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Abstract

This manuscript is devoted to the study of the qualitative behaviour of the

solutions of evolution equations arising from elliptic and parabolic problems

on unbounded domains with unbounded coefficients. In particular, we deal

with the elliptic operator of the form

A = div(Q∇) + F · ∇ − V,

where the matrix Q(x) = (qij(x)) is symmetric and uniformly elliptic and the

coefficients qij, F and V are typically unbounded functions.

Since the classical semigroup theory does not apply in case of unbounded

coefficients, in Chapter 1 we illustrate how to construct the minimal semigroup

T (·) associated with A in Cb(Rd). It provides a solution of the corresponding

parabolic Cauchy problem{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,

for f ∈ Cb(Rd), that is given through an integral kernel p as follows

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy.

Moreover, such solution is unique if a Lyapunov function exists. Since an

explicit formula is in general not available, it is interesting to look for pointwise

estimates for the integral kernel p.

In Chapter 2 we consider a Schrödinger type operator in divergence form,

namely the operator A when F = 0. We prove first that the minimal realiza-

tion Amin of A in L2(Rd) with unbounded coefficients generates a symmetric

sub-Markovian and ultracontractive semigroup on L2(Rd) which coincides on

L2(Rd)∩Cb(Rd) with the minimal semigroup generated by a realization of A on

Cb(Rd). Moreover, using time dependent Lyapunov functions, we show point-

wise upper bounds for the heat kernel of A. We then improve such estimates

and deduce some spectral properties of Amin in concrete examples, such as in

the case of polynomial and exponential diffusion and potential coefficients.

Chapter 3 deals with the whole operator A. With appropriate modifi-

cations, similar kernel estimates described above are valid for this operator.

In addition, we prove global Sobolev regularity and pointwise upper bounds

for the gradient of p. We finally apply such estimates in case of polynomial

coefficients.
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Sommario

Questa tesi è dedicata allo studio del comportamento qualitativo delle soluzioni

di equazioni di evoluzione derivanti da problemi ellittici e parabolici su do-

mini non limitati con coefficienti non limitati. In particolare, ci si occupa

dell’operatore ellittico della forma

A = div(Q∇) + F · ∇ − V,

dove la matrice Q(x) = (qij(x)) è simmetrica e uniformemente ellittica e i

coefficienti qij, F e V sono tipicamente funzioni non limitate.

Poiché la teoria classica dei semigruppi non si applica in caso di coefficienti

non limitati, nel Capitolo 1 illustriamo come costruire il semigruppo minimale

T (·) associato ad A in Cb(Rd). Esso fornisce una soluzione del corrispondente

problema di Cauchy parabolico{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,

per f ∈ Cb(Rd), che è data attravenso un nucleo integrale p da

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy.

Inoltre, tale soluzione è unica se esiste una funzione di Lyapunov. Poiché in

generale non è disponibile una formula esplicita, è interessante cercare stime

puntuali per il nucleo integrale p.

Nel Capitolo 2 si considera un operatore di tipo Schrödinger in forma di

divergenza, cioè l’operatore A con F = 0. Inizialmente si prova che la minima

realizzazione Amin di A in L2(Rd) con coefficienti non limitati genera un semi-

gruppo simmetrico, sub-Markoviano e ultracontrattivo su L2(Rd) che coincide

su L2(Rd)∩Cb(Rd) con il semigruppo minimale generato da una realizzazione

di A su Cb(Rd). Inoltre, usando le funzioni di Lyapunov dipendenti dal tempo,

si mostrano stime puntuali dall’alto per il nucleo del calore di A. Quindi si

applicano tali stime e si deducono alcune proprietà spettrali di Amin in es-

empi concreti, come nel caso di coefficienti di diffusione e potenziale di tipo

polinomiale ed esponenziale.

Nel Capitolo 3 si considera l’intero operatore A. Con opportune modifiche,

simili stime del nucleo sopra descritte rimangono valide. Inoltre, si dimostrano

risultati di regolarità globale di Sobolev e stime puntuali per il gradiente di p.

Infine si applicano tali stime nel caso di coefficienti polinomiali.
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Introduction

Starting from the second half of the past century, elliptic operators with

bounded coefficients have been investigated extensively both in Rd and in open

subsets of Rd. Nowadays we have a wide knowledge on this subject.

In recent years, the attention turned to operators with unbounded coef-

ficients in Rd. The motivation lies in their applications in many branches

of applied science, engineering and economics. For example, in fluid dynam-

ics, the study of the Navier-Stokes equations with rotating obstacle involves a

change of variables which transform operators with bounded coefficients into

operators with unbounded ones (see [24, 27]). Equations with unbounded co-

efficients also arise from stochastic models in mathematical finance, such as

the well known Black-Scholes equation in [6]. Moreover, in biology, they play

a role in the study of the motion of a particle acting under a force perturbed

by noise (see [22]).

The analysis of operators with unbounded coefficients has been devel-

oped using several approaches, with methods and ideas from partial differen-

tial equations, Dirichlet forms, stochastic processes and stochastic differential

equations.

The Ornstein-Uhlenbeck operator represents one of the most famous exam-

ples of an operator with unbounded coefficients in Rd. It is defined on smooth

functions by

Aϕ(x) =
1

2

d∑
i,j=1

qijDijϕ(x) +
d∑

i,j=1

FijxjDiϕ(x),

for any x ∈ Rd, where (qij) is a constant positive definite matrix and (Fij) is

a constant real matrix. It exhibits the main features of this class of operators,

such as the fact that the associated semigroup in Cb(Rd) is neither strongly

continuous nor analytic.

One quickly realizes that leaving the bounded coefficients setting for the

unbounded one is not merely a generalization: the classical semigroup theory is

unfit as well as the classical theory of elliptic differential operators. Moreover,

it has considerable consequences. For example, the failure of the maximum

principle leads to the nonuniqueness of the continuous bounded solutions of

the corresponding parabolic Cauchy problems.

With this in mind, in Chapter 1 we illustrate specific techniques contained

in [36, 47, 48] in order to deal with uniformly elliptic operators defined on

5
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smooth functions by

Aϕ(x) =
d∑

i,j=1

qij(x)Dijϕ(x) +
d∑
i=1

Fi(x)Diϕ(x)− V (x)ϕ(x), (1)

for any x ∈ Rd, where the matrix Q = (qij) is symmetric and uniformly elliptic

and the coefficients are locally Hölder continuous and typically unbounded

functions. The goal is to study general properties of the semigroup T (·) in

spaces of continuous functions Cb(Rd) such as the existence and uniqueness of

solutions to the elliptic and parabolic equation.

More precisely, for f ∈ Cb(Rd) we consider the parabolic problem{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd.
(2)

By mean of an approximation argument with Cauchy-Dirichlet problems in

bounded and smooth domains and classical Schauder estimates, we prove that

the problem (2) admits a classical solution for every f ∈ Cb(Rd). This solution

is given by a semigroup T (·), namely u(t, x) = T (t)f(x). Moreover, it admits

an integral representation by

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy, (3)

where p is a positive function called integral kernel. In general such semigroup

is neither strongly continuous nor analytic in Cb(Rd). Hence, the next step

is to make clear the meaning of generator. For that, in comparison with the

classical concept of infinitesimal generator, we introduce the weak generator

of T (·).
Finally, one can ask for the uniqueness of the solution to problem (2). As

anticipated above, the answer is negative: unlike the case when the coefficients

are bounded, the classical maximum principle may fail. This is the reason why,

in general, the parabolic problem (2) admits more than one solution. Hence,

to prove uniqueness results some additional assumptions on the operator A

need to be imposed. The typical assumption which we assume is the existence

of a so-called Lyapunov function, i.e. a function 0 ≤ Z ∈ C2+ζ(Rd) such that

lim|x|→∞ Z(x) =∞ and

AZ(x) ≤ λZ(x),

for some λ ≥ 0. Furthermore, we introduce time dependent Lyapunov func-

tions for the operator ∂t + A. These are functions W ∈ C1,2+ζ((0, T )× Rd) ∩
C([0, T ] × Rd) such that lim|x|→∞W (t, x) = ∞ uniformly for t in compact

subsets of (0, T ], W ≤ Z and there exists 0 ≤ h ∈ L1((0, T )) such that

∂tW (t, x) + AW (t, x) ≤ h(t)W (t, x),

for all (t, x) ∈ (0, T )×Rd. Finally, we prove that both Z and W are integrable

with respect to the measure pdy.
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In Chapter 2 we present the work in [17]. We consider the Schrödinger

type operator defined on smooth functions ϕ by

Aϕ = div(Q∇ϕ)− V ϕ, (4)

where the matrix Q = (qij) is symmetric and uniformly elliptic and the co-

efficients are typically unbounded functions. If qij ∈ C1+ζ
loc (Rd) and 0 ≤ V ∈

Cζ
loc(Rd) for some ζ ∈ (0, 1), then we can associate the semigroup T (·) in

Cb(Rd) constructed in Chapter 1.

At this point one may wonder if it is possible to obtain generation results

also in the space L2(Rd). The answer is positive in the sense that the minimal

realization of A in L2(Rd) generates a positive symmetric C0-semigroup T2(·)
on L2(Rd) which is also sub-Markovian and ultracontractive. In the first part

of Chapter 2, we see that the idea behind the construction of the semigroup

T2(·) relies again on an approximation argument and makes use of sesquilinear

forms. For this reason, T2(·) is consistent with T (·), namely it coincides with

T (·) in the intersection L2(Rd) ∩ Cb(Rd). Actually, even more is achieved:

T2(·) extends to a positive C0-semigroup of contractions Tp(·) on Lp(Rd) for

all p ∈ [1,∞). They are compact and the spectrum of their corresponding

generators is independent of p.

Let us now assume that there exists a Lyapunov function Z for the

Schrödinger type operator A, i.e. 0 ≤ Z ∈ C2+ζ(Rd) such that lim|x|→∞ Z(x) =

∞, AZ(x) ≤ M and η∆Z(x) − V (x)Z(x) ≤ M for all x ∈ Rd and some con-

stant M ≥ 0. Then, as mentioned above for the more general elliptic operator

(1), for every f ∈ Cb(Rd) the semigroup T (t) applied to the initial datum f

gives the unique solution (3) to the parabolic problem (2). As usually happens,

in general an explicit formula for this solution is not available, thus one tries

to find pointwise estimates. Since the semigroup is given through an integral

kernel p(t, x, y), this translates in looking for pointwise kernel estimates.

This is the reason why an important aspect in the study of elliptic op-

erators is to have estimates for the kernel p and, consequently, this ques-

tion has received a lot of attention in the literature. We mention here

[1, 4, 9, 10, 11, 30, 31, 34, 41, 50], where specific operators were considered. In

particular, in these last years second order elliptic operators with polynomially

growing coefficients and their associated semigroups have been widely studied

(see for example [12, 13, 14, 15, 16, 21, 36, 37, 43, 44, 45, 46]). For instance,

the case of the (non-divergence type) Schrödinger operator

(1 + |x|m)∆− |x|s (5)

was discussed extensively in the literature. Kernel estimates were obtained in

[16] assuming that m > 2, s > m − 2 and in [37] when m ∈ [0, 2) and s > 2.

Furthermore, if m > 2 and s > m− 2, kernel estimates for the corresponding

divergence form operators

(1 + |x|m)∆ + b|x|m−1 x

|x|
· ∇ − c|x|s (6)
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are proved in [13] and for c = 0 in [45]. In the papers mentioned above

regarding the operators (5) and (6), the authors used a technique based on the

relationship between the log-Sobolev inequality and the ultracontractivity of

a suitable semigroup in a weighted space. Let us also mention that for m = 0

and s > 0 both upper and lower estimates were established in [42].

On this path, the second part of Chapter 2 is devoted to generalize the

above results concerning second order elliptic operators with polynomially

growing coefficients to our Schrödinger type operator (4). The starting point is

the case of bounded diffusion coefficients, see [1, 10, 34, 41]. These techniques

were extended to include also unbounded diffusion coefficients in [30, 31] for

nonautonomous operators in non-divergence form. In here we adopt the tech-

nique of time dependent Lyapunov functions used in [1, 30, 31, 51] to our

divergence form setting. In particular, we deal with time dependent Lyapunov

functions W for ∂t + A and ∂t + η∆− V , so they satisfy

∂tW (t, x) + AW (t, x) ≤ h(t)W (t, x)

and

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x) ≤ h(t)W (t, x),

for any (t, x) ∈ (0, T ) × Rd, where η is the ellipticity constant of the matrix

Q and T > 0. This allows for a unified approach to obtain kernel bounds

corresponding to [13, 42] in the divergence form setting. As a matter of fact,

we can allow even more general conditions on m and s in order to get kernel

estimate for our prototype operator

div
(
(1 + |x|m∗ )∇

)
− |x|s, (7)

where x 7→ |x|∗ is a C2-function satisfying |x|∗ = |x| for |x| ≥ 1. We require

merely that m > 0 and s > |m − 2|; moreover, we can drop the assumption

d ≥ 3 imposed in [13, 42]. We first establish sufficient conditions under which

functions like W (t, x) = eεt
α|x|β∗ are time dependent Lyapunov functions for

more general operators with polynomially growing coefficients, namely such

that
d∑

i,j=1

qij(x)ξiξj ≤ cq(1 + |x|m)|ξ|2, (8)

for some constant cq > 0 and every ξ, x ∈ Rd. Then, applying the technique

mentioned above to the kernel p associated to the operator (7), we get the

following inequality

p(t, x, y) ≤ Ct1−
α(2m∨s)
s−m+2

ke−
ε
2
tα|x|

s−m+2
2

∗ e−
ε
2
tα|y|

s−m+2
2

∗ , (9)

for any t ∈ (0, 1), x, y ∈ Rd, where k > d + 2, β = s−m+2
2

, 0 < ε < 1/β,

α > β
β+m−2

.

As our approach does not depend on the specific structure of the coeffi-

cients, we can establish kernel estimates not only in the case where Q(x) =
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(1+ |x|m∗ )I. Indeed, an estimate similar to (8) of the quadratic form associated

toQ is enough. In addition, we can even leave the setting of polynomially grow-

ing coefficients and consider coefficients of exponential growth; this includes

the case Q(x) = e|x|
m
I and V (x) = e|x|

s
for d ≥ 1 and 2 ≤ m < s. We can

then handle operators of the form

div
(
e|x|

m∇u
)
− e|x|s .

Here we would like to mention the paper [20] where pointwise estimates are

obtained in the elliptic case for exponentially growing coefficients. We stress

that these estimates can be improved by choosing a Lyapunov function like

W (t, x) = exp

(
εtα
∫ |x|∗

0

e
τβ

2 dτ

)
.

The kernel estimate obtained in this setting is

p(t, x, y) ≤Ct1−
k
2 exp(Ct−α) exp

(
−ε

2
tα
∫ |x|∗

0

e
τβ

2 dτ

)
(10)

× exp

(
−ε

2
tα
∫ |y|∗

0

e
τβ

2 dτ

)
,

for any t ∈ (0, 1), x, y ∈ Rd, where k > d + 2, 1 + m
2
≤ β ≤ m, ε > 0,

α > 2β+m−2
2m

.

Chapters 3 deals with the results in paper [32]. We are concerned with the

more general operator

A = div(Q∇) + F · ∇ − V, (11)

where in addition we assume that the drift term F belongs to C1+ζ
loc (Rd;Rd). For

F = 0 we obtain the operator (4) studied in Chapter 2. Thanks to the chosen

symmetric structure, in the right hand side of (9) and (10) terms involving

both x and y appear. However, all the results in Chapter 2 can be refined in

order to deal with the more general operator (11).

In this chapter, we are aim to establish not only estimates for p but also for

∇p, the gradient of p. Apart from the existence of time dependent Lyapunov

functions, an important tool to obtain such estimates is the square integrability

of the logarithmic gradient of p. Such integrability property plays an important

role to obtain regularity results for p, cf. [9, Section 7.4]. Moreover, as in [41],

once estimates for ∇p are obtained, one can repeat the same procedure to

get estimates for D2p and hence estimates for ∂tp. This allows us to obtain

the differentiability of the semigroup T (·). Estimates for the gradient of p

were obtained in [41, Section 5] in the case of bounded diffusion coefficients.

As in [30, 31], we use approximation to extend this to unbounded diffusion

coefficients. We point out that the constant in the estimate for ∇p obtained
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in [41, Thm. 5.3] depend on ‖Q‖∞ and thus this estimate cannot be used in

an approximation result. Therefore, we first establish an estimate for ∇p in

the case of bounded diffusion coefficients where the constant in the estimate

does not depend on ‖Q‖∞. With this estimate at hand, we can then tackle the

case of unbounded diffusion coefficients by approximating them with bounded

ones. In this way, we can prove our main result which provides an estimate of

∇p in the general case.

We illustrate our results by applying them to the prototype operator

A = div((1 + |x|m∗ )∇)− |x|p−1x · ∇ − |x|s,

with p > (m− 1) ∨ 1, s > |m− 2|, m > 0. Then, we derive that

|∇p(t, x, y)| ≤ C(1− log t)t
3
2
− 3α(m∨p∨ s2 )k+α

2β e−εt
α|y|β∗ ,

for any t ∈ (0, 1), x, y ∈ Rd, where β = s−m+2
2

, k > 2(d+ 2), 0 < 2kε < 1
β

and

α > β
β+m−2

.



Chapter 1

The minimal semigroup in

Cb(Rd)

Elliptic operators with unbounded coefficients have been studied a lot recently

since they have applications in many fields of science, economic and engineer-

ing. The literature significantly improved and we are now able to deal with

second order elliptic partial differential operators A defined by

Aϕ(x) =
d∑

i,j=1

qij(x)Dijϕ(x) +
d∑
i=1

Fi(x)Diϕ(x)− V (x)ϕ(x), x ∈ Rd,

on smooth functions, where the diffusion coefficients Q, the drift F and the

potential V are typically unbounded functions. Throughout, we will keep the

following assumptions.

Hypothesis 1.0.1. (a) The coefficients qij, Fi and 0 ≤ V belong to Cζ
loc(Rd)

for some ζ ∈ (0, 1) and for all i, j = 1, . . . , d.

(b) The matrix Q = (qij)i,j=1,...,d is symmetric and uniformly elliptic, i.e.

there is η > 0 such that

d∑
i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all x, ξ ∈ Rd.

Our main interest is the parabolic problem associated with A{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd.
(1.1)

The aim of this first chapter is to show how to construct analytically the

semigroup T (·) associated with A in Cb(Rd).

If the coefficients of A were bounded, then for any f ∈ Cb(Rd) and any

t > 0 we would define T (t)f as the value at t of the classical solution to the

Cauchy problem (1.1). We point out that the boundedness of the coefficients

11
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leads to the uniqueness results: it is a straightforward consequence of the

classical maximum principle (see [38]). Thus, it is not surprising that in case of

unbounded coefficients the bounded classical solution to the parabolic problem

(1.1) may not be unique. It is all about the failure of the classical maximum

principle.

In Section 1.2 the arguments used to prove the existence of a classical

solution are based both on an approximation argument with Cauchy-Dirichlet

problems in bounded and smooth domains, and classical Schauder estimates.

In particular, we consider in a ball Bρ of fixed radius ρ > 0 the problem

(1.1) with Dirichlet boundary conditions on ∂Bρ. Named Tρ(·) the associated

semigroup, we set T (·) as the limit as ρ→∞ of Tρ(·). Since Tρ(·) is well known

(see e.g. [38]), it is not hard to investigate the properties of T (·). It turns out

that such a limit defines a positive contraction semigroup in Cb(Rd) which has

an integral representation through a kernel and gives a solution to problem

(1.1). Actually, if f ≥ 0, it gives the minimal positive solution. That’s why

T (·) is called the minimal semigroup associated with A.

In general, such a semigroup is neither strongly continuous nor analytic

in Cb(Rd), so it does not make sense to consider its infinitesimal generator.

However, the corresponding concept in the unbounded context is that of weak

generator.

In order to introduce it, we need to take a step back and to study the

resolvent equation

λu− Au = f, (1.2)

with λ > 0 and f ∈ Cb(Rd). With a similar approximation procedure, in

Section 1.1 we prove the existence of a solution u ∈ Dmax(A) to the elliptic

equation (1.2), where

Dmax(A) = {u ∈ Cb(Rd) ∩W 2,p
loc (Rd) for all 1 ≤ p <∞ : Au ∈ Cb(Rd)}. (1.3)

Moreover, u is given by u(x) = (R(λ)f)(x), where R(λ) is the resolvent of a

closed linear operator Â = (A, D̂).

Subsequently, in Section 1.3 we show that Â is the weak generator of the

semigroup T (·) in the sense that the resolvent R(λ)f(x) is the Laplace trans-

form of T (t)f(x).

In Section 1.4, we investigate the assumptions that allow us to prove the

uniqueness of solutions to the parabolic problem (1.1), the existence of the so-

called Lyapunov functions. Even though up to now it is already clear that the

parabolic problem (1.1) and the elliptic equation (1.2) are not independent of

one another, we highlight the connection by proving that there exists a unique

solution to the elliptic equation in Dmax(A) if and only if there exists a unique

classical solution to the parabolic problem, which is bounded in [0, T ] × Rd

for any T > 0. In such a situation, the domain D̂ of the weak generator Â

coincides with Dmax(A).

Then, in Section 1.5, we explore more properties of Lyapunov functions Z
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for the following operator in divergence form

Aϕ = div(Q∇ϕ) + F · ∇ϕ− V ϕ.

We discuss the integrability of Z with respect to the measure pdy. We find

out that if the diffusion coefficients and their spatial derivatives are bounded,

then Z satisfies ∫
Rd
p(t, x, y)Z(y) dy ≤ eλtZ(x),

for all t ≥ 0, x ∈ Rd and some λ ≥ 0. Approximating A with a family of

operators with bounded diffusion coefficients, we prove that the same inequal-

ity holds if we assume that Z is a Lyapunov function not only for A, but

also for η∆ + F · ∇ − V . This allows us to show the tightness of the family

{p(t, x, y)dy | t ∈ (0, T )}.
Finally, in Section 1.6, we introduce time dependent Lyapunov functions

for ∂t + A, with A the operator in divergence form mentioned above. We

proceed similarly to prove the integrability of such functions with respect to

the measure pdy. This is an important result we will use in the next chapters.

For more details of the results that we present here, we refer the reader to

[36, 47, 48] .

1.1 The resolvent equation

This section is devoted to the study of the elliptic equation (1.2), that is

λu− Au = f,

with λ > 0 and f ∈ Cb(Rd). We aim to prove that it admits a solution in the

maximal domain Dmax(A) defined in (1.3). We call Amax the realization of A

in Cb(Rd) with domain Dmax(A).

First, we prove that Amax is a closed operator.

Lemma 1.1.1. [48, Lemma 3.1] The operator Amax is closed.

Proof. Let (un) be a sequence in Dmax(A) such that un converges to u ∈ Cb(Rd)

and Aun to g ∈ Cb(Rd) uniformly in Rd. Then, by Theorem C.1.1, for any pair

of bounded sets Ω ⊂⊂ Ω′ ⊂⊂ Rd we have

‖un − uk‖W 2,p(Ω) ≤ C[‖Aun − Auk‖Lp(Ω′) + ‖un − uk‖Lp(Ω′)] <∞,

for some constant C depending on p,Ω,Ω′, A and for every 1 < p < ∞. It

follows that (un) is a Cauchy sequence in W 2,p(Ω), thus u ∈ W 2,p(Ω). Since Ω

is arbitrary, it implies that u ∈ W 2,p
loc (Rd). Finally, since A is continuous from

W 2,p
loc (Rd) to Lploc(Rd), we conclude that g = Au.
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The next step is to construct a solution of (1.2) in Dmax(A) with an ap-

proximation argument. We fix a ball Bρ with ρ > 0 and for every f ∈ Cb(Bρ)

we consider the Dirichlet problem in C0(Bρ){
λu(x)− Au(x) = f(x), x ∈ Bρ,

u(x) = 0, x ∈ ∂Bρ.
(1.4)

It admits a unique solution uρ ∈ W 2,p(Bρ) for all 1 ≤ p < ∞, according to

Proposition C.3.4. Taking into account the realization Aρ of the operator A

with domain

Dρ(A) = {u ∈ C0(Bρ) ∩W 2,p(Bρ) for all 1 ≤ p <∞ : Au ∈ C(Bρ)}, (1.5)

this means that the operator λ−A is bijective from Dρ(A) onto Cb(Bρ). Thus,

we have that

uρ = R(λ,Aρ)f, (1.6)

where R(λ,Aρ) := (λI − Aρ)−1 is the resolvent operator of Aρ for λ > 0.

In the following theorem we construct a solution of (1.2) by taking the limit

of the sequence (uρ). In other words, the operator λ − A is surjective from

Dmax(A) to Cb(Rd).

Theorem 1.1.2. [48, Theorem 3.4] For every f ∈ Cb(Rd) there exists u ∈
Dmax(A) solving equation (1.2) and satisfying the inequality

‖u‖∞ ≤
‖f‖∞
λ

. (1.7)

Moreover, if f ≥ 0, then u ≥ 0.

Proof. Let 0 ≤ f ∈ Cb(Rd). As above, we consider the solution uρ to the

problem (1.4) in C0(Bρ) for all ρ > 0. Applying the maximum principle

(Theorem C.2.2) to the functions uρ and uρ − uσ for any σ ≤ ρ, we deduce

that the sequence (uρ) is nonnegative and increasing. Moreover,

‖uρ‖∞ ≤
‖f‖∞
λ

. (1.8)

Then, we may define

u(x) := lim
ρ→∞

uρ(x).

As a result, not only u ≥ 0, but we also obtain that (1.7) is valid by letting

ρ→∞ in (1.8). In addition, considering that Auρ = λuρ − f , we infer that

‖Auρ‖∞ ≤ λ ‖uρ‖∞ + ‖f‖∞ ≤ 2 ‖f‖∞ . (1.9)

We now show that uρ converges uniformly on compact sets to the function

u. For this, we fix σ ≤ σ + 1 < ρ. Given 1 < p <∞, Theorem C.1.1 leads to

‖uρ‖W 2,p(Bσ) ≤ Cσ(‖uρ‖Lp(Bσ+1) + ‖Auρ‖Lp(Bσ+1)), (1.10)
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for some constant Cσ > 0. Combining this with (1.8) and (1.9) we derive that

there exists a positive constant C̃σ such that

‖uρ‖W 2,p(Bσ) ≤ C̃σ ‖f‖∞ .

