
Predicate Encryption Systems
No Query Left Unanswered

Summary of a Ph.D. Thesis presented at the Università di Salerno

Vincenzo Iovino

Dipartimento di Informatica, Università di Salerno, Italia.
iovino@dia.unisa.it

Supervisor: Giuseppe Persiano

29 April 2011
Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 1/ 105

Predicate Encryption Schemes

I Predicate encryption (PE) schemes [Boneh-Waters07] are
encryption schemes in which each ciphertext Ct is associated
with a attribute vector ~x = (x1, . . . , xn) and keys K are
associated with predicates.

I A key K can decrypt a ciphertext Ct iff the attribute vector of
the ciphertext satisfies the predicate of the key.

I PE → fine-grained access control on encrypted data.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 2/ 105

Examples (Antispam filter)

I Your antispam filter should discard emails containing some
prohibited words.

I With classical PKE you give the antispam the secret key.

I It learns all the content of the email.

I With predicate encryption you give the antispam a special key
relative to the words.

I It only learns whether the words are in the email.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 3/ 105

Examples (Credit card transactions)

I A gateway (G) observes a stream of encrypted transactions.

I It must flag transactions whose values is > $1000.

I With PKE, Visa must give G the Sk.

I With Predicate Encryption, Visa can give G a special key T .

I By using T , G only learns whether the transaction is for a
value > $1000.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 4/ 105

Definition of Predicate Encryption Schemes

I A predicate encryption scheme for a class F of predicates
(boolean functions) over attributes in Σ is quadruple of
probabilistic polynomial-time algorithms (Setup,Enc,
KeyGen,Dec) such that:

I Setup takes as input the security parameter 1k and outputs
the master public key Pk and the master secret key Msk.

I KeyGen takes as input the master secret key Msk and a
predicate f ∈ F and outputs the decryption key Kf associated
with f .

I Enc takes as input the public key Pk and an attribute string
~x ∈ Σ and a message M in some associated message space
and returns ciphertext Ct~x .

I Dec takes as input a secret key Kf and a ciphertext Ct~x and
outputs a message M.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 5/ 105

Correctness of Predicate Based Encryption Schemes

We require that for all attributes ~x ∈ Σ and predicates f ∈ F such
that f (~x) = 1, it holds that:

Prob[(Pk,Msk)← Setup(1k);Kf ← KeyGen(Msk, f);

Ct~x ← Enc(Pk,~x ,M) : Dec(Kf ,Ct~x) = M] ≥ 1− neg(k).

Viceversa if f (~x) = 0, then the previous probability should be
negligible.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 6/ 105

Predicate-only schemes

I Encrypt only with respect to the attribute string.

I There is no message M to encrypt (alternatively you can set it
to 1).

I Dec procedure is substituted with a Test procedure which
returns 0 or 1 indicating whether the predicate is satisfied.

I Useful for encrypted databases and many other applications.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 7/ 105

Security of Predicate Based Encryption Schemes

I A PE scheme (Setup,Enc,KeyGen,Dec) has ξ-ecurity, where

ξ ⊂ {0, 1}, if all PPT adversaries A have negligible advantage in the

following experiment.

I Setup. The public and the secret key (Msk,Pk) are generated using

the Setup procedure and A receives Pk.

I Query Phase I. A requests and gets private keys Kf relative to

predicates f . Key K~y is computed using the KeyGen procedure.

I Challenge. A returns two different pairs attribute/message

(x0,M0) and (x1,M1) of the same length, subject to the constraint

that f (~x0) = f (~x1) ∈ ξ for any f queried to the key oracle in both

query phases. η is chosen at random from {0, 1}. A is given

ciphertext Ct~x ← Enc(Pk,~xη,Mη).

I Query Phase II. Identical to Query Phase I.

I Output. A returns η′. If η = η′ then return 1 else return 0.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 8/ 105

Notions of Security

I Selective security: the adversary chooses the challenge
attributes before seeing the public-key.

