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Introduction

In the last decades, the modeling of crowd motion and pedestrian flow has
attracted the attention of applied mathematicians, because of an increasing num-
ber of applications, in engineering and social sciences, dealing with this or similar
complex systems, for design and optimization purposes.

The crowd has caused many disasters, in the stadiums during some major
sporting events as the "Hillsborough disaster" occurred on 15 April 1989 at Hills-
borough [5], a football stadium, in Sheffield, England, resulting in the deaths of
96 people, and 766 being injured that remains the deadliest stadium-related dis-
aster in British history and one of the worst ever international football accidents.
Other example is the "Heysel Stadium disaster" occurred on 29 May 1985 (see [4])
when escaping, fans were pressed against a wall in the Heysel Stadium in Brussels,
Belgium, as a result of rioting before the start of the 1985 Furopean Cup Final
between Liverpool of England and Juventus of Italy. Thirty-nine Juventus fans
died and 600 were injured. It is well know the case of the London Millennium
Footbridge, that was closed the very day of its opening due to macroscopic lateral
oscillations of the structure developing while pedestrians crossed the bridge (cf.
Dallard et al. [17]). This phenomenon renewed the interest toward the investiga-
tion of these issues by means of mathematical modeling techniques (see Venuti et
al. [33] and the main references therein). Other examples are emergency situations
in crowded areas as airports or railway stations. In some cases, as the pedestrian
disaster in Jamarat Bridge located in South Arabia, mathematical modeling and
numerical simulation have already been successfully employed to study the dynam-
ics of the flow of pilgrims, so as to highlight critical circumstances under which
crowd accidents tend to occur and suggest counter-measures to improve the safety
of the event (Helbing et al. [21], Hughes [24]).



CHAPTER 0. INTRODUCTION

In the existing literature on mathematical modeling of human crowds we can
distinguish two approaches: microscopic and macroscopic models. In model at
microscopic scale pedestrians are described individually in their motion by ordinary
differential equations and problems are usually set in two-dimensional domains
delimiting the walking area under consideration, with the presence of obstacles
within the domain and a target. The basic modeling framework relies on classical
Newtonian laws of point (Helbing and Johansson [19], Maury and Venel [26]). The
model at the macroscopic scale consists in using partial differential equations, that
is in describing the evolution in time and space of pedestrians supplemented by
either suitable closure relations linking the velocity of the latter to their density (see
e.g., Hughes [24]) or analogous balance law for the momentum (see e.g., Bellomo
and Dogbé [6]). Again, typical guidelines in devising this kind of models are the
concepts of preferred direction of motion and discomfort at high densities. In the
framework of scalar conservation laws, a macroscopic onedimensional model has
been proposed by Colombo and Rosini [11], resorting to some common ideas to
vehicular traffic modeling, with the specific aim of describing the transition from
normal to panic conditions. Piccoli and Tosin [31] propose to adopt a different
macroscopic point of view, based on a measure-theoretical framework which has
recently been introduced by Canuto et al. [8] for coordination problems (rendez-
vous) of multiagent systems. This approach consists in a discrete-time Eulerian
macroscopic representation of the system via a family of measures which, pushed
forward by some motion mappings, provide an estimate of the space occupancy by
pedestrians at successive time steps. From the modeling point of view, this setting
is particularly suitable to treat nonlocal interactions among pedestrians, obstacles,
and wall boundary conditions.

A microscopic approach is advantageous when one wants to model differences
among the individuals, random disturbances, or small environments. Moreover,
it is the only reliable approach when one wants to track exactly the position of a
few walkers. On the other hand, it may not be convenient to use a microscopic
approach to model pedestrian flow in large environments, due to the high com-
putational effort required. A macroscopic approach may be preferable to address
optimization problems and analytical issues, as well as to handle experimental

data. Nonetheless, despite the fact that self-organization phenomena are often
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CHAPTER 0. INTRODUCTION

visible only in large crowds [19], they are a consequence of strategical behaviors
developed by individual pedestrians.

The two scales may reproduce the same features of the group behavior, thus
providing a perfect matching between the results of the simulations for the micro-
scopic and the macroscopic model in some test cases. This motivated the multiscale
approach proposed by Cristiani, Piccoli and Tosin [14]. Such an approach allows
one to keep a macroscopic view without losing the right amount of “granularity,”
which is crucial for the emergence of some self-organized patterns. Furthermore,
the method allows one to introduce in a macroscopic (averaged) context some mi-
croscopic effects, such as random disturbances or differences among the individuals,
in a fully justifiable manner from both the physical and the mathematical perspec-
tive. In the model, microscopic and macroscopic scales coexist and continuously
share information on the overall dynamics. More precisely, the microscopic part
tracks the trajectories of single pedestrians and the macroscopic part the density
of pedestrians using the same evolution equation duly interpreted in the sense of
measures. In this respect, the two scales are indivisible.

Starting from model of Cristiani, Piccoli and Tosin we have implemented algo-
rithms to simulate the pedestrians motion toward a target to reach in a bounded
area, with one or more obstacles inside. In this work different scenarios have been
analyzed in order to find the obstacle configuration which minimizes the pedes-
trian average exit time. The optimization is achieved using to algorithms. The
first one is based on the exhaustive exploration of all positions: the average exit
time for all scenarios is computed and then the best one is chosen. The second
algorithm is of steepest descent type according to which the obstacle configuration
corresponding to the minimum exit time is found using an iterative method. A
variant has been introduced to the algorithm so to obtain a more efficient proce-
dure. The latter allows to find better solutions in few steps than other algorithms.
Finally we performed other simulations with bounded domains like a classical flat
with five rooms and two exits, comparing the results of three different scenario
changing the positions of exit doors.

The thesis is organized as follow. Chapter 1 reports the state of the art about
the existing literature on mathematical modeling of human crowds. Chapter 2

deal with the multiscale model of Cristiani, Piccoli and Tosin. A numerical ap-
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CHAPTER 0. INTRODUCTION

proximation of the model equations with special emphasis on the discretization
in space of the macroscopic scale is proposed in Chapter 3. Finally Chapter 4 is

devoted to the results of numerical simulations and to their discussion.

v



Chapter 1

State of the art

In the existing literature on mathematical modeling of human crowds we can
distinguish two approaches: microscopic and macroscopic models. In model at
microscopic scale pedestrians are described individually in their motion by ordinary
differential equations and problems are usually set in two-dimensional domains
delimiting the walking area under consideration, with the presence of obstacles
within the domain and a target. The basic modeling framework relies on classical
Newtonian laws of point (Helbing and Johansson [19], Maury and Venel [26]). The
model at the macroscopic scale consists in using partial differential equations, that
is in describing the evolution in time and space of pedestrians supplemented by
either suitable closure relations linking the velocity of the latter to their density
(see e.g., Hughes [6]) or analogous balance law for the momentum (see e.g., Bellomo
and Dogbé [6]).

1.1 A microscopic approach by Helbing et al.

Even if the pedestrian flow can show a chaotic appearance, one can find reg-
ularities in individual pedestrian behavior. (1) Pedestrians normally choose the
fastest route to their next destination which has therefore the shape of a polygon.
If alternative routes are of the same length, a pedestrian prefers the one where
he or she can go straight ahead for as long as possible and change direction as
late as possible (provided that the alternative route is not more attractive, for

example, because of less noise, more light, a friendlier environment, less waiting
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time at traffic lights, etc). This behavior sometimes produces ‘hysteresis effects’;
that is, at some locations, pedestrians tend to use a typical way to a certain point,
but another way back. (2) Pedestrians prefer to walk with an individual desired
speed, which corresponds to the most comfortable walking speed so long as it is
not necessary to go faster in order to reach the destination in time. The desired
speeds within pedestrian crowds are Gaussian distributed. (3) Pedestrians keep a
certain distance from other pedestrians and borders (of streets, walls, and obsta-
cles). This distance is smaller as the pedestrian hurries, and it also decreases with
growing pedestrian density. Resting individuals (waiting on a railway platform for
a train, sitting in a dining hall, or lying at a beach) are uniformly distributed over
the available area if there are no acquaintances among the individuals. Pedestrian
density increases (that is, interpersonal distances lessen) around particularly at-
tractive places, and it decreases with growing velocity variance. Individuals who
know each other may form groups which are entities that behave in a manner sim-
ilar to single pedestrians. (4) Pedestrians normally do not reflect their behavioral
strategy in every situation anew but act more or less automatically (as an expe-
rienced car driver does). This becomes obvious when pedestrians cause delays or
obstructions, for example, by entering an elevator or train even though others are
still trying to get off. Additionally, at medium and high pedestrian densities, the
motion of pedestrian crowds shows some striking similarities with the motion of
gases and fluids.

(a) Footsteps of pedestrians in snow look similar to streamlines of fluids.

(b) At borderlines between opposite directions of walking one can observe ‘vis-
cous fingering’.

(c) When stationary pedestrian crowds need to be crossed, the moving pedes-
trians form river-like streams (see figure 1.1).

(d) The propagation of shock waves can be found in dense pedestrian crowds
which push forward.

Apart from these phenomena, there are some similarities with granular flows
(in figure 1.1, the long-exposure photograph of a stationary crowd in front of a
cinema shows that crossing pedestrians form a river-like stream.).

Assuming that pedestrians behave according to the optimal strategy (which

is normally a good approximation but less true for children and tourists) it can
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Figure 1.1: Stationary crowd in front of a cinema

still not predict the spatiotemporal movement of a single pedestrian. This is not
only due to behavioral variations (‘fluctuations’ in behavior), but also because
they usually do not know the destinations and preselected route of a pedestrian.
Nevertheless it is possible to predict pedestrian streams with a surprisingly high
accuracy.

The positions of the pedestrians o can be represented by points 7,(t) in space,
which change continuously over time ¢, and pedestrians dynamics can be described

by the following equation of motion:

drq(t)
dt

The functions delineating the temporal changes of the actual pedestrian veloc-

= v, (t).

ities v4(t) can be interpreted as the driving forces of this motion, which are called
behavioral forces or social forces.

If the behavioral force f,(t) represents the different systematic influences (of
the environment and other pedestrians) on the behavior of a pedestrian «, and the
fluctuation term &, (¢) reflects random behavioral variations (arising from acciden-

tal or deliberate deviations from the optimal strategy of motion), the following is
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the equation of acceleration:

dve
S alt) + €alt)

The behavioral force f,(t) is the sum of several force terms which correspond

to the different influences simultaneously affecting the behavior of pedestrian a:

fa(t) = fg(va) + faB(Ta) + Z faB(Ta7Ua7rﬁav6) + Zfai(""aa T’iat) + fa(t)
B(#a) i

where

e f%(v,) is a correction, within the so-called relaxation time 7, of deviation’s
disturbance of the actual velocity v, from desired velocity v0. The desired
velocity is the standard velocity in the direction e, of his or her next desti-

nation.

f9(0a) = =—(eBea = va). (11)

(0%
fap is a repulsive force of borders which decreases monotonically with the
distance |[ro — 7§|| between the place ro of pedestrian a and nearest point

rg‘ of the border.

fap(ra,va,73,v3) is a repulsive force term, used to indicate that each pedes-

trian « keeps a situation-dependent distance from the other pedestrians .

fai(ra,mi,t) is an attractive force an opposite sign and a longer range of

interactions respect to the repulsive force.

Some observations, reported in point (3), can be easily explained by looking at

equilibria between certain behavioral forces, for which the acceleration vanishes.