Hence, (uρ) is a bounded sequence in W 2,p(Bσ) for any 1 < p < ∞ and any

fixed σ > 0. By the Sobolev embedding theorems for p > d, it follows that

(uρ) is bounded in C1(Bσ) too and the Ascoli-Arzelà theorem implies that uρ
converges to u as ρ→∞ uniformly on compact subsets of Rd. Using the fact

that Auρ = λuρ − f on Bσ, also Auρ converges uniformly on compact subsets

of Rd.

Applying now (1.10) to the difference uρ2 − uρ1 , we get

‖uρ2 − uρ1‖W 2,p(Bσ) ≤ Cσ(‖uρ2 − uρ1‖Lp(Bρ) + ‖Auρ2 − Auρ1‖Lp(Bρ)),

for fixed σ ≤ ρ. Therefore, u ∈ W 2,p
loc (Rd) and uρ converges to u as ρ → ∞

strongly in W 2,p
loc (Rd) for any 1 < p <∞.

Finally, letting ρ → ∞ in Auρ = λuρ − f , we conclude that u ∈ Dmax(A)

and it solves the equation (1.2).

If now f is a general function belonging to Cb(Rd), we write f = f+ − f−
and, by (1.6), we have

uρ = R(λ,Aρ)f = R(λ,Aρ)(f
+)−R(λ,Aρ)(f

−) =: uρ,1 − uρ,2.

Using the above proof for uρ,1 and uρ,2, we may define the function u as before.

Moreover, since (1.8) is satisfied also when f changes sign on Rd, we obtain

again inequality (1.7). Then, the result is valid even for general f ∈ Cb(Rd).

We point out that in general, given the datum f ∈ Cb(Rd), the function

u we constructed in the previous theorem is not the unique solution to the

elliptic equation (1.2) in Dmax(A), namely the operator λI −A is not bijective

from Dmax(A) to Cb(Rd).

In the following result we define an operator Â = (A, D̂) such that for every

λ > 0, λI − A is bijective from D̂ to Cb(Rd). The idea is to collect in D̂ the

solutions given by Theorem 1.1.2.

Theorem 1.1.3. [48, Section 3] There is a family of bounded operators

(R(λ))λ>0 on Cb(Rd) such that for every f ∈ Cb(Rd) the solution of the equa-

tion (1.2) provided by Theorem 1.1.2 is given by

u(x) = (R(λ)f)(x),

for any x ∈ Rd. Moreover, there is a closed linear operator Â = (A, D̂) in

Cb(Rd) such that

R(λ, Â) = R(λ) and D̂ = R(λ)(Cb(Rd)).
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Proof. We define the family (R(λ))λ>0 on Cb(Rd) by

R(λ)f = lim
ρ→∞

R(λ,Aρ)f, (1.11)

for any f ∈ Cb(Rd). We note that, since uρ = R(λ,Aρ)f , R(λ)f is exactly the

solution u ∈ Dmax(A) to the equation (1.2) constructed in Theorem 1.1.2 as

the limit of the sequence (uρ). Moreover, by the proof of Theorem 1.1.2, we

have that

‖λR(λ)‖ ≤ 1

and, if f ≥ 0, the sequence (R(λ,Aρ)f) is nonnegative and increasing.

In view of the application of Proposition B.1.1, we prove that the family

(R(λ))λ>0 satisfies the resolvent identity

R(λ)−R(µ) = (µ− λ)R(µ)R(λ). (1.12)

Let f ≥ 0. Clearly,

R(λ)R(µ)f ≥ lim sup
ρ→∞

R(λ,Aρ)R(µ,Aρ)f.

Furthermore, fixed ρ1, we have

lim inf
ρ→∞

R(λ,Aρ)R(µ,Aρ)f ≥ lim inf
ρ→∞

R(λ,Aρ1)R(µ,Aρ)f = R(λ,Aρ1)R(µ)f.

Letting ρ1 → ∞ yields lim infρ→∞R(λ,Aρ)R(µ,Aρ)f ≥ R(λ)R(µ)f . As

a result, we derive that limρ→∞R(λ,Aρ)R(µ,Aρ)f = R(λ)R(µ)f . This is

enough to deduce (1.12) because the family (R(λ,Aρ))λ>0 satisfies the resol-

vent identity. The general case when f ∈ Cb(Rd) follows as usual by writing

f = f+ − f−. In addition, we note that the operators R(λ) are injective.

Indeed, if R(λ)f = 0, then f = (λI −A)R(λ)f = 0 because R(λ) is a solution

of the equation (1.2).

We finally apply Proposition B.1.1 to infer that there exists a closed linear

operator Â whose resolvent is R(λ).

We show that u = R(λ)f is the minimal positive solution if f ≥ 0.

Proposition 1.1.4. [48, Proposition 3.6] If f ≥ 0, then u = R(λ)f is the

minimal element among the nonnegative solutions of (1.2) in Dmax(A).

Proof. Let 0 ≤ v ∈ Dmax(A) be a solution of (1.2). If uρ is defined as in (1.6),

then λ(v − uρ)− A(v − uρ) = 0 in Bρ and v − uρ = v ≥ 0 on ∂Bρ. According

to Theorem C.2.2, we have that v ≥ uρ in Bρ. If we now let ρ→∞ we deduce

that u ≤ v.

We now prove that the operator Â is actually a restriction of Amax.

Proposition 1.1.5. [48, Proposition 3.5] The following statements hold.
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(a) D̂ ⊂ Dmax(A) and Âu = Au for u ∈ D̂.

(b) D̂ = Dmax(A) holds if and only if λI−A is injective on Dmax(A) for some

(hence all) positive λ.

(c) Dmax(A) ∩ C0(Rd) ⊂ D̂.

Proof. We recall that, by Theorem 1.1.3, D̂ consists of the solutions to the

equation (1.2) in Dmax(A) given by Theorem 1.1.2, namely functions of the

form R(λ)f with f ∈ Cb(Rd). Then, statement (a) follows. Moreover, since

λI −A is always bijective from D̂ to Cb(Rd), it is injective on Dmax(A) if and

only if D̂ and Dmax(A) coincide. This proves (b).

We now turn to (c). Let v ∈ Dmax(A) ∩ C0(Rd) and consider f = v − Av
and u = R(1, Â)f . Clearly, f ∈ Cb(Rd) and u ∈ D̂. If we show that v = u,

then the statement is proved. If uρ = R(1, Aρ)f , then (uρ− v)−A(uρ− v) = 0

in Bρ. As a result, since uρ vanishes on ∂Bρ, then the maximum principle

yields

sup
|x|≤ρ
|uρ(x)− v(x)| = sup

|x|=ρ
|uρ(x)− v(x)| = sup

|x|=ρ
|v(x)|.

Hence, letting ρ→∞, we get

|u(x)− v(x)| ≤ lim
|x|→∞

|v(x)| = 0,

for every x ∈ Rd, where we used that v ∈ C0(Rd). Thus, u = v.

1.2 The semigroup

Given the parabolic problem (1.1) associated to the operator A, namely{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,

in this section we prove the existence of a classical solution. This will allow us

to construct the related semigroup T (·).
Let us fix a ball Bρ with ρ > 0. Proposition C.3.2 and Theorem C.3.3 show

that, since A is uniformly elliptic on Bρ, then for every f ∈ C(Bρ) there is a

unique solution to the problem (1.1) in Bρ with Dirichlet boundary conditions

on ∂Bρ, that is the following problem
∂tuρ(t, x) = Auρ(t, x), t > 0, x ∈ Bρ,

uρ(t, x) = 0, t > 0, x ∈ ∂Bρ,

uρ(0, x) = f(x), x ∈ Bρ.

(1.13)

In other words, the realization Aρ of the operator A with domain Dρ(A) defined

in (1.5) generates an analytic semigroup Tρ(·) in the space C(Bρ) such that

uρ(t, x) = Tρ(t)f(x),
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is a solution of (1.13) for any t > 0 and x ∈ Bρ.

We note that, since Dρ(A) is not dense in C(Bρ), then Tρ(·) is not strongly

continuous. Indeed, the strong continuity at 0 fails. We now recall some

properties of the semigroup Tρ(·), which can be found for example in [39,

Chapter 3] and [23, Chapter 3, Section 7].

Proposition 1.2.1. The following statements hold true.

(a) Tρ(t)f → f as t→ 0 uniformly in Bρ if and only if f ∈ C0(Bρ).

(b) Tρ(t)f → f as t → 0 uniformly in Bσ for every σ < ρ, hence pointwise

in Bρ.

(c) Tρ(t) is a bounded operator in Lp(Bρ) for every 1 ≤ p <∞ and t > 0.

(d) Tρ(·) are integral operators, i.e. there exists a kernel pρ(t, x, y) such that

Tρ(t)f(x) =

∫
Bρ

pρ(t, x, y)f(y) dy,

for every f ∈ C(Bρ). Moreover, the kernel pρ is positive, the functions

pρ(t, ·, ·) and pρ(t, x, ·) are measurable for any t > 0, x ∈ Rd, and for

every y ∈ Bρ, 0 < ε < τ we have p(·, ·, y) ∈ C1+ζ/2,2+ζ((ε, τ)×Bρ) and it

satisfies ∂tpρ = Apρ.

(e) Tρ(·) is positive, i.e. Tρ(t)f ≥ 0 if f ≥ 0.

(f) Tρ(t) are contractions, i.e. ‖Tρ(t)f‖∞ ≤ ‖f‖∞.

(g) Tρ(t) preserves bounded pointwise convergence for every t > 0, i.e. if

(fn) ⊂ C(Bρ) satisfies ‖fn‖∞ ≤ C for every n ∈ N and fn → f pointwise,

then Tρ(t)fn → Tρ(t)f pointwise.

(h) For every f ∈ C(Bρ) and 0 < ε < τ the function uρ(t, x) = Tρ(t)f(x)

belongs to C1+ζ/2,2+ζ ((ε, τ)×Bρ).

As a consequence of the weak maximum principle, we deduce that the

semigroups Tρ(·) are increasing in the sense of the following lemma.

Lemma 1.2.2. [48, Lemma 4.1] Let f ∈ Cb(Rd), f ≥ 0 and ρ < ρ1 < ρ2.

Then

0 ≤ Tρ1(t)f(x) ≤ Tρ2(t)f(x),

for every t ≥ 0 and x ∈ Bρ.

Proof. We start with proving the result in case of f vanishing on ∂Bρ1 . We

consider the function

w(t, x) = Tρ2(t)f(x)− Tρ1(t)f(x).
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Since f ∈ C0(Bρ1), then by Proposition 1.2.1(a) we obtain that w is continuous

on [0,∞) × Bρ1 . Moreover, w solves the parabolic equation ∂tw = Aw and

vanishes for t = 0. For x ∈ ∂Bρ1 we have that Tρ2(t)f(x) ≥ 0 since Tρ2(·) is

positive by Proposition 1.2.1(e) and Tρ1(t)f(x) = 0. Thus, w ≥ 0 on [0,∞)×
∂Bρ1 . Applying Proposition C.2.3 we get that w(t, x) ≥ 0 in [0,∞)×Bρ1 .

We now turn to the general case. If f ∈ Cb(Rd) with f ≥ 0, we approximate

f in the L2(Bρ2) norm with a nonnegative sequence of continuous functions

(fn) vanishing on ∂Bρ1 . Then, for any n ∈ N we define

wn(t, x) = Tρ2(t)fn(x)− Tρ1(t)fn(x),

for all x ∈ Bρ1 . Since Tρi(·) is bounded in L2(Bρi) for i = 1, 2 by Proposition

1.2.1(c) and fn → f in L2(Bρ2), then wn(t, ·)→ w(t, ·) in L2(Bρ1) for all t > 0.

Moreover, by what we proved above, wn ≥ 0 in [0,∞) × Bρ1 . It follows that

w ≥ 0 and, thus, Tρ1(t)f(x) ≤ Tρ2(t)f(x) for all x ∈ Bρ1 .

Finally, by the positivity of Tρ1(·), we deduce that Tρ1(t)f(x) ≥ 0.

In view of the previous lemma, we can define the semigroup T (·) associated

with A in Rd. We set

T (t)f(x) = lim
ρ→∞

Tρ(t)f(x),

for all 0 ≤ f ∈ Cb(Rd) and T (t)f = T (t)f+ − T (t)f− for general f ∈ Cb(Rd).

Proposition 1.2.3. T (·) is a positive contraction semigroup in Cb(Rd).

Proof. Clearly, T (t) is a linear operator. Moreover, taking into account Propo-

sition 1.2.1(e)-(f), the positivity and the contractivity of T (·) are inherited by

that of Tρ(·).
We now check the semigroup law. Let 0 ≤ f ∈ Cb(Rd). On one hand, we

have

T (t+ s)f(x) = lim
ρ→∞

Tρ(t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≤ T (t)T (s)f(x).

On the other hand, by the monoticity and the boundedness of the sequence

(Tρ(t)f), for every ρ1 > 0 we get

T (t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≥ lim
ρ→∞

Tρ1(t)Tρ(s)f(x) = Tρ1(t)T (s)f(x).

Letting ρ1 →∞ we find that T (t+s)f(x) ≥ T (t)T (s)f(x), thus the semigroup

law in case f ≥ 0. For general f it suffices to write f = f+ − f− and use the

linearity of T (t).

We now show that, for any f ∈ Cb(Rd), T (t)f(x) is a solution to the

parabolic equation ∂tu = Au.
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Theorem 1.2.4. [48, Theorem 4.2] For f ∈ Cb(Rd), let u(t, x) = T (t)f(x)

for t ≥ 0, x ∈ Rd. Then u belongs to the space C
1+ζ/2,2+ζ
loc ((0,∞) × Rd) and

satisfies the equation

∂tu(t, x) =
d∑

i,j=1

qij(x)Diju(t, x) +
d∑
i=1

Fi(x)Diu(t, x)− V (x)u(t, x).

Proof. Fix ε, τ, σ > 0 such that 0 < ε < τ . By interior Schauder estimates

(see Theorem C.1.3) there exists a constant C such that

‖uρ‖C1+ζ/2,2+ζ([ε,τ ]×Bσ) ≤ C ‖uρ‖∞ ,

for any ρ > σ. Then, since Tρ(t) are contractions by Proposition 1.2.1(f), we

have

‖uρ‖C1+ζ/2,2+ζ([ε,τ ]×Bσ) ≤ C ‖f‖∞ .
It follows by Ascoli-Arzelà theorem that uρ converges to u uniformly in [ε, τ ]×
Bσ. We now apply again interior Schauder estimates for 0 < σ1 < σ and

ε < ε1 < τ1 < τ obtaining that there exists a constant C ′ such that

‖uρ2 − uρ1‖C1+ζ/2,2+ζ([ε1,τ1]×Bσ1 ) ≤ C ′ ‖uρ2 − uρ1‖L∞([ε,τ ]×Bσ) .

Combining this with the fact that (uρ) is a Cauchy sequence in L∞([ε, τ ]×Bσ)

we get that (uρ) is a Cauchy sequence in C1+ζ/2,2+ζ([ε1, τ1] × Bσ1). Hence,

uρ → u in C
1+ζ/2,2+ζ
loc ((0,∞)×Rd) and, thus, u ∈ C1+ζ/2,2+ζ

loc ((0,∞)×Rd) and

∂tu = Au.

In the following result we obtain an integral representation of the semigroup

T (·) from that of Tρ(·). Indeed, the integral kernel of T (·) is obtained as the

limit of the kernels pρ that represent Tρ(·).

Theorem 1.2.5. [48, Theorem 4.4] The semigroup T (·) can be represented in

the form

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy, (1.14)

for f ∈ Cb(Rd). Moreover, the integral kernel p enjoys the following properties:

(a) p = p(t, x, y) is a positive function in (0,∞)×Rd×Rd and the functions

p(t, ·, ·) and p(t, x, ·) are measurable for any t > 0, x ∈ Rd;

(b) for almost every y ∈ Rd the function p(·, ·, y) belongs to

C
1+ζ/2,2+ζ
loc ((0,∞)× Rd) and solves the equation ∂tp = Ap.

Proof. Taking into account Proposition 1.2.1(d), we have that every semigroup

Tρ(·) is represented by the kernel pρ in Bρ. Moreover, by Lemma 1.2.2, if

0 ≤ f ∈ Cb(Rd), then Tρ(t)f converge monotonically to T (t)f . Consequently,

for every 0 ≤ f ∈ Cb(Rd) and 0 < ρ < ρ1 < ρ2, we have∫
Bρ

[pρ2(t, x, y)− pρ1(t, x, y)] f(y) dy ≥ 0,
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for any t ≥ 0 and x ∈ Bρ. Since the function pρ2(t, x, ·)− pρ1(t, x, ·) is contin-

uous in Bρ for every t > 0 and x ∈ Bρ, it follows that pρ2(t, x, y) ≥ pρ1(t, x, y)

for all t > 0 and x, y ∈ Bρ. As a result, also the kernels pρ increase with ρ.

We claim that the semigroup T (·) is represented by the kernel p defined as

follows

p(t, x, y) = lim
ρ→∞

pρ(t, x, y).

First, we observe that p is finite almost everywhere. For that, it suffices to

take f = 1 in Proposition 1.2.1 (f) to get∫
Bρ

pρ(t, x, y) dy ≤ 1,

for all t > 0, x ∈ Bρ and ρ > 0. If we now let ρ → ∞, the monotone

convergence leads to ∫
Rd
p(t, x, y) dy ≤ 1,

for all t > 0 and x ∈ Rd. This shows that p(t, x, y) is finite for any t > 0,

x ∈ Rd and almost any y ∈ Rd. Moreover, by monotone convergence we have

T (t)f(x) = lim
ρ→∞

Tρ(t)f(x) = lim
ρ→∞

∫
Bρ

pρ(t, x, y)f(y) dy =

∫
Rd
p(t, x, y)f(y) dy,

for positive f ∈ Cb(Rd). For general f we put f = f+ − f− in the previous

expression and we obtain (1.14). In addition, each kernel pρ is positive and the

functions pρ(t, ·, ·) and pρ(t, x, ·) are measurable for any t > 0, x ∈ Rd. Thus,

the limit p satisfies (a).

The rest of the proof is devoted to the regularity of p. We fix y ∈ Rd such

that p(t, x, y) is finite for any t > 0 and x ∈ Rd. Then, we apply the parabolic

Harnack inequality (see e.g. [35, Chapter VII]) for 0 < ε < τ , t1 > τ and

σ > 1, obtaining that there exists a constant C > 0 such that

sup
ε≤t≤τ,x∈Bσ

[pρ2(t, x, y)− pρ1(t, x, y)] ≤ C inf
x∈Bσ

[pρ2(t1, x, y)− pρ1(t1, x, y)].

Taking ρ1, ρ2 → ∞ and considering that p(t1, x, y) < ∞ for some x ∈ Bσ, we

have that

inf
x∈Bσ

[pρ2(t1, x, y)− pρ1(t1, x, y)]→ 0.

Therefore, pρ(·, ·, y) converges to p(·, ·, y) as ρ → ∞ uniformly in [ε, τ ] × Bσ.

Finally, fixed σ1 < σ and ε < ε1 < τ1 < τ , interior Schauder estimates (see

Theorem C.1.3) yield

‖pρ2(·, ·, y)− pρ1(·, ·, y)‖C1+ζ/2,2+ζ([ε1,τ1]×Bσ1 )

≤ C ′ ‖pρ2(·, ·, y)− pρ1(·, ·, y)‖L∞([ε,τ ]×Bσ) ,

for some constant C ′ > 0. Since the right hand side of the previous inequality

converges to 0, then (pρ(·, ·, y)) is a Cauchy sequence in C1+ζ/2,2+ζ([ε1, τ1] ×
Bσ1). We conclude that p(·, ·, y) belongs to C

1+ζ/2,2+ζ
loc ((0,∞)×Rd) for almost

all y ∈ Rd and ∂tp = Ap.
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Next, we investigate the continuity properties of the semigroup T (·), such

as the continuity of the function u(t, x) = T (t)f(x) up to t = 0. From that,

it follows that, for any f ∈ Cb(Rd), T (t)f(x) is actually a classical solution to

the parabolic problem (1.1).

Proposition 1.2.6. [48, Proposition 4.3, Theorem 4.5, Proposition 4.6] The

following statements hold.

(a) If f ∈ C0(Rd), then T (t)f → f as t→ 0 uniformly on Rd.

(b) If f ∈ Cb(Rd), then T (t)f → f as t→ 0 uniformly on compact subsets of

Rd.

(c) If (gn) is a bounded sequence in Cb(Rd) and gn(x)→ g(x) for every x ∈ Rd

with g ∈ Cb(Rd), then T (t)gn(x)→ T (t)g(x) as n→∞ in C1,2((0,∞)×
Rd).

Proof. We start with proving (a) if f ∈ C2(Rd) with support contained in Bρ.

In such a case we have that f ∈ Dρ(A). Then, since Aρ is sectorial by Theorem

C.3.3, we apply Proposition B.3.4 to infer that

Tρ(t)f(x)− f(x) =

∫ t

0

Tρ(s)Af(x) ds,

for any x ∈ Bρ. Applying the dominated convergence theorem we get

T (t)f(x)− f(x) =

∫ t

0

T (s)Af(x) ds, (1.15)

for any x ∈ Bρ, but also for x ∈ Rd by the arbitrarity of ρ. Hence, since T (t)

is a contraction by Proposition 1.2.3, we obtain

‖T (t)f − f‖∞ ≤
∫ t

0

‖T (s)Af‖∞ ds ≤ t ‖Af‖∞ .

Letting t→ 0 we deduce that T (t)f converges to f uniformly.

If now f is a generic function belonging to C0(Rd), we approximate f with

a sequence (fn) of C2-functions such that fn has support contained in Bσn .

Then, by the contractivity of T (·), we derive that

‖T (t)f − f‖∞ ≤ ‖T (t)f − T (t)fn‖∞ + ‖T (t)fn − fn‖∞ + ‖fn − f‖∞
≤ 2 ‖fn − f‖∞ + ‖T (t)fn − fn‖∞ .

Since T (t)fn converges to fn uniformly as t → 0 by what we proved above,

taking the limsup as t → 0 and then the limit as n → ∞ in the previous

inequality yields (a).

We now prove (b). We define

p(t, x, B) =

∫
B

p(t, x, y) dy,
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for any measurable set B ⊂ Rd. We preliminarily show that

p(t, x,Rd \B2ρ)→ 0 (1.16)

as t→ 0 uniformly on Bρ for every ρ > 0. For that, let f1, f2 ∈ C0(Rd) be such

that 0 ≤ χBρ ≤ f1 ≤ χB2ρ ≤ f2 ≤ 1. Since f1 ≤ 1 and vanishes in Rd \B2ρ, we

deduce by Theorem 1.2.5 that

T (t)f1(x) =

∫
Rd
p(t, x, y)f1(y) dy ≤

∫
B2ρ

p(t, x, y) dy = p(t, x, B2ρ),

for every x ∈ Rd. Moreover, considering that f2 ≥ 0 and f2 = 1 in B2ρ, for

any x ∈ Rd we get

p(t, x, B2ρ) =

∫
B2ρ

p(t, x, y)f2(y) dy ≤
∫
Rd
p(t, x, y)f2(y) dy = T (t)f2(x).

Combining the both estimates, we find that

T (t)f1(x) ≤ p(t, x, B2ρ) ≤ T (t)f2(x),

for any x ∈ Rd. Therefore, given that T (t)fi → 1 as t→ 0 uniformly on Bρ for

i = 1, 2 by (a), we obtain that also p(t, x, B2ρ) → 1 uniformly on Bρ. Hence,

we deduce (1.16) by the following chain of inequalities

0 ≤ p(t, x,Rd \B2ρ) = p(t, x,Rd)− p(t, x, B2ρ) ≤ 1− p(t, x, B2ρ).

We are now ready to prove (b). Let 0 ≤ f ∈ Cb(Rd) and consider a function η ∈
C0(Rd) such that 0 ≤ η ≤ 1, η = 1 in B2ρ and with support contained in B3ρ.

Using the positivity of T (·) by Proposition 1.2.3 and its integral representation

given by Theorem 1.2.5, we have

|T (t)f(x)− T (t)(ηf)(x)| = T (t)((1− η)f)(x)

=

∫
Rd
p(t, x, y)(1− η(y))f(y) dy

≤ ‖f‖∞
∫
Rd\B2ρ

p(t, x, y) dy

= ‖f‖∞ p(t, x,R
d \B2ρ).

Thus, according to (1.16), we have that the left hand side tends to 0 as t→ 0

uniformly on Bρ. Moreover, since ηf ∈ C0(Rd), then ‖T (t)(ηf)− (ηf)‖∞ → 0

as t → 0 by (a). In conclusion, since on Bρ we have T (t)f − f = T (t)f −
T (t)(ηf) + T (t)(ηf)− ηf , we write

‖T (t)f − f‖∞ ≤ ‖T (t)f − T (t)(ηf)‖∞ + ‖T (t)(ηf)− (ηf)‖∞ .

It follows that T (t)f converges to f as t → 0 uniformly on Bρ. Considering

f = f+ − f−, we get the result for general f ∈ Cb(Rd). This proves (b).
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We now show that (c) holds. For that, fix 0 < ε < τ , σ > 0 and let (gn)

be a bounded sequence in Cb(Rd) such that gn(x) → g(x) ∈ Cb(Rd) for every

x ∈ Rd. We prove that T (t)gn(x)→ T (t)g(x) uniformly for (t, x) ∈ [ε, τ ]×Bσ.

Since Theorem 1.2.5 provides us with an integral representation for the

semigroup T (·), it suffices to apply the dominated convergence theorem to

infer that

T (t)gn(x)→ T (t)g(x),

for any x ∈ Rd. By the boundedness of the sequence (gn), we have that

supn ‖gn‖∞ ≤ K for some constant K > 0. Combining this with the fact that

T (·) is a contraction semigroup by Proposition 1.2.3, we deduce that

sup
n
‖T (t)gn‖∞ ≤ K,

for every t ≥ 0. If we apply the interior Schauder estimates in Theorem C.1.2,

we derive that the sequence (T (·)gn) is bounded in C1+ζ/2,2+ζ([ε, τ ] × Bσ).

