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Abstract  

 

 

 

 
he main goal of this dissertation is the study of the effects induced 

by quantum confinement in transition-metal oxides quantum wells 

(QWs). The field of possible applications of oxide-based heterostructures 

(oxide-based nanoelectronics, spintronics, quantum computation, excitonic 

devices, energy conversion in solar cells, etc.) is very ample and growing, 

thanks to the many fascinating and exotic properties of transition-metal 

oxides and their versatility as well.  

p-type SrMnO3/La0.7Sr0.3MnO3/SrMnO3 QWs and n-type 

SrCuO2/Sr0.9La0.1CuO2/SrCuO2 QWs have been studied.  

The first part of my work has been devoted to the investigation of 

quantum confinement achievement using a Mott insulator with a small band 

gap. The observed results suggest that this type of material can be 

successfully used in QWs. 

As a final result of my work, the achievement of dimensional effects 

induced by the layering on the normal state of both investigated systems (n 

and p-doped) has been assessed. In addition, the layering has been shown to 

influence the superconducting state of the investigated n-doped QWs and on 

the metal-to-insulator transition of the p-doped QWs.  

The investigation of the behavior of each layer constituent the QW (both 

n and p-doped) is relevant in view of future growth of proximate p-n doped 

systems. Part of my work, therefore, has been devoted to the study of the 

properties of (Sr,La)CuO2 thin films.  

The study of electrical transport properties of SLCO thin films as a 

function of the doping has allowed to relate the presence of the low 

temperature upturn in the (Sr,La)CuO2 resistivity versus temperature curves 

the quantum interference effects produced by weak localization effects. 

Furthermore, the presence of low temperature Fermi liquid behaviors in 

SLCO thin films has also been observed. 

T 
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The last part of my work has dealt with the effects of the in-situ annealing 

step on the final superconductivity properties of the (Sr,La)CuO2 films, 

helping to optimize the growth step, crucial for the quality of this thin film 

and, consequently, of the n-doped QWs based on this compound. The effect 

of annealing, i.e. of the O content, has been studied, by using X-ray 

Absorption Spectroscopy (XAS) measurements performed at the Elettra 

Synchrotron in Trieste, Italy, and has allowed to reveal clear signature of 

apical Oxygen removal. 
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Introduction 

 

 

 

 
 

uring this Ph.D. work, I have investigated the effects induced by 

quantum confinement in transition-metal oxides (TMO) low-

dimensional systems and hetero-structures, such as quantum wells (QWs). 

An oxide-based QW is the simplest system in which a quantum confinement 

can be obtained, consisting in a thin layer of one oxide material, sandwiched 

between two layers of another oxide insulating material (this creates a well 

in which the carriers can move in two directions but are confined in the 

third). In these systems it is possible to create and manipulate quantum states 

of matter, including novel superconductors, high Curie-temperature magnets, 

controllable metal-insulator transition.  

The oxide-based QWs recently raised interest compared to the well-

known semiconductors based ones thanks to the possibility to obtain lower 

dimensional heterostructures (a few nm), higher sheet carrier density  

(1014 cm-2), one order of magnitude more than the highest density achievable 

in conventional semiconductors III-nitrides, and many fascinating and exotic 

behaviors related to the spectacular versatility of the complex oxide 

interfaces (Stemmer and Millis, (2013)). 

The field of possible applications of oxide-based heterostructures (oxide-

based nanoelectronics, spintronics, quantum computation, excitonic devices, 

energy conversion in solar cells, etc.) is very ample and growing, as it will 

be described in Section I.3, thanks to the many fascinating and exotic 

properties of TMO and their versatility as well.   

The study of oxide-based QWs, and of TMO thin films in general, is 

possible thanks to the important developments in oxide thin films 

depositions techniques and in particular in oxide-molecular beam epitaxy 

(O-MBE) techniques, where atomic-scale thickness control, abrupt interfaces 

and the possibility to change the chemical composition over a distance of a 
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single unit cell, are now achievable (Biegalski et al., (2008); Jalan et al., 

(2009); Petrov et al., (2004); Schlom et al., (2001)). 

Many TMO are Mott insulators (Mott insulators are a class of materials 

that should conduct electricity under conventional band theories, but 

experimentally they are insulators. This effect is due to electron–electron 

interactions, which are not considered in conventional band theory), with 

small energy band gaps, and the question arises on the ability to obtain 

quantum confinement by using them as insulating materials in QWs.  

The first part of my work has been dedicated to answer this question: p-

type SrMnO3/La0.7Sr0.3MnO3/SrMnO3 (SMO/LSMO/SMO) QWs have been 

grown at University of Salerno by O-MBE deposition techniques and their 

electrical transport properties have been characterized as a function of the 

temperature and of the relative thicknesses (Galdi et al., (2017)). The 

observed results have indicated the presence of spatial charge carrier 

confinement in the investigated trilayers pointing out the ability of a small 

gap Mott insulator material, such as SMO, with an energy gap of 0.35 eV 

(Søndenå et al., (2006)), to be successfully used in QWs.  

The following part of my work has been devoted to the study of both the 

p and n-type oxide-based QWs, which is important because it could open the 

way to investigate carrier symmetries in such systems and to obtain hybrid 

p-n proximate structures with the presence of long life-time excitons (hole-

electron couples). The availability of both p and n doped oxide QWs to be 

grown by the same deposition technique in similar deposition processes, 

involving a minimum number of materials, is central to obtain p-n TMO 

based proximate structures (Kim et al., (2016); Millis and Schlom, (2010)). 

The electron-doped structures I focused my attention are the n-type 

SrCuO2/Sr0.9La0.1CuO2/SrCuO2 (SCO/SLCO/SCO) QWs, which I have 

grown during my abroad experience at Cornell University, Ithaca, NY-USA.  

The fabrication of low dimensional systems with high superconductive 

critical temperature (TC), such as electron-doped infinite-layers SLCO, 

confined to nanometer-sized interfaces, is an intriguing issue by itself, due to 

the possibility to study a paradigmatic quantum phenomenon, such as 

superconductivity in reduced dimensionality, and to exploit its potential 

application (Ahn et al., (2003), (1999); Gozar et al., (2008); Mannhart and 

Schlom, (2010)). 

As a final result of my work, the achievement of dimensional effects 

induced by the layering on the normal state of both investigated systems (n 

and p-doped) has been assessed. In addition, the layering has been shown to 
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influence the superconducting state of the investigated n-doped QWs and on 

the metal-to-insulator transition of the p-doped QWs.  

 The growth and characterization of QWs implies the preventive study of 

the behavior of the metallic single layers (LSMO for the p-doped QWs and 

SLCO for the n-doped QWs). 

Such investigations are relevant especially in view of the future growth of 

proximate p-n doped DQWs. In fact, one of the advantages to use TMO-

based QWs rely on the possible tuning of the density of carriers changing the 

doping level of the central layer. This will offer two controlled knots (i.e. the 

central layer thickness and its doping) to tune the interaction among 

electrons and holes improving the final versatility of the applicative device. 

This part of my work, with the further investigation of the normal state 

transport properties of SLCO thin films, has pointed out new interesting 

behaviors. In particular, despite the considerable efforts of the scientific 

community, a conclusive understanding of the normal-state transport 

properties of electron-doped cuprates is still missing and the results obtained 

in this work on SLCO thin films having the simplest crystal structures with 

CuO2 planes that hosts high-TC superconductivity, have clarified some 

aspects of this existing puzzling scenario.  

In particular, the study of electrical transport properties of SLCO thin 

films as a function of the doping has allowed to relate the presence of the 

low temperature upturn in the SLCO resistivity versus temperature curves 

the quantum interference effects produced by weak localization effects 

(Barone et al., (2016); P Orgiani et al., (2015)). Furthermore, the presence of 

low temperature Fermi liquid behaviors in SLCO thin films have also been 

observed. 

The last part of my work has dealt with the effects of the in-situ annealing 

step on the final superconductivity properties of the SLCO films. These are 

strongly affected by sample preparation conditions and a reduction process is 

needed for all electron doped cuprates thin films in order to get 

superconductivity. 

The optimization of this step is, therefore, crucial for the quality of SLCO 

thin films and, consequently, of the n-doped QWs based on this compound. 

The effect of annealing, i.e. of the O content, has been studied, by using X-

ray Absorption Spectroscopy (XAS) measurements performed at the Elettra 

Synchrotron in Trieste, Italy, and has allowed to reveal clear signature of 

apical Oxygen removal. 

This dissertation is organized as following: in the Chapter I, I describe the 

quantum confinement in QWs and the importance of innovative material for 
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QWs (Section I.1). The most important results on oxide-based 

heterostructures already present in scientific literature are also highlighted 

(Section I.2). Section I.3 is dedicated to the potential application of oxide-

based heterostructures.  In Section I.4 the main properties of Mn and Cu 

oxide-based compounds are described in details, focusing on their crystal 

and electronic structure and on their respective phase diagrams as well.  

In Chapter II, the experimental techniques are described: deposition 

techniques (Sections II.1), standard thin film characterization methods (i.e. 

XRD measurements for structural characterization and electrical transport 

measurements) (Section II.2) and advanced electron spectroscopic 

techniques (i.e. X-rays absorption spectroscopy both in presence and absence 

of magnetic field) (Section II.3). 

Chapter III deals with the experimental results. In the first part I describe 

the results about the growth and characterization of p-type QWs (Section 

III.1). In particular, I describe the structural and electrical transport 

measurements as a function of the layer thicknesses, discussing the 

evidences of the quantum confinement (Sections III.1.1 and III.1.2). 

Furthermore, preliminary results about advanced spectroscopy 

measurements performed on p-type QWs are provided (Section III.1.3). 

The deposition and characterization of n-type QWs is described in 

Section III.2. In particular, the structural and electrical transport 

characterizations done on these samples are described in Sections III.2.1 and 

III.2.2. 

In the last Section, the doping effects on the normal and superconductive 

state of single layers SLCO thin films are analyzed (Section III.3), along 

with X-ray absorption spectroscopy measurements performed to study the 

effects of the annealing process (Section III.3.3). 

 



 

 

 

  

Quantum confinement in 

Quantum Wells 

 

 

 

 

I.1 Innovative materials for Quantum Wells 

 

ith the need of reducing dimensionality and, at the same time, of 

increasing the speed of conventional semiconductor-based micro 

and opto-electronic devices, scientific limitations are beginning to affect the 

newer device demands of modern times. Novel approaches involving new 

materials such as functional oxides are being explored for new concept of 

electronic devices. These innovative materials are interesting for new 

physics and novel functionalities arising from ultrathin oxide films and at 

oxide interfaces in their heterostructures, such as Quantum Wells (QWs). A 

QW is the simplest system in which a quantum confinement can be obtained 

and these systems are generally based on semiconductor science and 

technology. Quantum confinement involves the use of spatial modulation of 

chemical composition and electric fields to localize electrons to regions that 

are sufficiently small that their quantum mechanical properties are affected. 

An illustration of a semiconductor-based QW is shown in Figure I-1, where 

a thin semiconductor layer of lower band gap material (e.g. InGaN)  is 

sandwiched between two thick semiconductor layers of larger band gap (e.g. 

GaN).  This creates a potential well in which the carriers can move in two 
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directions but are confined in the third. These devices have replaced the 

conventional electronic components in QW lasers, QW detectors, QW 

modulators and so on (Odoh and Njapba, (2015)). 

 

 

Figure I-1 Schematic of a semiconductor-based QW as function of distance 

in the growth direction Z  (Odoh and Njapba, (2015)) 

 

The basic idea of a QW, as shown in Figure I-1, can be also realized with 

the transition metal oxides (TMOs) which offer a very rich physics: electrons 

in the narrow d-band of TMOs are subject to strong electron-electron 

interaction (correlated electrons) and this leads to a rich variety of physical 

phenomena that can be controlled, modified and tuned in an oxide-based 

QW (e.g. magnetism with high Curie temperature, metal-to-insulator 

transitions, high critical temperature superconductivity). 

TMOs can be doped with electrons (n) or holes (p) as well as 

semiconductors, but these materials are good candidate to improve the 

performance of semiconductor-based devices. In fact, compared with 

semiconductor-based devices,  it is possible to achieve very small devices 

(with dimensions of few nm), high electron densities required to obtain the 

Mott insulators are very high (on the order of 1022 cm-3) and sheet carrier 

densities on the order of 1014 cm-2 in a single atomic plane are observable 

(Ahn et al., (2006)). Such sheet carrier densities are an order of magnitude 

higher than the highest density of two-dimensional gases (2DEGs) based on 

conventional semiconductors (III-nitrides) (Stemmer and Millis, (2013)).  

The study of proximate n-p doped oxide-based structures to create and 

control electron-hole bound states, i.e. excitons, is a very intriguing topics in 

the physics of condensed matter. Excitons are relevant in many process and 

their possible manipulation can have important consequences in many 
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applications (for example, the energy conversion in solar cells) and even in 

the opening of completely new applicative field such as the excitonics (i.e. 

the electronics based on excitons). 

 Over the years, considerable effort has been invested in optically 

generated electron-hole liquids (Butov et al., (2002); Ideguchi et al., (2008)), 

but creating and manipulating sufficiently high-density while preventing the 

electron-hole recombination has proven challenging. In order to prevent fast 

recombination and to increase the exciton mean life as well, Zhu et al. 

proposed to construct a double quantum well (DQW) system in which one 

QW contains holes and the other contains electrons, as described in Section 

I.3.3. The spatial separation prevents recombination and it is possible to tune 

the interaction between electrons and holes by adjusting the distance 

between the two QWs (Littlewood and Zhu, (1996); Zhu et al., (1995)). The 

bound states in this way generated are known as indirect excitons.  

 

 

Figure I-2 Direct and indirect excitons in semiconductor-based QW and 

DQW 

 

DQWs can be fabricated in semiconductor systems such as (Al,Ga)As, as 

shown in Figure I-2, but the large band gap of these materials requires a too 

large bias to effectively produce acceptable equilibrium in electron and hole 

populations (Millis and Schlom, (2010)). A.J. Millis and D. G. Schlom in 

2010 proposed an interesting route to the formation of proximal electron and 

hole liquids, regarding an oxide heterostructure involving a thin layer of 

narrow gap correlated insulator, such as a Mott insulator (B in Figure I-3) , 
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sandwiched between two different wide-band-gap insulator (A e C in Figure 

I-3). If AB and AC interfaces are polar and if charge reconstruction is absent 

(Okamoto and Millis, (2004)), an internal electric field can be generated, 

leading to a potential drop which scales linearly with the thickness of the 

correlated material (top panel in Figure I-3). The potential drop causes band 

bending which, if large enough, shifts the conduction band below the Fermi 

level on one side of the structure and the valence band above the Fermi level 

on the other side (bottom panel in Figure I-3), creating electron and hole 

accumulation respectively.  

 

 

Figure I-3 Sketch of heterostructure configuration in which a narrow- gap 

correlated insulator (B) is embedded in two wide band-gap insulators (A and 

C). The potential drop across the heterostructure is shown in top panel. The 

band bending presented ad energy E vs momentum k is shown in the bottom 

panel. μ is the chemical potential (Millis and Schlom, (2010)) 

 

Mott insulators are particularly attractive candidates because of their 

properties. Indeed, they often have relatively small gaps 2Δ~0.3-2 eV (Imada 

et al., (1998)), so the electric field required to produce the needed band 

bending doesn’t need to be prohibitively large. In addition, the physics of 

correlated materials is local, that is the relevant length scales for charge 
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phenomena are of the order of a unit cell while interlayer coupling are 

intrinsically weak (such as the parent compound of high superconductive 

critical temperature) or can be made weak inducing appropriately orbital 

ordering.  

Several research groups have investigated the possibility of creating 

oxide-based QWs and DQWs. In the following Section, I will describe some 

of the most important results on this issue already present in scientific 

literature, where, in some systems, evidence of quantum confinement is 

observed. Nevertheless, a control of the properties related to the quantum 

confinement, as well as a control on the density of states, and consequently 

of the carriers, is not realized yet.  

The QWs investigated in this work consist in a metallic layer known to 

be electron (Sr0.9La0.1CuO2) or hole-doped (La0.7Sr0.3MnO3) embedded in 

insulating materials, respectively SrCuO2 and SrMnO3. The peculiarities of 

these compounds will be described in detail in Section I.4.  

The relevance of these systems is not only related to the study of their 

properties as a function of the relative thickness of each layer or to a future 

development of growing proximate n-p doped DQWs, but also to the 

possibility to tune the density of carrier changing the doping level of the 

central layer. In view of future devices development, the possibility to tune 

the interaction between the carriers thanks to the simple modulation of the 

layer thickness and of the carrier concentration (i.e. through the doping) is a 

key issues for the versatility of applications, as it will described in Section 

I.3. 

 

I.2 Materials and examples of oxide-based QWs in literature 

 

Experimentally, the scientific community has been concentrated largely 

on perovskite-structured TMO with the chemical formula ABO3, where the 

B site ion is a transition metal with partially filled d-shell (or empty in case 

of SrTiO3) and is octahedrally coordinated with six oxygen ions, while the A 

site ion is typically an alkali earth (e.g. Ca, Sr, Ba) or a trivalent rare-earth 

ion (e.g. La, Ce, Nd). The A site ion fills the d-shell donating two (for alkali 

earth) or three electrons (for lanthanides).  

QWs studied until now have been created by spatial variation of 

electrochemical potential in several ways. One is by varying the A-site ion 

for example sandwiching a few layers of LaMnO3 (LMO) between layers of 
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SrMnO3 (SMO). In this way, the difference in charge between La3+ and Sr2+ 

ions create a spatially varying electrical potential causing a spatially varying 

electron density. Another choice is to vary the B-site ion, for example 

sandwiching a few layers of SrVO3 between layers of SrTiO3. In this 

example, the different electronegativities of V and Ti define the QW. 

 

I.2.1 SrTiO3/SrVO3/SrTiO3 QWs 

 

QW consisting in n layers of SrVO3, that is a conductive oxide and 

moderated correlated material with cubic perovskite structure, embedded in 

SrTiO3, that is a cubic perovskite band insulator, have been studied by 

Yoshimatsu et al. using photoemission spectroscopy (Yoshimatsu et al., 

(2013), (2011), (2010)). Using this technique, it is possible to measure the 

occupied portion of electronic density of states. Yoshimatsu et al. observed 

that the photoemission spectra remain quite similar to that of bulk material 

down to approximately six unit cells of SrVO3. Below this thickness, 

changes become apparent. Indeed, a suppression of the density of states peak 

at Fermi level is observable in Figure I-4 b). This behavior has been 

associated to quantum confinement effect. In particular, it has been observed 

that the quantum confinement can qualitatively alter the electronic properties 

but confinement effects become detectable only at very short length scale 

that, in this case, is less than six unit cell thickness. 
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Figure I-4 a) schematic of a QW with 5 SrVO3 layers embedded in SrTiO3; 

b) angle-integrated photoemission spectrum, symmetrized with respect to the 

Fermi energy in function of the number of the central layers (Yoshimatsu et 

al., (2013), (2010)) 

 

I.2.2 LaMnO3 / SrMnO3 superlattices  

 

In this structure LMO and SMO layers are alternated defining set of QW. 

The different ionic charge of La3+ and Sr2+ mean that in bulk LMO, the 

nominal Mn configuration is d4, while in bulk SMO is d3. SMO is an 

antiferromagnetic Mott insulator, while LMO exhibits a strong Jahn-Teller 

distortion. This lead to a layered antiferromagnetic structure consisting of 

ferromagnetic planes with alternating spin orientations.  

Adamo et al. studied (SMO)n/(LMO)2n and they found that, although the 

single layers SMO and LMO are both antiferromagnetic insulators, for n ≤ 2 

the superlattice behaves like the ferromagnetic conductor La0.7Sr0.3MnO3 

(LSMO). As n increase, the magnetic properties become dominated by LMO 
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layers, but the electronic properties continue to be controlled by interfaces 

(Adamo et al., (2009b), (2008); Aruta et al., (2009a); Galdi et al., (2012); 

Monkman et al., (2012)).  

Santos et al. fabricated similar superlattice and studied the magnetization 

profile in these systems. They observed that the length scale over which the 

magnetization changes from an high to low value is about two unit cells 

(Santos et al., (2011)). This means that electronic properties can be 

controlled in QWs. 

 

 

Figure I-5 Electron Energy Loss Spectroscopy (EELS) in Transmission 

Electron Microscopy (TEM) map over a wide field of view (the scale bare is 

5 nm) for an n = 3 (SMO)n / (LMO)2n grown on SrTiO3 substrate showing La 

in green, Mn in red and Ti in blue (Monkman et al., (2012)) 

 

I.2.3 SrTiO3 based QWs 

 

Two-dimensional electron gases at interfaces between SrTiO3 and 

RETiO3, where RE is a rare-earth, exhibit an extremely high electron 

densities (~1014 cm-2) that are introduced into the d-bands of SrTiO3.  
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Moetakef et al. and Zhang et al. investigated the correlation physics via 

dc-resistivity measurements of two-dimensional electron liquids that reside 

in narrow SrTiO3 QWs. They studied the behavior of SrTiO3 sandwiched 

between the Mott insulator GdTiO3 (GdTiO3/SrTiO3/GdTiO3) (Moetakef et 

al., (2012a); Zhang et al., (2014), (2013)). 

The SrTiO3/GdTiO3 interfaces have strong polar discontinuity producing 

a sheet density of ~3.3•1014 cm-2 per interfaces (Moetakef et al., (2011)). 

This kind of QWs show a metal-to-insulator transition when their thickness 

is reduced to 3 SrTiO3 layers (Figure I-6 top), while SmTiO3/SrTiO3/SmTiO3 

QWs, where SmTiO3 is a Mott insulator as well, keep to be metallic also for 

1 SrTiO3 layer (Figure I-6 bottom) (Jackson et al., (2014); Zhang et al., 

(2014)).  

