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ABSTRACT 

 

The human polyomavirus JC (JCV) is a small DNA virus responsible for the initiation of 

progressive multifocal leukoencephalopathy (PML), an often lethal disease of the brain 

characterized by lytic infection of oligodendrocytes in the central nervous system (CNS). 

Patients undergoing immune modulatory therapies for the treatment of autoimmune diseases 

such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS 

patients, are in the high risk group of developing PML. Previous studies suggested that soluble 

immune mediators secreted from PBMCs inhibited viral genomic replication. However little is 

known regarding the molecular mechanism of this regulation. Here we investigated the impact of 

conditioned media (CM) from activated PBMCs on viral replication and gene expression by 

molecular virology techniques. Our data showed that viral gene expression as well as viral 

replication was suppressed by the CM.  Further studies revealed that soluble immune mediators 

from PBMCs possessed a dual control on T-antigen expression at transcription and post-

transcription level. These observations demonstrate a novel role of immune mediators in 

regulation of JCV gene expression, and provide a new avenue of research to understand 

molecular mechanism of viral reactivation in patients who are at risk of developing PML. 
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CHAPTER 1 

 INTRODUCTION 

	  

1.1 Polyomaviruses 

Polyomaviruses were originally classified as Papovaviridae, which included both 

polyomaviruses and papillomaviruses. In 2000, the International Committee on the Taxonomy 

of Viruses split the family into Polyomaviridae and Papillomaviridae. Polyoma stems from the 

Greek words "poly," meaning many, and "oma," meaning tumors, as many of these viruses have 

been found to cause tumors in non-native host species.  

There are 15 known polyomaviruses. They can infect a diverse array of species from humans to 

non-human primates, murinae, bovinae, and aves (Table 1). The most commonly studied 

polyomaviruses are the simian virus 40 (SV40), mouse polyoma, and human polyomaviruses 

JCV and BKV. Over the past few years, new human polyomaviruses have been discovered after 

the screening of infected human respiratory secretions and tumor tissues. The first among these 

new human polyomaviruses was discovered by sequencing DNA in respiratory secretions and 

analyzing its sequences using GenBank. The analysis results suggested that the discovered 

DNA molecule presented a circular structure homologous to polyomaviruses. Furthermore, its 
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genes were found to be closely related to the early genes of polyomaviruses, such as JCV, BKV 

and SV40, while the late genes were found to be quite divergent.  

This first new human polyomavirus has been named "KIPyV" (or "KI") after its 

discovery at the Karolinska Institute. Its infectivity and effect on humans has not been 

characterized.  

Simultaneous to the KI discovery, another polyomavirus was identified in patients with 

respiratory disorders. This virus was isolated using patient nasal secretions and it was named 

“WU” because it was discovered in a research lab at Washington University. WU viral genes 

were found to be similar to those of SV40, BKV and JCV, although a low homology, ranging 

between 30% and 40%, to these already known polyomaviruses was found. However, when WU 

was compared to the newly discovered KI, investigators found a much higher homology with it, 

about 65%. Interestingly, the WU virus is ubiquitous across human races and populations. In fact 

it has been isolated in most continents and in patients whose ages range between 3 and 53 years 

old. Similar to the KI virus, WU does not seem to be contagious or capable of replicating in 

respiratory cells. In some studies, it has been hypothesized that WU and KI viruses belong to a 

separate branch of the human polyomavirus family and that they share common characteristics 

with murine or simian families. 

The third newly discovered human polyomavirus has been called Merkel Cell 

Polyomavirus (MCP), because it was isolated from the analysis of Merkel Cell Carcinoma 

(MCC). In addition, MCP has been hypothesized to be the cause of the tumorigenesis seen in 

MCC. MCC is an aggressive form of skin cancer, commonly found in elderly people and 

immunodepressed patients. As this cancer’s phenotype was similar to that of Kaposis’ sarcoma 

(tumors caused by herpesviruses); MCC viral components were investigated. MCC samples were 
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analyzed using a digital transcriptome subtraction approach, which is a technique developed to 

identify foreign transcripts using cDNA-sequencing data. When this technique was used on MCC, 

it was found that MCC had a genome with homology to other polyomaviruses and that its genome 

was integrated into the tumor DNA. Further, there were sequences resembling large-T, the viral 

capsid proteins and the viral origin. 
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H o st Virus  Characteristics  
 
Human  JC virus (JCV)  • Infects kidney epithelium in healthy patients  

• Infects oligodendrocytes in immuno-  
compromised patients, causing PML  
 

BK virus (BKV)  • Infects kidney epithelium in healthy patients  
• Causes PVAN in transplant recipients  
 

WU  • Found in patients with respiratory syndromes  
 
K I Py V  • Found in respiratory secretions  
 
Merkel Cell polyomavirus • Found in Merkel cell tumors  
 

Monkey  simian virus 40 (SV40)  • Naturally occurring in kidneys of macaques  
• Causes PML-like illness in immuno-  

compromised macaques  
 

simian agent 12 (SA12)  • Found naturally in baboons  
 
lymphotrophicpapovavirus (LPV)  • Found in lymphoblasts of African green  

monkeys 
 

Cattle  bovine polyoma virus  • Common in cattle  
 
Rabbit  rabbit kidney vacuolating virus  • Found in wild rabbits  
 
Mouse  mousepolyoma virus  • Naturally occurring in kidneys of mice  
 

K virus  • Naturally occurring in lung epithelium of mice  
 

Hamster  hamsterpapovavirus • Found to produce tumors in hamsters  
 
Rat  ratpolyomavirus • Found in parotid gland of athymic rat  
 
Parakeet  Budgerigar Fledgling Disease virus  • Causes fatal illness in avian species  

(BFDV)  
 

Table 1:Polyomaviridae. All 15 known polyomavirus family members and their 
associated diseases.(Adapted from Fields Virology, Fifth Edition Knipe and Howley, 2007)  
Legend. PML: Progressive Multifocal Leukoencephalopathy 
             PVAN: Polyomavirus Associated Nephropathy 
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1.2 JCV 

 
JC virus (JCV) is a member of Polyiomaviridae family, characterized by icosahedral capsids, 

circular and double-stranded DNA. Polyomaviruses (PyVs) are renowned for their ability to 

infect a very broad spectrum of species, including humans, other primates, rabbits, rodents and 

birds. (M.J. Imperiale 2001). BL Padgett discovered JCV in brain tissue of a patient (John 

Cunningham) while treating his Hodgkin’s lymphoma. Eventually the patient died of progressive 

multifocal leukoencephalopathy (PML), a lytic infection of the myelin-producing 

oligodendrocytes in the Central Nervous System (CNS) (Padgett et al., 1971). 

JC viral genome is characterized by a specific bipartite organization that is composed of two 

regions, called early and late transcription units, which, despite being similar in size, are 

transcribed in opposite directions. A common hypervariable non-coding control region (NCCR), 

also called a Regulatory Region (RR), divides them. This region contains the origin of 

replication (ORI) as well as promoter and enhancer elements, as shown in Figure1. (Frisque et 

al., 1984). 
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The early region starts transcription before DNA replication begins. This early transcription 

unit is able to encode for early regulatory proteins, such as small-t, Large-T, T’135 and t’165. 

These are produced by alternative splicing of the viral early mRNA. (Frisque et al., 1984; Saribas 

et al., 2010). 

The LT-Ag is the JCV main regulatory protein and is necessary for the viral genome 

replication, for the genome late promoter transactivation and the autoregulation of its own early 

promoter as well. (Saribas. et al., 2010). Although the small-t-Ag function not being completely 

clear, it appears to be responsible for regulating the viral cycle replication and, together with 

Large-T, it pushes the cell into S-phase of cell cycle, where all DNA viruses replicate their DNA 

Figure1:    Reprinted with permission (Ferenczy et al., 2012) 
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(Sariyer IK et al., 2008; TK et al., 2008; Frisque RJ 2001). Large-T antigen and their variants are 

multifunctional, interacting with both host and viral proteins and DNA   (Ferenczy et al.,  2012). 

The late side of the viral genome is transcribed concomitant with DNA replication and it 

encodes for all structural capsidic proteins, VP1, VP2 and VP3, and a small regulatory protein 

Agno, which accumulates mostly around the perinuclear region of the infected cells, but is also 

found in the nucleus in a lesser extent (25-30%)  (Ferenczy et al., 2012). They all result from 

alternatively spliced late pre-mRNA (Saribas et al., 2010). 

The viral DNA is packaged with histones H2A, H2B, H3, and H4 and creates a mini-

chromosome structure that is almost indistinguishable from the host's chromatin. 
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1.3 Regulatory Proteins 

All polyomavirus T-antigens are characterized by four conserved domains: the J domain, 

origin-binding domain (OBD), zinc (Zn)-binding domain, and ATPase domain (Figure 2). 

 

Figure 2: Domain structure and biological activities of SV40 large T antigen and cellular binding partners. (a) SV40 

large T antigen consists of four well-folded domains [ J domain, origin-binding domain (OBD), zinc (Zn)-binding 

domain, and AAA+ ATPase domain; represented by blue ovals] and two large variable disordered regions (shown by 

curves). Boundaries of each domain are indicated by the amino acid residue numbers. The J domain binds to Hsc70 

and functions as its co-chaperone. The J domain also interacts with DNA polymerase (Pol) α primase. The N-terminal 

disordered region immediately downstream of the J domain harbors the LXCXE motif (diamond ). This motif is critical 

for the interaction between the T antigen and the pRb proteins. Additional cellular targets of this region include Bub1 

and Cul7. The OBD binds to the SV40 replication origin, as well as to two host proteins, replication protein A (RPA) 

and Nijmegen breakage syndrome 1 (Nbs1). The Zn-binding domain mediates oligomerization of T antigen. The AAA+ 

ATPase domain binds to and hydrolyzes ATP, which is essential for SV40 T antigen helicase to unwind its template 

DNA during viral DNA replication. This domain also interacts with two cellular proteins, p53 and topoisomerase I 

(Topo I). The C-terminal disordered region contains the host range (HR) activity and the adenovirus-helper function. 

The thick brown curve highlights the region critical for the HR activity. SV40 T antigen also binds the Fbw7 ubiquitin 

ligase through a phosphodegron motif within the HR region. The boxes next to pRb, RPA, and p53 show the crystal 

structures of T antigen in complex with the corresponding cellular targets. Protein Data Bank identifiers (PDB ID) are 

indicated.. Reprinted with permission. ( Ping	  An	  et	  al.,	  2012) 
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The N' terminal region of all T antigens is also known as a J domain, due to  its homology to 

bacterial DnaJ chaperone (Srinivasan et al. 1997). Mutations in the J domain are defective for 

viral DNA replication in cell culture (Peden and Pipas 1992). However, the J domain is 

dispensable for DNA replication in vitro (Collins BS, Pipas JM. 1995). 

This could be explained by considering that the chaperone activity of T antigen is required to 

remove an inhibitor of replication which is already present in cells but that has been eliminated 

from cell-free replication systems.  

The J domain of SV40 also binds and stimulates Hsc70, assisting in the release of bound cell 

cycle regulators. Hsc70 only interacts with cell cycle regulators when it is bound by SV40 Large-

T.  It is known that the binding of Hsc70 to Large-T is a critical step for the viral lifecycle. In 

fact, when this interaction does not occur, Large-T is unable to enhance replication of viral DNA 

(Borowiec et al., 1990).  

Moreover, the J domain allows E2F transcription factors to dissociate from retinoblastoma 

(Rb) proteins. The released E2F is capable of binding to DNA, stimulating the transcription of its 

products, and causing cell cycle progression (Wu et al. 2004).  Large-T (LT) is able to interact 

with retinoblastoma (Rb) family members through its LXCXE motif and with p53 in its C' 

terminal ATPase domain (Wessel et al., 1992). 

Interactions of LT with p53 and Rb allow for cell cycle progression. This is a key step in the 

lifecycle of polyomaviruses without this step the genome is not replicated and the capsid proteins 

are not produced. The dissociation of E2F requires the binding of Rb and the LT J domain 

activity to work in cis (Srinivasan et al., 1997). 

The OBD is a sequence-specific DNA-binding domain that recognizes the sequence 

GAGGC. The viral ORI is centered by four of these elements and this interaction is essential for 
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the initiation of viral DNA replication. Another essential mechanism for replication is the 

association of OBD with replication protein A (RPA), as shown in Figure 2 and Figure 3. 