I Why? The model is weaker (see separation in the thesis) but
it is easier to prove the security

I The simulator can build the public-key basing it on the
challenges so that it can answer all the queries easily.

I In the case that ξ = {0} we talk about security against
restricted adversaries.

I If ξ = {0, 1} we have the best security we can guarantee. In
this case we talk about security against unrestricted
adversaries.

I Recently, Boneh,Sahai and Waters showed impossibility result
for simulation-based security.

I Main Result of This Thesis: First PE system for HVE (to
define..) secured against unrestricted adversaries.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 9/ 105

Trivial construction for every predicate

I Let (Setup′,Enc′,Dec′) be a PK system. Let
F = (P1, . . . ,Pt). We build a PE (Setup,Enc, KeyGen,Dec)
as follows.

I Setup(1k): runs t-times Setup′(1k) to obtain
Pk = (Pk1, . . . ,Pkt) and Msk = (Sk1, . . . ,Skt).

I KeyGen(Msk, f): (here f is a index j of a predicate in the list
(P1, . . . ,Pt) outputs Kf = (j ,Skj).

I Enc(Pk,M,~x): define Cj = Enc′(Pkj ,M) if Pj(~x) = 1 or
Cj = Enc′(Pkj ,⊥) otherwise. Outputs Ct~x = (C1, . . . ,Ct).

I Dec(Kf ,Ct~x): Let Kf be (j , Skj) and Ctx = (C1, . . . ,Ct).
Outputs Dec(Skj ,Cj).

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 10/ 105

Trivial construction for every predicate - continued

I The construction is higly inefficient (super-exponential time
and space).

I We do not know whether it is possible to construct PE for any
poly-time predicates.

I Despite of this, we have efficient constructions for some
interesting predicates with many applications.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 11/ 105

Definition of Hidden Vector Encryption Schemes

I Defined by [Boneh-Waters07].

I HVE schemes are Predicate Encryption schemes for Match.

I Let ~x be a string over Σ and ~y be a string over Σ ∪ {?}; ~x
and ~y of the same length n.

I Define predicate Match(~x , ~y) to be true iff for each 1 ≤ i ≤ n
we have xi = yi or yi = ?. Intuitively, ? is the “don’t care”
symbol.

I Example: Match is true with 001 and 00? but not with 101
and ?11.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 12/ 105

Applications of HVE (PEKS/SE, AIBE,Conjunctive queries
on encrypted DB)

I Easy to see that HVE implies Searchable Encryption and
Anonymous IBE.

I Analogously, you can see SE as predicate-only PE scheme for
the equality predicate.

I Applications above do not use the ? capabilites.

I Exploiting the ?’s, I could search in the encrypted DB of
UNISA if there are other people with my name. Namely,
search all tuples with ’Name=Vincenzo AND
Campus=UNISA’.

I The last is not possible with PEKS/SE.

I Other applications: conjunctive comparison queries and subset
queries.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 13/ 105

Reduce k-CNF and k-DNF to HVE

Idea
Enumerates all the k-CNF clauses over n variables. They are
Θ(nk).

k-DNF
For k-DNF complement the result (valid for predicate-only
schemes).

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 14/ 105

A more general predicate

I In Eurocrypt08, Katz-Sahai-Waters presented a scheme for a
more general class of predicates.

I Keys and ciphertexts are relative to attribute vectors ~x ∈ Zw
N .

I By using a key relative to ~y you can decrypt a ciphertex
relative to ~x iff 〈~x , ~y〉 = 0 mod N.

I Easy to see that inner-product → HVE.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 15/ 105

Known constructions for HVE

I First construction by Boneh-Waters07.

I It used bilinear group of composite order and thus assumed
factoring.

I Iovino-Persiano08 show a more efficient construction based on
groups of prime order.

I The latter construction is very simple and the security proof is
based on Decision Linear.