 

  

Figure I-6 (Left) schematic showing an extreme-electron density QW where 

SrTiO3 is embedded between two layers RETiO3 (RE=Gd,Sm); (Right) 

Temperature dependent sheet resistance for GdTiO3/SrTiO3/GdTiO3 (top 

panel) and SmTiO3/SrTiO3/SmTiO3 (bottom panel) as a function of SrTiO3 

layer thickness (Zhang et al., (2014)) 

 

The metallic behavior of both QWs shown in Figure I-6 is due to the high 

electron gas density that is confined in SrTiO3 by the band offset. 
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In particular, the different behavior shown in Figure I-6 for low SrTiO3 

thickness (less than 3 layers) in GdTiO3/SrTiO3/GdTiO3 QWs compared 

with SmTiO3/SrTiO3/SmTiO3 QWs has been associated by the authors to 

structural octahedral distortion at the GdTiO3/SrTiO3 interface, where the 

electron system abruptly localizes showing an insulating behavior.  

This means that metal-to-insulator transition can be induced by structural 

distortion. 

Moreover, in GdTiO3/SrTiO3/GdTiO3 QWs Moetakef et al. observed that 

GdTiO3/SrTiO3 interface not only give rise to distortion in the insulation 

SrTiO3 but also to ferromagnetism below a critical thickness absent in bulk 

(Moetakef et al., (2012b)). 

 

I.2.4 LaVO3/SrVO3/LaVO3 heterostructures 

 

The structure and resistive properties of SrVO3 sandwiched between two 

insulating LaVO3 as a function of the thickness of the central layer (between 

3 and 35 monolayers) have been investigated by Li et al. SrVO3 is a 

correlated 3d1 metal oxide with a cubic symmetry and a T2-dependent 

resistivity of a Fermi liquid; LaVO3 was used as insulating materials because 

of the small lattice mismatch and the absence of interdiffusion down to the 

limit of some monolayers. 

The sample with the thickest SrVO3 layer shows a bulk-like metallic 

behavior, while the thinnest one show a weak localization regime observed 

below 100 K with a logarithmic temperature dependence. Angular-

dependent magnetoresistance measurements showed a two-dimensional 

transport in the thinnest sample. The modification of the charge properties 

by the reduced thickness of SrVO3 were underlined by the appearance of a 

relatively strong positive magnetoresistance under a magnetic field 

perpendicular to the sample surfaces.  

As shown in Figure I-7, all the samples, therefore, present a metallic 

behavior above 100 K. Furthermore, the resistivity value of the sample with 

3 monolayers at room temperature is only a factor of 2 higher than the 

reference sample, so the reduction of thickness doesn’t influence essentially 

the conducting properties at room temperature. 

Even the thinnest buried layer shows a metallic behavior, entering a 

weakly localized regime only at low temperature  (Li et al., (2015)).  
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Figure I-7 Resistivity versus the temperature for LaVO3/SrVO3/LaVO3 

trilayers as a function of the central layer thickness, that is 35, 20, 3 

monolayers (ML in figure); SrVO3 single layer (black curve) is shown as a 

reference (Li et al., (2015)) 

 

I.3 Potential application of oxide-based heterostructures 

 

In this Section, the potential application of oxide-based heterostructures 

are described paying attention, in particular, to the current state-of-art about 

theoretical modeling and new oxide-based devices. 

 

I.3.1 Oxide nanoelectronics 

 

Electronic confinement at nanoscale dimensions is increasingly 

challenging as the dimensionality and size scale are reduced. The interface 

between polar and nonpolar semiconducting oxides displays remarkable 

properties ascribable at modulation-doped semiconductors (Mannhart and 

Schlom, (2010); Ohtomo et al., (2002); Ohtomo and Hwang, (2004); Thiel et 

al., (2006)). 
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Cen et al. used LaAlO3-SrTiO3 heterostructures to create tunnel junctions 

and field-effect transistors with characteristic dimensions as small as 2 nm. 

These electronic devices can be successfully modified or erased, as shown in 

their work (Cen et al., (2009)), controlling the confinement using an atomic 

force microscope lithography technique. These nanoelectronic devices 

operates at the interfaces between a non-magnetic polar (LaAlO3) and a 

nonpolar (SrTiO3) oxide band insulators. Indeed, the discovery of a quasi 

two-dimensional electron gas (q2DEG) at the interface between these two 

materials, i.e. LaAlO3 and SrTiO3, has raised expectations in oxide 

electronics, thanks to the extraordinary properties observed. For example, a 

metal-to-insulator transition can be achieved  at room temperature by electric 

field gating (Thiel et al., (2006)). In these systems, when the thickness of the 

polar insulator exceeds a critical value, because of polarization discontinuity 

at the interface, the potential difference across LaAlO3 generates a 

“polarization catastrophe” and induce the formation of q2DEG at the 

interface joining the two insulators (Salluzzo, (2015); Thiel et al., (2006)). 
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Figure I-8 I-V characteristic of a LaAlO3-SrTiO3 device in function of the tip 

bias applied (Vtip=0,-0.5,-1,-2,..,-10 V). The top inset is a zoom for lower 

voltage. The bottom inset show the turn-on voltage of the nanowire section 

with a potential barrier as a function of Vtip that is used to create the barrier 

(Cen et al., (2009)) 

 

Furthermore, an electric-field-tunable spin polarized and superconducting 

quasi-2D electron system can be created in LaAlO3/SrTiO3 heterostrucutures 

by introducing a few atomic layers of EuTiO3, that is an antiferromagnetic 

insulator with the same structure of SrTiO3. Signature of unconventional 

superconductivity has also been observed in LaAlO3/SrTiO3 

heterostrucutures, using nanoscale Josephson junction devices. The 

advantages and the possibility to create and study unconventional 

superconducting states is another support to the  fascinating possibilities 

offered by engineered oxides for realizing novel quantum electronics 

(Stornaiuolo et al., (2017), (2016)) 

Boucherit et al. proposed to exploit the high carrier density at 

SrTiO3/GdTiO3 interface. Such interfacial electron gases can be used to 

design innovative oxide electronic devices, such as heterostructure field-

effect transistors (HFETs), shown in Figure I-9. 
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Figure I-9 a) structure of SrTiO3/GdTiO3 HFET; b) optical micrograph of 

the transistor (Boucherit et al., (2013)) 

 

Three terminal measurements were carried out on the SrTiO3/GdTiO3 

HFET. The measured output characteristic of the device are shown in Figure 

I-10 and, for the available gate voltage range (VG was swept from 0V to -12 

V), there is a total current modulation of 20.3%. The field effect mobility of  

5 cm2 V-1 s-1 was extracted. The gate leakage was much lower than the drain 

current (Boucherit et al., (2013)) 
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Figure I-10 Measured and calculated output characteristic for 

SrTiO3/GdTiO3 HFET where the gate voltage VG was swept from 0V to  

-12 V (Boucherit et al., (2013)) 

 

I.3.2 Spintronics 

 

In conventional electronics, information is related to the electron charge, 

while, in spintronics, the electron spin is used as an additional degree of 

freedom to perform logic operation, store information, etc., exploiting the 

spin-dependent electronic properties of magnetic materials and 

semiconductors (Bibes and Barthelemy, (2007); Žutić et al., (2004)).  

Spintronic systems are of particular interest for quantum computing, in 

which electron spins in quantum confined structures play the role of the 

quantum bits (qubits). Indeed, every spin 1/2 encodes exactly one qubit 

(Awschalom et al., (2002)).  

 Experiments have supported the idea to use spin as an additional degree 

of freedom in electronics, showing, e.g., long spin dephasing times in 

semiconductors QWs and phase-coherent spin transport over distances of up 

to 100µm (Kikkawa et al., (1997); Kikkawa and Awschalom, (1998)). New 

mechanisms for information processing can be found in conventional 

devices (Wolf et al., (2001)) as well as in quantum confined structures used 
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for quantum computing (Loss and DiVincenzo, (1998)). In conventional 

devices, in fact, the electron spins can improve the performance, e.g. in spin-

transistors, non-volatile memories, etc. (Awschalom et al., (2002)). 

Oxide-based heterostructures can be used in spintronics. The main 

interest in this field is the possibility to obtain ferromagnetic insulator 

ultrathin films usable as tunnel barriers that can filter electrons selectively 

according to their spins, known as spin filters (Bibes et al., (2011)). 

Another spintronics effect that gives rise to a large number of 

experimental and theoretical studies is tunnel magnetoresistance (TMR). 

TMR is a magnetoresistive effect that occurs in a magnetic tunnel junction, 

which consists in two ferromagnets separated by a thin (typically a few nm) 

insulator. This effect is also the basis of non-volatile magnetic random 

access memories (MRAMs). The large variety and tenability of the physical 

properties exhibited by TMOs such as perovskites (e.g. ferroelectricity, 

ferro- and antiferromagnetism, superconductivity, metallicity, optical 

properties, etc.) can be exploited in spintronics. Large TMR can be obtained 

using special magnetic materials (the so-called half-metals), which have a 

finite density of states at the Fermi level for one spin direction and a gap for 

the other spin direction (Bibes and Barthelemy, (2007)). 

The first pioneering results about the TMR  were obtained by Lu et al. on 

tunnel junctions based on manganese perovskite oxides 

(La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 trilayers) (Lu et al., (1996)), and 

then the interest for oxides in spintronics has increased. Indeed, new families 

of magnetic oxides, namely, diluted magnetic oxides and multiferroics, have 

emerged and started to reveal their potential for spintronics. 

The relevance of oxides to spintronics is not restricted to generating 

highly spin-polarized currents. Approaches to exploit their multifunctional 

character are promising and reveal new physical phenomena. Other 

promising approaches for oxide-based electronics and spintronics rely on 

engineering interfaces between two oxides to design 2D phases with novel 

electronic properties (Bibes and Barthelemy, (2007)). For example, 

LaAlO3/SrTiO3 systems, presented in the previous section, besides their 

potential for electronics, the high electronic mobility and 2D character make 

this quasi-2D electron system an interesting platform to explore lateral spin 

transport (spintronics) in oxide heterostructures. Measurements performed 

by Rayren et al. on a LaAlO3/SrTiO3 device showed efficient spin injection 

at the interface, using a back-gate voltage that modulates the density of states 

at the interface. In particular, the efficiency of spin injection into the quasi-

2D electron system at the LaAlO3/SrTiO3 interface is discussed in terms of 
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coupling tunnel resistance with localized electronic states controlled by the 

application of a back-gate voltage (Reyren et al., (2012)). 

 

I.3.3 Excitonic devices and excitonic quantum computation 

 

Already in 1968, Kaldysh and Kozlov showed that in semiconductors 

with low excitonic density, i.e. 𝑛𝑒𝑥𝑎𝐵𝑜ℎ𝑟
𝐷 ≪ 1 where 𝑛𝑒𝑥 is the excitonic 

density, 𝑎𝐵𝑜ℎ𝑟 is the effective Bohr radius and D is the system 

dimensionality, the fermionic nature of excitons can be ignored. Indeed, they 

behave as a weakly non-ideal Bose gas and at a critical temperature TC the 

can form a Bose-Einstein condensate (BEC). In particular, for a three-

dimensional system the TC is given by: 

𝑘𝐵𝑇𝐶
3𝐷 =

3.31ℏ2𝑛𝑒𝑥
2/3

𝑚𝑒𝑥
 

where 𝑚𝑒𝑥 is the exciton mass. If the 𝑚𝑒𝑥 is small, the expected transition 

temperature can be relatively higher than those typical of atomic BEC. TC is 

also dependent on the exciton density and increases with increasing 𝑛𝑒𝑥 

values (Keldysh and Kozlov, (1968)).  In a semiconductor, the electron 

(hole) density can be controlled in certain ranges by suitably doping with 

donors (acceptors). Unfortunately, because of increased role played by the 

Pauli exclusion principle art educe electron-electron (hole-hole) distances, 

increased values of the electron (hole) density, and therefore 𝑛𝑒𝑥, also imply 

that the fermionic nature of the electron-hole pairs cannot be any longer 

ignored. In the high density limit, i.e. 𝑛𝑒𝑥𝑎𝐵𝑜ℎ𝑟
𝐷 ≫ 1, excitons start to be 

similar to Cooper pairs and their condensation is analogous to a Bardeen-

Cooper-Schrieffer (BCS) superconducting state (Conduit et al., (2008); 

Keldysh and Kopaev, (1965); Pieri et al., (2007)). The electron (hole) 

density, and the related role of the Pauli exclusion principle, is also crucial 

for the value of the ratio between the Coulomb interaction and the kinetic 

energy 𝑟𝑆, which determines the character of the system. In fact, it is known 

that in a system of 2D electrons or hole, low 𝑟𝑆 values (i.e. 𝑟𝑆 ≈ 1) 

characterize a gas-like system, while intermediate values (i.e. 𝑟𝑆 ≈ 10) are 

associated to a liquid-like behavior and high values (i.e. 𝑟𝑆 ≈ 40) described 

the so called “Wigner crystal” solid. The electron (hole) density n and 𝑟𝑆 are 

related via the formula: 
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𝑟𝑆 ≈
1

𝑎𝐵𝑜ℎ𝑟
∗ √𝑛𝜋

 

where 𝑎𝐵𝑜ℎ𝑟
∗  is the effective Bohr radius.  

In the case of a 2D system with an electron (hole) density of about  

1011 cm-2, the average electron-electron (hole-hole) distance is around 30 

nm. To bring this distance to 10 nm a nine-fold increase in density and 

kinetic energy is required. This constraint can be bypassed separating 

adjacent 2D electron (hole) layers with an insulating barrier 10 nm thick: an 

electron can “see” another electron (or hole) only 10 nm away without 

paying the kinetic energy cost, because the two layers continue to be 

separate Fermi systems (Croxall, (2010)). 

The electron-hole excitonic pair spatially separated is known, as 

introduced in Section I.1, indirect exciton and due to its intrinsic separation 

has a lower binding energy than the direct exciton and a much longer 

lifetime thanks to the reduced wavefunction overlap. Moreover, the indirect 

exciton also carries an electric dipole allowing for further practical 

manipulation by external electric fields.  

The crux of matter lies, therefore, in obtaining an exciton fluid at 

sufficiently high densities at low temperature to realize a condensed phase, 

where, to succeed also the disorder plays an important role. Indeed, low 

disorder levels may hold the exciton population required for condensation; 

but at large disorder level, the electrons and holes can localize in separate 

minima (Timofeev et al., (1998)). In other words, it would be desirable to be 

able to produce exciton fluids at controlled and higher densities, in system 

with low disorder. In this way, the energy scale of the condensate would be 

larger and the variation of the key properties with density could be 

examined. Therefore, Zhu et al. proposed a theoretical model based on 

semiconductor QW structures in which the excitons can be formed and 

condensate, and they proposed a DQW in which electron and holes are 

spatially separated. Thanks to this structure, following their theoretical 

prediction, it can be possible to control the formation of exciton condensate 

(Littlewood and Zhu, (1996); Zhu et al., (1995)).   

Furthermore, as introduced in Section I.1, DQWs structures can be used 

as a mean to obtain indirect excitons, that are more stable than direct ones. 

Semiconductor-based DQWs have been widely studied, theoretically and 

experimentally, in order to obtain stable electron-hole bound state, as 

described by (Croxall, (2010)). 
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In past years, semiconductor-based quantum dots have been studied as a 

possible route for quantum computation (Ladd et al., (2010)) . One of the 

earliest proposal for quantum computation in semiconductors regarded 

arrays of quantum dots each containing a single electron whose two spin 

states provide a qubit (Loss and DiVincenzo, (1998)). Kamada and Gotoh 

discussed the potential application of the discrete nature of electron-hole 

states (i.e. excitons) to the implementation of a logic gate. The basic idea is 

that the electron-hole pair localized in a quantum dot can be used as 

elementary excitation representing logical binary; i.e. the existence 

(nonexistence) of exciton in the quantum dot correspond to logical one 

(zero) (Kamada and Gotoh, (2004)).  

Excitonic devices semiconductor-based DQWs have been studied by 

(Grosso et al., (2009)). The principle of operation of excitonic devices is 

based on the control of excitonic fluxed by electrode voltages and such 

devices can have photonic or excitonic input and output. In the former case, 

photons transform into excitons at the input and exciton transform into 

photons at the output (High et al., (2007)). In the latter case, excitons arrive 

at the input from another excitonic device (High et al., (2008)). 

The advantage of excitonic device is high interconnection speed, in fact 

efficient signal communication uses photons, while the conventional signal 

processing uses electrons, that are an optically inactive medium. An 

interconnection between electronic signal processing and optical 

communication causes delay and consequentially the operation speed slows 

down. This delay is eliminated in excitonic devices, because the excitons 

form a medium that can be used for signal processing and linked to optical 

communication. 

Another advantage is the compactness and scalability. Excitonic 

transistors have an architecture and operation principle similar to the 

electronic field-effect transistors (FET). Therefore, the excitonic circuits 

have the potential to be similarly compact and can include as many elements 

as electronic circuits. 

The limitation of excitonic devices are finite excitonic lifetime and finite 

exciton binding energy. In a direct band-gap semiconductor, the exciton 

lifetime is less than a nanosecond, so the excitons can travel very short 

distance before recombining. This problem, as anticipated, can be solved by 

using indirect excitons (High et al., (2008), (2007)). The lifetime of indirect 

excitons exceeds by orders of magnitude the lifetime of regular excitons and 

increased exponentially with the separation between the layers. Thanks to 
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their longer lifetime, the indirect excitons can travel longer distances (Grosso 

et al., (2009)). 

Andreakou et al. obtained optical control of excitonic fluxes for indirect 

excitons in a semiconductor-based DQW device. This device demonstrates 

experimental proof of principle for optical excitonic transistors with optical 

input, output, control gate, using indirect excitons as operation medium. 

Photons transform into excitons at the optical input (source) and travel to the 

optical output (drain) due to the ramp potential. The output signal of the 

exciton emission in the drain region is controlled by a gate beam (Andreakou 

et al., (2014)).  

 

I.4 Mn and Cu oxide based compounds 

 

In this Section, the properties of Mn and Cu oxide based compounds, 

object of study in this work, are described in details. 

The properties of TMOs are driven by d-orbitals and the particular 

occupation of a specific orbital tunes the properties of these materials. The 

orbital occupation is mainly determined by the interaction of the transition 

metal with the crystalline environment.  

In this work, the attention has been focalized on two TMO based 

compound that show fascinating properties, i.e. the Mn oxide of the form 

RE1-xAExMnO3 and Cu oxide with the “infinite-layer” structure  

AE1-xRExCuO2, where RE is a rare earth and AE is alkaline earth. 

Both classes of materials analyzed in this work show a rich phase 

diagram as a function of respective doping, as described in details in the 

following. In particular, in the Section I.4.1 the properties of manganites and 

in Section I.4.2 the properties of cuprates are described. 

 

I.4.1 Properties of manganites: from the crystalline structure to the 

phase diagram 

 

These materials have a rich phase diagram as a function of AE doping, 

showing a magnetic ordering such as antiferromagnetism and 

ferromagnetism.  
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The study of the properties of manganites started by Jonker and Van 

Santen, that showed a correlation between the Curie temperature, the 

saturation magnetization and the electrical resistivity in several  

La1-xAExMnO3 compound in polycrystalline form, with AE=Ca, Sr, Ba 

(Jonker and Van Santen, (1950)). 

In these compounds, the resistivity behavior shows a transition from 

insulating to metallic state at metal-to-insulator transition temperature (TMI) 

close to Curie temperature. In addition, when a magnetic field is applied at 

temperature around the Curie temperature of the compound, the 

phenomenon of colossal magnetoresistance (CMR) is observable. In Figure 

I-11 the correlation between the magnetization curve and resistivity one is 

showed for La0.75Ca0.25MnO3 in function of the temperature and of the field 

applied (Ramirez, (1997)).  

 

 

Figure I-11 Top panel: magnetization versus the temperature and field 

applied for La0.75Ca0.25MnO3; middle panel: resistivity versus the 
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temperature and field applied; bottom panel: magnetoresistance versus the 

temperature (Ramirez, (1997))  

 

In the top and the middle panels shown in Figure I-11, it can be observed 

that the onset of magnetization and the TMI is pushed to higher temperature 

by the application of a magnetic field. The magnetoresistance is defined as  

𝑀𝑅 =
𝜌(𝑇, 0) − 𝜌(𝑇, 𝐻)

𝜌(𝑇, 𝐻)
 

where ρ is the resistivity with and without the applied magnetic field. The 

magnetoresistance shown in the bottom panel in Figure I-11, is maximum in 

correspondence of Curie temperature and in this case it reaches the value of 

80% (Ramirez, (1997)). 

The rich physics of manganites is due to the intrinsic relation among the 

crystal structure and the magnetic and electric properties. 

 

I.4.1.1 Crystallographic structure of (RE,AE)MnO3 

 

The crystallographic structure of (RE,AE)MnO3 compounds is related to 

the size of RE and AE ions and in this work the attention has been focalized 

on cubic manganites, that are similar to cubic perovskite ABO3. The large 

sized RE and AE ions occupy the A-site with 12-fold coordination, while the 

B-site is occupied by Mn ion with mixed valence state Mn3+-Mn4+ and it is 

located at the center of oxygen octahedra with 6-fold oxygen coordination 

(Figure I-12 a)). 
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Figure I-12 a) Schematic view of a cubic perovskite structure ABO3; 

 b) orthorhombically distorted perovskite-type structure 

 

Goldschmidt introduced a tolerance factor t to describe the eventual 

distortions of the perovskite cell and t is related to the dimension of the ionic 

radii (Goldschmidt, (1958)): 

𝑡 =
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝐵 + 𝑟𝑂)
 

where rO is the oxygen ionic radius and rA,B are respectively the ionic radius 

of A-site and B-site ions. When the A-site is occupied by two species, as 

happens in mixed valence manganites, an average ionic radius is considered. 

The perovskite structure is stable when 0.89 < t < 1.02 and, in particular, 

when t = 1 the structure is the perfect closely packed one. However, t is 

generally different from 1 which means that the manganites have, typically, 

a rhombohedrical or orthorhombic symmetry. 

For example LaMnO3 presents a highly distorted perovskite structure 

which has a quadrupled unit cell (𝑎𝑝√2, 2𝑎𝑝, 𝑎𝑝√2), where ap is the lattice 

parameter of the cubic perovskite structure, as shown in Figure I-12 b) 

(Ravindran et al., (2002)). The structural distortion observed in LaMnO3 is a 

tilting of the MnO6 octahedra around a cubic (110) axis, so that the Mn-O-

Mn bond angle is reduced from 180° to about 160°. This phenomenon is 

described by the structure factor that is different from 1 and it has been 

proven to improve the space filling. In LaMnO3 the crystal distortion is also 

due to the MnO6 octahedra deformation caused by the Jahn-Teller effect 

originating from the orbital degeneracy. This can be view as a cooperative 
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shifting of the oxygen ions within the ab plane away from one of its two 

nearest-neighboring Mn atoms toward the others (Pickett and Singh, (1996)). 