 

Figure 3: Simian virus 40 (SV40) large T antigen is the master molecule directing viral DNA replication. (a) Simplified 

schematic of the initiation process of SV40 viral DNA replication. T antigen double hexamer helicase (two sets of six ovals) 

initiates the distortion and melting of SV40 viral origin and subsequently unwinds the double-stranded DNA (dsDNA) template 

bidirectionally (represented by two parallel gray lines). The unwound single-stranded DNA (ssDNA) is shown by disordered gray 

curves. In addition to T antigen, nine cellular factors are required to reconstitute SV40 DNA replication in vitro. The cellular 

proteins that interact with T antigen at this stage are RPA, DNA polymerase α primase, and topoisomerase I (Topo I). 

Replication protein A (RPA) is a ssDNA-binding protein necessary for unwinding the double-stranded template DNA, whose C-

terminal domain is required for interaction with T antigen. DNA polymerase α primase synthesizes RNA primers (short red 

curves) about 11 nucleotides in size, which serve as a starting point of DNA synthesis. Topo I and II function to resolve 

topological problems caused by unwinding and to establish and maintain the double helical configuration of daughter dsDNA. 

(b) Replication elongation of SV40 DNA. SV40 T antigen helicases continue to unwind template DNA and recruit RPA, α 

primase, and Topo I through specific interactions. More cellular replicative factors are involved in the elongation process. 

Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) facilitate the switch from α primase to DNA 

polymerase (Pol) δ, which then extends the nascent ssDNA (blue curves) from the primer. For synthesis of the lagging strand, the 

α primase has to produce primers repeatedly. (c) During the termination stage of viral DNA replication, RNase H and 

maturation factor 1 (MF1), a 5′ to 3′ nuclease, are required to remove the primer. Finally, DNA ligase covalently closes the gaps 

of the newly synthesized strands and completes the replication. Reprinted with permission. ( Ping	  An	  et	  al.,	  2012) 

 

The last two domains are characterized by Zn-binding and ATPase domains which together 

constitute the enzymatic core for Large-T’s DNA helicase activity. The former domain is 

responsible for T antigen hexamer formation, which represents the active helicase form, whereas 

the latter domain is responsible for providing the energy needed for this enzyme. In order to 

MI66CH11-Pipas ARI 28 July 2012 17:15

lead to changes in relative positioning of residues between neighboring T antigen monomers
(trans-effect) rather than within the same monomer (cis-effect). The trans-effect in the context of
the hexamer results in the twisting/untwisting between the two layers of the Zn-binding domains
and the AAA+ ATPase domains, as well as the expansion and constriction of the hexameric chan-
nel (Figure 2g), implying that these two conformational changes are coupled to melting of the
origin and continuous unwinding of helicase activity.

In Vitro Replication of SV40 Viral DNA
Replication of the SV40 DNA has been reconstituted successfully in vitro, providing important
insights into our understanding of the mechanisms of eukaryotic DNA replication. Multiple cellu-
lar proteins are needed to complete replication of SV40 DNA (101). The large T antigen interacts
with RPA, DNA polymerase α primase, and Topo I during replication (Figure 3). The domains
and motifs important for mediating these interactions have been mapped through mutagenesis
and biochemical assays (4, 46, 47, 54). Recent NMR studies have provided more information
on hRPA C-terminal-mediated assembly of the SV40 replisome (4) and on the docking site for
α primase on the large T antigen helicase domain (46). Protein-protein interactions between T
antigen and the cellular replication factors are critical for orchestrating the multiple steps involved
in synthesizing progeny viral DNA, although the underlying mechanistic details have not been
completely elucidated.

a Replication initiation
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Simian virus 40 (SV40) large T antigen is the master molecule directing viral DNA replication. (a) Simplified schematic of the initiation
process of SV40 viral DNA replication. T antigen double hexamer helicase (two sets of six ovals) initiates the distortion and melting of
SV40 viral origin and subsequently unwinds the double-stranded DNA (dsDNA) template bidirectionally (represented by two parallel gray
lines). The unwound single-stranded DNA (ssDNA) is shown by disordered gray curves. In addition to T antigen, nine cellular factors
are required to reconstitute SV40 DNA replication in vitro. The cellular proteins that interact with T antigen at this stage are RPA,
DNA polymerase α primase, and topoisomerase I (Topo I). Replication protein A (RPA) is a ssDNA-binding protein necessary for
unwinding the double-stranded template DNA, whose C-terminal domain is required for interaction with T antigen. DNA polymerase
α primase synthesizes RNA primers (short red curves) about 11 nucleotides in size, which serve as a starting point of DNA synthesis.
Topo I and II function to resolve topological problems caused by unwinding and to establish and maintain the double helical
configuration of daughter dsDNA. (b) Replication elongation of SV40 DNA. SV40 T antigen helicases continue to unwind template
DNA and recruit RPA, α primase, and Topo I through specific interactions. More cellular replicative factors are involved in the
elongation process. Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) facilitate the switch from α primase to
DNA polymerase (Pol) δ, which then extends the nascent ssDNA (blue curves) from the primer. For synthesis of the lagging strand, the
α primase has to produce primers repeatedly. (c) During the termination stage of viral DNA replication, RNase H and maturation
factor 1 (MF1), a 5′ to 3′ nuclease, are required to remove the primer. Finally, DNA ligase covalently closes the gaps of the newly
synthesized strands and completes the replication.
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achieve proper helicase functionality, the synergic interaction of OBD, Zn-binding and ATPase 

is required.  

As a consequence of these domains’ interaction with ORI, nucleotide-binding and hydrolysis 

conformational changes occur. Understanding such conformational changes is fundamental to 

shed light on the mechanisms that regulate the functions of multi protein machines. 

Computational studies suggest that all polyomaviruses have a partially unstructured region 

between J domain and OBD, where several binding motifs for cellular proteins and nuclear 

localization signals can be found. This region is also the target for Rb proteins. 

The specific capacity of J domain alone to adopt different conformations due to its flexible 

nature, predicts that the J domain–Hsc70 chaperone function can be positioned to act on different 

T antigen–cell protein complexes. The role played by small t antigen in JCV infections has not 

been studied in detail yet.  

It has been shown that SV40 small t is able to interact with the protein phosphatase 2A 

(PP2A), which is a cellular phosphatase which plays important roles in both cell growth and 

transformation (Valle et al., 2006).  

SV40 small t is therefore capable of interacting with PP2A and inhibiting its activity. 

 Such inhibition has a stimulating effect on extracellular signal-regulated kinase (ERK) and 

mitogen-activated protein kinases (MAPK) pathways, leading to up-regulation of AP-1 

transcriptional activity (Frost et al., 1994).  

Protein–protein interaction studies have demonstrated that PP2A associates with agnoprotein, 

a  JCV late viral protein highly involved in proper capsid maturation process. PP2A association 

to Agno causes its dephosphorylation at PKC-specific sites. Therefore Sm t-Ag by interacting 

with PP2A, inhibits the dephosphorylation of agnoprotein  (Sariyer et al., 2008).  
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Finally, T' proteins were discovered in 1995 and originally thought to be degradation 

products of large T (Trowbridge and Frisque 1995).  

All of these have the N’ terminal J domain, but their sequences are different at the C’ 

terminus region. Such difference is thought to change the phosphorylation status and therefore 

influence their interactions with the Rb family members p107 and p130 (Bollag et al., 2000 ).  

It is hypothesized that T'135, T'136, and T'165 all play a very important role controlling 

changes in the cell cycle needed for viral replication and transcription (Bollag et al., 2006;.Prins,  

and Frisque 2001 ).  

The T-antigens result from alternative splicing of a common pre-cursor pre-mRNA. They are 

classified as large T, small t, and sliced variants such as T'135, T'136, and T'165. Large-T antigen is 

the major key regulatory protein, and plays a key role in deregulation of cell cycle and also in 

viral DNA replication. To promote all of these actions, Large-T protein is structurally composed 

of a variety of domains capable of interacting with cellular factors. Besides Large-T antigen, 

Small t and the T' proteins also have a regulatory function, but their roles have not been as fully 

characterized. The N' terminal region of all T antigens has been described as a J domain, due to its 

homology to bacterial DnaJ chaperone. This domain has been shown to stimulate the ATPase 

activity of Hsp70 (DnaK) and is able to functionally substitute for the bacterial DnaJ.  

Additionally, human DnaJ homologues can substitute for the SV40 J domain. The J domain 

of SV40 binds and stimulates Hsc70, assisting in the release of bound cell cycle regulators. 

Hsc70 only interacts with cell cycle regulators when it is bound by SV40 Large-T. The binding 

of Hsc70 to Large-T is critical step for the viral lifecycle. In fact, when this interaction does not 

occur, Large-T is unable to enhance replication of viral DNA. 
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Large-T (LT) is able to interact with retinoblastoma (Rb) family members through its 

LXCXE motif and with p53 in its C' terminal ATPase domain (Figure 3). These physical 

interactions have been demonstrated by immunoprecipitation assays of virally infected cells. In 

addition, these contacts are required for the transforming ability of large T, demonstrated by soft 

agar assays. Interactions of LT with p53 and Rb allow for cell cycle progression. Rb negatively 

regulates the E2F transcription factor; large T breaks this association. The released E2F is 

competent to bind to DNA, stimulate the transcription of its products, and cause cell cycle 

progression. This is a key step in the lifecycle of polyomaviruses: without cell cycle progression, 

the genome is not replicated and the capsid proteins are not produced. The dissociation of E2F 

requires the binding of Rb and the LT J domain activity to work in cis.  

Recently, microRNAs (miRNAs) were found during the late phase of the JCV lifecycle. 

PolyomavirusmiRNAs were first discovered in SV40, using an algorithm aimed at recognizing 

pre-miRNA in small genomes. A pre-miRNA was identified in the SV40 genome that produced 

a hairpin capable of being processed by RNA-induced silencing complex (RISC). This hairpin 

was able to produce two miRNAs targeting the early mRNA of SV40. Similar analysis has since 

been performed for JCV. This analysis showed JCV also contains a homologous miRNA that 

targets the early mRNAs. This miRNA is unique in that both cleavage products target the same 

early transcript. The miRNA for JCV down-regulates Large-T antigen late during the viral 

lifecycle. SV40 was still infectious in the absence of the pre-miRNA in vitro. However, it is 

hypothesized the viral miRNAs are important for downregulating Large-T to evade immune 

response in vivo.  

 The role small t plays in JCV infection has not been extensively studied. We can gain 

insights into its role through its known functions in SV40 infection. SV40 small t has been 
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shown to interact with the protein phosphatase 2A (PP2A). PP2A is a cellular phosphatase with 

roles in both cell growth and transformation. SV40 small t interacts with PP2A and blocks its 

inhibition of protein kinase C. This release of inhibition stimulates extracellular signal-regulated 

kinase (ERK) and mitogen-activated protein kinases (MAPK) pathways, leading to increases in 

NF1B gene expression.  

Recently, small t in JCV has also been shown to interact with PP2A. However these studies 

showed this interaction blocked the effect of PP2A on the late viral protein Agno. The authors 

suggest this regulation of Agno is critical for proper capsid maturation. The T' proteins were 

discovered in 1995 and originally thought to be degradation products of Large-T. They all share 

the N' terminal J domain, but their sequences diverge at their C' terminus. This difference is 

thought to change their phosphorylation status and influence their interactions with the Rb family 

members p107 and p130.  

All three are hypothesized to be important to tightly control the changes in the cell cycle 

needed for viral replication and transcription.  
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1.4 Late Proteins 

The late region contains agno, Vp1, 2, and 3. The JC virus capsid is composed of V antigens 

(VAg). Specifically, the capsid consists of 360 molecules of the major coating protein Vp1 

arranged in 72 pentameters, which create an icosahedral shape (Yan et al., 1996). Either one of 

the two minor coating protein, Vp2 or Vp3, lies in the center of each pentameter (Figure 3) 

(Chen et al.,1998). The pentameters are linked together through N’ terminal regions of Vp1 that 

invade the next protein, while the C’ terminal Vp1 tails bind to the adjacent pentameters, tying 

the viron together.  

Vp1 presents a barrel structure with three large exterior loops and it constitutes the outer 

region of the capsid. Vp1 is capable of interacting with cellular receptors (see Figure 4).  
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Figure 4: Vp1 pentamer and virus capsid. (A) JCV Vp1 pentamer created using SwissModel software. The 

structure was created using known SV40 Vp1 structure as a model. The molecule has a #-barrel structure with the 

outer, receptor interacting loops shown in yellow, purple, and red. (B) Vp1 molecules form a pentamer, each color 

indicates a unique monomer. The N' and C' terminal tails from each molecule are used to tie the virion together. 

