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Introduction

A complex system is generally defined as a system emerging from the interaction of several
and different components, each one with their properties and their goals, usually subject to
external influences. Nowadays, complex systems are ubiquitous and they are found in many
research areas: examples can be found in Economy (e.g., markets), Physics (e.g., ideal gases,
spin systems), Biology (e.g., evolution of life) and Computer Science (e.g., Internet and social
networks). Modeling complex systems, understanding how they evolve and predicting the future
status of a complex system are major research endeavors.

Historically, physicists, economists, sociologists and biologists have separately studied com-
plex systems, developing their own tools that, however, often are not suitable for being adopted
in different areas. Recently, the close relation between phenomena in different research areas
has been highlighted. Hence, the aim is to have a powerful tool that is able to give us insight
both about Nature and about Society, an universal language spoken both in natural and in
social sciences, a modern code of nature. In a recent book [119], Tom Siegfried pointed out
game theory as such a powerful tool, able to embrace complex systems in Economics [7, 8, 9],
Biology [84], Physics [53], Computer Science [70, 76], Sociology [80] and many other disciplines.

Game theory deals with selfish agents or players, each with a set of possible actions or
strategies. An agent chooses a strategy evaluating her utility or payoff that does not depend
only on agent’s own strategy, but also on the strategies played by the other players. The way
players update their strategies in response to changes generated by other players defines the
dynamics of the game and describes how the game evolves. If the game eventually reaches a
fixed point, i.e., a state stable under the dynamics considered, then it is said that the game is
in an equilibrium, through which we can make predictions about the future status of a game.

The classical game theory approach assumes that players have complete knowledge about the
game and they are always able to select the strategy that maximizes their utility: in this rational
setting, the evolution of a system is modeled by best response dynamics and predictions can
be done by looking at well-known Nash equilibrium. Another approach is followed by learning
dynamics: here, players are supposed to “learn” how to play in the next rounds by analyzing
the history of previous plays.

By examining the features and the drawbacks of these dynamics, we can detect the basic
requirements to model the evolution of complex systems and to predict their future status.
Usually, in these systems, environmental factors can influence the way each agent selects her
own strategy: for example, the temperature and the pressure play a fundamental role in the
dynamics of particle systems, whereas the limited computational power is the main influence
in computer and social settings. Moreover, as already pointed by Harsanyi and Selten [57], the
complete knowledge assumption can fail due to limited information about external factors that
could influence the game (e.g., if it will rain tomorrow), or about the attitude of other players
(if they are risk taking), or about the amount of knowledge available to other players.

Equilibria are usually used to make predictions about the future status of a game: for this
reason, we like that an equilibrium always exists and that the game converges to it. Moreover, in
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case that multiple equilibria exist, we like to know which equilibrium will be selected (about this
important issue see [57]), otherwise we could make wrong predictions. Finally, if the dynamics
takes too long time to reach its fixed point, then this equilibrium cannot be taken to describe
the state of the players, unless we are willing to wait super-polynomially long transient time.

Thus we would like to have dynamics that models bounded rationality and induces an
equilibrium that always exists, it is unique and is quickly reached. Logit dynamics, introduced
by Blume [18], models a noisy-rational behavior in a clean and tractable way. In the logit
dynamics for a game, at each time step, a player is randomly selected for strategy update
and the update is performed with respect to an inverse noise parameter β (that represents
the degree of rationality or knowledge) and of the state of the system, that is the strategies
currently played by the players. Intuitively, a low value of β represents the situation where
players choose their strategies “nearly at random” because they are subject to strong noise
or they have very limited knowledge of the game; instead, an high value of β represents the
situation where players “almost surely” play the best response, that is, they pick the strategies
yielding high payoff with higher probability. This model is similar to the one used by physicists
to describe particle systems, where the behavior of each particle is influenced by temperature:
here, low temperature means high rationality and high temperature means low rationality. It
is well known [18] that this dynamics defines an ergodic finite Markov chain over the set of
strategy profiles of the game, and thus it is known that a stationary distribution always exists,
it is unique and the chain converges to such distribution, independently of the starting profile.

Since the logit dynamics models bounded rationality in a clean and tractable way, several
works have been devoted to this subject. Early works about this dynamics have focused about
long-term behavior of the dynamics: Blume [18] showed that, for 2 × 2 coordination games
and potential games, the long-term behavior of the system is concentrated in a specific Nash
equilibrium; Alós-Ferrer and Netzer [1] gave a general characterization of long term behavior
of logit dynamics for wider classes of games. A lot of works have been devoted to evaluating
the time that the dynamics takes to reach specific Nash equilibria of a game, called hitting
time: Ellison [40] considered logit dynamics for graphical coordination games on cliques and
rings; Peyton Young [109] extended this work for more general families of graphs; Montanari
and Saberi [94] gave the exact graph theoretic property of the underlying interaction network
that characterizes the hitting time in graphical coordination games; Asadpour and Saberi [2]
studied the hitting time for a class of congestion games.

Our approach is different: indeed, our first contribution is to propose the stationary dis-
tribution of the logit dynamics Markov chain as a new equilibrium concept in game theory.
Our new solution concept, sometimes called logit equilibrium, always exists, it is unique and
the game converges to it from any starting point. Instead, previous works only take in account
the classical equilibrium concept of Nash equilibrium, that it is known to not satisfying all the
requested properties. Moreover, the approach of previous works forces to consider only specific
values of the rationality parameter, whereas we are interested to analyze the behavior of the
system for each value of β.

In order to validate the logit equilibrium concept we follow two different lines of research:
from one hand we evaluate the performance of a system when it reaches this equilibrium; on the
other hand we look for bounds to the time that the dynamics takes to reach this equilibrium,
namely the mixing time. This approach is trained on some simple but interesting games, such
as 2 × 2 coordination games, congestion games and two team games (i.e., games where every
player has the same utility).

Then, we give bounds to the convergence time of the logit dynamics for very interesting
classes of games, such as potential games, games with dominant strategies and graphical coor-
dination games. Specifically, we prove a twofold behavior of the mixing time: there are games
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for which it exponentially depends on β, whereas for other games there exists a function in-
dependent of β such that the mixing time is always bounded by this function. Unfortunately,
we show also that there are games where the mixing time can be exponential in the number of
players.

When the mixing is slow, in order to describe the future status of the system through the
logit equilibrium, we need to wait a long transient phase. But in this case, it is natural to
ask if we can make predictions about the future status of the game even if the equilibrium has
not been reached yet. In order to answer this question we introduce the concept of metastable
distribution, a probability distribution such that the dynamics quickly reaches it and spends a
lot of time therein: we show that there are graphical coordination games where there are some
distributions such that for almost every starting profile the logit dynamics rapidly converges to
one of these distributions and remains close to it for an huge number of steps. In this way, even
if the logit equilibrium is no longer a meaningful description of the future status of a game, the
metastable distributions resort the predictive power of the logit dynamics.

Organization. In chapter 1 we introduce complex systems and game theory concepts. In
particular, we survey some of the dynamics and related equilibrium concepts that were presented
in literature: the analysis of these dynamics highlights the requirements desired in a dynamics.
In this chapter, we also summarize the Markov chain theory and highlight the main tools that
will be used in our analysis. In chapter 2 we introduce the logit dynamics, by highlighting its
main properties and the reasons that make this dynamics and its stationary distribution so
attractive. The chapter 3 reviews previous literature about logit dynamics. Previous works are
classified in three main categories: works about the long term behavior of the logit dynamics;
works about the hitting time of specific Nash equilibria in the logit dynamics; works about the
mixing time of the Glauber dynamics for the Ising model. Next chapters describe our technical
contribution: in chapter 4 we analyze the logit dynamics for some introductory games, by
evaluating the expected social welfare at equilibrium and the mixing time of the dynamics; in
chapter 5 we give mixing time bounds that hold for very large classes of games: the results
about mixing time given in this two chapters differ also for the adopted techniques, coupling
in chapter 4 and spectral techniques in chapter 5. Finally, in chapter 6 we arise the quest
for metastability and we show our result about metastability of the logit dynamics for some
introductory games. The conclusions of this work and the future directions of this line of
research are presented in chapter 7.

Notations. We write |S| for the size of a set S and S for its complementary set. We use
bold symbols for vectors; when x = (x1, . . . , xn) ∈ Σn, for some alphabet Σ, we write |x|a
for the number of occurrences of a ∈ Σ in x; i.e., |x|a = |{i ∈ [n] : xi = a}|. We use the
standard game theoretic notation (x−i, y) to mean the vector obtained from x by replacing
the i-th entry with y; i.e., (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xn). For two vectors x,y, we
denote as d(x,y) = |{i : xi 6= yi}| the Hamming distance between x and y: we write x ∼ y if
d(x,y) = 1. We denote by poly (n) a polynomial function in n and by negl (n) a function in n
is smaller than the inverse of any polynomial in n.
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Chapter 1

Preliminaries

1.1 Complex Systems

Even if nowadays the term complex system is broadly used in many different scientific disciplines
such as anthropology, biology, chemistry, computer science, ecology, economics, meteorology,
neuro-science, physics, psychology and sociology, a consensus does not exist yet about what it
means.

Anyway, all the different definitions proposed agree on that an intrinsic property of a complex
system is that it is a system constituted by several and different subunits or components,
whose interaction gives rise to complex collective behavior. This complexity is not the effect
of incomplete information about the “causes” or “inputs” by an external observer, but it is
inherently rooted in the nature of the system, i.e., it is given by a non obvious relation between
causes and effects, inputs and outputs [59, 100].

Two main features of a system contribute to make it complex: the emergence of traits re-
garding the system as a whole, that cannot be explained by properties of single components, but
can evolve only from the interaction of these subunits; the presence in the story of the system,
alternated with long periods of stable behavior and regular trends and periods of unpredictable
and apparently random changes. This last feature is particularly annoying, because it prevents
observers from predicting the future status of the system. Thus, it is of particular interest to
find techniques that make possible to give meaningful previsions: in chapter 6, we will introduce
a tool to face this problem.

Historically, the theory of complex systems stems from three main branches: theoretical
ecology, that models ecology as population dynamics, whose evolution is subject to random
motion [87]; systems theory, proposed by Von Bertalanffy [126], that refused to break a system
in components and proposed to analyze systems as the whole of components and interactions;
cybernetics [129], whose goal is to understand and define functions and processes of regulatory
systems.

Complex system theory has been applied to understand natural systems, such as the atmo-
sphere or climate, or human systems, as the immune system or the brain, and in developing
“intelligent” devices in contexts like biotechnology and robotics, pattern recognition and opti-
mization. Tools from complex system theory have been also adopted by social and economic
sciences, especially in the analysis of market dynamics, management, transport or decision
making.

Researchers that work on complex systems have several different goals: first of all, they
would like to understand how to describe a complex system and how to model the interactions
between the components; then, they would like to explain how a complex system evolves; finally,
they would like to make reliable predictions about the future status of the system and about
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the occurrence of specific events during the evolution.
The tools adopted to achieve these goals came from many different areas: nonlinear dynam-

ics, statistical physics, information theory, data analysis, numerical simulation are only some
examples. Two of the more successful tools are probability theory and game theory. Indeed,
many complex systems are characterized by high sensibility to environmental changes and by
a multiplicity of aspects that make the systems intrinsically random: thus, trying to describe a
system and its evolution by means of deterministic rules looks too hard, whereas the probability
theory offers simpler alternatives.

On the other side, the actions of components in complex systems are not completely random,
but led by some objective. Hence, modeling systems as games can be useful for understanding
generic complex systems, since these models can capture otherwise intractable nonlinear effects
and thereby reveal global patterns that would have been previously out of reach.

For these reasons, in this work we approach complex systems through game theory: we
describe systems through games and the way components evolves through a probabilistic model.
First to do it, we introduce in next sections the main concepts of game theory and of Markov
chain theory.

1.2 Game theory

A game is a formal model that tries to represent how agents interact in a setting of strategic
inter-dependence, i.e., when the welfare of an agent depends not only on his/her actions, but
also on the actions taken by other agents. Von Neumann introduced this tool in a German
paper published in 1928 [98], whose English Translation, titled “On the Theory of Games of
Strategy”, appear in [123]. However, only after the 1944, when Von Neumann published the
book “Theory of Games and Economic Behavior” with Oskar Morgenstern [99], game theory
has become a field able to attract the interest of mathematicians, economists, sociologists,
psychologists, biologists, philosophers and recently also physicists and computer scientists.

Formally, a strategic game is a triple ([n],S,U), where [n] = {1, . . . , n} is a finite set of
players, S = {S1, . . . , Sn} is a family of non-empty finite sets (Si is the set of strategies for player
i), and U = {u1, . . . , un} is a family of utility functions (or payoffs), where ui : S1× . . .×Sn → R
is the utility function of player i. Players have to choose a strategy from their own strategy set
in order to maximize their utility function. In the classical game theory setting, every player is
supposed to have complete knowledge of the game and to be selfish and rational , i.e., players
perfectly know the strategies and the utility functions of all players, they aim to maximize
only their own utility function and they are able to make arbitrarily complex computations
towards this end. In several settings complete knowledge and rationality are unrealistic since
the strategy choice can be influenced by scarce knowledge of the game and by environmental
limitations and a lot of works have considered models where these assumptions are weakened
[115].

The computation of the strategy played by the players in a game can be seen as an evolving
process in which each player reacts to the actions of other players: this process is named
dynamics and the eventual outcome of this computation is named equilibrium. The dynamics
of a game describes how agents change their strategy over time and how the game evolves, and it
is possible to predict the future status of the game by looking at the equilibrium states induced
by the dynamics. Obviously, predictions are possible only if such an induced equilibrium exists
and the dynamics will converge to it.

Many dynamics and related equilibria have been proposed: in the remaining of this section
we briefly describe some of these, highlighting the main features and their drawbacks. The rest
of this work will focus on one of these dynamics, the logit dynamics.
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1.2.1 Nash equilibrium and price of anarchy

Nash equilibrium concept is one of the most influential concepts in game theory. A (pure)
Nash equilibrium is a strategy profile (a vector of strategies, one for every player) such that
every player has no alternative strategy that increases own utility. Formally, a profile x ∈ S =
S1 × . . .× Sn is a Nash equilibrium if for every player i, and every strategy s ∈ Si holds that

ui(x) > ui(s,x−i) .

Observe that, given a profile x that is a Nash equilibrium, the strategy xi ∈ Si maximizes
ui(s,x−i) and thus it is the best response that player i can give in a setting where other players
are playing according to x−i. The best response dynamics is a dynamics that, at every time step,
selects a player whose currently played strategy is not a best response and updates her strategy
to a best response. It is easy to see that the Nash equilibrium is the equilibrium induced by the
best response dynamics.

However, this equilibrium concept has a big issue: indeed, in many games a Nash equilibrium
does not exist, thwarting the predictive power of game theory. If we focus on games where a
Nash equilibrium always exists, then two classes of games are noteworthy: potential games and
games with dominant strategies.

A strategic game is an exact potential game [93] if there exists a function Φ: S → R such
that for every player i, every profile x ∈ S, and every pair of strategies s, z ∈ Si, it holds that

ui(s,x−i)− ui(z,x−i) = Φ(z,x−i)− Φ(s,x−i) ,

i.e., the increase in the utility of player i when i switches from a strategy s to a strategy z
is equivalent to the decrease in the potential function between the two corresponding profiles.
Since the range of Φ is finite, this function has a minimum and the profile at which the minimum
is obtained is, necessarily, a Nash equilibrium. Monderer and Shapley [93] showed that the class
of potential game is equivalent to the class of congestion games [114], where the strategies are
seen as resources and the utility functions only depend on the number of players using resources.
Congestion games well model a lot of problems arising in real applications, like routing problems.

A strategy s ∈ Si is dominant for player i if it yields the maximum payoff regardless of the
strategies of the other players; that is, for every z ∈ Si and every x−i ∈ S1× . . .×Si−1×Si+1×
. . .× Sn holds that

ui(s,x−i) > ui(z,x−i) .

In a game with dominant strategies every player has a dominant strategy. Obviously, the profile
where every player plays a dominant strategy is a Nash equilibrium. This class of games has
a lot of applications: specifically, it catches the interest of Auction Theory [69, 91, 72] and
Mechanism Design Theory [52, 83, 101].

Even if for these classes a Nash equilibrium always exists, it might be not unique: in this
case, it is not clear which equilibrium will be effectively played by players and thus which
equilibrium we can predict as future status of the game. This issue is even more serious since
there are a lot of games for which different equilibrium profiles have very different properties.

For class of games where the Nash equilibrium is not guaranteed to exist, we can randomize
over the strategies. Specifically, a mixed strategy for player i is a distribution of probability µi
over Si; a profile (µ1, . . . , µn) of mixed strategies is a mixed Nash equilibrium if for every player
i and every mixed strategy νi over Si holds that∑

x

ui(x)µ(x) >
∑
x

ui(x)νi(xi)µ−i(x) ,

where µ(x) =
∏
j µj(xj) and µ−i(x) =

∏
j 6=i µj(xj).
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A celebrated result by John Nash [97] establishes that for every finite strategic game a mixed
Nash equilibrium always exists. Again, the uniqueness of such an equilibrium concept is not
guaranteed and thus it is unsuitable to prediction.

Moreover, recent results of Daskalakis, Goldberg and Papadimitriou [37] and Chen, Deng
and Teng [32] showed that computing a Nash equilibrium is hard also for 2-player games. Specif-
ically, the problem is complete for the complexity class PPAD (Polynomial Parity Argument,
Directed version): this class, introduced by Papadimitriou in 1991 [106], contains problems
whose decisional version is easy (indeed, it is immediate to answer the question “does a Nash
equilibrium exist?”), but the functional version (to find a Nash Equilibrium) is supposed to be
hard. These results cast further doubts about the usage of Nash equilibria in the analysis of
complex systems.

Despite that, Nash and mixed Nash equilibria have been often adopted to describe systems
and to evaluate their performance. One of the prominent measure of performance is the Price of
Anarchy (PoA), introduced by Koutsoupias and Papadimitriou in 1999 [70], that assesses how
much the lack of central coordination influences the performance: given an objective function
W that we are interested in optimizing, the PoA is the ratio between the value of W when
evaluated in the worst Nash equilibrium and the optimal value that W can assume. The Price
of Anarchy has been extended and generalized in order to overcame the shortcomings of Nash
equilibrium and to take in account different equilibrium concepts [55, 16, 34]: nowadays, PoA
and its variants are the main tools for evaluating of the performance of any equilibrium.

1.2.2 Best response dynamics and sink equilibrium

Besides the shortcomings pointed out in the previous section, further issues are raised about
Nash equilibria. The first one concerns the usage of randomization in strategies: as established
above, only if players are supposed to randomize between different strategies, then the existence
of an equilibrium is assured; but, the assumption that a player “sees” the mixed strategies of
other players and deals with them looks very unrealistic. The second issue is raised by the
relation between Nash equilibrium and best response dynamics: indeed, it is known that, even
if a pure Nash equilibrium surely exists, the best response dynamics converges to it only if a
specific condition is satisfied, namely the game is weakly acyclic [107, 90]. Moreover, computing
a pure Nash equilibrium is a PLS-complete1 problem [43] even for games where every player
has the same strategy set: hence, there are games where the best response dynamics, in order to
reach a Nash equilibrium, requires a number of iterations exponential in the number of players.

To overcome these issues, a new equilibrium concept, namely sink equilibrium, was proposed
in 2005 by Goemans, Mirrokni and Vetta [55]. They consider the profiles of a game as vertices
of a graph and they put a directed edge from x to y if y can be reached from x in one step of
the best response dynamics: in this graph, any strongly connected component with no outgoing
edges is a sink equilibrium. Roughly speaking, in games where the best response dynamics
does not converge, this happens because there is a subset of profiles in which the dynamics
sticks: by defining this subset as a sink, we assure both the existence of the equilibrium and
that best response dynamics converges to it. It is obvious that any Nash equilibrium is also a
sink equilibrium.

Unfortunately, sink equilibria do not solve other issues raised from Nash equilibria, as unique-
ness and computational tractability. In particular, finding a sink equilibrium is PLS-complete
[55] (and finding the best or the worst sink equilibrium is even PSPACE-complete [42]), whereas
deciding if a profile belongs to a sink is PSPACE-complete [42].

1PLS (Polynomial Local Search) is the complexity class of functional problems solvable by local search. This
class is strictly contained in NP unless “NP 6= co−NP” is false [65, 89], but it is conjectured it is not contained
in P.
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1.2.3 Learning dynamics and fictious play

The best response dynamics heavily rests on the assumption of complete knowledge and perfect
rationality, making the dynamics and related equilibria inopportune for modeling many settings
arising from real world. Differently, learning dynamics assume that players “learn” how to
respond to other players’ strategies from what occurred in previous stages of the game. Several
and different models of learning have been proposed and we survey some of those here and in the
following sections (for a broad and detailed analysis about learning dynamics see the excellent
books of Fudenberg and Levine [50] and Peyton Young [108]).

Fictitious play is a learning dynamics proposed by Brown in the 1951 [25]2: the frequency of
a strategy in the past iterations of the dynamics is used as a probability that this strategy will be
played in the next round, and players play the best response to these probability distributions.

Specifically, let xt be the profile of strategies played at time step t and let ht = (x1, . . . ,xt)
be the history of previously played profiles. The probability pti(s) that player i plays strategy
s ∈ Si at next round is the fraction of the times that player i has played this strategy in the
history ht. Fictitious play assumes that, at the next round, player i will play the strategy s ∈ Si
that maximizes the expected utility according this empirical distribution, i.e.

arg max
s∈Si

∑
x−i

ui(s,x−i)p
t
−i(x−i)

 ,

where pt−i(x−i) =
∏
j 6=i p

t
j(xj).

We say that fictitious play converges if the probability distributions pti converge as t increase:
unfortunately, it is known that this dynamics does not converge for generic games [118] and
sufficient conditions for the convergence are given only for restricted classes of 2-player games
[113, 96, 92, 13]. Interestingly, Fudenberg and Kreps [47] show that, in 2-player games, if
fictitious play converges, then the product distribution pt =

∏
j p

t
j is a mixed Nash equilibrium.

Recently, Brandt, Fischer and Harrenstein [24] showed another important drawback with
fictitious play: this dynamics takes exponentially many rounds (in the size of the representation
of the game) to converge to the equilibrium in almost every class of games where the convergence
is proved.

1.2.4 No regret dynamics and correlated equilibrium

In a repeated game, at every round, every player selects a strategy: the regret of the sequence of
strategies selected by the player i is the difference between the utility of the best fixed solution
in hindsight and the average utility gained during the game. Formally, if xt is the profile of
strategies selected at round t, then the regret of the player i after T rounds is

1

T

(
max
s∈Si

T∑
t=1

ui(s,x
t
−i)−

T∑
t=1

ui(x
t)

)
.

We highlight that the average utility of player i is not compared with the maximum average
utility obtained by the best possible sequence of strategies, but it is compared with the best
average utility that i could obtain by choosing a strategy at beginning of the game and never
changing her mind. In this way we are mimicking the behavior of a selfish agent in a repeated
game: she can select a strategy in advance and thereafter she always plays the same strategy,
or she can select an opportune and different strategy at every round. The regret is a measure

2Brown proposed fictitious play as an heuristic for computing Nash equilibria in some class of games and not
as a learning dynamics.
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of which of these two choices is better: if the regret is high then the fixed choice was preferable,
but if the regret is low (goes to 0 as the time increase) or is negative, then the second choice
was right.

A regret-minimizing algorithm is an algorithm such that the regret approaches to 0 as the
time increases. By the discussion above, using such an algorithm is a reasonable behavior for
selfish agents. A no regret dynamics is simply a dynamics where every player is assumed to run
a regret-minimizing algorithm.

The first of these algorithm was proposed in 1957 by Hannan [56]. After that, a lot of really
interesting regret-minimizing algorithms have been proposed, like weighted majority algorithm
[79], multiplicative weights or Hedge algorithm [46], regret matching [58], polynomial weights
algorithm [31].

In 1974 Aumann [6] defined the concept of correlated equilibrium as a generalization of the
Nash equilibrium. A correlated equilibrium is a probability distribution µ over the profile space
S such that for every player i and every two different strategies s′, s′′ ∈ Si holds that∑

x−i

µ(s′,x−i)ui(s
′,x−i) >

∑
x−i

µ(s′,x−i)ui(s
′′,x−i) .

In order to understand the above condition, assume there exists an external correlation device
that announces to all players a probability distribution µ over the profiles of the game, then it
selects a strategy profile according to µ and finally it suggests to every player the corresponding
strategy. The probability distribution µ will be a correlated equilibrium if for every player,
assuming that other players follow the recommendation, the expected utility gained playing the
suggested strategy is higher than the expected utility obtained by playing a different strategy.
Notice that correlated equilibria generalize the mixed Nash equilibrium concept: indeed, the
last one is a correlated equilibrium such that the distribution µ is a product distribution of
mixed strategies.

No regret dynamics are strictly related to correlated equilibria. Indeed, It is known that any
no regret dynamics converges to the class of correlated equilibria [44, 58, 17]. We highlight that
we are dealing with a weak notion of convergence: we only know that the dynamics converges
to that class, but we do not know neither which correlated equilibrium is effectively reached nor
the probability that a specific correlated equilibrium is reached. We also note that no regret
dynamics converges to Nash equilibria for some remarkable class of games, namely non atomic
routing games [15] and congestion games [68]3.

1.2.5 Evolutionary game theory and the replicator dynamics

Since 1973, after the seminal work of Maynard Smith and Price [85], Biology has applied game
theory to explain complex systems arising in nature. This area merges game theory with the
evolutionary concepts of natural selection and mutation, giving rise to a new discipline called
evolutionary game theory . After the publication of two seminal books, “Evolution and the
Theory of Games” by Maynard Smith in 1982 [84] and “The Evolution of Cooperation” by
Robert Axelrod in 1984 [10], this area attracted the interest of economists and social scientists,
too.

Evolutionary game theory deals with populations of agents subject to mutations and selec-
tion, as established by the Darwinian approach to evolution [36]. Selection mechanism can be
stated in game theory terms: every individual (player) adopts an action (strategy) and has a

3Actually, in [68] is proved that the dynamics converges to Nash equilibria only if players run a specific
(continuous time) regret-minimizing algorithm, the aggregate monotonic selection (AMS) algorithm introduced
in [116, 112].
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fitness landscape (the utility function); individuals with higher fitness have more possibility to
reproduce and thus, in the next generation, the fraction of population that plays the action
that best performed in current generation will increase. This dynamics, known as replicator
dynamics and introduced in 1978 by Taylor and Jonker [120], is one of the main concepts in
evolutionary game theory (for more details about replicator dynamics and evolutionary game
theory see the excellent books of Weibull [128] and of Hofbauer and Sigmund [61]).

Formally, the replicator dynamics considers a large but finite population of homogeneous
individuals (any individual has the same strategy set S? and the same utility function u); for
every strategy s ∈ S? let xs be the fraction of population using the strategy s at time t and let
x = (xs)s∈S? be the profile of the population; the average payoff when the population is in the
profile x is

u?(x) =
∑
s∈S?

xsu(s,x) .

Then, given the initial population profile x, the dynamics is controlled by the continuous-time
dynamic system

ẋs = [u(s,x)− u?(x)]xs .

Notice that, as expected, the fraction of population playing a strategy that performs worse
than the average payoff will decrease, whereas the number of individuals playing an action that
returns an utility higher than average payoff will increase.

The evolution eventually will reach an attractor, i.e., a profile x such that for every strategy
s ∈ S? such that xs > 0 we have that u(s,x) = u?(x): thus, an attractor is stationary for the
replicator dynamics and it represents the main equilibrium concept related to this dynamics.
There exists a strong relation between attractors and Nash equilibria: indeed, any Nash equilib-
rium is an attractor and, moreover, if any strategy appears in the population, then an attractor
is a Nash equilibrium. This means that the only attractors that are not Nash equilibria are
the ones where there is at least a strategy never played. Unfortunately, it is also known that
replicator dynamics does not converge for every game.

Notice that in the replicator dynamics if a strategy is not present in the population at the
beginning, then it never appears and, similarly, any strategy present in the population at the
beginning never disappears. To resolve this issue, it is possible to introduce mutations: that
is, we assume that it is possible to randomly change the strategy played by a small fraction of
population. Unfortunately, it is known that there are games where no profile is resistant against
mutations, i.e., there exists no stable state such that the dynamics always come back to that
state after a mutation occurs.

Recently, a dynamics similar in spirit to the replicator dynamics has been proposed by
Lieberman, Hauert and Nowak [78]. This dynamics introduce social relationship in the evo-
lutionary game theory: indeed, they consider a structured population where individuals are
placed at vertices of a graph and every individual only interacts with neighbors. Moreover, a
recent result by Kleinberg at al. [67] shows that there are games where the replicator dynamics,
even if it does not converge, outperforms the performance of a Nash equilibrium.

However, the biggest issue with replicator dynamics is that this dynamics could be unsuitable
to model complex systems that do not concern with populations of agents.

1.2.6 Behavioral game theory and EWA learning

Economic theory has often used psychology in order to explain complex and apparently unfore-
seeable economic and financial events: this approach dates back to famous economists like Irving
Fisher and John Maynard Keynes. Thereafter, the developing of behavioral models that inte-
grate insight from psychology and economic theory increased and led to the creation of the new
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areas of behavioral economics theory and behavioral game theory . The methodology adopted
by these theories is experiment-driven: any proposed theory is developed from or evaluated by
means of experimental observations (often involving the adoptions of the magnetic resonance
imaging in order to determine which area of the brain responds to economic stimuli) and survey
responses, that try to shine a light on the psychological processes beyond any strategic choice.
Readers interested in behavioral game theory can refer to the book “Behavioral Game Theory”
of Colin Camerer [27].

In particular, Camerer and Ho [29] proposed in 1999 a new dynamics, called “experience-
weighted attraction” (EWA) learning dynamics, whose predictions well resemble the real behav-
ior adopted by players in experiments (see Section 5 in [29] and Section 3 in [28]). This dynamics
combines and generalizes two different learning approaches: the first one is the fictitious play
approach, where agents form beliefs about other players and then best-respond to such beliefs;
the second one is the reinforcement learning approach, where strategies that well behaved in
previous iterations are more attractive and thus they have a greater probability to be selected in
the next rounds. In order to combine these orthogonal approaches, the EWA learning dynamics
introduces numerous parameters: a pair of parameters, namely N(t) and ρ, take in account the
experience of a player, where N(t) can be seen as the number of iterations remembered by the
player at time t and ρ is a factor that depreciates the impact of previous experience in favor of
the most recent ones; the parameter δ measures if we are only interested in reinforce strategies
that we actually played in previous iteration or to reinforce also other strategies; the parameter
Asi (t) describes how much attractive is the strategy s for the player i at time t; the parameter
φ weights how much the attraction in previous iteration influences the attraction in the next
round; finally, a parameter λ measures how much players are sensible to changes in attractions.

Obviously, the EWA learning dynamics has too many parameters and thus it is intractable
for many practical purposes. For this reason, Camerer et al. [28] proposed a simpler version,
called self-tuning EWA learning dynamics, where some parameter are replaced with fixed nu-
merical values and some other parameters are replaced by specific functions on the history of
the game. Despite this, also this version of the dynamics looks too hard to analyze in order to
predict the behavior of components in a complex system.

Recently, another issue with EWA learning dynamics has been pointed out: there are cir-
cumstances where the dynamics, even for two-player games, does not converge and cycles in a
subset of the profile space, whose dimension can be very high [54] (see also [117] for similar re-
sults about reinforcement learning). The high dimension of the attractor cycle implies that the
behavior of the dynamics is effectively indistinguishable from random behavior: thus, adopting
this dynamics to predict the evolution of a complex system can be useless.

1.2.7 Which properties we look for in a dynamics?

Our discussion about different proposed dynamics highlights the main features that we look
for in a dynamics. First of all, we want a dynamics that take into account scarce knowledge
of players or environmental limitations, since our aim is to model complex systems that, as
established above, are characterized by inherent randomness. We notice that this property also
explains why in real world the same person can take extremely different actions in very similar
situations.

Since the main goal in the analysis of complex systems is to predict the future status, the
dynamics has to enable such predictions. This obviously means that an equilibrium has to
exist ; anyway the uniqueness of equilibrium and the quick convergence of the dynamics to the
equilibrium are basic to make any prediction meaningful.

A dynamics that could be adopted to analyze different complex systems arising in the reality
need to be universal, i.e. not linked with a particular structure of the game. Moreover, our
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dynamics has to enable further analysis about the system: for this reason we like to deal with
analytically tractable dynamics and not with too complex dynamics, even if the latter can be
more realistic. Finally, a dynamics gets more attractive if it resembles experimental results
about the behavior of components in a system.

In Section 2.3 we will show that the logit dynamics satisfies almost any of these requirements,
becoming a very appealing choice for modeling the evolution of complex systems that can be
described as games.

1.3 Markov chain and mixing time

In this section we survey some basic facts about Markov chains. Fore a more detailed description
and for notation conventions we refer the reader to [75].

A sequence of random variables (X0, X1, . . .) is a Markov chain with state space Ω and
transition matrix P if for all x, y ∈ Ω, all t > 1, and all events Ht−1 =

⋂t−1
s=0{Xs = xs}

satisfying P (Ht−1 ∩ {Xt = x}) > 0, we have

P (Xt+1 = y | Ht−1 ∪ {Xt = x}) = P (Xt+1 = y | Xt = x) = P (x, y) .

This condition, called Markov property, means that the probability to reach the state y from
x is independent from the states visited before x. Notice that P is a stochastic matrix. By
denoting with Px (·) and Ex [·] the probability and the expectation conditioned on the starting
state of the Markov chain being x, i.e., on the event {X0 = x}, we have that

Px

(
Xt = y

)
= P t(x, y) ,

where the matrices P t is the t-step transition matrix.
A Markov chain M = ({Xi}∞i=0,Ω, P ) is irreducible if for any two states x, y ∈ Ω there

exists an integer t = t(x, y) such that P t(x, y) > 0, i.e., it is possible to reach any state from
any other one. The period of an irreducible Markov chain is the greatest common divisor of
{t > 1: P t(x, x) > 0} for some x ∈ Ω. If the period of a Markov chain is greater than 1, then
the chain is called periodic, otherwise aperiodic. If a Markov chain is finite (i.e., the space state
Ω is a finite set), irreducible and aperiodic then the chain is ergodic: for an ergodic chain there
is an integer r such that, for all x, y ∈ Ω, P r(x, y) > 0.

It is a classical result that if M is ergodic there exists an unique stationary distribution;
that is, a distribution π on Ω such that

πP = π .

A Markov chain M is said reversible if for all x, y ∈ Ω, it holds that

π(x)P (x, y) = π(y)P (y, x) .

The probability distributionQ(x, y) = π(x)P (x, y) over Ω×Ω is sometimes called edge stationary
distribution.

The total variation distance ‖µ− ν‖TV between two probability distributions µ and ν on
the same state space Ω is defined as

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)| =
∑
x∈Ω:

µ(x)>ν(x)

(µ(x)− ν(x)) .
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An ergodic Markov chain M converges to its stationary distribution π; specifically, there
exists 0 < α < 1 such that

d(t) 6 αt ,

where
d(t) = max

x∈Ω

∥∥P t(x, ·)− π∥∥
TV

.

Observe that d(t) 6 d(t) 6 2d(t), where

d(t) = max
x,y∈Ω

∥∥P t(x, ·)− P t(x, ·)∥∥
TV

.

For 0 < ε < 1/2, the mixing time is defined as

tmix(ε) = min{t ∈ N : d(t) 6 ε}.

It is usual to set ε = 1/4 or ε = 1/2e. If not explicitly specified, when we write tmix we
mean tmix(1/4). Observe that tmix(ε) 6 dlog2 ε

−1etmix. Next sections show the techniques for
bounding mixing time that will be used in this work.

1.3.1 Coupling

A coupling of two probability distributions µ and ν on Ω is a pair of random variables (X,Y )
defined on Ω×Ω such that the marginal distribution of X is µ and the marginal distribution of
Y is ν. A coupling of a Markov chainM with transition matrix P is a process (Xt, Yt)

∞
t=0 with

the property that both Xt and Yt are Markov chains with transition matrix P . When the two
coupled chains start at (X0, Y0) = (x, y), we write Px,y (·) and Ex,y [·] for the probability and
the expectation on the space where the two coupled chains are both defined.

We denote by τcouple the first time the two chains meet; that is,

τcouple = min{t : Xt = Yt} .

