
UNIVERSITÀ DEGLI STUDI DI SALERNO

Dipartimento di Informatica

Dottorato di Ricerca in Informatica
XII Ciclo - Nuova Serie

Tesi di Dottorato in

New Methods, Techniques and
Applications for Sketch Recognition

Mattia De Rosa

Ph.D. Program Chair Supervisors
Prof. Giuseppe Persiano Prof. Gennaro Costagliola

Dott. Vittorio Fuccella

Anno accademico 2013/2014

Alla mia famiglia

Abstract

The use of diagrams is common in various disciplines. Typical examples

include maps, line graphs, bar charts, engineering blueprints, architects’

sketches, hand drawn schematics, etc.. In general, diagrams can be created

either by using pen and paper, or by using specific computer programs. These

programs provide functions to facilitate the creation of the diagram, such as

copy-and-paste, but the classic WIMP interfaces they use are unnatural when

compared to pen and paper. Indeed, it is not rare that a designer prefers

to use pen and paper at the beginning of the design, and then transfer the

diagram to the computer later.

To avoid this double step, a solution is to allow users to sketch directly on

the computer. This requires both specific hardware and sketch recognition

based software. As regards hardware, many pen/touch based devices such as

tablets, smartphones, interactive boards and tables, etc. are available today,

also at reasonable costs. Sketch recognition is needed when the sketch must

be processed and not considered as a simple image and it is crucial to the

success of this new modality of interaction. It is a difficult problem due to the

inherent imprecision and ambiguity of a freehand drawing and to the many

domains of applications. The aim of this thesis is to propose new methods

and applications regarding the sketch recognition. The presentation of the

results is divided into several contributions, facing problems such as corner

detection, sketched symbol recognition and autocompletion, graphical context

detection, sketched Euler diagram interpretation.

The first contribution regards the problem of detecting the corners present

in a stroke. Corner detection is often performed during preprocessing to

segment a stroke in single simple geometric primitives such as lines or curves.

i

ABSTRACT ii

The corner recognizer proposed in this thesis, RankFrag, is inspired by the

method proposed by Ouyang and Davis in 2011 and improves the accuracy

percentages compared to other methods recently proposed in the literature.

The second contribution is a new method to recognize multi-stroke hand

drawn symbols, which is invariant with respect to scaling and supports symbol

recognition independently from the number and order of strokes. The method

is an adaptation of the algorithm proposed by Belongie et al. in 2002 to the

case of sketched images. This is achieved by using stroke related information.

The method has been evaluated on a set of more than 100 symbols from

the Military Course of Action domain and the results show that the new

recognizer outperforms the original one.

The third contribution is a new method for recognizing multi-stroke par-

tially hand drawn symbols which is invariant with respect to scale, and

supports symbol recognition independently from the number and order of

strokes. The recognition technique is based on subgraph isomorphism and

exploits a novel spatial descriptor, based on polar histograms, to represent

relations between two stroke primitives. The tests show that the approach

gives a satisfactory recognition rate with partially drawn symbols, also with

a very low level of drawing completion, and outperforms the existing ap-

proaches proposed in the literature. Furthermore, as an application, a system

presenting a user interface to draw symbols and implementing the proposed

autocompletion approach has been developed. Moreover a user study aimed

at evaluating the human performance in hand drawn symbol autocompletion

has been presented. Using the set of symbols from the Military Course of

Action domain, the user study evaluates the conditions under which the

users are willing to exploit the autocompletion functionality and those under

which they can use it efficiently. The results show that the autocompletion

functionality can be used in a profitable way, with a drawing time saving of

about 18%.

The fourth contribution regards the detection of the graphical context of

hand drawn symbols, and in particular, the development of an approach for

identifying attachment areas on sketched symbols. In the field of syntactic

recognition of hand drawn visual languages, the recognition of the relations

ABSTRACT iii

among graphical symbols is one of the first important tasks to be accomplished

and is usually reduced to recognize the attachment areas of each symbol and

the relations among them. The approach is independent from the method used

to recognize symbols and assumes that the symbol has already been recognized.

The approach is evaluated through a user study aimed at comparing the

attachment areas detected by the system to those devised by the users. The

results show that the system can identify attachment areas with a reasonable

accuracy.

The last contribution is EulerSketch, an interactive system for the sketching

and interpretation of Euler diagrams (EDs). The interpretation of a hand

drawn ED produces two types of text encodings of the ED topology called

static code and ordered Gauss paragraph (OGP) code, and a further encoding

of its regions. Given the topology of an ED expressed through static or OGP

code, EulerSketch automatically generates a new topologically equivalent ED

in its graphical representation.

Acknowledgement

I would like to thank my advisor Gennaro Costagliola and Vittorio Fuccella,

who coauthored most of the papers related to this thesis, for the profitable

discussions that contributed to my research work and for the suggestions

and help they gave me during the preparation of this thesis. I also thank

Vittorio Fortino for the contribution on the development of RankFrag and

Paolo Bottoni, Andrew Fish and Rafiq Saleh, who have been co-authors for

recent research papers on Euler diagrams related to the results presented in

this thesis.

iv

Contents

Abstract i

Acknowledgement iv

Contents iv

1 Introduction 1

1.1 Key aspects of sketch recognition 3

1.2 Proposed work . 5

1.3 Outline . 8

2 Related Work 10

2.1 Corner detection . 10

2.2 Sketched symbol recognition 12

2.3 Autocompletion . 14

2.4 Attachment areas . 16

2.5 Euler diagram sketching . 17

3 RankFrag: a Novel Technique for Corner Detection in Hand

Drawn Sketches 18

3.1 The RankFrag technique . 19

3.1.1 Complexity . 23

3.1.2 Features . 24

3.1.3 Classification method 27

3.1.4 Implementation . 28

3.2 Evaluation . 28

v

CONTENTS vi

3.2.1 Model validation . 28

3.2.2 Accuracy metrics . 30

3.2.3 Data sets . 30

3.3 Results . 31

3.4 Concluding remarks . 32

4 Improving Shape Context Matching for the Recognition of

Sketched Symbols 34

4.1 Background: symbol recognition through shape context 35

4.1.1 Feature descriptor . 35

4.1.2 Matching . 37

4.2 The approach . 37

4.2.1 An example . 38

4.3 Evaluation . 39

4.4 Concluding remarks . 40

5 Recognition and Autocompletion of Partially Drawn Sym-

bols by Using Polar Histograms as Spatial Relation Descrip-

tors 41

5.1 Recognition of partially drawn symbols 43

5.1.1 Symbol pre-processing 43

5.1.2 PSR descriptor . 45

5.1.3 Symbol representation 46

5.1.4 Symbol matching . 47

5.2 An interactive system for the autocompletion of hand drawn

symbols . 58

5.2.1 Back-end . 59

5.3 Evaluation . 61

5.3.1 Data sets . 62

5.3.2 Performance of the recognizer 63

5.3.3 Performance of the PSR descriptor 67

5.3.4 Performance of the interactive system 69

5.4 Experimenting the autocompletion functionality with users . . 70

CONTENTS vii

5.4.1 Completion times . 71

5.4.2 Menu use . 73

5.4.3 Analysis by the number of primitives 73

5.4.4 Accuracy . 75

5.4.5 Comments from the participants 76

5.5 Concluding remarks . 76

6 Identifying Attachment Areas on Sketched Symbols 79

6.1 The approach . 80

6.1.1 Symbol representation 81

6.1.2 Point matching . 83

6.1.3 Area identification . 84

6.2 Evaluation . 85

6.2.1 Results . 87

6.3 Concluding remarks . 89

7 EulerSketch: a sketch system for Euler diagrams 91

7.1 Static code and ordered Gauss paragraph 92

7.2 User interface . 94

7.3 Back-end . 97

7.4 Concluding remarks . 98

8 Achievements and Future Research 99

A Data sets 102

A.1 IStraw . 103

A.2 NicIcon . 103

A.3 Composite . 103

A.4 COAD . 105

A.5 COAD2 . 106

Bibliography 108

Chapter 1

Introduction

The use of diagrams is common in various disciplines. The term can have

different meanings depending on the context, and in fact, there is no single

definition of diagram in the scientific literature. In general, a diagram can

be defined as a visual representation of some information and it is usually

two-dimensional and geometric. Under this definition, typical examples

of diagrams include maps, line graphs, bar charts, engineering blueprints,

architects’ sketches, hand drawn schematics, etc.. Diagrams are often used

to represent the information in a natural way. It is generally easier, faster

and more convenient to grasp the meaning of a visual representation than

the meaning of a textual representation. In some cases the use of diagrams is

practically inevitable, given that an equivalent textual representation would

be too long and complex (for example in the case of architectural plan, etc.).

The notion that a complex idea can be conveyed with just a single still image

is common knowledge, as in the adage “A picture is worth a thousand words”.

In general, diagrams can be created either by using pen and paper, or

by using specific computer programs. With the introduction of the mouse,

these programs have started to use the same paradigm, in which the use of

a palette allows to select and place individual elements of the diagram on a

canvas. These programs provide functions to facilitate the creation of the

diagram, such as copy-and-paste, automatic layout and much more. However,

the interfaces of these programs are still unnatural when compared to pen

1

CHAPTER 1. INTRODUCTION 2

and paper, and the way they work is often dictated by technical limitations

rather than by the needs of the users.

Indeed, it is not rare that a designer prefers to use pen and paper at

the beginning of the design, and then transfer the diagram to the computer

later when the idea has taken its almost final shape. For many people, pen

and paper are easier and faster to use, they are also more flexible (because

paper does not have an explicit interface) and promote increased creativity,

supporting also activities in which the vagueness of the result is an essential

feature. Also, informal sketching can be convenient in the context of group

work.

The effort necessary for the creation of informal sketches is typically much

lower than that for the creation of more precise, formal diagrams with mouse

and palette, even though it requires an additional effort for subsequently

transferring the sketches to the computer. To solve this drawback, one

possibility is therefore to allow users to sketch directly on the computer. In

this case, specific hardware for drawing is necessary, such as pen tablets and

touch screens. This hardware has become very popular in recent years in the

form of drawing boards, tablets and smartphones which allow the use of pens,

fingers, or both.

The use of these types of input devices enables a paradigm of communica-

tion with the computer completely different from that of the classical WIMP

(window, icon, menu, pointing device) user interfaces. Of course to better

exploit this new paradigm, dedicated software needs to be used.

This new paradigm allows to study the possibility of putting together

the best features of the two types of interaction: a very simple and natural

interface such as pen and paper, and the functions only possible with a

computer program such as copy and paste, multiple saves, etc. In this context,

the possibility arises to allow the user to draw a sketch directly on the

computer, and then, through a recognition operation, automatically convert

it into a more formal form, equivalent to that which can be produced with a

classical WIMP interface. This operation is realized through techniques of

sketch recognition, and marks the difference from a simple drawing program.

The use of sketch recognition techniques allows, among other things, to

CHAPTER 1. INTRODUCTION 3

provide additional functionalities in software systems, such as real time help,

more powerful editing, autocompletion, beautification, automatic layout (to

remove clutter and confusion), interpretation and translation of the sketch.

Sketching recognition is also used to resolve problems created by the re-

placement of paper and pen with WIMP systems. As an example, customers

(e.g. of an architect) may be reluctant to criticize drawings that look too

“finished”. Given that low-fidelity sketches do not have this problem, it is

possible to show them to the customers and then use sketch recognition capa-

bilities to produce the “finished” version of the drawing (without additional

work).

On the other hand, sketch recognition is a difficult problem due to the

inherent imprecision and ambiguity of a freehand drawing. Because of this,

the problem of sketch recognition is usually divided into multiple specific

“easier” problems. Often the methods used to solve these individual problems

are not tied exclusively to the sketch recognition and are also used in other

domains.

The next section will describe the main aspects of the sketch recognition,

while Section 1.2 will briefly describe the new methodologies proposed in this

thesis, which will then be discussed in detail in later chapters.

1.1 Key aspects of sketch recognition

This section discusses the general terms and definitions in the field of sketch

recognition.

A central element of sketching is the stroke. On a touch screen, a stroke

starts with the pressure of the pen (or finger) on the screen and ends when

the pen is raised. Technically, a stroke is a finite list of triples (x, y, t) (or

samples) where (x, y) are the pair of coordinates in which the pen was at the

time t. Is possible to extend this definition by adding the pressure applied on

the screen (if the hardware can detect it), therefore a stroke becomes a list of

quadruples (x, y, t, p). This value can be used to improve the accuracy of

the recognition process, or only to vary the thickness of the displayed stroke.

The main problem in a sketch recognition system is, as the name implies,

CHAPTER 1. INTRODUCTION 4

the recognition, or rather the recognition of the individual symbols that

compose a sketch starting from the individual strokes. A symbol can be

considered one of the basic blocks that constitute a sketch in a given domain.

Of course, in order to identify individual symbols, they must be included in

the definition of the given domain. Sometimes a drawing can also include

text to add additional information.

Sometimes the recognition is divided into two levels, low-level recognition

(or preprocessing) and high-level recognition. In this case the first step is

used to extract intermediate information from the strokes, while the second

uses this information to recognize the symbols.

As already pointed out, recognition is a difficult problem, both because

hand-drawing can be imprecise and ambiguous, and also because there is a

lot of variability in the drawing of different people and it is not uncommon to

see significant variations even by the same person.

After the identification of the individual symbols the next step is under-

standing the sketch as a whole. This phase depends greatly on the approach

and on the domain. For example, it is possible to analyze the relationships

between the different symbols in order to obtain meaningful information.

The various approaches for the recognition vary in the characteristics

required in the input. The simplest approaches require that each stroke

corresponds to a single symbol, thus simplifying the recognition. To remove

this requirement it is necessary to solve two types of problems (often associated

with the preprocessing): the clustering in which different strokes must be put

together to represent a symbol, and the segmentation in which a stroke must

be divided if it contributes to more than one symbol. In some cases, these

steps can be used to group/split individual strokes in order to get simple

geometric primitives (such as a line or a curve), instead of the whole symbol.

The first type of approach is called single-stroke, while the second multi-stroke.

Technically, when the recognition is performed from strokes, it is called

online, when it is performed from a raster image it is called off-line. In

addition, if the recognition can begin after (or even during) the input of each

stroke, it is called eager recognition, while if it begins after the drawing is

complete it is called lazy recognition. Eager recognition may be associated

CHAPTER 1. INTRODUCTION 5

with autocompletion and with the ability to provide immediate feedback

to the user, even before s/he has finished the drawing. In this case, the

recognition needs to be fast enough to allow a fluid interaction with the user.

As regards the design of sketch-based user interfaces, there is a need of

distinguishing drawing strokes from editing commands. For example, a user

interface may allow the deletion of a symbol by drawing a cross above it. This

introduces further ambiguity, as it becomes necessary to determine whether

a stroke is part of the input drawing or represents an editing command. To

avoid this ambiguity, it is possible to use approaches in which the user must

change the input mode depending on the operation that s/he intends to

perform (for example, by clicking on a softbutton “pen” to insert a stroke or

a softbutton “rubber” to erase). The latter approach is called “mode-based”,

while the former “mode-less”. Generally, modes are to be avoided, even

though they simplify recognition. For example, in the case of handwriting

input it is possible to use both approaches, but the mode-less writing adds

the difficulty of distinguishing between text and drawings, which is still an

open issue.

1.2 Proposed work

The aim of this thesis is to propose new methods and applications regarding

the sketch recognition by facing problems such as corner detection, sketched

symbol recognition and autocompletion, graphical context detection, sketched

euler diagram interpretation. The methodologies presented can be used as

intermediate steps in the broader problem of the recognition of an entire

diagram, and for this reason are logically linked to each other.

A first contribution regards the detection of the corners present in a stroke.

Corner detection is often performed during the phase of preprocessing to

segment a stroke into single simple geometric primitives such as lines or curves.

The so obtained segments can then be used as input for a sketch recognition

algorithm. The corner recognizer proposed in this thesis, RankFrag, is inspired

by the method proposed by Ouyang and Davis in [1] and improves the accuracy

percentages compared to other methods recently proposed in the literature.

CHAPTER 1. INTRODUCTION 6

The second contribution regards the recognition of multi-stroke hand

drawn symbols. Symbol recognition is one of the main “basic” issues in the

context of sketched diagram recognition. In fact, when an entire diagram is

to be recognized, it is usually necessary to proceed with the recognition of

the individual symbols composing it and of the connectors among them. The

proposed method is an adaptation of the image-based matching algorithm

by Belongie et al. [2]. As the original algorithm, the proposed solution is

invariant with respect to scaling and is independent from the number and

order of the drawn strokes. Furthermore, it has a better recognition accuracy

than the original one when applied to hand drawn symbols as resulting from

the evaluation of the method on a set of more than 100 symbols belonging

to the Military Course of Action domain. This is due to the exploitation of

information on stroke points, such as the temporal sequence and occurrence

information in a given stroke.

The third contribution regards the recognition of partially drawn symbols.

The proposed method is invariant with respect to scale and uses an Attributed

Relational Graph (ARG) [3] to represent symbols. Furthermore, the user can

draw a symbol with the desired number of strokes and in any order. The

method works with a single perfect template for each class, without the need

of a training phase to extract features or to select multiple templates. Being

based on subgraph matching, the recognition can be performed on partially

drawn symbols, i.e., when only a part of the primitives composing the symbol

is available. An innovation of the presented method is the use of a single spatial

descriptor to represent relations between symbol components. The descriptor

is an adaptation of the shape context [2] and its use makes the method free

from the identification of the type of the primitives and from the check of fuzzy

relations. The symbol matching is performed through an approximate graph

matching procedure which incrementally produces new results as soon as more

input strokes are available. Furthermore, a system presenting a user interface

to draw symbols and implementing the proposed autocompletion method

has been developed. Since autocompletion has proven to be an effective and

appreciated feature when considering text editing applications [4, 5, 6, 7] but

there are no evaluations of the performance of interfaces for autocompletion

CHAPTER 1. INTRODUCTION 7

of hand drawn symbols in the scientific literature, the system has been used

to test the hand drawn symbol autocompletion functionality from the point of

view of the benefits for the users. The user study has involved 14 participants

and has shown that the users can exploit the autocompletion functionality in

a profitable way, obtaining a faster input, with a time saving of about 18%

and an increased accuracy.

The fourth contribution regards graphical context detection, and in particu-

lar, the identification of the attachment areas on sketched symbols. According

to a largely accepted model in the visual language community the relations be-

tween the symbols of a diagram are geometrically defined through attachment

areas of the symbols. For example, an arc of a graph is entering a node if the

head of the arc is physically connected to the node boundary. Here, the rela-

tion entering between arc and node is defined on the attachment area head of

the arc and the attachment area boundary of the node. Attachment areas can

have different shapes and are generally related to the physical appearance of

the symbol. In WIMP-based systems, the attachment areas are automatically

reported by the system. In a sketched language, due to the impreciseness of

hand-drawing, actual attachment areas of symbols may be heavily deformed

[8]. The management of areas which are not delimited by the visible ink

of the drawn symbol can be even more difficult. The proposed approach is

independent from the domain of the symbols and from the method used to

recognize symbols and assumes that the symbol has already been recognized.

This also means that the ink drawn by the user to sketch the symbol has

already been separated from the other ink in the diagram. The approach

requires that the symbol and, more precisely, both its physical and logical

features, are defined in vector graphics. The identification of the attachment

areas is performed by establishing a mapping between sampled points of both

the sketched and the template symbol. The approach is evaluated through

a user study in which users are required to sketch symbols from different

domains and then to identify attachment areas on the drawn symbol.

Finally, the last contribution regards the development of EulerSketch, an

interactive system for the sketching and interpretation of Euler diagrams

(EDs). EDs are used for visualizing relationships between set-based data [9].

CHAPTER 1. INTRODUCTION 8

They consist of a set of curves representing sets and their relationships. EDs

are, as example, utilized in various information presentation applications as

a simple, yet effective means of representing and interacting with set-based

relationships. Given the simplicity of EDs, it was not necessary to use the

sketch recognition techniques proposed so far in EulerSketch. Nevertheless,

EulerSketch it is still an interesting prototype in that it shows a concrete

example of the possibilities given by the interpretation and translation of

sketches. In fact, EulerSketch allows to sketch Euler diagrams, and its main

feature is the possibility of transforming a drawn ED into two types of text

encodings of the ED topology called static code and ordered Gauss paragraph

(OGP). In addition to classic editing operations, such as delete and move,

the system allows the visualization of the static code and of the OGP of

the drawn diagram and the corresponding encoding of its regions. Moreover,

given the topology of an ED expressed through static code or OGP, it also

allows to automatically generate a new topologically equivalent ED in its

graphical representation. This functionality can be used both to display a

new diagram from an edited code and to generate alternative and equivalents

views of a sketched ED.

As mentioned at the beginning of this section, there are logical links

between the various proposed methods. The most important is the one

between RankFrag and the approach for the recognition of partially drawn

symbols. As a matter of fact, RankFrag is the corner detection algorithm

used for the segmentation of strokes as part of the preprocessing of the

autocompletion system. As regards the approach for identifying attachment

areas on sketched symbols, since it takes for granted the recognition of the

symbol, it is therefore possible to integrate it with one of the proposed

recognition methods.

1.3 Outline

In this thesis, each chapter is devoted to the contribution to a single area

of the sketch recognition. Chapter 2 describes the related works; Chapter 3

describes RankFrag, the method for corner recognition; Chapter 4 describes

CHAPTER 1. INTRODUCTION 9

the approach for the recognition of multi-stroke hand drawn symbols1; Chapter

5 describes the approach for the recognition of partially drawn symbols and the

evaluating the human performance in hand drawn symbol autocompletion2;

Chapter 6 describes the approach for identifying attachment areas on sketched

symbols3; Chapter 7 describes EulerSketch, the system for the sketching of

Euler diagrams4; Chapter 8 presents some final remarks and a brief discussion

on future works. Finally, Appendix A shows the data set used to test the

proposed methods.

1The content of Chapter 4 is based on the following peer-reviewed paper: [10]
2The content of Chapter 5 is based on the following peer-reviewed papers: [11], [12],

[13].
3The content of Chapter 6 is based on the following peer-reviewed paper: [14].
4The content of Chapter 7 is based on the following peer-reviewed papers: [15], [16].

Chapter 2

Related Work

This section describes the related work regarding the sketch recognition

aspects treated in this thesis, devoting a section to each of them.

2.1 Corner detection

Corner detection is a fundamental component in creating sketch recognizers.

Since corners represent the most noticeable discontinuity in the graphical

strokes, their detection is often used in the segmentation (or fragmentation)

of input strokes into primitives.

Important features for corner detection techniques include the high pre-

cision, the possibility to be performed in real time, and the capacity of

adaptation to user preferences, to user drawing style and to the particular

application domain. The adaptation to the domain can be achieved by using

techniques based on machine learning. Almost all of the most recent methods

use machine learning techniques, since they have also been shown to improve

accuracy.

