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ABSTRACT 

Precision measurements through engineered quantum systems are 
achieving new primacies in sensitivity and accuracy and therefore novel 
potential applications ranging from mechanical and electrical engineering to 
material science, nano-medicine, environmental science, and, in general, 
frontiers of technological development at large. For instance, the one-electron 
transistors and the one-spin qubits have been used as single quantum probes 
to detect electrical fields with unprecedented levels of precision. On the other 
hand, sensing schemes based on single quantum systems are strongly 
vulnerable even to very low levels of noise, due to the fragility of quantum 
coherence and the extreme sensitivity of quantum coherent probes. Recent 
efforts in quantum sensing and quantum metrology address this issue resorting 
to decoupling techniques and quantum correction schemes with quantum 
control feedback loops. Unfortunately, the experimental complexity and the 
control and precision requirements of such correction schemes, are 
exceedingly demanding both with present-day and currently foreseeable 
technologies.  

An alternative route is to aim for passive control strategies, for instance by 
considering quantum systems that are naturally robust against local sources of 
noise such as imperfections and localized perturbations. Symmetry-protected 
(SP) topological phases of matter are strong candidates for the realization of 
such strategy, as they are intrinsically robust against local noise of appropriate 
symmetry. However, even SP topological order remains very fragile against 
global environmental effects such as statistical noise and thermal excitations. 
The long-term aim of passive strategies is then to identify, characterize, and 
quantify the core features of topological phases in terms of their structure of 
nonlocal quantum correlations, in order to set the stage for future protection 
schemes against global sources of noise and decoherence. Considering 
symmetry-protected topological systems, the final goal is to effectively shield 
them from global noise by “trapping” low energy excitations and drastically 
reducing their mean free path to distances much smaller than the system size. 
This procedure would still preserve the topological nature of the system, at the 
same time making topological devices insensitive to levels of thermal noise 
manageable in the lab.  
In this thesis work we report on the first part of this long-term project, namely 
the qualification, characterization, and quantification of topological order in 
terms of nonlocal quantum correlations. During the first and central parts of 
our PhD project we have performed a comparative study of the bulk and edge 
properties of topological and symmetry-breaking one-dimensional model 
Hamiltonians (Kitaev and Ising chains) at zero temperature. We have 
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introduced and applied for the first time a new measure of entanglement to 
quantum many-body systems, the squashed entanglement previously 
investigated in the framework of quantum information, and we have found 
that in SP topological chains the squashed entanglement between the chain’s 
edges is maximal and localizes the entire quantum information in the 
topological phase, while for symmetry-breaking systems the edges are still 
entangled but the quantum information diffuses through the chain’s bulk. 
During the last part of our PhD studies we have generalized this approach to 
the study of topological spin-1 chains and two-dimensional systems, obtaining 
preliminary results analogous to those found for the simplest 1-D systems.                              
Using tools of quantum information ranging from quantum discord and 
quantum coherence to multipartite squashed entanglement and multipartite 
nonlocality, we will strive to assess the optimal framework making 
topological order most resilient against thermal noise for systems defined both 
in flat and artificially curved geometries, at zero and finite temperature, and 
both for equilibrium and out of equilibrium configurations. 
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INTRODUCTION 
 

Matter presents itself in different phases. More than half a century ago, 
Landau developed a theory to describe phases of matter on the basis of the 
concept of symmetry breaking. He pointed out that the distinction between 
different phases stems from the way their constituent particles are organized 
(ordered); different phases correspond to different symmetries of the particles’ 
ordering. For example, the symmetry-breaking theory describes what happens 
when water freezes into ice: whereas liquid water has rotational symmetry at 
the atomic scale (it looks the same in every direction), the H20 molecules in 
ice are locked in crystalline lattice: in an ordered phase of matter certain 
symmetries are “spontaneously” broken. For many years, it was widely 
believed that the symmetry-breaking theory described all phases of matter and 
all phase transitions. Things changed in 1982 with the discovery of phases 
called fractional quantum Hall states in an ultracold, two-dimensional gas of 
electrons. These strange states of matter feature emergent particles with 
fractions of an electron’s charge that accumulate fractional steps in a one-way 
march around the boundary of the system. As a consequence, topological 
systems behave like an ordinary electrical insulator in the bulk but have 
conducting states on their boundaries, i.e., edges, perimeters or surfaces, and 
thus they can conduct electricity on their very boundary. Conducting 
boundaries are a central feature, but alone they are not the only ingredient that 
makes topological materials unique; rather, the most striking aspect of 
topological phases is that, thanks to the fact that topological properties are 
global, the surface states are extremely robust and stable against local 
perturbations. The topological phases are associated to the topological 
degeneracy of the lowest energy states, the so-called ground states, and 
therefore tend to manifest themselves only near absolute zero, because only at 
such low temperatures can systems of particles settle into their lowest-energy 
states. In the ground state, the delicate interactions that correlate particles’ 
identities link up particles in global patterns of long-range quantum 
entanglement. Instead of having individual mathematical descriptions, 
particles become components of a more complicated function that describes 
all of them at once, often with entirely new particles emerging as the 
excitations of the global phase.  

Topological materials promise many potentially useful technological 
applications, such as more energy-efficient microelectronic components, 
better catalysts, improved thermoelectric converters, or new magnetic storage 
media and logical memories robust against local sources of noise, 
imperfections and perturbations. In fact, in quantum metrology schemes based 
on single quantum systems, the challenge that needs to be overcome is the 
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strong vulnerability to noise associated with such sensitive probes. Recent 
work into quantum metrology schemes that make use of quantum error 
correction and decoupling techniques [1-8] attempt to address this issue.  The 
control requirements and experimental complexity for such schemes, 
however, are quite daunting with current experimental techniques. 
Metrological schemes based on topological quantum devices would not suffer 
from these shortcomings, as they would be intrinsically protected from the 
detrimental effects of local noise, imperfections, and perturbations. In order 
for topological devices to become a concrete reality it is necessary to develop 
methods for the preliminary assessment, characterization and quantification 
of topological order, and for its detections. 

The aim of our research work is to propose methods able both to quantify 
and to discriminate topological systems from symmetry-breaking ones, and 
that are amenable to experimental verification. This thesis report is divided in 
three parts: in the first part (chapter 1) we describe the state of the art of 
topological systems and the mathematical techniques that we will use to study 
them. In the second part (chapter 2) we review different approaches to the 
realization of useful topological quantum technologies. In the third part 
(chapter 3) we illustrate the goals of the project, we describe the research 
activity developed during the PhD course and the results obtained, and we 
discuss several follow-up lines of research for future investigations. 
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the interacting Kitaev chain vs. the end-to-end entanglement in the 
XYZ spin-1/2 chain, illustrated for a size of the system L=4. In 
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9. Panel (b): Behaviour of the edge-edge squashed entanglement 
for the same quadripartition (AC_1 C_2 B) in the ground state of 
the symmetry-breaking counterpart model for a finite open chain 
of length L = 9. The edge-edge squashed entanglement is finite 
throughout the entire topological phase of the cluster spin chain 
(no edge-bulk correlation), and is vanishing in all phases of the 
symmetry-breaking counterpart model (non-vanishing edge-bulk 
correlation); it thus discriminates between the two models and 
reveals the (symmetry-protected) topological nature of the 1-D 
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Ising spin chain. 
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interaction strength D. Panel (A) D = 0.5. Panel (B): D = 0.5. Panel 
(C): D = 1.5. We see that for a value of D above a critical threshold  
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½ (X.-G. Wen and collaborators in the book “Quantum Information 
Meets Quantum Matter” by Bei Zeng, Xie Chen, Duan-Lu Zhou, 
and Xiao-Gang Wen (Springer, NY, 2019)) 
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Hamiltonian model defined on a two-dimensional lattice of  L = 7 
spins on the bonds, with periodic boundary conditions. Panel (a): 
edge-edge squashed entanglement obtained for a canonical edge-
bulk-edge tripartition (ACB). Panel (b): edge-bulk squashed 
entanglement for the same tripartition. We see that the edge-edge 
entanglement is non vanishing while the edge-bulk entanglement 
is identically zero, thus corresponding to a bona fide topological 
phase of the system. 
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 Figure III.14 Ground-state squashed entanglement for a toric-code 
Hamiltonian model defined on a two-dimensional lattice of  L = 7 
spins on the bonds, with periodic boundary conditions. Panel (a): 
edge-edge squashed entanglement obtained for a canonical edge-
bulk-edge tripartition (ACB) and diamagnetic edges. Panel (b): 
same edge-edge squashed entanglement for the same tripartition, 
and diamagnetic bulk. We see that the edge-edge entanglement is 
stabilised by the diamagnetic edges throughout the entire 
topological phase, while it remains insensitive even to a 
diamagnetically modified bulk. 
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Chapter 1 
Topological order and 

entanglement 
 

 

 

I.1 Issues concerning a macroscopic definition of topological order 

The known symmetry-breaking order is defined by some physical concepts 
that allow us to identify and characterize them via experimental protocols 
and/or numerical calculations. For example, the concept of superfluid order is 
defined by zero viscosity and the quantization of vorticity, and the concept of 
crystal order is defined by X-ray diffraction experiments. The viscosity and 
X-ray diffraction are linear responses easily measurable in experiments and 
the type of order that they identify is easy to understand. However, the 
topological order is a peculiar and elusive order that cannot be determined by 
any linear response. Rather, in the early stages, before the “entanglement 
revolution” came about, it was surmised that topological order is singled out 
by: 

a) Topological ground state degeneracy on closed spaces of various 
topologies; 

b) Non-Abelian geometric phases of those degenerate ground states 
arising from space deformations. 
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Topological degeneracy is associated to ground-state degeneracy1 of quantum 
gapped many body systems2 in the large system size limit (large but strictly 
finite).  The topological degeneracy has the following properties: 

a) It is never exact, but for a set of some special points of exact 
topological degeneracy. However, the energy gap closes 
exponentially with the (finite) size of the system. 

b) Topological degeneracy is stable against local perturbations. 

c) Topological degeneracy is removed in the thermodynamic limit (as 
there is no boundary, and thus no topology). 

The topological degeneracy for a given system usually is different for different 
space topologies. For example, for a 𝑍 topological order in one dimension, 
the topological degeneracy is Dg = 2, while for 𝑍 𝑍  topological order        
Dg = 4. 

From the above examples one can attribute the topological ground state 
degeneracy to specific symmetries. At the same time, the ground state 
degeneracy is robust against any local perturbation that breaks all symmetries. 
Moreover, topological order can occur only for finite-size systems, at variance 
with systems possessing symmetry-breaking order. Indeed, for the latter, exact 
ground-state degeneracy can strictly occur only in the thermodynamic limit 
(there are finite-size exceptions at very special points, such as factorization 
points). Therefore, topological degeneracy is a rather peculiar phenomenon 
that implies a new type of order, very different from symmetry-breaking order. 

Ground state degeneracy is not sufficient to characterize completely 
topological order, especially in D=2 and higher dimensions. Indeed, there can 
exist different topological orders with the same ground state degeneracy. The 
non-Abelian geometrical phases are quantum numbers that characterize 
completely the topological order.  They are obtained with a deformation of 
background space where is placed the many body topological system. For 

 
1 Two or more pure states of a quantum mechanical system are said to be degenerate if they are 

energy eigenstates (eigenstates of the system’ Hamiltonian operator H) corresponding to the 
same energy eigenvalue.  

2 Very loosely speaking, a quantum systems is gapped if there exists a finite energy separation 
between the ground state and the excited states. In the instance of systems of infinite size (i.e., 
in the so-called thermodynamic limit), a system is gapped if the ground-state degeneracy of the 
Hamiltonian H is upper bounded by a finite integer, and the energy gap Δ between the ground 
state(s) and the first excited state(s) of H is lower bounded by a finite positive number. 
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example, we consider a many body system on a torus and perform a “shear” 
deformation of the torus, mathematically represented by unitary matrix, from 
which we can obtain a one parameter family of gapped Hamiltonians Hg           
(g ∈ [0,1]) that form a loop (i.e. H0 = H1). The non-Abelian geometrical phases 
obtained in this way are denoted as T phases. In addition, we can generate a 
“squeezing” deformation of the tours obtaining another non-Abelian 
geometrical phase denoted S. The phases T and S contain information about 
the topological properties of the topological ordered states, such as fractional 
statistics. 

I.2 Quantum correlations and entanglement 

      Intuitively, correlations describe the dependence of certain properties on the 
interaction of different parts of a composite system. It is thus very important to 
characterize correlations, both qualitatively and quantitatively. Correlations can 
be characterized in different ways. For example, for many body systems, 
correlations are usually expressed in terms of correlation functions of the type: 

𝑂 𝑂   𝑂 𝑂 , where  𝑂  denotes the expectation value of 
observable 𝑂   on the site 𝑖 with respect to the quantum state of the system. The 
behaviour of correlation functions provides useful information such as the 
correlation length for phase transitions.  