I New schemes followed which add delegating capabilities, key
privacy, short keys...

I This thesis: fully secure restricted and unrestricted HVE.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 16/ 105

Groups endowed with bilinear maps

I We have multiplicative groups G and GT of prime order p and
a non-degenerate bilinear pairing function e : G×G→ GT .

I The pairing function has the property that, for all
g ∈ G, g 6= 1, we have e(g , g) 6= 1 and e(ga, gb) = e(g , g)ab.

I We denote by g and e(g , g) the generators of G and GT .

I We call a symmetric bilinear instance a tuple
I = [p,G,GT , g , e] and assume that there exists an efficient
generation procedure that, on input security parameter 1k ,
outputs an instance with |p| = Θ(k).

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 17/ 105

Bilinear groups of composite-order

I We have multiplicative cyclic groups G and GT of
composite-order N product of more primes and a
non-degenerate bilinear pairing function e : G×G→ GT .

I Since that the groups are cyclic, it follows that e(g , h) = 1
when g and h belong to different subgroups of G.

I This property is called orthogonality and is used in our fully
secure constructions.

I (Maybe) we can convert schemes based on composite-order
groups to schemes based on prime-order groups (see
Freeman10).

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 18/ 105

Computational Assumptions

I In bilinear groups, standard assumptions like Decisional
Diffie-Hellman are false

I No problem. We can formulate new assumptions believed to
be true in this setting.

I Example 1: Decision BDH. Given a tuple [g , g z1 , g z2 , g z3 ,Z]
for random exponents z1, z2, z3 ∈ Zp it is hard to distinguish
Z = e(g , g)z1z2z3 from a random Z ∈ GT .

I Decision Linear. Given a tuple [g , g z1 , g z2 , g z1z3 , g z1z4 ,Z] for
random exponents z1, z2, z3, z4 ∈ Zp it is hard to distinguish
Z = g z3+z4 from a random Z ∈ G.

I In bilinear groups of composite-order we can formulate
assumptions that essentially state the difficulty of
distinguishing whether an element does or does not contain a
given subgroup.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 19/ 105

The selectively secure construction - First attempt

I We associate to each position of the attribute string
~x = x1, . . . , xn a value ti if xi = 1 or ri otherwise. These
numbers are chosen at random in Zp along with z and the
public-key is g ti , g ri for each i = 1, . . . , n.

I To generate private keys for a string ~y , share z in ai ’s such
that the sum of ai ’s is z . In the positions where yi = 1 put
gai/ti and where yi = 0 put gai/ri .

I When encrypting the pair (M,~x), hide the message M with
M · e(g , g)zs for a random s; also in the positions where
xi = 1 put g ti s or g ri s otherwise.

I To decrypt, we pair (for example) gai/ti with g sti to obtain
e(g , g)ai s . Multiply each such element to obtain e(g , g)zs

used to recover M.
I Intuition: to obtain z , you must get all ai ’s, and that’s

possible only if you own the key for a string that matches with
the ciphertext attribute.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 20/ 105

Attribute Hiding

I The above scheme guarantees the security of the message M
(under DBDH) but not of ~x .

I In fact, in a such scheme we should include g ti , g ri ’s as public
parameters. This would break the security of previous scheme

I Indeed an adversary could test whether first two bits of the
string associated to a ciphertext are 01 using this check:

I e(g t1s , g r2) = e(g t1 , g r2s)

I The previous scheme is unsecure!

I But there is a solution...

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 21/ 105

The splitting technique

I We solve the problem using a linear splitting technique.

I For each position we choose si at random and split g ti s in
g ti (s−si) and g vi si , analogously split g ri s in g ri (s−si) and gmi si

(now include in Pk also g ri and gmi).

I Similarly for the private keys, change gai/ti with the pair
gai/ti , gai/vi and gai/ri with the pair gai/vi , gai/ri .

I The decryption works and the new scheme is secure!

