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Introduction

This thesis contains a theoretical result in the field of group actions on combina-
torial structures, which is an important area of research, bringing forth some thirty
publications per year. Besides its applications, mostly found in cryptography and
image–recognition, such a discipline casts interesting bridges between the abstract
theory of groups and more “visible” objects, like the graphs. On the theoretical side,
in the last three decades, the deepest contributions have been given, among others,
by M. D. E. Conder and his collaborators (see, e.g., [14] and references therein).

But what is the advantage of associating a geometric structure to a given group
G? If G is of a “tamed” kind, i.e., it is either finite, Abelian, solvable, or equipped
with some additional structure like, e.g., that of a Lie group, then there are no
advantages at all. In this thesis I will rather consider a class of groups, which is
rather “wild”, in the sense that it comprises infinite, discrete and solvable groups and
it was allegedly introduced by W. von Dyck at the turn of the eighteenth century
[57], and I will study some natural combinatorial geometric structures they act
upon. My purpose is to show that even extremely elementary structures can play a
nontrivial role in the understanding of such groups.

I would like to stress, from the very beginning, that all the theoretical reasonings
in this thesis are carried out in terms of abstract groups. By an “abstract group”
I mean a group without any additional structure whatsoever which is not, a priori,
realised as the transformation groups of some other mathematical entity. Such
kind of groups are classically introduced through a presentation. In symbols, a
presentation looks like G = 〈S | R〉, and it means that G can be obtained from the
free group over the set S, i.e., the “largest”—so to speak—group admitting S as a
set of generators, by factoring out the elements belonging to the normal subgroup
generated by R.

In spite of its rather formal and abstract flavour, the notion of a presentation is
heavy with geometrical implications. At the end of the eighteen century, A. Cayley
introduced a combinatorial geometric structure, which nowadays is known to be a
coloured graph, associated, in a functorial way, to a given presentation G = 〈S | R〉
of the group G. Such a graph, which I will denote by Γ(G,S), goes under the name of
Cayley graph, and it has the remarkable property of being regular (or homogeneous)
with respect to G, i.e., the original group G act freely and transitively on it. It is a
true marvel that such a rudimentary construction can be put at the foundations of
some straightforward yet far–reaching observations:

• the so–called word problem (a still open problem) for a group G = 〈S | R〉 is
equivalent to the constructability (i.e., the possibility of defining it through
a recursive function) of Γ(G,S) [35];
• if Γ(G,S) can be embedded into a surface, then it makes sense to attach to

the group G a typical geometric property, namely, that of the genus [58];
• the geometric properties of the surface (e.g., its compactness) Γ(G,S) is

embedded into may be used to check the finiteness of G [56, 20].

5



INTRODUCTION 6

In this thesis, I basically discovered a link—a duality, to be more precise—between
such a classical construction as the Cayley graph and another interesting (though
perhaps less known) way of linking a graph to a group, which is the incidence graph
[36] associated with the so–called coset geometry.

Its main result stems from a subtle yet unfairly forgotten theorem, formulated by
G. Sabidussi in 1958, establishing that Γ(G,S) is the unique, up to isomorphisms,
edge–coloured graph on which the original group G acts vertex–transitively [46].
So, since the incidence graph of the coset geometry of G carries a natural edge–
transitive G–action, and it is naturally vertex–coloured, I was led to suspect that
the incidence graph of the coset geometry is, in fact, the same thing as the Cayley
graph, provided that—roughly speaking—“vertices are replaced with edges”. This
thesis contains a rigorous proof of such a result, complemented by all the necessary
preliminaries, and some (envisaged) applications and perspectives.

The role played herewith by the von Dyck group D(n, n, n) is that of a tool
to better explain such a vertex–to–edge duality. Indeed, for n > 3 the von Dyck
groups D(n, n, n) belong to a class of (infinite, discrete and not solvable) groups
known as Fuchsian groups, which are the discrete and finitely generated subgroup
of the three–dimensional Lie group PSL (2,R) of the isometries of the hyperbolic
plane H. The Fuchsian groups naturally act on a tangible geometric entity such as
H. Moreover, D(n, n, n) is generated by the orientation–preserving transformations
of a regular–triangular tessellation Tn, which, once again, is a rather elementary
structure of combinatorial character, being essentially a triangulation by regular
triangles.

The vertex–to–edge duality, which is a quite general result, admits a nice trans-
parent geometric formulation: in the case of von Dyck groups D(n, n, n) both the
Cayley graph and the incidence graph of the coset geometry of D(n, n, n) are in-
scribed into Tn. More precisely, the latter is the 1–skeleton of Tn, while the former
is the 1–skeleton of the so–called derived tessellation of Tn. In other words, the
groups of von Dyck allow to visualise the vertex–to–edge duality in terms of the
most elementary geometric shapes: triangles on a surface.

Let me describe some of the applications and perspectives of the vertex–to–edge
duality.

First of all, it makes it evident that the Cayley graph of the von Dyck group is
a planar one, which, to my best knowledge, has never been observed before, though
a very similar result can be found in [56].

Then, the vertex–to–edge duality immediately allows to recast, in a transparent
geometric way, a result proved in 1983 by T.W. Tucker [55], concerning the genus of
the factors of D(n, n, n). I must mention that among the factors of D(n, n, n) there
are the famous free Burnisde groups with two generators B(2, n), whose importance
also pushed me to look for a recursive way to enumerate the elements of D(n, n, n).

This is probably the most important consequence of the vertex–to–edge duality
I have managed to discover so far: it allows to recursively enumerate the edges
(called cliques, as in the theory of coloured graphs) of the incidence graph of the
coset geometry and, hence, the elements of D(n, n, n). I dubbed this procedure
“cliques enumeration algorithm”, and there are indications that it may be useful
for attacking the celebrated Burnside problem in the still unsolved cases with two
generators. Indeed, in view of the natural surjection between D(n, n, n) and B(2, n),
which makes it possible to associate to the latter some of the geometric features of
the former, the finiteness of B(2, n) can be a consequence of the finiteness of a
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suitable “quotient tessellation” of Tn, with respect to the kernel of the projection
D(n, n, n)→ B(2, n).

Incidentally, this solves the word problem for the Burnisde groups with two
generators.

I must stress that, in one form or another, any existing algorithm to check the
finiteness of B(2, n) implements a mechanism to enumerate words, and, due to the
presence of relations, the lexicographic way is not necessarily the cheapest one (see
[28] and references therein). On the other hand, the cliques enumeration algorithm
I proposed allows to “avoid” relations and to produce exactly once each element of
the group, so that it may be computationally more advantageous. I have written
the cliques enumeration algorithm by using the Wolfram MathematicaTMcomputer
algebra software, but, due to the unavoidable computational complexity, I have man-
aged to test it only for n ≤ 4. Nevertheless, it seems that, especially in comparison
with the existing techniques, the cliques enumeration algorithm has the “aesthetic”
merit of providing an unified approach to the problem of the finiteness of B(2, n),
for arbitrary n, in sharp contrast with the methods applied so far to each particular
situation.

Structure of the thesis

This thesis is pivoted on the central Chapter 7, which contains the main result
on the vertex–to–edge duality. The previous chapters merely pave the way for it.

Chapter 1 begins with a minimal refreshment of group–theoretic notions, and
then introduces the special classes of groups considered in this thesis, namely the
triangle groups, the von Dyck groups, and the Burnside groups. Chapter 2 has a
similar structure, but it deals with graph theory, by focusing on such less known
(though classical) notions as coloured graphs, duality, and morphisms. It also in-
troduces the first main gadget of this thesis: the Cayley graph. The second one,
the coset geometry, is introduced in Chapter 3, which also gives some perspective
on combinatorial geometric structures. This marks the end of the survey on the
discrete structures I will need.

Continuous structures, namely constant–curvature surfaces, are dealt with in
Chapter 4, with a special emphasis on the hyperbolic cases, which are the most
interesting ones, since they allow to formulate the nontrivial and still open prob-
lems. All the models of the hyperbolic plane are reviewed, as well as the Möbis
transformations and the Fuchsian groups.

The links between combinatorial and continuous structures begin to revel them-
selves in Chapter 5, where tessellations are introduced, with a due stress on such
less known notions as the coloured graph associated to a tessellation and the dual
and derived tessellations. Finally, Chapter 6 frames the theorem of G. Sabidussi in
the context of groups actions on geometric structures, which is the last and most
important theoretical tool I need to formulate the main result.

Some of the corollaries of the vertex–to–edge duality are listed in the last Chapter
8, where the clique enumeration algorithm is explained, and its Wolfram
MathematicaTM implementation is appended. More perspective can be found in
the Appendix 9, which contains also some side topics.
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CHAPTER 1

Introduction to finitely generated groups

1.1. Preliminaries to group theory

In this chapter I will review some general notions of group theory and then I
will focus on the groups of special interest for this thesis, namely the groups with
two generators and, in particular, the triangle groups, the von Dyck groups and
the Burnside groups. For a more complete reference on group theory, I suggest D.
Robinson’s book [44]. More information on groups of von Dyck can be found in
[57, 34]. Finally, concerning the Burnside problem, look [2, 30].

To better appreciate the main result, I will reformulate, in a concise way, the
classical proofs of the finiteness of B(2, 3) and B(2, 4). These proofs are contained
in [12, 54].

1.1.1. Presentations, generators, relations. One of the methods for defin-
ing a group is through a presentation.

A group G := (G, ·G) has the presentation

(1) G = 〈S | R〉
if any element of G can be written as a product of powers of some of elements of
the set S (called “generators”), keeping the relations among them given by the set
R. More precisely, the group G is isomorphic to the quotient of a free group on S
by the normal subgroup generated by the relations R. The group G = 〈S〉, without
any relation among its generators, is called the free group. This means that, given

any function f from S to another group G̃, there exists a unique homomorphism

φ : G→ G̃ such that the diagram

S �
� //

f

��

G

φ

��

G̃

commutes.

Example 1. Consider the free group G1 generated by one generator ?. Of
course, G1 = 〈?〉 = Z. Let G2 = Z6 = {[0], [1], . . . , [5]} and

f : {?} → Z6,

? 7→ [1].

Then the unique homomorphism extending f is

φ : Z→ Z6,

n 7→ [n].

Observe that kerφ = 6Z = {6n | n ∈ Z} and Z
kerφ

= 〈? | ?6 = 1〉 ∼= Z6.

9



1.1. PRELIMINARIES TO GROUP THEORY 10

This example shows, that the cyclic group of order n has the presentation 〈a |
an = 1〉. For simplification it can written 〈a | an = 1〉 := 〈a | an〉.

Example 2. Consider the group 〈x, y | xn1 = yn2 = (xy)n3〉 =: G(n1, n2, n3).
Of course, this group is not free, but is the “free-est” in the class of the groups
with 2 generators fulfilling all the relations of G(n1, n2, n3). More precisely, let
G = 〈x̄, ȳ | R〉, where R ⊇ {x̄n1 = ȳn2 = (x̄ȳ)n3}: for such groups the universal
property for G(n1, n2, n3) implies the existence of a unique epimorphism φ, such
that

{x, y} //

f

$$

G(n1, n2, n3)

φ

��
Ḡ

commutes, where f(x) := x̄ and f(y) := ȳ.

Definition 1. S is a Borel–free set of generators if ∩
s∈S
〈s〉 = 1, and 〈 s 〉 6= 1

for all s ∈ S.

1.1.2. Products of groups: interior, exterior, (semi)direct. Let (G, ·G)
and (H, ·H) be groups. The structure (G×H, ·G×H), where the elements of G×H
are the ordered pairs (g, h), with g ∈ G, h ∈ H, and

(g1, h1) ·G×H (g2, h2) = (g1 ·G g2, h1 ·H h2), ∀g1, g2 ∈ G,∀h1, h2 ∈ H,
is called the (exterior) direct product of the groups G and H.
It is easy to notice that the operation above introduces a group structure on G×H.
The identity element is (1G, 1H), where 1G and 1H are the identity elements of G
and H, respectively. The inverse of an element (g, h) ∈ G×H is (g−1, h−1) ∈ G×H,
where g−1 is the inverse of g in G, and h−1 is the inverse of h in H.

In the additive notation, the direct product of G and H is called the direct sum
and it is denoted G⊕H.

Let (K, ·K) be a group, G,H 6 K. The set GH := {g ·K h | g ∈ G, h ∈ H} ⊆ K
is the interior product of the subgroups G and H. GH is a group with the operation
inherited from K if and only if G and H permute, i.e., GH = HG.

Let G and N be groups, and let φ : G→ Aut(N) be a group homomorphism.
The (exterior) semidirect product of the groups G and N with respect to φ is obtained
by introducing on the set N ×G := {(n, g) | n ∈ N, g ∈ G} the operation defined in
following way:

(n1, g1)(n2, g2) := (n1φg1(n2), g1g2).

The resulting group is denoted by N oφ G. Its identity element is (1N , 1G), where
1N , 1G are the identity elements in N and G, respectively, and the inverse is given
by (n, g)−1 = (φd−1(n−1), d−1).
Pairs (n, 1G) form a normal subgroup (isomorphic to N) of the above defined group,
while pairs (1N , g) form a subgroup isomorphic to G.

Let K be a group and N E K. In this case, any G 6 K acts on N by the
conjugation, i.e., I can set φ(g)(n) = ng. The group NG is called the interior
product of groups N and G, and it is denoted by N o G, if and only if G is a
complement of N in K, i.e., K = NG (equivalently: K = GN) and N ∩ G = 1K .
Notice that N oG ∼= N oφ G.
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Example 3. Every dihedral group of rank 2n is an interior semidirect product:
D2n = Zn n Z2.

Example 4. The isometry group of the n-dimensional Euclidean space, denoted
by E(n), is the semidirect product of the rotation group SO(n) with the (abelian)
group Rn of the translations: E(n) = SO(n) n Rn . A group K is said to be the
direct (inner) product of its subgroups G and H, if1 K = 〈G,H 〉 and G ∩H = 1.

1.1.3. Properties of groups. Let G = (G, ·G) be a group and g1, g2 ∈ G.
Recall that the commutator is given by

[g1, g2] = g−1
1 ·G g−1

2 ·G g1 ·G g2.

Let H,K be subgroups of G. Define the subgroup generated by all the commutators
[h, k] with h ∈ H, k ∈ K by

[H,K] = 〈[h, k] | h ∈ H, k ∈ K〉 .
[H,K] is called the commutator subgroup or the derived subgroup.

A group G where any two elements commute (i.e., their commutator is equal
to the neutral element of the group) is called an abelian group. More precisely, if
g1 ·G g2 = g2 ·G g1 holds for any elements g1, g2 ∈ G then G is an abelian group.

G is called meta–abelian if its commutator subgroup is abelian.
The center Z(G) of a group G is the set of elements which commute with every

element of the group,

Z(G) = {z ∈ G | ∀g ∈ G, zg = gz}.
Definition 2. The lower central series (γi(G)) (for i ≥ 1) is the chain of

subgroups of the group G defined by

γ1(G) = G

and
γi+1(G) = [γi(G), G] for i ≥ 1.

Definition 3. A group G is nilpotent if γc+1(G) = 1 for some c. The least
such c is the nilpotency class of G.

1.2. The von Dyck and the triangle groups

Let a, b, c ≥ 2 be integers and define

λ :=
1

a
+

1

b
+

1

c
.

Definition 4. The group

4(a, b, c) = 〈l,m, n | l2 = m2 = n2 = (lm)a = (mn)b = (ln)c = 1〉,
is called the triangle group [3].

The name “triangle group” comes from the fact that the elements l,m, n can be
thought of as the reflections by the sides of a fixed triangle (henceforth called the
basic triangle) with angles π

a
, π
b
, π
c
. Notice that the product of the reflections by two

adjacent sides is a rotation.

1Notice that 〈 · 〉 is used here with a different meaning than in (1), namely it denotes the
subgroup generated by a subset.
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The triangle groups determine a tessellation (see Chapter 5, Definition 44) of a
suitable surface by taking the reflections of the basic triangle. The sum of the angles
of the triangle establishes the type of the surface by the Gauss–Bonnet theorem
([49]). So, three cases can be distinguished:

• if λ > 0 then 4(a, b, c) is spherical (the tessellation can be represented on
a sphere),
• if λ = 0 then 4(a, b, c) is planar (the tessellation can be represented on a

plane) and
• if λ < 0 then 4(a, b, c) is hyperbolic (the tessellation can be represented on

a hyperbolic plane).

D(2,3,4) D(2,4,4) D(4,4,4)

Notice that the spherical triangle groups are finite (in view of the compactness
of the sphere).

The triangle group 4(a, b, c) contains a subgroup of index 2, belonging to the
class introduced in Example 2, denoted by D(a, b, c).

Definition 5. The subgroup

D(a, b, c) := 〈x, y | xa = yb = (xy)c = 1〉
is called the von Dyck group [57].

Geometrically, the elements x, y and xy can be seen as the rotations around the
vertices of the basic triangle by angles 2π

a
, 2π
b

and 2π
c

respectively.
As before, the von Dyck groups are classified according to the geometry of the
corresponding tessellation. In particular, a hyperbolic von Dyck group is a Fuchsian
group [5], a concept which will be introduced later on (see 4.4).

1.3. The Burnside Groups

One of the oldest and most interesting challenges of group theory was introduced
by W. Burnside in 1902 the, so-called Burnside problem. It asks whether a finitely
generated periodic group must necessarily be a finite group. It had a huge impact
on the development of the theory of groups and, despite the passage of years, it is
still of interest to professionals, especially to those who deal with the combinatorial
theory of groups and groups with various finiteness conditions.

1.3.1. Periodic groups and the exponent of a group.

Definition 6. A group G is called periodic or torsion if

∀g ∈ G ∃n ∈ N | gn = 1.
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In other words, each element of G has finite order. All finite groups are periodic.
The exponent of a periodic group G is the least common multiple, provided it exists,
of the orders of the elements of G.

Definition 7. A group G is called periodic of bounded exponent if

∃n ∈ N | gn = 1 ∀g ∈ G.
The minimal such n is the exponent of G.

1.3.2. Formulations of the Burnside problem, and state of the art.
Let Fm = 〈{1, . . . ,m}〉 be the free group of rank m, and F n

m its normal subgroup
generated by all the gn’s with g ∈ Fm.

Definition 8. The quotient group

B(m,n) := Fm/F
n
m

is called the m-generated Burnside group with m generators of exponent n.
In other words, B(m,n) is a group with m distinguished generators in which the

identity gn = 1 holds for all the elements g ∈ B(m,n), and which is the “largest”
group satisfying these requirements.

The Burnside problem is usually stated as follows: “For which values of m and
n is B(m,n) a finite group?”
Of course, for m = 1, B(1, n) is the cyclic group of order n. In the case m = 2, so
far it is known that

• the order of B(2, 3) is equal to 27, established by F. Levi and van B. L. der
Waerden (1933),
• the order of B(2, 4) is equal to 212, established by J. J. Tobin (1954),
• the order of B(2, 6) is equal to 22835, established by P. Hall (1958).

These cases, even if they seem closely related, have been solved with completely dif-
ferent methods and the techniques used in one case by no means facilitate the answer
to the next. Computations are generally rather lengthy, although the basic ideas
can be easily understood, and the problem itself has a very “friendly”formulation:
think about the first unsolved case, asking basically whether “every group generated
by two elements, where each element satisfies the equation x5 = 1, is finite.”

1.3.3. The variety of the Burnside groups. In this subsection I will rigor-
ously prove that B(m,n) is the “largest” one with m generators of exponent n. To
this end, I will work in the context of the varieties of groups [31, 20].

Definition 9. The variety Burn of equation xn = 1 is called the variety of
Burniside groups (of order n).

Regard Burn as a category.

Lemma 1. For any set S of rank m, there is a free object over S in Burn.

Proof. Let Fm be the free group on S, and F n
m be the (normal) subgroup

generated by its nth powers. Then

(2) B(m,n) =
Fm
F n
m
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is the desired free object (over S, understood as a subset of B(m,n)). Indeed, if
B ∈ Burn, and f : S → B is a map, then there is a unique group homomorphism
φ : B(m,n)→ B extending f . �

Remark 1. The free object of Burn, with m generators, defined by (2), is called
the free Burnside group of order n with m generators, and it is precisely the group
from Definition 8.

I will need the corollary below in the sequel. It shows that S is a Borel–free set
of generators of B(m,n) (see Definition 1).

Corollary 1. If s, s′ ∈ S, with s 6= s′, then 〈s〉 ∩ 〈s′〉 = 1.

Proof. The abelian group A := ⊕s∈S〈 s 〉 is an object of Burn: hence, the
map f : S → A, which acts on S as the identity, can be extended to a group
homomorphism φ : B(m,n)→ A. Observe that φ|〈 s 〉 is injective, i.e., kerφ|〈 s 〉 = 1,
for any s ∈ S. On the other hand, if s′ 6= s, then φ|〈 s 〉(〈 s 〉∩〈 s′ 〉) = 〈 s 〉∩〈 s′ 〉 = 1,
i.e., the intersection 〈 s 〉∩〈 s′ 〉 is a subgroup of the identical subgroup kerφ|〈 s 〉, and
as such it must be identical as well.

