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Introduction

In the study of several elliptic problems with solutions in a Sobolev space S(Ω) (with

or without weight) on an open set Ω of Rn, not necessarily bounded or regular, it is

sometimes necessary to estabilish regularity results and a priori estimates for the so-

lutions. These results often rely on the boundedness and possibly on the compactness

of the multiplication operator

u −→ g u (i)

which is defined in S(Ω) and which takes values in a suitable Lebesgue space Lp(Ω),

where g is a given function in a normed space V . Hence, it’s necessary to obtain an

estimate of the following type :

‖g u‖Lp(Ω) ≤ c · ‖g‖V · ‖u‖S(Ω) , (ii)

where c ∈ R+ depends on the regularity properties of Ω and on the summability

exponents, and g satisfies suitable conditions.

If L is the differential operator associated to the corresponding elliptic problem, the

estimate (ii) allows us, for instance, to prove the boundedness of the operator L, when
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4 Introduction

g is a coefficient of L. In some particular cases, it’s not possible to obtain certain reg-

ularity results for the operator L itself, because of its non regular coefficients. Hence,

there is the need to introduce a suitable class of operators Lh, whose coefficients, more

regular, approximate the ones of L. This “ deviation ” of the coefficients of Lh from

the ones of L needs to be done controlling the norms of the approximating coefficients

with the norms of the given ones. Hence, it is necessary to obtain estimates where the

dependence on the coefficients is expressed just in terms of their norms (in this case,

for instance, there are no problems when passing to the limit). In other words, if g is

a coefficient of operator L and gh is a coefficient of Lh more regular, it’s necessary to

have a “ good control” of the difference g−gh. The introduction of decompositions for

functions in suitable function spaces (where the coefficients of differential operator L

belong) plays an important role in this approximation process.

Having this in mind, our purpose is to construct suitable decompositions for func-

tions belonging to some specific functional spaces whose introduction is related to the

solvability of certain elliptic problems of above mentioned type. As application, we

want to study the boundeness and the compactness of an operator in Sobolev spaces

with or without weight.

The idea of decomposition is to split a function in two summands, which are estimate

in different (but fixed) norms. These norms are those of certain Banach spaces X and

Y and all functions are defined on suitable domains in Rn. Then a function f is split

in the sum f = g + h, where g ∈ X and h ∈ Y .

In literature there are several papers in which the authors have constructed decompo-

sitions with an appropriate couple (X,Y ). In [10] Calderón and Zygmund have proved

the classical decomposition (L1, L∞) for L1, where a given function f in L1 is decom-
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posed, for any t > 0, in the sum of a “ good ” part ft ∈ L∞ (whose norm can be

controlled by ‖ft‖L∞(Ω) < c(n) · t) and a remaining “ bad ” one f−ft ∈ L1. Analogous

decompositions can be found also for different functional spaces (see for instance

N. Kruglyak, E. A. Kuznetsov [37] and N. Kruglyak [36] for decompositions (L1, L1,λ),

(Lp, Sobolev), (Lp, BMO)).

Our decompositions are done in the spirit of Calderón - Zygmund ones. Let F be a

Banach space and F0 be a subset of F , then we can consider the closure C of F0 in

F . The idea of our decomposition is to split a function g ∈ C in the sum of a “good”

part gh, which is more regular, and of a “ bad ” part g − gh whose norm can be

controlled by means of a continuity modulus of the function g itself.

In the previous considerations, we have put in evidence the need to prove boundedness

and compactness of the operator (i) in the study of certain elliptic problems. Therefore

the problem is to find the functional space V where the multiplication factor g has

to belong. In literature there are several papers in which the authors have introduced

suitable functional spaces in order to prove boundeness and compactness results for

the operator (i) defined on the Sobolev space S(Ω). In [11], for instance, A. Canale,

L. Caso, P. Di Gironimo introduced some weighted functional spaces where the weight

is a function related to the distance from a fixed subset of the boundary of an open set

of Rn. As application, they obtained boundeness and compactness results for the oper-

ator (i) defined on weighted Sobolev spaces when the function g belongs to a suitable

weighted space of above mentioned type. Moreover, in [58] M. Transirico, M. Troisi,

A. Vitolo introduced some spaces of Morrey type and as application, they studied

the operator (i) defined on a classical Sobolev space for a function g belonging to a

suitable subspace of these spaces of Morrey type.
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In the present work we want to analyze some of the issues above.

In the first part we want to deepen the study of some weighted functional spaces

introduced in [11]. As application, using some decomposition results for functions be-

longing to such weighted spaces, we want to give a remarkable improvement of some

results contained in [18], concerning some weighted norm inequalities on certain ir-

regular domains of Rn and the boundedness and the compactness of the operator (i).

The structure of Chapter 1 and of Chapter 2 reflects the above purposes.

In Chapter 1 we describe some properties and applications of certain weighted Sobolev

spaces which represent the setting of our main results.

If k is non - negative integer, p is a real number, 1 ≤ p < +∞, Ω is a domain in

Rn with boundary ∂Ω, σ is a vector of non - negative (positive almost everywhere)

measurable functions on Ω, which will be called weight, the weighted Sobolev space,

usually denoted by W k,p(Ω;σ), is defined as the set of all functions u = u(x) which

are defined a.e. on Ω and whose generalized (in the sense of distributions) derivatives

∂αu of orders |α| ≤ k satisfy

∫
Ω

|∂αu(x)|pσα(x) dx < +∞ .

Sobolev spaces with weights have been intensively studied for more then forty years

and their field of application has been constantly expanding. We have theoretical

results concerning the structure of these spaces as well as applications to the theory of

partial differential equations for the solution of boundary-value problems. The growing

significance of these spaces is reflected by the number of papers devoted to them

(see, for instance, D. E. Edmunds, W. D. Evans [27], A. Avantaggiati [3, 4], V. Benci,
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D. Fortunato [6], V. G. Maz’ja [45], A. Kufner [39], A. Kufner, M. Sändig [43]).

In Chapter 2, we consider a class of weight functions denoted by A(Ω) (introduced

by M. Troisi in [60]) and the corresponding weighted Sobolev spaces defined on open

subsets Ω of Rn. More precisely, a measurable weight function ρ : Ω → R+ belongs

to the class A(Ω) if and only if there exists a costant γ ∈ R+, independent on x and

y, such that

γ−1 ρ(y) ≤ ρ(x) ≤ γ ρ(y) , ∀ y ∈ Ω, ∀x ∈ Ω ∩B(y, ρ(y)),

Let Sρ be a non empty subset of ∂Ω such that

lim
x→z

ρ(x) = 0 , ∀ρ ∈ A(Ω), ∀z ∈ Sρ .

It’s well known that a weight function ρ ∈ A(Ω) is related to the distance function

from Sρ (see, e.g., M. Troisi [61]).

For more details on weight functions as distance functions from a nonempty subset

of the boundary of a bounded open set of Rn or weight functions related to these di-

stance functions, and for related problems see, i.e., A. Kufner [39], A. Kufner, O. John,

S. Fućık [40], I. E. Egorov [28], Yu. D. Salmanov [49], M. Troisi [60].

For examples and properties of functions ρ ∈ A(Ω) we refer to M. Troisi [60] and also

to A. Canale, L. Caso, P. Di Gironimo [11], L. Caso, M. Transirico [18].

In some papers (see, e.g. , D. Fortunato [30], R. Schianchi [51], S. Matarasso, M. Troisi

[44], M. Troisi [59], A. Canale, L. Caso, P. Di Gironimo [11]) some classes of weighted

Sobolev spaces have been studied, where the weight function is a power of a function
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ρ ∈ A(Ω).

In particular in [11] the authors introduced a functional space, denoted by Kr
t (Ω) (r ∈

[1,+∞[, t ∈ R), as the class of all functions g, locally belonging to Lr(Ω), such that

sup
Ω

(
ρt−

n
r (x) ‖g‖Lr(Ω∩B(x,ρ(x)))

)
< +∞ ,

where the weight function ρ belongs to the class A(Ω). Moreover, they studied two

subspaces of Kr
t (Ω), denoted by

∼
K r

t (Ω) and
◦
K r

t (Ω), defined respectively as the closure

of L∞t (Ω) and C∞
o (Ω) in Kr

t (Ω) (the space L∞t (Ω) is the space of all functions g such

that ρt g ∈ L∞(Ω)).

In the first part of Chapter 2 we deepen the study of the spaces Kr
t (Ω) and of their

subspaces. In particular, we construct suitable decompositions of functions g ∈
∼
K r

t (Ω)

and of functions g ∈
◦
K r

t (Ω) (see L. Caso, R. D’Ambrosio [16]).

In the framework of spaces Kr
t (Ω), in [18] (see also [11]) the authors studied the

operator (i) when S(Ω) is the weighted Sobolev space W k,p
s (Ω) , k ∈ N0, s ∈ R,

1 ≤ p ≤ +∞, of the distributions u on Ω such that ρs+|α|−k ∂α u ∈ Lp(Ω) for |α| ≤ k

and equipped with the norm

‖u‖Wk,p
s (Ω) =

∑
|α|≤k

‖ρs+|α|−k ∂α u‖Lp(Ω) ,

where ρ is a weight function belonging to the class A(Ω). They gave different con-

ditions on the function g ∈ Kr
t (Ω) necessary to obtain the estimate (ii) and the

boundedness and compactness of the above mentioned operator.

These functional spaces were then used in the study of Dirichlet problems for linear
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second order elliptic equations in non regular domains and in weighted Sobolev spaces

(see L. Caso, M. Transirico [19, 21, 20], L. Caso [12], L. Caso [13]). The main results

of these papers are based on the properties of the operator (i) defined on W k,p
s (Ω), in

the two cases g ∈
∼
K r

t (Ω) and g ∈
◦
K r

t (Ω) with appropriate conditions on p, r, s and

t.

We study the operator (i) defined on weighted Sobolev space W k,p
s (Ω) and taking

values in Lq(Ω) with appropriate q ∈ [p, r[ obtaining a remarkable improvement of

some results of [18]. We give suitable conditions on p, q, s, r, ρ,Ω and on the function

g ∈ Kr
t (Ω) so that the following estimate holds

‖g u‖Lq(Ω) ≤ c · ‖g‖Kr
t (Ω) · ‖u‖Wk,p

s (Ω) , (iii)

If g ∈
∼
K r

t (Ω) or g ∈
◦
K r

t (Ω), from (iii) we deduce boundedness and compactness

results for the considered operator. The use of our decompositions in these results

allows us to put in evidence how the bad part (g − gh) of the function g in
∼
K r

t (Ω) or

in
◦
K r

t (Ω), affects the estimate.

The details of these proofs are contained in L. Caso, R. D’Ambrosio [16].

In the study of the above mentioned Dirichlet problems on irregular or unbounded

domains, there is the need to put some conditions at the infinity on the lower or-

der coefficients of the elliptic differential operator. Such conditions are ensured, for

instance, by the assumption that the coefficients belong to space
◦
K r

t (Ω). This also

gives the compactness of the operator (i).

In view of these last considerations, we put in evidence a new characterization of

the spaces
◦
K r

t (Ω) by means of the introduction a new subspace of Kr
t (Ω), denoted
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by
∗
K r

t (Ω) (see L. Caso, R. D’Ambrosio [16]). We state that under suitable conditions

on the weight function ρ ∈ A(Ω) the space
∗
K r

t (Ω) is settled between
◦
K r

t (Ω) and
∼
K r

t (Ω). In particular we give a condition on the weight function in order to obtain

that
∗
K r

t (Ω) =
◦
K r

t (Ω).

In the last part of this work we want to deepen the study of spaces of Morrey type

introduced by M. Transirico, M. Troisi and A. Vitolo in [58]. Also in this case, using

some decomposition results for functions belonging to a suitable subspace of a space

of Morrey type we want to deduce a further compactness result for the operator (i)

defined on Sobolev spaces without weight.

In Chapter 3 we analyze this aspect. Let Ω be an unbounded open subset of Rn,

n ≥ 2. For p ∈ [1,+∞[ and λ ∈ [0, n[, we consider the space Mp,λ(Ω) of the functions

g in Lploc(Ω) such that

‖g‖p
Mp,λ(Ω)

= sup
τ∈]0,1]

x∈Ω

τ−λ
∫

Ω∩B(x,τ)

|g(y)|p dy < +∞,

where B(x, τ) is the open ball with center x and radius τ .

This space of Morrey type is a generalization of the classical Morrey space Lp,λ (see

A. Kufner, O. John, S. Fućık [40] ). It strictly contains Lp,λ(Rn) when Ω = Rn and it

is smaller than the class of the spaces Mp(Ω) of M. Transirico, M. Troisi [57, 55]. We

remark that if the weight function ρ ∈ A(Ω) is a positive constant, then the spaces

Kr
t (Ω) are equal to the spaces Mp(Ω). The introduction of the spaces of Morrey type

is related to the solvability of certain elliptic problems with discontinuous coeffi-

cients in the case of unbounded domains and in Sobolev spaces (see for instance

M. Transirico, M. Troisi, A. Vitolo [58], P. Cavaliere, M. Longobardi, A. Vitolo [23],
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L. Caso, P. Cavaliere, M. Transirico [15], L. Caso, P. Cavaliere, M. Transirico [14]).

In the first part of Chapter 3, we turn our attention to the density property of Morrey

type spaces. The example |x|(λ−n+1)/p shows, the space L∞(Ω) is not dense in the space

Mp,λ(Ω). So, it’s important and useful to give a new characterization of functions in

the closure of L∞(Ω) and C∞
o (Ω) in Mp,λ(Ω) (which are respectively denoted with

M̃p,λ(Ω) and Mp,λ
0 (Ω)). By means of such chacterization lemmas we are allowed to

construct suitable decompositions of functions in M̃p,λ(Ω) and Mp,λ
0 (Ω) (see L. Caso,

R. D’Ambrosio, S. Monsurrò [17]) .

In the framework of Morrey type spaces, in [58] the authors considered the opera-

tor defined in (i) when S(Ω) is the Sobolev space W k,p(Ω) (p ∈ [1,+∞[, k ∈ N). In

particular, they studied such operator for k = 1, generalizing a well known result

proved by C. Fefferman in [30] (see also F. Chiarenza, M. Frasca [26]). They established

conditions for the boundedness and compactness of this operator. In P. Cavaliere,

M. Longobardi, A. Vitolo [23], the boundedness result and the straightforward esti-

mates have been extended to more general results for any k ∈ N.

The second part of Chapter 3 is devoted to a further analysis of the following multi-

plication operator

u ∈ W k,p(Ω) → g u ∈ Lq(Ω)

with a suitable q greater than p and g belonging to a space of Morrey type Mp,λ(Ω). By

means of our decomposition results we are allowed to deduce a compactness result for

the above mentioned operator. The details of these proofs are contained in L. Caso,

R. D’Ambrosio, S. Monsurrò [17].

The deeper examination of the structure of Mp,λ(Ω) and of its subspaces lead us to the
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definition of a new functional space, that is a weighted Morrey type space, denoted

by Mp,λ
ρ (Ω). In literature several authors have considered different kinds of weighted

spaces of Morrey type and their applications to the study of elliptic equations, both

in the degenerate case and in the non-degenerate one (see, for instance, C. Vitanza,

P. Zamboni [62], C. Yemin [24] and Y. Komori, S. Shirai [34]).

In Chapter 3 we consider another class of weight functions, denoted by G(Ω) (intro-

duced by M. Troisi in [61]), and we define the corresponding weighted space Mp,λ
ρ (Ω)

(see L. Caso, R. D’Ambrosio, S. Monsurró [17]). More precisely, let d ∈ R+, a measur-

able weight function ρ : Ω → R+ belongs to the class G(Ω, d) if and only if there

exists γ ∈ R+, independent on x and y, such that

γ−1 ρ(y) ≤ ρ(x) ≤ γ ρ(y) , ∀ y ∈ Ω, ∀x ∈ Ω(y, d).

We put

G(Ω) =
⋃
d>0

G(Ω, d).

For examples and properties of functions ρ ∈ G(Ω) we refer to M. Troisi [61] and also

to S. Boccia, M. Salvato, M. Transirico [8].

Let ρ ∈ G(Ω)∩L∞(Ω) and let d be the positive real number such that ρ ∈ G(Ω, d). Fix

a Lebesgue measurable subset E of Ω, for p ∈ [1,+∞[, λ ∈ [0, n[ we denote byMp,λ
ρ (Ω)

the space of all functions g ∈Mp,λ(Ω) such that

lim
h→+∞

(
sup

E∈Σ(Ω)

sup
x∈Ω

τ∈]0,d]

τ−λρ(x)|E(x,τ)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω)

)
= 0,
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We prove that the space Mp,λ
ρ (Ω) is settled between Mp,λ

0 (Ω) and M̃p,λ(Ω). In partic-

ular, we provide some conditions on ρ that entail Mp,λ
0 (Ω) = Mp,λ

ρ (Ω).

