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Introduction

This PhD thesis, which deals with old and new issues for structural materials of a continuous,
is divided into four chapters. The first two chapters, are related to Old Problems studied
in previous years of PhD and further explored during its course as the classic arguments of
continuum mechanics. In particular, the first chapter deals with that some microscopic struc-
tures of the skeleton in the higher vertebrates, precisely the osteones, approximately, have
the shape of transversely isotropic small hollow cylinders. Their biomechanical behaviour
has been carefully studied and a connection has been mentioned between this behaviour and
the Volterra’s distortions. So G. Caricato proposed an extension of that theory in the case
of a transversally isotropic homogeneous elastic hollow cylinder. In this first chapter it has
been reconsidered and expanded the findings to obtain explicit formulas for the equilibrium
equations, for the boundary conditions, for the vector field of displacements and for tensor
fields of strain and stress, while the second chapter deals with that In the context of Volterra’s
partially results, analyzes the forces induced by the sixth elementary distortion on the right
circular, homogenous, hollow, isotropic cylinder with a different point of view. More precisely,
exploiting Saint Venant’s theory and generalizing some previous results, I have underlined
that, apart from a limited zone in the immediate vicinity of bases, the distribution of forces,
considered as a specific load, can be replaced with one statically equivalent. This can be
done without consequences on the effective distributions of stress and strain, and therefore,
without the necessity to define the effective punctual distribution of this load acting on the
bases of the cylinder. Because of the homogeneity and isotropy of the material and of the
geometric and loading symmetry of the body, I have approached the specific load as linear,
constructed an auxiliary bar which has as longitudinal section the axial section of the cylinder
and followed the basic considerations of Saint Venant’s theory. I have found the specific load
connected to the sixth distortion is equivalent (in Saint Venant’s theory) to a right combined
compressive and bending stress and to a right combined tensile and bending stress. This
chapter is organized as follows: in section 2 the general theory of Volterra’s distortions is
briefly recalled. In section 3 the specific load is analyzed by Saint Venant’s theory. In section
4 numerical results and their comparison with Volterra’s predictions are discussed. The last
two chapters are related to problems on new theories relating to continuous bodies: New
Problems studied during years of PhD as the new arguments of continuum mechanics. In
particular, the tird chapter deals with on the theory of the passage of a material from the
paramagnetic behavior to that of ferromagnetic and vice-versa. Ferromagnetism is a typical
phenomenon occurring in materials such as iron, cobalt, nickel and many alloys containing
these elements. The ferromagnetic phase appears when a small external magnetic field yields
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a large magnetization inside the material, due to the alignment of the spin magnetic mo-
ments. Moreover, we observe a residual magnetization; namely, the spin magnetic moments
stay aligned even if the external magnetic field vanishes. It is well-known that ferromag-
netic materials are characterized by a critical temperature θc, called the Curie temperature.
For temperatures greater than θc, the material shows a paramagnetic behaviour. When the
temperature crosses θc, the material undergoes a second order transition and displays ferro-
magnetic behaviour. In ferromagnetic materials I observe an easy magnetization, motivated
by the property of atom patterns to displays a magnetic moment. In this work I propose a
model for describing the para-ferromagnetic phase transition and for predicting the classical
hysteresis loops bellow the critical temperature θc. The large magnetic field is due to the
alignment patterns of their constituent atoms, which act as elementary electromagnets. By
an order parameter or phase field we mean a macroscopic variable describing the internal
physical state of the material, given by some macroscopic (chemical and physical) properties.
In the para-ferromagnetic transition we observe a different behavior of the order parameter,
which characterizes the nature of the transition. According to the modern classification due
to Landau, phase transitions can be separated into two classes: first and second order tran-
sitions. In first order transitions, as long as θ does not cross θc, the phase field is a constant
function in both the phases. This does not happen in second order transitions, in which
the order parameter is constant in one of two phases only. In other papers, on all param-
agnetic and ferromagnetic phases, the order parameter is not a constant, but a function of
the magnetic field. In this work, in agreement with the definition of a second order phase
transition, we propose a model such that in the paramagnetic phase the order parameter
is a new variable, independent from magnetic field. Finally, within this range, we obtain
the peculiar hysteresis loops characteristic of a hard magnet; while the fourth chapter deals
with that in a shape memory alloys, it observe a structural transformation between austenite
and martensite phase, called martensite phase transition. These materials are capable to
recover permanent strain when are heated over a given temperature. At high temperature
the crystal lattice of the material is in a high symmetric phase, called austenite (A). At
low temperature we observe the martensite phase (M), represented by a smaller symmetry.
This transformation is crystallographically reversible. Moreover, the variations of the stress
and temperature have a large influence on these transformations. So to generate force and
thermal changes through a phase transition. For the study of these materials, we follow the
approach presented by the notion of order parameter or phase field ϕ and the use of the
Ginzburg-Landau (G-L) theory of phase transitions, together to the classical equations of
thermomechanics. In this work I have considered two different potentials in G-L equation,
which provide more convenient numerical simulations for the stress-strain diagrams. More-
over, these two new potentials are able to well describe some SMAs, as the Single Crystal
AuZn, for which the character of the transformation lies at a borderline between a continuous
and discontinuous phase transition. So that, this new free energy describes an intermediate
behavior within a first and second order phase transition. In other words, the differential
system differs from other classic SMA models because now the transformation is described by
a continuous transition between austenite and martensite phase. Following, the G-L equation
is obtained as a balance law on the internal structure of the material, and then as a new field
equation to which to associate a new internal power to be considered in the First Law of
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Thermodynamics. In the model, the G-L, the motion and heat equations are related by a
differential constitutive equation on the strain, stress and order parameter. Finally, I study
some numerical simulations for 1-D problem, for which now the order parameter and the free
energy take a different representation compare to 3-D model. Nevertheless, this 1-D problem
describes the same intermediate behavior between a continuous and discontinuous transitions.
Our study begin with the explicit field equations for 3-D model, describing shape memory
alloys. Here, the several variants of martensite are described by the product εϕ, where ε is
the strain, fixed by crystallographic structure and ϕ ∈ [0, 1]. The model is in agreement with
the typical damping capacity and fatigue life of a SMAs. Then, I study the compatibility of
the model with the Thermodynamic Laws. So, I obtain the potentials: internal energy, free
energy and entropy. In the last section, I present a one-dimensional model, for which now
the order parameter ϕ ∈ [−1, 1]. Thus, this model is not a special case of the 3-D model.
The work finishes with some numerical simulations, that provide the classical stress-strain
diagrams of SMAs.



Chapter 1

The theory of distortions in
continuum mechanics

In this chapter it will be considered the Volterra’s theory of elastic dislocations in the case of
a transversally isotropic homogeneous hollow cylinder. It will be obtained explicit equations
of vector field of displacements, of tensor fields of strain and stress, and of forces upon the
boundary [37].



1.1 Introduction 9

1.1 Introduction

”The researches of V.Volterra in the field of elastic dislocations 1 are considered an admirable
and perfect work of Mathematical–Physics. . . [30]” (see e.g. [52, 42, 3]). Recently it has been
shown that some microscopic structures of the skeleton in the higher vertebrates, precisely
the osteones, approximately, have the shape of transversely isotropic small hollow cylinders.
Their biomechanical behaviour has been carefully studied [2] and a connection has been
mentioned between this behaviour and the Volterra’s distortions. So G. Caricato proposed
an extension of that theory in the case of a transversally isotropic homogeneous elastic hollow
cylinder [17]. 2

In this work we will reconsider and expand the findings [17]; we will obtain explicit
formulas for the equilibrium equations, for the boundary conditions, for the vector field of
displacements and for tensor fields of strain and stress 3.

Thus we are presenting the following:

• That the hypothesis in [17] of the parallelism of the two vectors h and k, characteristic
of the displacement (1.3), plays no role in our research.

• From the analysis of the equilibrium equations we show that the coefficient l3, present
in the displacement (1.3) and arbitrarily retained in the notes [17], assumes instead the
expression (1.21), so the displacement (1.3) depends only on the parameters a1 and l4.
The strain (1.37) and the stress (1.25) are calculated from the following form (1.23) of
the displacement: they only depend on the parameters a1 and l4. From examining the
boundary conditions we can then deduce the coefficient l3 vanishes and as a consequence
the parameter a1 assumes the explicit form (1.34).

• The final displacement (1.35), together with the strain (1.37) and stress (1.38) tensors,
become exclusively dependent on the arbitrary parameter l4. The only components of
the strain and stress tensors depending on the parameter l4 are ε13, ε23 and σ13, σ23
respectively.

• The vector field displacement becomes dependent on the rapport N/A of only two of
the five elastic constants which characterize the transversally isotropic case.

• Finally we have found under which conditions Volterra’s formulas (1.2) for the isotropic
case can be attained again.

It remains to be calculated, in a following work, a generic auxiliary displacement u′, to obtain
the complete explicit form of Volterra’s dislocations in the case under examination (see [17],
par.2.1, note 5).

1 Volterra calls the deformations which his theory refers to ”distortions”, Love prefers to call them ”dislo-
cations”, (see [42], Art. 156, note pag. 221)

2 In his note on distorsions Volterra studies the equilibrium of multi–connected elastic homogeneous bodies,
particularly hollow cylinders, limiting his study only to isotropic bodies.

3 We have utilized the Computer Algebra System Mathematica, which allows not only to verify the calcu-
lations rapidly, but also automatically generates the LATEX sources of formulas.
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1.2 Volterra’s dislocations in the case of an isotropic homoge-
neous hollow cylinder

Figure 1.1: The hollow cylinder in the natural state and one of its cross sections

Briefly let’s refer to Volterra’s dislocations theory, limiting it to the case of cylinder C,
circular, hollow (therefore doubly connected), homogeneous, elastic and isotropic, which is
found, at a certain assigned temperature τ , in a natural state C∗

τ , and assumed as a reference
configuration 4. So we introduce into an ordinary space a cartesian rectangular reference
Ox1x2x3 of respective versors {c1, c2, c3}. We choose the axis Ox3 coinciding with the
symmetry axis of the cylinder and the coordinate plane Ox1x2 placed over the base α∗

1;
d = (x3)α∗

2 > 0 is the height of the base α∗
2. Finally Σ∗ is the lateral surface of C∗, made

from the two cylindrical coaxial surfaces Σ∗
1 (internal surface of radius r) and Σ∗

2 (external
surface of radius R). P ∗ is the generic point of C∗

τ , θ = arctan x2
x1

is the anomaly of P ∗ and

ρ =
√
x12 + x22 is the distance of P ∗ from the axis of the cylinder. Since the cylinder C is

doubly connected, many–valued displacements u are possible (see e.g. [42], art. 156 p. 221).
Volterra used Weingarten’s note [54] as a starting point, where it is shown that an elastic

body occupying a dominion, not simply connected, can find itself in a state of tension also in
the absence of external forces. Volterra developed a general theory, with some improvements
from Cesaro (see e.g. [52] and [42] Art. 156 pag. 221). Volterra began with the observation
that Weingarten’s considerations could not be validated in the case of simply–connected
bodies in the range of regular deformations. With this in mind he constructed his well–known
Volterra’s formulas, which obtain the displacements of the points of an elastic body, once
assigned the linearized tensor of deformation. Then he examined the field of displacements

4 The theory of dislocations initially has a very general character, but subsequently is substantially focused
to obtain explicit results in the study of equilibrium of hollow homogeneous and isotropic cylinders.
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whose cartesian components are 5⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1 =

1

2π
( l + qx3 − rx2) θ + ( ax1 + bx2 + cx3 + e) log ρ2

u2 =
1

2π
(m+ rx1 − px3) θ + ( a′x1 + b′x2 + c′x3 + e′) log ρ2

u3 =
1

2π
(n+ px2 − qx1) θ + ( a′′x1 + b′′x2 + c′′x3 + e′′) log ρ2

(1.1)

where the two triplets (l,m, n) and (p, q, r) are the respective cartesian components of the two
assigned constant vectors h ≡ (l,m, n) and k ≡ (p, q, r). He determined the twelve constants
a, b, c, e; a′, b′, c′, e′; a′′, b′′, c′′, e′′ so that the three functions (1.1) would verify the equilibrium
equations (see e.g. [52] pag. 428); so he obtained the formulas⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 =
1

2π

{
(l + qx3 − rx2) θ +

1

2

(
−m+ px3 +

rμ

λ+ 2μ
x1

)
log ρ2

}
u2 =

1

2π

{
(m+ rx1 − px3) θ +

1

2

(
l + qx3 +

rμ

λ+ 2μ
x2

)
log ρ2

}
u3 =

1

2π

{
(n+ px2 − qx1) θ − 1

2
(px1 + qx2) log ρ

2

}
,

(1.2)

where λ and μ are the two Lamé constants (see e.g. [30]).
He observed the displacement (1.2) generates a distribution of forces not identically van-

ishing on the surface of the cylinder. So he calculated a supplementary field of displacements
u′(P ∗) single–valued, which would satisfy the indefinite equations of elastic equilibrium in
the absence of forces of mass and would generate the same distribution of surface forces on
the boundary of the cylinder. The field of displacements

u′′(P ∗) = u(P ∗)− u′(P ∗)

satisfies the indefinite equations of equilibrium equally, but does not generate any distribution
of forces on the boundary of the cylinder and is many–valued like u(P ∗). 6

The many–valued field of displacements u′′(P ∗) can be physically interpreted through the
following operations (see e.g. [42] pag. 224):

1. By making a transversal cut on an axial semi–plane, we make the hollow homogeneous
cylinder Cτ simply–connected and it assumes a natural state C∗

τ . We’ll call the two faces
of the cut γ∗1 and γ∗2 .

2. We’ll impose a translatory displacement h ≡ (l,m, n) and a rotatory displacement
k ≡ (p, q, r) to one of the two faces, e.g. γ∗1 , with respect to the other. The two
characteristic vectors h and k together will be parallel to the semi–plane π. In this way
making the face γ∗1 penetrate into γ∗2 or distance itself from γ∗2 according to the vector
k will levogyrous or dextrogyrous accordingly.

5 Conforming to [17, 30] the p, q, r are opposing signs with respect to Volterra’s original work (see e.g. [52]
pag. 427).

6 So we obtain the real Volterra’s dislocation, which consists of two parts: the many–valued main displace-
ment u(P ∗) and the single–valued supplementary displacement −u′(P ∗).
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3. If k is levogyrous we’ll remove a thin slice of matter, a thickness proportional to the
distance from the axis of the cylinder. If instead k is dextrogyrous we’ll add a thin
slice of matter, the same material as the cylinder, between the two faces of the cut, a
thickness still proportional to the distance from the axis of the cylinder. In this way
we create a state of deformation in the cylinder and therefore of stress.

4. Finally we’ll remake the cylinder doubly connected by soldering the two faces of the
cut. In this way the cylinder assumes a helicoidal configuration absent of superficial
forces and results in a state of regular internal stress.

Collectively, Volterra called the described operations a dislocation whose characteristics are
l,m, n, p, q, r (see e.g. [52]).

1.3 Volterra’s dislocations in the case of a transversally isotropic

homogeneous hollow cylinder

Now let’s consider a transversally isotropic 7 elastic homogeneous hollow cylinder and let’s
suppose it is found in a natural state C∗

τ
8 at temperature τ .