When the ion La3+ in LaMnO3 is progressively substituted by a divalent 

AE cation, the amount of Mn4+ increases and the orthorhombic distortion 

decreases. Furthermore, La1-xAExMnO3 compounds are antiferromagnetic 

insulators when x = 0 or x = 1, while they show ferromagnetic behavior with 

a low-temperature conductivity similar to metals when 0.2 < x < 0.5.  

 

I.4.1.2 Electronic properties: Jahn-Teller effect and double-exchange 

mechanism 

 

The structural, magnetic and electrical transport properties of Mn oxides 

are interrelated and are induced by the mixed valence on Mn ions (Mn3+-

Mn4+).  

For an isolated 3d ion, five degenerated orbital states are available. This 

degeneracy is partially lifted by the crystal field. The five d-orbitals are split 

by a cubic crystal field into three orbitals, called t2g, (dxy , dyz , dzx) and two 

orbitals, known eg, (dx
2-dy

2 , dz
2-dy

2). The Hund’s rules ensure the alignment 

of the electron spins in t2g orbitals. The eg orbitals are empty for Mn4+ ion, 

while for Mn3+ there is an electron. In a crystal field with symmetry different 

from cubic one, the further degeneracy of the t2g and eg levels is avoided for 

the axial elongation of oxygen octahedron. This distortion is known as Jahn-

Teller distortion (Figure I-13).  
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Figure I-13 Jahn-Teller distortion. On the left: 3d-orbitals degeneracy of 

Mn3+ single ion; in the center: degeneracy partially removed thanks to 

crystal field (interaction with oxygen octahedrals); on the left: degeneracy 

further removed thanks to octahedral elongation (Jahn-Teller distortion). 

 

The magnetic properties of manganites are governed by exchange 

interaction between Mn ion spins. These interactions are relatively strong 

between the Mn ion interacting with Oxygen atoms and are controlled by the 

overlap between the Mn d-orbitals and the O p-orbitals.  

In particular, the interaction Mn4+ - O2- - Mn4+ is antiferromagnetic, while 

the interaction Mn3+ - O2- - Mn3+ can be ferromagnetic or antiferromagnetic 

(Goodenough, (1955)). 

When the interaction in mixed valence manganites occurs, it is typically 

between Mn3+ - O2- - Mn4+ ions where Mn ions can exchange their valence 

by simultaneously jump of the eg electron of Mn3+ on the O p-orbital and 

from the O p-orbital to the empty eg orbital of Mn4+. This mechanism is 

known as “double exchange” (Zener, (1951)), as schematized in Figure I-14. 
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Figure I-14 A schematic representation of double exchange mechanism in 

mixed valence manganites (Dagotto et al., (2001)) 

 

I.4.1.3 Doped compounds: La1-xSrxMnO3 phase diagram 

 

When AE2+ is substituted to RE3+ in (RE,AE)MnO3 compounds, Mn3+ 

partially change its valence in Mn4+ in order to keep the charge neutrality. 

This can be seen as holes introduced in eg band and, consequentially, some 

charge carriers become available for real hopping processes. 

La1-xSrxMnO3 (LSMO) offers a very rich physics as a function of doping, 

as it can be observed from its phase diagram (Figure I-15). 
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Figure I-15 Phase diagram of La1-xSrxMnO3 as a function of Sr content x 

(Dagotto et al., (2001)) 

 

LaMnO3 is obtained at x = 0 that is an antiferromagnetic insulator with 

Néel temperature TN ≈ 140K.  

At very low doping (x ≲ 0.1) is in spin-canted insulator (CI) state. The 

ferromagnetic phase can be already obtained at x ≈ 0.1, where at low 

temperature, the LSMO is a ferromagnetic insulator (FI) up to x ≈ 0.15; then 

it becomes ferromagnetic metallic (FM) for 0.15 ≲ x ≲ 0.5 when the double 

exchange mechanism takes place. At higher doping (x ≳ 0.5) LSMO 

becomes antiferromagnetic with uniform orbital ordering (AFM). In 

addition, PI and PM in Figure I-15 denotes, respectively, paramagnetic 

insulator and paramagnetic metallic states and TC is the Curie temperature.  

In this work, the attention has been focalized on LSMO with x = 0.3 

doped in the central layer of p-type QWs studied, where the highest Curie 

temperature is present.  
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Finally, for x = 1 SrMnO3 (SMO) is obtained, that has been used in p-

type QWs studied in this work as top and bottom insulating layers. SMO is 

an antiferromagnetic Mott insulator with a gap value of about 0.35 eV and a 

Néel  temperature of 230 K (Maurel et al., (2015); Søndenå et al., (2006)). 

 

I.4.2 Properties of cuprates: from the crystallographic structure to 

the phase diagram 

 

Cu based compounds present a lot of interesting physical properties, but 

the most investigated is the high temperature superconductivity. Since its 

discovery in a ceramic La-Ba-Cu-O compound in 1986, a lot of progress 

have been done. Nevertheless a theoretical and predictive microscopic model 

doesn’t exist yet, but a number of general conclusion have been drawn by 

comparing properties across the entire cuprate family (Leggett, (2006)).  

It has been observed that the parent compounds of cuprates are 

antiferromagnetic insulators and, doping them, the antiferromagnetism is 

reduced and superconductivity appears. Furthermore, all superconducting 

cuprates are layered materials with CuO2 planes.  

The mechanism behind high temperature superconductivity is different 

from the conventional superconductivity, that is well described by the J. 

Bardeen, L. N. Cooper, J. R. Schrieffer (BCS) theory (Bardeen et al., 

(1957)). Indeed, the properties of cuprates are highly anisotropic due to the 

layered nature of cuprates. Then, the superconducting coherence lengths are 

much smaller than the conventional superconductor ones, suggesting a 

different pairing mechanism than the phonon exchange happening in 

conventional superconductors. Furthermore, the conventional 

superconductors are characterized by s-wave symmetry, while the cuprates 

are characterized by d-wave symmetry. 

 

I.4.2.1 Crystallographic structure of infinite-layer cuprates 

 

The infinite-layer (IL) cuprates have the simplest crystal structure among 

the known cuprate families. The parent compound is ACuO2, where 

perfectly square and flat CuO2 planes are separated by layers of alkaline 

earth atoms, such as Sr, Ca, as shown in Figure I-16.  
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The superconducting compound is achieved via heterovalent substitution 

at the alkaline earth site. For example, in Sr1-xLaxCuO2, each atom donates 

one electron to the CuO2 plane, resulting in x extra electron per copper atom. 

The structure of ILs is unique among the cuprates because the c-axis 

between Cu planes is less than in-plane value. In addition, the electron 

hopping along the c-axis is inhibited by the lack of apical oxygen ligands.  

Also the crystal structure of the other known electron doped family  

(for example RE1-xCexCuO4) lacks apical oxygen, but, at the present, it is not 

clear why such absence plays an important role in the superconducting 

properties of electron-doped cuprates and systematic studies are therefore 

important (Fournier, (2015)).  

In spite of its structural simplicity, the IL cuprate is quite sensitive to 

growth conditions, indeed an oxygen-reduction step after growth is required 

in order to induce superconductivity. It is believed that the reduction step 

removes a small amount of excess oxygen atoms present in the as-grown 

materials at apical sites (Feenstra et al., (1994); Jiang et al., (1993); Li et al., 

(2009); Richard et al., (2007)), but at the same time there are many 

alternative theories involving oxygen deficiency within the CuO2 planes 

(Kang et al., (2007); Richard et al., (2004); Wang et al., (2009)). 

The mechanism behind the suppression of superconductivity induced by 

a relatively small amount of excess oxygen is not known yet, so, again, a 

systematic study as a function of the after growth annealing is crucial and it 

has been performed in this work also by using advanced synchrotron 

radiation based electronic spectroscopies.  
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Figure I-16 IL crystal structure of SrCuO2. The typical values for the lattice 

parameters are shown as a reference (Fournier, (2015)) 

 

The choice of the substrate is important when growing IL thin films 

because the strain plays an important role in the right phase formation. Films 

under tensile strain are in general of better quality than films under 

compressive stain, exhibiting lower resistivity and higher critical 

superconductive temperature. This is due to the tensile strain that allows 

easier removal of interstitial oxygen atoms, but excess tensile strain leads to 

lattice defects and substrate interdiffusion (Karimoto and Naito, (2004)). The 

best substrates for the growth of superconducting Sr1-xLaxCuO2 are (110) 

DyScO3, TbScO3, GdScO3.  

 

I.4.2.2 Properties of (Sr,La)CuO2  

 

Because of the unavailability of large single crystals, the IL cuprates have 

not been deeply investigated as the more studied hole-doped cuprates. The 
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existing studied have brought conflicting conclusion regarding the nature of 

superconductivity and ferromagnetism in ILs. 

Recent advantages in the oxide deposition by molecular beam epitaxy 

(MBE), described in Section II.1, has made available IL Sr1-xLaxCuO2 

epitaxial thin films with structural quality comparable to those of single 

crystals.  

Harter et al. shed light on the electronic structure of IL Sr1-xLaxCuO2 

epitaxial thin films thanks to in-situ Angle Resolved Photoemission 

Spectroscopy (ARPES) measurements. Their observations demonstrated a 

clear coexistence of superconductivity with robust antiferromagnetism order, 

both intrinsic features of electron-doped cuprates and not material specific 

(Harter et al., (2012)). 

In Figure I-17 a k-resolved map of spectral weight near the Fermi energy 

is shown. A large circular Fermi surface centered at (π,π), generic to all 

doped cuprates, is reported. Yellow and grey arcs are extracted by theoretical 

calculations. More details can be find in Ref. (Harter et al., (2012)).  

 Furthermore, they studied the doping evolution of IL Sr1-xLaxCuO2 thin 

films. In particular, it was observed that the upper Hubbard band in this 

material evolves into a metallic Fermi surface increasing the La content, 

while a remnant low Hubbard band, characteristic of cuprate parent 

compounds, coexists with coherent low-energy states even at optimally 

doping (Harter et al., (2015)). A description of the Hubbard model, that is 

the simplest model of interacting particles, can be find in Appendix A. 
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Figure I-17 Unsymmetrized Fermi surface mapping of optimally doped 

Sr0.9La0.1CuO2 taken at 10K. The gray and yellows arcs are obtained from 

theoretical calculations (Harter et al., (2012)) 

 

I.4.2.3 Phase diagram of cuprates 

 

The actual doping-temperature phase diagram of cuprate superconductors 

is asymmetric. Both the electron (n) and hole-doped (h) cuprates present, in 

the lower doping part of their phase diagram, antiferromagnetic behaviors 

with parent undoped compounds being antiferromagnetic insulators and, 

below a compound specific doping level, they show a sudden upturn in the 

low temperature planar dc-resistivity (Armitage et al., (2010); Rybicki et al., 

(2016)). In particular, the low doping antiferromagnetic phase appears much 

more robust, extends to much higher doping on the electron-doped side and 

sometimes coexists with superconductivity. On the other hand, for hole-

doped cuprates, the antiferromagnetic phase is rapidly suppressed with the 

doping and far below the onset of superconductivity.  
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For both the n and p doped superconducting cuprates, a linear 

temperature dependence of the resistivity is observed at T > T*, with doping-

dependent T* values, persisting up to high-temperature values around 1000 

K (Gurvitch and Fiory, (1987)). The temperature T* separates the so-called 

strange-metal regime (T > T*) from the region with the opening of a pseudo-

gap (Li et al., (2008); Shekhter et al., (2013)). 

The opening of the pseudo-gap below T* has been attributed to non-

Fermi liquid behavior in proximity of a quantum critical point, generally 

identified as the quantum transition to the antiferromagnetic phase (Keimer 

et al., (2015); Li et al., (2008); Shekhter et al., (2013)).  

Nevertheless, recent developments have suggested that a FL behavior is 

present below T** in a large part of the normal state phase diagram. In 

particular, p-doped cuprates have shown, below T** < T*, a quadratic 

temperature dependence of the resistivity per CuO2 planes (Barišić et al., 

(2013)), a single relation scattering rate 1 𝜏⁄ ≅ 𝑇2 in agreement with the 

Kohler’s rule for the magnetoresistivity (Chan et al., (2014)) and a quadratic 

frequency dependence of the optical scattering rate with the temperature-

frequency scaling expected in the case of Fermi liquid (Mirzaei et al., 

(2013)).  

Probably due to the n-type material scarcity and to the difficulty in 

growing high quality samples, the data on the n-side of the cuprate phase 

diagram are not as ample as those on the p-side. This obviously renders more 

difficult to reach a comprehensive understanding of the high-temperature 

superconductivity which requires an explanation of the very complex phase 

diagram of cuprates.  

In Figure I-18 a schematic phase diagrams of hole-doped (Barišić et al., 

(2017)) and electron-doped cuprates (Harter, (2013)) are shown.  

In this work, a systematic study of IL electron-doped properties has been 

done in order to increase the available data on the n-side cuprate phase 

diagram, including the IL cuprate family with its interesting peculiarities. 
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Figure I-18 Doping – temperature phase diagram of cuprate 

superconductors where the antiferromagnetic (AF) and superconductive 

(SC) phases are shown both for electron-doping (left) and hole-doping 

(right). Néel temperature (TN), temperature where the resistivity shows a 

linear behavior in temperature (T*) and a quadratic behavior in 

temperature (T**) are indicated for the hole-doped cuprates (right) 

 

In particular, as shown in the right panel in Figure I-18, the dashed lines 

separate two regions in the normal state of the p-doped cuprates, as already 

mentioned, at temperature above T*, the p-doped cuprates present planar 

resistivity with an approximately linear temperature dependence (𝜌 ∝ 𝑇); 

while below the characteristic temperature T**, a Fermi-liquid behavior is 

observed where the resistivity shows a quadratic dependence in temperature 

(𝜌 ∝ 𝑇2) (Barišić et al., (2017), (2013)). 

More recently, similar behaviors, previously probability masked by the 

large nonmetallic contribution, have also been observed in several n-doped 

cuprates (Li et al., (2016)). In particular, values of the planar resistivity 

coefficients very close to those measured for p-doped compounds with the 

same doping level have been observed along with transport scattering rates 

similar to the ones obtained in the case of p-doped materials, strongly 

suggesting a universal description of the normal state in cuprates, 

independently of doping, compound and carrier type. 

In this work, the presence of these low temperature Fermi liquid 

behaviors IL Sr1-xLaxCuO2 thin films have also been analyzed. The obtained 

results seem to confirm a robust and universal Fermi liquid charge transport 
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behavior in the low temperature properties of IL n-doped cuprate 

superconductors. 
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Experimental techniques 

 

 

 

 

II.1 Deposition technique: Molecular Beam Epitaxy (MBE) 

 

t is extremely important to be able to grow high quality single-crystal 

stoichiometry-controlled epitaxial films in order to be used for 

industrial applications. The word “epitaxy” derives from Greek root epi, 

meaning “above”, and taxis, meaning “an ordered manner: the epitaxial 

growth means that the deposited material form a crystalline overlayer that 

has one well-defined orientation with respect the substrate crystal structure. 

The techniques usually employed to grow thin films under high vacuum 

conditions can be physical or chemical vapor deposition (PVD or CVD): in 

PVD techniques, the compounds are vaporized from material sources and 

transported through the vacuum reactor towards the substrate without 

producing any chemical reaction; in CVD techniques, precursor species 

containing the elements of the desired compound chemically react in order to 

grow the film on the surface of the substrate crystal. 

The samples reported in this work have been mainly grown using a PVD 

technique: the MBE deposition mode. 

The MBE was developed in the late 1960’s in order to grow 

semiconductor compounds and it has been adapted to grow different 

materials from metals and oxides to complicated heterostructures. This 

technique distinguishes from other epitaxial growth methods for the high 

precision control over the beam fluxes and growth parameters. Indeed, the 

I 
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MBE has the advantage to be in situ controlled by surface diagnostic method 

such as Reflection High-Energy Diffraction (RHEED), described in the 

following section. This “real time” diagnostic methodology is possible 

because of the ultra-high vacuum (UHV) conditions and it enables the 

fabrication of sophisticated structures.  

The molecular beams are generated under UHV conditions from sources 

of the Knudsen-effusion-cell type (Herman, (1982)), represented in Figure 

II-1, and travel across the system in ballistic regime reaching the substrate 

region where the beams interact with the gases (e.g. oxygen or ozone for 

oxide based thin films) that can be introduced in this chamber region. 

Finally, the beams condensate on the heated crystalline substrate. 

 

 

Figure II-1 Effusive cell used in the University of Salerno MBE deposition 

system. The effusive cells are closed by shutters that can be manually or 

computer controlled by pneumatic actuators. 

 

The temperatures of the substrate and of the cells needs to be properly 

chosen in order to obtain the growth of the desired phase. Indeed, the 

evaporation rate for the effusive cells is determined by the crucible 
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temperature, by the external pressure and by geometrical factors (e.g. cells 

aperture area, the position respect to the substrate). Most of these parameters 

can be fixed and the rate can be very precisely controlled by the cell 

temperature (Herman, (1982)). The deposition rate (deposition flux as well) 

is measured by a Quartz Crystal Monitor (QCM), described in the following 

section. 

 

II.1.1.1 Flux measurements: Quartz Crystal Monitor (QCM) 

 

To measure the deposition rate of an element evaporated by an effusive 

cell, a quartz crystal is located on the same horizontal plane of the substrate 

holder. The mass of a material deposited on the crystal quartz changes 

producing a measurable shift in the resonant frequency. The crystal quartz is 

connected to a thickness monitor that shows the deposition rate. 

 

II.1.1.2 Reflection High Energy Electron Diffraction (RHEED) in-situ 

diagnostic 

 

RHEED observation allows the monitoring of the sample growth and it 

can be used in MBE systems thanks to UHV conditions characteristic of the 

growth environment. RHEED uses electron, whose energy is in the 5-50 keV 

range, that are produced by an electron gun. The electron beam is focused 

and collimated to impinge on the substrate (or the sample) with a grazing 

angle usually less than 5°. The RHEED diffraction pattern generated by the 

sample surface is displayed on a phosphor screen located in the opposite 

position, as shown in Figure II-2.  
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Figure II-2 Schematic diagram of RHEED geometry showing the incident 

beam to the surface sample with angle θ. 

 

The diffraction of the incident primary beam on the 2D lattice of the 

sample surface shows streaks (or rods) on the fluorescent screen used as 

detector.  

The streaks position on the screen is related to the screen in-plane lattice 

parameters and the lattice can be considered 2D because of the electrons low 

incidence angle. The distance between two adjacent streaks is given by:  

𝑑 =
𝐿𝑔//

𝑘
 

where L is the distance between the substrate and the phosphor screen, 𝑘 =

(2ℎ/𝑘)√2𝑚𝐸 is the wave vector of the primary beam with energy E and 

𝑔// = 2𝜋/𝑎0 where 𝑎0 is the lattice constant.  

If during the growth 3D island are formed, additional spots appears on the 

pattern, so the film growth mode can be identified by the qualitative pattern 

change.  

The central rod in the streak pattern is the specular one and it is the mirror 

like reflection of the electron beam. The specular streak gives information 

about the flatness and the quality of the surface. Its width is generally limited 

by the instrument resolution. 

The specular streak and the higher order ones are due to the elastic 

scattering of the electron beam. The intensity of the RHEED pattern shows 

an oscillatory behavior in time which is directly related to the growth rate 

(Van Hove et al., (1983)), so it can be used to calibrate beam fluxes more 

accurately in order to control the film stoichiometry and the thickness as 

well. 
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In this work, the film constituents are sequentially deposited (layer-by-

layer) on an appropriate substrate and the opening of pneumatic shutters of 

the sources are calibrated by monitoring RHEED intensity oscillations. The 

variation in the intensity of oscillations is related to the stoichiometry of the 

deposited compound and to the exact completion of unit cells. This 

technique allows the use of RHEED not only for morphology but also for 

stoichiometry control.  

As described before, the QCM calibration is used to calibrate the flux 

(and equivalently the temperature) of each single element and then the layer-

by-layer RHEED calibration gives a better control on the stoichiometry.  

A typical example of layer-by-layer RHEED calibration of SrTiO3 is 

show in Figure II-3. Sr and Ti are sequentially deposited while the heated 

substrate is immersed in a continuous molecular O2 flux (the deposition 

pressure is kept constant) (Haeni et al., (2000)).  
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Figure II-3 SrTiO3 layer-by layer RHEED intensity oscillations acquired on 

the central streak. The opening of Sr shutter and Ti shutter is indicated. (a) 

Stoichiometric full monolayer of Sr and Ti deposited; (b) Sr dose is held 

constant while Ti dose increased by 3% from a full monolayer; (c) Sr dose is 

held constant while Ti dose decreased by 3% from a full monolayer (Haeni 

et al., (2000)) 

 

II.1.2 The MBE deposition system present at UNISA 

 

(La,Sr)MnO3 single layer thin films and SrMnO3/La0.7Sr0.3MnO3/SrMnO3 

QWs have been grown with the MBE deposition system present at 

University of Salerno. It is schematically shown in Figure II-4.  
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Figure II-4 A schematic representation of MBE system located at UNISA 

 

The MBE present at UNISA laboratory (model ISA-RIBER EVA32) is 

composed by a main deposition chambers constantly kept in UHV  

(<10-8 Torr) and an intro chamber (load-lock) that allows to load samples 

without breaking the vacuum in the growth chamber.  

The materials are evaporated through three effusive (Knudsen) cells in 

the growth chamber (it is possible to allocate a fourth source); in particular, 

La is evaporated by high temperature effusive cell and the others are the 

effusive cells for Sr and Mn. Regular effusive cells have a pyrolytic PBN 

crucible and can reach temperature up to 1000°C; high temperature effusive 

cell used for La has Ta crucible and can reach temperature up to 2000°C. 

These temperatures can be in principle reached because all the sources have 

a water cooled shield.  

O2 molecular gas or a mixture of Oxygen and 10% Ozone can be 

introduced in the chamber for the oxide formation.  