We will consider only couplings of Markov chains with the property that for s > τcouple, it
holds Xs = Ys. The following theorem establishes the importance of this tool (see, for example,
Theorem 5.2 in [75]).

Theorem 1.3.1 (Coupling). Let M be a Markov chain with finite state space Ω and transition
matrix P . For each pair of states x, y ∈ Ω consider a coupling (Xt, Yt) ofM with starting states
X0 = x and Y0 = y. Then∥∥P t(x, ·)− P t(y, ·)∥∥

TV
6 Px,y (τcouple > t) .

Consider a partial order � over the states in Ω. A coupling of a Markov chain is said to be
monotone w.r.t. (Ω,�) if, for every t > 0, Xt � Yt ⇒ Xt+1 � Yt+1. For a state z ∈ Ω, the
hitting time τz of z is the first time the chain is in state z, τz = inf{t > 0 : Xt = z}. Then, the
following lemma relates coupling time and hitting time.

Lemma 1.3.2. Let M be a Markov chain with finite state space Ω and transition matrix P .
Let � be a partial order over Ω. For each pair of states x, y ∈ Ω consider a coupling (Xt, Yt) of
M with starting states X0 = x and Y0 = y that is monotone w.r.t. (Ω,�). Moreover, suppose
the ordered set (Ω,�) has an unique maximum at z. Then

Px,y (τcouple > t) 6 2 ·max{Px (τz > t) ,Py (τz > t)} .
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Sometimes it is difficult to specify a coupling and to analyze the coupling time τcouple for
each pair of starting states x and y. The path coupling theorem says that it is sufficient to
define a coupling only for pairs of Markov chains starting from adjacent states and an upper
bound on the mixing time can be obtained if each of these couplings contracts their distance on
average. More precisely, consider a Markov chain M with state space Ω and transition matrix
P ; let G = (Ω, E) be a connected graph and let w : E → R be a function assigning weights to
the edges such that w(e) > 1 for every edge e ∈ E; for x, y ∈ Ω, we denote by ρ(x, y) the weight
of the shortest path in G between x and y. The following theorem holds.

Theorem 1.3.3 (Path Coupling [26]). Suppose that for every edge {x, y} ∈ E a coupling
(Xt, Yt) of M with X0 = x and Y0 = y exists such that Ex,y [ρ(X1, Y1)] 6 e−α · w({x, y}) for
some α > 0. Then

tmix(ε) 6
log(diam(G)) + log(1/ε)

α

where diam(G) is the (weighted) diameter of G.

1.3.2 Spectral techniques

Let P be the transition matrix of a Markov chain with finite state space Ω and let us label the
eigenvalues of P in non-increasing order

λ1 > λ2 > · · · > λ|Ω|.

It is well-known (see, for example, Lemma 12.1 in [75]) that λ1 = 1 and, if P is irreducible
and aperiodic, then λ2 < 1 and λ|Ω| > −1. We set λ? as the largest absolute value among
eigenvalues other than λ1,

λ? = max
i=2,...,|Ω|

{|λi|} .

The relaxation time trel of a Markov chain M is defined as

trel =
1

1− λ?
= max

{
1

1− λ2
,

1

1 + λ|Ω|

}
.

The relaxation time is related to the mixing time by the following theorem (see, for example,
Theorems 12.3 and 12.4 in [75]).

Theorem 1.3.4 (Relaxation time). Let P be the transition matrix of a reversible, irreducible,
and aperiodic Markov chain with state space Ω and stationary distribution π. Then

(trel − 1) log

(
1

2ε

)
6 tmix(ε) 6 log

(
1

επmin

)
trel ,

where πmin = minx∈Ω π(x).

The following theorem allows to relate two chains by comparing their stationary and edge
stationary distributions (it is derived from Lemma 13.11 and Lemma 13.22 in [75]).

Theorem 1.3.5 (Comparison Theorem). Let P and P̂ be the transition matrices of two re-
versible, irreducible, and aperiodic Markov chains with the same state space Ω, stationary dis-
tributions π and π̂ respectively, and edge stationary distributions Q and Q̂ respectively. Suppose
that two constants α, γ exist such that, for all x, y ∈ Ω,

Q̂(x, y) 6 α ·Q(x, y)

π(x) 6 γ · π̂(x).
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Then
1

1− λ2
6 αγ · 1

1− λ̂2

,

where λ2 is the second eigenvalue of P and λ̂2 is the second eigenvalue of P̂ .

Sometimes, better bounds on relaxation time can be obtained by using the following lemma
(see Corollary 13.24 in [75]).

Lemma 1.3.6. Let P the transition matrix of an irreducible, aperiodic and reversible Markov
chain with state space Ω and stationary distribution π. Consider the graph G = (Ω, E), where
E = {(x, y) : P (x, y) > 0}, and to every pair of states x, y ∈ Ω we assign a path Γx,y from x to
y on G. We define

ρ = max
e=(z,w)∈E

1

Q(e)

∑
x,y :
e∈Γx,y

π(x)π(y)|Γx,y| .

Then 1
1−λ2

6 ρ.

Lemma 1.3.6 can be explained by means of multi-commodity network flows: consider the
graph G as a network where every edge e has capacity Q(e); every vertex x in the network (a
state of the Markov chain) want to exchange a flow of size π(x)π(y) with every other vertex y;
a pair of vertices x and y agree on a path Γx,y and they exchange their flow over this path; for
every edge e ∈ E ∑

x,y :
e∈Γx,y

π(x)π(y)

Q(e)

is now the cost over e, i.e. how much the load on e exceeds its capacity; thus, 1/(1 − λ2) is
bounded by the product of the maximal length of a path and the maximum cost over an edge.

1.3.3 Bottleneck Ratio

Let M = {Xt : t ∈ N} be an irreducible and aperiodic Markov chain with finite state space Ω,
transition matrix P , and stationary distribution π. Let R ⊆ Ω, the bottleneck ratio of R is

B(R) =
Q(R,R)

π(R)
,

where Q(R,R) =
∑

x∈R, y∈RQ(x, y). We will use the following theorem to derive lower bounds
to the mixing time (see, for example, Theorem 7.3 in [75]).

Theorem 1.3.7 (Bottleneck ratio). Let M = {Xt : t ∈ N} be an irreducible and aperiodic
Markov chain with finite state space Ω, transition matrix P , and stationary distribution π. Let
R ⊆ Ω be any set with π(R) 6 1/2. Then the mixing time is

tmix(ε) >
1− 2ε

2B(R)
.
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Chapter 2

Logit Dynamics

In this chapter we introduce the logit dynamics, a randomized dynamics introduced in [18], and
we highlight its main properties and motivations.

The logit dynamics runs as follows: At every time step

1. Select one player i ∈ [n] uniformly at random;

2. Update the strategy of player i according to the Boltzmann distribution with parameter β
over the set Si of her strategies. That is, a strategy y ∈ Si will be selected with probability

σi(y | x) =
1

Ti(x)
eβui(x−i,y) , (2.1)

where x ∈ S1 × · · · × Sn is the strategy profile played at the current time step, Ti(x)
=
∑

z∈Si e
βui(x−i,z) is the normalizing factor, and β > 0.

We can see parameter β as the rationality level of the system: indeed, it is easy to see that
for β = 0 player i selects her strategy uniformly at random, for β > 0 the probability is biased
toward strategies promising higher payoffs, and for β → ∞ player i chooses her best response
strategy (if more than one best response is available, she chooses uniformly at random one of
them). Moreover observe that probability σi(y | x) does not depend on the strategy xi currently
adopted by player i.

The above dynamics defines a Markov chain with state space equal to the set of strategy
profiles, and where the transition probability from profile x = (x1, . . . , xn) to profile y =
(y1, . . . , yn) is zero if the Hamming distance d(x,y) > 2 and it is 1

nσi(yi | x) if the two profiles
differ exactly at player i. More formally, we can define the logit dynamics as follows.

Definition 2.0.8 (Logit dynamics [18]). Let G = ([n],S,U) be a strategic game and let β > 0.
The logit dynamics for G is the Markov chain Mβ = ({Xt}t∈N, S, P ) where S = S1 × · · · × Sn
and

P (x,y) =
1

n
·


σi(yi | x), if y−i = x−i and yi 6= xi;∑n

i=1 σi(yi | x), if y = x;

0, otherwise;

(2.2)

where σi(yi | x) is defined in (2.1).

As will be showed in Section 2.1.1, the Markov chain defined in (2.2) is ergodic. Hence, from
every initial profile x the distribution P t(x, ·) of chain Xt starting at x will eventually converge
to a stationary distribution π as t tends to infinity.

For the class of potential games the stationary distribution is the well known Gibbs measure.
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Theorem 2.0.9 ([18]). If G = ([n],S,U) is a potential game with potential function Φ, then
the Markov chain given by (2.2) is reversible with respect to its stationary distribution, that is
the Gibbs measure

π(x) =
1

Z
e−βΦ(x) , (2.3)

where Z =
∑

y∈S e
−βΦ(y) is the normalizing constant.

2.1 Properties

In this section we give some useful properties of the logit dynamics.

2.1.1 Ergodicity

It is easy to see that the Markov chain defined by the logit dynamics is ergodic. Indeed, let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be two profiles and let (z0, . . . , zn) be a path of profiles
where z0 = x, zn = y and zi = (y1, . . . , yi, xi+1, . . . xn) for i = 1, . . . , n − 1. The probability
that the chain starting at x is in y after n steps is

Pn(x,y) = Pn(z0, zn) > Pn−1(z0, zn−1)P (zn−1, zn) ,

and recursively

Pn(x,y) >
n∏
i=1

P (zi−1, zi) > 0 ,

where the last inequality follows from (2.2), since for all i = 1, . . . , n, the Hamming distance
between zi−1 and zi is at most 1.

2.1.2 Invariance under utility translation

Let G = ([n],S,U) be a game and let G̃ = ([n],S, Ũ) be a new game obtained from G by
substituting the utility functions with a new family Ũ = {ũi : i ∈ [n]} of utility functions as
follows

ũi(x) := ui(x) + ci for all x and for all i .

We observe that G and G̃ have the same logit dynamics. Indeed, according to (2.1), when the
game is at profile x player i chooses strategy y with probability

σ̃i(y | x) =
eβũi(x−i,y)∑
z∈Si e

βũi(x−i,z)
=

1∑
z∈Si e

β[ũi(x−i,z)−ũi(x−i,y)]

=
1∑

z∈Si e
β[ui(x−i,z)−ui(x−i,y)]

= σi(y | x) .

2.1.3 Noise changes under utility rescaling

While translations of utilities do not affect logit dynamics, a rescaling of the utility functions
for a constant α > 0 changes the inverse noise from β to α · β. Indeed, if for every player i and
every profile x we set

ũi(x) := α · ui(x) ,

then, from (2.1), we have

σ̃i(y | x) =
eβũi(x−i,y)∑
z∈Si e

βũi(x−i,z)
=

eαβui(x−i,y)∑
z∈Si e

αβui(x−i,z)
.
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Notice that, unlike the previous property that holds even if for each player i we add a different
constant ci to the utility functions, here we must have the same rescaling constant α for all
utility functions.

2.1.4 Logit dynamics vs. Glauber dynamics

In a potential game, the logit dynamics is equivalent to the well-studied Glauber dynamics. In
fact, let S = S1× · · · ×Sn be a state space and µ be a probability distribution over S, then the
Glauber dynamics for µ proceeds as follows: from profile x ∈ S, pick a player i ∈ [n] uniformly
at random and update her strategy at y ∈ Si with probability µ conditioned on the other players
being at x−i, i.e.,

µ(y | x−i) =
µ(x−i, y)∑
z∈Si µ(x−i, z)

.

It is easy to see that the Markov chain defined by the Glauber dynamics is irreducible, aperiodic,
and reversible with stationary distribution µ. When G = ([n],S,U) is a potential game with
potential function Φ, the logit dynamics defines the same Markov chain as the Glauber dynamics
for the Gibbs distribution π in (2.3). Indeed, in this case we have

σi(y | x) =
eβui(x−i,y)∑
z∈Si e

βui(x−i,z)
=

1∑
z∈Si e

β(ui(x−i,z)−ui(x−i,y))

=
1∑

z∈Si e
β(Φ(x−i,y)−Φ(x−i,z))

=
e−βΦ(x−i,y)∑
z∈Si e

−βΦ(x−i,z)
=

π(x−i, y)∑
z∈Si π(x−i, z)

.

Hence, logit dynamics for potential games and Glauber dynamics for Gibbs distributions are
two ways of looking at the same Markov chain: in the former case the dynamics is derived from
the potential function, in the latter case from the stationary distribution. However, observe that
in general the Glauber dynamics for the stationary distribution of the logit dynamics is different
from the logit dynamics (see, for example, the Matching Pennies case in Subsection 2.2.1).

Due to the analogies between logit and Glauber dynamics, we will sometimes adopt the
terminology used by physicists to indicate the quantities involved (see for example Section 3.2);
in particular we will denote parameter β as inverse noise or inverse temperature and the nor-
malizing constant Z of the Gibbs distribution (2.3) as partition function.

2.2 Some simple examples

Let us consider now the logit dynamics to a pair of very simple games. Our examples will
highlight some interesting features of the dynamics and its related equilibrium concept.

2.2.1 Matching Pennies

Consider the classical Matching Pennies game:

H T
H +1,−1 −1,+1
T −1,+1 +1,−1

(2.4)

According to (2.1), the update probabilities for the logit dynamics are, for every x ∈ {H, T}

σ1(H | (x,H)) = σ1(T | (x, T )) = 1
1+e−2β = σ2(T | (H,x)) = σ2(H | (T, x)) ,

σ1(T | (x,H)) = σ1(H | (x, T )) = 1
1+e2β

= σ2(H | (H,x)) = σ2(T | (T, x)) .
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Hence the transition matrix (see (2.2)) is

P =


HH HT TH TT

HH 1/2 b/2 (1− b)/2 0
HT (1− b)/2 1/2 0 b/2
TH b/2 0 1/2 (1− b)/2
TT 0 (1− b)/2 b/2 1/2

 (2.5)

where, for readability sake, we named b = 1
1+e−2β .

You can see that each player has a positive probability to play every strategy in her strategy
set: however, the probability that the selected player plays the best response increases, as the
rationality level β increases.

Since every column of the matrix adds up to 1, the matrix is doubly stochastic and the
uniform distribution π over the set of strategy profiles is the stationary distribution for the logit
dynamics.

We observe that the Glauber dynamics for π generates a transition matrix different from P :
this proves that the perfect match between logit dynamics and Glauber dynamics holds only
for potential games and not for every game.

2.2.2 A stairs game

Let G be a potential game where every player has two strategies, say upstairs (or 1) and
downstairs (or 0). Define the potential of a profile x ∈ {0, 1}n as the number of players that
are upstairs, i.e. Φ(x) = −|x|1.

Then, the partition function is

Z(β) =
∑

x∈{0,1}n
e−β|x|1 =

n∑
k=0

(
n

k

)
e−βk =

(
1 + e−β

)n
,

and the stationary distribution is

π(x) =
e−β|x|1

(1 + e−β)
n .

Observe that the probability that the player selected for the update plays strategy 1 (or equiv-
alently strategy 0) is independent of the strategies played by other players. Indeed, according
to (2.1), for every x it holds that

σi(1 | x) =
eβui(x−i,1)

eβui(x−i,1) + eβui(x−i,0)
=

1

1 + eβ(ui(x−i,0)−ui(x−i,1))

=
1

1 + eβ(Φ(x−i,1)−Φ(x−i,0))
=

1

1 + eβ(−(|x−i|+1)+|x−i|)
=

1

1 + e−β
.

This example shows that for potential games it is very easy to describe the stationary
distribution and the update probabilities even for n-player games: this is one of the main
reasons for which almost every game that we consider in this work will be a potential game.

2.3 Motivations

In the original work by Blume [18] that introduced logit dynamics, it is highlighted that this
dynamics handles two key features of strategic behavior: lock-in and bounded rationality.
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The lock-in property establishes that, once a player makes a choice, she is committed to it for
some while: assuming this property holds in reality (and this is admissible if we consider decision
costs or costs for strategy update) justifies a strategy selection rule that takes into account only
the strategies actually played by other players and not the strategies they previously played.
This is exactly what the logit dynamics update rule (2.1) does.

The bounded rationality property appears in the logit dynamics in two different aspects: the
myopic behavior, i.e., players contemplate only the present reward and not the expected stream
of rewards, and the limited information available to players. As suggested by Harsanyi and
Selten [57], the last aspect can be handled by considering a probabilistic model that involves
suitably chosen random moves. It is evident that the logit dynamics update rule (2.1) embodies
both these aspects of bounded rationality.

The probabilistic approach of the logit dynamics is also motivated by the goal to model the
evolution of complex systems, that are intrinsically random and thus they can be described only
by means of probabilistic models.

Bounded rationality is just one of the properties that, as pointed out in Section 1.2.7, make
a dynamics attractive for analyzing complex systems. We will show that logit dynamics enjoys
many other ones.

Since the logit dynamics defines a Markov chain, the evolution of a system is modeled in a
clean and tractable way, by allowing deep analysis by means of tools from Markov chain theory.
Moreover, no restriction is given about the structure of the game or the utility functions: thus,
this dynamics can be universally applied to every system we are interested.

The natural equilibrium concept of the logit dynamics is the stationary distribution of the
Markov chain, already known as logit equilibrium [88]. Since the Markov chain described by the
logit dynamics is ergodic, we have that this equilibrium always exists and is unique.

Fudenberg and Levine [49] suggested universal consistency as a desiderata for any learning
algorithm. Specifically, a learning rule ρi for player i is ε-universally consistent if, regardless of
the play of the other players, almost surely holds that

lim
T→∞

sup max
xi∈Si

ui(xi, γ
T
i )− 1

T

∑
t

ui(ρi(ht−1)) 6 ε , (2.6)

where ht−1 is the history of play in the previous round of the game and γTi is the empirical
frequency of strategies by other players. Roughly speaking, a learning rule is universally con-
sistent if a player, using the learning algorithm, takes at least as much utility as she could have
gained had she known the frequency but not the order of observations in advance. The same
authors in [51] showed that the logit dynamics update rule in 2.1 is an universally consistent
learning rule.

Thus, logit dynamics satisfies a lot of interesting properties, that motivates its adoption as
a model of evolution of games. However, these properties do not explain the reasons beyond
the introduction of this dynamics. Therefore, it is natural to raise the questions: Why does the
parameter β in (2.1) represent the rationality level? And why does a player with rationality β
play according to (2.1)? In the remaining of this section we will give two different answers to
these questions: the first one based on the random utility model in Economics, the second one
on information theory concepts.

2.3.1 An economic interpretation of the update rule

The random utility model [14] has been broadly adopted in economic theory, and in particular
in the area of rational stochastic choice theory. This model claims that the difference between
observed utilities and real utilities is given by stochastic error terms concentrated around 0. The
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random utility model strongly derives from the pioneering work of Thurstone in psychometrics
and especially in the fields of measurement [121] and factor analysis [122].

One of the prominent random utility models is the log-linear model , that considers the
error terms as independent random variables identically distributed according to a standard
log-Weibull distribution (known also as Gumbel distribution): this distribution is essentially
the same as the normal distribution (except in the tail), but it will result analytically more
tractable.

Based on the log-linear utility model, we can set for every player i, for every strategy s ∈ Si
and for every strategy profile x−i ∈ S1 × . . .× Si−1 × Si+1 × . . .× Sn,

Ui(s,x−i) = βui(s,x−i) + εi(s,x−i) , (2.7)

where Ui(s,x−i) is the real utility of player i, ui(s,x−i) is the guessed utility and εi(s,x−i) the
error term. Here, β represents how much we are confident that the guess is right (except for a
small error term). Alternatively, we can think ui(s,x−i) as the utility computed by the player
i and β as a measure of “how much the computation is right”: thus, a large value of β, by neu-
tralizing any error term, means we are assuming player i is able to do any computation in order
to maximize utility, so she is fully rational ; conversely, small β means we are assuming player i
has bounded rationality , since the utility that she is able to compute is only a far approximation
of the real utility and, thus, computed preferences could not match real preferences.

Assuming the utilities are as described in (2.7), we can motivate the adoption of the update
rule (2.1) by following the approach of McFadden [86] about random utility maximization. Since
a selfish player wants to maximize the real utility, the probability that player i plays the strategy
s ∈ Si, given that other players are in the profile x−i, is

σi(s | x−i) = P (Ui(s,x−i) > Ui(z,x−i), for every z 6= s)

= P (εi(z,x−i) 6 β(ui(s,x−i)− ui(z,x−i)) + εi(s,x−i), for every z 6= s) .

For sake of readability, we will use ∆sz as a shorthand for β(ui(s,x−i)−ui(z,x−i)). Since error
terms are independent and they take values in (−∞,+∞), we have

σi(s | x−i) =

∫ +∞

−∞
P (εi(z,x−i) 6 ∆sz + ε, for every z 6= s) P (εi(s,x−i) = ε) dε

=

∫ +∞

−∞
P (εi(s,x−i) = ε)

∏
z 6=s

P (εi(z,x−i) 6 ∆sz + ε) dε .

Since error terms are log-Weibull distributed, we have that

P (εi(s,x−i) = ε) = e−εe−e
−ε

= e−εe−e
−(∆ss+ε)

,

and for every z 6= s

P (εi(z,x−i) 6 ∆sz + ε) = e−e
−(∆sz+ε)

.

Hence,

σi(s | x−i) =

∫ +∞

−∞
e−ε

∏
z∈Si

e−e
−(∆sz+ε)

dε =

∫ +∞

−∞
e−εe

−e−ε
∑
z∈Si

e−∆sz
dε .

By setting t = e−ε, we will have

σi(s | x−i) =

∫ +∞

0
e
−t
∑
z∈Si

e−∆sz
dt =

1∑
z∈Si e

−∆sz
=

eβui(s,x−i)∑
z∈Si e

βui(z,x−i)
.

Thus, the update rule (2.1) is exactly the probability that player i adopts the strategy s when
her computed utility is ui(·) and the level of exactness of the computation, i.e., the rationality
level, is β.
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2.3.2 An information theoretical interpretation of the update rule

Wolpert defined in [130] a measure of rationality based on information theory concepts and
then he showed that, given that a player has a level of rationality β, the best prediction about
the behavior of this player is given by the Boltzmann distribution in (2.1).

Before to show these results, we have to review some useful concepts from information theory
and optimization theory.

Entropy, Maxent Principle, and Kullback-Leibler distance

In the following we summarize some basic concepts of information theory useful for under-
standing the remaining of the section: for a more detailed description we refer the reader to
[35].

Entropy. In information theory, the (Shannon) entropy Hb of a probability distribution σ
over a space S is

Hb(σ) =
∑
s∈S

σ(s) logb
1

σ(s)
.

Usually b = 2, but we will use b = e.
The entropy Hb(σ) is a measure of the uncertainty associated with a random variable X that

takes values in S with probability distribution σ. Or, alternatively, the entropy is a measure of
the amount of information in a probability distribution σ: indeed, the amount of information
is equivalent to “how much uncertainty the distribution clears up” with respect to some prior
knowledge µ (if we have no prior knowledge then µ is the distribution with maximal uncertainty,
i.e., the uniform distribution) and thus it can be measured as Hb(µ)−Hb(σ).

More precisely, the entropy Hb(σ) is the expected number of b-ary information units that
we need to represent a random variable X that takes values in S with probability distribution
σ. If b = 2, we are considering as information unit the binary unit (bit), whereas if b = e, we
are considering natural units (nats).

The Shannon source coding theorem establishes that, if we want to encode a random variable
X that takes values in S with probability distribution σ with an alphabet of size b, the expected
word-length is at least Hb(σ).

Maxent Principle. How we can estimate a distribution σ, given some incomplete prior in-
formation about it?

The maximum entropy (maxent) principle [64] suggests that the best estimation we can do
is the one that contains the minimal amount of extra information beyond the prior knowledge.
Or equivalently, the best approximation for σ is the distribution that maximizes the entropy
between all distributions that agree with the prior knowledge.

Kullback-Leibler distance. Given two probability distributions σ1 and σ2, how they are
distant with respect to the information provided?

Let us consider a random variable X2 that assumes values in S with probability distribution
σ2: above discussion about entropy and Shannon source coding theorem shows that the optimal
encoding of X2 assigns to every symbol s ∈ S a string of at least logb σ2(s)−1 b-ary information
units and the expected word-length of X is at least Hb(σ2).

Now, consider the random variable X1 with distribution σ1 on the same space S: it is evident
that the expected word-length of X1 when we encode it by using the optimal encoding for X2
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is at least

Hb(σ1, σ2) =
∑
s∈S

σ1(s) logb
1

σ2(s)
,

that is called cross entropy .
Intuitively, if σ1 and σ2 convey similar information we expect that the optimal code for X2

is good enough also for encoding X1. For this reason, the Kullback-Leibler distance,

KLb (σ1‖σ2) = Hb(σ1, σ2)−Hb(σ1) =
∑
s∈S

σ1(s) logb
σ1(s)

σ2(s)
, (2.8)

is used to measure the gap between the information provided by σ1 and by σ2. We notice that
KLb (σ1‖σ2) is not a metric and in particular it is not symmetric. However, it is known that
KLb (σ1‖σ2) is always non-negative and it is zero if and only if the distributions are identical
(this result is known as Gibbs’ inequality [81]).

The method of Lagrange multipliers

Consider a combinatorial optimization problem

maximize f(x1, . . . , xn)

subject to g(x1, . . . , xn) = c .
(2.9)

The method of Lagrange multipliers is a technique to solve such problems. It introduces a new
variable λ > 0 (the Lagrange multiplier) and considers the following function, called Lagrangian,

L(x1, . . . xn, λ) = f(x1, . . . , xn)− λ [c− g(x1, . . . , xn)] .

We can solve Problem (2.9), by maximizing the Lagrangian L(x1, . . . xn, λ). In particular, a
solution to Problem (2.9) as function of the Lagrange multiplier λ, is found by solving the
following system of differential equations:{

∂L(x1,...xn,λ)
∂xi

= 0 for 1 6 i 6 n .

An exact solution to Problem (2.9) follows if we add the equation c− g(x1, . . . , xn) = 0 to the
system.

For a more detailed description of optimization theory concepts we refer the reader to [23].

A measure of rationality

We look for an operator R that, given an objective function to maximize, like ui(· | x−i), and
a probability distribution σi on Si, returns a measure of how much rational σi is with respect
to the objective. In this paragraph, we motivate the adoption of the measure

Rui(·|x−i)(σi) = arg min
β
KLe

(
σi‖µβui(·|x−i)

)
, (2.10)

where µβui(·|x−i) is the Boltzmann distribution given in (2.1). In the following we will use R(σi)

and µβ when the reference to ui(· | x−i) is clear from the context. Moreover, from now on,
whenever we refer to entropy and Kullback-Leibler distance, we assume b = e, even if the
subscript is omitted.
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A selfish and rational player i plays the (mixed) strategy that obtains the maximum utility
u?i given x−i: this is our prior knowledge about the behavior of player i. The maxent prin-
ciple suggests that the best estimation about the strategy played by i will be the probability
distribution σi that

maximize H(σi)

subject to Eσi [ui(·,x−i)] =
∑
s∈Si

σi(s)ui(s,x−i) = u?i .
(2.11)

This combinatorial optimization problem can be solved via the method of Lagrange multipliers:
the maxent Lagrangian is

M(σi, β) = H(σi)− β [u?i −Eσi [ui(·,x−i)]] . (2.12)

Before solving the optimization problem, let us discuss the role of β (the Lagrange multiplier)
in (2.12). If β is small, then M(σi, β) can be very large even if the expected utility with respect
to σi is far from the maximum utility: thus, small β means we are assuming player i could
have a bounded rational behavior. On the other hand, if β is large, then M(σi, β) can be large
only if the expected utility in according to σi is close to the maximum utility: thus, large
β means we are considering a fully rational player. Thus, the Lagrange multiplier β in the
maxent Lagrangian perfectly specifies the balance between the rational and irrational behavior
of a player.

Now let look to the solution of the maxent Lagrangian.

Lemma 2.3.1. The solution to the Problem (2.11) as function of the Lagrange multiplier is
given by the Boltzmann distribution in (2.1).

Proof. Assume Si = {s1, . . . , s|Si|}. For j = 1, . . . , |Si|, we have to satisfy the equations

∂M(σi)

∂σi(sj)
= βui(sj ,x−i)− lnσi(sj)− 1 = 0 .

Hence follows that σi(sj) = 1
ee
βui(si,x−i) and, by normalizing, we complete the proof.

Thus, the Boltzmann distribution with parameter β is the best approximation of the strategy
that will be played by a player i, and β measures how much the player is rational.

However, we do not have yet a rationality operator. Obviously, if the distribution σi that
we want to test is distributed as a Boltzmann distribution with parameter λ, then the above
discussion suggests that we can consider such λ as the measure of the rationality of σi. What
about σi that is non-Boltzmann? Notice that if KL

(
σi‖µλ

)
is small, then the information pro-

vided by σi is more on less the same as the information convoyed by the Boltzmann distribution
of parameter λ, or, equivalently, the latter is a good approximation of σi: thus λ will be a good
approximation of the rationality of σi.

In this way we have motivated the rationality operator R given in (2.10). We observe that
R is always non negative. However, if ui(·,x−i) is constant, then R is not really meaningful
(this depend on the fact that every σi obtains the same expected utility, thus every probability
distribution is equivalently rational). For this reason in the next paragraph, we will consider
only non-constant utility functions.
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Approximating the behaviour of a bounded-rational player

Once we have an operator that measures the rationality of a choice, we can reverse the question:
if we know that the player i has rationality β?, which is the best estimation that we can do
about the behavior of player i?

In order to answer this question, we use again the maxent principle: given our prior knowl-
edge about rationality of player i, the best estimation is the probability distribution σi that

maximize H(σi)

subject to R(σi) = β? .
(2.13)

The following lemma shows an alternative way to express the constraint of Problem (2.13).

Lemma 2.3.2. R(σi) = β? if and only if Eσi [ui(·,x−i)] = Eµβ? [ui(·,x−i)].

Proof. The proof proceeds in three steps.
Step 1: We observe that Eµλ [ui(·,x−i)] is a strictly increasing function in the parameter λ.
Indeed,

∂Eµλ [ui(·,x−i)]
∂λ

=
∑
s∈Si

µλ(s)ui(s,x−i)
2 −

∑
s∈Si

µλ(s)ui(s,x−i)

2

= V arµλ [ui(·,x−i)] > 0 ,

where the last inequality is strict since we are considering non-constant utility functions. As a
consequence, we obtain that R(σi) = β? if and only if EµR(σi) [ui(·,x−i)] = Eµβ? [ui(·,x−i)].
Step 2: We observe that, for every λ > 0,

∂ ln
∑

s∈Si e
λui(s,x−i)

∂λ
=
∑
s∈Si

ui(s,x−i)
eλui(s,x−i)∑
s∈Si e

λui(s,x−i)
= Eµλ [ui(·,x−i)] .

Step 3: From the definition of rationality measure in (2.10) and the definition of Kullback-
Leibler distance in (2.8), we have

R(σi) = arg min
λ

ln
∑
s∈Si

eλui(s,x−i) − λEσi [ui(·,x−i)]

 .
This is equivalent to say that

0 =
∂
(
ln
∑

s∈Si e
R(σi)ui(s,x−i) −R(σi)Eσi [ui(·,x−i)]

)
∂R(σi)

=
∂ ln

∑
s∈Si e

R(σi)ui(s,x−i)

∂R(σi)
−Eσi [ui(·,x−i)] .

Now, setting u? = Eµβ? [ui(·,x−i)], the combinatorial problem in (2.13) is exactly the same
as Problem (2.11). Thus, by Lemma 2.3.1, follows that the solution for Problem (2.13) is given
by the Boltzmann distribution in (2.1). Finally, since we are solving the optimization problem
with the method of Lagrange multipliers, the exact solution is found by imposing the condition

Eµβ [ui(·,x−i)] = Eµβ? [ui(·,x−i)] ,

that is, β = β?. Thus we have obtained that, given that player i has rationality level β?, the best
estimation about the behavior of i is that she plays according to the Boltzmann distribution
in (2.1) with parameter β?.
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2.4 Relations with other dynamics

In this section we show relations between the logit dynamics and some of the dynamics discussed
in Section 1.2.

2.4.1 Best response dynamics

The logit dynamics can be viewed as a randomized version of the best response dynamics.
Actually, as already underlined in [18] and in [88], our dynamics is only an instance of the class
of noisy best response dynamics [48, 66]: in these dynamics, player i, if selected for the update
when other players are playing x−i, will play a best response with a probability αi(x−i) and a
non-best response with probability 1− αi(x−i).

It is easy to see that, as the rationality level β in (2.1) goes to infinity, thus the logit
dynamics approaches to the best response dynamics and, if the game is a potential game, the
logit equilibrium approaches to a Nash equilibrium (or a distribution over Nash equilibria).
Unfortunately, this means that the logit dynamics inherits some of the drawbacks of the best
response dynamics: in particular, as established in Section 1.2.2, there are games where, when
β goes to infinity, the logit dynamics takes an exponential (in the number of players) number
of steps to reach the logit equilibrium.

One of the main goals of this work, that will be carried out in next chapters, is to evaluate
the convergence time of the logit dynamics to the stationary distribution for each value of β.

2.4.2 No regret dynamics

We notice that the definition of universal consistency in (2.6) is very similar in spirit to (but not
the same as) the definition of regret minimizing algorithm. Moreover, the logit equilibrium, the
equilibrium concept related to the logit dynamics, is a probability distribution over the profile
space, like the correlated equilibrium, that, as pointed in Section 1.2.4, is the equilibrium
concept related to the no regret dynamics. Given such similarities, it is natural to ask if logit
dynamics is a no regret dynamics and in particular if the stationary distribution is a correlated
equilibrium. We can give a negative answer to these questions. Consider, indeed, the following
game:

0 1
0 1, 2 1, 2
1 0, 1 0, 1

It is easy to see that the strategy 0 is dominant for the row player: thus any correlated equilib-
rium has to assign zero probability to profiles 10 and 11. It is also easy to see that the game is
a potential game with potential function

Φ(00) = Φ(01) = 1 and Φ(10) = Φ(11) = 0 .

Thus the logit equilibrium is given by the Gibbs distribution in (2.3) and we can check that,
for every finite β, the probability assigned to profiles 10 and 11 is greater than zero.

2.5 Experimental results

Several experiments that compare predictions of logit dynamics and real data have been pre-
sented in literature. In particular, in this section we will report the ones presented by McKelvey
and Palfrey [88] and by Camerer et al. [28]: here, we are only concerned in evaluating and dis-
cussing those results. For more details we refer to the original papers.
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McKelvey and Palfrey [88] focus on experiments involving two-person games with a unique
Nash equilibrium where there are not outcomes Pareto preferred to the Nash equilibrium. Real
data are collected from different experiments run in more than 30 years: a 3-strategy zero
sum game repeated 200 times [77], a 4-strategy zero sum game repeated 150 times [105], a
5-strategy zero sum game repeated 120 times [111], a 2-strategy non zero sum game repeated
640 times [103]. In [88], it is calculated, for each experiment, a maximum likelihood estimate
of the parameter β and it is analyzed how well the model fits the data. Results show that
the logit dynamics predicts systematic deviations from Nash equilibrium. Nevertheless, authors
also notice that there are aspects of real data that remain unexplained by the logit dynamics,
such as if there exists some consistency in the rationality parameter β across experiments.

Camerer et al. [28] consider seven games: two matrix games with unique mixed Nash
equilibrium [95]; a patent race game [110]; a median-action order statistic coordination game
[125]; a continental-divide coordination game [124]; a dominance solvable beauty contest [60];
a price matching game [30]. In [28], parameter β is estimated by using the 70% of the subjects
and then those estimations are used to predict choices by the remaining 30%. In another test,
parameters are estimated on six of the seven games and then such parameters are used to predict
choices in the remaining seventh game. From these tests, it is possible to see that there are
games where the predictions of the logit dynamics are comparable to the ones of more powerful
dynamics like EWA learning dynamics and its self tuning version, introduced in Section 1.2.6:
we remember that these dynamics are analytically intractable and they are not supposed to
converge in any game. However, there are class of games where logit dynamics fits poorly real
data: it will be interesting to understand why this happens and if a characterization exists for
games that are experimentally well described by the logit dynamics.
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Chapter 3

State of Art

In this chapter we survey previous results about logit dynamics. Moreover, we introduce the
Ising model, used by physicists to modeling spin systems, and we show some results about
the mixing time of Glauber dynamics for the Ising model. We start our discussion by giving
evidence of the relations between our research and the literature on this subject.