In analogy to Volterra’s procedure, conforming to [17], let’s consider a displacement of
the following type:

u(P ∗) =
1

2π
(h+ k ∧OP ∗) θ +

+ [(a ·OP ∗ + a4) c1 + (b · OP ∗ + b4) c2 + (l ·OP ∗ + l4) c3] log ρ
2 (1.3)

where we can assign the two vectors h and k, characteristic of the dislocation, while we have
to determine yet the vectors a, b, l and the constants a4, b4, l4.

If we project (1.3) onto the axis we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1 =

1

2π
(h1 + k2x3 − k3x2) θ + (a1x1 + a2x2 + a3x3 + a4) log ρ

2

u2 =
1

2π
(h2 + k3x1 − k1x3) θ + (b1x1 + b2x2 + b3x3 + b4) log ρ

2

u3 =
1

2π
(h3 + k1x2 − k2x1) θ + (l1x1 + l2x2 + l3x3 + l4) log ρ

2

(1.4)

7 Since it conserves its mechanical characteristics along any direction perpendicular to the axis of symmetry.
8 Therefore absent of external mass and/or superficial forces.
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The displacement gradient ∇u ≡
∥∥∥∥∂uh∂xk

∥∥∥∥ relative to the displacement (1.3),(1.4) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂x1

=
1

2πρ2
(4πa4x1 − h1x2 + 4πa1x

2
1 + 4πa2x1x2 + 4πa3x1x3 + k3x2

2 − k2x2x3)+

+a1 log ρ
2

∂u1
∂x2

=
1

2πρ2
(h1x1 + 4πa4x2 − (k3 − 4πa1)x1x2 + 4πa2x

2
2 + k2x1x3 + 4πa3x2x3)+

− k3
2π
θ + a2 log ρ

2

∂u1
∂x3

=
k2
2π
θ + a3 log ρ

2

∂u2
∂x1

=
1

2πρ2
(4πb4x1 − h2x2 + 4πb1x

2
1 − (k3 − 4πb2)x1x2 + 4πb3x1x3 + k1x2x3)+

+
k3
2π
θ + b1 log ρ

2

∂u2
∂x2

=
1

2πρ2
(h2x1 + 4πb4x2 + k3x1

2 + 4πb1x1x2 + 4πb2x
2
2 − k1x1x3 + 4πb3x2x3)+

+b2 log ρ
2

∂u2
∂x3

= − k1
2π
θ + b3 log ρ

2

∂u3
∂x1

=
1

2πρ2
(4πl4x1 − h3x2 + k2x1x2 − k1x

2
2 + 4πl1x

2
1 + 4πl2x1x2 + 4πl3x1x3)+

− k2
2π
θ + l1 log ρ

2

∂u3
∂x2

=
1

2πρ2
(h3x1 + 4πl4x2 − k2x

2
1 + (k1 + 4πl1)x1x2 + 4πl2x

2
2 + 4πl3x3)+

+
k1
2π
θ + l2 log ρ

2

∂u3
∂x3

= l3 log ρ
2

(1.5)
and the components of the strain tensor

ε =
1

2
(∇uT +∇u) ⇔ εhk =

1

2

(
∂ uh

∂ xk
+
∂ uk

∂ xh

)
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are 9⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 =
1

2πρ2
(4πa4x1 + 4πa1x1

2 − h1x2 + 4πa2x1x2 + k3x2
2 + 4πa3x1x3 − k2x2x3)+

+a1 log ρ
2

ε22 =
1

2πρ2
(h2x1 + k3x1

2 + 4πb4x2 + 4πb1x1x2 + 4πb2x2
2 − k1x1x3 + 4πb3x2x3)+

+b2 log ρ
2

ε33 = l3 log ρ
2

ε12 =
1

4πρ2
((h1 + 4πb4)x1 + 4πb1x1

2 − (h2 − 4πa4)x2 − 2(k3 − 2πa1 − 2πb2)x1x2+

+4πa2x2
2 + (k2 + 4πb3)x1x3 + (k1 + 4πa3)x2x3) +

1
2 (a2 + b1) log ρ

2

ε13 =
1

4πρ2
(4πl4x1 + 4πl1x1

2 − h3x2 + (k2 + 4πl2)x1x2 − k1x2
2 + 4πl3x1x3)+

+1
2(a3 + l1) log ρ

2

ε23 =
1

4πρ2
(h3x1 − k2x1

2 + 4πl4x2 + (k1 + 4πl1)x1x2 + 4πl2x2
2 + 4πl3x2x3)+

+
1

2
(b3 + l2) log ρ

2 .

(1.6)

In analogy to Volterra’s procedure, to calculate the unknown constants a1, a2, a3, a4, b1, b2, b3, b4,
l1, l2, l3, l4, we have to impose the verification of the indefinite equations of equilibrium and
the boundary conditions on the field of displacements. 10

1.3.1 Constitutive equations

When a homogeneous body, linearly elastic and transversally isotropic, experiences an isoter-
mic displacement at an assigned temperature τ , and departs from its natural state C∗

τ , then
its isotermic strain–energy–function Wτ can be written in the form ([42, 53]

Wτ (ε) =
1

2
A(ε211 + ε222) +

1

2
Cε233 + (A− 2N)ε11ε22 + F (ε11 + ε22)ε33 + 2L(ε223 + ε213) + 2Nε212

(see e.g. [42] p. 160, (16) or [47], Cap. V, §2), where the coefficients A, C, F , L, N are the
elastic constants 11 of the cylinder Cτ and are, by hypotesis, not vanishing and different from
each other.

Given the tensor field of stress σ ≡ ||σ(τ)hk || at a temperature τ , the constitutive equations

9 In engineering practice the characteristics of strain, ehk = εhk if h = k, ehk = 2εhk if h �= k, are usually
used (see e.g. [42], Art. 10 p. 39).

10 It’s evident the strain (1.6) proves to be congruent, in that De Saint–Venant’s conditions of congruence
are automatically verified, independently of the value of the unknown constants.

11 Being the cylinder is homogeneous, the coefficients A, C, F , L, N are constant.
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take the form 12

σ
(τ)
hh = −∂Wτ

∂εhh
(h = 1, 2, 3) , σ

(τ)
hk = −1

2

∂Wτ

∂(εhk)
(h, k) = (2, 3), (1, 3), (1, 2) (1.7)

(see e.g. [17, 42]).
Writing (1.7) in explicit form, we obtain the Stress-Strain relations:⎧⎪⎪⎨⎪⎪⎩

σ
(τ)
11 = −Aε11 − (A− 2N)ε22 − Fε33, σ

(τ)
12 = −2Nε12

σ
(τ)
22 = −(A− 2N)ε11 −Aε22 − Fε33, σ

(τ)
13 = −2Lε13

σ
(τ)
33 = −F (ε11 + ε22)− Cε33, σ

(τ)
23 = −2Lε23 .

(1.8)

Taking into account the relationship between the displacement gradient and the strain tensor,
the preceding relations can also be written:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ
(τ)
11 = −A∂ u1

∂ x1
− (A− 2N)

∂ u2
∂ x2

− F
∂ u3
∂ x3

, σ
(τ)
12 = −N

(
∂ u1
∂ x2

+ ∂ u2
∂ x1

)
σ
(τ)
22 = −A∂ u2

∂ x2
− (A− 2N)

∂ u1
∂ x1

− F
∂ u3
∂ x3

, σ
(τ)
13 = −L

(
∂ u1
∂ x3

+ ∂ u3
∂ x1

)
σ
(τ)
33 = −F

(
∂ u1
∂ x1

+
∂ u2
∂ x2

)
− C

∂ u3
∂ x3

, σ
(τ)
23 = −L

(
∂ u2
∂ x3

+ ∂ u3
∂ x2

) (1.9)

(see e.g. [17]).
Through the stress–strain relations (1.8) or the preceding equations (1.9), we obtain the
following explicit expression of the components of the stress tensor σ (relative to the field of

12 The signs of σhk are chosen conforming to [47], so a pressure is a positive stress and a tension is a negative
stress, as it is usual in theoretical mechanics (see e.g. [48]). Many authors define the stress tensor with the
opposite sign from the definition adopted here (see e.g. [42]), as it is almost universal in engineering practice.
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displacements (1.4))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
(τ)
11 =

1

2πρ2
(((A − 2N)h2 + 4π Aa4)x1 + (−Ah1 + 4π b4 (A− 2N))x2 + ((A− 2N)k3+

+4π Aa1)x1
2 + 4π(Aa2 + (A − 2N) b1)x1 x2 + (Ak3 − π (N − A) b2)x2

2+

+((2N −A) k1 + 4π Aa3)x1 x3 + (−Ak2 + 4π(A− 2N ) b3)x2 x3)+

−(Aa1 + (2N −A)b2 + Fl3) log ρ
2

σ
(τ)
22 = − 1

2πρ2
(Ah2 + 4 a4 (A− 2N) π) x1 + 4 a1 (A− 2N) π x1

2 + (h1 (−A+ 2N)+

+4Ab4 π)x2 + 4 (Ab1 + a2 (A− 2N)) π x1 x2 − 2 (k3N − 2Ab2 π)x2
2+

+(−Ak1 + 4 a3 (A− 2N) π) x1 x3 + (k2 (−A+ 2N) + 4Ab3 π) x2 x3)− k3
2π

A+

− (Ab2 + F l3 + a1 (A− 2N)) log ρ2

σ
(τ)
33 = −F k3

2π
− F

2πρ2
((h2 + 4 a4 π) x1 + 4 a1 π x1

2 + (−h1 + 4 b4 π) x2 + 4 (a2 + b1) π x1 x2+

+4 b2 π x2
2 (−k1 + 4 a3 π) x1 x3 + (−k2 + 4 b3 π) x2 x3)− (F (a1 + b2) + C l3) log ρ

2

σ
(τ)
12 = − N

2πρ2
((h1 + 4 b4 π)x1 + 4 b1 π x1

2 + (−h2 + 4 a4 π)x2 + (−2 k3 + 4 a1 π+

+4 b2 π)x1 x2 + 4 a2 π x2
2 + (k2 + 4 b3 π)x1 x3 + (k1 + 4 a3 π)x2 x3)+

−(a2 + b1)N log ρ2

σ
(τ)
13 = − L

2πρ2
(
4 l4 π x1 + 4 l1 π x1

2 − h3 x2 + (k2 + 4 l2 π) x1 x2 − k1 x2
2 + 4 l3 π x1 x3

)
+

−L (a3 + l1) log ρ
2

σ
(τ)
23 = − L

2πρ2
(
h3 x1 − k2 x1

2 + 4 l4 π x2 + (k1 + 4 l1 π)x1 x2 + 4 l2 π x2
2 + 4 l3 π x2 x3

)
+

−L (b3 + l2) log ρ
2

(1.10)

Remark Being the cylinder is transversally isotropic, the stress-strain relations (1.8) are
invariant with respect to the exchange of the axes x1 and x2. We can obtain from (1.8),(1.10)
the stress-strain relations for a homogeneous and isotropic cylinder by making them invariant
with respect to the exchange of any pair of axes or to the directional change of any one of
the axes (see e.g. [42], p. 102). The five elastic constants therefore, must verify the following
three conditions of isotropy:

C = A , L = N , F = A− 2N (1.11)

which reduce the independent elastic constants to only A and N .

1.3.2 Indefinite equations

In that C is initially found in a natural state, Cauchy’s static equations, in absence of force
of mass, must be verified:

divσ = 0 , ∀P ∗ ∈ C∗
τ (1.12)
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If (1.12) is projected onto the axes, and expressions (1.9) of the stress–tensor are taken into
account, we obtain:

A
∂2u1
(∂ x1)2

+N
∂2u1
(∂ x2)2

+ L
∂2u1
(∂ x3)2

+ (A−N)
∂2u2

∂ x1∂ x2
+ (F + L)

∂2u3
∂ x1∂ x3

= 0 (1.13)

N
∂2u2
(∂ x1)2

+A
∂2u2
(∂ x2)2

+ L
∂2u2
(∂ x3)2

+ (A−N)
∂2u1

∂ x1∂ x2
+ (F + L)

∂2u3
∂ x2∂ x3

= 0 (1.14)

L
∂2u3
(∂ x1)2

+ L
∂2u3
(∂ x2)2

+ C
∂2u3
(∂ x3)2

+ (F + L)
∂2u1

∂ x1∂ x3
+ (F + L)

∂2u2
∂ x2∂ x3

= 0 (1.15)

(see e.g. [17]).
Referring to (1.15) or the expressions of stress (1.10), the equations of equilibrium (1.12) can
be written in the explicit forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(divσ)1 =
1

2πρ4
((A−N)(4πa4 + h2)x1

2 + 2(A−N)(4πb4 − h1)x1x2+

−(A−N)(4πa4 + h2)x2
2 − 2(2πa1(A+N) + 2π(A−N)b2 −Nk3+

+2π(F + L)l3)x1
3 − 4π((3N −A)a2 − (A−N)b1)x1

2x2+

+(A−N)(4πa3 − k1)x1
2x3 + 2(2π(N − 3A)a1 + 2π(A−N)b2 +Nk3+

−2π(F + L)l3)x1x2
2 + 2(A−N)(4πb3 − k2)x1x2x3 − 4π((A +N)a2+

+(A−N)b1)x2
3 − (A−N)(4πa3 − k1)x2

2x3) = 0

(1.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(divσ)2 =
1

2πρ4
((A−N)(h1 − 4πb4)x1

2 + 2(A−N)(h2 + 4πa4)x1x2 + (A−N)(4πb4+

−h1)x22 − 4π((A −N)a2 + (A+N)b1)x1
3 + 2(2π(A −N)a1 + 2π(−3A+

+N)b2 +Nk3 − 2π(F + L)l3)x1
2x2 + (A−N)(k2 − 4πb3)x1

2x3+

+4π((A −N)a2 + (A− 3N)b1)x1x2
2 + 2(A−N)(4πa3 − k1)x1x2x3+

−2(2π(A −N)a1 + 2π(A+N)b2 −Nk3 + 2π(F + L)l3)x2
3+

−(A−N)(4πb3 − k2)x2
2x3) = 0

(1.17)

⎧⎨⎩ (divσ)3 = − 1

2πρ2
((4π(F + L)a3 + (L− F )k1 + 8πLl1)x1 + (4π(F + L)b3+

+(L− F )k2 + 8πLl2)x2) = 0
(1.18)

If we make the coefficients of the various monomials (x1)
j(x2)

k(x3)
l equal to zero, we arrive at

a system of linear equations, not all independent, for the unknowns ah, bh, lh (h = 1, 2, 3, 4).
By annulling the coefficients of the monomials x21x3 (or x22x3), x

2
1 (or x22), x1x2x3, x1x2, in

(1.16) (or in (1.17)) we find respectively (in the aforementioned hypothesis A 
= N)

a3 =
k1
4π

; a4 = −h2
4π

; b3 =
k2
4π

; b4 =
h1
4π

(1.19)
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If we annul the coefficients of the monomials x21x2, x
3
2 in (1.16) (or the coefficients of the

monomials x1x
2
2, x

3
1 in (1.17)), we obtain the homogeneous system{

(3N −A)a2 + (N −A)b1 = 0
(N +A)a2 + (N −A)b1 = 0

where the only solution is a2 = 0 , b1 = 0 (in the same hypothesis A 
= N).
If we annul the coefficient of x1 in (1.18), we obtain the equation

4π(F + L)a3 − (F − L)k1 + 8πLl1 = 0 .

And if we take into account the calculated value of a3, we find l1 = − k1
4π

.

