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Introduction

Introduction

The work made during the PhD course in Informatinygineering,
was focused on the possibility to find out novaethi@ques for the
quick calibration of a cheap 3D Scanner. It is dasa a simple
camera and a commercial projector, in order to ldgvéow-cost
devices with high reliability capable to quicklycpire large areas.

Many systems based on this configuration existctiinave benefits
and disadvantages. They can acquire objects wdhga surface in a
few seconds and with an adequate accuracy. Ontkiee band, they
need a lengthy calibration and they are very sepsio the noise due
to the flicker of the light source. Consideringgaeroblems, | tried to
find new robust calibration techniques in order reduce the
sensitivity to noise, and, in this way, to havehhperformance low-
cost 3D scanners with short-time calibration armbnéiguration.

There are many calibration techniques availableHfese systems.
First, it is necessary to calibrate the camera tah the overall
system for projecting analog encoded patternsc#yiyi sinusoidal or
digital, such as Gray codes. These techniques amy time-
consuming because they require a prior cameraratbb phase
separate from the calibration of the whole systeh @so disturbing
factors are introduced by the ambient light noiseleed, a lot of
projection patterns, used in mapping the calibratimlume, are
required to be projected.

In order to achieve our goal, different types ofistured light scanner
have been studied and implemented, according to sttteemes
proposed in literature. For example, there existnsers based on
sinusoidal patterns and others based on digitabmest, which also
allowed the implementation in real time mode. Opsth systems
classical techniques of calibration were implemerated performance
were evaluated as a compromise between time andaagcof the

system.



Introduction

Classical calibration involves the acquisition dfape maps in the
volume calibration following a pre-calibration dfet camera. At first,
an algorithm that allows calibration through theyjasition of only
two views has been implemented, including cameribresion,
modeled by pin-hole model, in the calibration aigjon. To do this,
we have assumed a geometric model for the projedtash has been
verified by the evaluation of experimental datae fwojector is then
modeled as a second camera, also using the pinshadel, and we
proceeded with the calibration of camera-projegtair as a pair of
stereo cameras, usingDd T calibration. Thanks to the acquisition of
two views of the target volume in the calibratiohjs possible to
extract the parameters of the two devices throulgictw the projected
pattern can be generated. Thus the acquisitiothhéyamera can be
performed overpassing the problem of noise intredudy the
ambient light.

This system result to be a good compromise betwaékbration tine
and uncertainty. The former is reduced from halhanr to a couple
of minutes, whereas uncertainty is reduced accgrdio one
percentage point of calibration volumes (that weltesen of a depth
of 10 centimeters).

The percentage errors could be reduced by consglehe lens
distortion. During the period spent as a visititgdent at the Machine
Vision Group of Oulu in Finland, under the supenmsof Prof. J.
Heikkila, problems related to the change of paransedf distortion in
a pin-hole model as a function of distance betweeget and camera
have been studied. After several experimental tésss in simulation
and later on real images, it has been concluded tha parameter
variations can be justified with the use of a sienplodel such as pin-
hole. The use of advanced geometric models likes Arbdel and
subsequently the Generic model, can incorporatsetheariables
within the model itself, to make the camera angjgmtor calibration
more accurate when extended to a larger volumeerang

Finally, Self-Calibration for Stereo system hasrbesed for the 3D
scanner system in order to reconfigure on-site, aetside the
laboratory, a scanner previously calibrated inléfw@ratory.



Chapter 1

Introduction to the 3D scanning
systems and application

1.1 Introduction

It is important in many and various applicationsvénaligializated
tridimensional models that represent the shapetlamaolor features
of real objects. The classical techniques of coepatded design
(CAD) were been accompanied, in the last yearsa Imyethodology
called3D scannind1].

The automatic object shape acquisition techniqeedun a lot of
environments, are as multiple and varied as thpplieations are.

A conceptual scheme is illustrated in Figure 1.1

[ Shape Acquisition ]

/\

[ Contact system ] [ Contactless system ]

7

[ Structured ][Timeofflight] [ Stereo ] [ Defocus ]
Light System

b

Figure. 1.1 : Classification of the major profilomeer systems
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1.1.1 Contact systems

The coordinate measuring machines (CMM) are thet nmogortant

systems that allow the acquisition of 3D shapedwgliing the surface
which is to be acquired.

They work using analogical solid probe of accusal@lown diameter
that, acquire and store the coordinate of touchedtp based on the
deflection of the same.

Due to their extreme accuracy, they are used venynoonly for the

detection of the surface profiles in the indust®n the contrary,
however, the CMM have some disadvantages sucheasltwness
and the high cost, the limitations in the acquositof entire surfaces,
and mainly of object of very irregular shapes.

Less than 60 minutes are required for thel insgtatieof machinery,

however these times are frustrated by the long tihacquisition,

which grows in relation to the size and complexitythe shape of the
object under measurement.

Furthermore, the application of a force on theaefof the object to
be studied could ruin the part in the case of sddterials or, in the
case of flexible materials, alter the measuremerg tlear how this
type of technique can be invasive in the case wtlereobject to be
detected should be an ancient find difficult to dianbecause of its
fragility.

The forces applied in these cases range from 1No tBe tolerances
and repeatability are typically about £ 10 microenst

ccrcrrs [ ocsovmces |

T
Easy availability _
I

Figure. 1.2 : Benefits and disadvantages of contasystems
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An instrument widely used in the reliefs and measwent with
contact methods is represented in Figure 1.3.

A measuring arm is a mechanical digitizer capabléetecting the 3D
coordinates of any form contained in a hemisphkencdume with
different sizes and with different accuracies. Tinechanics is based
on an articulated arm balanced with pointer ablemove freely
through 360 ° about any axis with extreme simplieihd precision

Figure. 1.3 : Méasuring arm

When we use this tool, the joints are designedt tanfy movement in
space without any obstacle and they have the reagefisidity. To
make a measurement, the end of the arm is cahtedgh to the point
to be measured, and a series of sensors providectme the position
of the end of the arm in real time transferrinpie computer.
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Figure. 1.4 : Real application

The acquisition of the physical model can be madu®ugh the
probing of the desired points on the model usirg iost common
CAD programs that run directly measuring arm, usimgproper tools
of the program as lines, splines, NURBS, also hatire ability to
view the result of a scan as a real-time three-gsiomal video.

This tools incorporate a pointing system that cardusly identifies
an absolute the position of the probe tip relativeghe origin of an
absolute reference system. Thus the movementseofatin in the
measurement step always refer to the absolute erefer system
identified as the beginning of the relief duringe tbalibration of the
instrument itself.

This allows to perform all the necessary movemehtbe instrument
and to acquire parts of an object in separate @messven of a relief,
permitting the construction of a cloud of pointsalcomposed of
several parts, but always related to the sameamdersystem.
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1.1.2 Contactless systems

These acquisition systems today are those that dalication in
various industrial sectors: from aerospace to aatm® and marine
industry.

In this case are used tools with which the releddes place without
that these come into contact with the objects talécted. These
machines are very expensive and extremely sensitive

One of the advantages is certainly the high precisire also used in
the field of precision mechanics, allowing a quassessment of any
changes by acting on CAD systems "model" point dsoacquired,
reaching the final result quickly.

These systems allow the acquisition of complex skam fact, you
can scan complex objects such as statues, monurardt®bjects,
which generally have very irregular shapes. Unfuoataly, they
present high cost. One of the latest generatiolasdr scanners can
cost around 90,000 euros, which is why, very ofianareas where
high accuracy is not required, it falls back toastolutions. In this
case the cost may be a discriminating factor inctiw@ce of method to
be used in the relief campaign. The laser scanpre@ject a beam of
light on the object, but, since they are sensitvembient light, in
some conditions it may be difficult, if not impdska, to the relief.
Even the colors of the object can create diffiesltin such devices,
since the dark colors or some shiny surface firsist@n cause the
absorption of light or refractions, interfering Witthe used
instrumentation.

This high quantity of data to be manipulated cahsoonetimes be an
advantage, but may actually represent a redunddwatyn some way
must be managed and often simplified.
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RN SN

Figure. 1.5 : Benefits and disadvantages of contdess systems

One popular tool in the reliefs and measurementh won-contact
methods is the MicroScan, powerful and above aly eheap. It uses
a system of scanning based on the optical triatigntathe shape of
objects is reproduced by sending a laser beamtlyi@ato the surface

to be scanned.
| |

Figure. 16 : Microscan
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The acquired data are then managed by software.

Among the multiple 3D scanning technologies paldicimportance
is represented by systems not in contact, ie ttieadsystems, which
can be classified into two main categories [2]:

1. Passive optical systemsgenerally based on acquisition of
many images (in color) taken from different views, the
reconstruction of the contours of the object takerd
finally on the integration of these boundaries fiie
reconstruction of the 3D model. Is not used anlytlgpurce
to derive the position of the points: it is obtaindy
triangulation from analysis of the images obtaibgd pair
of cameras positioned in a different poses comptrdte
same scene, as shown in figure 1.7:

These systems are extremely cheap and simple to use
Against the quality and the accuracy of the produotlel

are generally too low for most applications. Howevkey

are not used to the great difficulty of correlatthg pairs of
images in an automatic way, so for this reasonsit i
necessary to bring a number of references on thectob
(some markers or grids), or manually identify the
correlations, a process that is slow and difficult.

2. Active optical systems:are generally constituted by a pair
source-sensor, where the source emits appropriate
electromagnetic radiation (light patterns, lasghtj etc.)
and the sensor acquires the return signal, retleficten the
surface of the object. The light source marks fiece on a
regular basis and the system returns a 2D arragdemg
these points, usually called range map, which shthes
spatial information about the surface part of thsible
object from the scan tool. Usually to get the awbm
acquisition of 3D profile for an object is not egbuto
simply acquire a range map, but is required a smpl
acquisition of a set of range map defined so asotger
completely the entire surface of object with a a@ert
overlap between the different range map. Such ssie
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their turn are differentiated according to addiéibariteria:
based on the light source used there may be Igs&nss,
[3], [4] systems Moiré [5], [6], [7], (projection fo
interference fringes ), structured light systemsited by
projector), but these types are expensive and hedya
applicable even if they ensure high resolutions [[]

Figure 1.7 Example of a passive optical system

1.2 Applications

Now will be described some application exampleshefse systems
that show the variety and effectiveness of thee usvarious fields.

This type of contactless machine is used in mediexttile, movie

industry and in game development.

1.2.1 Reverse engineering

The 3D scanners are used in the entertainment tiydts create
tridimentional digital models for movies and vidgames [10]. In the
cases where there is an equivalent real object medeuch easier to
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scan the real object that implementing a model fsmratch using
solid modeling software [11]5ome artists prefer to sculpt the desired
subject and then digitize it with a scanner ratian create the 3D
digital model[12].

The reverse engineering in industrial field regsiia@ accurate digital
model of the object to be reproduced.It’s needetbdel, rather than a
cloud of points, constituted by polygons, or by N&fRcurves and
surfaces, or from a CAD model of the object.The gfanners can
digitize surfaces of any shape, whose point clozats be processed
with suitable software for reverse engineering.

1.2.2 The Digital Michelangelo Project

An important study on contactless technology haanbmade by the
Department of Stanford University with the work ‘&fDigital
Michelangelo Project” [13] published on the occasid the Second
International Conference on 3D Digital Imaging akkbdeling in
Canada in 1999, under a project on the relief wi®D laser scanner
of Michelangelo's David. From the image below yaun see the tower
3D laser scanner positioned in front of the sculptu
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Figure. 1.8 : Tower 3D laser scanner

The phase of acquisition of an object of this typedivided into
several phases precisely because of the compleikitye shapes to be
detected. In fact it is necessary to perform s¢am different angles
to prevent the creation of areas of shadow ruimtkeasurement.

The lattice of the reconstructed surface contaimsilBon polygons,
each approximately 2.0 mm in size. The cloud ohfsofrom which
the loop was built contains 2 billion acquisitiorst, the sampling
distance of 0.25 mm on the surface of the statue.
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1.2.3 Digital Hammurabi: scanning of cuneiform tablets

Cuneiform tablets are witnesses of an ancient fairmriting in which
wooden pipes were used to record the signs of fawmwet clay
tablets.

Once dried, the clay tablets preserved the wrigghwith remarkable
precision and durability. There are currently h@udr of thousands of
cuneiform tablets spread around the world in museand in private
collections. The study and manipulation of theskfagts presents
several problems for scholars. It may be diffi@rimpossible to gain
access to a given library. In addition, the phatpgic records of the
tablets can be insufficient for the correct examom The
photographs do not allow you to alter the lighteanditions and the
point of view. As a solution to these problemsthet Johns Hopkins
University, Baltimore, they used a 3D scanner dableacquire the
shape of a tablet in the three dimensions [14]s Tata set can then
be stored in an online library and manipulated bgrs by modifying
the point of view and the lighting conditions. Teeanner uses a
camera capable of capturing the images of the ttainlder different
lighting conditions controlled. The image data i®gessed with a
photometric stereo and structured light techniquedétermine the
shape of the object. The surface is sampled wilateral spatial
distance of 26.8im and the depth is calculated on a scale even less.
Scans of several adjacent sides are assembledhéogetform a 3D
surface model.
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Figure. 1.9 : Cuneiform tablet

Figure. 1.10 : Rendering af a cuneiform tablet
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Chapter 2

Classical model for the calibration of
3D structured light scanning systems

2.1 Introduction

This chapter gives an overview of structured li§bt scanners in the
literature. These can be divided into two categpribose using the
projection of digital patterns and using trianguattechniques for the
reconstruction of the profile, and those that prognalog pattern.

On the second scanner of this type have focusedtuujes, such as
scanners allow increased resolution of the meagu@es, it's also

possible to improve the performance of these seana#opting new
techniques of calibration

2.1.1 Structured light profilometer

In general a profilometer works in the following yyaee Figure 2.1:
light patterns are generated and projected, theybea as we have
said, digital (i.e. Gray encoding), or analog (Ulyuasing sinusoidal
pattern), these patterns projected on the objguthwwve want to scan
the profile, is deformed, this deformation is captluby a camera and
a computer performs the post-processing that linkse deformations
with the profile of the object.

How to associate the entity of the deformation wité depth value is
the problem that the calibration has to solve, kkao which you can
map the phase values of the deformation to thehdegdties, in order
to obtain a cloud of points of the profile that yeme capturing.
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Figure. 2.1 : Structured light profilometer
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2.1.2 Calibration

The calibration serves to bind the trend of theiatem of light
intensity of the projected pattern to the deephaf profile you are
illuminating.