The sample holder can be rotated during the growth and can be heated up 

to 750°C.  
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II.1.3 The MBE deposition system present at Cornell Univesity 

 

The samples (Sr,La)CuO2 and the SrCuO2/Sr0.9La0.1/SrCuO2 QWs have 

been grown using the MBE present at Cornell (model VEECO GEN10) is 

shown in Figure II-5. It is composed by two twin deposition chambers (GM1 

and GM2) connected by a distribution chamber kept in UHV (<10-10 Torr). 

The load-lock is in the clean room and it is connected to the distribution 

chamber. An Angle-Resolved Photoemission Spectroscopy (ARPES) system 

is also connected to the distribution chamber, so the samples can be 

immediately measured without breaking the vacuum.  

 

 

 

Figure II-5 Schematic representation of the MBE system at Cornell 

University 
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In each growth chamber it is possible to allocate 9 different effusive 

sources and an electron beam (it is used to evaporate materials using an 

electron beam and whose temperature is too high for the effusive cells). The 

effusive sources have the same operating principle of the MBE at UNISA. 

Thanks to an Ozone distiller, it is possible to introduce pure Ozone in the 

chamber for the oxide formation as well as O2 molecular gas or a mixture of 

Oxygen and Ozone. 

 

II.2 Standard thin films characterization technique  

II.2.1 X-Ray Diffraction (XRD) technique for thin films structural 

characterization 

 

Thanks to X-ray wavelength with the same order of magnitude of 

interatomic distance in crystals, the XRD measurements are very important 

to investigate the crystalline structure of materials.  

 

II.2.1.1 XRD theory: Bragg reflection 

 

Where The X-Ray, incident on a crystal, interacts with its atoms through 

electron-photon scattering. In an ideal crystal of dimension N1a, N2b and N3c 

in the direction of the primitive lattice vectors a, b and c and a radiation with 

incident wave vector k0 and scattered wave vector k, the diffracted intensity 

is: 

I ∝ |F(𝐐, λ)|2
sin2 (N1𝐐 ∙

𝐚
2)

sin2 (𝐐 ∙
𝐚
2)

∙
sin2 (N2𝐐 ∙

𝐛
2)

sin2 (𝐐 ∙
𝐛
2)

∙
sin2 (N3𝐐 ∙

𝐜
2)

sin2 (𝐐 ∙
𝐜
2)

 

where Q = k - k0 and F(Q,λ) is the structure factor depending from the 

wavelength λ and that is related to the atomic form factors (such as 

scattering from the electrons of each atom in an unit cell) and from the 

position of any atom in the unit cell. The scattered intensity, in this 

approximation, is a Fraunhofer pattern modulated by the structure factor. 
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Intensity maxima are obtained when 𝑸 ∙ 𝒂 = 2ℎ𝜋; 𝑸 ∙ 𝒃 = 2𝑘𝜋; 𝑸 ∙ 𝒄 = 2𝑙𝜋 

with h, k, l integers. This is the Laue condition for constructive interference 

given when the difference among the scattered and the incident wave vectors 

Q = k - k0 equals a reciprocal lattice vector K (defined by the condition 𝑲 ∙

𝑹 = 2𝑛𝜋 where R is any crystal lattice vector 𝑹 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄). Laue 

condition is equivalent to Bragg formula, where the crystal is considered 

composed by parallel plans of ions distant d. The constructive interference of 

the beam reflected by successive planes is given when the optical path 

difference is a multiple integer of the wavelength λ: 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃 

where n is the order of the reflection and θ is the radiation incidence angle 

on the family planes. 

A schematic Bragg’s law configuration is shown in Figure II-6. 

 

 

Figure II-6 Schematic Bragg’s law depicting the constructive inference of 

reflected waves  

 

II.2.1.2 Thin film measurements configuration: θ-2θ scan and X-Ray 

Reflectivity (XRR) measurements 

 

The Bragg configuration is used for studying the structure of thin films. 

A monochromatic radiation is used and the incident beam is collimated by 

narrow slits to hit the sample surface with angle ω. A detector measures the 

reflected intensity from the surface of the sample at angle 2θ respect the 

incident beam direction. In the simplest case of two circle diffractometer 
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these are the only degree of freedom. In a three circle diffractometer the 

sample can be rotated with angle φ along an axis perpendicular to its surface. 

In a four circle diffractometer the sample can tilt by an angle ψ around the 

axis in the sample plane belonging to the incidence plane of radiation. Five 

and six circle diffractometer also exist that are used for grazing angle and 

surface diffraction.  

 The diffractometers used to characterize the samples for this work are a 

three circle at University of Salerno and a four circle at Cornell University. 

 

θ-2θ scan 

 

The incident angle ω is set to θ and the scattering vector Q is 

perpendicular to the sample surface. This is analogue to look for specular 

reflection of the crystalline planes parallel to the sample surface. If the film 

is single oriented, it is only possible to measure the lattice parameter 

perpendicular to the surface (out-of-plane). If the crystal planes are well 

aligned along all the sample thickness, interference fringes are detectable. 

From the maxima position of the fringes it is possible to estimate the sample 

thickness: 

t =
(i − j)λ

2(sinθi − sinθj)
 

where i and j are the order of maxima and θi and θj are the maxima 

positions. 

 

X-Rays Reflectivity (XRR) measurements  

 

The same equipment and configuration of θ-2θ scans can also be used for 

XRR analysis of thin films. This analysis can be used to determine the 

density, thickness and roughness of each layer of a multilayered film. A 

single layer can be seen as a bilayer with the substrate (that is very thick).  

In a multilayered structure the X-rays reflects from each surface and the 

multiple reflected waves interfere with each other producing reflectivity 

curve. The interference fringes are created by phase differences between X-

rays reflected from different layers and the distance between fringes is 

inversely proportional to the thickness of the layer: 
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t =
(i − j)λ

(2θi − 2θj)
 

XRR measurements are performed at low angle so sinθi ≈ θi (in rad).  

The film roughness causes X-rays to be scattered rather than reflected 

producing the loss of beam intensity increasing theta. In other words, the 

roughness determines how quickly the reflected signal decays. 

The film density and its composition is related to the critical angle below 

which the X-rays are completed reflected. This critical angle is a function of 

the layer electron density (if the film density increases, also the critical angle 

increases).  

The samples measured have been fitted using the Rigaku GXRR and 

IMD software with the layer thickness, density and roughness as free fitting 

parameters.  

 

II.2.2 Electrical transport measurements 

 

The electrical transport measurements as a function of the temperature 

were carried out by the four probe dc technique in a Van der Pauw contacts 

configuration (Van der Pauw, (1958)) without patterning the samples, as 

schematically shown in Figure II-7.  

 

 

Figure II-7 Schematic representation of Van der Pauw contacts 

configuration 

 

The samples resistivity has been estimated as: 
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 𝜌(𝑇) = 𝑅𝑠ℎ ∙ 𝑡 II-1 

Where Rsh is the sheet resistance and t is the sample thickness obtained by 

XRR measurements.  

The manganites based QWs have been measured at UNISA in a 

temperature range from 320K to 10K using a cryocooler cold finger type. 

This system is a refrigeration closed cycle based on the Gifford-McMahon 

thermodynamic cycle. Thanks to this cycle, the heat is removed from the 

cold finger by two phases of Helium gas expansion. The cold finger consists 

in two cooling stages and the temperature stabilization is regulated by a 

feedback system composed by a thermometer and a heater. All the system is 

kept in vacuum (~10-4 Torr). 

The cuprate based QWs have been measured at Cornell University using 

a dipper in liquid Helium, so the measurements have been performed in the 

temperature range from 300 K to 3.9 K. 

 

II.3 Advanced electron spectroscopy 

II.3.1 X-ray Absorption Spectroscopy (XAS) 

 

The X-ray Absorption Spectroscopy (XAS) is a widely used technique 

for determining the local geometric and/or electronic structure of matter. 

XAS is a type of absorption spectroscopy from a core initial state with a 

well-defined symmetry therefore the quantum mechanical selection rules 

select the symmetry of the final states in the continuum which usually are 

mixture of multiple components.  

A schematic representation of XAS mechanism is shown Figure II-8, 

where a core electron is excited to an unoccupied state above the Fermi level 

by the incident radiation to the conduction band. The required (absorbed) 

energy Eabs is 

𝐸𝑎𝑏𝑠 = ℎ𝜈 = 𝐸𝑓𝑖𝑛 − 𝐸𝑖𝑛 

where Efin is the energy of the final state (the core electron excited into the 

conduction band) and Ein is the energy of the initial state (the not excited 

electron). 
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Figure II-8 Schematic representation of XAS mechanism. CB and VB are 

the conduction and the valence band respectively and EF is the Fermi energy 

 

The transitions that occur in the process are due to the dipole selection 

rules that change the angular momentum quantum number l by one  

(Δl = ± 1). While the spin s is conserved (Δs = 0), the z-component of the 

orbital momentum m has to change by zero or one (Δm = ±1; 0). In 

particular, the left and right hand circular polarized light change Δm = ±1 

and linear polarized light doesn’t change m (Δm = 0). There are also 

quadrupole transitions, that allows Δl = ± 2; 0, but they are hundred times 

weaker than the dipole ones. 

The transitions that contribute to XAS edges are shown in Figure II-9. 

The edges depend upon which core electron is excited, in fact the principal 

quantum numbers n = 1; 2; 3 correspond to the K-, L- and M-edges 

respectively. For example, the excitation of a 1s electron occurs at the K-

edge, or excitation of 2s or 2p electron occurs at an L-edge. 
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Figure II-9 Transitions that contribute to XAS edges 

 

The unoccupied density of states is probed with XAS, indeed the 

electrons are excited from a specific core level to the unoccupied states and, 

because of each element has individual excitation energies for its level, only 

one atom is excited. 

A tunable source, such as the radiation of synchrotron, is needed to 

determine different states in the conduction band, as shown in Figure II-10, 

for example, to probe the Cu states. Indeed, the synchrotron radiation can be 

tuned to the characteristic Cu energy and changing the light polarization it is 

possible to select transitions to in-plane and nearly out-of-plane Cu 3d states. 
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Figure II-10 Cu 3d states probed by XAS radiation. Left: schematic 

representation of horizontal (red) and vertical (blue) light polarization used 

to probe in-plane and ou-of-plane states; right: electronic configuration of 

3d states of ion Cu2+ 

 

The absorption can be calculated measuring the remaining intensity in 

transmission or reflection experiments. For the metals, the drain current from 

the sample, that is proportional to the XAS signal, can be measured and this 

is called total electron yield (TEY). Conversely, if the sample is an insulator, 

the intensity of radiant recombination can be measured and this is called 

partial or total fluorescence yield (PFY or TFY) mode. 

An example of XAS spectra for Mn with different oxidation state, and 

thus the different number of valence electrons, is shown in Figure II-11 

(Gilbert et al., (2003)).  
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Figure II-11 Multiplet structure for different oxidation state of Mn (Gilbert 

et al., (2003)) 

 

II.3.2  X-ray Magnetic Circular Dichroism (XMCD) 

 

X-ray Magnetic Circular Dichroism (XMCD) is a difference spectrum of 

two XAS spectra taken in a magnetic field, one taken with left circularly 

polarized light, and one with right circularly polarized light. By closely 

analyzing the difference in the XMCD spectrum, information can be 

obtained on the magnetic properties of the atom, such as its spin and orbital 

magnetic moment. Indeed, using XMCD it can be possible to analyze the 

magnetic moments element specifically and moreover separated into their 

spin and orbital moments. XMCD is used for the characterization of 

magnetic materials. 
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The spin dependent dichroism in the absorption process, that gives the 

XMCD effect, corresponds to the difference between the number of spin up 

and spin down holes of the conduction band, which gives the magnetic 

moment. 

The maximum XMCD signal is obtained when the photon angular 

momentum is collinear to the magnetization direction M. The dichroism is 

than given by the difference spectra measured with the right-hand and left-

hand polarized light. 

The absorption of circularly polarized x-ray photons leads to a spin 

polarization of the photoelectrons due to spin-orbit coupling (𝑗 = 𝑙 ± 𝑠 ). In 

particular, at the L3 edge (𝑗 = 𝑙 + 𝑠 ), left-hand circular polarized light 

mainly probe the unoccupied spin up d states with respect to the direction of 

magnetization. The opposite sign of spin-orbit coupling (𝑗 = 𝑙 − 𝑠 ) inverts 

the effect at L2 edge.  

Thole et al. and then Chen et al. found the so called XMCD sum rules to 

calculate the magnetic moments for 2𝑝 → 3𝑑 transitions (Carra et al., 

(1993); Chen et al., (1995); Thole et al., (1992)).  

 

II.3.3 X-ray Linear Dichroism (XLD) and X-ray Magnetic Linear 

Dichroism (XMLD) 

 

The X-ray absorption of linear polarized light changes with the geometry 

of the experiment that gives a dichroic signal for different orientations of the 

light polarization. In the case of natural X-ray Linear Dichroism (XLD), the 

polarization plane is either perpendicular or parallel to the crystal axis of a 

not magnetized single crystal; while in the case of the X-ray Magnetic 

Linear Dichroism (XMLD), the geometry is similar to XLD, but polarization 

plane is perpendicular or parallel to the magnetization of the sample. 

With XLD technique, the orbital ordering can be observed. Indeed, the 

transition intensity of the absorption process is proportional to the number of 

empty valence stats in the direction of the electric field vector E, so the 

orbitals lying perpendicular to the electric field vector are not excited and for 

spherical orbitals, no natural XLD appears. For example, the splitted 3d 

states (eg and t2g) of an octahedral crystal field are spherical, but if the d 

orbitals are differently occupied, a natural dichroism appears. 
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Typically, the XLD measurements are performed using linearly polarized 

photons with the electrical vector E either parallel (H polarization) or 

perpendicular (V polarization) to the synchrotron orbit. At normal incidence 

E lies in the sample plane for both polarizations, whereas the grazing 

incidence and H polarization (i.e. 30° from the surface) E is nearly parallel 

to out-of-plane (c) axis of the samples. In this way, the absorption spectra 

with 𝑬 ⊥ 𝑐 and 𝑬 ∥ 𝑐 and the corresponding XLD can be measured. Usually 

XLD is defined: 

𝑋𝐿𝐷 = 𝑋𝐴𝑆(𝑬 ⊥ 𝑐) − 𝑋𝐴𝑆(𝑬 ∥ 𝑐) ∝ 𝑋𝐴𝑆(𝑉, 30°) − 𝑋𝐴𝑆(𝐻, 30°) 

or equivalently by using XAS(H,90°) in place of XAS(V,30°). XLD is 

sensitive to the axial anisotropy of the electron density of states. 

For the XMLD, the sample is magnetized by an external magnetic field and, 

consequently, the charge density is distorted and elongated along the spin 

axis. 
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Results 

 

 

 

 

III.1 Growth and characterization of p-type QWs 

 

uring this work, manganites have been grown at UNISA in order to 

investigate the properties of p-type QWs (Galdi et al., (2017)). In 

the past years many experimental and theoretical studies have been dedicate 

to manganites (Jin et al., (1994); von Helmolt et al., (1993)) because of the 

interest raised by the variety of magnetic and electric phenomena, such as 

ferromagnetism, antiferromagnetism, charge ordering, and so on. LSMO 

single layers have been widely investigated in the past years (Adamo et al., 

(2009a); Barone et al., (2007a); Maritato et al., (2006); Mercone et al., 

(2005); Orgiani et al., (2007a), (2006); Petrov et al., (2004)), and in this 

work the attention is paid to LSMO based heterostructures.  

Many perovskite oxides are Mott insulators, with small energy band gap, 

and the first question to answer in view of the fabrication of oxide-based 

QWs is about the ability to obtain quantum confinement by using them as 

the insulating material. To answer this question, we have grown 

SMO/LSMO/SMO QWs using the RHEED calibrated shuttered layer-by-

layer MBE deposition process, as described in Section II.1, and studied the 

structural and electrical transport properties of the QWs with different SMO 

and LSMO relative thicknesses. 

As introduced in Section I.4.1, the SMO is an antiferromagnetic Mott 

insulator with a gap value of about 0.35 eV (Søndenå et al., (2006)) and 

D 



 

58 

 

LSMO is a well-known ferromagnetic metallic p-type compound, with Curie 

temperature values around 350 K, associated to a Metal-Insulator transition 

responsible of the Colossal Magneto-Resistance (CMR) behavior (Coey et 

al., (1999)). The Curie temperature along with the Metal-Insulator transition 

temperature TMI, are strongly dependent of many parameters (disorder, 

strain, composition, etc.) and can be used as an additional check for 

evaluating the quality of the produced samples.  

The obtained results show that at low temperatures, quantum confinement 

is observed when the LSMO thickness is smaller than about 5 unit cells 

(u.c.), even for SMO thickness as small as 15 u.c. 

These observations, following those already presented by Li et al. in 

LaVO3/SrVO3/LaVO3 heterostructures described in Section I.2.4 (Li et al., 

(2015)), open the way to the fabrication and study of oxide based quantum 

wells in which the insulating material can be a “Mott” insulator, 

implementing the already ample range of possible oxide heterostructures 

where to investigate for new quantum effects. 

The SMO/LSMO/SMO QWs growth has been performed both in O2 and 

O2+10%O3 mixture pressure of 1 × 10−6 Torr. The films were deposited on 

NdGaO3 (110) (NGO) substrates, which have distorted perovskite structure 

with an orthorhombic symmetry and a pseudo-cubic lattice constant of 

0.3854 nm, and on SrTiO3 (100) (STO) with lattice parameter 0.391 nm. In 

the first case the SMO layer is subject to tensile stain on NGO, while the 

LSMO is subject to compressive stain; in the latter case, both the LSMO 

layer and the SMO layer are subject to tensile strain on STO. 

During the growth the substrate temperature, measured by a 

thermocouple, was 720°C. This temperature was chosen as the best 

compromise to obtain good quality SMO and LSMO single films on the 

chosen substrates. At the end of the growth, the samples were cooled to 

room temperature in deposition atmosphere: this is crucial to avoid sample 

deoxygenation. The La, Sr and Mn shutter opening times were calibrated by 

monitoring intensity oscillations of the RHEED pattern (as explained in 

Section II.1) during the growth of LaMnO3 (LMO) and SMO films. The 

RHEED patterns were observed setting the electron beam parallel to one of 

the in-plane [110] azimuths of the substrate. In order to check the thickness 

of these calibration-check films (LMO and SMO), the values of the SMO 

and LMO c-axis lattice (out-of-plane lattice parameter) constant and that of 

the total film thickness, respectively measured by XRD and XRR analysis 

(as explained Section II.2.1), was used to compare the number of shuttering 

periods to that of the actual number of unit cells present along the growth 
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direction in our calibration samples. The equality between these two values 

is indicative of perfectly alternating complete Sr-O (La-O) and Mn-O 

monolayers. An example of RHEED oscillations for LMO and SMO 

calibration is reported in Figure III-1. 

 

 

Figure III-1 Layer-by-layer RHEED calibration of LMO and SMO single 

layers. Sr, La, Mn respective shutters opening is highlighted. 

 

After the calibration of LMO and SMO, the growth of LSMO is achieved 

by opening the La shutter for the 70% of the calibrated time, and 

simultaneously opening the Sr shutter for the 30% of the calibrated shutter 

time. 

A typical RHEED pattern at the end of the growth of a 

SMO/LSMO/SMO QW sample grown on STO substrate is shown in Figure 

III-2. 
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Figure III-2 Typical RHEED pattern of an epitaxial SMO/LSMO/SMO QW 

viewed along the [100] azimuth a) and along the [110] azimuth b). Both 

images are acquired at the end of the growth 

 

The (SMO)x/(LSMO)y/(SMO)z QWs (the subscripts refers to the number 

of u.c. of respective layer) have been grown fixing the thicknesses of two of 

three layers and changing systematically the third. In particular, the top and 

the bottom insulating SMO layers’ thicknesses were fixed, while the 

thickness y of the central “active” LSMO layer was systematically changed; 
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then only the thickness of the top most SMO layer (z) was varied to further 

check its influence on the electrical transport properties. 

 

III.1.1 Structural characterization 

 

Structural characterization has been performed in order to check the 

quality of the samples, so the structural properties of the samples were 

characterized by means of XRR and XRD, as described in Section II.2.1. 

XRR and XRD measurements have been also used to obtain the actual 

number of grown unit cells and the lattice parameters of single SMO and 

LSMO calibration thin films. 

In particular, XRR measurements give information about the thickness of 

the layers in the hetero-structure and on the interface roughness, as described 

in Section II.2.1.2. 

The XRRs and XRDs for the QWs grown on NGO and STO are shown in 

Figure III-3. 

 

  

  

Figure III-3 Structural characterization of SMO/LSMO/SMO QWs in 

function of the central layer thickness. Curves are shifted for clarity.  a) XRR 
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spectra of QWs grown on STO substrate where the top and the bottom SMO 

insulating layers’ thicknesses are fixed symmetrically at 14u.c. while y=15, 

13, 9, 5, 4; for one of the curves a fit of the reflectivity is shown (thick green 

line). b) XRD spectra of the same samples shown in a). c) XRR spectra od 

QWs grown on NGO substrate where the top and the bottom SMO insulating 

layers’ thicknesses are respectively fixed at 15 and 11u.c., while 

 y = 15, 13, 7, 4; for one of the curves a fit of the reflectivity is shown (thick 

red line). d) XRD spectra of the same samples shown in c) 

 

The XRR data were fitted using as fitting parameters the layers’ 

thickness, density and roughness. In both sample sets (grown on NGO and 

STO) the XRR spectra are visible up to θ = 3° demonstrating the low 

roughness of the surfaces and interfaces. For the interface roughness an error 

function profile was used; the standard deviation σ returned by the fitting 

routine is about 1 unit cell (≈ 0.4 nm) for all the samples. The strong 

modulation of the thickness fringes is due to the different layers’ density. 

In the XRD spectra shown for both sets of samples, the peaks observed at 

angles higher than the substrate ones are related to the trilayered structure. 

