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GRID FOR MODEL STRUCTURE DISCOVERING IN HIGH

DIMENSIONAL REGRESSION

Francesco Giordano∗ Soumendra Nath Lahiri† Maria Lucia Parrella‡

Abstract. Given a nonparametric regression model, we assume that the number of

covariates d → ∞ but only some of these covariates are relevant for the model. Our goal

is to identify the relevant covariates and to obtain some information about the structure of

the model. We propose a new nonparametric procedure, called GRID, having the following

features: (a) it automatically identifies the relevant covariates of the regression model, also

distinguishing the nonlinear from the linear ones (a covariate is defined linear/nonlinear

depending on the marginal relation between the response variable and such a covariate);

(b) the interactions between the covariates (mixed effect terms) are automatically iden-

tified, without the necessity of considering some kind of stepwise selection method. In

particular, our procedure can identify the mixed terms of any order (two way, three way,

...) without increasing the computational complexity of the algorithm; (c) it is completely

data-driven, so being easily implementable for the analysis of real datasets. In particular,

it does not depend on the selection of crucial regularization parameters, nor it requires the

estimation of the nuisance parameter σ2 (self scaling). The acronym GRID has a twofold

meaning: first, it derives from Gradient Relevant Identification Derivatives, meaning that

the procedure is based on testing the significance of a partial derivative estimator; second,

it refers to a graphical tool which can help in representing the identified structure of the

regression model. The properties of the GRID procedure are investigated theoretically.

Keywords: Variable selection, model selection, nonparametric model regression.

AMS 2010 classifications: 46A03, 62A01, 60F05.

JEL classifications: C14, C15, C18, C88.

1. Introduction

Nonparametric methods are particularly useful in the preliminary stage of data analysis,

for example to make variable selection, model structure discovering and goodness-of-fit

tests. In fact, while a correctly specified parametric model is characterized by precise in-

ference, a badly misspecified one leads to inconsistent results. On the other side, nonpara-

metric modelling is associated with greater robustness and less precision. But a criticism

often made to the nonparametric procedures is that they are time-consuming and not “user-

friendly”, because their performance depends crucially on some regularization parameters

which are difficult to set. This remarkably affects the potentialities of such procedures.

To promote the use of nonparametric approaches, the procedures should be automatic and
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easy to implement. At the same time, they should assure the oracle property under general

assumptions. Therefore, these goals will represent the main priority of our analysis.

We consider the following nonparametric regression model

Yt = m(Xt) + εt, (1)

where the Xt represents the Rd-valued covariates and the errors εt are i.i.d. with zero mean

and variance σ2. Here m(Xt) = E(Yt|Xt) : R
d → R is the multivariate conditional mean

function. The errors εt are supposed to be independent of Xt. We use the notation X(j)

to refer to the single covariates, for j = 1 . . . , d. We indicate with fX(·) the multivariate

density function of the covariates, having support supp(fX) ⊆ Rd, and with fε(·) the

density of the errors.

We assume that the number of covariates d → ∞ but only some of these covariates are

relevant for model (1). Given that the parametric form of the function m is completely un-

known, our goal is to identify the relevant covariates and to obtain some information about

the structure of model (1). We propose a nonparametric procedure having the following

features:

(a) it automatically identifies the relevant covariates of model (1), also distinguishing

the nonlinear from the linear ones (a covariate is defined linear/nonlinear depending

on the marginal relation between the response variable and such a covariate, which

corresponds to a relative constant/nonconstant gradient, respectively);

(b) the interactions between the covariates (mixed effect terms) are automatically identi-

fied, without the necessity of considering some kind of stepwise selection method. In

particular, our procedure can identify the mixed terms of any order (two way, three

way, ...) without increasing the computational complexity of the algorithm; more-

over, the mixed effect terms are classified as nonlinear mixed effect, if they involve

some nonlinear covariates, or as linear mixed effect, if they involve only linear co-

variates;

(c) it is completely data-driven, so being easily implementable for the analysis of real

datasets. In particular, it does not depend on the selection of crucial regularization

parameters, nor it requires the estimation of the nuisance parameter σ2 (self scaling).

The multiple test selection procedure is based on the Empirical Likelihood approach.

Under suitable assumptions, our procedure can be applied to high dimension datasets.

A screening of the available statistical methods proposed so far can help to highlight the

main contributions of our work.

Most of the work has been made in the context of variable selection. There are two

main approaches to this problem. Both these approaches consider the estimation of the

multivariate regression function contextually to relevant variable selection. The first one is

based on the idea of LASSO, using some penalized regressions within additive models (see

Radchenko & James (2010), Zhang et al. (2011), Storlie & alt. (2011), among others).

The appeal of this approach is the fast rate of convergence, which essentially derives from

the imposition of an additive model and other crutial assumptions. On the other side, a

serious drawback is given by the computational complexity and the difficulty of implemen-

tation on real datasets. The second approach, which has inspired this work, is based on a

general regression function of dimension d, which do not impose any additive restrictions
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2nd stage: Identification of interactions

1st stage: Variable selection Mixed with

other nonlinear

covariates

Mixed with

other linear

covariates

Pure additive

Nonlinear covariates C Cc Ca Cp

Linear covariates A Ac Aa Ap

Table 1: Schematic representation of the GRID procedure. The two dimensions of the

table refer to the two stages. The body of the table shows the partition of the regressors

Ξ = {1, . . . , d} obtained at the end of the procedure.

on the model (Lafferty & Wasserman (2008)). The main advantage of this approach is its

flexibility and simplicity of implementation on real datasets. At the same time, it suffers

from a low rate of convergence that makes it unsuitable for the analysis of high dimensional

datasets.

Very few papers consider the problem of model selection contextually to variable se-

lection, among which Radchenko & James (2010) and Zhang et al. (2011). As far as we

know, our procedure is the only one that gives a complete idea of the structure of model (1),

without assuming an additive form a priori. As can be seen from points (a)-(c) above, we

can derive approximately the exact functional form of the true regression function, which

can be used in order to estimate a semiparametric model efficiently.

Our method can be seen as a non trivial extension of the RODEO of Lafferty & Wasser-

man (2008), in the sense that we use the same framework and some of the ideas and results

presented in their paper, but here we propose a new procedure which also fix some of its

drawbacks. Moreover, we perform model selection in addition to variable selection. The

acronym GRID has a twofold meaning: first, it derives from Gradient Relevant Identifica-

tion Derivatives, meaning that the procedure is based on testing the significance of a partial

derivative estimator; second, it refers to a graphical tool which can help in representing the

identified structure of model (1). The estimation procedure used in GRID is based on the

conjoint implementation of two nonparametric tools: the local linear estimator (LLE) and

the empirical likelihood (EL). The peculiarity of our proposal is that it takes advantage of

both the strenghts and weaknesses of the two nonparametric tecniques, and it harmonically

integrates them in order to pursue the final aim of the estimation.

The rest of this section is devoted to explain how the GRID method works.

Our aim is to classify the covariates of model (1) into disjoint sets: 1) the set of nonlinear

covariates, which includes those variables X(j) having a nonlinear effect on the dependent

variable Y (i.e., those with non constant gradient); 2) the set of linear covariates, which

includes the variables X(j) having a linear effect on the response variable Y (i.e., constant

gradient); 3) the set of irrelevant covariates, collecting the variables for which the gradient

is equal to zero. Denote with C, A and U , respectively, the correspondent index sets

and let Ξ = C ∪ A ∪ U represent the set of regressors {1, . . . , d}. Secondly, we point

to automatically detect the interactions among the covariates, identifying exactly which

mixed effects are ‘active’ in model (1). Therefore, each index set can be further partitioned

as shown in table 1.

The two dimensions of the table refer to the two stages of the GRID procedure: the first

one focuses on variable selection while the second looks at the interaction terms. More
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specifically, the information on the interaction terms is given in the following way. Let

Ij be the set of covariates mixed with the j-th covariate, for j ∈ Ξ. A convention used

here is that j /∈ Ij , which means that self-interaction is excluded in practice. The GRID

procedure gives a consistent estimation of the sets C and A in the first stage, and the sets

Ij in the second stage. The other sets can be derived easily by known relationships. In

particular, IjC = Ij ∩ C is the set of nonlinear covariates which are mixed with the j-th

covariate and IjA = Ij∩A is the set of linear covariates mixed with the j-th covariate. Then

Ij = IjC ∪ IjA. But also Cc = ∪j∈CI
j
C , Ca = ∪j /∈CI

j
C , Ac = ∪j∈CI

j
A and Aa = ∪j /∈CI

j
A.