I The splitting technique needs the Decision Linear assumption.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 22/ 105

Dual System Encryption

I Fully-secure constructions for IBE or more general primitives
required the random oracle model (Boneh-Franklin’s IBE),
ad-hoc solutions (efficient IBE of Waters in the standard
model) or non-standard assumptions (Gentry’s IBE).

I Waters09 presented a powerful tool to prove the full security
of IBE-like primitives: the Dual System Encryption
methodology.

I In DSE keys and ciphertexts can assume two forms: normal
and semi-functional.

I Normal key (ciphertext) can be combined with a
semi-functional ciphertext (key).

I Semi-functional ciphertexts can NOT decrypted by
semi-functional keys!

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 23/ 105

Dual System Encryption - continued

I The security proof proceeds in the following steps.

I The challenge ciphertext is changed to semi-functional form:
adversary can not detect it!.

I The keys are changed one by one to semi-functional.

I Idea: normal keys can not decrypt and if you change them to
semi-functional form they continue to not decrypt: so
adversary does not detect the change.

I By performing the change one key at a time we can exploit
locality and the indistinguishability follows by simple
assumptions.

I More paradoxes!

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 24/ 105

The Paradoxes of Dual System Encryption

I The simulator could use the assumption to create a ciphertext
(for the same id) that is semi-functional and test if the key is
normal or semi-functional.

I Waters09 avoids the paradox by using tags: it attaches a tag
(that is function of the id) to each semi-functional ciphertext
and to a key of both types and decryption works only if the
tags are different.

I LewkoWaters10 avoids the paradox by using the concept of
nominally semi-functional algorithms: a nominally
semi-functional ciphertext and a nominally semi-functional key
can be combined for decryption.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 25/ 105

Our Fully-secure HVE Constructions

I Setup(1λ, 1`): bilinear instance of groups of composite order
N = p1p2p3p4. Choose (ti ,b ∈R ZN)i∈[`],b∈{0,1}.

Pk = [N, g3, (Ti ,b = g
ti,b
1 · R3,i ,b)i∈[`],b∈{0,1}]

Msk = [g12 = g1 · g2, g4, (ti ,b)i∈[`],b∈{0,1}]

I KeyGen(Msk, ~y): Let S~y = {i ∈ [`]|yi 6= ?}. Choose ai ∈R ZN

such that
∑

i∈S~y ai = 0.

Yi = g12
ai/ti,yiW4,i

I Enc(Pk,~x): Choose s ∈R ZN .

Xi = Ti ,xi
sZ3,i

I Test(Ct,Sk~y): returns TRUE iff T = 1.

T =
∏
i∈S~y

e(Xi ,Yi) =
∏
i∈S~y

e(g
s·ti,xi
1 , g1

ai/ti,yi) =
∏
i∈S~y

e(g1, g1)

s·ti,xi ·ai
ti,yi

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 26/ 105

Our proof strategy

I We project the PK in the Gp2 subgroup: the adversary does
not detect the change because the keys share a Gp2 part (but
not the challenge ciphertext).

I The simulator will know the trapdoors to create the Gp2 part
of PK and keys.

I We change the Gp1 part of the keys one by one.

I In each key game we change the Gp1 part of the keys to
random.

I We make this by guessing where the challenge key differs from
the challenge ciphertext.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 27/ 105

Our proof strategy - continued

I We solve the paradox of DSE by using an all-but-one
simulation.

I The assumption allows us to simulate a key that differs from
the challenge ciphertext in the guessed position but not keys
that match it.

I In the last key game the Gp1 part of the key is random and
the challenge ciphertext does not contain the Gp2 part.
Recalling that the PK lives on Gp2 we conclude that the
challenge attribute is information-theoretically hidden from
the adversary.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 28/ 105

A Paradox Left Unsolved

I The dual system encryption was formulated for (H)IBE where
restricted and unrestricted security coincides.

I In PE, the adversary can ask queries for predicates that match
both the challenges.