By annulling the coefficient of x2 in (1.18), we obtain the equation

4π(F + L)b3 − (F − L)k2 + 8πLl2 = 0 .

And by taking into account the calculated value of b3, we find l2 = − k2
4π

.

Finally, by annulling the coefficients of the monomials x31, x1x
2
2 in (1.16) and the coefficients of

the monomials x32, x
2
1x2 in (1.17), we obtain the following subsystem of four linear equations

in the three unknowns a1, b2, l3⎧⎪⎪⎨⎪⎪⎩
2π[(A +N)a1 + (A−N)b2 + (F + L)l3] = Nk3
2π(3A −N)a1 − 2π(A−N)b2 + 2π(F + L)l3 = Nk3
2π(A −N)a1 + 2π(A+N)b2 + 2π(F + L)l3 = Nk3
2π(N −A)a1 + 2π(3A−N)b2 + 2π(F + L)l3 = Nk3

(1.20)

which has the ∞1 solutions 13

b2 = a1 , l3 =
Nk3 − 4πAa1
2π(F + L)

. (1.21)

In summary we can say that the displacement (1.3) satisfies the indefinite equations of elastic
equilibrium, and therefore can be considered as an elastic displacement in an equilibrium
problem if the following conditions are verified (and A 
= N):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a2 = 0 ; a3 =
k1
4π

; a4 = −h2
4π

;

b1 = 0 ; b2 = a1 ; b3 =
k2
4π

; b4 =
h1
4π

;

l1 = −a3 = − k1
4π

; l2 = −b3 = − k2
4π

; l3 =
Nk3 − 4πAa1
2π(F + L)

,

(1.22)

while the constants a1 and l4 are still undetermined.

13 It is sufficient to consider any two of (1.20) to obtain (1.21)1. Therefore (1.20) reduce to the unique
equation 4πAa1 −Nk3 + 2π(F + L)l3 = 0.
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So the cartesian components of the displacement (1.3), which satisfy the indefinite equa-
tions (1.12), take the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 =
1

2π
(h1 − k3x2 + k2x3) θ +

(
−h2
4π

+
k1
4π
x3 + a1x1

)
log ρ2

u2 =
1

2π
(h2 + k3x1 − k1x3) θ +

(
h1
4π

+
k2
4π
x3 + a1x2

)
log ρ2

u3 =
1

2π
(h3 − k2x1 + k1x2) θ −

(
k1
4π
x1 +

k2
4π
x2 − l3x3 − l4

)
log ρ2

(1.23)

where l3 has the expression (1.21).

Deformation, stress and forces on the boundary

If (1.23) are introduced into (1.6), we find the following expression for strain tensor, relative
to the vector field of displacements (1.23)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 =
1

2πρ2
(−h2x1 − h1x2 + 4πa1x1

2 + k3x2
2 + k1x1x3 − k2x2x3) + a1 log ρ

2

ε22 =
1

2πρ2
(h2x1 + h1x2 + 4πa1x2

2 + k3x1
2 − k1x1x3 + k2x2x3) + a1 log ρ

2

ε33 = l3 log ρ
2

ε12 =
1

2πρ2
(h1x1 − h2x2 − (k3 − 4πa1)x1x2 + k2x1x3 + k1x2x3)

ε13 =
1

4πρ2
(4πl4x1 − h3x2 + 4πl3x1x3)− k1

4π

ε23 =
1

4πρ2
(4πl4x2 + h3x1 + 4πl3x2x3)− k2

4π
.

(1.24)

If (1.24) are substituted into (1.10), which express the components of the stress tensor by
those of the tensor of deformation, we obtain the stress which satisfies Cauchy’s equations of
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equilibrium (1.12):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
(τ)
11 =

N

πρ2
(
h2x1 + h1x2 + k3x1

2 + 4πa1x2
2 − k1x1x3 + k2x2x3

)
+

− A

2π
(k3 + 4πa1) + [2a1(N −A)− Fl3] log ρ

2

σ
(τ)
22 =

N

πρ2
(−h2x1 − h1x2 + k3x2

2 + 4πa1x1
2 + k1x1x3 − k2x2x3

)
+

− A

2π
(k3 + 4πa1) + [2a1(N −A)− Fl3] log ρ

2

σ
(τ)
33 = − F

2π
(k3 + 4πa1)− (2Fa1 − Cl3) log ρ

2

σ
(τ)
12 =

N

πρ2
[−h1x1 + h2x2 + (k3 − 4πa1)x1x2 − k2x1x3 − k1x2x3]

σ
(τ)
13 =

L

2πρ2
(h3x2 − 4πl4x1 − 4πl3x1x3) +

Lk1
2π

σ
(τ)
23 =

L

2πρ2
(−h3x1 − 4πl4x2 − 4πl3x2x3) +

Lk2
2π

(1.25)

Boundary conditions

Finally boundary conditions must be verified:

σ · n− f = 0 ⇐⇒ σh1n1 + σh2n2 + σh3n3 = fh (h = 1, 2, 3) ∀Q∗ ∈ ∂C∗
τ , (1.26)

where f(Q∗) are the vectorial surface forces and n ≡ (n1, n2, n3) is the unitary vector normal
to ∂C∗

τ , with an internal orientation.
To calculate the forces which we must apply on the boundary of the cylinder to determine

the principal displacement (1.23), we divide the boundary ∂C∗
τ into the parts Σ∗

1, Σ
∗
2, α

∗
1

and α∗
2. By taking into account (1.25) and projecting (1.26) onto the axes, we obtain four

groups of equations.
First we consider the boundary conditions on the two lateral surfaces:
1) on Σ∗

1 ( n = c1 cos θ + c2 sin θ, x1 = r cos θ, x2 = r sin θ, 0 ≤ x3 ≤ d )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
σ
(τ)
11 cos θ + σ

(τ)
12 sin θ

]
Σ∗

1

=
1

2πr
[2Nh2 + ((2N −A)k3 − 4πAa1)x1 − 2Nk1x3+

+4π(N −A)a1x1 log ρ
2 − 2πF l3x1 log ρ

2]Σ∗
1 = (f1)Σ∗

1[
σ
(τ)
12 cos θ + σ

(τ)
22 sin θ

]
Σ∗

1

=
1

2πr
[−2Nh1 + ((2N −A)k3 − 4πAa1)x2 − 2Nk2x3+

+4π(N −A)a1x2 log ρ
2 − 2πF l3x2 log ρ

2]Σ∗
1 = (f2)Σ∗

1[
σ
(τ)
13 cos θ + σ

(τ)
23 sin θ

]
Σ∗

1

=
L

2πr
[−4πl4 + k1x1 + k2x2 − 4πl3x3] = (f3)Σ∗

1

(1.27)
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2) on Σ∗
2 ( n = −c1 cos θ − c2 sin θ, x1 = R cos θ, x2 = R sin θ, 0 ≤ x3 ≤ d )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−σ(τ)11 cos θ − σ

(τ)
12 sin θ

]
Σ∗

2

=
1

2πR
[−2Nh2 − ((2N −A)k3 − 4πa1)x1 + 2Nk1x3+

−4π(N −A)a1x1 log ρ
2 + 2πF l3x1 log ρ

2]Σ∗
2 = (f1)Σ∗

2[
−σ(τ)12 cos θ − σ

(τ)
22 sin θ

]
Σ∗

2

=
1

2πR
[2Nh1 − ((2N −A)k3 − 4πa1)x2 + 2Nk2x3+

−4π(N −A)a1x2 log ρ
2 + 2πF l3x2 log ρ

2]Σ∗
2 = (f2)Σ∗

2[
−σ(τ)13 cos θ − σ

(τ)
23 sin θ

]
Σ∗

2

=
L

2πR
[4πl4 − k1x1 − k2x2 + 4πl3x3] = (f3)Σ∗

2

(1.28)

We can divide the surface forces (1.27)–(1.28) applied on Σ∗
1 and on Σ∗

2 into the following
vector fields, all equivalent to zero:

i)
{
P ∗, f (1)′(P ∗)dΣ∗

1

}
Σ∗

1

, consisting of couples of zero arms and so equivalent to zero,

in fact⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
f
(1)
1

′
(x1, x2, x3)

]
Σ∗

1

=
1

2πr

[
((2N −A)k3 − 4πAa1)x1 − 2Nk1x3 + 4π(N −A)a1x1 log ρ

2+

−2πF l3x1 log ρ
2
]
Σ∗

1
= −

[
f
(1)
1

′
(−x1,−x2, x3)

]
Σ∗

1[
f
(1)
2

′
(x1, x2, x3)

]
Σ∗

1

=
1

2πr

[
((2N −A)k3 − 4πAa1)x2 − 2Nk2x3 + 4π(N −A)a1x2 log ρ

2+

−2πF l3x2 log ρ
2
]
Σ∗

1
= −

[
f
(1)
2

′
(−x1,−x2, x3)

]
Σ∗

1[
f
(1)
3

′
(x1, x2, x3)

]
Σ∗

1

=
L

2πr
[−4πl4 + k1x1 + k2x2 − 4πl3x3] = −

[
f
(1)
3

′
(−x1,−x2, x3)

]
Σ∗

1

;

ii)
{
P ∗, f (2)′(P ∗)dΣ∗

2

}
Σ∗

2

, which, analogously, consists of couples of zero arms.

iii) The pair of two constant vector fields, parallel and opposite,
{
f (1)

′′
dΣ∗

1

}
Σ∗

1

≡{
f (1)

′′
2πrdx3

}
Σ∗

1

and
{
f (2)

′′
dΣ∗

2

}
Σ∗

2

≡
{
f (2)

′′
2πRdx3

}
Σ∗

2⎧⎨⎩ (f
(1)
1 )′′Σ∗

1
dΣ∗

1 = 2Nh2dx3 , (f
(1)
2 )′′Σ∗

1
dΣ∗

1 = −2Nh1dx3 , (f
(1)
3 )′′Σ∗

1
dΣ∗

1 = −4πLl4dx3

(f
(2)
1 )′′Σ∗

2
dΣ∗

2 = −2Nh2dx3 , (f
(2)
2 )′′Σ∗

2
dΣ∗

2 = 2Nh1dx3 , (f
(2)
3 )′′Σ∗

2
dΣ∗

2 = 4πLl4dx3

(1.29)

that together have, by symmetry, their center coincident with the center of the cylinder, and
are equivalent to their resultant applied to the center. Since their two resultants r′′(1) and r′′(2)
are 14 ⎧⎨⎩ r

(1)
1

′′
= 2Nh2d , r

(1)
2

′′
= −2Nh1d , r

(1)
3

′′
= −4πLl4d

r
(2)
1

′′
= −2Nh2d , r

(2)
2

′′
= 2Nh1d , r

(2)
3

′′
= 4πLl4d

(1.30)

14 r(1)
′′
=

∫
Σ∗

1
f (1)

′′
dΣ∗

1 = f (1)
′′
2πrd , r(2)

′′
=

∫
Σ∗

2
f (2)

′′
dΣ∗

2 = f (2)
′′
2πRd .
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it is obvious that, being r′′(1) + r′′(2) = 0, also the vector field {(P ∗, f (1)′′)Σ∗
1 , (P

∗, f (2)′′)Σ∗
2} is

equivalent to a couple of zero arm.
Finally we consider the boundary conditions on the two bases:

3) on α∗
1 ( n = c3 ≡ (0, 0, 1) , x3 = 0 )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[σ
(τ)
13 ]α∗

1 =
L

2π

[
k1 +

1

ρ2
(h3x2 − 4πl4x1)

]
α∗

1

= (f1)α∗
1

[σ
(τ)
23 ]α∗

1 =
L

2π

[
k2 − 1

ρ2
(h3x1 + 4πl4x2)

]
α∗

1

= (f2)α∗
1

[σ
(τ)
33 ]α∗

1 =

[
F

2π
(k3 + 4πa1) + (2Fa1 + Cl3) log ρ

2

]
α∗

1

= (f3)α∗
1

(1.31)

4) on α∗
2 ( n = −c3 ≡ (0, 0,−1) , x3 = d )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−σ(τ)13 ]α∗
2 = − L

2π

[
k1 +

1

ρ2
(h3x2 − 4π(l3d+ l4)x1)

]
α∗

2

= (f1)α∗
2

[−σ(τ)23 ]α∗
2 = − L

2π

[
k2 − 1

ρ2
(h3x1 + 4π(l3d+ l4)x2)

]
α∗

2

= (f2)α∗
2

[−σ(τ)33 ]α∗
2 = −

[
F

2π
(k3 + 4πa1) + (2Fa1 +Cl3) log ρ

2

]
α∗

2

= (f3)α∗
2

(1.32)

Also the surface forces exerting on the two bases must be equivalent to zero. So, taking into
consideration (1.31),(1.32), we must put

l3 = 0 , (1.33)

and consequently we obtain from (1.21)

a1 =
N

A

k3
4π

. (1.34)

Condition (1.33) together with (1.34) must be verified so that the surface forces corresponding
to the dislocation are equivalent to zero, therefore l3 and a1 are not arbitrary.

1.3.3 Vector field of displacements

From (1.33)–(1.34) we can now write the definitive expression of the vector field of displace-
ments (1.23)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 =
1

2π

{
(h1 − k3x2 + k2x3) θ +

1

2

(
−h2 + k1x3 +

N

A
k3x1

)
log ρ2

}
u2 =

1

2π

{
(h2 + k3x1 − k1x3) θ +

1

2

(
h1 + k2x3 +

N

A
k3x2

)
log ρ2

}
u3 =

1

2π

{
(h3 − k2x1 + k1x2) θ − 1

2
(k1x1 + k2x2 − 4πl4) log ρ

2

} (1.35)
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These formulas demonstrate that the vector field of displacements depends exclusively on the
ratio N/A of only two of the five elastic constants which characterize a transversally isotropic
elastic body.

Remark If we impose the isotropy conditions (1.11) on the five elastic constants, and we
put A = λ + 2μ, N = μ and l4 = 0, we once again obtain from (1.35) Volterra’s formulas
(1.2) relative to the isotropic case.