We remark that the results of this work can be used in the study of elliptic prob-

lems. More precisely, the estimates obtained in Chapter 2 can be used, for instance,

in the study of some elliptic problems on irregular domains ( i.e. domains with sin-

gular boundary) and in weighted Sobolev spaces W k,p
s to prove that the considered

operators (whose lower order coefficients belong to weighted functional spaces Kr
t )

have closed range or are semi-Fredholm. The estimates obtained in Chapter 3 can be

useful, for instance, in the study of Dirichlet problems concerning elliptic equations in

unbounded domains (whose boundary is sufficiently smooth) and in classical Sobolev

spaces to estabilish a priori estimates for differential operator whose lower order co-

efficients belong to spaces of Morrey type.

Moreover we put in evidence that the introduction of spaces
∗
K r

t (Ω) and Mp,λ
ρ (Ω)

offers new points of views in the approach to the study of some classes of elliptic

problems with discontinuos coefficients.

Finally, I warmly thank Maria Transirico, Loredana Caso and Sara Monsurrò for

the useful suggestions and comments.





Chapter 1

Preliminaries

In this chapter we introduce some notations used throughout this work and we recall

the definitions of some function spaces needed in the sequel.

1.1 Notations

Let G be a Lebesgue measurable subset of Rn and Σ(G) be the σ-algebra of all

Lebesgue measurable subsets of G. Given F ∈ Σ(G) we denote by |F | its Lebesgue

measure and by χF its characteristic function. For every x ∈ F and every t ∈ R+ we

set F (x, t) = F ∩ B(x, t) , where B(x, t) is the open ball with center x and radius t

and in particular we put F (x) = F (x, 1).

The class of restrictions to F of functions ζ ∈ C∞
◦ (Rn) with F ∩supp ζ ⊆ F is denoted

by D(F ) and, for p ∈ [1,+∞[, Lploc(F ) is the class of all functions g : F → R such

that ζ g ∈ Lp(F ) for any ζ ∈ D(F ).

14
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1.2 Weighted Sobolev Spaces

Weighted Sobolev spaces1 are usually denoted by

W k,p(Ω;σ)

where

k is a non-negative integer, i.e. k ∈ N0 ,

p is a real number, 1 ≤ p < +∞ ,

Ω is a domain in Rn with a boundary ∂Ω ,

σ is a vector of non-negative (positive almost everywhere) measurable functions on

Ω, which will be called a weight, i. e.

σ = {σα = σα(x) , x ∈ Ω , |α| ≤ k} , (1.2.1)

α is a multiindex, i. e., α ∈ Nn
0 or equivalently

α = (α1, α2, ............, αn) , αi ∈ N0 , (1.2.2)

|α| = α1 + α2 + .........+ αn . (1.2.3)

The space W k,p(Ω;σ) is defined as the set of all functions u = u(x) which are defined

a.e. on Ω and whose generalized (in the sense of distributions) derivatives ∂αu of

orders |α| ≤ k satisfy ∫
Ω

|∂αu(x)|pσα(x) dx < +∞ . (1.2.4)

1 See, e.g., A. Kufner [39] and A. Kufner, A. M. Sändig [43].
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It is a normed linear space if equipped with the norm

||u||Wk,p(Ω;σ) =

∑
|α|≤k

∫
Ω

|∂αu(x)|pσα(x)dx

1/p

, (1.2.5)

or, equivalently, with the norm

||u||Wk,p(Ω;σ) =
∑
|α|≤k

(∫
Ω

|∂αu(x)|pσα(x)dx

)1/p

. (1.2.6)

If

σ
− 1

p
α ∈ Lqloc(Ω) for |α| ≤ k , (1.2.7)

where q is the conjugate index of p, then the space W k,p(Ω;σ) is a Banach space2. We

observe that condition (1.2.7) is necessary to have the completeness; for instance, in

A. Kufner, B. Opic [41] is proved that if n = 1, Ω = (−1, 1), p = 2, λ, µ ∈ R and

σ =
{
σ0 = |x|λ, σ1 = |x|µ

}
, the space W 1,2(Ω;σ) is non-complete if the parameters

λ, µ are suitably chosen (it is easy to check that, for λ ≥ 1 and µ ≥ 1, condition

(1.2.7) is not true).

For k = 0 we introduce the following notation : we write

W 0,p(Ω;σ) = Lp(Ω;σ)

and denote

||u||Lp(Ω;σ) =

(∫
Ω

|u(x)|pσ(x)dx

)1/p

, (1.2.8)

2 See A.Kufner, B.Opic [41, 42].
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so that

||u||Wk,p(Ω;σ) =

∑
|α|≤k

||∂αu||pLp(Ω;σα)

1/p

.

Clearly the classical Sobolev spaces W k,p(Ω) represent a special case of the weighted

spaces W k,p(Ω;σ) : they can be obtained by the choice

σα(x) = 1 for |α| ≤ k.

The norm of a function u ∈ W k,p(Ω) will be denoted by ||u||Wk,p(Ω)
3.

Let us suppose that

σα ∈  L1
loc(Ω) for |α| ≤ k.

Then all functions in C∞
0 (Ω) belong to W k,p(Ω;σ) and it is meaningful to introduce

the space W
0
k,p(Ω;σ) as the closure of C∞

0 (Ω) with respect to the norm || · ||Wk,p(Ω;σ).

This space is again a Banach space if additionally (1.2.7) is satisfied.

There are several possibilities of application of Sobolev spaces with weights.

The first one concerns elliptic boundary value problems on domains whose boundary

has various singularities as for example corners or edges. In the vicinity of a corner

or an edge the solution u of the boundary-value problem may have a singularity

which can be often very suitably characterized by an appropriate weight. This weight

is most usually a power of the distance from the “ singular set” on the boundary of

domain. Hence, in this case, the weight functions make it possible to describe in more

detail the qualitative properties of the solution, first of all as concerns its regularity.

3 More information about the spaces W
k,p

(Ω) can be found, for example, in S. L. Sobolev [52] ,
J. Necǎs [46], R.A. Adams [2], A.Kufner, O. John, S. Fućık [40].
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On behalf of a number of papers devoted to these problems let us mention the paper

by V. A. Kondrat’ev [35], and the paper by B. Kawohl [32].

A second field of application of weighted spaces concerns the study of functions defined

on unbounded domains, which solve certain boundary value problems. Let us consider

an unbounded domain Ω; for instance, let Ω be the exterior of the unit ball in Rn. It is

well known that - when solving boundary value problems - it is in this case necessary

to give not only conditions on ∂Ω, but also conditions at infinity, which prescribe

the behaviour of the solution u(x) for |x| → +∞. These conditions can again be

described in a very convenient form in terms of weight functions, for example by

means of functions of the form

(1 + |x|)ε , ε ∈ R+ .

It is evident that the condition

∫
|x|>1

|u(x)|2(1 + |x|)ε dx < +∞

characterizes the behaviour of the function u(x) for large x. A typical representant of

this direction is L. D. Kudrjavcev whose monograph [38] represents the first systematic

exposition of properties of certain weighted spaces and of their applications. There is

a number of groups and individuals working in this field - apart from Kudrjavcev and

his successors let us mention for example B. Hanouzet [31], A. Avantaggiati, M. Troisi

[5], as well as R. A. Adams [1].

Another domain of employment of weighted Sobolev spaces concerns more theoretical
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applications, namely existence theorems for elliptic differential equations and further

for problems of the type of degenerate equations and equations with singular coef-

ficients. Even in this field, the weighted spaces can provide an useful tool enlarging

the scope of boundary value problems solvable by functional-analytical methods. A

typical representant of this direction of applications of weighted Sobolev spaces is

I. A. Kiprijanov [33]. The same topics are studied by S. M. Nikol’skii [47] and by a

numerous French group (P. Bolley, J. Camus [9]).

We have introduced the weighted space W k,p(Ω;σ) without making too many assump-

tions about the domain Ω and the weight σ whose components σα - see (1.2.1) - can

be different for a different α. In what follows we will consider some weighted Sobolev

spaces defined on an open set Ω in Rn and we will consider both weight vectors with

different components and weight vectors with equal components. In the first case we

will have a weighted norm in which the weight function varies if the order of deriva-

tion of function u varies, in the second case we will have a weighted norm in which

the weight function is independent from the order of derivation of the function u.





Chapter 2

Weighted spaces and weighted

norm inequalities on irregular

domains

In this chapter we deepen the study of certain weighted spaces, denoted by Kp
s (Ω),

defined on open subsets Ω of Rn when the weight is a function related to the distance

from a subset of ∂Ω. We also introduce a new weighted subspace of Kp
s . Moreover, we

construct decompositions for functions belonging to some particular subspaces of Kp
s

and as application, we prove boundedness and compactness results for an operator in

weighted Sobolev spaces.

20
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2.1 Weight functions and weighted spaces

Let Ω be an open subset of Rn. We denote by A(Ω)4 the class of measurable weight

functions ρ : Ω → R+ such that

sup
x,y∈Ω

|x−y|<ρ(y)

∣∣∣ log
ρ(x)

ρ(y)

∣∣∣ < +∞ .

It is easy to show5 that ρ ∈ A(Ω) if and only if there exists γ ∈ R+, independent on

x and y, such that

γ−1ρ(y) ≤ ρ(x) ≤ γ ρ(y) , ∀ y ∈ Ω , ∀x ∈ Ω ∩B(y, ρ(y)) . (2.1.1)

We remark that A(Ω) contains the class of all functions ρ : Ω → R+ which are

Lipschitz continuous in Ω with Lipschitz constant less than 1. Moreover, if ρ ∈ A(Ω)

and a ∈]0, 1[ , then the function ω(x) = a ρ(x) (x ∈ Ω) belongs to A(Ω).

Typical examples of functions ρ ∈ A(Ω) are the function

x ∈ Rn → 1 + a |x| , a ∈ ]0, 1[ , (2.1.2)

and, if Ω 6= Rn and S is a nonempty subset of ∂Ω, the function

x ∈ Ω → a dist(x, S), a ∈]0, 1[ . (2.1.3)

4 The class A(Ω) has been introduced by M. Troisi in [60].
5 See,e.g., M.Troisi [60].
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Moreover if ρ ∈ A(Ω) then for any b ∈ R+ and for any s ∈ R the function

x ∈ Ω → ρ(x)

1 + b ρs(x)
(2.1.4)

is in A(Ω) (see, also M. Troisi [60]).

For any weight function ρ ∈ A(Ω) we put

Sρ = {z ∈ ∂Ω
∣∣ ρ(x) ≤ |x− z| ∀x ∈ Ω} . (2.1.5)

We recall some properties of the set Sρ
6.

Lemma 2.1.1 For any ρ ∈ A(Ω), the set Sρ is a closed subset of ∂Ω. Moreover we

have

z ∈ Sρ ⇐⇒ lim
x→z

ρ(x) = 0

z ∈ ∂Ω \ Sρ ⇐⇒ ∃ r ∈ R+ : inf
x∈Ω

|x−z|<r

ρ(x) > 0 .

From Lemma 2.1.1 it follows that, if Sρ 6= ∅, then

ρ(x) ≤ dist(x, Sρ) ∀x ∈ Ω , (2.1.6)

B(x, ρ(x)) ∩ Ω ∩ Sρ = ∅ ∀x ∈ Ω , (2.1.7)

ρ ∈ L∞loc(Ω) , ρ−1 ∈ L∞loc(Ω \ Sρ) . (2.1.8)

6 See Lemma 1.1 and Theorem 1.1 in L.Caso, M.Transirico [18].
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We recall now a regularization result for a function ρ ∈ A(Ω), needed in the sequel.

Let ρ ∈ A(Ω), for any x ∈ Ω and for any λ ∈ R+ , we set

Eλ(x) = {y ∈ Ω : |y − x| < λρ(y)} , E(x) = E1(x) .

Iλ(x) = Ω ∩B(x, λ ρ(x)) , I(x) = I1(x) .

It’s easy to prove that

x ∈ Eλ(y) ⇔ y ∈ Iλ(x) .

For any x ∈ Ω and for any λ ∈ R+ we put

χλ(x) = ρ−n(x)|Eλ(x)| , χ(x) = χ1(x) .

In M. Troisi [60] is proved that

sup
x∈Ω

χ(x) < +∞ . (2.1.9)

Let us suppose

inf
x∈Ω

χλ(x) > 0 for λ ∈]0, 1[. (2.1.10)

We remark that the condition (2.1.10) holds for any ρ ∈ A(Ω) in the following

cases: Ω = Rn, Ω = Rn
+ = {x ∈ Rn : xn > 0}; Ω bounded domain with cone prop-

erty7. Moreover, (2.1.10) is satisfied if Ω is an unbounded domain with the cone prop-

erty and ρ is a bounded function in Ω. We remark that, if suitable conditions hold for

7 A domain Ω with cone property means that there exists a finite cone C such that each point
x ∈ Ω is the vertex of a finite cone Cx contained in Ω and congruent to C .
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the function ρ, (2.1.10) can hold for a domain Ω which has not the cone property. For

instance, if one has

ρ(x) ∼= dist(x, ∂Ω) ∀x ∈ Ω ,

then the (2.1.10) holds for any domain Ω.

Moreover, it’s easy to show that (2.1.10) holds if exist θ ∈]0, π/2[ and c ∈ R+ such

that any x ∈ Ω is the vertex of a cone with opening θ and height c ρ(x) which is

contained in Ω.

Remark 2.1.2 We observe that if the condition (2.1.10) holds, we have that for any

ρ ∈ A(Ω) there exists a function σ ∈ A(Ω) ∩ C∞(Ω) ∩ C0,1(Ω) such that

c ′ρ(x) ≤ σ(x) ≤ c ′′ρ(x) ∀x ∈ Ω , (2.1.11)

|∂ασ(x)| ≤ cασ
1−|α|(x) ∀x ∈ Ω and ∀ α ∈ Nn

0 , (2.1.12)

where c ′, c ′′, cα ∈ R+ are independent on x8 .

Further properties of the class A(Ω) can be found in M.Troisi [60] and L. Caso,

M. Transirico [18].

If k ∈ N0, 1 ≤ p ≤ +∞, s ∈ R and ρ ∈ A(Ω), we denote by W k,p
s (Ω) the space of

distributions u on Ω such that ρs+|α|−k ∂α u ∈ Lp(Ω) for |α| ≤ k . Equipped with the

norm

‖u‖Wk,p
s (Ω) =

∑
|α|≤k

‖ρs+|α|−k ∂α u‖Lp(Ω) , (2.1.13)

W k,p
s (Ω) is a Banach space. Moreover, it is separable if 1 ≤ p < +∞, and, in particu-

8 See Theorem 3.2 in M.Troisi [60].
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lar, W k,2
s (Ω) is a separable Hilbert space. We also denote by

◦
W k,p

s (Ω) the closure of

C∞
o (Ω) in W k,p

s (Ω). The spaces just introduced are an example of weighted Sobolev

spaces. A detailed account of properties of the above defined weighted Sobolev spaces

can be found in D. E. Edmunds, W. D. Evans [27], V. Benci, D. Fortunato [6] and

M. Troisi [61].

For k = 0 we put

W 0,p
s (Ω) = Lps(Ω)

From well known results9 we deduce that, for 1 ≤ p < +∞ and s ∈ R, the space

C∞
o (Ω) is dense in Lps(Ω).

Clearly the following imbeddings hold:

◦
W

k,p
s (Ω) ↪→ W k,p

s (Ω) ↪→ Lps−k(Ω) .

2.2 The spaces Kp
s (Ω)

The purpose of this section is to deepen the study of the weighted spaces Kp
s and

their properties10. Let us introduce some definitions which are essential to study such

spaces.