Correlations are not the end of the story when it comes to quantum phase 
transitions.  In fact, one of the central traits (if not the central trait) of quantum 
mechanics is the superposition principle and the ensuing linearity of the theory: 
“every quantum state can be represented as a linear combination of two or more 
other distinct states”. The superposition principle of quantum mechanics is 
responsible for the onset of a very peculiar type of correlation: quantum 
entanglement. Let us consider a bipartite system composed by subsystems A 
and B, respectively with Hilbert spaces 𝐻  and 𝐻 . The Hilbert space of a 
composite system made of distinguishable subsystems (the situation is more 
complicated in the case of indistinguishability, and one needs to resort to the 
concept of quotient space) is the tensor product of the individual spaces:     
𝐻  ⊗ 𝐻 . If the first system is in pure state |𝜓 ⟩ and the second in pure state 
|𝜙 ⟩, the state of the composite system is then:  

 

 |𝜓 ⟩      ⊗    |𝜙 ⟩                                                                               I. 1 .  
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States of the composite system that can be represented in this form are called 
separable states, or product states. They are not entangled, and they are 
uncorrelated.  

Not all states are separable states (and thus product states in the case of pure 
states). Given a basis |𝑖 ⟩  for 𝐻   and a basis {|𝑗 ⟩} for 𝐻 , the most general 
pure state in  𝐻  ⊗ 𝐻     is of the form: 

 

|Ψ ⟩  ∑ 𝑐 |𝑖 ⟩ ⊗, |𝑗 ⟩                                                                   I. 2 .  

This state is separable if there exist some (Schmidt) coefficients 𝑐 , 𝑐 so 
that 𝑐 𝑐  𝑐 . It is not separable if for one pair of constants 𝑐 , 𝑐  we have 
𝑐 𝑐  𝑐  . If a state is not separable, it is called an 'entangled state'. 

For example, take the case of a two-qubit (two spins 1/2) system and fix two 
basis vectors |0 ⟩, |1 ⟩  of 𝐻 , and two basis vectors |0 ⟩, |1 ⟩  of 𝐻  the 
following state is an entangled state: 

 

√
|0 ⟩ ⊗  |1 ⟩ |1 ⟩ ⊗ |0 ⟩                                                          I. 3 .  

If the composite system is in this state, it is impossible to attribute to either 
subsystem A or subsystem B a definite state. Another way to say this is that 
while the von Neumann entropy3 of the whole state is zero (the von Neumann 
entropy of a pure state, i.e. a projector, is always zero), the entropy of any of the 
two subsystems is greater than zero, as any subsystem of an entangled pure state 
is in a mixed state (reduced density matrix). In this sense, the subsystems are 
"entangled". The above example is one of four Bell states, which are 
(maximally) entangled pure states (pure states of the 𝐻  ⊗ 𝐻  space, but which 
cannot be separated into pure states of each 𝐻  and  𝐻 ). 

 
3 For a quantum-mechanical system in a state described by a density matrix ρ , the von Neumann 

entropy is 𝑆 𝑇𝑟 𝜌𝑙𝑛𝜌 , where 𝑇𝑟 . .  is the trace operator. 
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In the last decade the understanding of correlations and quantum phase 
transitions in many-body systems has significantly improved thanks to the 
analysis and the study their entanglement properties [24-25]. 

 

I.3 Intuitive pictures of topological order: long-range 

entanglement  

We can use dance to give an intuitive description of entanglement between 
particles in topological systems and we can evidence the different ways of 
dancing between particles that belong to symmetry-breaking system or 
topological system. In the symmetry breaking orders, every particle/spin (or 
every pair of particles/spins) dance by itself, and they all dance in the same way. 
For example, in a ferromagnet, every electron has a fixed position and the same 
spin direction. Instead, a topological order is described by a global dance, where 
every particle (or spin) is dancing with every other particle (or spin) in a very 
organized way: all spins/particles dance following a set of local dancing “rules” 
trying to lower the energy of a local Hamiltonian. As a consequence, the 
particles form a global dancing pattern that generates correlations which 
correspond to a pattern of long-range quantum entanglement. The long-range 
entanglement produces characteristic proprieties of topological order that are: 

a) Quasiparticles with fractional statistics and fractional quantum 
numbers that also provide us ways to experimentally detect topological 
order; 

b) Gapless boundary excitations in symmetry protected topological (SPT) 
systems (see section I.4) and gapped excitations in other topological 
systems such as the quantum dimer model on triangular lattice. These 
topological edge modes lead to perfect conducting boundaries, even in 
the presence of impurities. This property may lead to important 
topological devices for technological applications. 
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I.4 Symmetry-protected topological phases in 1D systems 

Symmetry protected topological (SPT) phases are gapped quantum phases 
with topological properties protected by symmetry. The presence of symmetry 
causes the nontrivial SPT order with the existence of gapless edge states on the 
boundary of the system which cannot be removed as long as symmetry is not 
broken.  

Here we introduce some simple 1-D examples of nontrivial SPT orders. The 
Kitaev fermionic chain is a one-dimensional tight-binding model for spinless 
fermions in the presence of p-wave superconducting pairing [9]. This model 
possesses a topological phase with two-fold-degenerate ground states that 
cannot be distinguished by any local order parameter. The Majorana zero-
energy modes (quasi-particles generated by the fermion correlation) [10-14] are 
exponentially localized near the boundaries.  The Hamiltonian operator for the 
non-interacting Kitaev chain of length L is: 

 

𝐻 ∑ 𝑡 𝑐 𝑐 𝑐 𝑐 ∆ 𝑐 𝑐 𝑐 𝑐  

∑ 𝜇 2𝑐 𝑐 1    ,                                                                            I. 4   

where 𝑐  and 𝑐   are  the creation and annihilation operators, respectively, t is 
the hopping amplitude, ∆ is the p-wave paring gap, which is assumed to be real, 
and 𝜇 is the chemical potential. For ∆ 𝑡 and 𝜇 2𝑡, the system is in the 
topological phase, while for 𝜇 2𝑡, the system is in the trivial phase (band 
insulator). In particular for 𝜇 0, the ground state is exactly two-fold 
degenerate and it is possible to show that the ground state is factorized. We 
consider the following definition: 

𝑐 𝛾 𝑖𝛾                                                                                  I. 5 ,  

where  𝛾 and  𝛾  are the self-adjoint Majorana operators. One can easily see 
that they satisfy the defining relations: 

𝛾𝑗
𝐴, 𝛾𝑘

𝐵 0,                                                                                                        I. 6 . 



7 
 

 𝛾𝑗
𝐴, 𝛾𝑘

𝐴  𝛾𝑗
𝐵, 𝛾𝑘

𝐵 2𝛿                                                                                      

 

 

 Substituting the formula (I.5) in (I.4) we have the following Hamiltonian for 
𝜇 0 and ∆ 𝑡: 

𝐻 2𝑖𝑡 ∑ 𝛾 𝛾                                                                          I. 7 .  

We can see that the two end Majorana modes 𝛾   and  𝛾  do not appear in  𝐻  
at all. Hence our chain has two zero-energy states, localized at its ends. All the 
states which are not at the ends of the chain have an energy of  |𝑡|, 
independently on the length of the chain. Hence, we have a one-dimensional 
system with a gapped bulk and zero energy states at the edges. This degeneracy 
is an example of topological degeneracy because it is protected by a topological 
invariant. Since the topological invariant comes from a particle-hole symmetry 
which is a discrete symmetry, such topological order has been called symmetry-
protected topological order. 

Another interesting topological quantum many-body system in one dimension 

is the spin-1/2 cluster model, whose Hamiltonian is: 

𝐻 ∑ 𝜎 𝜎 𝜎 ℎ ∑ 𝜎                                             I. 8 ,  

where 𝜎 , 𝜎  are the Pauli matrices and h is an external magnetic field. The 
ground state, for h = 0, is exactly 4-fold degenerate. The degeneracy is caused 
by the symmetry group 𝐷 𝑍 𝑍 .  Any local perturbation respecting the 
symmetry cannot lift the ground state degeneracy for finite-size systems. In this 
sense, the system is said to have “symmetry-protected topological (SPT) order”. 

A very important spin-1 topological model in one dimension is the Affleck-

Kennedy-Lieb-Tasaki (AKLT) chain, whose bilinear biquadratic Hamiltonian 

reads: 
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𝐻 ∑ 𝑆 𝑆 𝑆 𝑆                                                    I. 9 ,  

where S is the spin 1 operator. This Hamiltonian is invariant under the SO(3) 
spin rotation symmetry. It is a particular, exactly solvable, case of the Haldane 
Heisenberg chain for spin 1. We can give the following representation of AKLT 
chain: 

 

 

 

Figure I.1 AKLT chain 

 

Each lattice site (big oval) contains two spin 1/2s (small circle), which form 
singlet pairs (connected bonds) |↓↑⟩ | ↑↓⟩ with another spin 1/2 on a 
neighbouring site. By projecting the two spin 1/2 on each lattice site to a spin 1, 
we obtain the ground state wave function. There are isolated spin 1/2 at each 
end of the chain which are not coupled with anything and give rise to a two-fold 
degenerate edge state. The full ground state on an open chain is hence four-fold 
degenerate. The degenerate edge state is stable as long as spin rotation 
symmetry is preserved. 
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I.5 How to identify topological order via quantum entanglement? 

From the previous discussion, topological order appears to be characterized 
by the entanglement between quasi-particle localized at the chain boundaries. 
How can we quantify the entanglement between the edges of the system? 

A legitimate entanglement monotone E must satisfy the following proprieties: 

a) It must vanish on separable states: 𝐸 𝜌 ∑ 𝑐 𝜌 ⊗ 𝜌
0. 

b) It must not increase under the action of local operations and 
classical communication: 𝐸 𝐾𝜌𝐾 𝐸 𝜌 .  
 

c) It must remain invariant under local unitary operations: 
𝐸 𝑈𝜌𝑈 𝐸 𝜌 . 
 

Properties a) through c) above make up the very minimal set of properties any 
legitimate entanglement quantifier must satisfy. An entanglement monotone E 
is promoted to a full entanglement measure ℇ provided the following additional 
properties are satisfied: 

d) Convexity:  𝐸 𝜆𝜌 1 𝜆 𝜌 𝜆𝐸 𝜌 1 𝜆 𝐸 𝜌 . 

e) Additivity:  𝐸 𝜌 ⊗ 𝜌 𝐸 𝜌 𝐸 𝜌 . 

f) Continuity: If  ||𝜌  𝜎 || → 0 𝑡ℎ𝑒𝑛 |𝐸 𝜌 𝐸 𝜎 | → 0. 

g) On pure states, E must reduce to the von Neumann 
entanglement entropy of the reduced density matrix. 

h) On multipartite systems, E should be monogamous: 
𝐸 𝐴|𝐵𝐶 𝐸 𝐴|𝐵 𝐸 𝐴|𝐶 . 

Among the very many entanglement monotones and measures that have been 
introduced in the last decades, essentially only one satisfies all the above 
properties, namely the so-called squashed entanglement. 

Let 𝜌  be a quantum state on a bipartite Hilbert space 𝐻 𝐻  ⊗ 𝐻 . The 
squashed entanglement of  𝜌  is defined as: 

ℇ 𝜌 ∶ 𝑖𝑛𝑓 𝐼 𝐴; 𝐵|𝐸 :  𝜌  𝑖𝑠 𝑎𝑛 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝜌       I. 10 .      
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The infimum is taken over all extensions of 𝜌  , i.e. quantum states of higher 
dimension  𝜌  such that 𝜌 𝑇𝑟 𝜌 .                                                                                     

The quantity 𝐼 𝐴; 𝐵|𝐸 𝑆 𝜌 𝑆 𝜌 𝑆 𝜌 𝑆 𝜌   is the so-
called quantum conditional mutual information of state 
𝜌 , and in all the above formulas 𝑆 𝜌  denotes the von Neumann entropy 
of the underlying state.  

In particular, if 𝜌  is a pure state (a projector), then 𝐼 𝐴; 𝐵|𝐸 𝑆 𝜌
 𝑆 𝜌 𝑆 𝜌  𝑆 𝜌 𝑆 𝜌 𝑆 𝜌  , and one understands the 

origin of the nomenclature: quantum entanglement between A and B is what is 
left after the quantum correlations between E and the compound AB, quantified 
by 𝑆 𝜌 , have been “squashed out” from the sum of the quantum correlations 
between A and the compound BE, quantified by 𝑆 𝜌  𝑆 𝜌 , and the 
quantum correlations between B and the compound AE, quantified by 𝑆 𝜌
 𝑆 𝜌 , and one has taken the infimum over all possible extensions 𝜌 .  

The computational problem appears to be intractable in general, unless the 
extensions 𝜌  form a restricted set fixed a priori by the physics of the system, 
as we will see in Chapter 3. Equally important, the squashed entanglement is 
amenable to experimental quantification in the lab, being a combination of 
entanglement entropies that can be measured with interferometric techniques 
[15] using quantum interference of many-body twins states: the parity 
expectation number of particles measures the quantum state overlap between 
two states, that is in turn directly connected to the von Neumann entropy. If 
experimentally measurable squashed entanglement relates to topological order, 
then it can be used to guide and assess the development of topological devices 
for quantum technologies. Let us then turn briefly to a description of the current 
state and perspective of topological quantum technologies. 
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Chapter 2 
TOPOLOGICAL QUANTUM 

TECHNOLOGIES 
 

 
 II.1 Introduction  

Building and implementing useful quantum technologies and quantum 
engineering has proved difficult, because of nearly inevitable interactions with 
the environment that cause decoherence4 e.g. thermal fluctuations, stray fields, 
local noise, local perturbations and imperfections. 