The Ascoli-Arzelà theorem implies that there exists a subsequence (T (·)fnk)
converging uniformly in [ε, τ ] × Bσ to a function v ∈ C1+ζ/2,2+ζ([ε, τ ] × Bσ).

Since T (·)gn converges pointwise to T (·)g in (0,∞)× Rd, we obtain that v =

T (·)g and (T (·)gn) converges to T (·)g uniformly in [ε, τ ] × Bσ. We also get

that T (t)gn(x)→ T (t)g(x) as n→∞ in C1,2((0,∞)× Rd).

In general, given f ∈ Cb(Rd), u(t, x) = T (t)f(x) is not the unique classical

solution to the problem (1.1) which is bounded in [0, T ] × Rd for any T > 0.

However, if f ≥ 0, u is the minimal positive solution in the sense of the next

proposition.

Proposition 1.2.7. For f ≥ 0, let u(t, x) = T (t)f(x) for t ≥ 0, x ∈ Rd. If v

is another positive solution to the parabolic problem (1.1), then v ≥ u.

Proof. If we apply the weak maximum principle (Proposition C.2.3) to the

function v(t, x) − uρ(t, x) for any t > 0 and x ∈ Bρ, then we get v(t, x) ≥
uρ(t, x). Taking ρ→∞ leads to v ≥ u.

Since T (·) selects the minimal from among all bounded positive solutions to

the problem (1.1), we sometimes refer to it as the minimal semigroup associated

with A.

1.3 The weak generator

Since the semigroup T (·) is not strongly continuous in Cb(Rd), it is not possible

to consider the infinitesimal generator in the usual sense. However, we can

take the Laplace transform of the semigroup
∫∞

0
e−λtT (t)f(x) dt for λ > 0 and

x ∈ Rd. If (
∫∞

0
e−λtT (t)f(x) dt)λ>0 is the resolvent family of a closed operator,

then that operator is called the weak generator of T (·) and we write

R(λ,A)f(x) =

∫ ∞
0

e−λtT (t)f(x) dt,
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for λ > 0 and x ∈ Rd. In our situation the generator is Â = (A, D̂) defined in

Theorem 1.1.3.

Proposition 1.3.1. [41, Proposition 5.1] The generator of T (·) is Â. In

particular it coincides with Amax if and only if λI−A is injective on Dmax(A).

Proof. For λ > 0, f ∈ Cb(Rd) and x ∈ Rd we have

R(λ,A)f(x) =

∫ ∞
0

e−λtT (t)f(x) dt = lim
ρ→∞

∫ ∞
0

e−λtTρ(t)f(x) dt

= lim
ρ→∞

R(λ,Aρ)f(x) = R(λ)f(x) = R(λ, Â)f(x).

This show that R(λ,A) is exactly the resolvent family of Â defined in (1.11).

The last part of the statement follows from Proposition 1.1.5.

In [36, Proposition 2.3.1] it is proved that Â is given by the following direct

description

D̂ =

{
u ∈ Cb(Rd) : sup

t>0

∥∥∥∥T (t)u− u
t

∥∥∥∥
∞
<∞, ∃g ∈ Cb(Rd) such that

lim
t→0

T (t)u(x)− u(x)

t
= g(x) ∀x ∈ Rd

}
,

Au(x) = lim
t→0

T (t)u(x)− u(x)

t
for u ∈ D̂.

Moreover, if f ∈ D̂, then T (t)f ∈ D̂ for every t ≥ 0 and we have

∂tT (t)f(x) = AT (t)f(x) = T (t)Af(x), (1.17)

for any t > 0 and x ∈ Rd.

In the following result we point out that identity (1.17) is valid for C2-

functions with compact support.

Corollary 1.3.2. If f ∈ C2
c (Rd), then ∂tT (t)f(x) = T (t)Af(x) for any t > 0

and x ∈ Rd.

Proof. Let f ∈ C2
c (Rd). Since C2

c (Rd) ⊂ Dmax(A)∩C0(Rd), we apply Proposi-

tion 1.1.5 to infer that f ∈ D̂. Then the statement follows by (1.17). Alterna-

tively, it is possible to directly compute the derivative of T (t)f(x) by dividing

by t equation (1.15) and then let t→ 0.

As a consequence of the previous result, we prove the following lemma that

will be very useful in the next chapters.

Lemma 1.3.3. [41, Lemma 2.1] Let 0 ≤ a < b and ϕ ∈ C1,2
c (Q(a, b)). Then∫

Q(a,b)

(∂tϕ(t, y) + Aϕ(t, y))p(t, x, y) dt dy

=

∫
Rd

(p(b, x, y)ϕ(b, y)− p(a, x, y)ϕ(a, y)) dy.
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Proof. Let ϕ ∈ C1,2
c (Q(a, b)). Then, applying Corollary 1.3.2, we have

∂t(T (t)ϕ(·, t)) = T (t)∂tϕ(·, t) + T (t)Aϕ(·, t).

The thesis follows by integrating the previous identity over [a, b] and writing

T (t) in terms of the kernel p.

1.4 Lyapunov functions

In the previous sections we proved the existence of solutions to the problems

(1.1) and (1.2) for any f ∈ Cb(Rd) and λ > 0. Now we show that the uniqueness

of such solutions is ensured by the existence of a Lyapunov function. In the

next chapter we will see some examples in case of operators in divergence form

with polynomially or exponentially growing diffusion coefficients.

Definition 1.4.1. We say that a function Z : Rd → [0,∞) is a Lyapunov

function for A if 0 ≤ Z ∈ C2(Rd) for some ζ ∈ (0, 1) such that lim|x|→∞ Z(x) =

∞ and there is a constant λ ≥ 0 such that

AZ(x) ≤ λZ(x) (1.18)

for all x ∈ Rd.

We sometimes say that Z is a Lyapunov function for A with respect to λ

when we want to underline the constant λ ≥ 0 which satifies inequality (1.18).

Remark 1.4.2. If Z is a Lyapunov function for A, then Z + C is also a

Lyapunov function for A for any positive constant C. So, one can assume

without loss of generality that a Lyapunov function Z for A satisfies Z(x) ≥ 1

for all x ∈ Rd.

We need the following lemma which provides us with a local maximum

principle for functions in W 2,p
loc (Rd).

Lemma 1.4.3. [38, Proposition 4.2.1] Assume that u ∈ W 2,p
loc (Rd), for any

p ∈ [1,∞), and that Au ∈ C(Rd). If x0 is a local maximum (resp. minimum)

of u, then

Au(x0) + V (x0)u(x0) ≤ 0 (resp. Au(x0) + V (x0)u(x0) ≥ 0)

We are now ready to prove the main theorem of this section.

Theorem 1.4.4. Assume that A has a Lyapunov function Z. Then the fol-

lowing statements hold.

(a) Fixed T > 0, if u, v ∈ Cb([0, T ]× Rd) ∩ C1,2((0, T ]× Rd) are solutions of

problem (1.1), then u = v.
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(b) The function u(t, x) = T (t)f(x) is the unique classical solution of the

Cauchy problem (1.1) which is bounded in each strip [0, T ]× Rd.

(c) The operator λI − A is injective on Dmax(A) for any λ > 0.

(d) The weak generator Â = (A, D̂) coincides with Amax = (A,Dmax).

Proof. Statement (b) easily follows by (a) and, by Proposition 1.1.5, (c) implies

(d). We now prove (a) and (c).

Let u ∈ Cb([0, T ] × Rd) ∩ C1,2((0, T ] × Rd) be a solution of the parabolic

problem (1.1) with f ≥ 0. For ε > 0 we consider the function

vε(t, x) = e−λtu(t, x) + εZ(x),

for any (t, x) ∈ [0, T ] × Rd. Then, for every R > 0, vε has a minimum point

(t0, x0) ∈ [0, T ] × BR. If vε(t0, x0) < 0, then t0 > 0. Indeed, if t0 = 0, then

vε(0, x0) = f(x0) + εZ(x0) ≥ 0, which is not possible. Therefore, ∂tvε(t0, x0) ≤
0. On one hand, by Lemma 1.4.3, we deduce that

Avε(t0, x0) + V (x0)vε(t0, x0) ≥ 0. (1.19)

On the other hand, since AZ ≤ λZ, we get

∂tvε − (A− λI)vε = ε(λZ − AZ) ≥ 0. (1.20)

Taking into account that ∂tvε(t0, x0) ≤ 0 and combining (1.19) with (1.20), we

deduce that

0 ≤ ∂tvε(t0, x0)− (A− λI)vε(t0, x0)

≤ (A+ V (x0))vε(t0, x0)− (A− λI)vε(t0, x0)

= (V (x0) + λ)vε(t0, x0).

Since V (x0) ≥ 0 and λ > 0, it follows that vε(t0, x0) ≥ 0, so vε ≥ 0. Letting

ε→ 0 we obtain that u ≥ 0.

We infer that this proves (a). Indeed, if we have u, v ∈ Cb([0, T ] × Rd) ∩
C1,2((0, T ]×Rd) solutions of problem (1.1), then the difference u−v solves the

same problem with f = 0. Arguing as above yields u ≥ v and, taking v − u
instead, it leads to u = v.

For (c), let v ∈ Dmax(A) with λv−Av = 0, where λ > 0. By local regularity

results for elliptic equations in bounded domains, we have that v ∈ C2+ζ
loc (Rd).

Moreover, the function

u(t, x) = eλtv(x)

belongs to Cb([0, T ]× Rd) ∩ C1,2((0, T ]× Rd) and satisfies problem (1.1) with

f = v. Then, (b) implies that u(t, x) = T (t)v(x). Since T (·) is a contraction

by Proposition 1.2.3, we have ‖u(t, ·)‖∞ ≤ ‖v‖∞ for every t > 0. In addition,

since

sup
x∈Rd
|u(t, x)| = eλt ‖v‖∞ ,

we conclude that ‖v‖∞ = 0.



1.5. Integrability of Lyapunov functions 28

1.5 Integrability of Lyapunov functions

In this section we deal with an operator A in divergence form, namely

Aϕ = div(Q∇ϕ) + F · ∇ϕ− V ϕ,

where we assume that A satisfies Hypothesis 1.0.1 and the diffusion coefficients

qij belong to C1+ζ
loc (Rd) for all i, j = 1, . . . , d.

We investigate the integrability of Lyapunov functions for A with respect

to the measure p(t, x, y)dy. We first prove the following lemma.

Lemma 1.5.1. Let Z be a Lyapunov function for A. Take ϑ ∈ C∞c (R) with

ϑ(t) = 1 for |t| ≤ 1, ϑ(t) = 0 for |t| ≥ 2, 0 ≤ ϑ ≤ 1 and set ϑm(x) = ϑ(
∣∣ x
m

∣∣),

Fm = ϑmF , Vm = ϑmV and

q
(m)
ij = ϑmqij + (1− ϑm)ηδij,

where δij is the Kronecker delta. Moreover, define Qm = (q
(m)
ij ) and

Am = div(Qm∇) + Fm · ∇ − Vm.

Consider the analytic semigroup Tm(·) generated by Am in Cb(Rd). Then, for

every f ∈ Cb(Rd) we have

Tm(·)f(·)→ T (·)f(·)

in C1,2((ε, T )×BR) as m→∞ for every 0 < ε < T and R > 0.

Proof. Let f ∈ Cb(Rd), 0 < ε < T and R > 0. By [38, Theorem 6.2.9] there

exists a positive constant C depending on ε, T and R such that

‖Tm(·)f‖C1+ζ/2,2+ζ([ε,T ]×BR) ≤ C ‖Tm(·)f‖L∞([ε/2,T ]×BR+ε)
≤ C ‖f‖L∞(Rd) .

Then the Ascoli-Arzelà theorem infers that there is a sequence (mk) such that

Tmk(·)f → u in C1,2((ε, T )×BR) for some function u ∈ C1+ζ/2,2+ζ
loc ((0,+∞)×

Rd). Moreover, we have that |u(t, x)| ≤ ‖f‖∞ and ∂tu−Au = 0 in (0, T )×Rd

since ∂tTmk(·)f − AmkTmk(·)f = 0 in (0, T ) × BR for mk > R. From now on

we write Tm(·) instead of Tmk(·). Indeed, if we show the statement for the

subsequence (Tmk(·)), then it is valid for the whole sequence (Tm(·)). We set

u(0, x) = f(x),

for all x ∈ Rd. If we prove that u(t, x) is continuous up to t = 0, then Theorem

1.4.4 implies that u(t, x) = T (t)f(x) for any t > 0 and x ∈ Rd.

In the case f ∈ C2+ζ
b (Rd) the continuity of u(t, x) for t = 0 follows by

applying the Schauder estimates for the operator A (see [38, Theorem 6.2.10])

‖Tm(·)f‖C1+ζ/2,2+ζ([0,T ]×BR) ≤ C ‖f‖C2+ζ(Rd) .
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Indeed, from that we have Tm(·)f → T (·)f as m→∞ in C1,2([0, T ]×BR).

Let now assume f ∈ Cc(Rd). We approximate f with a sequence (fk) of

C2+ζ
c -functions such that fk → f in L∞(Rd). For any t > 0 we have

‖Tm(t)f − f‖L∞(BR) ≤‖Tm(t)(f − fk)‖L∞(BR) + ‖Tm(t)fk − fk‖L∞(BR)

+ ‖f − fk‖L∞(BR)

≤‖Tm(t)fk − fk‖L∞(BR) + 2 ‖f − fk‖L∞(Rd) .

Since fk ∈ C2+ζ
b (Rd), we deduce from the previous case that Tm(·)fk → T (·)fk

as m → ∞ in C1,2([0, T ] × BR) for all k ∈ N. Therefore, letting m → ∞ in

the previous inequality, we obtain that

‖u(t, ·)− f‖L∞(BR) ≤ ‖T (t)fk − fk‖L∞(BR) + 2 ‖f − fk‖L∞(Rd) ,

for any t > 0. If we now let t→ 0 and k →∞ we find that u(t, x)→ f(x) as

t→ 0 for any x ∈ BR. Thus, as a consequence of Theorem 1.4.4 we derive the

statement.

We finally prove that u(t, x) is continuous up to t = 0 for a general f ∈
Cb(Rd). We consider a function ϕ ∈ Cc(Rd) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in

BR/2 and with support contained in BR. For t > 0 we write

Tm(t)f = Tm(t)(ϕf) + Tm(t)((1− ϕ)f).

We observe that the function w = Tm(t)((1−ϕ)f)−‖f‖∞ Tm(t)(1−ϕ) satisfies

the equation Dtw = Amw and w(0, ·) = (1 − ϕ)f − (1 − ϕ) ‖f‖∞ ≤ 0. Thus,

w ≤ 0. A similar inequality holds if we replace f with −f . Then we find that

|Tm(t)((1− ϕ)f)| ≤ ‖f‖∞ Tm(t)(1− ϕ).

Hence we get

|Tm(t)f − f | ≤ |Tm(t)(ϕf)− f |+ |Tm(t)((1− ϕ)f)|
≤ |Tm(t)(ϕf)− f |+ ‖f‖∞ Tm(t)(1− ϕ)

≤ |Tm(t)(ϕf)− f |+ ‖f‖∞ (1− Tm(t)ϕ).

Since the functions ϕf and ϕ belong to Cc(Rd), we deduce that Tm(t)(ϕf)→
T (t)(ϕf) and Tm(t)ϕ → T (t)ϕ as m → ∞. Letting m → ∞ in the previous

inequality yields

|u(t, ·)− f | ≤ |T (t)(ϕf)− f |+ ‖f‖∞ (1− T (t)ϕ).

Taking into account that ϕ = 1 in BR/2 and considering the previous expression

in BR/2, we let t→ 0 and we proceed as above to gain the statement.

We now show the main result of this section.
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Proposition 1.5.2. Assume that A satisfies Hypothesis 1.0.1 with qij ∈
C1+ζ

loc (Rd). If Z is a Lyapunov function for A with respect to λ, then∫
Rd
p(t, x, y)Z(y) dy ≤ eλtZ(x), (1.21)

for every x ∈ Rd and t ≥ 0.

Proof. Let x ∈ Rd and t > 0. We split the proof in several steps.

Step 1. First of all, we approximate Z with a C2
b (Rd)-function. Let α ≥ 0

and set

Zα := Z ∧ α.

For every 0 < ε < 1 we consider a function ψε ∈ C∞(R) such that ψε(t) = t

for t ≤ α, ψε(t) is constant for t ≥ α+ ε, ψ′ε ≥ 0 and ψ′′ε ≤ 0. We approximate

Z with the function ψε ◦ Z ∈ C2(Rd). Indeed, we have that

ψε ◦ Z → Z pointwise as ε→ 0, α→ +∞.

Now we approximate A with the operator Am = div(Qm∇) +Fm ·∇−Vm and

T (·) with the analytic semigroup Tm(·) as in Lemma 1.5.1. We observe that

the domain of Am is Dmax(Am).

Since lim|x|→∞ Z(x) = +∞, there exists Mα > 0 such that Z(x) > α+1 for

|x| > Mα. Since ε < 1, by definition of ψε it follows that (ψε◦Z)(x) is constant

outside the compact set {Z ≤ α + 1} and so ψε ◦ Z is a bounded function. It

implies that Amψε(Z(x)) is bounded too. Hence, the function ψε ◦ Z belongs

to Dmax(Am).

Step 2. We now prove that

∂tTm(t)ψε(Z(x)) ≤ Tm(t)(ψ′ε(Z(x))AmZ(x)). (1.22)

Using (1.17), we write the left hand side of the previous inequality as follows

∂tTm(t)ψε(Z(x)) = AmTm(t)ψε(Z(x)) = Tm(t)Amψε(Z(x)) (1.23)

Moreover, we have that

Amψε(Z(x)) =
d∑

i,j=1

Di

(
q

(m)
ij (x)Djψε(Z(x))

)
+

d∑
i=1

Fm,i(x)Diψε(Z(x))

− Vm(x)ψε(Z(x))

=ψ′ε(Z(x))AmZ(x) + Vm(x)[Z(x)ψ′ε(Z(x))− ψε(Z(x))]

+ ψ′′ε (Z(x))
d∑

i,j=1

q
(m)
ij (x)DiZ(x)DjZ(x). (1.24)

On one hand, since ψ′′ε ≤ 0, it follows that tψ′ε(t) ≤ ψε(t) for t ≥ 0. Taking

t = Z(x) and given that Vm ≥ 0, we obtain that

Vm(x)[Z(x)ψ′ε(Z(x))− ψε(Z(x))] ≤ 0. (1.25)
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On the other hand, by Hypothesis 1.0.1, Q is uniformly elliptic, so

d∑
i,j=1

q
(m)
ij (x)DiZ(x)DjZ(x) =ϑm(x)

d∑
i,j=1

qij(x)DiZ(x)DjZ(x)

+ η(1− ϑm(x)) |∇Z(x)|2

≥η |∇Z(x)|2 ≥ 0,

whereas ψ′′ε (Z(x)) ≤ 0. Then,

ψ′′ε (Z(x))
d∑

i,j=1

q
(m)
ij (x)DiZ(x)DjZ(x) ≤ 0. (1.26)

Combining (1.24) with (1.25) and (1.26) yields

Amψε(Z(x)) ≤ ψ′ε(Z(x))AmZ(x).

Therefore, from (1.23) we gain inequality (1.22).

Step 3. Letting m→∞ in (1.22), we show that

∂tT (t)ψε(Z(x)) ≤ T (t)(ψ′ε(Z(x))AZ(x)). (1.27)

Since ψε ◦ Z is constant outside the compact set {Z ≤ α + 1} as observed in

Step 1, in there we have that ψ′ε(Z(x)) = 0. Hence, the right hand side of

(1.27) makes sense and for m sufficiently large we infer that

Tm(t)(ψ′ε(Z(x))AmZ(x)) = Tm(t)(ψ′ε(Z(x))AZ(x)).

For m large we can then write (1.22) as follows

∂tTm(t)ψε(Z(x)) ≤ Tm(t)(ψ′ε(Z(x))AZ(x)).

Letting m → ∞ and using Lemma 1.5.1 since the functions ψε(Z(x)) and

ψ′ε(Z(x))AZ(x) belong to Cb(Rd) we obtain inequality (1.27).

Step 4. Letting ε→ 0 in (1.27), we now prove that

∂tT (t)Zα(x) ≤
∫
{Z≤α}

p(t, x, y)AZ(y) dy. (1.28)

First, if we consider the sequence (ψε ◦ Z) with respect to ε, we have that it

is bounded, ψε ◦ Z ∈ C2
b (Rd) and ψε ◦ Z → Zα pointwise as ε→ 0, with Zα ∈

Cb(Rd). Then, by Proposition 1.2.6(c), we deduce that T (t)(ψε ◦Z)→ T (t)Zα
in C1,2((0,+∞)×Rd). Consequently, if we look at the left hand side of (1.27),

we have

∂tT (t)ψε(Z(x))→ ∂tT (t)Zα(x) as ε→ 0.

Second, we apply the dominated convergence theorem in the right hand side of

(1.27) because ψ′ε(t)→ χ(−∞,α](t) as ε→ 0 and AZ is bounded on the compact

set {Z ≤ α + 1}. Then we obtain∫
{Z≤α+1}

p(t, x, y)ψ′ε(Z(y))AZ(y) dy →
∫
{Z≤α}

p(t, x, y)AZ(y) dy as ε→ 0.
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Then (1.28) follows.

Step 5. Finally, letting α→∞ in (1.28), we get (1.21). Indeed, since Z is

a Lyaponov function for A, (1.28) yields

∂tT (t)Zα(x) ≤
∫
{Z≤α}

p(t, x, y)AZ(y) dy ≤ λ

∫
{Z≤α}

p(t, x, y)Z(y) dy

≤ λ

∫
{Z≤α}

p(t, x, y)Z(y) dy + λ

∫
{Z>α}

p(t, x, y)α dy

≤ λ

∫
Rd
p(t, x, y)Zα(y) dy = λT (t)Zα(x).

Then, by Gronwall’s Lemma, it follows that

T (t)Zα(x) ≤ e
∫ t
0 λdsT (0)Zα(x) = eλt Zα(x),

for all x ∈ Rd and t > 0. Letting α → ∞ we conclude that (1.21) holds

true.

Corollary 1.5.3. Assume that A satisfies Hypothesis 1.0.1 with qij ∈
C1+ζ

loc (Rd) and that there exists a Lyapunov function Z for the operator A.

Then, for fixed T > 0, the family {p(t, x, y)dy | t ∈ (0, T )} is tight, namely for

every ε > 0 there is a constant R > 0 such that p(t, x,Rd \ BR) < ε for any

t ∈ (0, T ).

Proof. Let R > 0 be large enough. We have that∫
Rd
p(t, x, y)Z(y) dy ≥

∫
Rd\BR

p(t, x, y)Z(y) dy ≥
(

inf
Rd\BR

Z

)
p(t, x,Rd \BR).

Therefore, by Proposition 1.5.2 it follows that

p(t, x,Rd \BR) ≤ 1

infRd\BR Z

∫
Rd
p(t, x, y)Z(y) dy ≤ eλTZ(x)

infRd\BR Z
→ 0

as R→∞.

Remark 1.5.4. If 0 ≤ Z ∈ C2(Rd) such that lim|x|→∞ Z(x) = +∞ and there

is a constant M ≥ 0 such that

AZ(x) ≤M,

for all x ∈ Rd, then Z is a Lyapunov function for A. Indeed, as in Remark

1.4.2, one can assume without loss of generality that Z ≥ 1. So,

AZ(x) ≤M ≤MZ(x),

for all x ∈ Rd. Hence, we find that Z is a Lyapunov function for A with respect

to M .
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1.6 Time dependent Lyapunov functions

As in the previous section, we deal with the operator A in divergence form

defined by

Aϕ = div(Q∇ϕ) + F · ∇ϕ− V ϕ.

In this section we keep the following assumptions.

Hypothesis 1.6.1. We have Q = (qij)i,j=1,...,d ∈ C1+ζ
loc (Rd;Rd×d), F =

(Fj)j=1,...,d ∈ Cζ
loc(Rd;Rd) and 0 ≤ V ∈ Cζ

loc(Rd) for some ζ ∈ (0, 1). Moreover,

(a) the matrix Q is symmetric and uniformly elliptic, i.e. there is η > 0 such

that
d∑

i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all x, ξ ∈ Rd;

(b) there is a Lyapunov function Z for A.

We now introduce time dependent Lyapunov functions for L := ∂t + A as

in [1, 30, 31, 41, 51].

Definition 1.6.2. We say that a function W : [0, T ]×Rd → [0,∞) is a time

dependent Lyapunov function for L if W ∈ C1,2((0, T ) × Rd) ∩ C([0, T ] ×
Rd) such that lim|x|→∞W (t, x) = ∞ uniformly for t in compact subsets of

(0, T ], W ≤ Z and there is 0 ≤ h ∈ L1((0, T )) such that

LW (t, x) ≤ h(t)W (t, x), (1.29)

for all (t, x) ∈ (0, T )× Rd and some T > 0.

To emphasize the dependence on Z and h, we also say that W is a time

dependent Lyapunov function for L with respect to Z and h.