Let Ω be an open subset of Rn and let ρ ∈ A(Ω). We fix f in D(R+) satisfying the

conditions

0 ≤ f ≤ 1 , f(t) = 1 if t ≤ 1

2
, f(t) = 0 if t ≥ 1 ,

9 See, e.g., D. E. Edmunds, W.D. Evans [27] and M.Troisi [61].
10 The spaces Kp

s were studied, e.g., by A.Canale, L. Caso, P. Di Gironimo in [11] and by L. Caso,
M.Transirico in [18].
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and α ∈ C∞(Ω) ∩ C0,1(Ω) equivalent to dist (·, ∂Ω)11. Hence, for h ∈ N we put

ψh : x ∈ Ω →
(

1− f
(
hα(x)

))
f
(
|x|/2h

)
. (2.2.1)

It is easy to prove that ψh belongs to D(Ω̄ \ Sρ) for any h ∈ N and

0 ≤ ψh ≤ 1 , ψh|Ωh
= 1 , suppψh ⊂ Ω2h , (2.2.2)

where

Ωh =
{
x ∈ Ω

∣∣ |x| < h, α(x) > 1/h
}
. (2.2.3)

For any x ∈ Ω, let G(x) be an open subset of Rn such that

x ∈ G(x) ⊆ Ω ∩B
(
x, ρ(x)

)
. (2.2.4)

For 1 ≤ p < +∞ and s ∈ R, we denote by Kp
s (Ω) the class of functions g ∈ Lploc(Ω̄\Sρ)

such that

‖g‖Kp
s (Ω) = sup

Ω

(
ρs−

n
p (x) ‖g‖Lp(G(x))

)
< +∞ . (2.2.5)

Obviously Kp
s (Ω) is a Banach space with the norm defined by (2.2.5). It is easy to

prove that the spaces L∞s (Ω) and C∞
o (Ω) are subsets of Kp

s (Ω)12. Therefore, we can

define two new spaces of functions
∼
K p

s(Ω) and
◦
K p

s(Ω) as the closures of L∞s (Ω) and

C∞
o (Ω), respectively, in Kp

s (Ω).

11 For more details on the existence of such an α see, e.g., Theorem 2, Cap.VI in E.M. Stein [53]
and Lemma 3.6.1 in W.P. Ziemer [63].

12 In fact from (2.1.8) we have that C∞0 (Ω) is a subset of L∞s (Ω) for every s ∈ R.Moreover the
space L∞s (Ω) is imbedded in Kp

s (Ω) for any p ∈ [1,+∞[ and for any s ∈ R, see, e.g.,(14) in A.Canale,
L. Caso, P. Di Gironimo [11].
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For all s ∈ R the following inclusions hold13

Lrs−n
r
(Ω) ↪→ Kq

s (Ω) ↪→ Kp
s (Ω) 1 ≤ p ≤ q ≤ r ≤ +∞ , (2.2.6)

Lqs−n
q
(Ω) ⊂

◦
K

p
s(Ω) ⊂

∼
K

p
s(Ω) 1 ≤ p ≤ q < +∞ , (2.2.7)

Kq
s (Ω) ⊂

∼
K

p
s(Ω) 1 ≤ p < q < +∞ . (2.2.8)

We put

Kp(Ω) = Kp
n/p(Ω) , (2.2.9)

and, in the same way, we define the spaces
◦
K p(Ω) and

∼
K p(Ω). From (2.2.6), (2.2.7)

and (2.2.8) we have

Lp(Ω) ⊂
◦
K

p(Ω) ⊂
∼
K

p(Ω) ⊂ Kp(Ω) . (2.2.10)

It’ s possible to show, with some counterexamples, that the three inclusions in (2.2.10)

can be strict (see [11]).

We recall now some characterizations of the spaces
∼
K p

s(Ω) and
◦
K p

s(Ω)14 needed in

sequel.

Lemma 2.2.1 A function g ∈ Kp
s (Ω) belongs to

∼
K p

s(Ω) if and only if

lim
h→+∞

(
sup

E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|
ρn(x)

≤1/h

‖g χ
E
‖Kp

s (Ω)

)
= 0,

where χ
E

denotes the characteristic function of the set E.

13 See, e.g., (18), (19), (20) in A. Canale, L. Caso, P. Di Gironimo [11].
14 See Lemma 3 and Lemma 2 of [11].



28 2. Weighted spaces and weighted norm inequalities on irregular domains

Lemma 2.2.2 A function g ∈ Kp
s (Ω) belongs to

◦
K p

s(Ω) if and only if

lim
h→+∞

‖
(
1− ψh

)
g‖Kp

s (Ω) = 0.

In L. Caso, M. Transirico [18] is proved the following condition for a function in Kp
s (Ω)

to belong to
◦
K p

s(Ω).

Lemma 2.2.3 Let g ∈ Kp
s (Ω). If

lim
|x|→+∞

ρs(x) g(x) = lim
x→z

ρs(x) g(x) = 0 ∀ z ∈ Sρ ,

then g ∈
◦
K p

s(Ω).

In the following Lemma we give a necessary condition for a function g ∈ Kp
s (Ω) to

belong to
◦
K p

s(Ω).

Lemma 2.2.4 If g ∈
◦
K p

s(Ω) then

lim
|x|→+∞

||g||Lp

s−n
p

(G(x)) = 0 (2.2.11)

Proof − From Lemma 2.2.2 and (2.1.1) we have

||(1− ψh) g||Lp

s−n
p

(G(x)) < ε , ∀h ≥ hε .

Using (2.2.2) we have

||g||Lp

s−n
p

(G(x)) ≤ ||(1− ψhε) g||Lp

s−n
p

(G(x)) < ε , ∀ |x| ≥ 2hε .
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From the previous inequalities we obtain (2.2.11).

In view of Lemma 2.2.3, we can give15 a condition on a weight function ρ and on

s , τ ∈ R so that L∞τ (Ω) is a subspace of
◦
K p

s(Ω).

Lemma 2.2.5 Let 1 ≤ p < +∞ and s, τ ∈ R with τ < s. Suppose that lim
|x|→+∞

ρ(x) =

0, then L∞τ (Ω) is a subspace of
◦
K p

s(Ω).

Proof − First we observe that the hypothesis on ρ and (2.1.8) give that ρ ∈ L∞(Ω).

By (2.2.6) we have that L∞τ (Ω) ⊂ Kp
τ (Ω). We prove that L∞τ (Ω) ⊂ Kp

s (Ω). In fact,

fixed g ∈ L∞τ (Ω) ⊂ Kp
τ (Ω), we have

‖g‖Kp
s (Ω) = sup

Ω

(
ρs−

n
p (x) ‖g‖Lp(G(x))

)
≤

‖ρ‖s−τL∞(Ω) · sup
Ω

(
ρτ−

n
p (x) ‖g‖Lp(G(x))

)
= ‖ρ‖s−τL∞(Ω) · ‖g‖Kp

τ (Ω) .

Using again the hypothesis on ρ, we have

lim
|x|→+∞

|ρs(x) g(x)| ≤ lim
|x|→+∞

ρs−τ (x) ‖g‖L∞τ (Ω) = 0 ,

lim
x→z

|ρs(x) g(x)| ≤ lim
x→z

ρs−τ (x) ‖g‖L∞τ (Ω) = 0 ∀ z ∈ Sρ .

Then the result easily follows from Lemma 2.2.3.

15 See Lemma 3.4 in L.Caso, R.D’ Ambrosio [16].
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2.2.1 The spaces
∗
K p

s(Ω)

Let us introduce a new subspace of Kp
s (Ω). Let Ω be an open subset of Rn, for any

p ∈ [1,+∞[ and s ∈ R we denote by
∗
K p

s(Ω)16 the space of all functions g ∈ Kp
s (Ω)

such that

lim
h→+∞

(
sup

E∈Σ(Ω)
sup
x∈Ω

|G(x)∩E|≤1/h

‖g χ
E
‖Kp

s (Ω)

)
= 0. (2.2.12)

Now we prove some properties of the space
∗
K p

s(Ω) and then we examine the relations

between all the subspaces of Kp
s (Ω). The shown results are in L. Caso, R. D’Ambrosio

[16].

At first we rewrite the space
∗
K p

s(Ω) as a closure of an appropriate subspace of Kp
s (Ω).

Lemma 2.2.6 Let 1 ≤ p < +∞ and s ∈ R. Then
∗
K p

s(Ω) is the closure of the space

L∞s−n
p
(Ω) ∩Kp

s (Ω) in Kp
s (Ω).

Proof − Fix g ∈
∗
K p

s(Ω). By (2.2.12), for any ε > 0 there exists tε ∈ ]0, 1[ such that,

if E ∈ Σ(Ω) with sup
Ω
|G(x) ∩ E| ≤ tε, then ‖g χ

E
‖Kp

s (Ω) < ε. For each k ∈ R+ put

Ek =
{
x ∈ Ω

∣∣ ρs−n
p (x) |g(x)| ≥ k

}
.

Thus, by (2.2.4) and (2.1.1), we have

‖g‖Kp
s (Ω) ≥ c1 sup

Ω
‖ρs−

n
p g‖Lp(G(x)) ≥

c1 sup
Ω
‖ρs−

n
p g‖Lp(G(x)∩Ek) ≥ c1 k sup

Ω
|G(x) ∩ Ek|

1
p ,

(2.2.13)

16 See L.Caso, R.D’Ambrosio [16].
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where c1 ∈ R+ depends on ρ, s, n and p. If we set

kε =
‖g‖Kp

s (Ω)

c1 (tε)
1
p

,

from (2.2.13) it follows that

sup
Ω
|G(x) ∩ Ekε | ≤

(‖g‖Kp
s (Ω)

c1 kε

)p
,

and then

‖g χ
Ekε
‖Kp

s (Ω) < ε . (2.2.14)

Now define gε = g − g χ
Ekε

and observe that gε ∈ L∞s−n
p
(Ω) ∩Kp

s (Ω). Therefore from

(2.2.14) we deduce that ‖g − gε‖Kp
s (Ω) < ε.

Suppose conversely that g belongs to the closure of L∞s−n
p
(Ω)∩Kp

s (Ω) inKp
s (Ω). Therefore

for any fixed ε > 0 there exists gε ∈ L∞s−n
p
(Ω) ∩Kp

s (Ω) for which

‖g − gε‖Kp
s (Ω) <

ε

2
. (2.2.15)

Fixed E ∈ Σ(Ω), we observe that by (2.2.15) we get

‖g χ
E
‖Kp

s (Ω) ≤ ‖(g − gε)χE
‖Kp

s (Ω) + ‖gε χE
‖Kp

s (Ω) <
ε

2
+ ‖gε χE

‖Kp
s (Ω) . (2.2.16)

On the other hand, (2.2.4) and (2.1.1) imply
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‖gε χE
‖Kp

s (Ω) ≤ c2 sup
Ω
‖ρs−

n
p gε χE

‖Lp(G(x)) ≤

c2 ‖gε‖L∞
s−n

p
(Ω) sup

Ω
|G(x) ∩ E|

1
p ,

(2.2.17)

where c2 ∈ R+ depends on ρ, s, n and p. If we set

tε =

(
ε

2 c2 ‖gε‖L∞
s−n

p
(Ω)

)p
,

from (2.2.17) we deduce that, if sup
Ω
|G(x) ∩ E| ≤ tε then

‖gε χE
‖Kp

s (Ω) ≤
ε

2
. (2.2.18)

In view of (2.2.16) and (2.2.18), it follows that g ∈
∗
K p

s(Ω).

We can prove now the following result which is similar to Lemma 2.2.5, but with

no additional hypothesis on the weight function ρ.

Lemma 2.2.7 Let 1 ≤ p < +∞ and s, τ ∈ R with τ < s. If g ∈ L∞τ (Ω) ∩ Kp
s (Ω),

then g ∈
∗
K p

s(Ω).

Proof − Let g ∈ L∞τ (Ω) ∩Kp
s (Ω). Fix E ∈ Σ(Ω) and t ∈ ]0, 1[ such that

sup
Ω
|G(x) ∩ E| ≤ t . (2.2.19)
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From (2.2.4), (2.1.1) and (2.2.19), we obtain

‖g χ
E
‖Kp

s (Ω) ≤ c1 sup
Ω
ρs−τ−

n
p (x)‖ρτ g χ

E
‖Lp(G(x)) ≤

c1 ‖g‖L∞τ (Ω) sup
Ω
ρs−τ−

n
p (x)|G(x) ∩ E|

1
p ≤ c2 ‖g‖L∞τ (Ω) t

s−τ
n ,

(2.2.20)

where c1 ∈ R+ depends on ρ, τ, p and c2 ∈ R+ depends on the same parameters as

c1 and on n.

Since τ < s, from (2.2.20) it follows that

lim
t→0

(
sup

E∈Σ(Ω)
sup
x∈Ω

|G(x)∩E|≤t

‖g χ
E
‖Kp

s (Ω)

)
= 0,

and so g ∈
∗
K p

s(Ω).

Combining Lemmas 2.2.6 and 2.2.7, we can obtain a new characterization of the

space
∗
K p

s(Ω).

Lemma 2.2.8 Let 1 ≤ p < +∞ and s ∈ R. Then
∗
K p

s(Ω) is the closure of the space⋃
τ<s

L∞τ (Ω) ∩Kp
s (Ω) in Kp

s (Ω).

Proof − Fix g ∈
∗
K p

s(Ω). By Lemma 2.2.6, g belongs to the closure of L∞s−n
p
(Ω) ∩

Kp
s (Ω) in Kp

s (Ω). Since L∞s−n
p
(Ω) ⊂

⋃
τ<s

L∞τ (Ω), we easily deduce one of our assertions.

In order to prove the converse statement, fix g in the closure of
⋃
τ<s

L∞τ (Ω)∩Kp
s (Ω) in

Kp
s (Ω). Therefore for each ε > 0 there exist τ < s and a function gε ∈ L∞τ (Ω)∩Kp

s (Ω)

such that

‖g − gε‖Kp
s (Ω) ≤

ε

2
. (2.2.21)



34 2. Weighted spaces and weighted norm inequalities on irregular domains

Obviously, from (2.2.21), for any E ∈ Σ(Ω) we have

‖g χ
E
‖Kp

s (Ω) ≤ ‖(g − gε)χE
‖Kp

s (Ω) + ‖gε χE
‖Kp

s (Ω) ≤
ε

2
+ ‖gε χE

‖Kp
s (Ω) . (2.2.22)

On the other hand, from Lemma 2.2.7, we deduce that there exists to ∈ ]0, 1[ such

that for t ∈ ]0, to[ we obtain

sup
E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|≤t

‖gε χE
‖Kp

s (Ω) <
ε

2
. (2.2.23)

From (2.2.22), it follows that

sup
E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|≤t

‖g χ
E
‖Kp

s (Ω) < ε ,

for any t ∈ ]0, to[ and then g ∈
∗
K p

s(Ω).

We look now at the connections between the spaces
∗
K p

s(Ω) and
◦
K p

s(Ω) or
∼
K p

s(Ω).

Lemma 2.2.9 Let 1 ≤ p < +∞ and s ∈ R. Then
◦
K p

s(Ω) ⊂
∗
K p

s(Ω). If moreover

lim
|x|→+∞

ρ(x) = 0, then
◦
K p

s(Ω) =
∗
K p

s(Ω).

Proof − We observe that C∞
o (Ω) is a subspace of L∞s−n

p
(Ω)∩Kp

s (Ω). So, from Lemma

2.2.6, we easily deduce that
◦
K p

s(Ω) ⊂
∗
K p

s(Ω).

Suppose now that lim
|x|→+∞

ρ(x) = 0. From Lemma 2.2.5 we know that the closure of⋃
τ<s

L∞τ (Ω) in Kp
s (Ω) is a subspace of

◦
K p

s(Ω). This assertion and Lemma 2.2.8 complete

the proof.
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Now we give a condition on weight function ρ so that a function g in
∗
K p

s(Ω) is in
∼
K p

s(Ω).

Lemma 2.2.10 Let 1 ≤ p < +∞ and s ∈ R. If ρ ∈ L∞(Ω), then
∗
K p

s(Ω) ⊂
∼
K p

s(Ω).

Proof − Since ρ ∈ L∞(Ω), then L∞s−n
p
(Ω) ⊂ L∞s (Ω). The statement easily follows

from Lemma 2.2.6.

We define now
∗
K p(Ω) in the same way of the space Kp(Ω) (see 2.2.9) .

From Lemma 2.2.9 we have
◦
K

p(Ω) ⊂
∗
K

p(Ω) (2.2.24)

and if ρ ∈ L∞(Ω) then from Lemma 2.2.10 one has

∗
K

p(Ω) ⊂
∼
K

p(Ω) (2.2.25)

We want to show, with some counterexamples, that the two inclusions in (2.2.24) and

(2.2.25) can be strict.

For semplicity we will assume in the following that G(x) = Ω(x) , ∀x ∈ Ω.

Example 1

Let

Ω =
{
x ∈ R2 : x1 > 1 , 0 < x2 < x1

}
, ρ : x ∈ Ω → 2 + |x|

4 + |x|
. (2.2.26)

We remark that

ρ(x) =
σ(x)

1 + σ(x)
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where the function σ(x) = 1 + 1
2
|x| ∈ A(Ω) for any x ∈ Ω (see 2.1.2). Hence from

(2.1.4) we have that the function ρ ∈ A(Ω) .

Let us consider the function

g : x ∈ Ω → |x|
1 + |x|

(2.2.27)

We have

g ∈
∗
K

1(Ω) \
◦
K

1(Ω) .