Observe that none of the 〈 s 〉’s can be identical, otherwise a map f : S → Zn
sending s to 1 could not be extended to a group homomorphism (Zn is an element
of Burn). �

1.3.4. The finiteness of B(2, 3): an algebraic proof. The departing point
to check the finiteness of B(2, n) is the expression

(3) w = xa1yb1xa2yb2 · · ·xalybl

of an its generic element w. In one form or another, all existing algorithms to attack
the Burnside problem entail manipulating the right–hand side of (3) in order to move
all the instances of x (resp., y), say, on the first (resp., second) leftmost position.
Performing this by brute–force inevitably brings about a surfeit of commutators:

(4) w = x
∑
aiy

∑
bi · (binary) commutators · ternary commutators · · · · .

Seemingly, (4) makes (3) no better at all: nevertheless, it reveals the role of the
nilpotency of B(2, n). Indeed, if B(2, n) is nilpotent (see Definition 3), its class
sets an upper bound to the multiplicity of the commutators appearing in (4). For
instance, the fact that B(m, 2) is abelian (proved by W. Burnside in 1902 [12]),
i.e., nilpotent of class 1, implies that no commutators whatsoever appear in (4).
In 1933, F. Levi and B. L. Van der Waerden independently proved that B(m, 3) is
nilpotent of class 3, and this means that the expression (4) contains commutators
of multiplicity not greater than 3.

When m = 2, the nil–potency class is 2, i.e., B = B(2, 3) is meta–abelian (see
Section 1.1.3), or, in other words, B′ is central (see Section 1.1.3) in B. This means
that all the commutators arising from the above manipulation of (3) can be collected
in its rightmost position. In order to better appreciate the geometrical finiteness
result later on (Chapter 8), I review here the classical proof of the finiteness of
B(2, 3).

Let G be a group of exponent three. This means that, in particular, g−1 = g2,
for any g ∈ G.
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Proposition 1 ([32]). Let g, h ∈ G. Then

(5) [g, h2] = [h, g].

Proof. Observe that 1 = (gh)3 = ghghgh implies

(6) ghg = h−1g−1h−1 = h2g2h2, g, h ∈ G.
Equation (7) below is an identity, since its both sides coincide with the same element
h2gh2g2h2:

(7) h2(gh2g)gh2 = h2g2(g2h2g2)h2.

Hence, by applying (6) to the parenthesized expressions in (7), one obtains

h2(hg2h)gh2 = h2g2(hgh)h2,

i.e., g2hgh2 = h2g2hg, which is precisely [g, h2] = [h, g], and (5) holds true. �

Corollary 2. Every subgroup of G generated by two elements is meta–abelian.

Proof. Let H := 〈h, g 〉 be a two–generators subgroup. Relation (5) from
Proposition 1 immediately gives

[g, h2] = [g, h]2,(8)

[g2, h] = [g, h]2,(9)

[g2, h2] = [g, h],(10)

showing that H ′ is generated by [g, h]. Then, combining (8) with the general group–

theoretic identity [g, h2] = [h, g]h
2
, one obtains [h, g] = [h, g]h

2
, i.e.,

[h, g, h2] = 1.

Similarly, from (9) one proves that

[h, g, g2] = 1.

Hence, the subgroup generated by h2 and g2, which is H again, commutes with
H ′. �

Lemma 2 ([20, 26]). Any element w ∈ B can be uniquely written as

(11) w = xayb[x, y]c, a, b, c ∈ {0, 1, 2}.
In particular, |B| = 27.

Proof. B is metabelian by Corollary 2. In particular, the normal subgroup B′

is abelian, and the sequence

Z3 ≡ B′ = 〈 [x, y] 〉 // B // B
B′

= 〈xB′, yB′ 〉 ≡ Z2
3

is exact, thus showing (11).
�
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In the modern classification of groups, precisely 5 groups of order p3 can be
found, and only two of them are non–abelian: they have exponent p or p2, with p
prime number [44]. Hence, for p = 3, B(2, 3) is the non–abelian one with exponent
3, which is also the unique non–abelian metabelian group with two generators and
exponent 3, possessing a cyclic derived subgroup (see Section 1.1.3), and, as such,
it is presented as

B(2, 3) = 〈x, y | x3 = y3 = [x, y, x] = [x, y, y] = 1 〉.

1.3.5. The finiteness of B(2, 4): an algebraic proof. The first results about
the finiteness of B(2, 4) were given already by W. Burnside in his 1902 paper [12],
in which he claims that B(2, 4) is finite of order ≤ 212. Next, in 1940, I. N. Sanov
[47] proved that B(m, 4) is finite, by using the following Lemma 3.

Lemma 3. [35] Let B be a group of exponent 4, D ≤ B an its finite subgroup,
and c ∈ B an element such that c2 ∈ D, and 〈 c,D 〉 = B. Then B is finite.

Proof. Put d := |D|. Observe that, since B = 〈 c,D 〉, every element b ∈ B
can be written in the form

(12) b = P1cQ1cP2cQ2c . . . PscQscPs+1cQs+1,

where Pi, Qi ∈ D for 1 ≤ i ≤ s+1 and all of them are different from identity, except
possibility for P1 or Qs+1. It is enough to show that, in the expression (12) of b, the
number of occurrences 2s+1 of the factor c is bounded by a fixed number. Precisely,
I will show that s ≤ d by applying to the representation of b a transformation which
reduces the occurrences of the factor c if s > d.
Notice that c3 = c−1 (since c ∈ B) and, for any R ∈ D, (R−1c−1)4 = 1, so that

(13) cRc = R−1c−1R−1c−1R−1 = R−1c · c2R−1c · c2R−1 = R−1cR̃cR̃,

where R̃ = c2R−1 ∈ D. Now, let me use (13) to transform the representation (12)
as follows:

· · · cPl+k−1cQl+k−1cPl+k(cQl+kc) · · ·
· · · cPl+k−1cQl+k−1(cPl+kQ

−1
l+kc)UcU · · ·

· · · cPl+k−1(cQl+k−1Ql+kP
−1
l+kc)V cWcU · · ·

· · · c(Pl+k−1Pl+kQ
−1
l+kQ

−1
l+k−1)cXcY cWcU · · · ,

where U, · · ·Y ∈ D. In this way I do not change the number of the factors c, but I
just show a new representation of b in which two subsequent elements are separated
by an element Sl,k (or S−1

l,k ) of D defined below,

Sl,k = PlPl+1 . . . Pl+kQ
−1
l+k . . . Q

−1
l ,

where l > 0, k ≥ 0, l+ k ≤ s. On the other hand, notice, that any Sl,k ∈ D could be
extended to S1,k, k = 0, . . . , s− 1, therefore if s > d, which is the order of D, then
at least two element, say S1,k and S1,l must be equal, i.e

P1 . . . Pk+1Q
−1
k+1 . . . Q

−1
1 = P1 . . . Pl+1Q

−1
l+1 . . . Q

−1
1

and assuming k < l, I obtain

(14) Sk+2,l−k−1 = Pk+2 . . . Pl+1Q
−1
l+1 . . . Q

−1
k+2 = 1.
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Now to finish proof, it is just enough to use (14) in the appropriate representation
of b:

. . . Qk+1cSk+2,l−k−1cPl+1 · · · = . . . Qk+1 c2
︸︷︷︸
∈D

Pl+1 . . . .

�

Then finiteness of B(2, 4) is straightforward. The group 〈x, y2 〉, its subgroup
〈x 〉, and the element y2 fulfills the hypotheses of Lemma 3: hence, 〈x, y2 〉 is finite.
Then apply again Lemma 3 to the group B(2, 4), its subgroup 〈x, y2 〉, and the
element y, and obtain the desired result.



CHAPTER 2

Elements of graph theory

Graph theory is a growing area in mathematical research, and has so large spe-
cialized vocabulary that is used the same word by different authors with different
meanings. In this chapter I undertake the necessary task of introducing just some
of the basic notations for graphs which will be an useful tool later on. A very good
compendium of knowledge in this subject is the book [18], and also I can suggest
[23]. I will deal with coloured graphs and in particular I will focus on the Cayley
graph, which is so pivotal in this thesis (look, for example, [35]).

2.1. Basic definitions

I recall here the basic definitions and results from the standard graph theory.

2.1.1. Graphs, sub–graphs, morphsims.

Definition 10. A graph is an ordered pair Γ = (V,E), where

• V is a non empty set, whose elements are called vertices,
• E is a family of 2-elements subsets of V , called edges.

To avoid ambiguity, as a graph I mean a simple graph which is a graph without
edges connected at both ends to the same vertex (loop) and having no more then
one edge between any two different vertices. So, E ⊆ {{u, v} : u, v ∈ V, u 6= v}.

Definition 11. If E is made of ordered pairs of vertices, then such a graph is
named directed graph or digraph.

The degree of a vertex v ∈ V in Γ is the number of edges to which v is incident,
i.e., the edges which touch v. If all vertices of Γ have the same degree then Γ is
called regular . The number of vertices of a graph Γ is its order and it is denoted
as |Γ|. A graph can be finite, infinite, countable and so on, according to its order.
A bipartite graph (or bigraph) is a graph whose vertices can be divided into two
disjoint sets, such that edges never connect vertices of the same set.

Definition 12. A subgraph of a graph Γ = (V,E) is a graph Γs = (Vs, Es)
where Vs ⊆ V and Es ⊆ E.

We say that two vertices are adjecent if they are linked by an edge.

Definition 13. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. A map f : V1 →
V2 is called a morphism of graphs if

• f(V1) ⊆ V2, f(E1) ⊆ E2,
• if u, v ∈ V1 are adjacent in Γ1 then f(u) and f(v) are adjacent in Γ2.

18
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f

Γ
1

Γ
2

Definition 14. An isomorphism of graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) is
a bijection f : V1 → V2 such that any u, v ∈ V1 are adjacent in Γ1 iff f(u) and f(v)
are adjacent in Γ2.

Remark 2. An isomorphism is an invertible morphism.

v1 v2

v3v4

e1

e2

e3 e4v1

v2

v3

v4

e3e4

e2

e1

e5e5

f

Definition 15. An isomorphism from a graph Γ = (V,E) to itself is called an
automorphism.

Under the operation of composition, the family of all automorphisms of a graph
Γ forms a group Aut (Γ) called the automorphism group of a Γ.

Definition 16. A graph is called complete if every pair of vertices is adjacent.
The complete graph of n vertices is usually denoted by Kn. Observe that Kn is

unique, up to isomorphism. In other words, if two complete graphs have the same
number of vertices, then they are isomorphic.

K3 K4 K5 K6

2.1.2. Paths. Let Γn := (V,E) be a nonempty graph of the form

V = {v0, v1, . . . , vn}, E = {v0v1, v1v2, . . . , vk−1vn},
where vi are all distinct.

Definition 17. A graph morphism γ : Γn → Γ is called a path in Γ.
Let u, v ∈ V . If a path f exists, such that γ(0) = u and γ(n) = v, then we say

that u and v are connected by a path. The number of edges of a path is its length.
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Example 5. Let V = {0, 1, . . . , n} and E = {{i − 1, i} : i = 1, 2, . . . , n}.
Γn

def.
= (V,E) is a path graph of length n.

Γ6

Definition 18. If any pair of vertices of Γ are connected by a path (resp., a
unique path), then Γ is called connected (resp., a tree).

If no pair of vertices of Γ is connected by a path, Γ is totally disconnected . In
other words, for a totally disconnected graph Γ = (V,E), E = ∅.

Definition 19. A path γ : Γn → Γ which contain at least 3 edges and γ(0) =
γ(n) is a called a cycle. A cycle is simple if γ(i) = γ(j) if and only if {i, j} = {0, n}.

In other words, a simple cycle is a cycle without self–intersections. Observe that
a bigraph does not contain any odd–length cycle.

2.2. Planar, dual graph and vertex–to–edge duality

A graph is called planar if it can be embedded in the plane, i.e., roughly speaking,
drawn without crossing edges. The edges of the graph divide the plane into regions
called the faces of the planar graph. Euler’s famous formula gives the relationship
between the number of vertices, edges, and faces of a connected planar graph. It
says that if n is the number of vertices, e the number of edges and f the number of
faces of a graph, including the exterior face, then

n− e+ f = 2.

Given a planar graph Γ, it can be form another plane graph called the dual graph
Γ∗. The vertices of Γ∗ correspond to the faces of Γ, with each vertex being placed
in the corresponding face. Every edge e of Γ gives rise to an edge of Γ∗ joining the
two faces of Γ that contain e. The name “dual graph” is not coincidental: it can
be shown that, if Γ is connected, then (Γ∗)∗ is isomorphic to Γ. The reader should
bear in mind that the notion of a dual graph is not related to the vertex–to–edge
duality , which is described below.

Given a graph Γ, it is also possible to construct another graph Γ′ in such a way
that each edge of Γ represents a vertex of Γ′ and two vertices of Γ′ are adjacent if and
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only if their corresponding edges share a common endpoint (i.e., they are incident)
in Γ.

Definition 20. Graphs Γ′ and Γ constructed as above are linked by a vertex–
to–edge duality.

Γ Γ∗ Γ′

Sometimes the graph Γ′ is called the line graph or the derived graph of Γ.

Γ Γ’

Example 6. The path graph Γn from Example 5, has a derived graph isomorphic
to the shorter path graph Γn−1.

Taking the derived graph twice does not return the original graph unless the
derived graph of the graph Γ is isomorphic to Γ itself. In fact, the only connected
graph that is isomorphic to its derived graph the a cycle graph.

2.3. Coloured graphs and their morphisms

I will review the notion of a coloured graph and some related mathematical
gadgets (see, e.g., [18]), stressing that some details, especially the definition of a
clique, may vary according to the source.
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2.3.1. Coloured graphs, colouring function, chromatic number.

Definition 21. Let Γ = (V,E) be a graph, C a nonempty finite set, χ : V → C
a surjective map such that

(15) {v1, v2} ∈ E ⇒ χ(v1) 6= χ(v2).

The pair (Γ, χ) is a coloured graph. Elements of C are called colours: χ(v) is the
colour of the vertex v ∈ V , and χ is the colouring function. The rank of (Γ, χ) is
the number of colours, i.e., |C|.

Remark 3. Definition above gives the notion of a vertex–coloured graph. The
reader can easily guess how to obtain the definition of an edge–coloured graph.

Roughly speaking, a coloured graph is a graph where a colour has been assigned
to each vertex, in such a way that two vertices of the same colour never form an
edge. Plainly, a given graph Γ can be coloured in different ways: the minimum
rank of all coloured graphs of the form (Γ, χ) is the chromatic number of Γ. In
order to formalize these “different ways” to colour a graph, it is useful to introduce
morphisms. I warn the reader that a pair (Γ, χ) will be identified with Γ in non
ambiguous contexts.

2.3.2. Morphisms of coloured graphs, regular morphisms, colour shuf-
flings. Let now (Γi, χi) be a coloured graph, i = 1, 2, and F : Γ1 → Γ2 be a graph
morphism (see Definition 13). Roughly speaking, F is a morphism of coloured
graphs if it preserves the colouring.

Definition 22. F is a morphism of coloured graphs if a map f : C1 → C2

exists, such that the diagram

(16) Γ1
F //

χ1

��

Γ2

χ2

��
C1

f // C2

is commutative. If f is a bijection, then the morphism F is called regular. A regular
morphism of the form (idΓ, f) is called a colour shuffling.

2.3.3. Categories of coloured graphs. Together with morphisms, coloured
graphs form the category of coloured graphs, denoted by C-Gra. For any Γ ∈ C-Gra,
the monoid Mor (Γ,Γ) contains the distinguished subgroup Aut (Γ) made of regular
morphisms of the form (F, idC), where F : Γ→ Γ is a graph automorphism.

In those contexts where properties of coloured graphs do not depend on the actual
choice of colours, it is convenient to work with a category where the colourings are
defined only up to permutations. This is achieved as follows. First, take the sub–
class of coloured graphs of a fixed rank m: together with regular morphisms, it forms
a (not full) sub–category of C-Gra. Then, in the so–obtained category, identify two
morphisms if they differ by a colour shuffling. The result is a new category, which is
called the category of m–colours graphs and denoted by C-Gram: an its object may
be thought of as a coloured graph Γ of rank m whose vertices are coloured only up
to permutations.
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2.3.4. Sub–graphs and cliques. A sub–graph Γ0 ⊂ Γ, can be understood as
a sub–object in C-Gram only if the canonical inclusion ι : Γ0 → Γ gives rises to a
morphism: in particular, Γ0 must possess all the colours of Γ. For example, if Γ0

is a complete sub–graph (see Definition 16), it cannot be considered as a sub–object
unless it has exactly m vertices.

Definition 23. A complete sub–graph Γ0 ⊂ Γ with m vertices is called a clique.

Notice that some authors (e.g., [33]) use the term “clique” to denote a complete
sub–graph: according, the above definition should read “clique with m vertices”,
resulting in a pointless overload of the notation.

Hence, in the category C-Gram, a clique Γ0 is a sub–object of Γ. It is worth
observing that any morphism F : Γ → Γ′, being regular, is clique–preserving (i.e.,
F (Γ0) is a clique in Γ′), and as such it can be restricted to the sub–object Γ0.

Denote by C(Γ) the (possibly empty) set of all the cliques of Γ.

Remark 4. Let C(Γ) 6= ∅. For similar reasons as above, any F ∈ Aut (Γ) is
clique–preserving (F is a graph automorphism), and as such it induces a bijection
C(F ) on C(Γ). Correspondence C : F 7→ C(F ) is a group homomorphsim between
Aut (Γ) and the group of permutations of C(Γ).

2.4. Cayley graph

There are many graph–theoretical constructions that can be associated to a
group. In this section I will focus on the Cayley graph, which is fundamental for
this thesis. For other examples of such constructions, look the Appendix (section
9.1).

Prominent method to make more interesting the study of a group G is to give
it some geometry. One of the most fundamental ways to provide such an extra
geometric structure is to specify a list of generators S of the group G. In fact, the
Cayley graph is an edge–coloured digraph (see Definition 11) whose vertices can be
thought of as the elements of some finitely generated group G. More precisely, if S
is any generating set for G, then the Cayley graph of G with respect to S, which I
will denote by Γ(G,S), has a directed edge labeled by s from the initial vertex g to
the terminal vertex gs for all g ∈ G and for all s ∈ S.

Here it follows the formal definition. Suppose that G is a group and S is an its
generating set.

Definition 24. The Cayley graph Γ := Γ(G,S) is a coloured directed graph
(see Definition 21), constructed as follows:

• each element g ∈ G is assigned to a vertex: the vertex set V of Γ is identified
with G,
• each generator s ∈ S is assigned to a colour cs ∈ C: the colour set C is

identified with S,
• for any g ∈ G, s ∈ S, the vertices corresponding to the elements g and gs

are joined by a directed edge of colour cs ∈ C. Thus the edge set E consists
of pairs of the form (g, gs), with s ∈ S providing the colour.

.
Some crucial properties of the Cayley graphs are that they are connected (see

Definition 18), regular with respect to edge colour and direction, vertex–transitive
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(see Section 6.3 later on), and that the group of automorphism Γ(G,S) (see Defini-
tion 15), which preserve edge colour and directions is isomorphic to G.

Let look at the example of D4 = 〈a, b | a4 = b2 = e, ab = ba3〉 (defined in
Example 3), with S = {a, b} and ca = red and cb = blue. On right, I picked the
Cayley graph of infinite dihedral group D∞ = 〈a, b | a2 = e, aba = b−1〉 which is
isomorphic to semidirected product (see Section 1.1.2) of Z and Z2.

D4 = 〈a, b〉 D∞ = 〈a, b〉

ba = a3b

a2b = ba2

b ab = ba3

a a2

a3e

b−2a

b−2

b−1a

b−1

a

1

ba

b

It is important to stress that the Cayley graph depends on the choice of the
generating set, i.e., to the same group G there can be associated different Cayley
graphs.

Cayley graph of (Z6, {[1]}) Cayley graph of (Z6, {[2], [3]})

0

0
1

1

2

2
3

3

4 45

5

The Cayley graph associated to a given group G and generating set S reveals
much about the group. Every path in the graph corresponds to a word in the
generators, and every cycle indicate relations between the elements of S. I conclude
this chapter with the following fundamental theorem.

Theorem 1. (See e.g. [9]) The problem of constructing the Cayley graph of a
given presentation is equivalent to solving the so–called word problem for it .