Practical methods of detecting and correcting errors have been devised (active 
approach). In recent article published in Science Advanced [16] researchers at 
the Joint Quantum Institute tested a full procedure for encoding a qubit5 and 
detecting some of the errors that occur during and after the encoding. However, 
there are limitations to this approach. In fact, it is impossible to detect two 
consecutive errors and moreover locating an error precisely require more qubits, 
so it is very difficult to implement experimentally an error-correction feature. 

Other approaches (passive) that do not require auxiliary qubits or 
measurements, they can be used as economical alternative to complement 
quantum error correcting codes. They consist in engineering quantum systems 
intrinsically immune to errors and resilient to decoherence. An example is the 
dynamical decoupling method [17], which aims to reduce decoherence times by 
attenuating the system-environment interaction. In dynamical decoupling, a 
sequence of control fields is periodically applied to a system in cycles of period 
τc, in order to refocus the system-environment evolution. However, systems 
with fast fluctuating environment are difficult to implement experimentally. 
They may be encountered in a wide range of quantum information processing 
implementations [18] and represent the most challenging regime for avoiding 
decoherence. 

 
4 Decoherence can be viewed as the loss of information from a system into the environment (often 

modelled as a heat bath), since every system is loosely coupled with the energetic state of its 
surroundings. 

5 A qubit is a two-state (or two-level) quantum-mechanical system.  
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In recent years, modern metrology and sensors are using topological materials 
of different nature and in different ways to build robust devices against local 
imperfections and errors. The spin chains, previously described in chapter one, 
are robust against local noise and imperfections. The noise sources are 
represented by invariant operator respect to the symmetry group that protects 
the topological order. Although these systems are less robust than the "fully 
topological" models, they have numerous advantages: 

 They can be easily engineered in the laboratory; 

 Quantum information can be transported robustly in any topological 
phase; 

 The symmetry group can be used as a "handle": it is possible to 
manipulate the quantum information modelling the local interactions. 

From a quantum point of view, they have some advantages respect to classical 
devices: 

 More powerful than today’s faster devices: they can store a lot of 
information (e.g. quantum computing, quantum simulation, quantum 
cryptography); 

 

 High-precision measurements: quantum sensor can discriminate very 
weak signals with amplitude level at the Heisenberg limit, which is 
much lower than the classical noise threshold (Shot noise) (e.g. 
quantum metrology and quantum sensing)  

In this chapter we report some fundamental experiences where topological 
materials are used to construct a classical and quantum device. 
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II.2 Topological classical devices  
Recent studies have revealed that despite its apparent simplicity, this 

minimal setup is sufficient to construct topologically protected classical systems 
that mimic the properties of their quantum analogues. This follows from the fact 
that, irrespective of its classic or quantum nature, a periodic material with a 
gapped spectrum of excitations can display topological behaviour as a result of 
the nontrivial topology of its band structure. 

The first experience, that we describe, is the construction of a robustness laser 
with a topological insulator material [30]. The purpose of the experience is to 
build a topological laser that is able to improve its efficiency by increasing its 
intensity. This is achieved by means of a system consisting of a laser beam that 
must pass through a suitably constructed plate capable of generating resonance 
effects that enhance the intensity of the laser beam itself. The plates are 
constructed using a topological material once in the topological phase and once 
in the trivial phase. The architecture of the plates is very complex but it is done 
in such a way as to generate a transport based on the topological edge-modes of 
the material. These edge-modes generate optical resonators due to a different 
chirality of the edge particles. If the topological plate is considered, the laser 
light that is sent from the outside undergoes single-mode constructive 
interference effects (i.e. there is only one resonant frequency between all the 
perimetral edges) which enhances the signal received from the outside, even if 
long local imperfections are inserted in the perimeter. The plate in the trivial 
phase does not give the same results as the external laser beam suffers different 
constructive or destructive interference. In fact, since the edge-modes are no 
longer present along the perimeters of the plates, the laser beam is emitted at 
different resonance frequencies, thus causing an attenuation of its intensity. 
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Figure-II.1 Top-view image of the lasing pattern (topological edge mode) in 
a 10 unit cell–by–10 unit cell array of topologically coupled resonators and 
the output ports 

Nasha et al. [31] have built a new type of mechanical metamaterial: a 
“gyroscopic metamaterial” composed of rapidly spinning objects that are 
coupled to each other. In particular Topological mechanical metamaterials are 
artificial structures whose unusual properties are protected very much like their 
electronic and optical counterparts. At the edges of these materials, we find 
sound waves that are topologically protected (i.e. they cannot be scattered 
backward or into the bulk). These waves, which propagate in one direction only, 
are directly analogous to edge currents in quantum Hall systems. Through a 
mathematical model, they interpret the robustness of these edge waves in light 
of the subtle topological character of the bulk material. Breaking the time-
reversal symmetry changes the distribution of angles at the edges of the 
honeycomb lattice. This geometric distortion of the lattice generates the 
topological effect of the edge-modes. The same topological effect is repeated if 
the gyroscopes are coupled by elastic springs. In this case the system is 
analogous to a Haldane spin chain in a honeycomb lattice.  
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Figure-II.2 A comparison between the density of states of a mass–spring 
(Top) and gyroscopic metamaterial on a honeycomb lattice. In both networks 
neighbouring masses (gyroscopes) are coupled by springs and each 
mass(gyroscope) feels a restoring force toward its equilibrium position. 

Ningyuan et a. [32] demonstrate the first simultaneous site- and time-resolved 
measurements of a time-reversal invariant topological band structure, which we 
realize in a radio-frequency photonic circuit. There are a variety of ways to 
engineer topologically nontrivial band structures in lattice models, which may 
be classified either as time-reversal-symmetry conserving or breaking. Among 
the time-reversal-breaking models, the simplest arises when a constant magnetic 
field is applied to a charged particle confined in a two-dimensional periodic 
structure. The time-antisymmetric Lorentz force is equivalent to an Aharanov-
Bohm phase (flux) per plaquette 𝜙  (for relatively prime integers M, N). 
This flux breaks the intrinsic translational invariance of the lattice, resulting in 
an effective unit cell of size N sites and N corresponding sub-bands. To realize 
magnetic-field-like physics, they generate spin-orbit coupling through local 
circuit connections (Fig. II.3). We observe a gapped density of states consistent 
with a modified Hofstadter spectrum at a flux per plaquette of 𝜙  . In situ 
probes of the band gaps reveal spatially localized bulk states and delocalized 
edge states. Time-resolved measurements reveal dynamical separation of 
localized edge excitations into spin-polarized currents. The radio-frequency 
circuit paradigm is naturally compatible with nonlocal coupling schemes, 
allowing us to implement a Möbius strip topology inaccessible in conventional 
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systems. This room-temperature experiment illuminates the origins of topology 
in band structure, and when combined with circuit quantum electrodynamics 
techniques, it provides a direct path to topologically ordered quantum matter. 

 

 

 

 

 

 

 

Figure-II.3 Photograph of circuit topological insulator. The inductors (black 
cylinders) are coupled via the capacitors (blue); circuit topology is 
determined by the trace layout on the printed circuit board (yellow). Inset: 
Zoom-in view of a single plaquette consisting of four adjacent lattice sites. 

 

II.3 Measuring the direction of an unknown electric field 
The group of Bartlett et al. [19] has used the Haldane chain to model spin 1 

interacting bosonic particles. The chain preserves the rotations in Euclidean 
space (SO(3) symmetry group). Experimentally the Haldane chain is engineered 
using Rydberg atoms trapped in an optical lattice having a reticular pitch of a 
few micrometres. The interaction between the first neighbours is generated with 
laser beams in such way to bring Rydberg atoms towards excited states and to 
induce a dipole momentum. 

The interaction between the first neighbours is generated with laser beams in 
such way to bring Rydberg atoms towards excited states and to induce a dipole 
momentum. The metrological scheme uses the entanglement between the edges 
of the chain (in topological phase) to measure the direction of an unknown 
electrical field, which destroys the symmetry group SO (3), but preserves the 
degeneration of the ground-state and therefore the topological order. In 
particular an edge is isolated adiabatically from the chain and it is coupled to 
the external field through a plane rotation of π along the direction of the field. 
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The information is transferred to the rest of the chain through the entanglement 
with the other edge. 

Figure-II.4- Basic action of the sensing operation. Large (blue) spheres 
denote the spins of the chain. The left edge carries a fractionalized edge 
degree of freedom (orange). Adiabatically decoupling the boundary spin from 
its immediate neighbour while simultaneously subjecting it to interaction with 
the local field (red), transfers the encoded information to the slightly shorter 
chain. 

II.4 Topological optical interfaces 
The experiment conducted by Barik et al. [20] presents a photonic device 

realized through the interface of two topological materials that have different 
properties. The main purpose of the work is to show that the device is able to 
transport light signals even in the presence of local disorder, obtained deforming 
the crystal lattice of the two materials by curvatures.  They also show that the 
transport of signals is only due to the presence of two edge modes along the 
interface of the device with opposite polarization. Moreover, to highlight the 
different polarization of the two edges they send a magnetic field along the 
interface and record the signal emitted at the ends of the interface finding for 
each end a different polarization. 



18 

Figure -II.5- The interface between the two photonic crystals supports 
helical edge states with opposite circular polarization. 

II.5 Realization of artificial magnetic fields in 2-D lattices 
Stulh et al. [21] have realized a large artificial magnetic field engineering a 

two-dimensional lattice in an elongated strip geometry. They have used the 
localized edge and bulk states of atomic Bose-Einstein condensates in this strip. 
In fact, the constituent edge states can be viewed as skipping orbits which permit 
to acquired phases as atoms traversed the lattice. These phases take the place of 
the Aharonov-Bohm phases produced by true magnetic fields and suffice to 
fully define the effective magnetic field. This and related approaches have the 
technical advantage over other techniques for creating artificial fields in that 
minimal Raman laser coupling is required (typically 10 to 50 times less than 
previous experiments using Raman coupling) thereby minimizing heating from 
spontaneous emission and enabling many-body experiments which require 
negligible heating rates. Lifetimes from spontaneous emission with this 
technique are in excess of 10 seconds, while all other approaches for creating 
large artificial gauge fields have lifetimes well below 1 second. 
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II.6 Topological Thouless pumping of ultracold fermions 
Nakajima et al. [22] have built a Thouless pump using a flexible optical 

superlattice setup. This appears to be similar to the famous Archimedes screw, 
which pumps water via a rotating spiral tube. However, while the Archimedes 
screw follows classical physics and the pumped amount of water can be 
continuously changed by tilting the screw, the charge pumped by the Thouless 
pump is a topological quantum number and not affected by a smooth change of 
parameters. A gas of ultracold fermions atoms (Ytterbium atoms) have been 
prepared into dynamically controlled optical superlattice. This has been 
constructed through the interference of two laser beam creating two periodic 
potentials with different periods. The pumped charge depends only the 
trajectory generated by the periodic superlattice, as a consequence the charge is 
bound to winding number6 in the plane of some parameters of system 
Hamiltonian. When the winding number assumes values different from zero the 
superlattice trajectory is topological, because the system has metallic edge states 
that permits the pumping of charge into superlattice. In the case of winding 
number zero the charge centre of mass is localized in initial position: the system 
is in a trivial phase.  

6    the winding number of a closed curve in the plane around a given point is an integer representing 
the total number of times that curve travels counter-clockwise around the point. The winding 
number depends on the orientation of the curve, and is negative if the curve travels around the 
point clockwise. 
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Figure -II.6- (a) Behaviour of the centre of mass of pumped charge in function 
of time for different trajectories; (b), (c),(d), (e): energy gap of systems for 
different values of winding numbers . 
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Chapter 3 
RESULTS 

 

 

 
III.1 Introduction 

A core part of our investigation concerns the difference between standard 
order due to spontaneous symmetry breaking and topological order, and how to 
discriminate between the two addressing their different entanglement properties 
and patterns.  
 
We have focused our attention on two 1-D models: the Ising spin-1/2 chain and 
the fermionic Kitaev chain with and without interaction. The Ising chain is a 
system formed by hard-core bosons realized through spin-flip operators acting 
on a Hilbert space with spin s = . On the contrary, Kitaev chain is obtained 
replacing the bosonic spin operator of Ising chain with the spinless fermion 
creation and annihilation operators. We have found that both the states and the 
Hamiltonians are equivalent. The ground state of both models is two-fold 
degenerate, but the physics of the order displayed could hardly be more 
different. While in the Ising model the ℤ  spin reflection symmetry is 
spontaneously broken, the degeneracy in the Kitaev chain stems from the 
Majorana zero mode (i.e., the isolated Majorana fermions at the ends of the 
chain that formed an entangled state of zero energy) characteristic of the 
topological order.  
 
In order to determine rigorous criteria discriminating between the two types of 
order, in this chapter we thoroughly investigate an idea put forward by my PhD 
advisor, Prof. Fabrizio Illuminati, that a specific entanglement measure, the 
squashed entanglement that we have briefly introduced and described in 
Chapter I, is actually the natural order parameter for all those types of order, 
including topological phases of matter, that, at variance with Landau-Ginzburg 
types of order, emerge from a fine-grained division and interplay of different 
subsystems, thus depending naturally on multipartitions, state extensions, and 
state purifications. In particular, we will show how bipartite squashed 
entanglement for specific multipartitions is able to characterize and quantify the 
essential difference played by bulk and edge parts of symmetry-breaking and 
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topological chains. We will also report more recent results that we have obtained 
by applying this method to the investigation of other systems, including the one-
dimensional cluster spin model and its symmetry-breaking counterparts, spin-1 
chains with Heisenberg-like interactions, and higher-dimensional systems, such 
as the 2-D toric code model Hamiltonian. 
 