All this permits to do variable selection and model structure discovering simultaneously.

For example, when d = 10 and the model is

Yt = 2Xt1 +X2
t2Xt3 + 10Xt4Xt5Xt6 + exp(Xt7) + εt, (2)

then the first stage of the procedure is devoted to identify the following sets of covariates

C = {2, 7}, A = {1, 3, 4, 5, 6}, U = {8, 9, 10},

while the second stage of the procedure identifies the following sets of interactions

I2A = {3}, I3C = {2}, I4A = {5, 6}, I5A = {4, 6}, I6A = {4, 5}.

To make the GRID procedure ‘user-friendly’, the method is presented in section 5 through

a detailed algorithm and the results of the estimation are shown through an intuitive plot

which points out clearly both the relevant covariates and their interactions, and helps to

write down the (estimated) functional form of the regression function m(x).

The details are presented in the following sections. Section 2 gives the notation. In

section 3 we give the main idea at the basis of the selection procedure. Then, in section

5, we present the test-statistic, the algorithm and the GRID plot. Section 4 describes the

multiple testing method, based on the Empirical Likelihood inference. All the proofs are

collected in the appendix.

2. Basics of the multivariate local linear estimator

The local linear estimator is a nonparametric tool whose properties have been studied

deeply. See Ruppert & Wand (1994), among others. Let x = (x1, . . . , xd) be the tar-

get point at which we estimate m. The LLE performs a locally weighted least squares fit of

a linear function, being equal to

arg min
β0,β1

n
∑

t=1

{

Yt − β0(x)− βT
1 (x)(Xt − x)

}2
KH(Xt − x) (3)

where (·)T denotes the transpose operator, the function KH(u) = |H|−1K(H−1u) gives

the local weights and K(u) is the Kernel function, a d-variate function. The d × d ma-

trix H contains the smoothing parameters, and it is called the bandwidth matrix. It con-

trols the variance of the Kernel function and regulates the amount of local averaging on

each dimension, and so the local smoothness of the regression function. Denote with

β(x) = (β0(x), β
T
1 (x))

T the vector of coefficients to estimate. Using the matrix notation,

the solution of the minimization problem in the (3) can be written in closed form:

β̂(x;H) = (ΓTWΓ)−1ΓTWΥ, (4)
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where β̂(x;H) = (β̂0(x;H), β̂T
1 (x;H))T is the estimator of the vector β(x) and

Υ =







Y1
...

Yn






, Γ =







1 (X1 − x)T

...
...

1 (Xn − x)T






,

W =







KH(X1 − x) . . . 0
...

. . .
...

0 . . . KH(Xn − x)






.

Let Dg(x) denote the gradient and Hg(x) the Hessian matrix of a d-variate function g.

Note from (3) that β̂(x;H) gives an estimation of the function m(x) and its gradient. In

particular,

β̂(x;H) =

(

β̂0(x;H)

β̂1(x;H)

)

≡

(

m̂(x;H)

D̂m(x;H)

)

. (5)

Despite its conceptual and computational simplicity, the practical implementation of the

LLE is not trivial, especially in the multivariate case, where it is subject to many drawbacks.

First of all, its consistence depends on the correct identification of the bandwidth matrix

H . An asymptotically optimal bandwidth exists and can be derived taking account of the

bias-variance trade-off, but the estimation of it is difficult in the multivariate framework.

Secondly, the resulting estimator of the regression function is biased, even when using the

optimal bandwidth matrix, and this makes the inference based on it unreliable. Finally,

the LLE is strongly affected by the curse of dimensionality problem, so these estimators

become impracticable for high-dimensional problems.

Anyway, the use of the LLE made here is non-standard from several points of view, as we

will see in the following sections. The advantage of our approach is that we manage to use

the Local Linear approximation technique avoiding all the drawbacks listed above. To this

end, we work with a variant of the classic estimator. Basically, we are not interested in the

function estimation itself, but only its bias, from which we can obtain a clear information

about the structure of the underlying regression model.

We consider the following assumptions.

A1) The bandwidth H is a diagonal and strictly positive definite matrix with diagonal

elements hj = O(1) for j = 1, . . . , d.

A2) The d-variate Kernel function K is a product kernel, with compact support and zero

odd moments. Therefore, the following moments exist bounded (we assume that

µ0 = 1)

µr =

∫

ur1K(u1)du1, νr =

∫

ur1K
2(u1)du1 r = 0, 1, . . . , 4.

Moreove, we assume that K ∈ C1[−a, a] for some a > 0.

A3) All the partial derivatives of the function m(x) up to and including fifth order are

bounded.

A4) The density fX is uniform on the unit cube.
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Remark 1.1: The assumption A1 is different from the typical assumptions made on the

bandwidth matrix H . As a consequence, all the theorems available in the statistical litera-

ture concerning the properties of the multivariate LLE are invalidated and cannot be applied

to our framework. Anyway, in addition to the theoretical derivations shown in this paper, a

confirmation of the reasonableness of our choice lies in Bertin & Lecue (2008).

Remark 1.2: The assumptions A3 and A4 are needed in order to bound the Taylor expansion

of the function m(x), as shown in the proofs. We relax condition A4, although only in part,

in Theorem 2.

3. The main idea for model structure discovering

Assume that there are k nonlinear covariates in C, r − k linear covariates in A and d − r
irrelevant variables in the complementary set U = A ∪ C. So, r is the number of relevant

covariates of model (1). Without loss of generality, we assume that the predictors are

ordered as follows: nonlinear covariates for j = 1, . . . , k, linear covariates for j = k +
1, . . . , r and irrelevant variables for j = r+1, . . . , d. Moreover, the set of linear covariates

A is furtherly partitioned into disjoint subsets: the covariates from k + 1 to k + s belong

to the subset Ac, which includes those linear covariates which are multiplied to nonlinear

covariates, introducing nonlinear mixed effects in model (1); the covariates from k+s+1 to

k+r belong to the subset Au = Aa∪Ap, which includes those linear covariates which have

a linear additive relation in model (1) or which are mixed to other linear covariates (linear

mixed effects). We want to stress here that the GRID procedure automatically identifies

such sets of indices, so the assumptions made here have the only purpose of gaining clarity

in the exposition.

In such a framework, using x = (xC , xAc , xAu , xU ), the gradient and the Hessian matrix

of the function m become

Dm(x) =









DC
m(x)

DAc
m (x)

DAu
m (x)
0









Hm(x) =









HC
m(x) HCAc

m (x) 0 0
HCAc

m (x)T HAc
m (x) HAcAu

m (x) 0
0 HAcAu

m (x)T HAu
m (x) 0

0 0 0 0









where 0 is a vector or matrix with all elements equal to zero, DC
m(x) = ∂m(x)/∂xC ,

DAc
m (x) = ∂m(x)/∂xAc

, DAu
m (x) = ∂m(x)/∂xAu

and

H
C
m(x) =









∂2m(x)
∂x1∂x1

. . . ∂2m(x)
∂x1∂xk

...
. . .

...
∂2m(x)
∂xk∂x1

. . . ∂2m(x)
∂xk∂xk









, H
CAc
m (x) =









∂2m(x)
∂x1∂xk+1

. . . ∂2m(x)
∂x1∂xk+s

...
. . .

...
∂2m(x)

∂xk∂xk+1
. . . ∂2m(x)

∂xk∂xk+s









(6)

H
Ac
m (x) =























0 ∂2m(x)
∂xk+1∂xk+2

. . . . . . ∂2m(x)
∂xk+1∂xk+s

∂2m(x)
∂xk+2∂xk+1

0
...

...
. . .

...
... 0 ∂2m(x)

∂xk+s−1∂xk+s

∂2m(x)
∂xk+s∂xk+1

. . . . . . ∂2m(x)
∂xk+s∂xk+s−1

0























.

The matrix HAu
m (x) is defined similarly to the matrix HAc

m (x), with a zero diagonal, and

the matrix HAcAu
m (x) is defined similarly to HCAc

m (x). Note that the matrices HC
m(x),
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HAc
m (x) and HAu

m (x) are symmetric, whereas the matrices HCAc
m (x) and HAcAu

m (x) are not.

Moreover, for additive models without mixed effects, all the sub-matrices in Hm(x) are

zero, except for HC
m(x) which is diagonal.