CHAPTER 3

Coset geometry

I will start this chapter by acquainting the reader with the idea of a tolerance
space. This notion was formally introduced in 1962 by E. C. Zeeman [60] as an
useful mean of investigating the geometry of the visual perception, appreciated and
exploited in computer science. It gave rise to a large–scale studying, which nowa-
days is the area of near sets [42]. Even if I will not use tolerance spaces here, they
can help to understand the motivating article [56] of this thesis and justify the step
I am going to take in the direction of coset geometry.
Next, I will follow [10] for the definitions of an incidence structure and of an inci-
dence geometry. An incidence structure consists of a set of elements, a symmetric
relation on these elements, and a type function from the set of elements to an index
set (meaning that every element has a “type”). The cornerstone of this chapter is a
special kind of incidence structure, the so–called coset geometry .

3.1. Tolerance spaces

The relations which share the same formal properties with the similarity relations
of perception were firstly considered by H. Poincaré [43] and are nowadays, after E.
C. Zeeman, called tolerance relations .

3.1.1. Tolerance relations.

Definition 25. A tolerance on a set S is a binary relation ∼
• reflexive and
• symmetric.

The structure (S,∼) is called a tolerance space.
Denote by P(X) the set of the parts of X.

Example 7. Let X be a set, and S ⊆ P(X). Then A ∼ B
def.⇔ A ∩ B 6= ∅,

A,B ∈ S, is a tolerance in S.

Example 8. Let ε > 0 and let (S, d) be a metric space. Then in S there is the

tolerance x ∼ y
def.⇔ d(x, y) < ε, x, y ∈ S.

For any equivalence relation on a set X, the set of its equivalence classes is a
partition of X. Conversely, from any partition S of X, we can define an equivalence
relation on X by setting x ∼ y ⇔ x and y belongs to the same element of S. Thus
the notions of an equivalence relation and of a partition are essentially equivalent.
The same happens for tolerance relations on X and coverings of X.

Example 9. Let X be a topological space with a fixed covering S. Then x ∼
y

def.⇔ x, y are contained in one element of S, is a tolerance in X.

25



3.1. TOLERANCE SPACES 26

Definition 26. Let ∼1,∼2 be two equivalence relations on X. The tolerance ∼:

x ∼ y ⇔





x ∼1 y
or
x ∼2 y

is called the tolererance generated by two equivalence relations.

Two elements of the covering associated with the tolerance generated by two
equivalence relations are called of the same type, if they belong to the same partition.

3.1.2. Graphs associated with tolerance spaces. To any covering S of the
set X it can be associate a graph Γ∼ = (V,E) in such a way that any element of S
corresponds to a vertex v ∈ V and any tolerance relation corresponds to an edge.
If S is a partition (which is a particular case of a covering) the graph is totally
disconnected (see Section 2.1.2), i.e., made only of isolated vertices.
The graph associated with a tolerance generated by two equivalence relations is a
bigraph (see Section 2.1).

Example 10. Let consider the 3-elements set {x, y, z}. The possible partitions
are:
1) the discrete one: {{x}, {y}, {z}} • • • ,
2) 2-elements partitions: {{x, y}, {z}} • • ,

{{x, z}, {y}} • • ,
{{x}, {y, z}} • • ,

3) and the trivial one: {{x, y, z}} • .
The graphs associated with the tolerance generated by the discrete partitions and a
2-elements one are the following:

{x} {y} {z}

{x, y} {z}

{x} {y} {z}

{x, z} {y}

{x} {y} {z}

{x} {y, z}
In the case of two 2-elements partitions, the graphs are the following:

{x, y} {z}

{x, z} {y}

{x, z} {y}

{x} {y, z}

{x} {y, z}

{x, y} {z}
Notice that, except for the trivial cases, all the possible combinations are dis-

played above.

Example 11. Two 3-elements partitions on the same set S can give rise to many
non–isomorphic graphs, some of which are depicted hereafter:

A

B1

C

2

3

2

A

B

C

1

3

C

2

3

A

B1
SSS

I mark different types of elements in different colours.
Even a 3-elements partition, combined with a 2-elements one, give rise to several
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non–isomorphic graphs:

A

B

1

2

3

S

A

B

1

2

3

S

A

B

1

2

3

S

Theorem 2 below shows how a topological property of the graph Γ∼ reflects the
relationship between two partitions of X. It is the first original result of this thesis.

Let X be a set, and H = {Hi}i∈I and K = {Kj}j∈J two finite partitions of X.
Consider the tolerance ∼ generated by them (see Definition 26), and the bigraph
Γ∼ = (V,E) corresponding to ∼.

Theorem 2. Γ∼ is disconnected if and only if a subset of X exists, which is
simultaneously the union of elements from H and from K, i.e.,

G∼ disconnected⇔ ∃A ( X : A =
⋃

m∈M
Him =

⋃

l∈L
Kjl .

Proof. Notice that between the elements of type H or those of type K there
cannot be any edges.
⇐
Let now suppose that there exists an union of elements from the first partition
which is the union of some elements from the other one. In particular, it can be
one element, say Hs ∈ H, i.e., Hs =

⋃
l∈L

Kjl , Kjl ∈ K. Toward an absurd, suppose

that the graph associated with (S,∼) is connected, i.e., a path exists between any
pair of its vertices (see Section 2.1.2). In particular, any Kjl , with l ∈ L (blue filled
circles in the figure below), must be connected by a path γ (rose dotted line) with
all elements Hi ∈ H and, in particular, with i 6= s. Since elements of the same type
cannot be connected, γ must contain an edge between some Kjl0

, with l0 ∈ L, and
Hi.

In other words, an m ∈ X exists, such that m ∈ Kjl0
∩Hi. Since Hs =

⋃
l∈L

Kjl , I

find
m ∈ Hs ∩Hi,

but elements of H are not connected.

K

H
Hi

Kjl0

Hs
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⇒
Let now suppose that the graph Γ∼ = (V,E) associated with (S,∼) is disconnected.
It means, that a proper, connected subgraph exists, i.e.,

∃Γ′∼ = (V ′, E ′) : Γ′∼ ( Γ∼.

Of course there cannot exist any edge between the elements of Γ′∼ and Γ∼ r Γ′∼.
Since Γ′∼ is proper,

∃V ′ = {Hi, Kj, i ∈ I ′, j ∈ J ′} where I ′ ( I or J ′ ( J.

Consider the case I ′ ( I (the other one being completely analogous) and define

A
def.
=
⋃
i∈I′

Hi 6= X. Then,

((
∀a ∈ A ∃Kja : a ∈ Kja

)
⇒
(
A ∩Kja 6= ∅

)
⇒ ja ∈ J ′

)
⇒ A ⊆

⋃

j∈J ′
Kj

⇔
⋃

i∈I′
Hi ⊆

⋃

j∈J ′
Kj

Now let B
def.
=
⋃
j∈J ′

Hi. Then,

((
∀b ∈ B ∃Hib : b ∈ Hib

)
⇒
(
B ∩Hib 6= ∅

)
⇒ ib ∈ I ′

)
⇒ B ⊆

⋃

i∈I′
Hi

⇔
⋃

j∈J ′
Kj ⊆

⋃

i∈I′
Hi.

So, ⋃

j∈J ′
Kj =

⋃

i∈I′
Hi

�

3.2. Incidence Geometries

I will start with the definition of an incidence system — also called a pregeometry .
For this, I followed F. Buekenhout [10, 11]. Originally, the incidence geometry
was proposed as a generalisation of projective geometry, but later it also found
remarkable applications to problems of image recognition [10, 60, 41, 50, 56, 21]

Definition 27. Let T be a four–tuple (X, ∗, t, I) where

• X is a set whose elements are called the elements of T ,
• I is a set whose elements are called the types of T ,
• t is a map from X to I called the type function,
• ∗ is a symmetric and reflexive relation on X, called the incidence relation

of T (if x1 ∗ x2 then x1 and x2 are called incident).

If the restriction of t to any flag (set of pairwise incident elements of T ) of T is an
injection then T is called an incidence system over I. The cardinality of I is called
the rank of T .

Observe that X is the disjoint union of all the Xi := t−1(i), with i ∈ I, and so
any two elements of the same type cannot be incident.

If A ⊆ X, then A is of type t(A) and of rank equal to the cardinality of t(A). A
flag of type I is called chamber of T .
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Notice that ∗ is a tolerance relation (see Definition 25) and similarly, like in
tolerance space it is possible to associate a graph, whose vertices are the elements
of X, and two vertices are connected by edge whenever they are incident in T .

Definition 28. The graph constructed as above is called the incidence graph of
T and it is denoted by (Γ, ∗).

Let T = (X, ∗, t, I) be a pregeometry and let B be a partition of X such that,
for each B ∈ B, all the elements of B have the same type. The quotient pregeometry
of T with respect to B is the pregeometry whose elements are the parts of B and
two parts B1 and B2 are incident if there exists x ∈ B1 and y ∈ B2 such that x ∗ y.
The type function is inherited from T .

To somehow “tame” the concept of an incidence structure it is necessary to add
a few more regularity conditions.

Definition 29. A geometry over I is a pregeometry T over I in which any
maximal flag is a chamber.

Observe that the above condition is equivalent to the fact that any nonmaximal
flag can be extended to at least one chamber.

Remark 5. There exists a forgetful functor from the category of geometries to
the category of tolerance spaces.

3.3. Coset geometry

The construction of geometries via cosets goes back to the work of J. Tits [53].
Given a group G and a family of subgroups (Gi)i∈I it is possible to define a prege-
ometry T := T (G, {Gi, i ∈ I}) over I as follows. The elements of type i, for i ∈ I,
are the right cosets Gig. Two elements Gig and Gjh are incident if and only if
Gig ∩Gjh is nonempty.

Proposition 2 (J. Tits). Let G be a group and let (Gi)i∈I be a collection of
subgroups of G and let

• X =
⋃
i∈I
G/Gi = {Gig | i ∈ I, g ∈ G} ,

• t : Gig ∈ X 7→ i ∈ I ,
• ∗ = {(Gig,Gjh) | Gig ∩Gjh 6= ∅} .

Then T is a pregeometry having a chamber.

Such a pregeometry is denoted by T (G, {Gi, i ∈ I}), but I will refer to it
simply by T . It is worth observing that the chamber mentioned above is precisely
{Gi, i ∈ I}.

Definition 30. If T is a geometry, it is called a coset geometry.

Example 12. Let G = Z2⊕Z3 =< x, y|x2 = y3 = 1, xy = yx >, G1 = Z2, G2 =
Z3. Then,

G1 = Z2 = {(0, 0), (1, 0)}, G/G1 = {G1, (0, 1) +G1, (0, 2) +G1},
G2 = Z3 = {(0, 0), (0, 1)(0, 2)}, G/G2 = {G2, (1, 0) +G2}.
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•

◦ ◦ ◦

•
I use different symbols to describe different types of elements: little circles for

the cosets with respect to G1 and full little circles for the cosets with respect to G2.

Proposition 3. The coset geometry T = T (G, {Gi, i ∈ I}) is connected if and
only {Gi, i ∈ I}, taken together, generate the whole group G.

Coset geometries can reveal many interesting properties. However, since they
will not be used in this thesis I will skip them, suggesting the interested reader to
consult the book [15].

The second original result of this thesis, due to Proposition 3, is a specialization
of Theorem 2 to the case of a coset geometry. Let G be a group and H, K two its
subgroups. Then T (G, {H,K}) is also a tolerance space (see Remark 5) and it can
be considered the corresponding incidence graph Γ (see Definition 28).

Theorem 3. Γ is disconnected i.e., X =
⋃
i∈I
Hgi =

⋃
j∈J

Kḡj ( G exists, if and

only if X is a union of right cosets of the subgroup S =< H,K >.

Proof. ⇐
Obviously H and K are subgroup of S, therefore S =

⋃
l∈L

Hal =
⋃

m∈M
Kbm, for some

opportune sets L and M . Consequently, any union of left cosets of S is union of left
cosets of H and union of left cosets of K.
⇒
Let X =

⋃
i∈I
Hgi =

⋃
j∈J

Kḡj. Firstly I prove that, for any x ∈ X and any h ∈ H, it is

true that hx ∈ X. Indeed, x ∈ Hgi for some suitable gi, therefore Hx = Hgi ⊆ X.
Analogously I have kx ∈ X for any x ∈ X, k ∈ K, since x ∈ Kḡj for some opportune
ḡj and therefore Kx = Kḡj ⊆ X.
For any s ∈ S I have s = h1k1 · · ·hnkn with h1, h2, · · · , hn ∈ H, k1, k2, · · · kn ∈ K. I
will show that sx ∈ X for any x ∈ X, s ∈ S. From the fact that x ∈ X it follows
that knx ∈ X, so hnknx ∈ X. So the statement follows easily by induction on n. In
particular Sgi ⊆ X for any i ∈ I, so that

⋃
i∈I
Sgi ⊆ X and from X =

⋃
i∈I
Hgi ⊆

⋃
i∈I
Sgi

it follows that X =
⋃
i∈I
Sgi, as it was expected. �



CHAPTER 4

Geometry of hyperbolic plane

The hyperbolic (sometimes improperly called non–Euclidean) geometry is the
study of the spaces of constant negative curvature. It reveals many interesting
features: some are similar to those of the Euclidean geometry but some are quite
different, like the absence of the parallel postulate. In particular, it has a very rich
group of isometries, allowing a huge variety of crystallographic symmetry patterns.
To fully understand the subject, I will start with some basic surface theory, then I
will introduce different models of the hyperbolic geometry, geodesics and such an
important concept here like that of a triangle. A good source of information about
the hyperbolic space is the book [13].

4.1. Preliminaries of theory of surfaces

I will recall here the notions of the fundamental forms, which are extremely
important and useful in determining the metric properties of a surface, such as
geodesics, area and curvature.

4.1.1. First and second fundamental forms.

Definition 31. A 2–dimensional smooth manifold (without boundary) M is
called a surface.

A surface is compact (resp., connected), if such is the underlying topological
space. Let M be a surface, p ∈M , and φ : I →M a smooth curve through p.

Definition 32. The tangent vector to φ at p is called a tangent vector to M
at p. The set of all tangent vectors to M at p is called the tangent space and it is
denoted by TpM .

passing

Example 13. Suppose that the surface M ⊆ R3 has the following parametriza-
tion:

x(u, v) = (x(u, v), y(u, v), z(u, v)),

where (u, v) ∈ U ⊂ R2, U is open, and x, y, z are differentiable functions.
Let me introduce the following notation:

xu =
∂x

∂u
(u, v) , yu =

∂y

∂u
(u, v) , zu =

∂z

∂u
(u, v) ,

xv =
∂x

∂v
(u, v) , yv =

∂y

∂v
(u, v) , zv =

∂z

∂v
(u, v) .

Then, for any (u, v) ∈ U , the vector–valued functions xu = (xu, yu, zu) and xv =
(xv, yv, zv) give rise to a basis {xu(u, v),xv(u, v)} of the tangent space Tx(u,v)M .
Let M ⊆ Rn be a surface.

Definition 33. The scalar product

Ip := 〈 , 〉p : TpM × TpM → R ,
31
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obtained by restricting the standard Euclidean scalar product on Rn, is called the
first fundamental form of the surface M at the point p.

If (U,x) is a chart on M , then the standard basis of TpM is
{

∂
∂xi

∣∣
p

}
. Hence, if

M ⊆ Rn, one can compute gij =
〈
∂
∂xi
, ∂
∂xj

〉
, where 〈 , 〉 is the standard scalar product

(from Rn). From the symmetry of the scalar product, it follows that gij = gji. So,
the scalar product on Rn induces a Riemann metric on M , which corresponds to the
bilinear form whose matrix is ‖gij‖, 1 ≤ i, j ≤ 2.

Remark 6. The above–defined quadratic form, determined by the matrix ‖gij‖,
coincides with the first fundamental form given by Definition 33.
It is common usage to denote such a matrix by

‖gij‖ ≡
∥∥∥∥
E F
F G

∥∥∥∥ .

Example 14. The torus with major radius R and minor radius r can be defined
parametrically by

x(u, v) = (R + r cos v) cosu ,

y(u, v) = (R + r cos v) sinu ,

z(u, v) = r sin v .

Then, the first fundamental form of the torus is given by

g11((u, v)) = (R− r sin(v))2 + r2 cos2(v) ,

g12((u, v)) = g21((u, v)) = 0 ,

g22((u, v)) = (R + r cos(v))2 ,

for all (u, v) ∈ R2.
Now I have a tool to define the length of a curve on a surface.

Let γ : [a, b]→ U ⊂M be a differentiable curve. The length L of γ is equal to

L(γ) =

∫ b

a

〈γ′(t), γ′(t)〉
1
2 dt =

∫ b

a

(
2∑

i,j

(
gij(γ(t))γ′i(t)γ

′
j(t)
)
) 1

2

dt .

Let me denote by |x| := 〈x,x〉 1
2 the norm of x ∈ TpM .

Definition 34. The curve γ = γ(t) is parametrised by the arch length if
|γ′(t)| = 1 for all t ∈ [a, b].

The angle θ between two curves γ1(t) , γ2(t) intersecting at t = t0 on the surface
is given by

cos θ =
〈γ′1(t0), γ′2(t0)〉
|γ′1(t0)||γ′2(t0)| .

Since coordinate curves always have tangents xu and xv , so the angle between these
curves is

(17) cos θ =
〈xu, xv〉
|xu||xv|

=
F√
EG

It is also possible to define the area by using the first fundamental form.



4.1. PRELIMINARIES OF THEORY OF SURFACES 33

Definition 35. The area of a domain x(U) ⊂ R3 of the surface parametrised
by x is defined by

(18)

∫

U

√
EG− F 2 du dv .

Let f : M −→ N be a map between two surfaces, and IM and IN be the first
fundamental forms of M and N , respectively. Denote by f∗ the push–forward (or
differential) of f , i.e., the linear map from TpM to Tf(p)N given, in the standard
bases, by the Jacobian of f .

Definition 36. If

INf(p) (f∗x, f∗y) = IMp (x,y)

for all x,y ∈ TpM and p ∈M , then f is called an isometry from M to N (or of M
if M = N).

The second fundamental form relates to the way the surface sits in R3, though
it is not independent on the first fundamental form, which is a mean to measure
lengths and areas.
Given a surface x(u, v), and moving it by a parameter t along its normal vectors,
one obtains the following one–parameter family of surfaces:

R(u, v, t) = x(u, v)− tn(u, v) ,

with

Ru = xu − tnu and Rv = xv − tnv.

Now, having a first fundamental form Edu2 + 2Fdudv + Gdv2 depending on t it is
possible calculate

1

2

∂

∂t
(Edu2+2Fdudv+Gdv2)|t=0 = −(xu ·nudu

2+(xu ·nv+xv ·nu)dudv+xv ·nvdv
2).

The right–hand side is the second fundamental form. From this point of view, it is
clearly the same type of object as the first fundamental form—a quadratic form on
the tangent space.

Remark 7. Since n is orthogonal to xu and xv,

0 = (xu · n)u = xuu · n + xu · nu,

and similarly

0 = xuv · n + xu · nv

. . . ,

and, since xuv = xvu, then xu · nv = xv · nu.

Definition 37. The second fundamental form of a surface is the expression

(19) II := Ldu2 + 2Mdudv +Ndv2 ,

where L = xuu · n, M = xuv · n, N = xvv · n.
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4.1.2. Geodesics. Geodesics are the curves on a surface which are the ana-
logues of the straight lines in the plane.

Definition 38. A geodesic on a surface X is a curve γ(s) on X such that t′

(where t is the unit tangent to γ) is normal to the surface.
To find the geodesics, in general one needs to solve a nonlinear system of ordinary

differential equations.

Proposition 4. A curve γ(s) = (u(s), v(s)) on a surface parametrised by arc
length (see Definition 34) is a geodesic if and only if

d

ds
(Eu′ + Fv′)− 1

2
(Euu

′2 + 2Fuu
′v′ +Guv

′2) ,(20)

d

ds
(Fu′ +Gv′)− 1

2
(Evu

′2 + 2Fvu
′v′ +Gvv

′2).(21)

It is clear from the definition above that the geodesics only depend on the
first fundamental form, so that the geodesics can be defined for abstract surfaces.
Moreover an isometry (see Definition 36) takes geodesics to geodesics.

4.1.3. Gauss curvature. In familiar parlance, the principal curvatures of a
surface at a point p are the minimum and the maximum of all the curvatures of
the curves passing through p. They correspond to the eigenvalues of the second
fundamental form.

Definition 39. The Gaussian curvature K(p) of a surface at a point p is the
product of the principal curvatures, k1 and k2, at p, i.e.,

K(p) = k1(p) · k2(p) .

The Gaussian curvature of a surface in R3 can be also calculated using the first
and the second fundamental forms:

K(p) =
det IIp
det Ip

.

Example 15. Consider the torus depicted below.

p

p

p

Notice that in the point p3 there is a positive Gaussian curvature K(p3) = 1
rR

,

in p2 it is negative, K(p2) = − 1
rR

, and in p3, K(p1) = 0.