The measured spectra result from the coherent addition of the contribution of 

each layer of the heterostructure, giving rise to interference pattern between 

top and bottom SMO layers and to Laue fringes. These patterns can be 

reproduced by fitting the XRD data (GlobalFit - Rigaku). From these fits the 

values obtained for the thicknesses of the SMO and LSMO layers are in very 

good agreement with those calculated by the XRR. In Figure III-4, the XRD 

fits of the samples with y= 15, 13, 7 shown in Figure III-3 d), are reported 

for comparison with their twin samples grown on STO substrates in the same 

deposition run. As a reference, the fit of a single layer SMO grown on STO 

and NGO is also shown. 

 



 

63 

  

  

  

  

Figure III-4 XRD fit of the samples with y= 15, 13, 7 shown in Figure III-3 

d), in comparison with the their tween samples grown on STO substrates in 
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the same deposition run. SMO single layers on STO and on NGO are also 

reported. Zooms of (002) reflection are shown in insets.  

 

All these XRD spectra reveal ordered structures and confirm the 

thickness and the lattice parameters as well.  

QWs as a function of the top-most SMO layer’s thickness have also been 

analyzed. In Figure III-5 XRR and XRD spectra are shown. 
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Figure III-5 Structural characterization of SMO/LSMO/SMO QWs in 

function of the topmost SMO layer’s thickness. Curves are shifted for clarity.  

a) XRR spectra of QWs grown on NGO substrate where the insulating SMO 

bottom layer and the central LSMO metallic layer thicknesses are fixed 

respectively at 17u.c. and 14u.c. while z=23, 11, 9, 4; b) XRD spectra of the 

same samples shown in a) 

 

Also for these samples, XRR spectra have been fitted using thickness, 

roughness and density as fitting parameters. The low roughness of the 

surfaces and interfaces (the standard deviation σ returned by the fitting 

routine is about 1 unit cell (≈ 0.4 nm) for all the samples) is also confirmed. 
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The strong modulation of the thickness fringes is due to the different layers’ 

density. XRD spectra reveals ordered structures.  

 

III.1.2 Electrical transport characterization 

 

In order to analyze the electrical transport properties of the QWs, sheet 

resistance measurements have been performed as a function of the 

temperature using a Van der Pauw four-probe geometry (Figure II-7) with 

Indium soldered contacts. To reduce contamination of the samples any 

patterning process was avoided. To check the insulating behavior of the top 

most SMO layer, two-probe Silver paint contacts were added on the surface 

of the samples. The presence of abrupt structural transitions between the 

central conducting layer and the two SMO layers does not ensure by itself 

the confinement of the charge and, in principle, the carriers could spread 

well beyond the thickness of the LSMO layer. Two-probe low temperature 

resistance values of the SMO top most layer was always well above 200 kΩ. 

The sample set as a function of the SMO top most thickness 

((SMO)17/(LSMO)14/(SMO)z) have been grown with the aim of investigating 

its influence on the electrical transport properties. The samples with z > 10 

showed low temperature resistivity and metal-insulator temperature (TMI) 

values comparable to those observed in the bulk material, while the samples 

with z < 10, showed reduced TMI and higher low temperature resistivity 

values with the presence of minima and up-turns (Figure III-6). 
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Figure III-6 Resistivity versus temperature curves of QWs with different 

topmost SMO layer thickness z in unit cells 

 

Resistivity (or sheet resistance), the metal-to-insulator transition and the 

presence of resistivity upturns at low temperature can be used as a 

diagnostic. 

If the carriers are confined in the LSMO layer, an influence from the top 

layer thickness is not expected.  

While for z ≥ 9 the resistivity curves have similar values and behaves as a 

function of temperature, for z = 4 there is a change in resistivity curve that 

may be linked to the diffusion of carriers in the SMO layer. Indeed, the 

transport properties behavior observed in Figure III-6 can be explained only 

assuming that the carriers of the LSMO, even at room temperature, penetrate 

into the SMO top most layer only over distances shorter than 10 unit cells; 

obviously, such a distance can be influenced by the SMO/LSMO interface 

properties (band alignment, atomic intermixing, roughness) and 

SMO/vacuum interface properties. Theoretical calculations on LMO/SMO 

interfaces, limit the charge redistribution across the interfaces to around 

three unit cells (Aruta et al., (2009a); Nanda and Satpathy, (2009)). The 

value we have observed (around 9 unit cells) is not far from the theoretical 

prediction. 

In order to investigate the properties of the samples set in function of the 

central LSMO thickness, the SMO top-layers has been chosen to be always 

thicker than 10 u.c., so the transport properties were not limited by the SMO 

thickness layer. 
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Using eq. II-1, the resistivity ρ of the LSMO layer has been estimated, 

where t is the thickness of the LSMO layer obtained by XRR fits. All the 

samples, except the one with y = 1.5 (not shown in figure), showed a room 

temperature resistivity ρRT in the range 2-9 mΩcm. 

In Table III-1, the main structural and transport parameters for the QWs 

investigated as a function of the central layer thickness (y) are summarized. 

In the table, Tmin is defined as the temperature at which a local minimum is 

observed in some of the samples. 

 

Table III-1 Properties of the investigated QWs with different LSMO layer 

thickness y 

y (u.c.) TMI (K) Tmin (K) ρRT (mΩcm) ρ(300K)/ρ(77K) 

15.5 337 - 5.9 7.46 

15 327 - 4.1 8.85 

13 333 22 6.5 4.72 

10 324 32 6.1 3.89 

9 308 25 4.6 7.43 

6.5 305 21 6.4 5.53 

5 290 181 6.5 0.86 

 

In Figure III-7 the resistivity measurements (normalized at room 

temperature resistivity - ρ(T)/ρRT) as a function of the temperature and of the 

thickness of LSMO central layer are shown.  
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Figure III-7 Resistivity versus temperature curves normalized to room 

temperature, 300K, of QWs samples grown on STO (a) and on NGO (b) with 

different LSMO layer thickness y in unit cells; the curves are vertically 

shifted by a constant offset factor for clarity.  

 

All the samples investigated (grown on NGO and STO) showed a TMI 

with values dependent on y, except the one with y = 1.5 (not shown in 

figure). For the samples on STO with y = 15, 13, 10 and for the samples on 

NGO with y = 15, 13, 7 the TMI values are comparable to those of bulk 

material. At lower y, the TMI starts to decrease until a value around 250 K is 

reached for the sample with y = 4.5 on STO. The sample with y = 4 grown 
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on NGO is fully insulating. At lower temperatures, the resistivity curves 

present a shallow minimum at temperatures Tmin around 20-30 K, while they 

have a rapid upturn at temperature below 150 K for y = 5, 4.5. 

The behavior of TMI vs. y observed in all the QWs grown is shown in 

Figure III-8 a). Even for y = 5, the sample presents a TMI value above 240 K, 

confirming that the charge carriers are indeed spatially confined in the 

LSMO layer. 

 

 

Figure III-8 a)Metal to insulator transition temperature TMI as a function of 

LSMO layer thickness y. The shadowed region indicates the thickness at 
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which insulating behavior emerges at low temperature. b) resistivity 

minimum temperature as a function of LSMO layer thickness y. Two 

different regimes are clearly observed for samples with y > 5 and y ≤ 5. The 

data points are grouped dependently on minimum position: red line for 

minima occurring below 50K and blue line for minima occurring above 

150K  

 

In fact, if the carriers were spread out all over the QW thickness, the 

effective doping of the system should strongly decrease with decreasing y, 

reaching values where the metallic behavior is no longer expected and the 

TMI values should fall well below 150 K (Coey et al., (1999)). Moreover, the 

sudden drop in TMI observed for y < 8 could be related to the reduced 

dimensionality of the system induced by the layering. In terms of the 

Ginzburg-Landau approach, valid for a second type phase transition such as 

the ferromagnetic one, to which the TMI value is linked, we expect, in the 

case of a system with finite size t along one direction, a behavior given by 

the following equation 

 𝑇𝑀𝐼(𝑡) = 𝑇𝑀𝐼0
(1 − (

𝐿0

𝑡
)

2
) III-1 

where TMI0 is the bulk Metal-to-Insulator transition and L0 is the critical 

thickness below which the phase transition is no longer present. The red 

curve in Figure III-8 a), is the best fit to the data using eq. III-1 with  

TMI0 = (340 ± 6) K and L0 = (2.3 ± 0.1) u.c.. The TMI0 value is close to what 

observed in bulk LSMO, while the L0 value is in good agreement with the 

theoretical calculation in the case of SMO/LMO interfaces (Aruta et al., 

(2009a); Nanda and Satpathy, (2009)). This is in agreement also with the 

observation that the y = 1.5 sample was highly insulating. 

In Figure III-8 b), the temperature values at which a minimum in the 

trilayers low temperature resistivity appears are shown. The circles in the 

figure point out two different temperature range at which the minimum 

occurs. The red circle groups QWs with a shallow minimum appearing 

below 50 K, while in the blue one are the samples with a strong up-turn 

appearing above 150 K. The behavior observed for the points in the red 

circle can be associated to an increased confinement of charge carriers with 

decreased LSMO thickness. Such effects have been already observed in 

manganite thin films (Gao et al., (2012); Mukhopadhyay and Das, (2009); 

Wang et al., (2014)) and recently have been unambiguously related, in 

LSMO ultrathin films (Niu et al., (2016)), to quantum interference effects 

(QIE). The low temperature resistivity curves of the QWs in the red circle, 
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are well described in terms of both the three- and two-dimensional QIE 

(Maritato et al., (2006)), hindering the possibility to determine the effective 

dimensionality of the systems and the main scattering process at work. The 

temperature range at which the low temperature resistivity minima are 

observed is the one expected when the charge carrier properties starts to be 

limited by weak localization, probably induced, in the QWs case, by the 

layering. The data in the blue circle are associated to temperatures which are 

not compatible with a layer induced quantum interference effect and are 

more probably related to an increased role played by disorder when the 

thicknesses of the conducting system are reduced. We note that, the relevant 

length scale for the paramagnetic-ferromagnetic transition is the magnetic 

correlation length while those important for the QIE are the electronic mean 

free path and the inelastic scattering dephasing length (Lee and 

Ramakrishnan, (1985)).  

 

III.1.3 Preliminary results of advanced spectroscopy measurements 

on p-type QWs 

 

X-ray Absorption Spectroscopy (XAS), X-ray Linear Dichroism (XLD) 

and X-ray Magnetic Circular Dichroism (XMCD) advanced spectroscopy 

measurements have been performed in two important experiments at Elettra 

Synchrotron Light Source in Trieste, Italy, and at Diamond Synchrotron 

Light Source in Didcot, UK. 

 

III.1.3.1 Localization and orbital order in SMO/LSMO/SMO quantum 

wells 

 

This experiment was performed at Advanced Photoelectric Effect (APE) 

beamline at Elettra Synchrotron Light Source in Trieste, Italy. APE beamline 

offers the suitable flexibility in experimental geometry and light 

polarization. In this beamline, there is the possibility to have access to a 

series of surface characterization and preparation tools. The procedures 

adopted at APE, combined with the possibility of in-situ surface preparation 

and characterization, warrant accuracy useful for experiments (Panaccione et 

al., (2009)). 
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The aim of the experiment is to gain information on the carrier 

localization in SMO/LSMO/SMO QWs grown on NGO. The Mn valence as 

a function of the XAS probing depth in the heterostructures with different 

LSMO layer thickness has been studied and the probing depth in 

heterostructures with different SMO topmost layer thickness has been tested. 

Linearly polarized radiation can determine the preferential orbital occupation 

of the LSMO and SMO layers in order to determine the physics of carrier 

localization: metallic mixed manganites (e.g. in LSMO, Mn acquires mixed 

Mn3+/Mn4+ valence) are characterized by orbital disorder, while insulating 

(e.g. in SMO, Mn valence is Mn4+) ones have more marked orbital 

polarization of the Mn 3d states. Orbital polarization can be induced by 

epitaxial strain, by interface effects or by electronic correlations (Stemmer 

and Millis, (2013)).  

XAS, XLD and XMCD measurement at Mn edge on the 

SMO/LSMO/SMO trilayers at room and low temperature (100K) were 

performed. The most part of XAS measurement were performed in grazing 

incidence (30°) by changing the radiation polarization from vertical (V) to 

horizontal (H). For XMCD measurements a field of 500 Oe in pulsed mode 

was usually applied. In some samples this field wasn’t large enough to see 

any magnetic effect at 100K. 

Sum XAS spectra (given by the sum of vertical and horizontal signals) 

are shown in Figure III-9. In particular, in the top panel the sum XAS 

measurement of LSMO and SMO single layers are shown as a reference; in 

the bottom panel isotropic XAS measurements of the QWs as a function of 

the topmost SMO insulating layers are a combination of the two single 

layers. Indeed, the spectrum with the thickest SMO topmost layer (z = 23) is 

more similar to the SMO spectra, that is typical of Mn4+ (Gilbert et al., 

(2003)); while the sample with thinnest topmost layer (z = 4) is more similar 

to LSMO single layer spectra, that is typical of mixed valence Mn3+/4+.  
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Figure III-9 Top panel: sum XAS spectra of single layers of LSMO and 

SMO; bottom panel: sum XAS spectra of the QWs as a function of the 

topmost SMO insulating layer z 

 

The measurements performed are useful to obtain information on the 

orbital occupation of the samples as a function of the probing depth and as a 

function of the LSMO layer thickness, according to the aimed goal of the 

experiment. Some complementary information on the ferromagnetic order is 

also obtained by the XMCD measurements, showing that the LSMO is 
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ferromagnetic up to the lower investigated thickness (4 u.c.), revealing that 

the magnetic anisotropy can be tuned by the thickness of LSMO central 

layer. 

 

III.1.3.2  Competition between ferromagnetism and antiferromagnetism 

in SMO/LSMO/SMO heterostructures: towards magnetic oxides quantum 

wells 

 

This experiment was performed at I10 – Beamline for Advanced 

Dichroism Experiments (BLADE) at Diamond Synchrotron Light Source in 

Didcot, UK. This beamline can be used to study the magnetization and the 

magnetic structure of novel nanostructured systems. These magnetic 

properties can be probed thanks to high dichroic effects, that can be studied 

in absorption and scattering experiments. Indeed, I10 - BLADE beamline is 

composed by two branches: a scattering and an absorption branch. In 

particular, on the former, there is a soft X-ray diffractometer (RASOR) 

which consists in of a three-circle diffractometer with a polarization analyzer 

and the samples can be cooled down to 12 K (Beale et al., (2010)); on the 

latter, a high field magnet (14T along the incident beam direction) can be 

used for performing magnetic dichroism experiments and the samples can be 

cooled by variable temperature insert down to 3K. 

The aim of the experiment is the study of magnetic degrees of freedom in 

electrostatically defined heterostructures, such as SMO/LSMO/SMO QWs 

grown on NGO where the ferromagnetic (F) LSMO is embedded in 

antiferromagnetic (AF) SMO layers. The carriers are electrostatically 

confined in the LSMO and metallic properties and ferromagnetism-driven 

metal to insulator transition is observed down to 4 unit cell thick LSMO (in 

the previous experiment). Our measurement of XMCD at Mn L2,3 edge 

reveal that the magnetic anisotropy can be indeed tuned by the thickness of 

the LSMO layer. Its relationship with the antiferromagnetic moment in SMO 

is investigated via magnetic linear dichroism measurements. An important 

issue is the magnetization profile across the heterostructure’s thickness. This 

is also investigated via resonant soft x-ray scattering (RSXS) measurements. 

RSXS, which combines X-rays scattering with X-rays absorption 

spectroscopy, is an important element, site and valence specific probe to 

study spatial modulation of charge, spin and orbital degree of freedom in the 

investigated materials. In particular, this method is an important tool to 

examine electronic ordering phenomena in thin films and to zoom into 
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electronic properties emerging at buried interfaces in artificial 

heterostructures (Fink et al., (2013)). 

The samples have been measured in a high field magnet end station, 

where XMCD, XLD and hysteresis cycles were measured up to a field of 5T 

at Mn L2,3 edge (E = [630, 670] eV). The sample temperature was varied 

from 20 K to 250 K and finally to 360 K. The temperatures were chosen in 

order to be below and above the magnetic transition temperatures of SMO 

(TNéel = 230K) and LSMO (TCurie = 360K). The incidence angle of the 

radiation was varied from normal incidence to 80° for grazing incidence 

measurements.  

Magnetic RSXS at two temperatures (100K and 250K) were performed in 

the soft x-ray diffractometer (RASOR) with E=641 eV (maximum of 

XMCD) and off resonance (E = 636 eV) for the samples with y = 4u.c. and y 

= 15 u.c.. A field of 0.4 T was applied in the sample plane thanks to 

permanent magnets. 

In Figure III-10 it is reported the ratio of the maximum of XMCD in 

grazing and in normal incidence at two different temperatures with an 

applied field of 2T. The XMCD has been normalized with the maximum of 

the sum of XAS in the two polarizations in order to compare the 

measurements. 
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Figure III-10 a) ratio of XMCD intensity in GI and NI at 20 K and 250 K, 

with an applied magnetic field of 2T; b) XMLD spectra of the samples with 

(full lines) and without (dashed lines) the application of magnetic field in the 

beam direction 

 

The change in the saturation of ferromagnetic moments below the Néel 

transition temperature of SMO, observable from these measurements, can be 

linked to interaction with the antiferromagnetic moments of SMO at the 

QWs interfaces. 

The magnetic contribution to linear dichroism can reveal the orientation 

of AF moments. In zero field there is the contribution from both F and AF 
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moments (dashed lines in Figure III-10 b)), while by saturating the F 

moments in the beam direction, the AF only contribution can be singled out 

(full in lines Figure III-10 a)) (Aruta et al., (2009b)). 

RSXS measurements performed on the y = 15 u.c. sample and on the 

 y = 4 u.c. sample are reported in Figure III-11. The asymmetry between the 

positive and negative circular polarization measurements is very evident in 

the both samples. 
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Figure III-11 RSXS measurements performed on the y=15u.c. e and on the 

y=4u.c LSMO central layer thicknesses acquired at 100K. 

 

These measurements give preliminary results and need to be further 

analyzed, but the data suggest that the interaction between F and AF can lead 

to modifications of the magnetization properties of the QWs. 

 

III.2 Growth and characterization of n-type QWs 
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Infinite-layers (IL) electron-doped cuprates based heterostuctures have 

been grown at Cornell University in order to investigate the properties of n-

type QWs. In particular, a conclusive understanding of the normal-state 

transport properties of electron-doped cuprates is still missing. The study of 

SLCO and its tetragonal parent compound SCO that, with only one CuO2 

plane per unit cell and the absence of oxygen atoms in the Sr layers, is the 

simplest undoped parent structures in the cuprate family hosting high-TC 

superconductivity, can help to understand the existing puzzling scenario.  

In this work SrCuO2/Sr0.9La0.1CuO2/SrCuO2 (SCO/SLCO/SCO) QWs 

have been grown, using RHEED calibrated layer-by-layer O-MBE. The 

partial substitution in the parent compound SCO of the La3+ for the Sr2+ 

gives n-type superconductors with critical temperatures up to about 40 K 

(Armitage et al., (2010); Karimoto and Naito, (2004)).  

The structural and electrical transport properties of the fabricated n-type 

QWs have been investigated as a function of the temperature and for SLCO 

center layers with varying thickess. As in the case of SMO/LSMO/SMO p-

doped trilayers described in Section III.1, where we have investigated the 

thickness dependence of the metal-to-insulator transition temperature as an 

additional check for evaluating the quality of the produced samples and 

interfaces, here we have done the same using the superconducting transition 

temperature. Our electrical transport results exhibit dimensional effects on 

the normal state of confined SLCO mainly induced by the presence of clean 

interfaces, giving new hints in the understanding of low dimensional n-

doped cuprate systems and in the growth of p-n doped oxide-based 

proximate structures. 

(SCO)20/(SLCO)y/(SCO)15 QWs (with y = 20,15,10,5,4,3, where y is the 

thickness of the SLCO in unit cells, u.c.) samples have been grown by a 

shuttered layer-by-layer deposition process performed in purified O3 at a 

background pressure of 3 x 10-7 Torr. The films were deposited on (110) 

TbScO3 (TSO) substrates which have a distorted perovskite structure 

(pseudo-cubic lattice parameter 0.3958 nm). Both the SLCO and the SCO 

layers (with bulk in-plane lattice parameters 0.3951 nm and 0.3927 nm 

respectively) are subject to tensile strain on TSO. During the growth the 

substrate temperature, measured by a thermocouple, was 500°C. The 

samples were vacuum annealed in situ (typically around 10-8 Torr) at 510°C 

for 30 min and then they were cooled to room temperature in vacuum. The 

annealing step and the strong substrate induced tensile strain, avoiding or 

strongly reducing the presence of apical oxygen in the final samples, are 

crucial for obtaining superconductivity (Maritato et al., (2013)). The Sr and 
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Cu shutter opening times were calibrated by monitoring RHEED oscillations 

during the growth of undoped SCO films in order to obtain RHEED 

oscillations with constant intensity. The RHEED patterns were observed 

using a glancing electron beam incident parallel to one of the in-plane [110]p 

azimuths of the substrate (p subscript indicates pseudo-cubic indices). 

After the shutter time calibration, a SCO film was grown to check the 

actual number of deposited unit cells measuring the total film thickness by 

XRR and the c-axis lattice spacing by XRD analysis to confirm the 

Sr0.9La0.1CuO2 film composition (Maritato et al., (2013)). The equality 

between the number of shuttering periods and that of the actual number of 

unit cells grown is indicative of perfectly alternating complete Sr and CuO2 

monolayers. Finally, the growth of SLCO was achieved by opening the Sr 

shutter for 90% of the RHEED calibrated time simultaneously with the La 

shutter for 10% of the time of Sr monolayer. The La flux was determined by 

a QCM. In order to check the final La content in the grown SLCO film x-

rays and XPS analysis have been performed. 

The good quality of the deposited heterostructures and the smoothness of 

their interfaces was also assessed by monitoring at the RHEED pattern 

during growth. 

An example of layer-by-layer RHEED calibration is shown in Figure 

III-12. 
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Figure III-12 Layer-by-layer shutterd RHEED calibration on SCO. In the 

top panel a RHEED pattern during the calibration is shown. The intensity is 

acquired on the diffracted rod [10] (blue box and line) and on the 

incommensurate rod (red box and line).  

 

In Figure III-13 a) a typical RHEED pattern that was taken at the end of 

the growth of a SCO/SLCO/SCO QWs sample is shown. It contains extra 

streaks which disappear during the vacuum annealing step, Figure III-13 b). 