In the absence of special attractions, the positions r, of the pedestrians follow

Z fag(T'a,O,T/j,O) =0 (12)
B(#a)
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A classical example in which the velocity v, = 0 is represented by pedestrians
waiting on a railway platform, sitting in a restaurant, or lying on a beach.
In case of additional attraction effects fy; (such as the stage in a rock concert),

equation (1.18) must be supplemented by the corresponding forces of attraction:

Z faﬁ(raaoarﬁao) + Zfai(raari) =0
B(#a) i

Focusing on situations where a pedestrian a cannot overtake a slower pedes-
trian S moving with velocity vg, it have to set up the equation for the equilibrium
between the acceleration force fO and the repulsive force f,3. Because v, = vg,

this yields:

1
- ( gea - Uﬁ) + faﬁ(ra7vﬁa7n,37vﬁ) =0
o

where the actual velocity vg, the distance vector (rg — o), and the repulsive

force fop point in the desired direction e, of walking. they therefore have:

w0 —

v
Za— B4 fop(Taseavs, ra + Arageq, vgeq) =0

Ta

where 7, denotes the ‘acceleration time’ to reach the desired velocity, so that
(v) — vg)/Tq reflects the acceleration strength. From this formula (and remem-
bering that the repulsive force increases with decreasing distance) it can be seen
that pedestrians keep a smaller distance Arqg = ||7o — o], the larger the dif-
ference between their own desired velocity v2 and the speed vg of the preceding
pedestrian. This corresponds to the well-known pushing behavior of pedestrians.
Combined with the growth of the desired speed owing to delays, an interesting
phenomenon is observed in pedestrian queues, as illustrated by figure 1.2. When
the front of a queue (top) is stopped, one can often observe. After that some
time, one of the waiting pedestrians begins to move forward a little bit, because
his or her desired velocity grows, leading to a smaller equilibrium distance to the

pedestrian in front. This causes the successor to follow up and so forth, leading to

a wave-like propagation of the gap to the end of the queue and to a compaction of
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Figure 1.2: Pedestrian queue phenomenon.

the queue. Thereby, the tendencies of all individuals to move forward a little add
up towards the end of the queue, giving rise to larger following-up distances.
How long a pedestrian joins an attraction at place r; is calculated by looking

at the equilibrium between the acceleration force f0 and an attracting force fa;:

M + fai(ra,ri t) = 0.
Ta
Equilibrium considerations are also useful for specifying the model parameters
appropriately, because certain plausibility criteria must be met. For example,
pedestrians should normally not move opposite to their desired walking directions.

This implies that:

0 0
Vo Y8
Ta T3

The behavioral force model of pedestrian dynamics has been simulated for a
large number of interacting pedestrians confronted with different situations. Un-
der certain conditions the self-organization of collective behavioral patterns can
be found, just as in some related models of bird swarms (Reynolds, 1987; Vic-
sek et al, 1995). ‘Self-organization’ means that these patterns are not externally
planned, prescribed, or organized, for example, by traffic signs, laws, or behavioral
conventions. Instead the spatiotemporal patterns emerge through the nonlinear

interactions of pedestrians. The model oh Helbing et al. (according to which
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Figure 1.3: Formation of lanes

individuals behave somewhat automatically) can explain the self-organized pat-
terns described below without assuming strategic considerations, communication,
or the imitative behavior of pedestrians. All these collective patterns of motion are
symmetry-breaking phenomena, although the model was formulated completely
symmetrically with respect to the right-hand and left-hand sides. In follows we
report some interesting phenomenon captured by Helbing et al. simulazions.

(1) The model reproduce the empirically observed formation of lanes consisting
of pedestrians with the same desired walking direction (see figure 1.3). In crowds
of oppositely moving pedestrians, one can observe the formation of varyinglanes
consisting of pedestrians with the same desired direction of motion. This is also the
case if interacting pedestrians avoid each other with the same probability on the
right-hand side and on the left-hand side. The reason for lane formation is the re-
lated decrease in the frequency of necessary deceleration and avoidance maneuvers,
which increases the efficiency of the pedestrian flow. (The positions, directions,
and lengths of the arrows represent the places, walking directions, and speeds of
pedestrians.). These lanes are dynamically varying. Their number depends on the
width of the street and on pedestrian density.

In the conventional interpretation of lane formation, it is assumed that pedes-
trians tend to walk on the side which is prescribed in vehicular traffic. However,
this model can explain lane formation even without assuming a preference for any
side. The mechanism of lane formation can be understood as follows: pedestrians

moving against the stream or in areas of mixed directions of motion will have fre-
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quent and strong interactions. In each interaction, the encountering pedestrians
move a little aside in order to pass each other. This sidewards movement tends to
separate oppositely moving pedestrians. Moreover, pedestrians moving in uniform
lanes will have very rare and weak interactions. Hence the tendency to break up
existing lanes is negligible, when the fluctuations are small. Furthermore, the most
stable configuration corresponds to a state with a minimal interaction rate and is
related to a maximum efficiency of motion.

Note that, at sufficiently high pedestrian densities, lanes are destroyed by in-
creasing the fluctuation strength (which is analogous to the temperature). This
gives rise to the formation of blocked situations, which may even have a regular
(that is, ‘crystallized’ or ‘frozen’) structure. This surprising transition called ‘freez-
ing by heating’ and believe that it is relevant to situations involving pedestrians
under extreme conditions (panics): Imagine a very smoky situation, caused by fire,
in which people do not know which is the right way to escape. In figure 1.4 the
ensemble-averaged efficiency (F) of the system as a function of the particle number
N and the noise intensity © on a logarithmic scale. Shown above are averages over
twenty-five simulation runs with different random seeds. The decrease in efficiency
from values close to 1 to values around 0 with increasing fluctuation intensity ©
but a constant number N of particles indicates the transition from the fluid to
the crystallized state that we call ‘freezing by heating’. When panicking, people
will just try to get ahead, with a reduced tendency to follow a certain direction.
Thus fluctuations will be very large, which can lead to fatal blockages. As a con-
sequence, models for everyday pedestrian streams are not suitable for the realistic
simulation of emergency situations. The latter requires simulations with modified
parameter sets corresponding to less optimal pedestrian behavior. In particular,
the fluctuation strength is considerably higher for panic situations than for usual
conditions.

(2) In Helbing et al. simulations of narrow passages, they observed oscillatory
changes in the walking direction. In figure 1.5 at narrow passages one finds an
oscillation of the passing direction. When a pedestrian is able to pass through
the door, normally another pedestrian can follow him or her easily (above). How-
ever, the pedestrian stream arising in this way will stop after some time owing

to the pressure from the other side of the passage. Some time later, a pedestrian
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Figure 1.4: Freezing by heating.

will pass through the door in the opposite direction, and the process continues
as outlined before (below).. The conventional interpretation for a change in the
walking direction is that, after some time, a pedestrian gives precedence to a wait-
ing pedestrian walking in the opposite direction. This cannot, however, explain
the increase in oscillation frequency with passage width. The mechanism leading
to alternating flows is as follows: once a pedestrian is able to pass the narrowing
(door, staircase, etc), pedestrians with the same walking direction can easily fol-
low, which is particularly clear for long passages. In this way, the number and
‘pressure’ of waiting and pushing pedestrians becomes less than on the other side
of the narrowing where, consequently, the chance to occupy the passage grows.
This leads to a deadlock situation after some time which is followed by a change
in the walking direction. Capturing the passage is easier if it is broad and short
so that the walking direction changes more frequently.

(3) At intersections the simulations show the temporary emergence of unstable
round-about traffic. In figure 1.6 see the phases of temporary roundabout traf-
fic (above) alternate with phases during which the intersection is crossed in the
‘vertical’ or the ‘horizontal’ direction. The efficiency of pedestrian flow can be

increased considerably by putting an obstacle in the center of the intersection,
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Figure 1.5: Example of simulation.

because this favors the smooth roundabout traffic compared with the competing,
inefficient patterns of motion.. This is similar to the emergent rotation in the case
of self-driven particles. However, the rotation direction of circular pedestrian flows
is alternating. Roundabout traffic is connected with small dettheirs but decreases
the frequency of necessary deceleration, stopping, and avoidance maneuvers con-

siderably, so that pedestrian motion becomes more efficient on average.

1.2 A macroscopic approach by Colombo and Rosini

The starting print of Colombo and Rosini approach is the classical Lighthill
Whitam and Richards (LWR) model, introduced with reference to car flows but

referred to also in the case of pedestrians. The LWR model reads:

Op + 0zq(p) =0 (1.3)

with flow function p — q(p) = pv(p) throughly (see Figure 1.7). Here, p € [0, R]

is the pedestrian density, R is the maximal density and v = v(p) is the pedestrian

10
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Figure 1.6: Motion which are very short-lived and unstable

speed. The simplicity of this model stems from its being the consequence of only

two assumptions:

(C) Conservation: the total number of pedestrians is constant

(SL) Speed Law: v is a function of p.

Denote by p, an initial datum for (1.20), say p, € L' (R;[0,R]), by p =

p(t,z) the corresponding solution and fix two constants ppin, Pmaxs With 0 < poi

=

0 R’

Figure 1.7: Typical flow for the LWR model.

11
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Figure 1.8: Two possible flow functions satisfying (Q).

< pPmax < R. A major problem in using conservation laws in the modeling of

pedestrian flow is the "mazimum principle”:

(MP) If the initial distribution p, satisfies the bounds py() € [Pmins Pmax] fOT
all z € R, then the corresponding solution satisfies the same bounds for all

forall t > 0 and =z € R.

Pmin>s pmax]

times, i.e. p(t,x) €|

The model introduced below is based on the same two assumptions (C) and
(SL) of the LWR model. However, Colombo and Rosini modified the speed law
(or, equivalently, the fundamental diagram) and, what is most relevant, the very
definition of solution. Introduce a further characteristic density, say R*, having
the role of the maximal density in exceptional situations (panic). The speed law
chosen an such way that the density flow diagram is as in Figure 1.8.

Under usual circumstances, p varies in [0, R]. The rise of panic, caused for
instance by a sharp increase in the density, forces p to enter the interval [R, R*].

More precisely, introduces the following assumptions on the flow ¢ (see Figure 1.9).

(Q) ¢ : [0,R*] — [0,+occ[ is smooth, say C°([0, R*]) NC?([0, R*]\{R}), and

moreover
1. g(p) =0iff p€ {0,R, R*}.

2. ¢'isbounded on [R, R*]. In 0, R|, ¢ vanishes at a single point Ry;. Similarly,
in |R, R*[, ¢ vanishes at a single point R},.

3. ¢ has at most one inflection point Ry in |Rjs, R], at most another one R} in

|R, R}/ and no other inflection point.

12



CHAPTER 1. STATE OF THE ART

0 Ry Ry Ry R R} Wi ¥ 2k p

Figure 1.9: Notation for extreme and inflection points.

The above assumptions are meant to consider also the case in which ¢’ is not
defined at R, see Figure 1.8, right. Assumes that ¢ € C?. Nonclassical solutions
to scalar conservation laws has been adopted. More precisely, a solution to can be
constructed by means of solutions to Riemann problems. Recall that a Riemann

problem is a Cauch problem of this type:

Owp + 9zq(p) =0
{ (1.4)

l.
pif x <0,
p(O,l‘):{

prif x>0,

Nonclassical solutions satisfy (1.4) in its weak (or integral) form, but may well
violate the other usual admissibility conditions found in the literature, such as Lax
inequalities, the vanishing viscosity criterion or the various entropy conditions. In
other words, a nonclassical shock is a discontinuity that satis es the Rankine-
Hugoniot conditions, but not necessarily also Liu’s entropy condition. Heading
towards a definition of the solution R(p!, p") to (1.4) for all p!, p" € [0, R*]?, a key
issue is defining when a Riemann problem leads to a classical solution and when to
a nonclassical one. Recall, that by Riemann Solver they mean a map that to any
pair (p!, p") in [0, R*]? associates a weak, self-similar solution to (1.4) computed at
time, say, t = 1. As it is usual when dealing with nonclassical scalar conservation
laws, it introduce auxiliary functions to describe tangents to the fundamental
diagram are defined.