The N' terminal tails interact within the pentamer, the C' terminal tails tie adjacent pentamers together. Stehle et al, 

Structure 1996, used with written permission from Cell Press. (C) Arrangement of the pentamers on the viral capsid 

surface. The virion has 5- and 6-fold symmetry. Stehle et al, Structure 1996, used with written permission from Cell 

Press. (D) Cross-section of the virion. Inside each pentamer there is a minor protein, Vp2 or Vp3. The minor 

proteins also interact with the viral DNA, which is complexed with histones and act as a bridge for the entire 

structure. Reprinted with permission Kate Manley.  

 

Vp3 and the terminal two-thirds of Vp2 are identical. This shared domain is composed of the 

Nuclear Localization Signal (NLS), the DNA binding domain and the Vp1 interacting domain 

(Barouch and Harrison 1994; Clever et al., 1993; Clever and Kasamatsu 1991; Gharakhanian and 

Kasamatsu 1990).  
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 Vp2 N’ terminus can also be modified by a myristoylation moiety (Figure5). This is a process 

by which a fatty acid is co-translationally added to a protein. Myrostoyl proteins can either be 

cytoplasmatic or membrane-associated. After the methionine is removed and an N’ terminal 

glycine residue is recognized, the myristoyl group is transfected by the enzyme N-

myristoyltansferase (NMT). In order to anchor a protein within a membrane, the myristoylation 

process needs a basic region adjacent to the insertion point or an additional anchor such as a 

palmitylation. A series of modifications can also modulate the above-mentioned membrane 

association. For instance, if a membrane-associated protein becomes phosphorylated, the negative 

charge will repel it out of the membrane. Conformational changes can also influence the 

myristoylation site exposure, for example, it can be captured in a hydrophobic pocket until a 

stimulus exposes it. Viral proteins are fundamental for viral uncoating and for viral release from 

membrane-bound compartments. 

In a previous study (Gharakhanian et al., 2003), the role of minor coat proteins in SV40 was 

assessed and it was found that Vp2 was unessential while Vp3 was necessary for infection. These 

studies also suggested that the importance of Vp3 lay in its ability to activate poly (ADP-Ribose) 

polymerase (PARP). It is because of this over-activation of PARP that intracellular ATP seems to 

be depleted. This, in turn, causes cellular necrosis, releasing the virus (Gordon-Shaag et al., 2003).  

In recent work, the importance of both these minor proteins has been demonstrated for SV40 

infection. In addition, these proteins’ ability to lyse bacteria could represent a further tool that the 

virus could benefit from in order to release itself from the cell (Daniels et al., 2006).  

Recently, a new minor protein Vp4 has been identified. Vp4 is not present in the virion, but it 

is found in cellular lysates during late time points of infection. Some investigators have 
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hypothesized that Vp4 is a lytic factor produced to complete the viral lifecycle (Daniels et al., 

2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Minor protein domains. (A) Vp3 is identical to two-thirds of Vp2. This shared region is comprised of the DNA 

binding domains, the nuclear localization signal, and the Vp1 interacting domain. Vp2 is modified N' terminally with a 

myristoylation moiety. (B) Possible orientation of Vp2/3 within the Vp1 pentamer as determined from X-ray 

crystallography. Chen et al, EMBO 1998, used with written permission from Nature publishing Group. 

Related work on minor proteins has been carried out on mouse polyoma (mPy), with Vp3 

and Vp2 myristoylation mutants being produced. In this study, it was proven that Vp2 and Vp3 

were fundamental for both early and late events in the viral lifecycle. Specifically, the 

myristoylation site was switched with alanine, glutamate, glutamine and histidine using site-
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directed mutagenesis. Although the alanine change showed a delay in early kinetics, with Vp1 

production occurring later than in normal circumstances, this mutant did not show any virion 

stability defects. In a single round of infection, both the changes to glutamate and glutamine did 

not show any significant delayed kinetics. However, in the long term, these changes displayed a 

reduced re-infection capability, which was likely due to structure interactions with the host cells. 

Moreover, the glutamate substitution also generated a virion morphology modification. Finally, 

the histidine change generated an inability to either enter or release from the cells, similar to 

what happens with Vp2 and Vp3 mutants (Krauzewicz et al., 1990;Mannova et al.,2002;Sahli et 

al., 1993). 

JCV requires the presence of both Vp2 and Vp3 minor proteins for its viral replication. In 

addition, it needs the myristoylation site on Vp2, as large groups are not able to prevent the loss 

of the myristoylation site (Gasparovic et al., 2006). 

 

Large T  Vp1  Vp2  Vp3  Agno  
 

SV40  72%  78%  79%  75%  62%  
 
BKV  82%  75%  72%  66%  79%  
 
 

Table 2: Sequence similarity to JCV. Comparison of the sequence similarity between SV40 and BKV to JCV early and late 

proteins.  

During the late viral lifecycle phase, Agno-protein is produced, even though it is not 

packaged within virions. This phenomenon makes understanding Agno-protein’s role in JCV 

infection difficult. Despite recent studies having begun to shed some light on the properties of 

Agno-protein in JCV infection, much of what is known of this protein derives from studies 

carried out on Sv40.  
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All the late transcripts are produced in a polycistronic manner and its reading frame is the 

leader sequence for all the late gene products (Hay et al., 1982). However, for a long time, the 

fact that the leader sequence actually produced a protein product remained unknown.  

The SV40 Agno-protein was discovered in the early 1980s. It is a basic small protein (~ 61 

a.a.), with very short half-time life (~ 2 hours), which suggests that it is a regulatory protein (Jay 

et al., 1981). SV40’s basic properties give it a special affinity for DNA binding. Agno has often 

been associated with both replicating DNA and partially assembled virions (Jackson and 

Chalkley, 1981).  

Interestingly, JCV exhibits growth defects if Agno-protein is removed. On the other hand, the 

removal of this protein does not affect the early gene production, DNA replication, or late gene 

transcription or translation. Virionsare still produced, but at a lower rate and they are releasedin 

smaller amounts (Resnick and Shenk. 1986).  

Another interesting property of the Agno-protein is that it has been often characterized as 

localized to the cytoplasm and perinuclear space by indirect immunofluorescence (Nomura et 

al.,1983;Safakand Khalili 2001).  

Furthermore, Agno-protein has multiple potential phosphorylation sites that induce a 

reduction in viral growth. It has been found to be a substrate for PKC and it is thought that 

variations in Agno phosphorylation also change its cellular localization (Sariyer et al., 2006). 

To this point, recent studies have demonstrated the role of Agno as substrate for PP2A and 

that small-t proteins’ interaction with PP2A seems to regulate the Agno dephosphorylation 

(Sariyer et al., 2008.). Considering the highly basic nature of Agno, it has been hypothesized that 

changes in the phosphorylation status of Agno-protein control its DNA binding characteristic 

(Safak et al., 2001) 
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1.5 Transcription of JCV Genes 

Once the viral genome is delivered to the newly infected cells, it acquires the histone H1 and 

resembles cellular chromatin (Major and Imperiale 2007). Once in the host nucleus, the JC virus 

genome serves as a template for RNA polymerase II (pol II) transcriptional machinery. The 

regulation of such machinery depends on the sequence of the NCCR, but also from the 

availability of host transcription factors (Ferenczy et al., 2012). 

The NCCR is thought to be the key of cell type specificity and it is composed of well 

conserved regions surrounding the transcription start sites of both early and late coding regions. 

Additionally, it is also composed of a central region which contains many transcription factor 

binding sites. The NCCR early –proximal side contains pre-origin and origin of replication 

(ORI). 

The original viral sequence isolated from a PML patient is known as Mad-1, since it was 

isolated at the University of Wisconsin-Madison (Ferenczy et al.,  2012). 

The Mad-1 NCCR is composed of two 98-bp tandem repeats, each one composed of a TATA 

box which can position mRNA start  site (Ghosh et al., 1981) and multiple transcription factor 

binding sites (Frisque  RJ. 1983). The NCCR Mad-1 tandem repeat  is known as the “prototype” 

sequence and is composed of three sets of sequences, “a” (where the TATA box is), “c” and “e” 

respectively.  

It is acknowledge that TATA boxes contained in the 98-bp tandem repeat are essentials for 

the transcription of the early and late viral genes (Daniel and Frisque  1993).  Although the Mad-

1 variant was the first variant isolated, it has been shown that many JCV isolates from PML 
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patients are actually missing the second TATA box which may not be required for JC replication 

(Martin et al., 1985). 

The JC virus promoter contains multiple binding sites for transcription factors and 

transcriptional repressors. 

The Nuclear factor for activated T-cells (NFAT) is a transcription factor required for JCV 

transcription. NFAT4 is activated by calcium release, presumably triggered by virus-receptor 

interactions. Once activated, it moves to the nucleus where it is able to interact with the JCV 

genome and drive transcription (Manley K, et al. 2006). Additionally, JCV has binding sites for 

NF1-X (Monaco MC, et al., 2001), NFkB (Ranganathan and Khalili, 1993),  SP-1 ( Henson et 

al., 1992) and many others, who bind certain variants of the NCCR activating transcription of 

early genes. 

On the other hand, NF1-A  (Ravichandran and Major 2008), c-jun (Ravichandran  et al., 

2006;Kim J, et al. 2003), c-fos ( Kim J, et al. 2003) SF2/ASF (Sariyer and Khalili  2011) and 

others have been shown to repress early transcription levels.  

The NF1 family on cellular DNA binding proteins is critical to JCV transcription and 

replication. Three NFI binding sites have been identified in the NCCR of JCV ( Amemiya et al., 

1989). 

Dimerization, DNA binding, and DNA replication domains of NF1proteins are found in the 

N terminus and are separable from the transcriptional activating domain (Gronostajski 2000). All 

NF1 genes (-A, -B, -C, -X) share homology on the N-terminus portion but differ  at the C-

terminus, which is responsible for transactivation and the repressive activity (Gronostajski 2000). 

It is known that all NF1 proteins are able to homo- and heterodimerize and are able to compete 

for the same binding site influencing transcription levels. This could explain why overexpression 
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of the NF1-X gene supports increased viral activity whereas NF1-a reduces the ability of 

permissive cell types to support JC virus infection (Ferenczy et al  2012). 

Members of the activating protein 1 ( AP-1) family play a key role regulating the activation 

of JCV transcription (Amemiya  et al., 1992). 

NF1 binding to and activation of JCV are reduced by the presence of c-jun (Amemiya et al., 

1992). This is thought to be due to the overlapping AP-1 and NF1 binding sites in the NCCR of 

JCV, suggesting that c-jun is able to physically block NF1-induced activation (Ferenczy et al  

2012).  

Interestingly both NF1 and AP-1 family members interact with Large-T antigen but in an 

antagonistic manner. NF1 appears to increase Large T –dependent early and late gene expression  

(Amemiya et al., 1989), and therefore contribute to enhanced viral replication (Ravichandran et 

al., 2006.) 

AP-1 members c-jun and c-fos, instead, have been shown to interact with Large T and 

suppress its activation and, consequently, viral DNA replication (Kim J, et al. 2003).  

It is well established that Large T antigen is  able to facilitate binding of YB-1 to the viral 

lytic control element (LCE), and that YB-1 together with Large T increases the displacement of 

Pur-α from the viral promoter, and therefore stimulate late gene expression (Chen et al., 1995.; 

Chen and Khalili K 1995). 

T antigen therefore promote late transcription by interacting with components of the basal 

transcriptional machinery, including TATA binding protein (TBP), TBP-associated factors 

(TAFs), and transcription factors, including Sp1 (Kim et al., 2000), but they can also function 

directly as a TAF (Damania et al., 1998). 
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1.6 JCV Lifecycle 

Virus Entry, Trafficking, and Uncoating 

 
In order to infect glial cells, JCV has to bind to specific cell surfacereceptors, penetrate the 

plasma membrane, then target its double-stranded DNA genome to the nucleus (Pho et al.,2000). 

JCV binding and entry into the cell requires both an N' linked glycoprotein with an∀ (2-6)- 

or∀2-3)-linked sialic acid (Liu et al.,1998) and the serotonin receptor 5-HT2A (Elphick et al.,  

2004; Dugan et al., 2008)   

It has still not been established whether the sialic acid is on the serotonin receptor itself. 

Following binding to the cell surface receptors, the virus is internalized by the ligand inducible 

clathrin-dependent pathway (Querbes et al., 2004).  