 
 III.2 A method to discriminate between spins with symmetry 
breaking order and Kitaev fermions with topological order 
 
 

As we saw in the previous chapter, materials showing a topological order 
display a bulk band gap like an ordinary insulator, but a conducting surface state 
that is topologically protected by some symmetry. This implies looking for 
correlations not simply between two different halves of the same system, but 
between edges, and/or between edges and bulk, or even between different parts 
of the bulk. This in turn means introducing multipartitions instead of 
bipartitions. Therefore, in order to compare the different aspects of a topological 
(Kitaev) and non-topological (Ising) materials we begin by considering 
tripartitions and quadripartitions as in the following figure. 
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ISING KITAEV 
 
 

(a)

 

 
 
 

 

 

 
(b) 

 
 

 
 

Figure III.1 Examples of tripartitions (a) and quadripartitions (b) in Ising (left) 
and Kitaev (right) chains of finite size with open boundary conditions.  A and B 
denote the two edges, while C denotes the bulk and 𝐶   and  𝐶   denote the two 
halves (not necessarily symmetric) of the same bulk C.  

Edge-bulk-edge tripartitions allow to investigate and characterize edge-edge 
and bulk-edge correlations, while edge-bulk-bulk-edge quadripartitions allow 
also to consider bulk-bulk correlations. Once multipartitions are introduced, 
more than one step of state reduction is necessary to characterize the states of 
the various subsystems, meaning that all bipartition-based measures of bipartite 
entanglement, such as, e.g., the von Neumann entanglement entropy, are 
bypassed as they cease to be meaningful entanglement quantifiers.  

One thus needs a measure of bipartite entanglement that is nevertheless 
intrinsically based on state extension on multipartitions, and in particular on 4- 
and 3-partitions. In one of those rare shining moments in which concepts from 
a research field are integrally exported and applied to a seemingly very different 
one, such a bipartite entanglement measure naturally defined in terms of  4- and 
3-partitions actually exists: indeed, it is the squashed entanglement. In terms of 
the latter, the A-B edge-edge long-distance entanglement  ℇ 𝜌   in the 
reduced edge-edge, two-site state  𝜌   reads as follows: 
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 For a tripartition: 

ℇ , 𝜌   inf 𝑆 𝜌 𝑆 𝜌 𝑆  𝜌 𝑆 𝜌 ;                                     

(III.1) 

 For a quadripartition:                                                        

ℇ , 𝜌   inf 𝑆 𝜌 𝑆 𝜌 𝑆  𝜌 𝑆 𝜌 ;    

(III.1b) 

Where 𝜌  is the reduced state of the edges AB, 𝜌  is the ground state 
projector of the entire chain ABC.  
𝜌 𝑇𝑟 𝜌   is the reduced state of the edges AB and the 𝐶  half 
of the bulk, 𝜌  is the ground state projector of the entire chain        
AB𝐶 𝐶  ,  and S denotes the von Neumann entropy. One has to take the infimum 
in case of degenerate ground states and degenerate first reductions, otherwise 
the procedure is uniquely defined without extremization requirements. Now, if 
the system is topological the edge entanglement, that is the nonlocal edge-edge 
quantum correlations, must be independent of the bulk, irrespective of how it is 
partitioned. We thus expect the edge squashed entanglement to be insensitive 
and independent of the choice of the multipartition, either tripartition or 
quadripartition, in the case of the Kitaev chain. On the contrary, we expect that 
the edge squashed entanglement will depend on the way the bulk is partitioned 
when we consider symmetry breaking systems like the Ising chain. When the 
different parts of the systems become uncorrelated, as in disordered phases, 
these differences should disappear, implying that the squashed entanglement 
should behave as an order parameter. In the following paragraph we report the 
analytic findings that support our conjecture. 
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III.3 Non-interacting Kitaev chain: edge to edge squashed 

entanglement 
 

As we need to compare the Ising and the Kitaev models, we begin by setting 
notations and expressions. The Hamiltonian for an Ising spin chain of finite size 
L in transverse field, with open boundary conditions, reads: 

𝐻  ∑ 𝜎 𝜎 ℎ ∑ 𝜎 ,                                                    III. 2   

Where 𝐿 is the length of chain, ℎ is the ration between the transverse magnetic 
field and the uniform spin-spin interaction strength, and 𝜎  and 𝜎  are, 
respectively, the x and z Pauli matrices. For h = 0, in the basis in which all the 
single-site matrices 𝜎  are diagonal, the two degenerate ground energy 
eigenstates read:  

| ↑↑↑ ⋯ ↑↑⟩          and            | ↓↓↓ ⋯ ↓↓⟩                                         III. 3   

As symmetry-breaking and spontaneous magnetization cannot occur at zero 
field for a finite-size systems, we need to consider the physical states, namely 
the non-magnetic, i.e. zero-magnetization ground states that are also eigenstates 
of the Hamiltonian symmetry, i.e. the parity operator under spin flip. The 
physical ground space is formed by these states that coincide with the two L-
particle GHZ maximally entangled states (also known as the L-particle 
entangled Schroedinger cat states) of definite parity (symmetry): 

|𝜓 ⟩
1

√2
| ↑↑↑ ⋯ ↑↑⟩  | ↓↓↓ ⋯ ↓↓⟩ ;  

                         |𝜓 ⟩
√

| ↑↑↑ ⋯ ↑↑⟩  | ↓↓↓ ⋯ ↓↓⟩ .        III. 4  

In terms of spin-flip operations the parity operator P reads: 

𝑃  ∏ 𝜎                                                                                           III. 5   

It is immediate to verify that: 
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𝑃|𝜓 ⟩   |𝜓 ⟩ ;  

𝑃|𝜓 ⟩    |𝜓 ⟩ .                                                                     III. 6   

 

Let us first consider the case h = 0 . In order to compute the A-B edge to edge 
squashed entanglement ℰ  of the reduced edge-edge state 𝜌  , we first write 
down the two ground state projectors in the tripartite case: 

𝜌 |𝜓 ⟩⟨𝜓 | | ↑↑↑ ⋯ ↑↑⟩ ⟨↑↑↑ ⋯ ↑↑ |  | ↑↑↑ ⋯ ↑

↑⟩ ⟨↓↓↓ ⋯ ↓↓ | | ↓↓↓ ⋯ ↓↓⟩ ⟨↑↑↑ ⋯ ↑↑ | | ↓↓↓. . ↓⟩ ⟨↓. . ↓ | ;     

𝜌  |𝜓 ⟩⟨𝜓 |  | ↑↑↑ ⋯ ↑↑⟩ ⟨↑↑↑ ⋯ ↑↑ |  | ↑↑↑ ⋯ ↑

↑⟩ ⟨↓↓↓ ⋯ ↓↓ | | ↓↓↓ ⋯ ↓↓⟩ ⟨↑ ⋯ ↑↑ | | ↓ ⋯ ↓⟩ ⟨↓. . ↓

|   .                                                                                                             III. 8   

It is immediate to verify that the final expressions are identical and do not 
depend on the degeneration, and thus coincide for both states. Therefore, in the 
following we can consider indifferently any of the two ground states. Here we 
need to pause and discuss in more detail the question of taking the inf  in the 
definition of the squashed entanglement. Strictly speaking, taking the inf  only 
with respect to the ground-state extensions of the reduced state 𝜌  does not 
guarantee that the ensuing expressions do coincide with the true squashed 
entanglement of 𝜌  rather than being simply an upper bound to it. On the other 
hand, we have numerically generated large sets of random purifications of 𝜌  
and we have found no counterexample. Adding to this the recent discussion by 
the Bellomo group on the relationship between entanglement and energy, 
indicating that minimal energy and minimal entanglement bounds are strictly 
related, gives further strength to the conjecture that indeed the ground-state 
purification of 𝜌   realizes the inf and is thus associated to the true squashed 
edge entanglement. Needless to say, a definitive rigorous proof of this statement 
is still lacking and would be very welcome if this loophole could be closed in 
the near future. With this caveat, and choosing  𝜌  among the two degenerate 
extensions of  𝜌  , we proceed to compute the different entropic terms entering 
the final expression of the edge-edge (possibly upper bound) squashed 
entanglement. From the definition: 
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𝜌 𝑇𝑟 𝜌  ⟨↑ |𝜌 | ↑ ⟩ ⟨↓ |𝜌 | ↓ ⟩ ,        III. 9   

the reduced state 𝜌  reads 

𝜌 | ↑↑↑ ⋯ ↑⟩ ⟨↑↑ ⋯ ↑↑ | | ↓↓ ⋯ ↓↓⟩ ⟨↓↓ ⋯ |    , III. 10   

and the corresponding von Neumann entropy reads: 

𝑆 𝜌 ln ln ln 2  .                           III. 11   

The computation of the other reduced entropies is analogous and we obtain: 

𝑆 𝜌 𝑆 𝜌 𝑆 𝜌 ln 2   ,                        III. 11bis  

while of course for the pure ground state projector  𝜌   we have: 

𝑆 𝜌 0 .                                                                                                III. 12   

Therefore, the end-to-end (edge-edge) squashed entanglement of the two-edge 
reduced state 𝜌  in the case of a 3-partition reads: 

ℇ , 𝜌    .                                                                          III. 13   

We can repeat the same procedure in the case of the edge-bulk-bulk-edge 
𝐴𝐶 𝐶 𝐵 quadripartition. As the result is independent of the choice of the ground 
state, considering again the even state, we have: 

𝜌  
1
2

| ↑↑↑ ⋯ ↑↑⟩ ⟨↑↑↑ ⋯ ↑↑ |  | ↑↑↑ ⋯ ↑↑⟩ ⟨↓↓↓ ⋯ ↓↓ |

| ↓↓↓ ⋯ ↓↓⟩ ⟨↑↑↑ ⋯ ↑↑ |

| ↓↓↓ ⋯ ↓↓⟩ ⟨↓↓↓ ⋯ ↓↓ |   .                        III. 14  
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Next, we determine the reduced density matrices. Remarkably, one can verify 
that the symmetry of the bulk partitioning is irrelevant and that the final result 
does not depend on it. This feature allows for a very handy simplification, as it 
will suffice to take the first half  𝐶  of the bulk made by just one spin, and the 
second half  𝐶  made of the remaining L – 3 total bulk spins, so that we can 
always work, without loss of generality, with 3-spin, 2-spin, and 1-spin reduced 
states as follows: 

𝜌
1
2

| ↑↑↑⟩ ⟨↑↑↑ | | ↓↓↓⟩ ⟨↓↓↓ |  ; 

𝜌 𝜌   
1
2

| ↑↑⟩ ⟨↑↑ | | ↓↓⟩ ⟨↓↓ |  ;           III. 15   

𝜌  
1
2

| ↑⟩ ⟨↑ | | ↓⟩ ⟨↓ |  .                     III. 16  

 

Computing the corresponding entropies and collecting results, we have that 
edge-edge squashed entanglement of the two-edge reduced state 𝜌  in the case 
of a 4-partition is: 

ℇ , 𝜌 0 .                                                                        III. 17  

Comparing (III.13) and (III.17) we see that indeed in the case of the Ising chain 
the end to end edge-edge squashed entanglement takes completely different 
values in correspondence of a structured vs an undivided bulk.  

We now move to consider the case of the non-interacting Kitaev fermionic chain 
of finite size L, with open boundary conditions, whose model Hamiltonian 
reads: 
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𝐻 𝑡 𝑐 𝑐 𝑐 𝑐 ∆ 𝑐 𝑐 𝑐 𝑐

1
2

𝜇 2𝑐 𝑐 1 .                                         III. 18      

 

Here t is the coefficient of the hopping term, ∆ is the coefficient of the pairing 
term, and 𝜇 denotes the chemical potential. The operators 𝑐  and 𝑐  are 
respectively the creation and annihilation operators. We consider the case ∆
𝑡, for which we are assured to be in a topological phase as long as  𝜇  2. To 
fix the formalism, let us consider the simples instance L=4 of a chain with two 
minimal bulk halves. Using the Jordan-Wigner transformation [23] we have the 
following ground-space: 

|𝜓 ⟩
√

|1111⟩ |1001⟩ |0101⟩ |1100⟩ |0110⟩

|0011⟩ |0000⟩ |1010⟩ ;                                                          III. 19   

|𝜓 ⟩  
1

2√2
|1110⟩ |1101⟩ |0111⟩ |0100⟩ |1011⟩

|1000⟩ |0010⟩ |0001⟩ ;                           III. 20  

where the state |1⟩ corresponds to a site occupied by one fermion and an empty 
site corresponds to state |0⟩. The Kitaev chain Hamiltonian is invariant under 
parity symmetry operations realized by the following parity operator: 

 

𝑃  ∏ 1 𝑐 𝑐 .                                                                III. 21   
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To implement the algorithm for the squashed entanglement at 𝜇 0 one can 
resort to the Peschel reduced density matrix method for free fermions [29], that 
we describe in detail in appendix A. Using such exact technique, we find that 
the squashed entanglement coincides for both partitions: 

 

         ℇ , 𝜌  ℇ , 𝜌    .                                       III. 22   

Moving on to consider the entire range of values of h for the Ising model and of  
𝜇  for the non-interacting Kitaev chain, we have resorted to exact 
diagonalization, developing a specific Mathematica package optimizing the 
computational routine. We were thus able to solve for chains up to L = 14 sites. 
The results are reported in Figure III.2 below. 
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ISING CHAIN N.I. KITAEV CHAIN 
 

(a) 

 

 

 

(b)   
 

 

 

Figure III.2 Behaviour of the bipartite edge-edge squashed entanglement 
 ℇ 𝜌   of the two-edge state 𝜌   for the open Ising chain as a function of 
the external field h and for the open non-interacting Kitaev chain as a function 
of the chemical potential 𝜇. Panels (a), from left to right: Ising and Kitaev edge-
edge squashed entanglement for the (ACB) tripartition edge-bulk-edge and 
different chain lengths (L = 10, 12, 14). Panels (b), from left to right: Ising and 
Kitaev edge-edge squashed entanglement for the (A𝐶 𝐶 𝐵  quadripartition 
edge-bulk-bulk-edge and different chain lengths  (Ising: L = 14; Kitaev: L = 10, 
12, 14). Red lines: L = 10; green lines: L = 12; blue lines: L = 14. 