In the classical schemes of calibration[15],[16{][1as shown in
Figure 2.2, the depth Z is mapped in a look-upeta@penerally formed
by N phase maps as there are the acquisitionsythatperformed
during the calibration at regular steps insidedhiébration volume
Under certain hypotheses, the phase maps candrpoatdted, in this
way could be aquired a minor number of referenaaql

The number of planes, that you need to acquirahés factor of
compromise which plays an important role in thabcation, it must
achieve a proper trade-off between a good accuealarge number of
plans and great flexibility, a few number of platiesn the calibration
should be faster and easier to implement, sincegh humber of
phase maps involves a considerable computatiorstl ad storage
space for the large data files.
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Figure. 2.2 : Common calibration schemes for 3D Socaers

Projector

To understand the limitations of these classiaaineques | have been
implemented some different 3D scanners based dm dhgital and

analog patter and | have been tested with differeadibration

techniques. Understood the limitations and shortogs of these
systems | have been thinking about how to build @emrobust

scanner while keeping low costs and timing of asitjons, ensuring
comparable uncertainties if not lower than thesitad methods

2.2 Digital pattern projection scanner

2.2.1 Rusinkiewicz implementation

Rusinkiewicz algorithm for depth extraction consisff segmenting
each video field into illuminated and unilluminatesjions (i.e., black
and white), finding stripe boundaries, matchingsthédoundaries to
those on the previous field, and using informatiabout the
illumination history of each boundary to determthe plane in space
to which it corresponds. Depth is then obtained va@y-plane
triangulation.
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Figure. 2.3 : Rusinkiewicz implementation

This implementation makes possible the real-timguesition, it will
be discussed the tradeoffs made in implementingp stage of this
pipeline (Figure 2.3) on current hardware, as wadl possible
extensions to these algorithms to make them mdrestaas hardware
capabilities increase.

Praoject Find and
(time-varying) Capture track features
illumination video (stripe
pattern boundaries)

Identify Align
features and range
find depths images

Integrate and
render

Figure. 2.4 : Real-time model acquisition pipeline

Pattern Projection and Video Capture: As mentioned above, the
patterns are projected using a projector based igitald light
processing (DLP) technology [18]. These projectdrave the
advantage of being relatively inexpensive, and haeey short
transition times between patterns. Because projectd camera must
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be synchronized (so that we capture exactly oneovfdame for each
projected frame), has been chosen to drive theegiaj with an S-
video signal and to genlock the video camera ts #ignal. In
addition, to prevent interpolation between projegixels, we orient
the pattern such that the stripes run along thenlises of the
projector. For this reason, we are currently lichite 240 projected
stripes, as compared to the 1024 potentially abvigladrom the
projector. Since we currently use a 4-frame seqearmnsisting of
111 stripes, this limitation is not significant. Wever, expanding to a
larger number of stripes (to increase the workimgume) would
require driving the projector with a VGA or DVI sigl, thus requiring
a different method of projector-camera synchromezratSince we use
a standard video camera to capture frames, ouureapvideo fields
are interlaced. This results in a slight shift me tposition of stripe
boundaries from field to field. Since the effectsimall, we currently
do not correct for it in the processing pipelinat because the effect
of interlacing is completely known it would be pitds to compensate
for it. Note that any translation in the 3D modesulting from not
considering the interlacing is corrected by framdrame alignment.

Segmentation Algorithm: The problem of finding the stripes (and
hence the stripe boundaries) in a captured vidamdr may be
considered a special case of the general segnmntamd edge
detection problems. Both of these problems haven bstdied
extensively in the computer vision community anchgnsophisticated
algorithms are available [19].

In this application, however, it is needed a mettiat is robust and
runs in real time, while taking advantage of thewn features of the
projected illumination. In particular, given thesamption of local
reflectance coherence, it may assume that the stigreguency
variations in the captured frames are due to ilhation, not texture.
Moreover, we may assume that the projected stifged hence the
edges we wish to find) are roughly perpendicularthe camera
scanlines. Therefore, we process each scanlinpemdiently, looking
for local maxima and minima along each row, andia&sthat these
correspond to white and black projected stripespeetively. Between
each adjacent local maximum and minimum, we loakafpixel with
intensity halfway between that of the minimum andximum
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(optionally using subpixel interpolation), and ubkes as the location
of a stripe boundary.

For scenes without high-frequency textures, it veamd this method
to be effective and robust, while still running neal time. In
particular, it was found this algorithm less sewsitto variations in
reflectivity and changes in ambient illumination ath both
thresholdbased segmentation methods and deriViadised edge
detectors.

Stripe Matching Algorithm: Since this approach relies on time-
coding the boundaries between stripes, a critiaa @f our algorithm
is matching the boundaries visible in each framéhtse in previous
frames. This is a nontrivial problem for two reasorrirst, the
boundaries move from frame to frame, potentiallythwiarge
velocities. Second, the fact that our code contaghsst. boundaries
means that not all boundaries are visible in egaimé.

It is the presence of ghosts (i.e., the inferreatklblack and white-
white stripe .boundaries) that distinguishes thigps matching
problem from the traditional feature tracking ldgemre. To make the
problem tractable, it must used the constraints tikare may be at
most one ghost between each pair of visible stsqpendaries, and that
ghost must match to a visible stripe boundary i@ finevious and
following frames.

These conditions limit the possible matches arahatb determine, in
many cases, whether certain boundaries should nbatother visible
boundaries or to ghosts. Even these conditions,eliery are not
enough to disambiguate the situation shown in leigub. The two
possibilities of having the center stripes matcheaxh other and
having them match to ghosts in the other framebata allowed by
the constraints mentioned above.
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Figure. 2.5 : Matching stripe boundaries becomes fficult in the
presence of “ghosts

Although there is a large literature on trackingoaithms that could
potentially be adapted to this application, inchgdi multiple-
hypothesis methods [20] and methods that use tEs¢R1], most of
these approaches are too slow for real-time imphtatien.

Therefore, it is currently implemented only a simpinatching
algorithm that hypothesizes all possible locatiafs ghosts and
matches each visible boundary to the closest stiipbypothesized
ghost in the previous frame. As discussed latés,dlaces a constraint
on the maximum allowable velocity of stripes, hendiceiting the
speed at which objects in the scene can move.

Future systems may incorporate better matchingisteas, permitting
correct stripe matching in the presence of gre&t@me-to-frame
motion.

Decoding Algorithm: Once the stripe boundaries in the frame have
matched to those in the previous frame, the illaton history has
been propagated (i.e., the color of the stripeseitimer side of the
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boundary over the past four frames) from the oldnaaries to the
new ones. If this boundary have seen and succbssfatked for at
least four frames, this history identifies it unédyy Note that the
boundary remains identified at every frame theezaftince the four-
frame illumination history contains all four patter
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Figure. 2.6 : Digital pattern codecs, time boundarngecoding

Triangulation: Given a stripe boundary identification, the planei
space to which the boundary corresponds is detatedn Then the
intersection of that plane, with the ray correspongdo the camera
position at which the boundary was observed; isndouThis
determines the 3D location of a point on the obgsihg scanned. An
important difference between this approach andtiosmal projected-
stripe systems based on Gray codes is that thenselonly gives us
depth values at stripe boundaries. These depthgeves, are very
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accurate: we triangulate with an exact plane (tingpes boundary),
rather than a wedge formed by two planes (the estitigelf ). For
smooth surfaces without high-frequency texture nvegy perform sub-
pixel estimation of the location of the stripe bdanes to further
reduce depth errors.

This triangulation process requires the knowledd@ethe internal
parameters for both the camera and projector, dsawéeheir relative
pose. In order to calibrate intrinsics, we curngntte the method of
[22]. This can be followed by moving a target tawm 3D positions
and optimizing to find the relative pose of the eaaand projector.
One could imagine an automatic calibration methnad would permit
a calibration target to be moved around (by hant)en
simultaneously solve for the scanner calibratiod #re positions to
which the target was moved (a similar approach aemsonstrated by
[23]).

222 ICP

Iterative Closest Point (ICP) is an algorithm enypli to minimize the
difference between two clouds of points. ICP isewoftused to
reconstruct 2D or 3D surfaces from different scaodpcalize robots
and achieve optimal path planning (especially wivkieel odometry
is unreliable due to slippery terrain), to co-régisone models, etc.
The algorithm is conceptually simple and is commamed in real-
time. It iteratively revises the transformationa(islation, rotation)
needed to minimize the distance between the poirtigo raw scans.
This algorithm use as inputs the points from twe Icans, initial
estimation of the transformation and criteria flmpping the iteration.
It's return as output the refined transformation.
Essentially the algorithm steps are the follows:

1) Associate points by the nearest neighbor criteria.

2) Estimate transformation parameters using a meaarsqrost

function.
3) Transform the points using the estimated parameters
4) lterate (re-associate the points and so on).
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The main algorithm drawback is that it is prone accumulative
errors, which can lead to the mapping algorithrtufai

In order to apply this alghoritm to a real-time JDanner it was
chosen a high-speed ICP algorithm by combining salfierent
algorithm known. Like Blais and Levine, we propossing a
projection-based algorithm to generate point c@edences. Like
Neugebauer, it was combined this matching algoriith a point-to-
plane error metric and the standard “select-mattfirnize” ICP
iteration. The other stages of the ICP process apfme have little
effect on convergence rate, so it was choosen itnplest ones,
namely random sampling, constant weighting, and istarnce
threshold for rejecting pairs. Also, because of taential for
overshoot, it was avoided extrapolation of transiar

All of the performance measurements presented scdse been
made using a generic ICP implementation that iredudll of the
variants described in leterature.

It is, however, possible to make an optimized imatation of the
recommended high-speed algorithm, incorporating tré features of
the particular variants used. When this algoritrenapplied to a
“fractal” testcase, it reaches the correct alignnempproximately 30
milliseconds. This is considerably faster than llaseline algorithm
(based on [24]), which takes over one second gmdhe same scene.
It is also faster than previous systems that u$edcbnstant-time
projection strategy for generating correspondenci®se used
computationally expensive simulated annealing [@b]Levenberg-
Marquardt [26] algorithms, and were not able teetaklvantage of the
speed of projection-based matching.

It's shown in Figure 2.7 an example of the algantbn real-world
data: two scanned meshes of an elephant figurime \akgned in
approximately 30 ms.
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, ‘
Figure 2.7: High-speed IC algorithm applied to scanned data

There are other dissertation that propose a hige&pCP algorithm
suitable for realtime use. David Simon, in his Bhdissertation [27],
demonstrated a system capable of aligning mesh&30+800 ms. for
256 point pairs (one-eighth of the number of pat@nsidered
throughout this chapter). His system used closesttjpnatching and a
point-to-point error metric, and obtained much tf $peed from a
closest-point cache that reduced the number ofssacgk-d tree

lookups. As we have seen, however, the point-totperror metric

has substantially slower convergence than the {toiptane metric
that Rusinkiewicz uses. As a result, this systemears to converge
almost an order of magnitude faster, even allowmgincrease in
processor speeds. In addition, this system does neguire

preprocessing to generat&-d tree.

2.2.3 Evaluation of the implemented scanner

In order to evaluate the performance of the impleter system it was
performed acquisitions of objects of known dimensioand
performance was evaluated in terms of time andesélution of the
profile obtained. As mentioned above to make sunat tthe
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triangulation has a match in terms of measurabjghdeve need to
have available the parameters of both devices, camared projector,
as these parameters were calculated is explaindideimext section
and represents the innovation on which is bases wurk, since
before an overall and exhaustive calibration ohbdé¢vices did not
exist in the literature with a so precise modeling

Please note that the results of a calibration ghaieeare intrinsic and
extrinsic parameters of the calibrated system ti@revaluation of the
results will be presented with two MPP matrix foe tcamera and the
projector and the relative rotation matrix (R),nskation vector (T)
and intrinsic parameters matrix (A).

For the calibration method that will be shown irxinehapter, the
following results were obtained:

Camera MPP:

—79.292 1183.532 —595.285 352296.830

[1302.253 —31.190 —487.987 399991.664]
0.007 —N.22h —0.974 1510.109

Projector MPP:

—220.120 2092.220 —10Z7466 169814.865

[2043.431 —131.753 —1031.049 1?5856.587]
—0.252 —0.140 —0.958 1440.352

and reprojection errors relating of that calibratare the following:

camera reprojection error: 0.586 pixel,
projector reprojection error: 1.25 pixel;

The values of some parameters of these matriceararedicator of
the results obtained. In fact, if we analyze thes Rxpected that the
values along the main diagonal are very close ity while the others
are close to zero. For the vector T is expectetttielast value (§)
that relating to the translation along the Z agigqual to the distance
(in mm) of the device from the reference planetifi@ acquisition. The
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matrix A is expected to find the pixel coordinatdsthe focal center
(A13, A23)

Then this scanner was used for the acquisition ofagk of known

dimensions. The probe mask is shown in Figuredh8,the results of
the acquisition is shown in Figure 2.9

Figure 2.8:Probe mask

LI T b i

L

Figure 2.9:Results of acquisition
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The results of the process of triangulation are tkal points
coordinates (world) acquired.

In the figure above you can see the details ofptioéile of the object
acquired. The details seem not perfectly delineadetually in the
shown reconstruction is not rendered, which wouldwaa better
view.

Figure 2.10:Cloud Points and a frame aquisition

We have achieved performance of about 10 framesspeond as
having single-frame acquisition times close to 108. In fact the
algorithm uses about 60 ms for the acquisitionhefimage from the
camera. The acquisition time is a parameter whighedds only on
the type of camera used and how the software mandge
communication with it, so that it's not possibleatct on it if not using
different tools.
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2.2.4 Drawback

The limitations encountered in the use of this seararea) the low
resolution of the acquisitions, since an increaseesolution does not
make it possible to reconstruct it in real timeg Aipthe problem (thus
far not common in the literature) of the preciseowledge of the
intrinsic and extrinsic projector parameters, tisagble to calibrate
both devices in a short time and with a high pienisFor this reason,
errors, in the reconstruction phase of this scanmnain high and
unfeasible in applications that require high resohs such as the
reverse engineering. Thus the adoption of the srammnlimited to
applications of a qualitative nature such as tleatoon of models for
video games or augmented Reality

2.3 Analog pattern projection scanner

When a fringes pattern, assuming sinusoidal, igepted onto the

surface of an object it undergoes a deformatiorn wétspect to the
case where it is projected onto a flat surfacesictaned as reference.
The deformation depends on the deviation of théasarof the object

from the reference surface (difference of opticathpbetween the
reference plane and the measured one) which isdfennoded in the
phase distribution pattern as deformed and acqtriosa the camera.

2.3.1 Fringe pattern projection and phase shift

To be able to trace three-dimensional topographidarmation of
object, then, you must do:

* numerically demodulating the distribution of sphfphase by an
automated method of analyzing the fringes pattern;

« find the relationship of conversion phase-depth.

The acquisition of the phase map is obtained throag“local”

approach, said phase-stepping or phase-shiftingP)(PSvhich

determines the phase information from the locakrisity. The
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procedures that may follow are two-phase tempotgppsng and
spatial phase-stepping.

In the temporal phase-stepping, the phase infoomasi obtained by
making k images, obtained by acquiring a periodatigg supposed
to sinusoidal intensity, projected on the objeat traversed k times of
a quantity z / k. Since the process of image acquisition reguit
certain time, can not be studied moving objectagishis approach. It
is resistant to ambient light and to the variatiohseflections.

In the spatial phase-stepping is required a caserthat a given
number N of contiguous pixels should corresponthéperiod of the
signal intensity (condition of "tuning"). In thisase, the recorded
values from adjacent pixels play the role of intgnshifted in phase
and the phase can be calculated from a single fr&towever, the
condition of "tuning” is quite compelling, and aft¢he method is not
applicable

Phase Shift technique

The Phase-Shift technique is characterized by tbhbsexjuent
projection of N sinusoidal pattern shifted in phasfe2t/N on a
reference plane and on the object under test, pikdebcorresponding
acquisition, by a camera, of N images, in whichgimeisoidal pattern
is distorted because of the prospect and the tgrate of the
illuminated surface [5].