The methods for corner detection evaluate some features on the points of

the stroke, after that these have possibly been resampled, e.g. at a uniform

distance. Curvature and speed are the features that have been used first. In

particular, the corners are identified by looking at maxima in the curvature

function or at minima in the speed function. Lately, methods based on

10

CHAPTER 2. RELATED WORK 11

machine learning have begun to consider a broader range of features.

One of the first methods proposed in the literature, [17], is based on the

analysis of the curvature through three different measures. The authors also

propose an advanced method for the determination of the “region of support”

for local features, which is the neighborhood of the point on which the features

are calculated. One of the first methods based on the simple detection of

speed minima is [18]. Given the inaccuracy of curvature and speed taken

individually, it was decided to evaluate them both in combination: [19] uses a

hybrid fit by combining the set of candidate vertexes derived from curvature

data with the candidate set from speed data.

A method introducing a feature different from curvature and speed is

ShortStraw [20]. It uses the straw of a point, which is the segment connecting

the endpoints of a window of points centered on the considered point. The

method gave good results in detecting corners in polylines by selecting the

points having a straw of length less than a certain threshold. Subsequently,

the method has been extended by Xiong and LaViola [21] to work also on

strokes containing curves.

One of the first methods to use machine learning for corner finding is the

one described in [1]. It is used to segment the shapes in diagrams of chemistry.

A very recent one is ClassySeg [22], which works with generic sets of strokes.

The method firstly detects candidate segment windows containing curvature

maxima and their neighboring points. Then, it uses a classifier trained on

17 different features computed for the points in each candidate window to

decide if it contains a corner point.

There are approaches of stroke segmentation who do not find corners, but

subdivide the stroke at specific points in order to produce desired primitives.

They may however be instantiated to search for corners. A recent method,

called DPFrag [23] learns primitive-level models from data, in order to adapt

fragmentation to specific data sets and to user preferences and sketching style.

SpeedSeg [24] and TCVD [25] are able to find both the corners and the

points where there is a significant change in curvature (referred to as “tangent

vertices” in [25]). In order to detect corners, the former method mainly relies

on pen speed while the latter uses a curvature measure.

CHAPTER 2. RELATED WORK 12

2.2 Sketched symbol recognition

In general, symbol recognition is a classification process in which the un-

known input symbol is compared to a set of templates in order to find the

best matching class. Most approaches require a time-consuming training

phase in order to correctly define the characteristics of each class of symbols.

Furthermore, the invariance of the recognition with respect to scale, stroke

number and order are desirable characteristics. The invariance with respect

to rotation and not uniform scale could also be required when necessary.

Even though in most cases methods proposed for image recognition can be

used [2, 26], several specialized methods for the recognition of sketchy images

have been proposed. The earliest recognizers were only able to recognize

unistroke symbols. In a pioneering work [27], a feature-based recognition

approach is proposed. In this approach a stroke is characterized by 13 features

including its length, size of the bounding box, average speed of the stylus,

etc. A statistical pattern matching is used to compare the unknown stroke

to those gathered in a training phase. Many unistroke symbol recognizers

(e.g. text entry applications [28]) use elastic matching [29], a common pattern

recognition-based approach to calculate a distance between two strokes. It

basically works by evaluating the distances between corresponding points

extracted from the two strokes. A recently proposed approach [30] has results

comparable to those obtained through elastic matching, but enables accurate

recognition with a few number of templates and can be easily implemented

on any platform without requiring the inclusion of external libraries.

As for multi-stroke symbol recognition, several specialized methods have

been recently proposed for multi-stroke hand drawn symbol recognition.

According to a widely accepted taxonomy [31, 32, 26] the methods are classified

into two main categories: structural and statistical.

In structural methods, the matching is performed by finding a corre-

spondence between the structures, such as graphs [3, 33, 34] or trees [32],

representing the input and the template symbols. The methods based on

graph matching usually represent symbols through Attributed Relational

Graphs (ARG). Such a representation gives a structural description of the

CHAPTER 2. RELATED WORK 13

symbol [3]: the nodes in the graph are associated to the primitives composing

the symbol, while the edges are associated to spatial relations between the

primitives. The relations are often based on the presence of conditions such

as intersections, parallelism, etc. Furthermore many approaches require the

identification of the type of the primitives (line, arc, ellipse, etc.) composing

the symbol. Due to the imprecise nature of sketchy symbols, the detection of

the above characteristics is far from being precise and tolerance thresholds

must be set, e.g., to distinguish a line from an arc or to check parallelism

etc. In most cases, the user strokes are pre-processed in order to smooth

them and to extract the sequence of primitives from them. Due to the high

computational complexity, approximate algorithms for structural matching

are often used, as the approximate graph matching algorithms presented in

[34].

Statistical methods offer the advantage of avoiding the complex pre-

processing phase in which the primitives are extracted. In most methods

[35, 36, 37] a given number of features are extracted from the pixels of the

unknown symbol and compared to those of the models. In particular, [35]

uses nine features and also solves the problems related to the partitioning of

the sketched elements (symbols, connectors, etc.), but requires the availability

of at least five training examples per class. The best match is chosen through

a statistical classifier. While techniques as Zernike moment descriptors [38]

enable a very natural drawing style and support the invariance with respect

to many types of transformations, tools as Hidden Markov Models (HMM)

[39] can only be used when a fixed stroke order is established.

Other recognizers exploit common classifiers in image-based matching. In

image-based techniques, the symbol is treated as a rasterized image. The

advantage of such an approach is its independence on stroke order and number.

E.g., in [40] the initial image is framed and down sampled into a 48 x 48 square

grid. The recognizer exploits common classifiers in image-based matching,

such as Hausdorff distance (and an ad-hoc defined variant of it), Tanimoto

and Yule coefficients. The distances obtained by different classifiers are then

combined together in order to obtain a unified measure. Following a 2-step

strategy common to other approaches, the recognition first identifies a subset

CHAPTER 2. RELATED WORK 14

of classes, and then recognizes an individual class out of that subset.

The shape context itself has already been brought in a sketch recognition

system [41] to represent parts of a symbol. Here, instead, a variation of it is

used to represent spatial relations between symbol primitives. The approach

presented in [42], called $P, is an extension to the recognition of multi-stroke

symbols of the $1 approach proposed in [30]. It preserves the minimalism of

its predecessor and relies on some of its unistroke recognition functionalities,

even though it treats the symbols as point clouds.

Symbol recognition can be a functionality of general-purpose frameworks

for sketch recognition [43, 44, 45]. SketchREAD [43] and AgentSketch [44]

exploit the knowledge about the domain context for disambiguating the

symbols recognized at a lower level. The former uses a structural description

of the domain symbols, through the LADDER language [46], as a combination

of lower level primitives meeting certain geometric constraints. AgentSketch

[44] exploits an agent-based system for interpreting the sketched symbols. In

[47] a stroke sequence of a symbol is firstly transformed into a string. The

comparison between symbols is then performed by calculating the Levensthein

distance between their corresponding strings. The characters of the string are

obtained by coding the directions of successive sampled points. This approach

is clearly dependent on stroke order. CALI [45] exploits a naive Bayesian

classifier to recognize geometric shapes. A statistical analysis of various

geometrical features of the shapes is performed, such as the convex hull, the

largest triangle and largest quadrilateral that can be inscribed within the hull,

the smallest area enclosing rectangle that can be fitted around the shape. In

[48] a graph-based algorithm for recognizing multi-stroke primitives in complex

diagrams is presented. The presented algorithm, based on Paleosketch, does

not require any special drawing constraint to the user.

2.3 Autocompletion

Another thing related to the sketch recognition is the autocompletion.

Autocompletion is a functionality which involves the program in outputting

the result desired by the user without the user actually entering the input data

CHAPTER 2. RELATED WORK 15

completely. It is commonly used with textual input and studies in the context

of text autocompletion have already been carried out. For instance, it has

proven effective or appreciated by the users in various text-based applications,

such as text entry on mobile devices [4], search engine interfaces (e.g. Google

Instant [5]), source code editors [6], database query tools [7], etc.

To achieve autocompletion of graphical symbols, it is necessary that the

recognizer is able to recognize partially drawn symbols. Only a few methods

[49, 32, 50, 51] have been introduced supporting this feature.

Only a few methods have been introduced which are able to assist the

user in the completion of multi-stroke hand drawn symbols. Some of them,

such as OctoPocus, [52], SimpleFlow [53] and GestureCommander [54], only

work for unistroke symbol completion: by exploiting different recognition

and feedback techniques, they provide the user with a visual feedback on

the recognition while the gesture is still being performed. Among those

working for multi-stroke symbols, a grammar-based technique is presented in

[51]. In adjacency grammars, as those used in [51], primitive types are the

terminal symbols and the productions describe the topology of the symbols.

Furthermore, a set of adjacency constraints (e.g. incident, adjacent, intersects,

parallel, perpendicular) define the relation between two primitives.

In particular, once a partial input has been processed, the parser is

able to propose to the user a set of final acceptance states (valid symbols)

that have as subshapes the current intermediate state. In [50] a Spatial

Relation Graph (SRG) and its partial matching method are proposed for

online composite graphics representation and recognition. The SRG structure

is a variation of ARG in which an edge connects two nodes only if a spatial

relation (interconnection, tangency, intersection, parallelism and concentricity)

is present between the primitives associated to the nodes. A Spatial Division

Tree (SDT) has been used in [32]. In this representation, a node in the tree

contains a set of strokes. Furthermore, intersection relations among strokes

are codified through links among nodes. The approach described in [49] is

based on clustering. In order to assign a (possibly partial) symbol to a cluster,

the set of features described in [36] is extracted from it. The features are

extracted on the partially drawn symbols used in the training data. Hence, the

CHAPTER 2. RELATED WORK 16

approach relies on the observation that people do tend to prefer certain stroke

drawing orderings over others. Other, domain-specific, systems supporting

symbol autocompletion have been described in literature. For instance, [55]

describes a system for the recognition of a set of 485 symbols from Course of

Action Diagrams [56], which also supports autocompletion.

The first three of the above cited methods show poor performance with

partially drawn symbols when only a few primitives are available. As a

consequence, they might not lend themselves well for the realization of an

interactive system for autocompletion. The one described in [49], instead,

is not completely invariant with respect to stroke order, but relies on users’

preferred order. Furthermore, the authors of the above researches do not

provide evidence that symbol autocompletion can lead to a real advantage in

terms of drawing time saving.

2.4 Attachment areas

Another thing related to the sketch recognition are the attachment areas.

Attachment areas are the areas on which relations between symbols (of a

visual language) can be defined. They are related to the physical appearance

of the symbol an and can have different shapes, like a single point or parts of

a symbol or an area defined by the symbol itself.

In sketch recognition research, only a few works [8] have raised the problem

of correctly identifying the attachment areas. This is probably due to the

lack of well established solutions to the related problems of ink segmentation

and object recognition, on which most of the effort of researchers is focused.

Different techniques, in fact, can be used to recognize symbols in sketched

diagrams. Some of them are stroke-based, online and use time data [55],

some others rely on image-based techniques [40, 36]. Other researches also

try to solve the segmentation problem related to the separation of symbols

from other elements of the diagrams, such as connectors. E.g., in [35] the

areas of high ink density are likely to be recognized as symbols instead of

connectors. The management of attachment areas is often defined ad hoc for

the considered domain.

CHAPTER 2. RELATED WORK 17

2.5 Euler diagram sketching

Methods and tools have been developed for the recognition of specialized

diagrams, e.g. in engineering, chemistry, medicine, music and so on [57, 1, 58,

59]. Examples of use of sketch recognition include graphical environments

for hand-drawing Euler diagrams (EDs). Previous works on ED sketch

recognition [60, 61, 62] utilize single stroke recognition and machine learning

techniques. In particular, in [60], the authors present a sketch tool for

drawing EDs through ellipses, with a recognition mechanism able to extract

the semantic of a sketched ED and to convert it into a formal diagram drawn

with circles and ellipse. This work is extended in [61] by including the support

to arbitrary closed curves, input and editing in the formal view, production of

sketches from formal diagrams, and semantic matching via the computation

of abstract representations. In [62], the authors presents a sketch tool for the

recognition of EDs augmented with graphs and shading.

Chapter 3

RankFrag: a Novel Technique

for Corner Detection in Hand

Drawn Sketches

Sketched diagrams recognition raises a number of issues and challenges, in-

cluding both low-level stroke processing and high-level diagram interpretation

[63]. A low-level problem is the segmentation (also known as fragmentation)

of input strokes. Its objective is the recognition of the graphical primitives

(such as lines and arcs) composing the strokes. Stroke segmentation can be

used for a variety of objectives, including symbol recognition in structural

methods [34, 11].

Most approaches for segmentation use algorithms for finding corners, since

these points represent the most noticeable discontinuity in the graphical

strokes. Some other approaches [25] also find the so called tangent vertices

(smooth points separating a straight line from a curve or parting two curves).

A high accuracy and the possibility of being performed in real time are

crucial features for segmentation techniques. Tumen and Sezgin [23] also

emphasize the importance of the adaptation to user preferences and drawing

style and to the particular domain of application. Adaptation can be achieved

by using machine learning-based techniques. Machine learning has also proven

to improve accuracy. In fact, almost all of the most recent segmentation

18

CHAPTER 3. RANKFRAG 19

methods use some machine learning-based technique.

The technique presented here, called RankFrag, uses machine learning to

decide if a candidate point is a corner. This technique is strongly inspired to

previous work. In particular, the work that mostly influenced this research is

that of Ouyang and Davis [1], which introduced a cost function expressing

the likelihood that a candidate point is a corner. A distinguishing feature of

the presented technique is the so called rank of a candidate point. Points

with a higher rank (a lower integer value) are more likely to be corners. The

rank is a progressively decreased integer value, assigned to the points as they

are iteratively removed from a list of candidate corners. At each iteration,

the point minimizing Ouyang and Davis’s cost function is removed from the

list. Another important characteristic of RankFrag is the use of a variable

“region of support” for the calculation of some local features, which is the

neighborhood of the point on which the features are calculated. Most of the

features used for classification are taken from several previous works in the

literature [64, 65, 20, 66, 1].

RankFrag has been tested on three different data sets previously introduced

and already used in the literature to evaluate existing techniques. The

performance of RankFrag has been compared to other state-of-art techniques

[21, 23] and significantly better results are achieved on all of the data sets.

The chapter is organized as follows: Section 3.1 describes RankFrag;

Section 3.2 presents the evaluation of its performance in comparison to those

of existing techniques, while the results are reported in Section 3.3; lastly,

some final remarks conclude the chapter.

3.1 The RankFrag technique

As a preliminary step, the stroke is processed by resampling its points to

obtain an equally spaced ordered sequence of points P = (p1, p2, . . . , pn),

where n varies depending on a fixed space interval and on the length of the

stroke. To extract equally spaced points the procedure described in [30] is

used. Furthermore, a Gaussian smoothing [67] is executed on the extracted

points in order to reduce the resampled stroke noise.

CHAPTER 3. RANKFRAG 20

In order to identify the corners, the following three steps are then executed:

1. Initialization;

2. Pruning;

3. Point classification.

The initialization step creates a set D containing n pairs (i, c), for i =

1 . . . n where c is the cost of pi and is calculated through Equation 3.1 derived

from the cost function defined in [1].

Icost(pi) =




mse(S; pi−1, pi+1)× dist(pi; pi−1, pi+1) if i ∈ {2, . . . , n− 1}

+∞ if i = 1 or i = n

(3.1)

In the above equation, S = {pi−1, pi, pi+1} and mse(S; pi−1, pi+1) is the

mean squared error between the set S and the line segment formed by

(pi−1, pi+1). The term dist(pi; pi−1, pi+1) is the minimum distance between pi

and the line segment formed by (pi−1, pi+1). Since p1 and pn do not have a

preceding and successive point, respectively, they are treated as special cases

and given the highest cost.

The pruning step iteratively removes n− np elements from D in order to

make the technique more efficient. The value np is the number of candidate

corners not pruned in this step and depends on the data sets. It is chosen so

that no corner is eliminated in the pruning step. At each iteration, the element

m with the lowest cost is removed and the costs of the closest preceding

points ppre in P and the closest successive point psuc in P of pm, with pre and

suc occurring in D, are updated through Equation 3.2.

Cost(pi) =



mse(S; pipre , pisuc)× dist(pi; pipre , pisuc) if i ∈ {2, . . . , n− 1}

+∞ if i = 1 or i = n

(3.2)

The points pipre and pisuc are, respectively, the closest preceding and successive

points of pi in P , with ipre and isuc occurring in D. S is the subset of points

CHAPTER 3. RANKFRAG 21

between pipre and pisuc in the resampled stroke P . The functions mse and

dist are defined as for Equation 3.1.

The point classification step returns the list of points recognized as corners

by further removing fromD all the indices of the points that are not recognized

as corners. This is achieved by the following steps:

1. find the current element in D with minimum cost (if D contains only 1

and n, return an empty list);

2. calculate the features of the point corresponding to the current element

and determine if it is a corner by using a binary classifier, previously

trained with data.

� if it is not a corner, delete it from D, make the necessary updates

and go to 1.

� if it is a corner, proceed to consider as current the next element

in D in ascending cost order, if such a point is the first or the

last point return the list of points corresponding to the remaining

elements in D (except for 1 and |P |), otherwise go to 2.

In Fig. 3.1, the function DetectCorners() shows the pseudocode for

the initialization, pruning and point classification steps. In the pseudocode,

D is the above described set with the following functions:

� Init(L) initialize D with all the (i, c) pairs contained in L;

� FindMinC() returns the element of D with the lowest cost;

� PreviousI(i) returns j such that (j, c′) is the closest preceding element

of (i, c) in D, i.e., j = max{k | (k, c) ∈ D and k < i};

� SuccessiveI(i) returns j such that (j, c′) is the closest successive

element of (i, c) in D, i.e., j = min{k | (k, c) ∈ D and k > i};

� SuccessiveC(i) returns the successive element of (i, c) in D with

respect to the ascending cost order;

� Remove(i) removes (i, c) from D;

CHAPTER 3. RANKFRAG 22

Input: an array P of equally spaced points that approximate a stroke, a number np of
not-to-be-pruned points, and the Classifier() function.

Output: a list of detected corners.
1: function DetectCorners(P , np, Classifier)
2: # initialization
3: for i = 1 to |P | do
4: c← Icost(i, P) # computes Equation 3.1
5: add (i, c) to TempList
6: end for
7: D.Init(TempList)

8: # pruning
9: while |D| > np do
10: (imin , c)← D.FindMinC()
11: RemoveAndUpdate(imin , P , D)
12: end while

13: # point classification
14: while |D| > 2 do
15: (icur , c)← D.FindMinC()
16: loop
17: isCorner ← Classifier(icur , P , D)
18: if isCorner then
19: (icur , c)← D.SuccessiveC(icur)
20: if icur ∈ {1, |P |} then
21: for each i /∈ {1, |P |} in D add P [i] to CornerList
22: return CornerList
23: end if
24: else
25: RemoveAndUpdate(icur , P , D)
26: break loop
27: end if
28: end loop
29: end while
30: return ∅
31: end function

32: procedure RemoveAndUpdate(i, P , D)
33: ipre ← D.PreviousI(i)
34: isuc ← D.SuccessiveI(i)
35: D.Remove(i)

36: c← Cost(ipre , P , D) # computes Equation 3.2
37: D.UpdateCost(ipre , c)

38: c← Cost(isuc , P , D)
39: D.UpdateCost(isuc , c)
40: end procedure

Figure 3.1: The implementation of the initialization, pruning and corner
classification steps.

CHAPTER 3. RANKFRAG 23

� UpdateCost(i, c) updates the cost of i in D setting it to c.

DetectCorners() calls a Classifier(i, P , D) function that computes the

features (described in Section 3.1.2) of the point P [i], and then uses them to

determine if P [i] is a corner by using a binary classifier previously trained

with data (described in Section 3.1.3).

3.1.1 Complexity

The complexity of the function DetectCorners() in the previous section

depends on the implementation of the data structure D. The following

calculation will be based on the implementation of D as an array in which the

ith element refers to the node that contains the pair (i, c) (or nil if the node

does not exist) and a pointer that refers to the node with the minimum c. Each

node has 3 pointers: one that points to the successive node in ascending c order,

one that points to the successive node in ascending i order and one that points

to the previous node in ascending i order. With this implementation, the

FindMinC(), PreviousI(), SuccessiveI(), SuccessiveC() and Remove()

functions are all executed in constant time, while UpdateCost() function

is O(|D|) (where |D| is the number of nodes referred in D) and the Init(L)

function is O(|L| log |L|) (by using and efficient sorting algorithm). In the

following, it will be shown that the DetectCorners() complexity is O(n2),

where n = |P |.
It is trivial to see that: the complexity of the ICost() function is O(1);

the complexity of Cost() is O(n) in the worst case and, consequently, the

complexity of RemoveAndUpdate() is O(n); and the complexity of Clas-

sifier() is O(n) since some features need O(n) time in the worst case to be

calculated.

The complexity of each of the three steps is then:

1. Initialization: ICost() is called n times and D.Init() one time, conse-

quently the complexity of the initialization step is O(n log n).

2. Pruning: D.FindMinC() and RemoveAndUpdate() are called n−np
times each, consequently the complexity of this step is O(n(n− np)).

CHAPTER 3. RANKFRAG 24

3. Point classification: the while loop (in line 14) will be executed at most

k = |D| − 2 ≤ np − 2 times. In the loop (in line 16), Classifier() will

be called at most k times, D.SuccessiveC() at most k − 1 times, and

RemoveAndUpdate() at most once. Thus, in this step, they will be

called less or equal than k2, k2 and k times, respectively.

The complexity of the Classifier() calls can be calculated by consid-

ering that for each point, if none of its features changes, the result of

Classifier() can be retrieved in O(1) by caching its previous output.

Since the execution of the RemoveAndUpdate() function involves the

changing of the features of two points, Classifier() will be executed

at most 3k times in O(n) (for a total of O(k × n)) and the remaining

times in O(1) (for a total of O(k2)), giving a complexity of O(k × n).

Furthermore, the complexity of the D.SuccessiveC() calls is O(k2),

while the complexity of the RemoveAndUpdate() calls is O(k × n).

Thus, since k < n, the point classification step is in the worst case

O(k × n), or rather O(n× np).

It is worth noting that the final O(n2) complexity does not improve even if a

better implementation of D providing an O(log |D|) UpdateCost() function

is used.

3.1.2 Features

The main distinguishing feature used by the presented technique is the rank.

The rank of a point p = P [i], with respect to D, is defined as the size of D

resulting from the removal of (i, c) from D. The other features are derived

from previous research in the field. There are three different classes of features:

� Stroke features : features calculated on the whole stroke;

� Point features: local features calculated on the point. These features

are calculated using a fixed region of support and their value remain

stable throughout the procedure;

CHAPTER 3. RANKFRAG 25

� Rank-related features : dynamically calculated local features. The region

of support for the calculation of these features is the set of points from

the predecessor ppre and the successor psuc of the current point in the

candidate list. Their value can vary during the execution of the Point

classification step.