 

We see that the squashed entanglement: 

 Identifies the phase transition for the Ising and the non-interacting 
Kitaev chain; 

 It is bulk-independent for the non-interacting Kitaev chain.   
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Indeed, correlations do spread locally in a symmetry-breaking environment. As 
a consequence, the quantum entanglement at the boundaries must depend on 
how the bulk is manipulated. On the contrary, the entanglement between the 
edges in a topological environment must be decoupled from the bulk and how 
it is divided, traced, and manipulated. By its very definition, the squashed 
entanglement is the ideal quantity able to discriminate between these two 
different physical-geometric classes of environments, as we will show in the 
following. The results illustrated in this chapter have been obtained by me with 
the support of my PhD advisor Prof. F. Illuminati, and build on his ideas about 
the role of squashed entanglement in the study of quantum matter, which in turn 
were motivated by pioneering intuitions on multipartitions and entropic 
invariants put forwards by X.-G. Wen and collaborators in the book “Quantum 
Information Meets Quantum Matter” by Bei Zeng, Xie Chen, Duan-Lu Zhou, 
and Xiao-Gang Wen (Springer, NY, 2019), and by M. Dalmonte and 
collaborators in the paper “Entanglement topological invariants for one-
dimensional topological superconductors” by P. Fromholz, G. Magnifico, V. 
Vitale, T. Mendes-Santos, and M. Dalmonte, Physical Review B 101, 085136 
(2020). 

 

III.4 Edge to bulk and bulk to bulk squashed entanglement 
The results that we have obtained in the previous subsection highlight the 

different bulk proprieties of the Ising and Kitaev chains. The crucial 
understanding that the Kitaev chain bulk is insulating and the Ising chain one is 
conductive explains the different behaviours of the edge-edge squashed 
entanglement in the two model systems. From this fundamental physical 
observation, we can immediately deduce a second method to discriminate 
between the two chains by considering the entanglement between the edge and 
the bulk degrees of freedom. In the following figure we report the edge-bulk 
squashed entanglement; we see that it is zero for the Kitaev chain (to be precise, 
it vanishes exponentially with increasing chain size) and different from zero (in 
the ordered phase) for the Ising chain. 
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ISING CHAIN N.I. KITAEV CHAIN 
 

 
 

 

 

Figure III.3 Behaviour of  the bipartite edge-bulk squashed entanglement 
ℇ , 𝜌  ℇ , 𝜌   for the open Ising chain (L = 8,10,12) and the open 
non-interacting Kitaev chain ( L = 8) for the (ACB) tripartition edge-bulk-
edge. The results have been obtained by exact numerical diagonalization 
using an optimized Mathematica package.      

We see that, contrary to the edge-edge instance, comparing the edge-bulk 
squashed entanglements at the tripartition level is sufficient to discriminate 
between the Ising and the non-interacting Kitaev chains. As the bulk does not 
diffuse information in the topological phase, its correlation with the edges 
vanishes exponentially in the system size. From there on, the edges and the bulk 
remain decoupled irrespective of any further manipulation, tracing, 
modification of the bulk and the results are thus invariant with respect to the 
choice of the multipartition. Remarkably, investigating the bulk-bulk squashed 
entanglement and comparing between the two chains yields the same results. In 
summary, looking at the squashed entanglement between the edges 
discriminates at the quadripartition level, as local modifications of the bulk 
environment (like tracing away only one part of the bulk instead of the entire 
bulk) affect the boundary degrees of freedom of locally ordered systems but not 
the edge states of globally (topologically) ordered systems. On the other hand, 
looking at the edge-bulk squashed entanglement discriminates already at the 
tripartite level, as bulk and boundary degrees of freedom are correlated in a 
symmetry-breaking system and exponentially decoupled in a topological 
system. 

In the following, we illustrate the reasons underlying the different bulk 
behaviours for two chains, highlighting the role of the Majorana fermions in the 
Kitaev Hamiltonian. The Kitaev chain belongs to the set of symmetry-protected 
one-dimensional topological systems. They share the feature of having physical 
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edges with degenerate ground states. In particular, for 𝑡  ∆ and 𝜇 0, we 
have: 

𝐻 𝑖𝑡 ∑ 𝛾 𝛾 ;                                                                    III. 23   

where 𝑖 is the imaginary unit,  𝑡 is the hopping term, 𝐿 is the length of chain 

and: 

𝛾  𝑖 𝑐 𝑐 ;  

𝛾 𝑐 𝑐 .                                                                            III. 24   

We can see that the two Majorana modes 𝛾  and 𝛾   at the edges do not enter 
at all in 𝐻 .  Hence our chain has two zero-energy states, localized at its ends. 
All the states which are not at the ends of the chain have an energy of |𝑡|. The 
zero-energy oscillation of the edges generates a quantum correlation between 
the edges independent of the bulk. Furthermore, this correlation is protected by 
the fermionic parity which acts on the edges in an anomalous way. Let us 
consider the following example for a chain of length L=4; for μ=0 the even 
ground state of the Kitaev chain reads: 

|𝜓 ⟩
√

|1111⟩ |1001⟩ |0101⟩ |1100⟩ |0110⟩

|0011⟩ |0000⟩ |1010⟩ .                                                  III. 25   

The fermionic parity operator can be written in terms of the Majorana fermionic 
operators as follows: 

𝑃  ∏ 𝑖𝛾 𝛾  .                                                                           III. 26   

It is straightforward to check that the operator defined as: 𝑃′ 𝑖𝛾 𝛾
𝑃 𝑃 , acts on |𝜓 ⟩ as the operator 𝑃. This happens also for the operator 𝑃′

𝑃 𝑃 . The existence of two operators that commute with Hamiltonian 
operator and act on a state only for the left and right edges explains the nature 
of two edges modes as the present example illustrates. For the even ground 
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states of a L=4 chain at 𝜇 = 0 the zero edge modes are 𝛾  and 𝛾  . From eq. 
(III.26) we have: 

𝑃 𝑖𝛾 𝛾 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 .                                  III. 27   

It is immediate to verify that applying the operator 𝑃 to the even ground state 
yields 

𝑃 𝑃 |1111⟩ →  |0110⟩;  

𝑃 𝑃 |0110⟩ →  |1111⟩;  

𝑃 𝑃 |0000⟩ →  |1001⟩;  

𝑃 𝑃 |1001⟩ →  |0000⟩;  

𝑃 𝑃 |0101⟩ →  |1100⟩                                                                      III. 28   

and so on.  

The application of the operator 𝑃 𝑃  recomposes the even ground-states in the 
Kitaev chain. This is not true for the Ising chain. Indeed, the parity operator for 
the Ising Hamiltonian is defined as: 

∏ 𝜎 .                                                                                                               III. 29   

In the Ising case there do not exist two left and right parity operators like in the 
case of the Kitaev chain. This implies that the correlations between the two Ising 
edges are mediated by spin bulk correlations. 
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III.5 Diamagnetic edges 

We can say that for the non-interacting Kitaev chain the Majorana edge 
fermions go into gapless energy states due to their non-Abelian statistics. They 
oscillate in different directions producing in this way a quantum correlation. All 
the other bulk fermions are not correlated with the edges because they are in 
excited states and preserve their fermionic nature. The increment in the on-site 
energy leads to a reduction in the scattering between the two edges due to the 
opening of a gap and the Majorana edge fermions become uncorrelated with the 
bulk. 

For the Ising chain a similar phenomenon occurs but with a substantial 
difference due to the spin correlations of the particles. The two edge spins go 
into a gapless state with lower energy, but the other spins remain correlated with 
the edges to minimize the energy of the entire system.  

In order to verify these assertions, we should investigate the consequences of 
dynamically locating the two edge spins in the gapless energy states. This can 
be done by introducing a local disorder in such a way that the two edge spins 
are effectively coupled to a smaller magnetic field with respect to the bulk sites. 

We have assumed throughout that the entanglement between the two edges of 
the chain is maximal when the edges are in the ground state for ℎ 0 (Ising 
chain) or 𝜇 0  (Kitaev chain).  As h or 𝜇 increase, the edges increase their 
energy and this should favour a reduction of the entanglement.  

If we wish to stabilize the end to end entanglement between the edges, they must 
remain localized in the ground state throughout the ordered phase. In order to 
achieve this objective, we can provide the two edges with suitable diamagnetic 
properties that result in them being acted upon by an effective external magnetic 
field that is weaker than the actual field acting on the bulk. By a diamagnetic 
edge we thus mean a quantum degree of freedom that is affected by a reduced 
magnetic field or chemical potential. 
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ISING CHAIN N.I. KITAEV CHAIN 

(a)

  (b) 
Figure III.4  Behaviour of the edge-edge bipartite squashed entanglement in 
the Ising and in the non-interacting Kitaev open chains for: (a) the tripartition 
edge-bulk-edge (ACB) and chain size L = 10,12,14 for both models; and for: 
(b) the quadripartition edge-bulk-bulk-edge (A𝐶 𝐶 B) and chain size L = 14 for 
the Ising system and L = 10, 12, 14 for the Kitaev system.  Red line: L = 10; 
green line: L = 12; blue line: L = 14. The results have been obtained 
numerically using Mathematica package.      

In Fig. (III.4) panel (a) we report the behaviour of the squashed edge-edge 
entanglement for a tripartition of the Ising chain where the edges are affected 
by an external magnetic field   𝒉𝒆𝒅𝒈𝒆   

𝒉𝒃𝒖𝒍𝒌

𝟏𝟎
 . Entanglement is effectively 

stabilized throughout the ordered phase. This stabilization depends on the fact 
that the edges are dynamically located in the ground state. The same result is 
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obtained for a Kitaev chain with  𝝁𝒆𝒅𝒈𝒆    
𝝁𝒃𝒖𝒍𝒌

𝟓
  . The situation is completely 

different if one considers a quadripartition. In this case, as shown in Fig. (III.4) 
panel (b), the edge-edge entanglement discriminates unambiguously between 
the Ising and the non-interacting Kitaev chain. 

Indeed, the bulk and the edges have different properties in both models, and 
these differences are again captured by a sufficiently accurate multipartition of 
the systems. In particular, the bulk is located in an energy level separated by a 
gap with respect to the energy level of the two edges. In other words, the 
interaction between the particles in the two chains generates quasi-particles 
localized at the edges which have a lower energy than the bulk. These quasi-
particles have a different nature. In the Kitaev chain (composed of spinless 
fermions) we have Majorana fermions, while for the Ising chain (composed of 
spin-1/2 degrees of freedom) the correlations between the spins generate the 
magnons (spin waves). Each Majorana fermion of the bulk is correlated only 
with its first neighbour, which determines an insulating bulk, while magnons 
have a global correlation along the entire chain, manifesting a conductive bulk. 

 

III.5  Diamagnetic edges and ground state fidelity: robustness 

against local perturbations 

    An additional route to investigate the role of diamagnetic edges and verify 
the previous entanglement-based discrimination by an independent method is 
provided by resorting to the ground state fidelity. Fidelity is a measure of how 
“close” (“similar”) are two quantum states. It expresses the probability that one 
state will pass a test to identify as the other. Given two states represented by two 
density operators 𝜌  and 𝜌 , the Uhlmann fidelity is defined as: 

ℱ 𝜌 , 𝜌 𝑇𝑟 𝜌 𝜌 𝜌 .                                                            𝐼𝐼𝐼. 30   

We consider the ground-state of edge partition for ℎ/𝜇 0 (i.e. 𝜌 ℎ/𝜇 0  
and for ℎ /𝜇 0 (i.e. 𝜌 ℎ/𝜇 0  and we have determined the Fidelity 
between 𝜌 ℎ/𝜇 0  and 𝜌 ℎ/𝜇 0  in case of  “normal edges” and in the 
case of  “diamagnetic edges”. 
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ISING CHAIN KITAEV CHAIN 

Figure III.5 Comparison of Fidelity for the Ising chain and the non-interacting 
Kitaev chain for L = 10. Red curve: normal edges, blue curve: diamagnetic 
edges.  The results have been obtained numerically with Mathematica package.   