The first part of this section is devoted to showing that time dependent

Lyapunov functions are integrable with respect to the measure p(t, x, y)dy for

any (t, x) ∈ (0, T )× Rd. For that, for any (t, x) ∈ (0, T )× Rd we define

ξW (t, x) :=

∫
Rd
p(t, x, y)W (t, y) dy. (1.30)

Proposition 1.6.3. Assume that A satisfies Hypothesis 1.6.1. If W is a time

dependent Lyapunov function for L with respect to Z and h, then

ξW (t, x) ≤ e
∫ t
0 h(s) dsW (0, x),

for any (t, x) ∈ [0, T ]× Rd.
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Proof. Let x ∈ Rd and t ∈ [0, T ]. The proof is similar to the one of Proposition

1.5.2. We let α ≥ 0 and set

Wα := W ∧ α,

for all t ∈ [0, T ] and x ∈ Rd. We approximate W with the C1,2
b (Rd)-function

ψε◦W , where 0 < ε < 1 and the function ψε is such that ψε ∈ C∞(R), ψε(t) = t

for t ≤ α, ψε(t) is constant for t ≥ α + ε, ψ′ε ≥ 0 and ψ′′ε ≤ 0. Similarly, as

in Lemma 1.5.1, we approximate A with the operator Am = div(Qm∇) + Fm ·
∇−Vm and T (·) with the analytic semigroup Tm(·). Furthermore, as observed

in Step 1 of Proposition 1.5.2, the function ψε(W (t, ·)) belongs to Dmax(Am)

for any t ∈ [ε, T ]. We note that by (1.17) we have

∂tTm(t)ψε(W (t, x)) = AmTm(t)ψε(W (t, x)) + Tm(t)ψ′ε(W (t, x))∂tW (t, x)

= Tm(t)[Amψε(W (t, x)) + ψ′ε(W (t, x))∂tW (t, x)],

for all t ∈ [ε, T ] and x ∈ Rd. By computing Amψε(W (t, y)) and repeating the

argument used in Step 2 of the proof of Proposition 1.5.2, we get

∂tTm(t)ψε(W (t, x)) ≤ Tm(t)[ψ′ε(W (t, x))(∂t + Am)W (t, x)],

for all t ∈ [ε, T ]. Moreover, as in Step 3, we may let m → ∞ using Lemma

1.5.1 in order to obtain that

∂tT (t)ψε(W (t, x)) ≤ T (t)(ψ′ε(W (t, x))LW (t, x))

=

∫
{W≤α+1}

p(t, x, y)ψ′ε(W (t, y))LW (t, y) dy,

for all t ∈ [ε, T ], where L = ∂t + A. Then, since ψε(W (t, ·)) → Wα(t, ·)
pointwise as ε → 0, we let ε → 0 in the previous inequality and we apply

Theorem 1.2.6(c) to derive that

∂tT (t)Wα(t, x) ≤
∫
{W≤α}

p(t, x, y)LW (t, y) dy,

for all t ∈ [0, T ]. In addition, since W is a time dependent Lyapunov function

for L, we use (1.29) and we find that

∂tT (t)Wα(t, x) ≤
∫
{W≤α}

p(t, x, y)LW (t, y) dy

≤ h(t)

∫
{W≤α}

p(t, x, y)W (t, y) dy

≤ h(t)

∫
{W≤α}

p(t, x, y)W (t, y) dy + h(t)

∫
{W>α}

p(t, x, y)α dy

= h(t)

∫
Rd
p(t, x, y)Wα(t, y) dy = h(t)T (t)Wα(t, x),

for all t ∈ [0, T ]. According to Gronwall’s Lemma, for all t ∈ [0, T ] we get

T (t)Wα(t, x) ≤ e
∫ t
0 h(s) dsWα(0, x).

The statement follows by letting α→∞.
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In the second part of this section we introduce a family of operators An
with bounded diffusion coefficients approximating the operator A. It will be

useful in the next chapters.

Assume that there exists a time dependent Lyapunov function W1 with

respect to Z for the operator L, where Z is the Lyapunov function given in

Hypothesis 1.6.1(b). Let ϕ ∈ C∞c (R) be a function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1

in (−1, 1), ϕ ≡ 0 in R \ (−2, 2), ϕ is decreasing in (0,+∞) and |sϕ′(s)| ≤ 2

for all s ∈ R. We set

ϕn(x) := ϕ(W1(t0, x)/n) (1.31)

and

q
(n)
ij (x) := ϕn(x)qij(x) + (1− ϕn(x))ηδij, (1.32)

where t0 ∈ (0, T ) and δij is the Kronecker delta. We consider Qn := (q
(n)
ij ) and

we approximate A with the family of operators An defined by

An = div(Qn∇) + F · ∇ − V. (1.33)

Lemma 1.6.4. Assume that A satisfies Hypothesis 1.6.1 with the function Z

in Hypothesis 1.6.1(b) being a Lyapunov function for both the operators A and

η∆ + F · ∇ − V . Then, for every n ∈ N, the diffusion coefficients q
(n)
ij and

their first order spatial derivatives are bounded on Rd. Moreover the operator

An satisfies Hypothesis 1.6.1 and if W̃ is a time dependent Lyapunov function

for the operators L and ∂t + η∆ +F · ∇− V with respect to Z and h such that

|∇W̃ | is bounded on (0, T ) × BR for all R > 0, then W̃ is a time dependent

Lyapunov function for ∂t + An.

Proof. Clearly, since lim|x|→∞W1(t0, x) = +∞, the functions ϕn vanish out-

side a compact set. As a consequence, the coefficients q
(n)
ij and their spatial

derivatives Dkq
(n)
ij are bounded on Rd for all i, j, k = 1, . . . , d. We now check

Hypothesis 1.6.1 for An. First, we observe that Qn is symmetric and, thanks

to the uniformly ellipticity of Q, we get

d∑
i,j=1

q
(n)
ij (x)ξiξj = ϕn(x)

d∑
i,j=1

qij(x)ξiξj + η(1− ϕn(x)) |ξ|2 ≥ η|ξ|2,

for any x, ξ ∈ Rd.

It remains to prove that if Z is a Lyapunov function for the operators A

and η∆ + F · ∇ − V , then Z is a Lyapunov function for An. As Remark 1.4.2

shows, without loss of generality we may assume that the infimum of Z is

positive. Let x ∈ Rd. Then

AnZ(x) =div(Qn∇Z(x)) + F (x) · ∇Z(x)− V (x)Z(x)

=ϕn(x)div(Q∇Z(x)) +Q∇ϕn(x) · ∇Z(x)− η∇ϕn(x) · ∇Z(x)

+ η(1− ϕn(x))∆Z(x) + F (x) · ∇Z(x)− V (x)Z(x)

=ϕn(x)AZ(x) + (1− ϕn(x))(η∆Z(x) + F (x) · ∇Z(x)− V (x)Z(x))

+Q∇ϕn(x) · ∇Z(x)− η∇ϕn(x) · ∇Z(x).
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For the first and the second term in the right hand side we use that AZ(x) ≤
λZ(x) and η∆Z(x) + F · ∇Z(x)− V (x)Z(x) ≤ λZ(x):

AnZ(x) ≤ λZ(x) +Q∇ϕn(x) · ∇Z(x)− η∇ϕn(x) · ∇Z(x). (1.34)

We can find a bound also for the last two terms since the functions ϕn vanish

outside a compact set. As a result we find a constant λn ≥ 0 such that

AnZ(x) ≤ λnZ(x),

for any x ∈ Rd.

We now check that if W̃ is a time dependent Lyapunov function for the

operators L and ∂t+η∆+F ·∇−V with respect to Z and h such that |∇W̃ | is
bounded on (0, T )×BR for all R > 0, then W̃ is a time dependent Lyapunov

function for ∂t + An. This can be seen by computing ∂tW̃ (t, y) + AnW̃ (t, y)

for (t, y) ∈ (0, T )× Rd:

∂tW̃ (t, y) + AnW̃ (t, y)

=∂tW̃ (t, y) + div(Qn∇W̃ (t, y)) + F (y) · ∇W̃ (t, y)− V (y)W̃ (t, y)

=ϕn(y)LW̃ (t, y) + (1− ϕn(y))[∂tW̃ (t, y) + η∆W̃ (t, y) + F (y) · ∇W̃ (t, y)

− V (y)W̃ (t, y)] +Q∇ϕn(y) · ∇W̃ (t, y)− η∇ϕn(y) · ∇W̃ (t, y).

Since W̃ is a time dependent Lyapunov function for the operators L and ∂t +

η∆ + F · ∇ − V , the first two terms in the right hand side are bounded by

h(t)W̃ (t, y):

∂tW̃ (t, y)+AnW̃ (t, y) ≤ h(t)W̃ (t, y)+Q∇ϕn(y)·∇W̃ (t, y)−η∇ϕn(y)·∇W̃ (t, y),

where h(t) ∈ L1((0, T )). Furthermore, the last terms are bounded by a nonneg-

ative constant because ϕn vanishes outside a compact set and |∇W̃ | is bounded

on (0, T )×BR for all R > 0. Hence, there is a function hn(t) ∈ L1((0, T )) such

that

∂tW̃ (t, y) + AnW̃ (t, y) ≤ hn(t)W̃ (t, y),

for all (t, y) ∈ (0, T ) × Rd. Then W̃ is a time dependent Lyapunov function

for ∂t + An.

Remark 1.6.5. Let Z be a Lyapunov function for the operators A and η∆ +

F · ∇− V with respect to λ. If there exists a nonnegative function f such that

∇Z(x) = f(x)∇W1(t0, x), (1.35)

for all x ∈ Rd, then, for any n ∈ N, Z is a Lyapunov function for An with

respect to the same λ. Indeed, by (1.34) we have

AnZ(x) ≤ λZ(x) +
1

n
ϕ′(W1(t0, x)/n)[〈Q∇W1(t0, x),∇Z(x)〉

− η〈∇W1(t0, x),∇Z(x)〉].
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Making use of (1.35) and taking into account that Q is uniformly elliptic, f ≥ 0

and ϕ is decreasing in (0,+∞), then we get

AnZ(x) ≤ λZ(x) +
1

n
ϕ′(W1(t0, x)/n)f(x)[〈Q∇W1(t0, x),∇W1(t0, x)〉

− η|∇W1(t0, x)|2] ≤ λZ(x),

for all x ∈ Rd. Thus, we conclude that Z is a Lyapunov function for An with

respect to λ for any n ∈ N.

As a consequence of the previous lemma, for every n ∈ N the semigroup

generated by An in Cb(Rd) is given by a kernel pn(t, x, y).

The following result similar to [31, Proposition 2.9].

Lemma 1.6.6. Assume that A satisfies Hypothesis 1.6.1 with the function Z

in Hypothesis 1.6.1(b) being a Lyapunov function for both the operators A and

η∆ +F · ∇− V . Let An be the operator defined by (1.33) and pn(t, x, y) be the

integral kernel of the associated semigroup. Then, for t > 0 and x ∈ Rd, we

have that

pn(t, x, ·)→ p(t, x, ·)

locally uniformly in Rd as n→∞.

Proof. We consider the semigroup Tn(·) generated by An in Cb(Rd). By Lemma

1.6.4 we have that the function Z is a Lyapunov function for the operator An.

Proceeding as in the proof of Lemma 1.5.1 it is possible to show that∫
Rd
pn(t, x, y)f(y) dy →

∫
Rd
p(t, x, y)f(y) dy,

for all f ∈ C2+ζ
c (Rd). Hence,

pn(t, x, y)dy → p(t, x, y)dy

weakly. On the other hand, from [8, Corollary 3.11] and Sobolev embedding, it

follows that for any compact K ⊂ Rd there are a constant C1 > 0 and γ ∈ (0, 1)

such that ‖pn(t, x, ·)‖Cγ(K) ≤ C1 for all n ∈ N. Thus, by compactness and a

diagonal argument, up to a subsequence pn(t, x, ·) converges locally uniformly

to a continuous function, that has to be p(t, x, ·) by the weakly convergence

proved above.

We now consider the function

ξW,n(t, x) :=

∫
Rd
pn(t, x, y)W (t, y) dy, (1.36)

for any (t, x) ∈ [0, T ]× Rd and n ∈ N.
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Lemma 1.6.7. Assume that A satisfies Hypothesis 1.6.1 with the function

Z in Hypothesis 1.6.1(b) being a Lyapunov function for both the operators A

and η∆ + F · ∇ − V and such that (1.35) holds. Let W be a time dependent

Lyapunov function for the operators L and ∂t + η∆ + F · ∇ − V with respect

to Z and h such that

(a) |∇W | is bounded on (0, T )×BR for all R > 0;

(b) there are c0 > 0 and σ ∈ (0, 1) such that

W ≤ c0Z
1−σ.

Then

ξW,n(·, x)→ ξW (·, x)

uniformly in (0, T ) as n → ∞, where the above functions are defined as in

(1.30) and (1.36).

Proof. Let t ∈ (0, T ). Then

|ξW,n(t, x)− ξW (t, x)| ≤
∫
Rd
W (t, y) |pn(t, x, y)− p(t, x, y)| dy.

We fix R > 0 and we split the above integral in the integral over BR and the

one over the complementary of BR. Thus,

|ξW,n(t, x)− ξW (t, x)|

≤
∫
Rd\BR

W (t, y) |pn(t, x, y)− p(t, x, y)| dy

+

∫
BR

W (t, y) |pn(t, x, y)− p(t, x, y)| dy

≤
∫
Rd\BR

W (t, y)p(t, x, y) dy +

∫
Rd\BR

W (t, y)pn(t, x, y) dy

+

∫
BR

W (t, y) |pn(t, x, y)− p(t, x, y)| dy. (1.37)

On the other hand, Proposition 1.5.2 yields∫
Rd
p(t, x, y)Z(y) dy ≤ eλtZ(x) ≤ eλTZ(x)

for all x ∈ Rd, t ∈ [0, T ] and for some λ ≥ 0. Hence, (b) and Hölder’s inequality

lead to∫
Rd\BR

W (t, y)p(t, x, y) dy ≤ c0

∫
Rd\BR

Z1−σ(y)p(t, x, y) dy

≤ c0

(∫
Rd\BR

Z(y)p(t, x, y) dy

)1−σ

p(t, x,Rd \BR)σ

≤ c0

(
eλTZ(x)

)1−σ
p(t, x,Rd \BR)σ.
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Since the family {p(t, x, y)dy | t ∈ (0, T )} is tight by Corollary 1.5.3, the first

term in the right hand side of (1.37) can be bounded by any given ε > 0 if R

is large enough. We can argue similarly for the second term in the right hand

side of (1.37) because Z is a Lyapunov function for An with respect to λ by

Lemma 1.6.4 and Remark 1.6.5. Lastly, we look at the third term:∫
BR

W (t, y) |pn(t, x, y)− p(t, x, y)| dy

≤ ‖W‖L∞((0,T )×BR) ‖pn(·, x, ·)− p(·, x, ·)‖L∞((0,T )×BR) |BR| ,

where |BR| denotes the Lebesgue measure of the ball BR. Given R > 0,

considering that pn(t, x, ·)→ p(t, x, ·) locally uniformly in Rd by Lemma 1.6.6,

also the third term in the right hand side of (1.37) can be bounded by ε if

n is large enough. To sum up, ξW,n(·, x) → ξW (·, x) uniformly on (0, T ) as

n→∞.



Chapter 2

Schrödinger type operators with

unbounded diffusion terms

In this chapter, we are concerned with Schrödinger type operators defined on

smooth functions ϕ by

Aϕ = div(Q∇ϕ)− V ϕ.

This operator has been studied in the paper [17]. We are interested in the

situation when the diffusion coefficients Q and the potential V are unbounded

functions.

In particular, we discuss the generation of a symmetric sub-Markovian

and ultracontractive C0-semigroup on L2(Rd) which coincides on L2(Rd) ∩
Cb(Rd) with the minimal semigroup generated by a realization of A on Cb(Rd).

Moreover, we look for pointwise upper bounds for the heat kernel of A and

we apply the result in concrete examples, such as polynomial and exponential

diffusion and potential coefficients.

Throughout, we make the following assumptions on Q and V .

Hypothesis 2.0.1. We have Q = (qij)i,j=1,...,d ∈ C1+ζ
loc (Rd;Rd×d) and 0 ≤ V ∈

Cζ
loc(Rd) for some ζ ∈ (0, 1). Moreover,

(a) the matrix Q is symmetric and uniformly elliptic, i.e. there is η > 0 such

that
d∑

i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all x, ξ ∈ Rd;

(b) there are 0 ≤ Z ∈ C2+ζ(Rd) and a constant M ≥ 0 such that

lim|x|→∞ Z(x) = ∞, AZ(x) ≤ M and η∆Z(x) − V (x)Z(x) ≤ M for

all x ∈ Rd.

It follows by Remark 1.5.4 that the function Z in Hypothesis 2.0.1(b) is a

Lyapunov function for the operators A and η∆− V .

40
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As shown in Chapter 1, a suitable realization of A generates a semigroup

T (·) = (T (t))t≥0 on the space Cb(Rd) that is given through an integral kernel.

Therefore, we can write

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy, t > 0, x ∈ Rd, f ∈ Cb(Rd),

where the kernel p is positive, p(t, ·, ·) and p(t, x, ·) are measurable for any

t > 0, x ∈ Rd, and for a.e. fixed y ∈ Rd, p(·, ·, y) ∈ C
1+ζ/2,2+ζ
loc ((0,∞) ×

Rd). Moreover, since we assumed in Hypothesis 2.0.1(b) that there exists

a Lyapunov function for A, then by Theorem 1.4.4 the domain of the weak

generator is the maximal domain Dmax(A) and T (t)f is the unique classical

solution of the corresponding Cauchy problem.

The chapter is organized as follows. In Section 2.1 we adapt the techniques

in [4] to prove that T (·) can be extended to a symmetric sub-Markovian and

ultracontractive C0-semigroup on L2(Rd). More precisely, given the maximal

realization Amax in L2(Rd)

D(Amax) = {u ∈ L2(Rd) ∩H1
loc(Rd), Au ∈ L2(Rd)},

Amaxu = Au,

we prove the uniqueness of the minimal realization in L2(Rd), that is the

operator Amin such that

(a) Amin ⊂ Amax;

(b) Amin generates a positive, symmetric C0-semigroup T2(·) on L2(Rd);

(c) if B ⊂ Amax generates a positive C0-semigroup S(·), then T2(t) ≤ S(t) for

all t ≥ 0.

For that, we use an approximation argument. We consider balls Bρ of increas-

ing radius ρ > 0 and we construct a sequence of semigroups T (ρ)(·) on L2(Bρ)

via form methods. It turns out that T (ρ)(·) are symmetric, sub-Markovian, con-

tractive and strongly continuous. They increase to a semigroup T2(·) which

inherits all the above mentioned properties. Furthermore, T2(·) is ultracontrac-

tive, its generator is Amin and it is consistent with T (·), namely it coincides

with T (·) in the intersection L2(Rd) ∩ Cb(Rd). Finally, classical results show

that this semigroup extrapolates to a positive C0-semigroup of contractions in

all Lp(Rd), p ∈ [1,∞). Moreover, in the examples considered in Section 2.7,

these semigroups are compact and the spectra of their corresponding genera-

tors are independent of p.

The second focus in this chapter lies in proving pointwise upper bounds

for the kernel p. Recently, many papers addressed this question in case of

polynomially growing coefficients (see for example [12, 13, 14, 15, 16, 21, 36,

37, 43, 44, 45, 46]). We adopt the technique of time dependent Lyapunov

functions used in [1, 30, 31, 51] to our divergence form setting.
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Because of their key role, in Section 2.2 we establish sufficient conditions

under which certain exponential functions are time dependent Lyapunov func-

tions in the case of polynomially and exponentially growing diffusion coeffi-

cients.

The strategy we use to find kernel estimates is based on an approxima-

tion argument. We approximate the diffusion coefficients qij with bounded

ones q
(n)
ij as at the beginning of Section 2.5 and we consider the family of the

corresponding approximating operators

An = div(Qn∇)− V.

At this point one would be tempted to think that, since kernel estimates in case

of bounded diffusion coefficients are available in works such as [1, 10, 34, 41],

one could just apply such results for the approximating kernels pn and then

let n→∞. Unfortunately, it is not possible because the constant in the right

hand side of the mentioned estimates depend on the diffusion coefficients, so

it could explode as n → ∞. Thus, we need a different approach to estimate

the kernels pn.

For this reason, in Section 2.3 we adapt [31, Theorem 3.7] in order to

prove the key result that will allow us to overcome this problem, see Theorem

2.3.6. Moreover, we provide some global regularity results for the kernel p.

Under suitable assumptions, they permit us to apply Theorem 2.3.6 in case of

bounded diffusion coefficients to obtain in Section 2.4 the right estimate. Here

the existence of time dependent Lyapunov functions plays a crucial role. With

these ingredients at hand, in Section 2.5 we estimate the kernels pn and we

derive kernel estimates for the general operator A.

In the subsequent Section 2.6, we implement the previous results in concrete

examples. We first deal with the operator with polynomial coefficients

A = div((1 + |x|m∗ )∇)− |x|s,

for s > |m − 2| and m > 0. Furthermore, since the method does not rely on

the specific form of the coefficients, it is possible to consider even exponential

functions, such as the operator

A = div(e|x|
m

∇)− e|x|
s

,

for 2 ≤ m < s.

In the concluding Section 2.7, we present some consequences of our result

for the spectrum and the eigenfunctions of the operator Amin from Section 2.1.

2.1 Generation of semigroups on L2(Rd)

In this section we show that, according to Definition B.4.1, a realization of A in

L2(Rd) generates a symmetric sub-Markovian and ultracontractive semigroup

T2(·) on L2(Rd) which coincides with the semigroup T (·) on L2(Rd) ∩ Cb(Rd).
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We now take up our main line of study and consider the elliptic operator

A, defined by

A : H1
loc(Rd)→ D(Rd)′, Aϕ = div(Q∇ϕ)− V ϕ.

Its maximal realization Amax in L2(Rd) is defined by

D(Amax) = {u ∈ L2(Rd) ∩H1
loc(Rd), Au ∈ L2(Rd)},

Amaxu = Au.

We adapt the proof of Theorem 1.1, Proposition 1.2 and Proposition 1.3 in

[4] to our situation to show that there is also a minimal realization Amin of

A. The minimal realization of A in L2(Rd) is the operator presented in the

following theorem.

Theorem 2.1.1. There exists a unique operator Amin on L2(Rd) such that

(a) Amin ⊂ Amax;

(b) Amin generates a positive, symmetric C0-semigroup T2(·) on L2(Rd);

(c) if B ⊂ Amax generates a positive C0-semigroup S(·), then T2(t) ≤ S(t)

for all t ≥ 0.

The operator Amin and the semigroup T2(·) have the following additional prop-

erties:

(d) D(Amin) ⊂ H1(Rd) and −〈Aminu, u〉 ≥ η‖|∇u|‖2
2 for all u ∈ D(Amin);

(e) T2(·) is sub-Markovian and ultracontractive;

(f) the semigroup T2(·) is consistent with T (·), i.e.

T2(t)f = T (t)f, t ≥ 0, f ∈ L2(Rd) ∩ Cb(Rd).

Proof. Step 1. We define approximate semigroups T (ρ)(·) on L2(Bρ).

To that end, we consider the sesquilinear form aρ : H1
0 (Bρ)×H1

0 (Bρ)→ C,

defined by

aρ(u, v) =

∫
Bρ

d∑
i,j=1

qijDiuDj v̄ dx+

∫
Bρ

V uv̄ dx.

This form is obviously symmetric. Using that Q and V are bounded on Bρ,

an easy application of Hölder’s inequality yields

|aρ(u, v)| ≤
∫
Bρ

|〈Q∇u,∇v〉| dx+

∫
Bρ

V |u| |v| dx

≤‖Q‖L∞(Bρ;Rd×d)

∫
Bρ

|∇u| |∇v| dx+ ‖V ‖L∞(Bρ)

∫
Bρ

|u| |v| dx

≤‖Q‖L∞(Bρ;Rd×d) ‖∇u‖L2(Bρ) ‖∇v‖L2(Bρ)

+ ‖V ‖L∞(Bρ) ‖u‖L2(Bρ) ‖v‖L2(Bρ)

≤
(
‖Q‖L∞(Bρ;Rd×d) + ‖V ‖L∞(Bρ)

)
‖u‖H1

0 (Bρ) ‖v‖H1
0 (Bρ) ,
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for all u, v ∈ H1
0 (Bρ). Moreover, from the positivity of V , the uniform elliptic-

ity of Q and Poincaré’s inequality, it follows that

aρ(u, u) ≥ η ‖∇u‖2
L2(Bρ) ≥ ν ‖u‖2

H1
0 (Bρ) ,

for any u ∈ H1
0 (Bρ) and for some ν > 0. This shows that the form aρ sat-

isfies (D.6) and (D.7). Thus, if we denote by −Aρ the associated operator

on L2(Bρ), Proposition D.1.2 and Remark D.1.3 imply that Aρ generates a

strongly continuous contraction semigroup T (ρ)(·) on L2(Bρ).

We now show that the semigroup T (ρ)(·) is positive. In view of the first

Beurling-Deny criterion on forms (see Theorem D.2.1) it suffices to prove that

(i) (Reu)+ ∈ H1
0 (Bρ),

(ii) aρ(Reu, Imu) ∈ R,

(iii) aρ((Reu)+, (Reu)−) ≤ 0,

for all u ∈ H1
0 (Bρ). Following the proof of [49, Proposition 4.4], we start by

establishing (i) in H1(Bρ), namely (Reu)+ ∈ H1(Bρ) for any u ∈ H1(Bρ).

First, for ε > 0, we consider on C the function

fε(z) =
√
|z|2 + ε2 − ε.

We note that fε(u) ∈ H1(Bρ) for all u ∈ H1(Bρ) because the partial derivatives
∂
∂t
fε and ∂

∂s
fε with respect to t = Rez and s = Imz are continuous and bounded

on C. Moreover, if we compute the j-th derivative, we get

Djfε(u) =
Reu√
|u|2 + ε2

Dj(Reu) +
Imu√
|u|2 + ε2

Dj(Imu)

= Re

[
Dju

u√
|u|2 + ε2

]
.

Then, for all ϕ ∈ D(Bρ), we have∫
Bρ

fε(u)Djϕdx = −
∫
Bρ

Re

[
Dju

u√
|u|2 + ε2

]
ϕdx.

If we let ε→ 0 we obtain∫
Bρ

|u|Djϕdx = −
∫
Bρ

Re [sign(u)Dju]ϕdx.

Then |u| ∈ H1(Bρ) and Dj|u| = Re [sign(u)Dju]. We can repeat the same

argument for Reu so that we conclude that |Reu| ∈ H1(Bρ) and Dj|Reu| =

sign(Reu)Dj(Reu). Finally, using the fact that (Reu)+ = 1
2
(|Reu| + Reu),

we conclude that (Reu)+ ∈ H1(Bρ) and

Dj(Reu)+ = Dj(Reu)χ{Reu>0}.
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Similarly, (Reu)− ∈ H1(Bρ). We now prove (i). If we consider a function

f ∈ D(Bρ), then f ∈ H1(Bρ), so by what we showed above we have that

(Ref)+ ∈ H1(Bρ). Moreover, (Ref)+ has compact support, thus it belongs to

H1
0 (Bρ). If we take u ∈ H1

0 (Bρ), then we find a sequence (fn) ⊂ D(Bρ) such

that

lim
n→∞

fn = u

in H1(Bρ). Since (Refn)+ → (Reu)+ in H1(Bρ) and (Refn)+ ∈ H1
0 (Bρ), we

conclude that (Reu)+ ∈ H1
0 (Bρ). Furthermore, (ii) and (iii) hold true because

aρ has real-valued coefficients and aρ((Reu)+, (Reu)−) = 0. Making use of

Theorem D.2.1 we see that the semigroup T (ρ)(·) is positive.