The intensity of the generic pixel (i, j) of thetlk image’ can be
expressed by the following formula:

.G, ) =ad, j)+b(, j)codet, j) + 5]

where

(i,)) are the pixel coordinates;

a(i,)) is the mean value of the gary pixel (averbgghtness or light
background);

b(i,j) is the amplitude modulation (the variatioin(igj) location);

in other terms represent the distortion of the tligitensities and
depend on non-uniform lighting, the reflectivity thie object surface
and the non-uniformity in the response of the cansensor;

o, represent the different shift of the phase;

¢ is the phase value you want to measure.
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We can rewrite the equation describing the intgndity simple
mathematical manipulations, as follows:

L@, ]) =G, j) +c,(, j)cosg +c, (,))sing,

where:
G, J)=af,j)
c,@, j) =b(, j)cosp, j)
G0, J)=0(.j)sing, j)

As seen from the above equation, to derive the eplyas must first
know the coefficients and as the phase informatsgontained in
them. To this regard, it applies the method oftlegsares, that allows
to calculate the coefficients desired in order tmimize the sum of
the squares of the differences between the empwalaes and the
theoretical ones. The result obtained, for simpljdt can be written
in matrix form as follows:

e, j)=ad,j)
Where:
B K-1 K-1 7
K > cosg, sing,
PP B K-1 Kk—:10 K—1k:0
P=|p, p, Ps|=|D.c0s5  D.cosg, D cosdsing,
P Ps Ps kK:—Ol K—lk - k:OK—l
sind, cosg, sing, Y sin’g,
L k=0 k=0 k=0 i
And it's only function ofdk shift in the frange system, while
[ K- 7
_ ZlkG,J)
N ()] kO
q@,j)={ ab,J) =] D 1., ])coss,
. k=0
%00 |2
1, €,1)sing,
L k=0 |
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is composed of the weighted sum of the intensitifshe images
acquired.

Now this report is obtained by reversing the veanod finally the

phase will be:

o0, ) :arctg(—‘ CZ“’.”}

¢, (. 1)

Following a similar procedure is also obtained pirase only on the
reference plane.
The phase distribution calculated in this way hasminuous pattern
within each fringe with a value in the range [@]2n each period, that
contains a discontinuity in the form ot as the arctangent function is
extended to four radians. To have, therefore, guacorrespondence
between each point and the value of the phasecsseary to make
the operation of "unwrapping” or "unrolling" of thghase, with the
aim of returning a unique distribution of the comntbus phase without
the presence of steps or discontinuity.

2.3.2 Classical calibration techniques

In order to derive the relation-phase depth is s&&ey an initial stage
of calibration of the system. It allows to calceldhe parameters that
are a function of geometry and disposition of theaus components
of the scanner, such as camera, projector andefieeence plane of
the volume inside which will return the object t® $canned.

Then will be shown in order the various steps of talibration
performed according to classical techniques knowthe literature,
starting from the camera calibration for the catioh of the intrinsic
and extrinsic parameters, to arrive at the calibnabf the entire
system through the calculation of the parameter®mgitudinal and
transverse of whole system.

In all scanners you perform a pre-calibration af tamera usually
using a well-known algorithm, proposed by Zhang &sdi [28],[29]
who model the camera through the pinhole modeh tfwa calibrate
the profilometer for the calculation of the phasaation-depth,
longitudinal calibration, and the scaling relatioos the reference
plane, trasversal calibration. These two calibregidgypically take
place through the projection of N patterns withine tvolume
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calibration. In the followinh it will shown a couplof recent
techniques for the calculation of these relatiosough the
acquisition of a limited number of phase maps.

Camera calibration

To better understand what is and what information gan get to
calibrate a camera, suppose you have a camersgbat scene and fix
in it a three-dimensional Cartesian reference syst€YZ, with a
random origin. In this way each point of the scendetected by the
camera from a set of three Cartesian coordinatgs@),

The image produced by the camera is two-dimensifmmalvhich we
consider a two-dimensional Cartesian referenceesysty, whose
coordinates are expressed in pixels. Each poititanmage will be so
identified by a pair (u, v) [30].

P is a point to interior of the scene and P’ iscitreesponding point in
the image produced by the camera, as shown inefigui2. In
general, every point of the scene will have itsregponding point
within the image. The points scene and the imagetgare linked by
a kind of transformation that is operated by thene@. The
calibration process is to find this transformaticor, derive the
parameters that govern the way in which a sceneflected in a point
image, as in Figure 2.11.

P(X:YJZ} P’(I.I,V}
o Il; ®

Figure 2.11: Correspondence between points in spaead on the
sensor
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Figure 2.12: Reference systems

In other words, the calibration allows to calculdie parameters that
govern the projection operated by a camera on thetgin space.
Therefore you are able to know in what way the 3@ni{s are
projected on the plane of image from a camera whasameters are
known.

The question arises whether it is possible to dpem reverse
transformation, i.e. from the points of an imagetract information
about the corresponding points of space. It isalgtyossible, but
doing some clarifications. Note that the projectisnoperated by a
camera implies an inevitable loss of informatidme passage from a
point of three-dimensional space to a point twoahsional image,
provides for the loss of a coordinate, the one thkés into account
the depth. Thus in a hypothetical inverse pastage is the problem
of recovering the information related to this "losbordinate. This
problem is overcome by a technique known as stereolp consists in
the recovery of the third coordinate, using twonwre views of the
same scene from different angles and thus in tlag ivis able to
make the inversion of the transformation: thishis process known by
the name of 3D reconstruction.
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The reference system centered in the world is thtecad center C,

which is also the origin of the reference systenthef camera, but in
general these two systems do not coincide, thenniwveduce three
different reference systems:

1. the reference system, also called 3D world syste

2. the standard reference system 3D camera, cdrite€&

3. reference system for the 2D image.

Given any point P of the scene, it can be idemtifie each of these
three different systems, in particular it is indezhwith:

X =(X,Y, Z) coordinates of the point P in the Wbsystem;

Xc = (X, Ye, Zo), the coordinates of the camera system;

X = (X, y) coordinates of the point P in the syst&fthe image;

w = (u, v) coordinates of the point P in the systdrthe digital image,
taking into account the discretization made duritige image

conversion from analog to digital.

Whereas the two systems are not identical, theyliaked by an

isometric transformation composed by a traslaticend a rotation R,
which are unknown.

The world system and the camera system are rdbgteaaking use of
homogeneous coordinates as follows:

I\Jﬁ
N
I\Jﬁ
N
I\Jﬁ
w
~ o~ o~
<
~ N < X

LI 0 Ofx
X Zc YC
yl=| 0 ioo c
ZC ZC

1
0 0 10|14

One aspect that we must not neglect }s that youwandking with
digital images, i.e. formed by a number of pixetsd ghe relation
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between the image coordinates (X, y) to the coatdsof the pixels
(u, v)is:

u=u,+kx
V=V, +ky
where
(Up: Vo) are the coordinates of the principal point;

(k. k) are the inverse of the effective size of the pixespectively
along the direction u and v.

Through simple matrix manipulations we can writee thelation
between the coordinates in the world to those pikethe image:

— fk, 0 u. 0 i My hg t
0

r r r t
W= O _ fkv VO O 21 22 23 y X

O O 1 O r31 r32 r33 tZ

0 0 O

It defines:

_ fku 0 u 0 i e hs
0 _ fkv VO 0 PYR PR P ty
O O :I(_) O r31 r32 r33 tZ
0O 0 0 1

as a perspective projection matrix (MPP). This matepresents the
geometric model of the camera.

Calibration of the fringe pattern profilometer

Figure 2.13 shows the coordinate systems in a aypystem of

measurement of the profile projection of fringessdzh on the

technique of phase shift (PSPFP) [31].

There are the following reference systems:

» world or absolute reference system XYZ;

* reference system relative to the RC photo sensor;

* UVW reference system on the lens;

» XgYgZg reference system relative to the grid éoploojected;

» Reference system XpYpZp on the projection lens.

The coordinate system XYZ is the reference sysigadfto represent
the shape of the object under test. The coordsytem RC is placed
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in the plane of the photosensor with the axes RGrmadrallel to the
direction of the rows and columns of the sensaspeetively. The
origin of the coordinate system RC is placed indépter of the first
pixel in the upper left. The origin of the coordimaystem UVW is
the main point of the lens shooting. The W-axisncmles with the
main axis of the lens. The origin of the referesgstem relative to the
grating generated by the projector is a point whieeabsolute phase
appears to be zero. The grid lies in the plane Xgity the fringe
orthogonal to the axis Xg. The coordinate systelative to the lens
of the projector is defined in a similar way to tt@ordinate system
relative to the lens.

Z

/]—0 ¥ Surface of inspection

y-

Camera lens i

~

N (;?fr,“\’ L
R%Z// -

Photosensor plane Grid generated from the
projector

Figure 2.13:Geometric system of the profilometer

A point can be transported from a reference systeanother using a
rotation matrix and a translation vector. For exlEnpg the point of
the plane of the photodetector corresponds to tbmt pof the
reference system of the lens, then the coordiraateselated by

bc  .DC ,DC bc
u o Ny L | T t,
V= rztic rzzc rzgc C|+ tf/) ©

DC DC DC DC
r.31 r.32 r33 0 tz

=
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where the symbols D and C present in the apicesesept the
coordinate systems associated with the plan antetise respectively.
The order of these symbols indicates the directibthe coordinate
transformation. This convention is also adoptethenhereafter.
Consider a generic point in the absolute systerthefsurface to be
reconstructed in which the absolute phasg iEhe absolute phase can
be obtained from its image point in the referenem plrhe quantity r,c
ando there can be written as:

r=1(xyz)
c=f(xy2)
¢=1,(xv2)

Where r=1f(x yz), c=f(xyz) and ¢=1,(xyz) are non-

linear functions that depend on the measuring system as a whole.
When these functions are determined by the system calibration can be
determined by simultaneously solving the system of nonlinear
previous equations. The equations contain all the subsequent
information to reconstruct the profile of an object. To implentleist
approach, we must make explicit the connections between the
guantities to be measured and the unknown. Assuming ndgligib
effects of distortion introduced by the projection lens andl¢hs
recovery, perspective transformations can be written as follows:

wC wC wcC wC
u — I’11 X+r12 y+r13 Z+tx

wC wC wC wC
w I’31 X+r32 y+r33 Z-l-tz

V_ LoX+Ip Y+ r;gczﬂ;vc

W OX+rnCy +racz 10

Where (U’V’W)indicates a point in the reference system of the lens,

(X’ y,z) indicates the corresponding point in the absolute systat,

the apex WC indicate the coordinate transformation from the absolute
system to that of the lens of the camera.

Set the point of observation, the words to the second member of
previous equations become constants. Solving these equations
simultaneously, we can express X, y as functions of z, namely:
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X=3az+a,

y=hz+h,
Where the coefficients a0, al, bO and bl can beateby simple
algebraic calculations, this also shows that &lghints observed by a

given pixel lie on a straight line called line aglst of the pixel.
Combining equations that is obtained:

¢=(2)
This equation shows that, for a fixed observatiomg the measured
phase depends only on the depth z. In a propesiguded system, the
function CD'(Z) is monotonic and invertible. This allows to représe
the depth z as a function of the measured phase

z=2(¢)
Where Z(¢) is the inverse ab'(z) and is also a reversible monotone

function.
The profilometric system can be described analjjicdy the
following equations:

X=az+a,
y=hz+h,
z=2(¢)

Longitudinal calibration

Using an ideal projector, the equiphase lines ie trojected
sinusoidal grid produce a set of equiphase plartisarspace image of
the projector.

When the line of sight of a sequentially pixel nseftese equiphase
plans, the phase value observed by the pixel clsangmotonously.
For a given value of phage the corresponding depth of the surface is
given by the z coordinate of the point at which three of sight
intersects the plane of the pixel of the phase

The equations of equiphase planes can be obtayeddalling that
they pass through the corresponding equiphase éinéghe center of
the projection lens. Assuming use of fringes patdlh the Y axis,
consider for a generic fringe a line L parallelthe axis Y. For this
straight line L which has constant phageits plane grid has the
following expression:



48 Chapter 2 Classical piddr the calibration of 3D
structured light scanning systems

_9
%K

75 =0
where K represents the wave number of the sinusbidge pattern.
The y-coordinate does not appear because it wasdsyed a pattern
of sinusoidal fringes parallel to the axis Y.
In the reference system of the projector, the uwédic plane is
represented by:
_¢

A A
rSIzGXp + rSZG yp + rSZGZp + th = O
The equiphase plane produced by the product bprbjection of the
line L is given by:
(dlxp + d2yp + dSZp)¢ = e.l.xp + ezyp + %Zp

PG
N X

where
PG
d = I
' K
— . PG4PG PG4 PG
q =r.].i tz _r3i tx

The line of sight of the pixel can be obtained taypsforming the final
equation, which represents the line in the absokfexence system, in
the projector system:

X, = dz+ay,
Yo = Hz+Dy,
z,=GZ+cC,

Substituting the previous equations gives the idphase-depth
relation

;= MP+m,
ng +n,
where
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m, = e + e, + ge

m = _a;)dl - bé)dz - Cods

n, = -de + e, - ce

n, = ad, +1d, + cd,
To carry out the calibration phase-depth, a sirdadopattern is
projected onto a flat surface placed perpendiculéol the z-axis
direction. The resulting phase distribution on fla¢ surface can be
measured using a phase-shifting algorithm. Theghssasurement is
repeated when the flat surface is subsequentlglated in positions
at different depths, until the limit position isaehed. The measured
phase maps are unrolled along the first transvéireetion and then
along the longitudinal direction in order to recottee information on
the continuity of the phase. After this procedwym® get a series of
steps associated with the absolute positions ofpthee at different
depths for each pixel. Starting from this inforroati{phase values and
relative depth for each pixel), by means of an appate
minimization process, one can determine the vabigte unknown
coefficients present in the relationship phase+uept
Divide numerator and denominator hyta obtain:

Lo Mg+
ng +1
Then
me+ngz+n, =2z

Selectingep, zp and 1 as functions of the base, the estimatioth®f
parameters can be done transformed into a linedngm. When more
than three pairs of values phase-depth becomedableaifor the
interpolation, it is possible to use, for the estiion of the parameters,
the least squares minimization.
The least squares problem can be formalized assll

Ax =Db
Is a linear system where the matrix of coefficieAt§)R™™ is such
that N2 M If the system is oversized and has no solutiodf the
vector norm | | ... | | 2, the problem becomes dfatetermining a
vector such that

|AX bl = minjAx ~blj
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Transverse calibration

It's now presented the other type of calibratidre transversal one,
which allows to obtain the other two coordinatesyx y, and be able
to fully reconstruct the object under test.