1.3.4 Deformation, stress and surface forces corresponding to the estab-
lished displacement

If we substitute the values l3 = 0 and a1 =
N

A

k3
4π

in (1.5), in (1.24), in (1.25) and in

(1.27)–(1.32), we obtain the following explicit definitive expressions (corresponding to the
displacement (1.35)):
1) for the gradient of displacement ∇u⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂x1

=
1

2πρ2
(−h2 x1 − h1 x2 +

N

A
k3 x1

2 + k3 x2
2 + k1 x1 x3 − k2 x2 x3) +

N

A

k3
4π

log ρ2

∂u1
∂x2

=
1

2πρ2

(
h1 x1 − h2 x2 +

(
N

A
− 1

)
k3 x1 x2 + k2 x1 x3 + k1 x2 x3

)
− k3

2π
θ

∂u1
∂x3

=
k2
2π
θ +

k1
4π

log ρ2

∂u2
∂x1

=
1

2πρ2

(
h1 x1 − h2 x2 +

(
N

A
− 1

)
k3 x1 x2 + k2 x1 x3 + k1 x2 x3

)
+
k3
2π

θ

∂u2
∂x2

=
1

2πρ2
(h2 x1 + h1 x2 +

N

A
k3 x2

2 + k3 x1
2 − k1 x1 x3 + k2 x2 x3) +

N

A

k3
4π

log ρ2

∂u2
∂x3

= − k1
2π
θ +

k2
4π

log ρ2

∂u3
∂x1

=
1

2πρ2
(4π l4 x1 − h3 x2 − k1 x1

2 − k1 x2
2)− k2

2π
θ +

k1
4π

log ρ2

∂u3
∂x2

=
1

2πρ2
(4π l4 x2 + h3 x1 − k2 x1

2 − k2 x2
2) +

k1
2π
θ − k2

4π
log ρ2

∂u3
∂x3

= 0

(1.36)
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2) for the tensor field of strain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 =
1

2πρ2

(
−h2x1 − h1x2 +

N

A
k3x1

2 + k3x2
2 + k1x1x3 − k2x2x3

)
+
N

A

k3
4π

log ρ2

ε22 =
1

2πρ2

(
h2x1 + h1x2 +

N

A
k3x2

2 + k3x1
2 − k1x1x3 + k2x2x3

)
+
N

A

k3
4π

log ρ2

ε33 = 0

ε12 =
1

2πρ2

(
h1x1 − h2x2 +

(
N

A
− 1

)
k3x1x2 + k2x1x3 + k1x2x3

)
ε13 =

1

4πρ2
(4πl4x1 − h3x2)− k1

4π

ε23 =
1

4πρ2
(4πl4x2 + h3x1)− k2

4π

(1.37)

3) for the tensor field of stress⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
(τ)
11 =

N

πρ2

(
h2x1 + h1x2 +

N

A
k3x2

2 + k3x1
2 − k1x1x3 + k2x2x3

)
+

−(N +A)
k3
2π

+ (N −A)
N

A

k3
2π

log ρ2

σ
(τ)
22 = − N

πρ2

(
h2x1 − h1x2 +

N

A
k3x1

2 + k3x2
2 + k1x1x3 − k2x2x3

)
+

−(N +A)
k3
2π

+ (N −A)
N

A

k3
2π

log ρ2

σ
(τ)
33 = −F

(
N

A
+ 1

)
k3
2π

− F
N

A

k3
2π

log ρ2

σ
(τ)
12 =

N

πρ2

(
−h1x1 + h2x2 −

(
N

A
− 1

)
k3x1x2 − k2x1x3 − k1x2x3

)
σ
(τ)
13 = − L

2πρ2
(4πl4x1 − h3x2) +

Lk1
2π

σ
(τ)
23 = − L

2πρ2
(4πl4x2 + h3x1) +

Lk2
2π

(1.38)

4) for the surface forces, respectively on:

Σ∗
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f1)Σ∗
1 =

1

2πr

[
2Nh2 +

(
N

A
− 1

)
(A+N log ρ2)k3x1 − 2Nk1x3

]
Σ∗

1

(f2)Σ∗
1 =

1

2πr

[
−2Nh1 +

(
N

A
− 1

)
(A+N log ρ2)k3x2 − 2Nk2x3

]
Σ∗

1

(f3)Σ∗
1 =

L

2πr
[−4πl4 + k1x1 + k2x2]Σ∗

1

(1.39)
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Σ∗
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f1)Σ∗
2 =

1

2πR

[
−2Nh2 −

(
N

A
− 1

)
(A+N log ρ2)k3x1 + 2Nk1x3

]
Σ∗

2

(f2)Σ∗
2 =

1

2πR

[
2Nh1 −

(
N

A
− 1

)
(A+N log ρ2)k3x2 + 2Nk2x3

]
Σ∗

2

(f3)Σ∗
2 =

L

2πR
[4πl4 − k1x1 − k2x2]Σ∗

2

(1.40)

α∗
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f1)α∗
1 =

L

2π

[
k1 +

1

ρ2
(h3x2 − 4πl4x1)

]
α∗

1

(f2)α∗
1 =

L

2π

[
k2 − 1

ρ2
(h3x1 + 4πl4x2)

]
α∗

1

(f3)α∗
1 = −Fk3

2π

[
1 +

(
1 + log ρ2

) N
A

]
α∗

1

(1.41)

α∗
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f1)α∗
2 =

L

2π

[
−k1 − 1

ρ2
(h3x2 − 4πl4x1)

]
α∗

2

(f2)α∗
2 =

L

2π

[
−k2 + 1

ρ2
(h3x1 + 4πl4x2)

]
α∗

2

(f3)α∗
2 =

Fk3
2π

[
1 +

(
1 + log ρ2

) N
A

]
α∗

2

(1.42)

Conclusion If a hollow elastic cylinder, homogeneous and transversally isotropic C, is ini-
tially found in a natural state C∗

τ and experiences a many–valued isotermic displacement
C∗
τ → Cτ as in (1.23), (and consequently a regular deformation), then, in the equilibrium con-

figuration Cτ , a stress (1.38) and a congruent deformation (1.37) are present in every internal
point; and surface forces (1.39)–(1.42) equivalent to zero are exerted on the boundary.

Remark While displacement (1.35) and tensor field of strain (1.37)) depend only on the
ratio N/A, the tensor field of stress (1.38) depends on four of the five elastic constants.



Chapter 2

Analysis of distortions through
Saint Venant’s theory

This chapter deals with the analysis of the sixth elementary Volterra’s distortion for a circular
hollow, homogeneous, elastic, isotropic cylinder. More precisely, the specific load connected to
the sixth distortion is proved to be equivalent (in Saint Venant’s theory) to a right combined
compressive and bending stress and to a right combined tensile and bending stress. These
results have been applied to a material made up of steel to compare the obtained numerical
results with Volterra’s predictions: the values calculated through Saint Venant’s theory are
more strictly related to those calculated by Volterra when the cylinder thickness tends to
zero [11].
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2.1 Introduction

The first original and fundamental contribution to the dislocation theory was found in Wein-
garten’s note [54] where it is shown that, in absence of external forces, equilibrium configura-
tions for elastic bodies with non–zero internal stress can exist. Given, for example, an elastic
ring initially in a natural configuration, one can create a state of deformation, and therefore
of stress, by making a radial cut adding a thin slice of matter and finally soldering the two
faces of the cut. The solid assumes a new equilibrium configuration (spontaneous equilibrium
configuration); obviously, it isn’t a natural equilibrium configuration since, adding matter,
non–zero internal stress can be found.

Weingarten raised the problem and indicated some concrete examples with this anoma-
lous behavior, but he didn’t give analytic instruments to tackle and solve it. A fundamental
contribution in this direction was given by Volterra, who used Weingarten’s note as a starting
point to develop a general theory. Volterra began with the observation that Weingarten’s
considerations could not be validated in case of simply–connected bodies in the range of
regular deformations. Hence, Volterra proposed a new theory of elastic distortions 1 that im-
plied a deep revision of the mathematical theory of elasticity in the case of multi–connected
domains: when in analytic structure of solutions multivalued terms appear, theorems of
uniqueness can’t be valid in equilibrium problems with assigned forces [30, 52]. Note that
in case of multi–connected domains, these terms, being physically admissible, can’t be dis-
carded (as one does, in order to have uniqueness of solution, in simply–connected domains
where multivalued terms have no physical meaning); hence to obtain an uniqueness theorem
isn’t enough to assign external forces, but it is necessary to know the physically admissible
multivalued properties.

The most general elastic distortion able to bring a right, circular, homogenous, hollow,
isotropic cylinder to a state of spontaneous equilibrium, consists of six elementary distortions.
For each, Volterra has tried to determine a field of displacements which fulfills the indefinite
equations of elastic equilibrium and brings the body to a spontaneous equilibrium configu-
ration. Really, Volterra was only able to determine a field of displacement that brings the
cylinder to an equilibrium configuration, generating a distribution of forces globally equiva-
lent to zero but not identically vanishing. So the problem of distortion was partially, but not
totally solved. 2

In the context of Volterra’s partially results, this work analyzes the forces induced by the
sixth elementary distortion on the right circular, homogenous, hollow, isotropic cylinder with
a different point of view. More precisely, exploiting Saint Venant’s theory and generalizing
some previous results [9, 10], we have underlined that, apart from a limited zone in the

1The notion of distortion has been proposed by Volterra [51, 52] about one hundred years ago. The
term has undergone some changes: in Love’s book [42] the distortions were called dislocations. Presently,
the word–combination ”Volterra’s distortions” is stable and identifiable: the term distortions is used for
designations of phenomena creating the stress–strain state, when the external forces are absent (for example,
the inhomogeneous temperature field can create the distortion) [18, 56].

2 Since Volterra considered exclusively isotropic hollow cylinders, Caricato recently proposed an extension
of the theory of Volterra’s distortions to the case of a transversally isotropic homogeneous elastic hollow
cylinder [17]; later on his findings have been reconsidered and expanded in [37]. Recently, the non linear
aspect of distortion has been analyzed in [18, 56].
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immediate vicinity of bases, the distribution of forces, considered as a specific load, can
be replaced with one statically equivalent. This can be done without consequences on the
effective distributions of stress and strain, and therefore, without the necessity to define the
effective punctual distribution of this load acting on the bases of the cylinder.
Because of the homogeneity and isotropy of the material and of the geometric and loading
symmetry of the body, we have approached the specific load as linear, constructed an auxiliary
bar which has as longitudinal section the axial section of the cylinder and followed the basic
considerations of Saint Venant’s theory. We have found the specific load connected to the
sixth distortion is equivalent (in Saint Venant’s theory) to a right combined compressive and
bending stress and to a right combined tensile and bending stress.

This chapter is organized as follows: in section 2 the general theory of Volterra’s distor-
tions is briefly recalled. In section 3 the specific load is analyzed by Saint Venant’s theory.
In section 4 numerical results and their comparison with Volterra’s predictions are discussed.

2.2 Volterra’s distortions for a circular hollow cylinder

Let’s consider a circular hollow (therefore doubly connected) cylinder, which is, at a certain
assigned temperature, in a natural state C. This we will assume as the reference configuration.
This solid is depicted in Figure 1 with one cross section to which a generic point P belongs.
We introduce into an ordinary space a Cartesian rectangular reference 0x1x2x3 with respective
versors {c1, c2, c3} and we choose the axis 0x3 coinciding with the symmetry axis of the
cylinder and the coordinate plane 0x1x2 placed over the base. We indicate with ρ(x) =√

x2
1 + x2

2 and θ(x) = arctg x2
x1

respectively, the distance of P from the axis of the cylinder
and the anomaly.

Figure 2.1: The hollow cylinder in the natural state and one of its cross sections

Hereafter, we call Σ the surface of C, made from the two cylindrical coaxial surfaces Σ1

(internal surface of radius R1) and Σ2 (external surface of radius R2), and from the two bases
Σ3 (at height x3 = 0) and Σ4 (at the height x3 = d).

Let u(x) be the displacement vector which is the solution of the elastic equilibrium prob-
lem for a body subjected to given external forces (without external constraints and mass
forces); let’s assume that u(x) includes a multivalued term related to θ(x). This term is
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physically significant in a doubly–connected region of space, as a body with hollow cylindri-
cal symmetry.
The multivalued field of displacement u(x) has been physically interpreted by Volterra [52]
in terms of the following operations:
if the doubly connected cylinder is transformed into one which is simply connected by a
transversal cut on an axial semi–plane having the x3 axis as edge, the vector u(x) can be
characterized by a discontinuity of the first type through the semi-plane of the cut. If a
translatory and a rotatory displacement is imposed on one of the faces of the cut by the
application, at constant temperature, of a system of external forces, a state of deformation,
and therefore of stress due to the multivalued term including θ(x), is created into the cylin-
der. In order that the cylinder remains in a state of spontaneous equilibrium in the deformed
configuration, i.e. with a regular internal stress but absent of superficial forces, it is enough
to re-establish the continuity remaking the cylinder doubly connected by soldering the two
faces of the cut (they are soldered by adding or removing a thin slice of matter). In this way
a distortion in the multi–connected body is induced.
In addition, since the rigid displacement of a face of cut with respect to the other can be ob-
tained through a rigid translation displacement and a rigid rotation displacement, a distortion
can be described by six constant parameters l,m, n, p, q, r, called characteristic coefficients
of distortion. They correspond to the three Cartesian components of translation and rigid
rotation in respect to the axes x1, x2, x3. Once the characteristic coefficients are introduced,
we can give the following:

Definition 1. Elementary distortion is the definition of the distortion that has only one of
the six characteristic coefficients different from zero [30, 47, 52]. Analogously, the displace-
ment induced by an elementary distortion has non–zero only one of the following coefficients
l,m, n, p, q, r.

So making, Volterra characterized six independent distortions that are showed in the
following Figure 2: In particular, the 6th elementary distortion is the distortion related to the

Figure 2.2: The six elementary Volterra’s distortions.

coefficient r. It is realized by cutting the cylinder with an axial plane, rotating the face of
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the cut that faces the semi–plane x2 < 0 and, after adding (when r > 0) or removing (when
r < 0) a thin slide of matter, soldering the sides.
Note that the axial plane of the cut can be, for example, the plane 0x1x3. However, since the
elementary distortion is uniquely characterized by the value of r (and not by the particular
plane having the axis Ox3 as edge), it is not essential that the plane chosen to determine the
6th elementary distortion corresponds to the coordinate plane Ox1x3.

2.2.1 Forces on the bases: Volterra’s analysis

Volterra, after having analyzed the elastic distortion from a qualitative point of view, has
partially dealt and solved the problem from a purely mathematics point of view [52]. In
particular, he focused his attention on a linearly elastic, isotropic, homogeneous, doubly–
connected cylinder with finite height d. The study of doubly–connected body only it is
not restrictive since the analysis of multi–connected bodies requires more complex analytic
problems and hence, more complex computation, but it adds nothing of conceptual interest
[52].
Now, in order to briefly recall Volterra’s considerations for the sixth elementary distortion,
let’s refer to cylindric coordinates and call (P, ρ∗, t∗, x∗3) the counterclockwise rectangular
reference system obtained by translating in P the axes ρ, t and x3 (see Figure 3)

Figure 2.3: Hollow cylinder referred to cartesian and cylindrical reference system

More precisely, for forces acting only on the bases, the components of a displacement
vector u(P ) related to the 6th elementary distortions are [42, 43, 47, 49, 52]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uρ∗(ρ, θ, x3) = − r

2π
ρ

[
1

2
− μ

2(λ+ 2μ)

(
log ρ2 − R2

2 logR
2
2 −R2

1 logR
2
1

R2
2 −R2

1

)
+

+
1

ρ2
λ+ μ

λ+ 2μ
R2

1R
2
2

logR2
2 − logR2

1

R2
2 −R2

1

]
ut∗(ρ, θ, x3) =

r

2π
ρ θ

ux∗
3
(ρ, θ, x3) = 0

(2.1)

where μ and λ are the two Lamé constants.
u(P ) satisfies the indefinite equations of elastic equilibrium in the absence of forces of mass
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and generates a distribution of surface forces on the bases
∑

3 and
∑

4. In (O, ρ, θ, x3), this
distribution has the following independent from θ coomponents (see [42, 47, 52]):⎧⎪⎪⎨⎪⎪⎩

fρ(ρ, 0) = 0
ft(ρ, 0) = 0

fx3(ρ, 0) =
r

2π

λμ

λ+ 2μ

(
1 + log ρ2 − R2

2 logR
2
2 −R2

1 logR
2
1

R2
2 −R2

1

)
= −a[b+ log ρ2] ;

⎧⎪⎪⎨⎪⎪⎩
fρ(ρ, d) = 0
ft(ρ, d) = 0

fx3(ρ, d) = − r

2π

λμ

λ+ 2μ

(
1 + log ρ2 − R2

2 logR
2
2 −R2

1 logR
2
1

R2
2 −R2

1

)
= a[b+ log ρ2]

(2.2)

where

a = − r

2π

λμ

λ+ 2μ

and

b = 1− R2
2 logR

2
2 −R2

1 logR
2
1

R2
2 −R2

1

.