Finally, we prove that T (ρ)(·) is L∞-contractive. By the second Beurling-

Deny criterion for forms (see Theorem D.2.2), we need to show that

(i) (1 ∧ |u|) signu ∈ H1
0 (Bρ),

(ii) Re aρ((1 ∧ |u|) signu, (|u| − 1)+ signu) ≥ 0,

for all u ∈ H1
0 (Bρ).

We begin to state that (1 ∧ |u|) signu ∈ H1(Bρ) for all u ∈ H1(Bρ) as in

[49, Proposition 4.11]. For ε > 0, we define on R the function

fε(t) =

{√
(t− 1)2 + ε2 − ε if t > 1,

0 if t ≤ 1.

Since fε has bounded derivatives on R, then fε(u) ∈ H1(Bρ) for all real-valued

u ∈ H1(Bρ). Computing the j-th derivative of fε(|u|) we obtain

Djfε(|u|) =
|u| − 1√

(|u| − 1)2 + ε2
Dj|u|χ{|u|>1}.

Thus, we get∫
Bρ

fε(|u|)Djϕdx = −
∫
Bρ

|u| − 1√
(|u| − 1)2 + ε2

Dj|u|χ{|u|>1}ϕdx,

for any ϕ ∈ D(Bρ). Letting ε→ 0 we derive that (|u| − 1)+ ∈ H1(Bρ) and

Dj(|u| − 1)+ = Dj|u|χ{|u|>1} = Re(sign(u)Dju)χ{|u|>1}.

It follows that u√
|u|2+ε

(|u| − 1)+ ∈ H1(Bρ) and

Dj

[
u√
|u|2 + ε

(|u| − 1)+

]
=

(|u| − 1)+√
|u|2 + ε

[
Dju−

|u|
|u|2 + ε

uDj|u|
]

+
u√
|u|2 + ε

Dj|u|χ{|u|>1}.
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Taking ε→ 0 yields (|u| − 1)+ signu ∈ H1(Bρ) and

Dj((|u| − 1)+ signu)

=
(|u| − 1)+

|u|
(Dju− signuDj|u|) + signuDj|u|χ{|u|>1}

=

[
Dj|u|+ i(|u| − 1)

Im(sign(u)Dju)

|u|

]
signuχ{|u|>1}. (2.1)

We deduce that (1 ∧ |u|) signu ∈ H1(Bρ) considering that (1 ∧ |u|) signu =

u− (|u| − 1)+ signu. In addition,

Dj((1 ∧ |u|) signu)

=Dju−
[
Dj|u|+ i(|u| − 1)

Im(sign(u)Dju)

|u|

]
signuχ{|u|>1}

=Dju+ i
Im(sign(u)Dju)

|u|
signuχ{|u|>1}

− [Dj|u|+ i Im(sign(u)Dju)] signuχ{|u|>1}

= i
Im(sign(u)Dju)

|u|
signuχ{|u|>1} +Dju−Djuχ{|u|>1}

= i
Im(sign(u)Dju)

|u|
signuχ{|u|>1} +Djuχ{|u|≤1}. (2.2)

Since (1∧ |u|) signu ∈ H1
0 (Bρ) for all u ∈ D(Bρ), arguing by density as above,

we get (i) also for any u ∈ H1
0 (Bρ). We now show (ii). Taking into account

(2.1) and (2.2) we find that

Re aρ((1 ∧ |u|) signu, (|u| − 1)+ signu)

= Re

∫
Bρ

d∑
i,j=1

qij

[
i
Im(sign(u)Diu)

|u|
signuχ{|u|>1} +Diuχ{|u|≤1}

]
×

×
[
Dj|u|+ i(|u| − 1)

Im(signuDju)

|u|

]
sign(u)χ{|u|>1} dx

+ Re

∫
Bρ

V (1 ∧ |u|) signu (|u| − 1)+ signu dx

= Re

[
i

∫
Bρ

d∑
i,j=1

qij
Im(sign(u)Diu)

|u|
Dj|u|χ{|u|>1} dx

]

− Re

∫
Bρ

d∑
i,j=1

qij
Im(sign(u)Diu) Im(signuDju)

|u|2
(|u| − 1)χ{|u|>1} dx

+ Re

∫
Bρ

V (1 ∧ |u|)(|u| − 1)+ dx.

The first integral in the right hand side of the previous identity is real, hence

the corresponding term is null. Moreover, Im(signuDju) = − Im(sign(u)Diu),
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thus the second term is nonnegative as the third one. We conclude that

(ii) holds true. We now apply Theorem D.2.2 to infer that T (ρ)(·) is L∞-

contractive. Combining this with the positivity proved above we conclude

that T (ρ)(·) is sub-Markovian.

Step 2. We prove that the semigroups T (ρ)(·) are increasing to a semigroup

T2(·).
We now consider functions on Bρ to be defined on all of Rd, by extending

them with 0 outside of Bρ. Then, for any 0 < ρ1 < ρ2, we identify H1
0 (Bρ1)

with a subspace of H1
0 (Bρ2).

Given 0 < ρ1 < ρ2, we have to show that

T (ρ1)(t) ≤ T (ρ2)(t),

for all t ≥ 0 or, equivalently,

R(λ,Aρ1)f ≤ R(λ,Aρ2)f,

for all 0 ≤ f ∈ L2(Rd) and λ > 0, where R(λ,Aρ) := (λI − Aρ)
−1 is the

resolvent operator of Aρ for λ in the resolvent set ρ(Aρ) of Aρ.

Let 0 ≤ f ∈ L2(Rd) and λ > 0. We set u1 = R(λ,Aρ1)f and u2 =

R(λ,Aρ2)f . For k = 1, 2, since (λI − Aρk)uk = f , we have

λ

∫
Bρ1

ukv dx+

∫
Bρ1

d∑
i,j=1

qijDjukDiv dx+

∫
Bρ1

V ukv dx =

∫
Bρ1

fv dx,

for all v ∈ H1
0 (Bρ1). Using the formula g+ = (|g| + g)/2 with g = (u1 − u2)+

we deduce that (u1 − u2)+ ∈ H1
0 (Bρ1). Hence, we can take v = (u1 − u2)+ in

the previous identity. Then we derive that

λ

∫
Bρ1

uk(u1 − u2)+ dx+

∫
Bρ1

d∑
i,j=1

qijDjukDi(u1 − u2)+ dx

+

∫
Bρ1

V uk(u1 − u2)+ dx =

∫
Bρ1

f(u1 − u2)+ dx.

If we now subtract the two indentities, it follows that

λ

∫
Bρ1

(u1 − u2)(u1 − u2)+ dx+

∫
Bρ1

d∑
i,j=1

qijDj(u1 − u2)Di(u1 − u2)+ dx

+

∫
Bρ1

V (u1 − u2)(u1 − u2)+ dx = 0.

The uniform ellipticity of Q yields

λ

∫
Bρ1

[(u1 − u2)+]2 dx+ η

∫
Bρ1

∣∣∇(u1 − u2)+
∣∣2 dx

+

∫
Bρ1

V [(u1 − u2)+]2 dx ≤ 0.
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Since V ≥ 0, we obtain that (u1 − u2)+ = 0. Thus, u1 ≤ u2 on Bρ1 . We

conclude that T (ρ)(·) are increasing.

As every semigroup T (ρ)(·) is contractive, we may define

T2(t)f := sup
n∈N

T (n)(t)f

for 0 ≤ f ∈ L2(Rd) and then T2(t)f := T2(t)f+ − T2(t)f− for general

f ∈ L2(Rd). An easy computation shows that T2(·) is a positive contrac-

tion semigroup. We prove that T2(·) is strongly continuous. To that end, fix

0 ≤ f ∈ D(Rd), and ρ > 0 such that suppf ⊂ Bρ. Let tn ↓ 0. Then

lim sup
n→∞

‖T (ρ)(tn)f − T2(tn)f‖2
2

= lim sup
n→∞

[
‖T (ρ)(tn)f‖2

2 + ‖T2(tn)f‖2
2 − 2〈T (ρ)(tn)f, T2(tn)f〉2

]
≤ lim sup

n→∞

[
2 ‖f‖2

2 − 2〈T (ρ)(tn)f, T (ρ)(tn)f〉2
]

= 2‖f‖2
2 − 2‖f‖2

2 = 0.

Here, in the third line we have used the contractivity of T (ρ)(·) and T2(·),
that 0 ≤ T (ρ)(tn)f ≤ T2(tn)f and the strong continuity of T (ρ)(·). Thus,

T2(tn)f → f as n→∞. Splitting f ∈ D(Rd) into positive and negative part,

we see that this is true for general f . In view of the contractivity of T2(·), a

standard 3ε argument yields strong continuity of T2(·).
As the form aρ is symmetric, the semigroup T (ρ)(·) consists of symmetric op-

erators and thus, so does the limit semigroup T2(·). Likewise, sub-Markovianity

of T2(·) is inherited by that of T (ρ)(·).
Step 3. We identify the generator Amin of T2(·).
Let us first note that R(λ,Aρ)f → R(λ,Amin)f as ρ→∞ for every λ > 0.

For 0 ≤ f ∈ L2(Rd) this can be deduced from the construction of T2(·) by

taking Laplace transforms and using the monotone convergence as follows

R(λ,Aρ)f =

∫ ∞
0

e−λtTρ(t)f dt→
∫ ∞

0

e−λtT2(t)f dt = R(λ,Amin)f.

Otherwise, for general f ∈ L2(Rd), we write f = f+ − f−. Then, since

R(λ,Aρ)f = R(λ,Aρ)f
+ − R(λ,Aρ)f

−, the statement follows similarly by

letting ρ→∞.

Now fix a sequence ρn ↑ ∞ and f ∈ L2(Rd). We put u = R(1, Amin)f and

un = R(1, Aρn)f . Then un → u and Aρnun = un − f → u − f = Aminu in

L2(Rd) as n→∞. By the coercivity of the form aρn , we have

η lim sup
n→∞

∫
|∇un|2 dx ≤ lim sup

n→∞
aρn [un, un] = lim sup

n→∞
−〈Aρnun, un〉

= −〈Aminu, u〉. (2.3)

It follows that (un)n∈N is a bounded sequence in H1(Rd) and thus, by reflexivity

of H1(Rd), un → u weakly in H1(Rd). The arbitrarity of u ∈ D(Amin) implies
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that D(Amin) ⊂ H1(Rd). Moreover, using the weak lower semicontinuity of

norms, we see that (2.3) implies −〈Aminu, u〉 ≥ η‖|∇u|‖2
2.

Now fix v ∈ D(Rd). As un converges to u weakly in H1(Rd), we see that

〈Au, v〉 = lim
n→∞
〈Aun, v〉 = lim

n→∞
〈Aρnun, v〉 = 〈Aminu, v〉,

proving Amin ⊂ Amax. At this point, properties (a), (d) and (by definition of

Amin) (b) are proved.

Step 4. We establish the minimality property (c).

Let B ⊂ Amax be such that B generates a positive C0-semigroup S(·) on

L2(Rd). To prove T2(t) ≤ S(t) for all t ≥ 0 it suffices to prove R(λ,Amin) ≤
R(λ,B) for all λ > 0; this is an easy consequence of Euler’s formula.

To see this, let us fix again a sequence ρn ↑ ∞, λ > 0 and 0 ≤ f ∈ L2(Rd).

We put u = R(λ,Amin)f , v = R(λ,B)f and un = R(λ,Aρn)f . As B ⊂ Amax,

we have v ∈ H1
loc(Rd) and

λ

∫
Bρn

(un − v)w dx+

∫
Bρn

d∑
i,j=1

qijDj(un − v)Diw dx

+

∫
Bρn

V (un − v)w dx = 0, (2.4)

for all w ∈ H1
0 (Bρn). As the semigroup S(·) is positive, v ≥ 0 and thus

(un − v)+ ≤ un. Consequently, (un − v)+ ∈ H1
0 (Bρn) and we may insert

w = (un−v)+ into (2.4). Taking the uniform ellipticity of Q into account, this

yields

λ

∫
Bρn

(
(un − v)+

)2
dx+ η

∫
Bρn

|∇(un − v)+|2 dx+

∫
Bρn

V
(
(un − v)+

)2
dx ≤ 0.

As V ≥ 0, it follows that (un − v)+ = 0 and thus un ≤ v. Upon n → ∞ we

obtain u ≤ v. Hence R(λ,Amin)f ≤ R(λ,B)f for 0 ≤ f ∈ L2(Rd).

Step 5. We establish properties (e) and (f).

As we have already mentioned above, the semigroup T2(·) is sub-Markovian

and consists of symmetric operators. The latter implies that the generator

Amin of T2(·) is selfadjoint. In view of property (d), the ultracontractivity of

the semigroup follows immediately from Proposition B.4.2.

As for consistency we note that the semigroup T (·) on Cb(Rd) constructed

in Chapter 1 is obtained by the same approximation procedure as for T2(·).
But the semigroup solutions of the Cauchy–Dirichlet problem associated with

A on Cb(Bρ) is consistent with the semigroup solution on L2(Bρ) considered

above. Thus, consistency of T2(·) and T (·) follows.

Remark 2.1.2. (a) As the minimal realization Amin of the elliptic operator

A generates a symmetric sub-Markovian C0-semigroup T2(·) on L2(Rd), it

follows from Theorem B.4.5, that T2(·) extends to a positive C0-semigroup
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of contractions Tp(·) on Lp(Rd) for all p ∈ [1,∞). Moreover these semi-

groups are consistent, i.e.

Tp(t)f = Tq(t)f, for all f ∈ Lp(Rd) ∩ Lq(Rd), t ≥ 0.

(b) Since, by Theorem 2.1.1, T2(·) is ultracontractive, and T2(·) coincides with

T (·) on L2(Rd)∩Cb(Rd), it follows that T2(·) is given through an integral

kernel which coincides with the kernel p of the semigroup T (·).

2.2 Time dependent Lyapunov functions

As in [1, 30, 31, 41, 51] we use time dependent Lyapunov functions introduced

in Definition 1.6.2 to prove pointwise bounds of the kernel p. In particular,

we will deal with time dependent Lyapunov functions W for the operators

L := ∂t + A and ∂t + η∆ − V with respect to Z and h, where Z is the

Lyapunov function introduced in Hypothesis 2.0.1(b) and 0 ≤ h ∈ L1((0, T )).

Then, for fixed T > 0, they satisfy the following inequalities

LW (t, x) ≤ h(t)W (t, x) (2.5)

and

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x) ≤ h(t)W (t, x) (2.6)

for all (t, x) ∈ (0, T )× Rd.

In this section we give conditions under which certain exponentials are time

dependent Lyapunov functions for L := ∂t + A and ∂t + η∆ − V also in the

case of polynomially and exponentially growing diffusion coefficients.

2.2.1 Time dependent Lyapunov functions for polyno-

mially growing diffusion

In the following result we assume that the diffusion coefficients grow polyno-

mially. Here x 7→ |x|β∗ denotes any C2-function which coincides with x 7→ |x|β
for |x| ≥ 1. Moreover we take T = 1 in Definition 1.6.2.

Proposition 2.2.1. Assume that there is a constant cq > 0 such that

d∑
i,j=1

qij(x)ξiξj ≤ cq(1 + |x|m)|ξ|2 (2.7)

holds for all ξ, x ∈ Rd and some m > 0. For (t, x) ∈ [0, 1]× Rd, consider the

function

W (t, x) = eεt
α|x|β∗ ,

with β > (2−m) ∨ 0, ε > 0 and α > β
β+m−2

. If

lim sup
|x|→∞

|x|1−β−m
(
G · x
|x|
− V

εβ|x|β−1

)
< −Λ (2.8)
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is satisfied for Λ > cqεβ and

lim
|x|→∞

V (x) |x|2−2β−m > c (2.9)

holds true for some c > 0, then W is a time dependent Lyapunov function for

L and ∂t + η∆−V with respect to Z(x) = eε|x|
β
∗ and h(t) = C1t

α−γ(2β+m−2) for

some γ > 1
β+m−2

and some constant C1 > 0. Here Gj :=
∑d

i=1Diqij and Z is

a Lyapunov function for A and η∆− V . Moreover,

ξW (t, x) ≤ e
∫ 1
0 h(s) ds =: C2

for all (t, x) ∈ [0, 1]× Rd.

Proof. It is easy to see that W ∈ C1,2((0, 1)×Rd)∩C([0, 1]×Rd), W (t, x)→∞
as |x| → ∞ uniformly for t in compact subsets of (0, 1] and W ≤ Z. It remains

to show that there is 0 ≤ h ∈ L1(0, 1) such that (2.5) and (2.6) hold true.

In the following computations we assume that |x| ≥ 1 so that |x|s∗ = |x|s

for s ≥ 0. Otherwise, if |x| ≤ 1, then by continuity the functions

(t, x)→ |W (t, x)−1LW (t, x)|

and

(t, x)→ |W (t, x)−1[∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)]|
are bounded on (0, 1)× B1. Thus, we possibly choose a larger constant C1 to

define the function h(t).

Let t ∈ (0, 1) and |x| ≥ 1. By straightforward computations we have

DjW (t, x) =εβtα |x|β−2 xjW (t, x),

Di(qijDjW )(t, x) =εβtα |x|β−2Diqij(x)xjW (t, x)

+ εβ(β − 2)tα |x|β−4 qij(x)xixjW (t, x)

+ εβtα |x|β−2 qij(x)δijW (t, x)

+ ε2β2t2α |x|2β−4 qij(x)xixjW (t, x).

Then, we obtain

LW (t, x) =∂tW (t, x) + AW (t, x)

=εαtα−1 |x|βW (t, x) + εβtα |x|β−2W (t, x)
d∑

i,j=1

Diqij(x)xj

+ εβ(β − 2)tα |x|β−4W (t, x)
d∑

i,j=1

qij(x)xixj

+ εβtα |x|β−2W (t, x)
d∑

i,j=1

qij(x)δij

+ ε2β2t2α |x|2β−4W (t, x)
d∑

i,j=1

qij(x)xixj − V (x)W (t, x).
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We recall that Gj :=
∑d

i=1 Diqij and we use the polynomially growth of the

diffusion coefficients (2.7). We have

LW (t, x) ≤εαtα−1 |x|βW (t, x) + εβtα |x|β−2W (t, x)G(x) · x
+ cqεβ(β − 2)+tα |x|β−4 (1 + |x|m) |x|2W (t, x)

+ dcqεβt
α |x|β−2 (1 + |x|m)W (t, x)

+ cqε
2β2t2α |x|2β−4 (1 + |x|m) |x|2W (t, x)− V (x)W (t, x).

Since (1 + |x|m) ≤ 2 |x|m and tα ≤ 1, we arrange the terms as follows.

LW (t, x) ≤ εβtα |x|2β+m−2W (t, x)

[
α

βt
|x|2−β−m + 2cq((β − 2)+ + d) |x|−β

+ cqεβt
α + cqεβt

α |x|−m + |x|1−β−m
(
G · x
|x|
− V

εβ |x|β−1

)]
.(2.10)

Let γ > 1
β+m−2

. We distinguish two cases.

Case 1: |x| > 1

tγ
.

Since tα ≤ 1 and using (2.10), we get

LW (t, x) ≤εβtα |x|2β+m−2W (t, x)

[
α

β
|x|

1
γ

+2−β−m + 2cq((β − 2)+ + d) |x|−β

+ cqεβ + cqεβ |x|−m + |x|1−β−m
(
G · x
|x|
− V

εβ |x|β−1

)]
. (2.11)

We claim that, if we assume further that |x| is large enough, then

LW (t, x) ≤ 0,

for all t ∈ (0, 1). To see this, let |x| > K for some K > 1. Combining (2.8)

with (2.11) yields

LW (t, x) ≤ εβtα |x|2β+m−2W (t, x)

[
α

β
|x|

1
γ

+2−β−m + 2cq((β − 2)+ + d) |x|−β

+ cqεβ + cqεβ |x|−m − Λ

]
. (2.12)

Considering that γ > 1
β+m−2

, β > 0 and m > 0, we infer that

α

β
|x|

1
γ

+2−β−m + 2cq((β − 2)+ + d) |x|−β + cqεβ + cqεβ |x|−m − Λ

≤
(
α

β
+ 2cq((β − 2)+ + d) + cqεβ

)
K−l + cqεβ − Λ,
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where l := min(−1
γ
− 2 + β +m,β,m) > 0. Since Λ > cqεβ, choosing

K ≥

(
α
β

+ 2cq((β − 2)+ + d) + cqεβ

Λ− cqεβ

) 1
l

,

it follows that the quantity within square brackets in the right hand side of

(2.12) is negative. Thus LW (t, x) ≤ 0 for |x| > 1
tγ

, |x| > K and for all

t ∈ (0, 1).

For the remaining values of x, |x| ≤ K, we have that LW (t, x) ≤ C for a

certain constant C > 0. Anyway, we conclude that

LW (t, x) ≤ CW (t, x),

for all t ∈ (0, 1) and |x| > 1
tγ

.

Case 2: |x| ≤ 1

tγ
.

We assume that |x| is large enough. Otherwise, as in Case 1, LW (t, x) ≤
C ≤ CW (t, x) for a certain constant C. We combine (2.8) and (2.10) to deduce

that

LW (t, x) ≤
[
εαtα−1−γβ + 2cqεβ((β − 2)+ + d)tα−γ(β+m−2)

+ cqε
2β2t2α−γ(2β+m−2) + cqε

2β2t2α−γ(2β−2)

− εβtα |x|2β+m−2 Λ
]
W (t, x).

We drop the term involving Λ because it is negative. Moreover, since γ >

1/(β +m− 2), we note that the leading term is tα−γ(2β+m−2). Hence

LW (t, x) ≤ h(t)W (t, x),

where

h(t) := C1t
α−γ(2β+m−2).

For the function h(t) to be in the space L1((0, 1)), we set α > β
β+m−2

. In this

way, choosing γ < α+1
2β+m−2

so that α− γ(2β +m− 2) > −1, h(t) is integrable

in the interval (0, 1).

Summing up, considering a possibly larger constant C1, we proved (2.5) for

all t ∈ (0, 1) and x ∈ Rd.

We now verify (2.6). An easy computation shows that

∆W (t, x) = εβ(β + d− 2)tα |x|β−2W (t, x) + ε2β2t2α |x|2β−2W (t, x).

Thus, we get

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

= εαtα−1 |x|βW (t, x) + ηεβ(β + d− 2)tα |x|β−2W (t, x)

+ ηε2β2t2α |x|2β−2W (t, x)− V (x)W (t, x). (2.13)
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As in the first part of the proof, we let γ > 1
β+m−2

and we distinguish two

cases.

Case 1: |x| > 1

tγ
.

Since tα ≤ 1, by (2.13) we obtain

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤ εβtα |x|2β+m−2W (t, x)

[
α

β
|x|

1
γ

+2−β−m + η(β + d− 2) |x|−β−m

+ ηεβ |x|−m − 1

εβ
V (x) |x|2−2β−m

]
.

If |x| large enough, then by (2.9) we have

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤ εβtα |x|2β+m−2W (t, x)

[
α

β
|x|

1
γ

+2−β−m + η(β + d− 2) |x|−β−m

+ ηεβ |x|−m − c

εβ

]
.

Arguing as in (2.12), we find that ∂tW (t, x) + η∆W (t, x) − V (x)W (t, x) is

negative for |x| large, whereas it is bounded for the remaining values of x.

Therefore, we deduce that

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x) ≤ CW (t, x),

for all t ∈ (0, 1) and |x| > 1
tγ

.

Case 2: |x| ≤ 1

tγ
.

Since V ≥ 0, (2.13) leads to

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤
[
εαtα−1−γβ + ηεβ((β − 2)+ + d)tα−γ(β−2) + ηε2β2t2α−γ(2β−2)

]
W (t, x).

We can control the right hand side of the previous inequality with the function

h(t)W (t, x), obtaining that

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x) ≤ h(t)W (t, x),

where the constant C1 in the function h has to be suitably adjusted. In both

cases (2.6) holds true. We conclude that W is a time dependent Lyapunov

function for L and ∂t + η∆− V . In addition, we observe that, if we take t = 1

and we argue similarly, then it follows that Z is a Lyapunov function for A

and η∆− V .

Moreover, by Proposition 1.6.3, we have

ξW (t, x) ≤ e
∫ t
0 h(s) dsW (0, x) ≤ e

∫ 1
0 h(s) ds =: C2,

for all (t, x) ∈ [0, 1]× Rd.
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Remark 2.2.2. One can easily see that the same conclusion as in Proposition

2.2.1 remains valid if we replace the operator A with the more general operator

AF := A + F · ∇ with F ∈ Cζ(Rd,Rd) for some ζ ∈ (0, 1), and the condition

(2.8) with

lim sup
|x|→∞

|x|1−β−m
(

(G+ F ) · x
|x|
− V

εβ|x|β−1

)
< −Λ.

This generalizes Proposition 2.3 in [1].

2.2.2 Time dependent Lyapunov functions for exponen-

tially growing diffusion

We now turn to the case of exponentially growing diffusion.

Proposition 2.2.3. Assume that there is a constant ce > 0 such that

d∑
i,j=1

qij(x)ξiξj ≤ cee
|x|m |ξ|2 (2.14)

holds for all ξ, x ∈ Rd and some m ≥ 2. Consider the function

W (t, x) = exp

(
εtα
∫ |x|∗

0

e
τβ

2 dτ

)
for (t, x) ∈ [0, 1]× Rd, with m

2
+ 1 ≤ β ≤ m, ε > 0 and α > 2β+m−2

2m
. If

lim sup
|x|→∞

|x|1−β−me−
|x|β
2
−|x|m

(
G · x
|x|
− V

εe
|x|β
2

)
< −Λ (2.15)

is satisfied for Λ > 0 and

lim
|x|→∞

V (x) |x|1−β−m e−|x|
β−|x|m > c (2.16)

holds true for some c > 0, then W is a time dependent Lyapunov function

for L and ∂t + η∆ − V with respect to Z(x) = exp
(
ε
∫ |x|∗

0
e
τβ

2 dτ
)

and h(t) =

C3t
α−γ(β+ 3

2
m−1) for some γ > 1

m
and some constant C3 > 0. Here Gj :=∑d

i=1 Diqij and Z is a Lyapunov function for A and η∆− V . Moreover,

ξW (t, x) ≤ e
∫ 1
0 h(s) ds =: C4

for all (t, x) ∈ [0, 1]× Rd.

