GARCH models, both in the univariate and multivariate
context, and on the models that derive the volatility as combination of
the past proxies. Terasvirta (2006) provides an overview of the univariate
GARCH models while Bauwens et al. (2006) survey the most important
developments in multivariate ARCH-type modelling. Other methods can
be used to estimate the volatility, such as the implied volatility method,
the stochastic volatility approach, and so forth. A discussion on the im-
plied volatility is in Dumas et al. (1998). A survey on the stochastic
volatility is in the work of Ghysels et al. (1995) while Lehar et al. (2002)
empirically test the differences between the GARCH and the stochastic
volatility approach.

The discussion about the evaluation of the volatility predictions can-
not disregard by the forecasting issue, denoted in (1) by FI . The FI
concerns different aspects such as the width of the information set used
to predict the volatility, how often the information set is updated, the
combination of the forecasts, and so forth. A survey on the forecasting
is found in Elliott and Timmermann (2007) while Timmermann (2006)
presents an overview of the forecasts combination.

Last but not least, EF (·) in (1) represents the function/method used
to evaluate the volatility predictions of a set of competing models to the
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volatility proxy. These methods are generally divided in two approaches:

1. a statistical approach involving loss functions such as the Mean
Squared Error (MSE), the Root Mean Squared Error (RMSE), etc.

2. an economic approach, based on utility functions or indirect meth-
ods, such as the Value at Risk (VaR) measures.

In a general forecasting framework, where the volatility predictions
are only a possible application, the predictive ability of the models can be
tested by the Diebold and Mariano (1995) and West (1996) tests, for the
pairwise comparison and White (2000) and Giacomini and White (2006)
tests, for the multiple comparison, for instance. In all these tests, the loss
functions play a fundamental role, evaluating the distance between the
actual (when observed) and the forecasted value of the variable of inter-
est. When the volatility is the variable of interest, the situation becomes
more difficult, due to its latent nature. Recently, an important innova-
tion regarding the evaluation of volatility by means of the loss functions
has been provided by Hansen and Lunde (2006) and Patton (2006) for
the univariate framework and Laurent et al. (2013) for the multivariate
one. The innovation regards the consistency or robustness of the loss
function: a loss function is said to be consistent if the ranking of any
two volatility forecasts is the same of the ranking that would be obtained
if the true volatility had been observable. The tests cited above and the
new contribution regarding the consistency of the loss functions belong
to the statistical approach. Comparing the forecasts of a set of models to
the volatility proxy, the statistical approach represents a direct method of
evaluation.

Instead, the economic approach is said to be an indirect method of
evaluation. In fact, it takes in consideration risk measures, whose inputs
are the volatility predictions obtained by a set of models. Afterwards,
these risk measures are evaluated. A popular risk measure is the Value at
Risk (VaR). Duffie and Pan (1997) and Jorion (2007) present its overview.
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If the mean-variance approach is used, the volatility forecast of a model
is the key input to estimate the VaR. Then the performance of the model
is evaluated looking at its VaR measures. Traditionally, the evaluation
of the VaR measures is done examining the occurrences of VaR viola-
tion, where violation means the event that the observed negative daily
return (representing a loss) is greater than the VaR. More specifically, the
VaR evaluations in terms of violations is done through the Unconditional
and Conditional Coverage tests, proposed by Kupiec (1995) and Christof-
fersen (1998), respectively. The former tests if the actual number of vi-
olations is statistically equal to the expected number of violations. The
Conditional Coverage test verifies jointly the empirical rate of violations
and their independence.

Research Questions

This work aims to investigate the performance of a set of competing
models in terms of volatility forecast accuracy. The volatility predictions
are compared cross-sectionally among the models and with respect to the
volatility proxy, by means of statistical and economic approaches. In
other words, the main interest is investigating the EF (·) in (1).

From the univariate point of view, the two aforementioned approaches
are merged. The evaluation of the VaR measures is done through two
loss functions, the first proposed by Lopez (1998) and the second is a
new asymmetric loss function. The term asymmetric means that a model
with an actual number of violations greater than the expected one is more
penalized. The research questions are:

1. Is it possible to use the loss function in a VaR framework in order
to evaluate the volatility predictions of a set of competing models?
Does this approach bring an advantage when the statistical and the
economic approaches fail to recognize the best model?

2. Is it possible to find a threshold that discriminates low from high
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loss function values in order to evaluate the performances of the
volatility models?

From the multivariate point of view, again the two approaches are con-
sidered but this time are explicitly compared. The research questions are:

3 Is the ranking of the competing models the same if a statistical and
an economic loss functions are used?

4 Do the multivariate GARCH models have a worse forecast accu-
racy than that of the models that use the realized volatility to fore-
cast ĥ?

Thesis Structure

The work is organized as follows. Chapter 1 concerns the first two
sub-points of (1). First, the univariate and multivariate GARCH mod-
els are surveyed and then the nonparametric approach used to have the
volatility proxy is discussed, both in the univariate and multivariate con-
text. Chapter 2 is related to the FI in (1). The questions dealt with are
(i) the forecasting schemes, that can be fixed, recursive or rolling; (ii) the
evaluation of the forecast performances using the robust statistical loss
function, the economic approach and the predictive ability tests; (iii) the
forecasts combination in order to have a superior predictive ability. The
answers to the research questions 1-2 are given in Chapter 3. Here the
new asymmetric loss function is proposed and the block bootstrap of the
high-frequency intraday return is used in order to have a consistent es-
timator of the distribution of the daily returns. This approach allows to
estimate the VaR for any distribution of the daily returns. Moreover, the
block bootstrap is re-used to estimate the threshold that discriminates low
loss function values to high loss function values, once the VaR has been
obtained. In this chapter, the analysis is done through a Monte Carlo
experiment and an empirical analysis of a stock listed on the New York
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Stock Exchange. Chapter 4 presents the answers to the research ques-
tions 4-5. Here an extensive Monte Carlo simulation is performed to
compare the volatility predictions of fourteen models. The benchmark of
the volatility is the realized covariance and the analysis is repeated as the
proxy becomes more and more imperfect. In other words, the frequency
at which the proxy is obtained varies from five minutes to one day. Fi-
nally, the conclusions with some suggestions for future research and the
main references are reported.

Key Contributions

With reference to the volatility evaluation in the univariate frame-
work, discussed in Chapter 3, this thesis uses the loss functions in a VaR
framework. This approach is said to be mixed because it considers both
the loss functions (statistical approach) and the VaR measures (economic
approach). Moreover, the loss functions in a VaR framework works in-
dependently of the distribution of the daily returns, provided that their
high-frequency increments are available. This approach provides an em-
pirical, straightforward method to determine the threshold discriminating
low from high loss function values, helping the forecaster to decide which
model has a superior predictive ability. Moreover, a new asymmetric loss
function is proposed that could be taking in consideration by the risk-
averse agents. The indirect evaluation of the volatility models by means
of the loss functions yields advantages in situations where the statistical
approach, like the MSE, or the VaR tests fail to recognize the best model.

With reference to the volatility evaluation in the multivariate frame-
work, presented in Chapter 4, the empirical analysis realized with differ-
ent levels of proxy’s precision shows that there is not a clear correspon-
dence between the ranking produced by the robust loss function and that
produced by the economic approach. For a risk manager, decisions only
based on the VaR violations could lead to use models that are far from the
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true (but unobserved) volatility. Moreover, models using a combination
of the past realized covariances assure better forecast accuracy than that
obtained from the multivariate GARCH models. Finally, the importance
of the covariances in the evaluation of the forecast accuracy seems to be
low. The ranking given by the loss function that uses only the variances is
the same of the ranking given by the loss function that uses both variances
and covariances.





1
The Volatility Models

1.1 Introduction

The volatility is a latent variable and it is not directly or uniquely
calculable. With reference to the assets listed on exchange markets, the
volatility is related to the variability: the greater is the variability of a
stock, the greater is the “risk” of possible losses or possible gains. Thus,
to measure the risk related to holding financial instruments it is usual to
refer to some statistical variability indices, like the variance or the stan-
dard deviation. These statistical indices are used to quantify the risk of
the considered instrument over that time period. Already in the 1960s
many studies showed that financial time series exhibit time-varying vari-
ance (see the seminal paper of Mandelbrot (1963)). The quantification of
the volatility is fundamental in order to price derivatives, hedge against
portfolio risk, make decision about which instruments is suitable to buy,
which to hold and which to sell, for instance. This explains why practi-
tioners and researchers have such enormous interest on it.

Different volatility measurements have been proposed in literature.
A classic distinction between these measures is the parametric/nonpara-
metric nature of the procedure used to estimate the volatility. Andersen
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et al. (2002) provide an excellent report on this issue. A specific class
of statistical models that captures the “heteroskedasticity”, that is the
time-varying variance, is the GARCH (General AutoRegressive Condi-
tional Heteroskedasticity) class of models, proposed by Engle (1982) and
Bollerslev (1986). The GARCH models belong to the family of paramet-
ric approaches where the underlying data generating process is assumed
to be known. In particular, the GARCH models explicitly consider a func-
tional form such that the ex-ante expected volatility depends on directly
observable variables. Also the Stochastic Volatility framework, reviewed
by Taylor (1994), belongs to the family of parametric procedures. It aims
to estimate the ex-ante expected volatility by means of directly observable
variables but, in addition to the GARCH models, the Stochastic Volatility
method also considers some additional, latent state variables. Instead, the
nonparametric approach lacks of any functional form and estimates the
ex-post volatility by means of the high-frequency data. For instance, the
well known realized volatility (Andersen et al. (2003)) estimates the ex-
post volatility summing the squared return realizations over a fixed time
interval.

The aim of this chapter is to present the main GARCH models, from
an univariate and multivariate point of view. These models represent
different estimators of ĥm in (1). In the last part of the chapter, first
nonparametric approach for the volatility proxy and then its parametric
modelization are illustrated. During last years, an very large amount of
models have been presented. We focus only on the models that will be
used in the empirical part of this work.

The remainder of this chapter is organized as follows. In Section
1.2 the notations that will be used throughout this work are showed. In
Section 1.3 some empirical regularities of the asset returns are presented.
Section 1.4 and 1.5 survey the univariate and multivariate GARCH mod-
els, respectively. Section 1.6 overviews the inference procedures to es-
timate the models presented and Section 1.7 reports the volatility proxy
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framework

1.2 The notation

Throughout this work we use the following notations. Let rt be the
daily logarithmic returns at time t of a given stock:

rt = pt − pt−1,

where pt is the logarithm of the observed price at time t. Let It−1 be the
Information Set at time t − 1, used to estimate any moment of rt, con-
ditionally on it. It−1 consists of all the information generally available
concerning that stock. The conditional mean of rt is:

E(rt|It−1) = µt, (1.1)

We focus on the second moment of rt, that is commonly defined as con-
ditional variance:

V AR(rt|It−1) = h2
t . (1.2)

Within this framework, the volatility is generally defined as the square
root of h2

t .
With reference to the multivariate context, the bold character means

a column vector. More specifically, let rt a column vector of dimension
k × 1 such that each entry is given by the daily logarithmic difference of
k assets. The transposition of a vector is denoted by the operator

′
, such

that r′t indicates a 1× k vector. All the matrices are indicated by a capital
letter.

Let L be the lag or backshift operator such that Lirt = rt−i and
αp(L) = α1L+ · · ·+ αpL

p.
The expressions a.s.−→ ,

p−→ and d−→ denote the almost sure conver-
gence, the convergence in probability and the convergence in distribution,

respectively. The expression
d
≈means that, when multiplied by a suitable

factor, the convergence is in distribution.
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1.3 Stylized Facts

In the asset returns there are some common features, defined as em-
pirical regularities or “Stylized Facts”. The volatility models aim to cap-
ture as many as possible of these stylized facts. In what follows, the
main empirical regularities of the asset returns are presented. Some styl-
ized facts will be displayed in figures illustrating the daily logarithmic
returns of the Capital One Financial Corporation (COF) stock. The COF
stock is listed on the New York Stock Exchange. Capital One Finan-
cial Corp. is a U.S.-based bank holding company specialized in credit
cards, home loans, banking and savings products. The dataset, obtained
from Tick Data, Inc.1, covers the period from April 8, 1997 until July
18, 2008 (2839 trading days). It is characterized by severe changes in
volatility dynamics. As done by Laurent et al. (2010), that worked more
or less with the same time lapse, we divide the whole sample into three
not overlapping sub-periods. In the first sub-sample (from April 3, 1998
to December 31, 2003, for a total of 1695 days), the data experience a
considerable turbulence.

The second sub-sample consists of 607 trading days, from January 2,
2004 to May 31, 2006. In this sample the data experience a period of
market stability.

The third sub-sample (537 days) starts on June 1, 2006 and ends on
July 18, 2007. The last part of this sub-sample corresponds to the begin-
ning of the recent financial crisis.

1.3.1 Volatility Clustering

The first stylized fact is the volatility clustering, discovered by Man-
delbrot (Mandelbrot (1963)), that on 1963 wrote “· · · large changes tend
to be followed by large changes, of either sign, and small changes tend to
be followed by small changes· · · ”.

1Tick Data is a provider of historical intraday market data.
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In (1.1), if µt is assumed to be zero ∀t, the squared returns can be used
as (a very noisy) estimator of the conditional variance. Looking at their
correlogram there is a clear evidence of time-varying variance. Hence,
the conditional variance at time t depends on the conditional variance at
time t − 1 and so forth. For an economic point of view, the explanation
of volatility clustering is as follows. If a stock price falls down, it is ex-
pected that the investor sells. If many investors begin to sell, the stock
value goes down more and more. Thus, changes of negative sign tend
to be followed by other negative changes. In such periods the volatility
is very high. Many papers highlight the evidence of volatility cluster-
ing, like Friedmann and Sanddorf-Köhle (2002) and Kirchler and Huber
(2007).

The volatility clustering phenomenon is immediately observable when
asset returns are plotted through time, as shown in Figure 1.1. In panel
(A), corresponding to the first period, the scale of the daily returns is the
greatest compared to the other two periods. Here, some considerable days
of volatility clustering are visible in mid 2003. Without doubts, some evi-
dent episodes of volatility clustering are present in the third period (panel
(C)). In this period, the first months do not experience great movements
while the last months are characterized by huge changes of the daily re-
turns.

The volatility clustering can be also visualized by means of the au-
tocorrelations of the squared daily returns. Recalling that it is assumed
µt = 0. The autocorrelations of the squared daily returns show how much
the variance is clustered in time. These autocorrelations are displayed in
Figure 1.2. In panel (A) and (C) the autocorrelations till at least lag nine
strengthen the idea of volatility clustering presence. In addition, panel
(B) witnesses that in the second period there are not relevant volatility
clustering episodes.
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1.3.2 Thick Tails

It is generally supposed that the asset returns follow a Normal distri-
bution. Many times, this assumption is rejected by empirical regularities.
For instance, Rachev et al. (2005) examine 382 U.S. stocks, strongly re-
jecting this assumption. In fact, asset returns tend to be leptokurtic. This
empirical regularity is called Fat or Thick tails. Assuming a Normal dis-
tribution, it is known that about 95% of the values are within a distance of
two standard deviations from the mean. Instead, the unconditional distri-
bution of the assets usually displays a different behaviour: in particular,
there are (i) rare events with a small frequency (very far from the mean)
but with a exceptionally low or high values (for example, a very bad per-
formance caused by a failure’s news spread or a very good performance
caused by a merger between two companies appreciated by the market)
(ii) many events with a high concentration around the mean, usually equal
to zero. Despite all these drawbacks, the Normal distribution assumption
is taken in order to make easier the inference procedure. However, in
literature many distributions have been proposed to take into account the
fat tails of the daily returns. For instance, the Student’s t-distribution, the
Generalized Error Distribution (GED) of Nelson (1991), the Generalized
Hyperbolic Distribution (GHD) due to Eberlein and Keller (1995), the
Noncentral t Distribution proposed by Harvey and Siddique (1999), and
so forth, could be used. All these distributions allow to have thicker tails
than those of the Normal distribution.

In Figure 1.3 the unconditional distributions of the COF daily log-
arithmic returns are plotted against a Normal distribution, for each sub-
sample. In panel (B), where the period displayed is characterized by more
stability, the Normal assumption could be not rejected. Instead, in panel
(A) and (C), where the market experienced greater instability, the fat tails
of the daily returns are immediately visible.
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1.3.3 Leverage Effect

The “leverage effect” due to Black (1976) means that negative no-
tices2 have a different impact on the volatility. Typically, bad notices
produce an increase of volatility, compared to good ones. In presence
of past negative returns, the resulting volatility is often higher than the
volatility that occurs in presence of same size (in absolute terms) posi-
tive returns. The reason is as follows: when the stock prices of a firm
fall (and thus the returns become negative), the debts remain stable in
the short period; hence, the debt-to-equity ratio (also called “leverage”)
increases. At this point, the market reacts to the fact that the future of

2For negative notices we refer to all the news concerning a “X” company, the eco-
nomic sector in which the “X” company operates or the economic system as whole, such
that the “X” stock value could be reduced.
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that firm has an increased uncertainty and thus the stock price exhibits
more variability. Evidences of the leverage effect are provided by Chen
and Wang (2004), among others. In literature there have been proposed
different models capable to capture the leverage effect, models that will
be presented afterwards.

1.3.4 Calendar Anomalies

The so-called “calendar anomalies” have been largely studied in the
literature (see French (1980) and Rogalski (1984), among others). The
calendar anomalies can be distinguished in January effect and Week-end
or day of the week effect.

The January effect means that the stock price tend to rise during the
period starting on the last day of December and ending on the fifth trad-
ing day of January. This happens for several reasons, as indicated in
Jacobs and Levy (1988). For instance it could be happen that at the end
of the year the investors have to pay taxes and so there is less liquidity
but afterwards in January the money availability becomes higher causing
a re-buying of the stock.

With reference to the day of the week effect, the average return on
Monday is sometimes significantly less than the average return over the
other days of the week. The presence of day of the week effect can be
tested inserting in the mean equation or in the variance equation a dummy
variable which assumes a value equal to one if the day is Monday and zero
otherwise. Then the unknown parameter linked to this dummy variable is
estimated and its statistical significance is studied. This approach can be
easily extended to verify which week day helps to explain the conditional
mean and variance of the stock return by following the same methodol-
ogy. Berument and Kiymaz (2001) find empirically that the week effect
is present in both return and volatility equations.

We present some evidences of the calendar anomalies in Figures 1.4
and 1.5. These figures show the boxplots of the COF daily returns for
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each month and each day of the week, respectively. In these boxplots, the
top two largest values, both negative and positive, have been ruled out.
With reference to the differences among the monthly averages and medi-
ans, we find some evidences mainly in the second and third sub-samples
(panel (B) and (C)). In the first sub-sample, that is the largest, the dif-
ferences among the months are attenuated by the length of the period.
However, it is pretty clear that the means and the medians remain fairly
stable during the summer periods while they tend to change more during
the last months of the year. As regards to the week of the day effect, again
the length of the period mitigates the differences among the daily aver-
ages and medians, such that the first period (panel (A)) does not highlight
any relevant inequality. Instead, mainly in the second period, the daily
averages and medians change over the weekdays.

1.4 Univariate volatility models

In this section two approaches that aim to estimate ĥ are overviewed:
(i) an exploratory method, like the RiskMetrics approach; (ii) a stochastic
method, that is GARCH and related models.

1.4.1 RiskMetrics

RiskMetrics estimator, proposed by the risk management group of JP-
Morgan3 in 1996, has the advantage of being easily calculated, given that
it does not require any estimation procedure. It represents a good starting
point for comparing the estimated conditional variance with conditional
variances obtained with other methods. For the RiskMetrics estimator the
variance at time t derives from a weighted mean of the variance at time

3JPMorgan Chase & Co. is an American multinational banking and financial services
holding company.
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Figure 1.4 – COF monthly boxplot
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Figure 1.5 – COF weekly boxplot
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t− 1 and the squared returns at t− 1:

σ̂2
t = λσ̂2

t−1 + (1− λ)r2
t−1, (1.3)

with 0 < λ < 1, σ̂2
0 denoting the variance at time 0, usually equal to

the unconditional sample variance. JPMorgan suggests a value of λ equal
to 0.94 for daily returns and equal to 0.97 for weekly returns. Being
a weighted moving average, the RiskMetrics approach gives more im-
portance to the more recent observations. Moreover, the λ parameter
provides the volatility persistence: if λ → 1, then the memory of the
estimator is very high, since the variance at time t is given mostly by
the variance at time t − 1. For other details, see the original technical
document provided by Morgan (1996).

1.4.2 GARCH models

Let {rt(θ)} denote a discrete time stochastic process with conditional
mean and variance functions parametrized by the finite dimensional vec-
tor θ ∈ Θ, where Θ is the parametric space and θ0 denotes the true value.
As above mentioned, here rt is assumed to be a scalar, with the obvious
extensions to a multivariate framework treated in the next section. In the
subsequent discussions we shall focus on {rt} process, but the same ideas
may be extended to the situation in which we consider another stochastic
process {ξt} corresponding to the innovations from some more elabo-
rate econometric model. In particular, let {yt(θ)} denote the stochastic
process of interest with conditional mean

µt(θ) = E(yt|It−1) t = 1, · · · , T ; (1.4)

Hence, define the {ξt} process by

ξt(θ) = yt − µt(θ) t = 1, · · · , T ; (1.5)

The conditional variance for {ξt} then equals the conditional variance of
the {yt} process. The last two equations therefore provide the framework
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on which we shall focus. In fact, the daily returns are directly observed. If
in {rt} there is a conditional mean structure, µt(θ) is estimated by means
of the class of ARMA4 model and then, on the fitted residuals, obtained
through the difference expressed in (1.5), the volatility can be estimated.
In order to avoid burdening the notation, we exclude this last case: in
what follows, the focus will be on conditional variance of rt, which is
therefore assumed to be a weak white noise while µt is considered equal
to zero.

The general conditional heteroskedastic model can be defined as

rt = htzt t = 1, · · · , T ;

h2
t = f(It−1, θ), (1.6)

with zt is a i.i.d. white noise process with zero mean and unit variance,
formally:

zt ∼ N (0, 1). (1.7)

As stated above, h2
t is the conditional variance of rt at time t and the

vector θ contains the unknown model’s parameters. By construction,
rt|It−1 ∼ N (0, h2

t ), that is also rt is conditionally normally distributed.
The general model in (1.6) includes several other models of condi-

tional heteroskedasticity. Each model represents a different choice of the
function f(·).

ARCH Model

The autoregressive conditional heteroskedasticity (ARCH) model pro-
posed by Engle (1982) was the first parametric model able to capture
the time-varying variance. While the first empirical applications of the
ARCH models were concerned with modeling the uncertainty of the in-
flation rate, the methodology has subsequently found especially exten-
sive application in capturing the temporal dependencies in the conditional

4 See de Gooijer et al. (1985) for a review on AutoRegressive (AR), Moving Average
(MA) and AutoRegressiveMovingAverage (ARMA) models.
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variance of asset returns.
The ARCH(p) model, with p term denoting the number of lags, as-

sumes f(·) as given by a linear combination of the p past values of r2
t :

h2
t = α0 +

p∑
j=1

αjr
2
t−j = α0 + αp(L)r2

t . (1.8)

Thus, the conditional variance of rt in an ARCH(p) model is a linear
function of the p squared lags. The unknown parameters in (1.8) are
α0, α1, · · · , αp.