2.3 Analysis of the specific load as characteristic of the exter-

nal solicitation

In this section we will analyze the solution of the elastic equilibrium proposed by Saint Venant
for a prismatic isotropic homogeneous linearly elastic solid subjected to a specific load on the
bases.
In Saint Venant’s theory one can replace the specific load with an equivalent one. In this
way, apart from a thin zone near the bases, called extinction zone, we have no consequences
on the effective distribution of stress and strain. So, every solution of the problem of the
elastic equilibrium can be considered as a solution of an infinity of cases which are pertinent
to an infinity of load models, distributed with different laws, but having the same resultant.
This resultant can be replaced, as we know from static, by a force through a generic point P ′

belonging to the base section, and by a couple that has, in respect to P ′, the same moment of
the resultant. Note that the resultant is applied in a suitable point, generally different from
P ′.
Since the force and the couple can be decomposed with respect to the three axes of the
reference system, the six characteristics of the external solicitation, i.e. the three components
of the force and of the couple, are individuated.
Hence, since these characteristics completely define every system of external loads acting
on the bases of the solid, it is unnecessary to define their effective punctual distributions.
As a consequence, the more general case can be solved through a linear combination of six
elementary cases: normal stress, shear stress along x2, shear stress along x1, bending moment
around x1, bending moment around x2 and torsional moment.
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2.3.1 Saint Venant’s theory to analyze the sixth elementary distortion

This section deals with the analysis the specific load in Saint Venant’s theory (see [9, 31, 10]).
Hereafter, we will assume that the hollow cylinder is thin (i.e. its thickness Δ ρ = R2 − R1

is small with respect to the radius R1) and we will consider just the vertical component of
the load, i.e. fx3(ρ, d), acting on the base x3 = d. It is clear that, for the equilibrium, the
vertical component acting on the inferior base x3 = 0, will be directly opposed.
fx3(ρ, d) can be simply denoted with f(ρ), since, once x3 is fixed, it is a function of ρ only.

Moreover, since f(ρ) is monotone in [R1, R2], the equation f(ρ) = 0 has in (R1, R2) one
real root:

ρn =

√
e

R2
2 logR

2
2 −R2

1 logR
2
1

R2
2 −R2

1

− 1
. (2.3)

In other words, ρn is the value or the radius of the cylindrical neutral surface of the hollow
body with respect to the specific load.
Note that in every axial section, since the deformed hollow cylinder has stretched and com-
pressed bending fibres to conserve its original volume, R1 < ρn < R2 must be verified. In
addition (see [52, p. 435] and Figure 4)

ρM < ρn < R2 , (2.4)

where

RM = ρM =
R1 +R2

2
.

Figure 2.4: Specific load distribution

Now, let’s consider a simply connected auxiliary rectangular beam. We suppose that it
has height d (i.e. the same height of the cylinder) and cross section with unitary base for
convenience. More precisely, we suppose that the cross section of the auxiliary beam is a
rectangle whose area is (R2 − R1) ∗ 1 and if we consider an axial section of the cylinder of
height d, then it can be assimilated to a longitudinal section of the auxiliary beam.
Moreover, the auxiliary beam is subjected to the load f(ρ) on the bases.
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With reference to the aforementioned beam, from Eq. (2.4) we obtain that, in modulus, the
area delimited by f(ρ) on [R1, ρn] is greater than that delimited on [ρn, R2]:∣∣∣∣∫ ρn

R1

f(ρ)dρ

∣∣∣∣ > ∣∣∣∣∫ R2

ρn

f(ρ)dρ

∣∣∣∣ .
Now we would like to analyze the two zones delimitated by ρn (see Figure 4) and separately

study the distribution of load.
More precisely, since in Saint Venant’s theory it is unnecessary to define the effective punctual
distribution of the load on the bases of the body, we will appropriately reduce the load induced
in each section by the sixth elementary distortion to a normal stress and to a couple.
The normal stress and the momentum of the couple, both applied in the barycenter of the
section, will have a fundamental role in our analysis; more precisely, they allow us to prove
the specific load connected to the sixth distortion is equivalent (in Saint Venant’s theory) to
a right combined compressive and bending stress and to a right combined tensile and bending
stress. These ideas will be developed in detail in the following sections.

Upper section: ρ ∈ [ρn, R2]

Let’s focus our attention on ρ ∈ [ρn, R2]; let ρe be the value of ρ where we have to translate
the diagram of f(ρ) to divide the upper section in two with, in modulus, the same area (see
Figure 5).
The explicit value of ρe is obtained by solving the following equation:∫ ρe

ρn

[f(ρ)− f(ρe)] dρ+

∫ R2

ρe

[f(ρ)− f(ρe)] dρ = 0 ;

from which we easily derive

ρe =

√
e
−
2R2 − 2ρn −R2 logR

2
2 + ρn log ρ

2
n

R2 − ρn .

As already underlined, the specific load acting on the section can be represented by a
normal stress N applied on the barycenter G1 of the section whose modulus is

N = f(ρe)(R2 − ρn) = a(R2 − ρn)(b+ log ρ2e) ,

and by a couple (C1,−C1), whose vectors are applied in G
(1)
1 and G

(2)
1 respectively, i.e. in

the barycenters of the two sections having the same area (see Figure 5).
So, in order to evaluate the couple, its arm and the coordinate of its center, we want to
specify the positions of these barycenters.

More precisely, using the technique of static momenta, we compute the values of ρ corre-
sponding to the two barycenters; so, by the formula
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Figure 2.5: Decomposition of the specific load

ρ
G

(1)
1

=

∫ R2

ρe

ρ [f(ρ)− f(ρe)] dρ∫ R2

ρe

[f(ρ)− f(ρe)] dρ

,

we have

ρ
G

(1)
1

=
R2

2 − ρ2e − 2R2
2(logR2 − log ρe)

4[R2 − ρe −R2(logR2 − log ρe)]
;

while

ρ
G

(2)
1

=
ρ2e − ρ2n − 2ρ2n(log ρe − log ρn)

4[ρe − ρn − ρn(log ρe − log ρn)]
,

obtained by the analogous formula

ρ
G

(2)
1

=

∫ ρe

ρn

ρ [f (ρ)− f(ρe)] dρ∫ ρe

ρn

[f(ρ)− f(ρe)] dρ

.

Moreover, referring to the area ∫ R2

ρe

[f(ρ)− f (ρe)] dρ ,

it is possible to evaluate the modulus of the vector C1

C1 = a
[
2(R2 − ρe)−R2(logR

2
2 − log ρ2e)

]
.

It is clear that, referring to the area

∫ ρe

ρn

[f(ρ)− f (ρe)] dρ, when we evaluate the modulus of

the second vector of the couple it is is equal to a
[
2ρe − 2ρn − ρn(log ρ

2
e − log ρ2n)

]
. Note that
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since the evaluated areas are equal, this vector can be called −C1.
As the vectors of the couple are applied in the barycenter of the two equivalent sections, its

arm is b1 = (ρ
G

(1)
1

− ρ
G

(2)
1

), the coordinate of its center D1 is ρD1 =
ρ
G
(1)
1

+ρ
G
(2)
1

2 , and its

momentum MD1 has, in modulus, the following expression:

MD1 = b1 C1 = a(ρ
G

(1)
1

− ρ
G

(2)
1
)
[
2R2 − 2ρe −R2(logR

2
2 − log ρ2e)

]
.

In order to obtain the load globally acting on the section (normal stress and momentum of
the couple both applied in the same point, i.e. in D1), we need to translate N in D1 and
hence evaluate, in modulus, the momentum M

′
D1

related to this translation:

M
′
D1

= (ρG1 − ρD1) f(ρe)(R2 − ρn) =

= a[b+ log ρ2e](R2 − ρn)

[
R2 + ρn

2
−

(ρ
G

(1)
1

+ ρ
G

(2)
1
)

2

]
.

So, the total momentum applied in D1 is

M
′′
D1

= M
′
D1

+ MD1 =

=
1

2
a(R2 − ρn)(ρn − ρ

G
(1)
1

− ρ
G

(2)
1

+R2)(b+ log ρ2e) +

−a(ρ
G

(1)
1

− ρ
G

(2)
1

)[2R2 − 2ρe −R2(logR
2
2 − log ρ2e)] .

Note that the center D1 doesn’t coincide with the barycenter of the section:

ρD1 < ρG1 =
R2 + ρn

2
.

Because of this limitation and the sign of N, then M
′
D1

and MD1 have opposite signs.

Moreover, M
′′
D1

is less then MD1 , but has its sign.

Once the explicit form of M
′′
D1

is known, we can compute the eccentricity e
CS,1

of the

normal stress N with respect to the point D1 (see Figure 6), and hence, the position of the
center of stress CS,1. Note that CS,1 characterizes the point belonging to the meridian plane
(that is also plane of stress) where one can apply only the normal stress to obtain the same
effect produced by the specific load acting on the bases of the cross section of the auxiliary
beam. More precisely, in the coordinate–plane (0, ρ, x3),

ρCS,1
= eCS,1

+ ρD1 =
M

′′
D1

N
+

1

2
(ρ

G
(1)
1

+ ρ
G

(2)
1
) .

Finally, since Saint Venant’s theory refers to the barycenter, we have to evaluate the momen-
tum MG1 of N with respect to G1. So, letting

b′1 = ρ
CS,1

− ρG1 = −
(ρ

G
(1)
1

− ρ
G

(2)
1
)
[
2R2 − 2ρe −R2

(
log R2

2 − log ρ2e
)]

(R2 − ρn) (b+ log ρ2e )
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Figure 2.6: Centers of stress and their positions

be the arm, we have

MG1 = b′1N = −a
(
ρ
G

(1)
1

− ρ
G

(2)
1

) [
2R2 − 2ρe −R2

(
log R2

2 − log ρ2e
)]

.

Then, in agreement with Saint Venant’s theory, for all z ∈ [0, d] in the section there is the

action of the following linear σ
(1)
x3 (ρ) (right combined tensile and bending stress):

σ(1)x3
(ρ) =

N

L1
+
MG1

IG1

(
ρ− R2 + ρn

2

)
=

= f(ρe)+

−
12a(ρ

G
(1)
1

− ρ
G

(2)
1

)
[
2R2 − 2ρe −R2

(
log R2

2 − log ρ2e
)]

(R2 − ρn)
3

(
ρ− R2 + ρn

2

)
=

= a(b+ log ρ2e )+

−
12a(ρ

G
(1)
1

− ρ
G

(2)
1
)
[
2R2 − 2ρe −R2

(
log R2

2 − log ρ2e
)]

(R2 − ρn)
3

(
ρ− R2 + ρn

2

)
.

(2.5)

Actually, L1 is reduced to R2 − ρn since the cross section of the bar has unitary bases;
moreover, IG1 = 1

12(R2 − ρn)
3, as it is known, is the momentum of inertia in respect to an

axis through G1 and parallel to the bases of the same cross section.

Lower section: ρ ∈ [R1, ρn]

Let’s consider the lower section where ρ ∈ [R1, ρn]. In order to obtain, in Saint Venant’s
theory, the explicit form of the stress acting on the bases of the auxiliary beam, we briefly
recall the same strategy amply described in the previous case. So

ρp =

√
e
−
2ρn − 2R1 − ρn log ρ

2
n +R1 logR

2
1

ρn −R1

is the point where we have to translate the diagram of f(ρ) to obtain the division of the lower
section into two smaller ones with, in modulus, the same area. The normal stress applied to
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the barycenter G2 of the section, whose ρG2 = ρn+R1

2 , is in modulus

N = f(ρp)(ρn −R1) = a(ρn −R1)(b+ logρ2p) .

Moreover, we can evaluate the couple (C2,−C2)

C2 = a
[
2(ρn − ρp)− ρn(log ρ

2
n − log ρ2p)

]
,

its arm
b2 = ρ

G
(1)
2

− ρ
G

(2)
2

=

=
ρ2n − ρ2p − 2ρ2n(log ρn − log ρp)

4[ρn − ρp − ρn(log ρn − log ρp)]
− ρ2p −R2

1 − 2R2
1(log ρp − logR1)

4[ρp −R1 −R1(log ρp − logR1)]
,

and clearly the coordinate of its center D2

ρD2 =
ρ
G

(1)
2

+ ρ
G

(2)
2

2
.

Following the same line of reasoning, we can consider

M ′′
D2

= =
1

2
a(ρn −R1)(ρn − ρ

G
(2)
2

− ρ
G

(1)
2

+R1)(b+ log ρ2p) +

−a(ρ
G

(1)
2

− ρ
G

(2)
2

)[2ρn − 2ρp − ρn(log ρ
2
n − log ρ2p)] ,

and hence

ρ
CS,2

= e
CS,2

+ ρD2 =
M

′′
D2

N
+

1

2
(ρ

G
(1)
2

+ ρ
G

(2)
2

) .

Finally, since Saint Venant’s theory refers to the barycenter, we have to evaluate the momen-
tum MG2 of N with respect to G2. So, letting

b′2 = −
(ρ

G
(1)
2

− ρ
G

(2)
2

)
[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]
(ρn −R1)

(
b+ log ρ2p

)
be the arm, we have

MG2 = −a
(
ρ
G

(1)
2

− ρ
G

(2)
2

) [
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]
.

Thus, in agreement with Saint Venant’s theory, for all z ∈ [0, d] in the section there is the

action of the following linear σ
(2)
x3 (ρ) (right combined compressive and bending stress):

σ(2)x3
(ρ) =

N

L2
+
MG2

IG2

(
ρ− R1 + ρn

2

)
=

= a(b+ log ρ2p )+

−
12a(ρ

G
(1)
2

− ρ
G

(2)
2
)
[
2ρn − 2ρp − ρn

(
log ρ2n − log ρ2p

)]
(ρn −R1)

3

(
ρ− R1 + ρn

2

)
.

(2.6)

Actually, L2 is reduced to ρn − R1 since the cross section of the bar has unitary bases;
moreover, IG2 = 1

12(ρn − R1)
3, as it is known, is the momentum of inertia in respect to an

axis through G2 and parallel to the bases of the same cross section.
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2.4 Numerical Results

The importance of Saint Venant’s theory applied to the sixth elementary distortions is mainly
based on the information content of the Eq. (2.5) and (2.6). More precisely, they underline
what kind of load is induced (in Saint Venant’s theory) by the sixth elementary distortion: it
is a right combined tensile and bending stress and a right combined compressive and bending
stress. Hence, for every axial section it is possible to evaluate the tensional state with the
well–known Saint Venant’s formulas [31].
However, in order to apply Saint Venant’s theory, our analysis has required some assumptions:
we have considered a suitable auxiliary beam and we have assumed that the load on the bases
has a linear diagram. So, to evaluate the deviation of our results from Volterra’s predictions,
in this section we compare Eq. (2.5) and (2.6) with fx3(ρ) computed by Volterra.