The virus is initially trafficked to early endosomes and uses a Rab-5- dependent pathway to 

access the caveosome, from which it traffics to the endoplasmic reticulum (ER) (Figures 6 and 7) 

(Querbes et al., 2006).  
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Figure 6: Sequential events during JCV life cycle(1) Adsorption of virus to the cell surface receptors; (2) entry by clathrin-

mediated endocytosis; (3) uncoating of virions and nuclear transport (uncoating takes place either in the either in 

endoplasmic reticulum or in the nucleus); (4) transcription of early coding region; (5) translation to produce early 

regulatory proteins, LT-Ag, Sm t-Ag and T’ proteins (T’135, T’136 and T’165); (6) import of LT-Ag into nucleus to initiate 

viral DNA replication and late gene activation; (7) replication of viral genome; (8) transcription of viral late genome; (9) 

translation of viral late transcript to produce agnoprotein and capsids (VP1, VP2 and VP3); (10) Nuclear import of capsid 

proteins; (11) assembly of viral progeny in the nucleus; (12) release of virions from infected cells. Agno: Agnoprotein; JCV: 

JC virus; LT-Ag: Large T antigen; Sm t-Ag: Small t antigen Reprinted with permission. (	  Saribas	  et	  al.,	  2010	  ) 

Virus trafficking is pH dependent, as demonstrated by an increase in endosomal pH causing a 

reduction in virus infection (Ashok and Atwood. 2003). Many viruses require low pH for one of 

three main reasons: viral membrane fusion, protease activation and vesicular trafficking.  

Influenza has three proteins in its envelope, hemagglutinin (HA), neuraminidase (NA) and 

M2, the proton channel. Upon entering the endosome, the acidic pH causes HA to undergo 

conformational rearrangement, exposing a membrane penetrating form of the HA protein 

Fig. 3. Sequential events during JCV life cycle
(1) Adsorption of virus to the cell surface receptors; (2) entry by clathrin-mediated
endocytosis; (3) uncoating of virions and nuclear transport (uncoating takes place either in
the either in endoplasmic reticulum or in the nucleus); (4) transcription of early coding
region; (5) translation to produce early regulatory proteins, LT-Ag, Sm t-Ag and T’ proteins
(T’135, T’136 and T’165); (6) import of LT-Ag into nucleus to initiate viral DNA replication
and late gene activation; (7) replication of viral genome; (8) transcription of viral late
genome; (9) translation of viral late transcript to produce agnoprotein and capsids (VP1,
VP2 and VP3); (10) Nuclear import of capsid proteins; (11) assembly of viral progeny in the
nucleus; (12) release of virions from infected cells.
Agno: Agnoprotein; JCV: JC virus; LT-Ag: Large T antigen; Sm t-Ag: Small t antigen

Saribas et al. Page 17
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(Bullough et al., 1994). In the endosome, M2 will pump protons into the viral particle, thereby 

releasing viral-genome complexes from the envelope (Pinto et al., 1992). Ebola virus also 

requires acidification of the endosomes, but low pH does not allow for membrane fusion. Low pH 

activates cathepsins, which are endosomal cysteine proteases. 
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Figure 7: JC virus lifecycle. JC virus binds to cells using an ∀(2-6)- or ∀(2-3)-linked sialic acid and the serotonin receptor 5-

HT2AR (1). After binding, JCV is internalized using clathrin-dependent endocytosis where it traffics to early endosomes (2 and 

3). JCV requires pH at early times during infection to complete its trafficking to the caveosome and the ER (4 and 5). 

Uncoating is hypothesized to occur in the ER. The virus is then delivered to the cytoplasm where it can import into the nucleus 

using nuclear pores (6). Once inside the nucleus, the virus transcribes its early genes, replicates its genomes, and transcribes 

late genes. Virus assembly also takes place in the nucleus (7). 

 

Ebola requires both cathepsin B and L to create a viral peptide which is then able to induce 

endosomal membrane fusion (Chandran et al., 2005; Schornberg et al., 2006). Reoviruses also 

require low pH and cathepsin B and L for efficient disassembly and membrane penetration. This 
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is confirmed by observation that when reoviruses are digested prior to infection to generate their 

infectious subvirion particle (ISVP), they are able to overcome the requirement for low pH and 

cathepsins (Baer et al., 1999; Ebert et al., 2002). One of the rate-limiting steps in the viral 

lifecycle is the uncoating of the viral genome and its delivery to the nucleus. Recently, a role for 

ER chaperones has been discovered for both SV40 and mouse polyoma. For mouse polyoma, 

interactions with ERp29, a protein disulfide isomerase (PDI) family member, cause 

conformational changes within the viral capsid (Magnuson et al., 2005).These conformational 

changes allow the virus to interact with lipid membranes so it can deliver its genome to the 

cytoplasm.  

Furthermore, in vitro studies of mouse polyoma reveal Vp2 is capable of binding to and 

penetrating into the lipid membrane of the ER (Rainey-Barger et al., 2007). After the genome has 

reached the cytoplasm, it is able to import into the nucleus using the traditional nuclear pore 

pathway.  

SV40 localizes and exposes its minor proteins in the ER (Norkin et al., 2002). It is 

hypothesized that upon delivery of the SV40 genome to the ER, chaperones uncoat the virus, 

where it becomes a candidate for the ER-associated degradation (ERAD) pathway (Schelhaas et 

al., 2007). The ERAD pathway then pulls the partially assembled virus into the cytoplasm. SV40 

is unable to undergo this retrotranslocation when the proteasome and membrane protein Derlin-1 

are inhibited, which further support the role of an ERAD pathway in SV40 infection. JCV makes 

its way through the cell through a series of filamentous networks. Treating cells with nocodazole, 

cytochalsin D and acrylamide disrupts these networks and renders JCV no longer infectious. This 

indicates that JCV infection requires microtubules, microfilaments and intermediate filaments 

during its lifecycle (Ashok and Atwood. 2003). The current model suggests actin is important 
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during early points of infection, either by directly interacting with virus-containing vesicles or 

indirectly affecting clazthrin-dependent endocytosis. Microfilaments and microtubules are used 

for subsequent steps in the lifecycle as the virus continues to be transported in vesicles to the 

caveosome and then the ER. 

 

1.7 Infection and Latency of the JC virus 

Seroepidemiological studies have indicated that more than 70% of the human population 

have been exposed to JCV during their childhood but exhibit no symptoms of clinical disease 

(Walker and Padgett, 1983). However, inimmunocompromised patients suffering from 

lymphoproliferative diseases, in AIDS patients or patients undergoing immunosuppressive 

therapy, JCV reactivates and leads to development of PML (Chang  et al., 1996), a rare disease 

characterized by a lytic infection of oligodendrocytes in the central nervous system (CNS) that 

generally affects adults but rarely children (Brew B.J. et al., 2010). 

Since its development in patients who were known to be seropositive long before clinical 

manifestation is not associated with the increase in JCV-specific IgM antibody titer, it’s possible 

that the establishment of  PML is consequent to a reactivation of JCV from a latent state (Major 

E.O. et al., 1992). How the viral infections occur remains unclear, however it is known that 

primary infection occurs most likely in stromal or immune cells of the upper respiratory system 

(Berger et al. 2006). The virus then appears to be transported by infected lymphocytes to kidneys 

and bone marrow where it remains latent (Ferenczy et al., 2012). It is known that viral 

reactivation occurs outside the CNS, and that, once the reactivation is completed, it crosses the 
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blood-brain barrier transported by B cells and enters the brain where it replicates vigorously in 

oligodendrocytes, leading todemyelination (Brew B.J. et al., 2010; Saribas et al., 2010).  

Several observations indicate that a vital role in controlling the virus is played by the cellular 

immune response which requires the collaboration of both innate and adaptive immunity: NK-

cells destroy virus infected cells. As for adaptive immunity, B-lymphocytes produce antibodies 

able to neutralize free virus in fluids, whereas T-lymphocytes can kill infected cells before the 

viral maturation and therefore its release, preventing cell-to-cell transmission (Koralnik I.J. 

2002). Therefore, a reduction of CD4+ T cells can cause a lack of immune control of JCV and 

thus increase the likelihood of JCV reactivation and PML development (Bayliss J. et al., 2013). 

It is likely that, in healthy individuals, the immune system retains the virus in a latent state. 

Therefore, alterations in immune system function could promote reactivation of viral gene 

expression and start the lytic phase of infection (Chang et al., 1996). 
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Figure 8: initial JCV infection is thought to occur in tonsillar tissue after inhalation. Lymphocytes infected with JCV 

carry virions to the kidney and bone marrow, which are thought to be the primary sites of viral latency. Following 

reactivation of JCV, the virus is thought to cross the blood–brain barrier within B cells and infect oligodendroglia. The 

change in JCV color from red to green indicates genetic rearrangement. Abbreviations: JCV, JC virus; PML, 

progressive multifocal leukoencephalopathy. Reprinted with permission. (Brew	  et	  al.,	  2010) 
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CHAPTER 2 

 JCV ASSOCIATED DEMYELINATING 

DISEASES 

 

	  

2.1 Progressive Multifocal Leukoencephalopathy 

 
Progressive Multifocal Leukoencelopathy (PML) is a fatal disease that develops from a 

lytic infection of the myelin-producing oligodendrocytes in the central nervous system (CNS). 

JC virus (JCV) has been identified to be the causative agent of PML. JCV has been shown to 

have a limited tropism, in fact its effects are limited to oligodendrocytes, astrocytes, B-

lymphocytes, tonsils and kidney epithelial cells. It is very common in humans, studies estimate 

that about 70% of the human population is seropositive for JCV. It is not completely understood 

how most humans get infected, but it is hypothesized that the initial infection is subclinical and 

contracted during childhood. JCV is mostly latent, but can be reactivated in case of 

immunosuppression and lytically infect oligodendrocytes and cause PMC . 
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PML was first identified in the 1950s, but it took a decade to discover the viral origin of this 

disease. Considering that many of the early patients also had lymphatic leukemias or Hodgkin’s 

Disease, PML was thought to be related to complications of lymphoproliferative diseases. Over 

time, the pathology became more studied and it was found in patients with quite different 

conditions. It was soon discovered that all the patients had in common the fact that their immune 

system was impaired, thus researchers started attributing a viral nature to PML (Karl and Astrom 

2001). In the 1960s, using electron micrographs of brain tissues collected from PML patients, for 

the first time viruses resembling papilloma were seen (Zu Rhein, 1965). At the time, human 

polyomaviruses had not yet been characterized. Then when better staining techniques were 

available, these brain tissue virions were identified as polyoma and not papilloma (Zu Rhein, 

1965). Furthermore, they were found to be present in every brain tissue sample harvested from 

patients with PML. It was during the same period that cell culture techniques were introduced 

and these allowed researchers to grow and investigate Simian Virus 40, that is another 

polyomavirus. Simultaneously, the first primary human fetal glial cell cultures (PHFG) were 

introduced. In 1970s, for the first time the JC polyoma virus was identified in the brain biopsy of 

a patient whose name was John Cunningham. In 1971, using Cunningham’s brain sections, that 

were larger and with more virions than usual, these virions were isolated from brain matter and 

cultured in PHFG cells. This is why the virus was named after John Cunningham’s initials (JC). 

PML was once thought to be a rare disease, but it has recently become more widespread 

because of the Acquired Immune Deficiency Syndrome (AIDS). It has been estimated that 4-6% 

of AIDS patients will develop PML (Major et al., 1992 ), but this is not the only group at risk of 

contracting PML. Others at risk are patients undergoing chemotherapy, transplant recipients and 

patients with Multiple Sclerosis (MS) or Crohn’s Disease who are treated with natalizumab. 
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Although PML can affect all the above-mentioned patient groups, 85% of cases are reported in 

Human immunodeficiency Virus (HIV)- positive patients.  

In more detail, PML is known to cause multiple large demyelination areas, large bizarre 

astrocytes and nuclear inclusions in oligodendrocytes (See Figure 9). The common PML 

diagnostic tools are Magnetic Resonance Imaging or Cerebrospinal Fluid (CSF) Polymerase 

Chain Reaction (PCR). PML is also commonly known to cause lesions that are diffused and 

subcortical. Interestingly, lesions caused by PML are quite different from those caused by MS. 