These extra streaks have been shown to be associated with a surface 

reconstruction related to excess oxygen (Harter et al., (2015)). They 

disappear as oxygen is removed during the vacuum annealing process. 
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Figure III-13 Typical RHEED pattern of a epitaxial QWs viewed along the 

[110]p azimuth at the end of growth (a) and after the vacuum annealing step 

(b). In (a) white arrows highlight extra diffraction streaks present in all as-

grown films 

 

The (SCO)20/(SLCO)y/(SCO)15 QWs (with y = 20,15,10,5,4,3, where y is 

the thickness of the SLCO in unit cells, u.c.) have been grown fixing the 

thicknesses of the top and the bottom insulating SCO layers and changing 

systematically y.  

As seen in the case of SMO/LSMO/SMO QWs (as described in Section 

III.1), a SMO topmost layer 10 u.c. thick was shown to not limit the 

transport properties of the investigated systems. SMO is a Mott insulator 

with an energy gap of 0.35 eV, while SCO has an energy gap higher than 1.2 

eV (Popovic et al., (2001)), and should ensure, for an interface roughness of 
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the same level, even better charge carriers confinement with similar 

thickness. Therefore, all SCO/SLCO/SCO QWs have been deposited with a 

topmost SCO layer thickness of 15 u.c. 

 

III.2.1 Structural characterization 

 

The samples were structurally characterized in order to check their 

quality. The XRRs and XRDs for the n-type QWs are shown in Figure 

III-14. 
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Figure III-14 a) XRR spectra of single layers (SCO and SLCO) and of the 

trilayers with different SLCO thickness (y=20, 15, 10, 4 and 3), as a function 

of the incident angle θ. A fit of the reflectivity is shown for the sample with 

y=5; b) XRD spectra of the samples shown in a) 

 

The XRR measurements have been fitted with the layers’ thickness, 

density and roughness as free fitting parameters. The Levenberg-Marquardt 

fitting routine with statistical weighting on the logarithm of the data was 

used. As shown in Figure III-14 a), the intensity oscillations are clearly 

visible for scattering angles up to θ = 4.5°, confirming the low roughness of 

the surfaces and interfaces. A Gaussian profile has been used for the 
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interface roughness; the standard deviation σ returned by the fitting routine 

is smaller than the unit cell (~0.34 nm) for all of the samples. In agreement 

with the calibration procedure and the shuttered period times used, the XRR 

measurements confirmed the bottom SCO thickness to be 20 u.c. and the top 

SCO layer to be 15 u.c., while the SLCO thickness varied from y=20 to y=3. 

In Figure III-14 b) the XRD spectra of the same samples in Figure III-14 

a) are shown. As outlined by the vertical dotted lines, the 200 diffraction 

peaks of the QWs always fall in between the 200 peaks of the SCO and 

SLCO single films, and progress, as expected, from the former to the latter 

with increasing y. In Figure III-15 XRD simulations (GlobalFit – Rigaku 

Corporation, Tokyo, Japan) are shown of the SLCO single layer (bottom 

curve) and of the (SCO)20/(SLCO)20/(SCO)15 QW (top curve). The measured 

spectra result from the coherent addition of the contribution of each layer of 

the heterostructure that gives rise to the interference pattern between top and 

bottom SCO layers and to the Laue fringes. This addition results in a visible 

asymmetry of the Laue fringes, which is clearly reproduced in the simulation 

curve (see arrows in Figure III-15); around the sample peaks in Figure III-14 

b) the fringes around the SLCO single layer are more symmetric. Again, as 

expected, this asymmetry decreases as the SLCO thickness in the QWs is 

lowered. 
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Figure III-15 Simulation of the XRD spectra for the trilayer with SLCO 

y=20 (red curve) and SLCO single layer (grey curve) 

 

III.2.2 Electrical transport characterization 

 

The electrical transport properties of the trilayers with different y values, 

have been analyzed performing sheet resistance measurements as a function 

of temperature using a van der Pauw four-probe geometry (Figure II-7) 

without patterning the samples, to reduce contamination and unwanted 

reactions. 

Using eq. II-1, the resistivity ρ of the SLCO layer has been estimated, 

where t is the thickness of the SLCO layer obtained by XRR fits and the 

sheet resistance Rsh versus temperature T curves for the QWs with different 

SLCO thicknesses are shown in Figure III-16.  

Typical errors related to Rsh values obtained using the van der Pauw 

method are around 10-15% (Van der Pauw, (1958)), and this could be the 

reason why samples with close y values (for example for y=4 and y=5) show 

very similar values of Rsh
RT and ρRT (see Table III-2). 
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Figure III-16 Sheet resistance Rsheet vs temperature T curves of trilayered 

samples with different SLCO layer thickness y in unit cells 

 

As already mentioned, the superconducting transition temperature TC in 

SLCO thin films is generally dependent on many parameters (doping, 

disorder, strain, etc.) and can, therefore, be used as an additional check 

parameter for evaluating the quality of the samples. The TC of the QWs 

shows a clear dependence on y. In particular, the TC of the sample with y = 

20 is the same as that of the 45 u.c. thick SLCO single layer, while for  

y < 15, TC starts to decrease until it disappears for the sample with y = 3. For 

thicknesses 4≤ y < 20, an upturn in the Rsh values before the superconductive 

transition is observed, becoming more evident with decreasing SLCO 

thickness. 

As mentioned, the growth of SCO/SLCO/SCO QWs with structurally 

abrupt interfaces, as confirmed by the XRR and XRD measurements, does 

not ensure by itself that the charge carriers are confined within the central 

SLCO layer. On the other hand, the observed superconducting behavior of 

the SLCO central layer gives the first indication of layering induced charge 

confinement. As shown in Figure III-17, the flat behavior of TC vs y curve 

down to y = 10, with TC values very close to that of a single 45 u.c. thick 

film, strongly suggests that the charge carriers are indeed spatially confined 

within the SLCO layer. If the carriers were spread out in a large part of the 

QW thickness the effective doping of the system should strongly decrease 

with decreasing y, reaching values where the superconducting behavior is no 



 

89 

longer expected. For example, the QW with y = 15 (TC =30.5 K), should 

have an effective doping smaller than 3% and not exhibit superconductivity 

(Armitage et al., (2010)). 

The sudden drop in TC observed for y < 10 could also be related to the 

reduced dimensionality of the system induced by the layering. The influence 

of finite size on the order parameter of a second order phase transition can be 

proven within a Ginzburg-Landau formalism as the one proposed by 

(Simonin, (1986)), where a surface term is added to the free energy 

functional compared to the standard approach. Following (Simonin, (1986)), 

one obtains that critical temperature decreases with sample thickness t 

according to eq. III-2 

 𝑇𝐶(𝑡) = 𝑇𝐶0
[1 − (

𝐿0

𝑡
)] III-2 

which has been shown to give good agreement with experimental data in 

for dirty (disordered) superconducting systems (Finkel’stein, (1994)). 

Although the data in Figure III-17 are reasonably described by using eq. III-

2, a better 𝜒2value is obtained by using eq. III-3  

 𝑇𝐶(𝑡) = 𝑇𝐶0
[1 − (

𝐿0

𝑡
)

2
] III-3 

which is based on a Ginzburg-Landau approach with conventional 

boundary conditions, appropriate in the case of a clean electronic system. 

For both approaches, respectively given in eqs. III-2 and III-3, 𝑇𝐶0
represents 

the bulk critical temperature and 𝐿0 is the critical thickness below which the 

superconductive transition is no longer present. In the insets to Figure III-17, 

the behavior and the linear fits (red lines) of TC as a function of 1/y (left) and 

of 1/y2 (right) are shown. The better agreement observed in the case of the 

1/y2 dependence is confirmed by comparing the χ2 values obtained by eq. 

III-2 and III-3, respectively 2.2 and 0.9. 

Eq. III-3 is equally applicable to ferromagnetic and superconductive 

phase transitions both described in terms of a generic order parameter 

depending only on the out-of-plane z coordinate being the system size finite 

along this direction. A few details about this calculus can be find in 

Appendix B. 
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Figure III-17 Critical onset temperature TC
onset as a function of y where the 

blue curve is the best fit using eq. III-3. In inset, the behavior and the linear 

fit (red lines) of TC
onset as a function of 1/y (left) and of 1/y2 (right) are shown 

 

The better agreement that eq. III-3 gives to the experimental data in 

Figure III-17 suggests that disorder is not playing a major role in the sudden 

decrease of TC with t. By fitting the data in Figure III-17 (blue curve), using 

eq. III-3, with 𝑇𝐶0
 and L0 free fitting parameters, we have obtained 

𝑇𝐶0
= (32.9 ± 0.6)𝐾 and 𝐿0

′ = 𝐿0/𝑧′ = (3.0 ± 0.1)𝑢. 𝑐, where 𝑧′ is the u.c. 

dimension along the z direction. The value for 𝑇𝐶0
 is very close to the 

observed TC for the single SLCO film 45 u.c. thick (TC =33 K) and the 

critical thickness 𝐿0′ = 3 𝑢. 𝑐. agrees well with our observation that the y =3 

sample is not superconducting. 

The normal state sheet resistance Rsh of the samples with 3 < y < 20 

present an upturn at relatively low temperatures with a local minimum 

temperature Tmin. The presence of these minima has been related in other 

systems to quantum interference effects (QIE) and the study of the low 

temperature resistivity curves has allowed, in this case, to infer about the 

system dimensionality (Lee and Ramakrishnan, (1985); Maritato et al., 

(2006); P Orgiani et al., (2015)). For all the SCO/SLCO/SCO samples 

showing these minima, the Tmin values are in the range 50 – 130K (as 

reported in Table III-2), and it is hard to explain their presence in terms of 

the emergence of quantum phenomena due to electronic mean free paths of 
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the same order of magnitude of the inelastic dephasing length. Tentative fits 

of the Rsh curves in Figure III-16 over this temperature range, even allowing 

for a temperature dependence of the dephasing inelastic scattering time, 

confirmed the inconsistency to the experimental data. The Tmin temperatures 

are close to the typical Néel temperatures measured in SLCO (Armitage et 

al., (2010)) and to the temperature at which a spin density-wave regime sets 

in for other electron-doped superconducting compounds (Jin et al., (2009)).  

 

Table III-2 Properties of the investigated n-type QWs with different SLCO 

layer thickness y 

y (u.c.) TC
onset (K)* Tmin (K) ρRT (mΩcm) Rsh

RT(kΩ) 

(20±1) (32±1) -- (0.12±0.02) (0.19±0.03) 

(15±1) (30.5±0.5) (61.5±0.5) (0.34±0.08) (0.8±0.1) 

(10±1) (30±1) (49.0±0.5) (0.5±0.1) (1.5±0.2) 

(5±1) (23±2) (83.0±0.5) (0.3±0.1) (1.8±0.3) 

(4±1) (13±2) (128.0±0.5) (0.2±0.1) (1.9±0.3) 

(3±1) Insulating -- (1.3±0.7) (14±2) 

* TC
onset is defined as the intersection of the straight lines describing the slope change 

before and after the superconducting transition 

 

From the sheet temperature as a function of the temperature and of the 

layering, shown in Figure III-16, a sudden transition is observed in the 

normal state properties in going from the sample with y = 4 to that with y = 

3. The sample with y = 3 does not have a Tmin, does not show any metallic 

behavior (dRsh/dT<0) and does not present any sign of a superconductive 

transition. In contrast, the sample with y = 4 has a TC
onset

 around 13 K 

exhibits metallic behavior at high temperature and displays a Tmin at about 

120 K. Such a sudden transition from a “metallic” to an “insulating” 

behavior across a change of only one unit cell, is accompanied by a change 

in the Rsh low temperature values from about 2 kΩ to more than 30 kΩ. 

Typically, in a fermionic scenario, where the charge carriers are treated as 

single electrons, a crossover between superconducting and insulating 

behavior is expected when a threshold value of Rsh = h/e2 = 25.8 kΩ is 

reached. On the other hand, if a bosonic scenario holds, with charge carriers 

treated as pairs, the cross-over Rsh threshold value is Rsh = h/4e2 = 6.45kΩ 
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(Liu et al., (1991); Orgiani et al., (2007b)). The experimental data, with the 

superconducting y = 4 sample showing a Rsh < 6.45 k and the insulating  

y = 3 one having Rsh > 25.8 kW, unfortunately do not allow to 

unambiguously discriminate between these two scenarios. 

The y = 3 and y = 4 QWs’ resistivity curves have been also analyzed at 

low temperatures (below 40K), as shown in Figure III-18.  
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Figure III-18 a) linear fit (red curves) of the low temperature (below 40K) 

conductivity for the samples with y =3 as a function of ln(T) (top) and T3/2 

(bottom); b) linear fit (red curves) of the low temperature (below  40K) 

conductivity for the samples with y = 4 as a function of ln(T) (top) and T3/2 

(bottom). 

 

In Figure III-18, the low temperature conductivity σ = 1/ρ curves for the 

sample with y = 4 (Figure III-18 a)) and y = 3 (Figure III-18 b)) are plotted 

as a function of ln(T) (bottom) and of T3/2 (top). The red curves in the figures 

are obtained following the best linear behavior as a function of ln(T) and T3/2 
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respectively. As is clear from the figures, while the σ(T) curve for the  

y = 4 sample follows a T3/2 dependence, that for the sample with y = 3 shows 

a ln(T) behavior. 

QIE and weak localization (WL) effects are expected to play an important 

role in the conductivity of layered metallic systems (Kennett and McKenzie, 

(2008)) and have been unambiguously observed at low temperatures in 

several layered compounds by electrical noise spectroscopy (as also 

described in Section III.3.1) and by magnetoresistance measurements 

(Barone et al., (2013), (2009); Niu et al., (2016); P Orgiani et al., (2015); 

Rullier-Albenque et al., (2001)). If one assumes that QIEs are playing an 

important role in the low temperature electrical properties of our systems, 

the observed change in the dependence from T3/2 to a ln(T) law can be traced 

back to a change in the dimensionality of the electronic system. In fact, the 

quantum correction term introduced by QIE in the electrical conductivity is 

dependent on the system dimensionality; specifically: a ln(T) QIE term is 

expected for two-dimensional (2D) systems, while a T3/2 contribution is at 

work for three-dimensional (3D) systems, where the electron-phonon 

interaction is the mechanism affecting QIE (Lee and Ramakrishnan, (1985)). 

Therefore, the sudden change from a T3/2 to a ln(T) conductivity dependence 

observed in these QWs going from y = 4 to y = 3, can be interpreted as a 

change in the dimensionality of the electronic system induced by the 

layering. Similar analysis performed over the same range of temperatures 

(T< 40K) on the samples with 4 ≤ y < 20, always yield conductivity 

behaviors better described by a T3/2 dependence. 

 

III.3 Doping effect on the normal and superconductive state of 

(Sr,La)CuO2 

 

The growth and characterization of n-type QWs implies the preventive 

study of the behavior of the metallic single layers that led to further 

investigation of the normal state transport properties of the infinite layer 

(Sr,La)CuO2. The infinite-layer (IL) structure of the parent compound SCO, 

with only one Cu-O2 plane per unit cell and the absence of oxygen atoms in 

the Sr layers, is the simplest undoped parent structures in the cuprate family 

hosting high-TC superconductivity. The IL cuprate structure offers unique 
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opportunities to define the proper regime of the transport properties, having 

removed the ambiguity regarding the truly conducting layer, thus making the 

investigation more general than the specific case of the electron-doped 

cuprates. 

Angle annular dark field (HAADF) Scanning Transmission Electron 

Microscopy (STEM) images of a (Sr,La)CuO2 sample, shown in Figure 

III-19, has been obtained by Kourkoutis Electron Microscopy Group in 

Cornell University, Ithaca (NY) – USA. Epitaxial growth characterized by 

abrupt interface with the substrate (TbScO3), without any diffusion and 

absence of defects, can be observed. The abruptness of interfaces plays a key 

role in the quantum confinement. The charm of this technique is the atomic 

resolution of the images. Indeed, in Figure III-19, it can be seen the atoms of 

the thin film and of the substrate as well. A schematic sketch of their crystal 

structures is superimposed on the STEM image acquired. 

 

 

Figure III-19 Two magnification of STEM image of SLCO thin film grown 

on a TbScO3 substrate. Abrupt interface is observable, without diffusion and 

absence of defects, confirming the epitaxial growth of the samples 

 

(Sr,La)CuO2 single layer thin films have been studied in function of 

doping in order to compare the doping effects with the layering effects on 

the normal and superconductive states. 
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III.3.1 The role of Quantum Interference Effects on the normal 

state  

 

Under-doped infinite-layer electron-doped (e-doped) cuprate  

Sr1-xLaxCuO2±δ (SLCO) samples clearly show a metal-to-insulator transition 

(MIT) at low temperatures and, with the aim of revealing the true nature of 

the MIT in electron-doped cuprates, electrical transport properties in 

function of temperature and of the doping of these thin films have been 

investigated. This work has allowed the determination of the fundamental 

physical mechanism behind the upturn of the resistivity, namely the quantum 

interference effects (QIEs) in three dimensional (3D) systems, providing its 

evidence because of electronic correlations. Moreover, the metallic-like 

normal state is always best described by a linear non-saturating (non-Fermi 

liquid) behavior of resistivity (Barone et al., (2016); P Orgiani et al., (2015)). 

Taking into account the QIEs contribution, a non-Fermi liquid behavior 

characterized by a linear-T dependence of the resistivity can be identified 

over the whole investigated temperature range (up to 300 K). Following 

reports on other e-doped cuprate systems, such a dependence has been 

recently attributed to critical spin fluctuations originating from an anti-

ferromagnetic quantum critical point (Butch et al., (2012); Jin et al., (2011)) 

rather than a conventional phonon-based scattering scenario at high 

temperatures as predicted by the Bloch-Grueneisen law (Abrikosov, (1988)). 

SLCO thin films have been grown at Cornell University with the same 

deposition technique describe in Section III.2 and by (Maritato et al., (2013)) 

and all the electrical transport properties have been carried out by standard 

four-point-probe DC technique in the Van der Pauw configuration (Figure 

II-7) without patterning the samples.  

Several works have pointed out the possible presence of QIEs in the low-

temperature transport properties of disordered electronic systems. In high 

quality thin films, in principle, it is possible to study the QIEs and to 

discriminate the physical mechanism sustaining them, such as Coulomb 

interactions, weak localization effects, dimensionality (e.g., 3D and/or 2D 

behavior) (Lee and Ramakrishnan, (1985)). 

In SLCO under-doped thin films (i.e. x < 0.1) the insulating state is strong 

enough to produce a clear upturn of the resistivity at low temperature, but 

despite this upturn, all the samples show a clear transition to the 

superconducting state (Figure III-20). 
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Figure III-20 Resistivity curves for three selected under-doped SLCO 

samples. The best-fit curves are also reported. Arrows indicate the 

temperatures below which the resistivity curves are no longer purely linear, 

namely T* 

 

A metallic-like behavior of the resistivity ρM(T), the quantum correction 

to the residual resistivity ρ0(T) (eqs. III-4 and III-5) or a generic insulating 

term ρI(T) (eq. III-6) con be included as follows: 

 𝜌(𝑇) = 𝜌0
2𝐷(𝑇) + 𝜌𝑀(𝑇) =

1

𝜎0+𝐵∙𝑙𝑛 (𝑇)
+ 𝜌𝑀(𝑇) III-4 

 

 𝜌(𝑇) = 𝜌0
3𝐷(𝑇) + 𝜌𝑀(𝑇) =

1

𝜎0+𝐵∙𝑇𝑝/2 + 𝜌𝑀(𝑇) III-5 

 

 𝜌(𝑇) = 𝜌0(𝑇) + 𝜌𝐼(𝑇) + 𝜌𝑀(𝑇) III-6 

The localization terms for the ρI(T) in eq. III-6 considered (e.g., 

𝜌𝐼(𝑇)~exp (𝑇0/𝑇)𝛽 with β equal to 0.25 and 0.5 for the Mott variable-range-

hopping and the Efros-Shklovskii localization (Coey et al., (1995))) gave the 

statistical χ2 valuesa fairly larger (more than 2 orders of magnitude) than 

                                                      
 

 

a 𝜒2 =
1

𝑁
∑

(𝜌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
𝑖 −𝜌𝑓𝑖𝑡

𝑖 )
2

(𝜌𝑓𝑖𝑡
𝑖 )

2
𝑁
𝑖=1  
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those obtained by considering QIEs’ formulas, thus clearly demonstrating 

that the insulating state is driven by these additional terms.  

The dimensionality of the localization mechanism (i.e. 3D or 2D) was 

determined by routinely comparing the calculated χ2 by using eqs. III-4 and 

III-5). The obtained χ2 relative to the samples shown in Figure III-20 as 

reported in Table III-3 . Moreover, in the 3D localization formula (eq. III-5), 

p depends on the dominant scattering mechanism and has a value of 1 for the 

electron-electron interaction correction term, while for weak localization 

phenomena, it becomes 3/2 for electron-electron collisions in the dirty limit, 

2 for electron-electron scattering in the clean limit and 3 for electron-phonon 

processes (Lee and Ramakrishnan, (1985)). The quadratic A·T2 power-law 

(i.e., Fermi-liquid behavior) and the linear A·T dependencies have been 

considered respectively for the metallic resistivity ρM. Therefore, A, σ0 and B, 

are the free fitting parameters.  

 

Table III-3 Normalized χ2 values for SLCO samples shown in Figure III-20; 

data refer to the fitting procedure by using the 2D (eq. III-4) and 3D (eq. III-

5 with the different exponent p) localization terms, respectively  

Sample ρ0
2D ρ0

3D 

  p = 1 p = 3/2 p = 2 p = 3 

 ( 10-5 ) ( 10-5 ) ( 10-5 ) ( 10-5 ) ( 10-5 ) 

Under#1 88 23 11 6.0 1.6 

Under#2 2.5 2.1 2.0 1.8 1.5 

Under#3 2.1 0.84 0.6 0.52 0.34 

 

Remarkably, the 3D localization formula (eq. III-5 fits the experimental 

data better with respect to the 2D term (eq. III-4) (marked in bold in Table 

III-3). Such a result was quite unexpected; it is generally assumed that the IL 

structure is a system of weakly-coupled 2D sheets, as also sustained by the 

large difference between the out-of-plane and the in-plane resistivity 

(Armitage et al., (2010); Hagen et al., (1992); Tanda et al., (1991)). 