Introduce the continuous function ¢ implicitly defined by:

13
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Figure 1.10: Constructions of ¢ and ¢.

¢:[0,R*] — [0,R]

r such that ¢ (r) = %Z(p) if r exist,
p — Ry if p= Ry,
0 or R* otherwise.

The analogous continuous map ¢ attaining values in [R, R*] is defined by:

Y :[0,R*] — [R,R]

r such that ¢ (r) = %Z(p) if r exist,
p — R} if p = R},
R or R* otherwise.

Finally, define also:

®:[0,R] — [0,R]
ro ar)=alp) _ a(p)=a(¥(p))
p — { "

if r exist,

P otherwise.

Let ¢ be such that the straight line through (p,q(p)) and (p(p),q(e(p))) is

tangent to ¢ = q(p) in (v(p),q(e(p))) and ¢(p) € [0, R], if it exists (see Figure
1.10, left). Similarly, let ¢ be such that the straight line through (p,q(p)) and

(¥(p); a(¥(p))) is tangent to ¢ = q(p) in ((p), q(¢(p))) and ¢(p) € [R, R*] (see

14



CHAPTER 1. STATE OF THE ART
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Figure 1.11: A nonclassical solution described in (R1).

Figure 1.10, right). The line through (p,q(p)) and (¢(p),q(¢(p))) may have a
further intersection with the curve ¢ = g(p), which they call (®(p), g(®(p))).

They are now able to define a Riemann solver . Fix two positive thresholds
s and As such that s + As < R. Consider first the case in which p! and p" are in
0, R)].

(R1) If pl,p" € [0, R] then R(p!, p") selects the classical solution unless p! > s, p" >
®(p') and p" — p! > As. In this case, R(p',p") consists of a nonclassical
shock between p' and 1 (p!), followed by the classical solution of the Riemann
problem with states ¥(p!) and p".

This solution is described in figures 1.11 (with standard initial data but leading
to panic states) and 1.12 (the classical solution would consist of a single shock.).
Its physical interpretation is as follows. Fix pl,p" € [0, R]. If pl is "very low", i.e.
below s, then panic may not arise, independently from p” € [0, R]. Similarly, if
pr— plis "wery low”, i.e. p" — p' < As, then pedestrians are ready to stand the
increase in the density without panicking. On the contrary, when the pedestrian
density p' is above the first threshold s and also p" is "high”, then a "suffciently
high" density increase causes panic, leading to the formation of a pedestrian jam,
i.e. of an area where the density is greater than the usual maximum R. Here, is
implied "suffciently high" mean above As the condition p" > ®(p') is implied by
p" —p' > As as soon As > ®(0). Remark that the map p! — ®(p') is a decreasing
function of p! and ®(s) < R. Indeed, the higher p!, the easier is the transition

from p' to a panic state.
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q(p)

/ - L

0 7 0 T

Figure 1.12: Solution to (1.4) at time ¢ = 1 in case (R1).

They now extend the definition of the solution to (1.4) to all cases (pf, p")
€ [0, R*]%. First, they impose that:

(R2) If p" < p', then R(p!, p") is the classical solution.

The above condition means that when people face a density lower than the one

they are in, then panic does not arise. Finally, in the remaining cases, they pose:

(R3) if p" > Rand p" > p', then R(p', p") consist of a nonclassical shock between

p! and a panic state followed by, possibly null, classical waves. More precisely,

o €]R,(p")] : R(p',p") consists of a nonclassical shock between p' and

¥(p!), followed by classical waves;
"€ [w(ph), R*[: R(p', p") consists of a single shock.

The above properties (R1), (R2) and (R3) uniquely determine a Riemann solver
R defined on all [0, R*]2.
To state it, the following subsets of the square [0, R*]? are of use, see Figure

1.13 (left, in the case s + As > ®(0,%(0)) and, right, in the general case.).

Qualitative properties

Consider the well known situation of a group of people that need to leave
a corridor through a door. If the maximal outflow allowed by the door is low,
then the transition to panic in the crowd approaching the door may well cause
a dramatic reduction in the real outflow, making it even lower than that usually

allowed by the door.
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Figure 1.13: The Riemann Solver.

_ : PM

iU'T?!-

0 a b L x 0 R R*P

Figure 1.14: Left, the initial datum and, right, the maximal outflow in (1.5)

More precisely, choose a flow as in Figure 1.8, left. Assume that the corridor
is the half line | — 0o, L]. The crowd is initially uniformly distributed on [a, b] with
uniform density p, with 0 < a < b < L and p, see Figure 1.14, left. This situation
is analytically described by

Oip + dq(p) =0 (t,2) € [0, +oo[z] — oo, L],
p(0,2) =D Xap)(2) z €] — o0, L], (1.5)
q(p(t, L)) < p(p(t, L)) t€[0,00[.

Here, p : [0, R*] — [0, 400 represents the given maximal possible outflow
through the door at x = L. This outflow is significantly affected by the crowd
density. Therefore, they choose the simple piecewise constant behavior in Figure
1.14, right. Here, pj; is the outflow in standard (i.e. not overcompressed) situation,
while p,, denotes the same quantity in the overcompressed regime. Assume 0 <

Pm < pp- (1.5) is an initial boundary value problem. The analytical treatment of
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Py
pTﬂ

7 77 7 7
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Figure 1.15: Construction of the solution to (1.5).

this and of the Cauchy problem is deferred to [3], where the existence of solutions
and their continuous dependence from time is proved. Some qualitative properties
of the solution to (1.5) constructed through wave front tracking are shown. The
aim is to show how the present model describes the "overcompression" effect due
to the rise of panic and the consequent fall in the outflow.

While the overall picture of the solution to (1.5) is rather stable, a detailed
analytical study necessarily needs to consider many slightly different cases. Below,
they restrict the construction of the solution of (1.5) to the most representative
situations in which panic arises is considered.

With reference to (1.5) and Figure 1.15 (the light shaded areas on the right
display rarefactions, while the darker ones represent areas where people are in

panic states), left, call oy, pli;, pin. ph, densities such that

o, P € 10, R oy < P par = a(phr) = a(plhy),
P P € JR, B[, 1 < Py P = 4(P12) = a(piy,)-

Assume that the door is small, in the sense that its outflow satisfies

oy < Q(Ryp)spar < a(s), par < q(s 4+ As), ppy < pug (1.6)

and the initial amount of people is suitably large:

(b—a)p> (L) (q(;M) - q,(lo))pM. L7)
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The first step in the construction is to consider the Riemann problems

{@p+aw00=0 {@p+aww)=0 1.8
_[0ifz <a, _[pifz<b, :
p(o’x)_{pifoa, p(O,a:)—{O if x > b.

The former is solved by a classical shock. The latter is solved by a rarefaction
wave if p €]0, Ry], or by a classical shock between states p and ¢(p), followed by a
rarefaction from ¢(p) to zero if p €] Ry, R]. Therefore, for small times, the solution
to (1.5) in the case p €] Ry, R, is

0 if z €] —o0,a+ [q(p)/plt],

pif z €la+[q(p)/plt, b+ ¢ (P)i, (1.9)
p ifz=b+dq(pt,

0 ifzelb+q(0), L.

while if p €]Ry, R|,

0 ifzel—o0,a+ [q(p)/plt,
p ifx€la+q(p)/plt, b+ d (¢(p))t],
e(p) itz =0+ (p(p))H,
p ifx=b+q (p)t,
| 0 ifzelb+d(0), Ll

Assume that p €]0, Ry], the other case being essentially analogous.

Note that pedestrians start exiting through the door at time ¢, = (L—1b)/4¢’(0).
At time tp = (b—a)/ <@ - q’(ﬁ)) , the shock and the rarefaction in (1.8) start
to interact, yielding the shock S, see Figure 1.15. Due to the interaction, S
accelerates and the state to its right decreases. If p < p/,, then the outflow
through the door is always less than the maximal one and panic does not arise.
Therefore, assume that p €]p’;, R[.Then, at time tp = (L—b)/q¢'(p',;), the maximal
outflow through the door is reached, provided not all people already exited, i.e.

provided

(b—a)p > / " alp(t, L)t

which, in turn, is ensured if (1.7) holds. A backward shock with support Ss is

formed at E and it immediately starts to interact with the rarefaction exiting B and
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accelerates backwards, so that it is bent as in Figure 1.15, right. Along the right
side of Sy the density is constantly equal to p’,, while on its left side it increases.
Therefore, the expression (1.9) yields a solution to (1.8) for ¢ < min{tp,tg}.

If S7 hits Sy before the state to the left of Sy reaches the value s, then no panic
arises and people exit the door exploiting its maximum outflow. On the other
hand, if

b-a _ (a0 0\ "D -d@ ()R
L—b> T_Q(S) O '(p) ' /(S),PM;‘I(S) 'Q’(plj(/[),
s TP q P~

(1.10)
s

then the state to the left of Sy reaches the value s at F' and the two shocks St,
S5 do not interact.

Then, by (1.6), par < q(s + As), the jump across Sy at F' is greater than s.
(R1) prescribes to solve the Riemann problem at F' with a nonclassical shock N;
between s and v(s), followed by a rarefaction and by a classical shock S5 between
the states ¥(p};) and p,. By the assumption pys < ¢(R},), the classical shock S3
has positive speed. In other words, at time ¢, panic outbreaks at z and fills the
region bounded between the nonclassical shock N7 and the classical shock Ss.

Note that condition (1.10) that has a key role in the outbreak of panic, has a
clear geometric interpretation: it requires that the space initially occupied by the
people be large with respect to the initial distance of the people from the door.
They underline the geometric nature of (1.10). Indeed, due to (Q), the second
factor in the right hand side of (1.10) is bounded above by 1, so that (1.10) can
be substituted by the stronger condition

o (als) _ ) TR I
L=b ) ) - e )

S
Pr—3

Y

which is independent from the (sufficiently large) initial density p.

The nonclassical shock N7 hits the shock S in a point, say H, leading to a
nonclassical shock A5 between the left state 0 and a right state, that they assume
varies in the interval |p! . oI [.

The nonclassical shock ANy may hit S3 before it reaches x = L. In this case, the
panicking crowd does not reach the door and the lower outflow p,, is not attained.

On the other hand, if the total amount of people initially present (b — a)p is
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sufficiently high, then the shock S5 reaches the door at G and the outflow through
the door falls to the lower value p,,. From G a classical shock curve S, arises
between a state on its left varying in |p,,, pl/ [ and p!’ on its right.

Finally, S4 interacts with A% giving rise to a nonclassical shock N3, between
the states 0 and p// , that eventually gets to the door at I, t; being the total time
necessary to empty the corridor. In the time interval between ¢ and t; the door
outflow is the lower value p,,, describing the fall in the door efficiency, typical of

panicking situations.

1.3 The approach by Bellomo and Dogbé

The first step in modelling real systems is the identification of the observation
and modelling scales. Subsequently, for each scale one has to identify the para-
meters and the variables to be used toward modelling. Classically, the following
types of description can be considered:

Microscopic description: All pedestrians, regarded as particles, are individually
identified. Position and velocity, regarded as dependent variables of time, of all
individuals define the state of the whole system.