4.1.4. Surfaces of constant Gauss curvature. A surface S has constant
Gauss curvature, if K is constant on S.

The unique compact surface with constant positive Gauss curvature K is the
sphere of radius 1√

K
. For the Euclidean space, the Gaussian curvature is K = 0, but

also for such flat surfaces of revolution as the cylinder and the cone (in both cases,
only one principal curvature is zero, whereas they both vanish in the Euclidean
space).
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The so–called Lobachevsky plane is an example of a surface of negative Gauss cur-
vature.

0

Sphere of radius r
K > 0

Cylinder of radius r
K = 0

“Saddle”
K < 0

4.1.5. The group of rigid transformations. Because of their geometric na-
ture, the bijections of the plane into itself are called transformations . Those of them
which preserve distances and angles are called rigid motions. Obviously, the identity
transformation is a rigid motion, since it carries every point of the plane into itself,
and the composition of rigid motions is again a rigid motion. This pushes to define
the group of rigid transformation as the set off all rigid motions, with composition
as the group operation and the identity map as the identity element. It is denoted
by E(2) and it is the semidirect product of SO(2) and R2 (see Example 4). Let me
mention some specific rigid motions.

A translation τ of the Euclidean plane is a rigid motion which sends any segment
PP ′ to another segment QQ′ of the same length and direction, with Q = τ(P ) and
Q′ = τ(P ′). Let me state the following propositions, whose proof can be found in
[51].

Proposition 5. For any two points A and B there is a unique translation,
denoted by τAB, that carries A onto B.

Proposition 6. If A,B,C are any three points, then τBC ◦ τAB = τAC.

Proposition 7. The inverse of translation τAB is the translation τBA.

Let (C, α) be a pair, where C is a point and α an oriented angle. The rotation
RC,α is the map that associates to any point P the unique point P ′ such that
‖CP‖ = ‖CP ′‖ and ∠PCP ′ = α. Of course, for any C, RC,0 is identity map. The
inverse of the rotation RC,α is the rotation RC,−α for any (C, α).

4.2. Möbius transformations

Let a, b, c, d ∈ C be complex numbers.

Definition 40. The transformation

(22) f(z) :=
az + b

cz + d
, where |a|+ |c| > 0 , ad− bc 6= 0 ,

is called a Möbius transformation.
If c = 0 then the transformation is linear. If c 6= 0 and a = 0 then the

transformation is a so–called inversion.
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Any Möbius transformation is equivalent to a sequence of simpler transforma-
tions. To show this, I need the following transformations:

f1(z) = z +
d

c
, (translation by d/c) ,

f2(z) =
1

z
, (inversion and reflection with respect to the real axis) ,

f3(z) =
bc− ad
c2

z , (homotethy and rotation) ,

f4(z) = z +
a

c
, (translation by a/c) .

Composing the above transformations, one gets

f4 ◦ f3 ◦ f2 ◦ f1(z) = f(z) =
az + b

cz + d
.

From this decomposition arise that Möbius transformations carry over all non–trivial
properties of the circle inversion. For example, the preservation of angles boils down
to prove that the circle inversion preserves the angles, since the other types of trans-
formations are the dilation and the isometries (translation, reflection, rotation),
which trivially preserve the angles.
The existence of the inverse of a Möbius transformation and its explicit formula are
easily derived by the composition of the inverse functions of the simpler transfor-
mations. That is, just define the maps g1, g2, g3, g4 such that each gi is the inverse
of fi. Then the composition

g1 ◦ g2 ◦ g3 ◦ g4(z) = f−1(z) =
dz − b
−cz + a

gives a formula for the inverse of f , which is again a Möbius transformation.
Furthermore, it can be easily checked that the composition of two transformations,
f1(z) := a1z+b1

c1z+d1
and f2(z) := a2z+b2

c2z+d2
, is again a Möbius transformation, namely:

f2 ◦ f1(z) =
(a1a2 + b2c1)z + a2b1 + b2d1

(a1c2 + c1d2)z + b1c2 + d1d2

.

On the other hand, f ◦ I = I ◦ f = f , where I is the identity map.

Corollary 3. The set of all the Möbius transformations is a group with respect
to the composition, isomorphic to PSL (2,C).

It worth stressing that PSL (2,C) does not admits such an easy decomposition
as that of E(2) (see Section 4.1.5 before).

4.3. Models

In order to visualise the hyperbolic geometry, its necessary to resort to a model.
The most commonly used are the Klein model, the Lorentz model, the Poincaré disk
and the upper half–plane model.

The Klein model is a model in which the points are represented by the points
in the interior of the n–dimensional unit ball (or unit disk, in two dimensions) and
the lines are represented by the chords, straight line segments with endpoints on the
boundary sphere (or circle, in two dimensions). This model has the advantage of
simplicity, but the disadvantage that the angles in the hyperbolic plane are distorted.

The Lorentz model or hyperboloid model employs a 2–dimensional hyperboloid
of revolution (which is made of two sheets, even if only one is needed) embedded in
the 3–dimensional Minkowski space. This model has direct applications to special
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relativity, as the Minkowski 3–space is a model for the space–time, suppressing one
spatial dimension.

In the Poincaré disk the underlying space is the open unit disk D = {z ∈ C :
|z| < 1}. Every hyperbolic line in D is the intersection of D with a circle in the
extended complex plane perpendicular to the unit circle bounding D. Moreover,
every such intersection is a hyperbolic line. A curiosity is that this model appears
in the artworks of M. C. Escher depicting the tessellation of the hyperbolic plane.

Lines in D

Even if the Poincaré disk and the upper half–plane model are in fact almost equiv-
alent, I will focus on the latter.

4.3.1. The upper half–plane model. The upper half–plane model (also know
as Lobachevsky plane or Poincaré half–plane), is the upper half–plane H = {z ∈ C |
=z > 0}, with the Poincaré metric ds = |dz|

=z . This simply says that all the complex
numbers whose imaginary part is strictly positive, i.e., with z = x+ yi, then b > 0,

are points here, and that the metric is (ds)2 = (dx)2+(dy)2

y2 . Thus the hyperbolic

length of a vector v at a point z ∈ H is just its Euclidean length divided by the
height =z of its location z. According, all the distances widen when approaching
the x–axis.

Seemingly, there are two different types of hyperbolic lines, both defined in terms
of Euclidean objects in C. One is the intersection of the half–plane with an Euclidean
line in the complex plane perpendicular to the real axis R. The other one is the
intersection of H with an Euclidean circle with centre on the real axis R. Two
hyperbolic lines in H are parallel if they are disjoint.
The notion of an angle in H is the one inherited from C, so that the angle between
two curves is the angle between their tangent lines. A circle (i.e., the curve made
of the points which are equidistant from a central point) with centre (x, y) ∈ H and
radius R ∈ R is modeled by a circle with centre (x, y coshR) and radius y sinhR.

4.3.1.1. Geodesics and isometries. H. Poincaré (1881) realized that the isome-
tries of the half–plane model are exactly the Möbius transformation (as defined in
4.2)

(23) z 7→ w =
az + b

cz + d
,

with a, b, c, d ∈ R and ad − bc > 0. This makes it particularly easy to study such
isometries and to perform computations.

For instance, if I substitute

w =
az + b

cz + d
and dw =

(
a

cz − d −
c(az + b)

(cz + d)2

)
dz =

ad− bc
(cz + d)2

dz
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into
dx2 + dy2

y2
=

4 |dw|
|w − w̄| ,

I get

4(ad− bc) |dz|2

|(az + b)(cz̄ + d)(az̄ + b)(cz + d)|2
=

4(ad− bc) |dz|2

|(ad− bc)(z − z̄)|2
=

4 |dz|2

|(z − z̄)|2
=
dx2 + dy2

y2
.

Thus the Möbius transformation z 7−→ w is an isometry of H. And so is the
transformation z 7→ −z̄, and hence the composition

(24) z 7→ b− az̄
d− cz̄

is also an isometry from of H. In fact, (23) and (24) encompass all the isometries of
H.

Below I describe all the geodesics of H.

Proposition 8. The geodesics in the upper half–plane model are either the
vertical lines, or the arcs of the circles with centre on R ∪∞ = ∂H.

Proof. First, I will find the geodesic equations, which can be easily solved,
since E = G = 1/y2 and F = 0, and these are independent on x. The first geodesics
equation (20)

d

ds
(Eu′ + Fv′)− 1

2
(Euu

′2 + 2Fuu
′v′ +Guv

′2)

becomes
d

ds

(
x′

y2

)
= 0 ,

and so

(25) x′ = cy2.

Knowing that the parametrisation is by arc length in these equations (see Proposi-
tion 4), one has

(26)
x′2 + y′2

y2
= 1 .

If c = 0 one gets x = const., which is a vertical line. If now c 6= 0, then from (25)
and (26) one obtains

dy

dx
=

√
y2 − c2y4

c2y4
,

and then
cydy√
1− c2y2

= dx ,

which integrates directly to

−1

c

√
1− c2y2 = x− a ,

i.e.,

(x− a)2 + y2 =
1

c2
,

which is a semicircle with centre on the real axis. �
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4.3.1.2. Hyperbolic triangles. As in the Euclidean space, the triangles are the
most fundamental polygons to understand. The first thing to notice here is that
the sum of the angles of a hyperbolic triangle cannot exceed π. Of course, the
hyperbolic angles (expressed in terms of tangents, see (17)) are the same as the
Euclidean angles, since their first fundamental form satisfies E = G and F = 0 (see
4.1.1).

Suppose that 3 points in the hyperbolic plane H are given. A triangle with these
points as vertices is the set of three geodesic segments (i.e., the part of a geodesic
between two given points on it) with these three points as endpoints. An ideal
triangle is one with all the three vertices on the boundary ∂H.

Definition 41. The defect of a triangle is the difference between π and the sum
of its interior angles.

The area of a triangle is bounded and cannot exceed π. Even more, it is exactly
equal to its defect.

Theorem 4 (Gauss–Bonnet theorem for a hyperbolic triangle). Let 4 be a
hyperbolic triangle with internal angles α, β and γ. Then

(27) AreaH(4) = π − (α + β + γ) .

Remark 8. The Gauss–Bonnet formula (27) implies that the area of a hyperbolic
triangle is at most π. The only way in that the area of a hyperbolic triangle can
be equal to π is that all the internal angles are equal to zero, i.e., the triangle is an
ideal one.
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a 0 b

√
1 − x2

�

α

α

β

β

Proof of Theorem 4. Let 4 be a hyperbolic triangle with internal angles
α, β and γ.

Firstly, I will consider the case when at least on of the vertices of 4 belongs
to ∂H, i.e., the angle at this vertex is 0, and by a Möbius transformation it can
be mapped to ∞ without changing the area (equivalently, the angles) of 4. By
applying the Möbius transformation z 7→ z + b, for a suitable b, the centre of the
circle joining the other two vertices goes to the origin of C and, moreover, applying
the transformation z 7→ kz, for an appropriate k, its radius becomes 1. Hence,
following (18),

AreaH(4) =

∫∫

4

1

y2
dxdy

=

∫ b

a

∫ ∞
√

1−x2

1

y2
dydx

=−
∫ b

a

1

y

∣∣∣∣
∞

√
1−x2

dx

=

∫ a

b

1√
1− x2

dx

=

∫ − cos θ

cos θ
dθ, replacing x = cos θ

=−
∫ β

π−α
1dθ

=π − (α + β) .

This proves (27) for a triangle with one of the vertices lying on ∂H.
To deal with the case in which the triangle 4 does not have any of the vertices
A,B,C at infinity, the trick is to prolong the geodesic segment connecting A and
B until it intersects the real axis at a point, say D, and draw the geodesic segment
from C to D, as illustrated below.
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A

B

C

D

σ
γ

α β

Now it is just enough to notice that the area of triangle ABC is equal exactly
the difference of the areas of ACD and BCD. So,

AreaH(4) =AreaH(ABC) = AreaH(ACD)− AreaH(BCD)

=π − (α + (γ + σ))− (π − ((π − β) + σ))

=π − α− γ − σ − β + σ

=π − (α + β + γ) .

�

4.4. Fuchsian groups

As I noticed in the previous section, the collection of all Möbius transformations
of H forms a group, called the Möbius group. If I require that the coefficients a, b, c, d
of the Möbius transformations must be real numbers with ad− bc = 1, then I obtain
a subgroup of the Möbius group denoted by PSL (2,R). Observe that PSL (2,R) is
a three–dimensional real Lie group contained into the three–dimensional complex
Lie group PSL (2,C) (see Corollary 3).

Definition 42. A Fuchsian group is a discrete subgroup of PSL (2,R).

Remark 9. Observe that a Fuchsian group can be considered as a zero–dimensional
Lie group (if it is countable), so that the Lie algebra methods are of no use here.

Since PSL (2,R) is, by definition, the group of isometries of the hyperbolic plane
H, also a Fuchsian group can be regarded as a group acting on H (see Section 6.1
later on for the notion of a group action).



CHAPTER 5

Tessellations of constant curvature surfaces

Everybody knows how a chessboard look like: this is a simple example of a regular
tessellation of the plane by squares. But how to define, in general, a tessellation?
Intuitively, very informally, it is just a covering of the plane by a countable family
of closed subsets, with no gaps nor overlappings. Even if such a concept seems
very elementary, it can help to visualise other objects closely related to it, and its
properties may bring forth new results.

I will deal with tessellations by regular polygons even if, in principle, a tessella-
tion can be also made of different geometric, and more artistic, shapes like animals
and other natural objects (think of the work of M. C. Escher [19]). The more natu-
ral tessellation is the one of the Euclidean plane but, obviously, the very concept of
a tessellation can be generalized to any space having a group of isomorphisms with
the same properties of rigid motions (see e.g., [5]).

5.1. Basic definitions

From now on, the symbol S will denote a constant–curvature surface, i.e., S =
S2,R2, or H (see 4.1.4). From now on, by a line in S I simply mean a geodesic (see
4.1.2).

Definition 43. A polygon P ⊂ S is a closed region which is the union of an
open set P ′ and ∂P ′, the boundary of P ′, such that ∂P ′ is a finite union of line
segments, called edges (appropriate to the space where P ′ sits in), satisfying the
following properties:

• two edges are either disjoint or intersect each other in exactly one point,
which is an endpoint for both edges,
• the point of intersection of two edges, which is called a vertex, is an element

of exactly two edges.

The 1–skeleton of a polygon P is the set of vertices and edges of P . Since it
coincides with the boundary of P , I will denote it by ∂P

Definition 44. A tessellation T of a surface S is a subdivision of the surface
into polygonal tiles ti, such that the tiles have the following properties:

• if ti and tj are not the same then only one of the following is true:
* ti ∩ tj = ∅,
* ti ∩ tj = {v}, where v is a point in S,
* ti ∩ tj = e, where e is a line segment in S,

• given any point p ∈ S, there is at least one tile ti such that p ∈ ti.

Definition 45. If the tessellation Q is made of the same tiles of T , then it is
called a sub–tessellation.

42
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I will write Q ⊆ T to mean that Q is a sub–tessellation of T . Attributes like
connected, convex, finite, etc., should be self–explanatory in the context of tessella-
tions, and I will not insist on them

Definition 46. A tessellation is regular if the tiles are all the same shape.
In other words, T is regular if, given any two tiles ti and tj, there exists an

isometry Ti,j of S (see Definition 36) such that Ti,j(ti) = tj.

Definition 44 allows for some awkward and inconvenient tessellations, like the
one displayed above, which I would like to avoid.

Definition 47. A tessellation in standard form is a tessellation with the fol-
lowing properties:

• if ti and tj are not the same then only one of the following is true:
* ti ∩ tj = ∅,
* ti ∩ tj = {v}, where v is a point in S, and v is a vertex of both ti and
tj,

* ti ∩ tj = e, where e is a line segment in S, and e is an entire edge of
both ti and tj,

• given any point p ∈ S, there is at least one tile ti such that p ∈ ti:
* if p is in exactly one tile, then p is in the interior of a tile,
* if p is in exactly two tiles, then p is in an edge,
* if p is in more than two tiles, then p is a vertex.

Definition 48. The 1–skeleton of a tessellation is the union of the boundaries
of all its tiles.

Remark 10. The 1–skeleton of a tessellation T should not be confused with the
boundary ∂T , in the strict topological sense, of T , which is an its subset (unless
there is only one tile). In order to avoid the inception of a new symbol, I will keep
using ∂T also for the 1–skeleton of T .

From now on I will deal only with regular tessellations in standard form. The
basic one, for my purposes, will be a tessellation by regular triangles of angle π

n
,

denoted Tn.
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Obviously, T2 exist only on S2, T3 only on R2, and all the Tn’s, with n > 3, exist
only on H.

T2 T3 T4

Similarly, like with the von Dyck group (see Section 1.2), suppose that there is
a distinguished triangle 40 ∈ T , called basic, and a distinguished vertex O ∈ 40

called the centre (of the tessellation). Due to the homogeneity (see Remark 12) of
the whole structure, such choices are by no means restrictive.

In cthe ase of Tn I will denote the basic triangle by 4n. The basic 2n–gon Pn
of a tessellation Tn is the union of all the triangles obtained by rotating the basic
triangle 4n around the centre O of the tessellation.

5.2. The coloured graph associated with a tessellation

Lemma 4. A unique 3–colours1 complete graph ∂Tn ∈ C-Gra3 exists whose ver-
tices V∂Tn (resp., edges E∂Tn) are the vertices (resp., edges) of Tn.

Proof. The existence of the graph is obvious. The colouring function χ :
V∂Tn → {•, •, •} can be arbitrarily defined on the vertices of the basic triangle.
Suppose now that χ has been defined on a subgraph Γ′ ⊂ ∂Tn, and let 4 ∈ Tn a tri-
angle with two vertices in Γ′: then there is a unique way to define χ on4. Since ∂Tn
is an object in C-Gra3, it is enough to define χ up to chromatic permutations. �

Starting from the basic 2n–gon Pn, I can define a unique 2n–gonal tessellation
Pn of S.

Definition 49. Pn is the basic 2n–gon of Pn, and O its centre.

Observe that O is not a vertex of Pn. Now I define the unique 2–colours (i.e.,
bipartite, see Section 2.1) subgraph ∂Pn ⊆ ∂Tn, by taking only the vertices and the
edges which belong to Pn. Observe that only T2 is finite, consisting of 8 triangles;
hence P2 consists of 2 squares, namely the upper and the lower hemisphere of S2.

Therefore, on a constant–curvature surface S there is a 2–colours graph ∂Pn (see
Remark 10), whose edges are geodesic segments of a fixed length, which originated
as the 1–skeleton of a regular 2n–gonal tessellation Pn, whose tiles, in turn, were
obtained by the (regular) triangle tiles of the regular triangular tessellation Tn. This
last observation is a compulsory step to make the von Dyck group D(n, n, n) (see
1.2) act on the 2–colour graph ∂Pn.

It is worth mentioning that ∂Pn is made of cycles consisting of 2n vertices, of
alternating colours (they correspond exactly to the boundaries of the tiles of Pn):
a transformation (in the sense of graph automorphism, see Definition 15) of ∂Pn

1In the category–theoretic sense explained in 2.3.3.
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cannot be realized as a rotation of an angle π
n
, since it would switch the vertex

colours.

5.3. Dual tessellation

The dual T ∗ of a regular tessellation T is obtained by taking the centre of each
polygon as a vertex and by joining the centres of adjacent polygons.

Similarly, like in graph theory (see 2.2), the dual to a dual tessellation is once
again the initial tessellation, i.e., (T ∗)∗ = T .

As it can be seen from the figure above, the triangular and the hexagonal tessel-
lations are dual to each other, and the square tessellation depicted below is self–dual.

The dual to a tessellation by regular convex polygons is again a regular tessella-
tion.

Instead of such a standard duality, I will consider a construction inspired by
graph theory (see Section 2.2 and especially Definition 20). Given a regular polyg-
onal tessellation T , there is a unique tessellation T ′ whose vertices are the middle
points of the edges of the tiles of T , and T ′ is called the derived tessellation.

Notice that in the case of a 2n–gonal tessellation Pn (see Definition 49), P ′n is
made both of 2n–gons and n–gons, i.e., it is not regular in the sense of Definition
46 above.
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5.4. Examples

To describe a tessellation it is often used the so–called “Schläfli symbol”, {p, q},
where q is the number of p–gons on every vertex of the tessellation.
For the Euclidean plane, the measure of the interior angle of a regular polygon is
(1− 2/p) · π, so that it comes naturally the equality

(1− 2

p
) · π =

2π

q
,

whence

(p− 2)(q − 2) = 4.

The only possible factorisations are

4 =4 · 1 = (6− 2)(3− 2)⇒ {6, 3} ,
=2 · 2 = (4− 2)(4− 2)⇒ {4, 4} ,
=1 · 4 = (3− 2)(6− 2)⇒ {3, 6} .

{6,3} {4,4} {3,6}

Therefore, in the Euclidean plane, there are only three regular tessellations (made
of hexagons, squares, and triangles). It is worth mentioning that the dual (in sense
of standard duality) to the regular tessellation {p, q} is exactly {q, p}.