Defining vt = r2
t −h2

t , the ARCH(p) model in (1.8) may be re-written
as:

r2
t = α0 + α(L)r2

t + vt.

Since E(vt|It−1) = 0, the model corresponds directly to an autoregres-
sive model of order p (noted as AR(p)) for the squared daily returns, r2

t .
The parameter restrictions in (1.8) for positivity of the conditional

variance are: α0 > 0 and αj ≥ 0 , for j = 1, · · · , p.
The process is covariance stationary if and only if the sum of the

positive autoregressive parameters is less than one. In this case the un-
conditional variance is equal to V ar(rt) = σ2 = α0/(1−α1−· · ·−αp).

It is easy to demonstrate that an ARCH model has a kurtosis larger
than 3, using the law of iterated expectations5. Remember that the kur-
tosis is based on the forth moment of the data, in this case rt. Let us
consider the case that the conditional variance of rt follows an ARCH(1)

5The law of iterated expectations states that if X is a random variable satisfying
E(|X|) <∞) and Y is any random variable, on the same probability space, then

E(X) = E(E(X|Y )),

i.e., the expected value of the conditional expected value of X given Y is the same as the
expected value of X.
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process. The (conditional) forth moment of rt is:

E(r4
t |It−1) = E(h4

t z
4
t |It−1)

= E(z4
t |It−1)E((h2

t )
2|It−1)

= 3(α0 + α1r
2
t−1)2, (1.9)

where (1.9) immediately comes from (1.7) and (1.8). Applying the law
of iterated expectations, it follows:

E(r4
t ) = E(E(r4

t |It−1))

= 3E(α0 + α1r
2
t−1)2

= 3(α2
0 + 2α0α1E(r2

t−1) + α2
1E(r4

t−1))

= 3(α2
0 + 2α1

α2
0

1− α1
+ α2

1E(r4
t−1)).

Assuming that the process is stationary both in variance and in the fourth
moment, if E(r4

t ) = c,

c =
3α2

0(1− α2
1)

(1− α2
1)(1− 3α2

1)
.

Simple algebra then reveals that the kurtosis is

κ(rt) =
E(r4

t )

E(r2
t )

2
=

E(r4
t )

σ4
=

3(1− α2
1)

(1− 3α2
1)
≥ 3.

Hence, the unconditional distribution of rt is leptokurtic. That is to say
that the ARCH(1) process has tails heavier than the normal distribution,
as desired. This property makes the ARCH model attractive because, as
seen previously, the distribution of asset returns display tick tails.

The greatest limit of ARCH formulation is that it requires too many
parameters (i.e., too many lagged daily returns) to model the persistence
of the conditional variance. Some practitioners suggest a minimum order
of p = 14 to model adequately the volatility. Obviously, the estimation
of large dimensional parameter spaces becomes quite complicated when
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the number of parameters increases. The estimation of ARCH models
is normally done using the maximum likelihood (ML) method, whose
application in the time series framework will be explained later. To over-
come the over-parametrization of ARCH, Bollerslev (1986) proposed the
generalized ARCH (GARCH) model which allows a more parsimonious
parametrization of the conditional variance process.

GARCH model

A GARCH(p, q) model considers the conditional variance to be a lin-
ear function of the past p squared innovations and of the past q variances.
Similar to the ARCH model, it also includes a constant. A GARCH(p, q)
is formalized as:

h2
t = α0 +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjh
2
t−j (1.10)

= α0 + αp(L)r2
t−1 + βq(L)h2

t−1. (1.11)

If the conditional variance follows a GARCH(1,1) process, the co-
efficient α1 measures the intensity of reaction of volatility to yesterday
unexpected market return r2

t−1 and the coefficient β1 measures the effect
of one lagged volatility. For q = 0, the process reduces to the ARCH(p)
model, and for p = q = 0, rt is reduced to a white noise process.

The conditional variance for a GARCH(p, q) model is well defined if
all the coefficients are positive. For a GARCH(1, 1) model, almost sure
positivity of h2

t it assured if α0 > 0, α1 ≥ 0 and β1 ≥ 0.
A GARCH(p, q) model with positive coefficients α0 > 0, αi ≥ 0,

i = 1, · · · , p, and βj ≥ 0, j = 1, · · · , q, is covariance stationary if

p∑
i=1

αi +

q∑
j=1

βj < 1,

as demonstrated by Lindner (2009), among others.
In empirical applications with financial data the estimate for αp(L) +
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βq(L) turns out to be very close to unity. This provides an empirical
motivation for the so-called integrated GARCH(p, q) model, commonly
defined as IGARCH(p, q) model, introduced by Engle and Bollerslev
(1986). In the IGARCH class of models a shock to the conditional vari-
ance is highly persistent.

As earlier mentioned, the GARCH formulation is more parsimonius
in terms of parameters than the ARCH model. If an ARMA model often
leads to a more parsimonious representation of the temporal dependen-
cies in the conditional mean compared to an AR model, the GARCH(p, q)
formulation in (1.10) provides a similar added flexibility over the linear
ARCH(p) model. In fact, the GARCH model can be expressed as an
ARCH(∞). Let us consider a GARCH(1,1) model as that of equation
(1.12). Then h2

t−1 is calculated in (1.13) and it is inserted in (1.12):

h2
t = α0 + α1r

2
t−1 + β1h

2
t−1 (1.12)

h2
t−1 = α0 + α1r

2
t−2 + β1h

2
t−2 (1.13)

h2
t = α0 + α1r

2
t−1 + β1(α0 + α1r

2
t−2 + β1h

2
t−2)

= α0 + β1α0 + α1r
2
t−1 + α1β1r

2
t−2 + β2

1h
2
t−2 (1.14)

Going backwards with the same trick for k steps, with k large enough,
the contribute of h2

t−k will be negligible, due to βk1 → 0, given that by
construction β1 < 1. Hence, a GARCH(1,1) can reproduce the same
volatility pattern as an ARCH(∞).

In Figure 1.6 the conditional variances for some simulated data are il-
lustrated. In particular, the data generating process is a GARCH(2,2) pro-
cess with zt ∼ N (0, 1) and T = 200. The true parameters are α0 = 0.01,
α1 = 0.08, α2 = 0.02, β1 = 0.75 and β2 = 0.10. In the figure the true
conditional variance is reported with a thicker line in order to distinguish
it to the forecasted variances produced by three GARCH models, that
are: an ARCH(4), an ARCH(14) and a GARCH(1,1). All the models fol-
low quite good the pattern of the true variance even though they exhibit
large deviations from it. In particular, the ARCH(4) model experiences
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the greatest distance from the true variance, while the GARCH(1,1) the
smallest one.
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Figure 1.6 – GARCH(2,2) vs ARCH(4), ARCH(14) and GARCH(1,1) models

To conclude, the main advantage of the GARCH model is that it re-
quires a lower number of parameters than the ARCH model, keeping all
the good features of this last one: it is able to model the excess kurtosis
of daily returns and capture the volatility clustering phenomenon. In par-
ticular, considering this latter and given that the GARCH models assume
that conditional variances depend on realizations of past innovations and
on lagged variances, the main appeal of this class of models is that “big”
surprises, of either sign, increase uncertainty and therefore will be more
likely to be followed by other “big" surprises. Another advantage of the
model is its relative simplicity. However, the GARCH models present
some drawbacks. A disadvantage of the standard GARCH models is that
they cannot model asymmetries of the volatility with respect to the sign
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of past shocks (leverage effect). This results from the squared form of the
lagged shocks in (1.8) and (1.10). Therefore they have an effect on the
level but no effect on the sign: bad news (identified by a negative sign of
daily returns at time t−1) have the same influence on the volatility at time
t as good news if the absolute values are the same. Moreover, the param-
eter restrictions that are required to ensure positivity of the conditional
variance at every point of time represent another drawback.

An Asymmetric GARCH Model: the GJR-GARCH

The GJR-GARCH model of Glosten et al. (1993) gives a higher weight
to negative returns, introducing a parameter that increases the conditional
variance if rt−1 < 0. Formally, a GJR-GARCH(1,1) is

h2
t = α0 + (α1 + γ1I(rt−1<0))(r

2
t−1) + β1h

2
t−1, (1.15)

where I(rt−1<0) is an indicator function assuming value one when the ar-
gument is true and zero otherwise. Thus, if there is a negative change of
daily returns at time t−1, the volatility increases of α1+γ1 at time t, cap-
turing the leverage effect. This model has very similar behaviour to the
classic GARCH, i.e. we have positive conditional variance, considering
a GJR-GARCH(1,1), if:

α0 > 0 (α1 + γ1)/2 ≥ 0 β1 ≥ 0,

and covariance stationarity if:

(α1 + γ1)/2 + β1 < 1.

If the last condition is satisfied, the unconditional variance is

σ2 = α0/(1− (α1 + γ1)/2− β1).
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Another Asymmetric GARCH model: The E-GARCH

The Exponential GARCH (EGARCH) model, introduced by Nelson
(1991), overcomes both the drawbacks mentioned above: the parameter
restrictions and the lack of leverage effect in the standard GARCH mod-
els. The EGARCH models has the following form:

h2
t = exp

[
a0 + a1a

rt−1

ht−1
+ a1b

(
|rt−1|
ht−1

− E
[
|rt−1|
ht−1

])
+ g1logh2

t−1

]
For rt ∼ N (0, h2

t ) the standardised variable rt
ht

follows a standard nor-

mal distribution and consequently E
[
|rt|
ht

]
=
√

2
π . The parameter a1a

captures the leverage effect. For “good news”
(
rt−1

ht−1
> 0
)

the impact of

the innovation rt−1 is (a1b + a1a)
rt−1

ht−1
and for “bad news”

(
rt−1

ht−1
< 0
)

it
is (a1b − a1a)

rt−1

ht−1
. If a1a = 0, h2

t responds symmetrically to rt−1

ht−1
. To

produce a leverage effect, a1a must be negative.
Given that the EGARCH process is specified in terms of log-volatility

implies that h2
t is always positive and, consequently, there are no restric-

tions on the parameters.

1.4.3 Final Considerations on the GARCH models

The previous models are only a small part of the wide literature on
GARCH models that has been developed during last decades. For more
details on the recent developments, see the work of Zivot (2009), where
several univariate GARCH models are empirically estimated and com-
pared. It is important to underline that we focused on these models be-
cause these will be used in the empirical part of the work.

Before the breakthrough work of Engle (1982), the time-varying vari-
ance were modelled by nonparametric procedures like a recursive esti-
mation over time (Mandelbrot (1963)) or a moving variance estimation
(Klein (1977)). After Engle’s work, many of the stylized facts have been
captured by the GARCH models. In fact, GARCH models are able to
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capture the excess of kurtosis and the volatility clustering. Moreover, the
GJR-GARCH can capture the leverage effect and the EGARCH model
does not require any parameter restrictions.

With reference to ĥm in (1), each univariate volatility model pre-
sented above will produce a volatility forecast. In the next chapter the
attention will be focused on the methods used to compare the predictions,
while in the next section the multivariate specification is presented.

1.5 Multivariate volatility models

When more than one stock is owned or analysed, other instruments
have to be considered to estimate the volatility. In fact each conditional
variance of a stock Y1 could be explained by other current or lagged re-
alizations of other stocks Y2, · · · , Yk. The analysis becomes more com-
plicated because the output of the volatility estimation is now a k × k

matrix, generally called covariance matrix. In this framework, the prin-
cipal diagonal of the covariance matrix collects the conditional variances
of each stock while the conditional covariances lie on the extra-diagonal
elements. By construction, the covariance matrix is symmetric but the
restrictions needed to assure the positive definiteness are sometimes cum-
bersome as long as the number of stock increases. Then, the covariance
matrix is normally used as a key input for the portfolio optimization, for
instance. A portfolio optimization using the covariance matrix as key in-
put is reviewed by Chan et al. (1999) while for the basis of the portfolio
optimization, see the seminal papers of Markowitz (1952, 1959).

A general formulation for the multivariate GARCH (MGARCH) mo-
del is:

rt = H0.5
t zt, (1.16)

where rt is a k× 1 vector of k daily logarithmic returns at time t, H0.5
t is

a k× k symmetric matrix, and zt is a k× 1 vector of i.i.d. innovations at
time t, such that zt ∼ MVN (0; Ik). MVN indicates the “Multivariate
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Normal” distribution and Ik a k × k matrix of ones. It is assumed that
E(rt) = 0. Within this framework, rt|It−1 ∼MVN (0, Ht), given that:

E(rt|It−1) = E(H0.5
t zt) = H0.5

t E(zt) = 0 (1.17)

and

V AR(rt|It−1) = V AR(H0.5
t zt)

= (H0.5
t )V AR(zt)(H0.5

t )′

= HtIk

= Ht. (1.18)

Thus, in this framework, Ht is the conditional covariance matrix for
the day t and it represents our object of interest. In the spirit of Bauwens
et al. (2006), the MGARCH models will be presented following three non
mutually exclusive approaches for determining Ht:

1. direct generalizations of the univariate GARCH models of Boller-
slev (1986);

2. linear combinations of univariate GARCH models;

3. nonlinear combinations of univariate GARCH models.

Regardless of the approaches used to describe the models, a multivari-
ate GARCH model should be flexible enough to be able to represent the
dynamics of the conditional variances and covariances, from one hand.
From the other hand, the specification should be parsimonious enough to
allow for a relatively easy estimation of the model and an easy interpre-
tation of the model parameters. Unfortunately, flexibility and parsimony
go in opposite directions, making the MGARCH models a challenging
research field. The positive definiteness of Ht represents another compli-
cation. One possibility is to derive conditions under which the conditional
covariance matrices implied by the model are positive definite. However,
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this method is often infeasible in practice. An alternative is to formulate
the model in a way that positive definiteness is implied by the its struc-
ture.

1.5.1 Generalizations of the univ. GARCH model

This class of models derives Ht as a the direct generalization of the
univariate GARCH model of Bollerslev (1986).

The VEC and DVEC models (Bollerslev et al. (1988))

The VEC(1,1) model is defined as:

ht = C +Aηt−1 +Ght−1 (1.19)

where:

ht = vech(Ht);

ηt−1 = vech(rt−1r
′
t−1),

and vech(·) denotes the operator that stacks the lower triangular portion
of a k × k matrix as a k(k + 1)/2 × 1 vector. C is a k(k + 1)/2 × 1

matrix; A and G are k× k matrix. The parameters in C,A and G have to
be estimated, thus we have (p+ q)(k(k+ 1)/2)2 + k(k+ 1)/2 unknown
parameters. The VEC model is covariance-stationary if the eigenvalues
of A + G are less than one in modulus. A representation of a VEC(1,1)
for k = 2 is: h2

1,t

h12,t

h2
2,t

 =

 c11

c12

c22

+

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 r2

1,t−1

r12,t−1

r2
2,t−1

+

=

 g11 g12 g13

g21 g22 g23

g31 g32 g33


 h2

1,t−1

h12,t−1

h2
2,t−1

 ,
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where r12,t−1 is the cross-product between the daily returns of the two
stocks and h12,t−1 is the covariance at time t − 1. In the general VEC
model, each element of Ht is a linear function of the lagged squared rt,
of the cross products of rt and lagged values of the elements of Ht. Even
for low dimensions of k and small values of p and q the number of param-
eters is very large; for instance, for k = 5 and p = q = 1 the VEC model
requires 465 parameters to estimate. This allows plenty of flexibility to
capture most of the cited empirical regularities at a cost of an estimation
very computationally demanding. Moreover, the conditions to ensure that
the conditional covariance matrices are positive definite ∀t are difficult to
impose and verify.

A method reducing the number of parameters is the “variance tar-
geting”. Proposed by Engle and Mezrich (1996), the variance targeting
estimates the matrix C in (1.19) as:

C = (I −A−G)S, (1.20)

where S is the (unconditional) covariance matrix. This method can be
used not only for the parameter’s reduction in VEC model, but also in
other models.

The same authors of the VEC suggested another simplifying assump-
tion: the diagonal VEC (DVEC) model in which the A and G matrices
are imposed to be diagonal. A representation of a DVEC for two stocks
is:  h2

1,t

h12,t

h2
2,t

 =

 c11

c12

c22

+

 a11 0 0

0 a22 0

0 0 a33


 r2

1,t−1

r12,t−1

r2
2,t−1

+

=

 g11 0 0

0 g22 0

0 0 g33


 h2

1,t−1

h12,t−1

h2
2,t−1

 .
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The positive definitiveness of Ht is given expressing the equation
(1.19) in terms of the Hadamard product6 (denoted by �):

Ht = C +A� (rt−1r
′
t−1) +G�Ht−1. (1.21)

As showed by Marcus and Minc (1992), Ht in (1.21) is positive definite
∀t if C is positive definite and the A and G matrices are positive semi-
definite.

The estimation of a DVEC is less difficult than that of the full VEC
model because each equation can be estimated separately. But the diago-
nal VEC model, that contains (p+q+1)k(k+1)/2 parameters, seems to
be too restrictive because no interaction is allowed between the different
conditional variances and covariances.

The BEKK model (Engle and Kroner (1995))

In the BEKK model Ht is positive definite by construction. The
model has the form

Ht = CC ′ +

p∑
i=1

J∑
j=1

A
′
ijrt−ir

′
t−iAij +

q∑
i=1

J∑
j=1

G
′
ijHt−iGij (1.22)

where Aij , Gij , and C are k × k parameter matrices and C is lower
triangular. The decomposition of the constant term into a product of two
triangular matrices is needed to ensure positive definiteness of Ht. The
BEKK model is covariance stationary if and only if the eigenvalues of
p∑
i=1

J∑
j=1

Aij ⊗ Aij +
q∑
i=1

J∑
j=1

Gij ⊗ Gij , where ⊗ denotes the Kronecker7

product of two matrices, are less than one in modulus. Whenever J > 1

6Given two matrices of the same dimensions, the Hadamard product produces another
matrix where each element ij is the product of elements ij of the original two matrices.

7The Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary
size resulting in a block matrix. If A is an m×n matrix and G is a p× q matrix, then the
Kronecker product A ⊗ G is the mp× nq block matrix.



The Volatility Models 35

an identification problem arises because there are several parametriza-
tions that yield the same representation of the model.

The first order model is:

Ht = CC ′ +A(rt−1r′t−1)A′ +GHt−1G
′ (1.23)

The diagonal BEKK (DBEKK) model is obtained from the general
BEKK model by constraining A and G to be diagonal. As for DVEC
model, the main reason for introducing these constraints is the need for
a more parsimonious model. The most restricted version of the diagonal
BEKK model is the scalar BEKK with A = aI and B = bI where a and
b are scalars and I is the identity matrix.

Engle and Kroner provided also sufficient conditions for the two mod-
els, BEKK and VEC, to be equivalent. They also gave a representation
theorem that establishes the equivalence of diagonal VEC model and di-
agonal BEKK model.

The estimation of a BEKK model still involves somewhat heavy com-
putations: the number of parameters, (p+ q)Jk2 + k(k+ 1)/2 in the full
BEKK model, or (p+q)Jk+k(k+1)/2 in the diagonal one, is still quite
large. Obtaining convergence may therefore be difficult because (1.22) is
not linear in parameters. However, there is the advantage that the struc-
ture automatically ensures positive definiteness of Ht. In order to avoid
these computational problems, it is typically to assume p = q = J = 1.
In Table 1.1 the comparison between the parameters’ number to estimate
for each of the presented models is showed.

1.5.2 Linear combinations of univ. GARCH models

In the previous section, we have seen that VEC and BEKK are af-
fected by the “curse of dimensionality”. If the assets’ number increases,
then the number of parameters becomes very large such that not only it is
difficult to interpret them but also a computational problem arises. One
way to simplify the problem of the dimensionality is to use the so-called
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Table 1.1 – Parameters’ Number in VEC, DVEC, BEKK and DBEKK models

Models \ k 3 5 10 Formulation

VEC 78 465 6105 (p+ q)(k(k + 1)/2)2 + k(k + 1)/2

DVEC 18 45 65 (p+ q + 1)k(k + 1)/2

BEKKa 24 65 255 (p+ q)Jk2 + k(k + 1)/2

DBEKKa 12 25 75 (p+ q)Jk + k(k + 1)/2

a The number of parameters are obtained by setting p = q = J = 1.

“Factor Models”, introduced by Engle et al. (1990). In this type of mod-
els it is assumed that the observations are generated by some underlying
factors that are conditionally heteroskedastic and possess a GARCH-type
structure. This approach reduces the dimensionality of the problem when
the number of factors relative to the dimension of the return vector rt
is small. In this approach the intuition is that if the factors are uncorre-
lated, then they represent genuinely different common components driv-
ing the returns. Motivated by this consideration, several factor models
with uncorrelated factors have been proposed in the literature (Diebold
and Nerlove (1989), Forni et al. (2000), and many many others). In all
of them, the observed daily returns rt are assumed to be driven by some
unobserved and uncorrelated variables noted as factors, through a linear
invertible transformation W . In this work we present the model proposed
by Alexander (2000), defined as the Orthogonal model because the fac-
tors are orthogonal between themselves. Afterwards, a generalization of
the Orthogonal model is briefly illustrated.

Alexander’s Orthogonal model (2001)

The principal idea of Alexander’s Orthogonal (OGARCH) model is
that the financial markets are influenced by many heterogeneous compo-
nents such that it becomes fundamental to filter the relevant informations
into a few factors influencing all the variables.
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If we were interested in finding a set of observed risk factors influenc-
ing the volatility, we should use a matrix with interest rates, exchanges
rates, commodity prices, and so forth. Instead, we can find risk factors
using the T × k matrix of the original data to find a common factor struc-
ture, representing m < k unobservable and uncorrelated (risk) factors.
The common structure is estimated by a principal component analysis
(PCA), that captures as much as possible of the information of the con-
tained in the data by means of a reduced number of factors8. Practically,
the PCA aims to exclude the noise from the data.

Let Y be the original matrix of daily returns. The PCA will give up
to k uncorrelated stationary variables, called the principal components of
Y. As aforementioned, we suppose that the observed data are given by a
linear combination of the original data, that is the factors from the PCA
noted as fk, and by an error term, noted as ei:

Y =

m∑
k=1

wikfk + ei.

We assume that, for k = 1, · · · ,m, j 6= k:

Cov(fk, fj) = 0;

Cov(fk, ei) = 0.

To calculate the conditional covariance of Y , the steps are as follows.

1. From the observed data matrix Y
T×k

, the standardized data matrix

X
T×k

is obtained. All the k columns of X have mean zero and vari-

ance one. For each column, the standardization is (Yi,t − µi)/σi,
with i = 1, · · · , k and µi and σi indicating the unconditional mean
and standard deviation of the i− th column of Y .

8PCA is defined as an orthogonal linear transformation that transforms the data to
a new coordinate system such that the greatest variance by any projection of the data
comes to lie on the first coordinate (called the first principal component), the second
greatest variance on the second coordinate, and so on.
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2. The PCA of X ′X/T is carried out, where X ′X/T represents the
unconditional sample correlation matrix of the stock returns. Only
the first m of k components are considered, on the basis of the high-
est eigenvalues associated to the matrix X ′X/T . Let W

k×m
be the

matrix of the eigenvectors, also called the matrix of the “factor
weights”.