The calibration procedure of the camera providésnation that can
be exploited for the calculation of the parametesguired for
determining the transverse coordinates. We knowth®coordinates
x and y can be calculated using the z coordinate tiee following
relations

X=gz+8a,

y=hz+h
In which the parameters a0, al, b0 and bl are ttetemined during
calibration of the system. The number of parametefse determined
is four, which is why we need at least four equaiorhe expression
of a line of sight of a pixel is formed by two et¢joas. Thus in order
to determine the unknown parameters is necessayow the couple
for at least two different values of z. To solvéstproblem is posted
on a chessboard floor used for calibration. Then pgaput first in
correspondence of the reference position and tihéimei bottom of the
volume of calibration,
So we can write the following equation system

X =&z +a,
Y1 = bz +b,
X, =27, +a,
Y, =hz, +b,

where z1 corresponds to the depth of the referplaree, so that it is
z1 = 0, while z2 corresponds to the depth of then pkhen this is
placed in the bottom of the volume of calibratisa,it is z2 = zmax.
This is valid for each pixel and the system equektiecomes:

X =8
Yy, =by
X = & Zpax T &
Y, =Bz, th
Substituting into the previous equations we obtheresult:
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=X
by =y,
X_
a == i
_ Y. ~hy
bl Zmax

This type of calibration can be performed using fherameters

previously calculated in the calibration of the ea&) so as to reduce
the time and calibrate the scanner at the samethimeamera, in this
way, if we remember that:

"

ul [-fk, 0 u, O] ™

vi=| 0 -fk v, O 1 T T by
- v 0

1

O O 1 O r.31 r.32 r33 tz
0O 0 0O 1|1
So we can write the following relations, reformulgtthem in such a
way to write two equations in which X and Y areuadtion of the
unknowns u, v, Z:
_(e,F,-F,E,)z+E F, -E,F

N < X

y

F,E, - F.E,
y_ (EZFX B FZEX)Z+ EOFX B EXFO
F,E, - FE,

where
(V VO) M3 — fkvr21

(V Vo) 32 fkvrzz

E, = (u uo) a1~ fkurll
E = (u ) 32 fkur12
E, :( 0) V33 — fkur13 (V Vv ) 33 fkvrzs
E,=(u-uyt, - fk.t, =(v-wy s - fk,t,
If we compare the equations with the previous one:
x=a(u V)Z+a0( v)
y =by(u, v)z+by (u,v)

F,
F,

nd_’
F,
=

We finally obtain:
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E,F, -F,E E,F, -F,E
a1: bl= Z X Z—X
F,E, - F,E, F,E, - F.E,
and
SRR S BRTER
=y o 0y )
° F,E -FE, F,E.—FE,

The transverse parameters thus defined, may belatd using the
intrinsic and extrinsic calibration data of the @musing data of the
roto-translation of the reference plane of the wwduof calibration,
which provides for a reduction of the times of asgion and
processing of the previously expected from thesitas technique.

2.3.3 Drawback

This classical technigue has some problems, thattalle about
following.

Higher order harmonics

The implementation of the classical phase-shifomhices some errors
due to simplification of the model used for the mloty of the
pattern, this simplification does not take into@aat the higher order
harmonics arising from the use of a digital prapedor the generation
of fringe patterns.

These noises will dirty the projected patterns wiittmite harmonics,
but the main error is introduced by the second barmsignal that is
significantly stronger than the other.

A solution to this drawback, known in literaturggshbeen studied in
[32] and is introduced into the solution to theljgeon that goes for
modeling more detailed patterns. This techniqueedathe name of
I3PSP (improved three-step phase shifting profiloye

First, filtering is performed by a low-pass filtdihis procedure allows
the elimination of higher harmonics to the firstt lgiven the non-
ideality of the second harmonic filter will not digpear completely. Is
introduced at this point a term which takes intccamt the residual
noise of the filtered second harmonic, as such tpratisely the
residue with the previous model was not taken aztmount.

The resolution of the method assumes a differenmh fas the function
that describes the pattern shown is the functiat ttescribes the
deformated patterns on the object and capturedhégamera feature
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in terms of frequency that is twice the resolutairthe PSP method
(step phase shifting profilometry) above. Then aoted from these
functions is the relative phase of the object thas distorted the
patterns obtained. To do this, therefore, introduz@iscourse on the
powers of the signals for the solution of theseagiqus, which are
trigonometric functions with different frequencies)d proceed with
the calculation of the phase.

Starting from the assumptions above we can write rtfodel as it
changes;

;“ (=2, +a CO{Q(X) + WJ +b* COE{ZH(X) +2% @j
(Ajn X)=a,+3a co{@(x)+@ + dx))

+b* co{Z@(x) +2% w + ng(x)j

n

$1(X) is the projected signal;

dn(¥is the acquired signal that include the phase tranato

measusg(x) - 277fox;
b is the amplitude af the second harmonic that goe$rom the low-
pass filter

¢(X) Is the phase that we want to estimate.

To solve we procede consideril%and D as following:

S, = —Zizlsn (x)sin[@j
S, = ZL s, (x) co{@j
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D, =g[a1 sin(@ + ¢) - bsin(26 + 2(0)]

D, = g[a1 sin(6 + ¢) + bsin(26 + 2¢)]

It continues with the calculation of these quaesitthat are obtained
as shown below:

ﬁ:(sljz + (ész :g abcoq39)
Q=(0. ] +(Ds | =2 acodass s

Finally the last step to be performed is that dfamting the phase that
is executed in this way;

This led to a solution that allows a reconstructairthe phase in a
more accurate and robust immune to errors thairtreduced in a
deterministic manner by the measuring instrumend, ia particular
from the projector of the patterns.

It can be seen in the images shown in Fig.2.14 Rigd2.15 the
improvements obtained by this technique against ¢hessical
technique that does not account for this phenomenon
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reconstructed height distribution
reconstructed height distribution
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X

Figure 2.14: Comparison between PSP and I3PSP reconstruction
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Saturation problems
The technique of the phase shift used to deriventhp of the phase

actually provides phase value in the ra{ﬁge,n], l.e. the phase is
"rolled”. Comes the need to unroll the phase. terditure there are
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various techniques to solve such a problem, butrafirder to operate
properly, need to be checked the condition thatvidmgation of the
true phase between two adjacent pixels is less thaithis implies
that we must avoid periods of extremely small,dgwample, avoid the
situation where it goes from black to white or viesa going from
one pixel to its adjacent inevitable if the permfdthe fringe is equal
to only two pixels. Then the number of fringes actfmust be smaller
than the half of M, horizontal resolution of the C€Camera.

The considerations made so far appear to be trtteeinase where the
projected and acquired image contain the same nuaofhaxels and
the scanned image covers exactly the area illuedhdby the
projector. Unfortunately this does not happen a@litg we must not
forget that the projector and the camera sees bjectofrom two
different directions and so it is virtually impdsk to achieve this
condition. What is done is to place only the cdnpart of the
illuminated trying to converge on the center of theminated area
with the center of the scanned image, when youaarpiiring the
reference plane.

Intensity of some consecutive pixels on the same line Saturation of the white and the black

200 260
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Figure 2.16:Saturation problem

As mentioned now suggests that, in reality, what pequire is a
larger version of the projected image and limitedydo its central
part. This implies that for a given size of proggtimage and scanned
image, the period of the fringes acquired is gretiten the period of
the fringes projected and this results in a deereas sensitivity
compared to the expected value.

Remains to be done, however, some consideratioth@rmrange of
intensity values to be used.

Convenient to use a resolution no more than eight be. intensity
values between 1 and 255. Increase over this isoofadvantage
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considering the little time available. Actually st not cover the full

range available as it incurs into problems of sdton introduced by
the projector and the camera.

In fact what you want to project and then captweaisinusoidal
signal, that is, if we fix a row of the image tha project, it is desired
that the intensity values have a projected trentheftype in Figure
2.16 (a).

Because of the gain of the projector and cameraotimet parameters
involved in the optics of the camera, what is ampiimay be a
sinusoid truncated as shown in figure 2.16 (b). 8&wid these

drawbacks can also be reduced by 25% the rangepiecciry the

intensity values of the fringes so that they gonfr@5 to 217.

2.4 Limitations of classical systems

On the basis of what has been described so farfotys was to
improve some features of classical techniqueshag sinned before
in some points of view for the applicability in seroontexts.
I'll make a simple list of these features:
- The ability to speed up the calibration of a 3Dns&a in a
single step,
- Make these scanners robust and insensitive to emmental
noise and interference caused by bright lights,
- Keep the uncertainty comparable, if not less thaditional
systems,
- At least to perform a quick calibration on-siteao$canner pre-
calibrated previously in the laboratory.

2.4.1 Calibration one step

Classical calibration procedures include, as maeticabove, that the
camera has been calibrated previously respectetavirall system.
To obtain a unique calibration procedure for thetay, there has
been the idea to calibrate the camera at the momien the
trasversal calibration is performed via two plarm#aced at two
different depths of the volume of calibration. Inist way we get
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intrinsic and extrinsic parameters of the camerd #re used at the
same time for the trasversal calibration of theesys This procedure
optimizes a classical technique, to try to changecwirally the
calibration and then also speed it up, it was beingsidered an
innovative solution that models the camera-projeptor as a pair of
stereo cameras, the basic problem is that the gtovjean not see the
calibration targets, this problem will be descrilzed resolved in the
next chapter.

2.4.2 Insensitivity to environmental noise

Another problem that is addressed is to reduce |@nub related to
light interference and to higher order harmonicgjudntization of the
projector. A solution can be found through the gatien of simulate
phase maps through the parameters obtained by tbgctor

calibration, which previously had never been tedtedause of the
lack of a model and because there was no caliloratiocedure of the
projector before. In this way it is possible to slate the longitudinal
calibration of the projection by simulated sinusdigattern, in this
way there will be no problem in the quantizationtioé pixels that it
produces by the projector light interference causekhmps present in
the environment. The critical point is the modelwigthe projector,
but after testing it was concluded that the hypsitex] model is
correct. A further reduction of errors can be medesidering the lens
distortion of camera and projector which, as disedselow.

2.4.3 Reduction of uncertainty and faster recalibration

Final issue, that was addressed, was the distomimoduced by the
optics. Fundamental problem is that the opticalodi®n parameters
show a variation as a function of target distartbés variation is
modeled using empirical equations. Introducing ¢hparameters in
the camera-projector model encounters a problenmt thase
parameters vary with the plan that takes into actawithin the
volume of calibration. Since we perform the caltola of these
parameters on the two planes at the border ofubigsme, we got
different values of distortion parameters. It wasded the possible
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modeling of the variation of this parameter by gsagdvanced models
l.e., we have moved beyond the classic pin-holeehadd we have
evolved into a new model, the axial type. This warks conducted
under the supervision of Professor Janne Heikkil®J@iversity of
Oulu in Finland. What has been have achieved itavealibration tool
that could, through the axial model, include th#t gthenomenon of
distortion parameters. To conclude the whole werlapplied a self-
calibration procedure for stereo cameras pairtheéaamera-projector
pair in order to make fast recalibration and quialdconfiguration on
site of a pre-calibrated scanner in the laboratory.
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Chapter 3

Novel calibration techniques for 3D
structured light scanning systems

3.1 Introduction

This chapter will address the problem of calibnatin a single step.
Will be introduced an innovative model for the gaipr and camera
system and it will be showed the calibration alton for a system so
modeled. We are showing the main advantages ofitimgvation
consisting, in addition to the fast calibrationarsingle step, to make
the system insensitive to ambient light noise.

To do this we recall, in this introduction, the Ipihe camera model
which will be applied also to the projector.

3.1.1 Pin hole camera model

The pinhole camera model defines the geometritioakhip between
a 3D point and its 2D corresponding projection athi® image plane.
When using a pinhole camera model, this geometaippimg from 3D
to 2D is called a perspective projection. We dertb&ecenter of the
perspective projection (the point in which all tiags intersect) as the
optical center or camera center and the line pelipalar to the image
plane passing through the optical center as thead@xis (see Figure
3.1). Additionally, the intersection point of theage plane with the
optical axis is called the principal point. The lpple camera that
models a perspective projection of 3D points ohtitmage plane can
be described as follows.
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Figure 3.1: Pinhole model, intrinsic parameters

Let us consider a camera with the optical axis dp&ollinear to the
Z.anraxis and the optical center being located at thgiroof a 3D
coordinate system.

The ideal pinhole camera model describes the oslstiip between a
3D point (X,Y,Z)T and its corresponding 2D projecti(u,v) onto the
image plane.

The projection of a 3D world point (X,Y,Zpnto the image plane at
pixel position (u,v) can be written as:

xS and v = };—f

where f denotes the focal length. To avoid suclolimear division
operation, the previous relation can be reformdlatesing the
projective geometry framework, as:

(A, dv, A = (X £ Y F Z2)7.

This relation can be the expressed in matrix naeably:
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. ;000
Ao )=[0 500 .
(1) ([J[Jl[])k‘f/,

wherel = Z is the homogeneous scaling factor.

Most of the current imaging systems define theiorigf the pixel
coordinate system at the top-left pixel of the imagowever, it was
previously assumed that the origin of the pixel rdotate system
corresponds to the principal poin&,@)T, located at the center of the
image. A conversion of coordinate systems is thersegssary. Using
homogeneous coordinates, the principal-point pwsitian be readily
integrated into the projection matrix. The perspectprojection
equation becomes now:

@ o e 0
Ay |l=(0 F o 0
1 00 1 0

To derive the relation described by the last magdpiation, it was
implicitly assumed that the pixels of the imagesserare square, i.e.,
aspect ratio is 1:1 and pixels are not skewed. Heweboth
assumptions may not always be valid. First, forngxa, an NTSC
TV system defines non-square pixels with an asgai of 10:11. In
practice, the pixel aspect ratio is often providigdthe image-sensor
manufacturer. Second, pixels can potentially bevekie especially in
the case that the image is acquired by a framebgraln this
particular case, the pixel grid may be skewed duart inaccurate
synchronization of the pixel-sampling process. Bagileviously
mentioned imperfections of the imaging system cantdken into
account in the camera model, using the parameteasd t, which
model the pixel aspect ratio and skew of the pjxedspectively. The
projection mapping can be now updated as:

T frm o, 0
Ay =10 5f o U
1 o o0 1 0

— DNy

=[K 0;]P,

— by e



64 Chapter 3 New calibration technigioes3D structured light
scanning systems

with P = (X,Y,Z,1) being a 3D point defined with homogeneous
coordinates. In practice, when employing recenitaligameras, it can
be safely assumed that pixels are square {) and non-skewed €&
0). The projection matrix that incorporates theinsic parameters is
denoted as K throughout this thesis. The all zéement vector is
denoted by 0.

As opposed to the intrinsic parameters that describternal
parameters of the camera (focal distance, radms parameters), the
extrinsic parameters indicate the external posidod orientation of
the camera in the 3D world. Mathematically, the ifi@s and
orientation of the camera is defined by a 3 x ltame€ and by a 3 x 3
rotation matrix R (see Figure 3.2).

rotdion &
Y e

worl coordinabs sy=i=r

-.Il'll'lllll

camera coordinale syshem P
Figure 3.2: Pinhole model, extrinsix parameters

The relationship between the camera and world coatel system is
defined by the camera center C and the rotatiohtReocamera.
To obtain the pixel position p = (x,y,19f a 3D-world homogeneous
point P, the camera should be first translatechéoworld coordinate
origin and second, rotated. This can be mathentigtivatten as:
R 0 [[l_.ﬁ _C}P_

03 1

Ap = | K|0] [ 01

Alternatively, when combining matrices, previousuatpn can be
reformulated as
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A
Ap = [K|0;] [ [ﬁ- ‘fc ] P=-KR ( 1 ) _ KRC.
3 z

Previously, the process of projecting a 3D pointootme 2D image
plane was described. We now present how a 2D maintbe back-
projected to the 3D space and derive the correspgrmbordinates.
Considering a 2D point p in an image, there exast®llection of 3D
points that are mapped and projected onto the gqaome p. This
collection of 3D points constitutes a ray connegtime camera center
C =(Cx,Cy,Cz)T and p = (X,y,1)T .