In our analysis, it is also necessary to take account of those terms in the Taylor’s expan-

sion of m(x) involving the partial derivatives of order 3 (see the proof of Proposition 1 for

the details). To this end, we define the following matrix

Gm(x) =

















∂3m(x)
∂x3

1

∂3m(x)
∂x1∂x2

2

. . . ∂3m(x)
∂x1∂x2

d
∂3m(x)
∂x2∂x2

1

∂3m(x)
∂x3

2

. . . ∂3m(x)
∂x2∂x2

d

...
...

. . .
...

∂3m(x)
∂xd∂x

2
1

∂3m(x)
∂xd∂x

2
2

. . . ∂3m(x)
∂x3

d

















=









GC
m(x) 0 0 0

GAcC
m (x) 0 0 0
0 0 0 0
0 0 0 0









. (7)

Note that the matrix Gm(x) is not symmetric. Note also that, for additive models, matrix

GAcC
m (x) is null while matrix GC

m(x) is diagonal.

In the same way, let us partition the bandwidth matrix as H = diag(HC , HAc
, HAu

, HU )
and the gradient of a function g(x) as Dg(x) = (DC

g (x)
T ,DAc

g (x)T ,DAu
g (x)T ,DU

g (x)
T )T .

3.1 Identifying the nonlinear effects

The rationale of our proposal lies in Proposition 1 and Theorem 1. In Proposition 1 we

derive the conditional bias of the LLE in (5), under the specific assumptions considered

here. In Theorem 1, we introduce a variant of the previous estimator, which has similar

properties but is more suitable for our specific needs.

Let 1 be a vector of ones. The Op(M) and O(M) terms must be intended for each

element of a matrix/vector M . Here and in the proofs, the notation δ(·) is used to denote a

finite quantity – scalar, vector or matrix – whose elements depend on the arguments of δ(·).
In particular, it is equal to zero if at least one of its arguments is zero. Moreover, it can be

used several times in the same proposition to denote different quantities, all finite.

Proposition 1. Under model (1) and assumptions (A1)-(A4), the conditional bias of the

local linear estimator given by (5) is equal to

E

{(

m̂(x;H)

D̂m(x;H)

)

−

(

m(x)
Dm(x)

)∣

∣

∣

∣

X1, . . . , Xn

}

=

(

bm(x;HC)
BD(x,HC)

)

+Op(n
− 1

2 ), (8)

where

bm(x;HC) =
1

2
µ2 tr{H

C
m(x)H2

C}+ δ(H4
C)

BD(x,HC) =









BC
D

BAc

D

BAu

D

BU
D









=
1

2
µ2











GC
m(x)H2

C1+
(

µ4

3µ2
2

− 1
)

diag{GC
m(x)H2

C}1+ δ(H4
C)

GAcC
m (x)H2

C1+ δ(H4
C)

0
0











. (9)
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Our results in Proposition 1, on the biases of the estimators m̂(x;H) and D̂m(x;H), are

congruent with the results in Theorem 2.1 of Ruppert & Wand (1994) (but note that our

bandwidth matrix H corresponds to their H1/2) and Theorem 1 of Lu (1996). Anyway,

there are substantial differences in the proofs, because of the different assumptions made

here and because we keep trace of the different influences of the bandwidth matrices HC ,

HAc
, HAu

and HU on the bias of the local linear estimator.

The main result of Proposition 1 is that it shows some interesting relationships between

the bias of β̂(x;H) and the bandwidth matrix H = diag(HC , HAc
, HAu

, HU ), which can

be exploited in order to analyze the structure of model (1). Generalizing the idea proposed

in the paper of Lafferty & Wasserman (2008), we can make these relationships emerge

through the derivative of β̂(x;H) with respect to H . In fact, note that for n → ∞

∂

∂H
E

{(

m̂(x;H)

D̂m(x;H)

)∣

∣

∣

∣

X1, . . . , Xn

}

≡
∂

∂H
E

{(

m̂(x;H)

D̂m(x;H)

)

−

(

m(x)
Dm(x)

)∣

∣

∣

∣

X1, . . . , Xn

}

−→

(

∂
∂H bm(x;HC)
∂
∂HBD(x,HC)

)

where

∂

∂H
bm(x;HC) =

(

∂bm(x;HC)

∂HC
,
∂bm(x;HC)

∂HAc

,
∂bm(x;HC)

∂HAu

,
∂bm(x;HC)

∂HU

)

= (δ(HC), 0, 0, 0) (10)

and

∂

∂H
BD(x,HC) =









∂BC
D
/∂H

∂BAc

D
/∂H

∂BAu

D
/∂H

∂BU
D
/∂H









=









δ(HC) 0 0 0
δ(HC) 0 0 0

0 0 0 0
0 0 0 0









. (11)

So matrix in (11) has a sparse structure similar to Gm. From the (10) and (11) we have

an overview of what are the influences of the bandwidths on the local linear estimations of

m(x) and Dm(x). Some stylized facts can be outlined. In particular,

(i) the derivatives ∂E{m̂(x;H)}/∂H in the (10) are considered in the RODEO method

as a tool to identify the relevant covariates of model (1). Anyway, there is a problem:

the relevant linear covariates in A and the irrelevant variables in U become indistin-

guishable. So only the nonlinear covariates in C can be identified basing on (10).

To overcome this, Lafferty & Wasserman (2008) suggest to identify first the linear-

ities through a LASSO or to change the degree of the local polynomial estimator to

zero (i.e. to use the Nadaraya-Watson estimator). Both these solutions seem to be

suboptimal;

(ii) the elements of matrix (11) give additional important information on the structure of

model (1); in fact, the element of position i, j of such matrix reflects the sensitivity
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of the i-partial derivative estimator to variations of the bandwidth hj . By Proposition

1, we have

∂B
(i)
D
(x,HC)

∂hj
≈







hjµ2
∂3m(x)
∂xi∂x2

j

if i ̸= j

hj
µ4

6µ2

∂3m(x)
∂x3

j

if i = j
(12)

and such value can be zero depending on the value of the derivative
∂3m(x)
∂xi∂x2

j

. There-

fore, given i and j, the formula in the (12) is different from zero if there are mixed

effects in model (1) between two nonlinear covariates or between a linear covariate

Xi and a nonlinear covariate Xj , in the case i ̸= j; or if the covariate is a nonlinear

covariate of order ≥ 3, in the case i = j. So, this derivatives can help to identify the

linear covariates in Ac and the nonlinear mixed effect terms.

(iii) Of course, the result of the formula in the (12) is always zero if j ∈ U , as desired.

Anyway, also the pure linear covariates in Au and the linear mixed effects become

“transparent”, so they are confused with the covariates in U . We will address the

problem of identifying such linearities in section 3.2.

In order to improve the rate of convergence of d shown in the RODEO method, we

propose to base our identification procedure on a variant of the estimator (4). In fact, if we

desire to consider the case when d > n, the estimator (4) is not well defined because the

rank of Γ is the smallest number between d + 1 and n. To avoid this constrain, due to the

necessity of inverting the regression matrix, we introduce the following estimator

M(x;H) =
1

n
diag(1, H−2)ΓTWΥ ≡

(

M0(x;H)
M1(x;H)

)

. (13)

The estimator (13) is a simplified version of estimator (5), which uses the assumption A4.

Its properties in terms of bias are similar to those reported in Proposition 1, as shown in

Theorem 1, so it can be used for variable selection basing on the previous ideas.

Therefore, we need to consider the derivatives of (13) w.r.t. the different bandwidths. We

compute

Ṁ0j =
∂M0(x;H)

∂hj
j = 1, . . . , d

Ṁ1j =
∂M1(x;H)

∂hj
≡ {Ṁ

(i)
1j }i=1,...,d, (14)

whose explicit expressions derive from

∂M(x;H)

∂hj
=

∂

∂hj

[

1

n

(

1 0
0 H−2

)

ΓTWΥ

]

=
1

n
OjΓ

TWΥ+
1

n

(

1 0
0 H−2

)

ΓT ∂

∂hj
WΥ,

where Oj is a matrix with d+1 rows and d+1 columns, with all zeros except the element

in position (j + 1, j + 1) which is equal to − 2
h3
j

.

Since W is a diagonal matrix with elements

KH (Xt − x) =
1

|H|

d
∏

k=1

K

(

Xtk − xk
hk

)

,

9



its derivative with respect to hj is

∂

∂hj
KH (Xt − x) = KH (Xt − x)

(

−
1

hj
+

∂

∂hj
logK

(

Xtj − xj
hj

))

.