We observe that both in the Ising and non-interacting Kitaev chains the fidelity 
assumes its maximal value in the case of diamagnetic edges. This means that 
the edges are located in the same ground state respectively in the ordered 
magnetic phase (Ising chain) as well as in the topological phase (Kitaev chain). 
From this point of view, a bipartite quantity like the fidelity does not 
discriminate qualitatively between the two types of order, as expected.  On the 
other hand, we observe that the fidelity in the Kitaev chain assumes values that 
are always larger than the fidelity in the Ising chain for the corresponding values 
of the Hamiltonian parameters, and maximally so in the topological phase. This 
fact provides further evidence that topological systems are more resilient with 
respect to local perturbations such as the local, on-site variations of the chemical 
potential. 
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III.6  The role of interactions: Comparing XYZ spin chains and 

interacting Kitaev chains 
    In this section we extend the previous results to the fully interacting case. Let 
us thus consider first the XYZ spin chain that corresponds, via the Jordan-Wigner 
transformation, to an interacting Kitaev fermionic chain. For a chain of finite 
size L and open boundary conditions, the two models are described, 
respectively, by the Hamiltonians: 

𝐻  ∑ 𝐽 𝜎 𝜎 𝐽 𝜎 𝜎 𝐽 𝜎 𝜎    

∑ ℎ 𝜎  ;                                                                                              III. 31   

𝐻  ∑ 𝑡 𝑐 𝑐 𝑐 𝑐 ∆ 𝑐 𝑐 𝑐 𝑐

∑ 𝜇 2𝑐 𝑐 1 𝑈 ∑ 2𝑐 𝑐 1 2𝑐 𝑐 1  .         III. 32   

For the XYZ chain it is possible to obtain explicit exact solutions along the 
factorization line that corresponds to the following values of the external field: 

ℎ  𝐽 𝐽 𝐽 𝐽     ;                                                            III. 33   

ℎ  is the factorizing field: for these values of the external magnetic field the 
two-fold degenerate ground states are factorized, i.e. they are unentangled, 
product states of single-site quantum wave functions [26]: 

|𝜓 ⟩
1

1 𝛼
⊗  | ↑⟩ 𝛼| ↓⟩ ; 

|𝜓 ⟩
1

1 𝛼
⊗  | ↑⟩ 𝛼| ↓⟩ ;         III. 34  

where 𝛼  cot    . 
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The physical ground states are of course the entangled linear combinations that 
satisfy the parity symmetry of all finite-size systems (the entangled “cats”): 

|𝜓 ⟩
1

√2
|𝜓 ⟩ |𝜓 ⟩ ;    

   

|𝜓 ⟩
1

√2
|𝜓 ⟩ |𝜓 ⟩ .        III. 35  

Starting from an interacting Kitaev model Hamiltonian we have the following 
mapping to the interacting XYZ spin Hamiltonian: 

 

𝐽
𝑡 Δ

2
;          𝐽

𝑡 Δ
2

;          ℎ  
𝜇
2

; 

where (See, e.g., Ref. [26]): 

𝜇 2 𝑈 𝑡𝑈 𝑡 Δ /4     .       III. 36   

 

The corresponding factorized ground states for the interacting Kitaev chain 
read: 

 

|𝜓 ⟩ ⊗  𝑒 |0⟩ ;  

|𝜓 ⟩ ⊗  𝑒 |0⟩ .                                    III. 37   

The states (III.37) are orthonormal and form the physical ground-space of the 
interacting Kitaev Hamiltonian. 
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In the following we illustrate in detail the analytic algorithm to determine the 
squashed entanglement for the XYZ and the interacting Kitaev chains in the 
simplest case L = 4, both for a tripartition and a quadripartition of the two 
models. 

 

 

XYZ chain 

For the XYZ chain consider the even state: 

|𝜓 ⟩
1

√1 6𝛼 𝛼
| ↑↑↑↑⟩ 𝛼 | ↑↓↓↑⟩ 𝛼 | ↓↑↑↓⟩

𝛼 | ↓↓↓↓⟩ 𝛼 | ↑↓↑↓⟩ 𝛼 | ↑↑↓↓⟩ 𝛼 | ↓↓↑↑⟩

𝛼 | ↓↑↓↑⟩       III. 38  

In the case of an edge-bulk-edge (ACB) tripartition we obtain the following 

reduced density matrices: 

     
          (III.39) 
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In the case of the odd ground state: 

|𝜓 ⟩
1

2√𝛼 𝛼
𝛼| ↓↑↑↑⟩ 𝛼| ↑↓↑↑⟩ 𝛼| ↑↑↓↑⟩ 𝛼| ↑↑↑↓⟩

𝛼 | ↑↓↓↓⟩ 𝛼 | ↓↑↓↓⟩ 𝛼 | ↓↓↑↓⟩

𝛼 | ↓↓↓↑⟩  ,   III. 40    

the reduced density matrices are: 

 

(III.41) 

Next, we consider an edge-bulk-bulk-edge (A𝐶 𝐶 B) quadripartition and we 

perform the partial traces over the even ground state, obtaining: 
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(III.42) 

For the odd ground state we obtain: 



45 
 

 

(III.43) 

Interacting Kitaev chain 

For the interacting Kitaev chain we can repeat the algorithm used for the Ising 
chain. In the case of a tripartition we have no differences with the case of the 
Ising chain, contrary to what happens for the quadripartition. Indeed, taking the 
quadripartition we have the following reduced density matrices from the even 
ground-state: 
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(III.44) 
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In the case of the odd ground state we have: 

 

(III.45) 

Having determined the analytical form of all the reduced density matrices, we 
can proceed to compute the corresponding von Neumann entropies and, finally, 
the edge-edge squashed entanglement, observing that, again as in the non-
interacting case, that the results are insensitive to the choice of the parity as long 
as we stay on the factorization line and thus take into account the full ground-
state degeneracy. Away from the factorization line the degeneracy is removed 
and the system quickly approaches the boundary separating the topological 
phase from the trivial phase. In full analogy with the non-interacting case, the 
quadripartition provides the crucial discrimination between a finite topological 
edge-edge entanglement in the interacting Kitaev chain and a vanishing end-to-
end entanglement in the symmetry-breaking XYZ spin-1/2 chain, as shown in 
Fig. (III.6) below. From the same figure we see that the interaction strongly 
stabilizes the topological edge-to-edge squashed entanglement almost 
throughout the entire topological phase. 
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Figure III.6 Comparison of the edge-edge squashed entanglement in the 
interacting Kitaev chain vs. the end-to-end entanglement in the XYZ spin-1/2 
chain, illustrated for a size of the system L=4. In analogy with the non-
interacting case, the edge-bulk-edge leads to no discrimination, while the edge-
bulk-bulk-edge quadripartition fully discriminates between the symmetric 
topological order and the symmetry-breaking Ginzburg-Landau order. In 
comparison with the non-interacting case, we see that the interaction stabilizes 
the edge-to-edge entanglement throughout almost the entire topological phase. 

 

    

The factorization line ends at the boundary between the topological and the 
trivial phases, beyond which exact ground-state degeneracy is removed and the 
edge-to-edge entanglement in the unique ground state (even, for even L) rapidly 
vanishes at increasing values of the external field. 

   

XYZ CHAIN INTERACTING KITAEV 
CHAIN 

 

(a) 

 

 

 

 
  (b) 
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III.7 Squashed entanglement in 1-D symmetry-protected 

topological models: Cluster spin chain and its symmetry-breaking 

counterpart 

      Another many-body system supporting symmetry-protected topological 
order in one dimension is the so-called cluster model, i.e. the following quantum 
spin-1/2 chain with three-site interactions in external field: 

𝐻  ∑ 𝜎 𝜎 𝜎 ℎ ∑ 𝜎 . III. 47   

The Cluster chain has the following features: 

 The ground state is exactly 4-fold degenerate at ℎ 0.

 The Hamiltonian is invariant with respect to the symmetry of the group
𝔻  ℤ  ℤ ; like the Kitaev chain, the system is symmetry-
protected.

 There is a phase transition at ℎ 1 between the topological phase
occurring for 0<h<1 and the trivial phase (disordered phase,
paramagnetic phase) occurring for h>1.

 The ground-state manifold is spanned by the multipartite entangled
cluster states, a generalization of the maximally entangled N-particle
GHZ states. The former are of special importance in the measurement-
based model of universal quantum computation.

It is instructive to compare the properties of the edge to edge and of the edge to 
bulk squashed entanglement in the cluster model and in some symmetry-
breaking counterpart of the latter, described for instance by the following model 
Hamiltonian, where the central site in the three-body interaction has been 
removed: 

𝐻   ∑ 𝜎 𝜎 ℎ ∑ 𝜎 . III. 48   

We have studied the behaviour of the squashed entanglement both in the case 
of the cluster chain (III.47) and in the case of the symmetry-breaking model 
(III.48). Both systems possess a four-fold degenerate ground space and this 
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means that there are four edges: two edges on the first two sites and two edges 
on the last two sites of the chain with open boundary conditions. As a 
consequence, we introduce the (ACB) tripartition is modified to account for 
the edge multiplicity, as shown in Fig. (III.7). The corresponding 
quadripartition 𝐴𝐶 𝐶 𝐵  is introduced along the same lines. 

TRIPARTION IN MODELS WITH MULTIPLE EDGES 

Figure III.7:  Tripartition edge-bulk-edge for a quantum lattice model with 
two edges on both end sides of a one-dimensional open chain of finite size L.  
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Cluster: edge-edge squashed entanglement 
(tripartition)  

Cluster: edge-bulk squashed entanglement 
(tripartition) 

(a)  (b) 

Figure III.8 Behaviour of the squashed entanglement in the ground state of a 
cluster spin model and of the corresponding symmetry-breaking counterpart, 
for a finite open chain of length L = 9. Panel (a): edge-edge squashed 
entanglement for a tripartition (ACB). No detectable difference between the 
two models. Panel (b): edge-bulk squashed entanglement in the two models. 
Blue curve: cluster spin model with symmetry protected topological order: 
vanishing entanglement. Red curve: symmetry-breaking counterpart with 
standard Ginzburg-Landau magnetic order. The edge-bulk squashed 
entanglement discriminates between the two models at the tripartite level, 
proving the topological nature of the model.    

As shown in Fig. (III.8), panel (a), for a proper edge-bulk-edge tripartition with 
multiple edges the edge-edge squashed entanglement does not discriminate 
between the two systems. On the other hand, as shown in Fig. (III.8), panel (b), 
the edge-bulk squashed entanglement vanishes in the ground state of the cluster 
spin chain and is finite in the ground state of the symmetry-breaking 
counterpart, in complete agreement with the previous findings obtained from 
the comparison between the Ising and the Kitaev chains, and thus proving the 
(symmetry-protected) topological nature of the 1-D cluster spin model. 
Extending the analysis to the proper edge-bulk-bulk-edge quadripartition, we 
find that the edge-edge squashed entanglement discriminates between the two 
models exactly in the same qualitative form as for the comparison between the 
Ising and the Kitaev chains, as shown in Fig. (III.8bis) below.  
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Edge-edge squashed entanglement 
(quadripartition) 

Cluster model 

Edge-edge squashed 
entanglement (quadripartition) 

Symmetry-breaking counterpart 

(a) (b) 

Figure III.8bis Panel (a): Behaviour of the edge-edge squashed entanglement 
for a quadripartition 𝐴𝐶 𝐶 𝐵  in the ground state of a cluster spin model for 
a finite open chain of length L = 9. Panel (b): Behaviour of the edge-edge 
squashed entanglement for the same quadripartition 𝐴𝐶 𝐶 𝐵  in the ground 
state of the symmetry-breaking counterpart model for a finite open chain of 
length L = 9. The edge-edge squashed entanglement is finite throughout the 
entire topological phase of the cluster spin chain (no edge-bulk correlation), 
and is vanishing in all phases of the symmetry-breaking counterpart model 
(non-vanishing edge-bulk correlation); it thus discriminates between the two 
models and reveals the (symmetry-protected) topological nature of the 1-D 
cluster spin model, in complete analogy with the previous comparative 
investigation of the Kitaev fermionic chain vs the Ising spin chain.   

Quantitatively, the maximum finite value of the squashed entanglement in the 
1-D cluster spin model (attained at h = 0) turns out to be ln 2  , i.e. twice the 
value attained in the Kitaev chain. As expected, the value of the topological 
squashed entanglement depends on ground-state topological degeneracy, and 
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increases with the dimensionality of the edges. Therefore, from the point of view 
of quantum resource theory, e.g. applied to the problem of topological quantum 
computation and topological quantum memories, it is desirable to design 
topological systems with the largest possible edge number, thus maximizing the 
amount of the topological entanglement resource.  

Finally, we have investigated the cluster spin chain with the addition of 
diamagnetic edges and we have found that they stabilize the Majorana fermions 
in the ground state and thus the topological squashed entanglement at the 
constant maximum value ln(2) throughout the entire topologically ordered 
phase (h < 1), as shown in Fig. (III.9) below. 

Cluster model: Edge-edge squashed entanglement – 
tripartition (ACB) 

Figure III.9 Edge-edge squashed entanglement in the ground state of the 1-
D cluster spin model on an open chain of size L = 9 as a function of the 
external field h. Red curve: cluster spin chain with diamagnetic edges; Blue 
curve: cluster spin chain without diamagnetic edges. The diamagnetic edges 
stabilize the topological entanglement at the constant maximum value ln(2) 
throughout the entire topological phase (h < 1). 