3. The principal components of Y are determined by the linear and
invertible transformation W multiplied by X:

P
T×m

= X
T×k

W
k×m

.

Now, an univariate GARCH model is estimated for eachm−th col-
umn ofP obtaining the diagonal matrixDt = diag(V ar(P |It−1)).
Note that each column of the normalized matrix X could be re-
written as:

xi,t = wi1P1 + · · ·+ wikPk, with i = 1, · · · , k, (1.24)

if we used all the principal components instead of the first m.

4. Given that we are interested in the conditional covariance of the
original matrix Y , equation (1.24) becomes:

yi = ω∗i1P1 + · · ·+ w∗imPm + ei,

where ω∗ij = wijσi, with j = 1, · · · ,m, and the error term ei picks
up the approximation from using only the first m of the k principal
components. Hence, assuming that the unconditional error vari-
ance σ2

e goes to zero as long as m→ k, the conditional covariance
matrix of Y is:

V ar(Y |It−1) = W ∗(V ar(P |It−1)W ′∗ + σ2
e

V ar(Yt|It−1) = W ∗DtW
′∗ + σ2

e

V ar(Yt|It−1) ≈W ∗DtW
′∗,

where W ∗ is the matrix form for ω∗ij = wijσi.
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An advantage of the OGARCH is that there are no dimensional re-
strictions. Moreover, the factor model yields the desired reduction of
parameters. Considering an orthogonal factor GARCH with m principal
components written as OGARCH(m,1,1), the number of parameters to
estimate is: (k × k)/2 + 3m; if we have 10 asset returns and we con-
sider the first two principal components, thus m = 2, we have to esti-
mate 56 parameters, which are much less than 6105 or 255 parameters of
VEC or BEKK, respectively. There is a clear advantage in transforming a
complicated process in a more simple process, by splitting the estimation
procedure in some sub-steps. The parameter constraints concerning m
univariate GARCH, i.e applied on each column of P matrix, are:

α0 > 0; αi, βi ≥ 0; αi + βi < 1; i = 1, · · · ,m. (1.25)

If (1.25) holds, the positivity of the conditional variance is assured as well
as and covariance stationarity. Another advantage is that it is possible to
estimate also different GARCH specifications for each column of P .

The greatest disadvantage is that the estimated conditional covariance
matrix, that is the k × k matrix V ar(Yt|It−1), is positive semi-definite
and not positive definite. If we use m = k principal components and k
univariate GARCH models have to be estimated, the positive definiteness
of the conditional covariance matrix is assured by construction. However
in this case there is no data reduction.

The generalized OGARCH model (van der Weide (2002))

The generalized OGARCH (GOGARCH) model is a natural general-
ization of the Alexander’s orthogonal model. As seen before, The OG-
ARCH model implicitly assumes that the observed data can be linearly
transformed into a set of uncorrelated components. These unobserved
components can be interpreted as a set of uncorrelated factors that drive
the particular economy or market. However, the strongest assumption of
the OGARCH is that the matrix linking the independent components to
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the observed data is assumed to be orthogonal. The GOGARCH model
relaxes this assumption such that when the link returns to be orthogonal,
the OGARCH becomes a special case of the GOGARCH specification.
In addition, the OGARCH model suffers from some identification prob-
lems: when the data exhibit weak correlation, the model has substantial
difficulties to identify a matrix that is truly orthogonal. Instead, in the
GOGARCH the data are not required to exhibit strong correlation for the
method to work properly. Another difference between the OGARCH and
GOGARCH model is that the latter model it is not possible to have fewer
factors than assets.

The GOGARCH model formulation is as follows. As for the OG-
ARCH, it is assumed that Y is driven by a linear combination of inde-
pendent economic components P through the linear, constant over time
and invertible map Z, such that Y = PZ. As for the OGARCH, the de-
termination of the components P is carried out on the standardized data.
Each of the k principal components is modelled as an univariate GARCH
process. Relaxing the matrix notation:

pi,t|It−1 ∼ N (0, h2
i,t),

h2
i,t = α0,i + α1,ip

2
i,t−1 + β1,ih

2
i,t−1, (1.26)

with i = 1, · · · , k. This implies that:

Y |It−1 ∼ N (0, Vt), (1.27)

Vt = ZHtZ,

with Ht = diag(h2
i,t, · · · , h2

i,k). As for the OGARCH, the previous
framework can be extended allowing for a non-zero conditional mean
of the original data in (1.27) or a different specification of the conditional
variances in (1.26). For the practical identification issue of Z, see the
original paper of var der Weide.
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1.5.3 Nonlinear combinations of univ. GARCH models

In this section we present a set of models that may be viewed as non
linear combinations of univariate GARCH models. These models specify
separately, on the one hand, the individual conditional variances and on
the other hand, the conditional correlation matrix or another measure of
dipendence beetween the individual series. Thus, the most advantage
of these models is that, by a multi-step procedure, they are more easily
estimable.

Constant Conditional Correlation Models (1990) and Extensions

The conditional constant correlation (CCC) model, proposed by Boller-
slev (1990), assumes that the correlations among k assets returns are are
time-invariant. The CCC model is defined as:

Ht = DtRDt,

where R is the correlation matrix and Dt = diag(h1,t, · · · , hk,t) is the
conditional standard deviations at time t of the k asset returns. Being a
correlation matrix, R

k×k
has all ones on the principal diagonal. For this

reason, the principal diagonal of Ht contains the conditional variances
while the off-diagonal elements of the conditional covariance matrix are
defined as follows:

[Ht]ij = hi,thj,tρij , i 6= j,

where ρij denotes the correlation between the i − th and j − th asset.
The standard deviations in Dt matrix are obtained taking the square root
of the conditional variance as resulting by the already seen univariate
GARCH(p, q) specification:

h2
i,t = α0 +

p∑
j=1

αij(r
2
i,t−j) +

q∑
j=1

βijh
2
i,t−j ,
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with i = 1, · · · , k. The number of parameters of the CCC model, when
p = q = 1, is [k(k + 5)]/2.

The model with constant correlations is interesting as far as the inter-
pretation is concerned. It facilitates the comparison between subperiods.
One may independently estimate such submodels on separate subperiods
and afterwards examine whether the correlation patters vary from one pe-
riod to another. Nevertheless the approach presented above has the draw-
back of considering the assumption of time invariant correlations. For
this reason, some models with time-varying correlation have been subse-
quently proposed.

An extension of the CCC-GARCH model was introduced by Jeantheau
(1998). The Extended CCC- (ECCC-) GARCH model allows the past
squared returns and variances of all series to enter the individual condi-
tional variance equations. For instance, in the first order ECCC-GARCH
model, the i − th conditional variance does not depend only on its past
squared returns and variance realizations, but also on the past squared
returns and variance realizations of the other stocks:

h2
i,t =αi + a11(r2

i,t−1) + · · ·+ a1k(r
2
k,t−1)+

g11h
2
i,t−1 + · · ·+ g1kh

2
k,t−1.

Although the CCC-GARCH model is an attractive parametrization
under many aspects, empirical studies have suggested that the assumption
of constant conditional correlations may be too restrictive. This opens the
doors to the dynamic conditional correlations (DCC) models.

Dynamic Conditional Correlation Models and Extensions

The dynamic conditional correlation (DCC) model is defined as:

Ht = DtRtDt (1.28)

In (1.28), the positive definiteness of Ht follows if all the conditional
variances h2

it with i = 1, · · · , k are well-defined and the conditional cor-
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relation matrix Rt is positive definite at each point in time. If Dt is the
diagonal matrix of the conditional standard deviations as that of the CCC
specification, during last years several specifications ofRt have been pro-
posed.

Tse and Tsui (2002) impose a GARCH type of dynamics on the con-
ditional correlations. In their specification, Rt is function of the past
conditional correlations. More specifically, Rt is defined as

Rt = (1− α− β)S + aSt−1 + bRt−1, (1.29)

where S is the sample correlation matrix as defined as in CCC model,
α and β are some non-negative scalar parameters such that α + β < 1.
St is the sample correlation matrix of the past M standardized residuals
ξ̂t−1, · · · , ξ̂t−M , where ξ̂t−j = D̂−1

t−jrt−j , j = 1, · · · ,M . The positive
definiteness of Rt is ensured by construction if St−1 is positive definite.
This happens when is M ≥ k. The intercept in (1.29) corresponds to
variance targeting specification.

The DCC model of Engle (2002), (DCCE), the dynamic conditional
correlation matrix is defined as follows:

Rt = diag(q
−1/2
11,t , · · · , q

−1/2
kk,t ) Qt diag(q

−1/2
11,t , · · · , q

−1/2
kk,t ); (1.30)

Qt = (1− α− β)Q+ αut−1u
′
t−1 + βQt−1. (1.31)

In (1.30) q11,t is the first element of the matrix Qt as defined in (1.31).
Moreover, α and β are non-negative scalar parameters such that α+ β <

1, Q is the k × k unconditional correlation matrix of the standardized er-
rors ui,t, obtained from ri,t/hi,t. Moreover, ut is the vectorization of ui,t,
with i = 1, · · · , k. Unfortunately, the procedure above ensures positive
definiteness but does not generally produce valid correlation matrices.
They are obtained by rescaling Qt such that Rt = (I � Qt)−1/2Qt(I �
Qt)
−1/2. Contrary to the DCCT model, that calculates the conditional

correlations as a weighted sum of past ones, the DCCE model formu-
lates Rt through Qt that is written like a GARCH specification. In both
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the DCC models presented above α and β in (1.29) and (1.31) are scalars,
so that all the conditional correlations have the same dynamics. Unfor-
tunately, this is a necessary condition to have Rt positive defined ∀t. To
overcome this limitation, various generalizations of the DCC-GARCH
model have been proposed. Billio et al. (2006) suggest a model impos-
ing a BEKK structure on the conditional correlations. In their Quadratic
Flexible DCC (GFDCC) GARCH model the matrix Qt is defined as:

Qt = C
′
QC +A

′
ut−1u

′
t−1A+B

′
Qt−1B,

where the matrices A,B, and C are symmetric, and Q is the uncondi-
tional covariance matrix of the standardized errors ut. To obtain station-
arity, C

′
QC has to be positive definite and the eigenvalues of A+B has

to be less than one in modulus. The number of parameters governing the
correlations in the GFDCC-GARCH model in its fully general form is
3k(k + 1)/2 which is infeasible in large systems.

1.6 Inference Procedures

Maximum Likelihood methods

The estimation of the unknown parameters collected in the vector θ
for the GARCH models is based on the maximization of a likelihood
function constructed under two assumptions:

• the distribution of zt in (1.6) or of zt in (1.16) is assumed to be
known;

• the maximum likelihood (ML) function must be at least three time
differentiable, with continue partial derivatives in Θ. Such property
is defined as a “regularity condition”.

The primary appeal of the maximum likelihood technique stems from the
well-known optimality conditions of the resulting estimators under ideal
conditions (see Casella and Berger (1990) for details).
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Prediction Error Decomposition

At it is pretty obvious, the time series exhibit serial dependence. The
method of the maximum likelihood requires independent data such that
without any modification, it is impossible to use the standard maximiza-
tion of the likelihood. The so-called prediction error decomposition helps
to overcome this problem.

Given two random variables x and y, the joint density function can
be written as:

f(x, y) = f(y|x)f(x) (1.32)

Thus, the joint density function can be easily expressed by a product of
the conditional density function of y given x and the marginal density
function of x. Using three random variables x, y and z, the joint density
function can be factorized as:

f(x, y, z) = f(z|x, y)f(x, y) (1.33)

Inserting (1.32) in (1.33) yields:

f(x, y, z) = f(z|x, y)f(x, y) = f(z|x, y)f(y|x)f(x) (1.34)

Returning to k-dimensional daily returns rt with t = 1, · · · , T , the joint
density function can be expressed as follows:

f(r1, · · · , rT ) = f(rT |r1, · · · , rT−1)f(r1, · · · , rT−1); (1.35)

= f(rT |IT−1)f(r1, · · · , rT−1). (1.36)

From (1.36), considering the marginal density function, we obtain:

f(r1, · · · , rT−1) = f(rT−1|IT−2)f(r1, · · · , rT−2). (1.37)

Now we include (1.37) in (1.36) and so on such that the joint density
function will be equal to:

f(rT |IT−1), · · · , f(r2|I1)f(r1) ≈
T
Π
t=2

f(rt|It−1)

=
T∑
t=2

logf(rt|It−1) (1.38)
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In (1.38) we assume that f(r1) is not depending on the parameters vector
to estimate. Moreover, the first observation r1 gives a negligible contribu-
tion to the ML function, if T is large. Hence, the maximum log-likelihood
estimator is:

`(rt; θ) =

T∑
t=2

logf(rt; θ), (1.39)

where f(·) depends on the density that is chosen.

Univ. GARCH estimation

Let us start the presentation of the likelihood functions used to es-
timate the unknown parameters of the univariate GARCH models from
the easiest case, the ARCH(p) model, like that of equation (1.8). T ob-
served daily returns are available. The unknown parameters vector is
θ = (α0, α1, · · · , αp). Under the normality assumption for zt, the likeli-
hood function is obtained as:

f(rT , rT−1, · · · , r1) =f(rT |IT−1)f(rT−1|IT−2) · · ·

· · · f(rp+1|Ip)f(rp, rp−1, · · · , r1) (1.40)

=
T∏

t=p+1

(2πh2
t )
−1/2exp

(
− r

2
t

h2
t

)
×

f(rp, rp−1, · · · , r1). (1.41)

In (1.40) the prediction error decomposition has been used while in (1.41)
h2
t stands for the conditional variance of rt, estimated recursively. If T

is large, f(rp, rp−1, · · · , r1) can be dropped such that the likelihood to
maximize is:

L(θ|rT , · · · , rp+1) =

T∏
t=p+1

(2πh2
t )
−1/2exp

(
− r

2
t

h2
t

)
(1.42)

It is usual to maximize the log likelihood because it is simpler to han-
dle and it does not modify the results of the estimation. Thus, the log
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likelihood that is maximized in order to find the estimate of the p + 1

parameters of an ARCH(p) is:

`N (θ) = logL(θ|rT , · · · , rp+1)

=
T∑

t=p+1

[
−1

2
log(2π)− 1

2
log(h2

t )−
1

2

r2
t

h2
t

]
. (1.43)

Otherwise, one can start from t = 2 independently of the number of pa-
rameters to estimate. Hereafter this latter starting point will be used.

All the models belonging to the class of univariate GARCH mod-
els use the log likelihood of the equation (1.43) in order to estimate the
unknown parameters collected in θ, when the distribution of zt is Nor-
mal. The differences among the models are specified in the vector θ. For
instance, for a GARCH(p,q) as that of equation (1.10), the unknown pa-
rameters are θ = (α0, α1, · · · , αp, β1, · · · , βq).

As aforementioned, the Normal distribution of the daily returns is
frequently questioned. Under Student’s t distribution, the log likelihood
is:

`ST (θ) = T

{
logΓ

(
v + 1

2

)
− logΓ

(v
2

)
− 1

2
[π(v − 2)]

}
+

− 1

2

T∑
t=2

[
log(h2

t ) + (1 + v)log
(

1 +
r2
t

v − 2

)]
, (1.44)

where Γ(·) denotes the Gamma function and v the degrees of freedom.
Note that the degrees of freedom are jointly estimated and it is imposed
that v > 2.

Mult. GARCH estimation

When the estimation concerns the multivariate framework, the log
likelihood for the model (1.16) under the Multivariate Normal assumption
is (up to a constant):
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`MVN (θ) = −1

2

T∑
t=2

log|Ht| −
1

2

T∑
t=2

r
′
tH
−1
t rt, (1.45)

where | · | indicates the determinant. Note that in (1.45) the k × k Ht

matrix is inverted for each time period, making the estimation proce-
dure quite complicated, even if iterative methods are used and even if
T and k are small. If the distribution of zt is not Multivariate Normal,
as it frequently happens in the empirical world, a consistent estimator
of the true parameters may still be achieved by using (1.45), as demon-
strated by Bollerslev and Wooldridge (1992), provided that the condi-
tional mean and variance are correctly specified. This approach is called
quasi-maximum likelihood method and an its detailed overview is present
in Gouriéroux (1997). Otherwise, the multivariate version of the likeli-
hood for the Student’s t-distribution can be used:

`M−ST (θ) = T

{
logΓ

(
v + 1

2

)
− logΓ

(v
2

)
− 1

2
[π(v − 2)]

}
+

− 1

2

T∑
t=2

[
log|Ht|+ (1 + v)log

(
1 +

(rt)′(rt)
v − 2

)]
. (1.46)

If the asymptotic normality of the maximum likelihood and quasi-
maximum likelihood estimators in the univariate framework has been
proven under quite mild assumptions (see Ling and McAleer (2003) for
details), the asymptotic normality in the multivariate context is still a
challenging research field. In fact, it has been proved for some specific
MGARCH models, like the BEKK formulation by Comte and Lieber-
man (2003), the CCC specification in the already cited work of Ling and
McAleer (2003) and the VEC model by Hafner and Preminger (2009) or
assuming strong assumptions. Recent developments on this research field
are provided by Francq and Zakoïan (2011).

Even though the log likelihood in (1.45) can be used to obtain the
estimates of the DCC model unknown parameters, it can be show that a
two step procedure for that class of models still yields a consistent (but
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inefficient) estimator for θ. Due to the nature of the DCC model, the es-
timation can be split in two parts. For the first part, let θ1 be the vector in
which the unknown parameters for the k univariate GARCH models are
collected. The log (or the quasi-log) likelihood is given by the sum of k
univariate GARCH models:

`1(θ1) = −1

2

T∑
t=2

k∑
i=1

[
log(h2

i,t) +
r2
i,t

h2
i,t

]
, (1.47)

where ri,t represents the i−th daily return at time t and h2
i,t its conditional

variance. For the second part of the procedure, let θ2 be the vector of the
correlation parameters. A consistent but inefficient estimator of θ2, given
θ̂1, is obtained by maximizing the following log likelihood:

`2(θ2|θ̂1) = −1

2

T∑
t=2

(
log|Rt|+ u

′
tR
−1
t ut

)
. (1.48)

As argued above, the split procedure works firstly estimating θ1 by max-
imizing (1.47) and then, given θ̂1, maximizing (1.48) in order to find θ2.
Interestingly, the sum of the two log likelihoods in (1.47) and (1.48) plus∑

u′tut is equal to the total log likelihood in (1.45). Although the es-
timators θ̂1 and θ̂2 are inefficient, they can be used as starting point for
the total likelihood. This makes the procedure faster and the consequent
estimator results to be asymptotically efficient, as showed by Engle and
Sheppard (2001).

1.7 Models for the volatility proxy and extensions

In the previous section the univariate and multivariate GARCH mod-
els that will be used in the empirical part of this work have been pre-
sented. These models estimate ex-ante the expected volatility on the
basis of some observed variables, implying the knowledge of the data
generating process. Recall that the expression V AR(rt|It−1) means the
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expected conditional variance for the day t is obtained directly observing
some variables at time t − 1. Then, if one assumes that V AR(rt|It−1)

is driven by a linear combination of the past p squared daily returns,
then the functional form that is used to model the conditional variance
is: V AR(rt|It−1) = αo + α1r

2
t−1 + · · ·+ αpr

2
t−p.

Instead, the nonparametric approach aiming to estimate the volatility
uses the high-frequency data of day t in order to obtain an ex-post mea-
sure of the volatility for that day. In other words, this approach is com-
pletely data-driven. In the next section, the volatility estimator named
realized volatility is illustrated. Then some models that parametrize the
realized volatility will be presented.

1.7.1 The realized volatility

Let the continuous log price process of a generic liquid asset be de-
termined by the following stochastic differential equation

dp(t+ τ) = µ(t+ τ)dτ + σ(t+ τ)dW (t+ τ), (1.49)

with 0 ≤ τ ≤ 1 and t = 1, · · · , T . In (1.49), p(t + τ) is the log price at
time t+ τ , µ(t+ τ) is a drift component, σ(t+ τ) is the instantaneous or
spot volatility and W (t + τ) is a standard Brownian motion. Moreover,
σ(t+ τ) and W (t+ τ) are assumed to be orthogonal. As pointed out by
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002), the
daily returns rt, given in this framework by rt = p(t) − p(t − 1), are
Normal distributed conditionally to the Information Set generated by the
paths of µ(t + τ − 1) and σ(t + τ − 1). Formally, let =t = {µ(t + τ −
1), σ(t+ τ − 1)}τ=1

τ=0 be the Information Set. Hence:

rt|=t ∼ N
(∫ 1

0
µ(t+ τ − 1)dτ,

∫ 1

0
σ(t+ τ − 1)dτ

)
.

We are interested in the integrated variance, also defined as the true
volatility:

IVt =

∫ 1

0
σ2(t+ τ − 1)dτ. (1.50)
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Unfortunately, IVt is not directly observable, because it is measured in
continuous time and prices are only observed at discrete time. Hence,
let us introduce the formulation for sampling the prices at discrete time.
Suppose that the interval [0,1] of equation (1.50) is partitioned inD inter-
vals. It normally happens thatDt 6= Dt+1, such that each observation day
has a different number of intervals. But for ease of notation, we consider
only the case of Dt = D, ∀t. The grid of observation times is defined as
Ψ = {τ0, · · · , τD}, with 0 = τ0 < · · · < τD = 1. The d − th interval
has a length of ζd = τd − τd−1. If D → ∞, than ζd → 0. Different
sampling schemes have been proposed in literature in order to find the
optimal interval length. In the most common, all the intervals are equally
spaced such that ζd,D = 1/D. For details on other different schemes, see
Hautsch (2012), among others.

Once that the prices have filled the grid Ψ, the d− th intraday return
for the day t is:

rt,d = pt,d − pt,d−1.

Taking advantage of the concept of quadratic variation (QV ) and of the
availability of high-frequency data, the integrated variance can be esti-
mated. With our notation, the interval [0,1] has been divided in D ad-
jacent, small intervals. The QV is defined as the limit of the sums of
the squared differences between the prices registered for each interval,
when the length of these intervals goes to zero (or, equally, the number of
intervals goes to infinity):

QVt = lim
D→∞

D∑
d=1

(pt,d − pt,d−1)2. (1.51)

In this framework9, the quadratic variation is equal to the integrated vari-
ance. Equation (1.51) gives the input to compute the so-called realized
volatility (RVt), obtained by summing the squared intraday returns at

9There are no micro-structure noise and jumps.
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higher frequencies. The realized volatility is a consistent estimator of
IVt, as showed by Andersen et al. (2003). Formally:

RVt =

D∑
d=1

(rt,d)
2, (1.52)

The asymptotic distribution of the realized volatility, as evidenced by
Barndorff-Nielsen and Shephard (2002), is:

D1/2(2IQt)
−1/2(RVt − IVt)

d−→ N (0, 1),

where IQt is the integrated quarticity, defined as:

IQt =

∫ 1

0
σ4(t+ τ − 1)dτ.