More precisely, let’s consider the cylinder made of steel, for which

λ = 1.53 ∗ 10−6kg/cm2 ; ν = 7.89 ∗ 105kg/cm2 ,

and let’s subject the side of the cut to this rotation r = − 1.62 ∗ 10−5 rad.
The smallness of the chosen angle is justified by the required thickness of the cylinder, by
the material it is made of and by the hypothesis that Saint Venant’s theory is valid for small
displacements.
Moreover, we fixed R2 = 4 cm and then we examined the following two cases:

β =
R1

R2
= 0.5 ; β =

R1

R2
= 0.9

from which
R1 = 2cm ,ΔR = 2cm ; R1 = 3.6 cm ,ΔR = 0.4 cm .
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Figure 2.7: Load in Volterra ’s theory (black) and load in our results (dashed) for β = 0.5.
The picture refers to the upper section, i.e. 3.06 cm= ρn ≤ ρ ≤ R2 =4 cm
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Figure 2.8: Load in Volterra ’s theory (black) and load in our results (dashed) for β = 0.5.
The picture refers to the lower section, i.e. 2 cm= R1 ≤ ρ ≤ ρn =3.06 cm
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Figure 2.9: Graphic representation of the percent deviation of our results from Volterra’s
prediction for β = 0.5 and 3.06 cm= ρn ≤ ρ ≤ R2 =4 cm
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Figure 2.10: Graphic representation of the percent deviation of our results from Volterra’s
prediction for β = 0.5 and 2 cm= R1 ≤ ρ ≤ ρn =3.06 cm

When β = 0.5, in Figure 7 and Figure 8 we have shown the graphics of the different
loads. These pictures clearly demonstrate that the dashed line (expression of load in our
results) is a good approximation of Volterra’s prediction. The percent deviation of our result
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Figure 2.11: Load in Volterra ’s theory (black) and load in our results (dashed) for β = 0.9.
The picture refers to the upper section, i.e. 3.8 cm= ρn ≤ ρ ≤ R2 =4 cm. Note that the
two lines are indistinguishable
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Figure 2.12: Load in Volterra ’s theory (black) and load in our results (dashed) for β = 0.9.
The picture refers to the lower section, i.e. 3.6 cm= R1 ≤ ρ ≤ ρn =3.8 cm. Note that the
two lines are indistinguishable
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Figure 2.13: Graphic representation of the percent deviation of our results from Volterra’s
prediction for β = 0.9 and 3.8 cm= ρn ≤ ρ ≤ R2 =4 cm
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Figure 2.14: Graphic representation of the percent deviation of our results from Volterra’s
prediction for β = 0.9 and 3.6 cm= R1 ≤ ρ ≤ ρn =3.8 cm

from Volterra’s formula, for different values of ρ, is shown in Figure 9 and Figure 10. This
deviation is calculated dividing the difference between the load in Volterra’s theory and the
load in our results by the load in Volterra’s theory. As already underlined in the analytic
treatment of the previous section, apart from a small zone near the neutral axis this deviation
is “small”: the “error” made in such approximation can be strongly controlled.
Note that it is not restrictive to consider a small set of fixed ρ as to compute this deviation.
In fact, apart from a small zone near the neutral axis, which thickness, in both cases, doesn’t
exceed the 16% of the thickness of the considered section, this deviation remains bounded by
the same small value. Analyzing Figure 9 and Figure 10, it seems that this value is about 5.
We want to underline that since fx3(ρ) tends to zero in this small zone near the neutral axis,
the aforementioned formula is unable to give us information on the percent deviation, that
by Figure 7 and Figure 8 is bounded.

Finally, we have compared the obtained numerical results with Volterra’s prediction for a
very thin cylinder. More precisely, when β = 0.9, i.e. when that R1 differs little from R2, in
Figure 11 and Figure 12 we have shown the graphics of the different loads. In this case it is
rather impossible to distinguish between them. Clearly (see Figure 13 and Figure 14), apart
from a small zone near the neutral axis, which thickness, in both cases, doesn’t exceed the
16% of the thickness of the considered section, the deviation is also strongly bounded (about
by 0.6 per cent).
We can conclude by seeing that the values calculated through Saint Venant’s theory are more
strictly related to those calculated by Volterra when the cylinder thickness tends to zero.

2.5 Conclusions

In this chapter we have improved Volterra’s analysis focusing our attention on the load in-
duced on the bases by one of the six elementary distortions, the sixth one. Precisely, taking
advantage from the Saint Venant theory, tackled for our case, we have evaluated the nature
of this force. In particular, approaching the specific load as linear one and constructing an
auxiliary bar which has as longitudinal section the axial section of the cylinder, we have
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analyzed the tensional state with the well known Saint Venant’s principle.
We have obtained the specific load connected to the sixth distortion is equivalent (in Saint
Venant’s theory) to a right combined compressive and bending stress and to a right combined
tensile and bending stress.
As previously underlined, this result is achieved by considering some assumptions and approx-
imations. So, to evaluate its reliability and precision, we have added numerical simulations
able to visualize, and hence compare, the load given by Volterra and the load computed
through the Saint Venant’s theory. The numerical analysis, applied to a thin steel cylinder,
demonstrates that we have obtained a good approximations of Volterra’s prediction: in all
the analyzed cases, apart from the extinction zone, the deviation between the two expression
of the same load remains strongly bounded. This gives reason to a possible generalization of
the statement. More precisely, we stress that the various results obtained here are limited
to the analysis of the sixth elementary distortion. As an interesting research perspective, we
aim to address the generalization of our analysis to the case of a general distortion and which
we are planning for forthcoming investigations.



Chapter 3

Mathematical model for
para–ferromagnetic phase
transitions

In this chapter, by an extension of the Ginzburg–Landau theory, it is proposed a mathematical
model describing hard magnets within which we are able to explore the para–ferromagnetic
transition and by using the Landau–Lifshitz–Gilbert equation, to study the 3D evolution
of magnetic field. Finally, the hysteresis loops are obtained and represented by numerical
implementations. Precisely, by an extension of the Ginzburg–Landau theory, it is proposed a
mathematical model describing hard magnets within which we are able to explore the para–
ferromagnetic transition and by using the Landau–Lifshitz–Gilbert equation, to study the
3D evolution of magnetic field. Finally, the hysteresis loops are obtained and represented by
numerical implementations [24].
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3.1 Introduction

Ferromagnetism is a typical phenomenon occurring in materials such as iron, cobalt, nickel
and many alloys containing these elements. The ferromagnetic phase appears when a small
external magnetic field yields a large magnetization inside the material, due to the alignment
of the spin magnetic moments. Moreover, we observe a residual magnetization; namely, the
spin magnetic moments stay aligned even if the external magnetic field vanishes.

It is well–known that ferromagnetic materials are characterized by a critical temperature
θc, called the Curie temperature [1], [28], [35], [32]. For temperatures greater than θc, we
have a paramagnetic behaviour. When the temperature crosses θc, the material undergoes
a second order transition and displays ferromagnetic behaviour. In ferromagnetic materials
we observe an easy magnetization, motivated by the property of atom patterns to displays
a magnetic moment. In this work we propose a model for describing the para-ferromagnetic
phase transition and for predicting the classical hysteresis loops bellow the critical tempera-
ture θc. The large magnetic field is due to the alignment patterns of their constituent atoms,
which act as elementary electromagnets.

By an order parameter or phase field we mean a macroscopic variable describing the
internal physical state of the material, given by some macroscopic (chemical and physical)
properties. In the para–ferromagnetic transition we observe a different behaviour of the order
parameter, which characterizes the nature of the transition [14], [28].

According to the modern classification due to Landau, phase transitions can be separated
into two classes: first and second order transitions. In first order transitions, as long as θ does
not cross θc, the phase field is a constant function in both the phases. This does not happen in
second order transitions, in which the order parameter is constant in one of two phases only.
In other papers, on all paramagnetic and ferromagnetic phases, the order parameter is not a
constant, but a function of the magnetic field. In this work, in agreement with the definition
of a second order phase transition, we propose a model such that in the paramagnetic phase
the order parameter is a new variable, independent from magnetic field. Finally, within this
range, we obtain the peculiar hysteresis loops characteristic of a hard magnet.

The present chapter is laid out as follows. In Secs. 2 and 3, we propose a model for
studying the paramagnetic–ferromagnetic transition for a hard magnet, within which we also
describe the ferromagnetic behaviour and the hysteresis loops due to change of phase field,
magnetic effects and temperature.

In Sec. 4, we study the consistency of our model with thermodynamic laws. In agreement
with this point of view, the first law of thermodynamics yields the heat equation related to
our model.

Finally, in Sec. 5 and 6, for a unidimensional problem, we provides some numerical im-
plementations of the model. Moreover, we study the magnetization induced by the magnetic
field H, described by a curve obtained by plotting the magnetic induction field B against the
magnetic field H. This curve shows the characteristic shape of a hysteresis loop. Finally, we
demonstrate that the model ably describes the para–ferromagnetic phase transition, when
the temperature θ crosses the Curie temperature θc.
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3.2 Mathematical model

Ferromagnetism is usually studied by means of a macroscopic theory according to which inside
a ferromagnet there are regions of microscopic dimensions, called Weiss domains, containing
magnetic dipoles [55], [50], [45]. When no magnetic field is applied, the domains are oriented
in order that the average magnetic field is zero. However, if an external magnetic field is
applied, the boundaries of the domains move with the consequence that the regions, with
spins parallel to the field, grow at the expense of the ones oriented in a different direction.
The net effect is an internal distribution of the spins aligned with the field, leading to large
value of the resulting magnetic field. If the external magnetic field is strong enough, all the
magnetic dipoles are oriented with the magnetic field and the material is saturated, with
the magnetic induction field Bs. Even when the applied magnetic field is removed, the
ferromagnet retains a residual magnetic induction Br. To reduce Br to zero, one needs to
apply a magnetic field −Hc, called a coercive magnetic field.

Let us consider a ferromagnetic medium inside a domain Ω ⊂ R
3. We denote with E the

electric field, H the magnetic field, D the electric displacement, B the magnetic induction
field. In the classical theory of electromagnetism, a ferromagnetic material is described by
the following constitutive equations

D (x, t) = ε (x)E (x, t) , (3.1)

B (x, t) = μ (x)H (x, t) +M [H (x, t)] . (3.2)

here ε (x) and μ (x) denote, respectively, the electric and magnetic permittivity of the ma-
terial, while M denotes the magnetization field, which is a multi–valued function of H. The
characteristic behaviour of a magnetic material is described by a magnetization curve by
plotting the intensity of the magnetic induction field B against the strength of the magnetic
field H. This curve is represented by a hysteresis loop (see Fig.1), typical of the behaviour
of a ferromagnetic material. The proposed model describes a hard magnet. That is a metal
having a high coercive force which gives a large magnetic hysteresis.

The equation (4.6), relating the variation of the magnetization M to the magnetic field
H is a complex constitutive function. The choice of such a law is appropriate in order to
model the phenomenon as a phase transition.

Within this approach, we suggest and scrutinize here a phase–field model that sets the
phenomenon in the general framework of the Ginzburg–Landau theory of a second order
phase transition [21].

The common behavior shown during the paramagnetic–ferromagnetic phase transition is
due to a change of the order in the internal structure that the two phases exhibit. In this
situation, the change of the order is associated to a breaking of symmetry.

In order to model all the phase transitions from a macroscopic point of view, we will
suppose that the order of the structure of the material under consideration can be represented
by means of a variable, called an order parameter according to Landau. The choice of the
order parameter is the first step in the study of phase transitions.
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Figure 3.1: Hysteresis loop of a Nd-Fe-B film in a H-M diagram

In most applications, the order parameter is identified by a scalar variable, but it can be a
vector or a tensor parameter as in some models of liquid crystals where it is the macroscopic
average of the dielectric tensor.

For instance in ferromagnetism the point of view we will adopt here identifies the com-
ponents of the magnetization field M with the set of parameters able to characterize the
”amount of order” of the internal structure of the material. Since the order parameter M
is a vector, the model takes into account not only the number of orientated spins, but also
their direction. Accordingly, the magnetization M(x, t) is identified as the phase field which
is a vector–valued rather than a scalar–valued field.

According to this assumption, we deduce a model of the phenomenon, which allows a
more direct comparison with other classical models of ferromagnetism, and is based on the
introduction of two distinct evolution equations for the modulus f [ϕ (x, t)] and the direction
m (x, t) of the magnetic vector M, by means of the following decomposition

M = f(ϕ)m,

here the variable ϕ (x, t) can be interpreted as a phase field which satisfies the Ginzburg–
Landau equation. The evolution equation of the vector m will be described by the classical
Landau–Lifshitz- Gilbert equation.

In the descriptions of the phenomena related to phase transitions, we will suppose that
the equations governing the evolution of the order parameter can be obtained from a balance
law.

Indeed, we will assume that the variation of the structure order inside the material, is
balanced by the flux of the order entering the boundary and an increase due to possible
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external sources [5], [14], [28].
To this new balance equation on the order of the structure, we will associate a new form of

energy which has to be considered in the formulation of the first law of thermodynamics. In
other words, during a phase transition, the change of the order of structure yields a variation
of internal power of the material, which will be involved in the energy balance [21].

To this purpose, let us consider the domain Ω ⊂ R
3 occupied by the material. For any

subdomain S ⊂ Ω, the new balance law is expressed by the equality∫
S
ρkdx=

∫
∂S

p · ndσ +

∫
S
ρδdx ∀S ⊂ Ω.

where ρ is the mass density and k will be called the internal specific structure order, while p
and δ denote respectively the flux vector and the source of the structure order.

The arbitrariness of S and the divergence theorem lead to the local equation

ρk = ∇ · p+ ρδ, (3.3)

It is worth noting that the class of transitions can be divided into two parts: phase
transitions with conserved order parameter and phase transitions with non–conserved order
parameter. Examples of the former kind are the transition occurring in a binary alloy,
where the order parameter is related to the density of one component. Clearly, the two
components retain their masses unchanged even during the transition. This is the reason for
the ”conserved–order parameter”.

Instead most of the transitions that we consider are characterized by a ”non–conserved
order parameter”. For instance, in an ice–water transition, the order parameter, identified
with the water density, is not conserved, since the whole solid component can melt into the
liquid component or vice versa, according to the value of the temperature.

3.3 Ginzburg–Landau equation

In this section we will analyze only transitions with a non–conservative order parameter. In
order to describe the behavior of the transition, we have to identify the set of variables able
to characterize the state. In the simplest model, the state of the material coincides with the
triplet σ = (ϕ,∇ϕ, θ), where ϕ is the order parameter and θ is the variable which controls the
transition. For instance, θ is the absolute temperature, which induces the phase transition.

We consider homogeneous materials, so that the mass density ρ is constant. In the
following, we let ρ = 1. Moreover, we assume that ϕ is scalar–valued and θc is the temperature
at the transition, called the Curie temperature.