From previous equation, the ray\Péssociated to a pixel p = (x,y'1)

can be defined as:
X
Y | =C+ ,\R"H‘];::.
Z ray -‘IJ[}‘I.':

wherel is the positive scaling factor defining the pasitiof the 3D
point on the ray. In the case Z is known, it isgole to obtain the
coordinates X and Y by calculatiiigusing the relation

4—0;

z3

A= where (2, 23, :_-;].’l. =R 'K-1p

The back-projection operation is important for depstimation and
image rendering. For depth estimation, this wouldam that an
assumption is made for the value of Z and the spoerding 3D point
is calculated. With an iterative procedure, an appate depth value
is selected from a set of assumed depth candidates.

3.1.2 Limits of the application to the projector

The camera calibration takes place as shown irpteéeious chapter
through the acquisition of a target and the sofuidd a system of
equations to obtain the intrinsic and extrinsicapaeters of the model
just described. The fundamental problem that lirthis applicability

of this calibration and the model to the projeasodue to the fact that
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the projector can not identify the aims of the éirgs it can not
acquire the projected scene. As a solution is drdeto project a
target known in projector coordinates and revengseprocess with the
proper conventions as discussed below.

3.2 Stereo model for camera-projector pair

The extension of a pin-hole model to a desktop gutor is
theoretically straightforward, its practical applion cannot neglect
that it is impossible to know directly the projectmordinates ((vp)
under which the projector illuminates the real péin

However, the potential advantages of such an apprbave urged
researchers into designing indirect procedures $bereo-like
calibrations of camera-projector pairs. One of thest interesting
solutions is described in [33], where the transfmion between
camera coordinates and projector coordinates isiewesth by
projecting a time-coded pattern composed of sirdadringes, which
is analyzed with the known phase-shifting algorit[84]. With this
technique, the spatial phase of the projected sidak pattern as
viewed by the camera at the pixel (u,v) is direcdiated to one of the
projector coordinate (e.g. the up-direction if thieges are vertical).
A complete correspondence between camera coordiaateprojector
coordinates can be estimated by repeating the guoeeboth with
horizontal and vertical fringes. The proposed athar assures a good
accuracy, but the procedure requires subsequend asred the phase
unwrapping, necessary for the estimation of thdiapphase, is a
timedemanding algorithm. In [35], a time sequenteGoay-coded
digital patterns is projected on a target, with hbatertical and
horizontal stripes, and both positive and negaiiverder to estimate
a correspondence between projector coordinates amfld
coordinates. The procedure estimates the homogrdpttyween
projector coordinates and two world coordinatestton plane of the
target. The discussion about the accuracy in thienason of pixel
coordinates and the causes of error is very iniagesA drawback of
this procedure can be seen in that it requires ssteyes, and thus a
relevant amount of time, for the processing. In][8% epipolar
geometry is exploited in order to calibrate the eemand projector
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pair. The proposed procedure requires a prelimioalipration of the
camera, and then the relationship between the @amew and the
projector is estimated with the normalized 8-paahgorithm [37].
Also this procedure is composed of subsequent séeosthe camera
has to be calibrated in a separate task.

3.21 Projector model

The common pin-hole model for cameras is adopted fmy camera
and projector. Figure 3.3 shows the reference systend the basic
operation. The projector illuminates a point Phe teal world with a
ray originating from the projector grid at projectuxel coordinates
(Up,Vp). The same point P generates an image on the aase@isor
plane at camera pixel coordinates,\{). The camera (projector)
reference system c¥.z. (Xp.Yp.Zp) IS centered at the camera
(projector) optical centre, respectively, and arsadite “world”
coordinate system is located at arbitrary posi@éma orientation in
space depending on the specific application. Boghline of sight and
the line of projection can be geometrically repndsd by a
perspective projection. If P is at (X,y,z) worldcdinates:

. X

U Kuycle 0 Uge 0 R. t. |y

S [UC] = 0 k'IJ'CfC Voc 0 [ 0 _1] 7
11 1o 0 — 1

1 ol —— °©

— - Camera
Camera intrinsic extrinsic

parameters parameters

Camera matrix P,

The arbitrary parametartakes into account the indetermination of the
projection. The parametdqf. (k/f.) is the horizontal (vertical) focal
length expressed in pixels, respectively, the mpadcpoint (oc, Vo) IS
the pixel where the optical axis of the camera intersects the sensor
plane, the 3x3 orthogonal matrR. and the 3x1 vectot; are the
rotation and the translation, respectively, relatime camera reference
system ¥Y.,Z. and the world reference system x,y,z.
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Definitions for the corresponding parameters ofigotor are similar,
and the relationship is as follows:

X
Uy, kupfp 0 Upp O Rt
Hvl=| 0 kyf, v, O [—" ‘”] Y
0 0, 1 UJ Projector 1
Projector intrinsic extrinsic
parameters parameters

P?‘ojector‘matrix Py
If previous equations described an actual pairaof@ras, intrinsic and

extrinsic parameters of both devices could be edg@ththrough some
calibration algorithm.

Camera T 1p

Figure 3.3: Model for camera and projector
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One of the most common calibration algorithms s Birect Linear
Transformation (DLT) [1], which basically requirdse estimation of
pixel coordinates @Vvci) and (y;,vpi) of a set of calibration points at
world coordinates (¥/,z) and the simultaneous solution for the
unknown parameters of an overdetermined linearesysbuilt by
stacking four equations composed of a pair of lnedtricial equations
for each calibration point.

Depending on the algorithm, subsequent elaborationfd refine the
estimations of camera parameters, which are namaptivhen input
data are noisy, and possibly correct them for moearity of lenses.
On the other hand, a triangulation algorithm bdlsicameasures the
world coordinates of P by solving the matricial agons for X, vy, z,
being known (u,v), (vp) and all the parameters of the pin-hole
models.

3.2.2 Calibration algorithm

The novel pre-calibration procedure we describédgiehree paired
sets of coordinates of the same array of calibmapioints: the world
coordinate set (¥i,z), the camera-pixel coordinates;(w;) and the
projector pixel coordinates ). Since these are the data required
by most stereo-vision calibration algorithms, thelbsequent
estimation of intrinsic and extrinsic parameters eadmera and
projector through any camera calibration algoritrstraightforward,
even though results will be shown for a DLT caltlma.

One of the advantages of this pre-calibration plaoe was that the
camera and the projector are calibrated at the siamee
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e
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The overall structure of the proposed method abcation is reported
in Figure 3.4. The pre-calibration module yielde three paired sets
of coordinates of calibration points. The precailon includes a
selection module which eliminates possible outliexamely those
points which may have been localized with poor eacy, and then
the actual calibration algorithm is run in orderetaluate calibration
parameters.

These modules will be described in this section.

The pre-calibration procedure

A novelty of the procedure is that it was desigimedrder to estimate
the three sets of coordinates for the centers odreay of projected
calibration points instead of an array of real ¢éargoints. In fact, a
planar calibration target with printed circles aholwn world
coordinates is adopted during the procedure, beitcthordinates of
real target points are used only for intermediatec@ssing steps.
Since the calibration algorithm chosen to be ruterathe pre-
calibration, as most calibration algorithms, regsira set of non-
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coplanar calibration points, two parallel poseshef planar target will
be processed in order to collect a valid set abcaion points. Thus
the pre-calibration procedure described in theofalhg has to be
executed twice actually, once for each pose otahget. The steps of

the proposed pre-calibration procedure are repadespondently in
Figure 3.5.

» Image of target
without projection: |,

!
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homography —
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Figure 3.5: The proposed pre-calibration procedure
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A. The imagel, of the planar target with real accurately printed
circles is acquired while the projector is switchedf. The
transformation between the world target coordinaiasthe target
plane and the camera pixel coordinates is estimfabead this image.
Said (%,Y:,zi) the world coordinates of the target points angv{)
the camera pixel coordinates of the target poistseen from the
camera, respectively, on the target plane at a krgwconstant the
2-D projective transformation can be described lasraography:

[Ue; vy 1]T=E[xti v 1]7

B. The 3x3 matrixH is estimated with the DLT technique since a
linear system with two equations per each calibrapoint can be
written from previous relation and solved for theknown elements of
H.

C. A pattern of white circles at known projectoxedi coordinates
(upi,Vpi) is projected onto the target and a new iméges acquired.

D. Since projected circles may superimpose ontatguli circles ing,
centroids of projected circles cannot be estimateectly onlg. In
order to isolate the projected circles from then@d ones, a third
image is calculated with pixel-by-pixel subtraction

L=L-L

E. A thresholding and a morphological opening ipligal in order to
regularize the images of circles, which are expmktbehave elliptical
shape.

F. The image pixel coordinates(w;) of the projected circles are
estimated on the resulting imalge(see Figure 3.5) as centroids of the
elliptical shapes.

G. The world coordinates i(y,z) of projected target points are
estimated by applying the inverse homography giweithe first one
and evaluated in step B to the image pixel cootdm@y;,Vei):
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[xi vi 1"=H'[wyz v 1]7

for each calibration point. The three arrows ofufegy3.5 show where
the three sets of coordinates of the same caliorgidints appear in
the procedure.

The selection of target points and the calibration

The images of projected circles in the differenceagelc should
appear as ellipses in ideal conditions, but in soases their shapes
may be altered by artifacts mainly when projectectles were
partially superimposed on printed circles, as showiig. 3.6.

a)

Figure 3.5: Calibration circles in image Ic a)with artifacts;
b)correct

Since the reference point of a calibration cirdeestimated as the
centroid of the image of the circle, the artifatisy cause errors in the
localization of target points. To overcome this Ipemn, the
subsequent calibration can be performed on a sufstose target
points minimizing a given error function. After tlealibration, given
the world coordinates {¥i,z) of a target points, we can calculate the
“re-projected” estimations () and (@i,vpi) of camera and projector
pixel coordinates, respectively. Then the averagtance between
measured and re-projected pixel coordinates, caéledre-projection
error, can be used as the error function to beminad:

1 / — - — - - 2 - 2
e=— N W — 1)+ (v — )% + \/(_upi- —'u_m-) + (1?_0[- - vpf)
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Figure 3.6: The algorithm for the selection of targt points

A common approach in computer vision problems isdtect target
points by using RANSAC (RANdom Sample Consensusy] [3
algorithms, which randomly build subsets of targeints, selecting
the subset minimizing an error function.

The disadvantage of these algorithms is that theired elaboration
time is very high for typical numbers N of poingd they cannot be
adopted when the elaboration time is a constr&imt.this reason, an
alternative selection algorithm has been applidthse block diagram
is depicted in Figure 3.6.

The idea is to compare the centroid with an altdéresestimation of
the centre of the circle image, and discard thgetapoint if the
distance between them is statistically significamtthis case, such an
alternative estimation is the centre of the ellifised to the edge
points sampled along the contour of the white nedi®9]. As an
example, a plot of the observed distances betwestraids and
fitting ellipse centres is reported in Figure 3where three points
show distances significantly greater than the tioksts determined
with a t-Student test, and then are discarded. $hbsequent
estimation of camera and projector intrinsic anttiegic parameters
is performed by a DLT algorithm, as previously said
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Figure 3.6: Distances between fitting ellipse cergs and centroids

3.2.3 DLT

Direct linear transformation (DLT) is an algorithahich solves a set
of variables from a set of similarity relations:

Xy X Ayg fork=1,..., N
In our case we have to solve this relationship

Am, ZEMi
WhereM;=(x;,yi,z) are the coordinates of the target points extichate
by the pre-calibration procedure previous descrilbedm=(u;,v;) are
the coordinates of the pixel located on the imageser and that are
evaluated through the image processing, this isvshia the Figure
3.7.
The camera matrix B the least-square solution of the linear system
that is obtained as follows.
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The final linear system that we obtain from all theam
corrispondances are:

pIMi _ul_p;Mi =
p-lz-M| _Vl_p-:I;MI =

Then P can be factorizated and the model parameters @an b
calculated from:
Ap=0

(virns)

S~ (@)
Figure 3.7: DTL in Stereo-like system

We can find the solution, then the parameters,aasrhean square
solution of:

[

min[Ap],
It solves the least squares decomposing the matrixsing SVD
decomposition
U orthogonal 2Nx2N,
A=USV' S diagonal 2Nx12
V orthogonal 12x12
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3.3 Stereo calibration in a fringe pattern
profilometer

Once obtained the parameters of both devices, anereplace the
classic longitudinal calibration procedure with amovative one

which provides the calculation of simulated phasspsin order to

overcome the problems of the light interference dratmonics

quantizer generates in output from the projectard &ve proceeded as
follows

3.3.1 Simulated phase maps

Starting from the knowledge of the perspective getpn matrix_R
and_B of camera and projector is possible to calculagepiiase maps
phi(u,v) to a generic Z.
If we impose the perspective equations of camepaaf@ projector
(P) as:

smc=FM

bme=HFM
where_Mis a generic point on the plane where we wantaloutate
the phase map.
From the second equation

M =Rt (s )
And replacing into the first one
bme=PRPc (s.my)

The two scale factors can incorporate into onesf):=
So:
mp = PPc™ (g my)

We can now calculate, using a ray tracing procedine beam from
the projector to the left point M and then simuldte image acquired
by the camera.
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Figure 3.8: Simulated image aquired for the longitdinal
calibration

The objective is to assign a value of gray, or c@base to all the
pixels of an image to be synthesized (or simulatédixed size, using
a ray tracing procedure.

The procedure of ray tracing scans, with two loéjos, of all the
mk(u, v) of the image, and for eachkm

- calculation of the pixel-projector grfrom which started the beam
illuminated the point M, then framed by the camgibeel coordinates
Mk.

- the pixel of coordinates ynof the image under construction is
assigned the value of gray, color, or phase thatptittern projected
had to the coordinategn

To do this we have to consider the follow relations

Camera model, with the real point M on the planz=ak
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The values of the transversal coordinates of Ms£x)ycan be found
solving the following system, that we can obtaiwnigng the first
system into the variables X, y, s (theig known and the s doesn’t
need to be evaluated)

I _u-:-l x| |-q5z—ai
g Gz Vi |y [= Q7 — Gy
4n 9 1|5 |-952 -9

From the second system the projector coordinate®edound:

bu, =i _gix+ahy +abz + 4k
b guX+qs5 ¥ +457; 45
bv, _ _aix+ahy+qiz,+ql
b7 aix+gny+anz, vak

Once the coordinates of the projector are foup/gy it's possible to
use as index in the projected pattern image, terawhe the value of
the intensity projected on M and that the cameea s¢ (4,Vc).

Then, to simulate the acquisition of an image, itltensity, that the
projected pattern has atp(¥) coordinates, must be write atc(u)
coordinates of the image.
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3.3.2 Insensitivity to environmental noise

The preceding leads to the calibration of structuight 3D systems,
which become unresponsive to light noise like theirenment in
which the calibration is done. Implement phase naapalated from
the parameters of both the devices that were nailadle before,
leads to implementation of the longitudinal caltma without
projecting any real pattern, the only thing youdhaee the parameters
of the two devices depending on the model chosentlaa reference
plane on which you then run the scan. This calidmnatcan be
longitudinal, generating as many acquisitions arebé¢ within the
volume of calibration to then proceed to the caltiah of longitudinal
parameters as follows.
As seen above, the phase a pattern which can bapgbximated as
linear as a function of depth along the lines afhsi and for this
reason we hypothesize to be able to write the viollg linear
relationship:

Zy = my (U, v)g, (V) + my (U, v)
where:
z,. is the depth to be measured

¢., is the measured phase in u,v coordinates, alonginée of sight

of the camera.