A semiregular tessellation is a tessellation of the plane by two or more convex
regular polygons such that the same polygons in the same order surround each
polygon vertex. In this sense, the derived tessellation is semiregular.

There are interesting problems that can be formulated in terms of regular tes-
sellations. For instance, let me consider the polygons that have been created from
a set of four connected congruent squares. They are called tetrominoes , and it can
be proved that there are exactly five tetrominoes. One can try to establish which
tetromino can be used to tessellate the plane.
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A popular use of tetrominoes can be found in the videogame “Tetris”.



CHAPTER 6

Group actions on geometric structures

For a better understanding of the structure of a group G it is sometimes useful
to study an action of G on an appropriate geometric object. This is the idea which
will be developed in the present and in the following sections.

A group action can be thought of as an extension of the idea of the symmetry
group of a set X, in which every element of the group “acts” like a bijective trans-
formation (or “symmetry”) of X, without being identified with that transformation.
This allows for a more comprehensive description of the symmetries of an object,
such as a polygon, by letting the same group act on several different sets of features,
such as the set of the vertices and the set of the edges of a polygon and related
structures, like regular tessellations and graphs.

6.1. Group actions

Let me recall here some basic notions concerning group actions.

6.1.1. Group actions, orbits, stabilizers. Let G be a group, e its identity
element, and X a set. Denote by (SX , ◦) the group of the permutations of the set
X.

Definition 50. A group homomorphism

G
σ→ SX

is called a representation of the group G on the set X.

Definition 51. A (left) group action of G on X is a binary operation

G×X → X ,

(g, x) 7→ g ∗ x ,
such that

(1) g ∗ (h ∗ x) = (gh) ∗ x , ∀g, h ∈ G , ∀x ∈ X,

(2) e ∗ x = x , ∀x ∈ X.

It can be verified that the representations of G on X are in 1–1 correspondence
with the group actions of G on X.

Remark 11. If G acts on X, then the latter is sometimes called a G–set (or
G–space, or a G–structure).

Example 16. The automorphism group of a graph (see Definition 15) acts on
the set of the vertices of the graph.

48
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Definition 52. The image of the map

G→ X,

g 7→ g ∗ x,
is called the orbit of x and it is denoted by G ∗ x, or simply by Gx.

Definition 53. The set of all the orbits of X under the action of G is written
as X/G , and it is called the orbit space. The natural map

X −→ X/G ,

x 7−→ Gx ,

is called the canonical projection.

Remark 12. If X/G consists of only one orbit, i.e., X = Gx, for some x ∈ X,
then X is, in some contexts, called a (G–)homogeneous space.

Definition 54. The subset

Gx := {g ∈ G : g ∗ x = x} ⊆ G

is called the stabilizer of x.

Obviously, Gx is a subgroup of G.
Notice that, if two elements x, y ∈ X belong to the same orbit, then their

stabilisers Gx and Gy are isomorphic (they are actually conjugate). More precisely,
if y = g ∗ x then Gy = gGxg

−1. About such elements it can be said that they have
the same type of orbit.

Let now X and Y be two G–sets, and let f : X −→ Y be a map between them.

Definition 55. f is (G–)equivariant if f(g ∗ x) = g ∗ f(x) for all x ∈ X.

6.1.2. Types of groups actions: transitive, free, regular, effective.
There are several types of actions. The action of G on X is called

• transitive if ∀x, y ∈ X ∃g ∈ G : g ∗ x = y;
• free if ∀x ∈ X g ∗ x = x⇒ g = e, g ∈ G;
• regular if it is both transitive and free;
• effective if ∀g 6= e ∈ G ∃x ∈ X : g ∗ x 6= x.

Equivalently, an action is free if and only of all the stabilizers are trivial. Similarly,
it is regular if and only if ∀x, y ∈ X ∃!g ∈ G such that g ∗ x = y. Notice that if an
action is free, then it is also effective, but not vice–versa. Intuitively, an action is
effective if different elements of G corresponds to different permutations of X.

Example 17. Let X ⊆ R2 be the square, i.e., X = {A,B,C,D}, and G = Z2 '
{e, a}. Consider the following two representations of G on X:

(1) σ1 : a 7→ R1, the reflection with respect to the diagonal of the first quadrant,
(2) σ2 : a 7→ R2, the reflection with respect to the x–axis.
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1R

2R

A B

CD

Observe that

(1) in this case GA = {e, a}, GB = {e}, GC = {e, a}, GD = {e},
(2) in this case GA = GB = GC = GD = {e}, since the reflection R2 has no

fixed points.

So, σ2 is free, while σ1 is not. Nevertheless both actions are effective, since GA ∩
GB ∩GC ∩GD = {e}.

6.2. Group action on graphs

Now I will examine the case when X possess more geometric structure.
Let Γ be a (coloured) graph (see Chapter 2, specially Section 2.3). The group

of automorphisms of Γ, which was denoted by Aut (Γ) (see Definition 15), can also
be referred to as the symmetry group of Γ, just to stress its geometric flavour.
Accordingly, the elements of Aut (Γ) are called the transformations of Γ.

From now on, the generic group G will be denoted by the symbol D instead, in
view of its impending assimilation into the von Dyck group (Definition 5).

Definition 56. A group homomorphism i : D → Aut (Γ) is called an action of
D on Γ.

Such an action is vertex–transitive (–free) if D acts transitively (–freely) on the
set V of the vertices of Γ. Similarly, if D acts transitively (–freely) on the set E of
the edges of Γ, it is said that such an action is edge–transitive (–free).

6.2.1. Clique–free and clique–transitive group actions on coloured graphs,
quotient graphs. I shall need the notion of a clique introduced earlier in 2.3.4,
and the group homomorphism C (see Remark 4).

From now on, the generic group G will be denoted by instead, in view of its
impending assimilation into the von Dyck group (Definition 5).

Definition 57. An action i of D on Γ is clique–transitive (resp., clique–free)
if C(Γ) 6= ∅ and the action C ◦ i of D on C(Γ) is transitive (resp., free).

If D acts on (Γ, χ), then the quotient coloured graph
(

Γ
D
, χ̃
)

is defined as follows:

V Γ
D

:= VΓ

D
,

(28) (Dv1, Dv2) ∈ E Γ
D
⇔ ∃d1, d2 ∈ D | (d1v1, d2v2) ∈ EΓ,

and χ̃(Dv) := χ(v).
Next result makes use of the C-Gra category (see 2.3.3).
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Lemma 5. The canonical projection π : VΓ → V Γ
D

(see Definition 53) is a mor-

phism in C-Gra. Moreover, if ṽ1 and ṽ2 are connected by an edge in Γ
D

, then any
v1 ∈ π−1(ṽ1) is connected by an edge with an element of π−1(ṽ2).

Proof. By (28), π is manifestly edge–preserving and colour–preserving: as such,
it defines a morphism in C-Gra (see Definition 22). Let now (ṽ1, ṽ2) ∈ E Γ

D
. Then,

v′1 ∈ π−1(ṽ1) and v2 ∈ π−1(ṽ2) exist, such that (v′1, v2) ∈ EΓ. But D acts on Γ by
graph automorphisms, and transitively on π−1(ṽ1): so, v1 = dv′1, with d ∈ D, and
hence (v1, dv2) = d(v′1, v2) ∈ EΓ. �

Remark 13. Observe that π induces a map π∗ : C(Γ) → C
(

Γ
D

)
, which is, in

general, not surjective. Let c̃ ∈ C
(

Γ
D

)
be a clique of Γ

D
, and Vc̃ = {ṽ1, . . . , ṽm} be the

set of its vertices. Then, by Lemma 5, it is possible to show that vj ∈ π−1(ṽj) exists,
for j = 1, . . . ,m, such that v1 forms an edge with v2, . . . , vm. So, Vc := {v1 . . . , vm}
does not, in general, determines a clique c ∈ C(Γ) unless m = 2. Even if in this
thesis I am mainly interested in the case m = 2, future generalizations may require
higher values of m: then, it will be mandatory to find extra conditions on the action
of D, guaranteeing the surjectivity of π∗.

6.2.2. A result on clique–free and clique–transitive actions on coloured
graphs. Observe that a clique–transitive action does not need to be edge–transitive
and it is never vertex–transitive, since vertices of different colours cannot be mapped
one into another by an element of Aut (Γ). Hence, if D acts clique–transitively, the
quotient graph Γ

D
reduces to a single clique, which, in general, contain more than one

edge (and, hence, more than two vertices!). The third original result of this thesis is
contained in Lemma 6, whose purpose is that of providing a solid graph–theoretical
background to the main result.

Lemma 6. Let D be a group acting clique–freely and clique–transitively on Γ,
and K ED be a normal subgroup of D. Then,

(1) D is D–equivariantly (see Definition 55) identified with the set C(Γ) of the
cliques of Γ,

(2) if a clique c0 ∈ C(Γ) is fixed, then C(Γ) has a group structure isomorphic to
D, whose identity element is c0.

Moreover, if π∗ is surjective, then

(3) the factor group D
K

acts clique–freely and clique–transitively on the quotient

graph Γ
K

,

(4) D
K

is D
K

–equivariantly identified with the quotient set C(Γ)
K

= C
(

Γ
K

)
.

Proof. By Definition 57, D acts freely and transitively on the set C(Γ): hence

(1) and (2) are valid. Moreover, since D
K

acts freely and transitively on C(Γ)
K

, the

group D
K

is D
K

–equivariantly identified with the set C(Γ)
K

. In other words, in order to
prove (4), it is enough to prove (3).
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To this end, let c̃ ∈ C
(

Γ
K

)
be a clique of Γ

K
, and write it as c̃ = π∗(c). Then the

desired clique–free and clique–transitive action of D
K

on Γ
K

is defined by

D

K
× V Γ

K
−→ V Γ

K
,(29)

(dK, π(v)) 7−→ π(dv).

First, I check correctness of (29): if (d′K, π(v′)) = (dK, π(v)), then d′ = dk and
v′ = k1v, with k, k1 ∈ K, so that π(d′v′) = π(dkk1v) = π(k2dv) = π(dv), where

k2 ∈ K is such that (kk1)d
−1

= k2.
Observe now that (29) is edge–preserving. Indeed, by Lemma 5, if (π(v1), π(v2)) ∈

E Γ
K

, then it is possible to assume that (v1, v2) ∈ EΓ. But K acts by graph automor-

phisms, so that d(v1, v2) = (dv1, dv2) ∈ EΓ as well, and then (π(dv1), π(dv2)) ∈ E Γ
K

.

Let me verify clique–transitivity. Given two cliques c̃, c̃1 ∈ C
(

Γ
K

)
, write them as

c̃ = π∗(c), c̃1 = π∗(c1), for c, c1 ∈ C(Γ). Then, by clique–transitivity of D–action,
c1 = dc, for some d, and hence dK ∗ c̃ = c̃1.

Finally, if dK ∗ c̃ = c̃, then Vc̃ = {π(dv1), . . . , π(dvm)} = {π(v1), . . . , π(vm)}, i.e.,
π(dvj) = π(vj) for all j = 1, . . . ,m, since vj and dvj have the same colour: hence
d ∈ K. �

6.3. Action of a group on its Cayley graph: the theorem of Sabidussi

In 1958 G. Sabidussi proved that the Cayley graph Γ(G,S) (see Definition
24) is, in a sense, the unique edge–directed and edge–coloured graph (see 2.1) on
which G acts in a vertex–regular and vertex–transitive way [46]. Strictly speaking,
Sabidussi’s theorem was originally introduced as a necessary and sufficient condition
for a graph to be a Cayley graph, but I will exploit it here in the above “universal
sense”. The main result of this thesis is essentially an its corollary, and this is the
reason why I present and adapted version of its proof here.

Theorem 5 (G. Sabidussi, 1958). A edge–directed and edge–coloured connected
graph Γ is a Cayley graph of a group G if and only if it admits a free and transitive
action of G on Γ.

Proof. (⇒) Regardless of the choice of the generating set S, the group G acts
on the Cayley graph Γ(G,S) by left multiplication. By definition, such an action is
free and transitive (see Section 6.1.2).
(⇐) Suppose there is a free and transitive action of G on Γ. In this case, I can
identify any element g ∈ G with a unique vertex vg ∈ VΓ of Γ. In particular, there
will be an element ve ∈ VΓ corresponding to the identity element e of G.

Let χ : EΓ −→ C be the colouring map, which is by definition surjective, and
χ′ : C −→ EΓ an its section (i.e., a right inverse). In other words, for any color c ∈ C
I can choose an edge χ′(c) = {xc, yc} whose colour is c. Because of the transitivity
of the G–action, there is a gc ∈ G such that yc = xcgc and, since the action is also
free, such a gc is also unique. So, there is an injective map

χ′′ : C −→ G ,

c 7−→ gc .

Define S := χ′′(C) and observe that S is a generating set for G in view of the
connectedness of Γ. Indeed, any g ∈ G corresponds to a vertex Vg ∈ VΓ, which is
joined to ve by a path γ. By transcribing the colours c1, c2, . . . , cn appearing along
γ, one immediately sees that g = χ′′(c1)χ′′(c2) · · · · · χ′′(cn).
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Let {vg, vh} ∈ EΓ be an edge, and c = χ({vg, vh}) its color. By definition,
χ′′(χ({vg, vh})) = gc, which is an element gc ∈ S ⊆ G such that {xc, xcgc} is an edge
of Γ of colour c.

So, I have found a correspondence

Γ −→ Γ(G,S) ,

VΓ 3 vg 7−→ g ∈ G ,
EΓ 3 {vg, vh} 7−→ {g, gχ′′(χ({vg, vh}))} ,

which is the desired isomorphisms. Indeed, it is by construction one–to–one on the
vertices and colour–preserving, and I just need to show that adjacent vertices of Γ
are mapped into adjacent vertices of Γ(G,S), i.e., that

(30) h = gχ′′(χ({vg, vh}))⇔ g−1h = χ′′(χ({vg, vh})) .
By definition,

(31) χ′′(χ({vg, vh})) = gc such that {xc, xcgc} has colour c ,

so that it remains to prove that

(32) gc = g−1h ,

and this follows from the fact that, by definition of a coloured graph (see Definition
21 and Remark 3), two edges with the same colour and a common vertex must be the
same. Indeed, I have the two c–coloured edges {xc, xcgc} and {(xcg−1)g, (xcg

−1)h)},
with the first vertex in common. Then, the desired equality (32) is a consequence
of the fact that the second vertices must coincide as well.

�

To show the non–triviality of Theorem 5, let me just point out that not every
graph with a transitive group action is the Cayley graph of a group. A good coun-
terexample is the Petersen graph [27] depicted below, which is the most famous
highly symmetric graph which is not a Cayley graph.



CHAPTER 7

Main result: the vertex–to–edge duality between Γ(n, n, n)
and T (n, n, n)

7.1. Introduction

Recall that D(a, b, c) = 〈x, y | xa = yb = (xy)c = 1 〉 is the von Dyck group (see
Definition 5), Γ(a, b, c) = Γ(D(a, b, c), {x, y}) is its Cayley graph corresponding to
the generating set {x, y} (see Definition 24), and T (a, b, c) := T (D(a, b, c), {H,K}) is
the rank–two coset geometry determined by the subgroups H := 〈x 〉 and K := 〈 y 〉
(see Definition 30). The latter will be regarded as a two–coloured (i.e., bipartite)
graph (see Sections 2.1 and 2.3, as well as Definition 21).

In this chapter I will prove the following (original) statements.

(1) The natural action of D(a, b, c) on the graph T (a, b, c) (see Section 6.2) is
edge–regular and edge–transitive.

(2) There is a D(a, b, c)-equivariant bijection b between the set VΓ(a,b,c) of the
vertices of Γ(a, b, c) and the set ET (a,b,c) of edges of T (a, b, c).

(3) If I(a, b, c) ⊆ E2
T (a,b,c) denotes the set of incident pairs of edges of T (a, b, c),

then there is a map ψ : I(a, b, c) −→ H ∪K such that the vertices d1 and
d2 of Γ(a, b, c) are connected by an x–coloured (resp., y-coloured) oriented
edge if and only if ψ(b(v1), b(v2)) = x (resp., = y).

(4) There are tessellations T (a, b, c) and T ′(a, b, c) of a constant curvature sur-
face (see Chapter 5), such that the 1–skeleton (see Section 5.1) of the for-
mer, supplied with a natural (vertex–)colouring, coincides with T (a, b, c)
and the 1–skeleton of the latter, supplied with a natural edge–colouring
and edge–orientation, identifies with Γ(a, b, c).

The purpose of (1) is merely to pave the way for (2). The meaning of (2) is that
T (a, b, c) and Γ(a, b, c) are linked by a vertex–to–edge duality (see Section 2.2),
while (3) implies that all of the information about Γ(a, b, c) is already contained in
T (a, b, c), and this is the main result of this thesis. Finally, (4) tells precisely that
the passage from T (a, b, c) to Γ(a, b, c) can be done by means of manipulations of
tessellations; in particular, both T (a, b, c) and Γ(a, b, c) are planar graphs.

The vertex–to–edge duality between T and Γ is artistically rendered in the figure
below, for the group Z6 = 〈x, y | x2 = y3 = [x, y] = 1 〉, and its subgroups H and K
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defined as before.

1

x

y

y2

xy

xy2

H

xK

yH y2H

K

The coset geometry T := T (Z6, {H,K}) is the graph appearing on the left. It
consists of three red vertices, H, yH, y2H, and two blue ones, K, xK; an edge joins
the cosets with nonempty intersection (i.e., incident, in the sense of Section 3.2).
The Cayley graph Γ := Γ(Z6, {x, y}) is displayed1 on the right, and it consists of six
(uncoloured) vertices, corresponding to the six elements of Z6: now there is a blue
oriented edge (i.e., a blue arrow) to indicate that the head of the arrow is obtained
by acting by x on its tail, and a red one when the action is that of y.

The main result of this thesis, which is the vertex–to–edge duality between Γ
and T , is illustrated in the center of the figure. Indeed, if the prism Γ is fit into the
double pyramid T , in such a way that the vertices of the former touch the middle
points of the edges of the latter, then the natural Z6–action on T determines that
on Γ and vice–versa, thus clarifying the meaning of the statements (2) and (3).

7.2. Von Dyck groups as symmetry groups of regular tessellations

As in Section 5.1, the symbol S will denote either the sphere, the (real) plane
R2, or the hyperbolic plane H.

I denote by Ta,b,c the regular tessellation of S whose basic triangle40 has internal
angles equal to π

a
, π
b

and π
c
. Of course, if the basic triangle is equiangular it can

used the symbol Tn,n,n or Tn (see Section 5.1). Recall that, depending on the sum
of the values a, b, c, the surface S must be elliptic, planar, or hyperbolic in order to
accommodate Ta,b,c [16, 5, 25, 45].

Keep also in mind that the triangle group ∆(a, b, c) (see Definition 4) acts tran-
sitively on Ta,b,c, whereas D(a, b, c) (see Definition 5) acts on it by orientation–
preserving isometries. The vertices of 40 will be labeled by A, B and O, π

a
(resp.,

π
b
, π
c
) being the inner angle at A (resp., B, O), in such a way that the sequence of

vertices (A,B,O) occurs counterclockwise.
In Lemma 4 I showed that ∂Ta,b,c is a 3–coloured graph, with the colouring set

given by the vertices of 40. Borrowing the terminology of Tits geometries, I say
that a vertex v ∈ ∂Ta,b,c is of A–type if its colour is A (and similarly for B and O). A
tile ti ∈ Ta,b,c is positively oriented if running counterclockwise through its vertices,
their colours appear in the same order as in 40.

Lemma 7. D(a, b, c) acts transitively on the subset T +
a,b,c ⊆ Ta,b,c of positively–

oriented tiles.

1Notice that, not to overload the picture, the loops corresponding to the action of x have been
replaced by a unique (blue) arrow.
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Proof. Follows from the fact that the generator x (resp., y) corresponds to the
rotation of Ta,b,c around the vertex A of 40 by an angle 2π

a
(resp., around the vertex

B of T0 by an angle 2π
b

) and, by composing such rotations, one can move 40 to any
other positively-oriented tile. �

Lemma 7 above provides the necessary geometric interpretation of D(a, b, c),
which will make some proofs more transparent. Lemma 8 below shows that {x, y}
is a Borel–free set of generators (see Definition 1).

Lemma 8. The intersection H ∩K is trivial.

Proof. Suppose that xr = ys 6= 1: then the two tiles xr40 and ys40 must be
the same. However, the former is obtained by rotating 40 around A, and as such
it must contain A itself while the latter must contain B. Since an edge of ∂Ta,b,c
determines a unique positively-oriented tile, xr40 and ys40 must be the same and
coincide with 40, which is the unique element of T +

a,b,c containing the edge (A,B),
which is a contradiction. �

In analogy with the construction given in Section 5.2, perform now a full rotation
of 40 around its vertex O: the result is a 2c-sided polygon Pc whose boundary is a
2-coloured (i.e., bipartite) subgraph of ∂Ta,b,c (see the first row of figure below).