The choice of the order parameter identifies the kind of the transition. In agreement with
Landau theory, it is usually assumed that

(i) ϕ is bounded with values in the interval [−1, 1];
(ii) ϕ is zero in the less ordered phase and non–zero in the more ordered phase.
In particular if ϕ = 0 the material is in a paramagnetic phase, while if ϕ 
= 0 the material

is in a ferromagnetic phase.
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In order to characterize the phase transition, we have to specify the constitutive equations
for the quantities k(1) and p occurring in the balance equation (4.8), while the external source
δ is required to vanish. We express k and p in terms of order parameter as

k = τϕt + θcF
′(ϕ) + (θ − αH ·m)G′ (ϕ)− sign (ϕ)H ·m, (3.4)

p =
1

κ2
∇ϕ, (3.5)

where τ , α and κ2 are positive constants and F ′, G′ are derivatives of two functions depending
only on ϕ. The choice of the functions F and G identifies different models of transition phase.
As in [21], [5], for a classical second order phase transition, we suppose

F (ϕ) =
1

4
ϕ4 − 1

2
ϕ2, G (ϕ) =

1

2
ϕ2, (3.6)

Moreover, by (4.11) and (4.12), equation (4.8) yields the following equation that describes
the evolution of the order parameter ϕ

τϕt =
1

κ2
�ϕ− θcF

′(ϕ) − (θ − αH ·m)G′(ϕ) + sign (ϕ)H ·m, (3.7)

This is the real Ginzburg–Landau equation typical of para–ferromagnetic phase transition
models.

3.4 Landau–Lifshitz equation

In 1935, Landau and Lifshitz [35] proposed a phenomenological theory developed later by
Brown [15] and Prohl [46] (see also [33]) known as micromagnetics. The model describes the
behaviour of a rigid ferromagnetic body in isothermal conditions below the Curie temperature.
When the material is saturated, the magnetization field M is given by

M =Msm,

where Ms, constant, is the magnetic induction at saturation and m is a unimodular vector.
The equation governing the evolution of m is assumed to be

mt = −γm×H, (3.8)

with γ a positive constant called the gyromagnetic ratio.
This equation allows us to explain a precession of m around the direction of the magnetic

field H. In order to include dissipative effects, a further term should be added to (4.14) which
pushes the magnetization M towards H. Thus equation (4.14) is modified as in [27] to

1It is easy observe that in the conservative case the function k, appearing in the balance equation (4.8),

is proportional to the time derivative of the order parameter, namely k = τ
·
ϕ. This is not the case in the

non–conservative assumption, where k has a more involved expression.
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mt = −γm×H−λm× (m×H),

where γ and λ are two positive constants.
In this framework, in order to take into account the phase change we consider a modified

Landau–Lifshitz equation

G (ϕ)mt = −γm×H−λm× (m×H). (3.9)

By this last equation, (3.9), we obtain for G (ϕ) = 0, the magnetization M and the
magnetic field H are parallel.

The differential system is completed by Maxwell equations given by

∂D

∂t
= ∇×H− J, ∇ ·D = ρ, (3.10)

∂B

∂t
= −∇×E, ∇ ·B = 0, (3.11)

where ρ is the electric charge density and J is the electric current.

3.5 Thermodynamic restrictions

In this section, we prove the compatibility of the model with thermodynamic laws. In this
situation, we choose equation (3.7), which governs the evolution of the phase field ϕ(x, t).

For the sake of simplicity, we assume κ = 1. Let us multiply the equation (3.7) by ϕt.
This leads by the divergence theorem, we get

τϕ2
t + θcFt (ϕ) + (θ − αm ·H)Gt (ϕ)− sign (ϕ)ϕtm ·H+

+

(
1

2
|∇ϕ|2

)
t

= ∇· (ϕt∇ϕ) . (3.12)

Further, we add to equation (4.15) a new constitutive equation which replaces equation
(4.6). Namely

Bt = μHt + α(G (ϕ)m)t + sign (ϕ)ϕtm. (3.13)

Now, to verify the principles of thermodynamics, we need to define the internal power
associated to the equations (4.3), (3.7), (4.16).

Indeed, the ”First Law of Thermodynamics” contains a state function e (x, t), called
internal energy, such that

et = P(i)
s + h, (3.14)

where P(i)
s is the internal power of the system and h is the heat power defined by the rate at

which heat is absorbed per unit mass and time. Accordingly, in the energy balance law (4.17),
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we must introduce the definition of the internal power. In this model we denote with P(i)
el ,

P(i)
ma and P(i)

ϕ the internal electric, magnetic and chemical powers respectively. Therefore,
(4.17) leads to equation

et = P(i)
el + P(i)

ma + P(i)
ϕ + h. (3.15)

So that, from Maxwell equations, (4.1) and (4.3), we obtain the internal electric power

P(i)
el , which, by (4.5), can be represented in the usual form, without the term J · E(2),

P(i)
el = Dt · E = εEt ·E, (3.16)

Moreover, from (4.16), we obtain the internal magnetic power

P(i)
ma = Bt ·H = μHt·H+ (αGt (ϕ) + ϕtsign (ϕ))m ·H+αλ |m×H|2 (3.17)

Finally, by (4.15) we obtain the internal structural power

P(i)
ϕ = τϕ2

t + θcFt (ϕ) + (θ − αm ·H)Gt(ϕ) +

−sign (ϕ)ϕtm ·H+

(
1

2
|∇ϕ|2

)
t

. (3.18)

Then (4.18), by (3.16), (3.17) and (3.18), yields

et =
1

2

(
ε |E|2 + μ |H|2 + |∇ϕ|2

)
t
+ θcFt (ϕ) + τϕ2

t + θGt (ϕ)+

+αλ |m×H|2 + h. (3.19)

A complete description of para–ferromagnetic phase transition requires the introduction
of an equation that defines the evolution of the temperature. Therefore, we introduce the
heat balance law by the equation (see [21])

h = −∇ · q+ r, (3.20)

where q denotes the heat flux vector and r the heat supply. In this frame–work, we suppose
the heat flux vector is defined by the classical Fourier law

q = −k∗ ∇θ, (3.21)

where θ is the absolute temperature and k∗ > 0 the thermal conductivity of the material,
which we consider as a constant(3). In the following we choose ê such that êθ = a0 > 0. Then

e (θ, ϕ,E,H,∇ϕ) = a0θ +
1

2

(
ε |E|2 + μ |H|2 + |∇ϕ|2

)
+ θcF (ϕ) ,

2Its effect is of very small magnitude.
3Really k∗ depends upon the absolute temperature θ.
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Hence, by (4.19), (4.20) and (4.21), we have the heat equation

θtêθ − τϕ2
t − αλ |m×H|2 − θGt (ϕ)=kΔθ + r. (3.22)

In the following we choose ê such that êθ = a0 > 0.Then, from (4.19) and (3.22), we
obtain the internal energy

e (θ, ϕ,E,H,∇ϕ) = a0θ +
1

2

(
ε |E|2 + μ |H|2 + |∇ϕ|2

)
+ θcF (ϕ) ,

We are now in a position to prove that our model is consistent with the ”Second Law of
Thermodynamics”. Therefore, we introduce the Clausius–Duhem inequality. There exists a
state function η (x, t), called entropy, such that

ηt �
h

θ
+

q

θ2
· ∇θ. (3.23)

From the definition of h, with (3.22) and inequality (3.23), we have

θηt � θta0 − τϕ2
t − θGt (ϕ)−k

∗

θ
|∇θ|2 − αλ |m×H|2 . (3.24)

Now, we introduce the free energy, ψ (x, t) = e (x, t) − η (x, t) θ (x, t), which, by the
inequality (3.24) above, gives

ψt − 1

2

(
ε |E|2 + μ |H|2 + |∇ϕ|2

)
t
− θcFt (ϕ)− θGt (ϕ) +

−τϕ2
t−

k∗

θ
|∇θ|2 − αλ |m×H|2 + ηθt � 0. (3.25)

Inequality (3.25) admits the following choice of free energy

ψ =
1

2

(
ε |E|2 + μ |H|2 + |∇ϕ|2

)
+ θcF (ϕ) + θG (ϕ) + a0θ − a0θ log θ. (3.26)

Accordingly the entropy is defined as

η = −∂ψ
∂θ

= a0 log θ −G (ϕ) . (3.27)

Substitution of (3.27) and (3.26) into (3.25), provides the following reduced inequality

− k∗

θ
|∇θ|2 − αλ |m×H|2 − τϕ2

t � 0

This holds along any process in view of assumptions k∗ > 0, τ > 0, λ > 0 and α > 0 together
with the positiveness of the absolute temperature.

Then the thermodynamical consistence of the model is proved.
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3.6 Magnetic behaviour and hysteresis loop

In this section, we prove that the model defined by equations (4.1), (4.3), (4.5), (4.6),
(3.7), (4.16), (3.22) is able to describe the phenomena typical of paramagnetic–ferromagnetic
behaviour, such as the hysteresis loop and the phase transition of a hard homogeneous magnet.

Let us consider the constant temperature θ, such that θ < θc with the magnetic permit-
tivity of the material μ constant. Then the material is in the ferromagnetic phase. Therefore,
our model should show the typical hysteresis loop. In order to obtain this diagram, we con-
sider a unidimensional problem, for which the phase ϕ belong to the interval [−1, 1]. In such
a case, we suppose also that H =H H0

|H0| , where H0 is the constant vector corresponding to
the initial direction of H and

m = sign (ϕ)
H0

|H0|
Moreover, we neglect spatial variations of the field ϕ. Under such hypothesis, our differential
problem is reduced to the following scalar system⎧⎨⎩

τϕ̇ (t) = −θcF ′ [ϕ (t)]− (θ − αsign (ϕ)H (t))G′ [ϕ (t)] +H (t)

Ḃ (t) = μḢ + αsign (ϕ) Ġ [ϕ (t)] + ϕ̇ (t) ,

(3.28)

together with the initial conditions

ϕ (0) = ϕ0, B (0) = B0. (3.29)

In order to integrate the differential system (3.28), together with the initial conditions
(3.29), which well describes the hysteresis loop related to the para–ferromagnetic phase tran-
sition for a homogeneous hard magnet, we have to specify the magnetic field H(t) given in
the form of a sinusoidal magnetic field

H(t) = H0 sinωt, (3.30)

with frequency ω and amplitude H0.
By choice (3.6), for F , G functions, and (3.30), for magnetic field H(t), the differential

system (3.28), becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
τϕ̇ (t) = −θc

(
ϕ (t)3 − ϕ (t)

)
− (θ − αsign (ϕ)H0 sinωt)ϕ (t)+

+H0 sinωt

Ḃ (t) = μH0ω cosωt+ αsign (ϕ)ϕ (t) ϕ̇ (t) + ϕ̇ (t) ,

(3.31)

together with its initial condition

ϕ (0) = ϕ0, B (0) = B0. (3.32)

Moreover, we also study the case in which the material is in the paramagnetic phase,
namely when θ crosses θc. So, we prove that our model, represented by differential system
(3.31), coupled with (3.32), is also able to describe a para–ferromagnetic transformation with
a scalar phase transition parameter ϕ (t).
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3.7 Numerical Results

In this section, we study numerical behaviour of the solutions of the dimensionless system
(3.31).

−First case.
For θ < θc, the numerical implementation (4) of the differential system (3.31) is performed

with initial conditions (3.32) expressed in the form

ϕ0 = 0.001, |B0| = 0, (3.33)

and with the following choice of parameters

T |H0| τ θc θ μ α

30 15 1 40 35 10−3 0.1
,

with ω = 2π
T , which yields the graphics of the two branches of the magnetization curve,

(Fig.2). The first when |H| goes initially from zero to |H0| = 15, for 0 < t < 15
2 and the

second when |H| goes from zero to − |H0| = −15, for 15
2 < t < 45

2 ,

Figure 3.2: The first two branches of the magnetization curve

From the shape of the first of these two branches, called ”first magnetization curve”, we
observe that when |H| increases, initially |B| increases more quickly and then more slowly,
until, for higher values of |H|, the magnetization process shows a tendency to achieve a limit
for |B| value, called the magnetic induction field at the saturation |Bs| = 0.82. If we now
decrease |H| , for 15

2 < t < 15, then also the magnetic induction field also decreases, but the

4The numerical implementation has been conducted by the differential numeric algorithms within Wolfram
Mathematica 7 code.
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system state is such that the magnetic induction field |B| cannot recover to the original first
magnetization branch exactly. In fact, for t = 15, |B| overtakes the |H| = 0 value, and there
exists a |Br| = 0.38 
= 0 value, called the residual magnetic induction of the material. To
reduce |Br| to zero, one needs, for 15 < t < 45

2 , to apply a magnetic field − |Hc| = −1.92,
for t � 16, called the coercive magnetic field. If, for 16 < t < 45

2 , we now decrease negatively
the magnetic field, that is to say we increase its modulus, the material magnetizes itself in
a contrary direction compared to the previous case, since the magnetic induction reaches a
new saturation value − |B′

s| = −0.77 
= 0, for t = 45
2 .

If we reverse |H| from −15 to 15, for 45
2 < t < 75

2 , the magnetization curve displays a
third branch (Fig.3)

Figure 3.3: Hysteresis cycle with θ1 < θc

From Fig.3, we observe that these three magnetization curves shape a loop. In particular,
for 45

2 < t < 30, when |H| increases negatively to zero, that is to say when we decrease its
modulus, we obtain again, for t = 30, a new residual magnetic induction − |B′

r| = −0.37 
= 0,
which can be removed by a new coercive magnetic field |H′

c| = 1.93, for t � 31. Then, for 31 <
t < 75

2 , if we increase |H| it finally overtakes the saturation with a new magnetic saturation
value |B′′

s | = 0.82. The phenomenon, previously described, by which the magnetic induction
|B| differs from magnetic field |H|, is called ”magnetic hysteresis” and, by consequence, the
loop represented in Fig.3, which is in good agreement with the experimental results for a
ferromagnetic–paramagnetic transition phase, is called ”magnetic hysteresis loop”.

In the next table we report the characteristic values of the order parameter ϕ

ϕ|Bs| ϕ|Br| ϕ−|Hc| ϕ−|B′
s| ϕ−|B′

r| ϕ|H′
c| ϕ|B′′

s |
0.79 0.38 3 · 10−3 −0.77 −0.38 10−3 0.79

.

–Second case.
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For θ < θc, the differential system (3.31), solved with the same initial conditions (3.33)
but with the following parameters

T |H0| τ θc θ μ α

30 15 1 40 25 10−4 10−2 ,

yields the following magnetic hysteresis loop of a hard magnets

Figure 3.4: Hysteresis cycle with θ2 < θ1 < θc

The numerical results, together with characteristic values of the order parameter ϕ, are

|Bs| |Br| − |Hc| − |B′
s| − |B′

r| |Hc| |B′′
s |

0.896 0.616 −4.77 −0.891 −0.616 4.78 0.896
,

ϕ|Bs| ϕ|Br| ϕ−|Hc| ϕ−|B′
s| ϕ−|B′

r| ϕ|H′
c| ϕ|B′′

s |
0.893 0.616 1.48 · 10−3 −0.890 −0.616 0.52 · 10−3 0.893

.

–Third case.
For θ < θc, the differential system (3.31), is solved with the same initial conditions (3.33)

and the following data parameters

T |H0| τ θc θ μ α

30 15 1 40 20 10−5 10−3 ,

yields the following magnetic hysteresis loop typical of a hard magnet
The numerical results, together with characteristic values of the order parameter ϕ, are

|Bs| |Br| − |Hc| − |B′
s| − |B′

r| |Hc| |B′′
s |

0.946 0.708 −6.62 −0.947 −0.709 6.63 0.946
,
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Figure 3.5: Hysteresis cycle with θ3 < θ2

ϕ|Bs| ϕ|Br| ϕ−|Hc| ϕ−|B′
s| ϕ−|B′

r | ϕ|H′
c| ϕ|B′′

s |
0.947 0.709 10−3 −0.946 −0.709 10−3 0.947

.