Micro-structure noise

It is well known that there are important implications in choosing a
small or a high frequency at which the prices are sampled. From one
hand, if the frequency D represents a day (so we have a very small fre-
quency) and if the price at the end is the same of the price at the begin-
ning of the trading day, then the corresponding realized volatility would
be zero, even though the prices had experienced huge variations during
the time interval. More importantly, equation (1.51) is no longer valid.
Recall that the realized volatility is a consistent estimator of IVt if the
number of intervals D increases. From the other hand, if the frequency
is very high, some problems may occur. In fact, it has been documented
that increasing to infinity the sampling frequency does not take to the real
volatility but to a noise estimation, due to presence of micro-structure
noise (Bandi and Russell (2004)). What are these market micro-structure
frictions? These frictions are some complications that make the observed
price noisy, i.e. with an error term. One example is the discreteness of
prices: we are only able to observe the prices at discrete time and thus the
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prices we observe are not efficient, in the sense that they do not immedi-
ately incorporate the notices as these are diffused. Still, another example
is the bid-ask spread, that is the inevitable gap between buying and sell-
ing prices. For these reasons, the observed price does not represent the
actual price. Instead, the observed (log) price pt is given by the actual
(and unobserved) price p∗t plus an error term. For the d− th interval:

pt,d = p∗t,d + et,d, (1.53)

where et is the so-called micro-structure noise. Then, the observed intra-
day return is:

rt,d = pt,d − pt,d−1

= p∗t,d + et,d − p∗t,d−1 + et,d−1

= r∗t,d + nt,d, (1.54)

where r∗t,d = p∗t,d − p∗t,d−1 and nt,d = et,d − et,d−1. Equation (1.54)
implies that RVt is a biased estimator of IVt:

RVt =

D∑
d=1

(r∗t,d + nt,d)
2

=
D∑
d=1

(r∗t,d)
2 + 2

D∑
d=1

(r∗t,d)(nt,d) +
D∑
d=1

(nt,d)
2. (1.55)

The expectation of RVt conditionally on the true returns r∗ is:

E(RVt|r∗) = RV ∗t + 2DE(e2
t,d) (1.56)

Following Bandi and Russell (2004), we assume that et is a zero mean,
i.i.d. random variable, independent of the actual price process p∗t . Hence,
if the sampling frequency D is very high, then the observed realized
volatility based on observed daily returns of equation (1.54) is incon-
sistent and it diverges from IVt as much as D → ∞. In fact, as showed
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by Zhang et al. (2005), increasing the sampling frequency leads to a bias
of discretization, such that:

RVt
d
≈ IVt + 2DE(e2

t,d)︸ ︷︷ ︸
bias due to noise

+

4DE(e4
t,d)︸ ︷︷ ︸

due to noise

+
2

D

∫ 1

0
σ4
t dt︸ ︷︷ ︸

due to discretization


1/2

︸ ︷︷ ︸
total variance

N(0, 1)

(1.57)
In (1.57), if the number of intervals D increases, the bias due to noise
increases and from the other hand the bias due to the dicretization de-
creases. In this case, the total variance in (1.57) will decrease, given that
the intraday returns, based on more and more infinitesimal intervals, show
smaller variations. Instead, if the number of intervals decreases, the bias
due to the noise decreases but the bias due to the discretization increases.
Now, the total variance increases. What has been cited is generally called
the bias-variance trade-off such that the choosing of the sampling fre-
quency is crucial when the high-frequency data are used.

Instead of using a grid Ψ based on one observation for each transac-
tion, one could sample prices at lower frequencies, based on a new grid
Ψsm such that Ψ(sm) ⊂ Ψ. The maximum number of intervals associated
to Ψ(sm) is D(sm) < D. The realized volatility estimator is now:

RV
(sm)
t =

D(sm)∑
d=1

r2
t,d.

Unfortunately, RV (sm)
t is still a biased estimator of IVt, as evidenced

by Aït-Sahalia et al. (2005), among others. Equation (1.57) changes now
in:
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RV
(sm)
t

d
≈IVt + 2D(sm)E(e2

t,d)︸ ︷︷ ︸
bias due to noise

+

4D(sm)E(e4
t,d)︸ ︷︷ ︸

due to noise

+
1

D(sm)

∫ 1

0
σ4
t dt︸ ︷︷ ︸

due to discretization


1/2

︸ ︷︷ ︸
total variance

N(0, 1) (1.58)

It can be easily seen that if the bias is reduced, the total variance
is increased. In order to take into account the problem of the micro-
structure noise, several methods have been proposed (for instance, Zhang
et al. (2005), Bandi and Russell (2006)), many of which are based on the
optimal sampling. The presentation of these different methods is beyond
the goal of this work, such that we focus on a very concise discussion
about the most used frequencies.

In the applied works, the most popular frequency is the 5 minutes
sample, chosen by Liu (2009) for an evaluation of a portfolio composed
of the 30 Dow Jones index constituents. Other works instead provide
evidence of optimal samplings ranging between 30 and 65 minutes as in
the paper of de Pooter et al. (2008).

Realized Covariance

The extension to the multivariate is the following. For the day t, the
log prices of k assets, denoted by pt, are assumed to be driven by the
following continuous time diffusion process:

dp(t+ τ) = µ(t+ τ)dτ + Σ(t+ τ)dW(t+ τ), (1.59)

with again 0 ≤ τ ≤ 1 and t = 1, · · · , T . In (1.59), µ(t + τ) is the
multivariate drift component at time t+τ , Σ(t+τ) is the spot co-volatility
and W t is the k−dimensional Brownian motion. As in (1.49), also here
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Σ(t+τ) is assumed to be orthogonal to W(t+τ). If in the univariate case,
the quantity of interest was the integrated variance (equation (1.50)), in
the multivariate case the quantity of interest is the integrated covariance,
denoted by ICVt:

ICVt =

∫ 1

0
Σ(t+ τ)Σ(t+ τ)

′
dτ (1.60)

As seen in the univariate case, the quadratic variation of pt over the same
interval equals the integrated covariance such that a consistent estimator
of (1.60) is given by:

RCVt =

D∑
d=1

{pt,d − pt,d−1}{pt,d − pt,d−1}
′

=
D∑
d=1

rt,dr
′
t,d. (1.61)

Thus, the more the intervals are shrunk, such that D → ∞, the more
precise the realized covariance is. Formally:

if D →∞ then RCVt
p−→ ICVt. (1.62)

Two kinds of problems affect the realized covariance estimator of
equation (1.61). First, if the intervals are more and more small, it becomes
practically impossible to have the data synchronized. Asynchronous data
cause distortion such that what stated in (1.62) is no longer valid. Sec-
ond, also in the multivariate case the micro-structure noise is a pressing
problem that leads the researcher to pay attention to the sampling fre-
quency. The solution to these problems represents a challenging and new
research field. To the best of our knowledge, there are not so many es-
timators robust to micro-structure noises and asynchronous data. One is
the estimator recently proposed by Aït-Sahalia et al. (2010).

The realized covariance as expressed by equation (1.61) represents
the benchmark employed to compare different estimates produced by a
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set of volatility models. Moreover, the realized covariance can be used in
some parametric models that explicitly use a functional form to forecast
the future values of the conditional covariance matrix, within the general
framework of equation (1.16). These models will be presented in the next
two paragraphs.

1.7.2 The Rolling Covariance model

The first parametric model that employs the past realized covariance
realizations to forecast the conditional covariance matrix has been pro-
posed by Fleming et al. (2003). In particular, the estimation of Ht is
carried out through a weighting scheme of the past realized covariances
and past conditional covariances. Formally:

Ht = exp(−α)Ht−1 + αexp(−α)RCVt−1, (1.63)

where α, the optimal decay rate, is the only unknown parameter to esti-
mate by maximizing the log likelihood in (1.45). The rolling scheme of
(1.63) has some advantages. First of all, it is a very parsimonious model.
Second, the exponentially weighted estimators, like that of the rolling
covariance, generally have the smallest asymptotic mean squared error,
as pointed out by Foster and Nelson (1994). Third, the rolling scheme
assures the positive definiteness of Ht provided that α > 0. The esti-
mator of Ht from this model should be, theoretically, more efficient than
that of an estimator resulting from models based on the cross products
of the daily returns. In fact, as evidenced by Andersen and Bollerslev
(1998), the variance of the cross-products10 of the daily returns is larger
than the variance of the cumulative squared intraday returns, as long as
D increases.

10The cross-products are largely present in the MGARCH models. For instance, they
are present in equation (1.22) for the estimation of the BEKK model.
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1.7.3 The CAW model

The Conditional Autoregressive Wishart (CAW) model, recently pro-
posed by Golosnoy et al. (2012), assumes that the realized covariance
RCVt follows a central Wishart distribution, given the past recorded in
the information set It−1:

RCVt|It−1 ∼ Wk(ν, St/ν), (1.64)

where ν > k − 1 is the scalar degree of freedom and St/ν is the k × k
symmetric positive definite matrix. The idea to model the realized co-
variance following a Wishart process is due to Gouriéroux et al. (2009).
They proposed a Wishart autoregressive process of order p (WAR(p)) as
the updating structure of the realized covariance, but unfortunately the
number of parameter to estimate is too high even if the number of stocks
is low: for p = 1, the unknown parameters are 3k2/2 + k/2 + 1.

Instead, the CAW model directly relates the conditional covariance
matrix to the realized covariance, letting the number of parameters con-
siderably decrease. In fact, following Anderson (1984), it can be shown
that E(RCVt|It−1) = Ht, the conditional covariance matrix. Hence, dif-
ferent specifications of the CAW model are present in literature. For in-
stance, Golosnoy et al. (2012) propose some specifications based on the
BEKK updating structure. The first is the scalar CAW with covariance
targeting, that is:

Ht = (1− a2 − b2) ∗RCV + a2 ∗RCVt−1 + b2Ht−1, (1.65)

where a and b are scalars to estimate and RCV is the sample realized
covariance.

A second specification of the CAW model is the diagonal CAW with
covariance targeting, that is:

Ht = RCV −ARCV A′−BRCV B′+ARCVtA
′
+BHt−1B

′
, (1.66)
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where A and B are two diagonal matrices to estimate. The estimation
of (1.65) and (1.66) is done by maximizing the following log-likelihood,
provided by Golosnoy et al. (2012):

`(θw) =

T∑
t=2

{
− νn

2
log(2)−k(k − 1)

4
log(π)−

k∑
i=1

logΓ

(
ν + 1− i

2

)
− ν

2
log|RCVt

ν
|+ ν − k − 1

2
log|RCVt| −

1

2
tr(νH−1

t RCVt )

}
,

(1.67)

where w = 1, 2 is the suffix indicating the CAW models presented above.
Hence, the unknown parameters are: θ1 = (ν, a, b) for the scalar CAW
and θ2 = (ν,A11, · · · , Akk, B11, · · · , Bkk) for the diagonal CAW. The
scalar and diagonal CAW can be used to estimate ĥm in (1). They have
the advantages to directly incorporate the realized covariance in their up-
dating structure. Both the models will be used in the empirical part of
this work, when different volatility models will be compared from an
economic and statistical point of view. The scalar and diagonal CAW
are only two of possible specifications available in literature. For in-
stance, another formulation that can be used within the Wishart distri-
bution framework is DCC-type specification proposed by Bauwens et al.
(2012).





2
The Forecasting Problem

2.1 Introduction

At the beginning of this work we presented the volatility evaluation
problem as a problem involving many aspects. Among all these aspects
the forecasting issue assumes an important rule. One question regards
how the volatility predictions are obtained. Another question is the eval-
uation of the forecasts produced by a set of models. Related to this latter
question there is the problem of the forecasts evaluation when the actual
value of the variable of interest is never observed. For instance, this hap-
pens when we aim at evaluating the volatility forecasts. All these issues
will be discussed in this chapter, organized as follows. In Section 2.2 the
formalization of the forecasting problem is given. Due to the usually very
large amount of data available to the forecaster, how can we deal with it?
In order to predict the variable of interest, we could use all the data from
the beginning to the last in-sample observation or we could use only the
last recent observations. The problem concerns the forecasting schemes,
illustrated in Section 2.3. In Section 2.4 different methods for the eval-
uation of the forecasts are presented: the Mincer-Zarnowitz regression,
the robust statistical loss functions, the economic loss functions, the pair-
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wise and multiple predictive ability tests. The combination of forecasts is
finally discussed in Section 2.5.

2.2 A formal statement of the problem

The forecasting can be defined as the process that aims to provide in-
formations on future values of one (or more) variable of interest. Let x be
the value to forecast and x̂ the forecast, depending on all the relevant in-
formations I available at the time of forecast and on the function f used
to manipulate these informations for obtaining x̂ = f(I). The process
of forecasting relies on a set of elements, that are: {x, x̂, f(I)}. It often
happens that there are too much informations collected in I such that it
is difficult to understand which are relevant and which not. A second im-
portant element of the forecasting process is played by the loss function.
Because it is almost impossible that x̂ = x, the loss function is needed
to check how much each forecast error costs. The loss functions will be
described in the next paragraph. The function f(I) has been illustrated
in the previous chapter with reference to the volatility forecasting. The
just illustrated framework considers the point estimate, meaning that x
is a single number. Another possible forecasting types are the interval
forecasts or forecasts of the conditional distribution of the variable of in-
terests. We focused only on the point estimate, while the latter two are
discussed in Chatfield (1993) and Tay and Wallis (2002), respectively. In
what follows, only the evaluation of the point forecasts will be discussed.

Loss Function

A loss functionLmaps the distance between the actual and forecasted
value. Formally:

L(x, x̂). (2.1)

Let x̂i be the forecast of the variable of interest produced by the model i
through the function fi such that x̂i = fi(I). We assume that there are
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m models, such that i = 1, · · · ,m. Let Ẋ be the set of all the estimates,
with x̂i ∈ Ẋ . The set of estimates are ranked by the loss function: the
smaller the loss function is, the better that estimate is. If a loss function
has the following three features, it is said to be well defined:

1. L(·, ·) is continuous in Ẋ and it is minimized at x̂∗ which repre-
sents the optimal forecast.

2. L(·, ·) is such that the optimal forecast x̂∗ equals the true value,
formally:

x̂∗ = argmin
x̂∈Ẋ

L(x, x̂)⇐⇒ x̂∗ = x. (2.2)

3. The loss function gives zero loss then x̂∗ = x.

In addition to the previous properties, a loss function yields an in-
creasing penalty if the distance between x and x̂ increases. A loss func-
tion is said to be symmetric if:

L(x− x̂) = L(x+ x̂) (2.3)

It is common to use symmetric loss functions, even though sometimes the
forecaster needs to consider the asymmetric loss (see Patton and Timmer-
mann (2007), for instance). The most common symmetric loss function
is the Mean Squared Error (MSE), based on the squared of the forecast
error:

L(x, x̂) =
[
(x− x̂)2

]
. (2.4)

Another common loss function is the Mean Absolute Error (MAE):

L(x, x̂) = |x− x̂|. (2.5)

MSE and MAE belong to the family of loss functions considered by El-
liott et al. (2003):

L(x, x̂; p, α) =
[
α+ (1− 2α)I(x−x̂<0)

]
· |x− x̂|p, (2.6)
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where I(x−x̂<0) = 1 if its argument is true. The class of loss functions
in Equation (2.6) gives the lin-lin (piece-wise linear) loss function when
p = 1 and the asymmetric quadratic loss function when p = 2. The MAE
belongs to the lin-lin class when α = 2 while the MSE can be obtained
setting p = 2 and α = 0.5.

Another set of loss function is studied by Varian (1975). He proposed
the lines loss:

L(x, x̂; b) = exp [b(x− x̂)]− b(x− x̂)− 1, (2.7)

where b is the parameter that controls the asymmetry. If b < 0, the over-
predictions (x̂ > x) costs more than equally large underpredictions and
vice versa.

2.3 Forecasting schemes

As mentioned above, all the relevant informations needed to forecast
x are collected in the information set I . The information set could be
enormously large such that it is difficult to recognize the variables that
are really able to make a forecast for x. For instance, it could happen that
most of the variables are highly correlated between themselves such that
some variables bring no additional information for forecasting x. More-
over, if the number of variables increases, then the bias of the forecast de-
creases but at a cost of an increased forecast variance. When the variable
of interest is the volatility, the problem of variable selection is reduced
because generally in this framework the forecasts are only based on the
observed daily returns. Instead, the variable selection for other variables
of interest still represents a challenging research field. Given that this
work focuses on the volatility evaluation, we will not consider more the
variable selection problem, assuming that only the relevant variables are
collected in the information set. Because we act in a time series frame-
work, the information set changes with the time. As seen in the previous
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chapter, let It be the information set observed at time t to predict the
variable of interest at time t + 1, with t = {1, · · · , T}. The variable of
interest now is indexed by xt+1 and its forecast by x̂t+1. There are three
forecasting schemes normally used that update the information set: the
recursive, rolling and fixed schemes. In order to explain these schemes,
let us consider the case of the h periods ahead forecast, till the period
T + h.

In the recursive scheme, the forecaster uses all the information avail-
able at time T to forecast xT+1. Once the forecast x̂T+1 has been carried
out, the forecast for the period T + 2 uses the increased information set
from 1 to T + 1. Practically, if xT+1 becomes observed, then the infor-
mation set includes it. The procedure is repeated til T + h, such that the
information set expands as the number of forecasting periods increase.

The rolling scheme uses a fixed length information set that considers
only the last w observations. Practically, x̂T+1 uses an information set
starting on T − w + 1 and ending on T . Once x̂T+1 is obtained, then
the rolling window considers the period from T − w + 2 to T + 1. At
t = T +1, xT+1 is observed and it enters the Information Set. The proce-
dures ends at time T +h−1, when the last forecast for the period T +h is
computed. The rolling scheme has the advantage of using only the last w
informations, that are more likely to influence the forecast than the oldest
informations. As drawback, this method requires to decide the parameter
w.

The fixed scheme considers exclusively the information from 1 to T ,
neither updating the Information Set nor using a rolling window. Thus,
even the forecast for h periods ahead is based on the information avail-
able at time T .

Whenever the forecasting scheme is, when the forecast is made for a
period T + h, this forecast is said out-of-sample or pure out-of-sample.
Suppose that the variable of interest is observed till T . Before forecast-
ing out of the sample, it is very common to split the entire dataset in two
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parts: t1 = {1, · · · , L} and t2 = {L + 1, · · · , T}, with L < T . Let
T1 and T2 be the length of the in-sample and out-of-sample periods, re-
spectively, such that T1 + T2 = T . The forecasts made on the basis of
the information set t1 for the period t2 are called pseudo out-of sample,
because the variable of interest is indeed observed. This procedure allows
to compare different forecasting models before going completely out of
the sample. However, the problem of choosing the sample split arises. As
argued by Hansen and Timmermann (2012), some predictive ability tests
(that will be discussed afterwards) critically depend on when the split is
made. And more importantly, there are not universally accepted guide-
lines in order to decide how and when split the sample. Ideally, a superior
predictive model as well as the predictive test should be robust to the dif-
ferent split points. A robust predictive test is provided in the cited work
of Hansen and Timmermann (2012). A discussion about when split the
sample can be found in Clark and McCracken (2011). With reference to
the split choice, there is a clear trade-off between large T1 and small T2

and vice versa. In the former case, the forecasts will be more accurate.
Instead, if T2 is bigger than T1, the accuracy of the forecasts evaluation
will be more precise.

Returning to the three forecasting schemes, we graphically show how
each works by means of a simulation of a GARCH(1,2) process. In par-
ticular, the data generating process is such that:

rt ∼N (0, h2
t ),

h2
t =0.01 + 0.05r2

t−1 + 0.70h2
t−1 + 0.20h2

t−2.

We set T = 1000. Then, four different GARCH models are used in order
to estimate the variable of interest: the conditional variance. The models
are: a GARCH(1,1), an ARCH(4), a GJR(1,1) and a EGARCH(1,1). The
models employ the in-sample period of length T1 = 900 to estimate the
unkwown parameters obtaining the estimate of ĥ2

t+h. The pseudo out-of-
sample period consists of 100 days. There is a daily re-fitting estimation:
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once ĥ2
t+h is obtained, rt+h becomes observed, with h = 1, · · · , 100. We

use all the previously cited forecasting schemes. The window’s width for
the rolling scheme is 200 and 400. In Figure 2.1 the different conditional
variances estimated by the GARCH(1,1) model and the different schemes
are plotted together with the true conditional variance. All the predic-
tions, independently of the forecasting schemes, follow the pattern of the
true variance. However, the rolling schemes, mainly when the width of
the window is small, gives the less accurate estimates. The volatility
estimates of the ARCH(4) models are illustrated in Figure 2.2. Being
this model largely misspecified, the pattern of the estimated variances is
quite far from the true variance. Moreover, with reference to the rolling
scheme, using a smaller or bigger width does not lead a considerable dif-
ference. In Figures 2.3 and 2.4 are displayed the variance predictions of
the GJR and EGARCH models. Both these specifications are misspeci-
fied but surprisingly, the latter model works quite well, showing an small
distance from the true variance even when the rolling scheme with the
smallest width is used.

2.4 Forecasts evaluation

This work focuses on the evaluation of the volatility predictions ob-
tained by a set of models. Given that the first input of the loss function
(2.1) is never observed, this framework requires specific instruments to
evaluate the volatility predictions. In other words, if we aim to evaluate
the volatility predictions, we have to take care of the latent nature of x
in equation (2.1). If in Economics the forecasted value, after a certain
amount of time, becomes directly observed, this does not happen for the
volatility. In this case, the volatility evaluation would be impossible by
means of the classical loss function approach as presented above. But,
thanks to some recent developments, the loss functions can be used. The
first development is the using of a consistent estimator of the true volatil-
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Figure 2.1 – Forecasting schemes comparison. GARCH(1,2) vs GARCH(1,1)
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Figure 2.2 – Forecasting schemes comparison. GARCH(1,2) vs ARCH(4)
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Figure 2.3 – Forecasting schemes comparison. GARCH(1,2) vs GJR(1,1)
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ity. And, as pointed out in the previous chapter, a consistent estimator of
the unobserved volatility is represented by the (square root of the) real-
ized volatility. A second development has been provided by Hansen and
Lunde (2006) and Patton (2006): the consistent or robust loss functions.
Naturally, one could be interested in evaluating the forecasts regarding
some observable economic variables, but this is beyond the aim of this
work. In what follows, we illustrate some methods generally used for the
evaluation of volatility forecasts and some methods generally used for the
standard forecasts evaluation. The Mincer-Zarnowitz regression, the ro-
bust (statistical) loss functions and the economic loss functions belong to
the former methods, the pairwise and multiple predictive ability tests to
the latter ones.

2.4.1 The Mincer-Zarnowitz Regression

Suppose the entire sample has been split in two parts, as described
above. The regression proposed by Mincer and Zarnowitz (1969) consid-
ers the pseudo out-of-sample forecasts for verifying if the forecast errors
for h-ahead predictions are mean zero and are uncorrelated with It. The
regression is:

xt+h = β0 + β1f(It) + ut+h, with t = L+ 1, · · · , T − h, (2.8)

where ut+h is the error term. For simplicity, let us suppose that h =

1. The regression (2.8) means that the predictions obtained using the
information available at time t and a forecasting model f(·) should be as
much as possible close to the true value xt+1. If this happens, the forecast
error ût+1 = xt+1 − β̂0 − β̂1f(It) is such that E(ût+1|It) = 0. This is
controlled by testing jointly β0 = 0 and β1 = 1. If the test is rejected,
it means that the information It has not been adequately exploited: other
better forecasts are available given the information set.