So
∂

∂hj
W = WLj

where Lj = diag
(

∂ logK((X1j−xj)/hj)
∂hj

− 1
hj
, . . . ,

∂ logK((Xnj−xj)/hj)
∂hj

− 1
hj

)

. Finally, we

propose the following estimator

∂M(x;H)

∂hj
=

1

n

[

OjΓ
TW +

(

1 0
0 H−2

)

ΓTWLj

]

Υ ≡

(

Ṁ0j

Ṁ1j

)

. (15)

Theorem 1. Under model (1) and assumptions (A1)-(A4), the following result holds

E
{

Ṁ0j

}

=

{

θm0j ̸= 0 if and only if j ∈ C

θm0j = 0 otherwise
(16)

E
{

Ṁ
(i)
1j , i ̸= j

}

=

{

θmij ̸= 0 if and only if i ∈ Ij , j ∈ C

θmij = 0 otherwise
(17)

where the exact expressions for θmij , i = 0, . . . , d and j = 1, . . . , d, i ̸= j, are (35) and (36)

in the appendix.

Remark 3.1: Theorem 1 can be used to detect the nonlinear effects in model (1). In fact,

basing on the (16), the derivatives Ṁ0j can be used in order to identify the nonlinear co-

variates, obtaining C. Basing on (17), the derivatives Ṁ
(i)
1j can be used in order to identify

the interactions for the nonlinear covariates, obtaining Ij , for j ∈ C. As a consequence,

we also obtain the sets IjC = Ij ∩ C, for j ∈ C, then Cc = ∪j∈CI
j
C , Ca = (∪j∈CI

j)\Cc

and Cp = C\(Cc ∪ Ca). But also IjA = Ij\IjC , for j ∈ C, and Ac = ∪j∈CI
j
A. Looking at

table 1, the only sets which cannot be identified using Theorem 1 are the sets Aa and Ap,

including the pure linear effects.

Remark 3.2: The values of the bandwidths are not crucial in our procedure, because we are

not interested in the exact estimation of the function m(x). So, given that the identification

of the covariates is based on evaluating the bias of the LLE, we prefer to use a bandwidth

matrix which produces a very high bias. This means to take very large bandwidths, for

example h = 0.9, which has benefits on the efficiency of the estimator in (13).

3.2 Identifying the linear effects

Basing on the expression (12), the pure linear covariates in Au = Aa ∪ Ap and the linear

mixed effects in IjA, for j ∈ A, would be transparent to our identification procedure. Any-

way, a convenient solution is to consider an auxiliary regression with some of the covariates

transformed, so that the linear covariates of the original model become nonlinear in the

auxiliary model. In particular, if we think at model (1) under the partition {C,Ac, Au, U},

it must necessarily be

m(x) = m1(xC , xAc
) +m2(xAc

, xAu
).

10



Now, let us define a transformation z = φ(x) and its inverse x = φ−1(z) as follows

(componentwise)

z = φ(x) = (xC , x
1/2
Ac

, x
1/2
Au

, x
1/2
U ), x = φ−1(z) = (xC , z

2
Ac
, z2Au

, z2U ). (18)

We can consider the following auxiliary regression

Yt = m(φ−1(Zt)) + εt = g(Zt) + εt, t = 1, . . . , n,

where the new regression function can be written as

g(z) = g1(xC , zAc
) + g2(zAc

, zAu
).

Note once again that we use the same index partition considered in the first regression.

Thanks to the transformation in (18), the function g2(·) depends only on the covariates

in A. Moreover, we are sure that these covariates have a nonlinear effect in the auxiliary

regression model g(z). In fact,

zj = φ(xj) = x
1/2
j =⇒ xj = φ−1(zj) = z2j ∀j ∈ A ∪ U

so the partial derivatives are

∂g(z)

∂zj
=

∂m(φ−1(z))

∂zj
=

∂m

∂xj

∂xj
∂zj

=

{

2ajzj ̸= 0 for j ∈ A
0 for j ∈ U

∂2g(z)

∂zj∂zj
=

{

2aj ̸= 0 for j ∈ A
0 for j ∈ U

,

where aj = ∂m(x)/∂xj is constant with respect to xj , ∀j ∈ A. Therefore, the linear co-

variates in A behaves nonlinearly in the auxiliary regression, while the irrelevant covariates

remain still so.

Given that we are not interested in the exact estimation of the function g(z), we can

exclude the nonlinear covariates in C in the auxiliary regression. Note that, when we

consider the auxiliary regression with the transformed covariates Zt = φ(Xt), the density

fZ does not satisfy the assumption A4, so Proposition 1 and Theorem 1 cannot be applied.

The following theorem cover this case.

Theorem 2. Using model (1), assumptions (A1)-(A4) and the transformed random vari-

ables

Zt = {φ(X(s)), s ∈ A}

with φ defined in (18), then the following result holds for the estimator defined in (13)

E
{

Ṁ0j

}

=

{

θg0j ̸= 0 if and only if j ∈ A

θg0j = 0 otherwise
(19)

E
{

Ṁ
(i)
1j , i ̸= j

}

=

{

θgij ̸= 0 if i ∈ Ij , j ∈ A

θgij = 0 if j ∈ U
(20)

where the exact expressions for θgij , i = 0, . . . , d and j = 1, . . . , d, are (41) and (42) in the

appendix. Moreover, using model (1), assumptions (A1)-(A4) and the transformed random

variables

Zt = {X(i)} ∪ {φ(X(s)), s ∈ A, s ̸= i}

11



with φ defined in (18), then the following result holds for the estimator defined in (13)

E
{

Ṁ
(i)
1j , i ̸= j

}

=

{

θ∗ij ̸= 0 if and only if i ∈ Ij , j ∈ A

θ∗ij = 0 otherwise
, (21)

where the exact expression of the θ∗ij are (43) in the appendix.

Remark 3.3: Basing on the (19), the derivatives Ṁ0j = ∂M0(z;H)/∂hj , calculated with

the transformed covariates Z, can be used in order to identify the linear covariates, ob-

taining the set A. Anyway, we cannot use the (20) in order to identify the linear mixed

effects in Ij , for j ∈ A, given that it is not a one to one relationship. On the other side, we

can identify correctly such effects using the (21), which is derived under the assumption of

φ-transformation for all the linear covariates in A except the i-th.

Now, for completeness, we can derive the variances for estimators in (15).

Proposition 2. Under assumptions (A1)-(A4) the estimators Ṁ0j and Ṁ1j have the the

following mean conditional variances

(i) nE
(

V ar(Ṁ0j |X1, . . . , Xn )
)

= σ2 νd
0

4|H|h2
j

.

(ii) nE
(

V ar(Ṁ1j |X1, . . . , Xn )
)

= σ2 ν2ν
d−1

0

4|H|h2
j

H−2Ij , where Ij is an identity matrix of order

d except that the element in position (j, j) is 9.

Remark 3.4 If we consider the transformation in (18), the covariates, Z, have a non Uniform

distribution but the density function is still bounded on [0, 1]d. So, Expanding fZ(z+Hu)

by Taylor’s series, one can show that nE
(

V ar(Ṁ0j |X1, . . . , Xn )
)

= σ2 νd
0

4|H|h2
j

fZ(z)

using, in particular, assumption (A2). On the other side, the mean conditional variance ma-

trix, nE
(

V ar(Ṁ1j |X1 . . . , Xn )
)

, exists but it is not diagonal. Moreover, one can show

that nE
(

V ar(Ṁ
(i)
1j |X1, . . . , Xn )

)

= σ2 cijν2ν
d−1

0

4|H|h2
jh

2
i

fZ(z), ∀i, where cij = 1 if i ̸= j and

cij = 9 for i = j.

Remark 3.5 Without loss of generality, we can suppose that E(Ṁ0j) = 0 and E(Ṁ1j) = 0.

Since, in this case, we have

nV ar(Ṁ0j) = nE
(

V ar(Ṁ0j |X1, . . . , Xn

)

+ nE

(

E
(

Ṁ0j |X1, . . . , Xn

)2
)

,

one can show that nV ar(Ṁ0j) ≤ (C1 + σ2)
νd
0

4|H|h2
j

, with C1 = supX∈[0,1]d m
2(X), us-

ing the same arguments as in the proof of Proposition 2. In the same way, it follows that

nV ar(Ṁ
(i)
1j ) ≤ (C1 + σ2)

cijν2ν
d−1

0

4|H|h2
jh

2
i

where cij are defined in the previous remark.
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4. Inference by Empirical Likelihood

Variable selection is usually done through some multiple testing procedure. We propose

to use one based on the Empirical Likelihood (EL) technique. The main advantage of

this choice is that we do not need to estimate the nuisance parameter σ2, which would be

difficult in the multivariate high dimensional context. This represents a big improvement

over the RODEO method of Lafferty & Wasserman (2008). Another advantage is that we

can relax the assumption of gaussianity for fε.