3.1 Logit dynamics

Research on the logit dynamics mainly focused on two lines: results that try to characterize the
dynamics as β goes to infinity, that we summarize in Section 3.1.1, and results that estimate
the hitting time of specific profiles when β is large, that we discuss in Section 3.1.2.

3.1.1 Equilibrium selection

The equilibrium selection problem was introduced by Harsanyi and Selten in 1988: in their
excellent book [57] they pointed out that the Nash equilibrium concept has several weaknesses,
in particular the presence of multiple Nash equilibria. Specifically, they noticed that almost
every nontrivial game has many (and sometimes infinitely many) different equilibrium points,
and this is a limit to the predictive power of game theory, since it is impossible to establish which
equilibrium will be selected by players. To overcame these weaknesses, they proposed several
new solution concepts and provided a mathematical criterion in order to select one equilibrium
point as the solution of the game.

The criterion adopted by Harsanyi and Selten involves the introduction of vanishing noise in
the game that allow to go out from “weak” equilibria, but not from the “strongest” equilibrium.
Since logit dynamics introduces noise too, a lot of interest has been devoted to understand which
equilibrium will be selected by the dynamics when the perturbation vanishes.

The first class of games that has been considered is the class of 2 × 2 coordination games.
These are games in which players have an advantage in selecting the same strategy. These
games are often used to model the spread of a new technology [109]: two players have to decide
whether to adopt or not a new technology and it is assumed that the players would prefer
choosing the same technology as the other one.

The game is formally described by the following payoff matrix

0 1
0 a, a c, d
1 d, c b, b

(3.1)

We assume that a > d and b > c which implies that players have an advantage in selecting the
same strategy of their opponents. This game has two pure Nash equilibria: (0, 0), where each
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player has utility a, and (1, 1), where each player has utility b. If a − d > b − c we say that
(0, 0) is the risk dominant equilibrium; if a − d < b − c we say that (1, 1) is the risk dominant
equilibrium; otherwise we say that no risk dominant equilibrium exists.

The risk dominant equilibrium concept is one of the refinements of Nash equilibrium pro-
posed by Harsanyi and Selten [57], and it is the equilibrium that is more likely to be played
by players that do not know the actions taken by other players. In the spread of technology
example, we can assume that every player, if she does not known anything about the other
player action, prefers to choose the new technology: with this assumption the outcome where
both select the new technology will be the risk dominant equilibrium.

Blume [18] proved the following result about logit dynamics for 2× 2 coordination games.

Theorem 3.1.1 ([18]). Let G be a 2×2 coordination game such that a risk dominant equilibrium
x exists and let P be the transition matrix of the logit dynamics for G. Then, for every starting
profile y, we have that

lim
β→∞

lim
t→∞

P t(y,x) = 1 .

That is, the logit dynamics will select the risk dominant equilibrium as the noise vanishes.

A similar result holds even if both players have more than 2 strategies.
A graphical coordination games is a game in which n players are connected by a network G =

(V,E) (encoding, for example, social relationships) and every player plays the basic coordination
game (3.1) with each of the adjacent players. Specifically, when a player selects her strategy,
such a strategy is played against each one of her adjacent players. The payoff of a player is given
by the sum of the payoffs gained from each instance of the basic coordination game. It is easy
to see that the profiles where all players play the same strategy are Nash equilibria: moreover,
if (0, 0) is risk dominant for the basic coordination game, then profile 0 = (0, . . . , 0) will be the
risk dominant profile for the graphical coordination game. Ellison [40] gave a result similar to
Theorem 3.1.1 for graphical coordination games on two network topologies: the clique, where
every player is connected to every other players, and the ring , where every player has exactly
two neighbors.

Theorem 3.1.2 ([40]). Let G be a graphical coordination game on a graph G such that a risk
dominant equilibrium x exists and let P be the transition matrix of the logit dynamics for G. If
G is a clique or a ring, then, for every starting profile y, we have that

lim
β→∞

lim
t→∞

P t(y,x) = 1 .

That is, the logit dynamics will select the risk dominant equilibrium as the noise vanishes.

A strategy s ∈ Si is said dominated if, for every profile x−i, there exists a strategy z ∈ Si,
with z 6= s, such that

ui(z,x−i) > ui(s,x−i) .

Consider a game G0: starting from i = 1, we obtain the game Gi by deleting all dominated
strategies in Gi−1, until it is possible. The set of iteratively dominated strategies of G0 contains
all the strategies eliminated during this process.

Blume [18] showed that profiles involving iteratively dominated strategies cannot be selected
by the logit dynamics as the noise vanishes.

Theorem 3.1.3 ([18]). Let G be a game, S be the set of strategy profiles of G and V ⊆ S be
the set of profiles that involves iteratively dominated strategies. Let P be the transition matrix
of the logit dynamics for G. Then, for every starting profile x, we have that

lim
β→∞

lim
t→∞

P t(x, S \ V ) = 1 .
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Logit dynamics for potential games attracted a lot of attention, because of peculiarity of
this class of games (see Section 2.1.4). In particular, as a corollary of Theorem 2.0.9, we have
the following result.

Corollary 3.1.4 ([18]). Let G be a potential game such that an unique potential minimizer x
exists and let P be the transition matrix of the logit dynamics for G. Then, for every starting
profile y, we have that

lim
β→∞

lim
t→∞

P t(y,x) = 1 .

That is, the logit dynamics will select the potential minimizer as the noise vanishes.

Several generalizations of the class of potential games have been presented in literature,
such as weighted potential games, ordinal potential games, best response potential games and
generalized potential games. A game is a weighted potential games [93] if there exists a function
Φ: S → R and weights w1, . . . , wn such that for every player i, every profile x ∈ S, and every
pair of strategies s, z ∈ Si, it holds that

ui(s,x−i)− ui(z,x−i) = wi (Φ(z,x−i)− Φ(s,x−i)) .

A game is an ordinal potential game [93] if there exists a function Φ: S → R such that for every
player i, every profile x ∈ S, and every pair of strategies s, z ∈ Si, it holds that ui(s,x−i) −
ui(z,x−i) and Φ(z,x−i) − Φ(s,x−i) have the same sign. A game is a best-response potential
game [127] if there exists a function Φ: S → R such that for every player i, every profile x ∈ S,
it holds that

arg max
s∈Si

ui(s,x−i) = arg min
s∈Si

Φ(s,x−i) .

Last, a game is a generalized ordinal potential game [93] if there exists a function Φ: S → R such
that for every player i, every profile x ∈ S, and every pair of strategies s, z ∈ Si, we have that
ui(s,x−i)−ui(z,x−i) > 0 implies Φ(z,x−i)−Φ(s,x−i) > 0. It is easy to see that every potential
game is a weighted potential game and every weighted potential game is an ordinal potential
game. Moreover, the classes of best-response potential games and generalized ordinal potential
games are both generalizations of the class of ordinal potential game: however, Voorneveld [127]
showed that these two classes are distinct.

Unfortunately, Alós-Ferrer and Netzer [1] showed recently that Corollary 3.1.4 has not an
equivalent for generalizations of potential games. Specifically, they prove the following result.

Theorem 3.1.5 ([1]). Let G be a best-response potential game and let P be the transition matrix
of the logit dynamics for G. For every starting profile y, let Vy be the set of profiles x such that

lim
β→∞

lim
t→∞

P t(y,x) > 0 .

Then Vy is a subset of the set of Nash equilibria of G.

Alternatively, we can say that, if the game is a best-response potential game, then the logit
dynamics selects a local minimum of the potential function as the noise vanishes. However, there
are games where, differently from exact potential games, the global minimum is not selected
and this is showed by the following example.

0 1
0 6, 2 0, 0
1 0, 0 3, 3

(3.2)
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This game is a coordination game between two different players: indeed, (0, 0) and (1, 1) are
the Nash equilibria. We can check that the game is a weighted potential game with potential
function

Φ(0, 0) = −6 Φ(0, 1) = −12

5
Φ(1, 0) = 0 Φ(1, 1) = −27

5

and weights w1 = 1 and w2 = 5/9. Thus the profile (0, 0) is the potential minimizer, whereas
Alós-Ferrer and Netzer [1] showed that the logit dynamics will select (1, 1) as noise vanishes
(intuitively, their result follows from the fact that it is easier that a player selects the wrong
strategy when the loss in utility is only 2, than when the loss is 3).

Alós-Ferrer and Netzer [1] also prove that Theorem 3.1.5 is tight, that is they prove that for
the class of generalized ordinal potential games the logit dynamics does not necessarily select a
Nash equilibrium. This is showed by the following game:

0 1
0 0, 0 0, 1
1 0, 1 1, 0

(3.3)

The game is a generalized ordinal potential game with potential function

Φ(0, 0) = 0 Φ(0, 1) = −1 Φ(1, 0) = −3 Φ(1, 1) = −2 .

The unique Nash equilibrium is (1, 0). Anyway, it is easy to see that, even when the noise
vanishes, any profile has a positive probability to be reached. In particular, there is a non-zero
probability that the game will be in a profile where the column player selects the strategy 1,
whereas in every mixed Nash equilibria this strategy has zero probability.

3.1.2 The hitting time of the Nash equilibrium

Since we know that there are games such that for high values of β the logit dynamics converges
to a specific profile, a natural question is: how much time does the system take to reach such a
profile? This question was raised for the first time by Ellison [40] about graphical coordination
games. In particular, he proved that when players are on a clique, the hitting time of the risk
dominant equilibrium is exponential in the number of players1. Ellison [40] also gave evidence
that the topology of the graph influences the time the dynamics takes to reach specific profiles,
and proved that the rate of convergence in the clique is slower than the rate of convergence in
the ring.

Peyton Young [109] has continued the work of Ellison, by proving a sufficient condition for
fast convergence to the risk dominant strategy in graphical coordination game when β is large.
Consider a undirected connected graph G = (V,E) and two non-empty subsets S′, S′′ of V . Let
|E(S′, S′′)| be the number of edges with an endpoint in S′ and the other one in S′′ and |E(S′)|
be the number of edges with at least one endpoint in S′. A subset of vertices S′ is said r-close
knit, for 0 6 r 6 1, if

min
S′′⊆S′

|E(S′, S′′)|
|E(S′)|

= r .

That is, every member of S′ has at least a fraction r of its neighbors in S′′. A graph G = (V,E)
is (r, k)-close knit if for every vertices v ∈ V , there exists S′ ⊂ V such that v ∈ S′, |S′| 6 k
and S′ is r-close knit. A family of graphs is close knit if for every 0 6 r 6 1/2 there exists an
integer k(r) such that every graph in the family is (r, k(r))-close knit. Examples of close-knit
families of graphs are the class of all polygons and the family of square lattices. The following
theorem holds.

1In [40] a different dynamics is considered, but it is easy to see that the proof holds also for the logit dynamics
with slightly modifications.
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Theorem 3.1.6 ([109]). Let G be an n-player graphical coordination game on a graph G from
a close knit family of graphs. Assume that a risk dominant equilibrium x exists. Then, given a
small δ > 0, there exist βδ and τ = τ(β, δ, k(·)), such that for every β > βδ and every starting
profile y, the probability that after τ steps of the logit dynamics for G a fraction 1− δ of players
are playing the risk dominant strategy is at least 1− δ.

Roughly speaking, the above theorem says that for every starting profile, the logit dynamics
gets close to the risk dominant equilibrium before time τ (large but independent of n) with high
probability if β is sufficiently large.

Montanari and Saberi [94] extended results about hitting time of risk dominant equilibrium
in graphical coordination games, by deriving the graph theoretical quantities that characterize
it. Consider a graph G = (V,E) such that |V | = n. Let L be the set of all linear orderings
L = {i(1), i(2), . . . , i(n)} of vertices: for a linear ordering L ∈ L and an integer 1 6 t 6 n, we
define Lt = {i(1), . . . , i(t)}. Given the basic coordination game (3.1), we set h = a−d−b+c

a−d+b−c and,
for every player i, hi = h|N(i)|, where N(i) is the number of neighbors of player i in G. The
tilted cutwidth of a graphical coordination game on a graph G is

Γ(G,h) = min
L∈L

max
16t6n

(
|E(Lt, V \ Lt)| −

∑
i∈Lt

hi

)
,

where h = (h1, . . . , hn). Roughly speaking, this quantity corresponds to the maximum increase
of the potential function along the lowest sequence of profiles from an equilibrium profile to the
risk dominant profile, that is the sequence that minimizes this increase.

Let R be a collection of subsets of V such that ∅ ∈ R and V /∈ R: such collection is said
monotone if whenever A ∈ R, then A′ ∈ R, for every A′ ⊆ A. We denote with R the set of all
monotone collections of subsets of V . Moreover, let ∂R be the set of pairs (A,A ∪ {i}) such
that A ∈ R and A ∪ {i} /∈ R. The tilted cut of a graphical coordination game on a graph G is

∆(G,h) = max
R∈R

min
(A1,A2)∈∂R

max
i=1,2

|E(Ai, V \Ai)| −
∑
i∈Ai

hi

 .

The tilted cut can be seen as a dual quantity of the tilted cutwidth: indeed, it corresponds to
the lowest value of the potential function between the highest pair of neighboring profiles.

For an induced subgraph F ⊆ G, we set hFi = hi + |N(i)|G\F , where |N(i)|G\F is the degree

of i in G \ F , and hF =
(
hF1 , . . . , h

F
n

)
.

Last, for a profile x ∈ S, we define the typical hitting time

Tx = sup
y∈S

inf
{
t > 0: Py (τx > t) 6 e−1

}
,

where τx is the hitting time as defined in Section 1.3. Then, the following theorem holds.

Theorem 3.1.7 ([94]). Let G be an n-player graphical coordination game on a graph G such
that a risk dominant equilibrium x exists. For the logit dynamics, we have that the typical hitting
time of x is

Tx = exp{2βΓ?(G,h) + o(β)} ,

where Γ?(G,h) = maxF⊆G Γ(F,hF ) = maxF⊆G ∆(F,hF ).

In their work, Montanari and Saberi [94] bound Γ? for several families of graphs, like random
graphs and small-world networks. It is important to note that the term o(β) in the above
theorem can hide n-dependent factors.
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The hitting time of specific profiles has been analyzed also for games other than graphical
coordination games. In particular, Asadpour and Saberi [2] consider two subclasses of potential
games, namely unweighted routing games and load balancing games, and they evaluate the
typical hitting time of the set Aε of profiles x such that Φ(x) 6 (1 + ε)Φmin, where Φmin is the
minimum value that the potential function assumes.

In an unweighted routing game, we have a directed graph G = (V,E) and n pairs of vertices
(s1, t1), . . . , (sn, tn), where every si is called source and every ti is called sink. Each player
corresponds to a different pair. Every edge has a nonnegative continuous nondecreasing cost
function ce : R+ → R+. Player i has to select a path from si to ti. When every player has
selected a path, we denote as fe the number of players that go through the edge e: the cost
that player i pays is the sum of the costs ce(fe) of the edges in the path that i selected. Then,
the following theorem holds.

Theorem 3.1.8 ([2]). Let G an n-players unweighted routing game such that the graph G has at
most K vertices and M edges and the cost functions are polynomials of degree at most d. Then,
for every constant ε > 0 there exists a value β0 = β0(M,K, d, ε) such that, for any β > β0, the
typical hitting time of Aε is at most Kn3. Moreover, the Markov chain will almost always be in
Aε after hitting it.

In a load balancing game, there are n jobs of integer positive weights w1, . . . , wn, each one
controlled by a different player, and m identical machines. Every job has to select a machine,
where it will be run. The load lj of the machine j is the sum of the weights of the jobs assigned
to j. Player i incurs in a cost equivalent to the load of the machine where job i has been
assigned. We denote with lavg the average load of the machines, i.e. lavg =

∑
j lj/m, and with

wmax the maximum weights among jobs. Then, the following theorem holds.

Theorem 3.1.9 ([2]). Let G a load balancing game with n jobs and m machines. Then, for
every constant ε > 0 there exists a value β0 = β0(wmax, ε) such that, for any β > β0, the typical
hitting time of Aε is O

(
l2avgnm

3
)
. Moreover, the Markov chain will almost always be in Aε

after hitting it.

We emphasize that both in Theorem 3.1.8 and in Theorem 3.1.9 the total size of the re-
sources, namely K,M, lavg, wmax and m, is constant in the number of players. Indeed, Asadpour
and Saberi [2] show that there are games where a convergence polynomial in the size of the
resources is possible only for small values of β, but for such values of β the dynamics does not
remain close to the potential minimizer for long time.

3.2 Glauber dynamics for Ising model

The Ising model is a mathematical model used in Statistical Physics for ferro-magnetism: it
represent a set of magnets, each having one of the two possible orientations, or spins, positive
or negative. Magnets can influence each other: in order to represent such interactions we can
assume that n magnets are placed on the vertices of a graph G = (V,E) with |V | = n and an
edge between two magnets means that they influence each other. We denote with xv ∈ {+1,−1}
the spin of the magnet at vertex v ∈ V , with x = (xv)v∈V a configuration of magnets and with
S the set of all possible configurations. Moreover, we define the energy of a configuration

Φ(x) = −
∑

u,v∈V :
(u,v)∈E

xuxv .

Thus, the energy decreases as the number of pairs of magnets whose spins agree decreases. The
strength of the interaction between magnets depends on the temperature: if the temperature
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is low, then interaction is strong and magnets’ behavior tends to minimize the energy of the
system; on the contrary, when the temperature is low, the interaction between magnets is weak
and the system could not minimize the energy. This behavior allows to describe the system
through the Gibbs measure, defined by

π(x) =
e−βΦ(x)

Z(β)
,

where β can be interpreted as the inverse of the temperature and Z(β), called partition function,
is the normalizing constant required to make π a probability distribution, i.e.,

Z(β) =
∑
x∈S

e−βΦ(x) .

The evolution of a system towards this probability distribution is usually modeled by the Glauber
dynamics for the Gibbs measure: a configuration x is updated by taking a vertex v ∈ V
uniformly at random and updating the spin of the magnet placed at v according the Gibbs
distribution with the condition that the resulting profile accords with x everywhere except at
vertex v. That is, the transition matrix on S is given by

P (x,y) =
1

n
·


σv(yv |x), if y−v = x−v and yv 6= xv;∑

v∈V σv(yv |x), if y = x;

0, otherwise;

where

σv(yv |x) =
eβuv(yv ,x−v)

eβuv(yv ,x−v) + eβuv(x)
,

and, for every profile x, we have

uv(x) = xv
∑
u∈V :

(v,u)∈E

xu .

For a more detailed description of the Ising model and its dynamics we refer the reader to
[82]. Here, we highlight that the Glauber dynamics for the Gibbs measure in the Ising model
corresponds to the logit dynamics for a specific graphical coordination games, that we call
Ising game. Here, the magnets are the agents that play with each neighbor the following basic
coordination game.2

+1 −1
+1 +1,+1 −1,−1
−1 −1,−1 +1,+1

Moreover, we can check that uv(·) is exactly the utility function of the player placed on the
vertex v and Φ(·) is the potential function of the game: then, the correspondence between the
two dynamics follows from the discussion in Section 2.1.4.

We introduced this game because, differently from other graphical coordination games, the
mixing time of the logit dynamics for this game has been bounded for several of different
topologies of the underlying graph. A lot of work has been done about the Ising game on the
square lattice and we refer the interested reader to [82] for a survey of the major results for this
setting.

Recently, several and different results have been found for general graphs. Specifically, it
has been proved that the mixing time is fast when β is small (see Theorem 15.1 in [75]).

2Note that in this coordination game no risk dominant strategy exists.
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Theorem 3.2.1. Consider the Ising game on a graph with n vertices and maximal degree d.
Let c(β) = 1−d eβ−e−β

eβ+e−β
. If c(β) > 0, then the mixing time of the logit dynamics for this game is

tmix(ε) 6

⌈
n(log n− log ε)

c(β)

⌉
. (3.4)

In particular, (3.4) holds whenever β < 1
d .

Berger et al. [12] gave a bound to the mixing time that depends on a structural property of
the graph G. Specifically, consider the bijective function L : V → {1, . . . , |V |}: it represents an
ordering of vertices of G. Let L be the set of all orderings of vertices of G and set V L

i = {v ∈
V : L(v) < i}. Then, the cutwidth of G is

χ(G) = min
L∈L

max
1<i6|V |

|E(V L
i , V \ V L

i )| . (3.5)

The following theorem holds.

Theorem 3.2.2 ([12]). Consider the Ising game on a graph G with n vertices and maximal
degree d. The relaxation time of the logit dynamics for this game is at most

n · e(4χ(G)+2d)β .

Then, the bound to the mixing time follows from Theorem 1.3.4.
Other results are known for specific graph structures: in particular, for the clique and the

ring. We start with the clique (see Theorem 15.3 in [75]).

Theorem 3.2.3. Consider the Ising game on a clique with n vertices. If β < 1
n , the mixing

time of the logit dynamics for this game is

tmix(ε) 6
n(log n− log ε)

1− nβ
.

If β > 1
n , then there exists r = r(n · β) positive such that

tmix = O (ern) .

Above theorem does not say what happens when β = 1/n. This case is considered by the
following theorem due to Levin et al. [74].

Theorem 3.2.4 ([74]). Consider the Ising game on a clique with n vertices. If β = 1
n , then the

mixing time of the logit dynamics for this game is

tmix = Θ
(
n3/2

)
.

Lastly, Ding et al. [39] gave a full characterization of the mixing time evolution as β increase,
showing how the mixing time changes in function of the distance between β and 1/n.

The mixing time for the ring topology is faster as showed by the following theorem (see
Theorem 15.4 in [75]).

Theorem 3.2.5. Consider the Ising game on a ring with n vertices. For any β > 0 and fixed
ε > 0, the mixing time of the logit dynamics for this game is

tmix(ε) = Θ
((

1 + e4β
)
n log n

)
.
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3.3 How our work relates to the previous literature

In next chapters we present our results about the mixing time of the logit dynamics for different
games or classes of games. Specifically, we first show our approach with some introductory games
in Chapter 4 and then we show our main results in Chapter 5.

Our main contribution is to propose logit equilibrium as a new equilibrium concept for
dealing with the evolution of complex systems. Differently, works summarized in Section 3.1
focus on Nash equilibrium and its refinements as equilibrium concepts.

This difference between our work and previous literature about logit dynamics has another
meaningful effect: our results holds for every β, whereas results given in Section 3.1 assume β
very large. This is because, for small values of β the probability that the dynamics will not be in
a Nash equilibrium is high, even at stationarity: analyzing the convergence to this equilibrium
is not meaningful, since the chain can leave this profile quickly. Nevertheless, many ideas arising
from the previous results about logit dynamics guided us in our research work.

Our approach is instead similar to the one pursued by the works about Glauber dynamics
for the Ising model cited in Section 3.2: in particular, some of our findings extend results given
in that section to more generic graphical coordination games. However, we also consider wider
classes of games, such as potential games. In general, techniques and ideas from results in
Section 3.2 have been really useful to our research.

Lastly, in Chapter 6, we introduce metastability as a way to deal with logit dynamics for
games when the mixing time is exponential. Even if metastability was known, especially in
Physics literature (that we will survey in Chapter 6), our approach is completely original, in
which we move our focus from states to distributions.
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Chapter 4

Mixing time and stationary expected
social welfare

One of the main goal of this work is to introduce the logit equilibrium as equilibrium concept for
games evolving according the logit dynamics. In this chapter, in order to justify this adoption,
we give bounds to the time that the dynamics takes to converge to the equilibrium and we
estimate the quality of the equilibrium. Specifically, we study the mixing time of the logit
dynamics and the stationary expected social welfare for some introductory games1:

• We start by analyzing in Section 4.2 the logit dynamics for a simple 3-player linear con-
gestion game (the CK game [33]) which exhibits the worst Price of Anarchy among linear
congestion games. We show that the mixing time of the logit dynamics is upper bounded
by a constant independent of β. Moreover, we show that the stationary expected social
welfare is larger than the social welfare of the worst Nash equilibrium for all β;

• Then, in Section 4.3, we analyze the basic coordination games given in (3.1). Here we show
that, under some conditions, the stationary expected social welfare is larger than the social
welfare of the worst Nash equilibrium. We give upper and lower bounds on the mixing
time exponential in β. We also observe that the same bounds apply to anti-coordination
games;

• Finally, in Sections 4.4 and 4.5, we apply our analysis to two simple n-player games: the
OR game and the XOR game. We give upper and lower bounds on the mixing time:
we show that the mixing time of the OR game can be upper bounded by a function
independent of β, while the mixing time of the XOR game increases exponentially in β.
We also prove that for β = O(log n) the mixing time is polynomial in n for both games.
Despite their game-theoretic simplicity, the analytical study of the mixing time of the logit
dynamics for the two n-player games is far from trivial.

Before showing these results, we give some preliminary definitions in Section 4.1.

4.1 Preliminary definitions

Let G be a game with profile space S. Let W : S −→ R be a social welfare function (in this
chapter we assume that W is simply the sum of all the utility functions W (x) =

∑n
i=1 ui(x),

but clearly any other function of interest can be analyzed). We define the stationary expected

1Most of the results in this chapter already appeared in [5].
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social welfare as the expectation of W when the strategy profiles are random according to the
stationary distribution π of the Markov chain, i.e.

Eπ [W ] =
∑
x∈S

W (x)π(x) .

In this chapter we will bound the mixing time and we evaluate the stationary expected social
welfare of the logit dynamics for some simple but interesting games. We illustrate the approach
of this chapter on the two simple examples given in Section 2.2.

Matching Pennies. Since the uniform distribution is stationary for this game, the stationary
expected social welfare is 0 for every inverse noise β.

As for the mixing time, it is easy to see that it is upper bounded by a constant independent
of β. Indeed, a direct calculation shows that, for every x ∈ {HH, HT, TH, TT} and for every
β > 0 it holds that ∥∥P 3(x, ·)− π

∥∥
TV

6
7

16
<

1

2
.

A stairs game. One of the main techniques used to give upper bounds on the mixing time
of Markov chains is the coupling technique (see Theorem 1.3.1). In this example we use it to
upper bound the mixing time of the logit dynamics for a simple game.

We can define a coupling of two Markov chains starting at two different profiles as follows:
choose i ∈ [n] uniformly at random and perform the same update at player i in both chains2.
When every player has been chosen at least once the two chains have coalesced. From the
coupon collector’s argument, it takes O(n log n) to have that, with probability at least 3/4, all
players have been chosen at least once. By applying Theorem 1.3.1 we have that the mixing
time is O(n log n).

In the above examples, it turned out that the mixing time of the logit dynamics can be
upper bounded by functions that do not depend on the inverse noise β. As we shall see in the
next sections, this is not always the case. Moreover, the analysis of the mixing time is usually
far from trivial.

4.1.1 Description of the Coupling

Throughout the chapter we will use the coupling and path coupling techniques (see Theo-
rem 1.3.1 and Theorem 1.3.3) to give upper bounds on mixing times. Since we will use the
same coupling idea in several proofs, we describe it here and we will refer to this description
when we will need it.

Consider an n-player 2-strategy game G and let us rename 0 and 1 the strategies of every
player. For every pair of strategy profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ {0, 1}n we define
a coupling (X1, Y1) of two copies of the Markov chain with transition matrix P defined in (2.2)
for which X0 = x and Y0 = y.

The coupling proceeds as follows: first, pick a player i uniformly at random; then, update
the strategies xi and yi of player i in the two chains, by setting

(xi, yi) =


(0, 0), with probability min{σi(0 | x), σi(0 | y)} ;

(1, 1), with probability min{σi(1 | x), σi(1 | y)} ;

(0, 1), with probability σi(0 | x)−min{σi(0 | x), σi(0 | y)} ;

(1, 0), with probability σi(1 | x)−min{σi(1 | x), σi(1 | y)} .
2This is the same coupling used in the analysis of the lazy random walk on the hypercube (e.g. see Section 5.3.3

in [75]), the only difference being that the probability of choosing 0 or 1 is not 1/2, 1/2 but 1/(1+eβ), 1/(1+e−β).
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Three easy observations are in order: if σi(0 | x) = σi(0 | y) and player i is chosen, then, after
the update, we have xi = yi; for every player i, at most one of the updates (xi, yi) = (0, 1) and
(xi, yi) = (1, 0) has positive probability; if i is chosen for update, then the marginal distributions
of xi and yi agree with σi(· | x) and σi(· | y) respectively, indeed, for b ∈ {0, 1}, the probability
that xi = b is

min {σi(b | x), σi(b | y)}+ σi(b | x)−min{σi(b | x), σi(b | y)} = σi(b | x) ,

and the probability that yi = b is

min{σi(b | x), σi(b | y)}+ σi(1− b | x)−min{σi(1− b | x), σi(1− b | y)} =

= min{σi(b | x), σi(b | y) + (1− σi(b | x))− (1−max{σi(b | x), σi(b | y)}) = σi(b | y) .

We define G = (Ω, E) as the Hamming graph of the game, where Ω = {0, 1}n is the set of
strategy profiles, and two profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Ω are adjacent if they
differ only for the strategy of one player, i.e.

{x,y} ∈ E ⇐⇒ x ∼ y . (4.1)

For the path coupling technique (see Theorem 1.3.3), the coupling described above is applied
only to pairs of adjacent starting profiles.

4.2 A 3-player congestion game

In this section we analyze the CK game, a simple 3-player linear congestion game introduced in
[33]. This game is interesting because it highlights the weakness of the Price of Anarchy notion
for the logit dynamics. Indeed, the CK game exhibits the worst Price of Anarchy with respect
to the average social welfare among all linear congestion games with 3 or more players. But, as
we shall see soon, the stationary expected social welfare of the logit dynamics is always larger
than the social welfare of the worst Nash equilibrium and, for large enough β, players spend
most of the time in the best Nash equilibrium. Moreover, we will show that the mixing time of
the logit dynamics can be bounded independently from β: that is, the stationary distribution
guarantees a good social welfare and it is quickly reached by the system.

Let us now describe the CK game. We have 3 players and 6 facilities divided into two
sets: G = {g1, g2, g3} and H = {h1, h2, h3}. Player i ∈ {0, 1, 2} has two strategies: Strategy “0”
consists in selecting facilities (gi, hi); Strategy “1” consists in selecting facilities (gi+1, hi−1, hi+1)
(index arithmetic is modulo 3). The cost of a facility is the number of players choosing such
facility, and the utility of a player is minus the sum of the costs of the facilities she selected. It
easy to see that this game has two pure Nash equilibria: the solution where every player plays
strategy 0 (each player pays 2, which is optimal), and the solution where every player plays
strategy 1 (each player pays 5). The game is a congestion game, and thus, by [114], it is also a
potential game and its potential function is:

Φ(x) =
∑

j∈G∪H

Lx(j)∑
i=1

i ,

where Lx(j) is the number of players using facility j in configuration x.
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Stationary expected social welfare. It is easy to see that the update probabilities given
by the logit dynamics for this game (see Equation (2.1)) only depend on the number of players
playing strategy 1 and not on which player is actually playing that strategy. In particular,
we have that, from a profile x, the player i, if selected for update, plays strategy 0 with the
following probabilities:

σi(0 | |x−i| = 0) =
1

1 + e−4β
, σi(0 | |x−i| = 1) =

1

1 + e−2β
, σi(0 | |x−i| = 2) =

1

2
, (4.2)

and strategy 1 with the remaining probabilities. Next theorem evaluates the stationary expected
social welfare for this game.

Theorem 4.2.1 (Expected social welfare). The stationary expected social welfare Eπ [W ] of
the logit dynamics for the CK game is

Eπ [W ] = −6 + 39e−4β + 63e−6β

1 + 3e−4β + 4e−6β
.

Proof. We notice that two profiles with the same number of players playing strategy 1 have
both the same potential (and, by Equation (2.3), the same stationary distribution) and the
same social welfare. Thus, π(x) = π[k] and W (x) = W [k] for a profile x such that |x|1 = k,
with

π[0] =
e−6β

Z(β)
, π[1] =

e−10β

Z(β)
, π[2] = π[3] =

e−12β

Z(β)
,

where Z(β) = e−6β + 3e−10β + 4e−12β, and

W [0] = −6 , W [1] = −13 , W [2] = −16 , W [3] = −15 .

Hence, the stationary expected social welfare is

Eπ [W ] = −6 · e−6β + 3 · 13 · e−10β + (3 · 16 + 15) · e−12β

e−6β + 3e−10β + 4e−12β
= −6 + 39e−4β + 63e−6β

1 + 3e−4β + 4e−6β
.

Notice that for β = 0 we have Eπ [W ] = −27/2, which is better than the social welfare of the
worst Nash equilibrium. This means that, even if each player selects her strategy at random,
the logit dynamics drives the system to a random profile whose expectation is better than the
worst Nash equilibrium. We also observe that Eπ [W ] increases with β and thus the long-term
behavior of the logit dynamics gives a better social welfare than the worst Nash equilibrium
for any β > 0. Moreover, the stationary expected social welfare approaches the optimal social
welfare as β tends to ∞.

Mixing time. Now we study the mixing time of the logit dynamics for the CK game and we
show that it is bounded by a constant for any β > 0. The proof will use the coupling theorem
(see Theorem 1.3.1).

Theorem 4.2.2 (Mixing time). There exists a constant τ such that the mixing time tmix of the
logit dynamics of the CK game is upper bounded by τ for every β > 0.

Proof. First, we notice that the update probabilities given in Equation (4.2) imply that

∀ i,∀x,∀β, σi(0 | x) > 1/2 . (4.3)
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Let Xt and Yt be two copies of the logit dynamics for the CK game, starting in x and y
respectively, coupled as described in Section 4.1.1. It is easy to check that, by Equation (4.3),
the player selected for update, chooses strategy 0 in both chain with probability at least 1/2.

Finally, we bound the probability that after three steps the two coupled chains coalesce: it
is at least as large as the probability that we choose three different players and all of them play
strategy 0 at their turn, i.e.

Px,y (X3 = Y3) >
1

2
· 1

3
· 1

6
=

1

36
.

Since this bound holds for every starting pair (x,y), we have that the probability the two chains
have not yet coalesced after 3t steps is

Px,y (X3t 6= Y3t) 6

(
1− 1

36

)t
6 e−t/36 .

The thesis follows from Theorem 1.3.1.

4.3 Two player games

In this section we analyze the performance of the logit dynamics for 2× 2 coordination games
given in (3.1) and 2× 2 anti-coordination games.

Coordination games. For convenience sake we name

∆ := a− d and δ := b− c . (4.4)

It is easy to see that the coordination game is a potential game and the following function is
an exact potential for it:

Φ(0, 0) = −∆ Φ(0, 1) = Φ(1, 0) = 0 Φ(1, 1) = −δ.

This game has two pure Nash equilibria: (0, 0), where each player has utility a, and (1, 1), where
each player has utility b. As d + c < a + b, the social welfare is maximized at one of the two
equilibria.

We analyze the mixing time of the logit dynamics for 2×2 coordination games and compute
its stationary expected social welfare as a function of β.

Stationary expected social welfare. The logit dynamics for the coordination game defined
by the payoffs in Table 3.1 establishes that, from a profile x, player i selected for update plays
according to the following probability distribution (see Equation (2.1)):

σi(0 | x−i = 0) = 1
1+e−∆β , σi(1 | x−i = 0) = 1

1+e∆β
,

σi(0 | x−i = 1) = 1
1+eδβ

, σi(1 | x−i = 1) = 1
1+e−δβ

.

Next theorem bounds the stationary expected social welfare Eπ [W ] obtained by the logit dy-
namics and gives conditions for which Eπ [W ] is better than the social welfare SWN of the worst
Nash equilibrium.

Theorem 4.3.1 (Expected social welfare). The stationary expected social welfare Eπ [W ] of
the logit dynamics for the coordination game in Table 3.1 is

Eπ [W ] = 2 · a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
.

Moreover, if a 6= b then Eπ [W ] > SWN for β sufficiently large.
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Proof. The stationary distribution π of the logit dynamics is

π(0, 0) =
e∆β

Z(β)
π(1, 1) =

eδβ

Z(β)
π(0, 1) = π(1, 0) =

1

Z(β)

where Z(β) = e∆β + eδβ + 2.
Since Eπ [W ] = 2·Eπ [ui], we compute the expected utility Eπ [ui] of player i at the stationary

distribution,

Eπ [ui] =
∑

x∈{0,1}2
ui(x)π(x)

=
ae∆β + beδβ + c+ d

e∆β + eδβ + 2

=
a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
.