In fact, since the functions g and ρ belong , obviously , to the space L∞(Ω) and the

imbedding (2.2.6) holds, one has

L∞(Ω) ↪→ L∞2 (Ω) ↪→ K1(Ω)

Hence

g ∈ L∞(Ω) ∩K1(Ω)

and from Lemma 2.2.7 we obtain that g ∈
∗
K 1(Ω).

We want to show now that g /∈
◦
K 1(Ω).

We remark that

|Ω(x)| ≈ ρ2(x) =

(
2 + |x|
4 + |x|

)2

, x1 < |x| <
√

2x1 ∀x ∈ Ω

and

1

1 +
√

2
< g(x) < 1 , ∀x ∈ Ω (2.2.28)
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We have ∫
Ω(x)

g(y) dy ≈ |Ω(x)| ≈
(

2 + |x|
4 + |x|

)2

. (2.2.29)

Hence

lim
|x|→+∞

||g||L1(Ω(x)) = 1 .

Using Lemma 2.2.4 with s = 2 , n = 2 and p = 1 , we deduce that g /∈
◦
K 1(Ω).

Example 2

Let t ∈ ]1,+∞[ , Ω =
{
x ∈ R2 : 0 < x1 < 1 , 0 < x2 < xt1

}
and ρ(x) = 1

2
xt1 .

Evidently, ρ ∈ A(Ω)∩L∞(Ω) (see, also Example 1 of A. Canale, L. Caso, P. Di Gironimo

[11]) . Moreover for a fixed θ ∈]0, π
2
[ and for any x ∈ Ω , there exists Cθ(x) such that

Cθ(x, ρ(x)) ⊂ Ω .Let Ω(x), x ∈ Ω, be the open subset of R2 union of the open cones

C ⊂⊂ Ω with height ρ(x), opening θ and such that x ∈ Ω .

If we consider the function

gα : x ∈ Ω → |x|−α , α ∈ R+ ,

we have

gα ∈
∗
K

1(Ω) , if 0 < α < 2t ,

g2t ∈
∼
K

1(Ω) \
∗
K

1(Ω) .

Since ρ ∈ L∞(Ω) and Ω is a bounded open subset of R2, from Lemma 2.2.9 one has

◦
K

p(Ω) =
∗
K

p(Ω) . (2.2.30)
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We remark that, obviously, it holds

g ∈
◦
K

p(Ω) ⇔ g ∈ Kp(Ω) and lim
x→0

||g||Lp(Ω(x)) = 0 , (2.2.31)

and

|Ω(x)| ≈ ρ2(x) =
1

4
x2t

1 ≈ |x|2t , ∀x ∈ Ω . (2.2.32)

We have ∫
Ω(x)

gα(y) dy ≈ x−α1 |Ω(x)| ≈ |x|−α+2t ∀x ∈ Ω . (2.2.33)

From (2.2.31) and (2.2.33) we deduce that

gα ∈
◦
K

1(Ω) ⇔ 0 < α < 2t , (2.2.34)

so from (2.2.30) we obtain that gα ∈
∗
K 1(Ω) for any 0 < α < 2t .

On the other hand for all E ∈ Σ(Ω) we have

∫
Ω(x)∩E

g2t(y) dy ≈ x−2t
1 |Ω(x) ∩ E| ≈ ρ−2(x) |Ω(x) ∩ E| , ∀x ∈ Ω (2.2.35)

from (2.2.35) and Lemma 2.2.1 we deduce that g2t ∈
∼
K 1(Ω) .

2.3 Decompositions of functions in
∼
K p

s(Ω),
∗
K p

s(Ω),
◦
K p

s(Ω)

We now introduce some continuous functions related to the characterizations of the

subspaces of Kp
s (Ω). We will assume in the following that p ∈ [1,+∞[ and s ∈ R.

Let g ∈
∼
K p

s(Ω). We define modulus of continuity of g in
∼
K p

s(Ω) a map
∼
ωps[g] : R+ → R+
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such that

sup
E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|
ρn(x)

≤1/h

‖g χ
E
‖Kp

s (Ω) ≤
∼
ωps[g](h)

lim
h→+∞

∼
ωps[g](h) = 0 .

(2.3.1)

Let g ∈
∗
K p

s(Ω). We define modulus of continuity of g in
∗
K p

s(Ω) a map
∗
ωps[g] : R+ → R+

such that

sup
E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|≤1/h

‖g χ
E
‖Kp

s (Ω) ≤
∗
ωps[g](h)

lim
h→+∞

∗
ωps[g](h) = 0 .

(2.3.2)

Finally, let g ∈
◦
K p

s(Ω). We call modulus of continuity of g in
◦
K p

s(Ω) a map
◦
ωps[g] :

N → N such that

‖
(
1− ψh

)
g‖Kp

s (Ω) + sup
E∈Σ(Ω)

sup
x∈Ω

|G(x)∩E|≤1/h

‖ψh g χE
‖Kp

s (Ω) ≤
◦
ωps[g](h)

lim
h→+∞

◦
ωps[g](h) = 0 ,

(2.3.3)

where ψh (h ∈ N) are defined in (2.2.1).

Let us now show17 that any function g which belongs to one of the previous subspaces

can be expressed as a sum of two particular functions. As said in the introduction, in

these decompositions the first function is less regular than the second function and it

can be controlled by means of a continuous modulus of the function g itself.

17 See L.Caso, R.D’Ambrosio [16].
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These decompositions involve the modulus of continuity and the characterizations of

such subspaces.

Lemma 2.3.1 Let g ∈
∼
K p

s(Ω); then, for any h ∈ R+, we have

g = g′h + g′′h in Ω , (2.3.4)

with g′′h ∈ L∞s (Ω) and

‖g′h‖Kp
s (Ω) ≤

∼
ωps[g](h) , ‖g′′h‖L∞s (Ω) ≤ γ|s| ‖g‖Kp

s (Ω) h
1
p , (2.3.5)

where γ is given in (2.1.1).

Proof − Fix h ∈ R+ and set

Eh = {x ∈ Ω | |ρs(x) g(x)| ≥ γ|s| ‖g‖Kp
s (Ω) h

1
p} . (2.3.6)

We observe that

|G(x) ∩ Eh|
ρn(x)

≤ 1

ρn(x)

∫
G(x)∩Eh

∣∣∣ ρs(y) g(y)

γ|s| ‖g‖Kp
s (Ω) h

1
p

∣∣∣p dy ≤
ρs p−n(x)

‖g‖p
Kp

s (Ω)
h

∫
G(x)

|g(y)|p dy ≤ 1

h
.

(2.3.7)

If we define

g′h = g χ
Eh

=

 g if x ∈ Eh

0 if x ∈ Ω \ Eh ,
g′′h = g − g χ

Eh
=

 0 if x ∈ Eh

g if x ∈ Ω \ Eh ,
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in view of (2.3.6) and (2.3.7), we obtain the result.

Lemma 2.3.2 Let g ∈
∗
K p

s(Ω); then, for any h ∈ R+, we have

g = ϕ′h + ϕ′′h in Ω , (2.3.8)

with ϕ′′h ∈ L∞s−n
p
(Ω) and

‖ϕ′h‖Kp
s (Ω) ≤

∗
ωps[g](h) , ‖ϕ′′h‖L∞s−n

p
(Ω) ≤ γ|s−

n
p
| ‖g‖Kp

s (Ω) h
1
p . (2.3.9)

Proof − For any h ∈ R+ we set

Fh = {x ∈ Ω | |ρs−
n
p (x) g(x)| ≥ γ|s−

n
p
| ‖g‖Kp

s (Ω) h
1
p} , (2.3.10)

and observe that

|G(x) ∩ Fh| ≤
∫
G(x)∩Fh

∣∣∣ ρs−
n
p (y) g(y)

γ|s−
n
p
| ‖g‖Kp

s (Ω) h
1
p

∣∣∣p dy ≤
ρs p−n(x)

‖g‖p
Kp

s (Ω)
h

∫
G(x)

|g(y)|p dy ≤ 1

h
.

(2.3.11)

Now, if we define

ϕ′h = g χ
Fh

=

 g if x ∈ Fh

0 if x ∈ Ω \ Fh ,
ϕ′′h = g − g χ

Fh
=

 0 if x ∈ Fh

g if x ∈ Ω \ Fh ,

by (2.3.10) and (2.3.11) we deduce the result.
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Lemma 2.3.3 Let g ∈
◦
K p

s(Ω); then, for any h ∈ N, we have

g = φ′h + φ′′h in Ω , (2.3.12)

with

‖φ′h‖Kp
s (Ω) ≤

◦
ωps[g](h) , |φ′′h(x)| ≤ ψh(x) ρ−s+

n
p (x) γ|s−

n
p
| ‖g‖Kp

s (Ω) h
1
p ,

(2.3.13)

and where ψh is given in (2.2.1).

Proof − Let us write for any h ∈ N

φ′h = g (1− ψh) + ψh g χFh
=

 g if x ∈ Fh

g (1− ψh) if x ∈ Ω \ Fh ,

φ′′h = ψh (g − g χ
Fh

) =

 0 if x ∈ Fh

g ψh if x ∈ Ω \ Fh ,

where Fh is defined by (2.3.10). Using (2.3.11) and (2.3.10), we deduce the result also

in this case.

2.4 Imbedding and compactness results

In this section, as application, we study the operator of multiplication

u −→ g u, (2.4.1)
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as an operator defined on a weighted Sobolev space W k,p
s (Ω) and which takes values

in Lq(Ω) with suitable r ∈ [1,+∞[ and q ∈ [p, r[ . We give conditions on Ω, k, p, s, q,

r and g in order that the operator is bounded and compact. The obtained estimates

are in L. Caso, R. D’Ambrosio [16].

We consider the following condition on Ω:

h1) There exists θ ∈ ]0, π
2
[ such that

∀x ∈ Ω ∃Cθ(x) : Cθ(x, ρ(x)) ⊂ Ω ,

where Cθ(x) is an indefinite cone with vertex at x and opening θ, and Cθ(x, ρ(x)) =

Cθ(x) ∩B(x, ρ(x)).

Remark 2.4.1 We observe18 that if, for example, ρ ∈ L∞(Ω), and there exists an

open subset Ωo of Rn with the cone property such that

Ω ⊂ Ωo , ∂Ω \ Sρ ⊂ ∂Ωo ,

then the condition h1) holds.

Remark 2.4.2 We note that if the condition h1) holds, fixed a weight function ρ ∈

A(Ω) it’s possible to find a continuous weight function in A(Ω) which is equivalent to

ρ (see Remark 2.1.2).

For any fixed x ∈ Ω we denote by Ω(x) the union of all open cones C with opening θ

and height ρ(x) such that C ⊂⊂ Ω and x ∈ C. For simplicity, we will assume in the

following that G(x) = Ω(x), ∀x ∈ Ω.

18 See Remark 3.1 in L.Caso, M.Transirico [18].
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For reader’s convenience, we recall the following Lemma needed in the sequel. It is a

particular case of a more general result proved in Lemma 3.4 of S. Boccia, L. Caso [7]

for continuous weight functions belonging to A(Ω).

Lemma 2.4.3 Suppose that condition h1) holds and fix a function ϕ which verifies

the following conditions:

ϕ(x) > 0 ∀x ∈ Ω

∃ µ ∈ R+ : µ−1ϕ(y) ≤ ϕ(x) ≤ µϕ(y) ∀x ∈ Ω, ∀y ∈ Ω(x) .

then for any p, q ∈ [1,+∞[, with q ≥ p, there exist c1 , c2 ∈ R+ such that

∫
Ω

ϕ(x) ρ−n(x) ||u||pLp(Ω(x)) dx ≥ c1

∫
Ω

ϕ(x) |u(x)|p dx , (2.4.2)

∫
Ω

ϕ
q
p (x) ρ−n(x) ||u||qLp(Ω(x)) dx ≤ c2

(∫
Ω

ϕ(x) |u(x)|p dx
) q

p
, (2.4.3)

for any u ∈  Lploc(Ω̄ \ Sρ), where c1 depends on θ, n, µ , c ′ and c2 depends on n, µ, c ′′, p

and q.(We specify that c ′ and c ′′ are the constants of Remark 2.1.2 .)

For each fixed x ∈ Ω, we consider the map

Ψx : y ∈ Ω → Ψx(y) = x+
y − x

ρ(x)
.

By construction the set Ω∗(x) = Ψx(Ω(x)) is an open set with the cone property with

opening and height independent of x. In the following for any function f defined on

Ω we write

f ∗ =
(
fx
)∗

: z ∈ Ω∗(x) → f ∗(z) = f
(
x+ ρ(x)(z − x)

)
.
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Fix s ∈ R and let k, r, p, q be real numbers such that

h2) k ∈ N , 1 ≤ p ≤ q ≤ r , r > q if p =
n

k
,

1

q
≥ 1

r
+

1

p
− k
n
.

Let u ∈ W k,p
s (Ω); we observe that for any multiindex of order |α| = k, we have

∂αu∗(z) = ρ|α|(x) ∂αu(y) , z = Ψx(y) .

By (2.1.7) and (2.1.8), we deduce that u∗ ∈ W k,p(Ω∗(x)). Consequently, from Sobolev

imbedding theorem we also obtain that u∗ ∈ L
q r

r−q (Ω∗(x)) and

‖u∗‖
L

q r
r−q (Ω∗(x))

≤ co ‖u∗‖Wk,p(Ω∗(x)) , (2.4.4)

where co ∈ R+ depends only on n, k, p, q, r and on the cone determining the cone

property of Ω∗(x).

We now establish our main result .

Theorem 2.4.4 Suppose that conditions h1) and h2) hold. For all u ∈ W k,p
s (Ω) and

for all g ∈ Kr
−s+k+n( 1

q
− 1

p
)
(Ω) we have g u ∈ Lq(Ω). Moreover there exists c ∈ R+ such

that

‖g u‖Lq(Ω) ≤ c ‖g‖Kr

−s+k+n( 1
q−

1
p )

(Ω) ‖u‖Wk,p
s (Ω) , (2.4.5)

where c depends on n, k, p, q, r, ρ and θ.

Proof − Let u ∈ W k,p
s (Ω) and g ∈ Kr

−s+k+n( 1
q
− 1

p
)
(Ω). Using the Hölder’s inequality,
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we obtain

∫
Ω∗(x)

|g∗ u∗|q dz ≤
(∫

Ω∗(x)

|g∗|r dz
) q

r ·
(∫

Ω∗(x)

|u∗|
q r

r−q dz
) r−q

r q
q

.

Thus in view of (2.4.4) there exists a constant c1 ∈ R+, depending on n, k, p, q, r

and on the cone determining the cone property of Ω∗(x), such that

∫
Ω∗(x)

|g∗ u∗|q dz ≤ c1

(∫
Ω∗(x)

|g∗|r dz
) q

r · ‖u∗‖q
Wk,p(Ω∗(x))

. (2.4.6)

Then, converting back to the y-variables (z = Ψx(y)) and using (2.1.1), we obtain

ρ−n(x)

∫
Ω(x)

|g u|q dy ≤

c2 ρ
−n q

r (x)
(∫

Ω(x)

|g|r dy
) q

r ·
[
ρ−

n q
p (x) ·

∑
|α|≤k

ρ|α| q(x) ‖∂αu‖qLp(Ω(x))

]
,

where c2 ∈ R+ depends only on n, k, p, q, r, ρ and θ.

Integrating the above inequality over Ω, we obtain

∫
Ω

ρ−n(x) ‖g u‖qLq(Ω(x)) dx ≤ (2.4.7)

c2

∫
Ω

(
ρ−s+k+n( 1

q
− 1

p
)−n

r (x) ‖g‖Lr(Ω(x))

)q
·
[ ∑
|α|≤k

ρq(s+|α|−k)−n(x) ‖∂αu‖qLp(Ω(x))

]
dx .

Using (2.4.2) of Lemma 2.4.3 to the left hand side we have

‖gu‖qLq(Ω) =

∫
Ω

|g u|q dx ≤ c3

∫
Ω

ρ−n(x) ‖g u‖qLq(Ω(x)) dx ≤ (2.4.8)
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c4 sup
Ω

(
ρ−s+k+n( 1

q
− 1

p
)−n

r (x) ‖g‖Lr(Ω(x))

)q
·
∑
|α|≤k

∫
Ω

ρq(s+|α|−k)−n(x) ‖∂αu‖qLp(Ω(x)) dx ≤

c4 ‖g‖qKr

−s+k+n( 1
q−

1
p )

(Ω) ·
∑
|α|≤k

∫
Ω

ρq(s+|α|−k)−n(x) ‖∂αu‖qLp(Ω(x)) dx ,

where c3, c4 ∈ R+ depend on the same parameters as c2.