A peculiarity of our proposal which deserves attention is the particular implementation of

the empirical likelihood technique to the LLE. There are two innovative aspects, compared

with the other papers appeared in the statistical literature combining EL and LLE. Firstly,

it is known that the use of the EL for the analysis of the kernel based estimators is affected

by the bias problem, so that a correction is necessary and usually performed through the

undersmoothing technique. In our procedure, this problem is avoided because we use the

EL to analyse a local polynomial estimator which is unbiased under the null hypothesis.

Secondly, the analysis of the asymptotic statistical properties of the EL procedure must

consider that the bandwidths in H are fixed (not tending to zero as n → ∞), making such

analysis non standard and the EL estimator more efficient.

Without loss of generality, suppose that E(Ṁ0j) = θ0j and E(Ṁ
(i)
1j ) = θij , i = 1, . . . , d

and j = 1, . . . , d, according to Theorem (1) and / or Theorem (2). Now, we need to rewrite

the univariate estimators in (15) as:

Ṁ0j =
1

n

n
∑

k=1

q1,j(Xk;K,H)(Yk − θ0j) (22)

Ṁ
(i)
1j =

1

n

n
∑

k=1

qi+1,j(Xk;K,H)(Yk − θij) (23)

where q1,j(Xk;K,H) is the first row of matrix in (15), qi+1,j(Xk;K,H) is the row i+1 of

matrix in (15), Xk is the d-dimensional vector of covariates, Yk is the dependent variable

and K, H are the Kernel function and the bandwidth matrix, respectively, for i = 1, . . . , d,

j = 1, . . . , d and k = 1, . . . , n. For brevity, we do not write K and H in q.,.(·). So

q1,j(Xk;K,H) ≡ q1,j(Xk) and qi+1,j(Xk;K,H) ≡ qi+1,j(Xk).

By theorems (1) and (2) we are interested to consider the cases when the estimators in

(22) and (23) are unbiased, i.e. θ0j = 0 and θij = 0. Therefore, we can build the −2 log
Empirical Likelihood Ratio for Ṁ0j as:

−2 logR0j(θ0j) = −2
n
∑

k=1

log np
(j)
k , p

(j)
k =

1

n

1

1 + λZ
(0)
k,j

(24)

s.t.
n
∑

k=1

p
(j)
k = 1,

n
∑

k=1

p
(j)
k Z

(0)
k,j = 0,

where Z
(0)
k,j := q1,j(Xk)(Yk − θ0j). In the same way, it follows the −2 log Empirical

Likelihood Ratio for Ṁ
(i)
1j as:

−2 logR
(i)
1j (θij) = −2

n
∑

k=1

log np
(i,j)
k , p

(i,j)
k =

1

n

1

1 + λZ
(i)
k,j

(25)
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s.t.
n
∑

k=1

p
(i,j)
k = 1,

n
∑

k=1

p
(i,j)
k Z

(i)
k,j = 0,

where Z
(i)
k,j := qi+1,j(Xk)(Yk − θij). The following proposition gives the consistency of

(24) and (25). In the following results we consider assumption (A4) which can be replaced

by the distribution function in section (3.2) as in Theorem (2). We can state the following

proposition.

Proposition 3. Suppose that E(ε2t ) < ∞ and assumptions (A1) - (A4) hold. If θ0j = 0 and

θij = 0, i = 1, . . . , d, j = 1, . . . , d, then

−2 logR0j(0)
d

−→ χ2
(1) − 2 logR

(i)
1j (0)

d
−→ χ2

(1) n → ∞,

for every d > 0 and d → ∞.

Furthermore, If θ0j ̸= 0 and θij ̸= 0, i = 1, . . . , d, j = 1, . . . , d, then

P (−2 logR0j(0) > M) → 1 P
(

−2 logR
(i)
1j (0) > M

)

→ 1 n → ∞,

for every d > 0, d → ∞ and ∀M > 0.

5. The GRID procedure

In this section we present the algorithm for estimating and testing the values of θij , in order

to classify the covariates of model (1). As said in the introduction, the acronym GRID has a

twofold meaning: first, it derives from Gradient Relevant Identification Derivatives, mean-

ing that the procedure is based on testing the significance of a partial derivative estimator;

second, it refers to a graphical tool which can help in representing the identified structure

of model (1). This is explained in the next section.

5.1 The GRID plot

Using the values θmij defined in the Theorem 1, we derive the following matrix

Θm = E

{

∂M(x;H)

∂H

}

=











θm01 . . . θm0d
θm11 . . . θm1d

...
. . .

...

θmd1 . . . θmdd











. (26)

The matrix Θm joins the derivatives in (10), in the first row i = 0, with the derivatives

in (11), in the other rows i = 1, . . . , d. So matrix Θm has dimension (d + 1) × d. Its

values can be derived easily from expression (12), but they are also reported explicitly in

the appendix. We can derive the matrix Θg in a similar way, using the values θ∗ij defined in

Theorem 2. The elements of these matrix are estimated through the (15).

A schematic representation of (the estimated) matrix Θ is made through the GRID-plot in

figure 5.1, part a). The horizontal red line on the top denotes the position of the derivatives

Ṁ0j , for j = 1, . . . , d. It shows the relevant variables classified in C and A (green dots for
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(b) GRID representation of model (2)

Figure 1: A schematic representation of matrix Θ, by means of a grid of dimension (d +
1, d) equivalent to θ, which is used to summarize the structure of model m(x).

the nonlinear covariates in C and blu triangles for the linear covariates in A). The diagonal

red line shows the positions of the cases i = j, which are excluded from our analysis. This

is highlighted to help reading the other points. The other points of the GRID-plot refer to

the derivatives Ṁ
(i)
1j , for the cases i ̸= j. They will indicate the presence of the mixed

effect terms. In fact, the interactions between covariates come out reading the plot by row

or by column. So, this part of the GRID-plot (i.e., the whole matrix excluding row 0) is

symmetric in terms of positions, but it can be asymmetric in terms of symbols (i.e., when a

linear variable is mixed to a nonlinear variable).

To give an idea about the GRID representation, part b) of figure 5.1 shows the GRID-

plot for model (2). Here we see from row zero that there are 7 relevant covariates, among

which 2 are nonlinear. Looking at rows 0 and 4, we can see that the covariate X4 is linear

and is mixed with other two linear covariates (X5 and X6). This is a linear mixed effect,

given that it involves only linear covariates. There is also a nonlinear mixed term, which

is represented by the couple circle-tringle involving the 2nd covariate (nonlinear) and the

3rd one (linear). We also see from rows 0 and 1 that the covariate X1 is linear additive

(no mixing effects), since the triangle is present in line zero but there are no points of

interactions in line 1.

From a practical point of view, a point in position (i, j) of the GRID-plot indicates a

positive test for the relative entry value of matrix Θm (or equivalently Θg), which means

rejecting the null hypothesis H0 : θij = 0, for i = 0, . . . , d and j = 1, . . . , d, in a multiple

testing fashion, as explained in section 4.

5.2 The algorithm

Let X(j) represent a Uniform covariate while Z(j) stands for the same covariate applying

the transformation (18). The GRID procedure runs the following steps.

O. Set the bandwidth matrix to a high value (H = h∗

dId). Let R = C ∪ A be the set of relevant

covariates. Initialize all the sets (C,A,R,RX , RZ , . . .) to the empty set ∅.
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I. First stage (variable selection):

• For j = 1, . . . , d, do:

– using the covariates X(j), j ∈ Ξ, compute the (univariate) statistic Ṁ0j defined

in (15)

– using EL, compute the threshold γ0, as explained in section 4

– if Ṁ0j > γ0 then (relevant covariate)

– insert the index j in the set RX

– using the covariates Z(j), j ∈ Ξ, compute the (univariate) statistic Ṁ0j defined

in (15)

– using EL, compute the threshold γ0, as explained in section 4

– if Ṁ0j > γ0 then (relevant covariate)

– insert the index j in the set RZ

• R = RX ∪RZ .