With reference to the volatility evaluation, (2.8) changes in:

RVt = β0 + β1ĥ
2
t,m + ut+1, with t = L+ 1, · · · , T − 1 (2.9)
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where RVt is the realized volatility as defined in the previous chapter
and ĥ2

t,m if the conditional variance forecasted by a model m. Andersen
and Bollerslev (1998) used (2.9) to demonstrate the goodness of the fore-
casting ability of the standard GARCH models. To be precise, they used
(2.9) considering the left hand side with the squared daily returns r2

t . The
resulting R2s of such regression ranged between 0.026 and 0.047, with
ĥ2
t,m obtained from a GARCH(1,1) specification. These disappointing re-

sults were coherent with the literature1. However, as argued by the same
authors, the low R2s derive from the noises of r2

t . More specifically, the
population R2 is defined as R2

p = V AR(ĥ2
t )/V AR(r2

t ). It can be show
that this quantity exists if κα2

1 +β2
2 +2α1β1 < 1, where α1 and β1 are the

coefficient of the GARCH(1,1) and κ is the kurtosis of the innovations.
Using the standard framework of equation (1.6), κ = E(z4

t ). If the pop-
ulation R2 exists, Andersen and Bollerslev (1998) found the following
inequality:

R2
p =

α2
1

1− β2
1 − 2α1β1

<
1

κ
. (2.10)

Recalling that κ identifies the tickness of the distribution tails, if the in-
novations are normally distributed, then κ = 3 such that the population
R2 is at most equal to 1/3. If the data exhibit fat tails, R2

p is even smaller.
From this two important consequences follow. Firstly, the low R2s of
the regression (2.9) when on the left hand side there are the squared daily
returns do not say that the forecast performance of the GARCH models
is low. Secondly, and more importantly, if one aims to use the Mincer-
Zarnowitz regression, then it would be appropriate to use a good proxy
of the latent volatility. As argued by Andersen and Bollerslev (1998), r2

t

are a noisy estimator of the true volatility. This comes from the already
seen equation (1.6): rt = htzt. If the interest is on h2

t and one uses r2
t as

its proxy, then r2
t = h2

t z
2
t such that r2

t is far from being a good approxi-
mation of h2

t , due to z2
t .

1Similar results are provided in West and Cho (1995) and Jorion (1995), among others.
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To conclude, the Mincer-Zarnowitz regression is a valid method to
evaluate the pseudo out-of-sample forecasts of a set of volatility models
when on the left hand side a good proxy of the true volatility is provided.
Otherwise, all the models will show low forecasting abilities.

2.4.2 Robust statistical loss functions

As mentioned above, the concept of robustness of the loss functions
has been provided by Hansen and Lunde (2006) and Patton (2006). These
authors gave the conditions under which an univariate loss function is said
to be consistent (or alternative robust, in the sense that the loss function
is robust to the noise present in the volatility proxy). The consistency of
the loss function allows to rank any volatility forecasts even though the
true volatility is not observed and the volatility proxy replacing the true
volatility is observed with some noise. The definition of consistency is as
follows.

Definition 2.1. A well defined loss function, L, is said to be “robust” if
the ranking of any two (possibly imperfect) volatility forecasts, hm,t and
hl,t, with m 6= l, by expected loss is the same if the ranking is done using
the true conditional variance, σ2

t , or its proxy, σ̂2
t . That is:

E(L(σ2
t , hl,t)) ≥ E(L(σ2

t , hm,t))⇐⇒

E(L(σ̂2
t , hl,t)) ≥ E(L(σ̂2

t , hm,t)), (2.11)

for any σ̂2
t such that its conditional mean is equal to the unobserved

volatility: E(σ̂2
t |It−1) = σ2

t . This means that σ̂2
t is a conditionally unbi-

ased volatility proxy of the true but observed volatility σ2
t .

Definition 2.1 states that if a volatility forecast given by any model
l is expected to be worse compared to the true volatility, then the same
volatility forecast given by any model l is expected by be worse compared
to the volatility estimate σ̂2

t . In the aforementioned work of 2006, Patton
gives conditions under which a loss function is consistent. Moreover, he
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provides some examples of robust loss functions, for which Definition
2.1 holds. A set of robust and nonrobust loss functions is summarized in
Table 2.1.

Table 2.1 – Loss function examples

Formulation Robustess

MSE (σ̂2 − h)2 Yes
QLIKE log h+ σ̂2

h Yes
MSE-LOG (log σ̂2 − log h)2 No
MSE-SD (σ̂ − h0.5)2 No
MAE |σ̂2 − h| No

In an multivariate context, the (univariate) loss function presented
above becomes:

L(Σt, Ht), (2.12)

where Σt is the true but unobservable covariance matrix and Ht is its
estimate. The consistency definition for the multivariate context changes
as follows.

Definition 2.2. A well defined loss function of type (2.12) is said to be
“robust” if

E(L(Σt, Hl,t)) ≥ E(L(Σt, Hm,t))⇐⇒

E(L(Σ̂t, Hl,t)) ≥ E(L(Σ̂t, Hm,t)). (2.13)

The assumptions, provided by Laurent et al. (2013), under which Def-
inition 2.2 holds are:

A1: Σt replaced by any conditionally unbiased proxy;
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A2: the well defined L(·, ·) is twice continuously differentiable with
respect to σ̂t and ht, indicating the element of matrices Σ̂t and Ht,
respectively;

A3: the second derivative ∂2L(Σt,Ht)
∂σl,t∂σm,t

is finite and independent of Ht,
∀l,m.

However, not all the most common loss functions are consistent. Laurent
et al. (2013) define a family of consistent loss functions based on the
(observed) forecast error Σ̂t − Ht, that assumes the following quadratic
form:

L(Σ̂t, Ht) = vech(Σ̂t −Ht)
′
Λ vech(Σ̂t −Ht), (2.14)

where vech(·) is the operator that stacks the lower triangular portion of a
matrix into a vector and Λ is a matrix that assigns the weights to each ele-
ment of forecast error matrix Σ̂t−Ht. Changing opportunely Λ in (2.14),
infinite loss functions may be created. However, only if the previous as-
sumptions hold, then the loss function is consistent. In the empirical part
of this work, we will consider four specifications of Λ, in order to have
two symmetric and two asymmetric loss functions. The specifications are
summarized in Table 2.2.

- insert Table 2.2 about here -

The Euclidean distance is the matrix version of the Mean Squared
Error distance. The matrix Λ is a diagonal matrix of ones, such that each
forecast error term is first squared and then summed, ∀t. The squared
weighted Euclidean distance considers only the variances: the matrix Λ

is a diagonal matrix of zeros and ones, such that only the forecast error
for the variances is computed. The over prediction version of the Ma-
halanobis distance penalizes the negative forecast errors, that are present
when the forecasted value is larger than the correspondent value of the
volatility proxy. If this happens, the diagonal matrix Λ is such that the
negative terms of the forecast error Σ̂t −Ht count twice. In conclusion,
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the inverse of the Mahalanobis distance just presented is considered. The
under prediction of the Mahalanobis distance penalizes the cases in which
the forecast error is positive, meaning that the forecasted value has been
under predicted. If this happens, the diagonal Λ matrix is such that each
positive term of the forecast error matrix counts twice, ∀t.

2.4.3 Economic loss function

The economic loss function provides an indirect evaluation of the
risk, because we do not directly assess the distance between a volatil-
ity proxy and the volatility as obtained by a forecasting model. In this
work, we present two approaches belonging to this evaluation method:
the utility function and the VaR measure methods. Let us start with the
first.

Utility function approach

As mentioned above, the conditional covariance matrix does not have
an intrinsic value but it represents the key input for pricing options, deriva-
tives, and so forth. The utility function approach considers this idea in
order to indirectly compare the volatility predictions of different models.
Suppose an estimated conditional covariance Ĥm,t has been obtained (we
operate in the multivariate world such that the univariate framework could
be considered an its generalization) by a model m, ∀t. Suppose also that
a realized covariance estimates has been obtained. Let Σ̂t be the real-
ized covariance estimate. Σ̂t and Ĥm,t can be separately used to find the
time-varying weights maximizing the portfolio returns (or equivalently
minimizing the portfolio risk), subject to some constraints (Markowitz
(1952)). A typical portfolio optimization problem is:

min
wt

w
′
tĤm,twt

s.t. wtι = 1, (2.15)
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where wt is a k × 1 vector of weights and ι is a k × 1 vector of ones.
As usual, k is the number of stocks. The constraint wtι = 1 means that
no short sellings are allowed. The optimization problem of (2.15) is re-
peated ∀t, giving a set of time-varying weights, denoted by ŵt. Then,
let rpt,m = ŵ

′

trt be the portfolio daily return when the model m is used
for calculating the conditional covariance matrix. The utility function
approach evaluates the performance of a model looking at the utility pro-
duced by that model. For instance, Fleming et al. (2001) propose the
following quadratic utility function:

U(m, t) = W0

(
(1 + rf + rpt,m)− γ

2(1 + γ)
(1 + rf + rpt,m)2

)
,

(2.16)
where W0 represents the amount of wealth, rf the risk-free interest rate
and γ the coefficient of risk aversion. One can evaluate any model by
simply summing U(m, t) ∀t or determining the quantity ∆ that makes
indifferent a model m by a model l, with l 6= m:

T∑
t=1

U(m, t) =

T∑
t=1

U(l, t)−∆. (2.17)

Obviously, If ∆ > 0, then model l is preferred. This method can be used
also for the comparison of the utility produced when Σ̂t and Ĥm,t are
plugged into the minimization problem of equation (2.15).

However, the utility function approach exhibits some drawbacks. It
depends on many variables, such as the risk-free interest rate and the risk-
aversion coefficient. Even though these variables are exogenous, mainly
the former is difficult to hypothesize as completely unchanging, during
all the sample period. Another problem is the nature of the chosen utility
function. How do the results change when the utility function changes?

Value at Risk approach

A popular ex ante risk measure is the Value at Risk (VaR), that is de-
fined as the potential losses that a portfolio exhibits over a defined period
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for a given confidence interval. Firstly developed by JPMorgan Chase &
Co. in the early 1990s, the VaR has been extensively used during the last
two decades. For a comprehensive overview of the Value at Risk and its
measures, look at Duffie and Pan (1997) and Jorion (2007). Even though
the VaR has been criticized for its statistical properties (see Artzner et al.
(1999)), it still has an important role in Basel III (for a definition of the
‘stressed’ VaR, see the EBA Guidelines on Stressed Value at Risk, 2012).
If a violation is defined as the occurrence of the portfolio’s loss greater
than the VaR, a model that exhibits good risk performances is a model for
which the number of these violations is closer to the prefixed number of
expected violations, that depend on confidence interval and period. For
instance, if 100 trading days and a VaR with a 95% confidence interval
are considered, a risk manager expects that the violations occur 5 times.
An interesting discussion about the violations of the VaR can be found
in Gencay and Selcuk (2004). If the VaR is violated many times, more
than the expected ones, there is an underestimation of risk. Instead, if the
VaR is violated few times, there is an overestimation of risk. In this latter
case, the portfolio holder owns a large amount of capital, supporting a
high opportunity cost: he could invest capital in other business, for in-
stance. In this framework, only the case of a risk-averse portfolio holder
is considered, such that, for him, the less the VaR is violated, the better it
is. Practically, the VaR can be used to indirectly evaluate different mod-
els: each model gives a volatility prediction that represents the input for
the VaR measures, which are subsequently evaluated in terms of viola-
tions. The problem is when and how much the VaR measures are good
and hence, consequently, a model will be considered better than another.

The VaR measures can be estimated either parametrically or non-
parametrically. The mean-variance approach, that will be presented in
a while, belongs to the first approach while the Historical Simulation and
the Monte Carlo methods belong to the latter. In the chapter 3 a third
method, belonging to the family of nonparametric approach, will be re-
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ported. Lima and Neri (2007) review all the VaR calculation methods
while in Markovich (2008) the nonparametric methods are discussed.

Let us now focus on the mean-variance approach for the calculation
of the VaR measures. This parametric methods requires the knowledge of
the standard deviations of the portfolio (or of a generic asset) and of the
daily returns distribution. Continuing with the notation used in the pre-
vious paragraph, let h2,p = wi

tHm,twt be the portfolio variance obtained
after some optimization routines. If the univariate approach is consid-
ered, then rpt,m and h2,p

t,m collapse to rt,m and h2
t,m, respectively. For ease

of notation, we suppress the indexm indicating them− thmodel. More-
over, let E(rpt ) = 0. Formally, the Value at Risk for the day t, denoted by
V aRt, for long trading position is obtained as:

V aRt = rpt + fαh
p
t , (2.18)

where fα is the left quantile at α% of the distribution f , representing
the portfolio daily returns distribution. For instance, if the daily returns
distribution is Normal, then rpt ∼ N (0, h2,p

t ). The sense of α is that

Pr(rpt < V aRt) = α. (2.19)

In other words, α represents the probability that the portfolio loss
on day t exceeds V aRt. To be more concrete, let us suppose that the
presumed distribution of the portfolio returns is Normal. Then suppose
that rpt = 0 and hpt = 0.075. The daily VaR at 5% confidence level is
given by −1.64 × 0.075 = −0.1233, because of the left quantile at 5%
for the Normal distribution is about -1.64. Thus, we expect at a 95%
confidence interval that the portfolio loss will not exceed the value of
12.3% daily. The VaR computed for a longer time horizon is as follows:

V aRt(T ) = (rpt + fαh
p
t )×

√
T , (2.20)

Let us continue with the previous example but the time horizon is now
a month. Given that there 20 trading days in a month, the monthly VaR
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becomes −0.1233 ×
√

20 = −55.14%. This means that with a 95%
confidence the portfolio losses are not expected to overcome the value of
55.14% in a given month.

Observing the VaR measures and portfolio daily returns, we can de-
fine the sequence of hit function {It}Tt=1 as the number of V aR violations
occurring in a given time period, where the hit function at time t is ob-
tained as follows:

It =

{
1 if rpt < V aRt

0 if rpt ≥ V aRt
(2.21)

The assessment of a model through the VaR and the hit function can
be done in many methods, among which there are the Time Until First
Failure (TUFF) test, the Unconditional coverage test and the Indepen-
dence test. The TUFF test, proposed by Kupiec (1995), reports the first
day in which a VaR violation occurs. The Unconditional Coverage (UC)
test, always proposed by Kupiec, tests if the empirical frequency of vi-
olations is statistically equal to the prefixed α. The Independence test,
due to Christoffersen (1998), checks if the VaR violations are clustered
in time or are independently distributed over time. In this work we only
consider the last two.

The null hypothesis of the UC test is H0 : E[It] ≡ π = α, where π
stands for the unconditional probability of a violation of a model. Assum-
ing the independence of It for each t, the likelihood of the hit sequence
will be given by the productory of a Bernoulli random variable, that is:

`(π) =
T∏
t=1

(1− π)1−It+1πIt+1 = (1− π)T0πT1 ,

where T0 and T1 the number of zeros and ones, that is the number of
non-violations and violations of the VaR in the sample, respectively. Let
π̂ = T1/T the observed number of violations in the sample. If we insert
π̂ into the likelihood, we have:

`(π̂) = (1− T1/T )T0(T1/T )T1 .
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Under the null hypothesis that π = α, we have the following likeli-
hood:

`(α) =

T∏
t=1

(1− α)1−It+1αIt+1 = (1− α)T0αT1 .

Finally, we can check the null by using the likelihood test

LRUC = −2log [`(α)/`(π̂)] ∼ χ2
1. (2.22)

Also the independence test is based on a likelihood ratio test. If the hit
sequence is dependent over time such that it can be defined as a first-order
Markov sequence with the following transition probability matrix:

Π1 =

[
1− π01 π01

1− π11 π11

]
,

where π01 is the probability that, given today being a non-violation, to-
morrow a violation occurs, meaning that It = 0 for today and It+1 = 1

for tomorrow. Moreover, π11 is the probability of a violation tomorrow
given today being a violation (It = It+1 = 1). Conversely, the probabil-
ity of a non-violation following a non-violation is denoted as (1 − π01)
and the probability of a non-violation following a violation as (1− π11).
Let the likelihood function of the first-order Markov process be

`(Π1) = (1− π01)T00πT0101 (1− π11)T10πT1111 ,

where Tij is the number of observations with a j following an i. Now,
π01 and π11 can be estimated by taking the first derivatives of `(Π1). It is
easy to demonstrate that:

∂`(Π1)

∂π01
=[(1− π11)T10πT1111 ][−T00(1− π01)T00−1πT0101 +

(1− π01)T00T01π
T01−1
01 ] = 0.

This yields to:

π̂01 =
T01

T00 + T01
and π̂11 =

T11

T10 + T11
.
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Because the probability has to sum to one, we have π̂00 = 1 − π̂01 and
π̂10 = 1− π̂11. At this point, we can formulate the null hypothesis of the
independence test: π01 = π11 = π, based on the observation that under
independence a violation tomorrow should not depend on today value of
the hit function. The null hypothesis is tested using a likelihood ratio that
assumes the form:

LRind = −2log
[
`(π̂)/`(Π̂1)

]
∼ χ2

1,

where `(π̂) has already been defined for the Unconditional Coverage test.
In the empirical part, we will use both the Unconditional and the In-

dependence test in a jointly test as proposed by Christoffersen. In fact,
this test indicated as Conditional Coverage (CC) test, verifies the empiri-
cal rate of failures and the independence of the violations jointly. The CC
test is given by following likelihood ratio test:

LRCC = −2log[`(p)/`(Π̂)] ∼ χ2
2,

that equals to test the hypothesis π01 = π11 = α. Moreover, it is such
that LRCC = LRUC + LRind.

The main drawbacks of the VaR approach in order to evaluate the
volatility predictions are: (i) it is not a coherent risk measure; (ii) it ig-
nores what happens in the tail of the distribution.

The coherency of a risk measure is defined in terms of a set of proper-
ties that the risk measures should have. The properties are: monotonicity,
subadditivity, homogeneity, translational invariance. Artzner et al. (1999)
detail all these properties. With reference to the Value at Risk, it does not
have the subadditivity property. The subadditivity property states that
evaluating the function for the sum of two elements of the domain always
returns something less than or equal to the sum of the function’s values at
each element. Formally, in the VaR framework, the subadditivity property
means that:

V aRt(r
p
t ) ≤ V aRt(X1) + V aRt(X2),
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where X1 and X2 are two stocks forming the portfolio whose daily re-
turns are as usually expressed by rpt .

The other drawback of the VaR is that it ignores what happens in the
tail of the distribution. In particular, if the VaR is a threshold of the daily
return distribution for the day t, then it does not take any information once
that threshold has been exceeded. For this reason, the Conditional VaR
cV aRt, also named Expected Shortfall has been proposed. It is equal to:

cV aRt = E [rpt |r
p
t < V aRt] .

The cV aRt is a coherent measure of risk, given that the property of sub-
additivity here holds.

2.4.4 Pairwise Predictive Ability Testing

The previous methods allow the comparison of volatility forecasts
produced by m models. In some circumstances, it may be useful to per-
form a pairwise comparison, meaning that the models analysed are two
(such thatm = 2). In the next two paragraphs the Diebold-Mariano, West
and Giacomini tests will be briefly illustrated. These tests have been ex-
tensively used, not only for the volatility forecasts evaluation but also for
the evaluation of heterogeneous economic variables.

Diebold-Mariano Test

Diebold and Mariano (1995) propose to test the equivalence of the
forecasting performance by means of a t-test, based on the difference
between the estimated losses. In particular, let εit+1|t be the forecast error
made at time t + 1 for the forecast computed at time t for the model i,
with i = 1, 2. Outside the volatility framework, the forecast error is:

εit+1|t = xt+1 − fi(It),

where fi denotes the model i producing the forecast. Within the volatility
framework, xt+1 can be replaced by a volatility proxy and fi(It) one of
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the model seen in the previous chapter. The h-step ahead forecasts, with
h ≥ 1, are assumed to be computed for the period t2 = L+ 1, · · · , T for
a total of T2 forecasts. Thus, the series of the forecast errors is denoted
by {εit+h|t}

T
t=L+1.

The accuracy of each model can be naturally exploited by the loss
functions, such as the MSE, MAE, and so forth. The Diebold-Mariano
test checks if on average the two losses are equal. The null hypothesis is:

H0 : E
[
L({ε1

t+h|t}
T
t=L+1)

]
= E

[
L({ε2

t+h|t}
T
t=L+1)

]
. (2.23)

Let dt = L(ε1
t+h|t) − L(ε2

t+h|t) be the loss differential between the
model 1 and model 2 at time t by means of the loss function L. The null
hypothesis in (2.23) can be now written as

H0 : E[dt] = 0. (2.24)

Let d be the sample mean of dt, that is:

d =
1

T2

T∑
t=L+1

dt. (2.25)

The Diebold-Mariano test statistic is:

S =
d√
V (d)

. (2.26)

If d is an estimated but observed quantity, its variance V (d) requires some
attention because of the autocorrelation of dt. In fact, each forecast error
series will be serially correlated given that overlapping data are used.
In particular, it can be show that {εit+h|t}

T
t=L+1 follows a MA(h − 1)

process. If it is assumed that all the autocorrelations of order h or higher
of dt are zero, then it can be proven that the denominator of equation
(2.26) is consistently estimated by:

V (d) ≈ T−1
2

[
γ0 + 2

h−1∑
k

γk

]
, (2.27)
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where γk is the k − th autocovariance of dt:

γk = T−1
2

T2∑
k+1

(dt − d)(dt−k − d). (2.28)

Hence, the test statistic (2.26) becomes:

Sc =
d√
V̂ (d)

, (2.29)

where V̂ (d) is obtained through (2.27). Under the null hypothesis, Sc
d→

N (0, 1). Finally, if |Sc| > 1.96, then one can argue that the model 1 and
model 2 do not have equal predictive accuracy at 5% significance level.
In this case, the sign of Sc indicates which model has a better forecast
accuracy. If Sc > 0, then model 1 has greater forecast errors such that
model 2 should be preferred and vice versa.

The Diebold-Mariano test has some unquestionable advantages. It
can be applicable for any loss functions, for multi-period forecasts, and
the forecast errors can be non-Normal distributed, nonzero-mean and se-
rially and contemporaneously correlated. However, such test has at least
three drawbacks. Firstly, it can be applied when the competing mod-
els are non-nested. When the models are nested, other tests have to be
considered, like that proposed by Clark and McCracken (2001), among
others. Secondly, the Diebold-Mariano test does not take into account the
parameter estimation errors that derive from the models used to forecast.
It only considers the forecast errors, that indeed could depend on the un-
certainty inherent to fi(It). In fact, the asymptotic variance of d could
be influenced by the in-sample parameter estimation. A brief overview of
the solutions to this problem are discussed in the next paragraph. Thirdly,
the asymptotic distribution of S1 is seriously affected by the small size of
the sample. It often happen that the T2, the length of the pseudo out-of-
sample period, is small due to several reasons. For example, the period
used for the forecasting is small by itself. Possible solution/modification
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of the Diebold-Mariano test for small sample size are provided in Harvey
et al. (1997), among others.