Thus, if a > b and β > max
{

0, 1
∆ log 2b−c−d

a−b

}
, we have

Eπ [W ]− SWN = 2 · a+ be−(∆−δ)β + (c+ d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
− 2b = 2 · (a− b)− (2b− c− d)e−∆β

1 + e−(∆−δ)β + 2e−∆β
> 0 .

Similarly, we obtain Eπ [W ]− SWN > 0 if b > a and β > max
{

0, 1
δ log 2a−c−d

b−a

}
.

Mixing time. Now we study the mixing time of the logit dynamics for coordination games
and we show that it is exponential in β and in the minimum potential difference between
adjacent profiles.

Theorem 4.3.2 (Mixing Time). The mixing time of the logit dynamics for the coordination
game 3.1 is Θ

(
eδβ
)

for every β > 0.

Proof. Upper bound: We apply the Path Coupling technique (see Theorem 1.3.3) with the
Hamming graph defined in (4.1) and all the edge-weights set to 1. Let x and y be two profiles
differing only for the player j and consider the coupling defined in Section 4.1.1 for this pair of
profiles. Now we bound the expected distance of the two coupled chains after one step.

We denote by bi(x,y) the probability that both chains perform the same update given that
player i has been selected for strategy update. Clearly, bi(x,y) = 1 for i = j, while for i 6= j,
we have

bi(x,y) = min{σi(0 | x), σi(0 | y)}+ min{σi(1 | x), σi(1 | y)}

=
1

1 + e∆β
+

1

1 + eδβ
.

For sake of readability we set

p =
1

1 + e∆β
and q =

1

1 + eδβ

and thus bi(x,y) = p + q. To compute Ex,y [ρ(X1, Y1)], we observe that the logit dynamics
chooses player j with probability 1/2. In this case, as bj(x,y) = 1, the coupling updates both
chains in the same way, resulting in X1 = Y1. Similarly, player i 6= j is chosen for strategy
update with probability 1/2. In this case, with probability bi(x,y) the coupling performs the
same update in both chains resulting in ρ(X1, Y1) = 1. Instead with probability 1 − bi(x,y),
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the coupling performs different updates on the chains resulting in ρ(X1, Y1) = 2. Therefore we
have,

Ex,y [ρ(X1, Y1)] =
1

2
bi(x,y) + 2 · 1

2
(1− bi(x,y))

= 1− 1

2
bi(x,y) = 1− 1

2
(p+ q) 6 e−

1
2

(p+q) .

Since the diameter of the Hamming graph is 2, from Theorem 1.3.3, with α = 1
2(p+ q), follows

that

tmix(ε) 6
2 (log 2 + log(1/ε))

p+ q
=

1

p+ q
log

4

ε2
.

Lower bound: We use the relaxation time bound (see Theorem 1.3.4). The transition matrix of
the logit dynamics is

P =


00 01 10 11

00 1− p p/2 p/2 0

01 1−p
2

p+q
2 0 1−q

2

10 1−p
2 0 p+q

2
1−q

2

11 0 q/2 q/2 1− q


It is easy to see that the second largest eigenvalue of P is λ? = (1−p)+(1−q)

2 , hence the relaxation
time is trel = 1/(1− λ?) = 2

p+q , and for the mixing time we have

tmix(ε) > (trel − 1) log
1

2ε
=

2− (p+ q)

p+ q
log

1

2ε

>
1

p+ q
log

1

2ε
.

In the last inequality we used that p and q are both smaller than 1/2.
Finally, the theorem follows by observing that

1

p+ q
=

1
1

1+e∆β
+ 1

1+eδβ

= Θ
(
eδβ
)
.

Notice that, if we used the relaxation time to upper bound the mixing time (see Theo-
rem 1.3.4) we would get a non-tight bound, hence in the above proof we had to resort to the
path coupling for the upper bound.

Anti-coordination games. Very similar results can be obtained for anti-coordination games.
These are two-player games in which the players have an advantage in selecting different strate-
gies. They model many settings where there is a common and exclusive resource: two players
have to decide whether to use the resource or to drop it. If they both try to use it, then a
deadlock occurs and this is bad for both players. Usually, these games are described by a payoff
matrix like (3.1), where we assume that d > a and c > b and that d−a > c−b. Notice that Nash
equilibria of this game are unfair, as one player has utility max{c, d} and the other min{c, d}.

For the logit dynamics, we have that, for all β, the stationary expected social welfare is worse
than the one guaranteed by a Nash equilibrium. On the other hand, for sufficiently large β we
have that the expected utility of a player is always better than min{c, d}: that is, in the logit
dynamics each player expects to gain more than in the worst Nash equilibrium. Moreover, the
stationary distribution is a fair equilibrium, since every player has the same expected utility. As
for the coordination games, the mixing time is exponential in β and in the minimum potential
difference between adjacent profiles.
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4.4 The OR game

In this section we consider the following simple n-player potential game that we here call OR
game. Every player has two strategies, say {0, 1}, and each player pays the OR of the strategies
of all players (including herself). More formally, the utility function of player i ∈ [n] is

ui(x) =

{
0, if x = 0 ;

−1, otherwise.

Notice that the OR game has 2n − n Nash equilibria. The only profiles that are not Nash
equilibria are the n profiles with exactly one player playing 1. Nash equilibrium 0 has social
welfare 0, while all the others have social welfare −n.

In Theorem 4.4.1 we show that the stationary expected social welfare is always better than
the social welfare of the worst Nash equilibrium, and it is significantly better for large β.
Unfortunately, in Theorem 4.4.2 we show that if β is large enough to guarantee a good stationary
expected social welfare, then the time needed to get close to the stationary distribution is
exponential in n. Finally, in Theorem 4.4.3 we give upper bounds on the mixing time showing
that if β is relatively small then the mixing time is polynomial in n, while for large β the upper
bound is exponential in n and it is almost-tight with the lower bound. Despite the simplicity
of the game, the analysis of the mixing time is far from trivial.

Theorem 4.4.1 (Expected social welfare). The stationary expected social welfare of the logit

dynamics for the OR game is Eπ [W ] = −αn where α = α(n, β) = (2n−1)e−β

1+(2n−1)e−β
.

Proof. Observe that the OR game is a potential game with exact potential Φ where Φ(0) = 0
and Φ(x) = 1 for every x 6= 0. Hence the stationary distribution is

π(x) =

{
1/Z, if x = 0 ;

e−β/Z, if x 6= 0 ;

where the normalizing factor is Z = 1 + (2n − 1)e−β. The expected social welfare is thus

Eπ [W ] =
∑

x∈{0,1}n
W (x)π(x) = −n · (2n − 1)e−β

1 + (2n − 1)e−β
.

In the next theorem we show that the mixing time can be polynomial in n only if β 6 c log n
for some constant c.

Theorem 4.4.2 (Lower bound on mixing time). The mixing time of the logit dynamics for the
OR game is

1. Ω(eβ) if β < log(2n − 1);

2. Ω(2n) if β > log(2n − 1).

Proof. Consider the set R ⊆ {0, 1}n containing only the state 0 = (0, . . . , 0) and observe that
π(0) 6 1/2 for β 6 log(2n − 1). The bottleneck ratio is

B(0) =
1

π(0)

∑
y∈{0,1}n

π(0)P (0,y) =
∑

y∈{0,1}n : |y|1=1

P (0,y) = n · 1

n

1

1 + eβ
.
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Hence, by applying Theorem 1.3.7, the mixing time is

tmix >
1

B(0)
= 1 + eβ .

If β > log(2n − 1) instead we consider the set R ⊆ {0, 1}n containing all states except state 0,
and observe that

π(R) =
1

Z
(2n − 1)e−β =

(2n − 1)e−β

1 + (2n − 1)e−β
.

and π(R) 6 1/2 for β > log(2n − 1). It holds that

Q(R,R) =
∑
x∈R

π(x)P (x,0) =
∑

x∈{0,1}n : |x|1=1

π(x)P (x,0) = n
e−β

Z

1

n

1

1 + e−β
.

The bottleneck ratio is

B(R) =
Q(R,R)

π(R)
=

Z

(2n − 1)e−β
e−β

Z

1

1 + e−β
=

1

(2n − 1)(1 + e−β)
<

1

2n − 1
.

Hence, by applying Theorem 1.3.7, the mixing time is

tmix >
1

B(R)
> 2n − 1 .

In the next theorem we give upper bounds on the mixing time depending on the value of β. The
theorem shows that, if β 6 c log n for some constant c, the mixing time is effectively polynomial
in n with degree depending on c. The use of the path coupling technique in the proof of the
theorem requires a careful choice of the edge-weights.

Theorem 4.4.3 (Upper bound on mixing time). The mixing time of the logit dynamics for the
OR game is O(n5/22n) for every β. Moreover, for small values of β the mixing time is

1. O(n log n) if β < (1− ε) log n, for an arbitrary small constant ε > 0;

2. O(nc+3 log n) if β 6 c log n, where c > 1 is an arbitrary constant.

Proof. We apply the path coupling technique (see Theorem 1.3.3) with the Hamming graph
defined in (4.1). Let x,y ∈ {0, 1}n be two profiles differing only at player j ∈ [n] and, without
loss of generality, let us assume |x| = k − 1 and |y| = k for some k = 1, . . . , n. We set the
weight of edge {x,y} depending only on k, i.e. `(x,y) = δk where δk > 1 will be chosen later.
Consider the coupling defined in Section 4.1.1.

Now we evaluate the expected distance after one step Ex,y [ρ(X1, Y1)] of the two coupled
chains (Xt, Yt) starting at (x,y). Let i be the player chosen for the update. Observe that if
i = j, i.e. if we update the player where x and y are different (this holds with probability 1/n),
then the distance after one step is zero, otherwise we distinguish four cases depending on the
value of k.
Case k = 1: In this case profile x is all zeros and profile y has only one 1 and the length of edge
{x,y} is `(x,y) = δ1. When choosing a player i 6= j (this happens with probability (n− 1)/n),
at the next step the two chains will be at distance δ1 (if in both chains player i chooses strategy
0, and this holds with probability min{σi(0 | x), σi(0 | y)}), or at distance δ2 (if in both chains
player i chooses strategy 1, and this holds with probability min{σi(1 | x), σi(1 | y)}), or at
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distance δ1 + δ2 (if player i chooses strategy 0 in chain X1 and strategy 1 in chain Y1, and this
holds with the remaining probability). Notice that, from the definition of the coupling, it will
never happen that player i chooses strategy 1 in chain X1 and strategy 0 in chain Y1, indeed
we have that

min{σi(0 | x), σi(0 | y)} = σi(0 | y) =
1

2
and

min{σi(1 | x), σi(1 | y)} = σi(1 | x) =
1

1 + eβ
.

(4.5)

Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1

n

(
1

2
δ1 +

1

1 + eβ
δ2 +

(
1− 1

2
− 1

1 + eβ

)
(δ1 + δ2)

)
=

n− 1

n

(
δ1

1 + e−β
+
δ2

2

)
.

Case k = 2: In this case we have xj = 0 and yj = 1, there is another player h ∈ [n] \ {j} where
xh = yh = 1, and for all the other players i ∈ [n] \ {j, h} it holds xi = yi = 0. Hence the length
of edge {x,y} is `(x,y) = δ2.

When player h is chosen (this holds with probability 1/n) we have that σh(s | x) and
σh(s | y) for s ∈ {0, 1} are the same as in (4.5). At the next step the two chains will be at
distance δ2 (if player h stays at strategy 1 in both chains), or at distance δ1 (if player h chooses
strategy 0 in both chains), or at distance δ1 + δ2 (if player h stays at strategy 0 in chain X1 and
chooses strategy 1 in chain Y1).

When a player i /∈ {h, j} is chosen (this holds with probability (n − 2)/n) we have that
σi(0,x) = σi(1,x) = σi(0,y) = σi(1,y) = 1/2. Thus in this case the two coupled chains always
perform the same choice at player i, and at the next step they will be at distance δ2 (if player
i stays at strategy 0 in both chains) or at distance δ3 (if player i chooses strategy 1 in both
chains).
Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
1

n

(
δ1

2
+

δ2

1 + eβ
+

(
1− 1

2
− 1

1 + eβ

)
(δ1 + δ2)

)
+
n− 2

n

(
1

2
δ2 +

1

2
δ3

)
=

1

2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
.

Case 3 6 k 6 n− 1: When a player i 6= j is chosen such that xi = yi = 1 (this holds with
probability (k − 1)/n) then at the next step the two chains will be at distance δk (if i stays at
strategy 1) or at distance δk−1 (if i moves to strategy 0). When a player i 6= j is chosen such
that xi = yi = 0 (this holds with probability (n − k)/n) then at the next step the two chains
will be at distance δk (if i chooses to stay at strategy 0) or at distance δk+1 (if i chooses to move
to strategy 0). Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
k − 1

n

(
1

2
δk +

1

2
δk−1

)
+
n− k
n

(
1

2
δk +

1

2
δk+1

)
=

1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) .

Case k = n: When a player i 6= j is chosen, then at the next step the two chains will be at
distance δn or at distance δn−1. Hence the expected distance after one step is

Ex,y [ρ(X1, Y1)] =
n− 1

n

(
1

2
δn +

1

2
δn−1

)
=
n− 1

2n
(δn + δn−1) . (4.6)
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In order to apply Theorem 1.3.3 we now have to show that it is possible to choose the edge
weights δ1, . . . , δn and a parameter α > 0 such that

n− 1

n

(
δ1

1 + e−β
+
δ2

2

)
6 δ1e

−α ,

1

2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e

−α ,

1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α , for k = 3, . . . , n− 1 ,

n− 1

2n
(δn + δn−1) 6 δne

−α .

(4.7)

For different values of β, we make different choices for α and for the weights δk. For clarity’s
sake we split the proof in three different lemmas. We denote by δmax the largest δk.

In Lemma 4.4.4 we show that Inequalities (4.7) are satisfied for every value of β by choosing
the weights as follows

δk =


1
2 [(n− 1)δ2 + 1], if k = 1;
n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

and by setting α = 1/(2nδmax). From Corollary 4.4.9, we have δmax = O(
√
n2n). Observe that

the diameter of the Hamming graph is
∑n

i=1 δi 6 nδmax, hence from Theorem 1.3.3 we obtain
tmix = O

(
n5/22n

)
.

In Lemma 4.4.5 we show that, if β < (1 − ε) log n for an arbitrarily small constant ε > 0,
Inequalities (4.7) are satisfied, for sufficiently large n, by choosing weights δ1 = n1−ε, δ2 =
4/3, δ3 = . . . = δn = 1, and α = 1/n. In this case the diameter is O(n) and, by Theorem 1.3.3,
tmix = O(n log n).

In Lemma 4.4.6 we show that Inequalities (4.7) are satisfied by choosing weights as follows

δk =


1+e−β

2

[
a1
b1
δ2 + 1

]
, if k = 1;

ak
bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

where a1 = n− 1 and b1 = ne−β + 1 and, for every k = 2, . . . , n− 1

ak = (n− k)bk−1 and bk = (n+ 1)bk−1 − (k − 1)ak−1 ;

and by setting α = 1/(2nδmax). From Corollary 4.4.12 it follows that, if β 6 c log n for a
constant c ∈ N, we have that δmax = O(nc+2) and the diameter of the Hamming graph is
O(nc+3). Thus, by Theorem 1.3.3 it follows that tmix = O(nc+3 log n).

4.4.1 Technical lemmas

In this section we prove the technical lemmas needed for completing the proof of Theorem 4.4.3.

Lemma 4.4.4. Let δ1, . . . , δn be as follows

δk =


1
2 [(n− 1)δ2 + 1], if k = 1;
n−k
k δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

(4.8)

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (4.7) are
satisfied for every β > 0.
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Proof. Observe that, for every k = 1, . . . , n, the right-hand side of the k-th inequality in (4.7)
is

δke
−α = δke

−1/(2nδmax) > δk

(
1− 1

2nδmax

)
= δk −

δk
2nδmax

> δk −
1

2n
. (4.9)

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e

−α.

From the definition of δ1 in (4.8) we have that

δ2 =
2δ1 − 1

n− 1
.

Hence the left-hand side is

n− 1

n

(
δ1

1 + e−β
+
δ2

2

)
6
n− 1

n

(
δ1 +

δ2

2

)
=

n− 1

n

(
δ1 +

2δ1 − 1

2(n− 1)

)
=

1

2n
(2nδ1 − 1) = δ1 −

1

2n
.

Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e

−α.

From the definition of δ2 in (4.8) we have that

δ3 =
2

n− 2
(δ2 − 1) .

Hence the left-hand side of the second inequality is

1

2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6

1

2n
(2δ1 + (n− 1)δ2 + (n− 2)δ3)

=
1

2n
((n− 1)δ2 + 1 + (n− 1)δ2 + 2(δ2 − 1))

=
1

2n
(2nδ2 − 1) = δ2 −

1

2n
.

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.

From the definition of δk in (4.8) we have that

δk+1 =
k

n− k
(δk − 1) .

Hence the left-hand side is

((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1)

2n
=

((n− 1)δk + (n− k + 1)δk + (k − 1) + kδk − k)

2n

=
1

2n
(2nδk − 1) = δk −

1

2n
.

Last inequality (k = n): n−1
2n (δn + δn−1) 6 δne

−α.

Since δn = 1 and δn−1 = 1
n−1δn + 1 = n

n−1 , the left-hand side of the last inequality is

n− 1

2n
(δn + δn−1) =

n− 1

2n
(1 +

n

n− 1
) = 1− 1

2n
.
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Lemma 4.4.5. Let δ1, . . . , δn be as follows

δ1 = n1−ε, δ2 = 4/3, δ3 = · · · = δn = 1

where ε > 0 is an arbitrary small constant and let α = 1/n. Then Inequalities (4.7) are satisfied
for every β 6 (1− ε) log n and n sufficiently large.

Proof. We check that all the inequalities in (4.7) are satisfied.

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e

−α.

For the left-hand side we have

n− 1

n

(
δ1

1 + e−β
+
δ2

2

)
=

(
1− 1

n

)(
n1−ε

1 + e−β
+

2

3

)
6

(
1− 1

n

)(
n1−ε

1 + 1
n1−ε

+
2

3

)
=

(
1− 1

n

)(
n2(1−ε)

n1−ε + 1
+

2

3

)

=

(
1− 1

n

)(
(n1−ε + 1)(n1−ε − 1) + 1

n1−ε + 1
+

2

3

)
=

(
1− 1

n

)(
n1−ε +

1

n1−ε + 1
− 1

3

)
.

For the right-hand side we have

δ1e
−α = n1−εe−1/n > n1−ε

(
1− 1

n

)
.

Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).

Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e

−α.

For the left-hand side we have

1

2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
=

1

2n

(
2

1 + e−β
n1−ε + (n− 1)

4

3
+ (n− 2)

)
6

1

2n

(
2n1−ε +

7

3
n

)
=

7

6
+

1

nε
.

And for the right-hand side we have

δ2e
−α =

4

3
e−1/n >

4

3

(
1− 1

n

)
>

4

3
− 1

n
.

Hence the left-hand side is smaller than the right-hand one (for n sufficiently large).

Third inequality (k = 3): 1
2n ((n− 1)δ3 + 2δ2 + (n− 3)δ4) 6 δ3e

−α.

For the left-hand side we have

1

2n
((n− 1)δ3 + 2δ2 + (n− 3)δ4) =

1

2n

(
(n− 1) + 2

4

3
+ (n− 3)

)
=

1

2n
(2n− 3) 6

(
1− 1

n

)
.

And for the right-hand side we have

δ3e
−α = e−1/n >

(
1− 1

n

)
.
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Hence the left-hand side is smaller than the right-hand one.

Other inequalities (k > 4): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.

Since δk = δk−1 = δk+1 = 1 the left-hand side is equal to n−1
n and the right-hand side is

e−1/n > n−1
n .

Lemma 4.4.6. Let δ1, . . . , δn be as follows

δk =


1+e−β

2

[
a1
b1
δ2 + 1

]
, if k = 1;

ak
bk
δk+1 + 1, if 2 6 k 6 n− 1;

1, if k = n;

(4.10)

where a1 = n− 1 and b1 = ne−β + 1 and for every k = 2, . . . , n− 1

ak = (n− k)bk−1 and bk = (n+ 1)bk−1 − (k − 1)ak−1 ,

and let α = 1/(2nδmax) where δmax = max{δk : k = 1, . . . , n}. Then Inequalities (4.7) are
satisfied for every β > 0.

Before to prove the Lemma 4.4.6 we consider the following lemma.

Lemma 4.4.7. Let bk defined as in the Lemma 4.4.6. Then, for every k > 2, it holds that
bk > kbk−1.

Proof. We proceed by induction on k. The base case k = 2 follows from

b2 = (n+ 1)(ne−β + 1)− (n− 1) = (n+ 1)ne−β + 2 > 2(ne−β + 1) = 2b1 .

Now suppose the claim holds for k − 1, that is bk−1 > (k − 1)bk−2. Then

bk = (n+ 1)bk−1 − (k − 1)ak−1

= (n+ 1)bk−1 − (k − 1)(n− k + 1)bk−2

> [(n+ 1)− (n− k + 1)] bk−1 = kbk−1 .

Proof (Lemma 4.4.6). Observe that, as in Equation (4.9), for every k = 1, . . . , n, the right-hand
side of the k-th inequality in (4.7) is

δke
−α > δk −

1

2n
.

Now we check that the left-hand side is at most δk − 1/(2n).

First inequality (k = 1): n−1
n

(
δ1

1+e−β
+ δ2

2

)
6 δ1e

−α.

From the definition of δ1 in (4.10) we have that

δ2 =
ne−β + 1

n− 1

(
2δ1

1 + e−β
− 1

)
.

Hence the left-hand side is

n− 1

n

(
δ1

1 + e−β
+
δ2

2

)
=

n− 1

n

[
δ1

1 + e−β
+
ne−β + 1

n− 1

(
δ1

1 + e−β
− 1

2

)]
=

n− 1

n

δ1

1 + e−β

(
1 +

ne−β + 1

n− 1

)
− ne−β + 1

2n

6 δ1 −
1

2n
.
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Second inequality (k = 2): 1
2n

(
2

1+e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
6 δ2e

−α.

From the definition of δ2 in (4.10) we have that

δ3 =
b2
a2

(δ2 − 1) =
(n+ 1)b1 − a1

(n− 2)b1
(δ2 − 1) .

Hence the left-hand side is

1

2n

(
2

1 + e−β
δ1 + (n− 1)δ2 + (n− 2)δ3

)
=

1

2n

[(
a1

b1
δ2 + 1

)
+ (n− 1)δ2 +

(n+ 1)b1 − a1

b1
(δ2 − 1)

]
=

δ2 −
1

2n

nb1 − a1

b1
= δ2 −

1

2n

(
n− n− 1

ne−β + 1

)
6 δ2 −

1

2n
.

Other inequalities (k = 3, . . . , n− 1): 1
2n ((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) 6 δke

−α.

From the definition of δk in (4.10) we have that

δk+1 =
bk
ak

(δk − 1) =
(n+ 1)bk−1 − (k − 1)ak−1

(n− k)bk−1
(δk − 1) .

Hence the left-hand side is

1

2n
((n− 1)δk + (k − 1)δk−1 + (n− k)δk+1) =

1

2n

[
(n− 1)δk + (k − 1)

(
ak−1

bk−1
δk + 1

)
+

(n+ 1)bk−1 − (k − 1)ak−1

bk−1
(δk − 1)

]
=

δk −
1

2n

(n− k + 2)bk−1 − (k − 1)ak−1

bk−1
=

δk −
1

2n

(
(n− k + 2)− (k − 1)(n− k + 1)

bk−2

bk−1

)
6 δk −

1

2n
.

where the inequality follows from the Lemma 4.4.7.

Last inequality (k = n): n−1
2n (δn + δn−1) 6 δne

−α.

Since δn = 1 and δn−1 = an−1

bn−1
δn + 1 = an−1

bn−1
+ 1, the left-hand side of the last inequality is

n− 1

2n
(δn + δn−1) =

n− 1

2n

(
2 +

an−1

bn−1

)
=
n− 1

2n

(
2 +

bn−2

bn−1

)
6

n− 1

2n

(
2 +

1

n− 1

)
= 1− 1

2n
.

where the inequality follows from the Lemma 4.4.7.

In order to apply the path coupling theorem, we need to bound δmax: the next lemma will
represent the main tool to achieve this goal.

Lemma 4.4.8. Let δ1, . . . , δn be defined recursively as follows: δn = 1 and

δk = γkδk+1 + 1 ,

where γk > 0 for every k = 1, . . . , n− 1. Let δmax = max{δk : k = 1, . . . , n}. Then

δmax 6 nmax

{
j∏
i=h

γi : 1 6 h 6 j 6 n− 1

}
.
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Proof. The lemma follows from the fact that, for k = 1, . . . , n− 1, we have

δk = 1 +

n−1∑
j=k

j∏
i=k

γi .

Corollary 4.4.9. Let δ1, . . . , δn be defined as in Lemma 4.4.4. Then δmax 6 c
√
n2n for a

suitable constant c.

Proof. From Lemma 4.4.8 and the definition of δ1, . . . , δn, it holds that

δmax 6 nmax

{
j∏
i=h

n− i
i

: 1 6 h 6 j 6 n

}

6 n

bn/2c∏
i=1

n− i
i

6 n

(
n

bn/2c

)
6 c
√
n2n .

for a suitable constant c.

In order to bound δmax when δ1, . . . , δn are defined as in Lemma 4.4.6 and β 6 c log n for a
constant c ∈ N, we define

γk =
ak
bk

=
pke
−β + lk

qke−β + rk
. (4.11)

We can check that p1 = 0, q1 = n and for every k > 1,

pk = (n− k)qk−1 and qk = (n+ 1)qk−1 − (k − 1)pk−1 ;

we note that pk = (n+ 1)qk−1 − (k + 1)qk−1 6 qk for every k. We can also prove the following
simple lemma about qk.

Lemma 4.4.10. For every k > 1 constant, we have qk > 2−knk.

Proof. We proceed by induction on k, with the base k = 1 being obvious. Suppose the claim
holds for k − 1, that is qk−1 > 2−(k−1)nk−1, then

qk = (n+ 1)qk−1 − (k − 1)pk−1 >
n

2
qk−1 > 2−knk .

Moreover, we can check that l1 = n− 1, r1 = 1 and for every k > 1,

lk = (n− k)rk−1 and rk = (n+ 1)rk−1 − (k − 1)lk−1 ;

we notice that above recursion gives lk = (n − k)(k − 1)! and rk = k!. Next lemma bounds γk
defined in Equation 4.11.

Lemma 4.4.11. Let δ1, . . . , δn be defined as in Lemma 4.4.6, γk defined as in Equation (4.11)
and β 6 c log n for a constant c ∈ N. Then, for sufficiently large n, it holds that

γk < n ∀ k;

γk < 1 if k > c+ 2;

γc+2 = O(1).
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Proof. Since pk 6 qk, then (nqk − pk)e−β > 0; instead, lk − nrk = (k − 1)!(n − k − nk) < 0.
Hence we have for every k

γk − n =
pke
−β + lk

qke−β + rk
− n =

(lk − nrk)− (nqk − pk)e−β

qke−β + rk
< 0 .

Inductively, we show that for every k > c+3, we have γk < 1. Set k = c+3: c is a constant,
thus Lemma 4.4.10 holds for k − 1; hence and since e−β > n−c, we have that

(qc+3 − pc+3)e−β = [(n+ 1)qc+2 − (c+ 2)pc+2 − (n− c− 3)qc+2]e−β > 2qc+2e
−β > 2−(c+1)n2.

Instead, lc+3 − rc+3 = (c+ 2)!(n− 2c− 6) 6 (c+ 2)! · n. Thus,

γc+3 − 1 =
(lc+3 − rc+3)− (qc+3 − pc+3)e−β

qc+3e−β + rc+3
6

(c+ 2)! · n− 2−(c+1)n2

qc+3e−β + rc+3
< 0 ,

for n sufficiently large. Now, suppose that γk−1 < 1; then, we have

γk − 1 =
ak − bk
bk

=
(k − 1)ak−1 − (k + 1)bk−1

bk
< 0 ,

where ak−1 < bk−1 is implied by the inductive hypothesis.
In order to complete the proof, we need to show that γc+2 = O(1). Similarly to the case

k = c+ 3, we obtain (qc+2 − pc+2)e−β > 2−cn and lc+2 − rc+2 6 (c+ 1)! · n. Hence,

γc+2 6
pc+2 + rc+2 + (c+ 1)! · n
pc+2 + rc+2 + 2−cn

6 (c+ 1)! · 2c = O(1) .

Corollary 4.4.12. Let δ1, . . . , δn and c be defined as in Lemma 4.4.6. Then δmax = O(nc+2).

Proof. From Lemma 4.4.8, Lemma 4.4.11 and the definition of δ1, . . . , δn it follows that

δmax 6 nmax

{
j∏
i=h

ai
bi

: 1 6 h 6 j 6 n

}

6 n

c+2∏
i=1

ai
bi

= O(nc+2).

4.5 The XOR game

In this section we analyze the logit dynamics for another simple n-player game, the XOR game.
The XOR game is a symmetric n-player game in which each player has two strategies, denoted
by 0 and 1, and each player pays the XOR of the strategies of all players (including herself).
More formally, for each i ∈ [n], the utility function ui(·) is defined as follows

ui(x) =

{
−1, if x has an odd number of 1’s;

0, if x has an even number of 1’s.

Notice that the XOR game has 2n−1 Nash equilibria, namely all profiles with an even number
of players playing strategy 1. Nash equilibria have social welfare 0 and profiles not in equilibria
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have social welfare −n. Observe that the XOR game is a potential game with exact potential
Φ where Φ(x) = −ui(x) for every x and every i ∈ [n]. Hence, the stationary distribution is

π(x) =

{
e−β/Z, if x has an odd number of 1’s;

1/Z, if x has an even number of 1’s;

where the normalizing factor is Z = 2n−1(1 + e−β).
Even if this game looks similar to the OR game, it exhibits a different behavior. Theo-

rem 4.5.1 gives the stationary expected social welfare of the XOR game and we can see that,
as β increases, the expected social welfare tends from below to the social welfare at the Nash
equilibria. In contrast the expected social welfare of the OR game is better than the worst Nash
equilibrium for all values of β. Moreover, in Theorem 4.5.2 and Theorem 4.5.3 we show that
the mixing time for the XOR game is polynomial in n and exponential in β, whereas the mixing
time for the OR game can be bounded independently from β.

Theorem 4.5.1 (Expected social welfare). The stationary expected social welfare of the logit
dynamics for the XOR game is Eπ [W ] = − n

1+eβ
.

Proof. The expected social welfare is

Eπ [W ] =
∑

x∈{0,1}n
W (x)π(x) = −n · 2n−1e−β

2n−1(1 + e−β)
= − n

1 + eβ
.

The next theorem shows that the mixing time is exponential in β for every β > 0.

Theorem 4.5.2 (Lower bound on mixing time). The mixing time of the logit dynamics for the
XOR game is Ω(eβ).

Proof. Consider the set S ⊆ {0, 1}n containing only the state 0 = (0, . . . , 0). Observe that
π(0) 6 1/2. The bottleneck ratio is

B(0) =
1

π(0)

∑
y∈{0,1}n

π(0)P (0,y) =
∑

y∈{0,1}n : |y|1=1

P (0,y) = n · 1

n
· 1

1 + eβ
.

Hence, by applying Theorem 1.3.7, the mixing time is

tmix >
1

B(0)
= 1 + eβ .

Finally, in the next theorem we give an almost matching upper bound to the mixing time.

Theorem 4.5.3 (Upper bound on mixing time). The mixing time of the logit dynamics for the
XOR game is O(n3eβ).

The theorem is proved using coupling (see Theorem 1.3.1) and proof is presented in the next
sections. Specifically, we use the coupling described in Section 4.1.1; in Section 4.5.1 we show
that if the coupled chains are at even distance then distance does not increase after one step of
the coupling; in Section 4.5.2 we show that if the coupled chains are at odd distance then they
get closer distance with probability independent from β; finally, in Section 4.5.3 we bound the
expected time needed by the two chains to coalesce and use Theorem 1.3.1 to derive an upper
bound for the mixing time.
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4.5.1 Even Hamming distance

Let Xt and Yt be two chains coupled as described in Section 4.1.1. Suppose that Xt = x, Yt = y,
and d(x,y) = 2`, for ` > 0. In this case, ui(x) = ui(y) = b for all i ∈ [n] and some b ∈ {−1, 0}.

Let i be the index selected for update and let us distinguish two cases. In the first case
xi = yi and we have

ui(x−i, 0) = ui(y−i, 0) and ui(x−i, 1) = ui(y−i, 1)

and thus
σi(0 | x) = σi(0 | y) and σi(1 | x) = σi(1 | y).

Therefore the coupling always update the strategy of player i in the same way in the two chains
and thus d(Xt+1, Yt+1) = 2`.

In the second case we have xi 6= yi and we assume, without loss of generality, that xi = 0
and yi = 1. We observe that, for b ∈ {−1, 0},

ui(x−i, 0) = ui(y−i, 1) = b and ui(y−i, 0) = ui(x−i, 1) = −(1 + b).

Therefore we have

σi(0 | x) = σi(1 | y) =
1

1 + e−(1+2b)β
and σi(1 | x) = σi(0 | y) =

1

1 + e(1+2b)β

and thus we have three possible updates for the strategy of player i:

1. both chains update to 0 (and thus d(Xt+1, Yt+1) = 2`− 1) with probability

min

{
1

1 + e(1+2b)β
,

1

1 + e−(1+2b)β

}
=

1

1 + eβ
;

2. both chains update to 1 (and thus d(Xt+1, Yt+1) = 2`− 1) with probability

min

{
1

1 + e(1+2b)β
,

1

1 + e−(1+2b)β

}
=

1

1 + eβ
;

3. chain X and Y choose two different strategies for updating the strategy of player i (and
thus d(Xt+1, Yt+1) = 2`) with probability

1− 2

1 + eβ
.

The following lemma summarizes the above observations.

Lemma 4.5.4. Suppose that d(Xt, Yt) = 2`, for ` > 0. Then

d(Xt+1, Yt+1) =

2`− 1, with probability 2`
n ·

2
1+eβ

;

2`, with probability 1− 2`
n ·

2
1+eβ

.
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4.5.2 Odd Hamming distance

Let Xt and Yt be two chains coupled as described in Section 4.1.1. Suppose that Xt = x, Yt = y,
and d(x,y) = 2` − 1, for ` > 0. In this case we have ui(x) = b and ui(y) = −(1 + b) for some
b ∈ {−1, 0}. Let i be the index selected for update and let us distinguish two cases.

In the case in which xi = yi = c for some c ∈ {0, 1}, we have

ui(x−i, c) = ui(y−i, 1− c) = b and ui(x−i, 1− c) = ui(y−i, c) = −(1 + b).

Therefore

σi(c | x) = σi(1− c | y) =
1

1 + e−(1+2b)β
and σi(1− c | x) = σi(c | y) =

1

1 + e(1+2b)β

and thus we have three possible updates:

1. both chains update to c (and thus d(Xt+1, Yt+1) = 2`− 1) with probability

min

{
1

1 + e−(1+2b)β
,

1

1 + e(1+2b)β

}
=

1

1 + eβ
;

2. both chains update to 1− c (and thus d(Xt+1, Yt+1) = 2`− 1) with probability

min

{
1

1 + e−(1+2b)β
,

1

1 + e(1+2b)β

}
=

1

1 + eβ
;

3. chains X and Y choose two different strategies for updating the strategy player i (and
thus d(Xt+1, Yt+1) = 2`) with probability 1− 2

1+eβ
.

In the second case we have xi 6= yi and we assume, without loss of generality, that xi = 0 and
yi = 1. We observe that

ui(x−i, 0) = ui(y−i, 0) = b and ui(x−i, 1) = ui(y−i, 1) = −(1 + b).

Therefore we have
σi(0 | x) = σi(0 | y) and σi(1 | x) = σi(1 | y)

and thus in this case d(Xt+1, Yt+1) = 2`− 2.
The following lemma summarizes the above observations.

Lemma 4.5.5. Suppose that d(Xt, Yt) = 2`− 1, for ` > 0. Then

d(Xt+1, Yt+1) =


2`− 2, with probability 2`−1

n ;

2`− 1, with probability n−2`+1
n

2
1+eβ

;

2`, with probability n−2`+1
n

(
1− 2

1+eβ

)
.