• For j ∈ R, do:

– using the covariates X(j), j ∈ R, compute the (univariate) statistic Ṁ0j defined

in (15)

– using the EL, compute the threshold γ1, as explained in section 4

– if Ṁ0j > γ1 then (nonlinear covariate) then insert the index j in the set C and

mark a green point on the GRID-plot, in position (0, j)

– otherwise (linear covariate) insert the index j in the set A and mark a blue point

on the GRID-plot, in position (0, j).

• Output C, A

II. Second stage (identifying the mixing terms):

• For j ∈ R, do:

– using the covariates X(j), j ∈ R, compute the (vectorized) statistic Ṁ1j defined

in (15)

– For i ∈ C, i ̸= j do

∗ using the EL for Ṁ
(i)
1j , compute the thresholds γ2 as explained in section 4

∗ if Ṁ
(i)
1j > γ2 then (interaction) insert the index i in the set IjX

∗ mark one point on the GRID-plot in positions (i, j), green if j ∈ C and

blue otherwise

– For i ∈ R, i ̸= j, do:

∗ using the covariates X(i)∪Z(j), j ∈ R and j ̸= i, compute the (vectorized)

statistic Ṁ1j defined in (15)

∗ using the EL for Ṁ
(i)
1j , compute the thresholds γ2 as explained in section 4

∗ if Ṁ
(i)
1j > γ2 then (interaction) insert the index i in the set IjZ

∗ mark one point on the GRID-plot in positions (i, j), green if j ∈ C and

blue otherwise

– Ij = IjX ∪ IjZ

• Output , Ij for j ∈ R.

16



 Set R, A, C to � 
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(b) Model Selection

Figure 2: Flow-chart for the GRID procedure. Note that X stands for Uniform random

variables while Z is the set of transformed random variables using (18). In particular, in

figure (d), there is Z(i) which denotes the set of random variables Z except the covariate i
which is Uniform, as described in the algorithm.

A. Proofs

In general, in the proofs of the LLE’s properties we follow the classic approach used in

Lu (1996) and Ruppert & Wand (1994), a part from three substantial differences. The first

is that here the bandwidths do not tend to zero for n → ∞ (see assumption A1). This

implies that we must bound all the terms of the Taylor expansion with respect to m(x),
given that the size of the interval around the point x does not vanish with n → ∞. For the

same reason, we must also bound the terms of the Taylor expansion with respect to fX(x),
the density function. To this aim, in Proposition 1 we consider assumption A4, so that the

Taylor expansion is exact with respect to fX . Then we relax assumption A4 in Theorem

2. Finally, we want to analyze carefully the influences of the bandwidths associated to the

different covariates on the bias of β̂(x;H). As a consequence, we will partition all the

involved matrices along the index sets {C,Ac, Au, U}.

Proof of Proposition 1: The conditional bias of the LLE is given by

E(β̂(x;H)|X1, . . . , Xn)− β(x) = (ΓTWΓ)−1ΓTW (M − Γβ(x))

where M = (m(X1), . . . ,m(Xn))
T and β(x) = (m(x),DT

m(x))T . Note that, given ut =
H−1(Xt − x), we have

n−1ΓTWΓ = diag(1, H)Sn diag(1, H) (27)

n−1ΓTW (M − Γβ(x)) = diag(1, H)Rn (28)
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with

Sn =
1

n

n
∑

t=1

(

1 uTt
ut utu

T
t

)

|H|−1K(ut)

Rn =
1

n

n
∑

t=1

(

1
ut

)

[

m(Xt)−m(x)− D
T
m(x)Hut

]

|H|−1K(ut),

so the bias can be simply written as

E(β̂(x;H)|X1, . . . , Xn)− β(x) = diag(1, H−1)S−1
n Rn. (29)

For Sn, using Taylor’s expansion and assumption A4, we have

Sn =

∫ (

1 uT

u uuT

)

K(u)fX(x+Hu)du+Op(n
−1/2)

= fX(x)

∫ (

1 uT

u uuT

)

K(u)du+

∫ (

1 uT

u uuT

)

[

D
T
f (x)Hu

]

K(u)du

+ Op(n
−1/2)

=

(

1 0
0 µ2Id

)

+Op(n
−1/2). (30)

For the analysis of Rn, we need to introduce some further notation. Given assumption

A3, let define the vth-order differential Dv
m(x; y) as

Dv
m(x, y) =

∑

i1,...,id

v!

i1!× . . .× id!

∂vm(x)

∂xi11 . . . ∂xidd
yi11 × . . .× yidd , (31)

where the summation is over all distinct nonnegative integers i1, . . . , id such that i1 +
. . . + id = v. Using the Taylor’s expansion to approximate the function m(Xt), and the

assumption A4, we can write

Rn =
1

n

n
∑

t=1

(

1
ut

)[

1

2!
D2

m(x,Hut) +
1

3!
D3

m(x,Hut)

]

|H|−1K(ut) +R∗
n

=

∫ (

1
u

)[

1

2!
D2

m(x,Hu) +
1

3!
D3

m(x,Hu)

]

K(u)fX(x+Hu)du+R∗
n

+ Op(n
−1/2)

=

∫ (

1
u

)[

1

2!
D2

m(x,Hu) +
1

3!
D3

m(x,Hu)

]

K(u)du+R∗
n +Op(n

−1/2),

where R∗
n represents the residual term, which depends on the higher order derivatives of

the function m(x). This element will be discussed later. Now remember that the odd-order

moments of the kernel product are null, so some of the terms in the v-th order differentials

cancel. We have

Rn =

∫ ( 1
2!D

2
m(x,Hu)

1
3!uD

3
m(x,Hu)

)

K(u)du =

(

γ1
γ2

)

+R∗
n +Op(n

−1/2) (32)
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where γ1 is a scalar, while γ2 is a d-dimensional vector. Solving the integrals and applying

the properties of the kernel we have

γ1 =

∫

1

2
D2

m(x,Hu)K(u)du =
1

2

d
∑

i=1

d
∑

j=1

∂2m(x)

∂xi∂xj
hihj

∫

uiujK(u)du

=
1

2
µ2

d
∑

i=1

∂2m(x)

∂xi∂xi
h2i =

1

2
µ2 tr{HHm(x)H}.

The component γ2 is a vector of length d. Its element of position r is

γ
(r)
2 =

∫

1

6
urD

3
m(x,Hu)K(u)du

=
∑

i1,...,id

hi11 · · ·hidd
i1!× . . .× id!

∂3m(x)

∂xi11 · · · ∂xidd

∫

ui11 · · ·uir+1
r · · ·uidd K(u)du

=





∑

s ̸=r

1

2
µ2
2

∂3m(x)

∂xr∂x2s
hrh

2
s +

1

6
µ4

∂3m(x)

∂x3r
h3r



 ,

while the whole vector γ2 is equal to

γ2 =
1

2
µ2
2

[

HGm(x)H2 +

(

µ4

3µ2
2

− 1

)

diag{HGm(x)H2}

]

1.

concerning the residual term R∗
n, using the assumption A3 and remembering the (31), we

can define

δ(Dv
m, Hv

C) ≤
∑

i1,...,ik

v!

i1! · · · ik!
sup

x∈[0,1]d

∂vm(x)

∂xi11 . . . ∂xikk
hi11 × . . .× hikk < ∞,

where the sum is taken for all the combination of indexes i1 + . . . + ik = v. Note that

δ(Dv
m, HC) depends on the derivatives of total order v, which are bounded given assump-

tion A3. Moreover, it depends only on the bandwidths in HC . Then

R∗
n =

(

δ(D4
m, H4

C)
δ(D5

m, H5
C)

)

.

Combining the (29), (30) and (32), we obtain

E(β̂(x;H)|X1, . . . , Xn)− β(x) = diag{1, H−1}S−1
n Rn

≈

(

1 0
0 1

µ2
H−1

)(

γ1
γ2

)

=
1

2
µ2

(

tr(HHmH)

Gm(x)H2
1+

(

µ4

3µ2
2

− 1
)

diag{Gm(x)H2}1

)

. (33)

Then we can further detail these expressions remembering the (6) and (7), and noting that

∀v, w

Hv
Hm(x)Hw =









Hv
CH

C
m(x)Hw

C Hv
CH

CAc
m (x)Hw

Ac
0 0

Hv
Ac
HAcC

m (x)Hw
C Hv

Ac
HAc

m (x)Hw
Ac

0 0

0 0 Hv
Au

HAu
m (x)Hw

Au
0

0 0 0 0









19



Hv
Gm(x)Hw =









Hv
CG

C
m(x)Hw

C 0 0 0
Hv

Ac
GAcC

m (x)Hw
C 0 0 0

0 0 0 0
0 0 0 0









.