Stroke Features

The features calculated on the whole stroke can be useful to the classifier,

since a characteristic of the stroke can interact in some way with a local

feature. For instance, the length of a stroke may be correlated to the number

of corners in it: it is likely that a long stroke has more angles than a short

stroke. Two stroke features are derived from [1]: the length of the stroke and

the diagonal length of its bounding box. These features are called Length and

Diagonal , respectively. Furthermore, a feature telling how much the stroke

resembles an ellipse (or a circle), called EllipseFit , was added. It is calculated

by measuring the average euclidean distance of the points of the stroke to an

ideal ellipse, normalized by the length of the stroke.

Point Features

The point features are local characteristics of the points. The speed of the

pointer and the curvature of the stroke at a point have been regarded as very

important features from the earliest research in corner finding. Here, the speed

at pi is calculated as suggested in [64], i.e., s(pi) = ∥pi+1, pi−1∥ /ti+1 − ti−1,

where ti represents the timestamp of the i-th point. It is also present a version

of the speed feature where a min-max normalization is applied in order to

have as a result a real value between 0 and 1; the Curvature feature used

here is calculated as suggested in [65].

A feature that has proven useful in previous research is the straw, proposed

in [20]. The straw at the point pi is the length of the segment connecting

the endpoints of a window of points centered on pi. Thus Straw(pi, w) =

∥pi+w, pi−w∥, where w is the parameter defining the width of the window.

A simple feature to evaluate if a point is a corner, is the magnitude of

CHAPTER 3. RANKFRAG 26

the angle formed by the segments (pi−w, pi) and (pi, pi+w(, defined here as

Angle(pi, w). A useful feature to distinguish the curves from the corners is

called AlphaBeta, derived from [21]. alpha and beta are the magnitudes of

two angles in pi using different segment lengths, one three times the other.

Here the difference between them is used as a feature: AlphaBeta(pi, w) =

Angle(pi, 3w)− Angle(pi, w).

Lastly, in this research two point features are introduced, that, to the

best of my knowledge, have never been tested so far for corner detection.

One feature is the position of the point within the stroke, indicated as the

ratio between the length of the stroke from p0 to pi and the total length

of the stroke. This feature is called Position(pi). The other feature is the

difference of two areas: the former is the one of the polygon delimited by

the points (pi−w, . . . , pi, . . . , pi+w(and the latter is the one of the triangle

(pi−w, pi, pi+w). The rationale for this feature is that its value will be positive

for a curve, approximately 0 for an angle and even negative for a cusp. It is

called DeltaAreas(pi, w).

Rank-Related Features

The rank-related features are local characteristics of the points. The difference

with the point features is that their region of support varies according to

the rank of the point: the considered neighborhood is between the closest

preceding and successive points of pi occurring in D, which are called pipre

and pisuc, respectively. The Rank and the Cost function defined in Equation

(3.2) are examples of features from this class.

A simple feature derived from [1] is MinDistance, representing the mini-

mum of the two distances ∥pipre , pi∥ and ∥pi, pisuc∥, respectively. A normalized

version of MinDistance is obtained by dividing the minimum by ∥pipre , pisuc∥.
As in previous research, parts of the stroke are tried to be fitted with beau-

tified geometric primitives. The following two features are inspired by the ones

defined in [66]: PolyFit(pi) tries to fit the substroke (pipre , . . . , pi, . . . , pisuc)

with the polyline (pipre , pi, pisucc), while CurveFit(pi) uses a bezier curve to ap-

proximate the points. The return value is the average point-to-point euclidean

CHAPTER 3. RANKFRAG 27

Feature Class Parameters Ref.
Length(S) Stroke / [1]
Diagonal(S) Stroke / [1]
EllipseFit(S) Stroke /
Speed(p, norm) Point norm = T, F [64]
Curvature(p) Point / [65]
Straw(p, w) Point w = 4 [20]
Angle(p, w) Point w = 1, 2 [21]
AlphaBeta(p, w) Point w = 3, 4, 6, 15 [21]
Position(p) Point /
DeltaAreas(p, w) Point w = 11
Rank(p) Rank-Related /
Cost(p) Rank-Related / [1]
MinDistance(p, norm) Rank-Related norm = T, F [1]
PolyFit(p) Rank-Related / [66]
CurveFit(p) Rank-Related / [66]

Table 3.1: The features used in RankFrag.

distance normalized by the length of the stroke.

Table 3.1 summarizes the set of features used by RankFrag in the Classi-

fier function. The table reports the name of the feature, its class, the values

of the parameters (if present) with which it is instantiated and the reference

paper from which it is derived. The presence of feature parameters means

that some feature could potentially be used several times, instantiated with a

different parameter value, and this might introduce redundant features. The

parameters have been chosen by performing an internal validation process that

measures the relevance of the parameter-dependent features, over possible

parameter values, and uses feature clustering to define a subset of relevant,

non-redundant features.

3.1.3 Classification method

The binary classifier used by RankFrag in the Classifier function to classify

corner points is based on Random Forests (RF) [68]. Random Forests are

an ensemble machine learning technique that builds forests of classification

trees. Each tree is grown on a bootstrap sample of the data, and the feature

CHAPTER 3. RANKFRAG 28

at each tree node is selected from a random subset of all features. The

final classification is determined by using a voting system that aggregates

the classification results from all the trees in the forest. There are many

advantages of RF that make their use an ideal approach for this classification

problem: they run efficiently on large data sets; they can handle many different

input features without feature deletion; they are quite robust to overfitting

and have a good predictive performance even when most predictive features

are noisy.

3.1.4 Implementation

RankFrag was implemented as a Java application. The classifier was imple-

mented in R language, using the randomForest package [69]. The call to the

classifier from the main program is performed through the Java/R Interface

(JRI), which enables the execution of R commands inside Java applications.

3.2 Evaluation

RankFrag was evaluated on three different data sets already used in the

literature to evaluate previous techniques. A 5-fold cross validation was

repeated 30 times on all of the data sets. For all data sets, the strokes were

resampled at a distance of three pixels, while a value of np = 30 was used as

a parameter for pruning. Since there is no single metric that determines the

quality of a corner finder, the performance of RankFrag was calculated using

the various metrics already described in the literature. The results for some

metrics were averaged in the cross validation and were summed for others.

The hosting system used for the evaluation was a laptop equipped with

an Intel�Core�i7-2630QM CPU at 2.0 GHz running Ubuntu 12.10 operating

system and the OpenJDK 7.

3.2.1 Model validation

This section describes the process of assessing the prediction ability of the

RF-based classifiers. The accuracy metrics were calculated by repeating 30

CHAPTER 3. RANKFRAG 29

times the following procedure individually for each data set and taking the

averages:

1. the data set DS is divided randomly into 5 parts with an equal num-

ber of strokes (or nearly so, if the number of strokes is not divisible by 5);

2. for i = 1 . . . 5: DSt i = ∪(DS j) {j ̸= i} is used as a training set, and

DS i is used as a test set.

� RankFrag is executed on DSt i in order to produce the training

data table. In DS , the correct corners had been previously marked

manually. For each point extracted from the candidate list the

input feature vector is calculated, while the output parameter is

given by the boolean value indicating whether the point is marked

or not as a corner. The training table contains both the input and

output parameters;

� A random forest is trained using the table;

� RankFrag is executed on DS i, using the trained random forest as

a binary classifier;

� In order to generate the accuracy metrics, the corners found by

the last run of RankFrag are compared with the manually marked

ones. A corner found by RankFrag is considered to be correct

if it is within a certain distance from a marked corner (only one

corner found by RankFrag can be considered to be correct for each

marked corner).

3. In order to get aggregate accuracy metrics, for each of them the aver-

age/sum (depending on the type of the metric) of the values obtained

in the previous step is calculated.

CHAPTER 3. RANKFRAG 30

3.2.2 Accuracy metrics

A corner finding technique is mainly evaluated from the points of view of

accuracy and efficiency. There are different metrics to evaluate the accuracy

of a corner finding technique. The following metrics, already described in the

literature [20, 22], are used:

� False positives and false negatives. The number of points incor-

rectly classified as corners and the number of corner points not found,

respectively;

� Precision. The number of correct corners found divided by the sum of

the number of correct corners and false positives:

precision = correct corners
correct corners+false positives

;

� Recall. The number of correct corners found divided by the sum of

the number of correct corners and false negatives:

recall = correct corners
correct corners+false negatives

.

This value is also called Correct corners accuracy;

� All-or-nothing accuracy. The number of correctly segmented strokes

divided by the total number of strokes;

The task of judging whether a corner is correctly found is done by a

human operator. The presence of the angle is then determined by human

perception. Obviously, different operators can perform different annotations

on a data set. In this work, data sets already annotated by other authors are

used. It is worth noting that a tolerance of 7 sampled points (corresponding

to a maximum distance of 21 pixels) from the marked corner was used. This

value is similar to others used in the literature (e.g., in [22] a fixed distance

of 20 pixels was used).

3.2.3 Data sets

Two of the three data sets used in this evaluation, the Sezgin-Tumen COAD

Database and NicIcon data sets, are associated to a specific domain, while

CHAPTER 3. RANKFRAG 31

Data set No. of No. of No. of No. of Source
classes symbols strokes drawers

COAD* 20 400 1507 8 [49]
NicIcon 14 400 1204 32 [70]
IStraw 10 400 400 10 [21]

Table 3.2: Features of the three data sets.

the IStraw data set is not associated to any domain, but it was produced for

benchmarking purposes by Xiong and LaViola [21]. Some features of the three

data sets are summarized in Table 3.2. The table reports, for each of them,

the number of different classes, the total number of symbols and strokes, the

number of drawers and a reference to the source document introducing it.

The Sezgin-Tumen COAD Database (called only COAD*, for brevity, in the

sequel) is composed by 400 symbols (1507 strokes with their identified corners)

extracted from the COAD data set described in Appendix A.4. The NicIcon

and IStraw data sets are described in the Appendix A.2 and Appendix A.1,

respectively.

3.3 Results

This section reports the results of the RankFrag evaluation. As for the

accuracy, all of the metrics described in the previous section were calculated.

Furthermore, RankFrag’s accuracy is compared to that of other state-of-art

methods by using the All-or-nothing metric. It is worth noting that, due to

the unavailability of working prototypes, the other methods are not directly

tested: only the performance declared by their respective authors are reported.

The accuracy achieved by RankFrag on the three data sets is reported in

Table 3.3. The results are averaged over the 30 performed trials.

Table 3.4 shows a comparison of the accuracy of RankFrag with other

state-of-art methods. The methods considered here are DPFrag [23] and

IStraw [21]. Due to the unavailability of other data, only the results related

to the All-or-nothing metric are reported.

As it can be seen, RankFrag outperforms the other two methods. The

CHAPTER 3. RANKFRAG 32

Metrics COAD* NicIcon IStraw
Corners manually marked 2271 867 1796
Corners found 2264.57 836.21 1795.00
Correct corners 2261.21 825.64 1790.57
False positives 3.36 10.57 4.43
False negatives 9.79 41.36 5.43
Precision 0.9985 0.9873 0.9976
Recall / Correct corners accuracy 0.9957 0.9525 0.9970
All-or-nothing accuracy 0.9927 0.9599 0.9754

Table 3.3: Average accuracy results of RankFrag on the three data sets.

Data set RankFrag DPFrag IStraw
COAD* 0.99 0.97 0.82
NicIcon 0.96 0.84 0.24
IStraw 0.98 0.96 0.96

Table 3.4: Comparison of RankFrag with other methods on the All-or-nothing
accuracy metric.

largest improvement is obtained on the NicIcon data set, where the other two

methods perform rather poorly. Less noticeable improvements are obtained

on the COAD and on the IStraw data sets, where the other two methods do

not perform badly.

As for efficiency, the average time needed to detect the corners in a stroke

is ∼390 ms. This implementation is rather slow, due to the inefficiency of

the calls to R functions. A non-JRI implementation was also produced by

manually exporting the created random forest from R to Java (avoiding the

JRI calls). With this implementation, the average execution time is lowered

to ∼130 ms, thus enabling real-time user interactions.

3.4 Concluding remarks

This chapter has introduced RankFrag, a technique for detecting corner points

in hand drawn sketches. The technique outperforms two state-of-art methods

on all the tested data sets. In particular, RankFrag is the only technique

obtaining a satisfactory result on the “difficult” NicIcon data set, correctly

CHAPTER 3. RANKFRAG 33

processing the 96% of the strokes.

RankFrag finds only corner points and not tangent vertices, as done by

other techniques [24, 25]. It can be directly used in various structural methods

for symbol recognition, as shown in Chapter 5. However in some methods an

additional step to classify the segments in lines or arcs may be required.

Chapter 4

Improving Shape Context

Matching for the Recognition

of Sketched Symbols

In this chapter, an approach to recognize multi-stroke hand drawn symbols is

presented. Since the approach is an adaptation of the image-based matching

algorithm proposed by Belongie et al. [2], it is invariant with respect to

scaling and is independent from the number and order of the drawn strokes.

Furthermore, it has a better recognition accuracy than the original one when

applied to hand drawn symbols. This is due to the exploitation of information

on stroke points, such as temporal sequence and occurrence in a given stroke.

Briefly, the algorithm proposed by Belongie et al. calculates the matching

cost between two shapes as the minimum weighted bipartite graph matching

between two equally sized sets of sampled points from both shapes. This

is done by calculating a matrix of matching costs between each couple of

points of the two symbols and selecting the resulting best match. The cost

of matching of two points is calculated by evaluating the difference between

their shape contexts, which are suitable shape descriptors introduced by the

authors.

The approach improvement lies in re-calculating the cost matrix and, as a

consequence, the total cost of matching between the two symbols. The cost

34

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 35

matrix is re-calculated by considering the symbols as sequences of sampled

points and detecting the longest subsequences of points in each sketched

symbol stroke whose mapping on the template symbol produces still subse-

quences in any template symbol stroke. Once the subsequences are detected

their lengths are used to decrease the matching costs of the involved points

proportionally. This provides a further check on the structural similarity of

the symbols that the original algorithm does not take into consideration that

proves to enhance the accuracy when applying the shape context descriptors

to sketch recognition.

The approach has been evaluated on a set of more than 100 symbols

extracted from the Military Course of Action Diagrams (COA) domain [56].

In the experiment the performance of the previous algorithm hare compared

to that of the enhanced version. A top 1 recognition rate of 95.7% on symbols

sampled at 128 points is obtained by the enhanced version. This rate is

for an improvement over the previous algorithm of 3.7%. The recognition

grows up to 99% when considering the top 3 interpretations. The proposed

improvement does not introduce signficant delays in the running time of the

recognition procedure.

The chapter is organized as follows: the next section briefly describes the

approach presented in [2]; section 4.2 describes the approach. The evaluation

is presented in section 4.3; finally, section 4.4 offers final remarks.

4.1 Background: symbol recognition through

shape context

This section describes the symbol recognition procedure introduced by Be-

longie et al. [2] as used in the proposed approach.

4.1.1 Feature descriptor

The shape context descriptor is first proposed by Belongie et. al [2] and is a

global feature descriptor that has been successfully used in various application

fields [2, 71, 72, 73]. It is a point based descriptor, thus a significant set of

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 36

(a) Sampled
points

(b) Shape context of a point

Figure 4.1: The shape context descriptor

points must be sampled from the original figure. The shape context of a

point is built by dividing a point’s surrounding area into bins with different

angles and increasing distances. The shape context of a point Pi is defined

by computing the number of other points that are located in each of its

surrounding bins,

hi(k, l) = #{x ̸= Pi : (x− Pi) ∈ bin(k, l)} (4.1)

where k and l are the spatial coordinates of the bin and # refers to set

cardinality. As an example, in Figure 4.1, the bin containing the lowest

point of the right side of the symbol A contains bin(5, 20) = 4 points. In

other words, a point’s shape context is a log-polar histogram which defines

the relative distribution of other points. Different points in one shape have

different shape context and similar points in two similar shapes have similar

shape context. Belongie et al. [2] adopts the Chi-square distance to measure

the difference between the shape context features of two points Pi and Qj.

Cij =
1

2

M
k=1

N
l=1

[hi(k, l) + hj(k, l)]
2

hi(k, l) + hj(k, l)
(4.2)

hi and hj are the shape context histograms of Pi and Qj.

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 37

4.1.2 Matching

In order to compare a sketched symbol s against a template symbol t equation

(4.2) must be calculated for each pair of sampled points Pi of s and Qj

of t. This will then produce a n × n matrix C where n is the number of

points sampled from each symbol. Based on this cost matrix, the algorithm

constructs a permutation π which allows to map each point Pi of s to a point

Qπ(i) of t such that the total matching cost H is minimized:

H(π) =
n
i

Ciπ(i) (4.3)

In the next section, the approach is described. It will make use of a

function Π to map a sequence of points seq = < P1, . . . , Pm > to the sequence

of points Π(seq) =< Qπ(1), . . . , Qπ(m) >, with m ≥ 1.

4.2 The approach

Sketched and template symbols consist of strokes starting with a pen-down

and ending with a pen-up events. All the symbols are pre-processed to produce

a set of a fixed number n of sampled points. These points are distributed

among the strokes proportionally to their length. The k − th stroke of a

symbol is then represented as a sequence of sampled points P1, P2, . . . , Pmk

with


k mk = n.

Given a sketched symbol s and a set of template symbols {t1, . . . , tl},
in order to find a template symbol that best matches s, first the matrix C

and the mapping π hare computed, as shown in section 4.1 on each pair (s,

tj). Then, based on C, an updated version C ′
iπ(i) is computed for i = 1 . . . n

to calculate the new matching cost H ′ associated to tj and s. Finally, the

template symbol with the minimum cost will be presented as the best match.

The new contribution is the method to calculate the new C ′
iπ(i). Basically,

given a sketched symbol s and a template t, the method consider, for each

stroke in s, the longest subsequences that are mapped by Π to sequences

(also inverted) in any stroke of t. This provides a further check on the

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 38

161514131211109

87654321

(a) Template

87654321

161514131211109

(b) D.1

8
7

6
5

4
3

2
1

16
15

14
13

12
11

10
9

(c) D.2

8
7
6
5
4
3
2
1

16
15
14
13
12
11
10
9

(d) D.3

8
7

65
4

32

1

161514131211

10
9

(e) D.4

Figure 4.2: A template and four hand drawn sketched symbols

structural similarity of the two symbols that the shape context descriptor

does not take into consideration. To reflect this property in the final cost

computation, the matching cost of points participating in longer subsequences

hare proportionally decreased. More formally,

C ′
iπ(i) = Ciπ(i) ∗ (1− 2× log2n |lsub(i)|) (4.4)

where |lsub(i)| denotes the size of the longest subsequence in a sketched symbol

stroke containing the point Pi such that Π(lsub(i)) or inverse(Π(lsub(i))) is

still a sequence in any template symbol stroke (containing the point Qπ(i)).

4.2.1 An example

Figure 4.2 shows a template symbol (a) and four sketched symbols (b, c,

d, e) sampled at 16 points. Each table in Figure 4.3 shows the mapping π

between one of the four sketched symbols and the template symbol. Each

column shows the mapping between sketched and template symbol points, the

subsequence to which the sketched point belongs and the cost of the mapping

for both C and C ′ with the exception of the last column that shows the total

cost of the mapping.

It can be noted that the C total cost for D.1 (92.05) is worse than the

corresponding one for D.4 (78.08) despite the fact that D.1 is obviously the

most similar sketched symbol for the template. On the other hand the C ′

total cost for D.1 (-18.41) is by far the lowest one.

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 39

(i, π(i))(9,1)(10,2)(11,3)(12,4)(13,5)(14,6)(15,7)(16,8)(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) 
lsub s1 s2
C 3.27 3.90 4.07 7.00 7.00 8.67 5.73 5.67 6.00 5.40 6.67 7.00 7.00 5.74 5.00 3.93 92.05
C′ -0.65 -0.78 -0.81 -1.40 -1.40 -1.73 -1.15 -1.13 -1.20 -1.08 -1.33 -1.40 -1.40 -1.15 -1.00 -0.79 -18.41

(a) Mapping between the D.1 and the template symbol

(i, π(i))(4,1) (3,2)(5,3)(6,4)(7,5)(8,6)(16,7)(15,8)(2,9)(1,10)(10,11)(9,12)(11,13)(12,14)(14,15)(13,16) 
lsub s1 s2 s3 s4 s5 s6 s7
C 10.9512.006.50 6.93 7.27 7.33 6.70 5.84 5.84 6.70 7.00 7.90 6.93 7.00 12.00 10.95 127.85
C′ 6.57 7.20 1.30 1.39 1.45 1.47 4.02 3.50 3.50 4.02 4.20 4.74 4.16 4.20 7.20 6.57 65.49

(b) Mapping between the D.2 and the template symbol

(i, π(i))(1,1)(3,2)(4,3)(2,4)(9,5)(10,6)(11,7)(12,8)(7,9)(5,10)(6,11)(8,12)(16,13)(14,14)(15,15)(13,16) 
lsub s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
C 8.33 6.73 7.84 8.97 8.60 7.07 6.60 8.00 6.67 7.17 6.34 7.40 8.52 7.10 6.73 8.00 120.08
C′ 8.33 4.04 4.70 8.97 1.72 1.41 1.32 1.60 6.67 4.30 3.80 7.40 8.52 4.26 4.04 8.00 79.09

(c) Mapping between the D.3 and the template symbol

(i, π(i))(1,1)(11,2)(12,3)(13,4)(14,5)(10,6)(15,7)(16,8)(2,9)(4,10)(3,11)(5,12)(7,13)(6,14)(8,15)(9,16) 
lsub s1 s2 s3 s4 s5 s6 s7 s8 s9
C 6.55 2.24 2.00 1.93 2.00 10.57 1.27 1.50 7.81 4.93 9.33 6.60 7.27 4.83 5.57 3.67 78.08
C′ 6.55 0.45 0.40 0.39 0.40 10.57 0.76 0.90 7.81 2.96 5.60 6.60 4.36 2.90 3.34 2.20 56.19

(d) Mapping between the D.4 and the template symbol

Figure 4.3: The mapping costs for the symbols in Figure 4.2

4.3 Evaluation

The approach has been tested on the COAD2 data set, consisting of 4520

drawn symbols belonging to 113 classes (see Appendix A.5).

In literature several systems for facilitating the input of COA diagrams

have been described [74, 75, 55]. In [55] an accuracy of about 90% when

considering the top 3 interpretations on a set of 485 symbols has been obtained.

The experiment compares the performance of the previous algorithm to

that of the enhanced version. The recognition procedure was executed at

two different point sampling rates (64 and 128) for both the sketched and

template symbols. Shape contexts with 5 concentric circles and 12 sectors

were used. For each symbol drawn by a user, the matching cost with each of

the 113 template symbols was computed. Then the list of the templates is

ordered increasingly by the similarity to the unknown symbol and the position

of the correctly matching template is considered.