West and Giacomini-White Tests

In this paragraph the West (1996) and Giacomini and White (2006)
tests are briefly presented. Both tests concern the equal predictive ability
like the Diebold-Mariano test but differently fro this latter, they take into
account the estimation uncertainty. Recall that the whole sample period
can be split in two not overlapping subperiods t1 = {1, · · · , L} and t2 =

{L+1, · · · , T}, with T1 and T2 representing the length of the two periods,
respectively. Let us suppose that fi(It) uses the period t1, the in-sample
period, to estimate the parameters generating the forecasts for the pseudo
out-of-sample period t2. West proposes an asymptotic test for T1, T2 →
∞, working under a squared loss function, whose null hypothesis is:

H0 : E
[
(xt+1 − f1(θ∗))2 − (xt+1 − f2(θ∗))2

]
= 0. (2.30)

In (2.30), the forecasting models f1(·) and f2(·) depend explicitly on the
parameter θ estimated in the in-sample period. This means that these
forecasting models can be exclusively parametric. θ∗ indicates that the
parameters are considered at their population values, i.e. interpretable
as probability limits of the parameter estimates when L1 goes to infinity.
The statistical test proposed by West is:

Wc =
1

T2

T−h∑
t=L+1

dt(θ̂t)

σ̂
, (2.31)

where dt(θ̂t) and σ̂ are the loss differential and the standard deviation
depending on the possible uncertainty of the in-sample parameter esti-
mation, respectively. West (1996) shows how to construct σ̂ identifying
many cases in which the parameter uncertainty does not count asymptoti-
cally. But, if the denominator of the Diebold-Mariano test is quite simple
to calculate, σ̂’s computation may be difficult, given that it depends on
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the forecasting scheme (recursive, rolling or fixed) and the two models.
Another drawback is that the West statistic works adequately only for
non-nested models, as pointed out by Clark and McCracken (2001).

The Giacomini-White (GW) test differs from the West test under
many points. As pointed out by their authors, the (GW) test has a null
hypothesis of equal conditional predictive ability, while (2.30) has a null
of equal unconditional predictive ability. Why conditional? Because the
forecasting models are now function of the estimated parameters (while
in the West test they were function of the population parameters). The
null hypothesis is:

H0 : E
[(
xt+1 − f1(θ̂t)

)2
−
(
xt+1 − f2(θ̂t)

)2
|It
]

= 0. (2.32)

The main difference between the West and the GW test is that the former
focuses only on the forecasting model (whose parameters are evaluated
at their population values), while the latter takes into account the whole
forecast method, consisting of the forecasting model, the estimation pro-
cedure, the window size of the data to use, the possible non stationarity
of the data generating process, and so forth. In fact, the GW test al-
lows for the parameters changing over time, differently from the West
test. Moreover, other important differences occur between the two ap-
proaches. First, the GW test can be applied on nested models. This is
an important aspect when the forecaster considers as benchmark a simple
model and he needs to compare it to a more sophisticated version (with a
larger number of parameters) of this benchmark model. Second, as evi-
denced by Giacomini and White, the GW test is capable to prefer simpler
models to larger correctly specified models if these latter have a large
amount of uncertainty with reference to the parameters estimation.

As drawback, the GW test excludes the possibility to use the recur-
sive forecasting scheme, while it allows for the rolling and fixed schemes.
This is because the asymptotic environment of the GW test considers a
fixed in-sample size T1 while T2 increases to infinity, even though some
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recent works allow to use the GW test with a recursive scheme in special
cases (see Clark and McCracken (2009) for details).

2.4.5 Multiple Predictive Ability Testing

In the previous section the pairwise testing has been discussed. How-
ever, this is only a special case of the multiple predictive ability testing,
where a set of competing models is compared. More specifically, the
forecaster could be interested in testing the predictive ability of a set of
models against a benchmark, in order to find the best model or the subset
of models with equal forecast accuracy. This framework will be illus-
trated in the next two paragraphs.

The Reality Check

Let d(i)
t+h = L(0)

t+h − L
(i)
t+h be the loss differential between the bench-

mark, identified by 0, and the i − th model, with i = 1, · · · ,m. If
d

(i)
t+h > 0, then at time t+ h the model i outperforms the benchmark, be-

cause its loss is smaller than that of the benchmark. Instead, if d(i)
t+h < 0,

the model i has worse forecast accuracy with respect to that of the bench-
mark. Hence, the idea is to test that none of the m models is better than
the benchmark. The Reality Check, proposed by White (2000), formal-
izes this idea as

H0 : max
i=1,··· ,m

E
[
{d(i)

t+h}
T
t=L+1

]
≤ 0

H1 : max
i=1,··· ,m

E
[
{d(i)

t+h}
T
t=L+1

]
> 0

If the null hypothesis is not rejected, then the benchmark is never out-
performed. Otherwise, if the null is rejected, the model i outperforms
the benchmark. Note that if m = 2, then the reality check is nothing
else than the Diebold-Mariano test. Let dt+h = (d

(1)
t+h, · · · , d

(m)
t+h)

′
and
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E
(
{dt+h}Tt=L+1

)
= µ. Now, the null hypothesis can be written as:

H0 : µ ≤ 0.

White makes the following assumption on dt+h:

A1: The vector {dt+h} is strictly stationary on a strong mixing base
of size −(2 + δ)(r + δ)/(r − 2), with r > 2, δ > 0, where
E
(
|{dt+h}|r+δ

)
<∞ and V ar(d(i)

t+h) > 0, ∀i = 1, · · · ,m.

For simplicity, let us suppose that there is only one step ahead forecast,
such that h = 1. Recall that we are in the pseudo out-of-sample period,
whose length is T2. Given A1, the central limit theorem can be applied
such that

T−1
2 (d− µ)

d→MVN (0,Ω), (2.33)

where d = T−1
2

∑T
t=L+1 dt and Ω = aV ar(T−1

2 (d− µ)), with aV ar(·)
indicating the asymptotic variance of the argument. As argued by Clark
and McCracken (2001), the asymptotic normality does not hold when the
benchmark is nested in all alternative models (under the null hypothesis)
and the parameters are estimated recursively. White uses the following
test statistic,

TRC = max(T
1/2
2 d1, · · · , T 1/2

2 dm), (2.34)

where di = T−1
2

∑T
t=L+1 d

(i)
t . The asymptotic null distribution of (2.34)

is based on T 1/2
2 d ∼ MVN (0, Ω̂). Unfortunately, the estimation of the

Ω̂ is not simple, mainly if m is large. To handle this problem, White
suggests a bootstrap procedure in order to derive the p-values of the test.
The bootstrap procedure relies on the stationary bootstrap of Politis and
Romano (1994), provided that A1 holds. Other assumptions needed to
use the Reality check are (i) at least one model has to be non nested
with the benchmark; (ii) the uncertainty deriving from the parameters
estimation does not count asymptotically. Some recent developments in
the Reality Check literature are discussed in Corradi and Swanson (2011).
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The Superior Predictive Ability test

The Superior Predictive Ability (SPA) test, due to Hansen (2005),
modifies the White’s procedure obtaining a test more powerful and less
sensitive to the inclusion of poor and irrelevant forecasts than the Reality
Check. This result is achieved by two modifications of the Reality Check
procedure. First, a studentized test statistic is employed. Second, a data
dependent null distribution is used to incorporate additional sample in-
formation such that the irrelevant forecasts are identified. This allows for
a reduction of their influence on SPA test. More specifically, the studen-
tized SPA test statistic modifies (2.34) in:

TSPA = max

[
max

i=1,··· ,m

T
1/2
2 di
ω̂i

, 0

]
, (2.35)

where ω̂i is a consistent estimator of ωi =
[
V ar(T

1/2
2 di)

]1/2
.

The data dependent null distribution is based onMVN (µ̂c, Ω̂), where
µ̂c is an estimator for µ that conforms for the null hypothesis. Hansen
suggests the estimator:

µ̂c = diI{T 1/2
2 di/ω̂i≤−

√
2 log log T2}

, (2.36)

where I{·} denotes the Indicator function. As for the Reality Check, this
framework does not allow for the comparison of nested models when the
recursive scheme is used.

The Model Confidence Set

The idea of Model Confidence Set (MCS), due to Hansen et al. (2011),
is to explore the circumstances in which the Reality Check and the Supe-
rior Ability Test null hypotheses are not rejected. In this case, we only
know that none of the m models outperforms the benchmark or at least
some (or all) have equal predictive ability. Hence, the aim is to repeat the
analysis step-by-step ruling out the models with the worse performances
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in order to retain all the models with equal forecasting performances.
These models form the so called Model Confidence Set, that is a set of
models with equal predictive ability. The models belonging to the MCS
are determined by the following procedure:

1. ∀i, j, with i 6= j and i, j = 1, · · · ,m, the null hypothesis of equal
predictive ability as in the Diebold-Mariano test (equation 2.23) is
evaluated by the statistic

MCSc = max
i,j

ti,j , (2.37)

where again ti,j is the Diebold-Mariano test statistic in (2.29).

2. If the null is not rejected, all the m models entry in the MCS, given
that they all have the same predictive ability. Instead, if the null
is rejected, then the model with the highest average loss are elimi-
nated and step 1 is repeated till the null is not rejected.

As for the Reality Check and the Superior Predictive Ability, the p-value
for the test in step 1 is obtained by a bootstrap procedure. For details
about the bootstrap procedure, see the appendix of the cited paper of
Hansen et al. (2011).

2.5 Combining forecasts

In the previous sections some methods to find the best model or the
set of models with equal predictive ability have been presented. This is a
possible solution when the forecaster has many forecasting models. An-
other possible solution is to combine all or some models in order to create
a kind of “super” forecasting model. An excellent review of the forecast
combinations is provided by Timmermann (2006). There are many rea-
sons advocating the utility of the forecast combinations. For instance,
given that the data could be affected by structural breaks, a model i could
adapt very slowly while another model j very quickly. Because of the
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difficulty to recognize on time the structural breaks, the combinations of
forecasts is expected to outperform the individual models. Evidences of
this intuition are illustrated in Pesaran and Timmermann (2007). Another
possible justification for the forecast combinations is the presence of mis-
specification biases and measurement errors in the information sets used
by each model to forecast. Combining the forecasts makes the resulting
“super” model more robust to these misspecification and measurement
errors.

However, there are some drawbacks in using the forecast combina-
tions. First of all, the forecaster has to deal with the problem of finding
the optimal weights. And, with reference to the last reason advocating the
utility of the forecast combinations, the research of optimal weights may
be severely affected by the presence of misspecification and measurement
errors.

The problem of forecast combinations can be formalized as follows.
As done previously, suppose that the realizations of the variable of in-
terest xt are observed for h periods ahead and these realizations are in-
dicated by xt+h. Moreover, suppose that the m individual forecasting
models have forecasted the variable of interest for the same h periods
ahead. These forecasts are denoted by x̂t+h = (x

(1)
t+h, · · · , x

(m)
t+h)

′
. We

aim to find a vector of optimal weights w∗t+h reducing the multivariate
vector x̂t+h to a scalar through the function g(·). Formally, the combined
forecast is denoted by:

x
(c)
t+h = g(x̂t+h; wt+h). (2.38)

Equation (2.38) means that the combined forecast is obtained through
an opportune function linking wt+h to x̂t+h. In (2.38) the weights are
assumed to be time-varying but they can always be considered as time-
invariant. A classical distinction concerning the function g(·) is its linear
or non-linear nature.

The optimal weights w∗t+h are determined solving the problem of
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finding the smallest forecast error deriving from the unavoidable differ-
ence between xt+h and x(c)

t+h. The resulting loss function L(e
(c)
t+h), for

simplicity, is assumed to depend only on the forecast error e(c)
t+h of the

combination, with e(c)
t+h = xt+h − g(x̂t+h; wt+h). For instance, the un-

certainty of the parameters estimation for each model does not play any
rule. Hence, the optimal weights w∗t+h solve the problem:

w∗t+h = min
wt+h

E
[
L(e

(c)
t+h(wt+h))|x̂t+h

]
, (2.39)

where in e(c)
t+h(wt+h) it has been evidenced that the forecast error depends

on the weights vector.
The minimization problem in (2.39) generally does not admit a closed-

form solution. Some solutions can be achieved by imposing restrictions
on the loss function, on the function g(·), and so forth. One common so-
lution is to consider the linear combination of equal weights. In this case,
we have that

x
(c)
t+h =

1

m
ι
′
x̂t+h, (2.40)

where ι is a m × 1 vector of ones. This specification of forecasts com-
bination usually represents the benchmark used to compare other more
complicated combinations. For instance, one may consider to rule out
the worse models by giving them a weight equal to zero, use a nonlinear
combination methods, and so forth.
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Appendix

Table 2.2 – Specifications of loss functions used in the work

Name form of Λ symmetry

LE Euclidean distance Λ = Ik symmetric

LSE Squared weighted λi,i > 0 and
symmetric

Euclidean distance λi,j = 0

LM−O Mahalanobis distance λi,i = λi,j = 1 + I{ov}, asymmetric
over prediction vers. where

I{ov} =

{
0 if σ̂t − ht ≥ 0

1 if σ̂t − ht < 0

LM−U Mahalanobis distance λi,i = λi,j = 1 + I{ov}, asymmetric
under prediction vers. where

I{ov} =

{
0 if σ̂t − ht ≤ 0

1 if σ̂t − ht > 0

Notes: λii indicates the element of Λ referring to the variance element ii of the forecast
error matrix; λij to the covariance element ij, with i, j = 1, · · · , k. LE equally weights
the variance and covariance elements. LSE weights only the variance elements. LM−O
penalizes the over predictions, such that if there is an over prediction at time t, the loss
function counts twice that forecast error. LM−U penalizes the under predictions, such
that if there is an under prediction at time t, the loss function counts twice that forecast
error.





3
Evaluation of Volatility Forecasts in a VaR

framework

3.1 Introduction

In the previous chapter two methods for the evaluation of volatility
forecasts have been discussed: the statistical and economic approaches.
In this chapter we present a new method, that mixes the previous two. In
particular we focus on the evaluation of volatility forecasts by means of
the VaR measures and then we evaluate these measures through the loss
functions. In this context, the loss function compares the losses of a port-
folio (or of an asset) to the VaR quantities. More violations occur, greater
the value of the loss function is, worse the correspondent model is. As far
as we know, in literature there are not so many loss functions specifically
used for evaluating the VaR measures. Lopez (1998) introduces the Mag-
nitude loss function that takes into account the distance between the loss
and the VaR measures when a violation occurs. The Firm loss function
of Sarma et al. (2003) adds to the former the opportunity cost of capital
faced by the firm when there is not a violation. Both loss functions are
symmetric: they equally penalize models whose number of violations is
larger or smaller than the expected one. As stated above, in this scenario
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the portfolio holder does not prefer models with a large number of vi-
olations. Moreover, the Firm loss function experiences the problem of
choosing the opportunity cost of capital. In this chapter, a new asym-
metric loss function is proposed. The term asymmetric means that the
models with a number of violations larger than the expected one are pe-
nalized more than the models with a smaller number of violations.

The aim of this chapter is to investigate the opportunity to use the loss
functions in a VaR framework in order to evaluate the volatility predic-
tions of a set of competing models. More specifically, we are interested
in verifying if this method can be helpful to find the best model, indepen-
dently of the distributional assumptions of the daily returns.

Following Bowers and Heaton (2013), (block) bootstrapping the in-
traday increments of a generic asset allows to have consistent estimators
of any characteristics of that asset’s daily return, independently of its dis-
tribution, as desired. Hence the VaR measures are obtained as a quantile
of the estimated distribution of the daily return for that day.

As it is known, the loss function gives a value - named numerical
score - representing the average of the distance between the two inputs
for all the sample period considered. In the previous chapter, the two in-
puts were the actual and forecasted values of the variable of interest, gen-
erally and the volatility proxy and the volatility prediction, specifically.
In this framework, the two inputs are the observed daily returns and the
estimated VaR measures. Hence, a question arises: can we find a method
to discriminate high numerical scores from low numerical scores? Our
answer is positive and it is based again on the block bootstrap method.
The proposed simple method helps the researcher, the portfolio holder
and the risk manager to empirically find the volatility model with a su-
perior predictive ability in situations where the statistical and economic
approaches are not in accordance with the choice of the best model.

The aim of the chapter is pursued by means of a Monte Carlo experi-
ment and an analysis carried out on a stock listed on the New York Stock
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Exchange, the same used for the graphical description of the stylized
facts discussed in Chapter 1. In the simulation, a data generating process
(DGP) following a GARCH(1,1) with Normal innovations is considered.
Then the intraday increments are simulated such that the variance of each
increment is equal to the daily variance divided by the number of intra-
day observations. The set of competing models are seven misspecified
models: a Riskmetrics, three GARCH(1,1) and three GJR-GARCH(1,1)
models, each with different specifications. The evaluation of their perfor-
mances relies on three accuracy measures. Let a rejection be the event
that a numerical score lies above the threshold. The first accuracy mea-
sure is the frequency of rejections of the DGP with those of each model.
The second accuracy measure is the frequency at which the model’s nu-
merical score lies below the chosen threshold. The third accuracy mea-
sure is the frequency at which the model ranks first (meaning that the
relative numerical score is the smallest among all the models). The linear
combination of these measures gives a synthetic value, varying between
zero and one. This value allows not only to compare cross-sectionally
the models, but also to compare the goodness of accuracy among the loss
functions.

In the empirical analysis the volatility of the stock of the Capital
One Financial Corporation is evaluated. If in the Monte Carlo experi-
ment the evaluation of forecasts is made in a pure-in-sample perspective,
here the analysis concerns the out-of-sample perspective, by means of a
rolling window of length 250 days. Again, the VaR measures are obtained
by block bootstrapping the intraday increments. Finally the thresholds,
one for each loss function, are calculated in order to evaluate the perfor-
mances of a set of competing models.

We start in Section 3.2 by presenting the method used to estimate the
daily VaR measures. In Section 3.3 the two loss functions in a VaR frame-
work are illustrated. In the same section the three accuracy measures that
will used in the Monte Carlo simulation in Section 3.4 are presented. The
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results of the volatility evaluation, when the real data are used, are illus-
trated in Section 3.5. Section 3.6 concludes.

3.2 Nonparametric estimation of the VaR measures

Suppose that a sequence of N intraday increments for a generic day
t and a generic asset is observed. Formally, the sequence1 is denoted by:
χt,N = {qt,1, · · · , qt,N}, such that

qt,n = pt,n − pt,n−1, ∀n = 2, · · · , N. (3.1)

In (3.1), pt,n denotes the observed intraday log price at day t and nth in-
traday frequency, with n = 1, · · · , N . By definition, qt,1 = 0, ∀t. Thus,
the open-to-close daily return rt,N is given by rt,N =

∑N
n=2 qt,n. We

aim to find the Value at Risk measure for the daily return rt,N on the ba-
sis of the observation of the intraday increments. Recall that the Value
at Risk is nothing else than a quantile of the presumed distribution of the
daily returns. If the data were i.i.d., the distribution of any statistic of
interest (mean, median, etc.) could be obtained simply re-sampling with
replacement B times the original sample and calculating B statistics of
interest. The B statistics of interest represent the bootstrap distribution
for that statistic. Unfortunately, the previous method proposed by Efron
(1979) cannot be applied on the sequence χt,N because of the lack of in-
dependence of the time series. But a solution exists. It is the Stationary
Bootstrap (SB) of Politis and Romano (1994), that allows for data depen-
dency. In the SB, for each day t, B re-sampled intraday sequences are
calculated, each of length N . A re-sampled intraday sequence is formed
by N sampled blocks, whose average block length depends on the de-
pendence exhibited within χt,N . Like Bowers and Heaton (2013), we use

1We use a slightly different notation here indicating the intraday increments or returns.
In Chapter 1 the intraday increments were denoted by rt,d. Here they are denoted by qt,n.
This is because we need to make clearer their difference with the daily returns depending
on N daily increments, indicated with rt,N .
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the procedure described in Patton et al. (2009) in order to estimate the
average block length, procedure that entirely depends on the observed
data. Once the bootstrapped sequence is obtained, the resulting summa-
tion represents a re-sampled daily return, independent of the original one,
but generated by the same distribution, as {N,B} → ∞. Any moment
or quantile of the original return can be now estimated by means of the
B i.i.d. sequence of the re-sample daily returns. Formally, let r∗t,N,b be a
re-sampled daily return given the summation of N blocks independently
drawn from the sequence χt,N and average block length depending only
on χt,N . Let r∗t,N = B−1

∑B
b=1 r

∗
t,N,b. By construction, E∗r∗t,N ≡ rt,N .

Let

qt,n = N−1Xt,n. (3.2)

As argued by Bowers and Heaton (2013), (3.2) allows for increments of
different length, as normally happens. The assumptions needed to assure
that r∗t,N and rt,N converge in distribution, given in Gonçalves and White
(2002) and Gonçalves and de Jong (2003), are2:

A1: Xn is L2+δ NED (Near Epoch Dependent) of size -1 on a strong
mixing base of size −(2 + δ)(r + δ)/(r − 2), with r > 2, δ > 0.

A2: E|Xn|r+δ <∞, ∀n.

A3: The homogeneity condition described in Gonçalves and White (2002)
holds for EXn.

A4: E(rt,N ) = 0.

Many kinds of different weak dependence specifications are allowed by
assumptions 1-3. In addition, the assumption 1 allows for micro-structure
effects. More delicate is the assumption 4, that may be violated. If one
is interested in the estimation of naturally centred moments of the daily
returns like the variance, skewness and so forth, assumption 4 does not

2For sake of simplicity, the suffix t is omitted.
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count. But, if one is interested in the estimation of quantiles like the
VaR, assumption 4 is needed to assure the convergence in distribution, as
defined in the following proposition:

Proposition 1: Given (3.2), if Assumptions 1-4 hold, then:

sup
x∈R
|P (rt,N ≤ x)− P ∗

(
r∗t,N − E∗r∗t,N ≤ x

)
| P→ 0, as N →∞,

(3.3)

where P ∗ denotes that the probability is conditional on χt,N . Proposition
1 means that the i.i.d. sequence r∗t,N,b, with b = 1, · · · , B, after having
subtracted rt,N , converges in distribution to that of rt,N , whatever it is,
as {N,B} → ∞. Now, the sequence r∗t,N,b can be used to consistently
estimate any moments or quantile of the original daily return. Because
we are interested in finding a consistent estimator of the VaR in order to
use it in a loss function, let r∗t,N,[b] indicate the bth quantile of r∗t,N,b. A
consistent estimator of the 5% VaR for the day t is given by:

V̂ aRt = r∗t,N,[0.05B] − E∗r∗t,N . (3.4)

Equation (3.4) allows to estimate the true VaR independently of the
daily return distribution. The drawback of this pretty simple method is
the computational timing it requires. For each trading day t, first the av-
erage block length has to be calculated, then the B independent bootstrap
samples are obtained. IfB and T are quite large, the timing could become
a problem.

3.3 VaR and loss function approach

Instead of using conditional coverage test as described in the previous
chapter, the VaR measures can be evaluated by the loss function (LF).
Precisely, in this context, the LF compares the profits and losses of an
hypothetical portfolio to the VaR measures. Generally speaking, a good
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model should have not only a number of VaR violations in line with the
expected one, but also a distance between the losses and the VaR as much
as possible small. Then, the comparison between the competing models
is done looking at their numerical scores: the smaller the numerical score
for model i is, the better the model i is. In this work we consider two loss
functions.