Proof. Throughout the proof we assume that |x| ≥ 1 so that |x|s∗ = |x|s for

s ≥ 0. The estimates can be extended to Rd by possibly choosing larger

constants.
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Let t ∈ (0, 1) and |x| ≥ 1. By direct computations we have

DjW (t, x) =εtα
xj
|x|
e
|x|β
2 W (t, x),

Di(qijDjW )(t, x) =εtα
1

|x|
e
|x|β
2 Diqij(x)xjW (t, x)

+
1

2
εβtα |x|β−3 e

|x|β
2 qij(x)xixjW (t, x)

+ εtα
1

|x|
e
|x|β
2 qij(x)δijW (t, x)

− εtα 1

|x|3
e
|x|β
2 qij(x)xixjW (t, x)

+ ε2t2α
1

|x|2
e|x|

β

qij(x)xixjW (t, x).

Hence we deduce that

LW (t, x) =∂tW (t, x) + AW (t, x)

=εαtα−1W (t, x)

∫ |x|
0

e
τβ

2 dτ + εtα
1

|x|
e
|x|β
2 W (t, x)

d∑
i,j=1

Diqij(x)xj

+
1

2
εβtα |x|β−3 e

|x|β
2 W (t, x)

d∑
i,j=1

qij(x)xixj

+ εtα
1

|x|
e
|x|β
2 W (t, x)

d∑
i,j=1

qij(x)δij

− εtα 1

|x|3
e
|x|β
2 W (t, x)

d∑
i,j=1

qij(x)xixj

+ ε2t2α
1

|x|2
e|x|

β

W (t, x)
d∑

i,j=1

qij(x)xixj − V (x)W (t, x).

First of all, we drop the negative term involving ε in the right hand side of

the previous equality. Second, we use the exponentially growth of the diffusion

coefficients (2.14) to obtain that

LW (t, x) ≤εαtα−1W (t, x)

∫ |x|
0

e
τβ

2 dτ + εtα
1

|x|
e
|x|β
2 W (t, x)G(x) · x

+
1

2
ceεβt

α |x|β−1 e
|x|β
2

+|x|mW (t, x) + dceεt
α 1

|x|
e
|x|β
2

+|x|mW (t, x)

+ ceε
2t2αe|x|

β+|x|mW (t, x)− V (x)W (t, x).
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Since tα ≤ 1, we can write the previous inequality as follows:

LW (t, x) ≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α

t
|x|1−β−m e−|x|

β−|x|m
∫ |x|

0

e
τβ

2 dτ

+
1

2
ceβ |x|−m e−

|x|β
2 + dce |x|−β−m e−

|x|β
2 + ceεt

α |x|1−β−m

+ |x|1−β−m e−
|x|β
2
−|x|m

(
G · x
|x|
− V

εe
|x|β
2

)]
. (2.17)

Let γ > 1
m

. We now distinguish two cases.

Case 1: e|x|
m

≥ 1

tγm
.

First, we observe that ∫ |x|
0

e
τβ

2 dτ ≤ |x| e
|x|β
2 .

Then, since tα ≤ 1 and e−
|x|β
2 ≤ 1, by (2.17) we get

LW (t, x) ≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m e(

1
γm
−1)|x|m

+
1

2
ceβ |x|−m + dce |x|−β−m + ceε |x|1−β−m

+ |x|1−β−m e−
|x|β
2
−|x|m

(
G · x
|x|
− V

εe
|x|β
2

)]
.

Moreover, e(
1
γm
−1)|x|m ≤ 1 because γ > 1

m
. Thus, we derive that

LW (t, x) ≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m

+
1

2
ceβ |x|−m + dce |x|−β−m + ceε |x|1−β−m

+ |x|1−β−m e−
|x|β
2
−|x|m

(
G · x
|x|
− V

εe
|x|β
2

)]
.

If |x| is large enough, say |x| > K for some K > 1, then we apply (2.15) to

deduce that

LW (t, x) ≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m +

1

2
ceβ |x|−m

+ dce |x|−β−m + ceε |x|1−β−m − Λ

]
.
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We now show that, for a suitable choice of K, the quantity within square

brackets is negative. Since β ≥ m
2

+ 1 and m ≥ 2, we have β ≥ 2 and hence

α |x|2−β−m +
1

2
ceβ |x|−m + dce |x|−β−m + ceε |x|1−β−m − Λ

≤
(
α +

1

2
ceβ + dce + ceε

)
K−m − Λ.

As a result, by taking

K ≥
(
α + 1

2
ceβ + dce + ceε

Λ

) 1
m

,

we finally get LW (t, x) ≤ 0. For the remaining values of x, LW is bounded

by a constant. In both cases we have

LW (t, x) ≤ CW (t, x),

for all t ∈ (0, 1), e|x|
m ≥ 1

tγm
and for some constant C > 0.

Case 2: e|x|
m

<
1

tγm
.

Notice that |x| < t−γ and, since β ≤ m, we have

e|x|
β

<
1

tγm
for |x| ≥ 1.

Then, if |x| is large enough, using β > 1, and combining (2.15) and (2.17), we

obtain that

LW (t, x) ≤

[
εαtα−1−γ(m2 +1) +

1

2
ceεβt

α−γ(β+ 3
2
m−1) + dceεt

α− 3
2
γm + ceε

2t2α−2γm

− Λεtα |x|β+m−1 e|x|
β+|x|m

]
W (t, x).

Dropping the last negative term, we find

LW (t, x) ≤

[
εαtα−1−γ(m2 +1) +

1

2
ceεβt

α−γ(β+ 3
2
m−1)

+ dceεt
α− 3

2
γm + ceε

2t2α−2γm

]
W (t, x).

Since γ > 1
m

and β ≥ m
2

+ 1, the leading term is tα−γ(β+ 3
2
m−1). Therefore, we

gain

LW (t, x) ≤ Ctα−γ(β+ 3
2
m−1)W (t, x),

for all t ∈ (0, 1), e|x|
m

< 1
tγm

and for some constant C > 0.

To sum up, there exists a constant C3 > 0 such that

LW (t, x) ≤ h(t)W (t, x),
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for all t ∈ (0, 1) and x ∈ Rd, where h(t) = C3t
α−γ(β+ 3

2
m−1).

Moreover, we choose γ < α+1
β+ 3

2
m−1

, which is possible since α > 2β+m−2
2m

, so

that α−γ
(
β + 3

2
m− 1

)
> −1 and h ∈ L1((0, 1)). We conclude that condition

(2.5) is satisfied.

To show (2.6) we compute

∆W (t, x) =
1

2
εβtα |x|β−1 e

|x|β
2 W (t, x) + dεtα

1

|x|
e
|x|β
2 W (t, x)

− εtα 1

|x|
e
|x|β
2 W (t, x) + ε2t2αe|x|

β

W (t, x).

Hence,

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

=εαtα−1W (t, x)

∫ |x|
0

e
τβ

2 dτ +
1

2
ηεβtα |x|β−1 e

|x|β
2 W (t, x)

+ dηεtα
1

|x|
e
|x|β
2 W (t, x)− ηεtα 1

|x|
e
|x|β
2 W (t, x)

+ ηε2t2αe|x|
β

W (t, x)− V (x)W (t, x)

≤εαtα−1W (t, x)

∫ |x|
0

e
τβ

2 dτ +
1

2
ηεβtα |x|β−1 e

|x|β
2 W (t, x)

+ dηεtα
1

|x|
e
|x|β
2 W (t, x) + ηε2t2αe|x|

β

W (t, x)− V (x)W (t, x). (2.18)

We use the same strategy as above. We let γ > 1
m

and we consider two cases.

Case 1: e|x|
m

≥ 1

tγm
.

By (2.18) we obtain

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m e(

1
γm
−1)|x|m +

1

2
ηβ |x|−m

+ dη |x|−β−m + ηε |x|1−β−m − 1

ε
V (x) |x|1−β−m e−|x|

β−|x|m
]
.

Using (2.16) and the fact that γ > 1
m

, we get

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m

+
1

2
ηβ |x|−m + dη |x|−β−m + ηε |x|1−β−m − c

ε

]
.

If |x| is large enough, then the quantity within square brackets is negative.

Otherwise, we can control it with a constant. In both cases, we deduce that

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x) ≤ C,
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for all t ∈ (0, 1), e|x|
m ≥ 1

tγm
and for some constant C > 0.

Case 2: e|x|
m

<
1

tγm
.

Since β ≤ m and V ≥ 0, (2.18) yields

∂tW (t, x) + η∆W (t, x)− V (x)W (t, x)

≤
[
εαtα−1−γ(m2 +1) +

1

2
ηεβtα−γ(β+m

2
−1) + dηεtα−γ

m
2 + ηε2t2α−γm

]
W (t, x)

≤Ctα−γ(β+ 3
2
m−1)W (t, x),

for some constant C. Therefore, by possibly choosing a larger C3, we gain

(2.6). Then, W is a time dependent Lyapunov function for L and ∂t+η∆−V .

Moreover, taking t = 1 and arguing similarly, we obtain that Z is a Lyapunov

function for A and η∆−V . Finally, the last assertion follows from Proposition

1.6.3.

2.3 Preliminary results for bounded diffusion

coefficients

Throughout this section we assume that the coefficients qij and their spatial

derivatives Dhqij are bounded on Rd for all i, j, h = 1, . . . , d. Under this

assumption, we establish global boundedness and Sobolev regularity of the

kernel p. The results presented here are the main ingredients that in the next

section will allow us to obtain an upper bound for the kernel p in case of

bounded diffusion coefficients such that the constant in the right hand side of

the estimate does not depend on the diffusion itself.

2.3.1 Global regularity results

We fix T > 0 and consider p as a function of (t, y) ∈ (0, T ) × Rd for fixed

x ∈ Rd. Moreover, we fix 0 < a0 < a < b < b0 ≤ T and we set

Γ2(k, x, a0, b0) =

(∫
Q(a0,b0)

V k(y)p(t, x, y) dt dy

) 1
k

. (2.19)

We now look for the values of s for which the transition kernel p belongs to

the space Hs,1(Q(a, b)) presented in Definition A.4.3. For that, we adapt [41,

Lemma 3.1] for operators with potential term.

Lemma 2.3.1. Assume that qij, Dhqij are bounded on Rd for i, j, h = 1, . . . , d.

If Γ2(k, x, a0, b0) <∞ for some k > 1 and p ∈ Lr(Q(a0, b0)) for some 1 < r ≤
∞, then p ∈ Hs,1(Q(a, b)) for s = rk/(r + k − 1) if r <∞, s = k if r =∞.

Proof. Throughout the proof we consider a generic constant c depending on

k, x, a0, a, b, b0 and the coefficients qij. Let ϑ ∈ C∞(R) be such that
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• ϑ(t) = 1 for a ≤ t ≤ b,

• ϑ(t) = 0 for t ≤ a0, t ≥ b0,

• 0 ≤ ϑ ≤ 1.

Moreover, let ϕ ∈ C1,2
c (Q(0, T )). If we apply Lemma 1.3.3 to the function ϑϕ

we get∫
Q(0,T )

q(∂tϕ+ A1ϕ) dt dy = −
∫
Q(0,T )

(qG · ∇ϕ− qV ϕ+ pϕϑ′) dt dy, (2.20)

where q := ϑp, A1 :=
∑d

i,j=1 qijDij and Gj :=
∑d

i=1Diqij. If r < ∞ and

s = rk/(r + k − 1), then from Hölder’s inequality with exponents k/s and

k/(k − s) we obtain that∫
Q(a0,b0)

V sps dt dy =

∫
Q(a0,b0)

V sp
s
k ps(1− 1

k) dt dy

≤
(∫

Q(a0,b0)

V kp dt dy

) s
k
(∫

Q(a0,b0)

p
s(k−1)
k−s dt dy

)1−s/k

=

(∫
Q(a0,b0)

V kp dt dy

) s
k
(∫

Q(a0,b0)

pr dt dy

) k−s
k

= Γ2(k, x, a0, b0)s ‖p‖
s(k−1)
k

Lr(Q(a0,b0)) .

If r =∞ and s = k, we write∫
Q(a0,b0)

V sps dt dy =

∫
Q(a0,b0)

V kpk−1p dt dy ≤ Γ2(k, x, a0, b0)k ‖p‖k−1
L∞(Q(a0,b0)) .

In both cases it leads to

‖V p‖Ls(Q(a0,b0)) ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) .

Therefore, applying Hölder’s inequality with exponents s and s′ such that

1/s+ 1/s′ = 1, we have∣∣∣∣∫
Q(0,T )

qV ϕ dt dy

∣∣∣∣ ≤ ‖V p‖Ls(Q(a0,b0)) ‖ϕ‖Ls′ (Q(0,T ))

≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖Ls′ (Q(0,T )) . (2.21)

It is possible to repeat the same computations with 1 instead of V to prove

that p ∈ Ls(Q(a0, b0)) and

‖p‖Ls(Q(a0,b0)) ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) . (2.22)

Similarly, since Dhqij are bounded on Rd, it follows that

‖Gp‖Ls(Q(a0,b0)) ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) .
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Consequently,∣∣∣∣∫
Q(0,T )

qG · ∇ϕdt dy
∣∣∣∣ ≤ ‖Gp‖Ls(Q(a0,b0)) ‖∇ϕ‖Ls′ (Q(0,T ))

≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 0,1

s′ (Q(0,T )) .

Putting everything together yields∣∣∣∣∫
Q(0,T )

q(∂tϕ+ A1ϕ) dt dy

∣∣∣∣ ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 0,1

s′ (Q(0,T )) . (2.23)

We now consider the difference quotient with respect to the variable y

τ−hϕ(t, y) = |h|−1(ϕ(t, y − hej0)− ϕ(t, y)),

for any (t, y) ∈ Q(0, T ), 0 6= h ∈ R small enough and fixed j0 ∈ {1, . . . , d}.
Substituting τ−hϕ instead of ϕ in (2.23) leads to∣∣∣∣∫

Q(0,T )

q(∂tτ−hϕ+ A1τ−hϕ) dt dy

∣∣∣∣ ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖τ−hϕ‖W 0,1

s′ (Q(0,T )) .

(2.24)

By a change of variables, we find that∫
Q(0,T )

qA1τ−hϕdt dy

=
1

|h|

∫
Q(0,T )

q(t, y + hej0)
d∑

i,j=1

qij(y + hej0)Dijϕ(t, y) dt dy

− 1

|h|

∫
Q(0,T )

q(t, y)
d∑

i,j=1

qij(y)Dijϕ(t, y) dt dy.

Summing and subtracting |h|−1
∫
Q(0,T )

q(t, y+hej0)
∑d

i,j=1 qij(y)Dijϕ(t, y) dt dy

implies that∫
Q(0,T )

qA1τ−hϕdt dy =

∫
Q(0,T )

q(t, y + hej0)
d∑

i,j=1

τhqij(y)Dijϕ(t, y) dt dy

−
∫
Q(0,T )

τhqA1ϕdt dy. (2.25)

Moreover, since there is ξy on the segment from y to y+hej0 such that τhqij(y) =

Dj0qij(ξy), applying Hölder’s inequality and (2.22) we have∣∣∣∣∣
∫
Q(0,T )

q(t, y + hej0)
d∑

i,j=1

Dj0qij(ξy)Dijϕ(t, y) dt dy

∣∣∣∣∣
≤ c ‖p‖Ls(Q(a0,b0)) ‖ϕ‖W 1,2

s′ (Q(0,T )) ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 1,2

s′ (Q(0,T )) , (2.26)
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where we used the boundedness of the first order derivatives of the diffusion

coefficients. Considering that ‖τ−hϕ‖W 0,1

s′ (Q(a0,b0)) ≤ ‖ϕ‖W 1,2

s′ (Q(a0,b0)) and com-

bining (2.24) with (2.25) and (2.26) yields∣∣∣∣∫
Q(0,T )

τhq(∂tϕ+ A1ϕ) dt dy

∣∣∣∣ ≤ ∣∣∣∣∫
Q(0,T )

q(∂tτ−hϕ+ A1τ−hϕ) dt dy

∣∣∣∣
+

∣∣∣∣∣
∫
Q(0,T )

q(t, y + hej0)
d∑

i,j=1

τhqij(y)Dijϕ(t, y) dt dy

∣∣∣∣∣
≤ c ‖p‖

k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 1,2

s′ (Q(0,T )) . (2.27)

Moreover, since q ∈ Ls(Q(0, T )) and s = (s−1)s′, we observe that |τhq|s−2τhq ∈
Ls
′
(Q(0, T )) and we have∥∥|τhq|s−2τhq

∥∥
Ls′ (Q(0,T ))

= ‖τhq‖s−1
Ls(Q(0,T )) . (2.28)

According to [33, Theorem 9.2.3] we choose ϕ ∈ W 1,2
s′ (Q(0, T )) such that{

∂tϕ+ A1ϕ = |τhq|s−2τhq, in Q(0, T ),

ϕ(T, y) = 0, y ∈ Rd,
(2.29)

and

‖ϕ‖W 1,2

s′ (Q(0,T )) ≤ C
∥∥|τhq|s−2τhq

∥∥
Ls′ (Q(0,T ))

. (2.30)

We note that we cannot insert directly such a ϕ in (2.27) because it does not

have compact support with respect to the space variables. Thus, we approxi-

mate ϕ in W 1,2
s′ (Q(0, T )) with a sequence ϕn ∈ C1,2

c (Q(0, T )) defined by

ϕn(t, y) = ψ(y/n)ϕ(t, y),

where ψ ∈ C∞c (Rd) is a fixed smooth function such that ψ(y) = 1 for |y| ≤ 1.

Writing (2.27) for ϕn, letting n → ∞ and using the dominated convergence

theorem, we deduce that (2.27) is valid also for ϕ ∈ W 1,2
s′ (Q(0, T )).

Therefore, since ϕ is the solution of the Cauchy problem (2.29), it follows

that∫
Q(0,T )

|τhq|s =

∫
Q(0,T )

τhq(∂tϕ+ A1ϕ) dt dy ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 1,2

s′ (Q(0,T ))

≤ c ‖p‖
k−1
k

Lr(Q(a0,b0))

∥∥|τhq|s−2τhq
∥∥
Ls
′ (Q(0,T ))

= c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖τhq‖
s−1
Ls(Q(0,T )) ,

where we used (2.27), (2.30) and (2.28). In conclusion, we obtain that ∇q ∈
Ls(Q(0, T )) and

‖∇q‖Ls(Q(0,T )) ≤ c ‖p‖
k−1
k

Lr(Q(a0,b0)) , (2.31)

thus p ∈ W 0,1
s (Q(a, b)).
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We are left to show that the distributional time derivative of p is in the

space (W 0,1
s′ (Q(a, b)))′. For that, we take ϕ ∈ C1,2

c (Q(0, T )) and we apply again

Lemma 1.3.3 to the function ϑϕ. Then, integrating by parts, we get∫
Q(0,T )

q∂tϕdt dy =

∫
Q(0,T )

〈Q∇ϕ,∇q〉 dt dy +

∫
Q(0,T )

(qV ϕ− pϕϑ′) dt dy.

If we take into account inequalities (2.21) and (2.22), then we have∣∣∣∣∫
Q(0,T )

q∂tϕdt dy

∣∣∣∣ ≤ ∣∣∣∣∫
Q(0,T )

〈Q∇ϕ,∇q〉 dt dy
∣∣∣∣+ c ‖p‖

k−1
k

Lr(Q(a0,b0)) ‖ϕ‖Ls′ (Q(0,T )) .

By the boundedness of the diffusion coefficients, Hölder’s inequality and (2.31),

we finally deduce that∣∣∣∣∫
Q(0,T )

q∂tϕdt dy

∣∣∣∣ ≤c ‖∇q‖Ls(Q(0,T )) ‖ϕ‖W 0,1

s′ (Q(0,T ))

+ c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖Ls′ (Q(0,T ))

≤c ‖p‖
k−1
k

Lr(Q(a0,b0)) ‖ϕ‖W 0,1

s′ (Q(0,T )) .

We finally observe that the previous inequality can be extended to every ϕ ∈
W 0,1
s′ (Q(a, b)).

Corollary 2.3.2. Assume that qij, Dhqij are bounded on Rd for i, j, h =

1, . . . , d. If Γ2(k, x, a0, b0) < ∞ for some k > 1 and p ∈ L∞(Q(a0, b0)), then

p ∈ Hs,1(Q(a, b)) for all s ∈ (1, k].

Proof. Since p ∈ L1(Q(a0, b0)) ∩ L∞(Q(a0, b0)), by interpolation we have p ∈
Lr(Q(a0, b0)) for all 1 ≤ r ≤ ∞ . Then the statement follows from Lemma

2.3.1.

Remark 2.3.3. Lemma 2.3.1 and thus Corollary 2.3.2 hold true for the more

general operator AF := A + F · ∇ with F ∈ Cζ(Rd,Rd) for some ζ ∈ (0, 1) if

we further assume that Γ1(k, x, a0, b0) <∞, where

Γ1(k, x, a0, b0) =

(∫
Q(a0,b0)

|F (y)|kp(t, x, y) dt dy

) 1
k

.

Indeed, inspecting the proof of Lemma 2.3.1, one realizes that it suffices to

replace (2.20) by∫
Q(a0,b0)

q(∂tϕ+ A1ϕ) dt dy = −
∫
Q(a0,b0)

[q(G+ F ) · ∇ϕ− qV ϕ+ pϕϑ′] dt dy.

Apart from that, the proof works the same.
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2.3.2 Boundedness of weak solutions to parabolic prob-

lems

Here, we consider functions u which are, in some sense, weak solutions to an

inhomogeneus parabolic equation ∂tu−Au = f and prove an estimate of their

supremum norm. For that, we adapt the results in [31, Section 3.2].

Before stating the main theorem of this subsection, we show the following

lemma.

Lemma 2.3.4. Let ` > 0 and ϑ : Rd → R be a nonnegative, smooth and

compactly supported function. Moreover, assume that one of the following

situations applies:

(a) u ∈ Hp,1(Q(a, b)) for some p > d+ 2;

(b) u ∈ Hp,1(Q(a, b)) ∩ Cb(Q(a, b)) for some p ≤ d+ 2.

Then, ϑ(u− `)+ ∈ W 0,1
p′ (Q(a, b)) and∫

Q(a,b)

ϑ(u− `)+∂tu dt dx =
1

2

[∫
Rd
ϑ(u(b, ·)− `)2

+ dx−
∫
Rd
ϑ(u(a, ·)− `)2

+ dx

]
.

Proof. We start by observing that ϑ(u − `)+ ∈ W 0,1
p′ (Q(a, b)) because ϑ(u −

`)+ = (ϑ(u − `))+, ∇(ϑ(u − `))+ = χ{u≥`}∇(ϑ(u − `)) and ϑ(u − `) ∈
W 0,1
p′ (Q(a, b)).

If we are under condition (a), we apply Lemma A.4.4 to have a se-

quence (un) ⊂ C∞c (Rd+1) converging to u in the Hp,1-norm. Moreover, since

Hp,1(Q(a, b)) is continuously embedded in C0(Q(a, b)) by Theorem A.4.5,

then un converges to u uniformly in Q(a, b). Otherwise, under condition

(b), the sequence un is provided by Lemma A.4.6. In both cases, we de-

duce that ϑ(un − `)+ tends to ϑ(u − `)+ in W 0,1
p′ (Q(a, b)). As a result, since

∂tu ∈ (W 0,1
p′ (Q(a, b)))′, we have∫

Q(a,b)

ϑ(un − `)+∂tu dt dx→
∫
Q(a,b)

ϑ(u− `)+∂tu dt dx,

as n→∞. We now write∫
Q(a,b)

ϑ(un − `)+∂tu dt dx (2.32)

=

∫
Q(a,b)

ϑ(un − `)+∂tun dt dx+

∫
Q(a,b)

ϑ(un − `)+(∂tu− ∂tun) dt dx

= : I1 + I2.

In particular, we have

I1 =
1

2

∫
Q(a,b)

ϑ∂t((un − `)2
+) dt dx

=
1

2

∫
Rd
ϑ[(un(b, ·)− `)2

+ − (un(a, ·)− `)2
+] dx.
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Since un converges to u uniformly in Q(a, b) and ϑ is compactly supported in

Rd, then

I1 →
1

2

∫
Rd
ϑ[(u(b, ·)− `)2

+ − (u(a, ·)− `)2
+] dx, (2.33)

as n → ∞. Moreover, by the boundedness of the sequence ϑ(un − `)+ in

W 0,1
p′ (Q(a, b)) and the fact that ∂tun tends to ∂tu in (W 0,1

p′ (Q(a, b)))′, it follows

that I2 → 0 as n → ∞. Combining this with (2.32) and (2.33) leads to the

thesis.

Moreover, we need an easy lemma stated below.

Lemma 2.3.5. [26, Lemma 7.1] Let α > 0 and let (xn) be a sequence of real

positive numbers such that

xn+1 ≤ CBnx1+α
n (2.34)

with C > 0 and B > 1. If x0 ≤ C−
1
αB−

1
α2 , then we have

xn ≤ B−
n
αx0 (2.35)

and hence in particular

lim
n→∞

xn = 0.

Proof. We proceed by induction. Clearly, inequality (2.35) holds true for n =

0. If it is satisfied for n, then by (2.34) we have

xn+1 ≤ CBnx1+α
n ≤ CBn(B−

n
αx0)1+α = (CB

1
αxα0 )B−

n+1
α x0 ≤ B−

n+1
α x0,

that is (2.35) for n+ 1.

We are now ready to prove the main theorem of this subsection. It is a

key result that will allow us to generalize the kernel estimates from bounded

to unbounded diffusion coefficients.

Theorem 2.3.6. Assume that qij is bounded on Rd for i, j = 1, . . . , d. Let

0 ≤ a0 < b0 ≤ T , k > d + 2 and let functions f ∈ L k
2 (Q(a0, b0)), h = (hi) ∈

Lk(Q(a0, b0);Rd) and u ∈ L∞(a0, b0;L2(Rd)) be given such that u(a0) = 0 and

one of the following situations applies:

(a) u ∈ Hp,1(Q(a0, b0)) for some p > d+ 2;

(b) u ∈ Hp,1(Q(a0, b0)) ∩ Cb(Q(a0, b0)) for some p ≤ d+ 2.