Kinetic description: The state of the system is identified by a suitable proba-
bility distribution over the microscopic state of the test individual representative
of the whole system.

Macroscopic description: The state is described by locally averaged quantities,
namely density, mass velocity and energy, regarded as dependent variables of time
and space.

In details, let us consider a large system of individuals, regarded as active
particles, over a two-dimensional domain € € R2, which may be either bounded
or unbounded. The following parameters can be used toward the identification of

dimensionless independent and dependent variables at the various scale:

e / is a characteristic length of the system. If {2 is bounded, is the largest
dimension; if  is unbounded, then is the largest dimension of the domain

containing the initial localization of the crowd.

e n)y is the maximum density of the crowd corresponding to their admissible

packing;
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e V) is the maximum admissible mean velocity of crowd which may be reached,
in average, in free flow conditions, while the maximum admissible velocity for

an isolated individual, may be larger that V}s is denoted by (14 u)Vas, p > 0.

The above quantities allow the assessment of the following independent vari-

ables:

ot = t,/Tc, where t, is the real time, is the dimensionless time variable

referred to the critical time T = Vi /4.

e z =ux,/¢,and y = y,/¢ which are the dimensionless space variables obtained

referring to the real space variables z, and y, to £.

The microscopic representation is defined by the following variables:

x; = {x,y}i, which identifies, for i = 1,..., N, the position in Q of each ith
individual of a crowd of N individuals;

Vi =A{Va, Vy}i, which identifies the dimensionless (being referred to V), veloc-
ity of each ith individual of the crowd.

Mathematical models are generally stated as a system of N ordinary differential
equations where v; and z; are the dependent variables, that are normalized with
respect to Vi and ¢, respectively.

The kinetic (statistical) representation of a system constituted by a large num-
ber of interacting individuals is defined by the statistical distribution of their po-

sition and velocity:

f = f(t,CC, V) = f(t7x)yavx7vy)’

where, if f is locally integrable, f(t,z,V)dxdV denotes the number of individ-
uals, which, at the time ¢, are in the elementary domain of the microscopic states
[z, 2+ dx] X [y, y + dy] X [V, Vo +dVy] x [V, Vy, + dV,].

The distribution function f can be normalized with respect to njs, while also
in this case the microscopic variables are normalized with respect to Vj; and /,
respectively. Therefore, all derived variables can be given in a dimensionless form.
Macroscopic observable quantities can be obtained, under suitable integrability
assumptions, by moments of the distribution. In particular, the dimensionless

local density is given by
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l4p L+
)= [ [ st viav

The total number of individuals in §2, at time ¢, is given by

p(t,m):/ﬂp(t,x)dx.

Analogously, the mean velocity can be computed as follows:

T+p plip
7(t,x)—E[V](t,x)—p(t17x>/0 /0 VF(t 2, V)V,

and similarly the speed variance

B 1 I+p pldp B . 5 .
ot.a) =~ /0 /0 [V — B[V](t, )P f(t,z, V)V.

where the speed variance provides a measure of the stochastic behavior of the
system with respect to the deterministic macroscopic description. Mathematical
models obtained, in the framework of the kinetic theory, by evolution equations for
the above defined distribution function obtained by number density balance in the
elementary volume of the space of the microscopic states. Inflows and outflows into
and from such a volume are determined by interactions between the test individual
and the field ones.

The mathematical kinetic theory for active particles suggests adding to the
modelling of the microscopic state an additional activity variable suitable to de-
scribe the strategy of each individual regarded as an active particle.

The macroscopic representation of a system constituted by a large number of
interacting individuals concerns groups of pedestrians rather than the individual
units. Macroscopic representation may be selected for high density, large scale

systems in which the local behavior of groups is sufficient.
p = p(t, z,y) which is the dimensionless density referred the local number density;
n = n(t,z,y) to the maximum admissible density nas;

7 = T (t,z,y) that is the dimensionless mean velocity, referred to Vjy, that,
— —
in two space dimensions, expressed by the unit vectors denoted by (i, j ),
writes:

i

7(t,x,y) = vx(t,az,y)z> +uy(t,z,y) J .
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The relationship between the flow rate, the mean velocity and the pedestrian
density is given, in dimensionless form, as follows: ¢ = p7/.

Classically, equation of conservation of mass and equilibrium of linear momen-
tum can be used. The main conceptual difficulty consists in modelling the closure
of momentum equation by suitable phenomenological models of the acceleration
applied to individuals in the elementary volume dz = dzdy.

Pedestrian movement shows characteristics different from those of cars or other
vehicles. Pedestrians have more flexibility to move in two dimensions, as well
as more flexibility to stop and go within the full range of admissible velocities,
that is not the case of vehicles. This is due to the wide domain of visibility
area controlled by them. However, the hydrodynamic approach refers to locally
averaged quantities, therefore local fluctuations in the velocity are not modelled
explicitly.

Bearing all the above in mind, let us consider the modelling approach offered
by continuum mechanics that approximates the system under consideration as a
continuum flow. Therefore, if the distances between the crowds are assumed to
be negligible. The state of the system, in two space dimensions, is described by
density of the crowd and the average speed: p = p(t,z,y) and v = v(¢, x,y), while

the local flow is given by:

T =74t z,y) =pt,v,y)V(tv,y),

where, according to the continuum approach, the above quantities are supposed
to be differentiable with respect to the dependent variables.

Referring to figure 1.16, let us consider, the crowd in a bounded domain 2 C
R2, where 99 is its boundary. The overall description of the system is delivered by
the equation of conservation of mass and equilibrium of linear momentum defined

by the following system of partial differential equations:

{@P*’V:p‘(ﬁ’?) =0 (1.11)

8T + T (Ve ) = Flp, 0],

where F' models the average acceleration that acts over the elementary block

of individuals in volume dzdy. Here 0t stands for the partial time derivative. The
notation ()¢ = % will be used here after. The first equation being pedestrian

conservation and the second speed dynamics; brackets are used to indicate that
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Figure 1.16: Geometry of the domain occupied by the crowd.

in equation 1.11, F = {Fz,Fy} can be, in specific models, a functional of its
arguments, for instance it can be a function not only from p and @ but also of
their space derivative.

The above system acts as the general framework for the derivation of specific
models which can be classified as first-order models if only the mass conservation
equation is used and is properly closed by a phenomenological model linking the
velocity to the local density conditions (including density gradients), while second-
order models refer to the whole system and are obtained by closing the linear
momentum equation by a phenomenological model of the term F'.

F is not the real physical force applied by an external field; it characterizes
the internal driving force or motivation of the pedestrian.

A preliminary observation, still waiting for the derivation of models, is that
pedestrians have a target to reach, for instance a point T' of the boundary corre-
sponding to the exit. Therefore, given a point P = {z,y} inside Q is useful, for
the calculations developed in the next section, defining the unit vector from P to
the target T" as shown in figure 1.11.

The calculation of the unit vector ¥y, according to the geometry of the system,

is simply as follows:

70(1"a y) = 710(.'1’),?/) + 7y0(xa y)a
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where

— ( ) T —XxT -
Vo\T,Y) = 1,
’ V(e —zr)2+ (y —yr)?

and

Yy—yr -
(z —27)*+ (y = yr)?
where the direction of the vector is simply identified by the coordinates of the

points P and 7.

)

72/0(3:7 y) = \/

Of ctheirse, pedestrians may have a target inside the domain §2, simple technical
modifications are needed to consider this case. The statement of mathematical
problems needs suitable boundary conditions unless the modelling refers to crowds
in unbounded domains. However, it is still reasonable for the crowd to have a
target.

There are other models called second-order models, namely models with ac-
celerations. All models consist of two equations given in a 2D system of partial
differential equations (1.11) with a phenomenological relation that describes the
average 2D acceleration by which the crowd modifies its own speed: F) = {F;,F,},
where the components of F may depend on the local density, density gradients,
velocity and position of the crowd: F = 1_7>[p, v, v], where square brackets denote

functional dependence.

Second-Order Models

Different classes of models can be identified according to different ways of
modelling the aforementioned acceleration. Specifically, three classes of models
here are considered simply identified by the way pedestrian select their direction
of motion.

In details:

Class I: The first class refers to systems where the pedestrians move along
straight lines toward the target objective.

Class II: The second class of models refers to walkers that still move toward

the target objective, but are also attracted by paths with small density gradients.
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Class I1I: The third class of models contains a “pressure” term which enables
the momentum equation to predict the expect response of crowd behavior as time
and space changes.

The above classification simply takes into account the direction followed by
pedestrians, while different expression of the acceleration along such a direction
can be proposed, as they shall see, according to their specific phenomenological
behaviors.

The modelling is proposed in normal flow conditions. The dynamics in panic
conditions is analyzed in the last section. The presentation of the various mod-
els follows the same guidelines: the fundamental assumptions that generate each
class of models is stated, subsequently the mathematical framework is derived,
and finally same specific models are derived based on suitable phenomenological

assumptions concerning the acceleration term.

Class I Pedestrians seek to minimize their (accurately) estimated travel time
but temper their velocity according to local density. Specifically, in each point
P = {zp,yp} of the domain, individuals move toward a given objective along
the direction 7¢(x,y). Moreover, their acceleration consists of two contributions:
the first one corresponding to a trend and to equilibrium velocity depending on
the local density, directed toward 7/g(z,y), and the second term to the action
of the density gradients toward 7. In particular, negative values increase the
acceleration, while positive values decrease it.

The formal structure of the system corresponding to mass conservation and

linear momentum equilibrium is as follows:

Oip + Ox(pvz) + Oy(pvy) =0
Oy + 020505 + vy 0yvy = Fia(x, p, V') + Fay(, p, Avgp) (1.12)
Orvy + vaOavy + vyOyvy = Fiy(w, p, V') + Foy(@, p, Avop)

where the first term corresponds to the adaptation to the velocity v, which
depends on the local density, while the second term corresponds to the influence of

local density gradients. The above acceleration terms can be specialized as follows:
F’)l = a(ve(p) Vo — ), (1.13)
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where « is a constant representing the inverse of the relaxation time of w

toward the generalized equilibrium velocity v(p) 7o and

_K*(p)

N
F2 = Vl,op. (114)

Inserting the above formal expression into (1.12) generates the following vector

system:

{ Op+Vy- (P?) =0, (1.15)

T + (V- Vo) T = alve(p) 7o — T) — L2, p.
Different specific models can be derived in agreement with (1.15) according
to different specific models (1.13) and (1.14). In particular, various models have
been proposed in the mathematical literature for vehicular traffic flow to describe
the trend defined in (1.13). The simplest model is based on the assumption of a
linear decay: ve(p) = 1 — p. However, this extremely simple model does not take
properly into account as the quality of the environment, as the decay with respect
to density depends on its quality. It may be less steepest when the quality of the
environment is good. Various models can be derived by using different expressions
of K2(p).
The above class of models can be further refined by taking the gradients along
the local mean velocity. It is however a technical difference that does not introduce

significant additional improvements.

Class II The class of models above described is such that pedestrians direct
their motion, from any point P of the domain €, to the target T . On the other
hand, the direction of motion generally takes into account the fact that pedestrians
attempt to avoid zones with higher density, while the selection of optimal paths
occurs only in their visibility zone. The reasoning has some analogy with that used
in the modelling of pedestrian flow by first-order models. Conservation equations
(1.12) or (1.15) are still used however the direction identified by the unit vector v
must be substituted by a new one that takes into account the above phenomena.
Specifically the following assumption is proposed:

Pedestrians seek to join the objective by undervalying their time if possible and

at the same time while seeking to avoid the zones with high density. Pedestrians
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Figure 1.17: Target and visibility zone.

do not have a global vision of the situation, but their perception of the density is
limited visual field.