What should be done to calibrate the system lodgially is to find

the coefficientsm and m, that bind the phase to the depth along the
lines of sight.

The simplified model thus allows the calculationtieése parameters
due to the longitudinal resolution of the followisgstem of equations

{%=mmw%mw+wmw
z, =m, (u,v)g, (u,v) + my(u,v)

Imposing z, = 0 and z =d reach the following results for the
longitudinal parameters:
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d
¢1(U’V) - ¢0 (U’V)
~d (u,v)
#.(u.v) - go(u.v)

m, (u,v)=

mo(u,v):

To calculate the parameters it's necessary to atedt least two
longitudinal phase maps at two different deptha &nhown distance
and then solve the system for each pixel of thegemand save the
parameters obtained from a text file.

Regarding the transversal calibration, it is perfed as mentioned in
the previous chapter from the knowledge of the canparameters
obtained in this case by the stereo calibration.
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Chapter 4

Advanced models for reconfigurable
scanner

4.1 Introduction

Now that we have moved the classical problems @& dalibration
only on the choice of projector and camera paramsetbe critical
point becomes to estimated these parameters frermtdels. So far
we have reasoned with ideal models that do notgbimto account
factors such as lens distortion and all the seagnfiectors such as
chromatic aberrations and effects that usuallyodice negligible
nonlinearity in classical models.

At this point we have to consider and then intratltese effects so
that the modeling of objects such as camera angqtoo is to get
closer to reality, so as to be able to reduce tleerainties associated
with non-idealities previously considered.

Which will be treated in this chapter, is the distm introduced by
optics such as for the real camera or projectoterAd review on the
models of distortion will be seen as such modelyehdhe
disadvantage that distortion parameters of a ogticsv a non-linear
variation with different distances from the targ#tis variation is
taken into account in the literature by empiricabdals. What |
intended, in this chapter, is to search for theseaaf this trend that led
me to consider models for advanced optics, whitér gbme testing |
have confirmed that they can be used to modehMduimtion. Finally,
as the last issue, is addressed the choise to Hppbelf-calibration to
recalibrate a pre-calibrated scanner rigidly modrda site that was
previously calibrated in the laboratory.
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41.1 How to reduce the uncertainty?

Reducing uncertainty is a key point, as ideal me&deding non-
negligible errors are introduced during the recatston of point
clouds.

In order to do this, | focused my attention on th&tortion problem
and the possibility to rifine the calibration paeters with a
procedure of selfcalibration that gets more robessrio the final and
innovative calibration

4.1.2 Introduce the lens distortion parameters

Introduce the effects of distortion of the lensaaghing the model to
reality, in this way the fast calibration techniqueposed can become
more precise offering high accuracy and a shor.tim

It will be shown the calssical distorion model atite drawback
applied to the Scanner calibration ploblems. It Wwé& indroduced a
new type of modelling the camera and projector copdi fix the
problem that the classical distortion model has.

4.1.3 Faster recalibration

At the end of this chapter will be introduced a qadure of self-
calibration on the stereo system of camera-projquo.

In this way, using an iterative optimization thaartss from the
previous calculated parameters, we can obtain iaeraent that is
based on the minimization of the mean epipolarrdmsothe Neadel
Mead simplex method.

4.2 Lens distortion parameters

We show first the classical model of lens distertand then proceed
to the problem addressed in the calibration ofsittenner due to drift
of these parameters within the volume of calibratio

4.2.1 Classical approach to the problem
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Real camera lenses typically suffer from non-lineass distortion. In
practice, radial lens distortion causes straigmdito be mapped as
curved lines. As seen in Figure 4.1, the radias ldistortion appears
more visible at the image edges, where the radsshmtce is high. A
standard technique to model the radial lens candéscribed as
follows.

Pincushion

distortion Barrel distortion

Ideal input

Figure 4.1: Examples of lens distortions

Let (X,yu)" and (%,ya)" be the corrected and the measured distorted
pixel positions, respectively. The relation betweenundistorted and
distorted pixel can be modeled with a polynomiaidtion and can be

written as
£y, — g, Ty — 0
( a 1 ) — L{I'“'_] ( d 1 )
Wy — Oy Wi — oy

Lirg) =1 —F;]J'j} anul Jj = (rg — fJJ-Jg + g — uﬁf,

where

In the case k= 0, it can be noted that, x x4 and y, = yy, which
corresponds to the absence of radial lens distortio

It should be noted that the first equation provitles correct pixel
position using a function of theistorted pixel positionHowever, to
generate an undistorted image, it would be moreveaent to base
the function L(r) on theindistortedpixel position. This technique is
usually known as thewverse mappingnethod. The inverse mapping
technique consists of scanning each pixel in thpuitimage and re-



86 Chapter 4 Advanced modelgdgonfigurable scanner
sampling and interpolating the correct pixel frdme input image. To
perform an inverse mapping, the inversion of thtBaldens distortion

model is necessary and can be described as follews, similar to

the second part of second equation, we define

3 2 -:-
r, = Ty —0)" + (1 — f}_uji

Then, taking the norm of first equation it can leeivked that

(Tn — ”J']E + (e — f*"e:f]j = L{ra) - ({xd — ”J']E + (W — f*"e:f]j

),

which is equivalent to

Fu = L{ru'] *Td-
this equation can be rewritten as a cubic polynbmia
: 1 r
3 u
i+ —rg— — =10,
i |En'] d A_]

The inverted lens distortion function can be detiv®y substituting
last equantion into the first one and developinigain the right-hand

side:
( Ty —0p } r_ﬂ-( T, — O
Hd — Oy B Fa Hu — Oy ‘
where g can be calculated by solving the cubic polynorfuailction.
This polynomial can be solved using Cardano’s nubthaoy first
calculating the discriminam defined asA = o + 427p° where p =
1k; and q = -¢k;. Depending on the sign of the discriminant, three

sets of solutions are possible.
If A >0, then the equation has one real rgotiefined as

—_—

A A

!.In'l—llr— v !In'l —f —

N T TV T
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If A <0, then the equation has three real rogtdefined by

i arccos( =t / %TJ + 2k
rae = 24/ _}U Cos — Il" ! .
\ 3

3

for k = {0,1,2}, where an appropriate solutiof should be selected
such that ¢k > 0 and g < rx However, only one single radius
corresponds to the practical solution. Therefdre,decond case< 0
should not be encountered. The third case with= 0 is also
impractical. In practice, we have noticed that,eled, these second
and third cases never occur.

As an example, Figure 4.2 depicts a distorted image the
corresponding corrected image using the invertegping method,
with A > 0.

Figure 4.2: Distorted and corrected images

Estimation of the distortion parameters

The discussed lens-distortion correction methodiireg knowledge

of the lens parameters, i.e; &nd (Q,oy)T. The estimation of the
distortion parameters can be performed by miningizrcost function

that measures the curvature of lines in the distirhage. To measure
this curvature, a practical solution is to deteettéire points belonging
to the same line on a calibration rig, e.g., a kbdwoard calibration

pattern (see Figure 4.2). Each point belongingheosame line in the
distorted image forms a bended line instead ofraigitt line. By
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comparing the deviation of the bended line from theoretical
straight line model, the distortion parameters loamcalculated.
Unusually modeling

Real lenses may deviate from precise radial synyaetd therefore
we supplement our model with an asymmetric part.ifstance, the
lens elements may be inaccurately aligned causiaigthe projection
is not exactly radially symmetric. With conventibhenses this kind
of distortion is called decentering distortion. Haxer, there are also
other possible sources of imperfections in thecapBystem and some
of them may be dif_cult to model. For example, ithage plane may
be tilted with respect to the principal axis or timglividual lens
elements may not be precisely radially symmetriweré&fore, instead
of trying to model all different physical phenomeimathe optical
system individually, it usually proposed a flexiblaathematical
distortion model that is just fitted to agree witie observations.

To obtain a widely applicable, flexible model, foposes to use two
distortion terms as follows. One distortion terntsam the radial
direction

A8, 0) = (116 + 156° + 136°) (41 cos @ + iy sin g + i3 cos 2 + 14 sin 2¢p)
and the other in the tangential direction
Al 0) = (myf + maf® + 7n395)(j| cos (p + jasin p + j3 cos 2 + j4sin 2p)

where the distortion functions are separable invilmeablesd and®.
Because the Fourier series of amyp&riodic continuous function
converges in the L2-norm and any continuous oddtfon can be
represented by a series of odd polynomials we c¢aaldgrinciple,
model any kind of continuous distortion by simptjdang more terms
to previous equations, as they both now have spasameters.

By adding the distortion terms, we obtain the disi coordinates
Xa=(Xq; Ya)' by

xa = r(0)u,(p) + A0, ©)un() + A8, P)u,(p)
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This modelations is usally not used because thgetdral distortion
terms are as much as two orders of magnitude ldhven radial
distortion terms and they are generally neglected.

4.2.2 Model for the variation of lens distortionparameter

The knowledge of a distance or magnification depend of lens
distortion [40] is older than 50 years. In 1955 NMagublished his
work about variation in distortion with magnificati [41], where he
mentioned the phenomenon of a changing amount stortion
depending on the working distance to the vieweeabj

Let the magnificatiomn for a distance be defined as

f
(s —f)

ms =

where f is the focal length and denote s = 1/m; the inverse
magnification. In the following distortion should ean radial
distortion if not other said.

Magill developed a formula [41] in order to caldeldghe distortion at
any arbitrary distance or magnification which wateaded by Brown
[42] who stated a formula for the situation of kmowwo radial
distortion values\rs; andArs; for the two distances, &nd g in order
to predict the distortion value at any arbitrargue distance s:

Arg = O Arg, + (1 — 0) Arg,
with

-5 s f

so—81 s—f

'[x_g:

This formula was further modified and has been fiesti
experimentally for radial and decentering distartidor certain
conventional film camera. Brown developed an ex¢enchodel in
order to describe the radial distortion variatiamside the plane of
best focus by a scaling factpg
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1
L\J*ﬁ-# = AI‘Sr
!

55

whereArsg is the radial distortion at an object distancdos’a lens

focussed at an object distance s amg the radial distortion at an
object distance s’ for a lens focussed at an olj&tance s’. The
scaling facto\yss is given by

s'(s —f)

SEECEYy

Fraser and Shortis [43] suggest the introductiorafempirically
determined correction factor:

Argst = Ars +got (Ary — Ars)

where gs is an empirically derived constant value axg the radial
distortion at an object distance s for a lens feedsat an object
distance s. Another suggestion is given by Dold [#Ho suggests a
set of parameters which may be completely detemhiwéhin a
bundle adjustment process:

Argist = —;

*

[Dlrf (}"2 — ré) + Dy (i’f4 — ;»3) + D3’ (}"’6 — I‘g):|

where Z ~s. For more details see [44, 45]. Brakhage intredus
method for the consideration of distance dependearicdistortion
effects for fringe projection systems with telecenprojection lenses
using Zernike-polynomials [46].

In principal, for the description of lens distoriiceveral different
models are possible. The key point is that the emosodel fits
sufficiently the actual occurring distortion.
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4.3 Advancend Geometric Camera model

After a study of the geometric models for camerak[48] that bases
its modeling on the path of the rays that from é& world through
the lens is impacting on the camera sensor, hasdide to verify that
the use of such advanced models can take accouwftaoiges of the
parameters of distorting the previously described

I will briefly reported the geometric models deveta for camera and
then explain how it was possible to confirm the dthesis that was
supposed.

We have to introduce the Pliicker Coordinates toerstdnde the
geometrical route of the rays passing through giteal system.
Plicker Coordinates

We represent projection rays as 3D lines, via Rdifictoordinates.
Several definitions exist for them; we use thedwihg. LetA andB
be the homogeneous coordinates of 3D points defiailine. The line
can be represented by the skew-symmetric 4 x 4kBtUmatrix
L=AB" -BA".

It is independent (up to scale) of the points userkpresent the line.
An alternative representation for the line is itéidRer coordinate
vector of length 6:

44481 — 44184
44482 — 44284
L— AyB3 — A3By
Az By — Aa B3
A1B3 — A3 By
AsBy — A1 B>

We sometimes split it in two 3-vectarsandb,
a'=(L1 Ly L3) b'=(Ls Ls L)

which satisfy the so-called Pliicker constramt = 0. Consider a
metric transformation defined by a rotation maiiand a translation
vectort, acting on points via:
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R t

Plucker coordinates are then transformed accoitding

(2) N (—[t?x R g) (2)

Two lines intersect if the following relation holds

LI (2 é) L, = alb, + bla; = 0

Points/lines cutting rays | Description

None Non-central camera

1 point Central camera

2 points Camera with a single ray

1 line Axial camera

1 point, 1 line Central 1D camera

2 skew lines X-slit camera

2 coplanar lines Union of a non-central 1D
camera and a central camera

3 coplanar lines without | Non-central 1D camera

a common point

Figure 4.3: Camera models, defined by 3D points antines that
have intersection with all projection rays

These three classes of camera models may be defnexistence of
a linear space of d dimensions that has an intieoseavith all
projection rays: d = 0 defines central, d = 1 asiatl d = 2 general
non-central cameras.
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Intermediate classes do exist. X-slit cameras ageaial case of axial
cameras: there actually exist 2 lines in space tah cut all

projection rays. Similarly, central 1D cameras (eaas with a single
row of pixels) can be defined by a point and a limeD. Camera
models, some of which without much practical impode, are
summarized in Figure 4.3.

Camera model Central Axial - X-slit
finite | infinite | finite | infinite finite-+finite finite+infinite
0 1 0 0 0 1 0 00
0 a 0 01 0 0 a1 01 00 ay
Parameterization (a) @3 b a2 00 10 a2 0 W00 “a
wrameterization | | by by s W 0 -Y 0] |as 00 10|y
of projection rays by 0 b 00 0 1 by 00 0 1 by
0 0o 0 0 00 00
Figure 4.4: Parameterization of projection rays for differen

camera models

It is worthwhile to consider different classes duoethe following
observation: the usual calibration and motion eatiom algorithms
proceed by first estimating a matrix or tensor lpjvieg linear
equation systems (e.g. the calibration tensordi®@mressential matrix).
Then, the parameters that are searched for (usuafigtion
parameters), are extracted from these. Howevernwlsémating for
example the 6 x 6 essential matrix of non-centeaheras based on
image correspondences obtained from central ol aameras, then
the associated linear equation system does notagiugique solution
(much like when estimating a fundamental matrix nfro
correspondences coming from coplanar 3D pointshs€quently, the
algorithms for extracting the actual motion paramgt can not be
applied without modification. In the following, waeal with central,
axial, x-slit and fully non-central cameras.

Multi-view geometry are formulated in terms of thHellicker
coordinates of camera rays. For other models thanfally non-
central one, camera rays belong to constrainedastxplained in the
previous section. We may thus choose the camereal toordinate
systems such as to obtain "simpler" coordinate orecfor camera
rays, and in turn simpler matching constraints.c8ime deal with
calibrated cameras, rays are given in metric coatdi systems, and
we may apply rotations and translations to fix locaordinate
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systems. Appropriate parameterizations for differemodels are
explained in the following.

43.1 Pinhole model

All rays go through a single point, the optical isnas you can see in
the Figure 4.5. We distinguish the cases of adiaitd infinite optical

< \3
AN

Figure 4.5: d=0 Central camera (Pinhole)

Finite optical center. We choose a local coordinate system with the
optical center as origin. This leads to projecttags whose Plucker
sub-vector b is zero, cf. figure 4.4. This is orason why the multi-
focal tensors, e.g. the fundamental matrix, cawien with a "base
size" of 3.