Moreover, assume that∫
Q(a0,b0)

[〈Q∇u,∇ψ〉+ ψ∂tu] dt dx =

∫
Q(a0,b0)

fψ dt dx+

∫
Q(a0,b0)

〈h,∇ψ〉 dt dx,

(2.36)

for all ψ ∈ C∞c (Q(a0, b0)). Then u is bounded and there exists a constant

C > 0, depending only on η, d and k (but not depending on ‖Q‖∞) such that

‖u‖∞ ≤ C(‖u‖2 + ‖f‖ k
2

+ ‖h‖k).
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Proof. We initially assume that ‖u‖2 , ‖f‖ k
2
, ‖h‖k ≤ 1.

First, we observe that u ∈ L∞(Q(a0, b0)) not only under condition (b),

but also under condition (a) since Hp,1(Q(a0, b0)) is continuously embedded in

C0(Q(a0, b0)) for p > d+ 2 by Theorem A.4.5.

Second, we fix ` > 1. Taking into account that u ∈ L∞(Q(a0, b0)) and

∇(u − `)+ = χ{u≥`}∇u, we deduce that (u − `)+ ∈ W 0,1
r (Q(a0, b0)) for any

r ∈ (1,∞).

Next, we consider a standard sequence ϑn of cutoff functions (in x). Making

use of a density argument one can see that (2.36) holds true even for functions

ψ ∈ W 0,1
r (Q(a0, b0)) for any r ∈ (1,∞) such that there exists R > 0 with

ψ(t, x) = 0 for all t ∈ (a0, b0) and |x| > R. Hence, we may plug ψ := ϑ2
n(u−`)+

in (2.36) obtaining that∫
Q(a0,b0)

ϑ2
n(u− `)+∂tu dt dx+

∫
Q(a0,b0)

ϑ2
n〈Q∇u,∇(u− `)+〉 dt dx

+ 2

∫
Q(a0,b0)

ϑn〈Q∇u,∇ϑn〉(u− `)+ dt dx =

∫
Q(a0,b0)

fϑ2
n(u− `)+ dt dx

+

∫
Q(a0,b0)

ϑ2
n〈h,∇(u− `)+〉 dt dx+ 2

∫
Q(a0,b0)

ϑn(u− `)+〈h,∇ϑn〉 dt dx.

Applying Lemma 2.3.4 and considering that u(a0) = 0, it leads to

1

2

∫
Rd
ϑ2
n(u(b0, ·)− `)2

+ dx+

∫
Q(a0,b0)

ϑ2
n〈Q∇(u− `)+,∇(u− `)+〉 dt dx

+ 2

∫
Q(a0,b0)

ϑn〈Q∇(u− `)+,∇ϑn〉(u− `)+ dt dx =

∫
Q(a0,b0)

fϑ2
n(u− `)+ dt dx

+

∫
Q(a0,b0)

ϑ2
n〈h,∇(u− `)+〉 dt dx+ 2

∫
Q(a0,b0)

ϑn(u− `)+〈h,∇ϑn〉 dt dx.

Therefore, we write

1

2

∫
Rd
ϑ2
n(u(b0, ·)− `)2

+ dx+

∫
Q(a0,b0)

ϑ2
n〈Q∇(u− `)+,∇(u− `)+〉 dt dx+ I1

= I2 + I3 + I4, (2.37)

where

I1 = 2

∫
Q(a0,b0)

ϑn〈Q∇(u− `)+,∇ϑn〉(u− `)+ dt dx,

I2 =

∫
Q(a0,b0)

fϑ2
n(u− `)+ dt dx,

I3 =

∫
Q(a0,b0)

ϑ2
n〈h,∇(u− `)+〉 dt dx,

I4 = 2

∫
Q(a0,b0)

ϑn(u− `)+〈h,∇ϑn〉 dt dx.
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Since |〈Q∇(u− `)+,∇ϑn〉| ≤ |Q
1
2∇(u− `)+||Q

1
2∇ϑn| by the Cauchy-Schwarz

inequality, we may use Hölder’s and Young’s inequality to get

|I1| ≤
1

2

∫
Q(a0,b0)

ϑ2
n〈Q∇(u− `)+,∇(u− `)+〉 dt dx

+ 2

∫
Q(a0,b0)

〈Q∇ϑn,∇ϑn〉(u− `)2
+ dt dx.

Furthermore, since the diffusion coefficients are bounded on Rd and we can

take ϑn such that |∇ϑn| ≤ c/n for some positive constant c independent of n,

we have

|I1| ≤
1

2

∫
Q(a0,b0)

ϑ2
n〈Q∇(u− `)+,∇(u− `)+〉 dt dx

+
2c2 ‖Q‖∞

n2

∫
Q(a0,b0)

(u− `)2
+ dt dx. (2.38)

We define A`(t) := {u(t, ·) ≥ `}, A` := {u ≥ `} and we consider |A`(t)|,
the d-dimensional Lebesgue measure of A`(t), and |A`|, the d+ 1-dimensional

Lebesgue measure of A`. After that, we employ Hölder’s inequality with ex-

ponents k
2
, 2 + 4

d
and s with 1

s
= 1

2
− 2

k
+ 1

d+2
to estimate |I2| as follows

|I2| ≤
∫
A`

|ϑnf |(u− `)+ϑn dt dx ≤ ‖ϑnf‖ k
2
‖(u− `)+‖2+ 4

d
|A`|

1
2
− 2
k

+ 1
d+2 .

We now invoke Lemma A.4.8 with p = q = 2 + 4
d

in order to derive that

‖(u− `)+‖2+ 4
d
≤ cS(‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2). (2.39)

Thus,

|I2| ≤ cS(‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2)|A`|
1
2
− 2
k

+ 1
d+2 , (2.40)

where we used that ‖f‖ k
2
≤ 1. Similarly, applying Hölder’s inequality with

exponents k, 2 and s with 1
s

= 1
2
− 1

k
, since ‖h‖k ≤ 1 and |∇ϑn| ≤ c/n, we find

that

|I3| ≤ ‖∇(u− `)+‖2 |A`|
1
2
− 1
k (2.41)

and

|I4| ≤
2c

n
‖(u− `)+‖2 |A`|

1
2
− 1
k . (2.42)

We note that, according to the monotone convergence theorem, (2.40) and

(2.41) imply that the integrals
∫
Q(a0,b0)

f(u − `)+ dt dx and
∫
Q(a0,b0)

〈h,∇(u −
`)+〉 dt dx exist. Moreover, by (2.42), we have I4 → 0 as n→∞. Consequently,

combining (2.37) with (2.38) and letting n→∞, it follows that

1

2

∫
Rd

(u(b0, ·)− `)2
+ dx+

1

2

∫
Q(a0,b0)

〈Q∇(u− `)+,∇(u− `)+〉 dt dx

≤
∫
Q(a0,b0)

|f |(u− `)+ dt dx+

∫
Q(a0,b0)

|h||∇(u− `)+| dt dx. (2.43)
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Since 〈Q∇(u − `)+,∇(u − `)+〉 ≥ η|∇(u − `)+|2 by the uniform ellipticity of

the matrix Q, one obtains from (2.40), (2.41) and (2.43) that

1

2

∫
Rd

(u(b0, ·)− `)2
+ dx+

η

2
‖∇(u− `)+‖2

2

≤cS(‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2)|A`|
1
2
− 2
k

+ 1
d+2 + ‖∇(u− `)+‖2 |A`|

1
2
− 1
k .

If we repeat the above proof for any b′0 ∈ (a0, b0) and we take the supremum

over such b′0 in the previous inequality, then we get

min(1, η)(‖(u− `)+‖2
∞,2 + ‖∇(u− `)+‖2

2)

≤2cS(‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2)|A`|
1
2
− 2
k

+ 1
d+2

+ 2 ‖∇(u− `)+‖2 |A`|
1
2
− 1
k . (2.44)

We observe that, since ` > 1 and ‖u‖2 ≤ 1, then

|A`| =
∫
{u≥`}

dt dx <

∫
{u≥`}

`2dt dx

≤
∫
{u≥`}

|u(t, x)|2dt dx ≤ ‖u‖2
2 ≤ 1. (2.45)

Therefore, |A`| ≤ 1. Considering also that k > d+2 implies 1
2
− 1

k
< 1

2
− 2

k
+ 1
d+2

,

by (2.44) we derive that

‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2 ≤ L|A`|
1
2
− 1
k , (2.46)

for some constant L. As a result, taking m > ` yields

(m− `)2|Am| =
∫
Am

(m− `)2 dt dx ≤
∫
Am

(u− `)2 dt dx ≤
∫
A`

(u− `)2 dt dx

≤
∥∥(u− `)2

+

∥∥
1+ 2

d

|A`|
2
d+2 = ‖(u− `)+‖2

2+ 4
d
|A`|

2
d+2 ,

where we used Hölder’s inequality with exponents 1 + 2
d

and d+2
2

. Taking into

account also (2.39) and (2.46), we find

(m− `)2|Am| ≤ c2
S(‖(u− `)+‖∞,2 + ‖∇(u− `)+‖2)2|A`|

2
d+2

≤ L2c2
S|A`|

1− 2
k

+ 2
d+2 =: νd|A`|1−

2
k

+ 2
d+2 . (2.47)

Now let ` ≥ 1 and consider `n = 2` − 2−n`, yn = |A`n| for n ∈ N and

α = 2
d+2
− 2

k
> 0. If we write (2.47) with m = `n+1 and ` = `n, we get

yn+1 ≤
4νd

`
2 4ny1+α

n .

Easy computations show that, if we choose ` = max(1, 21+ 1
α
√
νd), then, since

|A`| ≤ 1 as in (2.45), we have

y0 = |A`| ≤ 1 ≤
(

4νd

`
2

)− 1
α

4−
1
α2 .
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Consequently, we can apply Lemma 2.3.5 with B = 4 and C = 4νd/`
2

to infer

that |A`n| = yn → 0 as n → ∞. This implies that |A`| = 0 for ` ≥ 2`, i.e.

u ≤ 2` =: C. Replacing u with −u, by linearity we obtain that also −u ≤ C,

hence ‖u‖∞ ≤ C.

To end the proof, we remove the additional assumptions

‖u‖2 , ‖f‖ k
2
, ‖h‖k ≤ 1. We consider M = ‖u‖2 + ‖f‖ k

2
+ ‖h‖k and we

repeat the above argument with ũ = u/M , f̃ = f/M and h̃ = h/M , since

they verify formula (2.36). Then, from ‖ũ‖∞ ≤ C we gain ‖u‖∞ ≤ CM .

2.4 Kernel estimates in case of bounded diffu-

sion coefficients

In this section we establish pointwise upper bounds for the kernel p assum-

ing that qij and Dhqij are bounded on Rd for all i, j, h = 1, . . . , d. In the

next section they will be applied to a family of operators with bounded diffu-

sion coefficients that approximates A. To this purpose we make the following

assumptions.

Hypothesis 2.4.1. Fix T > 0, x ∈ Rd and 0 < a0 < a < b < b0 < T . Let

us consider two time dependent Lyapunov functions W1, W2 for the operator

L := ∂t + A with W1 ≤ W2 and a weight function 1 ≤ w ∈ C1,2((0, T ) × Rd)

such that

(a) the functions w−2∂tw and w−2∇w are bounded on Q(a0, b0);

(b) there exist k > d + 2 and constants c1, . . . , c5, possibly depending on the

interval (a0, b0), with

(i) w ≤ c1w
k−2
k W

2
k

1 , (ii) |Q∇w| ≤ c2w
k−1
k W

1
k

1 ,

(iii) |div(Q∇w)| ≤ c3w
k−2
k W

2
k

1 , (iv) |∂tw| ≤ c4w
k−2
k W

2
k

1 ,

(v) V
1
2 ≤ c5w

− 1
kW

1
k

2 ,

on [a0, b0]× Rd.

The following result can be deduced as in [30, Theorem 12.4] and [31,

Theorem 4.2].

Theorem 2.4.2. Assume Hypothesis 2.4.1, k > d + 2 and that qij, Dhqij are

bounded on Rd for i, j, h = 1, . . . , d. Then there is a constant C > 0 depending

only on d, k and η such that

w(t, y)p(t, x, y) ≤ C

[(
c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 + c
k
2
3 + c

k
2
4

)∫ b0

a0

ξW1(t, x) dt

+ ck5

∫ b0

a0

ξW2(t, x) dt

]
, (2.48)
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for all (t, y) ∈ (a, b)× Rd and any fixed x ∈ Rd.

Proof. Throughout the proof we consider p as a function of (t, y) ∈ (0, T )×Rd.

We first prove the theorem under the assumption that w along with its first

order partial derivatives are bounded. We split the proof in several steps.

Step 1. Let a0 < a1 < a < b < b1 < b0. We show that p ∈ L∞(Q(a1, b1)) ∩
Hs,1(Q(a1, b1)) for all s ∈ (1, k/2).

The boundedness of p in Q(a1, b1) follows from the fact that p is domi-

nated by the kernel associated to the operator A0 := div(Q∇) which satisfies

Gaussian estimates, since the diffusion coefficients are assumed to be bounded.

Hence, the idea is to apply Corollary 2.3.2 to infer that p ∈ Hs,1(Q(a1, b1))

for all s ∈ (1, k/2). For that, it suffices to prove that the quantity

Γ2(k/2, x, a0, b0) defined as in (2.19) is finite. On one hand, by Hypothesis

2.4.1, we have

Γ2(k/2, x, a0, b0)
k
2 =

∫
Q(a0,b0)

V
k
2 (y)p(t, x, y) dt dy

≤ ck5

∫
Q(a0,b0)

W2(t, y)

w(t, y)
p(t, x, y) dt dy

≤ ck5

∫
Q(a0,b0)

W2(t, y)p(t, x, y) dt dy = ck5

∫ b0

a0

ξW2(t, x) dt.

On the other hand, Proposition 1.6.3 implies that the right hand side is finite.

Then, we conclude that Γ2(k/2, x, a0, b0) <∞.

Step 2. Let ϑ ∈ C∞(R) be such that

• ϑ(t) = 1 for a ≤ t ≤ b,

• ϑ(t) = 0 for t ≤ a1, t ≥ b1,

• 0 ≤ ϑ ≤ 1, |ϑ′| ≤ 2
b1−b .

We put q := ϑ
k
2 p and we note that wq ∈ L∞(Q(a1, b1)) ∩ Hs,1(Q(a1, b1)) for

all s ∈ (1, k/2) because of Step 1 and since we are assuming that w and its

derivatives are bounded. Moreover, given ψ ∈ C1,2
c (Q(a1, b1)), we write

ϕ(t, y) := ϑ
k
2 (t)w(t, y)ψ(t, y).

Since ϕ ∈ C1,2
c (Q(a1, b1)), applying Lemma 1.3.3 we deduce that∫

Q(a1,b1)

(∂tϕ(t, y) + Aϕ(t, y))p(t, x, y) dt dy = 0.

After some computations, we derive from the previous identity that∫
Q(a1,b1)

wq(−∂tψ − div(Q∇ψ)) dt dy =

∫
Q(a1,b1)

2q〈Q∇w,∇ψ〉 dt dy

+

∫
Q(a1,b1)

[
q∂tw + q div(Q∇w)− qV w +

k

2
pwϑ

k−2
2 ϑ′

]
ψ dt dy.
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Integrating by parts the left hand side, we have∫
Q(a1,b1)

[
〈Q∇(wq),∇ψ〉+ ψ∂t(wq)

]
dt dy =

∫
Q(a1,b1)

2q〈Q∇w,∇ψ〉 dt dy

+

∫
Q(a1,b1)

[
q∂tw + q div(Q∇w)− qV w +

k

2
pwϑ

k−2
2 ϑ′

]
ψ dt dy.

We now apply Theorem 2.3.6 with

u :=wq,

f :=q∂tw + q div(Q∇w)− qV w +
k

2
pwϑ

k−2
2 ϑ′, (2.49)

h :=2qQ∇w. (2.50)

Then there is a constant C > 0 depending only on η, d and k (but not de-

pending on ‖Q‖∞) such that

‖u‖∞ ≤ C(‖u‖2 + ‖f‖ k
2

+ ‖h‖k),

where for p ∈ [1,∞) we denote by ‖f‖p the usual Lp-norm of the function

f : Q(a1, b1) → R. In the following we consider C as a positive constant that

can vary from line to line, but it will always depend only on η, d and k.

Replacing the expressions of u, f and h in the previous inequality we obtain

‖wq‖∞ ≤ C

(
‖wq‖2 + ‖q∂tw‖ k

2
+ ‖q div(Q∇w)‖ k

2
+ ‖qV w‖ k

2

+
k

b1 − b

∥∥∥pwϑ k−2
2

∥∥∥
k
2

+ ‖qQ∇w‖k
)
. (2.51)

Step 3. We make use of Hypothesis 2.4.1 to estimate the terms in the right

hand side of (2.51) in order to find an estimate for ‖wq‖∞. We set

Mi :=

∫ b1

a1

ξWi
(t, x) dt, i = 1, 2.

First of all, we apply Hypothesis 2.4.1 to estimate ‖wq‖2:

‖wq‖2
2 =

∫
Q(a1,b1)

(wq)2 dt dy ≤ ‖wq‖∞
∫
Q(a1,b1)

wq dt dy

≤ c
k
2
1 ‖wq‖∞

∫
Q(a1,b1)

W1q dt dy ≤ c
k
2
1 ‖wq‖∞M1.

Similarly, we estimate ‖q∂tw‖ k
2

and ‖q div(Q∇w)‖ k
2

as follows

‖q∂tw‖
k
2
k
2

=

∫
Q(a1,b1)

|∂tw|
k
2 q

k
2 dt dy ≤ c

k
2
4

∫
Q(a1,b1)

w
k−2
2 W1q

k
2 dt dy

≤ c
k
2
4 ‖wq‖

k−2
2
∞

∫
Q(a1,b1)

W1q dt dy ≤ c
k
2
4 ‖wq‖

k−2
2
∞ M1,

‖q div(Q∇w)‖
k
2
k
2

=

∫
Q(a1,b1)

|div(Q∇w)|
k
2 q

k
2 dt dy ≤ c

k
2
3

∫
Q(a1,b1)

w
k−2
2 W1q

k
2 dt dy

≤ c
k
2
3 ‖wq‖

k−2
2
∞ M1.
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The same can be done for the rest of the terms in the right hand side of (2.51)

applying Hypothesis 2.4.1. To sum up, we find

‖wq‖2 ≤ c
k
4
1 ‖wq‖

1
2
∞M

1
2

1 , ‖q∂tw‖ k
2
≤ c4 ‖wq‖

k−2
k
∞ M

2
k

1 ,

‖q div(Q∇w)‖ k
2
≤ c3 ‖wq‖

k−2
k
∞ M

2
k

1 , ‖qV w‖ k
2
≤ c2

5 ‖wq‖
k−2
k
∞ M

2
k

2 ,

k

b1 − b

∥∥∥pwϑ k−2
2

∥∥∥
k
2

≤ k

b1 − b
c1 ‖wq‖

k−2
k
∞ M

2
k

1 , ‖qQ∇w‖k ≤ c2 ‖wq‖
k−1
k
∞ M

1
k

1 .

Putting all together in (2.51), we gain the following inequality:

‖wq‖∞ ≤Cc
k
4
1 M

1
2

1 ‖wq‖
1
2
∞ + Cc2M

1
k

1 ‖wq‖
k−1
k
∞

+ C

[(
c1

b1 − b
+ c3 + c4

)
M

2
k

1 + c2
5M

2
k

2

]
‖wq‖

k−2
k
∞ .

If we set

X := ‖wq‖
1
k
∞ , α := Cc

k
4
1 M

1
2

1 ,

β := Cc2M
1
k

1 , γ := C

[(
c1

b1 − b
+ c3 + c4

)
M

2
k

1 + c2
5M

2
k

2

]
, (2.52)

then we obtain

Xk ≤ αX
k
2 + βXk−1 + γXk−2.

If we apply Young’s inequality αX
k
2 ≤ 1

4
Xk + α2 we get

Xk ≤ 4

3
α2 +

4

3
βXk−1 +

4

3
γXk−2. (2.53)

We now prove that it leads to

X ≤ 4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

. (2.54)

We consider the function

f(r) :=rk − 4

3
βrk−1 − 4

3
γrk−2 − 4

3
α2 = rk−2

(
r2 − 4

3
βr − 4

3
γ

)
− 4

3
α2

= : rk−2g(r)− 4

3
α2.

First, we show that f is increasing in
(

4
3
β +

√
4
3
γ + (4

3
α2)

1
k ,∞

)
. This can be

seen by computing the first derivative:

f ′(r) = (k − 2)rk−3g(r) + rk−2g′(r).

Since the function g in positive and increasing in
(

4
3
β +

√
4
3
γ + (4

3
α2)

1
k ,∞

)
,

it follows that f ′(r) ≥ 0 in the given interval, so f is increasing.
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Second, we have that

f

(
4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

)

=

(
4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

)k−2
(4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

)2

− 4

3
β

(
4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

)
− 4

3
γ

]
− 4

3
α2

=

(
4

3
β +

√
4

3
γ +

(
4

3
α2

) 1
k

)k−2 [(
4

3
α2

) 2
k

+
8
√

3

9

√
γβ

+
4
√

3

3

(
4

3

) 1
k

α
2
k

(√
3

3
β +
√
γ

)]
− 4

3
α2

>

(
4

3
α2

) k−2
k
(

4

3
α2

) 2
k

− 4

3
α2 = 0. (2.55)

On one hand, from the previous observations we deduce that f(r) > 0 if

r > 4
3
β +

√
4
3
γ + (4

3
α2)

1
k . On the other hand, by (2.53), f(X) ≤ 0. Thus, we

conclude that (2.54) holds true. Consequently, there exists a positive constant

K1 such that

‖wq‖∞ ≤ K1

(
α2 + βk + γ

k
2

)
.

We get the desired estimate (2.48) by plugging in the previous inequality the

definition of α, β, γ and letting a1 ↓ a0 and b1 ↑ b0.

Step 4. We now prove the theorem also if w is not necessary bounded. In

such case we set

wε :=
w

1 + εw
.

Since

Diwε = (1 + εw)−2Diw

for all i, j = 1, . . . , d, then by Hypothesis 2.4.1(a) it follows that wε is bounded

together with its first order partial derivatives. Moreover, making use of Hy-

pothesis 2.4.1(b), we have

wε ≤ w ≤ c
k
2
1 W1,

|Q∇wε| = (1 + εw)−2|Q∇w| ≤ c2(1 + εw)−2w
k−1
k W

1
k

1 ≤ c2w
k−1
k

ε W
1
k

1 ,

|div(Q∇wε)| ≤ (1 + εw)−2|div(Q∇w)|+ 2ε(1 + εw)−3|Q∇w||∇w|

≤ (2η−1c2
2 + c3)w

k−2
k

ε W
2
k

1 ,

|∂twε| = (1 + εw)−2|∂tw| ≤ c4w
k−2
k

ε W
2
k

1 .
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Thus, wε satisfies Hypothesis 2.4.1 with the same constants c1, c2, c4, c5 and

the constant 2η−1c2
2 + c3 instead of c3. We repeat Steps 1-3 for wε and then,

letting ε→ 0, we gain estimate (2.48).

Notice that the assumption of bounded diffusion coefficients was crucial to

apply Theorem 2.3.6. The fact that the constant C does not depend on ‖Q‖∞
will allow us to extend this result to the general case.

2.5 Kernel estimates for general diffusion co-

efficients

In this section we bring all together in order to finally prove the second main

result of this chapter: the pointwise upper bound of the kernel p.

In view of applying the results from the previous section, the first step is

to approximate the operator A as in Chapter 1 with the family of operators

An with bounded diffusion coefficients defined by

An = div(Qn∇)− V,

where the matrix Qn := (q
(n)
ij ) is defined by (1.32). Moreover, we take the

function ϕn in (1.32) as in (1.31), where the function W1 is the time dependent

Lyapunov function from Hypothesis 2.4.1 and the constant t0 ∈ (0, T ) will be

chosen later on.

It follows by Lemma 1.6.4 that An satisfies Hypothesis 2.0.1. Then, for

every n ∈ N, the semigroup generated by An in Cb(Rd) is given by a kernel

pn(t, x, y).

In order to show further properties about the operators An, we make the

following assumptions.

Hypothesis 2.5.1. Fix T > 0, x ∈ Rd and 0 < a0 < a < b < b0 < T . Let

us consider two time dependent Lyapunov functions W1, W2 for the operators

∂t+A and ∂t+η∆−V with W1 ≤ W2 and |∇W1|, |∇W2| bounded on (0, T )×BR

for all R > 0 and a weight function 1 ≤ w ∈ C1,2((0, T )× Rd) such that

(a) on [a0, b0]× Rd we have

|∆w| ≤ c6w
k−2
k W

2
k

1 ;

(b) there is t0 ∈ (0, T ) such that

|Q∇W1(t0, ·)| ≤ c7W1(t0, ·)w−
1
kW

1
k

2 ;

(c) there are c0 > 0 and σ ∈ (0, 1) such that

W2 ≤ c0Z
1−σ;
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(d) there is a nonnegative function f such that

∇Z(x) = f(x)∇W1(t0, x),

for all x ∈ Rd.

We observe thatW1 andW2 are time dependent Lyapunov functions for ∂t+

An by Lemma 1.6.4. We now prove that if the operator A satisfies Hypothesis

2.4.1, then the same is true for the operators An assuming further Hypothesis

2.5.1.

Lemma 2.5.2. Assume that the operator A satisfies Hypotheses 2.4.1(b) and

2.5.1(a)-(b). Then the operator An satisfies Hypothesis 2.4.1(b) with the same

constants c1, c4, c5, with c2 being replaced by 2c2 and with

|div(Qn∇w)| ≤ (c3 + ηc6)w
k−2
k W

2
k

1 + 4η−1c2c7w
k−2
k W

2
k

2 (2.56)

instead of (iii).

Proof. The constants c1, c4 and c5 are the same because the corresponding

inequalities do not depend on the diffusion coefficients. Let us note that Hy-

pothesis 2.4.1(b)-(ii) implies that

|∇w| =
∣∣Q−1Q∇w

∣∣ ≤ η−1c2w
k−1
k W

1
k

1 .