These lesions are characterized by having edges that are not neat, they are not regularly shaped 

and tend to grow asymmetrically. 
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Figure 9: Histological features of PML. (A) Gross examination of JCV- induced lesions occurring at the subcortical white 

matter. A coronal section of the frontal lobe of the brain from a PML patient is shown. (B) Apparent myelin loss, as result of JCV 

infection of oligodendrocytes, is made detectable by Luxol blue staining (40×). Demyelinated areas are visibly distinguishable as 

white plaque areas. (C) Hematoxilin and Eosin staining of the brain sections from a PML patient. Infected oligodendrocytes are 

indicated with a round dark staining of the eosinophilic inclusion bodies (arrow head). An arrow points to an infected astrocyte 

(400×). Reproduced with permission from (Saribas et al., 2010). 

Fig. 1. Histological features of PML
(A) Gross examination of JCV- induced lesions occurring at the subcortical white matter. A
coronal section of the frontal lobe of the brain from a PML patient is shown. (B) Apparent
myelin loss, as result of JCV infection of oligodendrocytes, is made detectable by Luxol
blue staining (40×). Demyelinated areas are visibly distinguishable as white plaque areas.
(C) Hematoxilin and Eosin staining of the brain sections from a PML patient. Infected
oligodendrocytes are indicated with a round dark staining of the eosinophilic inclusion
bodies (arrow head). An arrow points to an infected astrocyte (400×). Reproduced with
permission from (111).
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PML might cause different symptoms, such as limb weakness and ataxia at first and as the 

disease progresses cognitive, speech and visual impairments may occur. Patients rarely survive 

more than one year since disease onset.  

As of today, no cure has been found for Progressive Multifocal Leukoencephalopathy. All 

the clinical trials that have been implemented, using different drugs such as 

cytosincearabinoside, topotecam, cidofovir and high dose of azodothymidine (AZT), have 

proven not effective. They have failed to improve the symptoms and they were even toxic in 

some cases.  The current gold standard treatment is Highly Active Anti-Retroviral Therapy 

(HAART) in HIV infected patients, whose goal is to alleviate the underlying immunosuppression 

to slow down the disease progression. 

In fact, recent studies have showed how the use of HAART with a high central nervous 

system penetration effective score might be associated with prolonged survival of patients with 

HIV-related PML (Yoganathan et al., 2012). 

 

2.2 Immune response against infectious agents: innate and adaptive 

A healthy immune response against infectious organisms requires the collaboration of both 

innate and adaptive immunity. 

The first line of defense against pathogens is called the innatenon-antigen specific immunity, 

and is carried out by macrophages, neutrophils, the competent system and NK (natural killer) 

cells. Among all of these, only the activated NK cells are actually able to destroy the virus-

infected cells. 



JCV	  Associated	  Demyelinating	  Diseases	  

	   38	  

As for the adaptive, or antigen-specific immunity, is mainly carried out by B and T 

lymphocytes where B cells produce antibodies to neutralize free virus, and T cells can kill 

infected cells prior viral maturation, and by doing that, limiting viral transmission (Koralnik 

2002). 

T cells are subdivided into CD4+ helper cells, and CD8+ cytotoxic T lymphocytes (CTLs). 

CD4+ cells, whose roll is mainly to stimulate macrophages, and CD8+ cells (TH1 response) or B 

cells (TH2 response) by producing specific cytokines are able to recognize viral epitopes 

presented on MHC class II molecules. Stimulated CD4+ cells will proliferate and then produce 

cytokines such as interferon (IFN), granulocyte-macrophage colony stimulating factor (GM-

CSF), and tumor necrosis factor (TNF) in case of TH1 cells, or interleukin (IL)-4, IL-5 and IL-10 

in TH2 cells. 

CD8+ T cellswho are responsible for the destruction of viral-infested cells, are able to 

recognize viral epitopes bound to MHC class I molecules. This happens when a newly 

synthesized viral protein gets tagged for destruction in the cytoplasm of an infected cell and is 

degraded into peptides by the   proteasome system (Koralnik 2002). 

	   	  



JCV	  Associated	  Demyelinating	  Diseases	  

	   39	  

2.3 Inflammation 

Inflammation is the cellular response to pathogen invasion that results from vascular dilation 

and an increased movement of immune cells into the affected area resulting in clinical 

appearance of swelling and reddening. Many diseases originate from or are exacerbated by the 

inflammatory response such as chronic inflammation resulting in asthma, infections in the limbs 

of patients with diabetes and advancement of certain cancers. Thymoquinone may have a 

therapeutic role in inflammation, cancer and diabetes. The immune response is often manifested 

by the release of pro-inflammatory cytokines and chemokines from cells in the innate immune 

system. Cytokines and chemokines can work to activate immune cells or elicit a chemoattractive 

response in other cells in the vicinity. Cytokines such as IL-1 and TNF-α are markers of 

inflammation. Chemokines and adhesion molecules including MIP-1 and sICAM-1 are also 

primary indicators of inflammation. Th1- and Th2-dependent immune responses result in the 

production of various cytokines. When Th1 cells are activated, they produce pro-inflammatory 

cytokines such as IL-1, IL-2, IL-12, IFN-γ, and TNF-α that stimulate macrophages, Natural 

Killer cells, cytotoxic T cells and movement of other cells into the affected area. Whereas when 

the Th2 cells are activated, they stimulate B cell proliferation and antibody production. In 

response to Th-2 mediated or humoral immunity, anti-inflammatory cytokines IL-4, IL-5, IL-10 

and IL-13 are released. The ability of a substance to control the balance between Th1- and 3 

Th2-associated releases of cytokines has been associated with both pro- and anti-inflammatory 

properties. 
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2.4 Immune system within the CNS 

A range of mechanisms exists to limit immune responses in the CNS; in fact, the CNS is 

considered to be an immune-privileged site. The idea of an “immune privilege” comes from the 

presence of the blood-brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB), 

that play a role in delaying  the immune response to non-tumor foreign tissue in the CNS (Galea 

et al., 2007). 

This delay is related to several factors. The CNS lacks conventional lymphoid drainage 

(Weller et al., 2010) and CNS-derived antigen may be transported to cervical lymphnodes in the 

fluid phase (Weller et al., 1996) or associated with dendritic cells (DC) (Karman et al., 2004). 

Since it contains few APCs, and neurons only express MHC under exceptional conditions, the 

parenchyma of the normal brain and spinal cord has poor  capacity for antigen processing and 

presentation (Neumann et al., 1995). Moreover, lymphocytes have to be activated before they 

can cross the BBB (Wekerle et al., 1986; Prendergast et al. 1998), and once they arrive in the 

CNS the environment remains hostile to activated lymphocytes expressing FAS. 

In fact, FAS ligands (FASLor CD95L) are a type-II transmembrane protein  belonging  to the 

tumor necrosis factor (TNF) family. Its binding with its receptor results in death by apoptosis 

(Bechmann et al., 1999; Flugel et al., 2000). Moreover, Fas ligand/receptor interactions play an 

important role in the regulation of the immune system and the progression of cancer. 

Microglia, the innate immune cells of the CNS, further respond to inflammation by up-

regulation of immune-regulatory molecules including B7-H1 (Magnus et al., 2005) and IDO 

(Kwidzinski et al., 2005), while neurons protect themselves by secreting TGF- Β upon contact 

with activated lymphocytes (Liu et al., 2006). 



JCV	  Associated	  Demyelinating	  Diseases	  

	   41	  

The Lymphocytic migration within the CNS is regulated by the interaction of chemokines 

with their receptors (Wraith DC. and Nicholson LB. 2012). Without any inflammation occurring, 

CD4+ migration outside of blood vessels is constrained to pathways that run along their axes 

(Siffrin et al., 2009) and it highly differs from the randommotility of CD8+ cells (Siffrin et al., 

2009; McCandless et al., 2006; McCandless et al., 2008). 

This confinement is regulated by the interaction of the chemo-attractant CXCL12 with the 

receptor CXCR4, expressed on the surface of lymphocytes. 

The migration of leukocytes into the CNS may be modulated by sequestration of CXCL12 by 

other receptors (Cruz-Orengo et al., 2011), or by the physical redistribution of CXCL12 

(McCandless et al., 2006; McCandless et al., 2008). 

In addition, antagonistic effect on CXCR4 allows CD4 T cells to escape and therefore 

penetrate deeper into brain parenchyma (Siffrin et al., 2009; McCandless et al., 2006). 

Treatment with natalizumab, an anti–α 4-integrin, increases the risk of progressive multifocal 

leukoencephalopathy (PML) is caused by the reactivation of the JC Virus Polyomavirus in the 

CNS of immune-compromised individuals (Koralnik 2006; Kappos et al., 2011). This is virtually 

never seen in immune-competent individuals (Weber 2008), attesting to the effectiveness of the 

immune surveillance of CNS tissue. 
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CHAPTER 3 

 MATERIAL AND METHODS 

 

3.1 Cell lines and culture 

Human derived T98G glioblastoma cell lines and SVG-A (SV40 T-antigen transformed 

human glial cells) were cultured in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) and antibiotics 

(penicillin/streptomycin, 100 µg/ml). They were maintained at 37 °C in a humidified atmosphere 

with 7% CO2.  

PBMCs were isolated from whole blood by density gradient centrifugation on Ficoll-Paque 

solution (AMERSHAM Biosciences). PBMCs were then cultured in RPMI medium with 10% 

heat-inactivated fetal bovine serum (FBS) and antibiotics (penicillin/streptomycin, 100 µg/ml). 
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3.2 Plasmid constructs and viral strains 

JCV -LT-Ag was cloned into aeukaryotic expression vector pcDNA3.1 (+), at EcoRI site and 

designated as pcDNA3.1(+)–JCV LT-Ag, which expresses both LT-Ag and Sm t-Ag, as 

previously described (Saribas et al., 2014). Reporter constructs, JCV- Early-LUC and JCV-Late-

LUC contained the JCVpromoter from the Mad-1 strain linked to the luciferase gene in the early 

and late orientations as previously described (Wollebo et al., 2011). Autophagic flux was 

measured by transfecting a mRFP-GFP tandem fluorescent ptfLC3 plasmid (Addgene)  (Kimura 

et al., 2007). 

	  

3.3 Western blots 

Briefly, 50 µg of protein was resolved by SDS-PAGE,transferred to a nitrocellulose 

membrane, and immunoblotted with primary antibody in 10% PBST/non fat dry Milk and 

secondary antibody (2/5000 dilution) in 5% PBST/non fat dry Milk. Bound antibody was 

detected with Licor Biosciences 

The following antibodies were used for Western blot  at a dilution of 1:1000: 

mousemonoclonal anti-T-antigen, Oncogene Science pAb416;  rabbit polyclonal B-tubulin Santa 

Cruz Z-5; α-VP1 Mouse monoclonal antibody (Ab587) against JCV capsid protein VP1. 
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3.4 PBMC cultures 

Blood samples were obtained from healthy donors. PBMCs were isolated from whole blood 

by density gradient centrifugation on Ficoll-Paque solution (AMERSHAM Biosciences). Briefly, 

the freshly drawn blood was diluted at a ratio of 2:1 (vol/vol) with PBS at room temperature and 

20 ml of the mixture was layered above 20 ml Ficoll-Paque solution (ratio 1:1) in 50 ml tubes. 

After centrifugation at 1200 g for 30 min at 25⁰C without break, PBMCs were then collected and 

resuspended in RPMI media and centrifuged again at 2000 RPM for 10 Min at room 

temperature. Pellets were then washed twice  with PBS and centrifuged again as described. 

Finally PBMCs were then washed with RPMI media supplemented with 10% heat-inactivated 

fetal bovine serum (FBS) and antibiotics (penicillin/streptomycin, 100 µg/ml), and resuspendend 

in culture media at a concentration of 3x 106/ml.  

48 h after isolation, PBMCs were then divided into two groups, as Uninduced and Induced. 

PBMCs were induced by PMA and Ionomycin for 2 hours and media was changed with fresh 

media. Cells were incubated for 48 hours and conditioned media was collected and used in the 

experiments. 

	  

3.5 Luciferase Reporter Assay 

Luciferase reporter constructs, pGL3.7-JCV-Early and pGL3.7-JCV-Late contained the JCV 

Mad-1 strain promoter linked to the luciferase gene respectively in the early and late orientations 

as described previously (Wollebo et al., 2011).  
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T98G cells (2.5 x 104per well) were transfected with 0.5 µg of reporter plasmid using 

Fugene6 reagent according to the manufacturer’s instructions (Roche). Luciferase activities were 

detected at 48 using the Dual-Luciferase Reporter Assay system (Promega). 

	  

3.6 JCV infection 

Transfection/infection of PHFA cells with the full-length JCV Mad-1 genome as previously 

described (Sariyer et al., 2010). 