4.5.3 Time to coalesce

We denote with τk the random variable indicating the first time at which the two coupled chains
have distance k. More precisely,

τk = min{t : d(Xt, Yt) = k} .
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Therefore, τcouple = τ0 is the time needed for the two chains to coalesce. We next give a bound
on the expected time Ex,y [τcouple] for the two chains to coalesce starting from x and y. If x
and y have distance 2`, we denote by µ` the expected time to reach distance 2`− 2. That is,

µ` = Ex,y [τ2`−2] .

Similarly, if x and y have distance 2`− 1, we denote by ν` the expected time to reach distance
2`− 2. That is,

ν` = Ex,y [τ2`−2] .

Notice that, if d(x,y) = d(x′,y′) then

Ex,y [τk] = Ex′,y′ [τk]

for all k, and thus the µ` and ν` are well defined.
From Lemma 4.5.4 and Lemma 4.5.5, we have the following relations

µ` = 1 + µ` ·
(

1− 2`

n
· 2

1 + eβ

)
+ ν` ·

2`

n
· 2

1 + eβ

ν` = 1 + ν` ·
n− 2`+ 1

n
· 2

1 + eβ
+ µ` ·

n− 2`+ 1

n
·
(

1− 2

1 + eβ

)
.

Simple algebraic manipulations give

ν` =
n

2`− 1

(
1 +

n− 2`+ 1

2`
· e

β − 1

2

)

and

µ` = ν` +
n

2`
· 1 + eβ

2

=
n

2`− 1
+
n

2`

(
n

2`− 1
· e

β − 1

2
+ 1

)
6

n

2`− 1

(
n

2`− 1
· e

β − 1

2
+ 2

)
6 n

(
n · e

β − 1

2
+ 2

)
.

Hence,

Ex,y [τcouple] 6 1 +
∑

26`6n
` even

µ` 6
n2

2

(
n · e

β − 1

2
+ 2

)
+ 1 = O

(
n3eβ

)
.

From Markov inequality we have that

Px,y (τcouple > t) 6
Ex,y [τcouple]

t

and thus, by taking t0 = 4Ex,y [τcouple], we have d(t0) 6 1/4. Therefore, by using Theorem 1.3.1,
we have that

tmix = O
(
n3eβ

)
.
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4.6 Conclusions and open problems

The games analyzed in this chapter highlighted some interesting features of the logit dynamics
and of the logit equilibrium.

The most important evidence that rises up from these results is that there exists a separation
between games that can be upper bounded by a function independent of β, such as CK game and
OR game, and games where the mixing time is necessarily exponential in the noise parameter
β, such as coordination games or the XOR game. In the next chapter we will focus on this
aspect, trying to characterize the class of games whose mixing time is independent of β and
looking for the parameters that influence the mixing time.

Since our aim is to consider and characterize wide classes of games, in the next chapter
we have to abandon the analysis of the performance, because the relation between stationary
expected social welfare and the social welfare at Nash equilibrium strongly depends on the
structure of the underlying game.

Moreover, we noted that the analysis of the mixing time is often far from trivial, even for
very simple games: this calls for the use of new tools in order to be able to deal with more
complex games.

Another relevant aspect emerged in this chapter is that games that obtains the worst Price
of Anarchy bound, as the CK game behave very well under the logit dynamics: this aspect also
requires further investigations, not pursued in this work.
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Chapter 5

Convergence to equilibrium of logit
dynamics

To validate the proposal of the logit dynamics as a model for the evolution of games in which
agents have limited knowledge, it is necessary to bound how long the logit dynamics takes to
converge to the stationary distribution. In previous chapter we showed that the mixing time
of the logit dynamics can vary a lot (from linear to exponential): thus, it is natural to ask the
following questions: (1) How do the rationality level and the structure of the game affect the
mixing time? (2) Can the mixing time grow arbitrarily?

In order to answer above questions, we give general bounds on the mixing time for wide
classes of games1. Specifically, we prove in Section 5.2 that for all potential games the mixing
time of the logit dynamics is upper-bounded by a polynomial in the number of players and by
an exponential in the rationality level and in some structural properties of the game. However,
for very small values of β the mixing time is always polynomial in the number of players.

We complement the upper bound with a lower bound showing that there exist potential
games with mixing time exponential in the rationality level. Thus the mixing time can grow
indefinitely in potential games as β increases. In Section 5.4 we also study a special class of
potential games, the graphical coordination games: we extend the result given in Theorem 3.2.2;
then, we give a more careful look at two extreme and well-studied cases, the clique and the ring.

Going to the second question, in Section 5.3 we show that for games with dominant strategies
(not necessarily potential games) the mixing time cannot exceed some absolute bound T which
depends uniquely on the number of players n and on the number of strategies m. Though
T = T (n,m) is of the form O(mn), it is independent of the rationality level and we show that,
in general, such an exponential growth is the best possible.

Our results suggest that the structural properties of the game are important for the mixing
time. For high β, players tend to play best response and for those games that have more than
one pure Nash equilibrium (PNE) with similar potential the system is likely to remain in a PNE
for a long time, whereas the stationary distribution gives each PNE approximately the same
weight. This happens for (certain) potential games, whence the exponential growth of mixing
time with respect to the rationality level. On the contrary, for games with dominant strategies
there is a PNE (a dominant profile) with high stationary probability and players are guaranteed
to play that profile with non-vanishing probability (regardless of the rationality level).

Before showing our results we describe in Section 5.1 the techniques that will be used for
obtaining our bounds.

1Most of the results in this chapter already appeared in [3].
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5.1 Proof techniques

5.1.1 For upper bounds

To derive our upper bounds, we employ two techniques: Markov chain coupling and spectral
techniques Both are well-established techniques for bounding the mixing time and they are
summarized in Section 1.3. Here, we give further details about their application in our results.

The coupling. Let G be a n-player game with profile space S and P be the transition matrix
of the logit dynamics for G. We describe, for each x,y ∈ S, a coupling of P (x, ·) and P (y, ·).

For each player i, we partition two copies of the interval [0, 1], called IX,i and IY,i, in sub-
intervals each labeled with a strategy from the set Si = {z1, . . . , z|Si|} of strategies of player i.
The sub-intervals are constructed as follows. For k = 1, . . . , |Si|, we take the leftmost not yet
labeled interval of length lk = min{σi(zk | x), σi(zk | y)} of both IX,i and IY,i and label it with
strategy zk. In addition, we take the rightmost non yet labeled interval of length σi(zk | x)−lk of
IX and the rightmost non yet labeled interval of length σi(zk | y)− lk of IY and label both with
zk. Notice that at least one of these two intervals has length 0. Define functions hX,i : IX,i → Si
and hY,i : IY,i → Si that for s ∈ [0, 1] return the labels hX,i(s) and hY,i(s) of the sub-intervals
containing s. Observe that there is a point ` ∈ (0, 1) such that hX(s) = hY (s) for every s 6 `
and hX(s) 6= hY (s) for every s 6 `.

Given the above partitions of IX,i and IY,i for each i, the coupling can be described as follows:
pick i ∈ [n] and U ∈ [0, 1] uniformly at random and update X and Y by setting Xi = hX,i(U)
and Yi = hY,i(U)). By construction we have that (X,Y ) is a coupling of P (x, ·) and P (y, ·).

We define H = (S,E) as the Hamming graph of the game, whose vertex set is the set of
strategy profiles, and two profiles are adjacent if they differ only for the strategy of one player.
For the path coupling technique (see Theorem 1.3.3), the coupling described above is applied
only to pairs of adjacent starting profiles.

Spectral properties. In order to use Theorems 1.3.5 and 1.3.6 for our bounds we need to
show that for the logit dynamics Markov chain the second eigenvalue is larger in absolute value
than the last eigenvalue.

Theorem 5.1.1. Let G be an n-player potential game with profile space S and let P and
π be the transition matrix and the stationary distribution of the logit dynamics for G. Let
1 = λ1 > λ2 > . . . > λ|S| be the eigenvalues of P . Then λ2 >

∣∣λ|S|∣∣.
Proof. Assume for sake of contradiction that there exists an eigenvalue λ < 0 of P . Let f be
an eigenfunction of λ. By definition, f 6= 0; hence, since λ < 0, then for every profile x ∈ S
such that f(x) 6= 0 we have sign ((Pf)(x)) 6= sign (f(x)) and thus

〈Pf, f〉π :=
∑
x∈S

(Pf)(x)f(x) < 0 .

For every player i and every strategy sub-profile z−i, we consider the corresponding “single-
player” matrix P (i,z−i) defined by

P (i,z−i)(x,y) :=
1

Ti(z−i)

{
eβui(y) , if x−i = y−i = z−i ;
0 , otherwise .

The transition matrix P is the sum of all such “single-player” matrices:

P =
1

n

∑
i

∑
z−i

P (i,z−i)
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Let us define
Si,z−i := {x | x = (si, z−i) and si ∈ Si} .

For any x,y ∈ Si,z−i we have that

eβui(y)

eβui(x)
= e−β(Φ(y)−Φ(x)) implies

eβui(x)

e−βΦ(x)
=

eβui(y)

e−βΦ(y)

That is, the ratio ri,z−i := eβui(z)

e−βΦ(z) is constant over all z ∈ Si,z−i . Hence, whenever P (i,z−i)(x,y)
is not zero, it does not depend on x: indeed,

P (i,z−i)(x,y) =
eβui(y)

Ti(z−i)
=
Z · ri,z−i
Ti(z−i)

π(y) .

Let Ci,zi =
Z·ri,z−i
Ti(z−i)

, we obtain

〈P (i,z−i)f, f〉π = Ci,z−i
∑

x∈Si,z−i

∑
y∈Si,z−i

π(x)π(y)f(x)f(y) = Ci,z−i

 ∑
x∈Si,z−i

π(x)f(x)

2

> 0 .

From the linearity of the inner product, it follows that

〈Pf, f〉π =
1

n

∑
i

∑
z−i

〈P (i,z−i)f, f〉π > 0 ,

contradicting the hypothesis.

For a function Φ: S → R over a finite set S, let us name ∆Φ the difference between the
maximum and minimum values of Φ and L its Lipschitz constant, i.e.

∆Φ = Φmax − Φmin = max{Φ(x)− Φ(y) : x,y ∈ S}
L = max{Φ(x)− Φ(y) : d(x,y) = 1} .

(5.1)

Moreover, let G be a n-player potential game with profile space S and let P and π be the
transition matrix and the stationary distribution of the logit dynamics for G. Then, for every
pair of profiles x,y ∈ S we set ⊥x,y = arg min{π(x), π(y)} and >x,y = arg max{π(x), π(y)}.
The following is an easy corollary of Lemma 1.3.6.

Corollary 5.1.2. Let G be a n-player potential game with profile space S and let P and π be
the transition matrix and the stationary distribution of the logit dynamics for G. For every pair
of profiles x,y we assign a path Γx,y on the Hamming graph with vertex set S. Then

trel 6 mneβL max
z,w :
z∼w

1

π(⊥z,w)

∑
x,y :

(z,w)∈Γx,y

π(x)π(y)|Γx,y| .

where m = maxi{|Si|}, i.e., the maximum number of strategies available for a player. Moreover,
if every player has at most two strategies we have

trel 6 2nmax
z,w :
z∼w

1

π(⊥z,w)

∑
x,y :

(z,w)∈Γx,y

π(x)π(y)|Γx,y| .
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Proof. From Theorem 5.1.1, follows that trel = 1
1−λ2

. Moreover, by reversibility of P , we have

Q(z,w) = π(⊥z,w)P (⊥z,w,>z,w) > π(⊥z,w)
e−βΦ(>z,w)

mne−βminy∼>z,w Φ(y)
>
π(⊥z,w)

mneβL
.

Similarly, if every player has at most two strategies we have

Q(z,w) = π(⊥z,w)P (⊥z,w,>z,w) >
π(⊥z,w)

2n
.

Thus, the corollary follows from Lemma 1.3.6.

5.1.2 For lower bounds

To derive our lower bounds we will use the the Bottleneck Ratio Theorem (see Theorem 1.3.7)
and a refinement of it for the logit dynamics of potential games (see Theorem 5.1.3 below).

Let x ∈ S be a profile of a potential game and let M ⊆ S \ {x} be a set of profiles different
from x. We define Rx,M as the set of profiles in the connected component of the Hamming
graph with vertex set S \M that contains x and define

∂Rx,M := {y ∈ Rx,M : y ∼ z for some z ∈M} .

In other words, ∂Rx,M consists exactly of those profiles in Rx,M that have a neighbor in M .
We have the following theorem.

Theorem 5.1.3. For any potential game G, for any profile x ∈ S and for any M ⊂ S \ {x},
if R = Rx,M satisfies π(R) 6 1/2 then the mixing time of the logit dynamics with rationality
parameter β for G satisfies

tmix = Ω

(
eβ(ΦM−ΦR)

(m− 1) |∂R|

)
,

where ΦR and ΦM are the minimum potential among profiles in R and M , respectively.

Proof. Observe that for every pair y, z of profiles that differs only in the strategy of player j,
it holds that

π(y)P (y, z) =
e−βΦ(y)

Z
· 1

n
· e−βΦ(z)

e−βΦ(y) +
∑

s∈Sj e
−βΦ(y−j ,s)

6
e−βΦ(z)

nZ
.

Note that for every y ∈ ∂R there are at most (m − 1)n neighbors outside R and all of them
belong to M by definition, thus

Q
(
R,R

)
=

∑
y∈R
z∈R

π(y)P (y, z) =
∑
y∈∂R
z∈M

π(y)P (y, z)

6
∑
y∈∂R
z∈M

e−βΦ(z)

nZ
6 (m− 1) |∂R| e

−βΦM

Z
.

Let x+ ∈ R be a profile with the highest potential in R; that is, Φ(x+) = ΦR. Obviously

π(R) > π(x+) =
e−βΦR

Z
.

These two inequalities yield
Q
(
R,R

)
π(R)

6
(m− 1) |∂R|
eβ(ΦM−ΦR)

and since π(R) 6 1/2 the thesis follows from the Bottleneck Ratio Theorem (Theorem 1.3.7).
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The above theorem gives good lower bounds when we choose x and M such that all profiles
in M have low potential, the resulting set R = Rx,M contains at least one profile of high
potential (and thus ΦR − ΦM is large) and the boundary ∂R is small.

5.2 Potential games

We will start by giving a bound that holds for each value of β. Then we show a slightly better
bound for low values of β. Finally, we give the exact characterization of the mixing time for
high value of β.

5.2.1 For every β

In this section we shall see that it is possible to give upper bounds on the mixing time of the
logit dynamics for potential games depending only on the two quantities L and ∆Φ defined
in 5.1 that holds for every β > 0. Moreover we will show that such bounds are nearly tight
by providing examples of games whose logit dynamics mixing time is close to the given upper
bound.

Upper bound. In order to give the upper bound on the mixing time, we first give an upper
bound on the relaxation time and then use Theorem 1.3.4.

In the proof of Theorem 5.2.2 we obtain the upper bound on the relaxation time by com-
paring the logit dynamics with inverse noise β for a potential game G and the logit dynamics
with inverse noise 0 for the same game. When the inverse noise is zero, the logit dynamics is
a random walk on a generalized hypercube. Next lemma evaluates the relaxation time of such
a chain. The proof is a simple generalization of the proof for the relaxation time of the lazy
random walk on the hypercube and is omitted.

Lemma 5.2.1. Let G be an n-player game. The relaxation time of the logit dynamics with
rationality level β = 0 for G is trel = n.

The following theorem is the main result of this section.

Theorem 5.2.2. Let G be a n-player potential game with potential function Φ and profile
space S. The relaxation time of the logit dynamics for G with rationality level β is trel =
O
(
n · eβ(∆Φ+L)

)
.

Proof. Remember that for all profiles x ∈ S, the stationary distribution is

πβ(x) =
e−βΦ(x)

Zβ
6
e−βΦmin

Zβ
,

where Zβ =
∑

y∈S e
−βΦ(y) is the partition function. As for the edge-stationary distribution, for

two adjacent profiles x ∼ y that differ at player i ∈ [n] we have

Qβ(x,y) =
e−βΦ(x)

Zβ

1

n

e−βΦ(y)∑
z∈Si e

−βΦ(x−i,z)
>
e−βΦmax

Zβ

1

n

1

|Si| · eβL
, (5.2)

where we used that

e−βΦ(y)∑
z∈Si e

−βΦ(x−i,z)
=

1∑
z∈Si e

β[Φ(y)−Φ(x−i,z)]
>

1

|Si| · eβL
.
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Hence, for all x,y ∈ S it holds that

πβ(x) 6
Z0

Zβ
e−βΦminπ0(x) ,

Qβ(x,y) >
Z0

Zβ

e−βΦmax

eβL
Q0(x,y) .

Since from Lemma 5.2.1 it holds that for β = 0 the relaxation time is O(n), the thesis follows
by applying the comparison theorem (Theorem 1.3.5) and Theorem 5.1.1 with

α =
Zβ
Z0

eβL

e−βΦmax
and γ =

Z0

Zβ
e−βΦmin .

A slightly better upper bound holds when the players have two strategies.

Corollary 5.2.3. Let G be a n-player 2-strategy potential game with potential function Φ and
profile space S. The relaxation time of the logit dynamics for G with rationality level β is
trel = O

(
n · eβ∆Φ

)
.

Proof. Observe that, when every player has two strategies, in Equation (5.2) we have that

e−βΦ(x)e−βΦ(y)∑
z∈Si e

−βΦ(x−i,z)
=

e−βΦ(x)e−βΦ(y)

e−βΦ(x) + e−βΦ(y)
>
e−βmax{Φ(x),Φ(y)}

2
.

Hence, we obtain

Qβ(x,y) >
e−βΦmax

Zβ

1

2n
,

and we can apply the comparison theorem with

α =
Zβ
Z0

1

e−βΦmax
and γ =

Z0

Zβ
e−βΦmin .

Finally, we can obtain the bounds on the mixing time by using Theorem 1.3.4 and the fact
that πmin > 1/

(
eβ∆Φ|S|

)
.

Corollary 5.2.4. Let G be a n-player potential game with potential function Φ and profile space
S. The mixing time of the logit dynamics for G is

tmix = O
(
n · eβ(∆Φ+L) (β∆Φ + log |S|)

)
.

Moreover, if every player has at most two strategies, the mixing time is

tmix = O
(
n · eβ∆Φ(β∆Φ + n)

)
.
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Lower bound. It is easy to find potential games whose logit dynamics mixing time is Ω(eβ∆Φ)
when ∆Φ = L; e.g., games whose potential function Φ has only two values and at least two
non-adjacent maxima (see, for example, XOR game studied in Section 4.5). One naturally
wonders whether a similar lower bound can be achieved for games where the Lipschitz constant
L is small compared to ∆Φ. The following theorem shows that the term eβ∆Φ in the upper
bound in Corollary 5.2.4 cannot be essentially improved for L smaller than ∆Φ.

Theorem 5.2.5. For every 0 < δ < 1 and for every L = ω(log n) a family of potential games
with two strategies per player exists such that the potential function Φ has Lipschitz constant L,
it satisfies ∆Φ/L > nδ and the mixing time of the logit dynamics is Ω

(
e(β−o(1))∆Φ

)
.

Proof. Consider the game with n players in which every player has strategies 0 and 1, and whose
potential function is

Φ(x) = Φ(|x|1) = −min {c; |c− |x|1|} · L ,

where c = dnδe. Note that the minimum of the potential is Φ(0) = −∆Φ = −cL, while the
maximum is zero and is attained at all states in the set M = {x ∈ S : |x|1 = c}.

Consider the set R0,M as defined in Section 5.1 and observe that

R0,M = {x ∈ S : |x|1 < c} ,
∂R0,M = {x ∈ S : |x|1 = c− 1} .

By the symmetry of the potential function, the stationary probability of R0,M is π(R0,M ) 6 1
2

and the size of its boundary is

|∂R0,M | 6
(
n

c

)
6 ec logn = e(∆Φ/L) logn.

Thus, from Theorem 5.1.3 we have that the mixing time of the logit dynamics is

tmix = Ω
(
eβ∆Φ−(∆Φ/L) logn

)
and the theorem follows.

5.2.2 For small β

Corollary 5.2.4 shows that, even for small β the mixing time is at most n2. In this section
we will show that for small values of the rationality parameter this bound can be improved to
n log n.

Theorem 5.2.6. Let G be an n-player potential game with profile space S. If β 6 c/(Ln),
with c < 1 constant and L defined in (5.1), then the mixing time of the logit dynamics for G is
O(n log n).

Proof. We will apply the path-coupling technique. (see Theorem 1.3.3): for every x,y such that
d(x,y) = 1 we have to find a coupling (X,Y ) of the two distributions P (x, ·) and P (y, ·) such
that Ex,y [d(X,Y )] is as small as possible.

Specifically, if we consider the coupling described in Section 5.1.1, then d(X,Y ) is a random
variable taking values 0, 1, and 2: it is 0 if we are updating the player j on which x and y differ,
it is 1 if we are updating a player on which the two profiles coincide and U 6 `, and it is 2 if
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we are updating a player on which the two profiles coincide and U > `. Hence the expected
distance between X and Y is

Ex,y [d(X,Y )] = Px,y (d(X,Y ) = 1) + 2Px,y (d(X,Y ) = 2)

=

(
1− 1

n

)
`+ 2

(
1− 1

n

)
(1− `)

=

(
1− 1

n

)
(2− `) 6 e−1/n(2− `) .

From the coupling construction we have ` =
∑

z∈Si min{σi(z | x), σi(z | y)}. Observe that for
any profile x, any player i and any strategy z ∈ Si it holds that

σi(z | x) =
e−βΦ(x−i,z)∑
k∈Si e

−βΦ(x−i,k)
=

1∑
k∈Si e

β[Φ(x−i,z)−Φ(x−i,k)]
>

1

|Si|eβL
.

Hence

` =
∑
z∈Si

min{σi(z | x), σi(z | y)} >
∑
z∈Si

1

|Si|eβL
= e−βL > e−c/n ,

where in the last inequality we used the hypothesis on β. Thus, the expected distance between
X and Y is upper bounded by

Ex,y [d(X,Y )] 6 e−1/n(2− `) 6 e−1/n(2− e−c/n)

= e−1/n(1 + (1− e−c/n)) 6 e−1/n(1 + c/n) 6 e−1/nec/n = e−
1−c
n ,

where in the second line we repeatedly used the well-known inequality 1 + x 6 ex for every
x > −1.

The thesis then follows by applying Theorem 1.3.3 with α = 1−c
n .

5.2.3 For high β

In this section we give a bound for the mixing time of the logit dynamics for potential games
and we show that for high values of β this bound is tight: the bound depends on a structural
property of the potential function that measure how difficult is to visit a profile by starting
from a profile with higher potential value.

Specifically, consider a n-player game G with exact potential Φ and profile space S. For
every pair of profiles (x,y), we assume w.l.o.g. that Φ(x) > Φ(y) and define Px,y as the set of
paths from x to y in the Hamming graph; for every Γx,y ∈ Px,y let Γix,y, for 0 6 i 6 |Γx,y|, be

the i-th profiles on the path Γx,y between x and y (notice that Γ0
x,y = x and Γ

|Γx,y|
x,y = y). For

every pair (x,y) and every path Γx,y ∈ Px,y, we define

ζ(Γx,y) = max
06i6|Γx,y|

(
Φ(Γix,y)− Φ(x)

)
,

i.e., the maximum increase of the potential function along the path Γx,y. Similarly, we have

ζ(x,y) = min
Γx,y∈Px,y

ζ(Γx,y) ,

i.e., the maximum increase of the potential function that is necessary for going from x to y.
Finally, we set ζ? = maxx,y ζ(x,y): notice that ζ? > 0. Then, we will show that the mixing
time exponentially depends on β and ζ?. We start by bounding the relaxation time of the logit
dynamics for a potential game G.
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Lemma 5.2.7. Let G be an n-player potential game with profile space S and potential function
Φ and let ζ? as defined above. The relaxation time of the logit dynamics for G is

trel 6 nm2n+1e(ζ?+L)β .

Moreover, if every player has at most two strategies, we have

trel 6 n22n+1eζ
?β .

Proof. For every pair of profiles (x,y) we associate a path Γ?x,y such that ζ(Γ?x,y) = ζ(x,y):
note that |Γ?x,y| 6 mn. For every pair of profiles z,w such that z ∼ w, we have

∑
(x,y) :

(z,w)∈Γ?x,y

π(x)π(y)

π(⊥z,w)
=
∑
x

eβ(Φ(⊥z,w)−Φ(x))
∑
y :

(z,w)∈Γ?x,y

π(y) 6 mneζ
?β . (5.3)

Applying Corollary 5.1.2 the lemma follows.

Hence, for β = ω
(
n logm
ζ?

)
and ζ? > 0 we have that trel 6 e(ζ?+L)β(1+o(1)) (trel 6 eζ

?β(1+o(1))

if any player has at most two strategies). Then, the bound to the mixing time given in the next
theorem directly follows from Theorem 1.3.4 and the fact that πmin > 1/

(
eβ∆Φ|S|

)
.

Theorem 5.2.8. Let G be an n-player potential game and at most m strategies for player and

let ζ? as defined above. If β = ω
(
n logm
ζ?

)
, the mixing time of the logit dynamics for G is

tmix 6 e(ζ?+L)β(1+o(1)) (β∆Φ + log |S|) .

Moreover, if any player has at most two strategies, the mixing time is

tmix 6 eζ
?β(1+o(1)) (β∆Φ + n) .

The next theorem shows that for such high values of β this bound is almost tight.

Theorem 5.2.9. Let G be an n-player potential game such that ζ? > 0. For β high enough,
the mixing time of the logit dynamics for G is

tmix > eζ
?β(1−o(1)) .

Proof. Fix a pair (x,y) and a path Γ?x,y such that ζ(Γ?x,y) = ζ(x,y) = ζ? and let x⊥ be the
profile of maximum potential along Γ?x,y. Let

M = {z | ∃Γ ∈ Px,y : z = arg max
w∈Γ

Φ(w)} ,

i.e., the set of profiles of maximum potential along some path from x to y: since ζ? > 0, then
M ⊂ S. Moreover, notice that the Hamming graph over S \M has two disjoint components: in
particular, x and y are not in the same component and we let Rx,M and Ry,M be the component
that contains x and y, respectively.

We first consider the case Φ(x) = Φ(y). Then, either π(Rx,M ) 6 1/2 or π(Ry,M ) 6 1/2:
suppose w.l.o.g. that the first is true, then we can apply Theorem 5.1.3 and, since ΦR 6 Φ(x),
ΦM = Φ(x⊥) and Φ(x⊥)− Φ(x) = ζ?, we obtain

tmix > eζ
?β(1−o(1)) ,
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for β sufficiently high.
If Φ(x) > Φ(y), then for every profile z ∈ Rx,M , Φ(x) 6 Φ(z): indeed, if we suppose this

is not true, then we can consider a path Γ?z,y from z to y where both endpoints have potential
higher than x; moreover, since M disconnect z and y, there exists a profile w ∈ M such that
w ∈ Γ?z,y; but, since Φ(w) 6 Φ(x⊥), then ζ(Γ?z,y) > ζ(Γ?x,y) = ζ? and this is a contradiction.
Hence Φ(y) > Φ(z) for every z ∈ Rx,M and thus, for β high enough, π(Rx,M ) 6 1/2: as before,
applying Theorem 5.1.3, we obtain

tmix > eζ
?β(1−o(1)) .

5.3 Mixing time independent of β

Theorems 5.2.9 and 5.2.5 show that there are games where the mixing time is necessarily
exponential in β and in structural properties of the game. This fact naturally raises the question
about the existence and the features of games where the mixing time can be bounded by a
function independent of the rationality level β.

The following lemma suggests a possible characterization for these games.

Lemma 5.3.1. Let G be an n-player potential games with state space S such that ζ? = 0.
The relaxation time of the logit dynamics for G is independent from β. Moreover, there are no
potential games with ζ? > 0 such that the relaxation time is independent from β.

Proof. For every pair of profiles (x,y) we associate the path Γx,y such that ζ(Γx,y) = ζ(x,y)
and, for every i = 0, . . . , |Γx,y| − 1, the profile Γi+1

x,y is obtained from Γix,y by updating the
strategy of a player j with one of the best responses of j: it is clear that such a path exists
whenever ζ? = 0. We also notice that |Γx,y| 6 mn.

Let consider an edge (z,w) of one of these paths. Then, we have

Q(z,w) = π(z)P (z,w) >
π(z)

mn
. (5.4)

From Theorem 5.1.1 and Lemma 1.3.6, we obtain trel = 1
1−λ2

6 2nm2n+1, where the inequality
follows from (5.3) and (5.4).

The second part of the lemma follows directly from Theorem 5.2.9, by observing that the
relaxation time is upper bounded by the mixing time, as established in Theorem 1.3.4.

We wonder if the same characterization given in Lemma 5.3.1 for the relaxation time holds
also for the mixing time. Indeed, by simply invoking the Theorem 1.3.4 we do not obtain the
desired result, since log π−1

min depends on the rationality parameter2.

However, we are able to prove that there are classes of games for which the mixing time is
independent of β. It is remarkable that the set of games for which we prove this result is not
necessarily a subset of the class of potential games.

2However, we can conclude that the class of potential games such that ζ? = 0 does not depend on β exponen-
tially, but at most linearly.
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Games with dominant strategies. We prove that, for the class of games with dominant
strategies, it is possible to give an upper bound to the mixing time that is independent of β.
In other words, the mixing time of the logit dynamics for games with dominant strategies does
not grow arbitrarily as β tends to infinity.

Let us name 0 a dominant strategy for all players and consider the profile 0 = (0, . . . , 0).
It is easy to see that the following observation holds for the logit dynamics of a game with
dominant strategies.

Observation 5.3.2. In every profile and for every β, if player i is selected for update then
the logit dynamics updates her strategy to the dominant strategy with probability at least 1/|Si|.
That is, for all x, β and i, σi(0 | x) > 1/|Si|.

We are now ready to derive an upper bound on the mixing time of the logit dynamics for
dominant strategy games.

Theorem 5.3.3. Let G be an n-player games with dominant strategies where each player has
at most m strategies. The mixing time of the logit dynamics for G is tmix = O (mnn log n).

Proof. We apply the coupling technique (see Theorem 1.3.1). Let {Xt} and {Yt} be two in-
stances of the logit dynamics starting at x and y respectively, and consider a coupling with the
following properties: at every step the same player in both chains is chosen for the update, the
probability that the strategy of the chosen player is updated to the dominant strategy 0 in both
chains is at least 1/|Si| > 1/m (notice that this is possible because of Observation 5.3.2), and
once the two chains coalesce they stay coupled for all the following time steps.

We can check that the coupling described in Section 5.1.1 has the properties required above.
Indeed, this coupling always select the same player in both chains. Moreover, if player i is
selected for update, the probability that both chains choose strategy s for player i is exactly
min{σi(s | x), σi(s | y)}: if s is dominant for player i, we have that σi(s | x), σi(s | y) > 1/|Si|
and thus the probability that the coupling updates to s is at least 1/|Si|.

Let τ be the first time such that all the players have been selected at least once and let
t? = 2n log n. Observe that for all starting profiles z and w, it holds that

Pz,w (Xt? = 0 and Yt? = 0 | τ 6 t?) >
1

mn
. (5.5)

Indeed, given that all players have been selected at least once within time t?, both chains are in
profile 0 at time t? if and only if every player chose strategy 0 in both chains the last time she
played before time t?. From the construction of the coupling it follows that such event holds
with probability at least 1/mn.

Hence, for all starting profiles z and w, we have that

Pz,w (Xt? = Yt?) > Pz,w (Xt? = 0 and Yt? = 0)

> Pz,w (Xt? = 0 and Yt? = 0 | τ 6 t?) Pz,w (τ 6 t?)

>
1

mn
· 1

2
,

(5.6)

where in the last inequality we used (5.5) and the Coupon Collector’s argument.
Therefore, by considering k phases each one lasting t? time steps, since the bound in (5.6)

holds for every starting states of the Markov chain, we have that the probability that the two
chains have not yet coupled after kt? time steps is

Px,y (Xkt? 6= Ykt?) 6

(
1− 1

2mn

)k
6 e−k/2m

n
,
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which is less than 1/4, for k = O(mn). By applying the Coupling Theorem (see Theorem 1.3.1)
we have that tmix = O (mnn log n).

In the previous chapter a n-player game with two strategies per player, namely the OR game
is shown whose logit dynamics mixing time is Ω(2n) for large values of β. We next prove that,
for every m > 2, there are n-player games with m strategies per player whose logit dynamics
mixing time is Ω

(
mn−1

)
. Thus the mn factor in the upper bound given by Theorem 5.3.3

cannot be essentially improved.

Theorem 5.3.4. For every m > 2 and n > 2, there exists a n-player potential game with
dominant strategies where each player has m strategies and such that, for sufficiently large β,
tmix = Ω

(
mn−1

)
.

Proof. Consider the game with n players, each of them having strategies {0, . . . ,m − 1}, such
that for every player i:

ui(x) =

{
0, if x = 0;

−1, otherwise.

Note that 0 is a dominant strategy. This is a potential game with potential Φ(x) = −ui(x) and
thus the stationary distribution is given by the Gibbs measure in 2.3. We apply the bottleneck
ratio technique (see Theorem 1.3.7) with R = {0 . . . ,m− 1}n \ {0}, for which we have

π(R) =
e−β

Z
(mn − 1)

with Z = 1 + e−β(mn − 1). It is easy to see that π(R) < 1/2 for β > log(mn − 1) and
furthermore

Q(R,R) =
∑
x∈R

π(x)P (x,0)

=
e−β

Z

∑
x∈R

P (x,0) =
e−β

Z

∑
x∈R1

P (x,0) ,

where R1 is the subset of R containing all states with exactly one non-zero entry. Notice that,
for every x ∈ R1, we have

P (x,0) =
1

n
· 1

1 + (m− 1)e−β
.

As |R1| = n(m− 1), we have

Q(R,R) =
e−β

Z
|R1|

1

n
· 1

1 + (m− 1)e−β

=
e−β

Z
· m− 1

1 + (m− 1)e−β

whence

tmix >
1

4
· π(R)

Q(R,R)

>
1

4
· (mn − 1) · 1 + (m− 1)e−β

m− 1
>

1

4
· m

n − 1

m− 1
.
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Max-solvable games. Observe that, by using the same techniques exploited in this section,
it is possible to prove an upper bound independent of β for max-solvable games [102], a class
which contains games with dominant strategies as a special case, albeit with an upper bound
that is much larger than O(mnn log n).

5.4 Graphical coordination games

In previous chapter we give tight bounds for the mixing time of 2×2 coordination games. In this
section we will consider graphical coordination games. We notice that this class of games is a
subset of the class of potential games: indeed, it is easy to check that, given a graph G = (V,E)
the function Φ(x) =

∑
e∈E Φe(x) is a potential function for the graphical coordination game,

where, for every e = (u, v) ∈ E

Φe(x) =


−∆ if xu = xv = 0 ;

−δ if xu = xv = 1 ;

0 otherwise ;

(5.7)

with ∆ and δ as defined in (4.4).
In Section 5.4.1 we will show a bound, based on the work of Berger et al. [12], that holds

for every class of games. Then, we focus on the two more studied network topologies: the
clique (Section 5.4.2), where the mixing time dependence on eβ∆Φ showed in Corollary 5.2.4
cannot be improved, and the ring (Section 5.4.3), where a more local interaction implies a faster
convergence to the stationary distribution.

In the rest of this section we will assume w.l.o.g. that ∆ > δ.

5.4.1 For every graph

Theorem 5.4.1. Let G be an n-player graphical coordination game on a graph G. The mixing
time of the logit dynamics for G is

tmix = O
(

2n3eχ(G)(∆+δ)β(n∆β + 1)
)
.

where χ(G) is the cutwidth of G defined in (3.5).

Proof. Consider the ordering of vertices of G that obtains the cutwidth. For every x,y ∈
S that differ in the strategies played at vertices v1, v2, . . . , vd, we consider the path Γx,y =
(x0,x1, . . . ,xd), where

xi =
(
y1, . . . , yvi+1−1, xvi+1 , . . . , xn

)
.

(Above we assume vd+1 = n + 1). Notice that x0 = x and xd = y and |Γx,y| 6 n. To every
edge ξ = (xi,xi+1), we consider the function γξ that assigns to every pair of profiles x,y such
that ξ ∈ Γx,y, the following new profile

γξ(x,y) =

{(
x1, . . . , xvi+1−1, yvi+1 , . . . , yn

)
if π(xi) 6 π(xi+1) ;(

x1, . . . , xvi+1 , yvi+1+1, . . . , yn
)

otherwise.