The first LF due to Lopez (1998) is called Magnitude loss function,
because it relies on the magnitude, the distance between the losses and the
VaR measures only when the former are greater than the latter. Denoted
by LossM at time t it is equal to:

LossM,t =

{
1 + (rt − V aRt)2 if rt < V aRt

0 if rt ≥ V aRt
. (3.5)

Then, the mean of equation (3.5) is: NSM = T−1
∑T

t=1 LossM,t,
where the acronym NS stands for Numerical Score.

The second LS is a new asymmetric function, denoted by NSA. It
penalizes more the model with a number of violations greater than the
expected one, denoted by α0 = α · T . Let α̂ be the number of times that
the losses are larger than the VaR andR be the quantity that expresses the
difference between α0 and α̂, such that: R = (α̂−α0)/α0. If R > 0, the
model has experienced more violations than expected. Thus, to penalize
it, we set up a quantity denoted by P , by using the exponential function:

P =

{
exp(R) if R > 0

1 if R ≤ 0
. (3.6)

The following step is similar to the construction of LossM at time t:

LossA,t =

{
1 + P · (rt − V aRt)2 if rt < V aRt

0 if rt ≥ V aRt
. (3.7)

In the last step, we obtain the final value of the loss function as:
NSA = T−1

∑T
t=1 LossA,t. The trick of using the exponential func-

tion in (3.6) makes a model overpenalized if it has a lot of violations.
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As aforementioned, we aim to investigate the opportunity to use the
loss functions in a VaR framework. To reach this goal, we propose the
following method for the construction of the threshold discriminating
low from high numerical scores. The procedure is again based on the
block bootstrap. The threshold is an empirical quantile of the distribu-
tion of the numerical score, when V̂ aR is used. For brevity, we omit
the suffix of the Magnitude or Asymmetric loss functions. Let LS =

{Loss1, · · · , LossT } be the sequence of zeros and nonzeros for the Mag-
nitude or Asymmetric LF when V̂ aR is used. Before proceeding with the
usual block bootstrap for depending data, we note that the construction
of the threshold should be exactly based on a number of nonzeros equal
to a0. If this does not happen, the resulting threshold is upward or down-
ward biased, when the number of nonzeros are greater or smaller than
α0, respectively. Let us start with the first case. To take into account this
problem, we split the procedure in three steps.

1. Let LSps be the a new sequence drawn from LS such that the num-
ber of nonzeros are equal to α0. The computation of LSps is based
on a simple random replacement of the nonzeros with the zeros.
Obliviously, the length of LSps is T .

2. LSps contains dependent data. The usual procedure of block boot-
strap is used, after having calculated the average block length as
discussed above. LetNS∗b,s be the bth bootstrap re-sample of LSps.
Let NS∗s = B−1

∑B
b=1NS

∗
b,s.

3. Step 1-2 are repeated S times such that a sequence of NS∗s is ob-
served. Every time step 1 is repeated, the random replacement of
nonzeros changes such that LSps will be always different.

The threshold is calculated as the 80% quantile of the NS∗s distribution,
with s = 1, · · · , S, that is TR = NS∗[0.8S]. We use the 80% quantile
because the same quantile was chosen by Lopez (1998), even though he



Univariate volatility evaluations 103

opted for another (parametric) procedure for the threshold calculation.
Naturally, the Magnitude and Asymmetric loss functions will have dif-
ferent thresholds if the number of violations is greater than the expected
one. If a numerical score of a volatility model lies above the threshold,
that model is considered rejected.

If the number of violations when V̂ aRt is used is less than α0, the
threshold as obtained by the bootstrap procedure is downward biased. As
before, we use a three steps procedure. Steps 2-3 are identical to those
presented above while the first step changes. The data for the block boot-
strap are collected in LSns, which comes from the random replacing of
the zeros in LS with the mean of nonzeros. How many zeros are random
replaced? Till the point in which the nonzeros are exactly equal to α0.

When the sequence LS has a number of nonzeros exactly equal to
α0, then the stationary bootstrap can be directly applied.

The accuracy measures and their linear combination

In order to indirectly compare the volatility predictions of a set of
competing models, a linear combination of three accuracy indexes is pro-
posed. This allows to synthesize in one value the goodness of the volatil-
ity predictions for each model. Even though the setting of Monte Carlo
experiment will be exposed in the next section, we have to underline that
the accuracy measures are based on how many times each competing
model reaches the best results. These measures check the number of
times that an event happens. The number of times here is indexed by R,
whereR is the acronym for Replicate. The illustration of the three events,
one for each accuracy measure, is explained as follows.

Let v be the number of times for which the DGP is above the thresh-
old. The DGP in this framework is identified with the process using the
V̂ aRt estimates. We impose the following restriction:

0 < v ≤ R, (3.8)
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meaning that the DGP lies above the threshold at least one time till a
maximum of R times. Let Ji the number of times for which the model i
is above the threshold, with i = 1, · · · ,m. Differently from the DGP, we
impose that:

0 ≤ Ji ≤ R, ∀i (3.9)

The first accuracy measure, indicated as Acc1, matches the occur-
rences of replicates of the model i exceeding the threshold with those of
the true model, in percentage terms. Let {v} and {Ji} be the replicates
that lie above the threshold for the DGP and the model i, respectively. For
example, there could happen that the true model experiences 3 replicates
above the thresholds, say the 14− th, 19− th and 27− th. In this case,
v = 3 and {v} = {14, 19, 27}. With reference to the generic volatility
model, there could happen it experiences 5 replicates above the thresh-
olds, that are {Ji} = {2, 4, 6, 19, 25}. In this extremely simplified case,
the generic model has a low accuracy measure, because it presents a joint
occurrence of exceedings only for the replicate R = 19. Formally, the
first accuracy measure, for the model i, is obtained as:

Acc1,i = length({v} ∩ {Ji})/v (3.10)

Given (3.8), Acc1,i = 0 if and only if there is any coincidence be-
tween a exceeding replicate of the true model and a exceeding replicate of
the model i. This happens when {v} ∩ {Ji} = ∅. Vice versa, Acc1,i = 1

if and only if all the J exceedings of the model i coincide with the v ex-
ceedings of the true model. Thus, Acc1,i varies in the interval [0,1].

The second accuracy measure, indicated with Acc2,i, represents the
percentage of replicates for the model i that lie below the thresholds. For-
mally, it is obtained as:

Acc2,i = 1− Ji
R
. (3.11)

If Ji = 0, then Acc2,i = 1, meaning that the model i has all the
numerical scores below the thresholds. If Ji = 1, thenAcc2,i = 0. In this
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unlucky circumstance, the model i has all the numerical scores above the
thresholds, meaning that it experiences very bad volatility predictions to
make always violated the VaR measures. Hence, 0 ≤ Acc2,i ≤ 1.

The third accuracy, RFi, represents the frequency at which the model
i ranks first. Formally, it is:

RFi = R−1
R∑
r=1

CFi,r, (3.12)

where

CFi,r =

{
1 if NS∗i,r : 6∃ NSl,r < NS∗i,r, ∀l 6= i

0 otherwise
.

RFi = 0 if and only if the model i always experiences the highest
numerical scores, compared to the numerical scores of the other l 6= i

models. Instead, RFi = 1 if and only if the model i presents, for all the
replicates, the smallest numerical scores. Thus, also the third accuracy
measure lies in the interval [0,1].

The linear combination of the accuracy measures is denoted by AMi,
such that AMi = 3−1[Acc1,i + Acc2,i + RFi]. Hence, AMi varies in
the interval [0,1]. The higher AMi is, the better the performance of the
model i is, because it has all the replicates below the threshold, it has the
same performance of the DGP and its numerical scores are low compared
to those of the other models. The construction ofAMi makes comparable
all the competing models and all the loss functions.

3.4 Simulation experiment

In this section the setting of the Monte Carlo simulation is illustrated.
The data generating process has the usual univariate GARCH represen-
tation, that is: rt = htzt, with zt ∼ N (0, 1) and h2

t ∼ GARCH(1, 1)

process. In particular:

h2
t = 0.01 + 0.10r2

t−1 + 0.85h2
t−1, t = 1, · · · , 1099. (3.13)
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The parameters have been chosen following Christoffersen (1998). The
first 99 observations are used as a warm-up period. The rest of the sample
is used to simulate the intraday returns in order to have an estimate of the
V aR for each period by means of the stationary bootstrap. The simula-
tion of the intraday increments for t = 100 is as follows. In t = 100,
h2
t=100 becomes observed. For sake of simplicity, the sequence of incre-

ments are assumed to be drawn independently from a Normal distribu-
tion, whose variance is constant and equal to (1/N)h2

t=100. The incre-
ments for the day t = 100 are thus qt=100,1, · · · , qt=100,N . The daily
return at time t = 100 is obtained as: rt=100,N =

∑N
n=1 qt=100,n. Again,

h2
t=101 is estimated through (3.13), given that rt=100,N is observed now.

Then, the constant variance of the increments is calculated in order to ob-
tain the increments. The procedure is repeated recursively till t = 1099,
such that we obtain a sequence of 1000 daily returns, whose conditional
variance is described in (3.13) and whose intraday increments are ob-
served. More specifically, we set a number of intraday increments N
equal to 390 and a number of replicates R equal to 200. Because the
standard daily trading period is 6 hours and 30 minutes, we have set-
ted a number of increments exactly equal to 390 in order to have one
increment for each minute. Once obtained the sequence of increments,
the stationary bootstrap, as illustrated above, is used to have V̂ aRt, for
t = 100, · · · , 1099 and R = 1, · · · , 200. Finally, the thresholds for each
loss function and each replicate are obtained.

The set of competing models are showed in Table 3.1. We consider
a RiskMetrics, three GARCH(1,1) and three GJR-GARCH(1,1) models,
all misspecified. These three models have been described in Chapter 1.
Note that the true α1 and β1 parameters in (3.13) sum to 0.95, like all the
parameters of the models M2-M7. But if M2 and M3 exhibit small devi-
ation from the true DGP, M4 presents a higher distance from it. Instead,
the three GJR models will be biased at time t whenever rt−1 > 0. If M5
has a slight bias, M6 and M7 have a larger bias.
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Table 3.1 – The configuration of the models used in the simulation

M1 M2 M3 M4 M5 M6 M7

Model RM G(1,1) G(1,1) G(1,1) GJR(1,1) GJR(1,1) GJR(1,1)
α1 - 0.07 0.05 0.25 0.05 0.01 0.15
β1 - 0.88 0.90 0.70 0.88 0.90 0.70
γ - - - - 0.02 0.04 0.10

Notes: RM stands for RiskMetrics, G(1,1) stands for GARCH(1,1) and GJR(1,1)

stands for GJR-GARCH(1,1). For the RiskMetrics model, λ = 0.94. Models M2-

M7 have all the constant α0 = 0.01.

The evaluation of volatility performances is made in a pure-in-sample
perspective. For all the sample period, the conditional variances and then
the VaR measures are obtained and the performances of the models are
evaluated by using a statistical and an economic approaches and the loss
function approach in a VaR framework. With reference to the statistical
approach, the MSE is used. Note that the MSE is a robust loss function,
as discussed in Chapter 2. For model i, the MSE is equal to E[h2

t − ĥ2
t,i]

2,
where h2

t comes from (3.13) and ĥ2
t,i from the formulation of the condi-

tional variance as expressed by the model i. Because we aim to compare
the MSE function within the Monte Carlo framework, the frequency at
which each model has the smallest MSE is calculated. As regards to the
economic approach, the Conditional Coverage (CC) test, illustrated in the
Chapter 2 at page 81, is reported. Recall that the null hypothesis of the
CC test jointly checks if the violations are independent distributed over
time and the actual number of violations are coherent with the expected
one. We calculate the frequency at which the CC test is not rejected. With
reference to the loss function approach in a VaR, we calculate the global
accuracy measure for each loss function. The results are showed in Table
3.2.
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Table 3.2 – The results of the volatility evaluation

M1 M2 M3 M4 M5 M6 M7

MSE 0.1050 0.2700 0.6250 0.0000 0.0000 0.0000 0.0000
CC test 0.8950 0.9550 0.8950 0.6050 0.8600 0.6550 0.2750
AMM 0.3883 0.4567 0.5767 0.3667 0.3900 0.3800 0.3400
AMA 0.3917 0.4533 0.5833 0.3700 0.3867 0.3800 0.3367

Notes: The first row shows the frequency at which the MSE is the smallest for each

model. The second row shows the frequency at which the Conditional Coverage test

is not rejected. The third and fourth rows show the global accuracy measures for the

Magnitude and Asymmetric loss functions, respectively.

In the table it is clear that the statistical approach does not prefer any
GJR models. Instead, it awards about 63% of times the model 3. The CC
test does not bring any advantage to the analysis, given that four models
are awarded: the models 1-3 and the model 5 reach the highest percent-
ages of not rejections of the Conditional Coverage test. Interestingly, the
loss function approach in a VaR framework awards model 3. This means
that M3 has a same behaviour compared to the that of the DGP (first ac-
curacy measure), its numerical scores are below the thresholds (second
accuracy measure) and its numerical scores are the smallest among all
the models (third accuracy measure). Moreover, the global accuracy mea-
sure when the asymmetric loss function is used reaches a slightly greater
value than that of Magnitude loss function (0.5833 against 0.5767). In
situations where more than one model have the same performance, this
could be an advantage.

To conclude this section, we argue that the using of loss function in a
VaR framework helps the research of the best model, when the economic
approach does not lead to a clear decision. The results of this approach
are consistent with those obtained from a robust statistical loss function.
This opens the door to apply this method in an empirical analysis, as done
in the next section.
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3.5 Empirical Analysis

In this section we aim at investigating the use of the loss function in
a VaR framework for the situations in which the traditional tests do not
clearly identify the best model. Differently from the previous section, we
use empirical data and the forecasting scheme is now updating by means
of a rolling window, in a pure out-of-sample perspective. Because here
there are not a set of replicates, the construction of the threshold is carried
out only twice, once for each loss function. Once the threshold has been
obtained when the V̂ aRt is used, each model is evaluated simply looking
at its exceeding of the threshold. Moreover, we study the ratio between
the numerical score deriving from the usage of V̂ aRt and the numerical
score as produced by the volatility model. As in the Monte Carlo simula-
tion, the MSE and the CC test are provided.

The data we use here have been already presented in Chapter 1. The
dataset consists of the one-minute trade prices of the Capital One Fi-
nancial Corporation (COF) stock. In this chapter, we only use the first
sub-sample. In particular, from the whole sample the first 250 days have
been excluded to initialize the algorithms such that the sample used for
the analysis consists of 1445 days. This period starts on April 3, 1998
and ends on December 31, 2003. Figure 3.1 shows the realized volatility,
expressed in percentage terms, obtained sampling the prices at 5 minutes.
It can be seen that the considered periods grasps the peak of the Dot-com
boom (March 2000), the burst and the its consequences. The highest peak
of volatility is registered on October 7, 1998. Other peaks of volatility are
registered on March, 2000 (burst of the speculative bubble), September,
2001 (attack to the twin towers) and July, 2002 (bankruptcy of World-
Com).

The set of competing models are illustrated in Table 3.3. The models
are the same of those used in the Monte Carlo simulation but this time the
parameters are estimated recursively by a rolling window of width 250.
In order to make quicker the estimation, it has been considered a re-fitting
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Figure 3.1 – COF realized volatility

period of 5 days. In total, there have been produced 1445 forecasts and
289 re-fitting periods. The different distributions specified for models
2-7 allow to take into account the stylized facts cited in Chapter 1. For
instance, even though it has not been reported, the Normality test3 on the
daily returns strongly rejects the null hypothesis.

Table 3.3 – The configuration of the models used in the empirical part

M1 M2 M3 M4 M5 M6 M7

Model RM G(1,1) G(1,1) G(1,1) GJR(1,1) GJR(1,1) GJR(1,1)
zt ∼ - N (0, 1) t(v) sk − t(v, ξ) N (0, 1) t(v) sk − t(v, ξ)

Notes: t(v) and sk− t(v, ξ) represent t and skewed-t distributions, respectively. v stands for the

degrees of freedom and ξ for the skewness parameter.

The results of the volatility evaluation are showed in Table 3.4. If
we only look at the MSE (statistical approach), the best model is M6,
even though it exhibits more violations than expected, that is almost 6%

3The Jarque and Bera (1980) test.
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against the 5%. The economic approach does not help at all, because the
CC test is always rejected: no model clearly emerges. And here the V̂ aR
and threshold come into the game. Rows 4-5 show the performances of
the models when the Magnitude loss function is used. Model 7 is rejected
because its numerical score lies above the threshold. Row 5 represents the
ratio between the numerical score of each model and the numerical score
when V̂ aR is used. The closer the ratio is to one, the better that model is,
given that it has on average the same behaviour of the data generating pro-
cess4, in terms of number of violations and distance between the daily re-
turns and the Value at Risk. And the Magnitude loss function awards M4.
Unfortunately, there are too many models below the threshold. The situ-
ation becomes clearer if the Asymmetric loss function is used, as showed
in rows 6-7. For this loss function, all the GJR models have numerical
scores above the threshold. The choice shrinks to models 1-4 and looking
at the ratio, also the Asymmetric loss function awards M4. Finally, we
argue that, for the period considered and our mixed approach, M4 is the
best model. This result does not represent a big surprise, because M4 is
a GARCH(1,1) with zt ∼ sk − t(v, ξ), distribution that is able to take
into account the possible negative skewness and fat tails of the data. The
innovation here is that in situations in which the statistical and economic
approaches do not bring any significant help to find the best model, the
loss function in a VaR framework does.

3.6 Conclusion

The evaluation of volatility forecasts by means of statistical or eco-
nomic approaches may lead to non-unique conclusions. For this reason,
the investigation of the opportunity to use a mixed approach considering
the VaR measures evaluated by means of the loss functions has been the

4Whatever the DGP is, bootstrapping the increments allows to have a consistent esti-
mator of the true Value at Risk.
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Table 3.4 – Forecasts comparison

M1 M2 M3 M4 M5 M6 M7

MSE 0.1411 0.1523 0.1464 0.1484 0.1346 0.1299 0.1351
α̂ 0.0484 0.0457 0.0533 0.0526 0.0567 0.0595 0.0630

CC test RH0 RH0 RH0 RH0 RH0 RH0 RH0

NSM < TRM Yes Yes Yes Yes Yes Yes No
NSM/NST,M 0.9224 0.8697 1.0145 1.0013 1.0802 1.1329 1.1986
NSA < TRA Yes Yes Yes Yes No No No
NSA/NST,A 0.9258 0.8724 1.0197 1.0061 1.0865 1.1409 1.2083

Notes: The MSE is multiplied by 1000. α̂ is the frequency of violations. CC test is the

conditional coverage test. NSM < TR is Yes if the numerical score of a model lies below

the threshold. NSM/NST,j is the ratio between the numerical score of a model and the

numerical score obtained with V̂ aR, for j = A,M if the loss function is the Magnitude

or the Asymmetric loss function.

aim of this chapter. In this framework, the loss function evaluates the dis-
tance between the daily return and the VaR measure. A new asymmetric
loss function, penalizing more the model with an actual number of vio-
lations larger than the expected ones, has been proposed. With reference
to the term violation, we intend the occurrence that the daily return is
greater than the VaR. Differently from the traditional methods normally
used for calculating the VaR measures (the mean-variance, the Monte
Carlo simulation and the Historical Simulation), the stationary bootstrap
of the intraday returns has been chosen to have a consistent estimator of
the VaR, in the spirit of Bowers and Heaton (2013). Then the VaR mea-
sures have been used to find the threshold discriminating low from high
loss function values. A Monte Carlo experiment and an analysis carried
out on a stock listed on the New York Stock Exchange have been the in-
struments in order to evaluate the possibility to use the loss function in a
VaR framework.

In the Monte Carlo experiment, seven misspecified models belonging
to the family of GARCH models have been evaluated from an in-sample
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perspective. The data generating process (DGP) has been a GARCH(1,1)
with Normal innovation. If the economic approach has not been able to
recognize the model closer to the DGP, the statistical approach as well as
the mixed approach have been capable of doing it. Based on the construc-
tion of a global accuracy measure, the loss function in a VaR framework
has correctly signalled the model closer to the DGP.

As regards to the analysis carried on a stock listed on the New York
Stock Exchange, the observed intraday returns have been used to esti-
mate the daily VaR measures. Then the thresholds have been obtained
and again the results of the statistical, economic and mixed approach have
been explored. For the period considered, the GARCH(1,1) model, with
innovations distributed as a skew-t distribution, has been awarded as the
best model by the statistical and mixed approach. To conclude, using
the loss functions in a VaR framework has been helpful in situations in
which the traditional approaches do not clearly determine the best model.
Moreover, the new Asymmetric loss function has appeared to have dis-
criminated better the good from the bad models.





4
A Comparison of the Forecasting Performances of

Multivariate Volatility Models

4.1 Introduction

In the previous chapter the evaluation of the forecasting performances
concerned the univariate framework and the mixed approach. Here we fo-
cus on the multivariate context, evaluating empirically a set of competing
models from a statistical and economic point of view. We aim to an-
swer to the following questions: are there significant differences between
the ranking of models using a statistical and economic loss function? If
we compare models belonging to the MGARCH family to models that
re-parametrize the realized covariance (like the CAW or the Rolling Co-
variance), do we always find that the latter forecast better?

The answers to these questions are given by a Monte Carlo exper-
iment. In particular, the data generating process we set is a trivariate
continuous-time stochastic process, where we assume that each instan-
taneous variance is the GARCH(1,1) diffusion as proposed by Andersen
and Bollerslev (1998).

The chapter is organised as follows. Section 4.2 illustrates the meth-
ods practically used to take into account the non-normality of the daily
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returns for the VaR estimation. Section 4.3 briefly overviews the volatility
models used in this work. The setting of the Monte Carlo experiment is in
Section 4.4 and the answers to our questions are in Section 4.5. Section
4.6 concludes.

4.2 Non-normality VaR estimations

To take into account the distribution of the portfolio returns, possi-
bly different from the Gaussianity, the VaR forecasts used in this chapter
are based on two different assumptions: the assumption of Normal distri-
bution and the assumption of skewed and leptokurtic distribution of the
returns. If the distribution of the returns is Normal, then fα in (2.20) is
replaced by the left α quantile of the standard Normal distribution. But,
if the returns exhibit skewness and severe kurtosis, as it has well docu-
mented in literature (for details, see Cont (2001)), then the VaR forecasts
based on the Normal distribution assumption could be misleading. In or-
der to explicitly consider the skewness and kurtosis of the returns, two
approaches giving different values to fα are used: the modified VaR ap-
proach and the skewed Student’s t distribution. The first is due to Favre
and Galeano (2002) that proposed an alternative version of the VaR quan-
tile, through the use of a Cornish Fisher expansion. This modified version
quantifies the α quantile as follows:

zcf = zc+[(z2
c−1)S]/6+[(z3

c−3zc)K]/24−[(2z3
c−5zc)S

2]/36, (4.1)

where zc is the α quantile of the Normal distribution, S and K are the
skewness and the excess kurtosis of the daily returns, respectively. Note
that if S = K = 0, as in the case of Normal distribution, then zcf = zc,
and the modified VaR collapses to the standard VaR.