Infinite optical center (e.g. affine camera). We can not adopt the
optical center as origin, thus choose a coordiegstem where it has
coordinates (0; 0; 1; ) Projection rays are then of the form given in
the 3rd column of table 2.

4.3.2 Axial model
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All rays touch a line, the camera axis. Again, Wyasing local
coordinate systems appropriately, the formulatiérthe multi-view
relations may be simplified. We distinguish theesasf a finite and an
infinite camera axis.

Finite axis. Assume that the camera axis is the Z-axis. Thén, a
projection rays have Plucker coordinates with=Ll; = 0, cf. the 4th
column of Figure 4.4.

Infinite axis. We choose a local coordinate system where theigxis
the line at infinity with coordinates (1; 0; '0)line coordinates on
plane at infinity). The camera axis' Pllcker cooatieés are then given
by (0; 0; 0; 1; 0; 0). Projection rays thus have coefficients with=
a = 0, cf. the 5th column of Figure 4.4.

Multi-view relations for axial cameras, with finite infinite axis, can
thus be formulated via tensors of "base size" §, the essential
matrix will be of size 5x5

/] \\)/

Figure 4.6: d = 1 Axial camera

As you can see in the Figure 4.6 all the incomangsrpass through a
monodimensional site that is the axis of the opystem.

4.3.3 General Model
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In this case, the rays pass through a bidimensisundhce, as can be
seen in Figure 4.7 and is the more general caséefids into account
the complete model of the tensor of Plicker coaiis.

So no such simplification occurs, and multi-viemdgers will have
.base size. 6.

711 \\\>/

Figure 4.7: d = 2 General camera

4.3.3 Modeling of distortion parameters trend bythe
Axial model

It's possible, under geometric arguments previousyle, written in
matricial form the relations for the axial modehely are similar to
those for the pinhole model except for the focaigteé f, which
becomes a function of the incident rays which pagbeough the
optics.

- f(nk 0 0 A
i — ¥ - _

l'.- {} i f( )k 1] G {R { }(-r
v, = - Fir)k. Ve =

‘ o 0 1I Z
| 0 0 1 0F - |
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If it is assumed a variable trend of the focal l&ngs a function of the
distance r from the optical axis of the incident liae that, (also we
can see that in the Figure 4.8):

fry="f,+fr+fro+...

In generalfy is the nominal focal length of the pinhole modetlan
f1€[-1;0] while r is the distance of a generic pixel from, ()

Then it can be assumed that the more external saffer of a
distortion at the same focal distance.

This makes us hope that this model can be usedgumsbdel the drift
phenomenon of distortion parameters discussed above

</

e

Figure 4.8: Modelling of the variable focal length
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The next chapter will take the verifications cadrut to validate the
thesis that the variation of distortion parameteaa be modeled by
the axial model.

4.4 Self calibration

Now we introduce an alghorithm for self-calibratioh the camera-
projector pair system, in this way we can haves faconfiguration
of the scanner system on site. Many tequinque g&3I50][51].

44.1 Self-calibration procedure

The aim of this task was to design a self-calibragprocedure for a
user-configurable structured-light 3-D scanner Whiould be easy to
be applied in short time, without the need of @i target, and in
places as close as possible to the objects to basured. The
geometry of the scanning system [52],[53] is stitit of Figure 4.9,
and the block diagram of the proposed procedurepsrted in Figure
4.10. During the “point acquisition” small circulegference point are
projected onto the same surface that will be meakafterwards.

M=[x y z]T X World
>1 coordinate

g7 . A X i
. . P D i
((‘rm}w 5 \ : -); ) [”p"p) Y
i P

T ),

h.
\\' =

Projector _—————

Figure 4.9: Model for camera-projector pair
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In the first setup the reference points are pregaine by one, but
patterns of more than one point could be introduneatder to speed
up this step, if necessary. Then correspondings paie established
between projector pixel coordinates of projectedniso (they are
known since they are generated within the softvgemerated image
sent to the projector) and camera pixel coordinatgsojected points,
estimated as centroids of the observed shapes themacquired
images.

Point Estabilishing
Acquisition correspondencies

Iterative
minimization of
epipolar error

Initial guess
Initial guess parameters

parameters

Start of single

iteration Parameters
for the Composition of
current projection matrices
iteration

Epipole calculation

Composition of
fundamental matrix

and epipolar lines

Computation of
epipolar error

NO Current
Impose a new set of parameters
parameters minimize the End the search
cost?

Figure 4.10: Block diagram of the proposed procedw

The corresponding pairs are inputs for the calibnastep, which is
based on a numerical optimization aiming to find #et of camera
and projector parameters minimizing the epipolaorerHence, the
following issues have to be considered: i) the cositpn of the set of
parameters to be optimized; ii) the starting guedses of the set of
parameters; iii) the objective function to be miraed.

4.4.2 The set of parameters

The overall model of the camera—projector pairresented by stereo
model, has 20 independent parameters:
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where each one of the two rotation matrices haes bbepresented by
three Euler angles. Some hypotheses can be maalelen to reduce
the number of parameters. At first, since the wartdrdinates of
target points are not known, then extrinsic paransedbf camera can
be considered constant and posed equal to arbitkaiyes.
Furthermore, horizontal and vertical pixel sizes ba assumed equal,
so that horizontal and vertical pixel focals carcbasidered equal:

Kucfe = Kuele and Kunfp = Kupfp Eventually, after these hypotheses
the set of parameters is the following:

’ o ; . f
‘II‘*chc"r Uger Vor ‘I(upfpr Ugp UU;:H ﬂ;Jp, ljw [n'l-l"pl Ixc_L.w,ch

Preliminary numerical simulations have shown thaj: iterative
minimization algorithms have a relevant sensitiwitith respect to
starting guess values, and generally non-globalirmim solutions
cannot be avoided; b) the variations of intrinsacgmeters due to the
changes of focus and iris during the normal openatif the scanner
are small, of the order of few unit percent of theilues. The position
and orientation of the projector with respect te tamera has to
comply some constraints, since camera and projéetoe to coarsely
share a common field of view. Then the proposedgmare performs
a number of calibrations, each one started withffardnt vector of
starting values, and eventually the overall sohi® the one giving
the lowest value of the objective function. Thefatént vectors of
starting values have intrinsic parameters equathttse measured
during a preliminary one-off traditional calibrationith the DLT
procedure of Chapter 3, and projector extrinsiaz@alsuch that the
projector center covers a box (in our tests, with £50-1000 mm, y
in 400-600 mm, z in 2000-2600 mm, and the orieatatingles such
that camera and projector axis point approximatelya common
center of view).
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4.4.3 The objective function: the average epipalarror

Given the vector of the parameters to be optimiaad the other
known values (the paired set of camera pixel coateis and projector
pixel coordinates, and the remaining fixed paranseté the two pin-
hole models), the objective function evaluates #verage of the
epipolar errors associated to the corresponding patcording to the
lower part of Figure 4.10. At first, the two camenatricesPc andPp
are composed from camera and projector model paeasnas in the
following matrix relationships:

for the camera;

. X
Ue Kucle 0 Uoe O] (p. ¢
ve|=| 0 & we O] 15 =LY
S|Ye| = 'i;'cfc Voc 0 1 7
1 0 0 1ol ——1|,
~ - —_— - Camera
Camera intrinsic extrinsic
parameters parameters
Camera matrix P
and for the projector;
X
Uy, kunlp 0 Up O p
Hvl=| 0 kof v, o2 2|
1 0 0 1 05—y
L Projector
Projector intrinsic extrinsic
parameters parameters

Projector matrix Py

Then the fundamental matrix is calculated as
— I3 v
F = ep|<PpP¢

whereP." is the pseudoinverse matrix Bf and:
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[ep]x = €3 0 €1

_82 81 0

is the skew symmetric matrix associated to theeotoy-side epipole

ép, namely the intersection of the baseline (i.e. [the through the
camera and projector centers) and the projectdrgene, expressed
in homogeneous projector-pixel coordinates. Thepapi can be
evaluated as the camera center as viewed by tiecpyo

ép = PpC.=P, - (—R,t,)

T
The well-known correspondence relationsrﬁpFIR =0 can be
written for each corresponding pair., andm, :

ST G
mp Fmg =0

This eg. means that the poimt,; must lie on the so-called epipolar
line Fm, on the projector grid plane, and vice versa, thiatgm,

must lie on the epipolar IinETrﬁpi on the camera sensor plane. Then
the average epipolar error can be evaluated asafsil

1 . .
Cepi = ﬁziﬁv:l{,d(mc:FTmm) + d(mp, Fm;)}

where dg,l) is the distance between a poxtand a linel in pixel

Cartesian coordinates. The algorithm chosen fornti@mization is
the Nelder-Mead simplex method.

The epipolar geometry that was used is shown inRigeire 4.11
below. You can understand how the epipolar erraroimposed and
what it geometrically represents.
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mp

Epipolar error

Right Epipolar line

Figure 4.11: Epipolar geometry
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Chapter 5

Test for the validation of the new
calibration algorithms

5.1 Introduction

Task of the latter chapter is to show the testsierhrout during the
comparison of the new calibration technique witksslcal techniques
and also the testing of hypotheses on the new gicmn@odel which
takes into account the variation of the distorfpamameters.

It will be shown by first the comparison of the ng@rocedure for
calibrating camera-projector pair with some claasiechniques, will
be then shown some reconstructions of known objectsssess the
guality of the reconstruction.

Then will be shown the tests conducted and theguhare followed to
check that the variation of the parameters of distg the variation of
the target is rewritable in terms of axial modehdAinally, | will take
the tests carried out by self-calibrating the ollesaanner and the
comparison with the first stereo-like technique.

Will be shown for each test the main results, Lab#i was used for
the stereo calibration steps since it was more aadyquick to use in
Firewire communication with the cameras and annogation in
terms of time for the extraction of the featureswgaaranteed by the
images manipulations functions, even for the cogatif the simulated
images and for the comparison of the model axial @asier to use the
Labview. Later MatlaB was also used in the stages of the software
optimization , i.e. those minimization algorithmsmization for the
self-calibration. The two programs, however, can Iheed
interchangeably with the use of the correct lilggarfor analysis of
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images and communication drivers with cameras. iBhike why will
be shown only the conceptual schemes of the tegtowt giving
details of the software implementation becauseoiilal be redundant.

5.1.1 Assumptions about the model of the projector

Starting from the first results, shown in the Fig&:1, obtained from
the calibration of the scanner as a pair of star@meras we can
gualitatively evaluate the parameters obtainedHerprojector since it
is not possible to compare them with other techesgoecause there
are not in the literature. We can only make assestrbased on the
geometric model and the geometry of the projeens.|

] test Calib Stereo Telecamera Proiettore.vi Front Panel
File Edit View Project Operate Toolz Window Help

¢|@I‘®|E| 13pt Application Font |Y‘1‘=m'i|‘_ﬂ:“|ﬁ'i
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Figure 5.1: Front panel of Stereo like calibrationsoftware
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R !
vp=853 ® e
Vigy =768 I - Projection axis

¥

min~

5 A

Figure 5.2:'Projector prospective modeling

What we can evaluate is the focal length in pix&isowing the
nominal optics focal length, between [20.4 mm, 24rG] and the size
of the pixels of the CCD of the projector, thatl@um, we obtain a
focal length of around 2000 pixels.

Also we can evaluate the coordinates of the cewft@rojection that
usually fall in the neighborhood of half the regmn of the sensor. In
this case this is true for the horizontal coordenas the value of the
calibration is 461 which is about half the horizinesolution of 1024
pixels. Is not observed due to the vertical coaté#nsince it is a value
of 853 pixels in relation to a vertical resolutioh768 pixels. This can
be explained looking at the Figure 5.2 shows thatgrojector has a
shift of the optical axis upwards to allow a projeec non-
symmetrical. Evaluated that we may consider extriparameters of
both devices, making measurements of the refersysems world,
camera and projector and compare with the valudteotranslation
vector that are congruent to the geometry of tlamser.
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5.2 Characterization of the calibration

The new calibration technique was compared with lassecal
calibration but it will only return the parametefsthe camera because
as said previously there are not techniques iritdr@ry that allow us
to calibrate the projector modeled as a camera.

521 Test station

The Figure 5.3 shows the configuration of the tsfttion. The
geometry and the distranze between the variousegwre important
to be able to assess the goodness of the extpasineters calculated
from the calibration.

700 mm

< rd

X TARGET BACK POSE

1
N D * SLIDING
Iz TARGET FRONTAL POSE! 3, |RCET

1460
mm

SLIDINIG
PROJECTOR

PROJECTOR

CAMERA

I~ Pl

| |
Figure 5.3: Geometrical configuration of the scanne

Our scanner is composed by the following devices:
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Camera =IlmagingSource DFK31F03,1024x768, 30 fps, 6 mm lens.
Projector = NEC NP62, 1024x768, 60 Hz, focal in [20.4 mm, 24.5
mm]

Slider = M-415 CG by Physik Instrumente (P1) GmbH

And we can see them in the Figure 5.4.

Figure 5.4: Scanner 3D
5.2.2 Comparison of calibration techniques

To make a comparison with the calibration technig&@hang were
performed N = 90 calibrations with a volume of badition D = 50mm
and a baseline variable from 310 to 470 mm. In thesy was
calculated the uncertainty of type A relative tclegarameter. The
intrinsic parameters of the camera are comparatitethhose obtained
via Zhang algorithm, as we can see in the Figuseliut improved in
terms of uncertainty that is reduced. For themsid parameters of the
projector is valid the arguments made above wheg are evaluated
geometrically.
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Parameters \ K kudf- I Vo [ ool oy Vor

[pixel] [pixel] [pixel] [pixel] [pixel] [pixel] [pixel] [pixel]

1396 | 1329 | 507 298 2257 | 2315 | 503 754

ProposedN’ Zmean
uncertainty | 2 1 3 2 15 19 12 3
Zhang——— mean 1378 1308 488 326 - i . i
. 26 24 10 20 — - o .
uncertainty
L v T : :
Camera Proiector

Figure 5.5: Intrinsic parameters comparison

With regards to the extrinsic parameters we cartlsgevariation as a
function of the baseline that is varied by movihg projector towards
the right and away from the camera. Figure 5.6 shtve extrinsic
camera parameters to vary the baseline, since dheera remains
stationary with respect to the world system suctampaters remain
the same, they are just subject of the oscillatidms to uncertainty,
but contained below the percentage point.

2000 4=
1500
1000 e wm—
—+—YC [mm)
500 Zc [mm]
-— * * + + - -
100 120 140 160 180 200 220 240 260
FEm—— - ® - —a
-500 -
B[mm]

Figure 5.6: Camera extrinsic parameter evaluation & Baseline
variation
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The extrinsic parameters of the projector, instesitpw a linear
variation of the X coordinate, as shown in Figurg Fhat corresponds
to the distance of the center of the projectoresystrom the world
system to the right along the X coordinate, anlightsdecrease of the
Z coordinate becouse the projector is slightly tedato illuminate the
same target during the moving to the right side #nd causes a
convergence of the two reference systems along tinds, the Y-axis
instead remains unchanged because the projediredswith the base
along which it moves.