Furthermore, the Tp/2 correction to the low-temperature conductivity also 

excluded the occurrence of localization phenomena due to the Kondo effect 

(Sekitani et al., (2003)), which however predicts, similarly to 2D-QIEs 
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correction, a logarithmic correction to the conductivity with decreasing 

temperature (Kumar et al., (2002)). The best-fit value for the exponent p in 

3D localization term was constantly 3, thus indicating that the electron-

phonon scattering mechanism is dominating the QIEs phenomenology. 

Regarding the metallic term, ρM was always best-fitted by a linear-T 

dependence which persisted down to low temperatures without any transition 

to a different power-law dependence. 

Having established that QIEs dominate the MIT transition at low 

temperature in under-doped cuprates, the possibility that they can also affect 

the transport properties of optimal-doped samples has been investigated. 

As the optimally doped regime is approached (i.e., the carrier 

concentration increases), the upturn of the resistivity  becomes more and 

more shallow and the minimum is pushed to lower and lower temperatures, 

until no upturn is observed (Figure III-21).  

A possible scenario is that QIEs contribution naturally tends to be weaker 

and weaker with increasing metallicity and does not abruptly vanish. 

Therefore, the quantum correction to residual resistivity term in the fitting 

formulas even for the optimal-doped SLCO sample can be kept. 

For comparison, the resistivity curve has been fitted also by a generic Tn 

power law dependence  

 𝜌(𝑇) = 𝜌0 + 𝐴 ∙ 𝑇𝑛 III-7 

with ρ0, A and n as fitting parameters. As successfully demonstrated for a 

similarly strongly correlated system (Mercone et al., (2005); Orgiani et al., 

(2007a)), the best-fit value of n helps to reveal the main active scattering 

process among several different ones, ranging from the interaction with 

thermal as well as acoustic phonons, spin-wave scattering phenomena, and 

others (Abrikosov, (1988); Kittel, (2005); Mott N.F., (1990)). It is important 

to emphasize that the power low exponent n of the metallic contribution ρM 

in eqs. III-4 and III-5 is fixed at 1 or 2, while in ρmetal (eq. III-7) n is free to 

vary, so the free fitting parameters are 3 for both the equations considered, 

therefore the χ2 values are comparable. 
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Figure III-21 Resistivity curve for a representative SLCO sample 

characterized by an electronic doping close to optimal condition. The fitting 

curves are also reported. Arrow in the main panel indicates the temperature 

below which the resistivity curves are no longer purely linear; in the inset, 

the resistivity behavior and fitting curves are magnified in proximity of the 

superconducting transition (arrow indicates the lower limit of fitting range) 

 

The result, reported in Table III-4, is that a linear-T and a QIEs 

localization term better fit the experimental data of the optimally doped 

SLCO sample than a Tn power law dependence (Butch et al., (2012)). In 

addition, the best-fit value n = 1.65, obtained by fitting the resistivity curve 

in Figure III-21 using eq. III-7,  cannot be trivially correlated to any known 

scattering process. Furthermore, the 3D localization term ρ0
3D always 

showed the smallest χ2 value and the best-fit value (p = 3) pointed again 

towards the dominant electron-phonon scattering mechanism driving the 

QIEs.  

In other words, even though it is not strong enough to produce an upturn 

of the resistivity, the presence of the QIEs-driven insulating state might 

considerably affect its evolution in proximity to the superconducting 

transition by flattening the low-temperature regime of ρ(T). 
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Table III-4 Statistical χ2 values as well as best-fit parameters for the 

optimally doped SLCO sample shown in Figure III-21. 

 

Sample n A σ0 B χ2 

  μΩcmK-1 10-3 (μΩcm)-1 10-6 (μΩcm)-1K-3/2 10-5 

ρ0
3D 

(p=3) 
1 0.96 6.3 21.9 1.21 

ρ0
2D 1 0.82 3.6E-14 4.1E3 78.4 

ρmetal 1.65 0.016 9.85 -- 3.86 

 

III.3.1.1 Noise spectroscopy measurements 

 

To better clarify the presence of QIE in our samples, we have also 

performed noise spectroscopy measurements. 

Electrical noise spectroscopy is a very sensitive and non-destructive 

technique, such as electric noise, has been used to analyze the samples, 

because it is capable to reveal a strict connection between WL effects and 

specific properties of the low-frequency 1/f noise  (Barone et al., (2016); P 

Orgiani et al., (2015)). In particular, a linear dependence of the voltage-

spectral density SV on the bias current (I) is observed in systems undergoing 

a WL transition (Barone et al., (2015), (2013), (2009)), while far from the 

weak localization region, the usual quadratic behavior of SV vs I is found. 

The origin of this unusual electric noise mechanism appears to have a 

universal nature, whose explanation has been given in terms of non-

equilibrium universal conductance fluctuations (Barone et al., (2013)). A 

summary of these measurements can be find in Appendix C. 

The experimental results are very similar to the ones already reported for 

superconducting cuprates and manganite thin films in weak localization 

regime (Barone et al., (2013), (2009)). In particular, standard resistance 

fluctuations (whose contribution is proportional to I2) are the source of the 

electric noise when the system behaves as a metal at high temperatures and 

close to the superconducting transition, where a noise peak due to fluctuation 

of the superconducting percolation network is observed (Kogan, (1996)). 

Conversely, the appearance of a linear bias dependence of the 1 / f noise 

(large a1 parameter) is directly related to the occurrence of QIEs. 
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III.3.2 Low temperature hidden Fermi-liquid charge transport in 

(Sr,La)CuO2 

 

As introduced in Section I.4.2.3, most of studies on the cuprate phase 

diagrams have been performed on p-type materials. Nevertheless, with the 

few data available for n-doped materials it can be possible to point out 

similarities and differences between these two compounds (Armitage et al., 

(2010)), such as the antiferromagnetic behavior present in the lower doping 

part of their phase diagram or a sudden upturn of the resistivity in the lower 

doped samples (Armitage et al., (2010); Rybicki et al., (2016)). In addition, a 

linear temperature dependence of the resistivity is observed at temperatures 

T higher than doping-dependent T* for both n and p-doped materials. It is 

recalled that the temperature T* separates the so called strange-metal regime 

(T > T*) from the region with the opening of a pseudo-gap (Gurvitch and 

Fiory, (1987); Li et al., (2008); Shekhter et al., (2013)). 

The opening of the pseudo-gap below T* has been attributed to non-FL 

behavior in proximity of a quantum transition to the antiferromagnetic phase 

(Keimer et al., (2015); Li et al., (2009); Shekhter et al., (2013)). 

Moreover, the cotangent of the Hall angle (cotg(θH)) of the p-doped 

HgBa2CuO4±δ compound, presenting only one CuO2 plane per unit cell, 

follows a T2 dependence independently of doping with no appreciable 

changes upon crossing the temperatures T** and T* (Barišić et al., (2017)). 

More recently, Li et al. observed similar behaviors in n-doped cuprates. In 

particular, values of the sheet resistance coefficients very close to those 

measured for p-doped compounds with the same doping level have been 

observed along with transport scattering rates similar to the ones obtained in 

the case of p-doped materials, suggesting a universal description of the 

normal state in cuprates, independently of doping, compound and carrier 

type (Li et al., (2016)). Probably due to scarcity of available samples, the 

analysis done by Li et al. have not been performed on SLCO samples. These 

materials, thanks to their simple crystal structure presenting only one CuO2 

plane per unit cell, remove the ambiguity about the effective thickness of the 

conductive layer. Indeed, analyzing the transport properties of cuprates, a 

critical uncertain is always related to their complex structure and to the 

ambiguity in the definition of the effective thickness of the conducting layer. 
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In this work, the same analysis done by Li et al., has been performed also on 

SLCO films. The obtained results asses the presence of FL universal 

behaviors in the low-temperature transport properties of IL n-doped 

superconducting cuprates, removing the ambiguity regarding the truly 

conducting layer, and allows more general investigation of the 

superconducting and normal-state properties in these materials, 

independently of doping and carrier type.  

The samples were characterized by XRDs and electrical transport 

measurements as well, as already described in previous Sections. The 

resistivity has been estimated using eq. II-1, pointing out again that in case 

of electron-doped IL cuprates there is no ambiguity in identifying the truly 

conducting layering.  
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Figure III-22 Sheet resistivity as a function of temperature and doping 

 

In Figure III-22, the sheet resistivity curves as a function of the 

temperature for SLCO films with different doping are shown, where 𝜌′ =

𝜌/𝑐 with c the measured crystal axis along the growth direction  

(~ 0.34 nm). At high temperature (up to T*) the 𝜌′(𝑇) curves of underdoped 

and optimally doped samples (n ≤ 0.1) show a linear behavior with no sign 

of saturation, while the curves of overdoped samples (n > 0.1) present a 

tendency to saturation becoming more clear with increasing doping (not 

shown here). 
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In Table III-5 the main structural and electrical transport values for the 

investigated samples are reported, where Tmin is defined as the temperature of 

the upturn (the local minimum in the 𝜌′(𝑇) curves), the onset of the 

superconducting critical temperature TC
onset is defined as the intersection of 

the straight lines describing the slope change before and after the transition, 

𝜌′0 (Ω/sq) is the residual sheet resistivity, T* is the lowest temperature 

describing a linear behavior in temperature of the resistivity and T** is the 

highest temperature describing a quadratic temperature dependence of the 

resistivity.  

 

Table III-5 Main structural and electrical transport values for the 

investigated samples 

n TC
onset (K) Tmin (K) 𝝆′𝟎 (Ω/sq) T* (K) T** (K) 

0.057 19±1 98.0±0.5 3313.2±0.9 < 290 < 290 

0.058 20±1 79.0±0.5 2731±1 268±1 248±1 

0.061 22±2 69.0±0.5 2343.5±0.9 213±3 203±1 

0.062 23±2 64.0±0.5 4250±1 246±4 215±5 

0.069 27±2 69.0±0.5 2744.1±0.9 231±2 191±3 

0.073 29±1 65.5±0.5 2400.0±0.2 221±1 170±1 

0.085 33±2 No min 1394.4±0.6 194±2 160±5 

0.1 35.0±0.5 No min 1147.4±0.3 222±1 163±1 

 

The behaviors of Tc
onset, T* and T** as function of doping are shown in 

Figure III-23. The lines describe the doping dependence of T* and T**. 
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Figure III-23 Doping dependence of T*, T** and TC
onset of the investigated 

samples; the dashed lines describe the behavior of T* and T** 

 

As already described in Section III.3.1, an upturn in the 𝜌′(𝑇) values 

before the superconductive transition is observed in underdoped samples, 

becoming more evident with decreasing doping values.  

The low-temperature upturn in the resistivity curves of underdoped 

cuprates has been related to several mechanism, such as Kondo scattering 

(Sekitani et al., (2003)) or weak localization (WL) effects (Hagen et al., 

(1992)). Indeed, in SLCO films the presence of WL has been proved by low-

frequency voltage spectral density measurements and it has been also 

proposed to influence the normal state transport properties in a larger 

temperature range, where the three-dimensional (3D) localization 

mechanism associated to the electron-phonon scattering was shown to give 

always a better agreement to experimental data than the two-dimensional 

(2D) mechanism, associated to a logarithmic correction (Barone et al., 

(2016); P. Orgiani et al., (2015)), as described in Section III.3.1. 

A further analysis performed on SLCO films as a function of doping has 

been carried out following the work of Li et al. in order to compare the 

results (Li et al., (2016)). So the sheet resistivity has been described using 

three terms:  
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 𝜌′(𝑇) = 𝜌′0 + ∆𝜌′(𝑇) + 𝐴2⧠𝑇2 III-8 

where 𝜌′0 is the residual resistivity (T = 0 K), in general very close to the 

resistivity value in Tmin, 𝜌′(𝑇𝑚𝑖𝑛), and the ∆𝜌′(𝑇) term is associated to the 

low temperature upturn and has been expressed, in agreement with the work 

of Li et al., to exhibit a logarithmic temperature dependence with  

 ∆𝜌′(𝑇) = −𝐴𝑙𝑜𝑔⧠𝑙𝑜𝑔 (
𝑇

𝑇𝑙𝑜𝑔
) III-9 

Fixing  

 𝐴0⧠ = 𝜌′0 − 𝐴𝑙𝑜𝑔⧠𝑙𝑜𝑔 (
𝑇𝑙𝑜𝑔

1𝐾
)      

The eqs. III-8 and III-9 can be written again: 

 𝜌′(𝑇) = 𝐴0⧠ − 𝐴𝑙𝑜𝑔⧠𝑙𝑜𝑔 (
𝑇

1𝐾
) + 𝐴2⧠𝑇2 III-10 

Li et al have fitted their data by the eq. III-10, using 𝐴0⧠, 𝐴𝑙𝑜𝑔⧠ and 𝐴2⧠ 

as free fitting parameters, that are A0, Alog and A2 normalized to the number 

of CuO2 planes per unit cell. 

For both n and p-doped cuprates, Li et al. observed that the 𝐴2⧠ 

coefficients are independent by the particular type of material and show 

similar values at the same level of doping and is inversely proportional to the 

charge carrier concentration. They also found 𝐴0⧠ ∝ 𝑛−3.4±0.3 and 

 𝐴𝑙𝑜𝑔⧠ ∝ 𝑛−3.6±0.3 doping dependencies with an approximately linear 

relationship between  𝐴0⧠ and 𝐴𝑙𝑜𝑔⧠ holding over many order of magnitude. 

In Figure III-24, the 𝐴2⧠ (blue triangles) values as a function of the 

doping x obtained by fitting the low temperature resistivity curves of the 

samples reported in Table III-5 with eq. III-10, are shown and these values 

show a 1 / n dependence which is in reasonable agreement with data points. 

In addition, the 𝐴2⧠ values are very close to those obtained for other electron 

doped superconducting cuprates at similar doping levels (Li et al., (2016)). 
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Figure III-24 𝐴2⧠ values obtained by fitting the resistivity curves with eq. 

III-11 (blue triangle) and with eq. III-12 (green stars) 

 

The 𝐴0⧠ values obtained by the same fitting procedure are also dependent 

on the doping level with 𝐴0⧠ ∝ 𝑛−2.5±0.6 (Figure III-25 a)) which is close, 

inside the accuracy, to the exponent obtained by Li et al. for their n-doped 

materials. However, the 𝐴𝑙𝑜𝑔⧠ values found for the samples with the 

minimum, i.e. with doping n < 0.085, do not show a clear dependence upon 

the doping (Figure III-25 b)), even though a linear relationship among the 

𝐴0⧠ and 𝐴𝑙𝑜𝑔⧠ is still valid (Figure III-25 c)) with data points falling on the 

same curve followed by (Li et al., (2016)). 
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Figure III-25 Doping dependence of a) 𝐴0⧠ and b) 𝐴𝑙𝑜𝑔⧠ obtained by fitting 

the resistivity with eq. III-8; c) scaling relation between 𝐴𝑙𝑜𝑔⧠ and 𝐴0⧠. The 

power-law exponents are reported as insets 

 

These results, with the 𝐴2⧠ coefficients showing 1 / n dependence and 

values close to those observed in other n-doped superconducting cuprates at 

comparable doping levels, along with the similar n-scaling law of the 𝐴0⧠ 

coefficients, indicate the possible presence in the low temperature range of 

FL behaviors also in these IL n-doped cuprates.  

As shown in Figure III-25 b), 𝐴𝑙𝑜𝑔⧠ values doesn’t show a clear doping-

dependence, but it exhibits a linear dependence with the 𝐴0⧠ values (Figure 

III-25 c)), as for the other n-doped cuprates investigated by (Li et al., 

(2016)). This behavior can be probably traced back to the fact that in the low 

temperature range (Tmin < T < T**), the resistivity curves of underdoped 

samples are plausibly described in terms of the eq. III-11 
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 𝜌′(𝑇) = 𝜌′0 + 𝐴′2⧠𝑇2 III-11 

As a consequence, the difference between 𝐴0⧠ and 𝐴𝑙𝑜𝑔⧠ appearing in eq. 

III-10 is related to the constant value of the residual resistivity 𝜌′0, ensuring 

the linear dependence between 𝐴0⧠ and 𝐴𝑙𝑜𝑔⧠ values, independently of the 

particular doping dependence.  

The resistivity curves of the samples considered have also fitted using eq. 

III-11. The 𝐴′2⧠ values (green stars in Figure III-24) obtained by this 

procedure don’t differ much from the 𝐴2⧠ values obtained with eq. III-10, as 

it can be observed in Figure III-24. In the underdoped region, the 𝐴′2⧠ 

values are slightly higher than the 𝐴2⧠ ones and, approaching the optimally 

doped regime, they start to coincide. 

The results discussed seem to confirm, in agreement to the work of Li et 

al., the presence of hidden FL charge transport in the low temperature 

properties of IL n-doped cuprates.  

To further analyze the normal state transport properties of these samples, 

Hall measurements have been performed on a typical underdoped sample  

(n ≈ 0.07).  

In Figure III-26 a) , it is shown the temperature behavior of 1 / RH, where 

RH is the Hall coefficient.  

After the subtraction of the logarithmic contribution (Figure III-26 b)), 

that is a non-universal contribution, it is find that  

 𝑐𝑜𝑡(𝜃𝐻) =
𝜌𝑖

𝐻𝑅𝐻
 III-12 

where 𝜌𝑖 = 𝜌 − (𝐴0 − 𝐴𝑙𝑜𝑔log (
𝑇

1𝐾
)). 

As it is clear from Figure III-26 c), the cot(𝜃𝐻) has a T2  

(cot(𝜃𝐻) ∝ 𝐶2𝑇2) dependence up to temperature of about 120K, close to the 

T** value and of the same order of the typical Néel temperature observed in 

underdoped cuprates (Armitage et al., (2010)). Moreover, the slope of the 

cot(𝜃𝐻) in this temperature range has a value of C2 = (0.0262 ± 0.0004) K-2, 

very close to the universal value found for other p and n-doped cuprates 

(Barišić et al., (2015); Li et al., (2016)). 

The T2 dependence is lost at higher temperatures and this is probably due 

to the presence of more complex Fermi surface shape with the Hall 

coefficient ceasing to be a representative measure of the carrier densities 

(Onose et al., (2001)). 
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Figure III-26 a) 1/RH data obtained for an underdoped sample; b) resistivity 

after subtraction of fitted logarithmic contribution; c) cotangent of Hall 

angle (the dashed red line indicate 𝑐𝑜𝑡(𝜃𝐻) ∝ 𝐶2𝑇2) 

 

III.3.3 X-ray absorption spectroscopy (XAS) study of annealing 

process on (Sr,La)CuO2 thin films 

 

The superconducting properties of SLCO thin films are strongly affected 

by sample preparation conditions. In particular, a reduction process is 

needed for all electron doped cuprates in order to get superconductivity, but 

there is often little control on this step, especially on thin film samples. 

Therefore, the optimization of this step is crucial for the quality of SLCO 

thin films and, consequently, of the n-doped QWs based on this compound.  
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It is well known that e-doped cuprates need an oxygen reduction process 

in order to become superconducting (Armitage et al., (2010); Fournier, 

(2015); Li et al., (2009)), so for the SLCO thin films a vacuum annealing is 

performed in situ after growth (Maritato et al., (2013)).  

The mechanism activated by the reduction process is still unclear; it is 

commonly accepted that it removes excess oxygen present at the Cu apical 

site (that is unoccupied in the n-doped cuprate structures, while apical 

oxygen is present in p-doped compounds) (Armitage et al., (2010); Li et al., 

(2009)). In contrast with this notion, a transmission microscopy study of  

electron-doped Nd2-xCexCuO4 has revealed that other structural modification 

occur, involving the migration of Cu ions, while the amount of oxygen 

removed is usually very small (Adachi et al., (2013)) and close to the 

detection limit of many experimental methods. Moreover, experiments with 

higher sensitivity to oxygen removal, such as neutron diffraction, are 

extremely difficult to perform on thin film samples. 

Signature of apical oxygen removal during the annealing process have 

been reveled thanks to XAS measurements. In particular, a systematic study 

of annealing effect (and consequently of the oxygen content) has been done 

on a set of SLCO samples. These samples were firstly structural 

characterized (XRDs measurements) as well as the electrical transport 

properties and then XAS measurements were performed on Cu L2,3 and O K 

edges. Indeed, XAS measurements have revealed the modification of Cu 

coordination and of the density of states (DOS) at the conduction band; this 

is related to the signatures of apical oxygen removal during the annealing 

process. 

Epitaxial SLCO films were grown on DyScO3 (110) substrate using 

RHEED calibrated shuttered layer-by-layer MBE technique, as described in 

Section II.1 (Maritato et al., (2013)). The samples have been annealed in-situ 

in vacuum for 15, 30 and 60 min at the end of the growth, while the “as-

grown” sample (0 min in Figure III-27) was cooled down in deposition 

atmosphere. The as-grown samples were cooled down in the same pressure 

of distilled ozone in which they were deposited, then it was annealed in a 

chamber connected to the XAS measurement chamber in 1 Torr of Ar. 

The samples were monitored by RHEED pattern during the annealing 

process, following the evolution of the surface reconstruction (Harter et al., 

(2015)).  

XAS spectra were measured at Elettra Synchrotron in Trieste, Italy at Cu 

L2,3 and at O K edges. Furthermore, at Elettra the as-grown samples were 

annealed at 350°C in 1 Torr of Ar for timed ranging from 5 to 15 min, using 



 

112 

 

a chamber connected to the XAS measurement chamber. Consequently, 

XAS spectra were measured before and after each annealing step. 

The measurements were performed using linearly polarized light with the 

electric vector E parallel (H polarization) and perpendicular (V polarization) 

to the synchrotron orbit and XLD and XAS spectra are measured, as 

described in Section II.3.3.  

XLD is sensitive to the axial anisotropy of the electron DOS induced, in 

this case, by orbital occupation of the Cu 3d states. Indeed, when 𝑬 ⊥ 𝑐, 

transition to states mainly originating from out-of-plane orbitals determine 

the absorption signal (such as Cu 3d3z
2

-r
2 or O 2pz), while those originating 

from in-plane orbitals are probed with 𝑬 ∥ 𝑐 (such as 3dx
2
-y

2 or O 2px,y).  