Now applying the (2.4.3) of Lemma 2.4.3 to the last side of previous inequality, we

finally obtain

‖gu‖qLq(Ω) ≤ c5 ‖g‖qKr

−s+k+n( 1
q−

1
p )

(Ω) ·
∑
|α|≤k

(∫
Ω

ρp(s+|α|−k)(x) |∂αu|p dx
) q

p
, (2.4.9)

where c5 ∈ R+ depends on the same parameters as c2. The result easily follows from

(2.4.9).

We observe that, under conditions h1) and h2), if u ∈ W k,p
s (Ω) then, from Theorem

4.4 of S. Boccia , L. Caso [7], u ∈ Lq
s−k−n( 1

q
− 1

p
)
(Ω).

In the following result we prove an upper bound on the operator of multiplication in

the case g ∈
∼
K r

−s+k+n( 1
q
− 1

p
)
(Ω) .

Corollary 2.4.5 If conditions h1) and h2) hold, then for any g ∈
∼
K r

−s+k+n( 1
q
− 1

p
)
(Ω)

and h ∈ R+ there exists a constant c1 ∈ R+, depending on n, ρ, s, k, p, q, ‖g‖Kr

−s+k+n( 1
q−

1
p )

(Ω),

such that

‖g u‖Lq(Ω) ≤ c · ∼ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖u‖Wk,p

s (Ω) + c1 · h
1
r · ‖u‖Lq

s−k−n( 1
q−

1
p )

(Ω) , (2.4.10)

for each function u ∈ W k,p
s (Ω), where c ∈ R+ is the constant in (2.4.5).

Proof − Fix g ∈
∼
K r

−s+k+n( 1
q
− 1

p
)
(Ω). By Lemma 2.3.1 and Theorem 2.4.4, for any
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u ∈ W k,p
s (Ω) it follows that

‖g u‖Lq(Ω) ≤ ‖g′h u‖Lq(Ω) + ‖g′′h u‖Lq(Ω) ≤

c ‖g′h‖Kr

−s+k+n( 1
q−

1
p )

(Ω) · ‖u‖Wk,p
s (Ω) + ‖g′′h u‖Lq(Ω) ≤

c · ∼ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖u‖Wk,p

s (Ω) + ‖g′′h u‖Lq(Ω) ≤

c · ∼ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖u‖Wk,p

s (Ω) + c1 · h
1
r · ‖u‖Lq

s−k−n( 1
q−

1
p )

(Ω) .

(2.4.11)

In the next Corollary we prove a different bound on the same operator of multiplica-

tion in the case g ∈
◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω) .

Corollary 2.4.6 If conditions h1) and h2) hold, then for any g ∈
◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω)

and h ∈ N there exist a constant c1 ∈ R+, depending on h, n, ρ, s, r, k, p, q,

‖g‖Kr

−s+k+n( 1
q−

1
p )

(Ω), and an open set Ah ⊂⊂ Ω with the cone property, such that

‖g u‖Lq(Ω) ≤ c · ◦ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖u‖Wk,p

s (Ω) + c1 · h
1
r · ‖u‖Lq(Ah) , (2.4.12)

for each function u ∈ W k,p
s (Ω), where c ∈ R+ is the constant in (2.4.5).

Proof − Fix g ∈
◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω) and h ∈ N. By Lemma 2.3.3 and Theorem 2.4.4,
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for any u ∈ W k,p
s (Ω) it follows that

‖g u‖Lq(Ω) ≤ ‖φ′h u‖Lq(Ω) + ‖φ′′h u‖Lq(Ω) ≤

c ‖φ′h‖Kr

−s+k+n( 1
q−

1
p )

(Ω) · ‖u‖Wk,p
s (Ω) + ‖φ′′h u‖Lq(Ω) ≤

c · ◦ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖u‖Wk,p

s (Ω) + ‖φ′′h u‖Lq(Ω) .

(2.4.13)

According to Lemma 2.3.3 we also have

‖φ′′h u‖Lq(Ω) ≤ γ|−s+k+n( 1
q
− 1

p
)−n

r
| ‖g‖Kr

−s+k+n( 1
q−

1
p )

(Ω) h
1
r

(∫
Ω

∣∣ψh ρs−k−n( 1
q
− 1

p
)+n

r u
∣∣q dx) 1

q

≤

c2 h
1
r

(∫
suppψh

∣∣ρs−k−n( 1
q
− 1

p
− 1

r
) u
∣∣q dx) 1

q

,

where c2 ∈ R+ depends on n, ρ, s, k, p, q and ‖g‖Kr

−s+k+n( 1
q−

1
p )

(Ω). So, from (2.1.8), we

deduce that there exists c3 ∈ R+, depending on the same parameters as c2 and on h,

such that

‖φ′′h u‖Lq(Ω) ≤ c3 · h
1
r · ‖u‖Lq(suppψh). (2.4.14)

Now fix dh ∈
]
0, dist (suppψh, ∂Ω)

2

[
and θ ∈ ]0, π

2
[. Let Ah be the set of Rn union of

the open cones C ⊂⊂ Ω with opening θ, height dh and such that C ∩ suppψh 6= ∅.

Therefore the result follows from (2.4.13) and (2.4.14).

In the following result we prove that if g ∈
◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω) then the operator of

multiplication is compact.
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Corollary 2.4.7 Suppose that conditions h1) and h2) hold and fix g ∈
◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω).

Then the operator

u ∈ W k,p
s (Ω) −→ g u ∈ Lq(Ω) (2.4.15)

is compact.

Proof − First we observe that, in view of (2.1.8), if Ω′ ⊂⊂ Ω is an open bounded

set, then the operator

u ∈ W k,p
s (Ω) −→ u|Ω′ ∈ W

k,p(Ω′)

is linear and bounded. Moreover, if Ω′ has the cone property, by Rellich - Kondrachov

Theorem, we know that the operator

w ∈ W k,p(Ω′) −→ w ∈ Lq(Ω′)

is compact. So we deduce that, if Ω′ ⊂⊂ Ω is a bounded open set with the cone

property, the operator

u ∈ W k,p
s (Ω) −→ u ∈ Lq(Ω′)

is compact.

Let (un)n∈N be a bounded sequence in W k,p
s (Ω) and let M ∈ R+ be such that

‖un‖Wk,p
s (Ω) ≤ M ∀n ∈ N. Fixed g ∈

◦
K r

−s+k+n( 1
q
− 1

p
)
(Ω) and h ∈ N, from Corol-

lary 2.4.6 we deduce that there exist c(h) ∈ R+, independent of n, and an open set

Ah ⊂⊂ Ω with the cone property, such that

‖g un‖Lq(Ω) ≤ c · ◦ωr−s+k+n( 1
q
− 1

p
)
[g](h) · ‖un‖Wk,p

s (Ω) + c(h) · h
1
r · ‖un‖Lq(Ah) . (2.4.16)
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On the other hand, according to the above considerations, there exist a subsequence

(umn)n∈N and ν ∈ N such that

‖umn − uml
‖Lq(Ah) ≤

c · ◦ωr−s+k+n( 1
q
− 1

p
)
[g](h)

c(h) · h 1
r

∀n, l > ν . (2.4.17)

From (2.4.16) and (2.4.17) we obtain, for n, l > ν,

‖g umn − g uml
‖Lq(Ω) ≤ c · ◦ωr−s+k+n( 1

q
− 1

p
)
[g](h) ·

(
2M + 1

)
. (2.4.18)

From (2.4.18) and (2.3.3) we deduce that (g umn)n∈N is a Cauchy sequence in Lq(Ω)

and so the operator defined by (2.4.15) is compact.





Chapter 3

Some remarks on spaces of Morrey

type

In this chapter we deepen the study of some Morrey type spaces, denoted by Mp,λ(Ω),

defined on an unbounded open subset Ω of Rn. In particular, we construct decompo-

sitions for functions belonging to two different subspaces of Mp,λ(Ω), which allow us

to prove a compactness result for an operator in Sobolev spaces. We also introduce

a weighted Morrey type space, settled between the above mentioned subspaces.

3.1 Some preliminary results

Let us recall the definition of the classical Morrey space Lp,λ(Rn)19.

For n ≥ 2, λ ∈ [0, n[ and p ∈ [1,+∞[, Lp,λ(Rn) is the set of the functions g ∈ Lploc(R
n)

19 See, for instance, A. Kufner, O. John, S. Fućık [40] and F.Chiarenza, M. Frasca [26] .
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such that

‖g‖Lp,λ(Rn) = sup
τ>0

x∈Rn

τ−
λ
p ‖g‖Lp(B(x,τ)) < +∞, (3.1.1)

equipped with the norm defined by (3.1.1).

If Ω is an unbounded open subset of Rn and t is fixed in R+, we can consider the space

Mp,λ(Ω, t), which is larger than Lp,λ(Rn) when Ω = Rn. More precisely, Mp,λ(Ω, t) is

the set of all functions g in Lploc(Ω) such that

‖g‖Mp,λ(Ω,t) = sup
τ∈]0,t]
x∈Ω

τ−λ/p‖g‖Lp(Ω(x,τ)) < +∞, (3.1.2)

endowed with the norm defined in (3.1.2).

We explicitly observe that a diadic decomposition20 gives for every t1, t2 ∈ R+ the

existence of c1, c2 ∈ R+, depending only on t1, t2 and n, such that

c1 ‖g‖Mp,λ(Ω,t1) ≤ ‖g‖Mp,λ(Ω,t2) ≤ c2 ‖g‖Mp,λ(Ω,t1), ∀ g ∈Mp,λ(Ω, t1). (3.1.3)

All the norms being equivalent, from now on we consider the space

Mp,λ(Ω) = Mp,λ(Ω, 1).

Moreover, we put

Mp,0(Ω) = Mp(Ω)21. (3.1.4)

20 See Proposition 1.1.4 in P.Cavaliere [22].
21 For more informations about spaces Mp(Ω) and its applications to elliptic Pde’s, see

M.Transirico, M.Troisi [55],[56].
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It is easily seen that :

Mp0,λ0(Ω) ↪→Mp,λ(Ω) if p ≤ p0 and
λ− n

p
≤ λ0 − n

p0

(3.1.5)

with λ, λ0 ∈ [0, n[. (See also L. C. Piccinini [48], A. Kufner, O. John, J. Fućık [40]).

For reader’s convenience, we briefly recall some properties of functions in Lp,λ(Rn)

and Mp,λ(Ω) needed in the sequel.

The first lemma is a particular case of a more general result proved in Proposition 3

of C. T. Zorko [64].

Lemma 3.1.1 Let (Jh)h∈N be a sequence of mollifiers in Rn. If g ∈ Lp,λ(Rn) and

lim
y→0

‖g(x− y)− g(x)‖Lp,λ(Rn) = 0,

then

lim
h→+∞

‖g − Jh ∗ g‖Lp,λ(Rn) = 0.

The second results concerns the zero extensions of functions in Mp,λ(Ω)22.

Remark 3.1.2 Let g ∈ Mp,λ(Ω). If we denote by g0 the zero extension of g outside

Ω, then g0 ∈Mp,λ(Rn) and for every τ in ]0, 1]

‖g0‖Mp,λ(Rn,τ) ≤ c1‖g‖Mp,λ(Ω,τ), (3.1.6)

where c1 ∈ R+ is a constant independent of g, Ω and τ .

22 See also Remark 2.4 of M. Transirico, M.Troisi, A.Vitolo [58].
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Furthermore if diam(Ω) < +∞, then g0 ∈ Lp,λ(Rn) and

‖g0‖Lp,λ(Rn) ≤ c2‖g‖Mp,λ(Ω), (3.1.7)

where c2 ∈ R+ is a constant independent of g and Ω.

For a general survey on Morrey and Morrey type spaces we refer to A. Kufner,

O. John, S. Fućık [40], L. C. Piccinini [48], M. Transirico, M. Troisi, A. Vitolo [58] and

P. Cavaliere, M. Longobardi, A. Vitolo [23].

3.2 The spaces M̃ p,λ(Ω) and M p,λ
o (Ω)

This section is devoted to the study of two subspaces of Mp,λ(Ω), denoted by M̃p,λ(Ω)

and Mp,λ
o (Ω). Here, we point out the peculiar characteristics of functions belonging

to these sets by means of two characterization lemmas23.

Let us put, for h ∈ R+ and g ∈Mp,λ(Ω),

F [g](h) = sup
E∈Σ(Ω)

sup
x∈Ω

|E(x)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω).

Lemma 3.2.1 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ(Ω). The following properties

are equivalent:

g is in the closure of L∞(Ω) in Mp,λ(Ω), (3.2.1)

lim
h→+∞

F [g](h) = 0 , (3.2.2)

23 See L.Caso, R.D’Ambrosio, S.Monsurrò [17].
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lim
h→+∞

(
sup

E∈Σ(Ω)

sup
x∈Ω

τ∈]0,1]

τ−λ|E(x,τ)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω)

)
= 0 . (3.2.3)

We denote by M̃p,λ(Ω) the subspace of Mp,λ(Ω) made up of functions verifying one

of the above properties.

Proof − The equivalence between (3.2.1) and (3.2.2) is proved in Lemma 1.3 of

M. Transirico, M. Troisi, A. Vitolo [58]. Let us show that (3.2.1) entails (3.2.3) and

vice versa.

Fix g in the closure of L∞(Ω) in Mp,λ(Ω), then for each ε > 0 there exists a function

gε ∈ L∞(Ω) such that

‖g − gε‖Mp,λ(Ω) <
ε

2
. (3.2.4)

Fixed E ∈ Σ(Ω), from (3.2.4) it easily follows that

‖g χ
E
‖Mp,λ(Ω) ≤ ‖(g − gε)χE

‖Mp,λ(Ω) + ‖gε χE
‖Mp,λ(Ω) <

ε

2
+ ‖gε χE

‖Mp,λ(Ω) . (3.2.5)

On the other hand

‖gε χE
‖Mp,λ(Ω) = sup

τ∈]0,1]
x∈Ω

τ−
λ
p ‖gε χE

‖Lp(Ω(x,τ)) ≤

‖gε‖L∞(Ω) sup
τ∈]0,1]

x∈Ω

(τ−λ|E(x, τ)|)
1
p .

(3.2.6)

Therefore, if we set

1

hε
=

(
ε

2 ‖gε‖L∞(Ω)

)p
,



3.2. The spaces M̃p,λ(Ω) and Mp,λ
o (Ω) 57

from (3.2.6) we deduce that, if sup
τ∈]0,1]

x∈Ω

τ−λ|E(x, τ)| ≤ 1

hε
, then

‖gε χE
‖Mp,λ(Ω) ≤

ε

2
. (3.2.7)

Putting together (3.2.5) and (3.2.7) we get (3.2.3).

Conversely, if we take a function g ∈ Mp,λ(Ω) satisfying (3.2.3), for any ε > 0

there exists hε ∈ R+ such that, if E ∈ Σ(Ω) with sup
τ∈]0,1]

x∈Ω

τ−λ|E(x, τ)| ≤ 1

hε
, then

‖g χ
E
‖Mp,λ(Ω) < ε.

For each k ∈ R+ we set

Ek =
{
x ∈ Ω

∣∣ |g(x)| ≥ k
}
.

Observe that

‖g‖Mp,λ(Ω) ≥ sup
τ∈]0,1]

x∈Ω

τ−
λ
p ‖g‖Lp(Ek(x,τ)) ≥

k sup
τ∈]0,1]

x∈Ω

(τ−λ|Ek(x, τ)|)
1
p .

(3.2.8)

Therefore, if we put

kε = ‖g‖Mp,λ(Ω)h
1
p
ε ,

from (3.2.8) it follows that

sup
τ∈]0,1]

x∈Ω

τ−λ|Ekε(x, τ)| ≤ 1

hε

and then

‖g χ
Ekε
‖Mp,λ(Ω) < ε . (3.2.9)
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To end the proof we define the function gε = g − g χ
Ekε

. Indeed, by construction,

gε ∈ L∞(Ω) and by (3.2.9) one gets that ‖g − gε‖Mp,λ(Ω) < ε.

Remark 3.2.2 It is easily seen that24 if g ∈ M̃p,λ(Ω), then

lim
t→0

‖g‖Mp,λ(Ω,t) = 0.

Now we introduce two classes of applications needed in the sequel.

For h ∈ R+ we denote by ζh a function of class C∞
o (Rn) such that

0 ≤ ζh ≤ 1 , ζh|
B(0,h)

= 1 , supp ζh ⊂ B(0, 2h). (3.2.10)

The second class is made up of the applications ψh defined in (2.2.1), for h ∈ R+. It

is easy to prove that ψh belongs to C∞
o (Ω), for any h ∈ R+. Moreover (2.2.2) holds

for any h ∈ R+.