For n = 1, . . . , 6, the ratio of matching templates falling in the top n

positions is reported. Tables 4.1 and 4.2 report the results of the above

CHAPTER 4. RECOGNITION OF SKETCHED SYMBOLS 40

Algorithm top1 top2 top3 top4 top5 top6
C 91.0% 94.0% 95.6% 96.7% 97.0% 97.4%
C ′ 92.2% 97.1% 98.1% 98.4% 98.7% 98.9%
Diff. +1.2% +3.1% +2.5% +1.7% +1.7% +1.5%

Table 4.1: Result with 64 sampled points

Algorithm top1 top2 top3 top4 top5 top6
C 92.0% 95.3% 96.3% 97.0% 97.6% 97.7%
C ′ 95.7% 98.2% 99.0% 99.1% 99.2% 99.2%
Diff. +3.7% +2.9% +2.7% +2.1% +1.6% +1.5%

Table 4.2: Result with 128 sampled points

described trials for 64 and 128 sampling rates, respectively. In both tables,

the first and the second row report the performance of the original and the

improved algorithms, respectively; the third row reports the improvement

obtained with the latter over the former.

As can be seen, the improved algorithm has better performances in all

cases. The improvement is more marked with a sampling rate of 128 points.

In this case, a top 1 recognition rate of 95.7% is obtained. This rate improves

that of the previous algorithm of 3.7%. The top 3 recognition rate is 99.0%.

4.4 Concluding remarks

This chapter has presented an adaptation to the case of sketched symbol

recognition of the algorithm for shape matching proposed by Belongie et al.

in 2002. The effectiveness of the algorithm has been proven by testing it on a

set of more than 100 symbol classes. The proposed enhancement improves

the recognition rate of the original algorithm, obtaining an accuracy of 99%

when considering the top 3 interpretations on symbols sampled at 128 points.

Chapter 5

Recognition and

Autocompletion of Partially

Drawn Symbols by Using Polar

Histograms as Spatial Relation

Descriptors

In this chapter an approach for the recognition of partially drawn symbols

and the design of a system for the autocompletion is proposed. Autocomple-

tion has proven effective or appreciated by the users in various text-based

applications [4, 5, 6, 7], while there is a lack of some research carrying out an

evaluation of the performance of interfaces for autocompletion of hand drawn

symbols in the scientific literature. To date, only a few systems [49, 32, 50, 51]

have been introduced supporting such a feature for graphical symbols. Never-

theless, symbol autocompletion can be advantageous for the users in several

applications. For instance, it can be useful to accelerate symbol retrieval

in icon-driven user interfaces [76] or the handwriting of oriental characters,

replacing the current complex systems, such as the pinyin coding system [77].

However, an advantage in terms of drawing speed and accuracy has only been

reported for unistroke gestures [53].

41

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 42

The proposed approach uses an Attributed Relational Graph (ARG) [3] to

represent symbols and is invariant with respect to scale. Furthermore, the

user can plan to draw the symbol with the desired stroke number and order.

The approach can work with a single perfect template for each class, without

the need of a training phase to extract features or to select multiple templates.

Being based on subgraph matching, the recognition can be performed on

partially drawn symbols, i.e., when only a part of the primitives composing

the symbol is available. An innovation of the presented approach is the use of

a single spatial descriptor to represent relations between symbol components.

The descriptor is an adaptation of the shape context [2] already used in the

previous section and its use makes the approach free from the identification of

the type of the primitives and from the check of fuzzy relations. The symbol

matching is performed through an approximate graph matching procedure

which incrementally produces new results as soon as more input strokes are

available.

Different sets of symbols have been used to test the approach: a large

set of symbols used to evaluate a previous method [50] and two differently

sized sets of hand drawn symbols extracted from the real domain of Military

Course of Action diagrams [56]. The symbols in the former set have also been

artificially perturbed to test the invariance of the approach with respect to

scale and its tolerance to random drawing errors. The results show that the

proposed approach can recognize a reasonably high percentage of symbols

even with a small number of available primitives. Furthermore, improvements

in the recognition rate of partially drawn symbols are obtained against the

existing approaches.

Also, since, to the best of my knowledge, no studies demonstrated a real

advantage for autocompletion of multi-stroke symbols so far, the functionality

of autocompletion has been evaluated from the point of view of the benefits

for the users using the presented approach. In particular, the possible im-

provements, primarily in terms of efficiency, obtainable by the users when

they exploit the autocompletion functionality are investigated through a user

study using a basic interface.

The study, involving 14 participants, shows that the users can exploit the

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 43

autocompletion functionality in a profitable way, obtaining a faster input,

with a time saving of about 18% in a task where participants had to draw

symbols from the above described set. The advantage from the point of view

of the accuracy has also been reported.

The chapter is organized as follows: the next section describes the approach

for the recognition of partially drawn symbols; section 5.2 is devoted to outline

the design of the interactive system for symbol autocompletion; section 5.3

presents the evaluation of the performance of the proposed approach in

comparison to those of existing approaches; section 5.4 presents the user

study about the human performance in hand drawn symbol autocompletion;

lastly, some final remarks and a brief discussion conclude the chapter.

5.1 Recognition of partially drawn symbols

This section describes the method for the recognition of partially drawn

symbols. In particular, it shows how to represent the symbols and how to

calculate a distance measure between the hand drawn symbol and the template

symbols. Since the method works with primitives and not directly with strokes,

the ink must be pre-processed in order to extract the primitives from it. A

symbol is represented through an ARG where each node is associated to a

primitive, while each edge is associated to a descriptor coding the spatial

relation between the primitives associated to its tail and head nodes. This

descriptor is named Primitive Spatial Relation descriptor (PSR descriptor, in

short). It is a histogram, inspired by the concept of shape context presented

in [2]. The recognition relies on an approximate graph matching procedure,

which returns the distance between the hand drawn symbol and a template

symbol.

5.1.1 Symbol pre-processing

In the recognition of multi-stroke symbols a hand drawn symbol consists of

a set of strokes, each starting with a pen-down and ending with a pen-up

events. Since the method works with primitives, the primitives must be

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 44

(a) The drawn stroke. (b) Segmentation. (c) Clustering. (d) Sampling.

Figure 5.1: The steps of the pre-processor on a sample input stroke.

extracted from the digital ink. It is important to note that here primitives

are referred as very simple graphics components, such as lines and curves

(without corners). A similar definition is found in previous works describing

structural approaches [50, 34]. A more recent work [48], instead, uses a

broader definition, where more complex parts of symbols, such as rectangles,

diamonds, and other polygons, are also regarded as primitives.

The pre-processing consists of different steps, including segmentation

(fragmentation of strokes), clustering (grouping of strokes) and sampling (the

extraction of representative points from a primitive).

The heaviest step in the pre-processing is segmentation. The segmentation

process splits the input strokes by detecting cusps and produces a list of

primitives. For this step the method presented in Chapter 3 is used, since it

achieves very satisfactory results.

The second pre-processing step is clustering. This step is only executed

on primitives belonging to the same stroke. In the proposed approach it is

performed by simply evaluating the collinearity and the distance between the

endpoints of two primitives. If two primitives pass the tests, they are merged

together in one single primitive.

As regards sampling, the proposed approach requires that the primitives

are all sampled at an equal number of points. Thus, for a fixed size n, a

primitive P is represented as a set of points (p1, p2, . . . , pn). Procedures

to extract equally spaced points from strokes have been described in the

literature (e.g. in [30]).

Figure 5.1 describes the steps of the pre-processor on a rectangular input

stroke, which has been drawn starting from the middle of its left side (a).

The drawn stroke is firstly segmented through the corner finding procedure

(b); then, the two segments forming the left side are fused together in the

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 45

clustering step (c); lastly, all the primitives are sampled at the same number

of points (d).

5.1.2 PSR descriptor

In order to describe how two primitives are spatially related within a symbol

a relational descriptor named Primitive Spatial Relation descriptor (PSR

descriptor, in short) is defined. Given two primitives Q and P , the PSR de-

scriptor on the couple (Q,P) describes the position of the points p1, p2, . . . , pn

of P with respect to the center qc of the bounding box of Q. More formally,

a PSR descriptor is defined as a polar histogram as follows.

Definition 1 Given two primitives Q and P , a PSR descriptor is a polar

histogram h(Q,P) of the relative coordinates of the points p1, p2, . . . , pn of P

measured using qc as the origin:

h(Q,P)(i, j) = #{pk ∈ P : (pk − qc) ∈ bin(i, j)}

In the definition, the symbol # indicates set cardinality, (pk−qc) computes

the relative coordinates of a point pk with respect to qc, and bin(i, j) indicates

the bin resulting from the intersection of the i-th annulus and the j-th sector

in the polar histogram.

It is worth noting that the shape contex definition in [2] builds up a

histogram of a point set with regard to the bins. Definition 1 modifies the

shape contex definition to ensure that the bins are defined with respect to

the origin of another primitive.

By convention, the numbering for the annuli starts from 0 with the most

inner annulus, while the numbering for the sectors starts from 0 with the

sector with a side forming the smallest angle greater than 0◦ and proceeds

counterclockwise. By convention, a point falling exactly on the boundary

between two annuli (sectors) is assigned to the bin with the smallest annulus

(sector) index. If a point falls exactly on the origin of the histogram, it is

assigned to bin(0, 0).

As an example, Figure 5.2b shows the polar histogram for the PSR

descriptor on (Q, P) where Q and P are the oval and the left caret side

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 46

Q

P

(a)

0

0

4
0 0

0
0

0

0

0

0
100

0
0

0
0

2
0

0 0 0

0
0
0

0022

00 00 0
00
0

0000
0

0

0

4

0 0

0

0

0

0

1

0 0
0

0

1

01

0 0 00
0

000

1 0

0
1

h (Q
,P
)(
2,
5)

(b)

Figure 5.2: A symbol (a) and the PSR descriptor (with 3 circles and 24
sectors) with respect to its oval and left caret side primitives (b).

primitives of the symbol in Figure 5.2a, respectively. In particular, the

primitive Q is centered at the origin of the histogram, and the primitive P is

represented with its n = 20 equally spaced sampled points. Furthermore, the

radius r of the histogram is equal to the distance from its origin to the farthest

point of P . It is worth noting that this construction makes the PSR (and the

approach) scale invariant. The histogram presents 3 concentric circles with

radii r/4, r/2, and r (forming 3 annuli), and has 24 equally spaced sectors for

a total of 72 bins, each labeled with the number of contained sampled points

of P. As an example, in Figure 5.2b, h(Q,P)(2, 5) = 1 for the bin resulting from

the intersection of the annulus 2 and the sector 5 in the polar histogram.

5.1.3 Symbol representation

A symbol is represented through an ARG: each node in the graph is associated

to one of the primitives composing the symbol, while each edge is associated

to the PSR descriptor coding the spatial relation between the primitives

associated to its tail and head nodes.

Since the relation defined through the PSR descriptor is not symmetric

and each primitive is in a relationship with all the others, the graph is directed

and complete. Moreover, each node has a self-loop whose associated PSR

descriptor is an alternative description of the primitive associated to that

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 47

node. Formally, by adapting the definition given in [3], an ARG is define as

follows.

Definition 2 A complete directed ARG over a set of attributes L = LN ∪LE

(LN ∩ LE = ∅) is a 4-tuple G = (N,E, σ, τ) where

N is the set of nodes;

E = N ×N is the set of all the directed edges,

i.e., the set of all the distinct or-

dered pairs of nodes in N;

LN is a finite nonempty set of node

attributes (primitive identifiers);

LE is a set of edge attributes (PSR

descriptors);

σ : N → LN is a function which associates a

primitive identifier to a node;

τ : E → LE is a function which associates a

PSR descriptor to an edge.

An example of ARG representation of a symbol is shown in Figure 5.3.

A symbol dictionary is defined as a set of template symbols which, in turn,

are represented each by one (or possibly more) template ARGs. In order to

define a template ARG, a decomposition in primitives for the corresponding

symbol must be provided. In order to correctly match the drawn symbol

to a template, the pre-processing on the drawn symbol has to produce a

decomposition as close as possible to the established one.

5.1.4 Symbol matching

In previous work [2], the distance between two polar histograms h and h′

is computed as a function of the distances sought on all the pairs of the

corresponding bins through χ2 test statistic:

d(h, h′) =
1

2


i,j

[h(i, j)− h′(i, j)]2

h(i, j) + h′(i, j)
(5.1)

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 48

a1

a2

a3

h(a1,a1)

h
(a1,a3)h

(a3,a1)

h (
a1
,a
2)

h (
a2
,a
1)

h (a
2,
a3
)

h (a
3,
a2
)

h(a3,a3)

h(a2,a2)

a1
a2

a3

Figure 5.3: An arrow symbol and its representation as an ARG.

Here, a new, more effective and efficient, equation to calculate the distance

between two histograms is proposed. In fact, the shape context was originally

designed to describe the distribution of the points of an image around a

fixed point. These points can be scattered throughout the plane. In this

case, however, being part of a primitive, it is more likely that the points

are localized in a narrow region of the plane. It may happen that, due to

inaccuracies in the drawing, Equation (5.1) returns a high distance even for

two histograms representing the same pair of primitives but differing in minor

distortions. The conceived solution is to derive four polar histograms from

the original one and to calculate the distance as a function of the distances

sought between the corresponding quadruples of histograms. The four derived

histograms are composed of different groupings of the bins in the original

histogram. In particular:

� Two coarse grained histograms allow to locate the position of a primitive

at a higher level, while two fine grained histograms offer a kind of “zoom”

in that region.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 49

� Two different rotation angles allow to obtain a greater accuracy in

locating the position of points lying on the border between two bins.

Given a PSR descriptor h, the four histograms are derived from h using

the following construction rules:

1. The four derived histograms have the same origin and equal radius of

the PSR descriptor and each of their bins is defined as the union set of

bins from the descriptor.

2. Two histograms are obtained from the PSR descriptor using two dif-

ferent levels of granularity : a coarse grained histogram hc0 and a fine

grained histogram hf0. Each bin of hc0 is the union of complete bins

from hf0; in the following, this will be referred to as the bin containment

property between hc0 and hf0.

3. The remaining two histograms hc1 and hf1 have the same form of hc0

and hf0, respectively, but have different rotation angles. Thus, they are

composed of different groupings of the bins in the original histogram. In

particular, they are obtained by rotating clockwise hc0 and hf0 through

angles θc and θf about the origin, respectively. Each rotation angle

is half the magnitude of a sector of the histogram and it is such that

each bin of hc1 is the union of complete bins from hf1, i.e., the bin

containment property must be preserved.

A 4-tuple of histograms, derived from a PSR descriptor h having the same

parameters as that shown in Figure 5.2b is shown in Figure 5.4. They are

constructed by instantiating the above rules as follows:

� hc0 has 5 bins: a central one binc0(0, ∗) and four peripheral bins

binc0(1, j), j = 0, . . . , 3, each defined as the union of bins of h as follows:

binc0(0, ∗) =
23
j=0

bin(0, j); (5.2)

binc0(1, j) =
2

i=1

6(j+1)−1
k=6j

bin(i, k); j = 0, . . . , 3. (5.3)

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 50

hc0 hc1

co
ar
se

hf0 hf1

fi
n
e

Figure 5.4: The 4 histograms used to calculate the PSR distance.

� hf0 has half the bins of h, since a sector in hf0 spans two sectors of h.

More formally, the bins of hf0 are defined as the union of the bins of h

as follows:

binf0(i, j) = bin(i, 2j) ∪ bin(i, 2j + 1);

i = 0, 1, 2; j = 0, . . . , 11.
(5.4)

� hc1 is obtained by rotating hc0 clockwise of the angle θc = π/4.

� hf1 is obtained by rotating hf0 clockwise of the angle θf = π/12.

It is worth noting that the bin containment property holds both between

hc0 and hf0, and between hc1 and hf1.

Given two PSR descriptors h and h′, if the following distances between

the corresponding derived histograms are set:

� dc0 = d(hc0, h
′
c0);

� dc1 = d(hc1, h
′
c1);

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 51

� df0 = d(hf0, h
′
f0);

� df1 = d(hf1, h
′
f1);

then the PSR distance D(h, h′) is defined as follows:

D(h, h′) = min{w × dc0 + (1− w)× df0;w × dc1 + (1− w)× df1} (5.5)

where w is a parameter to balance the weights of the coarse and fine

grained histograms.

Effectiveness and efficiency of the PSR distance

This subsection informally demonstrate, through two examples, that Equation

(5.5) is more suitable than Equation (5.1) to calculate the PSR distance.

Although they are only examples, they are representative of frequent real

cases, as it will be confirmed, through the presentation of empirical data, in

section 5.3.3.

Figures 5.5 and 5.6 show the distances associated to two couples of

primitives in their template (top row) and drawn (bottom row) versions. The

first column shows the two versions of the symbol; the second column reports

the PSR descriptor for both symbols, and their distance d, as calculated

through Equation (5.1); the last column shows the four derived histograms

and reports both the individual distance values, and the final PSR distance

D, as calculated through Equation (5.5). The PSR descriptors and their

4-tuples of derived histograms used in the examples are instantiated with the

same parameters of the ones shown in Figure 5.4. A value of 0.5 is assigned

to the weight w.

Both figures report the template and drawn versions of a symbol composed

of two primitives. Each PSR descriptor describes the position of the points of

a primitive (P and P ′ in the template and in the drawn version, respectively)

with respect to the center of the other one (Q and Q′). The drawn symbols

reproduce rather faithfully the templates, except for minor distortions. Never-

theless, the distance measured through Equation (5.1) excessively emphasizes

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 52
T
em

p
la
te

P

Q

D
ra
w
n

Q'

P'

c0 c1 f0 f1
d(h, h′) = 8.05 D(h, h′) = 1.71

Figure 5.5: The effectiveness of histograms at different levels of granularity
in the calculation of PSR distance

T
em

p
la
te

QP

D
ra
w
n

P' Q'

dc0 = 16 dc1 = 0 df0 = 20 df1 = 0
d(h, h′) = 20 D(h, h′) = 0

Figure 5.6: The effectiveness of histograms at different rotation angles in the
calculation of PSR distance

the differences, bringing to an excessively high distance.

The effectiveness of the representation at two levels of granularity is

demonstrated through the example in Figure 5.5: the distance measured

through Equation (5.1) is d(h, h′) = 8.5 while the PSR distance D is as low

as 1.71. The reason is that the imprecision producing a small translation in

the position of the P primitive in the drawn version has a great effect on the

fine grained histograms and a very limited effect on the coarse grained ones.

The effectiveness of the representation with different rotation angles is

demonstrated through the example in Figure 5.6. As it can be seen, while

in h (and in its derived histograms hc0 and hf0) all of the points of the

segment fall in the lower-left quadrant, in h′ (and in its derived histograms

h′
c0 and h′

f0)) they all fall in the upper-left quadrant. This brings to a

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 53

distance d(h, h′) = 20, which represents a complete dissimilarity between the

two couples of primitives. The PSR distance D, instead, is 0, which more

faithfully represents the relation between the two couples of primitives.

The respect of the bin containment property defined above, also guarantees

a more efficient calculation of the PSR distance through Equation (5.5) than

that calculated through Equation (5.1). Since each bin of hc0 and hc1 is

respectively the union of complete bins from hf0 and hf1, the calculation of the

distance between two fine grained histograms can use partial results obtained

in the calculation of the distance between two coarse grained histograms.

In particular, let binc0(i, j) and bin′
c0(i, j) belong, respectively, to two

coarse histograms hc0 and h′
c0 and have bin distance

bin distc0(i, j) =
[hc0(i, j)− h′

c0(i, j)]
2

hc0(i, j) + h′
c0(i, j)

(5.6)

It can be proved that, if hc0(i, j) = 0 or h′
c0(i, j) = 0 then

x,y

bin distf0(x, y) = bin distc0(i, j) (5.7)

where (x, y) ranges over the set {(k, l)|binf0(k, l) ∈ binc0(i, j)}.
As a proof, if hc0(i, j) = 0, by using the bin containment property, then

x,y hf0(x, y) = hc0(i, j) = 0. This implies that each hf0(x, y) = 0 and

then, by applying Equation (5.6) to f0, that each bin distf0(x, y) reduces to

h′
f0(x, y). On the other end, hc0(i, j) = 0 implies that bin distc0(i, j) reduces

to h′
c0(i, j). By applying again the bin containment property:


x,y

bin distf0(x, y) =

x,y

h′
f0(x, y) = h′

c0(i, j) = bin distc0(i, j)

which proves the assertion. A similar proof can be devised by considering

as starting hypothesis h′
c0(i, j) = 0.

Note that Equation (5.7) holds also when applied to the rotated versions

of the coarse and fine histograms if the bin containment property is preserved.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 54

Equation (5.7) tells that the calculus of the PSR distance between two

fine grained histograms can be made more efficient by using the distance

values already calculated on the corresponding coarse histograms whenever

the coarse grained histograms present empty bins.

As an example, consider the calculation of df0 in Figure 5.5. Since no

points fall in two of the five bins in the two corresponding coarse grained

histograms, there is no need to calculate the contribution to the distance of

the bins mapped on them. Since each external bin in a coarse histogram

contains 6 bins of the fine grained one, the calculation of only 24 bin distances

out of 36 is necessary. An analogous reasoning can be done for the case of

the calculation of df0 in Figure 5.6. Here, in the two corresponding coarse

grained derived histograms, only the central bin contains points in both of

them. Thus, the calculation of 24 bin distances is saved. Naturally, the more

empty bins are present in the coarse histograms the more efficiency can be

gained.

The matching distance between symbols

To estimate the similarity of the unknown partially drawn symbol to a template

symbol, a number of the possible subgraph isomorphisms between the ARG

associated to the drawn symbol and the template ARG is considered (since

some of the possible isomorphisms are disregarded, an approximate results is

obtained). A subgraph isomorphism is a one-to-one mapping between each

node of the first graph and a node of the second graph. For each mapping its

cost is calculated, and the minimum cost is selected as the matching distance

between the two symbols.

In the following the mapping cost of a subgraph isomorphism and the

matching distance between a template and a hand drawn symbols are formally

defined.

Definition 3 Given the template ARG G = (N,E, σ, τ) and the ARG G′ =

(N ′, E ′, σ′, τ ′) for the drawn symbol, with |N ′| ≤ |N |, a injective total mapping

M : N ′ → N , and the PSR distances D on the PSR descriptors labeling the

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 55

edges in E and E ′, then the mapping cost of M is calculated as follows:

C(M) =
1

|N ′|2
×


P ′,Q′∈N ′

D(h(Q′,P ′), h(M(Q′),M(P ′))) (5.8)

Given the set of all the available mappings M = {M : N ′ → N}, then the

matching distance between a template and a hand drawn symbols is defined as

min(M) where the min function selects the mapping with the minimum cost.

Informally, C(M) is calculated as the average value of the PSR distances

between couples of mapped primitives.