It is easy to see that γξ is an injective function: indeed, since ξ is known, if π(xi) 6 π(xi+1),
then we can retrieve vi+1, that is the first vertex where xi and xi+1 differ and thus, selecting the
first vi+1−1 vertices from γξ(x,y) and the remaining ones from xi we are able to reconstruct x
and, similarly, selecting the first vi+1− 1 vertices from xi and the remaining ones from γξ(x,y)
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we are able to reconstruct y. Similarly, if π(xi) > π(xi+1), we can retrieve vi+2 and we can
reconstruct x and y from γξ(x,y) and xi+1.

Let E? = {(j, k) ∈ E : j < vi+1 and k > vi+1}: observe that |E?| 6 χ(G). For any edge
e = (j, k) ∈ E?, for every x,y ∈ S and for every ξ = (xi,xi+1) ∈ Γx,y, we distinguish two cases:
If xj = yj or xk = yk, it is easy to see that for all available values of xj , yj , xk and yk

Φe(x) + Φe(y)− Φe(⊥xi,xi+1)− Φe(γξ(x,y)) = 0 .

If xj 6= yj and xk 6= yk, it is easy to see that for all available values of xj , yj , xk and yk

Φe(x) + Φe(y)− Φe(⊥xi,xi+1)− Φe(γξ(x,y)) = ±(∆ + δ) .

Thus, we have that for every x,y ∈ S and for every ξ = (xi,xi+1) ∈ Γx,y,

Φ(x) + Φ(y)− Φ(⊥xi,xi+1)− Φ(γξ(x,y)) =
∑
e∈E∗

(
Φe(x) + Φe(y)− Φe(⊥xi,xi+1)− Φe(γξ(x,y))

)
> −χ(G)(∆ + δ) .

(5.8)

Applying Corollary 5.1.2, we obtain

trel 6 2n2eχ(G)(∆+δ)β
∑
x,y

π(γξ(x,y)) 6 2n2eχ(G)(∆+δ)β .

where we first inequality follows from (5.8) and the second one from the fact that γξ is injective.
The theorem follows from Theorem 1.3.4 and by observing that

log π−1
min 6 β∆Φ + log |S| 6 |E|∆β + log 2n 6 n(n∆β + 1) .

5.4.2 On the clique

We now focus on graphical coordination games on one of the most studied network topologies:
the clique, where every player plays the basic coordination game in (3.1) with every other player.
Since the cutwidth of a clique is Θ(n2), the Theorem 5.4.1 gives an upper bound to the mixing
time of the logit dynamics for this class of games that is exponential in n2(∆ + δ)β. However,
since the the game is a potential game we can obtain a slightly better upper bound by using
Corollary 5.2.4. Moreover, we will show that the mixing time for graphical coordination games
on the clique turns out to be necessarily exponential in n, even for β = Θ(1).

It is not difficult to see that for this class of games, we can rewrite, for every profile x, the
potential value of x as Φ(x) = −φ(|x|0), where

φ(k) = (k? − k)

(
2n− k? − k − 1

2
δ − k? + k − 1

2
∆

)
,

and k? =
⌈
(n− 1) δ

∆+δ

⌉
. Notice that the maximum of the potential is attained when k? players

are playing 0 and, since φ(k?) = 0, we have that ∆Φ = maxk φ(k). Moreover, it is easy to check
that φ(k) monotonically decreases as k goes from 0 to k? and then monotonically increases as
k goes from k? to n. Therefore, ∆Φ = max{φ(0), φ(n)}.

Notice that, since ∆ > δ, then φ(k) 6 φ(n− k) for k < k?, ∆Φ = φ(n) and∑
x : |x|06k?

Φ(x) >
∑

x : |x|0>n−k?
Φ(x) . (5.9)
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Since ∆Φ = φ(n), by applying the result on the mixing time of the logit dynamics of potential
games (see Corollary 5.2.4) we get tmix = O

(
n · eβφ(n) · (βφ(n) + n)

)
. By observing that φ(n) =

Θ(n2∆), we have that the term δ at exponent in the bound of Theorem 5.4.1 can be dropped.
We next state a lower bound on the mixing time for coordination games on a clique.

Lemma 5.4.2. Let G be an n-player graphical coordination game on the clique. The mixing
time of the logit dynamics for G is tmix = Ω

(
e(β−o(1))φ(0)

)
.

Proof. We obtain our lower bound by applying Theorem 5.1.3 with configuration x? = (1, . . . , 1)
and set M = {x ∈ S : |x|0 = k?}.

The connected component R of S \M that contains x? is

R = {x ∈ S : |x|0 < k?} .

From (5.9) it follows that π(R) 6 1
2 . Finally, notice that

|∂R| 6 |{x ∈ Ω: |x|0 = k? − 1}|

=

(
n

k? − 1

)
6 nk

?
6 n

2
b−c

φ(0)
n−1 .

The lemma follows by applying Theorem 5.1.3 and by observing that the minimum potential
among profiles in R and M are ΦR = −φ(0) and ΦM = 0, respectively.

We stress that when the basic coordination game has no risk dominant strategy (that is the
case ∆ = δ), φ(0) = φ(n) and thus the exponents of the upper and lower bound coincide up to
a o(1) term. In general, by observing that φ(0) = Θ(n2δ) and φ(n) = Θ(n2∆), we obtain the
following theorem.

Theorem 5.4.3. For every graphical coordination game on a clique there exist two constants
C and D such that Cβn

2δ 6 tmix 6 Dβn2∆.

5.4.3 On the ring

In this section we give upper and lower bounds on the mixing time for graphical coordination
games on the ring when there is no risk dominant strategy. Unlike the clique, the ring encodes
a very local type of interaction between the players which is more likely to occur in a social
context. Our results show that the mixing time is polynomial in the number of players n and
eβ.

From the potential function given in (5.7), we can observe that Φ(1) = Φ(0) = −nδ.
Moreover, if n is even, the configuration x where every player selects a strategy different from
the one selected by her neighbors has potential Φ(x) = 0: thus, there are graphical coordination
games on the ring where ∆Φ = nδ. If we used Corollary 5.2.4, we would get an upper bound
exponential in n, whereas if we used Theorem 5.4.1, since the cutwidth of the ring is 4, we
would get an upper bound exponential in 4δβ and polynomial in n4δβ. Instead we here show a
upper bound that is exponential only in 2δβ and polynomial only in n log n.

The proof of the upper bound uses the path coupling technique (see Theorem 1.3.3) and
can be seen as a generalization of the upper bound on the mixing time for the Ising model on
the ring (see Theorem 3.2.5).

Theorem 5.4.4. Let G be an n-player graphical coordination games on the ring with no risk-
dominant strategy (a− d = b− c = δ). The mixing time of the logit dynamics for G is

tmix = O
(

(e2βδ + 1)n log n
)
.
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Proof. We identify the n players with the integers in {0, . . . , n − 1} and assume that every
player i plays the basic coordination game with her two adjacent players, (i − 1) mod n and
(i + 1) mod n. Let S = {0, 1}n be the set of profiles of the game and consider the Hamming
graph G over S where profiles x and y are adjacent if and only if they differ in exactly one
position.

Let us consider two adjacent configurations x and y. Denote by j the position in which
they differ and assume, without loss of generality, that xj = 1 and yj = 0. We consider the
following coupling for two chains X and Y starting respectively from X0 = x and Y0 = y: pick
i ∈ {0, . . . , n− 1} and U ∈ [0, 1] independently and uniformly at random and update position i
of x and y by setting

xi =

{
0, if U 6 σi(0 | x);

1, if U > σi(0 | x);
yi =

{
0, if U 6 σi(0 | y);

1, if U > σi(0 | y).

We next compute the expected distance between X1 and Y1 after one step of the coupling.
Notice that σi(0 | x) only depends on xi−1 and xi+1 and σi(0 | y) only on yi−1 and yi+1.
Therefore, since x and y only differ at position j, σi(0 | x) = σi(0 | y) for i 6= j − 1, j + 1.

We start by observing that if position j is chosen for update (this happens with probability
1/n) then, by the observation above, both chains perform the same update. Since x and y differ
only for player j, we have that the two chains are coupled (and thus at distance 0). Similarly,
if i 6= j − 1, j, j + 1 (which happens with probability (n − 3)/n) we have that both chains
perform the same update and thus remain at distance 1. Finally, let us consider the case in
which i ∈ {j − 1, j + 1}. In this case, since xj = 1 and yj = 0, we have that σi(0|x) 6 σi(0|y).
Therefore, with probability σi(0 | x) both chains update position i to 0 and thus remain at
distance 1; with probability 1− σi(0 | y) both chains update position i to 1 and thus remain at
distance 1; and with probability σi(0 | y)− σi(0 | x) chain X updates position i to 1 and chain
Y updates position i to 0 and thus the two chains go to distance 2. By summing up, we have
that the expected distance E[ρ(X1, Y1)] after one step of coupling of the two chains is

E[ρ(X1, Y1)] = =
n− 3

n
+

1

n

∑
i∈{j−1,j+1}

[σi(0 | x) + 1− σi(0 | y) + 2 · (σi(0 | y)− σi(0 | x))]

=
n− 3

n
+

1

n
·

∑
i∈{j−1,j+1}

(1 + σi(0 | y)− σi(0 | x))

=
n− 1

n
+

1

n
·

∑
i∈{j−1,j+1}

(σi(0 | y)− σi(0 | x))

Let us now evaluate the difference σi(0 | y) − σi(0 | x) for i = j − 1 (the same computation
holds for i = j + 1). We distinguish two cases depending on the strategies of player j − 2 and
start with the case xj−2 = yj−2 = 1. In this case we have that

σj−1(0 | x) =
1

1 + e2βδ
and σj−1(0 | y) =

1

2
.

Thus,

σj−1(0 | y)− σj−1(0 | x) =
1

2
− 1

1 + e2βδ
.

If instead xj−2 = yj−2 = 0, we have

σj−1(0 | x) =
1

2
and σj−1(0 | y) =

1

1 + e−2βδ
.
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Thus

σj−1(0 | y)− σj−1(0|x) =
1

1 + e−2βδ
− 1

2

= 1− 1

1 + e2βδ
− 1

2
=

1

2
− 1

1 + e2βδ
.

We can conclude that the expected distance after one step of the chain is

E[ρ(X1, Y1)] =
n− 1

n
+

1

n

(
1− 2

1 + e2βδ

)
= 1− 2

n(1 + e2βδ)
6 e
− 2

n(1+e2βδ) .

Since the diameter of G is diam(G) = n, by applying Theorem 1.3.3 with α = 2
n(1+e2βδ)

, we

obtain the theorem.

The upper bound in Theorem 5.4.4 is nearly tight (up to the n log n factor). Indeed, a lower
bound can be obtained by applying the Bottleneck Ratio technique (see Theorem 1.3.7) to the
set R = {1}. Notice that π(R) 6 1

2 since profile 0 has the same potential as 1. Thus set R
satisfies the hypothesis of Theorem 1.3.7. Simple computations show that the bottleneck ratio
is

B(R) =
∑
y 6=1

P (1,y) =
1

1 + e2βδ
.

Thus, by applying Theorem 1.3.7, we obtain the following bound.

Theorem 5.4.5. Let G be a n-player graphical coordination game on a ring with no risk-
dominant strategy. The mixing time of the logit dynamics for G is tmix = Ω

(
1 + e2βδ

)
.

5.5 Conclusions and open problems

In this chapter we give different bounds on the mixing time of the logit dynamics for the class of
potential games: we showed that the mixing time is fast when β is small enough and we found
the structural property of the game that characterizes the mixing time for large β; finally we
showed a bound that holds for every value of β. Unfortunately, the last bound does not match
the previous ones in every game: this fact raises the quest for an unifying bound that holds for
every value of β and matches with bounds given in Theorems 5.2.6 and 5.2.8. We suppose that
this unifying bound has to depends on a structural property that, as β increase, evolves from
∆Φ to ζ?.

A term eβL appears in the bound to the mixing time of the logit dynamics for potential
game both when β is high (Theorem 5.2.8) and for every β (Corollary 5.2.4). Nevertheless,
in all lower bounds we presented this term never appears: it is natural to ask if this term is
necessary (by presenting a matching lower bound) or it can be eliminated by a more careful
analysis. We suppose that the second hypothesis is right, but we are still unable to prove it.

Another open problem is about potential games where ζ? = 0. We showed that this class
of games exactly characterizes the potential games for which the relaxation time of the logit
dynamics is independent of β: our aim is to prove the same result holds for the mixing time
too.

Previous works gave a lot of attention to logit dynamics for graphical coordination games:
for this reason, finding tight bounds on the mixing time of our dynamics for this class of games
will be very interesting. Unfortunately, our results about the clique and the ring show that the
bound of Theorem 5.4.1 is not tight.
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If the mixing time of the logit dynamics is fast, then the logit equilibrium gives good pre-
dictions about the state of a complex system after a small number of time steps. Anyway,
we showed that there are games where the mixing time can be exponential in the number of
players. For these games the logit equilibrium does not represent a meaningful description of
the game and it becomes interesting to analyze the transient phase of the logit dynamics, in
order to investigate what kind of predictions can be made about the state of the system in such
a phase. This approach will be pursued in the next chapter.
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Chapter 6

Metastability

The drawback of using the logit equilibrium to describe the behavior of a complex system is that
the system may take too long to reach it, unless the chain is rapidly mixing. Previous chapters
showed the mixing of the logit dynamics for strategic games can be not rapid depending on the
features of the underlying game and on the rationality level.

For this reason, in this chapter we focus on the transient phase of the logit dynamics and,
in particular, we try to answer the following questions: when the mixing time is exponential
in the number of players, is the transient phase completely chaotic, or can we still spot some
regularities? Are we able to say something about the behavior of the chain before it reaches
the stationary distribution?

Obviously, such a chain is perfectly described by the collections of probability distributions
consisting of one distribution for each time step and each starting profile. This should be
contrasted with the rapidly mixing case (i.e., a Markov chain with polynomial mixing time) in
which one can approximately describe the state of the system (after the mixing time) using an
unique distribution (that is, the stationary distribution).

Our results show games for which regularities can be observed even in the transient phase.
In particular, we will show that, depending on the starting profile, the dynamics rapidly reaches
a distribution and remains close to this distribution for a sufficiently long time (we call such a
distribution metastable).

We can describe our results also in terms of the quantity of information needed to predict
the status of a system that evolves according to the logit dynamics. We know that the long-term
behavior of the system can be compactly described in terms of a unique distribution but we
have to wait a transient phase of length equal to the mixing time. Thus, if the system is rapidly
mixing this description is significant after a short transient phase. However, when the mixing
time is super-polynomial this description becomes significant only after a long time. Our results
show that, for a large class of n-player games, logit dynamics is not rapidly mixing but the profile
(the strategies played by the n players) can still be described with good approximation and for
a super-polynomial number of steps by means of a small number of probability distributions.
This comes at the price of sacrificing a short polynomial initial transient phase (so far we are
on a par with the rapidly mixing case) and requires a few bits of information about the starting
profile (this is not needed in the rapidly mixing case).

In this chapter, we obtain results1 about the metastability of the logit dynamics for different
classes of coordination games.

• We start in Section 6.1 by introducing the notion of an (ε, T )-metastable distribution µ
and of its pseudo-mixing time. Roughly speaking, µ is (ε, T )-metastable for a Markov

1Most of the results in this chapter already appeared in [4].
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chain if, starting from µ, the Markov chain stays at distance at most ε from µ for at least
T steps. The pseudo-mixing time of µ starting from a state x, txµ(ε), is the number of
steps needed by the Markov chain to get ε-close to µ when started from x.

In a rapidly-mixing Markov chain, after a “short time” and regardless of the starting
state the chain converges rapidly to the stationary distribution and remains there. For
the case of non-rapidly mixing Markov chains, we replace the notions of “mixing time”
and “stationary distribution” by that of “pseudo-mixing time” and that of “metastable
distribution”. Intuitively speaking, we would like to say that, even when the mixing time
is (prohibitively) high, there are “few” distributions which give us an accurate description
of the chain over a “reasonable amount of time”. Roughly speaking, the state space
Ω can be partitioned into a small number of subsets Ω1,Ω2, . . . of “equivalent” states;
that is, if the chain starts in any of the states in Ωi, then it will rapidly converge to a
“metastable” distribution µi, where metastable denotes the fact that the chain remains
there for “sufficiently” long.

• In Section 6.2, we analyze the metastable distributions of the Ising model on the clique,
also known as the Curie-Weiss model.

As showed in Section 3.2, the mixing time of this dynamics is known to be exponential
for every β > 1/n. For this model, we show that distributions where all magnets have
the same magnetization are (1/n, t)-metastable for any t = poly (n) when β = Ω(log n/n).
Moreover we show that the pseudo-mixing time of these distributions is polynomial when
the dynamics starts from a profile where the difference in the number of positive and
negative magnets is large.

• In Section 6.3 we study graphical coordination games on the ring topology. We show that
for every starting profile there is a metastable distribution and the dynamics approaches
it in a polynomial number of steps.

• Finally, we consider the OR-game, defined in Section 4.4, that highlights the distinctive
features of our metastability notion based on distributions.

Previous works about metastability

In Physics, Chemistry or Biology, metastability is a phenomenon related to the evolution of
systems under noisy dynamics. In particular, metastability concerns the transition between
different regions of the state space and the existence of multiple, well-separated time scales:
at short time scales the system appears to be in a quasi-equilibrium, and it explores only a
confined region of the available space state, while, at larger time scales, it undergoes transitions
between such different regions. Examples of metastability can be found in Biology, Climatology,
Economics, Materials Science and Physics.

Metastability appears for the first time around 1935 with the works of Eyring [41] and
Kramers [71] on diffusion in potential wells, but the mathematically rigorous analysis of metasta-
bility phenomena in the context of randomly perturbed dynamical systems start in the early
1970’s with the work of Freidlin and Wentzell [45]. Since then, metastability is a very well
studied topic in Physics and several monographs on this subject are available (see, for example
[62, 104, 19, 63]). The goal of metastability is to model processes showing the following typical
behavior: starting from a given profile, the system will rather quickly visit the nearby maximum
of the potential function (a metastable state); the dynamics stays very close to such a state
for a very long time, avoiding visits to other local maxima; at some point, the system leaves
the metastable state (and its neighborhood) and moves to some other local maximum, usually
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better than the previous one; the process then is repeated. Research in Physics about metasta-
bility aims at expressing typical features of a metastable state and to evaluate the transition
time between metastable states; the main approaches used to this analysis are based on large
deviation theory [45] or on potential theory [20]. Our approach is closest to the one of Bovier
et al. [21]. They define the notion of a metastable point as a state that is quickly reached and
difficult to leave. For every metastable point x they define the local valley of x as the set of
states for which x is the metastable point with the smallest hitting time and the associated
metastable distribution associated with x is the stationary distribution restricted to the local
valley. In [22], Bovier and Manzo apply the approach of [21] in the context of zero temperature
limit of Glauber dynamics of spin systems in finite volume and show that the transition times
can be expressed in terms of properties of the potential function.

Metastability was analyzed not only for discrete dynamics, but also for continuous Markov
processes. In [73] Larralde et al. define a metastable state by two components: spectral feature
of a state (namely, isolated eigenstate of the master operator of the Markov Process having an
exceptionally low eigenvalue) and the technical condition meaning that the probability of being
in a metastable state at equilibrium is vanishingly small. These conditions partition the state
space in two disjoint set: the metastable states and the equilibrium states. They show that for
any starting profile x, the dynamics quickly reach, with a probability px, a state which is fully
in the metastable region and, with probability 1−px, the equilibrium. Further, if the dynamics
start from the metastable region, then the probability of leaving it in short time is very low.
Moreover, they consider a restricted dynamics in which the process is reflected each time it
attempts to leave the metastable region, whose equilibrium is described by the restriction of
the stationary distribution to the metastable region: they show that these restricted dynamics
well mimic the process when the starting point is in the metastable region.

Very recently, Beltran and Landim [11] describe for the continuous time Markov process
of the Ising model all metastable behaviors, defining time scales at which they occur, the
metastable set associated to each time scale, and the asymptotic dynamics which specifies at
which rate the process jumps from one metastable state to another.

The work on censored Glauber dynamics [74, 38, 39] is also related to ours: the mixing time
in a censored dynamics resemble the pseudo mixing time for the metastable distribution on a
subset of states. However, we stress that the censored dynamics alters the original evolution of
the Markov chain and the techniques developed do not seem useful to answer questions about
the pseudo-mixing time.

6.1 Metastability

In this section we give formal definitions of metastable distributions and pseudo-mixing time.
As a simple example we analyze metastability for the logit dynamics for 2-player coordination
games and we also highlight some connections between metastability and the bottleneck ratio.

Definition 6.1.1 (Metastable distribution). Let P be a Markov chain with finite state space
Ω. A probability distribution µ over Ω is (ε, T )-metastable if for every 0 6 t 6 T it holds that∥∥µP t − µ∥∥

TV
6 ε .

Here are two obvious property of metastable distributions.

1. Monotonicity : If µ is (ε, T )-metastable then it is (ε′, T ′)-metastable for every ε′ > ε and
T ′ 6 T ;

2. Stationarity and Metastability : if µ is (0, 1)-metastable, then it is (0, T )-metastable for
every T ; µ is stationary if and only if it is (0, 1)-metastable.
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A third property is given by the following easy and useful lemma.

Lemma 6.1.2. If µ is (ε, 1)-metastable for P then µ is (εT, T )-metastable for P .

Proof. By using the triangle inequality, we have∥∥µP T − µ∥∥
TV

6
∥∥µP t − µP∥∥

TV
+ ‖µP − µ‖TV

6
∥∥µP t−1 − µ

∥∥
TV

+ ε ,

where the last inequality follows from the (ε, 1)-metastability of µ and from the fact that if
µ and ν are two probability distributions and P is a stochastic matrix then ‖µP − νP‖TV 6
‖µ− ν‖TV.

The definition of metastable distribution captures the idea of a distribution that behaves
approximately like the stationary distribution, meaning that if we start from such distribution
and run the chain we stay close to it for a long time.

Among all metastable distributions, we are interested in the ones that are quickly reached
from a, possibly large, set of states. This motivates the following definition.

Definition 6.1.3 (Pseudo-mixing time). Let P be a Markov chain with state space Ω, let R ⊆ Ω
be a set of states and let µ be a probability distribution over Ω. We define the pseudo-mixing
time tRµ (ε) as

tRµ (ε) = inf{t ∈ N :
∥∥P t(x, ·)− µ∥∥

TV
6 ε for all x ∈ R} .

Since the stationary distribution π of an ergodic Markov chain is reached within ε in time
tmix(ε) from every state, according to Definition 6.1.3, we have that tΩπ (ε) = tmix(ε).

The following simple lemma connects metastability and pseudo-mixing.

Lemma 6.1.4. Let µ be a (ε, T )-metastable distribution and let R ⊆ Ω be a set of states such
that tRµ (ε) < +∞. Then for every x ∈ R it holds that∥∥P t(x, ·)− µ∥∥

TV
6 2ε for every tRµ (ε) 6 t 6 tRµ (ε) + T .

Proof. Let us name t̄ = t− tRµ (ε) for convenience sake. By using the triangle inequality for the

total variation distance, the fact that P t̄ is a stochastic matrix, and the definitions of metastable
distribution and pseudo-mixing, we have that∥∥P t(x, ·)− µ∥∥

TV
=

∥∥∥P tRµ (ε)(x, ·)P t̄ − µ
∥∥∥

TV

6
∥∥∥P tRµ (ε)(x, ·)P t̄ − µP t̄

∥∥∥
TV

+
∥∥∥µP t̄ − µ∥∥∥

TV

6
∥∥∥P tRµ (ε)(x, ·)− µ

∥∥∥
TV

+
∥∥∥µP t̄ − µ∥∥∥

TV
6 2ε .

Example: A simple three-state Markov chain

As a first example, let us consider the simplest Markov chain that may highlight the concepts
of metastability and pseudo-mixing,

P =

 ε 1−ε
2

1−ε
2

ε 1− ε 0
ε 0 1− ε

 0

ε

1

1− ε

2

1− ε

1−ε
2

ε

1−ε
2

ε
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The chain is ergodic with stationary distribution π = (ε, (1− ε)/2, (1− ε)/2), and its mixing
time is tmix = Θ (1/ε). Hence the mixing time increases as ε tends to zero.

Now observe that, for every δ > ε, degenerate2 distributions µ1 = (0, 1, 0) and µ2 = (0, 0, 1)
are (δ,Θ(δ/ε))-metastable according to Definition 6.1.1. If we start from the first state (i.e.
from degenerate distribution ν = (1, 0, 0)), after one step we are in the stationary distribution.

Hence, even if the mixing time can be arbitrary large, for every starting state x there is
a (1/4,Θ(tmix))-metastable distribution µ that is quickly (in constant time, independent of ε)
reached from x.

Example: Two-player coordination games

Coordination games given in (3.1) are examples of games where the mixing time is a function
increasing exponentially in β (see Theorem 4.3.2).

We define

ε =
1

1 + e(a−d)β
; δ =

1

1 + e(b−c)β .

We can rewrite the stationary distribution of the logit dynamics for coordination games as

π =
1

ε+ δ
[δ(1− ε), εδ, εδ, ε(1− δ)] .

Thus, Theorem 4.3.2 states that the mixing time for such games is tmix = Θ(1/δ).
Let consider the special case when ε = δ, hence the stationary distribution is

π = ((1− δ)/2, δ/2, δ/2, (1− δ)/2) .

Let µ(0,0) and µ(1,1) be the two distributions concentrated in states (0, 0) and (1, 1) respectively,
i.e.,

µ(0,0) = [1, 0, 0, 0] and µ(1,1) = [0, 0, 0, 1] .

Observe that, if we start from µ(0,0) or µ(1,1), after one step of the chain we are respectively in
distributions

µ(0,0)P = [1− δ, δ/2, δ/2, 0] ,

µ(1,1)P = [0, δ/2, δ/2, 1− δ] .

Hence ∥∥µ(0,0)P − µ(0,0)

∥∥
TV

=
∥∥µ(1,1)P − µ(1,1)

∥∥
TV

= δ .

By using Lemma 6.1.2, we have that, for every constant c 6 1/2, µ(0,0) and µ(1,1) are (c,Θ(1/δ))-
metastable according to Definition 6.1.1. Moreover, if the chain starts from state (0, 1) or from
state (1, 0), after 1 step of the chain we are δ-close to the stationary distribution π, indeed

(0, 1, 0, 0)P =

[
1− δ

2
, δ, 0,

1− δ
2

]
,

(0, 0, 1, 0)P =

[
1− δ

2
, 0, δ,

1− δ
2

]
,

and
‖(0, 1, 0, 0)P − π‖TV = ‖(0, 1, 0, 0)P − π‖TV = δ/2 .

We can summarize what we have just shown in the following theorem.

Theorem 6.1.5. Let G be a 2-player coordination game with profile space S and let P be the
transition matrix of the logit dynamics for G. For every starting profile x ∈ S and every constant

c 6 1/2 there is a (c, Θ(tmix))-metastable distribution µx such that t
{x}
µx = Θ(1).

2A probability distribution is degenerate if it is concentrated in one single element.
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6.1.1 Metastability and the bottleneck ratio

Consider an ergodic Markov chain P with state space Ω and stationary distribution π. For a
subset R of states, let πR be the stationary distribution conditioned on R, i.e.

πR(x) =

{
π(x)/π(R), if x ∈ R ;

0, otherwise.
(6.1)

It is well-known (see e.g. Theorem 7.3 in [75]) that the bottleneck ratio at set R equals the
total variation distance between πR and πRP , i.e ‖πRP − πR‖TV = B(R). Hence, the following
lemma about the metastability of πR holds.

Lemma 6.1.6. Let P be a Markov chain with finite state space Ω and let R ⊆ Ω be a subset of
states. Then, πR is (B(R), 1)-metastable.

6.1.2 Pseudo-mixing time tools

In order to upper bound the mixing time of an ergodic chain, it is often used the fact that, for
every starting state x ∈ Ω the total variation distance between the distribution of the chain
at time t and the stationary distribution π is upper bounded by the maximum, over all states
y ∈ Ω, of the total variation between the chain starting at x and the chain starting at y (see
Lemma 4.11 in [75]), i.e.∥∥P t(x, ·)− π∥∥

TV
6 max

y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

.

In the following lemma we formalize and prove an analogous statement for metastable distribu-
tions.

Lemma 6.1.7. Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-
metastable distribution supported over a subset R ⊆ Ω of the state space. Then for every x ∈ R
and every 1 6 t 6 T , it holds that∥∥P t(x, ·)− µ∥∥

TV
6 ε+ max

y∈R

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

.

Proof. From triangle inequality we have∥∥P t(x, ·)− µ∥∥
TV

6
∥∥P t(x, ·)− µP t∥∥

TV
+
∥∥µP t − µ∥∥

TV
.

Since µ is (ε, t)-metastable for every t 6 T , we have
∥∥µP t − µ∥∥

TV
6 ε. Observe that, since

µ(y) = 0 for y /∈ R, then for every set of states A ⊆ Ω and for every t it holds that

|P t(x,A)− µP t(A)| =

∣∣∣∣∣∣P t(x,A)−
∑
y∈R

µ(y)P t(y,A)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈R

µ(y)
(
P t(x,A)− P t(y,A)

)∣∣∣∣∣∣
6

∑
y∈R

µ(y)
∣∣P t(x,A)− P t(y,A)

∣∣
6 max

y∈R

∣∣P t(x,A)− P t(y,A)
∣∣ .
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Thus, the total variation between P t(x, ·) and µP t is∥∥P t(x, ·)− µP t∥∥
TV

= max
A⊆Ω
|P t(x,A)− µP t(A)|

6 max
A⊆Ω

max
y∈R

∣∣P t(x,A)− P t(y,A)
∣∣

= max
y∈R

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

.

In some cases metastable distributions are concentrated in one single state. The following
lemma shows that, in those cases, the hitting time of such a state can be used to establish the
pseudo-mixing time of the metastable distribution.

Lemma 6.1.8. Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-
metastable distribution concentrated on a single state y. Let τy be the hitting time of this state.
Then for all x ∈ Ω and 1 6 t 6 T , we have∥∥P t(x, ·)− µ∥∥

TV
6 ε+ (1− ε)Px (τy > t) .

Proof. Since µ is concentrated in y, we have that∥∥P t(x, ·)− µ∥∥
TV

= Px (Xt 6= y)

= Px (Xt 6= y, τy 6 t) + Px (Xt 6= y, τy > t)

= Px (Xt 6= y | τy 6 t) Px (τy 6 t) + Px (τy > t) .

Moreover, observe that

Px (Xt 6= y | τy 6 t) =
∑
k6t

Px (Xt 6= y | τy = k) Px (τy = k | τy 6 t)

=
∑
k6t

Py (Xt−k 6= y) Px (τy = k | τy 6 t)

=
∑
k6t

∥∥∥µP t−k − µ∥∥∥
TV

Px (τy = k | τy 6 t)

6 ε
∑
k6t

Px (τy = k | τy 6 t) = ε ,

where in the inequality we used the metastability of µ. Hence,∥∥P t(x, ·)− µ∥∥
TV

= Px (Xt 6= y | τy 6 t) Px (τy 6 t) + Px (τy > t)

6 εPx (τy 6 t) + Px (τy > t)

= ε+ (1− ε)Px (τy > t) .

6.2 Ising model on the complete graph

Consider the n-player Ising game G defined in Section 3.2, that is the game-theoretic formulation
of the well-studied Ising model on a clique. Let S = {−1,+1}n be the profile space of G. For
every x ∈ S, the magnetization of x is defined as Λ(x) =

∑n
i=i xi. Observe that the potential of a
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profile x depends only on its magnetization, i.e. if Λ(x) = k then Φ(x) = −φ(k) = −1
2

(
k2 − n

)
.

To see this, let us name p and m the number of +1 and −1 respectively, in profile x, and observe
that p−m = Λ(x) = k and p+m = n. Each pair of players with the same sign contributes for
+1 in Φ(x) and each pair of players with opposite signs contributes for −1; since there are

(
p
2

)
pairs where both players play +1,

(
m
2

)
pairs where both play −1 and p ·m pairs where players

play opposite strategies, we have that

Φ(x) = −
((

p

2

)
+

(
m

2

)
− p ·m

)
= −1

2
((p−m)2 − (p+m)) .

In this section we study the metastability properties of the logit dynamics for the Ising game
on the clique from our quantitative point of view. Namely, we show that, if we start from a
profile where the number of +1 (respectively −1) is a sufficiently large majority, and if β is
large enough then, after an initial pseudo-mixing phase, the distribution of the chain at time
t is close, in total variation distance, to the degenerate distribution concentrated in the profile
with all +1’s (respectively all −1’s) for all t = poly (n).

Let π+ and π− be the two degenerate distributions concentrated in the states with all +1
and all −1, respectively. The next lemma shows that, for β = Ω(log n/n), π+ and π− are
metastable for a polynomially-long time.

Lemma 6.2.1. If β > c log n/n then π+ and π− are
(
1/n, nc−2

)
-metastable distributions of the

logit dynamics for the Ising game.

Proof. We prove the result for π+, exactly the same proof (by swapping minuses and pluses)
works for π−.

Since π+(x) = 0 for all x 6= +1 and

(π+P )(x) =


0 , if Λ(x) < n− 2 (i.e., |x|−1 > 1) ;
1
n ·

1
1+eβ(n−2) , if Λ(x) = n− 2 (i.e., |x|−1 = 1) ;

1
1+e−β(n−2) , if Λ(x) = n (i.e., x = +1) ,

the total variation distance between π+P and π+ is

‖π+P − π+‖TV =
1

2

∑
x∈S
|π+P (x)− π+(x)|

=
1

1 + eβ(n−2)
6 e−β(n−2) 6 nc−1 .

In the last inequality we used β > c log n/n. Hence π+ is (n−(c−1), 1)-metastable. The thesis
follows from Lemma 6.1.2.

In order to give an upper bound on the pseudo-mixing time we need some preliminary results
about birth-and-death chains, which we show in the next subsection.

6.2.1 Biased birth-and-death chains

In this section we consider birth-and-death chains with state space Ω = {0, 1, . . . , n} (see
Chapter 2.5 in [75] for a detailed description of such chains). For k ∈ {1, . . . , n − 1} let
pk = Pk (X1 = k + 1), qk = Pk (X1 = k − 1), and rk = 1 − pk − qk = Pk (X1 = k). We
will be interested in the probability that the chain starting at some state h ∈ Ω hits state 0
before state n, namely Pk

(
Xτ0,n = n

)
where τ0,n = min{t ∈ N : Xt ∈ {0, n}}.

We start by giving an exact formula for such probability for the case when pk and qk do not
depend on k.
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Lemma 6.2.2. Consider a birth-and-death chain {Xt} with state space Ω = {0, 1, . . . , n}.
Suppose for all k ∈ {1, . . . , n − 1} it holds that pk = ε and qk = δ, for some ε and δ with
ε+ δ 6 1. Then the probability the chain hits state n before state 0 starting from state h ∈ Ω is

Ph

(
Xτ0,n = n

)
=

1− (δ/ε)h

1− (δ/ε)n
.

Proof. Let αk be the probability to reach state n before state 0 starting from state k, i.e.

αk = Pk

(
Xτ0,n = n

)
.

Observe that for k = 1, . . . , n− 1 we have

αk = δ · αk−1 + ε · αk+1 + (1− (δ + ε))αk . (6.2)

Hence
ε · αk − δ · αk−1 = ε · αk+1 − δ · αk ,

with boundary conditions α0 = 0 and αn = 1. If we name ∆k = ε · αk − δ · αk−1 we have
∆k = ∆k+1 for all k. By simple calculation and using that α0 = 0 it follows that

αk =
∆

ε

k−1∑
i=0

(
δ

ε

)i
=

∆

ε− δ

(
1− (δ/ε)k

)
.

From αn = 1 we get

∆ =
ε− δ

(1− (δ/ε)n)
.

Hence

αk =
1− (δ/ε)k

1− (δ/ε)n
. (6.3)

Lemma 6.2.3. Consider a birth-and-death chain {Xt} with state space Ω = {0, 1, . . . , n}.
Suppose for all k ∈ {1, . . . , n − 1} it holds that pk > ε and qk 6 δ, for some ε and δ with
ε+ δ 6 1. Then the probability to hit state n before state 0 starting from state h ∈ Ω is

Ph

(
Xτ0,n = n

)
>

1− (δ/ε)h

1− (δ/ε)n
.