T3,3,3 T2,3,6T2,4,4

P3,3,3 P2,3,6P2,4,4

Then there exists a 2c-polygonal tessellation Pa,b,c of S, such that any of its tiles
is the union of the 2c tiles of Ta,b,c with a common vertex of type O. Hence, its
1-skeleton ∂Pa,b,c is a bipartite graph and V∂Pa,b,c is the subset of ∂Ta,b,c consisting
of the vertices of type either A or B. Since the tiles of Pa,b,c are in one-to-one
correspondence with the O-type vertices of ∂Ta,b,c, the von Dyck group D(a, b, c)
acts transitively2 on Pa,b,c as well, making it into a regular tessellation.

Example 18. The derived tessellations (see Section 5.3) of the planar tessel-
lation P3,3,3 (or simply P3) and the hyperbolic tessellation P4,4,4 ( or simply P4)
are shown below, overlying the original tessellations, and their (two-coloured) 1-
skeletons.

2But not freely: the stabilizer of P0 is the subgroup generated by xy.
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P3 P4

The tessellation P ′3 is known as a trihexagonal tessellation [25].

Observe that, for n = 3, ∂P ′ is precisely the derived graph [6] of ∂P , while
for n > 3 it is an its subgraph, but with the same vertices, referred to as “medial”
by some authors [24] (the explanation of such a phenomenon is that the triangle
is the unique polygon which is also a complete graph). The von Dyck group acts
transitively both on the set of 2n–gonal tiles of P ′ and on the n–gonal ones.

7.3. The coset geometry of von Dyck groups

Recall that the coset geometry

(33) T (a, b, c) =
D(a, b, c)

H

⋃ D(a, b, c)

K

is the union of all H–cosets and K–cosets of D(a, b, c) (see Definition 30).
For my purposes, it is more convenient to regard T (a, b, c) as a bipartite graph

(see Section 2.1), whose vertices are the elements of T (a, b, c), and two vertices are
connected by an edge if the corresponding cosets have nontrivial intersection; this
is precisely the construction of the intersection graph associated to an incidence
relation [36] (see Definition 28). Moreover, T (a, b, c) is equipped with a natural
colouring: the colour (or type) of the H– (resp., K–) cosets is “H” (resp., “K”).

Since D(a, b, c) acts naturally on the two quotient sets appearing at the right
hand side of (33), the coset geometry T (a, b, c) is equipped with a natural D(a, b, c)–
action. Furthermore, D(a, b, c) acts by coloured graph transformations (see Section
6.2), since it sends edges to edges and preserves the type of a coset. The edge (H,K)
will be referred to as the basic edge (or clique, see Definition 23) I shall write an
edge as a pair, where the first entry is always of type H.

Consider an edge (dHH, dKK) ∈ ET (a,b,c), act on it by an element d ∈ D(a, b, c),
and suppose that the resulting edge d(dHH, dKK) = (ddHH, ddKK) has the same
H–vertex as the original one, i.e., (dHH, dKK) has been “rotated” around its vertex
dHH. This means that ddHH = dHH, i.e., d stabilizes dHH and, as such, it belongs
to HdH , which is identified with H via conjugation. This proves the next result.

Lemma 9. All the edges of T (a, b, c) having a common H–type (resp., K–type)
vertex, say dHH (resp., dKK), can be obtained by acting on a fixed one by HdH

(resp., KdK).

Observe that D(a, b, c) acts edge–transitively on T (a, b, c). Indeed, any edge
e := (dHH, dKK) can be written as e = dHe

′, with e′ = (H, d−1
H dKK) and e′ can in

turn be obtained by acting on the basic edge by an element of H (Lemma 9). Below
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I show how the subgroup HdH acts transitively on the tree (see Definition 18) of the
edges hinged at dHH.

1

 x2

x

xn−2

xn−1

dKKdHH KH

ddKK

d ∈ HdH ≡ H

The action clearly behaves like a rotation, which is an indication of the planar
character of the coset geometry.

From Lemma 8 it follows also that the action is edge–regular: indeed, in view
of the edge–transitivity, the stabilizer of e is conjugate to the stabilizer of the basic
edge, which is the trivial intersection H ∩K.

Corollary 4 (Statement (1)). D(a, b, c) acts edge–regularly and edge–transiti-
vely on T (a, b, c); in particular, there is a unique way to label the edges of T (a, b, c)
by the elements of D(a, b, c) in such a way that the basic edge is labeled by 1.

Figure below helps to visualize Corollary 4. The 1–skeleton of the hyperbolic
tessellation P4 is labeled by the elements of D(4, 4, 4). The arrows represent the
action of the generators of D(4, 4, 4): they turn out to constitute the boundary of a
tile of P ′4, corresponding to a cycle of xy in the Cayley graph.

HK HK
1

x

xy

xyx
xyxy

y3

y3x3

y3x3y3

1

x

xy

xyx
xyxy

y3

y3x3

y3x3y3

7.4. The Cayley graph of von Dyck groups

Thanks to Theorem 5, the Cayley graph Γ(a, b, c) is, in a sense, the unique edge–
oriented and edge–coloured graph on which D(a, b, c) acts in a vertex–regular and
vertex–transitive way [46] (recall that, in view of Theorem 3, the graph T (a, b, c)
is connected and hence Sabidussi’s Theorem 5 can be applied here). In Corollary
4 I proved that D(a, b, c) acts on the (vertex–)coloured graph T (a, b, c) in an edge–
regular and edge–transitive way: this led me to suspect that Γ(a, b, c) and T (a, b, c)
can be obtained one from the other by—roughly speaking—“replacing edges with
vertices”, thus obtaining the main result of this thesis.

I recall that, by definition, VΓ(a,b,c) = D(a, b, c) and that for any d ∈ D(a, b, c)
there is a unique edge, call it b(d), of T (a, b, c) which is labeled by d according to
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Corollary 4. In other words, the map

VΓ(a,b,c)
b−→ ET (a,b,c)

d 7−→ b(d)(34)

is bijective.

Corollary 5 (Statement (2)). The map b defined by (34) is D(a, b, c)–equiva-
riant.

Proof. In order to prove that b(d′d) = d′b(d), it suffices to observe that if an
edge e of T (a, b, c) is labeled by d, then the edge d′e is labeled by d′d. �

If one tries to reconstruct Γ(a, b, c) out of T (a, b, c), then Corollary 9 allows to
obtain the vertices of the former out of the edges of the latter. It remains to describe
the edges of Γ(a, b, c). Also recall that Γ(a, b, c) is edge–coloured and directed, so
that not only its edges but their colour and direction must be recovered as well.

Lemma 9, together with the edge–regularity of the D(a, b, c)–action (see Corol-
lary 4), guarantees the existence of a map

(35) ψ : I(a, b, c) −→ H ∪K

assigning to any pair of incident edges (e1, e2) of T (a, b, c) which have a common
H–type (resp., K–type) vertex, the unique element xr ∈ H (resp., ys ∈ K) such
that the label of e2 is the label of e1 multiplied by xr (resp., ys). The existence of
such an element is clear from the tree displayed at the right of figure on page 58: xr

is just the “ratio”3 of e2 by e1.

Corollary 6 (Statement (3)). There is an x-coloured (resp., y-coloured) di-
rected edge from the vertex d1 to the vertex d2 of Γ(a, b, c) if and only if ψ(b(d1), b(d2))
equals x (resp., y).

Proof. Let us consider the x–coloured case only. If d1 is connected to d2 by
a directed edge in the Cayley graph Γ(a, b, c), it means that d2 = d1x. By the
definition (34) of the map b, e1 := b(d1) is the edge (d1H, d1K), while e2 := b(d2) is
the edge (d1H, d2K). Hence, (e1, e2) ∈ I(a, b, c) and, as such, the map ψ defined by
(35) can be applied to it: the result is ψ(e1, e2) = x, to be interpreted as the “ratio”
d2

d1
. The converse is also true, due to the bijectivity of b. �

Figure at page 55 helps to visualise the above proof. Let d1 = 1 and d2 = x
be vertices of the Cayley graph (displayed at the right): there is an x–coloured
directed edge between them (blue arrow). By the vertex–to–edge duality, portrayed
in the center, this edge of the Cayley graph is responsible for the fact that the edge
e2 := (H, xK) of the coset geometry (left) is obtained from e1 := (H,K) by acting
on it by x. Formally, the datum x can be recovered as ψ(e1, e2), since x is precisely
the “ratio” e2

e1
.

3More precisely, r = n2 − n1, where xn1 (resp., xn2) corresponds to e1 (resp., e2).
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7.5. The duality between the Cayley graph and the coset geometry in
the context of tessellations

In this final section I prove the statement (4), thanks to which the previous ones
acquire more perspective.

First, I establish a correspondence between the bipartite graphs ∂Pa,b,c and
T (a, b, c): define a map

ET (a,b,c) −→ E∂Pa,b,c
d(H,K) ≡ d 7−→ d(A,B),(36)

where the identification d(H,K) ≡ d is due to Corollary 4 and (A,B) is one of
the sides of the basic triangle 40, defined in Section 7.2. Since Pa,b,c is a regular
tessellation, the map (36) is surjective. It is also injective since an orientation–
preserving isometry which fixes the segment (A,B) must be identical. Hence, the
abstractly defined graph T (a, b, c) is the 1–skeleton of a concrete tessellation of S.
On this surface, the duality between the Cayley graphs and the coset geometry
discussed in Section 7.4 can be recast in terms of the tessellation Pa,b,c and its
derived tessellation.

By the definition of derived tessellation (see Section 7.2), there is a bijection

E∂P(a,b,c)
µ−→ V∂P ′(a,b,c),

d 7−→ µ(d),

where µ(d) is the middle point of the edge d(A,B), and the edges of ∂P(a, b, c) are
identified with the elements of D(a, b, c) via (36). Hence, µ ◦ b establishes a one–to–
one correspondence between the vertices of Γ(a, b, c) and those of ∂P(a, b, c). Recall
that the vertices µ(d1) and µ(d2) form an edge e in ∂P ′(a, b, c) if and only if d1(A,B)
and d2(A,B) are incident and belong to the same tile of P(a, b, c) (see figure at page
57). Since ∂P(a, b, c) is a bipartite graph, the edge e can be given the same colour of
the vertex v := d1(A,B)∩d2(A,B); moreover, the edge e can be directed from µ(d1)
to µ(d2) if the rotation sending d1(A,B) to d2(A,B) within the tile they belong to,
is counterclockwise, and vice-versa.4 Suppose that this rotation is counterclockwise
and that v is of type A: then, in view of the correspondence (36), the edges d1(H,K)
and d2(H,K) have the H–type vertex in common and d2 = d1x, since, by definition,
the inner angles of a tiles of P(a, b, c) at its A–type vertices are 2π

a
. Hence, in view

of Corollary 6, there is a directed A–coloured edge from µ(d1) to µ(d2) in ∂P ′(a, b, c)
if and only if there is a directed x–coloured edge between d1 and d2 in Γ(a, b, c).

4In figure at page 58 such a tile is the hyperbolic basic octagon P0, and (A,B) is the edge
labeled by “1”; the vertex v is a vertex of ∂P0, and d1 (resp., d2) is the word coming before (in
a clockwise sense) v (resp., after it). A red (or blue) arrow, running counterclockwise, rotates the
corresponding edge µ(d1) on µ(d2): hence, in the Caley graph, there is an oriented red (or blue)
edge from d1 to d2. The eight vertices cycle made by the red and blue arrows corresponds precisely
to the element xy of order four.



CHAPTER 8

Applications and perspectives

8.1. the polygonal enlargement algorithm

I obtain here a nice consequence of the results established in the previous chapter.
It can be formulated as follows.

Corollary 7 (Cliques enumeration algorithm). A bijection d : N0 → D(n, n, n)
exists, which can be defined recursively.

As the name “cliques enumeration algorithm” shows, in this section, I will focus
on cliques, rather than graphs. In this perspective, I will sow that Corollary 4 can
be generalised to any group with a Borel–free set of generators (see Definition 1).

Proposition 9. Let S be a Borel–free set of generators of a group D, and define
T (D) :=

⋃
s∈S

D
〈s〉 . Then,

(1) (T (D), χ) is a coloured graph (see Definision 21) with coloured function χ,
(2) D acts clique–transitively and clique–freely on (T (D), χ) (see Definition 57),
(3) any element d ∈ D acts on cliques by a sequence of rotations.

Proof. As the disjoint union of the left D–cosets D
〈 s 〉 , s ∈ S, the set of ver-

tices VT (D) inherits a left D–structure (see Remark 11). Observe also that D acts

transitively on each subset of vertices D
〈 s 〉 , i.e., it is colour–preserving, and that the

sub–graph c0 := {〈 s 〉 | s ∈ S} is a clique (see Definition 23); indeed, any two its
vertices are connected by an edge, and any vertex outside c0 is of the form d · 〈 s 〉,
for some s ∈ S and d ∈ D r 〈 s 〉 and, as such, it cannot be connected by an edge
to 〈 s 〉, since they have the same colour s. Finally, the action of D sends edges
to edges, since two nontrivially intersecting left cosets are mapped into nontrivially
intersecting left cosets, i.e., D ≤ Aut (T (D)).

Prove that any clique c is of the form d · c0. Take a vertex d · 〈 s 〉 ∈ c and observe
that d−1 · c is a clique containing 〈 s 〉 (Remark 4). By Definition 23 it must coincide
with c0. Hence, D acts clique–transitively. Finally, d ∈ D stabilizes c0 if and only if
it stabilizes all its vertices, i.e., it belongs to ∩

s∈S
〈s〉 = 1.

It remains to be observed that d = s acts on c0 by a rotation around it vertex
〈 s 〉. Let now d = ds, an suppose that d acts on c0 by a sequence of rotations: then,
d·c0 = (dsd−1)·(d·c0) is obtained from c0 by the same sequence of rotations, followed
by a rotation around the vertex d · 〈 s 〉, since d〈 s 〉d−1 is precisely the stabilizer of
d · 〈 s 〉. �

The results of previous Chapter 7 can be paraphrased in terms of cliques as
follows. Recall that Pn is 2n–gonal tessellation, introduced in Section 5.2.

Corollary 8. The von Dyck group D(n, n, n) acts clique–transitively and clique–
freely on the 2–colours graph ∂(Pn). Moreover, ∂(Pn) is canonically and D(n, n, n)–
equivariantly identified with T (D(n, n, n), {x, y}).

61
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Proof. D(n, n, n) acts on the 3–colours graph ∂Tn (see Lemma 4), and the
stabiliser of the basic triangle is trivial, i.e., the action is clique–free. Even if the
action is not clique–transitive, two cliques of the same orientation are always moved
one to another by an element of D(n, n, n) (see Lemma 7). It remains to observe that
a clique of ∂Pn determines a unique oriented clique of ∂Tn: it is enough to choose
a fixed sequence of colours, say red–green–blue and, to any clique of ∂Pn, i.e., an
edge with red–green ends, associate the unique (out of the two adjacent triangles)
clique of ∂Tn whose blue vertex makes the resulting sequence red–green–blue run
counterclockwise. Figure below shows two triangles facing the same clique (A,B):
only the coloured one has positive orientation.

A

B

C

A0

B0

C0

〈x〉
d

d 〈y〉

By Proposition 9, any clique c of T (D(n, n, n), {x, y}) is uniquely written as
c = (d〈x 〉, d〈 y 〉), with d ∈ D(n, n, n). Let (A,B,C) the oriented clique of ∂Tn
determined by A = d〈x 〉, and B = d〈 y 〉: hence, (A,B,C) can be uniquely written
as d′(A0, B0, C0), where A0 = 〈x 〉, and B0 = 〈 y 〉 (see figure above). It follows that
d′ = d. But the oriented clique (A,B,C) is uniquely determined by the clique (A,B)
of ∂Pn: correspondence c = (d〈x 〉, d〈 y 〉)↔ (A,B) = (dA0, dB0) is manifestly one–
to–one and D(n, n, n)–equivariant.

�

By Lemma 6, D(n, n, n) can be identified with the set of cliques C(∂Pn), and
all its factors with a quotient of C(∂Pn). In Section 8.3 I will show that among the
factors of D(n, n, n) there are the free Burnside groups with two generators. The
generalization of such a picture to the cases with more generators is a challenging
task. It is worth stressing that only for n = 2 the set of cliques C(∂Pn) is finite.

From now on, the generator x (resp. the generator y, the product r := xy) will
be identified with the 2π

n
rotation of Pn around the vertex H (resp., the vertex K,

the center O), where (O,H,K) is a fixed orientation of the basic triangle (Lemma
7). I call c0 = (H,K) the basic clique (and it is the basic edge in Section 7.3), and
I will identify the element w ∈ D(n, n, n) with the clique wc0 = (wH,wK).

By Posposition 9, D(n, n, n) acts on ∂Pn by a sequence of rotations.

Remark 14. D(n, n, n) acts transitively on the polygons of Pn, since these
are the “minimal cycles”, but the stabilizers are the cyclic subgroups of order n
conjugate to 〈 r 〉.
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Remark 15. When a cycle Γ is oriented, any its clique c ∈ C(Γ) inherits an ori-
entation: c is said to be positively (resp., negatively) oriented if, running accordingly
to the positive orientation of Γ, the x–coloured vertex comes after the y–coloured
one (resp., before). Observe that any cycle must be composed of an even number of
cliques: of these, half is positively oriented, and the other half is negatively oriented.

Remark 16. Denote by
[
i
2

]
the integer part of i

2
, and by [i]2Z the parity of i.

Then the map

i ∈ {0, 1, . . . , 2n− 1} 7−→ d(i) := r[
i
2 ]x[i]2Z · c0 ∈ C(∂Pn),

is a bijection.

Proposition 10 (Polygonal enlargement). Let Q ⊆ Pn be a sub–tessellation
(see Definition 45) such that its boundary (see Remark 10) is a simple cycle (see

Definition 19) Γ ⊆ ∂Pn, consisting of N cliques. Define Q̃ as the larger sub–
tessellation obtained from Q by adding all the 2n–gons which intersect it, and call

Γ̃ its boundary. Assume both Γ and Γ̃ to be oriented clockwisely. Then

(1) for any positively oriented clique w0 ∈ C(Γ), unique integers i1, . . . , iN ∈
{1, . . . , n− 1} exist, such that the sequence

(37) w0, w0x
i1 , w0x

i1yi2 , . . . , w0x
i1yi2 · · ·xiN−1yiN = w0

run clockwisely through all the cliques of Γ;

(2) the number of 2n–gons contained in Q̃rQ is

(38) N(n− 1)−
N∑

k=1

ik;

(3) by replacing in (37) each positively (resp., negatively) oriented clique w =
w0 · · · yik−1 (resp., v = w0 · · ·xik) according to the following rules

(39) w ↔ (wxn−2d(2), . . . , wxn−2d(2n− 1), . . . ,︸ ︷︷ ︸
not present for n−2=ik

wxikd(2), . . . , wxikd(2n− 2)),

(40) v ↔ (vyn−1d(1), . . . , vyn−1d(2n− 2), . . . ,︸ ︷︷ ︸
not present for n−1=ik+1+1

vyik+1+1d(1), . . . , vyik+1+1d(2n− 3)),

one obtains the (positively oriented) sequence of cliques of Γ̃.

Proof. The cliques of Γ are of alternating orientation (see Remark 15), and any
its clique can be obtained by another by a sequence of rotations (see Proposition
9 (3)). In particular, the clique coming next to w (which is, as such, negatively
oriented) is obtained by a rotation around the x–coloured vertex of w, hence is
uniquely written as wxik (see the proof of point (3) of Proposition 9). By iteration,
one obtains the sequence (37), thus proving (1).
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w

c0c1

c1

cn−1

c0

c1

cn 1−wxik+1

wxn−1
wxik = v

wx

wxik−1

Γ̃

Γ

cn−1(wxikyn−1) = c0(wxikyn−2)
wxik+2 cn−1(wxikyn−1) = c0(wxikyn−2)
wxik+2

wxikyik+1 = vyik+1wxikyik+1 = vyik+1

Figure above shows the n cliques pivoted at the x–colour vertex of the (positively
oriented) clique w. Starting from w itself and running counterclockwisely, I meet
the internal cliques wx, . . . , wxik−1 (highlighted in red), then the next (negatively

oriented) clique v = wxik of Γ. It is convenient (since they will form the cycle Γ̃) to
list clockwisely the remaining n− ik − 1 cliques, i.e., those outside Q, namely

wxn−1, wxn−2, . . . , wxik+1

(highlighted in blue).
Now the 2n–gon of Pn determined by the two consecutive cliques wxn−2, wxn−1,

is precisely wxn−2Pn; continuing until the 2n–gon wxikPn, I obtain exactly n− ik−1
2n–gons. The cliques wxn−2 = wxn−2d(0) and wxn−1 = wxn−2d(1) of wxn−2Pn
will be inside Q̃: hence, the remaining ones, i.e., wxn−2d(2), . . . , wxn−2d(2n − 1),

are those which will contribute to Γ̃ (highlighted in green). Repeating this for
n−3, . . . , ik+1, explains the underbraced part of (39). The last 2n–gon, i.e., wxikPn
has three cliques inside Q̃, namely wxikd(2n − 1), wxikd(0) = wxik (which belongs

to Q), and wxikd(1): hence, the ones belonging to Γ̃ are wxikd(2), . . . , wxikd(2n−2)
(highlighted in purple), and this explains the remaining part of (39).