After some algebra, we have the result of the Proposition. ✷

Proof of Theorem 1:

It is sufficient to use the results shown in Proposition 1 w.r.t. the estimators Ṁ0j and Ṁ1j

defined in (15). Remembering the (27) and (28), we can write

E(M(x;H)|X1, . . . , Xn)− β(x) =
1

n
diag(1, H−2)ΓTWM − β(x)

=
1

n
diag(1, H−2)ΓTW (M − Γβ(x)) +

1

n
diag(1, H−2)ΓTWΓβ(x)− β(x)

= diag(1, H−1)Rn +
[

diag(1, H−1)Sn diag(1, H)− Id+1

]

β(x).

Now, using assumption A4 and the results of Proposition 1, the bias of the estimator (15) is

E(M(x;H))− β(x) =

(

bm(x;HC)
µ2BD(x;HC)

)

+

(

0 0
0 (µ2 − 1)Id

)

β(x). (34)

So we obtain

E (M0(x;H))−m(x) = bm(x;HC)

where the estimator M0(x;H) is defined in (13) and bm(x;HC) is the bias of LLE as in

Proposition (1). Taking the derivative w.r.t. hj , at both sides, we have

θm0j = E
(

Ṁ0j

)

=
∂

∂hj
bm(x;HC).

Since bm(x;HC) depends on the bandwidths of the covariates in C, the first part of theorem

is shown. The detailed expressions of the expected derivatives θm0j are

θm0j =

{

hjµ2
∂2m(x)
∂2xj

+ δ(D4
mj

;H4
C) if j ∈ C

0 otherwise
. (35)

Note that δ(D4
mj

;H4
C) depends on the partial derivatives of order 4 involving the j-th co-

variate, where j ∈ C, which are bounded given assumption A3. So, it is equal to zero when

∂2m(x)/∂x2j = 0.

Now we consider the estimator M1(x;H) in (13). Using again the (34) and the same

arguments as in the proof of Proposition (1), we have

E
(

M
(i)
1 (x;H)

)

− D
(i)
m (x) = µ2B

(i)
D
(x;HC) + (µ2 − 1)D(i)

m (x)

where (i) stands for the component of position (i) in the vectors M1(x;H), Dm(x) and

BD(x;HC), i = 1 . . . , d. The quantity BD(x;HC) is defined in Proposition (1) and µ2

is the second moment of the Kernel K. As before, taking the derivative w.r.t. hj , at both

sides, it follows

θmij = E
(

Ṁ
(i)
1j

)

=
∂

∂hj
µ2B

(i)
D
(x;HC), ∀i, j = 1 . . . , d; i ̸= j.
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Using (9) in Proposition (1) and remembering the (7), we know that ∂
∂hj

B
(i)
D
(x;HC) ̸= 0

if and only if i ∈ Ij and j ∈ C. Note that, for i ̸= j, Ij stands for set of covariates (linear

or nonlinear) which are mixed with the covariate j.

The formula of the expected derivatives θmij are

θmij =

{

hjµ
2
2
∂3m(x)
∂xi∂x2

j

+ δ(D5
mij

;H5
C) if i ∈ Ij , j ∈ C

0 otherwise
. (36)

It can be shown that δ(D5
mij

;H5
C) includes the partial derivatives of order 5 involving both

the i-th and j-th covariates. They are bounded given the assumption A3, and they are all

equal to zero when ∂3m(x)/∂xi∂x
2
j = 0. ✷

Proof of Theorem 2: The key aspect of this proof is to show that the higher order terms

of the Taylor expansion of Rn do not compromise the results of our procedure. In fact,

when A4 is not assumed, the derivatives of the density function fX are different from

zero, introducing further components in the Taylor expansion of Rn. Moreover, given

assumption A1, such higher order terms may not vanish, contrary to what happens in the

classic framework of local linear estimators, where the bandwidths tend to zero for n → ∞.

In particular, the transformation Zt = φ(Xt) defined in (18) applied to the uniform

covariates Xt implies that the marginal density of each transformed covariate is linear,

being equal to

fZ(zi) = 2zi, i ∈ Au ∪ U.

Because of the linearity, the gradient and the Hessian matrix of the density function fZ(z)
are the following

Df (z) =











0

D
Ac

f

D
Au

f

DU
f











Hf (z) =











0 0 0 0

0 H
Ac

f H
AcAu

f H
AcU
f

0 H
AuAc

f H
Au

f H
AuU
f

0 H
UAc

f H
UAu

f HU
f











, (37)

with the diagonal of Hf equal to zero. This implies that we need to consider the Taylor

expansion of Rn w.r.t. the derivatives of fz up to order 4.

Now remember that, using the transformed variables Zt = φ(Xt) defined in (18), the

auxiliary regression function becomes

g(z) = g1(xC , zAc
) + g2(zAc

, zAu
).

Therefore, given that the aim here is to identify the covariates in A = Ac ∪ Au, we can

focus on function g2. This is further justified by the structure of Df (z) and Hf (z) shown

in (37). So, without loss of generality, we can use z = (zAc
, zAu

, zU ) of d− k dimension.

The gradient and the Hessian matrix of function g become

Dg(z) =





DAc
g

DAu
g

0



 Hg(z) =





HAc
g HAcAu

g 0

HAuAc
g HAu

g 0

0 0 0



 (38)

where the submatrices have changed compared with the first regression (in particular, note

that HAc
g and HAu

g have not a zero diagonal). Moreover, the matrix Gg(z) becomes

Gg(z) =





GAc
g GAcAu

g 0

GAuAc
g GAu

g 0

0 0 0



 , (39)
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where the submatrices are defined as usual. In particular, note that GAc
g and GAu

g are full

matrices with zero diagonal, as a consequence of the φ-tranformation of the covariates in

A. Moreover we define with HZ , ΓZ , WZ and MZ the corresponding quantities w.r.t. H ,

Γ, W and M using z whose dimension is d − k. Finally, let DZ
f and HZ

f be the same

quantities as in (37) without the zeros. So that DZ
f is a vector of dimension d − k and HZ

f

is a matrix with d− k rows and d− k columns.

Using again the (27) and (28), we can write

E(M(z;HZ)|Z1, . . . , Zn)− β(z)

=
1

n
diag(1, H−2

Z )ΓZ
TWZMZ − β(z)

= diag(1, H−1
Z )Rn +

[

diag(1, H−1
Z )Sn diag(1, HZ)− Id+1−k

]

β(z),

but now we have to consider the higher order terms of Sn and Rn induced by fZ .

Let us consider the vector Rn in the (32) with the additional nonzero terms of the Taylor

expansion w.r.t. fZ , using the assumptions A1 − A4 and the transformed covariates. We

have

E(Rn) = fZ(z)

∫ ( 1
2!D

2
g(z,HZu)

1
3!uD

3
g(z,HZu)

)

K(u)du

+

∫ ( 1
3!D

3
g(z,HZu)[(D

Z
f (z))

THZu]
1
2!uD

2
g(z,HZu)[(D

Z
f (z))

THZu]

)

K(u)du+

+

∫ ( 1
2!D

2
g(z,HZu)[

1
2u

THZH
Z
f (z)HZu]

1
3!uD

3
g(z,HZu)[

1
2u

THZH
Z
f (z)HZu]

)

K(u)du

+

∫ ( 1
2!D

2
g(z,HZu)[

1
4!D

4
f (z,HZu)]

1
3!uD

3
g(z,HZu)[

1
4!D

4
f (z,HZu)]

)

K(u)du

= R0 +R1 +R2 +R3,

where the four terms are equal to

R0 =
1

2
µ2fZ(z)

(

tr (HZHgHZ)
µ2

[

HZGgH
2
Z

]

1

)

R1 =
1

2
µ2
2

(

(DZ
f )

T
[

H2
ZGgH

2
Z

]

1
[

2HZHgH
2
Z +HZ tr (HZHgHZ) +

(

µ4

µ2
2

− 3
)

diag
(

HZHgH
2
Z

)

]

DZ
f

)

R2 =
1

2
µ2





µ2 tr
(

HZ
f H

2
ZHgH

2
Z

)

µ2
2HZH

Z
f H

2
ZGgH

2
Z1+ (µ4 − µ2

2) diag
(

HZH
Z
f H

2
ZGgH

2
Z

)

1+HZJg





R3 = µ4
2

(

0
HZLg

)

,

and Jg and Lg are vectors whose i-th element is equal to

J
(i)
g = 3µ2

2

∑

s̸=i

∑

j ̸={s,i}

∂2fZ(z)

∂zs∂zj
h2s

∂3g(z)

∂zi∂zs∂zj
h2j

L
(i)
g =

∑

j ̸=i

∑

s ̸={j,i}

∑

u̸={j,s,i}

∂3g(z)

∂zj∂zs∂zu

∂4fZ(z)

∂zi∂zj∂zs∂zu
h2jh

2
sh

2
u.
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Note that the vector R2 has been derived exploiting the simple structure of HZ
f and Gg

(both with zero diagonal). For simplicity, we do not consider here the residual term R∗
n,

which can be analyzed following the same arguments as in Proposition 1.