The formalization of the above assumption into mathematical terms needs the
identification of the path-direction v and of the visibility zone, bearing in mind

that the above two quantities are technically related. Bearing all above in mind

v
v = arctan <Oy>
Vog

the angle which characterizes the direction of the vector vy, and by ©, the max-

let us define by

imum angle of visibility of the pedestrian (in average), one can define a “visual

range” interval:

R, = [V_6V77+@V]

to the inside of which the direction toward which heading is chosen. Therefore, let

us define the following quantity

- - . =
I'=|¢{cosai +sinailac R,

and by ', = @ m(P) the minimal direction of the directional derivative
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min [Vzp(P) ~ ?}

where I is the domain of the path directions on R,,.
The direction of the motion of pedestrians can be defined, given a density field,

as follows:

V(P) =V o(P) + 71(P), (1.16)

where the corrective term is given by

vi(P) = nim(P) (1.17)

where 7 is a positive small parameter introduced to model a corrective term
related to the attraction toward small density gradients.

Mathematical models are then related to the following structure:

{ Op+Va-(pT) =0,

OV + (T -Va)T = F [p, 7] = a(ve(p) 7 — 7) - LV,

that uses, with respect to (1.16), the direction v instead of v¢. Specific models
are obtained by adopting suitable expressions of the terms ve and K2(p). Although
technically more complex, the above modelling method has the advantage of lead-
ing to an immediate modelling approach of panic conditions. It is worth stressing
that further developments can be obtained by taking into account additional phe-
nomena in the modelling of the acceleration term F')[p, 7] for instance, a linear
velocity diffusion term corresponding to a viscous dissipation in fluid dynamical
framework can be added. Consequently, the acceleration of pedestrians will be
given by three contributions: the first corresponds to a trend to equilibrium, the
second to the action of the density gradient and the third to a dissipative velocity

diffusion

— — — — 1 €
F [p7?] =F [p76}} + Fy [pvﬁ] +F3 [paw] :Cl(?e_?) - ;vmp‘i‘ ;A?
where € is a parameter positive which represents in the case of the fluids, the

viscosity.
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Class III The various models proposed have been obtained by using conservation
of mass and linear momentum. The analysis of traffic flow modelling has shown
that it can be useful a modelling approach based on the conservation of different
quantities such as the total pressure. their model of Class III is based on a 1D

traffic flow model proposed by Aw and Rascle [1].

The first equation is the two-dimensional conservation law equation given by

O + Oz (pvz) + Oy(pvy) = 0.

The second equation is obtained by applying the convective derivative on the

pressure terms for the 2D case and it is given by

Ot (ve + Pi(p,v2)0) + 0205 (Ve + Pr(p, vz)Vay )+
vyy(vz + Pi(p, ve)vay) = pAi [p, V],

O (vz + Pa(p,v2)00) + 1200 (Ve + Pa(p, v )Vay)+
vyy(vz + Pa(p, vz)Vay) = pAsz [p, V]

)

where P(p, v') is a proposed function given by

P(P’E)):WU

and valid for v > 0 is a dimensionless constant and g > p7n+1 with p,, means

the maximum density and

Ai [p,
Az [p,

| = a(ve(p)Vay — va);

e <]

| = a(ve(p)vy, —vy).

In a more compact form, the system of Class III can be written as follows:

_ —

{ Op+ V- (p7) =0, (1.18)
0T + P(p. T)V0) + (v Vo) + (¥ + P(p. T) Vo) = A [p. 7.

while, in dimensionless variables, equation (1.18) is as follows:
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( Oep + p(0zvz + Oyvy) + pOyvg + pOyvy = 0,
Or(ve + Pr(p, v2)Vao) + 0202 (Ve + Pr(p, ve)Vay)+
yOy (Ve + Pr(p,vz)vag) = pA1 [p, V],
(v + Pa(p, v2)vyy) + 0205 (Ve + P2(p, V3V )+
\ vy Oy (Vg + Po(p, v2)Vay) = pA2 [p, v v,

supplemented by initial conditions p(0, z,y) > 0, v;(0,z) < |viz| and v, (0,y) <
|vgy|. Here vi, and vy, are the free flow speed.
An additional alternative is obtained by using for the first equation the twodi-

mensional conservation of continuity that conserve mass (pedestrians) given by

Op + 02(pvz) + Oy (pvy) = 0.

The flux flow rate in both directions is represented by pv, and pv,. The second
equation is similar to the momentum equations in 2D for compressible flow with

some manipulations to mimic crowd dynamics and it is given by

]7
I

Opvz + V20,05 + vyOyvy + PUQ(P)on [Oxv5 + Oyvy] = pA1[p,

.
v
Ovy + Vg 0zvz + vyOyvy + PUé(P)Vyo [0xv5 + Oyvy] = pA2[p, v
where puvl(p) and pvl(p) are the traffic sound speed at which small traffic
disturbances are propagated relative to the moving crowd stream. This model will

be classified as a crowd flow nonlinear, time varying, hyperbolic system of two

partial differential equations.

1.4 A macroscopic approach by Maury and Venel

Maury and Venel proposed to integrate a strong non-overlapping constraint
in a ODE framework, in the spirit of granular flow models. Their approach rests
on two principles. On the one hand, they define a spontaneous velocity, which
corresponds to the velocity each individual would like to have in the absence of
other people. On the other hand, individuals (which are identified to rigid discs)
must obey a non-overlapping constraint. Those two principles lead us to define

the actual velocity field as the projection of the spontaneous velocity over the set

32



CHAPTER 1. STATE OF THE ART

Figure 1.18: Notations

of admissible velocities (regarding the nonoverlapping constraints). To perform
this projection, they put the problem in a saddle-point form, which leads us to
introduce a collection of Lagrange multipliers. Those Lagrange multipliers can be
interpreted as interaction pressure between people which are in contact.

Consider N persons identified with rigid disks of common radius r, in a room
represented by a domain Q € R?. The centre of the i-th disk is denoted by g;.
They define the set of configurations:

Q = {q = (91»‘]27-~aQN) € R2N} .

Moreover, introduce a spontaneous velocity field

U= (Uy,Us,..,Un),

where Uj; represents the velocity which person ¢ would like to have if he is alone.
As a first step, the simplest model one may think of: all individuals have the same
behavitheir, and they do not elaborate complex strategies to escape. Therefore

introduce a global spontaneous velocity field © — Uy(x), and write

U(Q) = (U0<QI)7 ) UO(QN))'

In this hard-sphere approach, overlapping is strictly forbidden, which leads to

the following set of feasible configurations:
Qo={q€Q,Dij(q) = |ai —gq;| —2r =0 Vi #j}.
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Figure 1.19: Cones N, and C,

As overlapping is forbidden, two persons already in contact can only increase

their distance: the set of feasible velocities is

Cq = {v,Gij(q) -v > 0 as soon as D;;(q) = 0},

with (see Figure 1.18)

Gij = VDZ] = (O, ...,O, —eij,o, ,0) c R2N‘

The basic form of the model: the actual velocity field is the feasible field which
is the closest to U for the euclidean distance, which writes
dgq
— =P U
il (q)
where Fg denotes the euclidean projection onto the closed convex cone Cy.
Despite its formal simplicity, this model does not fit directly into a standard

framework. Let us reformulate the problem by introducing N, the outward normal

cone to the set of feasible configurations Qg

qucgz{w,(w,v)go Yo € Cyt.

Thanks to Farkas’ Lemma, this cone can be expressed
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(22 (KX

Figure 1.20: One dimensional situation

Nq = {— Z)\ijGij, >\ij > O,Dij(q) =0= )\ij = 0} .
Now using the classical orthogonal decomposition of a Hilbert space as the sum
of mutually polar cone (see [29]), they obtain
dg
i Pe,U(q) =U(q) = Pn,U(q).

As a consequence,
dgq
qt
The problem takes the form of a differential inclusion, which has motivated a

+ N, 2 U(q). (1.19)

huge amount of papers in the last decades. Let us first consider a special situation
where standard theory can be applied. Consider N individuals in a corridor (see
Figure 1.20). In that case, as people are not likely to leap accross each

other, it is natural to restrict the set of feasible configurations to one of its

connected components:

QO = {q = (Q17Q27 "‘7QN)7Qi+1 Z 2T} .

In this very situation, as )y is closed and convex, the multivalued operator

q — N identifies to the subdifferential of the indicatrix function of Qo:

0 if ¢ € Qo

Ay (q) = {v,1gy(q) + (v, h) < Igy(q+h) Vh}, Ig(q) = oo ifg ¢ Qo

therefore ¢ — N is maximal monotone. As soon as the spontaneous velocity is

regular (i.e. Lipschitz), standard theory (see e.g. [7]) ensures wellposedness. In the

general case, Qo is not convex, so that ¢ — N is not maximal monotone. Despite
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the formal simplicity of the model, its analysis calls for sophisticated abstract tools
developped recently by Edmond and Thibault [18]. The well-posedness rests on
the fact that the set of feasible configurations is prox-regular (see [12]) , which
means that the projection onto Qg is well-defined in its neighbtheirhood. As a
consequence, it can be established that the problem is well-posed.

The numerical scheme proposed by Maury and Venel is based on a first order
expansion of the constraints expressed in terms of velocities. Introduce a uniform

sequence of time steps
=0<tl <. <t?t=T, t"T1 " =T/p,
and they denote by ¢" the approximation of ¢(¢"). The next configuration is

obtained as

q7’L+1 — qn + hu”'H,

where u"t! minimizes

1
B lv—U(¢")* over Cé‘n, with

CQ = {v, Dj;(q) + hG;;(q) -v > 0}.

In other words,
ut = P, (U(g").
This scheme can be shown to converge to the exact solution:

Theorem 1 Let us denote by qp, the continuous, piecewise linear function associ-
ated to the numerical scheme. Then qp, goes to q uniformly in [0, T, where t — q(t)

1s the exact solution.

The scheme can be interpreted in the following way. Let us introduce the set

Q4(q) = {d@, Dij(q) + Gij(q) - (G—q > 0)}.
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which can be seen as an inner convex approximation of (Jy. Note that Qg does
not depend on h. Yet they keep this notation to emphasize the fact that it is an
approximation of (Qy. It is straightforward to check that

q7’L+1 _ qn 1
" 81@3(@)(qwr )2 U(q")

so that the scheme can be seen as a semi-implicit discretization of (1.19), where
oI Qh(q) APProximates Ngn.

The costly part of the algorithm lies in the projection of the spontaneous
velocity onto the approximated set of feasible velocities. This projection can be
solved by a Uzawa algorithm (note that any algorithm could be used to perform
this task). This algorithm (see e.g. [9]) is based on a reformulation of the projection

problem onto a saddle-point form:

u+B*A=U
Bu<D
(Bu—D,A=0)

with

U = U(¢"),Bv = (=hGij(q") - v)i<j, D = (Dij(q"))i<j
B*)\ = —hz )\ijGij(qn).

1<j

The Uzawa algorithm produces a sequence A* according to

ML =TI, (\F + p(B(U — B*\*) — D)),

where I is the euclidean projection onto the cone of vectors with nonnegative
components (a simple cut-off in practice), and p > 0 is a fixed parameter. The

algorithm can be shown to converge as soon as 0 < p < 2/ ||B||* (see [29]).