Lemma 3.2.3 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ(Ω). The following properties

are equivalent:

g is in the closure of C∞
o (Ω) in Mp,λ(Ω), (3.2.11)

lim
h→+∞

(‖(1− ζh) g‖Mp,λ(Ω) + F [g](h)) = 0, (3.2.12)

lim
h→+∞

(‖(1− ψh) g‖Mp,λ(Ω) + F [g](h)) = 0, (3.2.13)

lim
t→0

‖g‖Mp,λ(Ω, t) + lim
|x|→+∞

(
sup
τ∈]0,1]

τ−
λ
p ‖g‖Lp(Ω(x,τ))

)
= 0, (3.2.14)

g ∈ M̃p,λ(Ω) and lim
|x|→+∞

(
sup
τ∈]0,1]

τ−
λ
p ‖g‖Lp(Ω(x,τ))

)
= 0. (3.2.15)

24 See also M.Transirico, M. Troisi, A. Vitolo [58].
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The subspace of Mp,λ(Ω) of the functions satisfying one of the above properties will

be denoted by Mp,λ
o (Ω).

Proof − The equivalence between (3.2.11) and (3.2.12) is a consequence of (3.2.2)

and of Lemmas 2.1 and 2.5 of M. Transirico, M. Troisi, A. Vitolo [58]. The one between

(3.2.11) and (3.2.14) follows from Remark 2.2 of [58]. Always in [58], see Lemma 2.1

and Remark 2.2, it is proved (3.2.11) entails (3.2.15) and vice versa. Let us show that

(3.2.11) and (3.2.13) are equivalent too.

Let us firstly assume that g belongs to the closure of C∞
o (Ω) in Mp,λ(Ω).

Clearly, this entails that g is in the closure of L∞(Ω) in Mp,λ(Ω), thus by Lemma

3.2.1 one has that

lim
h→+∞

F [g](h) = 0.

It remains to show that

lim
h→+∞

‖(1− ψh) g‖Mp,λ(Ω) = 0. (3.2.16)

To this aim observe that fixed ε > 0 there exists gε ∈ C∞
o (Ω) such that

‖g − gε‖Mp,λ(Ω) < ε . (3.2.17)

On the other hand, if we consider the sets Ωh defined in (2.2.3) for h ∈ R+, one has

Ω \Ωh =
{
x ∈ Ω

∣∣ |x| ≥ h
}
∪
{
x ∈ Ω

∣∣ α(x) ≤ 1/h
}
.
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Therefore, since gε has a compact support, there exists hε ∈ R+

(Ω \Ωh) ∩ supp gε = ∅ ∀ h ≥ hε .

Then, since ψh|Ωh
= 1 one has that supp(1 − ψh) ⊂ Ω \Ωh, hence (1 − ψh)gε = 0

∀ h ≥ hε.

The above considerations together with (3.2.17) give, for any h ≥ hε,

‖(1− ψh) g‖Mp,λ(Ω) = ‖(1− ψh) (g − gε)‖Mp,λ(Ω) ≤ ‖g − gε‖Mp,λ(Ω) < ε,

that is (3.2.16). Conversely, assume that g ∈Mp,λ(Ω) and that (3.2.13) holds.

First of all we observe that, denoted by go the zero extension of g to Rn, by (3.1.6) of

Remark 3.1.2 there exists a positive constant c1, independent of g, ψh and of Ω, such

that

‖(1− ψh) go‖Mp,λ(Rn) ≤ c1‖(1− ψh) g‖Mp,λ(Ω).

Furthermore, by (3.2.13) we get that fixed ε > 0 there exists hε such that

‖(1− ψhε) g‖Mp,λ(Ω) <
ε

2 c1
.

Therefore,

‖(1− ψhε) go‖Mp,λ(Rn) <
ε

2
. (3.2.18)

Set

Φε = ψhε go
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by construction

supp Φε ⊂ supp ψhε ⊂ Ω2hε . (3.2.19)

Hence, taking into account (3.1.7) of Remark 3.1.2, one has that

Φε ∈ Lp,λ(Rn). (3.2.20)

On the other hand, assumption (3.2.13) together with Lemma 3.2.1 give that g ∈

M̃p,λ(Ω), then from Remark 3.2.2 we get

lim
t→0

‖g‖Mp,λ(Ω, t) = 0.

So, using (3.1.6) of Remark 3.1.2 we have that Φε ∈ Mp,λ(Rn) and

lim
t→0

‖Φε‖Mp,λ(Rn, t) = 0. (3.2.21)

Arguing as in Lemma 1.2 of F. Chiarenza, M. Franciosi [25], from (3.2.19) - (3.2.21)

we conclude that

lim
y→0

‖Φε(x− y)− Φε(x)‖Lp,λ(Rn) = 0.

We are now in the hypotheses of Lemma 3.1.1. Hence, denoted by (Jk)k∈N a sequence

of mollifiers in Rn, we can find a positive integer kε > hε such that

‖Φε − Jkε ∗ Φε‖Lp,λ(Rn) <
ε

2
. (3.2.22)
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Set gε = Jkε ∗ Φε one has gε ∈ C∞
o (Ω). Furthermore, using (3.2.18) and (3.2.22) we

get

‖g − gε‖Mp,λ(Ω) ≤ ‖go − Jkε ∗ Φε‖Mp,λ(Rn) ≤

‖go − Φε‖Mp,λ(Rn) + ‖Φε − Jkε ∗ Φε‖Mp,λ(Rn) ≤

‖go − ψhεgo‖Mp,λ(Rn) + ‖Φε − Jkε ∗ Φε‖Lp,λ(Rn) ≤

‖(1− ψhε)go‖Mp,λ(Rn) +
ε

2
< ε ,

this concludes the proof .

3.3 Decompositions of functions in M̃ p,λ(Ω) andM p,λ
o (Ω)

The characterizations of the spaces M̃p,λ(Ω) and Mp,λ
o (Ω) naturally lead us to the

introduction of the following moduli of continuity.

Let g be a function in M̃p,λ(Ω). A modulus of continuity of g in M̃p,λ(Ω) is a map

∼
σp,λ[g] : R+ → R+ such that

F [g](h) ≤ ∼
σp,λ[g](h)

lim
h→+∞

∼
σp,λ[g](h) = 0 .

(3.3.1)
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If g belongs to Mp,λ
o (Ω), a modulus of continuity of g in Mp,λ

o (Ω) is an application

σo
p,λ[g] : R+ → R+ such that

‖(1− ζh) g‖Mp,λ(Ω) + F [g](h) ≤ σo
p,λ[g](h)

lim
h→+∞

σo
p,λ[g](h) = 0 .

(3.3.2)

Let us show now the decomposition results25. Also in this case, any function g in

M̃p,λ(Ω) or in Mp,λ
0 (Ω) can be written as the sum of two functions : the first function

is less regular than the second and it is controlled by means of a continuity modulus

of the function g itself.

Lemma 3.3.1 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈ M̃p,λ(Ω). For any h ∈ R+, we

have

g = g′h + g′′h, (3.3.3)

with g′′h ∈ L∞(Ω) and

‖g′h‖Mp,λ(Ω) ≤
∼
σp,λ[g](h) , ‖g′′h‖L∞(Ω) ≤ h

1
p‖g‖Mp,λ(Ω) . (3.3.4)

Proof − Given g ∈ M̃p,λ(Ω) and h ∈ R+, we introduce the set

Eh = {x ∈ Ω | |g(x)| ≥ h
1
p ‖g‖Mp,λ(Ω) } . (3.3.5)

25 See L.Caso, R.D’Ambrosio, S.Monsurrò [17].
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Observe that

|Eh(x)| ≤
∫

Ω(x)∩Eh

| g(y)|p

‖g‖p
Mp,λ(Ω)

h
dy ≤

1

‖g‖p
Mp,λ(Ω)

h

∫
Ω(x)

| g(y)|p dy ≤ 1

‖g‖p
Mp,λ(Ω)

h
sup

τ∈ ]0,1]
x∈Ω

τ−λ‖g‖pLp(Ω(x,τ)) =
1

h
.

(3.3.6)

Set

g′h = g χ
Eh

=

 g if x ∈ Eh

0 if x ∈ Ω \ Eh ,
g′′h = g − g χ

Eh
=

 0 if x ∈ Eh

g if x ∈ Ω \ Eh .

In view of (3.3.6)

‖g′h‖Mp,λ(Ω) = ‖g χ
Eh
‖Mp,λ(Ω) ≤ F [g](h) ≤ ∼

σp,λ[g](h) ,

this gives the first inequality in (3.3.4), the second one easily follows from (3.3.5).

Lemma 3.3.2 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈ Mp,λ
0 (Ω). For any h ∈ R+, we

have

g = φ′h + φ′′h, (3.3.7)

with

‖φ′h‖Mp,λ(Ω) ≤ σo
p,λ[g](h) , |φ′′h| ≤ ζh h

1
p‖g‖Mp,λ(Ω) . (3.3.8)

Proof − To prove this second decomposition result we exploit again the definition

of the set Eh introduced in (3.3.5) and inequality (3.3.6). In this case, for any h ∈ R+,
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we define the functions

φ′h = g (1− ζh) + ζh g χEh
=

 g if x ∈ Eh

g (1− ζh) if x ∈ Ω \ Eh ,

φ′′h = ζh (g − g χ
Eh

) =

 0 if x ∈ Eh

g ζh if x ∈ Ω \ Eh.

To obtain the first inequality in (3.3.8) we observe that (3.3.6) gives

‖φ′h‖Mp,λ(Ω) ≤ ‖g (1− ζh)‖Mp,λ(Ω) + ‖ζh g χEh
‖Mp,λ(Ω) ≤ ‖g (1− ζh)‖Mp,λ(Ω)+

‖ g χ
Eh
‖Mp,λ(Ω) ≤ ‖g (1− ζh)‖Mp,λ(Ω) + F [g](h) ≤ σo

p,λ[g](h) .

The second one is a consequence of (3.3.5).

3.4 A compactness result

In this section, as application, we use the previous results to prove a compactness

result for a multiplication operator defined on Sobolev spaces W k,p(Ω) and which

takes value in a suitable Lebesgue space.

To this aim let us recall an imbedding theorem proved in Lemma 2.2 of P. Cavaliere,

M. Longobardi, A. Vitolo [23], which gives a boundeness result for such multiplication

operator when Ω = Rn.
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Let us specify the assumptions:

h1) Ω is an open subset of Rn having the cone property with cone C,

the parameters k, r, p, q, λ satisfy one of the following conditions:

h2) k ∈ N , 1 ≤ p ≤ q ≤ r < +∞, 0 ≤ λ < n , γ =
1

q
− 1

p
+
k

n
> 0 ,

with r > q when p =
n

k
> 1 and λ = 0, and with λ > n(1− rγ) when rγ < 1 ;

h3) k = 1 , 1 < p = q < r ≤ n, λ = n−r.

Lemma 3.4.1 Under hypothesis h1) and if h2) or h3) holds, for any u ∈ W k,p(Rn)

and for any g ∈ M r,λ(Rn) we have g u ∈ Lq(Rn). Moreover there exists a constant

c1 ∈ R+, depending on n, k, p, q, r and λ such that

‖g u‖Lq(Rn) ≤ c1 ‖g‖Mr,λ(Rn
) ‖u‖Wk,p(Rn) . (3.4.1)

Proof − If (h3) holds, we deduce the result from a theorem of C. Fefferman [29]26 .

Otherwise, we have to consider the two different cases : λ = 0 and λ > 0.

In the first case, by assumptions, we have that r γ ≥ 1, from which

r − q

rq
≥ n− kp

np
.

26 The result can be also deduced from a theorem of F. Chiarenza, M.Frasca [26] which is a
simplified proof of an imbedding theorem by C. Fefferman [29], for more details see P. Cavaliere [22].



3.4. A compactness result 67

Let u ∈ W k,p(Rn), from Sobolev imbedding theorem we also have that u ∈ L
qr

r−q (Rn)

and

||u||
L

qr
r−q (Rn)

≤ c0 ||u||Wk,p(Rn) , (3.4.2)

where c0 ∈ R+ depends only on n, k, p, q, r and on the cone determining the cone

property of Rn.

Then, using Holder’s inequality and the (3.4.2) we have

∫
Rn
|g u|q dx ≤

(∫
Rn
|g|r dx

) q
r ·
(∫

Rn
|u|

q r
r−q dx

) r−q
r q

q

≤ c0||g||qMr,0(Rn)
· ||u||q

Wk,p(Rn)
.

Using (3.1.4) and the imbedding of the space M r,λ(Rn) in M r(Rn) , we deduce the

result.

In the second case (i.e.λ > 0), we observe that there exists ε0 such that

n− λ < ε0 < n r γ , ε0 < n . (3.4.3)

In fact, if r γ ≥ 1, we can take ε0 ∈ ]n − λ, n[ , if r γ < 1 then, by assumption, we

have

n− λ < n r γ < n

and again there exists ε0 satisfying (3.4.3). Let us consider the following application

H : g ∈M r,λ(Rn) → sup
x∈Rn

(∫
B1(x)

|g(y)|r |x− y|ε0−n dy
) 1

r
.
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It is bounded application, in fact

∫
B1(x)

|g(y)|r |x− y|ε0−n dy =
∑
k∈N

∫
B(x,2−k+1)\B(x,2−k)

|g(y)|r |x− y|ε0 · |x− y|−ndy

≤
∑
k∈N

( 1

2k−1

)ε0 ( 1

2k

)−n ∫
B(x,2−k+1)

|g(y)|r dy

≤ 2ε0+λ
(∑
k∈N

2(n−λ−ε0) k
)
||g||rMr,λ(Rn) , ∀x ∈ Rn .

From previous inequalities it turns out that

H(g) ≤ c3 ||g||Mr,λ(Rn) , (3.4.4)

where c3 depends only on n, r, λ and ε0.

Moreover, from Theorem 1 of M. Schechter [50] we obtain

||gu||Lq(Rn) ≤ c4H(g) ||u||Wk,p(Rn) ,

where c4 depends only on k, p, q, r and ε0. Using (3.4.4) in the previous inequality we

deduce (3.4.1).

In M. Transirico, M. Troisi, A. Vitolo [58] (see also R. A. Adams [2], E. M. Stein

[54]) the following result has been shown

Lemma 3.4.2 For every open subset Ω of Rn having the cone property with cone C
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and every d0 ∈ R+ there exists a sequence (Ωi)i∈N of open subsets of Rn such that

i1)
⋃

i∈N
Ωi = Ω ;

i2) diam Ωi ≤ d0 ∀i ∈ N ;

i3) there exists m ∈ N such that every collection of m+1 elements of the sequence

(Ωi)i∈N has empty intersection ;

i4) Ωi, i ∈ N, has locally Lipschitz boundary with Lipschitz coefficient depending

only on C ;

i5) for each i ∈ N, there exists a linear extension operator

Ei : W k,p(Ωi) → W k,p(Rn), k ∈ N, p ∈ [1,+∞] ,

such that

||Ei(u)||Wk,p(Rn) ≤ c2||u||Wk,p(Ωi) ,

where c2 depends only on n, p,m, k, C, d0.

Remark 3.4.3 We remark that27 if Ω is an unbounded open subset of Rn having the

cone property and F0 = {Ωi, i ∈ N} is a sequence of open subsets of Rn satisfying the

properties of Lemma 3.4.2 for any fixed d0 ∈ R+, then

∑
i∈N

∫
Ωi

|f | ≤ (m+ 2)

∫
Ω

|f | , ∀f ∈ L1(Ω) (3.4.5)

27 See Proposition 2.0.3 in P.Cavaliere [22].
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where m ∈ N satisfies i3).

We recall now an imbedding theorem proved in Theorem 3.2 of P. Cavaliere,

M. Longobardi, A. Vitolo [23], which gives a boundeness result for multiplication op-

erator when Ω 6= Rn.