In the case the drawn symbol contains more primitives than the template

one (i.e., |N ′| > |N |), and this might occur either when the drawn symbol is

mapped to a wrong smaller template symbol or when the symbol is drawn

badly, then G is padded with dummy nodes and edges. PSR distances

involving these edges are set to n (the number of sampled points in a primitive)

to account for a penalty. It is worth noting that n is the maximum value for

a PSR distance, i.e. the distance between two totally dissimilar PSRs.

The computational cost of calculating C(M) is O(n2) where n = |N ′|.
Since |M| = |N ′|!, an exact graph matching algorithm would be O(|N ′|!×
|N ′|2). With this computational complexity, an exact graph matching becomes

unfeasible as the number of primitives increases, it was chosen to use the

approximate graph matching procedure described in the following section.

Approximate graph matching

The recognizer implements an approximate incremental graph matching

procedure. Although in the previous section the matching distance is defined

as a mapping with minimum cost, for efficiency reasons an approximate

solution is acceptable. The proposed procedure keeps, at each step, a Result

List L of the best k mappings, in ascending order by the value of the mapping

cost : L = ⟨(M0, C(M0)), (M1, C(M1)), . . . , (Mk, C(Mk))⟩. The procedure

goes through the following steps:

� Step 1 (Initialization) is executed when the first drawn primitive P1 is

available. A simple ARG G′ = (N ′, E ′, σ′, τ ′) for the drawn symbol is

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 56

built: N ′ contains a node N ′
1 corresponding to P1; E

′ contains a self

loop edge on N ′
1, associated to PSR descriptor on (P1,P1). G

′ is then

matched against each single-node subgraph of each template ARG. The

Result List is instantiated and initialized with all the mappings and

their corresponding mapping cost.

� Step i (i = 2, 3, . . .) is executed as soon as a new drawn primitive Pi is

available. G′ is updated with the insertion of a node N ′
i corresponding

to Pi; edges to and from all the other nodes in N ′ and a self loop are

added to E ′; each added edge is associated to the corresponding PSR

descriptor.

– If i = 2, for each mapping M : N ′ → N in the Result List, let U

be the set of the unmapped nodes of N :

* new mappings are created, one for each element of U . The

mappings are created by duplicating M and adding the pair

(N ′
2, Uj), with Uj ∈ U .

* The mappings are added to the Result List.

Finally, the Result List is truncated by maintaining only the best

mappings.

– If i ≥ 3, the Result List is updated by adding the pair (N ′
i , Nk) to

each mapping, where Nk is the template node minimizing the cost

of the mapping (as per Definition 3).

In the above procedure the matching between the partially drawn ARG

produced at each step and the template ARGs is not started from scratch

but is performed incrementally. In particular, after the first steps, the partial

mapping obtained at the previous step is only updated with a new association

between the best matching couple of nodes from the two graphs (case i ≥ 3).

Moreover, the cost of the mapping is incrementally calculated by adding the

cost due to the new association to it. Nevertheless, the procedure does not

guarantee that the best match is found.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 57

This approximation is a compromise between the optimality of the results

and the computational resource savings. If m is the number of template ARGs

and n the maximum number of nodes in a template ARG :

� when i = 1, the PSR distance in Equation (5.5) is calculated (|N |)
times for each template, which is asymptotically O(m× n);

� when i = 2, the distance is calculated 3 |N | (|N | − 1) times for each

template. In this expression, 3 is the number of edges incident to the

new node added to the drawn ARG; |N | is the number of mappings

already present in the Result List (for the considered template), while

(|N | − 1) is the number of unmapped nodes of N . This expression is

asymptotically O(m× n× (n− 1)) or rather O(m× n2);

� at each i-th (i ≥ 3) step, the distance is calculated (|N | − i− 1)(2i− 1)

for each of the k mappings occurring in the result list at step i− 1. In

this expression, the first term produces the number of template nodes

still to be mapped and the second term represents the number of edges

incident to the new node added to the drawn ARG. This expression is

asymptotically O(k × i).

In order to estimate the computational cost of executing the algorithm

from scratch on a input primitives, its cost at each step must be summed:

O(m×n+m×n2+(k×3+k×4+ · · ·+k×a), or rather O(m×n2+k×a2).

In the limit a = n it becomes O((m+ k)× n2), and since k is a constant it

can be written as O(m× n2).

Figure 5.7 shows an example of the execution of the initial steps of the

recognition procedure on the symbol dictionary shown in Figure A.7. Each

row in the table corresponds to a step of execution. The left column reports

the step number; the central column shows the partial drawing; the right

column reports the top 5 results in the list. The parts of the template symbols

mapped to the input primitives are highlighted in green. It is worth noting

that the same template symbol can appear in the list multiple times with

different mappings. The mapping cost is reported at the bottom of the

template symbol. It is worth noting that in the case of items in the Result

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 58

Step Drawing Top 5 list

1
0.384 0.384 0.389 0.389 0.489

2
0.089 0.089 0.108 0.108 0.124

3
0.074 0.074 0.080 0.082 0.082

4
0.545 0.545 0.553 0.762 1.304

Figure 5.7: An example of the execution of the recognition procedure.

List with the same mapping cost, e.g. when the drawn symbol is a subset

of more template symbols, no particular action is taken in sorting. On the

one hand, preferring the simplest template may be more intuitive; on the

other hand, preferring the most complex one may save much more time in

autocompletion. In a real system the best choice must be calibrated on the

basis of a series of parameters and depends on the application domain. In

particular, it may be advantageous to show the symbol with the greatest

frequency in the domain.

5.2 An interactive system for the autocom-

pletion of hand drawn symbols

This section describes the design of an interactive system which assists the

user in automatically completing the symbols to draw, based on the approach

described in the previous section. After entering only a few primitives, the

user can select a symbol from a candidate list instead of completing it. On the

back-end, the approximate graph matching procedure described in Section

5.1.4 is used to incrementally produce new results as soon as more input

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 59

strokes are available. The system was developed in Java and is composed of

a front-end and a back-end subsystems.

5.2.1 Back-end

The back-end subsystem is further divided into two main modules: a Pre-

Processor and a Recognizer. The behavior of the back-end modules is graph-

ically depicted through the activity diagram in Figure 5.8. While the user

sketches a symbol, the Pre-Processor module extracts primitives one by one

from the user input. As they are extracted, the primitives are passed to the

Recognizer module which instantiates and incrementally updates a Result

List of the template symbols that best match the (partial) input, ordered by

similarity. More precisely, the Recognizer itself is initialized as soon as the

first primitive is available from the input. This initialization step instantiates

the Result List and corresponds to the execution of Step 1 of the approximate

graph matching procedure described in Section 5.1.4. Then, as soon as a new

primitive is available from the input, a new recognition step (Step i in the

procedure) is executed and the Result List is updated.

The Pre-Processor is fired as soon as the pen is released from the surface.

As the user draws, the points of the stroke are resampled so as to be equidis-

tant. Then the segmentation and clustering steps are executed. Finally, the

extracted primitives are resampled at an equal number of points and a stream

of primitives is produced and passed to the Recognizer. Random forests [78]

were used as a learning method for building the classifier required in the

segmentation step. The classifier was implemented in R language, using the

randomForest package [69]. The call to the classifier from the main program

is performed through the Java/R Interface (JRI), which enables the execution

of R commands inside Java applications.

The front-end

The front-end is very simple and is shown in Figure 5.9. The view contains a

canvas for drawing the symbol. On the left hand side of the canvas, a linear

menu containing the top symbols from the Result List is shown. The best

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 60

User Pre-processor Recognizer

Draws

Extracts the i-th

PRIMITIVE

Initialization

i-th step

i = 1

i ≥ 2

Result List

[Initialized]

Result List

[Updated]

Figure 5.8: Description of the system back-end.

Figure 5.9: A screenshot of the interface for symbol autocompletion, using a
list of 6 candidates.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 61

candidate is on the top of the list menu. It is worth noting that, although

the Result List can contain the same symbol multiple times, the interface

only shows different symbols. A symbol is selected by tapping on it with the

pointer. Whenever a selection occurs, the chosen symbol is pasted in the

place of the partially drawn one. The size of the pasted symbols are also

proportionate to those of the drawn one.

Due to the design choices of the back-end modules, the drawing style

requires some light constraints to the users. In particular, the users can

draw a symbol with their desired size and without caring of the stroke order.

The presence of constraints are due to the efficiency requirements of the

Pre-Processor : a stroke can be mapped on more primitives, but a primitive

cannot be completed using multiple strokes. Furthermore, the users should

not overtrace. The user is aware of the segmentation process through a

real-time visual feedback: a marker highlights each detected corner point.

5.3 Evaluation

The proposed approach is extensively evaluated from multiple points of view.

The recognizer is evaluated on the basis of its recognition capacity on partially

drawn symbols, in comparison to other related methods (e.g. [50] and [49]).

Three different tests are performed on as many data sets: a large set of

composite symbols to compare to [50], a set of hand drawn symbols with 20

classes to compare to [49] and a larger set of hand drawn symbols with 113

classes. The purpose of the first two tests is to show the superiority of the

proposed approach in recognizing partially drawn symbols, especially with a

few primitives available. In the last test, the objective is to further explore

the effectiveness of the proposed approach with a more complex set of hand

drawn symbols.

The design choices in the development of the system are also justified on the

basis of results obtained in tests on the data. In particular, the performance

of the PSR Descriptor and the efficiency of the system for autocompletion are

separately evaluated. Lastly this section reports the results of the evaluation,

through a user study, of the conditions under which the users are willing to

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 62

Data Set Num. of Num. of symbols Source Num. of primitives
classes (drawers)

Composite 97 97 + 97∗ + 97∗∗ (/) [50] 2− 13 (µ = 5.9; σ = 2.6)
COAD 20 640 (8) [56] 4− 14 (µ = 9.4; σ = 3.0)
COAD2 113 4520 (8) [56] 2− 19 (µ = 5.9; σ = 2.9)

The symbols in the Composite data set are not hand drawn.
* Artificially lightly deformed symbols.
* Artificially heavily deformed symbols.

Table 5.1: Features of the three data sets.

exploit the autocompletion functionality and those under which they can use

it efficiently. All the data which were not collected from other sources were

obtained through a SMART Podium ID250 Interactive Pen Display (with a

pen report rate of 100 points per second) connected to a Dell Precision T5400

workstation equipped with an Intel Xeon CPU at 2.50 GHz running Microsoft

Windows XP operating system and the Java Run-Time Environment 6.

5.3.1 Data sets

The proposed approach was tested on three different data sets. Two of

them have already been introduced in the literature and used to measure the

performance of some predecessors. Since the approach works well using a

single perfect template per class, the templates extracted from the images

contained in the source documents introducing them are used. The three data

sets have heterogeneous features, which allowed the test of the validity of the

proposed approach in varying circumstances. Some features are summarized

in Table 5.1. The table reports, for each set, the number of different classes,

the number of hand drawn symbols with the number of different drawers in

parentheses, a reference to the source document where the templates were

extracted from and some data related to the number of primitives of the

symbols in the set. In particular, its range, average and standard deviation

are reported.

The Composite data set (see Appendix A.3) contains 97 symbols in

composite graphics (not hand drawn), plus 97 lightly deformed symbols

and further 97 heavily deformed symbols. This data set was introduced by

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 63

Xiaogang et al. to measure the performance of their recognizer [50]. The

symbols are already segmented, thus the pre-processing step will be skipped.

The COAD data set (see Appendix A.4) contains 620 drawn symbols,

belonging to 20 different classes from the domain of Military Course of Action

Diagrams [56]. This data set was used by Tirkaz et al. to measure the

performance of their recognizer [49]. As already done by the authors in

[49], the data set has been randomly split in a training set and a test set

(containing 80% and 20% of the total number of symbols, respectively). The

training set has only been used to train the pre-processor, while the symbol

matching used the templates extracted from [56].

Since the COAD data set contains a relatively small number of different

classes, a larger data set, called COAD2 (see Appendix A.5), was created

from the same domain. This data set contains 4520 drawn symbols, belonging

to 113 different classes.

5.3.2 Performance of the recognizer

The recognizer is evaluated on the basis of its recognition capacity on partially

drawn symbols. A Java-based recognizer implementing the method with PSR

descriptors with 3 circles and 24 sectors was developed; the primitives were

sampled at 20 points; the weight parameter for the calculation of the PSR

distance was set to w = 0.5. These parameters were chosen in a tuning phase

with a different set of symbols. The Result List size of the approximate graph

matching procedure described in Section 5.1.4 was set to k = 1000.

In order to compare the recognizer with two of the predecessor methods,

two different tests are performed. No comparisons are available in literature

among methods for partial hand drawn symbol recognizers. In [50], the

proposed method is compared to a previous version of the method itself. In

[49], the method is not directly compared to similar methods: its superiority is

demonstrated by showing that it outperforms existing methods on full object

recognition accuracies reported in the literature. Due to the unavailability of

implementations of the above cited methods, the comparison is carried out

on the basis of the results reported by them on the data set used in their

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 64

evaluation.

The measure used to evaluate the effectiveness of the proposed and other

approaches is the recognition rate on top N interpretations for different

values of N . This measure reports the percentage of times that the correctly

matching template is in the top N positions of the candidate list returned by

the recognizer. Furthermore, the recognition rate is calculated as a function

of the number (or the percentage with respect to the total number) of the

primitives drawn by the users.

Comparison to [50]

The method proposed by Xiaogang et al. [50], which represents a symbol

through an SRG, was tested on the Composite data set. As already done

with their SRG recognizer, in the test the templates in Figure A.3 are used

to perform recognition. Furthermore, as unknown input symbols the same

symbols in the set are used: for each symbol an incomplete version of it

is taken, composed of a randomly chosen subset of the primitives. This

evaluation procedure is the same followed in [50] and is replicated it as

a means of comparison. It provides a useful tool to understand how the

approach works with perfectly drawn partial input (best case).

Here, the recognition rate is calculated as a function of the percentage (with

respect to the total number) of the primitives in the unknown symbols. Figure

5.10a shows the performances of the proposed recognizer (the continuous blue

line) in comparison to those of their SRG recognizer (the dashed red line) on

the set of 97 regular (not deformed) symbols. The horizontal axis reports the

percentage of primitives drawn, while the vertical axis reports the recognition

rate. Top 1 and top 3 interpretations are shown. Although the symbol set is a

replication of the one originally used by the authors and then the comparison

may contain small inaccuracies, a clear superiority of the proposed recognizer

with a few primitives drawn can be noticed.

The presented recognizer has also been tested with the artificially deformed

symbols, showing good performance even in this case. Figure 5.10b shows

the performance of the proposed recognizer on the two artificially deformed

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 65

0,5 0,6 0,7 0,8 0,9 1

30%

40%

50%

60%

70%

80%

90%

100%

top1
top3
SRG-top1
SRG-top3

symbol completion

re
co

g
n

iti
o

n
 r

a
te

(a) Performance of the proposed recognizer
compared to those of SRG [50].

0,5 0,6 0,7 0,8 0,9 1

30%

40%

50%

60%

70%

80%

90%

100%

set1-top1

set1-top3

set2-top1

set2-top3

symbol completion

re
c
o

g
n

it
io

n
 r

a
te

(b) Performance of the proposed recognizer
on two artificially deformed data sets.

Figure 5.10: Results on the Composite data set.

symbol: sets set1 and set2 in figure are the sets of lightly and heavily deformed

symbols in the Composite data set, respectively.

Comparison to [49]

To compare the performance of the proposed approach to that of the method

proposed by Tirkaz et al. [49], the proposed approach was tested on the COAD

symbol set, i.e. the same used in their experiments. Here the performance of

the proposed approach is evaluated in a similar way as they reported that

of their system: the accuracy in terms of the top N classification on full and

partial symbols separately. Furthermore, due to the possible ambiguity of

both complete and partially drawn symbols in the COAD set, Tirkaz et al.

let a human expert decide if each sample could be classified unambiguously

for varying values of N or it was to be rejected. As a further comparison,

the output of their human expert is reported as well. It is worth noting that

fully drawn symbols may be rejected as well, as they may be confused with

a partially drawn version of another symbol. The reject rate clearly varies

with N, since a symbol can be ambiguous for a top N interpretation but not

ambiguous for a top M interpretation (M > N).

To compare to [49] two simple conditions to reject the ambiguous symbols

are defined. The conditions are based on the evaluation of the matching

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 66

distance of the first symbol in the candidate list and that of the (N+1)-th

symbol. The first condition is verified if the ratio between the two distances

is greater than a certain threshold T1. The second is verified if the difference

between the two distances is greater than a certain threshold T2. The symbol

is rejected if at least one of the two above conditions is verified. The T1 and

T2 parameters are tuned using the training set of the COAD symbol set, by

testing all the possible couples (T1, T2) (discretized at regular steps and varied

within plausible ranges). The couples were chosen in order to have a reject

rate lower than, but as close as possible to, the one of the human expert for

the partially drawn symbols. For all values of N, the value of T1 was set to

0.9. The value of T2 was set to −0.14, −0.08 and −0.05 for N=1, N=2 and

N=3, respectively. The accuracy of the system is much more sensitive to

variations in the values of the parameter T1, while the value of T2 offers a

further refinement.

The results of the comparison for N=1, N=2 and N=3 are reported in

Tables 5.2, 5.3 and 5.4, respectively. Each table has three rows, corresponding

to the performance of the proposed approach, that of the system described in

[49] and that of the human expert, respectively. The columns report both

the accuracies and the reject rates. The two approaches have comparable

accuracies. As regards the accuracy on the partial symbols, the proposed

approach seems to outperform the other method. In fact, the recognition

rate is greater for each value of N. For N=1, the accuracy is much higher.

Nevertheless, the proposed approach has a greater (but closer to that of the

human expert) reject rate, as well. For the other values of N, the proposed

approach has both a higher accuracy and a lower reject rate. Conversely, the

method by Tirkaz et al. [49] seems to be more accurate on the full symbols:

both methods always obtain 100%, but the proposed approach has a higher

reject rate.

Test on a large hand drawn symbol set

To obtain a more accurate information on the performance of the recognizer

on a set of hand drawn symbols, the proposed approach was tested on the

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 67

Method Partial ac- Full accu- Reject rate Reject rate
curacy (%) racy (%) for partial (%) for full (%)

Proposed approach 98.39 100.00 77.37 36.11
Tirkaz et al. [49] 92.65 100.00 70.82 17.52
Human [49] 100.00 100.00 75.36 33.58

Table 5.2: Test performance on the COAD data set for N=1.

Method Partial ac- Full accu- Reject rate Reject rate
curacy (%) racy (%) for partial (%) for full (%)

Proposed approach 98.02 100.00 63.14 24.07
Tirkaz et al. [49] 95.00 100.00 65.67 18.25
Human [49] 100.00 100.00 61.74 18.25

Table 5.3: Test performance on the COAD data set for N=2.

Method Partial ac- Full accu- Reject rate Reject rate
curacy (%) racy (%) for partial (%) for full (%)

Proposed approach 97.60 100.00 54.38 21.30
Tirkaz et al. [49] 97.53 100.00 65.24 17.52
Human [49] 100.00 100.00 55.07 12.41

Table 5.4: Test performance on the COAD data set for N=3.

larger symbol set COAD2. For each hand drawn symbol composed of n

primitives, the recognizer was launched n times, each on the ARG built on

the first 1, . . . , n primitives drawn by the user, representing the symbol at a

different completion status. The results are plotted in Figure 5.11. Here, the

recognition rate is calculated as a function of the number of the primitives.

From the chart it can be noted that the recognition rate is above 70% with

only 2 available primitives when considering the top 6 interpretations.

5.3.3 Performance of the PSR descriptor

The calculation of the distance between two histograms through the PSR

distance (Equation (5.5)) enhances the recognizer’s performance from the

points of view of both effectiveness and efficiency. To evaluate the enhance-

ment, the recognizer was ran again on the COAD2 data set by using the

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 68

1 2 3 4 5 6 7 8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

top1

top3

top6

top9

number of primitives

re
co

g
n

iti
o

n
 r

a
te

Figure 5.11: Recognition rate by the number of primitives drawn on the
COAD2 data set.

traditional distance (Equation (5.1)). As regards the effectiveness, the results

of the comparison are shown in Figure 5.12, as a function of the number

of the primitives, for the top 1 interpretation. Using Equation (5.5) the

improvement is in a range of about 5-7 percentage points, when at least two

primitives have been drawn. Improvements, in some cases even higher, are

also obtained with top 3, top 6 and top 9 interpretations. As for the efficiency,

it is worth noting that when calculating the PSR distance, if no point falls in

a sector of at least one of two corresponding coarse grained histograms, it is

not necessary to calculate the contribution to the distance of the smaller bins

mapped on them. On the COAD2 symbol set the frequency with which at

least one of two corresponding bins is empty is 79.0% (88.3% for the central

bins and 76.3% for the peripheral bins). This brings to a lower number of

bin comparisons, which is reduced to about 26 on average (the worst case is

81), while with Equation (5.1) it is always 72. However, the reduction in the

execution times is not proportional to the above numbers, due to the extra

programming logic needed to implement the bin comparisons with Equation

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 69

1 2 3 4 5 6 7 8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

top1 Equation (1)

top1 Equation (5)

number of primitives

re
co

g
n

iti
o

n
 r

a
te

Figure 5.12: Recognition rate by the number of primitives drawn on the
COAD2 data set for Equation (5.1) and Equation (5.5).

(5.5).

5.3.4 Performance of the interactive system

When tested on the COAD2 data set, each step of the incremental procedure

takes ∼45 milliseconds on the same apparatus used to collect the data. This

result demonstrates the feasibility of the approximate graph matching algo-

rithm for a real-time system. Obviously, the use of an approximate algorithm

causes a loss of performance, when compared to a hypothetical exhaustive

algorithm. To estimate this loss, the same test reported in Section 5.3.2 (on

COAD2 data set) is executed using a nearly exhaustive algorithm (cutting

only the most distant mappings and only in presence of a large number of

primitives drawn). Very similar results to those shown in Figure 5.11 are

obtained, with a maximum loss of one percentage point.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 70

5.4 Experimenting the autocompletion func-

tionality with users

The autocompletion functionality is evaluated in a user study. The research

question was the following: is it really convenient in terms of efficiency to

partially draw a symbol and choosing a candidate from a list or is it better

to draw it completely?

To respond to this question fourteen participants (3 female), whose age

ranged from 23 to 47 (M = 30.4;S.D. = 7.5) were recruited. All of them

are right-handed and are habitual computer users. Then a single-factor

within-subjects experiment was designed. The factor was the input technique

(with and without the help of the autocompletion), while the main dependent

variables were the symbol completion time (measured from the first pen-down

event to the last pen-up or menu selection event) and the drawing accuracy.

The symbol set was the one described in Appendix A.5.