Briefly cells were co-transfected/infected at a confluence of 1 x 106cells per T 75-cm2 tissue 

culture flask, with the JCV-Mad1–WT DNA (10µg/flask) using Fugene6 transfection reagent as 

indicated by the manufacturer (Roche). After 8 and 15 days post-infection, cells were trypsinized 

and whole cell protein lysates were processed for VP1. Browth media of infected cells were also 

collected, and processed for Q-PCR analysis of viral copy numbers. 

	  

3.7 Quantitative-PCR (Q-PCR) analyses of JCV copy numbers in 

growth media 

Transfection/infection of cells with the full-length JCV-Mad1 genome was performed as 

described before.  

Culture media containing the viral particles was collected 8 and 15 days post infection, in 

parallel to whole cell extracts, and centrifuged for 10 minutes at 13 000 RPM in order to remove 

cell debris. Supernatants were collected and incubated at 95⁰ C for 10 minutes for inactivation of 

the virus.  Ten microliters of the medium was used as a template in the Q-PCR reactions. JCV Q-

PCR-forward: 5’-AGTTGATGGGCAGCCTATGTA-3’ and JCV Q-PCR-reverse: 5’- 
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TCATGTCTGGGTCCCCTGGA-3’. The probe for the Q-PCR was 5’-/5HEX/CATGGA 

TGCTCAAGTAGAGGAGGTTAGAGTTT/3BHQ_1/-3’. 

A serial dilution of a plasmid containing the whole genome of JCV Mad-1 strain  (pJCV) 

served to create the standard curve, that was then used to extrapolate the viral load from each 

sample. 

Each reaction was run with both positive and negative controls and each sample was tested in 

triplicate 

 

3.8 DpnI assay and detection of replicated-viral DNA by Southern 

blotting 

Replication assay was performed using T98G cells. These cells were plated at a confluence 

of 1 x 106cells per T 75-cm2 tissue culture flask and 24 hours later transfected  for 72 hours with 

Cat3-Mad1-Early plasmid and pcDNA3.1-LT. 

Low molecular weight DNA purified from JCV-infected cells was digested with Dpn I and 

BamH1 enzymes. Low molecular weight DNA extraction was performed by using 

QiagenMiniprep Kit. 

 Digested-DNAsamples were separated on 1% agarose gel and were transferred to a nylon 

membrane. Replicated viral DNA was visualized upon incubation of the membrane with Cat3-

Mad1-Early plasmid  
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3.9 Cytokine array 

PBMCs were isolated from whole blood as described above. 48 h after isolation, PBMCs 

were then divided into two groups, as Uninduced and Induced. PBMCs were induced by PMA 

and Ionomycin for 2 hours and media was changed with fresh media. Cells were incubated for 48 

hours at 37°C, 5% CO2. Conditioned media was then collected and centrifuged at 1,500 × g to 

remove cell debris before being applied to a cytokine array kit (RayBiotech, Inc.,). The array 

membranes were processed according to the manufacturer's instructions. Briefly, membranes 

were blocked with a blocking buffer, and then 1 ml of both conditioned media was incubated at 

room temperature for 2 h. 

 

3.10  Autophagic imaging and flux assays 

PHFA cells were seeded on coverslips at 50% confluency and were transiently transfected 

with either the ptfLC3 encoding LC3fused to MRFP and EGFP. Twenty-four hours after 

transfection, cellculture media were replaced with fresh and cells were subjected to a 36 hour 

treatment with either CM-Uninduced, Cm-Induced or IL-2 [1ng/ml].  Cells were then fixed in 

4% Formaldehyde for 15 minutes, then rinsed with PBS and mounted with Vectashield DAPI, 

used to identify nuclei. 

After recovering from transfection, cells were subjected to a 32-hour treatment with either 

CM-Uninduced, CM-Induced and IL2  [1ng/ml] that was directly implemented to cell’s growing 

media.Cells were then fixed in a 4% Formaldheide solution and analyzed by fluorescent 

microscopy. 
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Total Lc3 dots obtained by the addition of the number of yellow Lc3 dots with red Lc3 dots 

was counted in more than 10 in each condition 

 

3.11 RT-PCR 

RT-PCR reactions of the JCV-early region splicing were performed by using following 

primers: PF (Mad-1 4801-4780): 5’- CCTGATTTTGGTACATGGAA -3‘ and PR (Mad-1 4291- 

4313): 5’-GTGGGGTAGAGTGTTGGGATCCT -3’. Amplified gene products were resolved on 

a 3% DNA-agarose gel 

. 
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CHAPTER 4 

 RESULTS 

	  

4.1 Conditioned-media from induced PBMCs inhibits JCV infection 

on glial cells. 

To investigate the possible impact of soluble immune mediators on JCV gene expression and 

replication, we utilized PBMCs as the source of immune mediators in infection studies. PBMCs 

were isolated from a healthy patient’s whole blood and either induced or left un-induced in 

culture using PMA and Ionomycin for 2 hours as can be seen in the cartoon illustration in Figure 

10 panel A, that describes the experimental approach implemented in this work. More in detail, 

48 hours after induction with PMA and Ionomycin, conditioned media were collected and 

supplemented, in a 1:1 ratio (%50), into Dulbecco’s minimal essential medium (DMEM) 

(Mediatech Inc., Herndon, VA), supplemented with 10% heat-inactivated fetal bovine serum 

(Mediatech Inc.), in which  SVGA cells infected by the virus are grown. SVG-A cells are a 

subclone of the original SVG human glial cell line established by transformation of human fetal 

glial cells by an origin-defective SV40 mutant (Major et al.,1985). SVG-A cells were maintained 

in a humidified 37°C CO2 incubator. 

Whole cell extracts and growth media of the cells were collected at 8 and 15 dpi, and 

processed for Western Blot analysis and Q-PCR as shown respectively in panel B and panel C.  
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As hypothesized, Western Blot analysis of viral protein VP1 levels, show a progressive JC 

virus infection occurring in SVGA cells as early as 8 days post infections (8 dpi) with a peak at 

15 dpi (results are shown in the top graph of Figure 10B lanes 3 and 4). 

Our results suggest that CM-Uninduced treatment slightly modulate VP1 levels already after 

8 dpi, as shown in lanes 5 and 6, but it is after CM-induced treatment that Vp1 levels are strongly 

down-regulated (lanes 7 and 8) compared to control. The bottom section of Figure 10B is a bar 

graph that represents the quantification of VP1 band intensities normalized to Tubulin. 

As shown in panel C, Q-PCR analyses of the growth media, also shows the presence of viral 

particles in SVGA cells infected with JCV, as visible in 8 dpi and 15 dpi controls. Our results 

show how after CM-induced treatment, viral copy numbers are drastically reduced, especially 

after 15 dpi, indicating a strong inhibiting effect of CM-induced on viral infection. 
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Figure 10: Immune mediated suppression of JCV propagation. A. Graphic representation of experimental approach. 

Conditioned media were collected after 48h induction with PMA and Ionomycin, and supplemented into the media of infected 

SVGA cells. B. Western blot analysis of whole extracts from JCV infected SVGA cells. Upper part represents autoradiograph of 

VP1. Bar graph represents the quantification of VP1 band intensities normalized to tubulin. C. Q-PCR analysis of viral copy 

numbers in growth media of SVGA cells infected with JCV. Growth media was collected in parallel to whole cell extracts in the 

same infection studies presented in panel B.  

	  

	  



Results	  

	   52	  

4.2 Soluble immune mediators secreted by activated PBMCs inhibit 

JCV early and late gene transcription in glial cells. 

As a follow up of the results we obtained from the previous experiment, we were interested 

to investigate the impact of Conditioned Media obtained from PBMCs on JCV transcription. In 

this experiment we decided to use T98G cell line, derived from a human glioblastoma multiform 

tumor. It is known that T98G cells are a polyploid variant of T98, and that they express a unique 

combination of normal and transformed aspects of the control of cellular proliferation. T98G 

cells are like normal cells in that they become arrested in G1 phase under stationary phase 

conditions, yet they also exhibit the transformed characteristics of anchorage independence and 

immortality. 

T98G cells were transfected with luciferase reporter plasmids pGL3.7 which consists of 

either JCV- Mad1 Early (Figure 11A) or Late (Figure 11B) promoter. The Luciferase Assay 

System was developed for reporter quantitation in mammalian cells. Firefly luciferase, a 

monomeric 61kDa protein, catalyzes luciferin oxidation using ATP-Mg2+ as a co-substrate, 

generating light as oxyluciferin returns to the ground state. After recovering from transfection, 

cells were then treated for 32 hours with CM obtained once again from induced or uninduced 

PBMCs in a 1:1 ratio with 10%FBS/DMEM. After 48 hours from the beginning of the 

experiment, cells were lysed and Luciferase activity (LUC) was determined with the dual-

luciferase assay kit according to Manufacturer’s instructions (Promega). As shown in Figure 

11A, a 32hour treatment with CM induced from PBMCs greatly decreases Early gene transcripts 

levels indicating a direct effect of soluble immune mediators on Early gene transcription.  
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JCV Mad-1 Late promoter activity was also down-regulated after treatment, but in a less 

significant manner, as indicated by the p-values in Figure 11A and Figure 11B.  

The asterisks indicate that test results were statistically significant, as measured by the 

obtained T-test p-values. T-tests were performed on three independent sets of experiments. 
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Fig.11 Induced CM from PBMCs negatively modulates JCV early and late gene transcription.T98G human glioblastoma cells 

were transfected with luciferase reporter plasmids pGL3.7 which consists of either JCV-Mad1 Early (Figure 2A) or Late (Figure 

2B) promoter and then treated for 32 hours with conditioned media obtained from either induced or uninduced PBMCs. Cells 

were then harvested for luciferase assay. LUC activity was normalized to untreated cells (second bar in both panels), the results 

were presented as a histogram. The asterisks indicate that experiments were conducted in three independent experiments and are 

therefore statistically significant.  

4.3 Conditioned media from PBMCs inhibits viral replication 

induced by T-Ag. 

The next experimental step consisted in investigating whether immune mediators also played 

a modulating effect on JCV viral DNA replication. We therefore performed a viral replication 

assay utilizing pBLCAT3-JCV-early plasmid, which contains whole viral NCCR including 

origin of replication.  

T98G cells were harvested from human fetal brain tissue obtained from elective abortions in 

full compliance with National Institutes of Health guidelines. T98G cells were then transfected 

with this pBLCAT3-JCV-early construct. Since it is well known that large T-antigen is able to 

activate its own promoter and that it also enhances the activity of both early and late promoters, 

we chose to also transfect T98G cells with an expression plasmid encoding large T-antigen.  

Cells were harvested for low molecular weight DNA at day 4 post-transfections. DNA was 

then digested with Dpn I and BamH1 enzymes. Digested-DNA samples were separated on 1% 

agarose gel and were transferred to a nylon membrane. Replicated viral DNA was visualized 

upon incubation of the membrane Cat3-Mad1-Early plasmid. 

As expected, our results showed that the band corresponding to replicated-DNA was only 

detectable in the presence of large T-antigen (Fig.12A, compare lanes 4 and 5). Interestingly, 

treatment of cells with conditioned media from induced PBMCs but not from uninduced PBMCs 
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showed a significant reduction in the levels of replicated DNA (compare lanes 6 to 7). These 

data suggested that immune mediators secreted by active PBMCs had a negative impact on JCV 

replication mediated by large T-antigen. In parallel to the DNA samples, we also prepared whole 

cell protein extracts from the same experiments and analyzed by western blot for detection of 

large T-ag expression (Fig.12B). Surprisingly, conditioned media from induced PBMCs showed 

a significant decrease in large T-ag levels (compare lane 5 with lane 3 and 4).  
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Fig.12 Conditioned media from induced PBMCs inhibits viral replication induced by LT-Antigen Replication assay was 

performed as previously described.T98G cells were transfected at a confluence of 1 x 106 cells per T 75-cm2 tissue culture 

flask for 24 hours. Low molecular weight DNA purified from cells was  digested with Dpn I and BamH1 enzymes. Low 

molecular weight DNA extraction was performed by using QiagenMiniprep Kit. Digested – DNA samples were separated on 1% 

Agarose gel and then transferred to a nylon membrane ( Fig. 3 A). Replicated viral DNA was visualized upon incubation of the 

membrane with a [32P]- labeled JCV DNA probe. In parallel, same extracts were also analyzed by western blot for the 

expression of large T-ag (Fig.5B). Surprisingly, after treatment with conditioned media from induced PBMCs,  Large T-ag 

stability appeared altered and this led us to investigate on Large T stability after treatments.