Proof. Let {Yt} be a birth-and-death chain with the same state space as {Xt} but different
transition rates

Pk (Y1 = k − 1) = δ Pk (Y1 = k + 1) = ε

Consider the following coupling of Xt and Yt: when (Xt, Yt) is at state (k, h), consider the two
[0, 1] intervals, each one partitioned in three subintervals as in Fig. 6.1. Let U be a uniform
random variable over the interval [0, 1] and choose the update for the two chains according to
position of U in the two intervals.

Observe that, since pk > ε and qk 6 δ, if the two chains start at the same state h ∈ Ω, i.e.
(X0, Y0) = (h, h), then at every time t it holds that Xt > Yt. Hence if chain Yt hits state n
before state 0, then chain Xt hits state n before state 0 as well. More formally, let τ0,n and τ̂0,n

be the random variables indicating the first time chains Xt and Yt respectively hit state 0 or n,
hence {

Yτ̂0,n = n
}
⇒
{
Xτ0,n = n

}
.
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qk pk

δ ε

Figure 6.1: Partition for the coupling in Lemma 6.2.3.

Thus

Ph

(
Xτ0,n = n

)
> Ph

(
Yτ̂0,n = n

)
>

1− (δ/ε)h

1− (δ/ε)n
.

In the last inequality we used Lemma 6.2.2.

Lemma 6.2.4. Consider a birth-and-death chain {Xt} with state space Ω = {0, 1, . . . , n}.
Suppose for all k ∈ {1, . . . , n− 1} it holds that qk/pk 6 α, for some α < 1. Then the probability
to hit state 0 before state n starting from state h ∈ Ω is

Ph

(
Xτ0,n = 0

)
6 αh .

Proof. Let p̂k = pk
pk+qk

and q̂k = qk
pk+qk

and let {Yt} be the birth-and-death chain with transition
rates p̂k and q̂k.

Let {Ut} be an array of random variables such that Ut = −1 with probability qYt
, Ut = +1

with probability pYt
and Ut = 0 with remaining probability. We will use Ut to update chains

Xt and Yt at different time steps. Specifically, we denote with u the index of the first variables
Ut not used for updating Xt (thus, at the beginning u = 1) and : set Yt+1 = Yt + Ut; for
chain Xt, we toss a coin that gives head with probability pXt

+ qXt
and if it gives tail we set

Xt+1 = Xt, otherwise we set Xt+1 = Xt + Uu. Roughly speaking, we have that the chain Xt

follows the path traced by chain Yt: indeed, it is easy to see that, if they start at the same
place, the sequence of states visited by the two chains is the same and in the same order. Hence
chain Xt hits state 0 before state n if and only if chain Yt hits state 0 before state n and thus

Pk

(
XτX0,n

= 0
)

= Pk

(
YτY0,n

= 0
)

.

Finally, observe that q̂k
p̂k

= qk
pk

6 α and p̂k + q̂k = 1. Hence, for every k ∈ {1, . . . , n− 1}, we

have that p̂k >
1

1+α and q̂k 6
α

1+α . This implies, from Lemma 6.2.3, that, from any state h ∈ Ω,

Ph

(
YτY0,n

= n
)
>

1− αh

1− αn
> 1− αh .

The lemma follows.

6.2.2 Convergence time at low temperature

If Xt is the logit dynamics for the Ising game, the magnetization process Yt = Λ(Xt) is itself a
Markov chain, with state space Ω = {−n,−n + 2, . . . , n − 4, n − 2, n}. When at state k ∈ Ω,
the probability to go right (to state k + 2) or left (to state k − 2) is respectively

Pk (Y1 = k + 2) = pk =
n− k

2n

1

1 + e−2(k+1)β
;

Pk (Y1 = k − 2) = qk =
n+ k

2n

1

1 + e2(k−1)β
.

(6.4)
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Indeed, let us evaluate the probability to jump from a profile x with magnetization k to a profile
with magnetization k+2. If Λ(x) = k, then there are (n+k)/2 players playing +1 and (n−k)/2
players playing −1. The chain moves to a profile with magnetization k + 2 if a player playing
−1 is selected, this happens with probability (n − k)/2n, and she updates her strategy to +1,
this happens with probability

eβui(x−i,+1)

eβui(x−i,+1) + eβui(x−i,−1)
=

1

1 + eβ[ui(x−i,−1)−ui(x−i,+1)]
.

Finally observe that ui(x−i,−1)− ui(x−i,+1) = −2
∑

j 6=i xj = −2 (Λ(x)− xi) = −2(k + 1).
For a, b ∈ [−n, n], with a < b, let τa,b be the random variable indicating the first time the

chain reaches a state h with h 6 a or h > b,

τa,b = inf{t ∈ N : Yt 6 a or Yt > b} .

At time τa,b, chain Yτa,b can be in one out of two states, namely the larger state smaller than
a or the smallest state larger than b. We need to give an upper bound on the probability that
when the chain exits from interval (a, b), it happens on the left side of the interval.

In the next lemma we show that, if the chain starts from a sufficiently large positive state k,
and if βk2 > c log n for a suitable constant c, then when chain Yt gets out of interval (0, n/2),
it happens on the n/2 side w.h.p.

Lemma 6.2.5. Consider the birth and death chains {Yt} with state space Ω. Let k ∈ Ω be the
starting state with 4 6 k 6 n/2. If β > 6/n and βk2 > 16 log n, then

Pk

(
Yτ0,n/2 6 0

)
6 1/n .

Proof. According to (6.4), the ratio of qh and ph is

qh
ph

=
n+ h

n− h
· 1 + e−2(h+1)β

1 + e2(h−1)β
.

Now observe that for all h > 2 it holds that

1 + e−2(h+1)β

1 + e2(h−1)β
6 e−2(h−1)β 6 e−hβ , (6.5)

and for all h 6 n/2 it holds that

n+ h

n− h
=

1 + h/n

1− h/n
6 e3h/n .

Hence, for every 2 6 h 6 n/2 we can give the following upper bound

qh
ph

6 e3h/n · e−βh = e−(β−3/n)h 6 e−
1
2
βh , (6.6)

where in the last inequality we used β > 6/n.
Thus, for each state h of the chain with k/2 6 h 6 n/2 we have that the ratio qh/ph is less

than e−
1
4
βk. If the chain starts at k, by applying Lemma 6.2.4 it follows that the probability of

reaching k/2 before reaching n/2 is less than
(
e−

1
4
βk
)`

, where ` is the number of states between

k/2 and k, that is ` = k/4. Hence, for every 4 6 k 6 n/2, if βk2 > 16 log n, the chain starting
at k hits state k/2 before state n/2 with probability

Pk

(
Yτk/2,n/2 6 k/2

)
6 e

1
16
βk2

6
1

n
.

The thesis follows by observing that Pk

(
Yτ0,n/2 6 0

)
6 Pk

(
Yτk/2,n/2 6 k/2

)
.
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In the next lemma we show that, if the chain starts from a state k > n/2, and if β > c log n/n
for a suitable constant c, then when chain Yt reaches one of the endpoints of interval (0, n) it is
on the n side with probability exponentially close to 1.

Lemma 6.2.6. Consider the birth and death chains {Yt} with state space Ω. Let k ∈ Ω be the
starting state with n/2 6 k 6 n− 1. If β > 8 log n/n, then

Pk

(
Yτ0,n 6 0

)
6 (2/n)n/8 .

Proof. Observe that for every h 6 n− 1 it holds that n+h
n−h 6 2n, and by using it together with

(6.5) we have that qh/ph 6 2ne−βh for every 2 6 h 6 n− 1. Thus, for every k/2 6 h 6 n− 1 it
holds that

qh/ph 6 2ne−
1
2
βk 6 2/n , (6.7)

where in the last inequality we used k > n/2 and β > 8 log n/n. Hence, if the chain starts at
k, by applying Lemma 6.2.4 it follows that the probability of reaching k/2 before reaching n is
less than (2/n)`, where ` = k/4 > n/8 is the number of states between k/2 and k. Hence,

Pk

(
Yτ0,n 6 0

)
6 Pk

(
Yτk/2,n 6 k/2

)
6 (2/n)n/8 .

In the next lemma we show that for every starting state between 0 and n, the expected time
the chain reaches 0 or n is at most O(n3).

Lemma 6.2.7. Consider the birth and death chains {Yt} with state space Ω. If β > 8 log n/n,
for every k ∈ Ω with k > 2 it holds that Ek [τ0,n] 6 n3.

Proof. Consider the birth-and-death chain {Y ?
t } on Ω+ = {l ∈ Ω | l > 0} and let τ?n the hitting

time of n in this chain. It is obvious that Ek [τ0,n] 6 Ek [τ?n]. It is well-known (see, for example,
Section 2.5 in [75]) that

Ek [τ?n] =

n/2∑
l= k+2

2

1

q2lw2l

l−1∑
j=n mod 2

2

w2j ,

where wn mod 2 = 1 and w2j =
∏j
i=1 p2(j−1)/q2j . From simple computations, we obtain

Ek [τ?n] =

n/2∑
l= k+2

2

l−1∑
j=n mod 2

2

1

p2j

l−1∏
i=j+1

q2i

p2i

6
n/2∑

l= k+2
2

l−1∑
j=n mod 2

2

1

p2j
,

where the inequality follows from (6.6) and (6.7). Finally, the Lemma follows by observing that
p2j > 1

2n for every j > 0.

Now we can state and prove the main theorem of this section.

Theorem 6.2.8. Let G be the n-player Ising game and consider the logit dynamics for G. If
β > c log n/n and k2 > c log n/β then

tSkπ+
(O(1/n)) 6 n4 , and t

S−k
π− (O(1/n)) 6 n4 ,

where Sk and S−k are the sets of profiles x ∈ {−1,+1}n whose magnetization Λ(x) > k and
Λ(x) 6 −k, respectively.
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Proof. We only consider starting states with positive magnetization: by symmetry, the results
holds also for starting states with negative magnetization.

Let τn be the first time the chain hits state with all +1 and let τ0,n be the first time the
magnetization of the chain is either n or less than or equal to 0,

τ0,n = min{t ∈ N : Λ(Xt) = n or Λ(Xt) 6 0} .

Since {τn > t, τ0,n 6 t} implies that the magnetization chain reaches 0 before reaching n we
have, that for every starting profile x with magnetization l > k

Px (τn > t) = Px (τn > t, τ0,n > t) + Px (τn > t, τ0,n 6 t)

6 Px (τ0,n > t) + Px

(
Λ(Xτ0,n) 6 0

)
6

Ex [τ0,n]

t
+ Pl

(
Yτ0,n 6 0

)
,

where Yt is the birth-and-death chain with state space Ω and transition rates as in (6.4). As for
the first term of the sum, from Lemma 6.2.7 it follows that Ex [τ0,n] /t 6 1/n for t > n4. As for
the second term, by conditioning on the position of the chain when it gets out of subinterval
(0, n/2) we have

Pl

(
Yτ0,n 6 0

)
= Pl

(
Yτ0,n 6 0 |Yτ0,n/2 6 0

)
Pl

(
Yτ0,n/2 6 0

)
+

+Pl

(
Yτ0,n 6 0 |Yτ0,n/2 > n/2

)
Pl

(
Yτ0,n/2 > n/2

)
6 Pl

(
Yτ0,n/2 6 0

)
+ Pl

(
Yτ0,n 6 0 |Yτ0,n/2 > n/2

)
.

From Lemma 6.2.5 we have that Pl

(
Yτ0,n/2 6 0

)
6 1/n, and observe that

Pl

(
Yτ0,n 6 0 |Yτ0,n/2 > n/2

)
6 Pn/2

(
Yτ0,n 6 0

)
6 (2/nn/8) ,

where the last inequality follows from Lemma 6.2.6. Hence for every t > n4 it holds that
Px (τn > t) 6 3/n. Hence, for every starting profile x with magnetization l > k and for t = n4

we have ∥∥P t(x, ·)− π+

∥∥
TV

6
∥∥π+P

t − π+

∥∥
TV

+
1

2
Px (τn > t) = O(1/n) ,

where we used that π+ is (1/n, nc−2)-metastable when β > c log n/n.

6.3 Graphical coordination games on rings

In this section we study metastability for graphical coordination games on a ring.
The set of profiles of the game is S = {0, 1}n. We define Sd ⊆ S as the set of profiles where

exactly d players are playing 0 and R ⊆ S as the set of profiles in which at least two adjacent
players are playing 0. We also set S̃d =

⋃n
i=d Si.

In previous chapter it is showed that the mixing time of the logit dynamics for this game is
polynomial in n for β = O(log n) and greater than any polynomial in n, for β = ω(log n).
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6.3.1 Games with risk dominant strategies

In this section we study the case ∆ > δ and prove that for β = ω(log n), the logit dynamics
reaches in polynomial time a metastable distribution and remains close to it for super-polynomial
time. On the other hand, we know that for β = O(log n) the logit dynamics is rapidly mixing
(and thus reaches in polynomial time the stationary distribution and stays close to it forever).

Theorem 6.3.1. Let G be the n-player graphical coordination game on the ring. If β = ω(log n)
then for every x ∈ S there exists a distribution µ that is (ε, T )-metastable for the logit dynamics
on G, where ε < 2/5 and T = T (n) is a super-polynomial function, and the dynamics starting
from x approaches µ in polynomial time.

Throughout this section, we set S?d = R ∪ S̃d.

Metastable distributions

The next theorem identifies three classes of metastable distributions. We remind the reader
that πS is the stationary distribution (that is the Gibbs measure defined in 2.3) restricted to
the set S of profiles (see 6.1).

Theorem 6.3.2. Let G be the n-player graphical coordination game on the ring. For every
ε > 0, π1 is (ε, ε ·e2δβ)-metastable for the logit dynamics on G and π0 is (ε, ε ·e2∆β)-metastable.
Moreover, for β = ω(log n) and constant d > 0, πS?d is (ε, eΩ(n logn))-metastable.

Proof. The bottleneck ratio of 1 is

B(1) =

∑
x 6=1 π(1)P (1,x)

π(1)
= e−2δβ .

Thus from Lemma 6.1.6, we have that π1 is (e−2δβ, 1)-metastable. By applying Lemma 6.1.2,
we obtain that π1 is (ε, ε · e2δβ)-metastable for every ε > 0.

Similarly, the bottleneck ratio of 0 is

B(0) =

∑
x 6=0 π(0)P (0,x)

π(0)
= e−2∆β ,

and thus, by applying Lemma 6.1.6 and Lemma 6.1.2, we have that π0 is (ε, ε ·e2∆β)-metastable
for every ε.

Finally, the bottleneck ratio of S?d is

B(S?d) =

∑
x∈∂S?d

π(x)
∑

y∈§\S?d
P (x,y)∑

x∈S?d
π(x)

6

∑
x∈∂S?d

π(x)∑
x∈S?d

π(x)

6
nd+1 maxx∈∂S?d π(x)

maxx∈S?d π(x)

6
nd+1e[(n−d−1)δ+(d−1)∆]β

en∆β

6 nd+1e−(n−d−1)(∆−δ)β

6 n−n+2(d+1) = e−Ω(n logn) .
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From the second to the third line we used that ∂S?d , the set of all profiles in S?d with at least
a neighbor in S \ S?d , has size at most nd+1; from the third to the fourth line we used that the
maximum is attained when d 0’s are adjacent; then we used that β = ω(log n) and (∆− δ) and
d are positive constants.

Thus, by applying Lemma 6.1.6 and Lemma 6.1.2, we have that πS?d is (ε, eΩ(n logn))-
metastable for every ε.

Pseudo-mixing time

In this subsection we look at the the pseudo-mixing time of the metastable distributions de-
scribed in Theorem 6.3.2 and we show that, for every starting profile, the dynamics rapidly
approaches one of them. We remind the reader that the interesting case is β = ω(log n) as for
β = O(log n) the mixing time of the logit dynamics is polynomial in n.

Not to overburden our notation, we will denote distribution πS?d by πd.
Our proof distinguishes cases depending on the starting profile x of the chain. We start by

considering x ∈ S?d , for constant d, and show (see Theorem 6.3.7) that the pseudo-mixing time
of πd is polynomial. Finally, in Theorem 6.3.9, we show that if the dynamics starts from one of
the remaining profiles, in polynomial time it hits either S?d or 1 with high probability. For sake
of readability we postpone proofs to Section 6.3.3.

Starting from S?d. From the definition of pseudo mixing time and by using Lemma 6.1.7,
for any S, we can bound tSπS (γ) in terms of the total variation distance of two copies of the
same Markov chain starting in different states. Next lemma relates this quantity, for the logit
dynamics we are studying, to the hitting time τ0 of profile 0.

Lemma 6.3.3. Let G be the n-player graphical coordination game on the ring and P be the
transition matrix of the logit dynamics for G. For every T ⊆ S, t > 0 and for x,y ∈ T we have∥∥P t(x, ·)− P t(y, ·)∥∥

TV
6 2 ·max

z∈T
Pz (τ0 > t) .

Thus, from the previous lemma and Lemma 6.1.7, in order to bound t
S?d
πd (γ), it is sufficient

to give an upper bound on Px (τ0 > t), for x ∈ S?d . The next lemma bounds the hitting time of
0 when starting from R.

Lemma 6.3.4. Let G be the n-player graphical coordination game on the ring and consider the
logit dynamics for G. For β = ω (log n), for every λ > 0 and every x ∈ R, we have

Px

(
τ0 >

(8− λ)n2

λ

)
6
λ

4
.

Next we show that, when starting from x ∈ Sd, the dynamics hits R in polynomial time.

Lemma 6.3.5. Let G be the n-player graphical coordination game on the ring and consider the
logit dynamics for G. For β = ω (log n), for every d > 0 and for every profile x ∈ Sd,

Px

(
τR 6 n2

)
>

2d

2d+ 1
(1− negl (n)) .

Finally, we have

Lemma 6.3.6. Let G be the n-player graphical coordination game on the ring and consider the
logit dynamics for G. For β = ω (log n), for every d > 0, for x ∈ S?d and for every λ > 0,

Px

(
τ0 >

8n2

λ

)
6

1

2d+ 1
+
λ

4
.
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Proof. We need to consider only x ∈ S?d \R. By Lemma 6.3.4 and Lemma 6.3.5, we have

Px

(
τ0 6

8n2

λ

)
> Px

(
τ0 6

8n2

λ
| τR 6 n2

)
Px

(
τR 6 n2

)
> PXτR

(
τ0 6

(8− λ)n2

λ

)
Px

(
τR 6 n2

)
>

(
1− λ

4

)
2d

2d+ 1
(1− negl (n))

>
2d

2d+ 1
− λ

4
.

We are now ready to prove an upper bound on the pseudo-mixing time of πd, when starting
from a profile in S?d .

Theorem 6.3.7. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For β = ω (log n), for constant d > 1 and for every λ > 0,

t
S?d
πd (γ) 6

8n2

λ
,

where γ = 2
2d+1 + λ.

Proof. By Theorem 6.3.2, we have that πd is (λ/2, 8n2/λ)-metastable for every λ > 0 and
sufficiently large n. Therefore, for every x ∈ S?d and t > 8n2/λ, we have∥∥P t(x, ·)− πd∥∥TV

6
λ

2
+ max

y∈S?d

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

6
λ

2
+ max

z∈S?d
Pz (τ0 > t)

6
2

2d+ 1
+ λ .

where the first inequality follows from Lemma 6.1.7, the second one from Lemma 6.3.3, and the
third one follows from Lemma 6.3.4 and Corollary 6.3.6.

Starting from outside S?d. Observe that when x = 1, metastable distribution π1 is trivially
reached immediately. Thus, it only remains to analyze x /∈ S?d ∪ {1}. For this, it is enough to
prove that for such an x the hitting time of S?d ∪ {1} is polynomial.

Lemma 6.3.8. Let G be the n-player graphical coordination game on the ring and consider the
logit dynamics for G. For β = ω (log n), for every d > 0 and for every x ∈ Sd, we have

Px

(
τ1 6 n2

)
>

1

3d
(1− negl (n)) .

We can now state the following theorem.

Theorem 6.3.9. Let G be the n player graphical coordination game on the ring and consider
the logit dynamics for G. For β = ω (log n), for every d > z > 0 and for every profile x ∈ Sz,
we have

Px

(
τS?d∪{1} 6 n2

)
>

(
2z

2z + 1
+

1

3z

)
(1− negl (n)) .

Theorem 6.3.1 follows from Theorems 6.3.7 and 6.3.9.
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Staying arbitrarily close. We observe that, in Theorem 6.3.7, the distance between the
dynamics and the metastable distribution cannot be made arbitrarily small. We can achieve
this at the cost of slightly reducing the set of starting states from which convergence is proved.
Specifically, the next theorem shows that, for d = ω(1) and arbitrarily small γ > 0, the logit
dynamics starting from S?d is within distance γ from π0 in a number of steps that is polynomial
in n and in 1/γ.

Theorem 6.3.10. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For β = ω(log n), d = ω(1) and every γ > 0,

t
S?d
π0 (γ) 6

8n2

γ
.

Proof. Since β = ω(log n), Theorem 6.3.2 implies that π0 is (γ/2, 8n2/γ)-metastable for every
γ > 0 and sufficiently large n. Therefore, for every x ∈ S?d and t > 8n2/γ, we have∥∥P t(x, ·)− π0∥∥TV

6
γ

2
+ Px (τ0 > t)

6
1

2d+ 1
+

3

4
γ 6 γ .

where the first inequality follows from Lemma 6.1.8, the second one from Lemma 6.3.4 and
Corollary 6.3.6, and the third one holds because d = ω(1).

6.3.2 Games without risk dominant strategies.

In this section we study the case of graphical coordination games without risk dominant strate-
gies (that is, ∆ = δ) played on a ring by n players. Next theorem identifies a class of metastable
distributions.

Theorem 6.3.11. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every ε > 0 and for every 0 6 d 6 n, distribution µd = d

nπ0 +(
1− d

n

)
π1 is (ε, εe2∆β)-metastable.

Proof. We notice that

‖µdP − µd‖TV =
1

2

∑
x

|(µdP )(x)− µd(x)|

=
1

2

∑
x

∣∣∣∣∣∑
y

µd(y)P (y,x)− µd(x)

∣∣∣∣∣
= d

∑
x∈Sn−1

P (0,x) + (1− d)
∑
x∈S1

P (1,x)

=
1

1 + e2∆β
.

Thus µ is
(

1
1+e2∆β , 1

)
-metastable. The Theorem follows from Lemma 6.1.2.

The main and quite surprising result in this section is that for every starting profile x ∈ Sd
the dynamics starting in x converges in polynomial time to µd, for d = 1, . . . , n. In order to
prove this result, we define τ0,1 = min{τ0, τ1} and prove that this quantity is polynomial in n
with very high probability; then we show that the dynamics starting at x ∈ Sd after τ0,1 steps
is distributed as a metastable distribution very close to µd. We formalize these arguments in
two technical lemmas, whose proofs will be given in Section 6.3.4.

95



Lemma 6.3.12. Let G be n-player graphical coordination game on the ring and consider the
logit dynamics for G. If β = ω (log n), then for every x ∈ S, Px

(
τ0,1 6 n5

)
> 1− o(1).

Lemma 6.3.13. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every d, x ∈ Sd and β = ω(log n), the random variable Xτ0,1

given that X0 = x, has distribution νx =
(
d
n + λx

)
π0 +

(
1− d

n − λx
)
π1, with |λx| = o(1).

The pseudo mixing time of distributions µd, for d = 0, 1, . . . , n, is given by the next Theorem.

Theorem 6.3.14. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. If β = ω (log n), for every d and every γ > 0

tSdµd(γ) 6 n5.

Proof. From Lemma 6.3.12, for every x ∈ S we have∥∥∥Pn5
(x, ·)− µd

∥∥∥
TV

= max
A⊂S
|Px (Xn5 ∈ A)− µd(A)|

= o(1) + max
A⊂S

∣∣Px

(
Xn5 ∈ A | τ0,1 6 n5

)
− µd(A)

∣∣
= o(1) +

∥∥Px

(
Xn5 | τ0,1 6 n5

)
− µd

∥∥
TV

6 o(1) +
∥∥Px

(
Xn5 | τ0,1 6 n5

)
− νx

∥∥
TV

+ ‖νx − µd‖TV ,

where the last inequality follows from the triangle inequality of the total variation distance.
Moreover, from Lemma 6.3.13, for every x ∈ Sd, we have

‖νx − µd‖TV = ‖P τ0,1(x, ·)− µd‖TV = o(1) .

Finally, from Theorem 6.3.11 we have that µx is (o(1), n5)-metastable and thus,∥∥Px

(
Xn5 | τ0,1 6 n5

)
− νx

∥∥
TV

=
∥∥∥P τ0,1(x, ·)Pn5−τ0,1 − νx

∥∥∥
TV

=
∥∥∥νxPn5−τ0,1 − νx

∥∥∥
TV

= o(1) .

6.3.3 Proofs from Section 6.3.1

Proof of Lemma 6.3.3

Proof of Lemma 6.3.3. Consider the following partial order � over S: for profiles x,y ∈ S,
x � y if and only if for every 0 6 i 6 n− 1, we have that xi > yi. That is, if x � y then x can
be obtained from y by changing 0’s into 1’s. We note that, in according to this order, 0 is the
unique maximum.

We next show that for every two profiles x,y ∈ S there exists a monotone (w.r.t. (S,�))
coupling (X1, Y1) of two copies of the logit dynamics for the graphical coordination game on
the ring for which X0 = x and Y0 = y. The Lemma then follows from Theorem 1.3.1 and
Lemma 1.3.2.

Consider the coupling described in Section 4.1.1: this coupling is monotone w.r.t. (S,�).
Indeed, suppose x � y and that the player i was selected for update. Since x � y, the number
of neighbors of i playing 0 in x is less or equal than in y and thus σi(0 | x) 6 σi(0 | y). Thus,
the coupling either sets xi = yi or xi = 1 and yi = 0. In both cases, X1 � Y1.
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Proof of Lemma 6.3.4

Lemma 6.3.4 gives an upper bound on the hitting time, τ0, of 0, for a dynamics starting from
a profile x ∈ R (profiles in R are those in which at least two adjacent players play 0). For
convenience, we rename players so that x0 = x1 = 0. Intuitively, for β = ω(log n), each
of player 0 and 1 changes her strategy with very low probability. Moreover, player 2, when
selected for update, plays 0 with high probability. Similarly, after player 2 has played 0, we
have that each of player 0, 1 and 2 changes her strategy with very low probability and player 3,
when selected for update, plays 0 with high probability. This process repeats until every player
is playing 0. In the following, we estimate the number of steps sufficient to have all players
playing strategy 0 with high probability.

For sake of compactness, we will denote the strategy of player i at time step t by Xi
t . We

start with a simple observation that lower bounds the probability that a player picks strategy
0 when selected for update, given that at least one of their neighbors is playing 0.

Observation 6.3.15. Let G be the n-player graphical coordination game on the ring and con-
sider the logit dynamics for G. For every player i, if i is selected for update at time t, then, for
b ∈ {−1, 1}

P
(
Xi
t = 0 | Xi+b

t = 0
)
>

(
1− 1

1 + e(∆−δ)β

)
.

We start by evaluating the probability that the dynamics selects players 2, . . . , n−1 at least
once in this order before time t. To this aim, we set ρ1 = 0 and, for i = 2, . . . , n− 1, we define
ρi as the first time player i is selected for update after time step ρi−1. Thus, at time ρi player i
is selected for update and players 2, . . . , i− 1 have been selected at least once in this order. In
particular, ρn−1 is the first time step at which every player i, i > 3, has been selected at least
once after his left neighbor. Obviously, ρi > ρi−1 for i = 2, . . . , n − 1. The next lemma lower
bounds the probability that ρn−1 6 t.

Lemma 6.3.16. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every x ∈ R and every t > 0, we have

Px (ρn−1 6 t) > 1− n2

t
.

Proof. Every player i has probability 1
n of being selected at any given time step. Therefore,

E [ρ2] = E [ρ2 − ρ1] = n and E [ρi − ρi−1] = n, for i = 3, . . . , n − 1. Thus, by linearity of
expectation,

E [ρn−1] =

n−1∑
i=2

E [ρi − ρi−1] 6 n2 .

The lemma follows from the Markov inequality.

Suppose now that t > ρn−1. The next lemma shows that, for all players i, the probability
that Xi

t = 0 is high.

Lemma 6.3.17. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every starting profile x ∈ R, for every player i and for every time
step t > 0, we have

Px

(
Xi
t = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)t
.
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We prove the lemma first for i > 2. Then we deal with players 0 and 1.
Fix player i > 2, time step t and set si+1 = t. Starting from time step t and going backward

to time step 0, we identify, the sequence of time steps si > si−1 > . . . > s2 > 0 such that, for
j = i, i − 1, . . . , 2, sj is the last time player j has been selected before time sj+1. We remark
that, since t > ρn−1 > ρi we have that players 2, . . . , i are selected at least once in this order
and thus all the sij are well defined. Strictly speaking, the sequence si, . . . , s2 depends on i and
t and thus a more precise, and more cumbersome, notation would have been si,j,t. Since player
i and time step t will be clear from the context, we drop i and t.

In order to lower bound the probability that Xi
t = 0 for i > 2, we first bound it in terms

of the the probability that player 2 plays 0 at time s2 and then we evaluate this last quantity.
The next lemma is the first step.

Lemma 6.3.18. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every x ∈ R, every player 2 6 i 6 n − 1 and every time step t,
we have

Px

(
Xi
t = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)i−2

Px

(
X2
s2 = 0 | ρn−1 6 t

)
.

Proof. For every fixed i, si is the last time the player i is selected for update before t and thus
Xi
t = Xi

si . Hence, for i = 2 the lemma obviously holds. For i > 2 and j = 2, . . . , i, we observe
that, since t > ρn−1 > ρi, player j has been selected for update at time sj and sj is the last

time that player j is selected for update before time sj+1 and thus Xj
sj+1

= Xj
sj .

From Observation 6.3.15, we have

Px

(
Xj
sj = 0 | ρn−1 6 t

)
> Px

(
Xj
sj = 0 | Xj−1

sj = 0, ρn−1 6 t
)
·Px

(
Xj−1
sj = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)
Px

(
Xj−1
sj−1

= 0 | ρn−1 6 t
)
,

and the lemma follows.

We now bound the probability that player 2 plays 0 at time step s2. If player 1 has not been
selected for update before time s2, then X1

s2 = X1
0 = 0, and, from Observation 6.3.15, we have

Px

(
X2
s2 = 0 | ρn−1 6 t

)
> Px

(
X2
s2 = 0 | X1

s2 = 0, ρn−1 6 t
)

>

(
1− 1

1 + e(∆−δ)β

)
.

It remains to consider the case when player 1 has been selected for update at least once before
time s2. For fixed player i and time step t we define a new sequence of time steps r0 > r1, . . . > 0
in the following way. We set r0 = s2, and, starting from time step s2 and going backward to
time step 0, rj , for j > 0, is the last time player j mod 2 has been selected before time rj−1.
For the last element in the sequence, rk, it holds that player (k+1) mod 2 is not selected before
time step rk.

Since r1 is the last time player 1 has been selected for update before r0 = s2, we have
X1
s2 = X1

r1 and, by Observation 6.3.15,

Px

(
X2
s2 = 0 | ρn−1 6 t

)
> Px

(
X2
s2 = 0 | X1

s2 = 0, ρn−1 6 t
)
·Px

(
X1
s2 = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)
·Px

(
X1
r1 = 0 | ρn−1 6 t

)
.

(6.8)

Finally, we bound Px

(
X1
r1 = 0 | ρn−1 6 t

)
.
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Lemma 6.3.19. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every starting profile x ∈ R and for every time step t, for every
fixed player i, let r0, . . . , rk be defined as above. If k > 0, we have

Px

(
X1
r1 = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)k
.

Proof. For sake of compactness, in this proof we denote the parity of integer a with P(a) =
a mod 2. Thus, the definition of sequence rj gives that player P(j) has been selected for update
at time rj and

Px

(
XP(j)
rj = 0 | ρn−1 6 t

)
> Px

(
XP(j)
rj = 0 | XP(j+1)

rj = 0, ρn−1 6 t
)
·Px

(
XP(j+1)
rj = 0 | ρn−1 6 t

)
.

If j 6= k player P(j + 1) has not been selected for update between time rj+1 and time rj and
by Observation 6.3.15

Px

(
XP(j)
rj = 0 | ρn−1 6 t

)
> Px

(
XP(j)
rj = 0 | XP(j+1)

rj = 0, ρn−1 6 t
)
·Px

(
XP(j+1)
rj+1

= 0 | ρn−1 6 t
)

>

(
1− 1

1 + e(∆−δ)β

)
Px

(
XP(j+1)
rj+1

= 0 | ρn−1 6 t
)
.

If j = k, instead, player P(k + 1) has not been selected for update before time rk and thus

X
P(k+1)
rk = X

P(k+1)
0 = 0. By Observation 6.3.15, we have

Px

(
XP(k)
rk

= 0 | ρn−1 6 t
)
> Px

(
XP(k)
rk

= 0 | XP(k+1)
rk

= 0, ρn−1 6 t
)

>

(
1− 1

1 + e(∆−δ)β

)
.

Let k be the index of the last term in the sequence r0, r1, . . . previously defined. Then, from
Lemma 6.3.18, Equation (6.8) and Lemma (6.3.19) we have for every player i > 2 and for every
time step t > 0

Px

(
Xi
t = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)i−2

Px

(
X2
s2 = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)i−1

Px

(
X1
r1 = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)i−1+k

>

(
1− 1

1 + e(∆−δ)β

)t
,

where in the last inequality we used i− 1 + k 6 t.
This ends the proof of Lemma 6.3.17 for player i > 2. The cases i = 0, 1 can be proved in

similar way. Clearly, if player i has never been selected for update before time t, we have that
Xi
t = 0 with probability 1. If player i has been selected at least once we have to distinguish the

cases i = 0 and i = 1. If i = 1, we define r0 = t + 1 and we identify a sequence of time step
r1 > r2 > . . . > 0 as above: we have that X1

t = X1
r1 and from Lemma 6.3.19 follows that

Px

(
Xi
t = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)k
>

(
1− 1

1 + e(∆−δ)β

)t
,
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where k is the last index of the sequence r1, r2, . . . . Finally, the probability that player 0 plays
the strategy 0 at time t, given that she was selected for update at least once, can be handled
similarly to the probability that player 2 plays the strategy 0 at time s2. This concludes the
proof of Lemma 6.3.17.

The following lemma gives the probability that the hitting time of the profile 0 is less or
equal to t, given that ρn−1 6 t.

Lemma 6.3.20. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every x ∈ R and every t > 0, we have

Px (τ0 6 t | ρn−1 6 t) >

(
1− 1

1 + e(∆−δ)β

)nt
.

Proof. To prove our lemma we will show a bound on the probability that, conditioned on
ρn−1 6 t, all players are playing 0 at time t.

Let f be the permutation that sort players in order of last selection for update: i.e., f(0) is
the last player that is selected for update, f(1) is the next to last one, and so on. We have

Px (τ0 6 t | ρn−1 6 t) > Px

n−1⋂
j=0

X
f(j)
t = 0 | ρn−1 6 t


=

n−1∏
j=0

Px

Xf(j)
t = 0 |

n−1⋂
i=j+1

X
f(i)
t = 0, ρn−1 6 t


>

n−1∏
j=0

Px

(
X
f(j)
t = 0 | ρn−1 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)nt
,

where the last inequality follows from Lemma 6.3.17.

Now we are ready to give the actual proof of Lemma 6.3.4.

Proof of Lemma 6.3.4. From Lemma 6.3.16 and Lemma 6.3.20, we have that for every x ∈ R
and every t > 0

Px (τ0 6 t) > Px (ρn−1 6 t) Px (τ0 6 t | ρn−1 6 t)

>

(
1− n2

t

)(
1− 1

1 + e(∆−δ)β

)nt
.

Thus for every λ > 0, we have for t = (8−λ)n2

λ

Px (τ0 6 t) >

(
1− λ

8− λ

)1− 1

1 + (8−λ)n3

λ log( 8
8−λ)


(8−λ)n3

λ

>
8
(
1− λ

4

)
8− λ

8− λ
8

= 1− λ

4
,

where the first inequality follows from the fact that, since β = ω(log n), for n large enough, we

have β >
log

(
(8−λ)n3

λ

)
−log log( 8

8−λ)

∆−δ , whereas the second inequality follows from the well known

approximation 1− a > e−
a

1−a .
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Proof of Lemma 6.3.5

Let θ? be the first time at which all players have been selected at least once. The following
lemma directly follows from coupon collector argument; we include a proof for completeness.