The experimental procedure resembled that used in text entry experiments:

each task consisted of copying an input symbol in the shortest possible time,

balancing speed and drawing accuracy. An application prepared for the

experiment showed the symbols one at a time and the participants were asked

to transcribe each symbol after having observed it carefully. This procedure

allowed to measure only the execution time, purging its measure from factors

related to memory. The above task was administered to them in the following

two conditions:

� Manual : The symbol must be drawn entirely by hand, without any

assistance from the system;

� Auto: The symbol can be drawn entirely by hand or selecting a candidate

from the menu, at user’s choice.

In the study, the participants were asked to draw all of the 113 shapes once

in both conditions using the interactive system described in Section 5.2 and

were assigned to two equally sized groups, to counterbalance the execution

order of the two conditions. The participants had to draw continuously, with

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 71

no relevant temporal breaks, during the task. Before the beginning of the

experiment, they had an induction phase in which the objective and the

procedure of the experiment were explained to them. They also went through

a training phase in which they got acquainted with the symbols: they were

given a printout of the whole set of symbols and were asked to observe and

copy the symbols with paper and pencil. Then, under the supervision of

an operator, they run an introductory session with the tablet in order to

be sure they could correctly draw the symbols on it. They also tried to use

autocompletion on all of the symbols. The drawing style was completely free

for the Manual condition. In the Auto condition, instead, the participants

had to comply to the light constraints described in the previous section: they

were told to start and end a stroke in a corner of the symbol and not in the

inner points of a segment or a curve (thus, circles must be completed using a

single stroke) and not to overtrace.

Since the participants are left free to choose whether to use autocompletion

in the Auto condition, the data is split in two groups: those from the tasks

in which the autocompletion functionality has been actually used and the

others. These groups are named the Sel and NoSel groups, respectively. The

subdivision is performed on the tasks done in the Auto condition, but the Sel

group also contains the data from the corresponding (obtained by the same

participant on the same symbol) tasks in the Manual condition.

In the following the results of the experiment are reported. The considered

measures are the drawing time, the drawing accuracy and the use of autocom-

pletion in percentage. Also some free form comments from the participants

are reported.

5.4.1 Completion times

A comparison of the performances measured in both conditions is shown in

Figure 5.13. Each bar in the figure indicates the average time to complete a

symbol from one of the three data sets AllData, Sel or NoSel under one of

the two conditions Auto or Manual. For example, the blue bar indexed by

Sel indicates the average time taken by the participants under the Manual

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 72

0

1000

2000

3000

4000

5000

6000

All Data Sel NoSel

Avg time to

complete the

symbol (ms)

Manual

Auto

Figure 5.13: Average time needed to complete a symbol in both Manual and
Auto conditions.

condition when drawing symbols in the data set Sel, i.e., when drawing

symbols for which they have exploited autocompletion when under the Auto

condition.

The Auto condition was more efficient than the other: overall, the average

time to complete a symbol was 3”79 in the Manual condition and 3”06 in

the Auto condition, with a 17.8% of time saving. The significance of the

results are checked through a two-way with one within-subjects factor (the

condition) and one between-subjects (the group) factor analysis of variance

(ANOVA). The experiment revealed a highly significant effect of the condition

on the completion times (F1,12 = 20.7, p < .0001). The group effect was not

statistically significant (F1,12 = .237, ns), i.e., the counterbalancing worked.

The condition × group interaction effect also failed to achieve statistical

significance (F1,12 = .364, ns). This means there was no asymmetrical transfer

of skill.

Considering only the data in the Sel group (those in which the auto-

completion functionality has been actually used), a greater difference was

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 73

sought between the average completion time in the Auto condition (3”42)

and in the Manual condition (4”89), with a drawing time saving of 28.7%.

This difference was highly significant (F1,12 = 41.8, p < .0001). The small

difference sought in the completion times of the symbols in the NoSel group

(those in which the autocompletion functionality was not exploited by the

user in both conditions) was not statistically significant (F1,12 = 0.003, ns).

Details on the performance of the 14 participants in the Auto condition

are reported in Table 5.5: the table reports, in the first three columns of data,

the percentage of drawing time saving with respect to the Manual condition.

The last row of the table reports values averaged over the performance of all

of the participants. Overall, 12 participants out of 14 obtained a time saving

up to 33% for a single participant; the other two participants were slightly

faster in the Manual condition.

5.4.2 Menu use

Table 5.5 reports in the last column, the ratio of the symbols completed

through a menu selection. The participants judiciously used the menu. In

fact, the menu was used with slightly less than half of the symbols presented

to them. The lack of statistical significance of the small difference sought in

the completion times of the symbols in the NoSel group indicates that the

decision of not to use the autocompletion did not result in a significant delay

in the completion times.

Not surprisingly, the frequency of use of the menu increases as the com-

plexity of the drawn shapes increases: its value has a high correlation with

the number of primitives (c = 0.76), the number of strokes required to com-

plete the symbol in the manual condition (c = 0.75) and the time needed to

complete the symbol in the manual condition (c = 0.79).

5.4.3 Analysis by the number of primitives

The number of primitives in a symbol clearly influence the need of using

autocompletion. For this reason, a deeper analysis of the completion times

was performed by using the complexity of the shapes as a parameter. In

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 74

Time Saved vs the manual condition
Participant All Shapes Sel NoSel Menu Use
P1 -22.82% -36.78% 0.89% 43.36%
P2 -11.97% -20.16% 18.43% 69.03%
P3 -17.17% -33.10% 9.68% 48.67%
P4 -7.63% -13.81% -4.37% 23.01%
P5 -21.17% -31.61% -8.11% 46.02%
P6 1.45% -8.86% 10.74% 33.63%
P7 -33.14% -45.07% -17.80% 42.48%
P8 -32.10% -46.74% 3.98% 56.64%
P9 -9.77% -22.04% 4.17% 38.94%
P10 4.63% -10.00% 24.56% 42.48%
P11 -24.01% -31.06% -18.52% 30.97%
P12 -19.99% -26.78% 8.00% 69.91%
P13 -33.23% -40.27% -12.92% 64.60%
P14 -22.82% -36.09% 0.06% 50.44%
Mean -17.84% -28.74% 1.34% 47.16%

Table 5.5: Percentage of menu use and time saving in drawing symbols in the
Auto condition.

particular, the set of 113 symbols was partitioned into 3 groups according to

their number of primitives:

1. simple (43 symbols): 2-4 primitives;

2. average (46 symbols): 5-7 primitives;

3. complex (24 symbols): 8 or more primitives.

The average times to complete symbols belonging to the 3 groups in both

conditions are reported in Figure 5.14. An advantage in the completion of

the symbols belonging to all 3 groups has been obtained in the Auto condition.

The advantage increases as the complexity of the symbols increases. Symbol

29, composed of 19 primitives, is an example of a complex symbol for which

the menu provided a big saving: the average times required to complete it

in both Manual and Auto conditions were 13”0 and 3”3, respectively. On

this symbol, all of the participants used the menu obtaining an average time

saving of 74.6%.

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 75

0

1000

2000

3000

4000

5000

6000

7000

Simple Average Complex

Avg time to

complete the

symbol (ms)

Manual

Auto

Figure 5.14: Performance in 3 groups.

It is also worth to report the percentage of menu use separately for the

three groups. As expected, this percentage increases as the complexity of the

symbols increases. The recorded values were 19.8%, 51.4% and 88.1% for the

simple, average and complex group, respectively.

5.4.4 Accuracy

Autocompletion improves the accuracy of symbol recognition, since the action

itself of selecting the right symbol from a candidate list, results in a correct

recognition of the symbol by the system. Nevertheless, it is worth to report

the extent of this improvement. The accuracy of the completed symbols in

both Manual and Auto conditions was measured through a recently proposed

multi-stroke symbol recognition method [42].

The recognition rates resulting from the analysis is 89.8% and 84.5% for

the drawings in the Auto and in the Manual condition, respectively. Thus, the

autocompletion functionality did help in obtaining a better recognition. This

difference was sought to be statistically significant (F1,12 = 10.8, p < .01).

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 76

It is interesting to note that, considering only the symbols in the NoSel

group, there is a small difference in accuracy in favor of the Manual condition

(84.8% vs 82.9%). However, this difference was not statistically significant

(F1,12 = 7.1, ns). This indicates that, on the manually completed symbols,

participants used approximately the same accuracy in both conditions and

the difference in accuracy on all the symbols is only due to the benefit of

autocompletion.

It is worth noting that a candidate selection did not always end in a correct

choice. Thus, the error rate in the use of the menu was also evaluated: the

ratios of wrong selections have been measured per single participant and then

averaged. The ratio of errors in menu selection was 4.31%. For most of them

(3.27%) the participants realized they had selected the wrong symbol and

changed the selection. A 1.04% of the selections, instead, remained unchanged

and led to a wrong symbol selection.

5.4.5 Comments from the participants

After the experiment, the participants were asked about their impressions on

the autocompletion functionality. Most of them felt that the it had helped

them in speeding up the drawing process. Some participants complained

about the arrangement of the symbols in the list: the upper symbols, which

are the most likely to be selected, were often considered too far from the

position of the pen to be selected efficiently and their position was often far

from the view and thus difficult to be detected. The participants perceived

positively the refresh of the list in real time. Lastly, all of the participants

declared that they did not feel uncomfortable in adopting the constrained

drawing style used in the menu condition.

5.5 Concluding remarks

This chapter has presented an approach for the recognition of partially

drawn multi-stroke symbols. The approach is invariant with respect to scale,

and supports symbol recognition independently from the number and order

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 77

of strokes. The recognition can produce reliable results with only a few

available primitives, thus enabling the realization of a system supporting the

autocompletion of the drawn symbol.

The effectiveness of the approach has been proven by testing it on three

different symbol sets. The tests on the first two sets allowed the evaluation

of the proposed approach in comparison to those of two other systems with

similar features. With incomplete symbols, the proposed approach showed

some superiority compared to both other systems. With full symbols, however,

the system by Tirkaz et al. [49] showed better performances. The greater

accuracy with partially drawn symbols, especially in the early stages of

drawing, makes the proposed approach more suitable than the tested ones

for autocompletion. Another feature that makes the proposed approach more

desirable than others is the possibility of working with a single (perfect)

template per symbol. In particular, the recognition phase of the proposed

approach requires no training. This can be an advantage compared to the

system in [49], which instead relies on training to acquire information about

the drawing style of the users. It should also be said that the more the symbols

are complex (in terms of number of primitives), the more the variability in

drawing styles increases, making it more difficult to adopt the system in [49].

The good results obtained in the test on the set COAD2, the most complex

among those examined, show that the proposed approach has good scalability

with respect to the number and complexity of shapes in the set of symbols.

The good recognition performances of the approach, achievable even with

a limited number of primitives, allowed the execution of a user study aimed

at evaluating the feasibility of a basic symbol autocompletion system. The

goal was to evaluate if the users can exploit the feature in an effective and

efficient way. It is found that, applied to the COAD2 set of 113 symbols,

autocompletion is advantageous: using a simple linear list with 6 candidates,

the users can save about 18% of time with respect to sketching the whole

symbol, on average. Other results presented in this chapter show the good

performance of the proposed enhancement in the procedure to find corners

with respect to [1], of the approximate graph matching procedure, and of

the method for calculating the distance on PSR Descriptors, with respect to

CHAPTER 5. RECOGNITION OF PARTIALLY DRAWN SYMBOLS 78

previously known methods for histograms [2].

A limitation of the system for autocompletion is that it compels the

user to adopt a constrained (but still natural) drawing style: a stroke can

be mapped on more primitives, but a primitive cannot be completed using

multiple strokes. For instance, with the used pre-processor, the user should

not break ellipses, but should draw them in a single stroke. However, this

constraint is not particularly uncomfortable for users, as previous experiences

[48] show that they already naturally follow this style in the vast majority

of cases. Furthermore, the experiment participants explicitly stated, in their

freeform comments, that they did not feel uncomfortable in complying to the

constrained drawing style.

Chapter 6

Identifying Attachment Areas

on Sketched Symbols

In this chapter, in the context of graphical context detection, an approach

for identifying attachment areas on sketched symbols is proposed.

According to a largely accepted model in the visual language community

(see for example [79, 8]), the relations between the symbols of a visual

sentence are geometrically defined through attachment areas of the symbols.

For example, an arc of a graph is entering a node if the head of the arc

is physically connected to the node boundary. Here, the relation entering

between arc and node is defined on the attachment area head of the arc and

the attachment area boundary of the node. In order to recognize relations

between symbols it is then important to recognize the involved attachment

areas.

Systems allowing users to build visual environments, such as VLCC [80]

and VisualDiaGen [81], are often equipped with tools for defining the symbols

of a language. The definition of a symbol includes both a physical aspect and

a logical behaviour. The former is characterized by the visible features of the

visual symbol, while the latter includes the relations with other symbols and

the presence of visual or textual annotations attached to the symbol.

Attachment areas can have different shapes and are generally related to

the physical appearance of the symbol. In particular, they can be originated

79

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 80

from single points, parts of the symbol or areas related to the symbol in

some way. Figure 6.1 reports some examples of attachment areas on symbols

taken from different domains. Among them there are: some vertexes for the

Conditional box symbol, some sides (borders) for the Multiplexer symbol, and

an inner area for the Class symbol. In this last case, the area is delimited

by the visible ink of the drawn symbol. In the case of the Schema symbol of

Tic-Tac-Toe game, the area of the top-left cell is only partially delimited.

In WIMP-based systems, an object can be placed on the canvas by using a

menu. In this case attachment areas are automatically reported by the system.

In a sketched language, due to the impreciseness of hand-drawing, actual

attachment areas of shapes may be heavily deformed [8]. The management

of areas which are not delimited by the visible ink of the drawn symbol can

be even more difficult.

The proposed approach is independent from the domain of the symbols

and from the method used to recognize symbols and assumes that the symbol

has already been recognized. This also means that the ink drawn by the

user to sketch the symbol has already been separated from the other ink in

the diagram. The approach requires that the symbol and, more precisely

both its physical and logical features, is defined in vector graphics. The

identification of the attachment areas is performed by establishing a mapping

between sampled points of both the sketched and the template symbol. The

approach is evaluated through a user study in which users are required to

sketch symbols from different domains and then to identify attachment areas

on the drawn symbol.

The chapter is organized as follows: the next section discusses the proposed

approach for the identification of the attachment areas; the subsequent section

presents the results of the user study; lastly, some final remarks conclude the

chapter.

6.1 The approach

In the proposed approach, both the visible ink and the attachment areas of the

template are defined in vector graphics: elements of the symbol are defined

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 81

(a) Activity (b) Class (c) Condit.
box

(d) Hexagon (e) Multi-
plexer

(f) Node (g) Tic-tac-
toe

(h) XOR
Port

T
em

p
la
te

D
ra
w
n

Figure 6.1: The symbols used to test the approach with their attachment
areas highlighted

through geometric primitives such as lines and curves. The attachment areas

are put in relation to the points of the visible ink: they can be a part (point

or segment) of a primitive or being spatially identified to the closest points of

the primitive. More in details, a containing area is defined using the existing

points and the attachment area is defined as a part of it. The containing area

is the smallest possible. A SVG editor is used to define both the visible ink

and the attachment areas of the symbol.

The approach consists of the following steps:

1. Finding a matching between the points of the sketched symbol and the

points of the template symbol;

2. Identification of the attachment area on the sketched symbol.

In the following, after describing how the symbols and their attachment areas

are represented, two points above are detailed.

6.1.1 Symbol representation

A simplified version of SVG is used to represent symbols. The only primitive

used in this simplified version is the polyline (identified through the path

element). A polyline is defined through the succession of the endpoints of its

segments.

In the proposed approach both the visual aspect of the symbol and its

attachment areas are defined thus leading to two different kinds of primitives:

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 82

physical and logical ones. Physical primitives are used to represent the visible

ink, while logical ones are only used to define attachment areas. Since some

physical primitives exactly define attachment areas, they also behave as logical

primitives.

With logical primitives three types of attachment areas are defined:

� Point: a point located on the visible ink of a symbol. Since a certain

tolerance by user interaction is required, the point is defined as the

center of a circular attachment area.

� Border: a polyline corresponding to a part of the visible ink of a symbol.

The area surrounding the polyline is included in the attachment area

for tolerance.

� Area: a polygon delimiting an area. If all of the vertices of the polygon

belong to the visible ink of the symbol, the attachment area is said to

be closed. If at least one vertex is not in any physical primitive, then it

is said to be open. As an example, the attachment areas in the middle

row of a Tic-tac-toe schema (see Figure 6.1g) are closed areas, while the

top left attachment area is an open area.

A thickness parameter is defined for points and borders in order to handle

tolerance.

In this SVG implementation the id attribute of the XML path element is

used to represent different kinds of primitives and types of attachment areas

through conventional names.

As an example, in figure 6.2 the first two elements define the visible

primitives of the XOR Port symbol shown in figure 6.1h. The second element

is also an attachment area of type Border. The value assigned to its id

attribute is composed of its name (inputEdge) and the type of the attachment

area (border) separated through an underscore character. The third element

is a logical primitive defining the attachment area (a point) corresponding to

the rightmost point of the symbol ink. A logical primitive is conventionally

represented by terminating the id attribute with the logical suffix. In figure

6.3, the first four elements above define the visible ink of the Tic-tac-toe

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 83

<path id=”xor1” d=”m 6 . 41 , 8 . 0 6 0 . 5 9 , 0 . 7 2 c . . . z” s t y l e=” f i l l :
none ; s t r oke :#000000” />

<path id=”inputEdge border ” d=”m 4 .69 , 20 . 01 0.59 ,−0.72 c . . . ”
. . . />

<path id=”ou tpu tPo i n t po i n t l o g i c a l ” d=”m 20 .94 , 14 . 03” . . . />

Figure 6.2: XOR Port code

<path id=”r i gh t ” d=”m 18 .80 ,0 0 ,28 .04” . . . />
<path id=” l e f t ” d=”m 9.25 ,0 0 ,28 .04” . . . />
<path id=”upper” d=”m 0 ,9 .25 28 .04 ,0” . . . />
<path id=”bottom” d=”m 0 ,18 .80 28 .04 ,0” . . . />
<path id=”c e n t r a l c l o s e dA r e a l o g i c a l ” d=”m 9 . 25 , 9 . 2 5 9 .55 ,0

0 , 9 . 55 −9.55 ,0 z” . . . />
<path id=”r i g h t c l o s e dA r e a l o g i c a l ” d=”m 18 . 80 , 9 . 25 9 .25 ,0

0 , 9 . 55 −9.25 ,0 z” . . . />
<path id=”topLe f t openArea l o g i c a l ” d=”m 0 ,0 9 .25 ,0 0 , 9 . 24

−9.24 ,0 z” . . . />

Figure 6.3: Tic-tac-toe code

Schema symbol shown in figure 6.1g. The subsequent two elements define

two closed areas, corresponding to the central and the central-right cells,

respectively. The last element defines the open area corresponding to the top

left cell.

6.1.2 Point matching

In the first step, a mapping is established between the points of the sketched

symbol and those of the template symbol. Before matching the points, a set

of points must be sampled from both the sketched and the template symbol.

(a) Template symbol (b) Drawn symbol

Figure 6.4: Point matching between a template and a drawn symbol

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 84

The procedure described in [30] is used to extract a set of equally spaced

points from a stroke. Since a symbol can be composed of an arbitrary number

of strokes, the points are allocated to the strokes proportionally to their

length using the D’Hondt divisor method. In the proposed approach, the

number of sampled points from the template symbol is twice the number of

sampled points from the sketched symbol. This way, small non-proportional

scale variations are better tolerated.

Once the points have been sampled in both the sketched and the template

versions of the symbol, they are matched using a variation of the procedure

described in [2]. Briefly, the procedure associates a shape descriptor to each

point. The descriptor, called shape context, is a polar histogram describing

the relation of the given point to the other points of the symbol. Two

shape contexts can be compared using a matching cost function. A matching

between the sets of points of the two versions which minimizes the cost is

chosen. This is done through bipartite graph matching. The procedure has

been modified to handle the different number of points between the template

and the sketched versions: the values of the bins in the histogram of a point

in the template symbols are halved to correctly measure the distance to a

histogram of a point in the sketched version.

An example of point matching with 64 points in the template and 32 in

the drawn symbol is shown in figure 6.4. The figure shows that the point

matching procedure tolerates the small non-uniform scale variation due to

drawing imprecision: all of the points on a line of the drawn symbol are

correctly mapped on the corresponding line of the template symbol. If the

two versions of the symbol were sampled at the same number of points, a less

faithful correspondence would have been obtained.

6.1.3 Area identification

Given an area At defined in the template symbol, S ′
t is the set of points of

the template symbol falling into At. A subset St of these points will have a

mapping with points on the sketched symbol. Ss is the set of points of the

sketched symbol matching those in St. The identification of the attachment

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 85

area As (corresponding to At) on the sketched symbol is performed by using

geometric features of both sets Ss and St. Depending on the area type, these

features are used as follows:

� Point : As is obtained as a circle of center cs and radius set to the

defined thickness size. ps and pt are defined as the centroid of the sets

Ss and St, respectively. cs is calculated as follows: ps + (ct − pt), where

ct is the center of At;

� Border : As is obtained as the area including all of the points of distance

smaller than thickness from the polyline connecting the points in Ss;

� Closed area: As is calculated as the closed area of the convex hull

generated by the points in Ss;

� Open area: As is calculated as the morphing of At, such that the

bounding box of Ss is equal to the bounding box of St.

It is worth noting that if the set St of mapped points is empty the approach

cannot locate As and fails to identify the attachment area.

6.2 Evaluation

The approach has been evaluated through a user study aimed at comparing

the attachment areas identified by the system to those perceived by the user

who has drawn the symbol. To this aim, the users were required to sketch

the symbols and then identify the attachment areas on them. A prototypical

application has been developed to this aim. As shown in figure 6.5, the

interface is vertically divided in two views. A symbol is shown on the left

view, while the right view contains a canvas for drawing. The application was

run on an Asus EEE Tablet PC with an Intel Atom processor at 1Ghz. The

system was instantiated using 128 sampled points for the template and 64 for

the sketched symbol. The thickness parameter (see sect. 6.1.1) was set to 30

pixels.

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 86

Figure 6.5: Task I: Pointing

Figure 6.6: Task II: Selection

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 87

Eight (6 male, 2 female) unpaid adult volunteers were involved in the

experiment. Their age ranged from 26 to 50 (µ = 34.1, σ = 9.4). They were

asked to identify the attachment areas through the following tasks:

� Task 0: Sketching. Given a template symbol (shown on the left view),

the users had to reproduce the symbol using the provided pen in the

right view. The 8 symbols of figure 6.1 were sequentially presented to

the users through the interface. The users were recommended to draw

as naturally as possible, balancing speed and accuracy.

� Task I: Pointing. Given the template symbol with some (up to 3)

attachment areas highlighted (shown on the left view), the users had to

tap the pen on their hand drawn version of the symbol (on the right

view) in a point that they felt was inside the attachment area. They

were recommended to be as accurate as possible, without any speed

constraint. A screenshot of the application interface while running Task

I is shown in figure 6.5.