	  
Conditioned media from 3 different sets of PBMCs inhibits Large-T-Ag expression. 

Another experimental question that was addressed in this work was to identify the 

mechanism involved in the negative modulation of Large-t levels induced by conditioned media 

as found in the above-mentioned experiments. T98G cells werethentransfected with a plasmid 

able to overexpress Large T antigen (pcDNA 3.1-LT-ag) for 24 hour. After recovery, cells were 

then treated with 50% of either uninduced or induced CMs collected from 3 different sets of 

PBMCs for 32 hours. Whole cell extracts were then analyzed by western blotting to determine 

Large T-ag expression. As seen in Figure 13A, western blot analyses of samples show that LT-

Ag levels do appear highly down-regulated in all three cases after induced CM treatment 

compared to the uninduced CM treatment. In Figure 13 panel B is drawn a graphic representation 

of Large T expression level modulation normalized to tubulin after treatments. The results shown 

in Figure 13A and Figure 13B indicate that there is a direct effect on Large-T expression level 

modulation induced by soluble immune mediators secreted by induced PBMCs. 
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Figure 13. CM induced collected from 3 different donors all affect Large-T expression levels. T98G cells transfected for 24 

hours with an expression plasmid encoding large T- antigen, and then treated for 32 hours with either uninduced or induced CM. 

Cells were then harvested and Western blot analysis of whole cell extracts was performed in order to determine large T-ag 

expression levels. Large-t antigen does appear down-regulated after CM-induced treatment in all 3 cases. Bar graph represents 

the quantification of LT-Ag band intensities normalized to tubulin. 
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4.4 Conditioned-media from PBMCs induced by PMA and 

Ionomycin down-regulates LT-Ag in a glioblastoma cell line. 

To determine the effect of immune mediators secreted by PBMCs on JCV gene expression, 

we decided to use again T98G cells, a human GBM cell line, and transfect them with pcDNA3.1 

LT+ smt-WT plasmid, which expresses the entire JCV early region, and therefore, encodes the 

major early regulatory protein of JCV, Large T-ag and small-t antigen. After a 4-hour recovery 

from transfection, T98G cells were treated with CMs from either induced or uninduced PBMCs 

for a 48h time period. Whole cell extracts were analyzed by western blotting to determine Large 

T-ag expression levels. As seen in Figure 14 A, CM-induced treatment suppressed the expression 

levels of Large T-ag, but the same effect was not present for the CM-uninduced treated samples. 

This indicated that immune mediators secreted by PBMCs had a regulatory function on the early 

viral protein expression levels. In parallel to western blot analysis of protein products, we also 

analyzed viral RNA products from early gene by RT-PCR.  As shown in Figure 14 panel D, our 

data revealed no alteration on either LT-Ag nor small-t mRNA, whose schematic structures are 

displayed in Figure 14 panel C. These data suggested that the observed reduction in protein 

levels was most likely occurring at a protein quality control level rather than transcription or 

splicing modification. 
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Figure 14: Immune mediated suppression of early viral protein level. A. and B. Western Blot analysis demonstrate how 

32 hours treatment with CM-Induced, causes down-regulation of LT-Ag in transfected  glioblastoma cell lines. C. 

Schematic structure of LT mRNA and Sm-t   mRNA.  D. RT-PCR analysis of JCV early proteins Lt-Ag and Sm-t gene 

products T98G cells non transfected and transfected with JCV early genome. In lane 1, Kb ladder was loaded as molecular 

weight marker. In lane 2, JCV Mad-1 genome was used as a positive control. 
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4.5 Cytokine array analysis of conditioned media.  

Our preliminary data from infection studies showed that immune mediators secreted from 

induced PBMCs suppress JCV gene expression and replication in glial cells, suggesting a 

possible role of cytokines in the control of JCV propagation. Our next goal was then to identify 

which cytokines appeared to be highly activated after 48-hour stimulation with PMA and 

Ionomycin, in order to assess and identify which cytokines could be the ones responsible for 

such regulation. In order to determine the cytokine profiles of conditioned media upon 

stimulation with Ionomycin/PHA treatment, we utilized a commercially available cytokine array 

kit (RayBiotech, Inc.). Results are shown in Figure 6. The key cytokines, that appeared highly 

increased in PBMCs after stimulation with PMA and Ionomycin for 48 hours, are marked up in 

red, whereas marked up in blue, are the cytokines which result less active in induced conditioned 

media compared to the uninduced CM.  A representative graph displayed in Figure 15 panel B 

helps quantify the fold change in the cytokine profiles of conditioned media from induced 

PBMCs compared to uninduced PBMCs.  

Our preliminary cytokine arrays data revealed, among all, a robust increase in the expression 

of IL2, INFγ, RANTES, IL3, IL1β, and IL13, and an important decrease in the expression of 

MCP1, MIG, and MDC.  
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Figure 15.Cytokine array with conditioned media from uninduced and induced PBMCs. A. Schematic representation of the 

cytokine array (RayBiotech, Inc.).Uninduced PBMCs (upper left panel) and induced PBMCs (upper right panel). Red boxes 

show the cytokines with increased production. Blue boxes show the cytokines with decreased production. B. Quantification of the 

fold change in the cytokine profiles of conditioned media from induced PBMCs compared to uninduced PBMCs.  

	  

4.6 Effect of IL-2, RANTES and IL-13 alone and in combination on 

LT down regulation 

The data presented in this work, demonstrate how immune mediators secreted by induced 

PBMCs were able not only to inhibit viral replication in glial cells, but could also alter Large T-

ag expression levels at a post-transcriptional level. We therefore decided to investigate the direct 

effect of what we thought could be the key cytokines affecting Large T stability. Based on our 

previous findings, we decided to investigate the possible direct effect of three cytokines which in 

the cytokine array, appeared to be highly secreted after stimulation for 48 hours with PHA. 

 In order to investigate the effect of the soluble immune mediators identified in the previous 

experiment, T98G cells were transfected with pCDNA 3.1-LT-ag, a construct characterized by 

the presence of CMV promoter, for 24 hours. They were then treated with uninduced CMs 

implemented with IL2 [1 ng\ml], RANTES [40 ng\ml] and IL-13 [5 ng\ml] separately or in 

combination. 

Cells were then harvested, and whole cell extracts were analyzed by western blotting to 

determine Large T-ag expression. As seen in Figure 16, Large T-Antigen levels appeared to be 

drastically down-regulated after cytokine treatment compared to uninduced CM alone (compare 

lane 2 with lanes 3, 4, 5 and 6). The two cytokines which appeared to affect in a greater extent 
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Large T antigen expression levels, were IL-2 and RANTES.  The bottom bar graph represents 

the quantification of LT-Ag band intensities normalized to tubulin. These findings strongly 

suggest a direct involvement of Interleukin-2 and RANTES in the post-transcriptional 

suppression of T-ag expression induced by conditioned media from PBMC. 
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Figure 16.Direct effect of key cytokines, on LT expression. T98G cells transfected for 24 hours with an expression plasmid 

encoding large T- antigen, and then treated with IL2 [1 ng/ml], RANTES [ng/ml    ], IL-13 [ng/ml] alone or in combination, in 

the presence of conditioned media obtained from uninduced PBMCs. Western blot analysis from whole cell extracts was 

performed to determine large T-ag expression levels. The results obtained show a strong downregulation in large-T antigen 

expression levels when IL-2 and RANTES were implemented to uninduced conditioned media compared to uninduced-CM alone. 

This proves the direct effect of these cytokines on large-T expression level modulation. Bar graph represents the quantification of 

LT-Ag band intensities normalized to tubulin. 

4.7 IL-2 and RANTES down regulate JCV Early and Late 

transcripts in a dose-dependent manner in glial cells. 

After having identified these key cytokines as modulators of Large-T ag expression levels, 

we decided to investigate in more detail at what stage this downregulation effect actually occurs. 

In order to determine at what level these cytokines regulate JCV, we transfected T98G cells, 

a human GBM cell line, with Luciferase reporter plasmids for the JCV Mad-1 early (Figure 9A) 

or late (Figure 17B) promoter. These constructs are integrated with JCV Mad-1 promoter in 

either the early or late orientation integrated with Luciferase enzyme which allows to quantify 

the promoter activity calculating the emission of light obtained from oxyluciferin when it returns 

to the ground state.  

After recovery, cells were treated with increasing concentrations of IL-2 and RANTES for 32 

hours. We observed a dramatic decrease in pJCV-Early gene levels after treatment indicating a 

strong dose-dependent effect of these cytokines on Early gene transcription. JCV Mad-1 Late 

promoter clone also appeared down-regulated after treatment.  

We finally tested the effect of these cytokines implemented in conditioned media obtained 

from uninduced PBMCs, in T98G glioblastoma cells that had been transfected once again with 

Luciferase reporter plasmids for the JCV Mad-1 early promoter. Such an approach helped 

exclude any possible interference from other soluble immune mediators secreted from PBMCs, 
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and prove that such an inhibitory effect is actually due to a direct effect of IL-2 and RANTES on 

JCV- Early transcription machinery (Figure 17C). 

Once again, the results we obtained demonstrated how the effect of these cytokines 

implemented to conditioned media obtained from uninduced PBMCs also leads to a dramatic 

reduction in  JCV- Early transctipts levels. 

We hypothesize therefore that IL-2 and RANTES not only play a key role in the down-

regulation of Large-T expression levels, but that they are also capable of reducing viral 

transcription of both early and late genes. 
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Figure 17. Dose dependent effect of cytokines on JCV Early and Late gene transcription. T98G cells were transfected with 

Luciferase reporter plasmids for the JCV Mad-1 early (Panel A) or late (Panel B) promoter. We then treated them with 

increasing concentration of IL-2 and RANTES for 32 hours.  Cells were then harvested for luciferase assay. LUC activity was 

presented as a histogram.  A. and B. panels demonstrate how transcriptional levels of both JCV-Early and Late gene result 

significantly decreased after dose-dependent treatment with IL-2 and RANTES compared to control. Panel C. shows how the 

effect of these cytokines implemented to conditioned media obtained from uninduced PBMCs also leads to  a dramatic 

reduction in  JCV- Early transctipts levels. 
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4.8 Time dependent effect of IL2 on LT-Ag regulation  

After having identified the key cytokines involved in LT-Ag regulation, we focused on the 

kinetics of one the major responsible cytokines: IL2. We decided therefore to investigate the 

possible effect of this cytokine on Large-T expression levels in a time-dependent manner. 

T98G glioblastoma cells were transfected with an expression plasmid encoding large T-

antigen (pcDNA 3.1-LT-ag), for 24 hours. After recovery from transfection, cells were then 

starved [1% FBS\DMEM] overnight, in order to prevent any possible interference between the 

FBS implemented to the cell medium and the cytokine’s effect. The following day, cells were 

either treated or not with IL2 [1 ng/ml] which was added directly to the culture media. Whole 

cell extractions were performed every hour and each time, new cytokine was implemented to the 

media. Cells were then harvested and western blot analysis of protein extracts was performed in 

order to investigate the time-dependent effect of IL2 on Large-T expression levels. 

 As shown in Figure 18, a massive down-regulation in LT-Ag levels already occurred 1 hour 

after IL-2 treatment, whereas the strongest down-regulation appears 4 hours after treatment 

(Figure 8 lane 10) compared to untreated cells. The bottom bar graph represents the 

quantification of LT-Ag band intensities normalized to tubulin. 