Theorem 3.4.4 Under hypothesis h1) and if h2) or h3) holds, for any u ∈ W k,p(Ω)

and for any g ∈ M r,λ(Ω) we have g u ∈ Lq(Ω). Moreover there exists a constant

c ∈ R+, depending on n, k, p, q, r, λ and C, such that

‖g u‖Lq(Ω) ≤ c ‖g‖Mr,λ(Ω) ‖u‖Wk,p(Ω) . (3.4.6)

Proof − Since Ω has cone property, fixed d0 ∈ ]0, 1], from Lemma 3.4.2 there

exist a sequence (Ωi)i∈N of open subsets of Rn and a sequence (Ei)i∈N of linear

extension operators which satisfy the properties of Lemma 3.4.2. Moreover we recall

(see Remark 3.1.2) that, if g ∈ M r,λ(Ω), then the zero extension g0 of g outside Ω

belongs to M r,λ(Rn) and the following estimate holds:

||g0||Mr,λ(Rn) ≤ c0 ||g||Mr,λ(Ω) ,

where c0 depends only on n, r and λ. Since

||gu||qLq(Ω) ≤
∑
i∈N

∫
Ωi

|gu|q =
∑
i∈N

∫
Rn
|χΩi

g0|q |Ei(u)|q ,
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using Lemma 3.4.1, (i5) and Remark 3.4.3, it turns out that

||gu||qLq(Ω) ≤ (c0 c1)
q ||g||q

Mr,λ(Ω)

(∑
i∈N

||Ei(u)||q
Wk,p(Rn)

)
≤

≤ (c0 c1 c2)
q ||g||q

Mr,λ(Ω)

(∑
i∈N

||u||q
Wk,p(Ωi)

)
≤

≤ (c0 c1 c2 (m+ 2))q ||g||q
Mr,λ(Ω)

||u||q
Wk,p(Ω)

.

this concludes the proof .

Putting together Lemma 3.3.1 and Theorem 3.4.4, we easily have the following result28

Corollary 3.4.5 Under hypothesis h1) and if h2) or h3) holds, for any g ∈ M̃ r,λ(Ω)

and for any h ∈ R+ we have

‖g u‖Lq(Ω) ≤ c · ∼σr,λ[g](h) · ‖u‖Wk,p(Ω) + h
1
r · ‖g‖Mr,λ(Ω) · ‖u‖Lq(Ω) , (3.4.7)

for each u ∈ W k,p(Ω), where c ∈ R+ is the constant of (3.4.6).

Proof − Fix g ∈ M̃ r,λ(Ω) and h ∈ R+. In view of Lemma 3.3.1 and Theorem 3.4.4

for any u ∈ W k,p(Ω) we have

‖g u‖Lq(Ω) ≤ ‖g′h u‖Lq(Ω) + ‖g′′h u‖Lq(Ω) ≤

c ‖g′h‖Mr,λ(Ω) · ‖u‖Wk,p(Ω) + ‖g′′h‖L∞(Ω) · ‖u‖Lq(Ω) ≤

c · ∼σr,λ[g](h) · ‖u‖Wk,p(Ω) + h
1
r · ‖g‖Mr,λ(Ω) · ‖u‖Lq(Ω) .

(3.4.8)

28 See L.Caso, R.D’Ambrosio, S.Monsurrò [17].
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If g is in M r,λ
0 (Ω) the previous estimate can be improved as showed in the corollary

below.

Corollary 3.4.6 Under hypothesis h1) and if h2) or h3) holds, for any g ∈ M r,λ
0 (Ω)

and for any h ∈ R+ there exists an open set Ah ⊂⊂ Ω with the cone property, such

that

‖g u‖Lq(Ω) ≤ c · σor,λ[g](h) · ‖u‖Wk,p(Ω) + h
1
r · ‖g‖Mr,λ(Ω) · ‖u‖Lq(Ah) , (3.4.9)

for each u ∈ W k,p(Ω), where c ∈ R+ is the constant of (3.4.6).

Proof − Fix g ∈ M r,λ
0 (Ω) and h ∈ R+. In view of Lemma 3.3.2 and Theorem 3.4.4

for any u ∈ W k,p(Ω) we have

‖g u‖Lq(Ω) ≤ ‖φ′h u‖Lq(Ω) + ‖φ′′h u‖Lq(Ω) ≤

c ‖φ′h‖Mr,λ(Ω) · ‖u‖Wk,p(Ω) + ‖φ′′h u‖Lq(Ω) ≤

c · σor,λ[g](h) · ‖u‖Wk,p(Ω) + ‖φ′′h u‖Lq(Ω) .

(3.4.10)

Using again Lemma 3.3.2 we obtain

‖φ′′h u‖Lq(Ω) ≤ ‖g‖Mr,λ(Ω) h
1
r

(∫
Ω

∣∣ζh u∣∣q dx) 1
q

≤

‖g‖Mr,λ(Ω) h
1
r

(∫
supp ζh

∣∣u∣∣q dx) 1
q

.

(3.4.11)

Putting together (3.4.10) and (3.4.11) we get estimate (3.4.9), with Ah obtained as
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follows: fixed dh ∈
]
0, dist (supp ζh, ∂Ω)

2

[
and θ ∈ ]0, π

2
[, the set Ah is union of the open

cones C ⊂⊂ Ω with opening θ, height dh and such that C ∩ supp ζh 6= ∅.

We are now in position to prove the compactness result29.

Corollary 3.4.7 Suppose that condition h1) is satisfied, that h2) or h3) holds and fix

g ∈M r,λ
0 (Ω). Then the operator

u ∈ W k,p(Ω) −→ g u ∈ Lq(Ω) (3.4.12)

is compact.

Proof − Observe that, if Ω′ ⊂⊂ Ω is a bounded open set with the cone property,

the operator

u ∈ W k,p(Ω) −→ u ∈ Lq(Ω′)

is compact.

Indeed, if Ω′ ⊂⊂ Ω is a bounded open set the operator

u ∈ W k,p(Ω) −→ u|Ω′ ∈ W
k,p(Ω′)

is linear and bounded. Moreover, since Ω′ has the cone property, Rellich - Kondrachov

Theorem (see, for instance R. A. Adams [2]) applies and gives that the operator

w ∈ W k,p(Ω′) −→ w ∈ Lq(Ω′)

29 See L.Caso, R.D’Ambrosio, S.Monsurrò [17].
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is compact.

Let us consider now a sequence (un)n∈N bounded in W k,p(Ω) and let M ∈ R+ be such

that ‖un‖Wk,p(Ω) ≤ M ∀n ∈ N. According to the above considerations, fixed ε > 0

there exist a subsequence (unm)m∈N and ν ∈ N such that

‖unm − unl
‖Lq(Ω′) ≤ ε ∀m, l > ν . (3.4.13)

On the other hand, given g ∈ M r,λ
0 (Ω) and h ∈ R+, in view of Corollary 3.4.6 there

exist a constant c ∈ R+ and an open set Ah ⊂⊂ Ω with the cone property, independent

of un, such that

‖g un‖Lq(Ω) ≤ c · σor,λ[g](h) · ‖un‖Wk,p(Ω) + h
1
r · ‖g‖Mr,λ(Ω) · ‖un‖Lq(Ah) . (3.4.14)

From (3.4.14) and (3.4.13) written for ε =
c · σor,λ[g](h)

h
1
r · ‖g‖Mr,λ(Ω)

and Ω′ = Ah, for m, l > ν

one has

‖g unm − g unl
‖Lq(Ω) ≤ c · σor,λ[g](h) ·

(
2M + 1

)
. (3.4.15)

By (3.4.15) and (3.3.2) we conclude that (g unm)m∈N is a Cauchy sequence in Lq(Ω),

which gives the compactness of the operator defined in (3.4.12).

3.5 The space M p,λ
ρ (Ω)

In this section we introduce some weighted spaces of Morrey type settled between

Mp,λ
0 (Ω) and M̃p,λ(Ω). To this aim, given d ∈ R+, we consider the set G(Ω, d) defined
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in M. Troisi [61] as the class of measurable weight functions ρ : Ω → R+ such that

sup
x,y∈Ω
|x−y|<d

ρ(x)

ρ(y)
< +∞ . (3.5.1)

We note that the definition (3.5.1) is equivalent to the following

sup
x,y∈Ω
|x−y|<d

∣∣∣ log
ρ(x)

ρ(y)

∣∣∣ < +∞ .

It is easy to show that ρ ∈ G(Ω, d) if and only if there exists γ ∈ R+, independent on

x and y, such that

γ−1 ρ(y) ≤ ρ(x) ≤ γ ρ(y) , ∀ y ∈ Ω, ∀x ∈ Ω(y, d). (3.5.2)

Furthermore, in S. Boccia, M. Salvato, M. Transirico [8] is proved that

ρ, ρ−1 ∈ L∞loc(Ω). (3.5.3)

We put

G(Ω) =
⋃
d>0

G(Ω, d).

It is easy to verify that the functions

ρ(x) = et|x| , ρ(x) = (1 + |x|2)t , (∀x ∈ Ω) (∀ t ∈ R) (3.5.4)

belong to the class G(Ω).

Moreover, we observe that if ρ ∈ A(Ω) and inf
Ω
ρ > 0 then ρ ∈ G(Ω).
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Remark 3.5.1 We remark that if σ ∈ G(Ω) then for any b ∈ R+ and for any s ∈ R

the function

ρ(x) =
σ(x)

1 + b σs(x)

is in G(Ω).

In fact if σ ∈ G(Ω) for any fixed d ∈ R+ there exists a constant ν > 1 such that

ν−1σ(y) ≤ σ(x) ≤ ν σ(y) ∀y ∈ Ω,∀x ∈ Ω(y, d) .

Let

t =

 −s if s > 0

s if s < 0

For any y ∈ Ω and for any x ∈ Ω(y, d) , we have

ρ(x) =
σ(x)

1 + b σs(x)
≤ ν σ(y)

1 + νt b σs(y)
≤ ν σ(y)

νt + νt b σs(y)
=

ν

νt
ρ(y) = γ ρ(y) , (3.5.5)

and

ρ(x) =
σ(x)

1 + b σs(x)
≥ ν−1 σ(y)

1 + ν−t b σs(y)
≥ ν−1 σ(y)

ν−t + ν−t b σs(y)
=
ν−1

ν−t
ρ(y) = γ−1 ρ(y) .

(3.5.6)

From (3.5.5), (3.5.6) and (3.5.2) we obtain that ρ ∈ G(Ω) .

Moreover, it’s easy to prove that if s ∈ [1,+∞[ and b ∈ R+ then the function ρ ∈

L∞(Ω) .

Further properties of the class G(Ω) can be found, for instance, in M. Troisi [61] and

in S. Boccia, M. Salvato, M. Transirico [8].
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If ρ ∈ G(Ω) , k ∈ N0 , 1 ≤ p ≤ +∞ and s ∈ R we consider the space Uk,p
s (Ω) of

distributions u on Ω such that ρs ∂α u ∈  Lp(Ω) for |α| ≤ k, equipped with the norm

‖u‖Uk,p
s (Ω) =

∑
|α|≤k

‖ρs ∂α u‖Lp(Ω) . (3.5.7)

We put

U0,p
s (Ω) = Lps(Ω) .

It can be proved that, for 1 ≤ p < +∞ and s ∈ R , the space C∞
0 (Ω) is dense in

Lps(Ω)30. A more detailed account of properties of the spaces Uk,p
s (Ω) can be found, for

instance in M. Troisi [61]. The space just introduced is another example of weighted

Sobolev space.

From now on we consider ρ ∈ G(Ω) ∩ L∞(Ω) and we denote by d the positive real

number such that ρ ∈ G(Ω, d).

The shown results are in L. Caso, R. D’Ambrosio, S. Monsurrò [17].

Lemma 3.5.2 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ(Ω). The following properties

are equivalent:

g is in the closure of L∞− 1
p
(Ω) in Mp,λ(Ω), (3.5.8)

lim
h→+∞

(
sup

E∈Σ(Ω)

sup
x∈Ω

τ∈]0,d]

τ−λρ(x)|E(x,τ)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω)

)
= 0, (3.5.9)

lim
h→+∞

(
sup

E∈Σ(Ω)

sup
x∈Ω

ρ(x)|E(x,d)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω)

)
= 0. (3.5.10)

30 See, for instance, D. E. Edmunds, W.D. Evans [27], M.Troisi [61].
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We denote by Mp,λ
ρ (Ω) the set of functions satisfying one of the above properties.

Proof − We start proving the equivalence between (3.5.8) and (3.5.9). This proof is

in the spirit of the one of Lemma 3.2.1. For reader’s convenience, we write down just

few lines pointing out the main differences.

If (3.5.8) holds, fixed ε > 0 there exists a function gε ∈ L∞− 1
p

(Ω) such that

‖g − gε‖Mp,λ(Ω) <
ε

2
. (3.5.11)

From (3.5.11) we get that, for any E ∈ Σ(Ω),

‖g χ
E
‖Mp,λ(Ω) <

ε

2
+ ‖gε χE

‖Mp,λ(Ω) . (3.5.12)

Furthermore, in view of the equivalence of the spaces Mp,λ(Ω, d) and Mp,λ(Ω) given

by (3.1.3) and taking into account (3.5.2),

‖gε χE
‖Mp,λ(Ω) ≤ c1 ‖gε χE

‖Mp,λ(Ω,d) = c1 sup
τ∈]0,d]

x∈Ω

τ−
λ
p ‖gε χE

‖Lp(Ω(x,τ)) ≤

c1 γ
1
p ‖gε‖L∞

− 1
p
(Ω) sup

τ∈]0,d]
x∈Ω

(τ−λρ(x)|E(x, τ)|)
1
p ,

(3.5.13)

where c1 ∈ R+ depends only on n and d. Hence, set

1

hε
=

(
ε

2 c1 γ
1
p ‖gε‖L∞

− 1
p
(Ω)

)p
,
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from (3.5.13) we deduce that, if sup
τ∈]0,d]

x∈Ω

τ−λρ(x)|E(x, τ)| ≤ 1

hε
, then

‖gε χE
‖Mp,λ(Ω) ≤

ε

2
. (3.5.14)

Putting together (3.5.12) and (3.5.14) we obtain (3.5.9).

Now assume that g is a function in Mp,λ(Ω) and that (3.5.9) holds. Then, for any

ε > 0 there exists hε ∈ R+ such that, if E ∈ Σ(Ω) with sup
τ∈]0,d]

x∈Ω

τ−λρ(x)|E(x, τ)| ≤ 1

hε
,

then ‖g χ
E
‖Mp,λ(Ω) < ε.

For each k ∈ R+ we define the set

Gk =
{
x ∈ Ω

∣∣ ρ− 1
p (x) |g(x)| ≥ k

}
. (3.5.15)

Using again (3.1.3), there exists c2 ∈ R+ depending on the same parameters as c1

such that

‖g‖Mp,λ(Ω) ≥ c2 ‖g‖Mp,λ(Ω,d) ≥ c2 sup
τ∈]0,d]

x∈Ω

τ−
λ
p ‖g‖Lp(Gk(x,τ)) ≥

c2 γ
− 1

p k sup
τ∈]0,d]

x∈Ω

(τ−λ ρ(x) |Gk(x, τ)|)
1
p .

(3.5.16)

Therefore, if we put

kε =
γ

1
ph

1
p
ε ‖g‖Mp,λ(Ω)

c2
,
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from (3.5.16) we obtain

sup
τ∈]0,d]

x∈Ω

τ−λ ρ(x) |Gkε(x, τ)| ≤ 1

hε

and then

‖g χ
Gkε
‖Mp,λ(Ω) < ε . (3.5.17)

We conclude setting gε = g − g χ
Gkε

. Indeed by (3.5.15) gε ∈ L∞− 1
p

(Ω) and (3.5.17)

gives that ‖g − gε‖Mp,λ(Ω) < ε.

Arguing similarly we prove also that (3.5.8) entails (3.5.10) and vice versa. Indeed,

if g ∈Mp,λ(Ω) and (3.5.8) holds, we can obtain as before (3.5.12) and (3.5.13).

On the other hand, there exists a constant c3 = c3(n) such that

sup
τ∈]0,d]

x∈Ω

(τ−λ · ρ(x) · |E(x, τ)|)
1
p ≤

‖ρ‖
λ

np

L∞(Ω) sup
τ∈]0,d]

x∈Ω

τ−
λ
p · ρ

n−λ
np (x) · |E(x, τ)|

λ
np · |E(x, τ)|

n−λ
np ≤

c3 · ‖ρ‖
λ

np

L∞(Ω) sup
τ∈]0,d]

x∈Ω

(ρ(x) · |E(x, τ)|)
n−λ
np .

(3.5.18)

Putting together (3.5.13) and (3.5.18) we obtain

‖gε χE
‖Mp,λ(Ω) ≤

c4 γ
1
p ‖gε‖L∞

− 1
p
(Ω) ‖ρ‖

λ
np

L∞(Ω) sup
τ∈]0,d]

x∈Ω

(ρ(x)|E(x, τ)|)
n−λ
np ,

(3.5.19)
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where c4 = c1 · c3. Now, set

1

hε
=

(
ε

2 c4 γ
1
p ‖gε‖L∞

− 1
p
(Ω) ‖ρ‖

λ
np

L∞(Ω)

) np
n−λ

,

from (3.5.19) we deduce that, if sup
τ∈]0,d]

x∈Ω

ρ(x)|E(x, τ)| ≤ 1

hε
then

‖gε χE
‖Mp,λ(Ω) ≤

ε

2
. (3.5.20)

From (3.5.12) and (3.5.20) we obtain (3.5.10).