By observing Fig.2, Fig.3 and Fig.5, we remark that the area enclosed into hysteresis
loops varies when we change the values of parameters data. In particular, we observe that
generally this variation increases when the positive jump θc − θ increases.

–Fourth case.
For θ > θc, the differential system (3.31), is solved with the same initial conditions (3.33),

but now with the following data parameters

T |H0| τ θc θ μ α

50 15 1 20 45 10−4 0.1
,

This gives the following magnetic hysteresis loop
The numerical results, together with characteristic values of the order parameter ϕ, are

|Bs| − |B′
s| |B′′

s |
0.515 −0.489 0.515

,

ϕ|Bs| ϕ−|B′
s| ϕ|B′′

s |
0.509 −0.491 0.509

.

In this case, we observe that, when θ > θc, our model describes a para–ferromagnetic
phase transition, but the magnetic behaviour of the material shows that it goes from the
ferromagnetic state to the paramagnetic state.
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Figure 3.6: Phase diagram with θ4 < θc

–Fifth case.
For θ > θc, the differential system (3.31), is solved with the same initial conditions (3.33)

but now with the following data parameters

T |H0| τ θc θ μ α

50 15 1 20 80 10−4 0.1
,

This now yields the following magnetic hysteresis loop of Figure 7.
The numerical results are

|Bs| − |B′
s| |B′′

s |
0.247 −0.246 0.247

,

together with characteristic values of the order parameter ϕ

ϕ|Bs| ϕ−|B′
s| ϕ|B′′

s |
0.247 −0.244 0.247

.

In these last two cases, we observe that, when θ > θc, our model describes yet a para–
ferromagnetic phase transition, but the magnetic behaviour of the material shows that it goes
from the ferromagnetic state to the paramagnetic state. Besides, when the jump θ − θc > 0
increases, we observe that the magnetization curves become more and more linear with lower
Bs values and with a lower dB

dH , in the region of thr origin.
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Figure 3.7: Phase diagram with θ5 < θ4



Chapter 4

Analysis of shape memory alloy in
the phase transition approach

A model for shape memory alloys described by a intermediate pattern between a first and a
second order phase transition is studied. Moreover, by the thermodynamic compatibility of
the model, we provide suitable restrictions on the potentials of the Ginzburg-Landau system.
Finally, we present numerical simulations of this shape memory model, which are in good
agreement with experimental data [25].
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4.1 Introduction

In a shape memory alloys, we observe a structural transformation between austenite and
martensite phase, called martensite phase transition. These materials are capable to recover
permanent strain when are heated over a given temperature. At high temperature the crystal
lattice of the material is in a high symmetric phase, called austenite (A). At low temperature
we observe the martensite phase (M), represented by a smaller symmetry. This transfor-
mation is crystallographically reversible (see [44]). Moreover, the variations of the stress
and temperature have a large influence on these transformations. So to generate force and
thermal changes through a phase transition. For the study of these materials, we follow the
approach presented in the papers [7],[39], by the notion of order parameter or phase field
ϕ and the use of the Ginzburg-Landau (G-L) theory of phase transitions, together to the
classical equations of thermomechanics. In this work, compared with the works in [6], [7],
we have considered two different potentials in G-L equation, which provide more convenient
numerical simulations for the stress-strain diagrams. Moreover, these two new potentials are
able to well describe some SMAs, as the Single Crystal AuZn (see [38],[19]), for which the
character of the transformation lies at a borderline between a continuous and discontinuous
phase transition. So that, this new free energy describes an intermediate behavior within a
first and second order phase transition.

In other words, our differential system differs from other classic SMA models studied in
[39], [40], [41], [6], [7], [23], because now the transformation is described by a continuous
transition between austenite and martensite phase, as considered in [38],[19].

Following [22], [23], the G-L equation is obtained as a balance law on the internal structure
of the material, and then as a new field equation to which to associate a new internal power
to be considered in the First Law of Thermodynamics. In our model, the G-L, the motion
and heat equations are related by a differential constitutive equation on the strain, stress and
order parameter.

Finally, we study some numerical simulations for 1-D problem, for which now the order
parameter and the free energy take a different representation compare to 3-D model. Nev-
ertheless, this 1-D problem describes the same intermediate behavior between a continuous
and discontinuous transitions.

Our study begin with the explicit field equations for 3-D model, describing shape memory
alloys. Here, the several variants of martensite are described by the product ϕε, where ε is
the strain, fixed by crystallographic structure and ϕ ∈ [0, 1]. The model is in agreement with
the typical damping capacity and fatigue life of a SMAs. Then, we study the compatibility
of the model with the Thermodynamic Laws. So, we obtain the potentials: internal energy,
free energy and entropy. In the last section, we present a one-dimensional model, for which
now the order parameter ϕ ∈ [−1, 1]. Thus, this model is not a special case of the 3-D model.
The chapter finishes with some numerical simulations, that provide the classical stress-strain
diagrams of SMAs.
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4.2 Austenite-martensite 3-D Model

We proceed building a differential system by the Landau theory on phase transitions, using
the notion of order parameter ϕ. For 3-D model the austenite phase will be denoted by ϕ = 0,
while the martensite phase with ϕ > 0. Now we suggest for the phase field of shape memory
alloys, the following Gibbs free energy, as a function of the absolute temperature θ, strain
tensor ε, order parameter ϕ and its gradient ∇ϕ

ρ0Ψ(θ,ϕ,∇ϕ, ε) = ρ0Ψ0 (θ) +
1

2
λε · ε+κ

2
(∇ϕ)2 + θcF (ϕ) +(

θ̂c − α |ε|
)
G (ϕ) (4.1)

where ρ0 is the reference density, λ a positive defined four order tensor, κ and α two positive
constants and θc a fixed temperature. While, the function θ̂c is given by

θ̂c =

{
θ for θ > θc
θc for θ ≤ θc

So, from (4.1) and by the classical formula

γϕ̇ = − δ

δϕ
[ρ0Ψ(θ, ϕ,∇ϕ, ε)] (4.2)

we obtain the G-L equation

γϕ̇ = κ∇2ϕ− θcF
′(ϕ)− (θ̂c − α |ε|)G′(ϕ). (4.3)

where, with the dot we denote the total time derivative. Finally, the functions F and G are
two potentials defined by the polynomials

F (ϕ) =
ϕ4

4
− 2

3
ϕ3 +

ϕ2

2
, G(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ϕ ≤ 0

−ϕ
4

4
+
ϕ2

2
if 0 < ϕ < 1

1

4
if ϕ ≥ 1

(4.4)

In a stationary state, when θc > (θ̂c − α |ε| ), the material is in martensite phase (M),
while for θc < (θ̂c − α |ε| ), we are in austenite phase (A). The strip enclosed inside θc and
θ̂c represents the area in which we observe the phase transition. The classical phase diagram
for a shape memory alloys is represented in the Fig.1.
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Figure 4.1: HTypical SMA cyclic stress processes for different temperatures (Mueller - Se-
elecke. Math.Comp.Mod. 2000).

In order to complete the differential system, we have to introduce the motion equation

ρ0ü = ∇ · σ + ρ0b (4.5)

where u is the displacement and b the body force.
The behavior of a SMA is described by the constitutive equation among σ, ε and ϕ. For

this 3-D model, we put

ε̇ = λ−1σ̇ + κ

(
ε

|ε|
)·
G (ϕ) (4.6)

where the tensor κ = αλ−1.

4.3 Energy balance and Second Law of Thermodynamics

For achieving to First Law of Thermodynamics, we need to define the internal mechanical
and structural power which we denote respectively with Pi

m , Pi
s, besides the internal heat

power Pi
θ.

By the equation (4.3), (4.5) and (4.6) we have

Pi
m = σ · ε̇ = λε · ε̇− α |ε|·G (ϕ) (4.7)

Pi
s = γϕ̇2 +

[κ
2
(∇ϕ)2

]·
+ θcḞ (ϕ) +

(
θ̂c − α |ε|

)
Ġ (ϕ) (4.8)

Moreover, from the First Law of Thermodynamics we obtain the equation

ρ0ė = Pi
m + Pi

s + Pi
θ. =

= λε · ε̇+γϕ̇2 +
[κ
2
(∇ϕ)2

]·
− (α |ε|G (ϕ))· + θcḞ (ϕ) + θ̂cĠ (ϕ) + Pi

θ . (4.9)
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In the following, we use the new function

θ̃c =

{
θ − θc for θ > θc
0 for θ ≤ θc

so that,
θ̂cĠ (ϕ) = θcĠ (ϕ) + θ̃cĠ (ϕ)

Then, the equation (4.9) can be written in the new form

ρ0ė =
d

dt
(
1

2
λε · ε+

κ

2
(∇ϕ)2 + (θc − α |ε|)G (ϕ) + θcF (ϕ)) (4.10)

+γϕ̇2 + θ̃cĠ (ϕ) + Pi
θ

Finally, we introduce the heat balance law

Pi
θ = −∇ · q+ρ0r (4.11)

where q is the heat flux and r is the heat supply. Finally by (4.9) and (4.11) we have the
heat equation

ρ0eθ θ̇ − γϕ̇2 − θ̃cĠ (ϕ) = −∇ · q+ρ0r (4.12)

Moreover from (4.9) we obtain the internal energy

e (θ, ϕ, ∇ϕ, ε) = e1 (θ) +
1

2
λε · ε+

(4.13)
κ

2
(∇ϕ)2 + (θc − α |ε|)G (ϕ) + θcF (ϕ)

Therefore, the differential system is given by the equations (4.1), (4.2), (4.3) and (4.8).
Now, we study the compatibility of this system with the Second law of Thermodynamics
represent by means of the inequality

ρ0η̇ ≥ Pi
θ

θ
+

1

θ2
q · ∇θ (4.14)

where η is the entropy. Then, because by (4.11) and (4.12) we have

Pi
θ = ρ0eθθ̇ − γϕ̇2 − θ̃cĠ (ϕ) (4.15)

So that, the inequality (4.14) assumes the form

ρ0η̇θ ≥ ρ0eθθ̇ − γϕ̇2 − θ̃cĠ (ϕ) +
1

θ
q · ∇θ. (4.16)

There, under the hypothesis for the entropy
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η (θ, ϕ) = η0 (θ) + η1 (ϕ, θ)

and from (4.16) we have

η1 (ϕ, θ) =

{
G (ϕ) for θ > θc
0 for θ ≤ θc

(4.17)

while η0 (θ) is such that

θη0θθ̇ − e1θθ̇ = 0 .

So

η0 =

∫
e1θ
θ
dθ.

Hence, the inequality (4.14) is satisfied if

γϕ̇2 +
1

θ
q · ∇θ ≥ 0 . (4.18)

Finally, the free energy Ψ = e− θη is given by

ρ0Ψ = ρ0

(
e1 − θ

∫
e1θ
θ
dθ

)
+

1

2
λε · ε−α|ε|G (ϕ) (4.19)

+
κ

2
(∇ϕ)2 + θcF (ϕ)− θ̃cG (ϕ)

So that, from (4.19) we obtain again the equation (4.3) by the classical formula (4.2).
Moreover, we have that

Ψ0 =

(
e1 − θ

∫
e1θ
θ
dθ

)

4.4 Austenite-martensite 1-D Model

For 1-D problem, we suppose the displacement u = u(x, t)k, where k is a unit vector. So, we

put ε =
∂u

∂x
, while

σ =

⎡⎣ σ11 0 0
0 0 0
0 0 0

⎤⎦
in the following the component σ11 will be denoted by σ. So that, the motion equation is
given by

ρ0
∂

∂t
u =

∂σ

∂x
+ ρ0b

where ρ0 denotes the density and b the body force.
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For this 1-D model, the phase field equation (4.3) assumes the form

γϕ̇ = κ∇2ϕ− θcF̃
′(ϕ)− (θ̂c − ασ sign(ϕ))G̃′(ϕ) (4.20)

where now the potentials F̃ (ϕ) and G̃(ϕ) are defined by the functions

F̃ (ϕ) =
ϕ6

6
− ϕ4

4
, G̃(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

6
if ϕ ≥ 1

ϕ6

6
− ϕ4

2
+
ϕ2

2
if 0 < ϕ < 1

1

6
if ϕ ≤ −1

and where σ = σ0sen (ωt) is the cyclic stress law that acting on the sample.
Finally, for this 1-D problem, the constitutive equation analogous to (4.6) is now defined

by
ε = λ−1σ + α sign(ϕ)G̃ (ϕ) (4.21)

The Gibbs free energy is now represented by the following functional

ρ0Ψ = ρ0

(
e1 − θ∫ e1θ

θ dθ

)
+

1

2
λ−1σ2+

κ

2
(∇ϕ)2 + θcF̃ (ϕ)− θ̃cG̃ (ϕ)

Numerical simulations
In this section, we study numerical behavior of the solutions of the dimensioness phase

field differential equation (4.20) coupled with the equation (4.21).
First case
For θ < θc, the numerical implementation (1) of the phase field differential equation (4.20)

is performed by the following initial condition, at t0 = 0,

ϕ (0) = 0

for the value of phase transition parameter and with the following choise of the other param-
eters

T σ0 γ θ θc θ̂c κ α λ

1.2 10 0.1 10−5 10 10 0.3 50 1

where, for the cyclic stress law we consider σ = σ0sen (ωt), while ω is equal to
2π

T
. The

problem carries out through two steps. The first step is that to solve the differential equation
(4.20) to obtain so the ϕ(t) function, the second step is that to introduce it in the eqution
(4.21). In this way we are able to draw the following (σ, ε) diagrams for the SMAs submitted

to the given cyclic stress law during the time interval

[
0,

5

4
T

]
= [0, 1.5],
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Figure 4.2: First branches for θ < θcand 0 < t < 0.3.

Figure 4.3: First, second and third branches for θ < θc and 0 < t < 0.9.

If we observe previous Fig.1, where the test temperature θ is smoller than the critical
value θc, a SMAs in these condition presents a similarity with a material without a shape
memory. The diagram reproduces a classic hysteresis loop model in agreement with the
typical damping capacity and fatigue life of a SMAs, subject to a stress cycle inside the
austenitic, in agreement with the quasi-plastic behavior of a SMAs represented to the left
hand of Fig.1

Second case
For θ > θc, the numerical implementation of the differential equation (4.20) by the same

initial condition, at t0 = 0,

1The numerical implementation has been conducted by the differential numeric algorithms within Wolfram
Matehematica 7 code.
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Figure 4.4: First, second, third and forth branches for θ < θc and for 0 < t < 1.5.

ϕ (0) = 0

for the value of the following phase transition parameters

T σ0 γ θ θc θ̂c κ α λ

1.2 6 1 150 10 150 4 40 1

where, in the cyclic stress law is alway given by σ = σ0sen (ωt), and ω is equal to
2π

T
. In this

case we obbtain the following other graphics resultes.

Figure 4.5: First branche for θ > θcand 0 < t < 0.3.

In this second test, where the remperature is greater than the critical value θc, thediagrams
in Fig.5, 6 and 7 show the specific beaviour of a material with shape memory. Specially, the
Fig.7 reproduces a classic loop model submitted to a loading and unloading stress cycle in
agreement with the pseudoelastic behavior of a SMAs, represented to the right hand of Fig.1.
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Figure 4.6: First, second and third branches forθ > θc and 0 < t < 0.9.

Figure 4.7: First, second and third branches for θ > θc and 0 < t < 1.2.
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