Once again these findings indicated that IL-2 is capable of modulating one of JCV major 

regulatory proteins, Large-T antigen, even after a very short period of treatment. 
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Figure 18.Time dependent effect of IL2 on LT-Ag regulation. T98G cells were transfected for 24 hours with an expression 

plasmid encoding large T-antigen, and underwent starvation with a 1%FBS\DMEM overnight. The following day they were 

either treated or not hourly with IL2 [1 ng/ml] which was directly implemented to the media. Western blot analysis of whole cell 

extracts from T98G was performed in order to determine large T-ag expression levels. Large-t antigen does appear extensively 

down-regulated after only one-hour treatment, with a pick of downregulation registered after 4 hours treatment, compared to 

untreated samples. Bar graph represents the quantification of LT-Ag band intensities normalized to tubulin. 
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4.9 IL2 down-regulates Large-T expression levels through 

autophagy 

The above results demonstrated how IL-2 is capable of down-regulating, even after a very 

short period of treatment, Large T antigen expression levels. We therefore decided to investigate 

which key mechanism had a negative impact on Large T stability. Sariyer et al. (2012) have 

previously demonstrated how by overexpressing Bag3, a key protein deeply involved in the 

activation of the autophagic machinery, Large T antigen expression levels appeared to be 

drastically decreased. Thus we sought to investigate the possible role of CM-Induced and Il-2 in 

Large-T antigen modulation by autophagy. Consequently, we transfected PHFA cells with a 

construct named Plasmid 21074: ptfLC3 (Kimura et al., 2007) mRFP-‐GFP tandem fluorescent-‐

tagged L3 (tfLC3). Such a construct is commonly used for assessing the fusion step of 

autophagosomes with lysosomes. Autophagosomes marked by this marker protein show both 

mRFP and GFP signals. After fusion with lysosomes, GFP signals results attenuated, and only 

mRFP signals are observed. After recovering from transfection, cells were subjected to a 32-hour 

treatment with either CM-Uninduced, CM-Induced and IL2  [1ng/ml] that was directly 

implemented to cell’s growing media. Cells were then fixed in a 4% Formaldheide solution and 

analyzed by fluorescent microscopy. As shown in figure 19 upper panel A, we found that not 

only CM-Induced but also IL-2 treatment increased both yellow (i.e., mRFP and GFP) and red 

(i.e., mRFP only) punctae, indicating that it led to the degradation of the GFP moiety due to the 

increased autophagic flux. These effects were not observed in the control samples. In panel B a 

schematic representation of total Lc3 dots obtained by the addition of the number of yellow Lc3 

dots with red Lc3 dots. Percentage of the red Lc3 dots from the total Lc3 dots from (B). More 
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than 10 cells were counted in each condition. These results demonstrate that Large T down-

regulation induced by IL-2 treatment is due to the activation of the autophagic machinery. 
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Figure 19. IL-2 induces Large T down-regulation through autophagy. A) T98G cells were transfected with the tandem mRFP-

GFP-LC3 plasmids and then treated for 36 hours with either CM-Uninduced, Cm-Induced and IL2 [1ng/ml]. cells were then 

fixed with 4% Formaldheide followed by fluorescent microscopy.Total Lc3 dots are the addition of the number of yellow Lc3 dots 

with red Lc3 dots. Percentage of the red Lc3 dots from the total Lc3 dots from (B). More than 10 cells were counted in each 

condition. 
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CHAPTER 5 

 CONCLUSION 

 

JC virus (JCV) is a member of Polyiomaviridae family, characterized by icosahedral capsids, 

circular and double-stranded DNA. JC viral genome is characterized by a specific bipartite 

organization that is composed of two regions, called early and late transcription units, which 

despite being similar in size, are transcribed in opposite directions. Early region encodes for 

early regulatory proteins, such as small-t, Large-T, T’135 and t’165. 

The late side of the viral genome is transcribed concomitant with DNA replication and it 

encodes for all structural capsidic proteins such as VP1, VP2 and VP3, and the regulatory protein 

Agno, which function still remains unclear. JC virus reactivation in the host is the causative 

agent of the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). 

PML is characterized by a lytic infection of oligodendrocytes, that are the myelin-producing cells 

in the Central Nervous System (CNS). Studies have estimated that about 70% of human 

population has been infected during childhood, but not everyone develops PML disease since 

JCV reactivation only occurs in those cases in which there are immune-compromised conditions. 

This is one of the main reasons why PML is often closely associated with conditions such as 
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Acquired Immune Deficiency Syndrome (AIDS), Lymphoproliferative diseases and patients 

undergoing immunosuppressive therapies.  

Since it is known that JCV only reactivates in immunocompromised conditions, we aimed to 

recreate an experimental model in which an activated immune system could modulate JCV 

infections in glial cells. Specifically, in order to investigate the possible impact of soluble 

immune mediators on JCV gene expression and replication, we utilized PBMCs as the source of 

immune mediators in infection studies. The model was composed of two systems, an active 

immune system model in which conditioned-media samples created by stimulating PBMCs for 

48 hours with PHA. A second system that we called CM-uninduced, in which PBMCs were not 

stimulated. In both systems, PBMCs were obtained from a single healthy patient’s peripheral 

blood. Then SVGA cells were infected with JC virus and treated with either CM-uninduced or 

CM-induced. Cells were then harvested after 8 and 15 days post infection. Viral capsid protein 

VP1 levels were then analyzed by Western blot analysis in order to assess whether infection took 

place and to monitor VP1 level changes after CM treatment.  

Our results suggested that CM-Uninduced treatment slightly modulate VP1 levels already 

after 8 dpi, but it is after CM-induced treatment that Vp1 levels are strongly down-regulated 

compared to control. In this view, our analysis showed that the presented approach is a feasible 

model to investigate the effect of CM on JCV.   

Furthermore, Q-PCR analysis of the growth media was performed to assess if after CM-

induced treatment, viral copy numbers in SVGA cells infected with JCV, were altered. We found 

that viral copy numbers were indeed drastically reduced, already after 8 dpi but especially after 

15 dpi. This indicates a strong inhibiting effect of CM-induced on viral infection. 
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We were then interested in investigating whether CM-Induced was also able to affect JC 

virus transcriptional levels. In order to evaluate at what level this inhibition occurs, we chose to 

test if CM-Induced was able to modulate JCV Early and Late transcriptional levels using 

Luciferase activity (LUC) assay. 

Our luciferase activity (LUC) assay results demonstrated how CM induced treatment greatly 

decreases Early gene transcripts levels indicating a direct effect of soluble immune mediators on 

Early gene transcription. JCV Late promoter activity resulted down-regulated after treatment as 

well, although in a less significant manner.  

Another important factor we believed important to study was whether immune mediators also 

played a modulating effect on JCV viral DNA replication. In order to test such an effect we 

performed Southern blot analysis on PHFA cells. 

Interestingly our data suggested that treatment of cells with conditioned media from only 

induced PBMCs showed a significant reduction in the levels of replicated DNA. Surprisingly, 

Large-T antigen expression levels also appeared to be strongly down-regulated after CM-induced 

treatments. This suggested that immune mediators secreted by active PBMCs had a negative 

impact on JCV replication mediated by large T-antigen.  

In order to prove that these findings were due to a direct effect of CM-induced on Large-T 

antigen expression levels we chose to perform Western blot analysis on T98G cells transfected 

with a plasmid overexpressing Large-T and then treated with CM-uninduced and CM-induced 

obtained from three different donors.   

Our results show that the down-regulating effect on Large-T antigen expression levels was 

consistently present in all the analyzed samples treated with CM-induced. This indicates that 
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soluble immune mediators secreted by induced PBMCs do have a direct effect on Large-T 

mRNA expression levels. 

After evaluating this direct effect of induced CMs on the early viral protein expression levels, 

we planned to investigate whether CM-induced was also able to affect viral gene expression 

levels. 

We therefore analyzed viral RNA products from early gene by RT-PCR and we did not come 

across any alteration on either LT-Ag or small-t mRNA. These data suggested that the observed 

reduction in protein levels was most likely occurring at a protein quality control level rather than 

transcription or splicing modification levels. 

Our preliminary data from infection studies showed that immune mediators secreted from 

induced PBMCs suppress JCV gene expression and replication in glial cells, suggesting a 

possible role of cytokines in the control of JCV propagation. Our next goal was then to assess 

and identify which cytokines could be the ones responsible for such regulation. Thus we 

performed cytokine arrays of both CM-uninduced and CM-induced. Our preliminary data 

revealed, among all cytokines, a robust increase in the expression of IL2, INFγ, RANTES, IL3, 

IL1β, and IL13, and a substantial decrease in the expression of MCP1, MIG, and MDC.  

The results presented in this work demonstrate how immune mediators secreted by induced 

PBMCs were able not only to inhibit viral replication in glial cells, but could also alter Large T-

ag expression levels at a post-transcriptional level. We therefore decided to investigate the direct 

effect of what we thought could be the key cytokines affecting Large T stability. We decided to 

test the direct effect of three cytokines which appeared strongly increased in the CM-induced 

population, IL-2, RANTES and IL-13, alone or in combination. Based on our results, the two 
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cytokines that appeared to affect to a larger extent Large T antigen expression levels, were IL-2 

and RANTES. 

After having identified these key cytokines as modulators of Large-T ag expression levels, 

we then investigated in greater detail at what stage this down-regulation effect actually occurs. 

We therefore tested whether these key cytokines were able to modulate, in a dose-dependent 

manner, JCV Early and Late transcriptional levels using Luciferase activity (LUC) assay. Our 

results showed a dramatic decrease in Early gene levels after treatment indicating a strong dose-

dependent effect of these cytokines on Early gene transcription. Late promoter also appeared 

down-regulated after treatment.  

Next we decided to test the effect of these cytokines implemented in conditioned media 

obtained from uninduced PBMCs. Once again, we found demonstrated how the effect of these 

cytokines implemented to conditioned media obtained from uninduced PBMCs also led to a 

dramatic reduction in JCV- Early transcripts levels. 

We hypothesized therefore that IL-2 and RANTES not only play a key role in the down-

regulation of Large-T expression levels, but that they are also capable of reducing viral 

transcription of both early and late genes. 

We then focused on the kinetics of one of the major responsible cytokines: IL2. We decided 

therefore to investigate the possible effect of this cytokine on Large-T expression levels in a 

time-dependent manner. In order to do so, we transfected T98G cells with a plasmid 

overexpressing Large-T antigen, and then treated them with IL2 that was added directly to the 

culture media. Whole cell extractions were performed every hour and each time, new cytokine 

was implemented to the media. Cells were then harvested and western blot analysis of protein 

extracts was performed. 
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IL-2 treatment appeared to strongly down-regulate Large T protein levels 4 hours after 

treatment. Once again these findings indicated that IL-2 is capable of modulating one of JCV 

major regulatory proteins, even after a very short period of treatment. 

Finally, our last experiment was designed to test which mechanism was affecting Large-T 

antigen stability.  

Previous studies (Sariyer et al., 2012) demonstrated how Large T antigen expression levels 

appeared to be significantly reduced after the overexpression of Bag3, one of the most important 

proteins deeply involved in the autophagic machinery,. 

BAG3, in fact, cooperates with the molecular chaperones Hsc70 and HspB8 to induce the 

degradation of mechanically damaged cytoskeleton components in lysosomes. This process is 

called chaperone-assisted selective autophagy (CASA). 

We therefore decided to investigate whether CM-induced, and especially IL-2, were capable 

of triggering the autophagicmachinery . 

In order to test such activation, we used a mRFP-GFP tandem fluorescent-tagged L3 (tfLC3) 

construct (Kimura et al., 2007). 

This novel model allows us to assess the fusion step of autophagosomes with lysosomes.  

GFP-LC3 punctate signals do not colocalize with lysosomes (Bampton et al., 2005; Kabeya et 

al., 2000). In contrast, RFP (and other red fluorescent proteins, such as mCherry) exhibits more 

stable fluorescence in acidic compartments (Katayama et al., 2008), and mRFP-LC3 can readily 

be detected in autolysosomes. By exploiting the difference in the nature of these two fluorescent 

proteins, autophagic flux can be morphologically traced (Kimura et al., 2007). With this novel 

construct, autophagosomes and autolysosomes are labeled with yellow (i.e., mRFP and GFP) and 

red (i.e., mRFP only) signals, respectively. If autophagic flux is increased, both yellow and red 
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punctae are increased; however, if autophagosome maturation into autolysosomes is blocked, 

only yellow punctae are increased without a concomitant increase in red punctae.  

PHFA cells were transfected with the above mentioned tfLC3 construct and subjected to a 32-

hour treatment with either CM-Uninduced, CM-Induced and IL2  [1ng/ml]. 

Cells were then fixed in a 4%Formaldheide solution and analyzed by fluorescent 

microscopy.We found that were subjected to either CM-Induced but especially IL-2 treatment, 

resulted in an  increased number of both yellow (mRFP-GFP merged) and red ( i.e., mRFP only) 

punctae, indicating that in IL-2 treated samples, the increased autophagic flux led to the 

degradation of the GFP moiety. These effects were not observed in the control samples. 

These findings indicate that autophagosomes in CM-induced and IL-2 treated cells are able to 

fuse with the lysosomes and that autophagic flux or turnover is increased. 

These observations present a novel role of immune mediators in regulation of JCV gene 

expression, and provide a new avenue of research to understand in depth molecular mechanism 

of viral reactivation in patients who are at risk of developing PML, and identifying which 

immune subpopulation may be the main responsible of the downregulation of JC virus  Large T 

antigen. 
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