Experiments The first set of experiments is based on the following situation:
consider two populations of individuals in a periodic bidimensional domain. They
are represented in black (B) and white (W) in the figures. B-individuals want to go
to the right, and W-individuals tend to go in the opposite direction (with the same
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desired speed 1). The simplest model proposed, without any avoiding strategies,
makes it possible to recover the so-called fingering pattern (see [20], [22]). The
number of inviduals in each population is 750. Figure 1.21 represents snapshots
of the two populations, at times 0 (random distribution), 25, 75, and 100. Note
on the second figure from the top, during the transitory period, the apparition of
white and black clusters, due to absence of any social force or auto-optimization
strategy in this test.

The second performed experiment corresponds to the situation of 3000 persons
which are randomly distributed in a room at initial time. The spontaneous velocity
field has constant modulus 1, and is directed along streamlines of the geodesic
distance to a safe spot, far away from the room. The current configuration and the
corresponding network of interaction pressures: for any couple of discs in contact,
the segment between centers, having its color (from white to black) depend upon
the (positive) Lagrange multiplier which handles the corresponding contraint is

represented.

38



CHAPTER 1. STATE OF THE ART

% ~c?6§ﬁ% B0 g B osneeo oo
aenes #8 90es tes assererlivies s PAAPLIZ AL
2 oo RESHRIGEI0 000 ©

ssesttiense

Tesdafes ALY * o %ecadlt,
o QORIERED T 0
so00o0 o oo m:&ﬁa}s
_ . s

=] =] Q [+] o J

- : * . ‘M\ Vﬁ"“""' -ms. l'l . - l..
.Eiﬁi;lm LR1] ’ c-bfn . L. -
My,

"3"5@5‘“&* o3 02

“U‘Eﬁ&‘“b’“‘&m’-‘u :h*owwmx
.

L L]
s _‘1}!00’1)’) cooooo 0o 00 00
I Y nm;mmﬂm siccno0 o o
pk
1-W&1~- .

eoouny,

£ oo o oo o 3:.%#‘(15)): :mma
st el . WS Beeeat
oocapmo ooiERIRRR00 %o o©
® o sssssedlessascss nn‘u- . s ssse

EFRRELO000 RPIRRRG E
wen ® 88 & ssssse sappe
o e o

Figure 1.21: Counter flowing crowds
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Figure 1.22: Emergency exit
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Chapter 2

The model

In the model proposed by Piccoli, Benedetti and Tosin, microscopic and macro-
scopic scales coexist and continuously share information on the overall dynamics.
More precisely, the microscopic part tracks the trajectories of single pedestrians
and the macroscopic part the density of pedestrians using the same evolution equa-
tion duly interpreted in the sense of measures. In this respect, the two scales are
indivisible. This makes the difference from other ways of understanding multiscale
approaches in the literature.

From the mathematical point of view the mass of a d-dimensional system (d =
1,2,3 for physical purposes) at time ¢ is a Radon positive measure p, that we
assume to be defined on the Borel a-algebra B(R?). For any E € B(R?) the mass
of pedestrians contained in E at time ¢t > 0 is given by the number p,(E) > 0 .
In principle, the only further property satisfied by p, is the a-additivity, directly
translating the principle of additivity of the mass.

Let T' > 0 denote a certain final time. Following [8], the velocity field v = v(¢, x)
:[0,7] x R — R? transports a mass and the equation

Oy

S+ V() =0, (t,z)e (0,T] x R? (2.1)

expresses the conservation of this mass along with some given initial distribu-
tion of mass pu, (initial condition). Derivatives appearing in (2.1) are meant in the
functional sense of measures. Specifically, for every smooth test function ® with

compact support (i.e., ® € C®(R?)), and for a.e. t € [0,T], it results
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% O (x)dp,(x) = /U(t, x) - VO(x)du (), (2.2)

R4 R4

where integration-by-parts has been used at the right-hand side. A sufficient
condition for (2.2) to be well-defined is that v(t,-) is integrable w.r.t. p, for a.e.
te[0,7].

A family of time-evolving measures {x,}, t > 0 is said to be a (weak) solution
o (2.1) if, for all ® € C*°(RY), the mapping ¢ — /Rdtb(a:)dut(a:) is absolutely

continuous and satisfies (2.2). In particular, the latter statement means

/ O(2)dpy, () — / )dpy, (z / / (t,2) - VO (x)du,(z)dt, (2.3)

Rd Rd t1 Rd

for all t1,t2 € [0,T), t; < t2, and all & € C°(RY).

2.1 Modeling the interactions among pedestrians

Equation (2.1) provides the evolution of the measure y, as long as the velocity
is specified. In our case, given the absence of a balance of linear momentum, this
implies modeling directly the field v. For this reason, the approach will result in a
first order model.

First order models are quite common in the literature, especially at the macro-
scopic scale. The velocity can be either specified as a known function ([12]) or
linked to the density p of pedestrians by means of empirical fundamental relations
v =1v(p) ([24], [10], [32]). Sometimes a functional dependence on the density gra-
dient is envisaged, in order to model the sensitivity of pedestrians to the variations
of the surrounding density field ([9], [13]). Microscopic models focus instead more
closely on the interactions among pedestrians, normally expressing them in terms
of generalized forces. They resort therefore to a classical Newtonian paradigm, in
which the acceleration is modeled explicitly ([23], [20]). We remark, however, that
n ([25], [27]) the authors adopt a kinematic modeling of the interactions in the

frame of a microscopic model.
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With the aim of setting up a model based on the mass conservation only,
but in which the microscopic granularity complements the macroscopic dynamics,
we cannot entirely resort either to generalized forces or to fundamental relations.
Taking advantage of the mass conservation equation in the form (2.2), which does
not assume a priori any modeling scale, our approach will be at the same time
kinematic, macroscopic, and focused on the strategy developed by pedestrians at
the microscopic scale.

To be more specific, let the velocity be expressed in the following form:

vt x) i= vlp](2) = vaes(z) + vl (z), (2.4)

the square brackets denoting functional dependence on the measure .

The function vg4es : R* — R? is the desired velocity that is the velocity a pedes-
trian would have in the absence of other surrounding pedestrians. This component
of the total velocity describes the preferred direction of motion toward specific tar-
gets, possibly taking into account the presence of intermediate obstacles within the
domain. Therefore, it is not affected by the actual crowding of the environments,
but it specifically depends on the geometry of the walking area (in this sense, it is
a sort of field velocity).

It is not restrictive to assume that it has constant modulus

[Vaes (2)] = V, Vo € RY, (2.5)

where V represents some characteristic speed of the walkers. We refer the
reader to [30] for a possible method to construct vges.

The function v[w,] : R — R? is the interaction velocity that expresses the
deviation of pedestrians from their preferred path due to the presence of other
surrounding pedestrians. The nonlocality of the interactions is introduced in this
framework by deriving v[y,] from a synthesis of the information on the crowd

distribution around each pedestrian. Specifically, we assume

/ Fly = al)g(o) =i (). (2.6)

where
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e f: R, — R is a function with compact support describing how the walker
in = interacts with her neighbors on the basis of their distance. If supp
f =10, R] for some R > 0, then a neighborhood of interaction is defined for
the point z coinciding with the ball Br(z) C R? centered in = with radius
R;

® oy € [—m, 7] is the angle between the vectors y — x and vges(x), that is, the
angle under which a point y is seen from x w.r.t. the desired direction of

motion;

e g: [—m m — [0,1] is a function which reproduces the angular focus of the

walker in z.

Integration w.r.t. u, accounts for the mass that the walkers see, considering

that two fundamental attitudes characterize pedestrian behavior:

e repulsion, i.e., the tendency to avoid collisions and crowded areas,

e attraction, i.e., the tendency, under some circumstances, to not lose the
contact with other group mates (e.g., groups of tourists in guided tours,

groups of people sharing specific relationships such as families or parties).

Focusing on one of the simplest choices, nonetheless physiologically sound, we
suggest for f the following expression:

£() = =EXI0, Re(5) + Fasx0, Ral(5), (27)

where F., F, > 0 are repulsion and attraction strengths, and R,, R, > 0 are
repulsion and attraction radii. This form of f translates the basic idea that re-
pulsion and attraction are inversely and directly proportional, respectively, to the
distance separating the interacting pedestrians.

Interactions can be either metric or topological. An interaction is metric if the
corresponding radius is fixed, so that each walker interacts with all other pedestri-
ans within that given maximum distance. Conversely, an interaction is topological
if the corresponding radius is adjusted dynamically by each walker, in such a way
that the neighborhood of interaction encompasses a predefined mass of other pedes-

trians she feels comfortable to interact with. Here we will be mainly concerned
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with metric interactions, for both repulsion and attraction. The interested reader
is referred to ([2], [15]), and references therein, for a detailed discussion of metric
and topological effects, also by means of examples and numerical simulations.
The function g carries the anisotropy of the interactions, which essentially
consists in that pedestrians cannot see all around them and they are not equally
sensitive to external stimuli coming from different directions. If @ € [0, ] is the

maximum sensitivity angular width, a very simple form of g is

g(s) = [—a,al(s), s € [-m, 7. (2.8)

By mollifying this function it is possible to account for the visual fading that
usually occurs laterally in the visual field when approaching the maximum angular
width.

2.2 The multiscale approach

In this section we first briefly review the methodology proposed in [15] to study
microscopic and macroscopic self-organization in animal groups and crowds. Then,
exploiting the tools offered by the measuretheoretic setting, we merge these con-
cepts into a unique multiscale model, in which the microscopic and the macroscopic

dynamics coexist.

2.2.1 Microscopic model

Let us consider {P;(t) }jvzl that denote the positions at time ¢ of N pedestrians.
In this case the mass of a set E € B(RY) is the number of pedestrians contained

in F; that is

w(E) = card {P;(1) € E}, (2.9)

hence p, is the counting measure. We represent it as a sum of Dirac masses,

each centered in one of the P;’s

N
e =Y 0p,t). (2.10)
7j=1

Plugging this in (2.2) gives
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N N
&S a8 (Pi(1) = Sult, Pi{t) - V€ CR(RY, (2.11)
> .

whence, taking the time derivative at the left-hand side and rearranging the

terms,

N
> [Pitt) — vt i(t)] - VO(P,(1) =0, (2.12)
j=1

the dot over P; standing for derivative w.r.t. ¢. The arbitrariness of ® implies

Pj(t) = vlm](P;(t), j=1,..N, (213)
where we have set v (¢, P;j(t)) = v[p](Pj(t)) according to (2.4); therefore the
microscopic model specializes in a dynamical system of N coupled ODEs for the P;
’s. The coupling is realized by the measure p, in the velocity field. In particular,
the microscopic counterpart of (2.6) reads
- ¥ sin-) glor) k=00 (2.14)
!P — Byl

LN
Pk (t)?éf

where ay; € [—m, 7] is shorthand for the angle formed by the vectors P, — P;
and vges(Pj). We point out that, with the function f given by (2.7), the statement
P, = P; in the above formula can be converted into the milder one k = j. Indeed
one can prove that if the P; ’s are initially all distinct they remain distinct at all

successive times ¢t > 0 (see [16] for technical details).