I In this case, a naive use of DSE induces a new paradox: a
matching query would allow to distinguish if the key is
semi-functional or normal.

I If it is semi-functional, the decryption with the semi-functional
challenge ciphertext won’t work but if it is normal it will do!

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 29/ 105

Our Solution: The Main Result of The Thesis

I We use q · ` games instead of q games.

I We view the proof as a Down-Right-Up trip on the queries.

I Down Phase. For the first (in general i-th, for i = 1 to `)
position of the challenge ciphertext we change the distribution
of the keys.

I Right Phase. We change the value of the first (in general
i-th) position of the challenge ciphertex if it corresponds to a
position where the two challenge attributes differ.

I The value is changed by setting it to random.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 30/ 105

Our Solution: The Main Result of The Thesis - continued

I Up Phase. We come back to the situation where the keys were
all well-formed but the challenge ciphertext remains changed.

I Right Phase. We iterate the process incrementing i and
stepping to the Down Phase.

I Idea: In the Down Phase, when we receive a query for a vector
~y such that it has ? in position i , we can simulate it correctly!

I It could be matching or non-matching query but we are sure
that ALL matching keys have ? in position i !

I During the Right Phase we observe the following situation:
the matching keys have ? in position i and the remaining keys
(that can be either matching or non-matching) have a random
Gp1 part.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 31/ 105

Our Solution: The Main Result of The Thesis - Conclusion

I Therefore the i-th position of the challenge ciphertext is
information-theoretically hidden from the adversary!

I In the last game the challenge ciphertext is independent from
the challenge attributes: it is random where they differ and
equal elsewhere.

I Some troubles: we can perform the simulation only for the
positions where the challenge attributes differ.

I We use an abort technique in the bad case. Our analysis
shows that the adversary cannot exploit this abort for its
advantage.

I We loose a factor ` · q in the reduction but we proved security
against unrestricted adversaries!

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 32/ 105

Other results of this thesis

I Hierarchical IBE and PE: given a key for predicate P, derive a
key for more specialized predicate (i.e., a predicate that
satisfies less attributes).

I For HVE: given a key for 1 ∗ 0, you could derive a key for 100
or 110.

I For example, the University owns a key that decrypt
everything and gives to the department of CS a key to decrypt
only the ciphertexts that begin with ’CS Dept’.

I Previous Hierarchical HVE system of Shi-Waters08:
super-linear computational complexity and selective security.
Ours is linear and fully secure.

I First Fully secure Anonymous (H)IBE, Secret-key IBE/HVE,
Partial Public-Key model.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 33/ 105

Future directions and open problems

I Big open problem: PE for arbitrary poly-size circuits.

I Limits of bilinear maps: which classes of PE systems can we
build from bilinear maps?

I PE schemes from other assumptions (lattices, QR,
code-based...).

I Tight security proofs: if the adversary breaks the system in
time t with probability p, build an adversary that breaks some
simple assumption in approximatively the same time and
probability.

I Efficiency: short ciphertexts and keys, constant-size PK, etc.

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 34/ 105

THE END

Questions Left Unanswered?

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 35/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 36/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 37/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 38/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 39/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 40/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 41/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 42/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 43/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 44/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 45/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 46/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 47/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 48/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 49/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 50/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 51/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 52/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 53/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 54/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 55/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 56/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 57/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 58/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 59/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 60/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 61/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 62/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 63/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 64/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 65/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 66/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 67/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 68/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 69/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 70/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 71/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 72/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 73/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 74/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 75/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 76/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 77/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 78/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 79/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 80/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 81/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 82/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 83/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 84/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 85/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 86/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 87/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 88/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 89/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 90/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 91/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 92/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 93/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 94/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 95/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 96/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 97/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 98/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 99/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 100/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 101/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 102/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 103/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 104/ 105

Vincenzo Iovino Predicate Encryption: No Query Left Unanswered 105/ 105