III.8 Discriminating topological transitions: Heisenberg-like D-

models 

It is interesting to discuss the ability of the squashed entanglement to 
discriminate the transitions to topological order gradually moving to higher 
dimensions. In this section we consider a class of lattice quantum spin models 
defined both in one dimension and in sawtooth geometries, a first progression 
towards ladders, stripes, and finally truly two-dimensional systems. For the 
class of models that we are going to consider, the very geometrical structure 
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allows naturally for the unambiguous identification of (ACB) tripartitions, 
which is sufficient to discriminate topological transitions according to the nature 
of the bulk-edge correlations. 

Let us consider the following class of one-dimensional, spin-1 Heisenberg 
models equipped with double interactions that define the geometric structure 
shown in Fig. (III.10), and whose Hamiltonian reads: 

𝐻  𝑆 𝑆  𝐷 𝑆 𝑆
 

ℎ 𝑆 .                                  III. 49  

 

The geometric dimensionality is that of an incomplete ladder with nearest- and 
next-to-nearest neighbour interactions, the so-called sawtooth chain illustrated 
in Fig. (III.10) below. This particular class of Heisenberg-like Hamiltonians 
with two geometrically competing types of interactions is important because it 
models quasi 1-D structures that actually exist in a wide class of natural 
materials (e.g., Cu2Cl(OH)3).  

 

Figure III.10 Sawtooth open chain lattice of finite size. The two constituent 
sublattices A and B are endowed with exchange interactions, respectively of 
strength J1 = 1 and  J2 = D, denoted by the grey and the green segments. 

The ruling parameter is the coefficient D of the next-to-nearest neighbour 
interactions between the odd sites of the lattice (sublattice A). The value D = 0  
corresponds to an anisotropic spin-1 Heisenberg open chain in external field, 
admitting a topological phase for sufficiently weak values of the external field 
h. It is expected that a topological phase should survive also when D > 0 up to 
some critical value 𝐷  to be determined. We have addressed this problem via 
the edge-bulk squashed entanglement for a tripartite chain that must vanish in a 
topological phase and attain a finite value otherwise. In Fig. (III.11) we illustrate 
our results for a chain of length L = 9 with D = 0, D = 1/2, and D = 6/5, 
respectively. We see that indeed the edge-bulk squashed entanglement identifies 
a topological phase as long as 𝐷  𝐷  ≃ 1.2 . This result is in very good 
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agreement with the findings of Ref. [27] that combines numerical methods and 
a handful of experimental results on materials with quasi 1-D structural 
arrangements.  

 (A) 
Edge-Bulk squashed 
entanglement 
(Heisenberg-like 
sawtooth chain: D = 
0) 

 

(B) 
Edge-Bulk squashed 
entanglement 
(Heisenberg-like 
sawtooth chain: D = 0.5) 

 

(C) 
Edge-Bulk squashed 
entanglement 
(Heisenberg-like 
sawtooth chain: D = 1.5) 
 
 

 

 

  

 
 

Figure III.11 Edge-bulk squashed entanglement as a function of the external 
field h for an Heisenberg-like Hamiltonian, Eq. (III.49), on an open sawtooth 
chain with L = 9 sites, with an edge-bulk-edge tripartition (ACB), for different 
values of the sublattice interaction strength D. Panel (A) D = 0.5. Panel (B): D 
= 0.5. Panel (C): D = 1.5. We see that for a value of D above a critical 
threshold  𝐷   the bulk becomes conducting and gets correlated with the chain 
edges, barring the onset of a topological phase.  

We have also computed the edge-edge entanglement in all the cases shown 
above, and verified that it is finite throughout the entire interval (0 < h < h_c) 
for D < D_c , proving the existence a bona fide topological phase in those 
regimes. It is worth noticing that the maximum value attained by the squashed 
entanglement in the topological phase is again    as in the case of the 
Kitaev chain. This result corroborates the conjecture that the actual value of 
the squashed entanglement is a simple function of the ground-state degeneracy 
at the exact topological point. Indeed, also in the case of the Heisenberg-like 
D-models the ground state is exactly two-fold degenerate exactly at  ℎ 0. 
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III.9 Higher-dimensional topological models: preliminary results on 

the two-dimensional Kitaev toric code 
   

The Kitaev toric code model is defined on a two-dimensional lattice, usually 
chosen to be the square lattice with periodic boundary conditions, with the spin-
1/2 degrees of freedom located on each link between adjacent sites. Stabilizer 
operators are defined on spin arrangements as stars around each site (or vertex) 
𝑣 of the direct lattice and as closed squares (or plaquettes) centred around each 
vertex of the dual lattice 𝑝 of the direct lattice, as follows: 

𝐴  ∏ 𝜎∈ ,                                                             (III.50) 

𝐵 ∏ 𝜎∈                                                                    III. 51    

Where here we use 𝑖 ∈ 𝑣  to denote the links touching the vertex 𝑣, and 𝑝  to 
denote the edges surrounding the plaquette p. The stabilizer space of the code is 
that for which all stabilizers act trivially, hence 

𝐴 |𝜓⟩ |𝜓⟩,     ∀ 𝑣 ;                       |𝜓⟩ |𝜓⟩,       ∀𝑝.                   III. 52   

On any state |𝜓⟩. For the toric code, this space is four-dimensional, and so can 
be used to store two qubits of quantum information. This can be proven by 
considering the number of independent stabilizer operators. The occurrence of 
errors will move the state out of the stabilizer space, resulting in vertices and 
plaquettes for which the above condition does not hold. The positions of these 
violations is the syndrome of the code, which can be used for error correction. 

The unique nature of the topological codes, such as the toric code, is that 
stabilizer violations can be interpreted as quasiparticles. Specifically, if the code 
is in a state |𝜙⟩ such that, 

𝐴 |𝜙⟩ |𝜙⟩,                                                                                    III. 53   

a quasiparticle known as an 𝑒  anyon can be said to exist on the vertex 𝑣 . 
Similarly, violations of the 𝐵  are associated with so called 𝑚 anyons on the 
plaquettes. The stabilizer space therefore corresponds to the anyonic vacuum. 
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Single spin errors cause pairs of anyons to be created and transported around 
the lattice. 

When errors create an anyon pair and move the anyons, one can imagine a path 
connecting the two composed of all links acted upon. If the anyons then meet 
and are annihilated, this path describes a loop. If the loop is topologically trivial, 
it has no effect on the stored information. The annihilation of the anyons, in this 
case, corrects all of the errors involved in their creation and transport. However, 
if the loop is topologically non-trivial, though re-annihilation of the anyons 
returns the state to the stabilizer space it also implements a logical operation on 
the stored information. The errors, in this case, are therefore not corrected but 
consolidated. 

Since the stabilizer operators of the toric code are quasi-local, acting only on 
spins located near each other on a two-dimensional lattice, it is not unrealistic 
to define the following spin model Hamiltonian for the toric code: 

𝐻  𝐽 ∑ 𝐴 𝐽 ∑ 𝐵 , ℎ ∑ 𝜎  ,                      𝐽 0       III. 54    

The ground state space of this Hamiltonian is the stabilizer space of the code. 
Excited states correspond to those of anyons, with the energy proportional to 
their number. Local errors are therefore energetically suppressed by the gap, 
which has been shown to be stable against local perturbations. However, the 
dynamic effects of such perturbations can still cause problems for the code. The 
gap also gives the code a certain resilience against thermal errors, allowing it to 
be correctable almost surely for a certain critical time. This time increases with 
𝐽, but since arbitrary increases of this coupling are unrealistic, the protection 
given by the Hamiltonian still has its limits that need to be investigated more 
thoroughly, especially for what concerns the ground-state entanglement, in 
order to gain a deeper understanding and introduce modifications that allow 
forms of topological order that might be robust also against thermal fluctuations. 

The means to make the toric code, or the planar code, into a fully self-correcting 
quantum memory is often considered. Self-correction means that the 
Hamiltonian will naturally suppress errors indefinitely, leading to a lifetime that 
diverges in the thermodynamic limit. It has been found that this is possible in 
the toric code only if long range interactions are present between anyons. 
Proposals have been made for realization of these in the lab. Another approach 
is the generalization of the model to higher dimensions, with self-correction 
possible in 4-D with only quasi-local interactions. Here we consider a spin-1/2 
toric-code model defined on a two-dimensional lattice as shown in the figure 
here below: 
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Figure III.12 A toric-code model defined on a lattice of seven spins 1/2  

In this very preliminary setting, we define the edges as the boundary spins that 
delimit the area of the lattice covered by the code, which are located on the top 
and the bottom sides respectively, i.e. the spins 3,2,5,6 in Fig. III.12, while the 
remaining spins 1,0,4 constitute the bulk. We can then introduce the edge-bulk-
edge tripartition (ACB) as [edge (2,3)]-[bulk (1,0,4)]-[edge (5,6)]. Proceeding 
along the same lines illustrated with by the previous one-dimensional examples, 
we have computed numerically the edge-edge and the edge-bulk squashed 
entanglement as functions of the external field h. The results are reported in Fig. 
III.13 below. 
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Figure III.13 Ground-state squashed entanglement for a toric-code 
Hamiltonian model defined on a two-dimensional lattice of  L = 7 spins on the 
bonds, with periodic boundary conditions. Panel (a): edge-edge squashed 
entanglement obtained for a canonical edge-bulk-edge tripartition (ACB). 
Panel (b): edge-bulk squashed entanglement for the same tripartition. We see 
that the edge-edge entanglement is non vanishing while the edge-bulk 
entanglement is identically zero, thus corresponding to a bona fide 
topological phase of the system. 

This very preliminary study seems to indicate that also in 2-D the boundary and 
boundary-bulk squashed entanglements are able to faithfully characterize the 
topological nature of certain quantum orders. In the case of the toric code, we 
see that the edge-edge squashed entanglement is I) non-vanishing in the 
topological phase (in which anionic excitations are manifest), and II) it is 
independent of the state of the bulk, as there is no entanglement, and thus no 
nonlocal quantum correlations, between edge and bulk degrees of freedom.  

Introducing diamagnetic edges, we find that the squashed entanglement is 
stabilised and remains constant in the entire topological phase, as shown in Fig. 
III.14.  The maximum value of the squashed entanglement is set again at  .  
On the other hand, introducing a diamagnetic bulk has no effect on the 
entanglement properties of the system: they are indistinguishable from those of 
the non-diamagnetic case. These findings show once more that the features of 
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the energy eigenstates of the edges are crucial for the identification and 
characterization of the system topology. We can conclude that our measure is 
bona fide topological as it depends essentially on the geometry of the system 
and on the ground state degeneracy. Comparing all the cases investigated so far, 
it appears that the maximum squashed entanglement (or the squashed 
entanglement stabilised with diamagnetic edges) takes on two possible values: 
either 0 in a trivial (disordered) phase or     in a topological phase, where 
n is the ground-state degeneracy and d is the dimension of the space of definition 
for the lattice geometry. 

 

Figure III.14 Ground-state squashed entanglement for a toric-code Hamiltonian 
model defined on a two-dimensional lattice of  L = 7 spins on the bonds, with periodic 
boundary conditions. Panel (a): edge-edge squashed entanglement obtained for a 
canonical edge-bulk-edge tripartition (ACB) and diamagnetic edges. Panel (b): same 
edge-edge squashed entanglement for the same tripartition, and diamagnetic bulk. We 
see that the edge-edge entanglement is stabilised by the diamagnetic edges throughout 
the entire topological phase, while it remains insensitive even to a diamagnetically 
modified bulk. 
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III.10 Enabling and enhancing quantum technologies: edge-edge & 

edge-bulk tripartition and quadripartition methods 

Our results show that every symmetry-breaking system (subject to the 
interaction of an external field) is distinguished from a topological one by the 
different properties of the bulk in the ordered (non-trivial) phase that holds for 
values of the external field below the critical value. In fact, a system that 
depends on a local order parameter (symmetry-breaking) has a bulk correlated 
with the edges, while a system that depends on global (topological) features has 
a bulk with correlation properties different from the edges, and essentially 
uncorrelated with the latter. Such discriminating traits can be very useful to 
improve and enhance quantum technologies belonging to the fields of quantum 
computing, quantum simulation, quantum sensing and cryptography. For 
example, if we wish to create a transmission line to protect a signal from some 
noise source, we will need to use a topological material that avoids dispersing 
this signal during transport and broadcasting, as a topological material will 
feature a non-conducting bulk. Furthermore, the signal will be transmitted, 
thanks to the entanglement between the two edges of the cable, faster than non-
topological cables are able to. This transmission method can be especially useful 
for precision measurements relating to magnetic or electric fields. 

Vice versa, considering acoustic applications, there is very often the need to 
purify a signal affected by noise. In this case it would be very useful to have a 
symmetry breaking material with a bulk related to its edges. Indeed, the signal 
transmitted in this material is dispersed in the bulk arriving less noisy at the 
output. 

In either case, it will be crucial to identify and characterize the relative edge-
edge, edge-bulk, and bulk-bulk properties of different materials and devices in 
order to specify, design, choose, and optimize the proper ones for each specific 
technological application. The squashed entanglement appears to be ideally 
suited for this discrimination and characterization task. 
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III.11 Future developments  

The following developments in flat spaces are either ongoing or planned: 

 Introduction of a new basis using edge creation and annihilation
operators to track in detail the behaviour of different quantum
information measures.

 Introduction of local interaction potentials perturbing Kitaev, Cluster,
Ising, and XYZ models in order to assess the robustness of the squashed
entanglement in discriminating topological and symmetry-breaking
orders;

 Analysis of the effects of integrable and non-integrable potentials on
the squashed entanglement.