The other approach considers the standardized skewed Student’s t
distribution (in short, sk − t). Following Bauwens and Laurent (2002),
assuming that the daily returns rt are as usual formalized with rt = htzt,
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where zt is an i.i.d. process with E(zt) = 0 and V ar(zt) = 1 and h2
t

representing the conditional variance, the excess of kurtosis and the skew-
ness can be accommodated by using the (standardized) skewed-t distribu-
tion for zt, formally zt ∼ sk − t(0, 1, ξ, v). The log transformation of ξ
measures the skewness: if log(ξ) > 0 the distribution is skew to the right
and vice versa. The parameter v represents the degrees of freedom. This
formalization is a generalization of the Student’s t distribution: if ξ = 1,
then sk−t collapses to a standard Student’s t distribution. Assuming that
the conditional variance h2

t could be modelized by an univariate GARCH,
such that h2

t = α0 + α1r
2
t + β1h

2
t−1, in the empirical part of this chapter

we derive the quantile at α% of the sk − t distribution, after having ob-
tained the unknown parameters ξ and v, by maximizing the following log
likelihood:

`t(θ) = log

(
2

ξ + 1
ξ

)
+ logΓ

(
v + 1

2

)
− 0.5π(v − 2)− logΓ

(v
2

)
+

log
s

ht
− 0.5(1 + v)log

[
1 +

(szt +m)2ξ−2Jt

v − 2

]
,

(4.2)

where θ = (ω, a, b, ξ, v), zt = rt/ht,

m =
Γ
(
v−1

2

)
(v − 2)0.5

π0.5Γ
(
v
2

) (
ξ − 1

ξ

)
,

s =

[(
ξ2 +

1

ξ2
− 1

)
−m2

]0.5

,

and

Jt =

{
1 if zt ≥ −m

s

−1 if zt < −m
s

.
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4.3 The models for the volatility

In this section we briefly mention the set of competing models used
in the Monte Carlo experiment, referring to the Chapter 1 for their discus-
sion. We consider 9 specifications for the conditional covariance matrix
that are frequently used in practice, that are: scalar, diagonal and full
BEKK (the scalar BEKK model used in this chapter is the version with
covariance targeting (Engle and Mezrich (1996)). Moreover, the DCC
(Engle (2002)) and GOGARCH (van der Weide (2002)) models are con-
sidered. The univariate GARCH specifications for the conditional vari-
ance used in DCC and GOGARCH models are the GARCH, the GJR
and the IGARCH formulations. These models have been chosen because
most of them had been used in the work of Laurent et al. (2013). Table
4.1 provides the functional form for Ht for each model.

- insert Table 4.1 about here -

There have been considered also two models that parametrize the re-
alized volatility. These models are the Rolling Covariance and the scalar
and diagonal CAW. The Rolling Covariance, discussed in Chapter 1 at
page 57, requires the estimation of only one parameter. This is done by
maximizing the log likelihood in (1.45). Recall that its formulation is
Ht = exp(−α)Ht−1 + αexp(−α)RCVt−1, where α is the parameter to
estimate. In this chapter three specifications of the Rolling Covariance
model are assessed. The first uses the realized covariance sampling the
prices at 5 minutes, the second sampling at 15 minutes and the third at 30
minutes. The scalar and diagonal CAW have been discussed in Chapter 1
at page 58. Here we use the formulation presented in that circumstance.

4.4 Monte Carlo experiment

In this section we illustrate the setting of the Monte Carlo experiment
through which we investigate the performance of the competing models
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with reference to the forecast accuracy, from a statistical and economic
point of view. For sake of simplicity, we consider a portfolio only com-
posed by three assets. Let pt denote the trivariate vector of the log prices
at time t, where t represents a day. As done in Chapter 1, we assume that
pt is driven by the following stochastic differential equation, where for
brevity the drift term is omitted:

dp(t) = Σ(t)dW(t). (4.3)

In (4.3), Σ(t) is the spot co-volatility and W t is the k−dimensional
Brownian motion, assumed to be orthogonal to Σ(t). The instantaneous
volatility is collected in Θ(t) = Σ(t)Σ(t)

′
, that in our case is:

Θ(t) =

 Θ11(t) Θ12(t) Θ13(t)

Θ21(t) Θ22(t) Θ23(t)

Θ31(t) Θ32(t) Θ33(t)

 =

 σ2
1(t) σ12(t) σ13(t)

σ21(t) σ2
2(t) σ23(t)

σ31(t) σ32(t) σ2
3(t)

 ,

where σij(t) = σi(t)σj(t)ρij(t), with i, j = 1, 2, 3 and i 6= j. The model
for σ2

i (t) is the GARCH(1,1) diffusion studied in Andersen and Boller-
slev (1998): dσ2

i (t) = (ω − θσ2
i (t))dt + λσ2

i (t)dbi(t), where bi(t) is
a standard Brownian motion independent of W(t). Following Dovonon
et al. (2010), we set ω = 0.636, θ = 0.035 and λ = 0.236 for each i, that
differs from each other for the initial point. Then, we set the instantaneous
correlation ρij = (e2x(t) − 1)/(e2x(t) + 1), where x follows the GARCH
diffusion: dx(t) = (0.0192 − 0.03x(t))dt + 0.018x(t)db1(t), where b1
is a standard Brownian motion. To make different the three instantaneous
correlations, we divide each of them by a random number sampled from
an Uniform distribution. The solution for all the stochastic differential
equations has been obtained by an Euler discretization method, based on
a equally spaced time increments. If these time increments are small, then
we can approximate ti− ti−1 with dt. We have chosen a time increments
of 0.0001. For details on the stochastic differential equation solutions
and Euler discretization scheme, see Iacus (2008). In this framework, the
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trivariate vector pt has been simulated 500 times for a period of two years
(730 days). From the continuous time process (4.3) we drawn 288 obser-
vations per day, i.e. one observation each 5 minutes, for a total of 210,528
simulated observations (for each replicate). The forecasting sample, that
is the period used to evaluate the forecast accuracy of the models, is of
one year, in a pure in-sample perspective.

In this context, we have simulated three high-frequency prices fol-
lowing a data generating process with GARCH diffusion as variances
and with time-varying instantaneous correlations. In our idea each sim-
ulated price should approximate that of an actual stock. For this reason,
we do not consider all the simulated prices (288 per day) but only a sub-
set, consisting of 78 observations at most per day. This is because we
aim to approximate the prices’ behaviour only during the standard trad-
ing day1. Then, we use these high-frequency data to obtain the volatility
proxy (RCVt) for different level of price aggregation. In other words,
the volatility models are evaluated with respect to the RCV when its
quality deteriorates: from 5 minutes (highest quality) to daily sampling
frequency. All the simulations have been carried out using R 2.15.3.

4.5 Comparison of the multivariate forecasts

In the first part of this section, the results of the evaluation of the
volatility forecasts by means of the statistical approach are showed. The
loss functions used here have been illustrated in Table 2.2. We refer to
page 74 for their description. Recall that the research questions are: (i)
Is the ranking of the models the same if we use a statistical or an eco-
nomic loss functions? (ii) Do the MGARCH models have a worse fore-
cast accuracy than that of the rolling Covariance and CAW models? The
answers to the questions are given by using the simulated data presented

1The trading day is the time span that a particular Stock Exchange is open. The time
span is usually from 9:30 a.m. to 4:00 p.m., for a total of 390 minutes.
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above, needed to have 500 replicates of the conditional covariance ma-
trix, denoted as Ht,i for the i− th model (summarized in Table 4.1, with
i = 1, · · · , 14) and the 500 replicates of the volatility proxy, that is the
realized covariance, for t = 1, · · · , 730. The forecasting sample is of one
year, in a pure in-sample perspective: all conditional covariance matrices
are computed for the whole period and the last year has been used for the
statistical and economic loss evaluation.

Let us start with the rankings produced by the statistical loss func-
tions. The evaluation is performed with respect to the deterioration of
the volatility proxy, obtained sampling the intraday returns at lower fre-
quencies. It is well known that, in absence of micro-structure frictions,
the higher the frequency is, the better the proxy is (Bandi and Russell
(2004)). For instance, using the data at 30 minutes will produce a real-
ized covariance less noisy than using the data at 300 minutes. Having
simulated the data by ourselves, we do not take in consideration the prob-
lem of the micro-structure frictions.

Symmetric loss functions

The results of the symmetric loss functions are summarized in Tables
4.2 and 4.3. Here the loss functions are the Euclidean distance and the
squared weighted Euclidean distance. The former considers the distance
between each element of the volatility proxy matrix and Ht,i while the
latter considers only the diagonal elements, excluding the covariance en-
tries. We do not find any significant difference between the two loss func-
tions: the ranking of the models is almost the same. This is coherent with
the literature that states the larger importance of variances with respect
to the covariances. For the Euclidean distance loss function, it results
that when the volatility proxy is computed with the 5 minutes sampling
frequency, the scalar CAW ranks first about 54% of the times and the
Rolling Covariance sampled at 5 minutes 41%. When the quality of the
proxy deteriorates, first the Rolling Covariance at 5 minutes and then at
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30 minutes emerge.

- insert Table 4.2 about here -

The same ranking (with different frequencies) can be observed for the
squared weighted Euclidean distance. Recall that this loss function does
not consider the covariance terms. We argue that, as stated in literature,
the covariances do not bring a significant advantage with respect to the
ranking produced by the loss function considering all the entries of the
covariance matrix. For instance, the scalar CAW ranks first about 46% of
the times, a sensible lower percentage with respect to that of Euclidean
distance loss function.

- insert Table 4.3 about here -

Asymmetric loss functions

The frequencies at which each model is ranked first when the asym-
metric loss functions are used are presented in Tables 4.4 and 4.5. In
the first table the results for the penalizing over predictions Mahalanobis
distance are reported, while in second there are those of the penalizing
under predictions loss function. For the former loss function, the Rolling
Covariance at 30 minutes ranks first when the sampling frequency drops
from 10 minutes to 390 minutes (i.e. the daily frequency). Only when
the volatility proxy is computed with 5 minutes frequency, the Rolling
Covariance at 15 minutes ranks first about 50% of the times. We can
state that the Rolling Covariance model seldom produces forecasts larger
than the volatility proxy. This is an important result in a portfolio man-
agement optical. Not surprisingly, when the under prediction version of
the Mahalanobis distance is used, the ranking of the model has different
patterns. For a good quality of the realized covariance, the best model
is the scalar CAW: when the realized covariance is obtained by using 5
minutes frequency, this model ranks first about 32% of the cases. Then,
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a multivariate GARCH model, for the first time, emerges: the iGOGA-
RCH, that is the closest to the volatility proxy 25% of the times, for the
realized covariance at 20 minutes. Finally, as seen also for the other loss
functions, the Rolling Covariance at 30 minutes, when the quality of the
proxy is low, always ranks first.

- insert Tables 4.4 and 4.5 about here -

To sum up, when the statistical loss functions are used, the results
award the models that directly use the realized covariance, as expected,
excluding the too-parametrized diagonal CAW, which rarely ranks first.
We can state that the statistical loss functions reward the model with less
parameters to estimate, given that the Rolling Covariance and the scalar
CAW have only one unknown parameter. Moreover, the frequently used
multivariate GARCH models never rank first, except for the iGOGARCH
model when used in some circumstances. After having reported the re-
sults of the statistical loss function, the next step is to check if the same
ranking is obtained when the economic loss functions are used.

Economic approach

The Christoffersen test is the method used to indirectly rank the set
of forecasting models within the economic approach. The sample period
used for such evaluation is of one year, as done for the statistical evalua-
tion. The solution for applying the CC test in the multivariate framework
is to assign equal weights to the stocks in order to transform the multivari-
ate problem in an univariate one. Once obtained the conditional portfolio
returns and variance, the VaR measures are estimated. These are calcu-
lated by means of the mean-variance approach, even though they could
be obtained by the bootstrap procedure discussed in the previous chapter.
In the spirit of Bauwens and Laurent (2002), we assign 3 different vectors
of constant weights to the daily returns and daily conditional covariance
matrix Hm,t, in order to obtain the portfolio mean and variance:
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w1 = (1/3, 1/3, 1/3), w2 = (0.5, 0.2, 0.3) and w3 = (1.4,−0.2,−0.2).

The Christoffersen test for all the models, with the one day ahead VaR
for α = 0.05 and the quantile for the long position obtained by means
of the normal distribution, the Cornish Fisher expansion and the skewed
Student’s t distribution is reported in Table 4.6.

- insert Table 4.6 about here -

Looking at the table, the smaller the frequency is, the better that
model is, because each frequency indicates how many times the test has
been rejected over the 500 replicates. First of all, we note the differences
between the frequencies when the VaR is computed with the normal dis-
tribution or the Cornish Fisher expansion and the frequencies when the
VaR is computed with the skewed Student’s t distribution. These latter
are smaller even though we do not work with real financial data that suf-
fer from the kurtosis excess and skewness. Secondly, the rejections of
the Christoffersen test are not only few but are also similar in the num-
ber among the models: when using the scalar CAW, the vector weightsw1

and the normal distribution, these rejections are about 6% (smallest value)
against about 10% of the worse model, that is the DCC. Using the weights
w1, the best model is the GJR-GOGARCH, for all the specifications of
the quantile. Instead, using the weightsw3, the best models are the diago-
nal CAW and Rolling Covariance. We can state that there is not too much
correspondence between the ranking of the statistical loss functions and
that of the economic loss function. In fact, the GJR-GOGARCH model
and the diagonal CAW never rank first when the statistical loss functions
are used. Instead now these models yield to best economic performances.
The issue is worth further consideration. Our idea is to look at the aver-
age of the VaR violations among the models, where for average we refer
to the average number of VaR violations for all the replicates. Intuitively,
for each replicate, we should have a value close to 0.05. The aim of tak-
ing the averages among all the replications is to approximate the whole
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behaviour of the model, independently of the each single replicate. The
averages of the VaR violations for all the replicates are reported in Table
4.7.

- insert Table 4.7 about here -

The highest average of VaR violations is of the GOGARCH model,
for all the univariate specifications. Excluding the GOGARCH model, all
the averages are closer to the expected values 0.05. Combining this infor-
mation with those furnished in Table 4.6, we can state that when the eco-
nomic loss function is used alone there is no model that clearly emerges
as the “best” model. This is because neither changing the weights nor
the distributional function for the returns, we find the same ranking of
the statistical function. In this sense, the economic function used here
yields results that diverge from those of the statistical loss function. As
already seen in the previous chapter, the analysis of the volatility mod-
els exclusively based on the economic approach could lead to misleading
conclusions.

4.6 Conclusion

The research questions of this chapter have been: (i) what about the
differences between the ranking of a set of competing multivariate mod-
els when a statistical and economic approaches are used? (ii) Is the fore-
cast accuracy of the MGARCH models similar to that of the models that
directly use the realized covariance? The answers have been obtained
by using a Monte Carlo experiment replicating 500 times a trivariate
continuous-time stochastic process. Hence, fourteen models have been
compared from a statistical and economic point of view, using a fore-
casting sample of one year. The forecasts have been only made from an
in-sample perspective. The statistical loss functions taken in considera-
tion in this chapter have been: (i) the matrix version of the Mean Squared



126 Chapter 4

Error function, named Euclidean distance; (ii) the squared weighted Eu-
clidean distance, considering as input only the variances; (iii) the Ma-
halanobis distance penalizing the over predictions; (iv) the Mahalanobis
distance penalizing the under predictions. The economic loss function
has used the Value at risk methodology. In particular the results of the
Christoffersen test have been studied. The Christoffersen jointly tests if
the number of violations are coherent with the expected number of vio-
lations and if the violations are not clustered in time (i.e. independence
hypothesis). Given the VaR is sensible to the underlying assumption on
the distribution of returns, three methods to calculate the VaR have been
employed: the standard method considering the Normal distribution of
the returns, the Corner Fisher expansion and the skewed Student’s t dis-
tribution.

The answers to the research questions have been: first, a clear cor-
respondence between the rankings resulting from the statistical and eco-
nomic loss functions has not appeared. A portfolio manager that had
only used economic criteria for his decision would have preferred models
not exactly closer to the volatility proxy. The statistical based ranking,
when the volatility proxy is good, in the sense that it is based on high fre-
quency, has awarded the scalar CAW and the rolling Covariance models,
for the symmetric and asymmetric loss functions, respectively. When the
quality of the proxy deteriorates, meaning that the realized covariance is
computed using low frequencies, up to the use of daily returns, the sta-
tistical approach has always ranked first the rolling Covariance model.
Instead the economic loss function methodology used here has resulted
to be very sensible to the choice of the distribution and the weights such
that no model clearly has emerged. Second, looking at the statistical loss
function, the MGARCH models have yielded worse forecast accuracy
than that of the realized covariance based models, if these latter are par-
simonious. Moreover, the impact of the covariances for the rankings has
seemed to be irrelevant, given the ranking based only on variances has
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been the same of the ranking based on both variances and covariances.
Finally, if a portfolio manager is interested in studying the models such
that the over predictions are rare, the Rolling Covariance at 30 minutes
has resulted to be the best model when the negative forecast errors are
more penalized. A negative forecast error is present when the forecasted
value is larger than the correspondent value of the volatility proxy.

Appendix
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Table 4.1 – Forecasting models functional forms

Model Multivariate GARCH models Parameters

sBEKK(1,1) Ht = (1−A−B)∗H +Art−1r′t−1A+GHt−1G 2

dBEKK(1,1) Ht = CC
′
+Art−1r′t−1A+GHt−1G k(k − 1)+

2k

BEKK(1,1) Ht = CC
′
+Art−1r′t−1A

′
+GHt−1G

′
5(5k + 1)/2

DCC(1,1) Ht = DtRtDt 2 + k+

Rt = diag(q
−1/2
11,t , · · · , q

−1/2
kk,t )Qtdiag(q

−1/2
11,t , · · · , q

−1/2
kk,t ) univ

Dt = diag(h
1/2
11,t, · · · , h

1/2
kk,t)

ut = D−1
t rt

Qt = (1− α− β)Q+ αutu
′
t + βQt−1

GOG(1,1) V −1/2rt = Lft k(k − 1)/2+

Ht = V −1/2LZtLV
−1/2 univ

Zt = diag(σ2
f1t
, · · · , σ2

fkt
)

L = PΛ1/2U , U =
∏
i<j Ri,j(δi,j), −π ≤ δi,j ≤ π

Univariate GARCH models in Dt and Zt (l = 1, · · · , k)

GARCH(1,1) h2
l,t = αl,0 + αl,1r

2
l,t−1 + βl,1h

2
l,t−1 3k

GJR(1,1) h2
l,t = αl,0 + (αl,1 + γlI(rl,t−1<0))(r

2
l,t−1) + βl,1h

2
l,t−1 4k

I(rl,t−1<0) = 1 if rl,t−1 < 0

IGARCH(1,1) h2
l,t = αl,0 + αl,1r

2
l,t−1 + βl,1h

2
l,t−1 3k

αl,1 + βl,1 = 1, ∀l

Model Realized Covariance based models Parameters

Rolling Cov. Ht = exp(−α)Ht−1 + αexp(−α)RCVt−1 1

sCAW Ht = (1− a2 − b2) ∗RCV + a2RCVt + b2Ht−1 2

dCAW Ht = RCV −ARCV A′ −BRCV B′+ 2k

ARCVtA
′
+BHt−1B

′

Notes: sBEKK: scalar BEKK; dBEKK: diagonal BEKK; GOG: GOGARCH; Rolling
Cov.: Rolling Covariance; sCAW: scalar CAW; dCAW: diagonal CAW.
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Conclusion

In the Introduction four research questions have been proposed. In
Chapter 3 the answers to the first two questions have been given while
the last two questions have been answered in Chapter 4. In this chapter
we summarize each answer. Afterwards, some suggestions for future re-
searches are proposed.

The first research question has been: “Is it possible to use the loss
function in a VaR framework in order to evaluate the volatility predic-
tions of a set of competing models? Does this approach bring an ad-
vantage when the statistical and the economic approaches fail to recog-
nize the best model?”. The answers have been positive to both the two
sub-questions. It frequently happens that the economic approach used
to evaluate the volatility prediction fails to recognize the best model. In
such circumstance, the merged approach considering the loss function in
a VaR framework, has represented a valid help. Moreover, this approach
is based on a VaR estimator, as proposed by Bowers and Heaton (2013),
that is completely data-driven: it does not depend on any pre-assumed
distributional form of the daily returns. In addition, we have proposed
an asymmetric loss function evaluating the daily returns to the VaR mea-
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sures. The term asymmetric means that models with a greater number of
violations than the expected one are more penalized. It has emerged that
the asymmetric loss function is able to slightly discriminate better the
volatility models than the Magnitude loss function, proposed by Lopez
(1998).

The second research question was: “Is it possible to find a threshold
that discriminates low from high loss function values in order to evalu-
ate the performances of the volatility models?”. Again, the answer has
been positive: the knowledge of a threshold, based on the VaR estimator
discussed previously, has helped the discrimination of the models when
these are evaluated by the loss functions in a VaR framework. The con-
struction of the threshold as well as the VaR estimator have been based
on the stationary bootstrap of Politis and Romano (1994).

The third and the fourth research questions have concerned the mul-
tivariate context. The third has been: “Is the ranking of the competing
models the same if a statistical and an economic loss functions are used?”.
The answer has been negative, as showed in Chapter 4. If the economic
loss function methodology is highly sensible to the distribution of the
returns such that no model has clearly emerged, the statistical loss func-
tion has awarded the models re-parametrizing the realized volatility, as
expected. More specifically, for both the symmetric and the asymmet-
ric statistical loss functions the scalar CAW and the Rolling Covariance
models have emerged, when the volatility proxy quality is high. When the
quality of the volatility proxy decreases, the statistical loss function has
always rewarded the Rolling Covariance. This means that in the Monte
Carlo simulation used to compare fourteen models, the models based on
the multivariate GARCH models have never ranked first. And this an-
swers also the fourth research question: “Do the multivariate GARCH
models have a worse forecast accuracy than that of the models that use
the realized volatility to forecast ĥ?”. Interestingly, the covariances in the
evaluation of the forecast accuracy has seemed to have low importance.



Conclusion 137

The ranking given by the loss function using only the variances has been
the same of the ranking given by the loss function using both variances
and covariances.

For future research, many questions remain open. First of all, it would
be interesting to check if the set of models that are below the threshold co-
incides with the set of models within the Model Confidence Set of Hansen
et al. (2011). Then, the set of economic loss functions could be broad-
ened. A natural choice could be using the Dynamic Quantile (DQ) test,
proposed by Engle and Manganelli (2004), that verifies if the probability
of getting a VaR violation at time t + 1 is independent of any variable
observed at time t. An observed variable could be the contemporaneous
or lagged VaR estimate of the model that uses the realized covariance at
different sampling frequencies, instead of the conditional covariance ma-
trix resulting from a multivariate GARCH model, in order to have a direct
link between the statistical loss function and the economic loss function.
Moreover, what could be further explored are the reasons of the different
ranking between statistical and loss functions.
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