1500
1000
M’
500 Xp ]
——Yp [mm]
0 T T T T T T T T Zp [mm]
100 120 140 160 180 200 220 240 260
O —
-1000
B [mm]

Figure 5.7: Projector extrinsic parameter evaluation at Baseline
variation

5.2.3 Re-projection error

Another index that has been evaluated both as @ifumof baseline
variation and variation of the depth of the voluaiecalibration is the
error of reprojection. The error of reprojectiordefined as follows.
It's the average of the N distances of the obsemigts m from the
reprojected points obtained as the product of thate on the sensor
for the matrix of the perspective projection.
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e = %Zﬁ dist(ﬁ,-,l_)ﬂli)

X *———— Estimated simulating a new projection

Observed

As shown in Figure 5.8 we can see that this esoreduced with
increasing Baseline and the increase of the volohoalibration. This
is a normal feature of the stereo type systems ithatove their
performance with the increase of the baseline, whaéw even is the
knowledge of an increase in the precision in grgwohthe volume of
calibration. The error remains always below theepithis is a very

good result compared with the classical technidbasthey approach
to these benefits with difficulty.

e [pixel] o

072 1 _ —_
Camera

088 - -
066
064~
0,62 i|

05
0,58 -|["""

056 +

Figure 5.8: Camera re-projection error
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e [pixel]

Figure 5.9: Projector re-projection error

The same result can be shown to the projector gurEi5.9. Here,
unfortunately, the reprojection error, it's stilbave the pixel, but
never exceeds 1.5 pixels. This may be due to sffémt having
modeled the projector using the model of a camésastill remain a

very good approximation considering the fact tlnatré are no direct
models for the projector.

524 Real object reconstruction

Finally, in order to assess the quality of the wattve procedure
introduced, acquisitions of known objects have bewde and the
measures were compared with acquisitions perforbyechuch more
accurate 3D laser scanner that can be used asraneé.
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In Figure 5.10 is shown the acquisition of a fatelay by a 3D laser
scanner like the FaroArm.

Tthe mesh of the points cloud were performed thaolkssoftware for
the manipulation of 3D clouds , to be able to penfaneasurements
with the digital gauges.

Fiie Edt  View CUNF Form Cloud U‘J_U_!B‘ Clay Wire Swey F!‘egu!r,ﬂlu.n Transform  Analyze Wizard HeP

DedbdimBx~~kmeaaaHis 000  |@e

=] Pleass preas the [Apply] bubion i the parameter window
Done!

wqms@wnn 0 Selected Object ©: 0 — Points: 155175 Trangies: 305553
2 :
Figure 5.10: Laser scanner acquisition

In Figure 5.11 is shown the same mask acquired wuthscanner,
they have been carried out the same measuremetttsthvei digital

caliper and it has come to the differences aloegXland Y axes that
is less than 1% instead it's of about 3% the diifice between
measures along the Z axis.
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File Edit “iew Curve Form  Cloud Modify Clay  Wire  Survey  Registration  Transform  Analyze  Wizard  Help

D@dbdiBXxcalPPaaQBas00d faa

Pleaze press the [Apply] button in the parameter window
Pleaze wal it f0r processin i
Done!

=
Figure 5.11: 3D Fringe profilometer with Stereo Cabration
acquisition

5.3 Advanced Geometric Camera model
Validation

To test the hypothesis that the dependence of #réatwn of

distortion parameters as a function of target distavas linked to the
type of model used, namely the pin-hole, repeatdibrations of a
camera were carried out, with different target atises, using the
Camera Toolbox Calibration of J.Heikkila that implents the pin-
hole model, and it was plotted the trend of théodi®on parameters at
the variation of this distance. Simulated imagea tdrget were made,
Figure 5.n, that they were generated as if theyevwsaptured by a
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camera modeled by Axial model, without distorticimney were
calibrated with the same toolbox and the trendfi®fparameters were
plotted.

5.3.1 Synthetic images creation
The procedure can be summarized in the followiegsst

® Creation of synthetic images of a target at diffiérdistances
using the Axial model by Labview functions.

® Calibration with synthetic images using the Camera
Calibration Toolbox for Matlab with the pinhole neldso we
can verify the variation of the parameters to iy distance
of the target.

® Acquisition of real images of the same target.

® Calibration with real images

Examples of both of these images are shown in Eiguk2.

eneeint o doned
r..nuu*tu.Q‘ e

Hhee
T 10
LLITY

Figure 5.12: Calibration image, real on the left sle and synthetic
on the right one

5.3.2 Comparison of distortion parameters trends
From the trends of the parameters of distortiors thiotained, shown
in the Figures 5.13-16 both in simulation and aal mmages it could
be concluded that the variation of the coefficienitsadial distortion
to vary the distance from the target is linked e use of pin-hole
model, incomplete in describing this phenomenonxtNgep is to



117 Chapter 5 Test for the validation of the rahbration
algorithms

implement a calibration tool for the axial modeltloé camera, thanks
to which even calculate f1, which is not taken iattcount in the
model pin-hole.

First radial distortion coefficient
0,04200
0,04100
0,04000 //
C,03900 /
0,03800 /
0,03700 /
C,03600 &
» ’/
0,03500
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0,03300 . . . .
& & & & & & & & & & &
590& &'0& &‘9@ @Q@ u"g& é’gé\ ‘&Q& &‘Q@ &"’Q@ @0@ @0‘0
Target distance 400-500 mm

Figure 5.13: Trend of the first radial distortion parameter in the
synthetic images

Second radial distortion coefficient
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Figure 5.14: Trend of the second radial distortionparameter in
the synthetic images
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First radial distortion coefficient
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Figure 5.15: Trend of the first radial distortion parameter in the
real images
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The trend of the distortion parameters is the s@maeye can conclude

that this variation can be modeled with the Axiaddél extension.

5.4 Self calibration

The proposed procedure has been implemented atedl iesth with

numerical tests and experimentally for the calibrabf a 3-D scanner
composed of a desktop NEC NP62 projector and amgilmgaSource

DMK 21F04 monochrome camera. Numerical and expertiate
results have been also compared with those obtaiuitadthe 8-point

algorithm and the subsequent decomposition of ineddmental

matrices into extrinsic and intrinsic parametersorébver, the self-
calibration method can be used for the quick tupeiruloco of a

system previously characterized in laboratory: unkis point of view

it is possible to narrow the search interval foe tparameters and
adopting a bounded numerical minimization algorithm

54.1 The epipolar error surfaces

The function to be minimized is a N-dimensional diion whose
trend has been studied, as the simplex algorithmbriag the search
to fall into local minima that are not correct fthie purpose of
calibration. The trend of the error surface wasdis while
maintaining fixed N-2 variables and making the otfne variably, so
as to build an error surface. It was noted thanany configurations
these surfaces have heights cusps, as you cam see Figure 5.17-
18, and make the calculation of the absolute minimalmost
impossible.
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Average epipolar error
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Figure 5.17: Average epipolar error surface
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Figure 5.18: Zoom of the cusp of the average epiplarror surface

To obviate this, geometric constraints were intomtl to the cost
function which made possible the deformation oft tearface as
shown in Figure 5.19.
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Average epipolar error
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Figure 5.19: Deformation of the cusp by additionatontraints

Some of the constraints can be used, for examptajld be the fact
that if the baseline increase then the projectawYangle must rotate
towards the camera, so as to exclude geometriegeoafions outside
the range of use of the two devices. So we proctamsubtract in
the error function all scanner configurations natometrically

feasible.

54.2 Simulation results
The simulations have been conducted using correlgmnsets of
points on the two sensors, upon which the selfatitn is to be
based. Starting from points in 3-D space, the imagquisition
(generation) on the camera sensor (from the pajepid) has been
simulated, respectively, implementing the previomodels. The
geometry of the simulated target was chosen bagetthe principle
that calibration points must not belong to a saia@e for the self-
calibration to be effective. The adopted targets sirown in Figures
5.21. The number of points does influence the tesoff the
selfcalibration: it can be seen that the highestrtmber of targeting
points, the more accurate the results of the dlgori as might be
expected, although after a given number of poingsiinprovements
are less relevant. In the tests in the followings I83 was chosen. To



122 Chapter 5 Test for the validation of the rahbration
algorithms

retain the chance to compare simulation resulth thié experimental
ones achieved with the real system which will bevah further on,
during the simulations the resolution of the cansasor (projector
grid), respectively, have been assumed as 640xd&0sp(1024x768
pixels). As for the values of the characteristiaapaeters of the
system, please refer to Figure 5.20.

CAMERA

PROJECTOR

Intrinsic Parameters
kyfeamera = kufeamera = 1000 pixels
0 qmere = 320 pixels

V0 amera = 240 pixels

Intrinsic Parameters
kv forojector = kufprojector = 2000 pixels
UOprgjector = 512 pixels

1)01,,0]“(“,, = 800 pixels

Extrinsic Parameters

Extrinsic Parameters

Center of projection (C,) Euler Angles Center of projection (Cp) Euler Angles
Xce = -250 mm 0=0° Xep = 900 mm @=0°
Vee =400 mm 6 =200° Yep = 500 mm 6=165°
Zce = 2300 mm y=0° Z¢p = 2400 mm Y =-6°

Figure 5.20: Values of the parameters of the simutad system
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Figure 5.21: Values of characteristic parameters ofhe simulated
system
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Since in the real applications the images upon hvhice self-
calibration has to be based are noisy, the immuaiftythe self-
calibration algorithm to noise has been verifiedu&sian noise with
standard deviation from 0.1 to 2 pixels has begesmposed to the
Image points coordinates, executing repeated sélfrations, and the
mean and the dispersion in the resulting valuesthaf model
parameters have been considered. Figures 5.22é% tle behavior
of the algorithm for some of the parameters witspeet to the noise
standard deviation. As shown in the graphs, theameevalue differs
from the true one as the noise increases, andth&sd@s interval
becomes greater.
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Figure 5.22: Intrinsic a) camera and b) projector @rameters kvf,
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Figure 5.23: Behavior of extrinsic parameter ¥, of the projector
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Figure 5.24: Behavior of extrinsic parameter ¥, of the projector
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Figure 5.25: Behavior of extrinsic parameter g, of the projector

5.4.3 Comparison with Camera-Projector calibration
The validation of the self-calibration method haet done on a real
case. The procedure involves the projection ofuiestonto the scene
that has to be acquired, which allow to find cqomsalences between
image points in the two sensors. The projectoraatéd as a camera,
and its acquired image corresponds to the image thiga projector
itself projects onto the scene. The experimentallte have been
obtained using a helmet as a non-planar objectwhioh the features
are projected. The results obtained with this pldlace were compared
with the Calibration procedure for Stereo Camergdetor pair.

Figure 5.26: Two images acquired by the camera dumg the self-
calibration procedure
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Intrinsic Stereo Camera- Self-Calibration
Projector Pair Epipolar minimization

Parameter Calibration bounded

k.f camera 1123.7 1050.0

k.f camera 1113.1 11499

ul camera 290.9 329.0

v0 camera 264.3 2484

k,f projector | 2242.5 22214

k,f projector | 2333.7 23415

u0 projector | 391.9 449.7

v0 projector 739.9 745.6

Figure 5.27: Comparison of intrinsic parameters. Al values are in
pixels

Extrinsic Stereo Camera- Self-Calibration
Projector Pair Epipolar minimization

Parameter | Calibration bounded

Peamera -9.498 -9.500

Ocamera -0.802 -0.800

WYeamera -9.789 -9.800

XCcamera 171.5 171.5

Yccamera 342.8 342.8

Zccamera 1322.0 1322.0

Pprojector -4.459 -2.200

Oprojectar 20.121 24.900

Weamera -3.969 -3.800

XCprojector 625.2 550.0

Ycprojector 4358 401.8

Zcprajector 12221 11703

Figure 5.28: Comparison of extrinsic parameters. Allengths are
in mm and all angles are in degree.
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5.4.4

Comparison with the 8-points algorithm

A self-calibration algorithm well known in literatei is the algorithm
of the 8 points. It has several limitations, thstfione being the need
of 3 views to operate. Moreover, it is extremelgsble to noise, even
in its normalized version. To provide a referenoe the proposed
method, the algorithm has been applied in the o&8eviews, and the
results have been compared to the ones providethdy8 point
algorithm. In both cases, two versions of the athors have been
considered: one, unbounded, finds the best seaminpeters without
restrictions on the values to assign to each pasmie bounded
version limits the space of research to a domaah ¢hn be defined
with an initial calibration (in laboratory, usindassical calibration
procedures) of the system. Figure 5.29 shows tlsaeltse in the
different cases.

Epipolar minimization
unbounded

Parameter 8-points unbounded 8-points bounded Epipolar minimization
bounded

kf camera

1211.4

1070

1014.2

1070

u0 camera

319.8

326.3

32
227

319.1

3193

v0 camera

2396

2396

2234

k,f
projector

2453.2

2053

2020.2

1999.4

uo
projector

600.2

501

511.8

510.2

vo
projector

841.2

799.5

847.9

810.4

Figure 5.29: Comparison of experimental results. Alvalues are in

pixels.
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Conclusion

In this work an original method of calibration wpsoposed, at the
conclusion of a doctoral thesis, which concernezl dtudy of fringe
patterns systems and their metrological charattesis

The main issues on which attention was focusedduhis work were
the search for an innovative model that allowed,thy design and
calibration of projector parameters, to eliminateljbems involved in
the projection of the patterns and go over the lprab created by the
light noise present in the calibration environment.

This goal has led to the implementation of a stéype model for the
camera-projector pair that has no precedent inliteeature. This
modeling is a good approximation as has been edrégxperimentally,
it also benefits from all the advantages of stéeebniques established
in the literature, since we can obtain adequatelyreprojection errors
and acceptable reconstructions, whereas the tincalidorate the total
3D scanner system went from 40 minutes that thesidal techniques
of projection patterns and phase-shit require twual3-4 minutes for
this new technique. Without excessive loss in teohsccuracy as
shown by the comparison tests.

Then, to be able to further reduce such uncertathiying the visit to
the laboratories of the Machine Vision Group of @uh Finland,
thanks to the professor J.Heikkila the problemateel to the distortion
of the optics were then introduced into the stullye main problem
that is faced when introducing these parameteithenmodel is that
they vary within the volume of calibration/measgrinhis problem
has been studied and it has come to formulate sisttebout the
possibility of including such variation within a kel developed for
the optics, i.e. the axis model.

This is a remarkable achievement for the caseshwhititerature used
to be modeled using empirical formulas, and can bewaken into
account with geometric formulas which extend thevigus pin-hole
model. In conclusion of the work of this thesissalf-calibration
algorithm has been implemented that allowed a rfas@onfiguration
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of a scanner pre-calibrated in the laboratory wiheés moved on the
field for the measurements.

The techniques and models introduced make, thergbaissible to use
both fast calibration and reliable low uncertaigtier a low-cost 3D
scanner, since it deals with a camera and a poojebat cost few
hundred euros and a PC, compared to systems slateadbased ones
whose costs are many tens of thousands of euros.

In the future it is possible to think of applicatgof this calibration
also in the techniques of real-time scanning, @neane can develop
an application that can be self-calibrated duriisgoperation time in
order to always update the data calibration adogrtb changes in
environmental factors during the exercise period.

Models for generic optics could also be studieging to understand
what other effects can be taken into account widsé extensions of
the model.

An idea for future research is the ability to feithmprove the search
algorithm in selfcalibration being the error fumetithe multivariable
simplex algorithm has still some cases where retamthe solution of
local minima.
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