2.2.2 Macroscopic models

Macroscopic models are based on the assumption that the matter is continuous,
thus the measure p,; is absolutely continuous w.r.t. the d-dimensional Lebesgue
measure £¢, u, < L£? Radon-Nikodym’s theorem asserts that there exists a

function p(t,") € £} (R?) such that

loc

d:ut = p(ta ‘)d‘cdv p(tu ) >0 ae., (215)

called the density of y, w.r.t. £%. In our context p(t,x) represents the density

of pedestrians at time t in the point z.
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Using p, the mass conservation equation (2.1) rewrites as

% p(t,x)®(x)dx = /p(t,w)v(t,m) VO (z)dz, Y € CP(RY), (2.16)

Rd Rd
namely a weak form of the continuity equation

dp B
a5 + V- (pv) =0. (2.17)

The interaction velocity specializes as

vl (z) = R/ iy = al)gtecey) = i )y (2.18)

where it should be noticed that the domain of integration may now indifferently

include or not the point x because {z} is a Lebesgue-negligible set.

2.2.3 Multiscale models

If the measure p,; is neither purely atomic nor entirely absolutely continuous
w.r.t. £ but includes both parts, we get models that incorporate the microscopic
granularity of pedestrians in the macroscopic description of the crowd flow. More

specifically, we consider

1y = 0mg + (1 — )M, (2.19)
where
N
my = dej(t), dM;(x) = p(t, z)dz (2.20)
j=1

are the microscopic and the macroscopic mass, respectively. The parameter
0 € [0, 1] weights the coupling between the two scales, from 6§ = 0 corresponding
to a purely macroscopic model to § = 1 corresponding to a purely microscopic

model. In (2.19) no scaling parameters explicitly appear, but we anticipate that
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they will arise naturally from our next dimensional analysis. Using the measure
(2.19), the mass conservation equation (2.2) takes the form of a mix of microscopic

and macroscopic contributions

d N N
G o eE®) + -0 [praje@dr | = 03 o pin) verm) +
=1 S i=1
(1-— 9)/p(t,x)v(t, z)-Vo(z)dr, V& € CP(RY), (2.21)

Rd

formally a convex linear combination of (2.11), (2.16). The interaction velocity

v[u,] is now given by

Py(t) — x

o] (P) = ek:;wf(rmt)—x|>g<apk<t)>w)_x‘+
) (t) 2
(1=0) [ 1y = @l)glem); — ot )y (2:22)
Rd

therefore it coincides neither with the fully microscopic nor with the fully
macroscopic one. This definitely makes the overall dynamics not a simple su-
perposition of the individual microscopic and macroscopic dynamics. It is worth
noticing that the point x may or may not be one of the positions of the micro-
scopic pedestrians. Computing v[y,] for « = P;(t) shows that the interaction
velocity of the j-th pedestrian does not only account for other microscopic pedes-
trians contained in the neighborhood of interaction but also for the macroscopic
density distributed therein, which represents some crowd whose subjects are not

individually modeled. Specifically, the term responsible for this is

Y- Pj(t)‘ p(t, y)dy, (2.23)

[ = PODstan ) =g
Rd

that we may regard as the macroscopic contribution to the microscopic dynam-
ics. Analogously, computing v[u,] for  different from all of the P; ’s shows that
the interaction velocity of an infinitesimal reference volume centered in x does not

only depend on the density distributed in the neighborhood of interaction but also
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on the microscopic pedestrians therein, which play the role of singularities in the
average crowd distribution due to the granularity of the flow. The corresponding
term is

P, —x
kZ ECCE x!)g(apkmy)u;;g;_x (2.24)
Py(t) £z

which gives the microscopic contribution to the macroscopic dynamics.

2.2.4 Dimensional analysis

In order to scale correctly the microscopic and the macroscopic contributions,
it is convenient to refer to the nondimensional form of the model. For this, let us
preliminarily notice that the main quantities involved in the equations have the

following dimensions:

o [t] = time

e [z] = length
o [v4es] = [v] = length/time
o [f] = length/(time pedestrians)

[1;] = pedestrians

[p] = pedestrians/length?,

where “pedestrians” is actually a dimensionless unit. Additionally, g and 6 are
dimensionless. Let L, V , ¢ be characteristic values of length, speed, and density
(in particular, V' may be the desired speed introduced in (2.4)) to be used to define

the following nondimensional variables and functions:

L L
PO = s e = (g ) Be) = 1p(3)

Notice that, due to the choice of V as characteristic speed, the dimensionless

desired velocity v}, turns out to be a unit vector.
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In more detail, the nondimensional mass measure p;. is given by

b = dug(La”)
— * _ )k x\1d 3, %
= sz déLP;(t*)(Lx )+ (1—0)op*(t*,z")L%x

= sz ddpr gy (%) + (1 = O)Ap™ (£, 2")d
— Gdmb (%) + (1 — 0)AdM (z7),

where we have set A := oL?% and we have recognized the dimensionless micro-

scopic and macroscopic masses

N
mpe = Z&P;(t*), dMp (z*) = p*(t*, -a™)dx™.
j=1

We notice that the coefficient A has unit [A] = pedestrians; therefore it is a
nondimensional number fixing the scaling between the microscopic and the macro-
scopic masses. It says how many pedestrians are represented, in average, by a unit

density p* in the infinitesimal reference volume dz*.
Remark 2 The measure
fps = Omys + (1 — 0)AM; (2.25)

can be read as a linear interpolation between the microscopic and the macro-
scopic mass via the parameter 6, provided my. + (1 — 6)AM} are, up to scaling,
the same mass; i.e., mi (RY) = AM; (R?). As we can see in [14], in the multiscale
model the microscopic and macroscopic masses are individually conserved in time;
hence this can be achieved by setting
myRY N

A= @D T I ®Y

as long as 0 < N, M (RY) < +o0. In the following we will invariably refer to
the nondimensional form of the equations, mitting the asterisks on the nondimen-

sional variables for brevity.
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2.3 Discrete-in-time model

In this section we derive a discrete-in-time counterpart of the multiscale model,
that will help us gain some insights into the qualitative properties of the mathe-
matical structures previously outlined. In addition, it will serve as a first step to
devise a numerical scheme for the approximate solution of the equations.

Let At,, > 0 be a possibly adaptive time step and let us introduce a sequence of
discrete times {tn}nzo such that to = 0 and t,,;1 — t,, = At,,. Denoting p,, := p,,
from (2.3) with the choice t; = t,, to = t,+1 We get

tn+1

Je@dua@ - [e@au@ = [ [t Voo

RA Rd tn Rd
= Atn/v(tn, x) - VO®(z)dp, (z) + o(Aty),
Rd
whence

[ @@ = [0) + Atav(ta,2) - VO (@)dity &) + (At
Rd Rd
At this point let us explicitly assume that g, (R?) < +oo. If v(t,,:) is p,-
uniformly bounded, then ®(x)+At,v(ty, x) - VO(z) = ®(z+At,v(ty, z))+o(Atly);
thus

[@@dua@) = [0+ Atuoltn,2))din, &) + oAt
R4 R4
Defining the flow map v,,(z) := z+v(tp, ) At,, and neglecting the term o(At,,),
we are finally left with

Jo@dua@ = [ @0, @)du (@), (2.26)
R R
which makes sense actually for every bounded and Borel function ®. Choosing

® = yE for some measurable set E € B(R?) entails
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tni1(E) = (7 (B)),  VE € BRY),

meaning that p,, +1 is the push forward of p,, via the flow map +,,, also written
ty, + 1 =, #u,. Equation (2.26) provides a discrete-in-time counterpart of (2.3).
Obviously, it requires to be supplemented by an initial condition g in order for
the sequence {u,},>; to be recursively generated.

Notice that, with the velocity field (2.4), it results v(tp, ) = v[w,|(z) with in

particular
pp -
o) = 0 Y f<|P£—x|>g<ap,g>M+ (2.27)
_ k
(1= [ 1(ly - Hgton) LSy (228)
Rd

where P}’ := Py(t,) and p,(-) := p(tn, ).

2.3.1 Preserving the multiscale structure of the measure

Recall that in the multiscale model we assumed that our measure is composed
by a microscopic granular and a macroscopic continuous mass. Of course, this is
just a formal assumption made to write the model. From the analytical point of
view, it needs be proved that such a measure can be actually a solution to our
equations.

Set my, = my,, M, := M, so that, owing to (2.25), the measure p,, can be

given the form

pie = 0my, + (1 — 0)AM, (2.29)

The result of Benedetti, Piccoli and Tosin [14] clarifies the role played by the

flow map ~,, in preserving the multiscale structure of yu,, after one time step.

52



Chapter 3

Numerical approximation and

Algorithms

3.1 Numerical approximation

Mantaining the measure-theoretic formalism all the problems of discretization
of the density p can be bypassed. For the discretization in space of the density
pn We partition the domain in pairwise disjoint d-dimensional cells E; € B(R?),
where i € Z% is an integer multi-index, sharing a characteristic size h > 0 such
that £L4(Ei) — 0 for all i when h — 0% (for instance, h ~diamFE;). Every cell is
further identified by one of its points z;, e.g., its center in case of regular cells.

We approximate p by a piecewise constant function p,, on the numerical grid

() =pit, VzeE; (3.1)

where p!" > 0 is the value that p, takes in the cell E;. Consequently, the
measure M, is approximated by the piecewise constant measure dM,, = pndL?,
which entails the pproximation fi,, = 8m,, + (1 — 8)AM,, for p,,.

Analogously, we approximate the velocity v[u,,] by a piecewise constant field

o[, =i, VzekE;

where the values vl € R? are computed as v = v[i,](z;). The discretization

of the velocity gives rise to the following discrete flow map:
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CHAPTER 3. NUMERICAL APPROXIMATION AND ALGORITHMS

V(@) = 2 + 01, ) (2) Ay,

which turns out to be a piecewise translation because 0[fi,,] is constant in each
cell.
Finally, we look for a piecewise constant approximation Mn+1 of My+1 by

imposing the push forward of M, via the flow map 7,

Moar(B) = Mo (3, (E)),  VE € BRY.

In particular, choosing E' = E; yields

n 1 n ~ .
Pt = N LB N, (E)), VieZd (3.2)
E(EZ) keza

which provides a time-explicit scheme to compute the coefficients of the density

Pny1 from those of p,,. Notice in particular that 4, (E)) is simply the set Ej+v At.

Notice that this scheme is positivity-preserving, in the sense that p,, > 0 implies
Pni1 = 0 as well; hence, by induction, py > 0 implies p,, > 0 for all n > 0. Such a
basic property is not as straightforward in usual numerical schemes for hyperbolic
conservation laws. Indeed, unless suitable corrections are implemented, the latter
may develop oscillations leading to locally negative approximate solutions even
when the exact solution is not expected to be so.

Furthermore, considering that ¥,, is a translation in each grid cell and using

the invariance of the Lebesgue measure under rigid transformations, we deduce
[onaat)is =3 ot 3 L6 EINE) = Y sLB) = [ e
Rd kezd  iezd kezd R

thus the approximate macroscopic mass M, is conserved in time.

3.2 Simulation’s algorithm

The algorithm combines a microscopic and a macroscopic part. The former
handles the evolution of pedestrian positions, updating a vector which stores the

values P}' € R?. The latter manages instead the evolution of the density, and at
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every time step it updates the values p!' at the grid cells. The two models evolve
by means of the same velocity field 9[f,,], thus guaranteeing coherence of the final
solution. The velocity field must be defined at pedestrian positions {P]n}j»v:l for
the microscopic part and at the grid cells { E; }ier for the macroscopic part.

Let us introduce the following superscripts:

e micro: quantities defined at pedestrian positions,

e macro: quantities defined at grid cells,

e micro-for-micro: microscopic quantities computed at pedestrian positions,
e micro-for-macro: microscopic quantities computed at grid cells,

e macro-for-micro: macroscopic quantities computed at pedestrian positions,

e macro-for-macro: macroscopic quantities computed at grid cells.
The algorithm consists of the following steps.