Lemma 6.3.21. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every t > 0,

Px (θ? 6 t) > 1− ne−t/n .

Proof. The logit dynamics at each time step selects a player for update uniformly and inde-
pendently of the previous selections. Thus the probability that i players are never selected for
update in t steps is

(
1− i

n

)t
and

Px (θ? > t) 6
n−1∑
i=1

(
1− i

n

)t
6

n−1∑
i=1

e−
it
n 6 ne−t/n .

We define players playing 0 in profile x as the zero-players of x and their neighbors as
border-players; we also define l(x) > d+ 1 as the number of border-players in x.

Let τ? be the first time step at which a border-player is selected for update before one of its
neighboring zero-players; if this event does not occur then τ? = +∞. The next lemma bounds
the probability that τ? is finite given that all players have been selected at least once within
time t.

Lemma 6.3.22. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every x ∈ Sd \R and every t > 0

Px (τ? 6 t | θ? 6 t) >
2d

2d+ 1
.

Proof. Observe that if θ? 6 t, then τ? > t is equivalent to say that τ? is infinite: thus we will
consider Px (τ? is finite | θ? 6 t).

The proof proceeds by induction on d. Let d = 1 and denote by i the one zero-player. Notice
that τ? is finite if and only if one of the two neighbors of i is selected for update before i is
selected. Since we are conditioning on θ? 6 t, all players are selected at least once by time t
and thus the probability of this event is 2

3 = 2d
2d+1 .

Suppose now that the claim holds for d− 1 and let x ∈ Sd \R. Denote by Tx the set of all
the zero-players in x and their border-players and let i be the first player in Tx to be selected
for update (notice that i is well defined since θ? 6 t). Observe that, if i is a border-player,

then τ? is finite and this happens with probability l(x)
l(x)+d . If i is a zero-player, we consider the

subset Tx ⊂ Tx of the remaining d − 1 zero-players and their border-players. τ? is finite only
if at least one border-player in Tx is selected before one of its neighboring zero-players. Notice
though that Tx = Ty, for y ∈ Sd−1 \ R such that yi = 1 and y−i = x−i. Thus, by inductive
hypothesis, Py (τ? is finite | θ? 6 t) > 2d−2

2j−1 . Finally,

Px (τ? is finite | θ? 6 t) =
l(x)

l(x) + d
+

d

l(x) + d
·Py (τ? is finite | θ? 6 t)

>
l(x)

l(x) + d
+

d

l(x) + d
· 2d− 2

2d− 1

= 1− d

(l(x) + d)(2d− 1)

> 1− 1

2d+ 1
,
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where the last inequality follows from l(x) > d+ 1.

Now we are ready to give the actual proof of Lemma 6.3.5.

Proof of Lemma 6.3.5. Suppose τ? is finite and let i be the border-player selected for update
at time τ?. Then, at time τ?, i has at least one neighbor playing 0 and thus i plays 0 with
probability

Px

(
Xi
τ? = 0 | τ? 6 t

)
>

(
1− 1

1 + e(∆−δ)β

)
.

Moreover, if i plays strategy 0, then at time τ? the dynamics hits a profile in R. Thus, for a
finite t > 0, we have

Px (τR 6 t) > Px

(
Xi
τ? = 0 ∧ τ? 6 t

)
= Px

(
Xi
τ? = 0 | τ? 6 t

)
Px (τ? 6 t)

> Px

(
Xi
τ? = 0 | τ? 6 t

)
Px (τ? 6 t | θ? 6 t) Px (θ? 6 t)

>

(
1− 1

1 + e(∆−δ)β

)
2d

2d+ 1

(
1− ne−t/n

)
,

where the last inequality follows from Lemma 6.3.21 and Lemma 6.3.22. Finally, the lemma
follows since β = ω(log n) and by taking t = n2.

Proof of Lemma 6.3.8

This proof is very similar to the proof of Lemma 6.3.5: in particular, we refer to notation defined
in that proof. If all zero-players are selected before both neighboring border-players, we set τ?

be the time step at which the last zero-players is selected, otherwise we set τ? be infinity.

Lemma 6.3.23. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every x ∈ Sd \R

Px (τ? 6 t | θ? 6 t) >
1

3d
.

Proof. Observe that if θ? 6 t, then τ? > t is equivalent to say that τ? is infinite: thus we will
consider Px (τ? is finite | θ? 6 t).

The proof proceeds by induction on d. For the base case, we denote by i the only zero-
player and τ? is finite if and only if i is selected for update before her neighbors. Since we are
conditioning on θ? 6 t, we know that all players have been selected at least once and thus the
probability of this event is 1

3 .
Suppose that the claim holds for d − 1 and let x ∈ Sd \ R. Denote by Tx the set of all

the zero-players in x along with their border-players and let i be the first player in Tx to be
selected for update (notice that i is well defined since θ? 6 t and thus all players has been
selected at least once). Observe that, if i is a border-player, then τ? is infinite and this happens

with probability l(x)
l(x)+j . Otherwise, we consider the subset Tx ⊂ Tx of the remaining d − 1

zero-players and their border-players. τ? will be finite only if all zero-players in Tx are selected
before their border-players. However, Tx = Ty, where y ∈ Sd−1 \R is the profile obtained from
x by setting yi = 1. By inductive hypothesis the probability Py (τ? is finite | θ? 6 t) > 1

3d−1 .
Thus, we have

Px (τ? is finite | θ? 6 t) =
d

l(x) + d
·Py (τ? is finite | θ? 6 t)

>
1

3
· 1

3d−1
.
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Now we give the actual proof of Lemma 6.3.8.

Proof of Lemma 6.3.8. Notice that if τ? is finite, every time a player is selected for update she
have both neighbors that are playing 0 and thus

Px (Xτ? = 1 | τ? 6 t) >

(
1− 1

1 + e2δβ

)t
>

(
1− t

e2δβ

)
,

where the last inequality follows from the approximations 1− a 6 e−x and 1− a > e−
x

1−x .
Obviously, if Xτ? = 1, then τ1 6 τ?. Thus, for a finite t > 0, we have

Px (τ1 6 t) > Px (Xτ? = 1 ∧ τ? 6 t)

= Px (Xτ? = 1 | τ? 6 t) Px (τ? 6 t)

> Px (Xτ? = 1 | τ? 6 t) Px (τ? 6 t | θ? 6 t) Px (θ? 6 t)

>

(
1− t

e2δβ

)
1

3z

(
1− ne−t/n

)
,

where the last inequality follows from Lemma 6.3.21 and Lemma 6.3.23. Finally, the lemma
follows since β = ω(log n) and by taking t = n2.

6.3.4 Proofs from Section 6.3.2

We say that a profile x has a zero-block of size l starting at player i if xi = xi+1 = . . . = xi+l−1 =
0 and xi−1 = xi+l = 1. Players i and i + h − 1 are the border players of the block. A similar
definition is given for one-blocks. Notice that every profile x 6= 0,1 has the same number of
zero-blocks and one-blocks and this number is called the level of x and is denoted by `(x). We
set `(0) = `(1) = 0.

The following observation gives the level structure of the potential function (note that we
are studying the case ∆ = δ).

Observation 6.3.24. Let G be the n-player graphical coordination game with profile space S.
For every profile x ∈ S, the potential of x is Φ(x) = (n− 2`(x))∆, regardless of the sizes of the
zero-blocks and one-blocks.

Moreover, for a profile x, we defines s0(x) as the number of zero-blocks of size 1, s1(x) as
the number of one-blocks of size 1 and set s(x) = s0(x) + s1(x).

Proof of Lemma 6.3.12

We would like to study how long it takes for the logit dynamics to reach 0 or 1. Starting from
profile x at level i > 1, the logit dynamics needs to go down i levels to hit a profile at level 0; and
to go down one level, it is necessary for one monochromatic block (that is, either a zero-block
or a one-block) to disappear. We next show that we do not have to wait too long for this to
happen.

Our first step bounds the time τi needed to go from level i+ 1 to level i. Consider a profile
x at level i + 1 and number arbitrarily the 2(i + 1) monochromatic blocks of x and denote by
kj(x) the size of the j-th monochromatic block. We define τi,j in the following way. Suppose
that the dynamics reaches level i for the first time after t steps and suppose that this happens
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because the j-th monochromatic block disappears. Then we set τi,j = t and τi,j′ = +∞ for all
j′ 6= j. Obviously, for any starting profile x we have that

Ex [τi] = Ex

[
min
j
τi,j

]
6 max

j
Ex

[
τi,j | τi,j < τi,j′ for all j′ 6= j

]
.

For sake of compactness of notation we define

γi,l = max
16j62(i+1)

max
x : `(x)=i+1
kj(x)=l

Ex

[
τi,j | τi,j < τi,j′ for all j′ 6= j

]
,

set γi = maxl γi,l and observe that Ex [τi] 6 γi. It is also easy to see that γi,l is non-decreasing
with l. Next we bound γi in terms of γi+1.

Lemma 6.3.25. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. For every i > 0

γi 6 n2bi

where bi = n+ n−4(i+1)+s(x?)
1+e2∆β γi+1.

Proof. We next bound γi,l by distinguishing cases depending on the size l. For each case, we
let x and j be the profile and the monochromatic block that attains the maximum γi,l.

l = 1:

• if the unique player of the j-th monochromatic block is selected for update and she changes

her strategy then τi,j = 1. This happens with probability 1
n ·
(

1− 1
1+e2∆β

)
.

• if a neighbor v of the unique player of the j-th monochromatic block is selected for update
and she changes her strategy then the dynamics reaches a profile y at same level i + 1
and the size of the j-th block increases to 2. If v belongs to a monochromatic block of
size 1, this has probability 0 (we are conditioning on τi,j < τi,j′ for all j′ 6= j); otherwise,
the probability is at most 1/2 · 2/n = 1/n.

• if we select for update a player that is not at the borders of a monochromatic block and
she changes her strategy, then the dynamics reaches a profile y at level i + 2. This has
probability n−4(i+1)+s(x)

1+e2∆β of occurring.

• in the remaining cases neither the level nor the length of the j-th monochromatic block
changes.

Hence, by observing that γi,2 > γi,1 we have

γi,1 6
1

n

(
1− 1

1 + e2∆β

)
+

1

n
(1 + γi,2) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(
n− 2

n
− n− 4(i+ 1) + s(x)− 1

n

1

1 + e2∆β

)
(1 + γi,1) .

By simple calculations and using that n− 4(i+ 1) + s(x) > 0, we obtain

γi,1 6

(
1

2
+

1

4e2∆β + 2

)(
n+ γi,2 +

n− 4(i+ 1) + s(x)

1 + e2∆β
γi+1

)
.

Since
(

1
2 + 1

4e2∆β+2

)
6 2

3 for β = ω(log n), we have

γi,1 6
2

3
(γi,2 + bi) . (6.9)

1 < l < n− 2i− 1:
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• if a player at the borders of the j-th monochromatic block is selected for update (there
are two of these players) and she changes her strategy (this happens with probability
1/2), then the dynamics reaches a profile y at same level i+ 1 and the length of the j-th
monochromatic block decreases to l − 1;

• if a neighbor v of the border players of the j-th monochromatic block is selected for update
and she changes her strategy, then the number of monochromatic blocks does not change
(and thus we are at still at level i+ 1) but the j-th monochromatic block increases in size.

Notice that, in this case, player v does not belong to a monochromatic block of size 1,
since we are conditioning on the fact that the j-th monochromatic block is the first to
disappear (τi,j < τi,j′ ∀j′ 6= j). Therefore the two neighbors of v are playing two different
strategies and thus v adopts any of the two with probability 1/2. Since there are two
players adjacent to the border players of block j, this case happens with probability at
most 1/n.

• if a player v that is not at the borders of a monochromatic block is selected for update and
she changes her strategy then the two new adjacent monochromatic blocks are created
and the level increases 1. Notice that there are n−4(i+ 1) + s(x?) such player v and each
has probability 1

1+e2∆β of changing her strategy.

• in the remaining cases neither the level nor the length of the j-th monochromatic block
changes.

Hence,

γi,l 6
1

n
(1 + γi,l−1) +

1

n
(1 + γi,l+1) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(
n− 2

n
− n− 4(i+ 1) + s(x)

n

1

1 + e2∆β

)
(1 + γi,l) .

By simple calculations, similar to the ones for the case l = 1, we obtain

γi,l 6
1

2
(γi,l−1 + γi,l+1 + bi) .

From the previous inequality and Equation 6.9, a simple induction on l shows that, for every
1 6 l < n− 2i− 1, we have

γi,l 6
1

l + 2

(
(l + 1)γi,l+1 +

l(l + 3)

2
bi

)
. (6.10)

Moreover, from Equation 6.10, a simple inductive argument shows that, for every h > 1,

γi,l 6
l + 1

l + h+ 1
γi,l+h +

l + 1

2
bi

l+h−1∑
j=l

j(j + 3)

(j + 1)(j + 2)

6
l + 1

l + h+ 1
γi,l+h +

l + 1

2
hbi . (6.11)

l = n− 2i− 1: in this case all blocks other than the j-th have size 1 and thus every time we
select one of these players, she changes her strategy with probability 0 (we are conditioning on
j being the first monochromatic block to disappear). This means that that the size of the j-th
monochromatic block cannot increase. Reasoning similar to the ones used in the previous cases,
we obtain that

γi,n−2i−1 6 γi,n−2i−2 + bi .
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By using Equation 6.10, we have

γi,n−2i−1 6
(n− 2i− 2)(n− 2i+ 1) + 2(n− 2i)

2
bi 6

n2

2
bi .

Finally, for every l > 1, by using Equation 6.11 with h = n− 2i− 1− l, we have

γi,l 6
l + 1

n− 2i
γi,n−2i−1 +

(l + 1)(n− 2i− 1− l)
2

bi 6 n2bi .

Corollary 6.3.26. Let G be the n-player graphical coordination game on the ring and consider
the logit dynamics for G. If β = ω(log n), then for every i > 0, γi = O(n3) .

Proof. Note that bbn/2c−1 = n and thus, by using Lemma 6.3.25, γbn/2c−1 6 n3. Moreover, for
0 6 i < bn/2c − 1, since n− 4(i+ 1) + s(x) 6 n, we have

γi 6 n3

(
1 +

1

1 + e2∆β
γi+1

)
6 n3

1 +

bn/2c−i−1∑
j=1

(
n3

1 + e2∆β

)j . (6.12)

The corollary follows by observing that, if β = ω
(

logn
∆

)
, then the summation in Equation 6.12

is o(1).

The above corollary gives a polynomial bound to the time that the dynamics take to go
from a profile at level i+ 1 to a profile at level i. Lemma 6.3.12 easily follows.

Proof of Lemma 6.3.12. Obviously, for every x at level 1 6 k 6 n/2,

Ex [τ0,1] 6
k−1∑
i=0

max
y : `(y)=i+1

Ey [τi] 6
k−1∑
i=0

γi = O(n4) .

The lemma follows from the Markov inequality.

Proof of Lemma 6.3.13

Proof of Lemma 6.3.13. For a profile x, we denote by px the probability that the logit dynamics
starting from x at step τ0,1 is in profile 0; in other words, px = Px (τ0 < τ1). Trivially, p0 = 1
and p1 = 0.

Clearly, at time τ0,1 the dynamics is either in the state 0 (this happens with probability px)
or in the state 1 (this happens with probability 1 - px). Thus, the state of the dynamics at time
τ0,1 when starting from profile x is distributed according to the probability distribution

νx = pxπ0 + (1− px)π1.

We next show that for β = ω(log n) and x ∈ Sd, px = d
n + λx, for some λx = o(1). By the

definition of Markov chains we know that

px = P (x,x) · px +
∑

y∈N(x)

P (x,y) · py .

We then partition the neighborhoodN(x) of profile x of level i in 5 subsets, N1(x), N2(x), N3(x),
N4(x), N5(x), such that, for two profiles y1,y2 in the same subsets it holds that P (x,y1) =
P (x,y2).
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• N1(x) is the set of profiles y obtained from x by changing the strategy of a player of a
zero-block of size 1. Observe that |N1(x)| = s0(x). Moreover, for every y ∈ N1(x), y is
at level i− 1, has |x|0 − 1 players playing 0 and P (x,y) = 1

n · (1−
1

1+e2∆β ).

• N2(x) is the set of profiles y obtained from x by changing the strategy of a player of a
one-block of size 1. Observe that |N2(x)| = s1(x). Moreover, for every y ∈ N2(x), y is at
level i− 1, has |x|0 + 1 players playing 0 and P (x,y) = 1

n · (1−
1

1+e2∆β ).

• N3(x) is the set of profiles y obtained from x by changing the strategy of a border player
of a zero-block of size greater than 1. Observe that |N3(x)| = 2(i− s0(x)). Moreover, for
every y ∈ N3(x), y is at level i, and has |x|0 − 1 players playing 0 and P (x,y) = 1/2n.

• N4(x) is the set of profiles y obtained from x by changing the strategy of a border player
of a one-block of size greater than 1. Observe that |N4(x)| = 2(i− s1(x)). Moreover, for
every y ∈ N4(x), y is at level i, and has |x|0 + 1 players playing 0 and P (x,y) = 1/2n.

• N5(x) is the set of all the profiles y ∈ N(x) that do not belong to any of the previous 4
subsets. Observe that |N5(x)| = n − 4i + s(x). Moreover, for every y ∈ N5(x), y is at
level i+ 1, and P (x,y) = 1

n ·
1

1+e2∆β .

Moreover, we have that

P (x,x) =
s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+
n− 4i+ s(x)

n

(
1− 1

1 + e2∆β

)
.

Then, we have

px =
1

n

(
1− 1

1 + e2∆β

) ∑
y∈N1(x)

py +
∑

y∈N2(x)

py

+
1

2n

 ∑
y∈N3(x)

py +
∑

y∈N4(x)

py


+

1

n

1

1 + e2∆β

∑
y∈N5(x)

py

+

(
s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+
n− 4i+ s(x)

n

(
1− 1

1 + e2∆β

))
px

=
1

n

 ∑
y∈N1(x)

py +
∑

y∈N2(x)

py

+
1

2n

 ∑
y∈N3(x)

py +
∑

y∈N4(x)

py

+
n− 2i

n
· px +

c

1 + e2∆β
,(6.13)

where

c =
1

n

 ∑
y∈N5(x)

py −
∑

y∈N1(x)∪N2(x)

py − (n− 4i)px

 .

We notice that, since 1 6 i 6 n/2 and |N1(x)|+ |N2(x)|, |N5(x)| 6 n, we have |c| 6 2 and thus
the last term in Equation 6.13 is negligible in n (since β = ω(log n)). Hence we have that the
following condition holds for every level i > 1 and every profile x at level i:

px =
1

2i

 ∑
y∈N1(x)

py +
∑

y∈N2(x)

py

+
1

4i

 ∑
y∈N3(x)

py +
∑

y∈N4(x)

py

+ ηx ,

where ηx is negligible in n. This gives us a linear system of equations in which the number of
equations is the same as the number of variables.
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Next we find a solution to a “modified” version of above system, where we omit the negligible
part in every equation, and then we show that this solution cannot be very different from the
solution of the “original” system.

We build the solution for the “modified” system inductively on the level i: for every profile
x ∈ Sd at level 0 (this is only possible for d = 0 or d = n), we have, as discussed above, px = d

n .

Now, we assume that for every profile x ∈ Sd at level i− 1, px = d
n is a solution for the system.

For x ∈ Sd at level i, we can rewrite the “modified” condition as follows:

px =
s0(x)

2i
· d− 1

n
+
s1(x)

2i
· d+ 1

n
+

1

4i

 ∑
y∈N3(x)

py +
∑

y∈N4(x)

py

 . (6.14)

Equation 6.14 gives another linear system of equations. This system has a unique solution:
indeed, it has the same number of equations and variables and the matrix of coefficients is a
diagonally dominant matrix (since |N3(x) ∪N4(x)| 6 4i) and thus it is nonsingular. Moreover,

if we set, for every profile x at level i, px = |x|0
n , then the right hand side of the Equation 6.14

becomes
s0(x)

2i

d− 1

n
+
s1(x)

2i

d+ 1

n
+
i− s0(x)

2i

d− 1

n
+
i− s1(x)

2i

d+ 1

n
=
d

n
,

and hence the system is satisfied by this assignment. Summarizing, we have found that the
“modified” system has a unique solution px = |x|0

n for every profile x. Now, let p?x = px + λx
be the assignment that satisfies all “original” conditions: since, as n grows unbounded, these
conditions approach the “modified” ones, we have that p?x has to approach to px and thus we
have that |λx| = o(1) for every profile x.

6.4 The OR game

In this section we consider the OR game defined in Section 4.4. There we showed that the
mixing time of the logit dynamics for the OR game is roughly eβ for β = O(log n) and it is
roughly 2n for larger β. Here we study the metastability properties of the OR game to highlight
the distinguishing features of our quantitative notion of metastability based on distributions.
Namely, we show that if we start the logit dynamics at a profile where at least one player is
playing 1, then after O(log n) time steps the distribution of the chain is close to uniform, and
it stays close to uniform for exponentially long time. Hence, even if there is no small set of
the state space where the chain stays close for a long time, we can still say that the chain
is “metastable” meaning that the “distribution” of the chain stays close to some well-defined
distribution for a long time.

6.4.1 Ehrenfest urns

We first need two simple lemmas that will be used in the proof of Theorem 6.4.4.
The Ehrenfest urn is the Markov chain with state space Ω = {0, 1, . . . , n} that, when at

state k, moves to state k − 1 or k + 1 with probability k/n and (n− k)/n respectively (see, for
example, Section 2.3 in [75] for a detailed description). The next lemma gives an upper bound
on the probability that the Ehrenfest urn starting at state k hits state 0 within time step t.

Lemma 6.4.1. Let {Zt} be the Ehrenfest urn over {0, 1, . . . , n} and let τ0 be the first time the
chain hits state 0. Then for every k > 1 it holds that

Pk (τ0 < n log n+ cn) 6 c′/n

for suitable positive constants c and c′.
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Proof. First observe that for any t > 3 the probability of hitting 0 before time t for the chain
starting at 1 is only O(1/n) larger than for the chain starting at 2, which in turn is only O(1/n)
larger than for the chain starting at 3. Indeed, by conditioning on the first step of the chain,
we have

P1 (τ0 < t) = P1 (τ0 < t |Z1 = 0) P1 (Z1 = 0)

+ P1 (τ0 < t |Z1 = 2) P1 (Z1 = 2)

=
1

n
+
n− 1

n
P2 (τ0 < t− 1)

6
1

n
+ P2 (τ0 < t) ,

and

P2 (τ0 < t) = P2 (τ0 < t |Z1 = 1) P2 (Z1 = 1)

+ P2 (τ0 < t |Z1 = 3) P2 (Z1 = 3)

=
2

n
P1 (τ0 < t− 1) +

n− 2

n
P3 (τ0 < t− 1)

6
2

n

(
1

n
+ P2 (τ0 < t)

)
+
n− 2

n
P3 (τ0 < t) .

Hence,

P2 (τ0 < t) 6
2

n− 2
+ P3 (τ0 < t) 6

3

n
+ P3 (τ0 < t) ,

P1 (τ0 < t) 6
4

n
+ P3 (τ0 < t) .

Moreover observe that the probability that the chain starting at k hits state 0 before time
t is decreasing in k, in particular, for every k > 3 it holds that Pk (τ0 < t) 6 P3 (τ0 < t). Now
we show that P3 (τ0 < n log n+ cn) = O(1/n) and this will complete the proof.

Let us consider a path P of length t starting at state 3 and ending at state 0. Observe that
any such path must contain the sub-path going from state 3 to state 0 whose probability is
6/n3. Moreover, for all the other t− 3 moves we have that if the chain crosses an edge (i, i+ 1)
from left to right then it must cross the same edge from right to left (and vice versa). The
probability for any such pair of moves is

n− i
n
· i+ 1

n
6
e1/n

4
,

for every i. Hence, for any path P of length t going from 3 to 0, the probability that the chain
follows exactly path P is3

P3 ((X1, . . . , Xt) = P) 6
6

n3
·

(
e2/n

4

)(t−3)/2

=
6

n3
· 23

e3/n
·

(
e1/n

2

)t

6
48

n3
·

(
e1/n

2

)t
.

3Notice that such probability is zero if t− 3 is odd.
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Let ` and r be the number of left and right moves respectively in path P then ` + r = t and
`− r = 3. Hence the total number of paths of length t going from 3 to 0 is less than(

t

`

)
=

(
t
t−3

2

)
6 2t .

Thus, the probability that starting from 3 the chain hits 0 for the first time exactly at time t is

P3 (τ0 = t) 6

(
t
t−3

2

)
48

n3
·

(
e1/n

2

)t
6

48

n3
et/n .

Finally, the probability that the hitting time of 0 is less than t is

P3 (τ0 < t) 6
t−1∑
i=3

P3 (τ0 = i)

6
48

n3

t−1∑
i=3

ei/n =
48

n3
· e

t/n − 1

e1/n − 1
6

48ec

n
.

In the last inequality we used that e1/n − 1 > 1/n and t = n log n+ cn.

In the proof of Theorem 6.4.4 we will be dealing with the lazy version of the Ehrenfest urn.
The next lemma, which is folklore, allows us to use the bound we achieved in Lemma 6.4.1 for
the non-lazy chain.

Lemma 6.4.2. Let {Xt} be an irreducible Markov chain with finite state space Ω and transition
matrix P and let {X̂t} be its lazy version, i.e. the Markov chain with the same state space and
transition matrix P̂ = P+I

2 where I is the Ω × Ω identity matrix. Let τa and τ̂a be the hitting

time of state a ∈ Ω in chains {Xt} and {X̂t} respectively. Then, for every starting state b ∈ Ω
and for every time t ∈ N it holds that

Pb (τ̂a 6 t) 6 Pb (τa 6 t) .

6.4.2 OR game metastability.

The next lemma shows that, if we start from the uniform distribution, the distribution of the
logit dynamics stays ε-close to uniform for ε2n time steps.

Lemma 6.4.3. Let P be the transition matrix of the logit dynamics for the n-player OR-game,
let U be the uniform distribution over {0, 1}n. Then U is (ε, ε2n)-metastable.

Proof. Observe that, by starting from the stationary distribution, the probability of being in
y ∈ {0, 1}n after one step of the chain is

UP (y) =
∑

x∈{0,1}n
U(x)P (x,y) =

1

2n

∑
x∈{0,1}n

P (x,y)

=


2−n if |y|1 > 2

2−n
(
n−1
n + 1

n
2

1+eβ

)
if |y|1 = 1

2−n
(

2
1+e−β

)
if y = 0 .
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Hence, the total variation distance between the uniform distribution and the distribution of the
chain after one step is

‖UP − U‖TV =
1

2

∑
y∈{0,1}n

|UP (y)− U(y)|

= 2−n
eβ − 1

eβ + 1
6 2−n .

Thus, the uniform distribution is (2−n, 1)-metastable and the thesis follows from Lemma 6.1.2.

In the next theorem we show that, if the chain starts from a state containing at least one 1,
then after O(log n) time steps the distribution of the chain is ε-close to the uniform distribution,
and it stays ε-close to uniform for exponential time.

Theorem 6.4.4. Let P be the transition matrix of the logit dynamics for the n-player OR
game, let U be the uniform distribution over S = {0, 1}n, let S1 be the set of profiles x ∈ S with
|x|1 = k > 1, and let ε > 0, then it holds that

tS1
U (ε) 6 n log(2n/ε) .

Proof. Let {Xt} be the Markov chain starting at x and let {Yt} be a lazy random walk on the
n-cube starting at the uniform distribution, so that Xt is distributed according to P t(x, ·) and
Yt is uniformly distributed over {0, 1}n. Consider the following coupling (Xt, Yt): when chain
{Xt} is at state y ∈ {0, 1}n then choose a position i ∈ [n] u.a.r. and

• If |y|1 > 2 then, choose an action a ∈ {0, 1} u.a.r. and update both chains Xt and Yt in
position i with action a;

• If |y|1 = 1 then

– if Xt has 0 in position i than proceed as in the previous case;

– if Xt has 1 in position i then

∗ update both chains at 0 in position i with probability 1/2;

∗ update both chains at 1 in position i with probability 1/(1 + eβ);

∗ update chain Xt at 0 and chain Yt at 1 in position i with probability
1/(1 + e−β)− 1/2.

• If |y|1 = 0 then

– update both chains at 0 in position i with probability 1/2;

– update both chains at 1 in position i with probability 1/(1 + eβ);

– update chain Xt at 0 and chain Yt at 1 in position i with probability
1/(1 + e−β)− 1/2.

By construction we have that (Xt, Yt) is a coupling of P t(x, ·) and U , hence ‖P t(x, ·) − U‖ 6
Px,U (Xt 6= Yt). Moreover observe that, if at time t all players have been selected at least once
and chain Xt has not yet hit profile 0 = (0, · · · , 0) ∈ {0, 1}n, then the two random variables Xt

and Yt have the same value. Hence

‖P t(x, ·)− U‖ 6 Px,U (Xt 6= Yt)

6 Px,U (τ0 6 t ∪ η < t)

6 Px,U (τ0 6 t) + Px,U (η < t) ,
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where τ0 is the hitting time of 0 for chain Xt, and η is the first time all players have been
selected at least once.

From the coupon collector’s argument it follows that for every t > n log(2n/ε)

Px,U (η < t) 6 ε/2 . (6.15)

As for the second term observe that Px,U (τ0 6 t) 6 Pk (ρ0 6 t) where ρ0 is the hitting time
of state 0 for the lazy Ehrenfest urn. More formally, consider the equivalence relation over
Ω = {0, 1}n such that two profiles x and y are equivalent if they have the same number of 1’s
and let {Zt} be the projection of chain {Xt} over the quotient space Ω# = {0, 1, . . . , n} of such
equivalence relation. Then {Zt} is a Markov chain with state space Ω# and transition matrix

P#(i, i− 1) = i
2n

P#(i, i) = 1
2

P#(i, i+ 1) = n−i
2n ,

(6.16)

for i = 2, . . . , n, and

P#(1, 0) =
1

n(1 + e−β)
6

1

n

P#(1, 1) =
n− 1

2n
+

1

n(1 + eβ)

P#(1, 2) =
n− 1

2n
.

The hitting time τ0 of state 0 ∈ S for chain {Xt} coincide with the hitting time ρ̂0 of state
0 ∈ Ω# for the projection Zt.

Observe that, from the transition probabilities in (6.16), chain {Zt} is almost the lazy
Ehrenfest urn, the only difference being at states 1 and 0. Moreover, the transition from state
1 to state 0 in the Zt holds with probability smaller than the probability of the same transition
in the Ehrenfest urn. From Lemmas 6.4.1 and 6.4.2 it follows that

Px,U (τ0 6 n log n+ n log(2/ε)) 6 c/n , (6.17)

for a suitable constant c = c(ε). Hence, for t = n log n + n log(2/ε), by combining (6.15)
and (6.17) it holds that

‖P t(x, ·)− U‖ 6 ε

2
+
c

n
6 ε ,

for n sufficiently large.

6.5 Conclusions and open problems

In this chapter we introduced the concepts of metastable distributions and pseudo-mixing time
and analyzed the metastability properties of the logit dynamics for some coordination games.
We showed that, even when the mixing time is exponential, it is possible to find some distri-
butions that well-approximate the behavior of the system for a very large time window. Such
metastable distributions can be found even in the case of the OR-game, where no partition of
the state space in metastable states exists.

In such way the logit dynamics gives us a way to describe the system even if the equilibrium
has not been reached yet: this increases the power of this dynamics as a very useful tool to
represent the evolution of complex systems that can be modeled as games and to predict their
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future status. Anyway, it is interesting to evaluate if there are other dynamics for which it is
possible to prove a similar metastable behavior.

In this chapter, we have only considered some introductory games: a natural open question
is whether the metastability properties observed here hold in general for any potential game.

In the case of the Ising model on the complete graph, we showed that when β > c log n/n
the two degenerate distributions are metastable for poly (n) time and they are quickly reached
from a large fraction of the state space. It would be interesting to investigate the metastability
properties when 1/n < β < log n/n. Indeed, in that range the mixing time is exponential but
the distributions concentrated in the two extremal states are not metastable.
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Chapter 7

Conclusion and future directions

In this work we proposed logit dynamics as a tool to describe the evolution and to predict
the future status of complex systems that can be modeled as games. This proposal has been
motivated by two main properties of this dynamics: first of all, it introduces randomness in
the strategy selection, allowing to represent in this way bounded rationality of agents and the
intrinsic noise of complex systems; on the other hand, it induces an equilibrium that always
exists and it is unique.

In order to validate our new equilibrium concept, we evaluated the performance of some
simple games at this equilibrium. Our analysis concentrated in particular on the time that the
dynamics requires to reach its equilibrium. To this aim, we studied the mixing time of the logit
dynamics for wide classes of games.

Our results on mixing time showed that, even if there are many cases for which the con-
vergence of the logit dynamics to the equilibrium is fast, there are games where the dynamics
takes an exponential number of steps. This means that the description of the system status
given by the equilibrium induced by this dynamics becomes meaningful only after a very long
time. However we showed that there are games for which the logit dynamics allow to make
meaningful predictions about future status even if the equilibrium has not been reached yet.

A lot of open problems still remains about the expected social welfare, the mixing time and
the metastability of the logit dynamics, as discussed in Sections 4.6, 5.5, 6.5. Solving these
problems will allow to gain a better understanding of the evolution process defined by the logit
dynamics.

Almost every result presented in this work is relative to potential games, since for these
games the Markov chain induced by the dynamics is reversible and the stationary distribution
is given by the Gibbs measure. It would be of great interest to analyze the logit dynamics for
games that have not an exact potential function.

The logit dynamics, as used in this work, has two main limitations: only one player updates
her strategy at any time and every player has the same rationality level. The second assumption
is based on an analogy with similar models in Physics, like the Ising model, where, usually, the
influence on components comes from external factors, like temperature or electro-magnetic fields.
Anyway, there are settings where it is possible that different players have simultaneous updates
or that the updates are not immediately revealed to other players. There are also settings where
the rationality level depends on the personal attitude of a player and thus may be different from
a player to another. For this reason, it would be interesting to extend the logit dynamics to
include simultaneous updates or different rationality levels between players. The extensions
proposed above have the nice property that the resulting dynamics is a Markov chain: thus, we
know that an equilibrium always exists and it is unique and a wide set of tools exists in order to
handle these dynamics. However, nothing is known about which is the stationary distribution,
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how large is the mixing time and if metastable distributions exist.
Another interesting point is that the Markov property of the logit dynamics is a consequence

of the fact that the behavior of the players disregards the past experience. It would be inter-
esting to understand what happens if the update probability depends also on past experience.
For example, is it possible to prove the convergence of randomized dynamics as stochastic fic-
titious play or reinforcement learning? These dynamics assume that the update probability
is proportional to how much attractive a strategy is and to the rationality level: whereas the
attractiveness of a strategy changes at each time step according to specific rules, the rationality
level is assumed to be constant. However, it would be interesting also to know what happens if
the rationality level changes over the time, for example by effect of learning.
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[21] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability and
low lying spectra in reversible Markov chains. Communications in Mathematical Physics,
228:219–255, 2002.

[22] Anton Bovier and Francesco Manzo. Metastability in Glauber dynamics in the low-
temperature limit: Beyond exponential asymptotics. Journal of Statistical Physics,
107:757–779, 2002.

[23] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[24] Felix Brandt, Felix A. Fischer, and Paul Harrenstein. On the rate of convergence of
fictitious play. In SAGT, pages 102–113, 2010.

[25] George W. Brown. Iterative solution of games by fictitious play. Activity Analysis of
Production and Allocation, pages 374–376, 1951.

[26] Ross Bubley and Martin E. Dyer. Path Coupling: A technique for proving rapid mixing in
Markov chains. In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS), pages 223–. IEEE Computer Society, 1997.

[27] Colin F. Camerer. Behavioral game theory: experiments in strategic interaction. The
Roundtable series in behavioral economics. Russell Sage Foundation, 2003.

120



[28] Colin F. Camerer, Juin-Kuan Chong, and Teck-Hua Ho. Self-tuning experience weighted
attraction learning in games. Journal of Economic Theory, 133(1):177 – 198, 2007.

[29] Colin F. Camerer and Teck-Hua Ho. Experienced-weighted attraction learning in normal
form games. Econometrica, 67(4):827–874, 1999.

[30] C. Monica Capra, Jacob K. Goeree, Rosario Gomez, and Charles A. Holt. Anomalous
behavior in a traveler’s dilemma? American Economic Review, 89(3):678–690, 1999.
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