For Sn, using Taylor’s expansion and assumptions A1−A4 with the transformed covari-

ates Z, we have

E(Sn) =

∫ (

1 uT

u uuT

)

K(u)fZ(z +HZu)du

= fZ(z)

(

1 0
0 µ2Id−k

)

+

(

0 µ2(D
Z
f )

THZ

µ2HZD
Z
f 0

)

+

(

0 0
0 µ2HZH

Z
f HZ

)

=

(

fZ(z) µ2(D
Z
f )

THZ

µ2HZD
Z
f fZ(z)µ2Id−k + µ2HZH

Z
f HZ

)

.

Note, again, that we have derived the previous result using tr(HZH
Z
f HZ) = 0, given the

linearity of fZ .

The bias of the estimator (15), using the transformed covariates, becomes

E(M(z;HZ))− β(z) = diag(1, H−1
Z )(R0 +R1 +R2 +R3) (40)

+
[

diag(1, H−1
Z )E(Sn) diag(1, HZ)− Id+1−k

]

β(z),

where

diag((1, H−1
Z ))R0 =

1

2
µ2fZ(z)

(

tr (HZHgHZ)
µ2

[

GgH
2
Z

]

1

)

diag((1, H−1
Z ))R1 =

1

2
µ2
2

(

(DZ
f )

T
[

H2
ZGgH

2
Z

]

1
[

2HgH
2
Z + tr (HZHgHZ) Id−k +

(

µ4

µ2
2

− 3
)

diag
(

HgH
2
Z

)

]

DZ
f

)

diag((1, H−1
Z ))R2 =

1

2
µ2





µ2 tr
(

HZ
f H

2
ZHgH

2
Z

)

µ2
2H

Z
f H

2
ZGgH

2
Z1+ (µ4 − µ2

2) diag
(

HZ
f H

2
ZGgH

2
Z

)

1+ Jg





diag((1, H−1
Z ))R3 = µ4

2

(

0
Lg

)

and
[

diag(1, H−1
Z )E(Sn) diag(1, HZ)− Id+1−k

]

β(z)

=

(

[fZ(z)− 1]g2(z) + µ2(D
Z
f )

THZDg

µ2HZD
Z
f g2(z) + [µ2fZ(z)− 1]Dg + µ2HZH

Z
f HZDg

)

.

Now, the first part of the theorem, in the (19), can be easily shown observing the first

component of each vector. Note that the bandwidth matrix HZ appears always multiplied

by Dg(z), Hg(z) or Gg(z). So, given v and w, we have

Hv
ZHg(z)H

w
Z =





Hv
Ac
HAc

g (z)Hw
Ac

Hv
Ac
HAcAu

g (z)Hw
Ac

0

Hv
AuAc

HAc
g (z)Hw

Ac
Hv

Au
HAu

g (z)Hw
Au

0

0 0 0



 = δ(HAc , HAu)

Hv
ZGg(z)H

w
Z = δ(HAc , HAu)

HZDg(z) = δ(HAc
, HAu

).
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Therefore, we obtain

E (M0(z;HZ))− g2(z) = δ(HAc , HAu) + [fZ(z)− 1]g2(z)]

where the estimator M0(z;HZ) is defined in (13) and uses the transformed covariates

Z(j), j ∈ A. Taking the derivative w.r.t. hj , at both sides, we have

θg0j = E (∂M0(z;HZ)/∂hj) = 0 ∀j /∈ A.

In oder to prove the second part of the theorem, in the (20), we must consider the second

element of each vector in the (40). Following the same arguments as before, it can be shown

that

E (M1(z;HZ))− Dg(z) = δ(HAc
, HAu

) + [µ2fZ(z)− 1]Dg(z) + µ2HZD
Z
f g2(z)

which implies that

θgij = E
(

∂M
(i)
1 (z;HZ)/∂hj

)

= 0 ∀i ∈ Ξ, j ∈ U i ̸= j. (41)

Anyway, we need to analyze θgij for i ̸= j and j ∈ A, given that these values can be used to

identify the mixed effect terms. So, we derive the exact formula of θgij , for i ̸= j, equal to

θgij = µ2fZ(z)hj

[

µ2
∂3g2(z)

∂zi∂z2j
+ 2µ2

∂2g2(z)

∂zi∂zj

∂ log fZ(z)

∂zj

]

+ (42)

+ 6µ4
2hj

∑

s̸={i,j}

∂3g2(z)

∂zs∂zi∂zj

∂2fZ(z)

∂zs∂zj
+ µ2hj

[

(µ4 − µ2
2)h

2
i

∂3g2(z)

∂zj∂z2i

∂2fZ(z)

∂zi∂zj

]

+

+ µ2hj





∂2g2(z)

∂zj∂zj

∂fZ(z)

∂zi
+ µ2

2

∑

s̸=i

∂3g2(z)

∂zs∂z2j

∂2fZ(z)

∂zi∂zs
h2s +

∂g2(z)

∂zj

∂2fZ(z)

∂zi∂zj



+

+ 2µ4
2hj

∑

s̸={j,i}

∑

u ̸={j,s,i}

∂3g2(z)

∂zj∂zs∂zu

∂4fZ(z)

∂zi∂zj∂zs∂zu
h2sh

2
u.

We can see from the previous formula that θgij is different from zero if there are mixed

effects between the two covariates Z(i) and Z(j), that is when i ∈ Ij . Anyway, it can be

different from zero also when i /∈ Ij , given that there are the terms in the third and fourth

rows of the previous formula which depend on the partial derivatives of g2 w.r.t. covariates

different from (i, j). In order to make this as a one to one relation, it is necessary to force

to zero the third and fourth rows of the formula. This can be done considering a uniform

density for Z(i), because in such a case all the terms in the third and fourth rows (but also

the term in the second row) would be canceled by the derivative ∂fZ(z)/∂zi, equal to zero.

Therefore, we suggest not to transform the i-th covariate in the auxiliary regression. This

proves the third part of the theorem, in the (21).

The formula of the expected derivative θ∗ij , for i ̸= j, is

θ∗ij = µ2
2fZ(z)hj

[

∂3g2(z)

∂zi∂z2j
+ 2

∂2g2(z)

∂zi∂zj

∂ log fZ(z)

∂zj

]

+ 6µ4
2hj

∑

s ̸=i,j

∂3g2(z)

∂zs∂zi∂zj

∂2fZ(z)

∂zs∂zj
.

(43)

✷
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Proof of Proposition 2:

First, we have

nE
(

V ar(Ṁ0j |X1, . . . , Xn )
)

= σ2
E

[

∂

∂hj

1

|H|2
K2
(

H−1 (X − x)
)

]

.

By assumptions (A1)-(A4) we can change the mean operator w.r.t. the derivative operator.

Therefore,

nE
(

V ar(Ṁ0j |X1, . . . , Xn )
)

= σ2

[

∂

∂hj

(

|H|−1/2
)

]2

E
[

|H|−1K2
(

H−1 (X − x)
)]

.

Changing the variable u = H−1 (X − x) we have the result in (i).

For point (ii), we have

nE
(

V ar(Ṁ1j |X1, . . . , Xn )
)

= σ2
E

[

∂

∂hj

(

H−2(X − x)
1

|H|2
K2
(

H−1 (X − x)
)

(X − x)TH−2

)]

.

Changing the variable u = H−1 (X − x) and using the same arguments as in point (i), it

follows

nE
(

V ar(Ṁ1j |X1, . . . , Xn )
)

= σ2

[

∂

∂hj

(

H−1|H|−1/2
)

]2

E
(

uuTK2(u)
)

= σ2 ν2ν
d−1
0

4|H|h2j
H−2Ij .

✷
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