1. Initialization. We fix the number N of microscopic pedestrians that we want
to model, we define their positions, and we compute the coefficients p? of the
initial density according to a local average of the microscopic mass. More
precisely, we set

0= mo(Be(w:)) g
ALY (Be(:))
where mg is the microscopic mass at the initial time and (B¢(x;)) is the ball
centered in the center of the grid cell E; with radius & > 0. The latter is
tuned depending on the positions of the microscopic pedestrians, in such a
way that the relation A = mg(R%)/My(R%) be satisfactorily fulfilled in the

numerical sense (Mo being the approximate macroscopic mass at the initial

time).

2. Microscopic part. At time t = t,, we compute the sum at the right-hand side
of (2.27) for z = P obtaining

pmicro— for—micro . _ i)[mn} (})]n)
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The same computation performed for x = x; gives instead

~micro— for—macro

v = o) (@)

which will be shared with the macroscopic part of the code.

. Macroscopic part. At the same time instant ¢ = ¢,, we numerically evaluate
the integral at the right-hand side of (2.27) for x = x;, using the approximate

density p,, in place of p,,. This way we obtain

I;macro—for—macro = lN/[Mn] («’Ez)

Next we compute the same integral for z = P, which yields

ﬂmacro—for—micro — I;[Mn] (P]n)

This component of the velocity field will be shared with the microscopic

part of the code. In particular, the integrals involved in pmaecro—for—macro

macro— for—micro

and 7 are numerically evaluated via a first order quadrature

formula.

. Desired velocity. If the velocity field vge, is given analytically, the computa-

mzicro
des

micro

tion of V2%

= Vdes (Pj”) and of v = Vges(x;) is immediate. If instead

Vdes 18 defined on the numerical grid only, for instance because it comes from
the numerical solution of other equations [30], then v:l’éicm is computed by
interpolation. Since we are assuming that all macroscopic quantities are

piecewise constant, we coherently choose a zeroth order interpolation.

. Overall velocity. We assemble the previous pieces as

g =l )(Pp)

_ C7lréicro + eﬁmicrofforfmicro + (1 o H)Aﬁmacrofforfmicro

Y

and analogously

~macro

)

_ macro ~micro— for—micro ~macro— for—macro
= Vg +0v + (1 —-0)Av .
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6. Computation of At.We compute the largest time step At allowed by condi-

tion [14] for the macroscopic velocity field o"%<"°.

7. Advancing in time. We update pedestrian positions and density according

o [14], (3.2) by means of 3" and ™", respectively.

3.3 Optimization’s algorithms

We assume that pedestrians are in motion within a bounded area €2 with the
aim to reach an exit identified by a portion of the boundary of 2. Fixing some
parameters as the initial density and the exit position, we want to determine the
position of one or two obstacles inside the walking area, in order to find the obstacle
configuration which minimizes the pedestrians average exit time. The exit flow is

given by:

b
F(&) = phn [0 A,

i=a
where a and b are the exit extremes, N the number of grid cells in each direction
and At the time step.
Fixed a time horizon [0, T, the average exit flow and total flow can be calcu-

lated as follows:

T T
[onde = >0,
0 i=0
T T
[1wie = Y16
0 i=0
The average exit time is equal to:
T
[yt
Texit = [C)Z”
[f(®)dt
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Figure 3.1: Configuration for the optimization

To find the optimal configuration with one obstacle we can apply two algo-
rithms. The first one compares the average exit time obtained for all scenarios

and consists of the following steps (see Figure 3.1):

(i) fix a shifting area of size s < 1 within the walking square;

(ii) assign the initial and final positions of the obstacle, given by the vertex left-

down (for example (0.2,0.2) and (0.6,0.6), respectively);
(iii) choose the movement steps p (0.1,0.01 or 0.001) for the obstacle;

(iv) move the left-down vertex of the obstacle in horizontal or vertical direction

with step p from the initial position to the final one;
(v) the portion of the obstacle after each movement corresponds to a scenario z;
(vi) compute pedestrians average exit time for all obtained scenarios;

(vii) compare the average exit times for all scenarios.

The second algorithm is of steepest descent type according to which the obstacle
configuration corresponding to the minimum exit time is found using the following

iterative method:

(i) fix a shifting area of size s < 1 within the walking square;
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(ii) assign randomly an initial position of the obstacle, through the coordinates

of the left-down vetex (x;,v;), i = 0;

(iii) calculate the pedestrians average exit time T'(x;,y;) and partial derivates

OT (xiyyi) OT(4,yi) .
ox; oy

(iv) compute the new position of the obstacle as follows:

($i+1,yi+1) = ($1,yz) +h ( gml )’ (ayl )) ;

where h is the hessian matrix of T'(z;,y;) given by:

Ax? ’ 4AzAy
Tur+le)_(Tul+Tdr) Tu+Td_2T(Iiayi)

Tr+T11 2T (24,y:) (Tur+Ta1) = (T +Tar)
h= ( ;
4AzAy ) Ay?

where T;. = T(ml + Olayl)v T, = T(ml - 017yl)7 Ty = T(ajzayl - 01)7
le = T(.%'Z' — 0.1,yi — 0.1), Tul = T(aci — O.l,yi +0.1), Tu = T(:L'i,yi +0.1),
Ty =T (x; +0.1,y; —0.1) and Ty, = T'(z; + 0.1,y; + 0.1) ;

(v) if the point found is out of movement area, take the nearest point into move-

ment area;
(vi) go tostep (iii).

The minimum is reached when the new position is unchanged after a fixed
number of runnings. A variant of this algorithm is obtained fixing A (0.001, 0.003
or 0.005).

The same algorithms can be used to perform optimization with two or more

obstacles.
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Simulations and results

In this section we present the results of numerical simulations performed with
the model and the algorithms described above. As natural for pedestrian flows,
we deal with two-dimensional (d = 2) bounded domains, say 2 C R?. This means
that the mass possibly flowing out of the domain is considered as lost; i.e., it no

longer affects the computation.

4.1 Optimization results

Let us find the optimal location of the obstacles, which minimize the average
exit time for the following case study. Assume the initial density p?, uniformly
located in the position (z;,¥;), 0,05 < z; < 0,15 and 0.1 < y; < 0.9; the exit point
(1,0.5); the length of the obstacle side [ = 2.

Fix movement step p = 0.01, with exhaustive exploration’s algorithm we notice

that:

(i) for a Dirichlet boundary condition, the obstacle’s optimal position is (0.2, 0.54)
with average exit time: 147.92467 (Fig. 4.1);

(ii) for a Neumann boundary condition, the obstacle’s optimal position is (0.59,0.2)
with average exit time: 142.91435 (Fig. 4.2);

In each scenario, a compact group of pedestrians is initially positioned on the
opposite side of the room and is guided toward the exit by either the field vges,

with the potential u set to zero at every internal and external boundary of €.
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. .
) )

Figure 4.1: Optimal scenario with exhaustive exploration for Dirichlet boundary

condition.
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Starting from a compact cluster, the group expands and the density decreases.
The repulsive effect of the obstacles is particularly evident in the case of Dirichlet
boundary conditions, in fact the pedestrians passes relatively far from obstacle,
while Neumann conditions produce instead the expected sliding of pedestrians
along the edges. This demonstrates that the set of boundary conditions to generate
the desired velocity field has in general nontrivial consequences on the resulting
flow of pedestrians, and may vary from case to case also in connection with the

role played by each obstacle in every specific application.
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Figure 4.2: Optimal scenario with exhaustive exploration for Neumann boundary

condition.

Start from the same initial configuration and apply the algorithm of steepest

descent type fixing h = 0.005.

(i) for a Dirichlet boundary condition, with zo = 0.4, yo = 0.5 (see Figure 4.3)
in 10 algorithm’s steps we obtain a solution better than exhaustive ex-

ploration with step p = 0.01.The computed obstacle’s optimal position is
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(0.20158692,0.53415984) with average exit time: 147.91586;
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Figure 4.3: Steps of steepest descent type algorithm with Dirichlet boundary con-

dition, A = 0.005 and zg = 0.4, yo = 0.5.

(ii) for a Neumann boundary condition, with xo = 0.5, yo = 0.35 (see Figure 4.4)
in 13 algorithm’s steps we obtain a solution better than exhaustive explo-

ration with step p = 0.01.The obstacle’s optimal position is (0.5976594, 0.2)

with average exit time: 142.8826.

Computing h as in (3.3) at every algorithm’s step we obtain worst results, in

fact:

(i) for a Dirichlet boundary condition, with zp = 0.4, yo = 0.5 (see Figure 4.5) in 3
algorithm’s steps the obstacle’s optimal position is (0.39653486, 0.45202658)

with average exit time: 149.76654;

(ii) for a Neumann boundary condition, with 29 = 0.4, yo = 0.6 (see Figure 4.6) in
17 algorithm’s steps the obstacle’s optimal position is (0.20741062, 0.57509136)

with average exit time: 145.80989.
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Figure 4.4: Steps of steepest descent type algorithm with Neumann boundary

condition, h = 0.005 and zg = 0.4, yo = 0.6.
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Figure 4.5: Steps of steepest descent type algorithm with Dirichlet boundary con-
dition with zg = 0.4, yo = 0.6 and computing h as in (3.3) at every algorithm’s

step.
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Figure 4.6: Steps of steepest descent type algorithm with Neumann boundary

condition, xg = 0.4, yo = 0.6 and h given by (3.3) at every algorithm’s step.

We can observe that fixing h we obtain a better result and the the algorithm

converges linearly to a best solution while computing h as in (3.3) the algorithm

fluctuates around best solution. Moreover, computing h at each step of the algo-

rithm is very expensive.
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4.2 Simulation of pedestrian dynamics in a flat

Figure 4.7: The flats scenarios.

In this section consider a bounded domain  C R? like a classical flat with
five rooms, an obstacle inside, a corridor and two exits. In particular, for the
computation of vg.s we have set u = 0 on all outer boundaries of the walking area,
so as to get a repulsive effect that leads pedestrians to walk away from perimeter

walls and to occupy the middle of the corridor.
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Figure 4.8: Optimal flat’s scenario for Dirichlet boundary condition.
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Fixing the exits and number of pedestrian N = 100 uniformly located in every
room, changing the room’s doors consider three different scenario (Figure 4.7) and
compute the average exit time.

Using Dirichlet boundary condition we obtain the following average exit time
for all scenarios: (a) 104.8413, (b) 105.40728, (c) 108.75423 (see Figure 4.8).

In Figure 4.8(1) we report the initial condition, i.e. the positions of all pedes-
trian inside the rooms. Some instant later, we notice that pedestrians pass rela-
tively far from obstacles and walls (Figure 4.8(2)). Then, the pedestrians leave the
rooms (Figure 4.8(3)) and seven little groups join in two big groups inside corridor

that are directed toward exit (Figure 4.8(4)).
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Figure 4.9: Optimal flat’s scenario for Neumann boundary condition.

With Neumann boundary condition, the average exit time for all scenarios are
follows: (a) 117.66598, (b) 109.76581, (c) 109.788 (see Figure 4.9).

The initial positions of all pedestrian inside the rooms with Neumann boundary
condition are shown in Figure 4.9(1). The pedestrians pass near obstacles and walls
(Figure 4.9(2)) because this boundary condition produce instead the expected
sliding of pedestrians along the edges. Subsequently, the pedestrians leave the

67



CHAPTER 4. SIMULATIONS AND RESULTS

rooms (Figure 4.9(3)) and the pedestrian join in two big groups inside corridor

that are directed toward exit (Figure 4.9(4)).
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