 Study of bulk and edge correlation proprieties of driven open chains.
The driving consists of instantaneous quenches of one-site energy, with
main focus of the quasiperiodic modulation of the potentials.

 Study of minimal sets of simultaneous measures able to discriminate
different phases, such as von Neumann entropy, mutual information,
Schmidt gap, discord, and coherence;

 Definition of a measure that can discriminate models with reciprocal
mapping through suitable lattice partitions; definition of finer grained
measures able to discriminate between different types of topological
orders.

 Development of advanced numerical codes for extensive analysis for
models of larger size defined in higher dimensions.

Afterwards we will assess the interplay between topological order and artificial 
curved geometries aiming at identifying better topological hardware for the next 
generation of quantum technologies. We plan to: 
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 Consider spin chains with a site-dependent anisotropy parameter to 
investigate topological order both at zero and non-zero temperatures; 

 Characterize topological spin chains at zero temperature with different 
bipartite vs multipartite entanglement and coherence measures, and 
compare them. We also plan to assess the different partitions favouring 
the chain edges against the chain bulk or vice versa; 

  Characterize topological spin chains at non-zero temperature selecting 
suitable measures such as multipartite Uhlmann fidelity, multipartite 
coherence measures, and multipartite entanglement measures. 

III.12 Papers in preparation 

The following papers are in preparation and scheduled to appear soon: 

1) F. Illuminati and A. Marino: “Squashed entanglement: 
order parameter for topological superconductivity”, preprint 
in preparation (February 2021). 
 

2) F. Illuminati and A. Marino: “Purification, squashed 
entanglement, and bulk-edge correspondence in symmetry-
protected topological quantum systems”, preprint in 
preparation (February 2021). 

 

 

 

 

 

 



64 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



65 
 

 
Chapter 4 

 CONCLUSIONS AND OUTLOOK 
 

We have identified a specific measure of entanglement, the squashed 
entanglement, that is able to characterize a topological system and to 
discriminate it from a symmetry-breaking system such that the two systems 
can be mapped nonlocally into each other.  The understanding of 
topological proprieties for 1D an 2D systems in flat space can help to 
highlight the quantum properties in curved space. The latter represent terra 
incognita and land of promises. Very little is known about quantum systems 
that are geometrically deformed as if they were coupled to gravity, and even 
less when the corresponding system in a flat geometry exhibits topological 
order.  Only few isolated studies have considered these problems. For 
instance, the role of the gravitational anomaly in quantum Hall systems [1], 
and the gravitational deformation of 1D-spin chains [28]. At the same time, 
we know that shapes and dynamics of topological defects like vortices 
strongly depend on the geometry, and that in 2D systems the topological 
order depends (as in the toric code) on the surface genus. Thus, the topology 
of the space certainly matters, although many of its effects on many-body 
systems are mostly unknown and a systematic study is still missing. Coming 
back to the squashed entanglement and its current and potential future role 
in the study and understanding of quantum matter, it is important to observe 
that the squashed entanglement is naturally defined a priori on all quantum 
states, pure or mixed, and in this sense is in the privileged position of being 
the potentially unique and unifying prima facie entanglement measure for 
the study of quantum matter at zero and finite temperature, and both at 
equilibrium and in the off equilibrium dynamics (another land that has been 
only scarcely investigated so far). Finally, the squashed entanglement 
naturally obeys monogamy inequality relations, and thus its formal 
extension to a measure of multipartite entanglement both in pure and mixed 
states is straightforward. As suggested by Prof. Illuminati, multipartite 
squashed entanglement might thus be the perfect tool for the in-depth 
investigation of quantum matter going beyond the bipartite layer and into 
the universe of multipartite, nonlocal quantum correlations. As such, it 
would be interesting to see whether generalizations of the extension, 
purification, and squashing procedures can be devised in order to define 
squashed versions of other quantifiers of quantumness, such as (relative) 
entropic and geometric measures of Bell nonlocality, as well as measures 
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of quantum discord and quantum coherence, to develop a unified 
framework for the hierarchical investigation of quantum correlations and 
quantum resource theories. 
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APPENDIX A: ALGORITHMS 

FOR THE KITAEV CHAIN 
TRIPARTITION WITH THE 

RDM TECHNIQUE  
 

We consider the Kitaev chain that is obtained by nonlocally mapping the 
spin-1/2 degrees of freedom of the Ising chain in spinless fermions. To 
determine the von Neumann entropies, we use the so-called technique of the 
reduced density matrix (RDMs) introduced by Peschel [29]. The RDMs have 
an exponential form of the type 𝑒 , whenever 𝐻  is a solvable fermionic or 
bosonic Hamiltonian related to some subsystem. The method shown here 
explains how to recover the RDMs grounding all the considerations in the 
study of correlation functions. Once known the exact spectrum of the RDM, 
the entanglement entropy follows directly. This technique is available for a 
quadratic Hamiltonian. We consider the simple case of four sites and we 
divide the chain in three parts: two edges and the bulk (formed in this case by 
two sites). In the case of  𝜇 0, we have two-fold ground states with opposite 
parity. In particular we consider the ground state with parity P = 1 of the 
Hamiltonian for L (length of chain) = 4. Now, consider the sites of bulk and 
we calculate the correlation function 𝐶 ,  that are defined as: 
 

𝐶 ,  𝜓 𝑐 𝑐 𝜓 ,                                                             𝐴. 1   

 

Where the indices 𝑖 and 𝑗 are the sites of bulk. For the two sites of bulk we have 

that: 
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𝐶                                                                                 A. 2          

 

Finally, we calculate the correlation function F that are defined as: 

𝐹 ,  𝜓 𝑐 𝑐 𝜓                                                            𝐴. 3   

 

For the bulk we obtain the matrix: 

𝐹  
0

1
4

1
4

0
                                                                      𝐴. 4  

 

 

We determine the following operator: 

𝐴 𝐶 𝐹 𝐶 𝐹                                                            𝐴. 5                       

 

its matrix form for the bulk is: 
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𝐴
0

0
                                                                                     𝐴. 6   

 

The eigenvalues of the operator A 𝛾  are related to the eigenvalues of the 
subsystem Hamiltonian 𝐻  𝜖 , by the relation: 

𝜖 2𝑎𝑟𝑐𝑡𝑎𝑛𝑔ℎ 2 𝛾                                                                     𝐴. 7   

 

The eigenvalues 𝜖   are related to the eigenvalues of RDMs and from 
exponential form of RDM we obtain that von Neumann entropy has the form: 

𝑆 𝜌  ∑ ln 1 ln 1  𝐴. 8   

In the end we obtain: 

𝑆 𝜌 ln 2 .                                                                              𝐴. 9         

For the 𝑆 𝜌  and 𝑆 𝜌  the algorithm is analogous and the squashed 

entanglement is: 

,
 .                                                                              𝐴. 10              

For the quadripartition is necessary to apply the same method. 
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APPENDIX B: CODE 
ATTACHMENT 

A selection of the code written during this work is listed. The code samples 
represent a small fraction of the total amount of code produced. Still, it is meant 
to illustrate the diversity of the applied methods for different models treated and 
the most essential structures needed to reproduce the numerical results. 

B.1 Analysis of squashed entanglement for spin chains 

In Listing B.1.1 a Mathematica script that analyses the squashed entanglement 
in different spin chains is provided. This code is the main ingredient used to 
produce the results in section III, in particular for the spin chains. 

Listing B.1.1 A Mathematica script that analyses the squashed entanglement 
(SQ) for a spin Hamiltonian (HFree) with six sites in an external magnetic 
field (h). 

The “CycleFunction” presents in Listing B.1 is a function that takes the 
Hamiltonian of the system and the bulk sites as input returning the squashed 
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entanglement of chain partitions. An example of “CycleFunction" for a 
tripartite chain is reported in Listing B.2 

Listing B.1.2 “CycleFunction”: a script that takes as input the Hamiltonian 
of spin chain, determines the ground-state (𝜓𝐵) in form of density matrix,
computes the different partitions utilizing the Mathematica function 
“TraceSystem” and finally returns the squashed entanglement with the 
implemented function “Squashed”. 
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B.2 Analysis of squashed entanglement for Kitaev chains 

In Listing B.2 a semi-analytic code that analyses the squashed entanglement for 
Kitaev chains is provided. This code implements in Mathematica the RDM 
method. The algorithm determines the Kitaev Hamiltonian with a function that 
takes the chain sites and magnetic field values as input, then it computes the 
ground-state. To calculate the chain partitions the formulas of the correlation 
functions (obtained by the RDM method) have been implemented analytically, 
which have returned the terms of the squashed entanglement. The value of 
squashed entanglement is obtained taking the minimum between the two values 
of two-folds ground-states. 
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 Listing B.2 Kitaev code: a semi-analytic algorithm that computes the 
squashed entanglement of Kitaev chains utilizing the RDM method.  



79 

BIBLIOGRAPHY 

1. T. Can, M. Laskin, and P. Wiegmann, (2014) Phys. Rev. Lett.

113, 046803.

2. N.M. Linke, M.Gutierrez, K. A. Landsman, C. Figgatt,S.

Debnath, K. R. Brown and C. Monroe, (2017) Science Advances

3, 1701074.

3. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417; W.

Yang, Z.-Y. Wang, and R.-B. Liu, (2010) Front. Phys. 6, 1; J. R.

West, B. H. Fong, and D. A. Lidar, (2010) Phys. Rev. Lett. 104,

130501.

4. G. A. Alvarez, A. Ajoy, X. Peng, and D. Suter, (2010) Phys. Rev.

A 82, 042306.

5. K. Khodjasteh and D. A. Lidar, (2005) Phys. Rev. Lett. 95,

180501; K. Khodjasteh and D. A. Lidar, (2007) Phys. Rev. A 75,

062310.

6. M. J. Biercuk, et al., (2009) Nature 458, 996; J. Du, et al., (2009)

Nature 421, 1265; G. deLange, et al., (2010) Science 330, 60.

7. C. A. Ryan, J. S. Hodges, and D. G. Cory, (2010) Phys. Rev. Lett.

105, 200402.



80 
 

8. T. D. Ladd, et al., (2010), Nature 464, 45 (2010). 

9. A. Yu. Kitaev, (2001) Phys. Usp. 44, 131. 
 

10. F. Wilczek, (2009) Nat. Phys. 5, 614. 
 
 

11.  J. Alicea, (2012) Rep. Prog. Phys. 75, 076501. 
 

12.  M. Leijnse and K. Flensberg, Semicond. (2012) Sci. Technol. 
27, 124003 (2012). 
 
 

13.  C. W. J. Beenakker, (2013) Annu. Rev. Condens. Matter Phys. 
4, 113. 
 
 

14. O. Boada, A. Celi, J. I. Latorre and M. Lewenstein,, (2011) New 

Journal of Physics,  13. 

15. Jaeger G, Shimony A, Vaidman L; Shimony; Vaidman (1995) 

Phys. Rev. 51 (1): 54–67 

16. N.M. Linke, M.Gutierrez, K. A. Landsman, C. Figgatt,S. 

Debnath, K. R. Brown and C. Monroe, (2017) Science Advances 

, Vol. 3, no. 10, e1701074. 

 
17. L. Viola, E. Knill, and S. Lloyd, (1999) Phys. Rev. Lett. 82, 2417; 

W. Yang, Z.-Y. Wang, and R.-B. Liu, Front. (2010) Phys. 6, 1; J. 

R. West, B. H. Fong, and D. A. Lidar, (2010) Phys. Rev. Lett. 

104, 130501. 

18. T. D. Ladd, et al., (2010) Nature 464, 45. 
 
19. S. D. Bartlett, G. K. Brennen, A. Miyake, (2018) Quantum Sci. 

Technol. 3, 014010.  

 



81 
 

20. S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. 

DeGottardi, M. Hafezi, E. Waks, (2018) Science, 359, 666. 

 
21. B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, I. B. Spielman, 

Science  (2015): Vol. 349, Issue 6255, pp. 1514-1518. 

 
22. S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wan, 

M. Troyer , Y. Takahashi, (2016) Nature Physics volume 12, 

296–300 

 
23.  O. Derzhko, (2001)  Journal of Physical Studies (L'viv), v. 5, No. 

1  49-64. 

24. L. Amico, R. Fazio, A. Osterloh, V. Vedral, (2008) Rev. Mod. 
 
 Phys. 80, 517. 
 

25. P. Calabrese, J. Cardy, (2009) J. Phys. A42, 504005 

26. H. Katsura, D. Schuricht and M. Takahashi, (2015) Phys. Rev. B 

92, 115137. 

27. Y. Yang, S. Ran, X. Chen, Z. Sun, S. Gong, Z. Wang, G. Su, 

(2020) Phys. Rev. B 101, 045133. 

28.  H. Ueda and T. Nishino, (2009) J. Phys. Soc. Jap. 78, 014001. 



82 
 

29. I. Peschel and V. Eisler, (2009)  J. Phys. A: Math. Theor. 42 

504003. 

30. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, 

(2018) Science, Vol. 359, Issue 6381, eaar4005  

31. L. M. Nasha, D. Klecknera, A. Reada, V. Vitellib, A. M. Turnerc, 

and W. T. M. Irvine,  (2015) Proc. Natl. Acad. Sci. U.S.A. 112, 

14495.  

32. J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon, 

(2015) Phys. Rev. X 5, 021031.  

 