Let me pass to a negatively oriented clique v (for simplicity, v = wxik). The
(clockwise) list of the cliques outside Q, obtained by rotating v around its y–vertex,
is

vyn−1, vyn−2, . . . , vyik+1+1

Again I obtain n− ik − 1 2n–gons. So, any vertex of Γ intersects exactly n− ik − 1
2n–gons lying outside Q: hence (38) holds true and (2) is proved.

Now observe that the 2n–gon determined the two consecutive cliques vyn−2,
vyn−1 is precisely vyn−1Pn: indeed, the former is vyn−1d(2n − 1) and the latter is
vyn−1d(0). Hence, the remaining cliques vyn−1d(1), . . . , vyn−1d(2n − 2) are those

which will contribute to Γ̃. Repeating this for n − 2, . . . , ik+1 + 2, one obtains the
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underbraced part of (40). The last 2n–gon, which is vyik+1+1Pn, base three cliques

inside Q̃: vyik+1+1d(2n − 2), vyik+1+1d(2n − 1) = vyik+1 (which belongs to Q), and
vyik+1+1d(0). The remaining ones, vyik+1+1d(1), . . . , vyik+1+1d(2n − 3) explain the
last part of (40) and are highlighted orange in figure at page 64.

Observe that in the Euclidean case (n = 3), an hexagon intersecting Q must be
adjacent to it: hence, the underbraced parts of (39) and (40) must be suppressed. �

The meaning of the numbers ik’s is that 2π ik
n

represents the internal angle of

Γ at its kth vertex (according to the sequence (37)): on this concern, it is worth
observing that the algorithm of Proposition 10 does not requires Q to be convex,
i.e., large values of ik are allowed (though not useful for the present purposes). In
the Euclidean case, ik = 2 is already a “large” value: hence no hexagon at all will
be added by the algorithm; there are only three hexagon around any vertex, and if
one is “inside” Q (i.e., ik = 1), the remaining two ones must be “outside”, and both
must have an edge in common with Q (whence the disappearance of the underbraced
parts of (39) and (40), which would correspond to an hexagon having just one vertex
in common with Q).

Proof of Corollary 7. For n = 2, the group D(n, n, n) is finite (see Section
1.2), so there is nothing to prove.

Let n ≥ 3. Define d on N1 := {0, 1, . . . , 2n − 1} as in Remark 16. Let P̃n the
enlargement of Pn, constructed as in Proposition 10, and use the current definition
of d to extend it to N1 ∪N2, where N2 ⊆ N0 rN1 is in one–to–one correspondence

with the set of cliques C
(
∂P̃n

)
r C(∂Pn). In order to fill up the whole N0, I choose

N2 in such a way that, together with N1, it forms an interval.
It remains to be noticed that the boundary of all successive enlargements of

Tn are always regular, i.e., Proposition 10 can be used to recursively define the

bijection d between N0 = ∪∞j=1Nj and C(∂Pn) = ∪∞j=1(C(∂P
(j+1)
n )rC(∂P

(j)
n )), where

P
(j+1)
n = P̃

(j)
n and P

(1)
n = Pn. �

Let now n > 3, and consider the jth enlarged polygon P
(j)
n defined in Corollary

7.

Corollary 9. The elements d(3)j and d(2n − 3)j belong to C
(
∂P

(j)
n

)
r

C
(
∂P

(j−1)
n

)
, for all j > 1, and [d(3)n, d(2n− 3)n] 6= 1.

Proof. The first statement is a direct consequence of Proposition 10. Notice
that the second part of (39), i.e., wxikd(2), . . . , wxikd(2n − 2) can be rewritten as
vd(2), . . . , vd(2n− 2). Obviously, d(3)1 = d(3) (resp. d(2n− 2)1) belong to C(∂Pn).

The second statement is checked by explicitly computing the Möbius transforma-
tions (see Section 4.2) associated with d(3)j = (xyx)j and d(2n− 3)j = ((xy)n−2x)j.
What is worth to be noticed is that it would be impossible to calculate the commu-
tator [d(3)n, d(2n−3)n] in standard algebraic way, since it is an exponential function
of n. Thanks to the geometric interpretation, I can apply the formula for the nth

(and −nth) power of unimodular matrix (which is based on Chebyshev polynomials
of the second kind, see, e.g., [8]) to the elements uvu and v−1u−1v−1 = (uv)n−2u,
where

u =

(
cos π

n
− sin π

n
sin π

n
cos π

n

)
and v =

(
cos π

n
−β sin π

n
(sin π

n
)/β cos π

n

)
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are a counterclockwise rotation matrices through an angle 2π/n about vertex x = i
and y = βi respectively. Remember that on hyperbolic plane the length of the edges
(of regular polygons), i.e., β is depending on the choice of the interior angles, so of

n, therefore it can be computed from the equation β + 1
β

=
2 cos π

n

1−cos π
n

. Now is easy to

quantify the sought–for commutator. Since the output is not in an affordable form,
it is enough to consider for example only the second entry of it and notice that it is
function of n always growing different from zero for any n ≥ 4.

�

H K

y

d(0) = w = 1

d(1) = wx = v

d(2) = wxy = vy

wx2 = wxd(1) = x2

wxd(2) = x2y

wxd(3) = (y2x)−1x

wxd(4) = xy2x2

wxd(5) = vy2d(0) = xy2

vy2d(1) = xy2x

vy2d(4) = xyx2

d(1) = wx = v

d(2) = wxy = vy

d(3) = xyx

d(4) = xyxy

d(5) = xyxyx = y2

d(4) = xyxy

d(5) = xyxyx = y2

wx2 = wxd(1) = x2

wxd(2) = x2y

wxd(3) = (y2x)−1x

wxd(4) = xy2x2

wxd(5) = vy2d(0) = xy2

vy2d(1) = xy2x

vy2d(2) = (yx2)−1xyvy2d(2) = (yx2)−1xy

vy2d(3) = xyx2y2

vy2d(4) = xyx2

Above figure shows how the cliques enumeration algorithm works for n = 3.
The white hexagon is P3, whose perimeter Γ := ∂P3 is described by the map d (see
Remark 14). Notice that the six cliques of Γ (in red colour) constitute a six–entries
string of the form (37). Then the two coloured hexagons are obtained by a polygonal
enlargement (see Proposition 10), the pink (resp., grey) one corresponding to the
clique w (resp., v). Their green coloured cliques are precisely those obtained by
replacing w (resp., v) by (39) (resp., (10)). The blue cliques are those belonging to

C
(
∂P̃3

)
r C(∂P3), but not to the enlarged perimeter Γ̃.

Example 19. The enlargement of the sub-tessellation Q ⊆ P3 (soft grey) is
accomplished by adding all the hexagons (hard gray) which have a vertex lying on
the (not convex) polygon Γ = ∂Q (red line).
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The number of added hexagons depend on the internal angles of Γ.

8.2. The genus of the group

In the previous Chapter 7 I have showed the relationship between two abstract
procedures to associate a graph to the von Dyck group, in such a way that the group
acts on it: undoubtedly, among them the Cayley graph is a much more broadly
exploited construction, being linked to the important notion of the genus of a group
(i.e., the smallest genus of a surface where its Cayley graph can be embedded),
introduced in 1972 by A.T. White [58]. On the other hand, except for some sparse
and marginal papers, there are no remarkable group theoretic applications of the
theory of coset geometries.

Now the coset geometry can be regarded as the 1–skeleton of a tessellation on
which the von Dyck group acts transitively, and as such it is linked to the notion of
the strong symmetric genus of a group (i.e., the smallest genus of a surface on which
the group acts by orientation–preserving isometries [55]). It should be stressed
that, all constructions being D(a, b, c)–equivariant, the results obtained descend to
the factors of D(a, b, c) which, as observed by P.M. Neumann in 1973, constitute in
fact a very large family [38]. In particular, I can recast (by using perhaps a simpler
method) a result of T. W. Tucker [55].

Corollary 10 (T. W. Tucker, 1983). Let S
K

be a compact surface. Then the

Cayley graph of D(a,b,c)
K

, with respect to the generating set {xK, yK}, is embedded

into S
K

in a D(a,b,c)
K

-invariant way.

Remark 17. In spite of the name “duality” used before, the passage from a
tessellation to its derivative cannot be easily inverted. An easy consequence of

Corollary 10 is that the genus of D(a,b,c)
K

is bounded by its strong symmetric genus:
a procedure to recover a tessellation out of its derivative would allow to prove the
converse as well.

8.3. The Burnside group as a quotient of the von Dyck group

Constructing the Cayley graph of a group is the same as solving the word problem
for it (see Section 9.2). The duality between the Cayley graph and the coset geometry
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discussed in Chapter 7 may provide an effective way to construct the Cayley graph
of the von Dyck groups, as well as of its factors. Consider, for example, the groups
D(n, n, n), which they are important since they cover the free Burnside groups
B(2, n) (see Definition 8), as noticed by some authors (see, e.g., [56, 20]). In this
case, Pn (see Definition 49) is made of regular 2n–gons, and the whole tessellation
can be constructed algorithmically by means of subsequent “enlargements” of the
basic polygon P0 (see Corollary 7).

Corollary 7 becomes more interesting when it descends to the factors ofD(n, n, n),
for instance, B(2, n). It is well–known that the latter can be obtained by factoring
the former by the nth powers subgroup Kn := D(n, n, n)n. In 1986 A.M. Vinogradov
proposed an algorithmic way to check the finiteness of the Fuchsian B(2, n)’s, i.e.,
those with n > 3, based on the computation of a fundamental domain for Kn in
the hyperbolic plane [56] (see also [48]).1 In turn, to run such an algorithm, it is
necessary to effectively list the elements of Kn: an enumeration of the elements of
the subgroup Kn based on the result of Corollary 7 will be certainly more efficient
than the standard lexicographic method.

Indeed, from Corollary 9 it immediately follows that Kn is infinite and not
Abelian for n > 3, and this is the last original result of this thesis (see Corol-
lary 11 later on), showing once again how geometric methods can effectively lead to
algebraic results.

Example 20 (A toy model: B(2, 3)). Up to isomorphisms, there are only 5
groups of order 27 [44], and a unique one which is meta–abelian without being
abelian, has two generators, has exponent 3, and also possesses a cyclic derived
subgroup:

(41) B(2, 3) = 〈x, y | x3 = y3 = [x, y, x] = [x, y, y] = 1 〉.

The group (41) is the free Burnisde2 group and (see [20, 26]) any of its element w
can be written as

(42) w = xayb[x, y]c, a, b, c ∈ {0, 1, 2}.

Figure below displays the coset geometry of B(2, 3) which, as a quotient of ∂P3,
can be embedded in a domain in R2 with some identifications on its boundary; each
edge is labeled by the corresponding element of the group, according to the three
parameters (42). The derived tessellation T ′3 (see Section 5.1 and Section 5.3) is
also shown: the triangular cycles correspond to the generators x and y, while the
hexagonal ones correspond to their product xy.

1The planar case is useful for understanding the behavior of the algorithm: in Figure 69 a
fundamental domain of B(2, 3) is represented as the intersection of the three bands in the plane
bounded by the lines passing through the edges with the same colour. The algorithm produces
exactly such bands, and stops when the intersection becomes a closed polygon which, in this toy
model, occurs after three steps.

2A nice and exhaustive review on Burnisde problem can be found in Section 6.8 of H.S. Cox-
eter’s book [16].
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2

(0,0,0)

(0,0,1) (0,0,2)

(0,1,0)

(0,1,1) (0,1,2)

(0,1,2)

(0,2,0)
(0,2,1)

(0,2,2)

(1,0,0)
(1,0,1)

(1,0,2)

(1,1,0) (1,1,1)

(1,1,2)

(1,2,0) (1,2,1)

(1,2,2)

(1,2,2)

(2,0,0)

(2,0,1)

(2,0,1)

(2,0,2)

(2,1,0) (2,1,1)

(2,1,2)

(2,2,0)

(2,2,1)
(2,2,2)

The coset geometry of B(2, 3) is overlaid by its Cayley graph. This is a geometric
evidence of the finiteness of B(2, 3): there are exactly 27 edges in the coset geometry,
which correspond to the 27 vertices of the Cayley graph.

Corollary 11. K2 is trivial, K3 is the infinite abelian subgroup generated by
the cubes of the three translations xy2, y2x and xyx, while Kn is an (infinite) non–
Abelian group for all n > 3.

Proof. D(2, 2, 2) is abelian of exponent 2, so K2 = 1. As a subgroup of rigid
motions of R2 (see Section 1.2 and also Section 7.2), any element d ∈ D(3, 3, 3)
can be written as rt, where r is a rotation and t a translation. It follows that
d3 = r3tr

2
trt, i.e., d3 is a composition of translations. Hence, K3 ≤ R2 is the lattice

made of the centers of a regular hexagonal tiling of thrice the size as the basic
hexagon of P3, and as such it is generated by the three vectors xy2, y2x and xyx.

When n > 3, Corollary 9 shows that d(3)n and d(2n − 3)n are aperiodic non
commuting elements of Kn, which is then infinite and not abelian. �

8.3.1. Final remarks. I worked with the von Dyck group just because the
absence of reflections makes everything easier; the passage to the full triangle group
requires more care, but it can be done relying on standard techniques of double
coverings.

8.4. Computational experiments

The methods and the techniques used to solve the Burnside problem are incom-
parable: just look at the proofs of the finiteness of B(2, 3) and B(2, 3) in Sections
1.3.4 and 1.3.5 respectively. Some proofs, like this of the infiniteness of the free
Burnside groups of a large odd exponent, originally proved by S.I. Adian and P.S.
Novikov [40] in 1968 using combinatorial methods take several hundreds of pages!

However, recently T. Delzant and M. Gromov [17] provided a new proof of it by
a geometrical approach of small cancellation theory (see [22]).
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Here I present an algorithm, implemented in Wolfram MathematicaTM, which
determines the fundamental domain of the Burnside group with 2 generators of or-
der n.

8.4.1. A toy model: n = 3. The group B(2, 3) is a quotient of the planar
von Dyck group (see Definition 5). This fact make it easier to write an algorithm
establishing the fundamental domain for this group, since I deal just with Euclidean
plane.

As a first thing, I define the matrices of rotation corresponding to the two gen-
erators. I have to underline that one of the vertices of the basic triangle is the point
(0, i).
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The next step is to create the list of the elements of Kn (see Section 8.3):
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� = ����[]�

���� = �� � ≤ ������[�]� �++�

� = {{�� �� �}� {�� �� �}� {�� �� �}}�
� = �[[�]]�

���� = �� � ≤ ������[�]� �++�

�����[�� �] ⩵ ��

� = ��������������� �[[�]]�

� = ��������������� �[[�]]



�

� = ������[�� �����������[�� �] // ��������]



�

And realize this elements as transformations of the plane:

� = �������������������������������������������������
� π

�
� {�� �}

� = ��������������������

����������������������������������������
� π

�
� {�� �}�

���������������[{��������������[�]� {-�� �}}]

� = ��
� = ����[����[�]]
���[� = �� � < �� �++�

� = ������[�� ����[�]]
]�

������� = ��
���[� = �� � ≤ �� �++�

� = ������[�]�
� = ������[����[�]]�
���[� = �� � ≤ �� �++�
� = �[[�]]� �� = ������[�]�
��[�� ⩵ ��
� = �����[�]�
���[� = �� � < �� �++�
� = ������[�� ������[�� �]]�
��[���[� + �� �] ⩵ ��
������� = ������[�������� ������[�� �]]

]

]

]

]

]�
� = ����[�������� {�� � - �}]

� = ����[]�

���� = �� � ≤ ������[�]� �++�

� = {{�� �� �}� {�� �� �}� {�� �� �}}�
� = �[[�]]�

���� = �� � ≤ ������[�]� �++�

�����[�� �] ⩵ ��

� = ��������������� �[[�]]�

� = ��������������� �[[�]]



�

� = ������[�� �����������[�� �] // ��������]



�
Then I need to calculate the axis of the line segment joining the point (0, i) with

its image after the transformations from the list above.
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����[{ � }� {�� -��� ��}� ��������� → {{-�� �}� {-�� �}}]

-4 -2 2 4

-3

-2

-1

1

2

3

4

� = ����[]

{}

���� = �� � ≤ ������[�]� �++� � = ����������������������[�[[�]]][�]�

� = �������� (�[[�]] - �[[�]]) � ==

-(�[[�]] - �[[�]]) � +
�[[�]]�� - �[[�]]�� + �[[�]]�� - �[[�]]��

�
 

�

� = ����[]

���� = �� � ≤ ������[�]� �++� � = ����������������������[�[[�]]][�]�

� = �������� (�[[�]] - �[[�]]) � +

(�[[�]] - �[[�]]) � -
�[[�]]�� - �[[�]]�� + �[[�]]�� - �[[�]]��

�
> � 

�

{}

Case3.nb  ���3

As a result I obtain a closed polygon —hexagon — in which the fundamental
domain is contained:

�����������[� ⩵ �� {�� -��� ��}� {�� -��� ��}]

-10 -5 0 5 10

-10

-5

0

5

10

4 ���  Case3.nb

Finally, to obtain a for better visualisation of the result, I outline it with coloured
half–planes:
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����������[�� {�� -��� ��}� {�� -��� ��}]
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8.4.2. The general case. The hyperbolic case starts from the order n = 4, on
which I base on here. Of course, n can be freely chosen. It should be taken into
account that, as n passes from 3 to 4 in B(2, n) the order of B(2, n) increases from
27 to 4096!