� Task II: Selection. Given the template symbol with attachment areas

highlighted, the users had to precisely reproduce the contours of the

area through a pen stroke on their hand drawn version of the symbol,

in a way similar to a lasso selection: this task is aimed at comparing

the area identified by the system to that perceived by the user. As for

Task I, the users were recommended to be very accurate. A screenshot

of the application interface while running Task II is shown in figure 6.6.

6.2.1 Results

All of the 8 users performed 5 blocks, each including a single set of the three

tasks. At the end of the experiment 8(users) x 5(blocks) x 8(templates) =

320 sketched symbols were collected. The 8 symbols contain 19 attachment

area definitions: 6 points, 7 borders and 6 areas. Thus, experiment the data

contain 760 tested cases of attachment areas: 240 points, 280 borders and

240 areas.

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 88

The results for Task I are reported in table 6.1. The performance is

reported for each attachment type (Point, Border and Area) and is measured

through the percentage of times the users were able to correctly point the pen

in the attachment area identified by the system. In particular, three different

measures are reported:

1. Exact: the pointer exactly fell inside the area identified by the system

(only applicable for areas);

2. Low Tolerance: the pointer fell at a distance lower than 15 pixels

(3.23 mm) from the point or the border identified by the system (not

measured for areas);

3. High Tolerance: as the measure described at the previous point, with

a tolerance augmented to 30 pixels (6.45 mm);

The results for Task II are reported in table 6.2. The performance is

reported for each attachment type. Given the polygon S identified as the

attachment area by the system, and the polygon U drawn by the user, the

performance is measured through the average size of the following areas

(standard deviation is reported in parenthesis):

1. Intersection: the intersection of S and U . This represents the area

identified by both the system and the user as the attachment area;

2. S − U : the difference of S and U . This represents the area identified

by system as the attachment area not included in the user selection;

3. U − S: the difference of U and S. This represents the area selected by

the user not identified by system as the attachment area;

The size of the above areas is reported with respect (ratio) to the area of the

union of S and U . With the settings reported in the previous section the

system never failed to locate areas.

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 89

Type Exact Low Toler. High Toler.

Point n.a. 80.4% 98.8%
Border n.a. 100% 100%
Area 99.6% n.a. n.a.

Table 6.1: Results of Task I.

Type Intersection S - U U - S

Point 58.8% (14.4%) 26.5% (17.7%) 14.5% (11.6%)
Border 57.6% (15.6%) 40.2% (17.7%) 2.3% (4.2%)
Area 87.6% (9.2%) 6.6% (7.0%) 5.8% (6.7%)

Table 6.2: Results of Task II.

6.3 Concluding remarks

This chapter has presented an approach for identifying attachment areas on

sketched symbols, independent from any domain and from the procedures

used in the recognition and segmentation process.

The results for Task I show that, in most cases, the user can correctly

locate an attachment area on the sketched symbol. In particular, they show

a percentage close to 100% both for areas and for points and borders with

a tolerance of 30 pixels. With a tolerance of 15 pixels the performance for

borders is still optimal, while the performance for points degrades to 80.4%.

The results for Task II show that there is a reasonably good correspondence

between the attachment areas found by the system and those devised by

the user. This is particularly true for areas, where the intersection of the

above is about 88% on average. The performance is lower with points and

borders, where the intersection is close to 60%. It is worth noting that the

user is prone to select a smaller area than that identified by the system, or, in

other words, the system overestimates the size of attachment areas for points

and borders. As a consequence, there is a low chance that the user misses

the attachment area, and a higher chance that s/he unintentionally touches

it. Due to the procedure used in Task II, the above results suffer from the

imprecision of the user in correctly selecting with the pen his/her own devised

attachment area. This is particularly true for borders and points, where the

CHAPTER 6. ATTACHMENT AREAS ON SKETCHED SYMBOLS 90

user has no visible references as, on the contrary, is the case for closed areas.

Unfortunately, description of more precise approaches were not found in the

literature.

The above reported results show that the approach can correctly find the

attachment points with a reasonable approximation.

Chapter 7

EulerSketch: a sketch system

for Euler diagrams

Euler diagrams (EDs), a generalization of Venn diagrams, are a popular

method for visualizing relationships between set-based data. They consist

of a set of curves representing sets and their relationships. They are used

in various information presentation applications as a simple, yet effective

means of representing and interacting with set-based relationships. EDs

form the basis of more expressive visual logics such as Spider diagrams [82]

and Constraint diagrams [83], designed for software system specification

and automated or interactive reasoning purposes. They are also utilized

in various information presentation applications as a simple, yet effective

means of representing and interacting with set-based relationships: e.g. in

bio-informatics for the representation of genetic set relations [84]; to specify

and display library database query results [85] within similar paradigms;

in resource management systems [86, 87] to permit user categorization in

non-hierarchical categorization structure; or network visualization [88] useful

in social network data analysis, for example. In [89], they produce isocontours

to highlight relationships amongst graph nodes within existing graph layout,

useful in highlighting collections of venues within a map layout for instance.

Euler diagrams are an example of visual languages, since they represent

exclusion, containment and intersection of sets in an intuitive way. In this

91

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 92

context, the ED curves represent the concrete level, while the abstract set

of zones (which correspond to the set intersections represented as regions in

the concrete ED) represents the abstract level. Alternative ED abstractions

exists. In this thesis two new ED abstractions, called static code and ordered

Gauss paragraph (OGP) code are considered. One was recently introduced

for EDs [90], while the other is a slight variation of existing code for knots

introduced in [15]. These two text encodings capture the topology of an Euler

diagram in an abstract way.

This chapter presents EulerSketch, an experimental interactive system

for the sketching and interpretation of EDs. Starting from the drawn ED,

EulerSketch supports, in addition to classic editing operations (such as delete

and move), the generation of the corresponding static and OGP code, and

of the corresponding symbolic representation of the ED regions. These

representations can be saved or displayed in text fields.

EulerSketch also allows the input or editing of the static or OGP code in

order to build a corresponding concrete ED (i.e. its graphical representation).

The system is available in the Software section at http://weblab.di.

unisa.it

7.1 Static code and ordered Gauss paragraph

This section informally describes the static and OGP code. For a more formal

description, please refer to the paper in which they were defined [90, 15].

The static code can be written in two equivalent forms: the infix form and

the postfix form. Starting from a concred ED, the infix static code is obtained

by numbering the crossings of the curves, orienting the curves clockwise,

traversing each curve in turn from an arbitrary base point, recording the order

that the numbers are met in a cycle, and also recording the set of curves that

contain each segment as a subscript between the two crossing numbers that

define the segment. The corresponding zone encoding describes the sequence

of segments that bound the regions comprising the zone, augmented with the

extra information of curve label with a dot to indicate the segment is part of

that curve. The postfix form differs only for the subscript position in the text.

http://weblab.di.unisa.it
http://weblab.di.unisa.it

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 93

Figure 7.1: A screenshot of EulerSketch showing the static code (bottom left)
and the corresponding zone encoding (bottom right).

Figure 7.1 shows an example of static code (bottom left) and the corresponding

zone encoding (bottom right). The theory for the basic definition of static

codes naturally extends to diagrams which are disconnected, or the presence

of the points in which three or more curves intersect. EulerSketch supports

these features.

The OGP code is computed from a diagram by: orienting the curves

clockwise, assigning a number to each crossing, reading off the crossing

numbers met in a single traversal of each of the curves, and adding a +/−
sign for each crossing (when traversing a curve, if one turns right onto the

crossing curve, following its orientation, then + is assigned, otherwise −
is assigned). The corresponding zone encoding describes the sequence of

segments that bound the regions comprising the zone. An example of OGP

code (bottom left) and the relative zone encoding (bottom right) are shown

in Figure 7.2.

OGPs have a simpler syntax than the static code, requiring the inclusion

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 94

Figure 7.2: A screenshot of EulerSketch showing the OGP (bottom left) and
the corresponding zone encoding (bottom right).

of signs to indicate the relative orientation of curves at each crossing versus

the explicit association of the set of all containing curves to each segment in

the diagram. They encapsulate the topology of connected diagrams (on the

sphere), but require additional information (or some pre-processing) to deal

with disconnected diagrams).

7.2 User interface

As shown in Figure 7.1, EulerSketch simple, intuitive interface, is horizontally

divided into two views.

� In the upper part the Sketch View contains the drawing canvas. The

curves are arbitrarily shaped and must be completed through a single pen

stroke. Once a stroke has been entered, its endpoints are automatically

joined to close the curve. Optionally, only simple curves can be allowed.

In this case, whenever the stroke crosses itself, only the part of it

containing the largest area is considered, while the remaining parts are

discarded. At its completion, a curve is colored with a color from a

pre-defined list. The interior is assigned a transparent shade (50% of

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 95

the original value in the alpha channel). The curves and the intersection

points between them are automatically assigned a label, which are

(optionally) shown as soon as a new curve is entered.

� In the lower part the Code View contains the automatically generated

code. At the top of the view a toolbox contains a set of options through

which the user can select the desired type of code; in particular, it

is possible to show the static/OGP code corresponding to the ED or

the corresponding zone encoding. For the static code, both the infix

and the postfix notations can be displayed; the postfix notation used

in [90] places the containing curve set for a segment after the pair of

symbols for the segment, rather than in between the pair, as per the

infix, which is more human readable. Figure 7.1 shows the infix code

for both the curves (on the left) and the zones (on the right). The

symbol ∅ is omitted in the infix static code leaving the containing curve

set blank. The view can be split into more parts, optionally showing

different codes.

EulerSketch has a toolbox with buttons to perform specific operations or

to change settings. In particular, it is possible to: change the input mode

to one of draw, erase and move; change the zoom level; clear the content of

the whole canvas. Furthermore, the input and visualization settings can be

altered in a separate dialog box. Finally, both the static/OGP code and the

ED can be saved onto files which can be subsequently opened (or loaded).

The former is saved as text while the latter is saved in vector graphics format.

If a file containing the static code or the OGP is opened, then a corresponding

ED is automatically generated and an additional component is used to display

it in a pop-up window. A screenshot of the ED generated from the static

code in the Code View of Figure 7.1 is shown in Figure 7.3. For clarity the

figure shows als the embedding of the corresponding ED overlaid dual graph.

Figure 7.4 shows instead the reconstruction from the OGP in the Code View

of Figure 7.2.

Optionally, the curves can be beautified by connecting their intersection

and segment nodes via closed cubic splines. However, this does not guarantee

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 96

Figure 7.3: An ED reconstructed from the static code in Figure 7.1, showing
also the embedding of the corresponding ED overlaid dual graph.

Figure 7.4: ED reconstruction from the OGP code shown in Figure 7.2.

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 97

that an ED generated from the static code looks similar to the original ED.

Furthermore, the use of cubic splines can alter the properties of the diagram

(e.g. by introducing intersections not indicated by the code). Therefore, as is

commonly the case, diagram beautification introduces further problems to be

addressed in future work.

7.3 Back-end

The main features of the application are the code generation, the zone

encoding and the ED generation. The static code and OGP are incrementally

constructed, and updated every time a curve is added or deleted. It is stored

in an internal format enabling efficient execution of these operations. A

curve is represented as a closed polyline. To reduce variations in the code

due to orientation changes, each curve is automatically oriented clockwise

independently of the construction (i.e. if a stroke defining a curve is entered

counterclockwise, the sequence of its points is reversed). Starting from the

generated static code or OGP, a procedure is used to calculate the relative

zone encoding. This procedure can be triggered on user demand in order to

display the encoding in the Code View, or it can be invoked by the system

in order to assign a different colour to each zone in the Sketch View (this

optional feature is a potentially useful variation of the standard visualization).

The approaches described in [15] and [16], based on overlaid dual graph

method, are used to generate a new ED from a static code or OGP, using

different techniques for planar graph embedding, such as techniques based on

Boyer’s algorithm [91], Bertault’s algorithm [92] or Tutte embedding [93]. In

particular, the Tutte embedding has been used to generate the embeddings

in Figures 7.3, while Bertault’s algorithm implemented in the Open Graph

Drawing Framework (OGDF) [94] has been used to generate the ED in Figure

7.4.

CHAPTER 7. EULERSKETCH: A SKETCH SYSTEM FOR EDS 98

7.4 Concluding remarks

This chapter has presented EulerSketch, an interactive system for the sketching

and interpretation of EDs. EulerSketch interprets hand drawn EDs and

produces two types of text encodings of the ED topology called static code

and ordered Gauss paragraph (OGP) code, and an encoding of its regions.

Also, given the topology of an ED expressed through static or OGP code,

EulerSketch automatically generates a new topologically equivalent ED in its

graphical representation.

Given the simplicity of Euler diagrams, it was not necessary to use the

sketch recognition techniques proposed so far in EulerSketch. Nevertheless,

EulerSketch is still an interesting prototype in that it shows a concrete example

of the possibilities given by the interpretation and translation of sketches.

Chapter 8

Achievements and Future

Research

In this thesis, methods and applications for sketch recognition have been

presented by facing problems such as corner detection, sketched symbol

recognition and autocompletion, graphical context detection, sketched euler

diagram interpretation.

The proposed corner detection algorithm, RankFrag, improves the accuracy

percentages compared to other methods recently proposed in the literature.

The presented multi-stroke hand drawn symbol recognizer, invariant with

respect to scaling and to the number and order of strokes, outperforms the

method proposed by Belongie et al. [2] on the Military Course of Action

domain.

The proposed method for recognizing multi-stroke partially hand drawn

symbols, still invariant with respect to scaling and to the number and order of

strokes, presents a satisfactory recognition rate with partially drawn symbols

outperforming existing approaches. Moreover, a user study is run to show

that the users benefit of a drawing time saving (of about 18%) when exploiting

the hand drawn symbol autocompletion functionality.

In the case of graphical context detection, the proposed method for

identifying symbol attachment areas is evaluated through a user study that

compares the attachment areas detected by the system to those devised by the

99

CHAPTER 8. ACHIEVEMENTS AND FUTURE RESEARCH 100

users. The comparison results show that the attachment areas are identified

with a reasonable accuracy.

The presented graphical environment EulerSketch is an interesting proto-

type showing a concrete example of interpretation and translation of sketches.

It allows to hand drawn Euler diagrams and to produce two types of text

encodings of their topology. Moreover, conversely, it allows to automatically

generate equivalent Euler diagrams from each of the two types of topology

encodings.

The thesis presents the methods in isolation, however, they can be used

either individually or as part of an integrated system for the recognition

of complex diagrams. As future work, both ways are worth to be further

investigated.

In the case of an integrated system a first problem to face is “tokenizing”

the diagram, i.e., partitioning the diagram in its constituent symbols. In

general, the problem is not easy because some strokes must be divided into

substrokes if they contribute to more than one symbol (segmentation) and

substrokes and other strokes must be grouped when forming a single symbol

(clustering).

Once all the symbols have been recognized, the syntactic correctness of

the diagram must be verified. Usually this is not a sequential process since the

high ambiguity of the sketches and the difficulty of isolating each symbol may

be helped by exploiting the knowledge of the syntax of the visual language.

This research is in line with previous work [44, 95] which however did not

consider autocompletion.

When considering the contributions as isolated piece of work, each of them

has specific future work to be developed. In the following, some of them are

listed.

Regarding RankFrag, the non-JRI implementation is able to produce the

segmentation of a stroke in real time on a sufficiently powerful device. Future

work will aim to achieve further implementation improvements, in order to

further reduce the execution time and make the technique applicable in real

time on more strokes at once (e.g., an entire diagram) or on mobile devices

with low computational power.

CHAPTER 8. ACHIEVEMENTS AND FUTURE RESEARCH 101

Regarding the method for the recognition of multi-stroke hand drawn

symbols, future work include the test of the algorithm on larger sets of

symbols, such as hand written oriental characters.

As regards the method for the recognition of partially hand drawn symbols,

future work include the possibility to enable autocompletion on larger symbol

sets. Probably, some optimizations will be necessary to execute the approach

in real time on data sets of that magnitude, such as the use of pruning

strategies for limiting the number of times the PSR distance is calculated.

Furthermore, other adjustments related to the specific data set may be

performed: for instance, Chinese characters contain radicals, i.e. components

common to several characters; this characteristic may be exploited to allow

further optimizations.

Both of the above methods are only designed for the recognition of a

single symbol at a time. In the case of diagram recognition, since both are

multi-stroke methods, they might be extended to include the segmentation

and the clustering operations as mentioned above.

The autocompletion functionality has been tested by the users using a

simple linear menu. As future work, more efficient interfaces can be designed

in order to obtain better results.

Regarding the approach for identifying attachment areas on sketched sym-

bols, future work include the test of the approach on rotated or intentionally

non-uniform scaled symbols, and the implementation of the approach in real

systems and with different domains.

It is worth nothing that the presented recognition methods based on

shape context are not designed to work on rotated symbols. However, this

functionality can be added by exploiting the work by [96] where point matching

through shape context has been extended to rotated shapes.

Moreover, although not described in this thesis, the method for recogniz-

ing multi-stroke partially hand drawn symbols can be easily made rotation

invariant by constructing the PSR Descriptor after performing an alignment

of the axis connecting the two primitive’s centroids to the x-axis of the frame.

Appendix A

Data sets

This appendix describes the data sets used in the previous chapters. The

five data sets have heterogeneous features. Some features are summarized in

Table A.1. The table reports, for each set, the number of different classes, the

number of hand drawn symbols, the total number of strokes composing the

symbols, the number of different drawers, a reference to the document where

it is introduced (with the source document from which the templates were

extracted in parentheses) and some data related to the number of primitives

of the symbols in the set. In particular, its range, average and standard

deviation are reported.

Data Set Num. of Num. of No. of No. of Source Num. of primitives
classes symbols strokes drawers (templates)

IStraw 10 400 400 10 [21] 3− 9 (µ = 5.5; σ = 2.1)
NicIcon 10 400 1204 32 [70] 2− 11 (µ = 5.2; σ = 1.7)
Composite 97 97 + 97∗ + 97∗∗ / / [50] 2− 13 (µ = 5.9; σ = 2.6)
COAD 20 620 2255 8 [49] ([56]) 4− 14 (µ = 9.4; σ = 3.0)
COAD2 113 4520 17606 8 ([56]) 2− 19 (µ = 5.9; σ = 2.9)

The symbols in the Composite data set are not hand drawn.
* Artificially lightly deformed symbols.
* Artificially heavily deformed symbols.

Table A.1: Features of the three data sets.

102

APPENDIX A. DATA SETS 103

Figure A.1: One random sample from each class of the IStraw symbol set.

Figure A.2: One random sample from each class of the NicIcon symbol set.

A.1 IStraw

The IStraw data set is a set of 400 unistroke symbols belonging to 10 different

classes (composed by both line and arc primitives), drawn by 10 different

subjects. It is an out-of-context data set, i.e., it is not linked to a domain. It

was used to test the homonymous corner finding technique [21]. The corners

present in each symbol are also identified. Figure A.1 shows a random sample

from each class of the symbol set.

A.2 NicIcon

The NicIcon data set is a set of 400 multi-stroke symbols belonging to 10

different classes, annotated by Tumen and Sezgin [23] (who identified the

corners present in each symbol). It is a subset of the NicIcon Database of

Handwritten Icons [70], which is a set of symbols drawn by 32 different subjects,

gathered for assessing pen input recognition technologies, representing images

for emergency management applications. Figure A.2 shows a random sample

from each class of the symbol set.

A.3 Composite

The Composite data set contains 97 symbols. The symbols are in composite

graphics (not hand drawn), that is, they are iconic symbols composed of

simple graphic primitives, including only line and arc segments. This data

APPENDIX A. DATA SETS 104

Figure A.3: The 97 symbols in the Composite data set.

(a) (b) (c)

Figure A.4: Examples of symbols from the Composite data set: a undeformed
symbol (a), a light deformed symbol (b) and a heavily deformed symbol (c).

set was introduced by Xiaogang et al. [50]. Due to the unavailability of

the set in its original form, the set was replicated through a process of

vectorization of the images in the electronic version of the article [50]. The

corners present in each symbol were also identified. The set is shown in

Figure A.3. Besides the original set extracted from the document, the same

symbols were also artificially perturbed. As described in [50], the symbols

are artificially perturbed by random scaling, rotating and horizontal/vertical

shifting symbol components (primitives) both individually and as a whole,

with the possible ranges of the random values based on a constant value τC .

Two different levels of deformation are used, thus, the set turns out to be

composed of the already described 97 regular symbols, plus 97 lightly deformed

symbols (τC = 0.1) and further 97 heavily deformed symbols (τC = 0.2). For

APPENDIX A. DATA SETS 105

Figure A.5: A sample symbol from each class in the COAD data set.

Figure A.6: The 20 template symbols from the COAD symbol set.

a detailed description of the perturbation algorithm, the reader should refer

to [50]. Figure A.4 shows the example of a symbol in its undeformed (a) and

perturbed versions (b) and (c).

A.4 COAD

The symbols in the COAD data set are a subset of the symbols used in the

domain of Military Course of Action Diagrams [56], which defines a large

set of different symbols and their very many variants used to depict battle

scenarios. The COAD data set was introduced by Tirkaz et al. [49]. The

total number of drawn symbols is 620 (drawn by 8 users), belonging to 20

different classes. Some samples of the drawn symbols are shown in Figure

APPENDIX A. DATA SETS 106

A.5.

Templates representing the 20 classes were extracted from the images in

vector graphics contained in the original source document about the Military

Course of Action Diagrams symbols [56] (see Figure A.6).

A.5 COAD2

Since the COAD data set contains a relatively small number of different

classes, a larger data set containing symbols from the same domain was

created and named COAD2.

To build this data set, as an initial step, 113 template symbols were

extracted from the images in vector graphics contained in [56]. The number

of primitives of the templates ranges from 2 for the simplest ones to 19 of the

most complex one, with an average value of 5.9 (s.d. = 2.9) primitives. The

whole set of templates with the associated identifier is shown in Figure A.7.

Then, the set of hand drawn symbols was gathered. The symbols were

drawn by 8 users: unpaid adult volunteers; 7 male, 1 female; age ranging

from 23 to 48 (µ = 33.1, σ = 8.7). Each user was asked to hand draw all

of the 113 templates 5 times each, trying to balance speed and accuracy of

drawing. In all, the set contains 8× 5× 113 = 4520 sketched symbols. Figure

A.8 shows some examples of users’ hand drawn symbols. All the data were

drawn through a SMART Podium ID250 Interactive Pen Display (with a pen

report rate of 100 points per second) connected to a Dell Precision T5400

workstation equipped with an Intel Xeon CPU at 2.50 GHz running Microsoft

Windows XP operating system and the Java Run-Time Environment 6.

APPENDIX A. DATA SETS 107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113

Figure A.7: The 113 template symbols from the COAD2 symbol set.

Figure A.8: Examples from the hand drawn symbols in the COAD2 data set.

Bibliography

[1] T. Y. Ouyang and R. Davis, “Chemink: a natural real-time recognition

system for chemical drawings,” in Proceedings of the 16th international

conference on Intelligent user interfaces, IUI ’11, (New York, NY, USA),

pp. 267–276, ACM, 2011.