For the quantitative analysis of XAS spectra, the isotropic absorption 

spectrum (XASISO) has been obtained as a combination of XAS spectra 

acquired with vertical (V) and horizontal (H) polarizations: 

𝑋𝐴𝑆𝐼𝑆𝑂 = (1 − 𝑡𝑎𝑛2(30°)) 𝑋𝐴𝑆(𝑉, 30°) +
1

𝑐𝑜𝑠2(30°)
𝑋𝐴𝑆(𝐻, 30°) 

or equivalently by using XAS(H,90°) in place of XAS(V,30°). 

XRDs and electrical transport measurements were performed on this set 

of samples, as shown in Figure III-27 (a) and (b). 
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Figure III-27 (a) XRD spectra as a function of in-situ annealing duration, a 

zoom of (002) diffraction peak showing a minor variation in the position of 

the peak for 15-60 min annealed samples is shown in inset; (b) resistivity as 

a function of the temperature and of annealing of the samples in (a), a zoom 

of superconductive transition showing that the optimized annealing duration 

is 30 min is shown in inset 

 

From XRD spectra (Figure III-27 (a)) of annealed samples an out-of-

plane lattice parameter of 0.341 nm is obtained, while the as-grown sample 
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(0 min) has a maximum corresponding to 0.356 nm and at the same time it is 

boars with a tail towards higher angles. This suggests that the as-grown 

sample is characterized by some degree of structural disorder with a 

distribution of the out-of-plane axis values. 

The resistivity of annealed samples are very similar as well as the 

superconductive critical temperature, as shown in Figure III-27 (b). This 

suggests that even a shorter annealing is effective in removing most of 

excess oxygen, even though TC is optimized by 30 min annealing. The 

resistivity of the as-grown sample is higher and it is metallic from room 

temperature down to ≈80 K, where a metal-to-insulator transition is 

observed. 

On this set of samples, XAS measurements have been performed. 

A strong absorption is expected at photon energy E = 931.4 eV, 

corresponding to the 3𝑑9 ⟶ 2𝑝3𝑑10 transition (2𝑝 represents an hole in the 

2p core level), because the majority of Cu ions in SLCO are in the 2+ 

oxidation state. Together with this main peak, Cu2+ is characterized by a 

weaker peak at E ≈ 936 eV, corresponding to the 2𝑝3𝑑94𝑠 final state 

(Tanaka et al., (2008)). Upon electron doping, a peak at E ≈ 934 eV has been 

reported in SLCO that can be attributed to Cu1+ 3𝑑10 ⟶ 2𝑝3𝑑104𝑠 

transition (Liu et al., (2001); Tanaka et al., (2008)). States arising from hole 

introduction, instead, show a peak at E ≈ 932.9 eV and such hole-related 

states have been reported for hole doped-cuprates (Fink et al., (1994)) and 

apical-oxygen rich IL compounds BaCuO2+x (Aruta et al., (2008)). 

Furthermore, a low energy (LE) component 0.4-0.5 eV below the main Cu2+ 

peak (i.e. 931.4 eV) was reported in the XAS measurements of cuprate-

manganites interfaces and this was interpreted as originating from a 

modification of Cu coordination rather than valence modification  

(Chakhalian et al., (2007); Yang et al., (2012)). In Figure III-28, these 

known transition-related peaks are highlighted.  
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Figure III-28 (a) XAS Cu L3 edge spectra with H polarization and incident 

angle of 90° (red filled symbols) and 30° (black hollow symbols) of the as-

grown and in-situ annealed samples; (b) normalized XLD at XASISO 

spectrum of Cu L3 spectra of the as-grown, 5 min and 20 min Ar annealed 

and in-situ annealed sample. The spectra are vertically shifted for clarity 

 

The in-situ annealed samples are characterized by a dominant peak 

corresponding to Cu2+ (i.e. 931.4 eV) and a related strong dichroism, as 

shown in Figure III-28 (a). The peak close to 934 eV can be attributed 

mainly to electron-doping, while the main peak in the as-grown sample is at 

930.9 eV, corresponding to the low energy (LE) component.  
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The maximum XLD (shown in Figure III-28 (b), normalized to the 

respective maximum of isotropic XAS spectrum) for the in-situ annealed 

sample is found at the same energy of XAS (i.e. 931.4 eV), while the XLD 

maximum for the as-grown sample is observable at higher energy and the 

intensity is strongly reduced and it is broader than the in-situ one. As the 

oxygen is removed from the as-grown samples by annealing in Ar, the XLD 

spectra change by increasing intensity, reducing broadening and shifting the 

maximum to a lower energy. 

This behavior is more appreciable in Figure III-29 where the energy of 

XLD maxima and of the isotropic XAS spectra as a function of normalized 

XLD intensity are shown. While the maximum of isotropic spectra in the 

oxygen rich samples is at lower energy than the peak of the in-situ annealed 

sample, the XLD maximum exhibits the opposite behavior. For the in-situ 

annealed sample, the maxima are coincident. 

 

 

Figure III-29 Position of the maximum of Cu L3 XASISO (red circles)and 

XLD (black squares) as a function of the normalized XLD intensity maximum 

 

The square planar coordination of Cu ions is strongly perturbed by excess 

oxygen, as can be deduced by comparing the XAS spectra of in-situ 

annealed and as-grown samples (Figure III-28). Oxygen excess also 

increases the Cu valence, introducing holes in order to balance charges. 
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The normalized XLD intensity in the as-grown sample is smaller by a 

factor of 3 with respect to the in-situ annealed one. Another signature of a 

perturbation of the square planar coordination is that the main L3 peak 

appears at lower energy in the as-grown sample than the in-situ annealed 

one, as better appreciable in Figure III-29. 

The isotropic XAS spectra have been fitted with a sum of Gaussian 

curves, as explained by (Galdi et al., (2018)). The fit results indicate that the 

hole component in the as-grown sample is broader than the one observed in 

the in-situ annealed sample, so the metallic behavior of the resistivity as a 

function of temperature down to ≈ 80 K has been attributed to hole carriers 

(Figure III-27 (b)). 

These samples have also been measured at the O K edge that corresponds 

to the 1𝑠 ⟶ 2𝑝 transition (Figure III-30).  

The in-situ annealed sample shows an increased dichroism compared to 

the as-grown one and it is particularly relevant in the pre-edge region 

associated to the hybridization of the oxygen with the Cu 3d states.  

 

 

Figure III-30 Comparison of O K edge XAS spectra of as grown and in-situ 

annealed samples 

 

A characteristic feature of electron-doped cuprates is that the pre-edge is 

only detected with 𝑬 ⊥ 𝑐 as a consequence of orbital occupation and of Cu-

O hybridization in plane with O 2𝑝𝑥,𝑦 orbitals (Fink et al., (1994)), as shown 
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in the green box in Figure III-30. In particular, for the as-grown sample the 

non-zero absorption for 𝑬 ∥ 𝑐 can be attributed to the presence of apical 

oxygen holes. Anyway, The O K edge XAS of as-grown samples is different 

from the typical hole-doped cuprates one, despite the presence of hole 

carriers. 
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Conclusions 

 

 

 

 
 systematic study of the properties of confined systems, both n and 

p-doped, has been done in this dissertation. Evidence of quantum 

confinement in both the QWs analyzed has been discussed.  

It has been observed that in p-doped SMO/LSMO/SMO QWs, around 

room temperature, the metal-to-insulator transition temperature (TMI) is 

strongly influenced by LSMO thickness values, presenting a sharp drop for 

the central layer thickness y < 8 u.c. This drop is well described in terms of a 

Ginzburg-Landau approach for systems with a finite size along one 

direction. Estimation of the critical thickness below which the transition 

disappears, obtained by fitting the experimental data with eq. III-1, agrees 

well with previous theoretical evaluations. At low temperature, shallow 

resistivity minima related to quantum interference effects are observed for 

the samples whom central layer thicknesses in 5 < y < 15, while resistivity 

upturn with a fast increase of resistivity values are observed for y < 5 at 

temperature higher than 150K. These results suggest the presence of spatial 

charge carrier confinement in the investigated p-doped QWs and point out 

the ability of small gap Mott insulator material, such as SMO, to be 

successfully used in QWs structures.  

A parallel analysis has been done on n-doped SCO/SLCO/SCO QWs, in 

fact the superconducting transition temperature TC were strongly influenced 

by the SLCO layer thickness, presenting a sharp drop for y < 10 u.c. (where 

y is the thickness of the central layer also in this case). This drop is well 

described, also in this case, in terms of a Ginzburg-Landau approach for a 

clean system with a finite size along one direction, which gives a better 

agreement to the experimental data than other models based on dirty 

(disordered) superconducting systems. The normal state sheet resistances of 

the samples with 3 < y < 20 present an upturn at relatively low temperatures 

with a local minimum temperature in the range [50-130] K, close to the 

typical Néel temperature measured in SLCO. A sharp cross-over from 

A 
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superconducting to insulating behavior has been observed going from the 

sample with y = 4 u.c. to the one with y = 3 u.c., associated to the change in 

the temperature dependence of the resistivity curves from a T3/2 to a ln(T) 

behavior. Such a change can be traced back, in a quantum interference effect 

scenario, to a change in the dimensionality of the electronic system. These 

results suggest the presence, also in these systems, of layering induced 

spatial charge confinement strongly influencing the electrical transport 

normal-state properties of the systems.  

These results open the way to new developments in the growth of n and 

p-doped oxide-based QWs and quantum devices. Furthermore, the relevance 

of these systems is not only related to the study of their properties as a 

function of the relative thickness of each layer or to a future development of 

growing proximate n-p doped DQWs, but also the possibility to tune the 

density of carrier changing the doping level of the central layer. 

The behavior of SLCO single layers as a function of doping has been, 

therefore, analyzed. In particular, the mechanism behind the low temperature 

resistivity upturn of underdoped samples, which clearly show a metal-to-

insulator transition, has been associated to the quantum interference effects. 

In particular, by suitably fitting the low temperature resistivity curves, the 

three-dimensional (3D) localization mechanism associated to the electron-

phonon scattering was shown to give a better agreement to the experimental 

data (in terms of χ2 test) when compared to the two-dimensional (2D) 

mechanism associated to the logarithmic correction. The occurrence of weak 

localization effects has been unambiguously proven by low-frequency 

voltage spectral density measurements, which show a linear dependence of 

the 1 / f noise on the applied bias current at low temperatures, whereas the 

usual quadratic dependence of the 1 / f component occurs in the 

superconducting and metallic regions.  

At high temperature, the analysis of the resistivity has allowed the 

determination of a non-Fermi liquid metallic phase, which is dominated by a 

linear temperature dependence of the resistivity for all the investigated 

samples. While a robust and universal hidden Fermi liquid charge transport 

in the low temperature properties of the analyzed samples is present. In 

particular, these last results allow more general investigation of 

superconducting and normal state properties independently of doping and 

carrier type. Indeed, values of the sheet resistance coefficients very close to 

those measured for p-doped compounds with the same doping level have 

been observed, suggesting a universal description of the normal state in 

cuprates, independently of doping, compound and carrier type. 
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A further support to these observations is given from the Hall 

measurements performed on a typical underdoped sample (~7% doped). The 

cotangent of Hall angle (cot(𝜃𝐻)), disentangled from the logarithmic 

contribution of the resistivity curve, as a function of temperature  has been 

analyzed. It has been observed that the cot(𝜃𝐻) has a T2 (cot(𝜃𝐻) ∝ 𝐶2𝑇2) 

dependence up to temperature of about 120K, close to the T** value and of 

the same order of the typical Néel temperature observed in underdoped 

cuprates. In particular, the slope of the cot(𝜃𝐻) in this temperature range has 

a value of C2 = (0.0262 ± 0.0004) K-2, very close to the universal value 

found for other p and n-doped cuprates. 

The superconducting properties of SLCO thin films are strongly affected 

by sample preparation conditions. In particular, a reduction process is 

needed for all electron doped cuprates in order to get superconductivity, but 

there is often little control on this step, especially on thin film samples. 

Therefore, the optimization of this step is crucial for the quality of SLCO 

thin films and, consequently, of the n-doped QWs based on this compound.  

Indeed, what occurs during the reduction process is unclear, but, thanks 

to X-ray absorption spectroscopy measurements at Cu L2,3 and O K edges on 

SLCO thin films with different post-growth treatments, evidence of the 

modification of Cu coordination and of the density of states at the 

conduction band have been observed. These are signature of apical oxygen 

removal during annealing process. In order to obtain these results, different 

annealing treatments have been performed on the samples. A set of samples 

has been treated with vacuum annealing in-situ post growth of different 

duration (i.e. 60 min, 30 min, 15 min and 0 min, in particular the last one 

was cooled down in the same deposition atmosphere of the growth). The 0 

min annealed samples, i.e. the “as-grown” sample, after to be measured with 

XAS, was annealed in Ar for times ranging from 5 to 15 min using a 

chamber connected to the XAS measurement chamber and measured before 

and after each annealing step. The results obtained from XAS measurements 

on SLCO thin films can be a useful reference for future studies of more 

complex systems, such as the QWs based on this compound. 
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Appendix A. 

Strong correlations and 

Hubbard model 

 

 

 

 
he Hubbard model, that is the simplest model of interacting particles, 

was developed by J. Hubbard in 1963 to describe the transition 

between conducting and insulating systems (Hubbard, (1963)).  

The Hamiltonian is composed with a kinetic term allowing for tunneling 

(hopping) of particles between lattice sites and a potential term consisting of 

an on-site interaction 

ℋ = −𝑡 ∑ 𝑐̂𝑖𝜎
† 𝑐̂𝑗𝜎

〈𝑖,𝑗〉𝜎

+ 𝑈 ∑ 𝑛̂𝑖↑𝑛̂𝑖↓

𝑖

 

where t is the nearest-neighbor hopping amplitude, < i , j > describe the 

summing over all nearest-neighbors, 𝑛̂𝑖𝜎 = 𝑐̂𝑖𝜎
† 𝑐̂𝑖𝜎 is the particle density 

operator on site I and U is the Coulomb energy required for double 

occupancy of a site.  

The Hubbard model explains why the undoped cuprates are insulating 

and antiferromagnetic. When nearest-neighbor spins are antiparallel, virtual 

hopping to the nearest-neighbor sites can lower the kinetic energy; this is not 

possible with parallel spins because of the Pauli exclusion principle. 

The interaction term in the Hubbard Hamiltonian for cuprates results in 

the antibonding conduction band being split into the lower Hubbard band 

(LHB) and upper Hubbard band (UHB), with U energy gap separating them. 

In the following years, Zaanan et al. described the band gaps and 

electronic structure of transition-metal compounds, such as cuprates. In these 

systems, the charge transfer energy Δ, describing the transfer of holes from 

Cu to O ligands, is smaller than the Hubbard splitting U, describing the 

T 
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transfer of holes from Cu to Cu  (Zaanen et al., (1985)). Consequently, in the 

undoped cuprates the insulating gap exists between the UHB and the so-

known Zhang-Rice singlet band. 

In Figure A-1, a schematic diagram of the density of states of cuprates is 

shown. In particular, Figure A-1 (a) describes the non-interacting case, 

where the bonding (B) and non-bonding (NB)  bands are full and the anti-

bonding (AB) band is half-filled, resulting in a metallic system. When 

Hubbard correlations are considered, the AB band is split into LHB and 

UHB, resulting in an insulating state (Figure A-1 (b)). In transition-metal 

compounds (as cuprates), the Hubbard splitting U is larger than the charge-

transfer gap Δ (Figure A-1 (c)). Further hybridization causes the Zhang-Rice 

(ZRS) and triplet (T) bands to form (Harter, (2013)). 

 

Figure A-1 Schematic diagram of the density of states of the cuprates at 

increasing levels of details. (a) non-interacting case; (b) Hubbard 

correlations considered (insulating case); (c) in transition-metal 

compounds; (d) further hybridization (Harter, (2013)) 

 



 

 

Appendix B. 

Ginzburg-Landau approach 

for clean electronic systems 

 

 

 

 
q. III-3 is equally applicable to ferromagnetic and superconductive 

phase transitions both described in terms of a generic order 

parameter 𝑓(𝑧), which is obtained from the slab free energy 

𝐹[𝑓(𝑧)] = 𝑆 ∫ 𝑑𝑧[𝑐(𝜕𝑧𝑓(𝑧))2 + 𝑎𝑓(𝑧)2 + 𝑏𝑓(𝑧)4]

𝑡 2⁄

−𝑡 2⁄

 

using the extremal condition 𝛿𝐹[𝑓(𝑧)] = 0 of the variational calculus. 

Motivated by the slab geometry (defined by in-plane surface S and thickness 

t), we assume that the order parameter only depends on the z coordinate, 

being the system size finite along this direction. Translational invariance is 

assumed along the plane perpendicular to the z direction. The extremal 

condition jointly with the usual boundary conditions 𝜕𝑧𝑓(𝑧)𝑧=±𝑡 2⁄ = 0 leads 

to the differential equation for the order parameter 𝜕𝑧
2𝑓 −

𝑎

𝑐
𝑓 = 0, where the 

non-linear term proportional to 𝑓3 has been omitted since it is negligible 

(compared to the linear term 𝑓) at the phase transition temperature T*. The 

differential equation is solved by 𝑓 = 𝐴 𝑒𝑖𝜇𝑧 + 𝐵𝑒−𝑖𝜇𝑧, with  

𝜇 = √𝑎̇(𝑇𝐶0
− 𝑇∗) 𝑐⁄  a function of the temperature T* with 𝑇∗ < 𝑇𝐶0

. In 

deriving this result we assume, as usual within a Ginzburg-Landau theory, 

that the coefficients b>0 and c>0 are temperature independent, while  

𝑎 = 𝑎̇(𝑇∗ − 𝑇𝐶0
) is a temperature-dependent quantity. By applying the 
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boundary conditions to 𝑓(𝑧), we obtain a set of two homogeneous equations 

for the arbitrary constants A, B. A non-trivial solution is found by imposing 

that the determinant of the coefficients matrix is a vanishing quantity; this 

condition leads to the equation 𝑠𝑖𝑛(𝜇𝑡) = 0, which admits solutions 𝜇𝑡 =

𝑛𝜋, with 𝑛 ∈ 𝑁. Since the coefficient 𝜇 is a function of temperature, the 

transition temperature of a system of finite thickness 𝑇∗ = 𝑇𝐶(𝑡) is solution 

of the equation 𝜇(𝑇∗)𝑡 = 𝑛𝜋, where n have to be chosen to maximize the 

critical temperature 𝑇∗ < 𝑇𝐶0
. Solving the equation for 𝑇∗ and setting 𝑛 = 1, 

we recover eq. III-3 with 𝐿0 = 𝜋√𝑐/(𝑎̇𝑇𝐶0
) . Therefore, the 𝑇𝐶(𝑡) vs t 

curves strongly depend on the boundary conditions imposed by the 

Ginzburg-Landau treatment to the order parameter 𝑓(𝑧) and thus the choice 

of adequate boundary conditions in describing a given physical system is a 

relevant problem. 
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Appendix C. 

Evidence of WL in SLCO films 

by noise spectroscopy 

measurements 

 

 

 

 
lectrical noise spectroscopy is a very sensitive and non-destructive 

technique, such as electric noise, has been used to analyze the 

samples, because it is capable to reveal a strict connection between WL 

effects and specific properties of the low-frequency 1/f noise  (Barone et al., 

(2016); P Orgiani et al., (2015)). In particular, a linear dependence of the 

voltage-spectral density SV on the bias current (I) is observed in systems 

undergoing a WL transition (Barone et al., (2015), (2013), (2009)), while far 

from the weak localization region, the usual quadratic behavior of SV vs I is 

found. 

All of the AC measurements have been performed in a closed-cycle 

refrigerator, operating in the 8 to 325K range with a temperature 

stabilization better than 0.1K. A low-noise current source was used to bias 

the samples, while the output signal was amplified with a low-noise 

preamplifier and acquired with a dynamic signal analyzer in the 1 – 100’000 

Hz frequency bandwidth. Spurious contributions, due to external contact 

noise, were removed by using a specific experimental procedure (Barone et 

al., (2007b)).  

The frequency dependent of the voltage spectral density SV for a 

representative under-doped SLCO sample, in which QIEs are expected to be 

strongest is shown in Figure C-1, where the whole investigated range 

between 10 and 300K is considered. 
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Figure C-1 Low-frequency voltage spectral densities for an under-doped 

SLCO sample at two different temperatures and at different dc bias currents 

(i.e., up to 10 mA). The zero-bias background noise is shown as black trace. 

 

In Figure C-1, the chosen temperature where the noise measurements 

have been performed are related to the metallic region (T = 300K and 

T=220K), metal-insulator transition (T=110K), weak-localization (T = 55K 

and T = 40K) and superconducting (T = 18K).  

A metal-to-insulator transition is observed at a crossover temperature Tloc 

around 110 K, while a superconducting onset occurs in the low-temperature 

limit at TC
onset ~ 25K. In all of the regions, characterized by different electric 

transport mechanisms, the voltage noise has been measured as a function of 

the bias current and reproduced in terms of a simple parabolic functional of 

the following form: 

 𝑆𝑉(90𝐻𝑧) = 𝑎2𝐼2 + 𝑎1𝐼 + 𝑎0 C-1 

where 1/f component has been evaluated at a reference frequency of 90Hz 

and a2, a1 and a0 are temperature-dependent coefficients. The evolution of 

these fitting parameter is shown in Figure C-2 a), revealing that a 

predominant quadratic current dependence of 1/f noise is evident in the 

metallic and superconducting transition regions, while the linear term a1 

arises in the intermediate region below Tloc, where the resistance upturn is 

observed.  

The doubling of the dominant current power exponent η (𝑆𝑉 ∝ 𝐼𝜂) from a 

value of 1 to 2 is more clearly visible in Figure C-2 b), where this change of 

two transition regions close to Tloc and TC
onset also appears.  
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Figure C-2 a) Temperature dependence of the three fitting parameters a2,a1, 

and a0 appearing in eq. C-1; b) a clear sign of a crossover is evident at Tcross 

∼ Tloc ∼ 110 K, where weak localization effects occur producing an upturn 

of the resistivity and a change of the current power exponent η of the 1 / f 

noise 

More details about these measurements can be find in (Barone et al., 

(2016)). 