Like in the Euclidean case, I fix one vertex of the basic triangle on the point
(0, i). Since there exists a close dependency between the angle of a given triangle
(by setting number n) and the other two vertices of the triangle (see Proof at the
page 65), it useful to find them automatically:ClearAll@n, ¶, Β, ¿, u, v, R, B, z, w, R2, Rlist,

Blist, Tlist, b1, b2, s, f, fp, l, t, a, L, M, fd, W, aa, bbD

n = 4;

¶ = Pi �n;

¿ =
2 *Cos@¶D
1 - Cos@¶D

;

s = FullSimplifyBSolveBΒ +
1

Β
== ¿, ΒFF;

b1 = Β �. s@@1DD;
b2 = Β �. s@@2DD;

If @1 > b1 > 0 , Β = N@b1D,
Β = N@b2DD

0.216845

u = 88Cos@¶D, -Sin@¶D<, 8Sin@¶D, Cos@¶D<< �� Simplify;

v = 88Cos@¶D, -Β *Sin@¶D<, 8Sin@¶D � Β, Cos@¶D<< �� Simplify;

R = :-
1

2
H-1 + ΒL Tan@¶D,

1

2
H1 + ΒL2

- H-1 + ΒL2 Sec@¶D2 >

B = 80, Β<
Rlist = List@RD;
Blist = List@BD;

80.391577, 0.252017<

80, 0.216845<

ForBi = 1, i < 4, i++,

z = Last@RlistD@@1DD + I *Last@RlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Rlist = Append@Rlist, R2D;
z = Last@BlistD@@1DD + I *Last@BlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Blist = Append@Blist, R2D

F

And then I define the matrices of rotation:

ClearAll@n, ¶, Β, ¿, u, v, R, B, z, w, R2, Rlist,

Blist, Tlist, b1, b2, s, f, fp, l, t, a, L, M, fd, W, aa, bbD

n = 4;

¶ = Pi �n;

¿ =
2 *Cos@¶D
1 - Cos@¶D

;

s = FullSimplifyBSolveBΒ +
1

Β
== ¿, ΒFF;

b1 = Β �. s@@1DD;
b2 = Β �. s@@2DD;

If @1 > b1 > 0 , Β = N@b1D,
Β = N@b2DD

0.216845

u = 88Cos@¶D, -Sin@¶D<, 8Sin@¶D, Cos@¶D<< �� Simplify;

v = 88Cos@¶D, -Β *Sin@¶D<, 8Sin@¶D � Β, Cos@¶D<< �� Simplify;

R = :-
1

2
H-1 + ΒL Tan@¶D,

1

2
H1 + ΒL2

- H-1 + ΒL2 Sec@¶D2 >

B = 80, Β<
Rlist = List@RD;
Blist = List@BD;

80.391577, 0.252017<

80, 0.216845<

ForBi = 1, i < 4, i++,

z = Last@RlistD@@1DD + I *Last@RlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Rlist = Append@Rlist, R2D;
z = Last@BlistD@@1DD + I *Last@BlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Blist = Append@Blist, R2D

F

The next step is not all-important for the algorithm, but it just help to depict
the procedure. It calculates the points of the first “stripe”, i.e., first rotation of one
vertex of the triangle around the other:
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ClearAll@n, ¶, Β, ¿, u, v, R, B, z, w, R2, Rlist,

Blist, Tlist, b1, b2, s, f, fp, l, t, a, L, M, fd, W, aa, bbD

n = 4;

¶ = Pi �n;

¿ =
2 *Cos@¶D
1 - Cos@¶D

;

s = FullSimplifyBSolveBΒ +
1

Β
== ¿, ΒFF;

b1 = Β �. s@@1DD;
b2 = Β �. s@@2DD;

If @1 > b1 > 0 , Β = N@b1D,
Β = N@b2DD

0.216845

u = 88Cos@¶D, -Sin@¶D<, 8Sin@¶D, Cos@¶D<< �� Simplify;

v = 88Cos@¶D, -Β *Sin@¶D<, 8Sin@¶D � Β, Cos@¶D<< �� Simplify;

R = :-
1

2
H-1 + ΒL Tan@¶D,

1

2
H1 + ΒL2

- H-1 + ΒL2 Sec@¶D2 >

B = 80, Β<
Rlist = List@RD;
Blist = List@BD;

80.391577, 0.252017<

80, 0.216845<

ForBi = 1, i < 4, i++,

z = Last@RlistD@@1DD + I *Last@RlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Rlist = Append@Rlist, R2D;
z = Last@BlistD@@1DD + I *Last@BlistD@@2DD;

w =
u@@1DD@@1DD *z + u@@1DD@@2DD
u@@2DD@@1DD *z + u@@2DD@@2DD

�� Simplify;

R2 = 8Re@wD, Im@wD<;
Blist = Append@Blist, R2D

F

The image of this is:

Graphics@8
8PointSize@LargeD, Red, Point@80, 1<D<,
8PointSize@LargeD, Blue, Point@BlistD<, 8PointSize@LargeD, Yellow, Point@RlistD<<,
Axes ®

TrueD

-1.5 -1.0 -0.5 0.5 1.0 1.5

2

3

4

htri@P_D :=

ModuleB8f = List@D, R = 80, 0<, S = 80, 0<, A = 0, r = 0, i = 1<,

ForBi = 1, i < 4, i++,

R = P@@iDD;
If@i == 3,

S = P@@1DD,
S = P@@i + 1DD

D;
IfBR@@1DD � S@@1DD,
f = Append@f, x - R@@1DDD,

A = :
R@@1DD^2 - S@@1DD^2 + R@@2DD^2 - S@@2DD^2

2 HR@@1DD - S@@1DDL
, 0>;

r = HR - AL.HR - AL;
f = Append@f, FullSimplify@Hx - A@@1DDL^2 + y^2 - rDD

F;

F;
f

F

2   ProgrammaBellaTutto.nb

Then I create a module htri which takes a list of three points and return a list
of three equations in unknowns x and y, representing the hyperbolic lines passing
through the input points:

Graphics@8
8PointSize@LargeD, Red, Point@80, 1<D<,
8PointSize@LargeD, Blue, Point@BlistD<, 8PointSize@LargeD, Yellow, Point@RlistD<<,
Axes ®

TrueD

-1.5 -1.0 -0.5 0.5 1.0 1.5

2
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4

htri@P_D :=

ModuleB8f = List@D, R = 80, 0<, S = 80, 0<, A = 0, r = 0, i = 1<,

ForBi = 1, i < 4, i++,

R = P@@iDD;
If@i == 3,

S = P@@1DD,
S = P@@i + 1DD

D;
IfBR@@1DD � S@@1DD,
f = Append@f, x - R@@1DDD,

A = :
R@@1DD^2 - S@@1DD^2 + R@@2DD^2 - S@@2DD^2

2 HR@@1DD - S@@1DDL
, 0>;

r = HR - AL.HR - AL;
f = Append@f, FullSimplify@Hx - A@@1DDL^2 + y^2 - rDD

F;

F;
f

F

2   ProgrammaBellaTutto.nb

Then — once again just for visualization — the points of first stripe I have to
rewrite in a list of three points sets,
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Tlist = List@D;
For@i = 1, i £ Length@RlistD, i++,

Tlist = Append@Tlist, 880, 1<, Blist@@iDD, Rlist@@iDD<D;
If@i < Length@RlistD,
Tlist = Append@Tlist, 880, 1<, Rlist@@i + 1DD, Blist@@iDD<D,
Tlist = Append@Tlist, 880, 1<, Rlist@@1DD, Blist@@iDD<DD

D

Tlist = Chop@N@TlistDD
8880, 1.<, 80, 0.216845<, 80.391577, 0.252017<<,

880, 1.<, 8-0.391577, 0.252017<, 80, 0.216845<<,
880, 1.<, 8-0.91018, 0.414214<, 8-0.391577, 0.252017<<,
880, 1.<, 8-1.80579, 1.1622<, 8-0.91018, 0.414214<<,
880, 1.<, 80, 4.61158<, 8-1.80579, 1.1622<<, 880, 1.<, 81.80579, 1.1622<, 80, 4.61158<<,
880, 1.<, 80.91018, 0.414214<, 81.80579, 1.1622<<,
880, 1.<, 80.391577, 0.252017<, 80.91018, 0.414214<<<

f = List@D;
For@i = 1, i < Length@TlistD + 1, i++,

f = Append@f, htri@Tlist@@iDDDD
D;

fp = List@D;
For@i = 1, i < Length@fD + 1, i++,

fp = Append@fp, f@@iDD@@1DDD;
fp = Append@fp, f@@iDD@@2DDD;
fp = Append@fp, f@@iDD@@3DDD

D;
ContourPlot@fp � 0, 8x, -7, 7<, 8y, 0, 14<D
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ProgrammaBellaTutto.nb  3

and apply this list to the module htri,

Tlist = List@D;
For@i = 1, i £ Length@RlistD, i++,

Tlist = Append@Tlist, 880, 1<, Blist@@iDD, Rlist@@iDD<D;
If@i < Length@RlistD,
Tlist = Append@Tlist, 880, 1<, Rlist@@i + 1DD, Blist@@iDD<D,
Tlist = Append@Tlist, 880, 1<, Rlist@@1DD, Blist@@iDD<DD

D

Tlist = Chop@N@TlistDD
8880, 1.<, 80, 0.216845<, 80.391577, 0.252017<<,

880, 1.<, 8-0.391577, 0.252017<, 80, 0.216845<<,
880, 1.<, 8-0.91018, 0.414214<, 8-0.391577, 0.252017<<,
880, 1.<, 8-1.80579, 1.1622<, 8-0.91018, 0.414214<<,
880, 1.<, 80, 4.61158<, 8-1.80579, 1.1622<<, 880, 1.<, 81.80579, 1.1622<, 80, 4.61158<<,
880, 1.<, 80.91018, 0.414214<, 81.80579, 1.1622<<,
880, 1.<, 80.391577, 0.252017<, 80.91018, 0.414214<<<

f = List@D;
For@i = 1, i < Length@TlistD + 1, i++,

f = Append@f, htri@Tlist@@iDDDD
D;

fp = List@D;
For@i = 1, i < Length@fD + 1, i++,

fp = Append@fp, f@@iDD@@1DDD;
fp = Append@fp, f@@iDD@@2DDD;
fp = Append@fp, f@@iDD@@3DDD

D;
ContourPlot@fp � 0, 8x, -7, 7<, 8y, 0, 14<D
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so, it can be seen all the triangles of the first strip:

Tlist = List@D;
For@i = 1, i £ Length@RlistD, i++,

Tlist = Append@Tlist, 880, 1<, Blist@@iDD, Rlist@@iDD<D;
If@i < Length@RlistD,
Tlist = Append@Tlist, 880, 1<, Rlist@@i + 1DD, Blist@@iDD<D,
Tlist = Append@Tlist, 880, 1<, Rlist@@1DD, Blist@@iDD<DD

D

Tlist = Chop@N@TlistDD
8880, 1.<, 80, 0.216845<, 80.391577, 0.252017<<,

880, 1.<, 8-0.391577, 0.252017<, 80, 0.216845<<,
880, 1.<, 8-0.91018, 0.414214<, 8-0.391577, 0.252017<<,
880, 1.<, 8-1.80579, 1.1622<, 8-0.91018, 0.414214<<,
880, 1.<, 80, 4.61158<, 8-1.80579, 1.1622<<, 880, 1.<, 81.80579, 1.1622<, 80, 4.61158<<,
880, 1.<, 80.91018, 0.414214<, 81.80579, 1.1622<<,
880, 1.<, 80.391577, 0.252017<, 80.91018, 0.414214<<<

f = List@D;
For@i = 1, i < Length@TlistD + 1, i++,

f = Append@f, htri@Tlist@@iDDDD
D;

fp = List@D;
For@i = 1, i < Length@fD + 1, i++,

fp = Append@fp, f@@iDD@@1DDD;
fp = Append@fp, f@@iDD@@2DDD;
fp = Append@fp, f@@iDD@@3DDD

D;
ContourPlot@fp � 0, 8x, -7, 7<, 8y, 0, 14<D
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The next steps, are analogues to the Euclidean case, i.e.,creating the list of
elements of Kn:

l = List@List@1DD
For@k = 2, k < n, k++,

l = Append@l, List@kDD
D;

lpulita = l;

For@k = 1, k £ 3, k++,

L = Length@lD;
M = Length@Last@lDD;
For@i = 1, i £ L, i++,

a = l@@iDD; la = Length@aD;
If@la � M,

t = Total@aD;
For@s = 1, s < n, s++,

l = Append@l, Append@a, sDD;
If@Mod@t + s, nD � 0,

lpulita = Append@lpulita, Append@a, sDD
D

D
D

D

D;
l = Drop@lpulita, 81, n - 1<D
881<<

881, 3<, 82, 2<, 83, 1<, 81, 1, 2<, 81, 2, 1<, 82, 1, 1<, 82, 3, 3<, 83, 2, 3<, 83, 3, 2<,
81, 1, 1, 1<, 81, 1, 3, 3<, 81, 2, 2, 3<, 81, 2, 3, 2<, 81, 3, 1, 3<, 81, 3, 2, 2<, 81, 3, 3, 1<,
82, 1, 2, 3<, 82, 1, 3, 2<, 82, 2, 1, 3<, 82, 2, 2, 2<, 82, 2, 3, 1<, 82, 3, 1, 2<, 82, 3, 2, 1<,
83, 1, 1, 3<, 83, 1, 2, 2<, 83, 1, 3, 1<, 83, 2, 1, 2<, 83, 2, 2, 1<, 83, 3, 1, 1<, 83, 3, 3, 3<<

W = List@D;
For@i = 1, i £ Length@lD, i++,

Z = 881, 0<, 80, 1<<;
a = l@@iDD;
For@j = 1, j £ Length@aD, j++,

If@Mod@j, 2D � 0,

Z = Z.MatrixPower@v, Ha@@jDDLD,
Z = Z.MatrixPower@u, Ha@@jDDLD

D
D;
If@MatrixPower@Z, nD != 881, 0<, 80, 1<<,
W = Append@W, MatrixPower@Z, nD �� SimplifyD

DD
W

4   ProgrammaBellaTutto.nb

And realizing them as the transformations of the plane:
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l = List@List@1DD
For@k = 2, k < n, k++,

l = Append@l, List@kDD
D;

lpulita = l;

For@k = 1, k £ 3, k++,

L = Length@lD;
M = Length@Last@lDD;
For@i = 1, i £ L, i++,

a = l@@iDD; la = Length@aD;
If@la � M,

t = Total@aD;
For@s = 1, s < n, s++,

l = Append@l, Append@a, sDD;
If@Mod@t + s, nD � 0,

lpulita = Append@lpulita, Append@a, sDD
D

D
D

D

D;
l = Drop@lpulita, 81, n - 1<D
881<<

881, 3<, 82, 2<, 83, 1<, 81, 1, 2<, 81, 2, 1<, 82, 1, 1<, 82, 3, 3<, 83, 2, 3<, 83, 3, 2<,
81, 1, 1, 1<, 81, 1, 3, 3<, 81, 2, 2, 3<, 81, 2, 3, 2<, 81, 3, 1, 3<, 81, 3, 2, 2<, 81, 3, 3, 1<,
82, 1, 2, 3<, 82, 1, 3, 2<, 82, 2, 1, 3<, 82, 2, 2, 2<, 82, 2, 3, 1<, 82, 3, 1, 2<, 82, 3, 2, 1<,
83, 1, 1, 3<, 83, 1, 2, 2<, 83, 1, 3, 1<, 83, 2, 1, 2<, 83, 2, 2, 1<, 83, 3, 1, 1<, 83, 3, 3, 3<<

W = List@D;
For@i = 1, i £ Length@lD, i++,

Z = 881, 0<, 80, 1<<;
a = l@@iDD;
For@j = 1, j £ Length@aD, j++,

If@Mod@j, 2D � 0,

Z = Z.MatrixPower@v, Ha@@jDDLD,
Z = Z.MatrixPower@u, Ha@@jDDLD

D
D;
If@MatrixPower@Z, nD != 881, 0<, 80, 1<<,
W = Append@W, MatrixPower@Z, nD �� SimplifyD

DD
W

4   ProgrammaBellaTutto.nb

Then program calculate the axis of the line segment joining the point (0, i) with
its image after transformations from the list above.

fd = List@D;
ForBi = 1, i £ Length@WD, i++, Y = W@@iDD;

aa =
Y@@1DD@@2DD Y@@2DD@@2DD + Y@@1DD@@1DD Y@@2DD@@1DD

Y@@2DD@@1DD^2 + Y@@2DD@@2DD^2
�� Simplify;

bb =
1

Y@@2DD@@1DD^2 + Y@@2DD@@2DD^2
�� Simplify;

fd = Append@fd, Hbb - 1L x^2 + Hbb - 1L y^2 + 2 aa *x + bb - aa^2 - bb^2 > 0 �� Simplify D F

fd

9-1.88963 - 2.74948 x - 0.999725 x2 - 0.999725 y2,

-4.18405 ´1010 + 0. x + 204 549. x2 + 204 549. y2, -1.88963 + 2.74948 x - 0.999725 x2 - 0.999725 y2,

-0.528982 - 1.45482 x - 0.999854 x2 - 0.999854 y2,

-0.99999 - 2. x - 0.99999 x2 - 0.99999 y2, -40.1544 - 12.6741 x - 0.99608 x2 - 0.99608 y2,

-40.1544 + 12.6741 x - 0.99608 x2 - 0.99608 y2, -0.99999 + 2. x - 0.99999 x2 - 0.99999 y2,

-0.528982 + 1.45482 x - 0.999854 x2 - 0.999854 y2, -0.61075 - 1.56301 x - 1. x2 - 1. y2,

-1.02676 - 2.02658 x - 1. x2 - 1. y2, -1.18844 - 2.18031 x - 1. x2 - 1. y2,

-1.88952 - 2.74919 x - 1. x2 - 1. y2, -2.38558 - 3.08907 x - 1. x2 - 1. y2,

-3.12602 - 3.53611 x - 0.999999 x2 - 0.999999 y2, -25.2741 - 10.0547 x - 1. x2 - 1. y2,

-50.7334 - 14.2455 x - 1. x2 - 1. y2, -1078.93 - 65.6942 x - 0.999999 x2 - 0.999999 y2,

-1.75064 ´1021 + 0. x + 4.18407 ´1010 x2 + 4.18407 ´1010 y2,

-1078.93 + 65.6942 x - 0.999999 x2 - 0.999999 y2,

-50.7334 + 14.2455 x - 1. x2 - 1. y2, -25.2741 + 10.0547 x - 1. x2 - 1. y2,

-3.12602 + 3.53611 x - 0.999999 x2 - 0.999999 y2, -2.38558 + 3.08907 x - 1. x2 - 1. y2,

-1.88952 + 2.74919 x - 1. x2 - 1. y2, -1.18844 + 2.18031 x - 1. x2 - 1. y2,

-1.02676 + 2.02658 x - 1. x2 - 1. y2, -0.61075 + 1.56301 x - 1. x2 - 1. y2=

ContourPlot@fd � 0, 8x, -1, 1<, 8y, 0, 2<D
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6   ProgrammaBellaTutto.nb

Unfortunately, the overall process is still “too heavy” for a standard PC, and I
was not able to get the expected result.



CHAPTER 9

Appendix

9.1. A survey on existing group–to–graph correspondences

The backbone of this thesis is the idea of associating a graph to a group, in order
to obtain a visual perspective on the group itself. I tried to show that, in certain
cases, such point of view can actually indicate an advantageous way to prove old
and new algebraic results. The huge literature revolving around this idea gives a
feeling that the number of ways in which a graph can be associated to a group is
limited just by one’s imagination. Let me just recall here a few of them, which are
probably the most successful ones.

9.1.1. Schreier coset graph. This is a particular case of a Cayley graph (see
2.4). Such a graph is associated to a group G, a generating set S ⊆ G, and a
subgroup H 6 G. The difference with the standard Cayley graph is that the vertices
here are the right cosets of H. For more information, look for example [52].

9.1.2. Graph of maximal subgroups. Another way, which can be found,
e.g., in the paper [29] by M. Herzog, P. Longobardi and M. Maj, is to associate to a
finitely generated group a graph in which the maximal subgroups of a given group are
the vertices, and where two vertices are connected by an edge if the corresponding
subgroups intersect each other non–trivially.

9.1.3. Hasse diagram. Such a diagram [59] is usually associated to a finite
partially ordered set. Since the set of all subgroups of a given group can be seen
as a partially ordered set, it is very natural to associate vertices to subgroups. Fur-
thermore, if one subgroup is contained into another, with no intermediate subgroup
properly between them, then an edge connects them, as it can be seen from the
example of D4 (the dihedral group, see Example 3). The whole D4 group has 8 per-
mutations and this has 9 subgroups:3 subgroups with 4 permutations, 5 subgroups
with 2 permutations, 1 trivial identity permutation.
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9.1.4. Non–cyclic graph. Another related graph is the non–cyclic graph which
is obtained by connecting vertex one with another if and only if the subgroup gen-
erated by them is not cyclic and then removing isolated vertices. This graph has
been studied for example in [1].

9.1.5. Conjugacy graph. This is an example where the vertices are not ele-
ments, but conjugacy classes of the group instead. It is a graph related to conjugacy
classes, where two vertices are connected if their cardinalities are not coprime. More
about it can be found in [7].

9.1.6. Graph of groups. A somehow different construction involving groups
and graphs is the so–called a graph of groups [4] which is an object consisting of
a collection of groups indexed both by the vertices and the edges of a given graph,
together with a family of monomorphisms from the edge groups into the vertex
groups.

Besides these examples, there are of course many more associations. It can be
very useful to understand which properties these associated graphs possess and how
these properties are related to the algebraic properties of the group (or viceversa).

9.2. The word problem for groups

The problem of deciding whether a word in a group G defines the identity element
(or equivalently whether two words define the same element) is the first of the famous
three problems formulated by Max Dehn in 1911. These problems are important for
presentation theory, as well as for its applications.
Let a group G = 〈S,R〉 be defined by means of a given presentation (see 1.1.1). For
an arbitrary word W in the generators, the problem is to decide in a finite number
of steps whether W defines the identity element of G, or not.
The word problem has a simple characterization in terms of the Cayley graph. A
word W ∈ G labels a path starting at the identity and ending at the value of
the word. Evidently, a word represents the identity if and only if such a cycle is
closed. In other words, it holds the next fundamental theorem, which added some
perspective to my thesis.

Theorem 6. G = 〈S,R〉 has soluble word problem if and only if there is an
algorithm capable of constructing any finite portion of Γ(G,S).

Proof. See, e.g., [39]. (See also [35]). �
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Möbius , 41
meta–abelian, 11, 14
nilpotency class, 11, 14
nilpotent, 11, 14
periodic, 12
permutations, 48
representation, 48
symmetry, 50
torsion, 12
triangle, 11
Von Dyck, 12

Hasse diagram, 76
Homotethy, 36

Incidence system, 28
rank, 28

Inversion, 35
Isolated vertices, 26
Isometry, 33

Lobachevsky plane, 35
Loop, 18

Map
equivariant, 49

Metric
Riemann, 32

Model
Klein, 36
Lorentz, 36

Near sets, 25

Orbit, 49
type, 49

Path, 19
length, 19

Polygon, 42
basic, 44

Pregeometry, 28
Presentation, 9

Projection
canonical, 49

PSL (2,C), 36
PSL (2,R), 6
P(X), 25

Relation
tolerance, 25

type, 26
Relation, similarity, 25
Relativity

special, 37
Rigid

motion, 35
transformation, 35

Rotation, 35
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