[2] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object

recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 24, pp. 509–522, April 2002.

[3] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed

relational graphs for pattern analysis,” IEEE Trans. Systems Man Cyber.,

vol. 9, pp. 757–768, dec. 1979.

[4] J. O. Wobbrock, B. A. Myers, and D. H. Chau, “In-stroke word com-

pletion,” in Proceedings of the 19th annual ACM symposium on User

interface software and technology, UIST ’06, (New York, NY, USA),

pp. 333–336, ACM, 2006.

[5] Google Instant. http://www.google.it/instant/, 2012.

[6] R. Robbes and M. Lanza, “How program history can improve code

completion,” in Automated Software Engineering, 2008. ASE 2008. 23rd

IEEE/ACM International Conference on, pp. 317 –326, sept. 2008.

[7] H. Bast and I. Weber, “The CompleteSearch Engine: Interactive, Effi-

cient, and Towards IR & DB integration,” CIDR, 2007.

[8] F. Brieler and M. Minas, “Ambiguity resolution for sketched diagrams

by syntax analysis based on graph grammars,” ECEASST, vol. 10, 2008.

108

BIBLIOGRAPHY 109

[9] P. Rodgers, L. Zhang, and H. Purchase, “Wellformedness Properties

in Euler Diagrams: Which Should Be Used?,” IEEE Transactions on

Visualization and Computer Graphics, vol. 18, pp. 1089–1100, July 2012.

[10] G. Costagliola, M. De Rosa, and V. Fuccella, “Improving Shape Context

Matching for the Recognition of Sketched Symbols.,” in DMS, pp. 289–

294, Knowledge Systems Institute, 2011.

[11] G. Costagliola, M. De Rosa, and V. Fuccella, “Recognition and autocom-

pletion of partially drawn symbols by using polar histograms as spatial

relation descriptors,” Computers & Graphics, vol. 39, no. 0, pp. 101–116,

2014.

[12] G. Costagliola, M. De Rosa, and V. Fuccella, “Investigating human

performance in hand-drawn symbol autocompletion,” in Systems, Man,

and Cybernetics (SMC), 2013 IEEE International Conference on, pp. 279–

284, 2013.

[13] M. De Rosa, “On the auto-completion of hand drawn symbols,” in

Visual Languages and Human-Centric Computing (VL/HCC), 2012

IEEE Symposium on, pp. 223–224, 2012.

[14] G. Costagliola, M. De Rosa, and V. Fuccella, “Identifying attachment

areas on sketched symbols,” in Visual Languages and Human-Centric

Computing (VL/HCC), 2011 IEEE Symposium on, pp. 83–86, 2011.

[15] G. Costagliola, M. De Rosa, A. Fish, V. Fuccella, and R. Saleh, “Curve-

based diagram specification and construction,” in Visual Languages

and Human-Centric Computing (VL/HCC), 2013 IEEE Symposium on,

pp. 39–42, 2013.

[16] P. Bottoni, G. Costagliola, M. De Rosa, A. Fish, and V. Fuccella, “Euler

diagram codes: interpretation and generation,” in Proc. VINCI 2013,

ACM, 2013.

BIBLIOGRAPHY 110

[17] C.-H. Teh and R. Chin, “On the detection of dominant points on digital

curves,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 11, pp. 859–872, Aug 1989.

[18] C. F. Herot, “Graphical input through machine recognition of sketches,”

in Proceedings of the 3rd Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’76, (New York, NY, USA),

pp. 97–102, ACM, 1976.

[19] T. M. Sezgin, T. Stahovich, and R. Davis, “Sketch based interfaces:

Early processing for sketch understanding,” in Proceedings of the 2001

Workshop on Perceptive User Interfaces, PUI ’01, (New York, NY, USA),

pp. 1–8, ACM, 2001.

[20] A. Wolin, B. Eoff, and T. Hammond, “Shortstraw: A simple and effective

corner finder for polylines,” in EUROGRAPHICS Workshop on Sketch-

Based Interfaces and Modeling, Eurographics Association, 2008.

[21] Y. Xiong and J. J. J. LaViola, “A shortstraw-based algorithm for corner

finding in sketch-based interfaces,” Computers & Graphics, vol. 34, no. 5,

pp. 513 – 527, 2010.

[22] J. Herold and T. F. Stahovich, “A machine learning approach to au-

tomatic stroke segmentation,” Computers & Graphics, vol. 38, no. 0,

pp. 357 – 364, 2014.

[23] R. S. Tumen and T. M. Sezgin, “Dpfrag: Trainable stroke fragmenta-

tion based on dynamic programming,” IEEE Computer Graphics and

Applications, vol. 33, no. 5, pp. 59–67, 2013.

[24] J. Herold and T. F. Stahovich, “Speedseg: A technique for segmenting

pen strokes using pen speed,” Computers & Graphics, vol. 35, no. 2,

pp. 250–264, 2011.

[25] F. Albert, D. Fernández-Pacheco, and N. Aleixos, “New method to find

corner and tangent vertices in sketches using parametric cubic curves

BIBLIOGRAPHY 111

approximation,” Pattern Recognition, vol. 46, no. 5, pp. 1433 – 1448,

2013.

[26] W. Zhang, L. Wenyin, and K. Zhang, “Symbol recognition with kernel

density matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,

pp. 2020–2024, dec. 2006.

[27] D. Rubine, “Specifying gestures by example,” SIGGRAPH Comput.

Graph., vol. 25, pp. 329–337, July 1991.

[28] P.-O. Kristensson and S. Zhai, “Shark2: a large vocabulary shorthand

writing system for pen-based computers,” in Proceedings of the 17th

annual ACM symposium on User interface software and technology,

UIST ’04, (New York, NY, USA), pp. 43–52, ACM, 2004.

[29] C. C. Tappert, “Cursive script recognition by elastic matching,” IBM J.

Res. Dev., vol. 26, pp. 765–771, November 1982.

[30] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries,

toolkits or training: a $1 recognizer for user interface prototypes,” in

Proceedings of the 20th annual ACM symposium on User interface soft-

ware and technology, UIST ’07, (New York, NY, USA), pp. 159–168,

ACM, 2007.

[31] M. Ahmed and R. K. Ward, “An expert system for general symbol

recognition,” Pattern Recognition, vol. 33, no. 12, pp. 1975–1988, 2000.

[32] Y. Lin, L. Wenyin, and C. Jiang, “A structural approach to recognizing

incomplete graphic objects,” in Proceedings of the 17th International

Conference on Pattern Recognition, 2004. ICPR 2004., vol. 1, pp. 371–375

Vol.1, aug. 2004.

[33] J. Llados, E. Marti, and J. Villanueva, “Symbol recognition by error-

tolerant subgraph matching between region adjacency graphs,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1137–1143, Oct. 2001.

BIBLIOGRAPHY 112

[34] W. Lee, L. Burak Kara, and T. F. Stahovich, “An efficient graph-based

recognizer for hand-drawn symbols,” Computers & Graphics, vol. 31,

pp. 554–567, August 2007.

[35] L. Gennari, L. B. Kara, T. F. Stahovich, and K. Shimada, “Combining

geometry and domain knowledge to interpret hand-drawn diagrams,”

Computers & Graphics, vol. 29, no. 4, pp. 547–562, 2005.

[36] T. Y. Ouyang and R. Davis, “A visual approach to sketched symbol

recognition,” in Proceedings of the 21st international jont conference on

Artifical intelligence, (San Francisco, CA, USA), pp. 1463–1468, Morgan

Kaufmann Publishers Inc., 2009.

[37] D. Willems, R. Niels, M. van Gerven, and L. Vuurpijl, “Iconic and

multi-stroke gesture recognition,” Pattern Recognition, vol. 42, no. 12,

pp. 3303–3312, 2009. New Frontiers in Handwriting Recognition.

[38] H. Hse and A. Newton, “Sketched symbol recognition using zernike

moments,” in Proceedings of the 17th International Conference on Pattern

Recognition, 2004. ICPR 2004., vol. 1, pp. 367–370 Vol.1, aug. 2004.

[39] T. M. Sezgin and R. Davis, “HMM-based efficient sketch recognition,”

in Proceedings of the 10th international conference on Intelligent user

interfaces, IUI ’05, (New York, NY, USA), pp. 281–283, ACM, 2005.

[40] L. B. Kara and T. F. Stahovich, “An image-based, trainable symbol

recognizer for hand-drawn sketches,” Computers & Graphics, vol. 29,

pp. 501–517, August 2005.

[41] M. Oltmans, Envisioning Sketch Recognition: A Local Feature Bases

Approach to Recognizing Informal Sketches. PhD thesis, Massachussets

Institute of Technology, May 2007.

[42] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock, “Gestures as point

clouds: a $P recognizer for user interface prototypes,” in Proceedings of

the 14th ACM international conference on Multimodal interaction, ICMI

’12, (New York, NY, USA), pp. 273–280, ACM, 2012.

BIBLIOGRAPHY 113

[43] C. Alvarado and R. Davis, “Sketchread: a multi-domain sketch recog-

nition engine,” in Proceedings of the 17th annual ACM symposium on

User interface software and technology, UIST ’04, (New York, NY, USA),

pp. 23–32, ACM, 2004.

[44] G. Casella, V. Deufemia, V. Mascardi, G. Costagliola, and M. Martelli,

“An agent-based framework for sketched symbol interpretation,” Journal

of Visual Languages & Computing, vol. 19, no. 2, pp. 225–257, 2008.

[45] M. Fonseca and J. Jorge, “Using fuzzy logic to recognize geometric shapes

interactively,” in The Ninth IEEE International Conference on Fuzzy

Systems, 2000. FUZZ IEEE 2000., vol. 1, pp. 291–296 vol.1, May 2000.

[46] T. Hammond and R. Davis, “Ladder, a sketching language for user

interface developers,” in ACM SIGGRAPH 2007 courses, SIGGRAPH

’07, (New York, NY, USA), ACM, 2007.

[47] A. Coyette, S. Schimke, J. Vanderdonckt, and C. Vielhauer, “Trainable

sketch recognizer for graphical user interface design,” in Proceedings

of the 11th IFIP TC 13 international conference on Human-computer

interaction, INTERACT’07, (Berlin, Heidelberg), pp. 124–135, Springer-

Verlag, 2007.

[48] T. Hammond and B. Paulson, “Recognizing sketched multistroke prim-

itives,” ACM Trans. Interact. Intell. Syst., vol. 1, pp. 4:1–4:34, Oct.

2011.

[49] C. Tirkaz, B. Yanikoglu, and T. M. Sezgin, “Sketched symbol recognition

with auto-completion,” Pattern Recognition, vol. 45, no. 11, pp. 3926–

3937, 2012.

[50] X. Xiaogang, S. Zhengxing, P. Binbin, J. Xiangyu, and L. Wenyin, “An

online composite graphics recognition approach based on matching of

spatial relation graphs,” Int. J. Doc. Anal. Recognit., vol. 7, pp. 44–55,

March 2004.

BIBLIOGRAPHY 114

[51] J. Mas, G. Sanchez, J. Llados, and B. Lamiroy, “An incremental on-line

parsing algorithm for recognizing sketching diagrams,” in Proceedings of

the Ninth International Conference on Document Analysis and Recogni-

tion - Volume 01, (Washington, DC, USA), pp. 452–456, IEEE Computer

Society, 2007.

[52] O. Bau and W. E. Mackay, “OctoPocus: a dynamic guide for learning

gesture-based command sets,” in Proc. of UIST, (New York, NY, USA),

pp. 37–46, ACM, 2008.

[53] M. Bennett, K. McCarthy, S. O’Modhrain, and B. Smyth, “Simpleflow:

enhancing gestural interaction with gesture prediction, abbreviation and

autocompletion,” in Proc. of INTERACT’11 - Volume Part I, (Berlin,

Heidelberg), pp. 591–608, Springer-Verlag, 2011.

[54] G. Lucchese, M. Field, J. Ho, R. Gutierrez-Osuna, and T. Hammond,

“GestureCommander: continuous touch-based gesture prediction,” in CHI

’12 Extended Abstracts on Human Factors in Computing Systems, CHI

EA ’12, (New York, NY, USA), pp. 1925–1930, ACM, 2012.

[55] T. Hammond, D. Logsdon, B. Paulson, J. Johnston, J. Peschel, A. Wolin,

and P. Taele, “A sketch recognition system for recognizing free-hand

course of action diagrams,” in Proceedings of the Twenty-Second Con-

ference on Innovative Applications of Artificial Intelligence, AAAI, July

2010.

[56] T. D.U., “Commented APP-6A - Military symbols for land based systems,”

2005.

[57] T. Hammond and R. Davis, “Tahuti: a geometrical sketch recognition

system for uml class diagrams,” in ACM SIGGRAPH 2006 courses,

SIGGRAPH ’06, (New York, NY, USA), ACM, 2006.

[58] P. Haddawy, M. N. Dailey, P. Kaewruen, N. Sarakhette, and L. H. Hai,

“Anatomical sketch understanding: Recognizing explicit and implicit

structure,” Artificial Intelligence in Medicine, vol. 39, no. 2, pp. 165–177,

2007.

BIBLIOGRAPHY 115

[59] D. Blostein and L. Haken, “Using diagram generation software to improve

diagram recognition: A case study of music notation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 21, pp. 1121–1136, November 1999.

[60] A. Delaney, B. Plimmer, G. Stapleton, and P. Rodgers, “Recognising

sketches of Euler diagrams drawn with ellipses,” in Proc. VLC 2010,

pp. 305–310, Knowledge Systems Institute, 2010.

[61] M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, and

A. Delaney, “Sketchset: Creating Euler diagrams using pen or mouse,”

in Proc. VL/HCC 2011, pp. 75–82, 2011.

[62] G. Stapleton, A. Delaney, P. Rodgers, and B. Plimmer, “Recognising

sketches of Euler diagrams augmented with graphs,” in Proc. VLC 2011,

pp. 279–284, Knowledge Systems Institute, 2011.

[63] T. Hammond, B. Eoff, B. Paulson, A. Wolin, K. Dahmen, J. Johnston,

and P. Rajan, “Free-sketch recognition: Putting the chi in sketching,” in

CHI ’08 Extended Abstracts on Human Factors in Computing Systems,

CHI EA ’08, (New York, NY, USA), pp. 3027–3032, ACM, 2008.

[64] T. F. Stahovich, “Segmentation of pen strokes using pen speed,” in AAAI

Fall Symposium Series, pp. 21–24, 2004.

[65] D. H. Kim and M.-J. Kim, “A curvature estimation for pen input

segmentation in sketch-based modeling,” Computer-Aided Design, vol. 38,

no. 3, pp. 238 – 248, 2006.

[66] B. Paulson and T. Hammond, “Paleosketch: accurate primitive sketch

recognition and beautification,” in Proceedings of the 13th international

conference on Intelligent user interfaces, IUI ’08, (New York, NY, USA),

pp. 1–10, ACM, 2008.

[67] R. Haddad and A. Akansu, “A class of fast Gaussian binomial filters for

speech and image processing,” Signal Processing, IEEE Transactions on,

vol. 39, pp. 723–727, Mar 1991.

BIBLIOGRAPHY 116

[68] B. Leo, “Random forests,” Machine Learning, vol. 45, pp. 5–32, dec.

2001.

[69] A. Liaw and M. Wiener, “Classification and regression by randomForest,”

R News, vol. 2, no. 3, pp. 18–22, 2002.

[70] R. Niels, D. Willems, and L. Vuurpijl, “The nicicon database of hand-

written icons,” 2008.

[71] M. Frenkel and R. Basri, “Curve matching using the fast marching

method,” in In EMMCVPR, pp. 35–51, 2003.

[72] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing

objects in range data using regional point descriptors,” in EUROPEAN

CONFERENCE ON COMPUTER VISION, pp. 224–237, 2004.

[73] G. Mori and J. Malik, “Estimating human body configurations using

shape context matching,” 2002.

[74] P. Cohen, L. Chen, J. Clow, M. Johnston, D. Mcgee, J. Pittman, and

I. Smith, “Quickset: A multimodal interface for distributed interactive

simulation,” in Proceedings of the UIST’96 demonstration, pp. 217–24,

2003.

[75] K. D. Forbus, J. Usher, and V. Chapman, “Sketching for military courses

of action diagrams,” in Proceedings of the 8th international conference

on Intelligent user interfaces, IUI ’03, (New York, NY, USA), pp. 61–68,

ACM, 2003.

[76] W. Song, A. M. Finch, K. Tanaka-Ishii, and E. Sumita, “picoTrans: an

icon-driven user interface for machine translation on mobile devices,”

in Proceedings of the 16th international conference on Intelligent user

interfaces, IUI ’11, (New York, NY, USA), pp. 23–32, ACM, 2011.

[77] Y. Liu and Q. Wang, “Chinese pinyin phrasal input on mobile phone:

usability and developing trends,” in Proceedings of the 4th international

conference on mobile technology, applications, and systems and the 1st

BIBLIOGRAPHY 117

international symposium on Computer human interaction in mobile

technology, Mobility ’07, (New York, NY, USA), pp. 540–546, ACM,

2007.

[78] T. K. Ho, “Random decision forests,” in Document Analysis and Recogni-

tion, 1995., Proceedings of the Third International Conference on, vol. 1,

pp. 278–282 vol.1, 1995.

[79] G. Costagliola, A. De Lucia, S. Orefice, and G. Polese, “A classification

framework to support the design of visual languages,” Journal of Visual

Languages & Computing, vol. 13, no. 6, pp. 573 – 600, 2002.

[80] G. Costagliola, G. Tortora, S. Orefice, and A. De Lucia, “Automatic

generation of visual programming environments,” Computer, vol. 28,

pp. 56–66, March 1995.

[81] M. Minas, “Visualdiagen - a tool for visually specifying and generating

visual editors,” in Applications of Graph Transformations with Industrial

Relevance (J. L. Pfaltz, M. Nagl, and B. Böhlen, eds.), vol. 3062 of Lecture

Notes in Computer Science, pp. 398–412, Springer Berlin / Heidelberg,

2004.

[82] J. Howse, G. Stapleton, and J. Taylor, “Spider diagrams,” LMS Journal

of Computation and Mathematics, vol. 8, pp. 145–194, 2005.

[83] A. Fish, J. Flower, and J. Howse, “The semantics of augmented constraint

diagrams,” Journal of Visual Languages & Computing, vol. 16, no. 6,

pp. 541–573, 2005.

[84] H. Kestler, A. Müller, T. Gress, and M. Buchholz, “Generalized venn

diagrams: a new method of visualizing complex genetic set relations,”

Bioinformatics, vol. 21, no. 8, pp. 1592–1595, 2005.

[85] J. Thièvre, M. Viaud, and A. Verroust-Blondet, “Using euler diagrams in

traditional library environments,” ENTCS, vol. 134, pp. 189–202, 2005.

[86] R. De Chiara, U. Erra, and V. Scarano, “VennFS: A Venn diagram file

manager,” in Proc. IV 2003, pp. 120–125, IEEE Computer Society, 2003.

BIBLIOGRAPHY 118

[87] G. Cordasco, R. De Chiara, and A. Fish, “Interactive visual classification

with euler diagrams,” in VL/HCC 2009. IEEE Symposium on, pp. 185–

192, IEEE, 2009.

[88] N. Riche and T. Dwyer, “Untangling euler diagrams,” Visualization and

Computer Graphics, IEEE Transactions on, vol. 16, no. 6, pp. 1090–1099,

2010.

[89] C. Collins, G. Penn, and S. Carpendale, “Bubble Sets:revealing set

relations with isocontours over existing visualisations,” IEEE Trans

Visualisation and Computer Graphics, vol. 15, no. 6, pp. 1009–1016,

2009.

[90] P. Bottoni, G. Costagliola, and A. Fish, “Euler diagram encodings,” in

Proc. Diagrams ’12, 2012.

[91] J. M. Boyer and W. J. Myrvold, “On the cutting edge: Simplified

O(n) planarity by edge addition,” Journal of Graph Algorithms and

Applications, vol. 8, no. 3, pp. 241–273, 2004.

[92] F. Bertault, “A Force-Directed Algorithm that Preserves Edge Crossing

Properties,” in Graph Drawing (J. Kratochv́ıyl, ed.), vol. 1731 of Lecture

Notes in Computer Science, pp. 351–358, Springer Berlin Heidelberg,

1999.

[93] W. T. Tufte, “How to draw a graph,” Proc Lond Math Soc, vol. 13,

pp. 743–767, 1963.

[94] OGDF. http://www.ogdf.net, 2014.

[95] G. Costagliola, V. Deufemia, and M. Risi, “Using Grammar-Based Recog-

nizers for Symbol Completion in Diagrammatic Sketches,” in Document

Analysis and Recognition, 2007. ICDAR 2007. Ninth International Con-

ference on, vol. 2, pp. 1078–1082, Sept 2007.

[96] S. Yang and Y. Wang, “Rotation invariant shape contexts based on

feature-space fourier transformation,” in Proceedings of the Fourth In-

BIBLIOGRAPHY 119

ternational Conference on Image and Graphics, ICIG ’07, (Washington,

DC, USA), pp. 575–579, IEEE Computer Society, 2007.

	Abstract
	Acknowledgement
	Contents
	Introduction
	Key aspects of sketch recognition
	Proposed work
	Outline

	Related Work
	Corner detection
	Sketched symbol recognition
	Autocompletion
	Attachment areas
	Euler diagram sketching

	RankFrag: a Novel Technique for Corner Detection in Hand Drawn Sketches
	The RankFrag technique
	Complexity
	Features
	Classification method
	Implementation

	Evaluation
	Model validation
	Accuracy metrics
	Data sets

	Results
	Concluding remarks

	Improving Shape Context Matching for the Recognition of Sketched Symbols
	Background: symbol recognition through shape context
	Feature descriptor
	Matching

	The approach
	An example

	Evaluation
	Concluding remarks

	Recognition and Autocompletion of Partially Drawn Symbols by Using Polar Histograms as Spatial Relation Descriptors
	Recognition of partially drawn symbols
	Symbol pre-processing
	PSR descriptor
	Symbol representation
	Symbol matching

	An interactive system for the autocompletion of hand drawn symbols
	Back-end

	Evaluation
	Data sets
	Performance of the recognizer
	Performance of the PSR descriptor
	Performance of the interactive system

	Experimenting the autocompletion functionality with users
	Completion times
	Menu use
	Analysis by the number of primitives
	Accuracy
	Comments from the participants

	Concluding remarks

	Identifying Attachment Areas on Sketched Symbols
	The approach
	Symbol representation
	Point matching
	Area identification

	Evaluation
	Results

	Concluding remarks

	EulerSketch: a sketch system for Euler diagrams
	Static code and ordered Gauss paragraph
	User interface
	Back-end
	Concluding remarks

	Achievements and Future Research
	Data sets
	IStraw
	NicIcon
	Composite
	COAD
	COAD2

	Bibliography