Conversely, assume that (3.5.10) holds. We consider again the sets Gk introduced in

(3.5.15). From (3.5.16) we get

‖g‖Mp,λ(Ω) ≥ c2 ‖g‖Mp,λ(Ω,d) ≥ c2 d
−λ

p γ−
1
p k sup

x∈Ω
(ρ(x) |Gk(x, d)|)

1
p . (3.5.21)

Therefore, if we put

kε =
d

λ
p γ

1
ph

1
p
ε ‖g‖Mp,λ(Ω)

c2
,

from (3.5.21) we obtain

sup
x∈Ω

ρ(x) |Gkε(x, d)| ≤ 1

hε

and then, (3.5.10) being verified,

‖g χ
Gkε
‖Mp,λ(Ω) < ε . (3.5.22)
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We conclude the proof setting gε = g − g χ
Gkε

. Indeed, clearly gε ∈ L∞− 1
p

(Ω) and

(3.5.22) gives ‖g − gε‖Mp,λ(Ω) < ε.

Arguing in the spirit of §3.3, we want to obtain a decomposition result also for func-

tions in Mp,λ
ρ (Ω). To this aim we put, for h ∈ R+ and g ∈Mp,λ(Ω)

D[g](h) = sup
E∈Σ(Ω)

sup
x∈Ω

ρ(x)|E(x,d)|≤ 1
h

‖g χ
E
‖Mp,λ(Ω).

In view of the previous lemma, we can define a modulus of continuity of a function g

in Mp,λ
ρ (Ω) as a map σρ

p,λ[g] : R+ → R+ such that

D[g](h) ≤ σρ
p,λ[g](h)

lim
h→+∞

σρ
p,λ[g](h) = 0 .

Lemma 3.5.3 Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈ Mp,λ
ρ (Ω). For any h ∈ R+, we

have

g = ϕ′h + ϕ′′h, (3.5.23)

with ϕ′′h ∈ L∞− 1
p

(Ω) and

‖ϕ′h‖Mp,λ(Ω) ≤ σρ
p,λ[g](h) , ‖ϕ′′h‖L∞− 1

p
(Ω) ≤ c γ

1
p h

1
p‖g‖Mp,λ(Ω) , (3.5.24)

where c is a positive constant only depending on n, d, p and λ and where γ is that of

(3.5.2).
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Proof − Fix g ∈Mp,λ
ρ (Ω), for any h ∈ R+ we set

ϕ′h = g χ
Gh

=

 g if x ∈ Gh

0 if x ∈ Ω \Gh ,
ϕ′′h = g − g χ

Gh
=

 0 if x ∈ Gh

g if x ∈ Ω \Gh ,

where

Gh =
{
x ∈ Ω

∣∣ ρ− 1
p (x) |g(x)| ≥ γ

1
p d

λ
p h

1
p‖g‖Mp,λ(Ω,d)

}
.

The thesis follows the by (3.5.2) and (3.1.3) arguing as in the proof of Lemma 3.3.1

Let us show the following inclusion:

Lemma 3.5.4 Let λ ∈ [0, n[ and p ∈ [1,+∞[. Then L∞−α(Ω) ∩Mp,λ(Ω) ⊂ Mp,λ
ρ (Ω),

∀ α ∈ R+.

Proof − For α ≥ 1/p, clearly L∞−α(Ω) ⊂ L∞− 1
p

(Ω) and then (3.5.8) holds. On the

other hand, for α < 1/p we can show that if g ∈ L∞−α(Ω) ∩Mp,λ(Ω), then (3.5.9)

holds. Indeed observe that, by (3.1.3) there exists a constant c1 = c1(n, d) such that

for any E ∈ Σ(Ω)

‖g χ
E
‖Mp,λ(Ω) ≤ c1 ‖g χE

‖Mp,λ(Ω,d) = c1 sup
τ∈]0,d]

x∈Ω

τ−
λ
p ‖g χ

E
‖Lp(Ω(x,τ)) ≤

c1 γ
α ‖g‖L∞−α(Ω) sup

τ∈]0,d]
x∈Ω

τ−
λ
p ρα(x)|E(x, τ)|

1
p .



84 3. Some remarks on spaces of Morrey type

Moreover there exists a constant c2 = c2(n) such that

sup
τ∈]0,d]

x∈Ω

τ−
λ
p ρα(x)|E(x, τ)|

1
p =

sup
τ∈]0,d]

x∈Ω

(
τ−λ ρ(x) |E(x, τ)|

)α(
τ−λ |E(x, τ)|

) 1
p
−α
≤

c2 d
(n−λ)

(
1
p
−α
)

sup
τ∈]0,d]

x∈Ω

(
τ−λ ρ(x) |E(x, τ)|

)α
.

Hence, fixed ε > 0 and set

1

hε
=

(
ε

c1 · c2 γα ‖g‖L∞−α(Ω) d
(n−λ)

(
1
p
−α
)) 1

α

,

we deduce that, if sup
τ∈]0,d]

x∈Ω

τ−λρ(x)|E(x, τ)| ≤ 1

hε
then ‖g χ

E
‖Mp,λ(Ω) ≤ ε .

Now we can prove a further characterization of Mp,λ
ρ (Ω).

Lemma 3.5.5 Let λ ∈ [0, n[ and p ∈ [1,+∞[. Then Mp,λ
ρ (Ω) is the closure of⋃

α∈R+

L∞−α(Ω) ∩Mp,λ(Ω) in Mp,λ(Ω).

Proof − Clearly if g ∈ Mp,λ
ρ (Ω) by (3.5.8) one has also that g is in the closure of⋃

α∈R+

L∞−α(Ω) ∩Mp,λ(Ω) in Mp,λ(Ω).

Conversely, let us prove that if g belongs to the closure of
⋃
α∈R+

L∞−α(Ω)∩Mp,λ(Ω) in Mp,λ(Ω)

then (3.5.10) holds. Indeed, given ε > 0 there exists a function gε ∈ L∞−α(Ω)∩Mp,λ(Ω),

for an α ∈ R+, such that

‖g − gε‖Mp,λ(Ω) <
ε

2
.
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Hence, given E ∈ Σ(Ω)

‖g χ
E
‖Mp,λ(Ω) ≤ ‖(g− gε)χE

‖Mp,λ(Ω) + ‖gε χE
‖Mp,λ(Ω) <

ε

2
+ ‖gε χE

‖Mp,λ(Ω) . (3.5.25)

Now observe that since gε ∈ L∞−α(Ω)∩Mp,λ(Ω) by Lemma 3.5.4 we get gε ∈Mp,λ
ρ (Ω)

and therefore using (3.5.10) of Lemma 3.5.2 we obtain that if sup
x∈Ω

ρ(x) |E(x, d)| ≤ 1

h

then

‖gε χE
‖Mp,λ(Ω) ≤

ε

2
.

This, together with (3.5.25), ends the proof.

A straightforward consequence of the definitions (3.2.11) of Lemma 3.2.3, (3.5.8) of

Lemma 3.5.2 and (3.2.1) of Lemma 3.2.1 is given by the following result:

Lemma 3.5.6 Let λ ∈ [0, n[ and p ∈ [1,+∞[. Then Mp,λ
0 (Ω) ⊂Mp,λ

ρ (Ω) ⊂ M̃p,λ(Ω).

Let us show that if ρ vanishes at infinity the first inclusion stated in the lemma

above becomes an identity.

Lemma 3.5.7 Let λ ∈ [0, n[ and p ∈ [1,+∞[. If ρ is such that

lim
|x|→+∞

ρ(x) = 0, (3.5.26)

then Mp,λ
0 (Ω) = Mp,λ

ρ (Ω).

Proof − We show the inclusion Mp,λ
ρ (Ω) ⊂ Mp,λ

0 (Ω), the converse being stated in

Lemma 3.5.6. In view of Lemma 3.5.5, it is enough to verify that if (3.5.26) holds,

then L∞−α(Ω) ∩Mp,λ(Ω) ⊂Mp,λ
0 (Ω), for any α ∈ R+.
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To this aim, given α ∈ R+, we fix g ∈ L∞−α(Ω) ∩Mp,λ(Ω) and we prove that (3.2.15)

is satisfied. Observe that by Lemmas 3.5.4 and 3.5.6 g ∈ M̃p,λ(Ω). Moreover, for any

x ∈ Ω and if 1 ≤ d there exists a constant c = c(n) such that

sup
τ∈]0,1]

τ−
λ
p ‖g‖Lp(Ω(x,τ)) ≤γα‖g‖L∞−α(Ω) sup

τ∈]0,1]

τ−
λ
p ρα(x) |Ω(x, τ)|

1
p ≤

c γα‖g‖L∞−α(Ω) sup
τ∈]0,1]

τ
n−λ

p ρα(x) = c γα‖g‖L∞−α(Ω)ρ
α(x).

(3.5.27)

On the other hand, if d < 1, clearly one has

sup
τ∈]0,1]

τ−
λ
p ‖g‖Lp(Ω(x,τ)) = (3.5.28)

max

{
sup
τ∈]0,d]

τ−
λ
p ‖g‖Lp(Ω(x,τ)), sup

τ∈]d,1]

τ−
λ
p ‖g‖Lp(Ω(x,τ))

}
.

We can treat the first term on the right-hand side of this last equality as done in

(3.5.27) obtaining

sup
τ∈]0,d]

τ−
λ
p ‖g‖Lp(Ω(x,τ)) ≤d

n−λ
p c γα‖g‖L∞−α(Ω)ρ

α(x), (3.5.29)

the constant c = c(n) being the one of (3.5.27).

Concerning the second one, observe that for any x ∈ Ω and τ ∈]d, 1] we have the

inclusion Ω(x, τ) ⊂ Q(x, τ), where Q(x, τ) denotes an n-dimensional cube of center

x and edge 2τ . Now, there exists a positive integer k such that we can decompose

the cube Q(x, 1) in k cubes of edge less than d/2 and center xi, with xi ∈ Ω for



3.5. The space Mp,λ
ρ (Ω) 87

i = 1, ..., k. Therefore Q(x, 1) ⊂
k⋃
i=1

B(xi, d/2). Hence for any x ∈ Ω and τ ∈]d, 1] we

have, arguing as before with opportune modifications,

τ−
λ
p ‖g‖Lp(Ω(x,τ)) ≤ d−

λ
p
∑k

i=1 ‖g‖Lp(Ω(xi,d/2)) ≤ k d
n−λ

p c γα‖g‖L∞−α(Ω)ρ
α(x), (3.5.30)

the constant c = c(n) being the same of (3.5.27).

The thesis follows then from (3.5.27), (3.5.28), (3.5.29) and (3.5.30) passing to the

limit as |x| → +∞, as a consequence of hypothesis (3.5.26).

From the latter result we easily obtain the following lemma:

Lemma 3.5.8 Let λ ∈ [0, n[ and p ∈ [1,+∞[. If ρ, σ ∈ G(Ω) ∩ L∞(Ω) and

lim
|x|→+∞

ρ(x) = lim
|x|→+∞

σ(x) = 0,

then Mp,λ
ρ (Ω) = Mp,λ

σ (Ω).

Finally, we want to show with some counterexamples that the inclusions between the

spaces Mp,λ
0 (Ω) and Mp,λ

ρ (Ω) or M̃p,λ(Ω) of Lemma 3.5.6 can be strict.

Example 3

Let Ω be an unbounded open subset of R2 defined in (2.2.26) and

ρ : x ∈ Ω → e |x|

1 + e |x|
(3.5.31)

We remark that

ρ(x) =
σ(x)

1 + σ(x)
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where σ(x) = e|x| ∈ G(Ω) for any x ∈ Ω . From Remark 3.5.1 we deduce that the

function ρ ∈ G(Ω) ∩ L∞(Ω) .

Let us consider the function g defined in (2.2.27). We have

g ∈M1,1
ρ (Ω) \M1,1

0 (Ω) .

In fact, since the functions g , ρ and ρ−1 belong , obviously , to the space L∞(Ω) , one

has

g ∈ L∞−1(Ω) ∩M1,1(Ω)

so from Lemma 3.5.4 we obtain that g ∈M1,1
ρ (Ω) .

We want to show now that g /∈M1,1
0 (Ω) .Using the estimate (2.2.28) we have

sup
τ∈]0,1]

(τ−1||g||L1(Ω(x,τ))) ≈ sup
τ∈]0,1]

τ = 1 . (3.5.32)

Hence

lim
|x|→+∞

(
sup
τ∈]0,1]

τ−1‖g‖L1(Ω(x,τ))

)
= 1 . (3.5.33)

From (3.2.14) of Lemma 3.2.3 we can deduce that g /∈M1,1
0 (Ω) .

Example 4

Let Ω be an unbounded open subset of R2 defined in (2.2.26) and

ρ : x ∈ Ω → (1 + |x|2)−1
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Let us consider the function g defined in (2.2.27). We have

g ∈ M̃1,1(Ω) \M1,1
ρ (Ω) .

In fact, we remark that, obviously ρ ∈ G(Ω) ∩ L∞(Ω) and

lim
|x|→+∞

ρ(x) = 0 , (3.5.34)

In particular, from Lemma 3.5.7 one has

M1,1
0 (Ω) = M1,1

ρ (Ω) . (3.5.35)

Since g ∈ L∞(Ω) we have that g ∈ M̃1,1(Ω) .Using again (3.5.32) , (3.5.33) and

(3.2.14) of Lemma 3.2.3 we can deduce that g /∈M1,1
0 (Ω) .From (3.5.35) we have that

g /∈M1,1
ρ (Ω) .
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[17] L. Caso - R. D’Ambrosio - S. Monsurrò, Some remarks on spaces of Morrey type, Abstract

and Applied Analysis, (2010), ID 242079, 22 pages.

[18] L. Caso - M. Transirico, Some remarks on a class of weight functions, Comment. Math.

Univ. Carolin. 37 (1996), 469 – 477.



92 Bibliography

[19] L. Caso - M. Transirico, The Dirichlet problem for second order elliptic equations with

singular data, Acta Math. Hungar. 76 (1997), 1 – 16.

[20] L. Caso - M. Transirico, The Dirichlet problem for elliptic equations in weighted Sobolev

spaces, J. Anal. Appl. 5 (2007), 167 – 183.

[21] L. Caso - M. Transirico, A priori estimates for elliptic equations in weighted Sobolev

spaces, Math. Inequal. Appl. 13 (2010), 655 – 666.

[22] P.Cavaliere, Spazi di tipo Morrey ed applicazioni alle equazioni ellittiche, Tesi di dottorato,

XI Ciclo, Napoli, 1999.

[23] P.Cavaliere - M. Longobardi - A. Vitolo, Imbedding estimates and elliptic equations

with discontinuous coefficients in unbounded domains, Matematiche (Catania) 51 (1996), 87–

104 .

[24] Chen, Yemin, Regularity of solutions to the Dirichlet problem for degenerate elliptic equa-

tions, Chinese Ann. Math. Ser. B, 24 (2003), 529 – 540.

[25] F.Chiarenza - M. Franciosi, A generalization of a theorem by C. Miranda, Ann. Mat. Pura

Appl. (4) 161 (1992), 285 – 297.

[26] F.Chiarenza - M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc.

108 (1990), 407 – 409.

[27] D. E. Edmunds - W.D. Evans, Elliptic and degenerate - elliptic operators in unbounded

domains, Ann. Scuola Norm. Sup. di Pisa 27 (1973), 591 – 640 .

[28] I. E. Egorov, Weighted spaces of Sobolev type and degenerate elliptic equations, Casopis

Pest. Mat. 109 (1984), 74 – 85.



Bibliography 93

[29] C. Fefferman, The uncertainly principle, Bull. Amer. Math. Soc. 9 (1983), 129 – 206.

[30] D. Fortunato, Spazi di Sobolev con peso ed applicazioni ai problemi ellittici, Rend. Accad.

Sc. Fis. Mat. di Napoli (4) 41 (1974), 245 – 289.

[31] B. Hanouzet, Espaces de Sobolev avec poids. Application an probléme de Dirichlet dans une
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[43] A. Kufner - A.M. Sändig, Some Applications of Weighted Sobolev Spaces, Teubner Texte

zur Mathematik, Leipzig (1987).

[44] S. Matarasso - M. Troisi, Teoremi di compattezza in domini non limitati, Boll. Un. Mat.

Ital. (5), 18-B (1981), 517 – 537.

[45] V. G. Maz’ja, Sobolev spaces, Springer - Verlag, Berlin Heidelberg New York Tokyo, (1980).
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