It follows that An satisfies Hypothesis 2.4.1(b) with 2c2 instead of c2:

|Qn∇w| = |ϕnQ∇w + (1− ϕn)η∇w| ≤ |Q∇w|+ η |∇w| ≤ 2c2w
k−1
k W

1
k

1 .

In order to show the last estimate we observe that, for (t, y) ∈ [a0, b0]×Rd, we

have

div(Qn∇w(t, y))

=ϕn(y)div(Q∇w(t, y)) +
ϕ′(W1(t0, y)/n)

n
[Q∇W1(t0, y) · ∇w(t, y)

− η∇W1(t0, y) · ∇w(t, y)] + η(1− ϕn(y))∆w(t, y).

Moreover, since we took the function ϕ such that |tϕ′(t)| ≤ 2 as in Section 1.6,

we obtain that∣∣∣∣ϕ′(W1(t0, y)/n)

n
[Q∇W1(t0, y) · ∇w(t, y)− η∇W1(t0, y) · ∇w(t, y)]

∣∣∣∣
≤ 2

W1(t0, y)
(|Q∇W1(t0, y)| |∇w(t, y)|+ η |∇W1(t0, y)| |∇w(t, y)|).

We observe that W1(t0, y) 6= 0 because, by Hypothesis 2.4.1(b)-(i), we have

that 1 ≤ w(t0, y) ≤ c
k/2
1 W1(t0, y). Now, applying Hypotheses 2.4.1(b) and

2.5.1(a)-(b) for the operator A, we gain inequality (2.56).
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As shown in the previous section, we can now get estimates for the kernels

pn.

Lemma 2.5.3. Assume that the operator A satisfies Hypotheses 2.4.1 and

2.5.1. For i = 1, 2, we set

ξWi,n(t, x) :=

∫
Rd
pn(t, x, y)Wi(t, y) dy.

Then for any n ∈ N there is a constant C > 0 depending only on d, k and η

such that

w(t, y)pn(t, x, y) ≤ C

[(
c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 + c
k
2
3 + c

k
2
4 + c

k
2
6

)∫ b0

a0

ξW1,n(t, x) dt

+ (ck5 + c
k
2
2 c

k
2
7 )

∫ b0

a0

ξW2,n(t, x) dt

]
, (2.57)

for all (t, y) ∈ (a, b)× Rd and fixed x ∈ Rd.

Proof. Since the operators An have bounded diffusion coefficients and satisfy

Hypotheses 2.0.1 and 2.4.1 by Lemmas 1.6.4 and 2.5.2, we can apply Theorem

2.4.2 to An. We note that we replaced inequality (iii) in Hypothesis 2.4.1(b)

with (2.56), so in the proof of Theorem 2.4.2 (Step 3) we take

γ := C

[(
c1

b1 − b
+ c3 + ηc6 + c4

)
M

2
k

1 + (c2
5 + 4η−1c2c7)M

2
k

2

]
.

Then, (2.57) holds true.

We now prove our main result by letting n→∞ in (2.57) in order to obtain

an upper bound for the transition kernel p even if the diffusion coefficients are

unbounded.

Theorem 2.5.4. Assume that the operator A satisfies Hypotheses 2.4.1 and

2.5.1. Then there is a constant C > 0 depending only on d, k and η such that

w(t, y)p(t, x, y) ≤ C

[(
c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 + c
k
2
3 + c

k
2
4 + c

k
2
6

)∫ b0

a0

ξW1(t, x) dt

+ (ck5 + c
k
2
2 c

k
2
7 )

∫ b0

a0

ξW2(t, x) dt

]
, (2.58)

for all (t, y) ∈ (a, b)× Rd and fixed x ∈ Rd.

Proof. Let (t, y) ∈ (a, b) × Rd and x ∈ Rd. First, by Lemma 1.6.6, we have

that

pn(t, x, y)→ p(t, x, y),
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as n → ∞ for all x ∈ Rd. Second, thanks to Hypothesis 2.5.1(c), we apply

Lemma 1.6.7 to infer that

ξWi,n(·, x)→ ξWi
(·, x),

locally uniformly in (0, T ) as n → ∞ for i = 1, 2. Then, inequality (2.58)

follows by letting n → ∞ in (2.57) and considering that the constant C in

the right hand side of the latter inequality does not depend on the diffusion

coefficients q
(n)
ij .

2.6 Some applications

In this section we aim to show how the results of the previous sections work

in some concrete examples. In particular, we apply Theorem 2.5.4 to obtain

explicit kernel estimates in case of operators with polynomial or exponential

diffusion coefficients and potential terms.

2.6.1 Kernel estimates in case of polynomial coefficients

We consider the operator

A = div((1 + |x|m∗ )∇)− |x|s,

with s > |m− 2| and m > 0. Moreover we set

w(t, x) = eεt
α|x|β∗ and Wj(t, x) = eεjt

α|x|β∗ ,

where j = 1, 2, β = s−m+2
2

, 0 < ε < ε1 < ε2 <
1
β

and α > β
β+m−2

.

Theorem 2.6.1. Let p be the integral kernel associated with the operator A

with Q(x) = (1 + |x|m∗ )I and V (x) = |x|s, where s > |m− 2| and m > 0. Then

p(t, x, y) ≤ Ct1−
α(2m∨s)
s−m+2

ke−
ε
2
tα|x|

s−m+2
2

∗ e−
ε
2
tα|y|

s−m+2
2

∗ ,

for k > d+ 2 and any t ∈ (0, 1), x, y ∈ Rd, where C is a positive constant.

Proof. Step 1. We apply Proposition 2.2.1 to verify that the operator A satis-

fies Hypothesis 2.0.1 with

Z(x) = eε2|x|
β
∗

and that W1 and W2 are time dependent Lyapunov functions for the operators

L := ∂t +A and ∂t + η∆− V with respect to Z. Clearly, (2.7) holds true with

cq = 1. Since s > |m− 2|, we have β > (2−m) ∨ 0. It remains to check (2.8)

and (2.9). Let |x| ≥ 1 and set Gj =
∑d

i=1Diqij = m|x|m−2xj. Then

|x|1−β−m
(
G · x
|x|
− V

εjβ|x|β−1

)
= |x|1−β−m

(
m|x|m−1 − |x|s

εjβ|x|β−1

)
= m|x|−β − 1

εjβ
.
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If |x| is large enough, for example |x| ≥ K with

K >

(
m

1
εjβ
− 1

) 1
β

,

then we get

|x|1−β−m
(
G · x
|x|
− V

εjβ|x|β−1

)
= m|x|−β − 1

εjβ
≤ mK−β − 1

εjβ
< −1,

where we have used that εj <
1
β
. Hence, (2.8) is satisfied if we choose Λ := 1.

Moreover, we have

lim
|x|→∞

V (x) |x|2−2β−m = lim
|x|→∞

|x|2−2β−m+s = 1.

Consequently, (2.9) holds true for any c < 1.

Step 2. We now show that A satisfies Hypothesis 2.4.1. Fix T = 1, x ∈ Rd,

0 < a0 < a < b < b0 < T and k > d + 2. Hypothesis 2.4.1(a) obviously

holds true. Let (t, y) ∈ [a0, b0] × Rd. We assume that |y| ≥ 1; otherwise, in

a neighborhood of the origin, all the quantities we are going to estimate are

certainly bounded. First, since ε < ε1, we have that

w ≤ c1w
k−2
k W

2
k

1 ,

with c1 = 1. Second, an easy computation shows that

|Q(y)∇w(t, y)|
w(t, y)

k−1
k W1(t, y)

1
k

= εβtα|y|β−1(1 + |y|m)e−
1
k

(ε1−ε)tα|y|β

≤ 2εβtα|y|β+m−1e−
1
k

(ε1−ε)tα|y|β . (2.59)

We make use of the following remark: since the function t 7→ tpe−t on (0,∞)

attains its maximum at the point t = p, then for τ, γ, z > 0 we have

zγe−τz
β

= τ−
γ
β (τzβ)

γ
β e−τz

β ≤ τ−
γ
β

(
γ

β

) γ
β

e−
γ
β =: C(γ, β)τ−

γ
β . (2.60)

Applying (2.60) to the inequality (2.59) with z = |y|, τ = 1
k
(ε1 − ε)tα, β = β

and γ = β +m− 1 > 0 yields

|Q(y)∇w(t, y)|
w(t, y)

k−1
k W1(t, y)

1
k

≤ 2C(β +m− 1, β)εβtα
[

1

k
(ε1 − ε)tα

]−β+m−1
β

≤ ct−
α(m−1)

β ≤ ca
−αm

β

0 .

Thus, we choose c2 = ca
−αm

β

0 , where c is a universal constant. Similarly,

|div(Q(y)∇w(t, y))|
w(t, y)

k−2
k W1(t, y)

2
k

≤m|y|
m−1|∇w(t, y)|+ (1 + |y|m)|∆w|

w(t, y)
k−2
k W1(t, y)

2
k

≤εβtα
[
m|y|β+m−2 + 2((β − 2)+ + d)|y|β+m−2

+ 2εβtα|y|2β+m−2
]
e−

2
k

(ε1−ε)tα|y|β .
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As a result, applying (2.60) to each term, we find that

|div(Q(y)∇w(t, y))|
w(t, y)

k−2
k W1(t, y)

2
k

≤C(β,m)εβtα

{
[m+ 2((β − 2)+ + d)]

[
2

k
(ε1 − ε)tα

]−β+m−2
β

+2εβtα
[

2

k
(ε1 − ε)tα

]− 2β+m−2
β

}
≤ ct−

α(m−2)
β ≤ ca

−αm
β

0 .

Therefore, we pick c3 = ca
−αm

β

0 . In the same way, we have

|∂tw(t, y)|
w(t, y)

k−2
k W1(t, y)

2
k

= εαtα−1|y|βe−
2
k

(ε1−ε)tα|y|β

≤ C(β)εαtα−1

[
2

k
(ε1 − ε)tα

]−1

≤ ca−1
0 .

Then, we take c4 = ca−1
0 . Finally,

V (y)
1
2

w(t, y)−
1
kW2(t, y)

1
k

= |y|
s
2 e−

1
k

(ε2−ε)tα|y|β ≤ C(s, β)

[
1

k
(ε2 − ε)tα

]−s
2β

≤ ca
−αs

2β

0 ,

so we set c5 = ca
−αs

2β

0 .

Step 3. We check Hypothesis 2.5.1 assuming as above that |y| ≥ 1. First,

we have

|∆w(t, y)|
w(t, y)

k−2
k W1(t, y)

2
k

= εβtα
[
(β − 2 + d)|y|β−2 + εβtα|y|2β−2

]
e−

2
k

(ε1−ε)tα|y|β .

Recalling that |y| ≥ 1 and applying (2.60) yields

|∆w(t, y)|
w(t, y)

k−2
k W1(t, y)

2
k

≤εβtα
[
((β − 2)+ + d)|y|β + εβtα|y|2β

]
e−

2
k

(ε1−ε)tα|y|β

≤C(β)εβtα

{
((β − 2)+ + d)

[
2

k
(ε1 − ε)tα

]−1

+εβtα
[

2

k
(ε1 − ε)tα

]−2
}
≤ c.

Thus, Hypothesis 2.5.1(a) is verified by taking c6 = c. To choose the constant

c7, we let t0 ∈ (0, t). Then, we get

|Q(y)∇W1(t0, y)|
w(t, y)−1/kW1(t0, y)W2(t, y)1/k

=
ε1βt

α
0 |y|β−1(1 + |y|m)W1(t0, y)

w(t, y)−1/kW1(t0, y)W2(t, y)1/k

≤ 2ε1βt
α|y|β+m−1e−

1
k

(ε2−ε)tα|y|β

≤ 2C(β,m)ε1βt
α

[
1

k
(ε2 − ε)tα

]−β+m−1
β

≤ ct−
α(m−1)

β ≤ ca
−αm

β

0 .
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Consequently, we set c7 = ca
−αm

β

0 in Hypothesis 2.5.1(b). We observe that

Hypothesis 2.5.1(c) is clearly satisfied. Finally, we have

∇Z(x) =
ε2

ε1tα0
e(ε2−ε1tα0 )|x|β∗∇W1(t0, x),

for all x ∈ Rd, hence Hypothesis 2.5.1(d) holds.

To sum up, the constants c1, . . . , c7 are the following:

c1 = 1, c2 = c3 = c7 = ca
−αm

β

0 , c4 = ca−1
0 ,

c5 = ca
−αs

2β

0 , c6 = c.

Step 4. We are now ready to apply Theorem 2.5.4. Thus, there is a positive

constant C > 0 depending only on d and k such that

w(t, y)p(t, x, y) ≤ C

[(
c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 + c
k
2
3 + c

k
2
4 + c

k
2
6

)∫ b0

a0

ξW1(t, x) dt

+ (ck5 + c
k
2
2 c

k
2
7 )

∫ b0

a0

ξW2(t, x) dt

]
, (2.61)

for all (t, y) ∈ (a, b) × Rd and fixed x ∈ Rd. We set a0 = t/4, a = t/2, b =

(t + 1)/2 and b0 = (t + 3)/4. Moreover, by Proposition 2.2.1, there are two

constants H1 and H2 not depending on a0 and b0 such that ξWj
(t, x) ≤ Hj for

all (t, x) ∈ [0, 1]× Rd, so∫ b0

a0

ξWj
(t, x) dt ≤ Hj(b0 − a0) =

3t

4
Hj.

If we now replace in (2.61) the values of the constants c1, . . . , c7 determined in

Step 3, we use the previous inequality and we consider C as a positive constant

that can vary from line to line, we obtain

w(t, y)p(t, x, y) ≤ C
[
t1−

αm
β
k + t1−

k
2 + t1−

αs
2β
k
]
. (2.62)

We note that, since α > β
β+m−2

, s > |m− 2| and β = s−m+2
2

, it follows that

α(m ∨ s
2
)

β
>

m ∨ s
2

β +m− 2
>

s

2(β +m− 2)
=

s

s+m− 2
>

1

2
.

Hence,

t1−
k
2 < t1−

α(m∨ s2 )

β
k.

As a result, by (2.62), we find that

w(t, y)p(t, x, y) ≤ Ct1−
α(m∨ s2 )k

β = Ct1−
α(2m∨s)k
s−m+2 .
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Writing the expression of the weight function w we gain the following inequal-

ity:

p(t, x, y) ≤ Ct1−
α(2m∨s)
s−m+2

ke−εt
α|y|

s−m+2
2

∗ , (2.63)

for k > d+ 2 and for any t ∈ (0, 1), x, y ∈ Rd.

Step 5. Since A∗ = A, applying (2.63) to p∗(t, y, x), we derive that

p∗(t, y, x) ≤ Ct1−
α(2m∨s)
s−m+2

ke−εt
α|x|

s−m+2
2

∗ ,

for all t ∈ (0, 1) and x, y ∈ Rd. Combining this with (2.63) and considering

that p∗(t, y, x) = p(t, x, y) yields

p(t, x, y) = p(t, x, y)1/2p(t, x, y)1/2 ≤ Ct1−
α(2m∨s)
s−m+2

ke−
ε
2
tα|x|

s−m+2
2

∗ e−
ε
2
tα|y|

s−m+2
2

∗ ,

for k > d+ 2 and for any t ∈ (0, 1), x, y ∈ Rd.

2.6.2 Kernel estimates in case of exponential coeffi-

cients

Let A be the operator

A = div(e|x|
m

∇)− e|x|
s

,

with 2 ≤ m < s. Set

w(t, x) = exp

(
εtα
∫ |x|∗

0

e
τβ

2 dτ

)
and Wj(t, x) = exp

(
εjt

α

∫ |x|∗
0

e
τβ

2 dτ

)
,

where j = 1, 2, m
2

+ 1 ≤ β ≤ m, 0 < ε < ε1 < ε2 and α > 2β+m−2
2m

.

Theorem 2.6.2. Let p be the integral kernel associated with the operator A

with Q(x) = e|x|
m

I and V (x) = e|x|
s

, where 2 ≤ m < s. Then

p(t, x, y) ≤Ct1−
k
2 exp(Ct−α) exp

(
−ε

2
tα
∫ |x|∗

0

e
τβ

2 dτ

)

× exp

(
−ε

2
tα
∫ |y|∗

0

e
τβ

2 dτ

)
,

for k > d+ 2 and any t ∈ (0, 1), x, y ∈ Rd, where C is a positive constant.

Proof. Step 1. We check conditions (2.14), (2.15) and (2.16) to apply Propo-

sition 2.2.3 and show that W1 and W2 are time dependent Lyapunov functions

for L = ∂t +A and ∂t + η∆− V . It is clear that (2.14) holds true with ce = 1.

Moreover, since s > m, it follows that

lim
|x|→∞

V (x) |x|1−β−m e−|x|
β−|x|m = lim

|x|→∞
|x|1−β−m e|x|

s−|x|β−|x|m = +∞
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and

lim sup
|x|→∞

|x|1−β−me−
|x|β
2
−|x|m

(
G · x
|x|
− V

εe
|x|β
2

)

= lim sup
|x|→∞

(
m |x|−β e−

|x|β
2 − 1

ε
|x|1−β−me|x|

s−|x|β−|x|m
)

= −∞.

Consequently, there exist constants c,Λ > 0 such that (2.15) and (2.16) hold

true. By Proposition 2.2.3 we conclude that W1 and W2 are time dependent

Lyapunov functions for L = ∂t +A and ∂t + η∆−V . In addition, we also note

that Hypothesis 2.0.1 is verified with

Z(x) = exp

(
ε2

∫ |x|∗
0

e
τβ

2 dτ

)
.

Step 2. We prove that A satisfies all the assumptions of Theorem 2.5.4. Fix

T = 1, x ∈ Rd, 0 < a0 < a < b < b0 < T and k > d+2. Let (t, y) ∈ [a0, b0]×Rd.

If |y| ≤ 1, by continuity all the functions we are estimating are bounded by

a constant. Thus, let |y| ≥ 1. Since ε < ε1, we have that w ≤ W1. Hence,

inequality

w ≤ c1w
k−2
k W

2
k

1

holds true with c1 = 1. After, we observe that∫ |y|
0

e
τβ

2 dτ ≥
∫ |y|
|y|−1

e
τβ

2 dτ ≥ e
(|y|−1)β

2 , (2.64)

which leads to

|Q(y)∇w(t, y)|
w(t, y)

k−1
k W1(t, y)

1
k

= εtα exp

(
|y|β

2
+ |y|m − (ε1 − ε)

k
tα
∫ |y|

0

e
τβ

2 dτ

)

≤ εtα exp

(
|y|β

2
+ |y|m − (ε1 − ε)

k
tαe

(|y|−1)β

2

)
. (2.65)

We now consider the function

f(r) :=
rβ

2
+ rm − ε̃tαe

(r−1)β

2 ,

where r ≥ 1 and ε̃ := (ε1 − ε)/k. Considering that there exists a universal

constant c > 0 (that can vary from line to line) depending on β and m such

that
rβ

2
+ rm ≤ ce

(r−1)β

4 ,

for all r ≥ 1, we get

f(r) ≤ ce
(r−1)β

4 − ε̃tαe
(r−1)β

2 .
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If we set z = e
(r−1)β

2 and we compute the maximum of the function h(z) =

c
√
z − ε̃tαz, then we obtain that

f(r) ≤ c2

4ε̃
t−α.

As a result, by (2.65) we derive

|Q(y)∇w(t, y)|
w(t, y)

k−1
k W1(t, y)

1
k

≤ εtα exp

(
c2

4ε̃
t−α
)
≤ c exp(ca−α0 ).

Then, we set c2 := c exp(ca−α0 ). In a similar way, we have that

|div(Q(y)∇w(t, y))|
w(t, y)

k−2
k W1(t, y)

2
k

≤

[
(d− 1)εtα

1

|y|
e
|y|β
2

+|y|m +mεtα |y|m−1 e
|y|β
2

+|y|m

+
β

2
εtα |y|β−1 e

|y|β
2

+|y|m + ε2t2αe|y|
β+|y|m

]

× exp

(
−2(ε1 − ε)

k
tα
∫ |y|

0

e
τβ

2 dτ

)
.

Using again (2.64), we deduce

|div(Q(y)∇w(t, y))|
w(t, y)

k−2
k W1(t, y)

2
k

≤(d− 1)εtα exp

(
|y|β

2
+ |y|m − 2(ε1 − ε)

k
tαe

(|y|−1)β

2

)

+mεtα exp

(
log |y|m−1 +

|y|β

2
+ |y|m − 2(ε1 − ε)

k
tαe

(|y|−1)β

2

)

+
β

2
εtα exp

(
log |y|β−1 +

|y|β

2
+ |y|m − 2(ε1 − ε)

k
tαe

(|y|−1)β

2

)

+ ε2t2α exp

(
|y|β + |y|m − 2(ε1 − ε)

k
tαe

(|y|−1)β

2

)
.

Proceeding as above yields

|div(Q(y)∇w(t, y))|
w(t, y)

k−2
k W1(t, y)

2
k

≤
(

(d− 1) +m+
β

2

)
εtα exp

(
c2

8ε̃
t−α
)

+ ε2t2α exp

(
c2

8ε̃
t−α
)
≤ c exp(ca−α0 ).

Thus, we choose c3 = c exp(ca−α0 ). Concerning c4, we have

|∂tw(t, y)|
w(t, y)

k−2
k W1(t, y)

2
k

= εαtα−1

(∫ |y|
0

e
τβ

2 dτ

)
exp

(
−2(ε1 − ε)

k
tα
∫ |y|

0

e
τβ

2 dτ

)
≤ ca−1

0 .
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We take c4 = ca−1
0 . Repeating the same procedure for the remaining estimates,

we get c5 = c6 = c7 = c2. Finally, we have

∇Z(x) =
ε2

ε1tα0
exp

(
(ε2 − ε1t

α
0 )

∫ |x|∗
0

e
τβ

2 dτ

)
∇W1(t0, x),

for all x ∈ Rd, hence Hypothesis 2.5.1(d) holds.

Step 3. As in the proof of Theorem 2.6.1, we choose a0 = t/4, a = t/2, b =

(t + 1)/2, b0 = (t + 3)/4 and we notice that, by Proposition 2.2.3, there are

two constants H1 and H2 not depending on a0 and b0 such that∫ b0

a0

ξWj
(t, x) dt ≤ Hj(b0 − a0) =

3t

4
Hj.

Applying Theorem 2.5.4, we infer that there exists a positive constant C > 0

depending only on d, k and η such that (2.58) holds. From that, taking into

account the values of the constants c1, . . . , c7 found in Step 2, keeping track

only of powers of t and absorbing all other constants into the constant C, we

get

w(t, y)p(t, x, y) ≤ C
[
t exp(ct−α) + t1−

k
2 + t1+ k

2

]
≤ Ct1−

k
2 exp(Ct−α).

Hence,

p(t, x, y) ≤ Ct1−
k
2 exp(Ct−α) exp

(
−εtα

∫ |y|∗
0

e
τβ

2 dτ

)
, (2.66)

for k > d + 2 and for any t ∈ (0, 1), x, y ∈ Rd, where C depends only on

d, k, η, β and m.

Step 4. We conclude the proof by applying inequality (2.66) to p∗(t, y, x).

This is possible because A∗ = A. Then we obtain

p∗(t, y, x) ≤ Ct1−
k
2 exp(Ct−α) exp

(
−εtα

∫ |x|∗
0

e
τβ

2 dτ

)
,

for all t ∈ (0, 1) and x, y ∈ Rd. As a consequence, since p∗(t, y, x) = p(t, x, y),

we get the desired inequality as follows:

p(t, x, y) = p(t, x, y)
1
2p∗(t, y, x)

1
2 ≤Ct1−

k
2 exp(Ct−α) exp

(
−ε

2
tα
∫ |x|∗

0

e
τβ

2 dτ

)

× exp

(
−ε

2
tα
∫ |y|∗

0

e
τβ

2 dτ

)
,

for all t ∈ (0, 1) and x, y ∈ Rd.
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2.7 Spectral properties and eigenfunctions es-

timates

In this section we study some spectral properties of Amin with either polynomial

or exponential coefficients. In particular we prove the following result.

Theorem 2.7.1. If Q(x) = (1 + |x|m∗ )I and V (x) = |x|s with s > |m− 2| and

m > 0 or Q(x) = e|x|
m

I and V (x) = e|x|
s

, where 2 ≤ m < s, then Tp(t) is

compact for all t > 0 and p ∈ (1,∞). Moreover the spectrum of the generator

of Tp(·) is independent of p for p ∈ (1,∞) and consists of a sequence of negative

real eigenvalues which accumulates at −∞.

Proof. By [18, Theorem 1.6.3], it suffices to prove that T2(t) is compact for all

t > 0. To this purpose let us assume that Q(x) = (1 + |x|m∗ )I and V (x) = |x|s
with s > m− 2 and m > 2 or Q(x) = e|x|

m

I and V (x) = e|x|
s

, where 2 ≤ m <

s. Applying [18, Corollary 1.6.7], one deduces that the L2-realization A0 of

A0 := div(Q∇) has compact resolvent and thus the semigroup S(t) generated

by A0 in L2(Rd) is compact for all t > 0, cf. [19, Theorem 4.29]. Since V ≥ 0

we have 0 ≤ T2(t) ≤ S(t) for all t ≥ 0. Applying the Aliprantis-Burkinshaw

theorem [2, Theorem 5.15] we obtain the compactness of T2(t) for all t > 0.

Let us now show the compactness of T2(t) in the case where Q(x) = (1 +

|x|m∗ )I and V (x) = |x|s with s > |m−2| and 0 < m ≤ 2. The operator Amin can

be considered as the sum of the operator Ã2u := (1 + |x|m∗ )∆u− |x|su and the

operator Bu := ∇(1 + |x|m∗ ) · ∇u. From [37, Proposition 2.3] we know that B

is a small perturbation of Ã2. Hence, R(λ,Amin) = R(λ, Ã2)(I−BR(λ, Ã2))−1

for all λ ∈ ρ(Ã2). Moreover, by [37, Proposition 2.10], we know that Ã2 has

compact resolvent and hence Amin has compact resolvent too. Since T2(·) is

an analytic semigroup, we deduce that T2(t) is compact for all t > 0.

Let us now estimate the eigenfunctions of Amin. To this purpose let us note

first that, by the semigroup law and the symmetry of p(t, ·, ·) for any t > 0,

we have

p(t+ s, x, y) =

∫
Rd
p(t, x, z)p(s, y, z) dz, t, s > 0, x, y ∈ Rd.

Thus,

p(t, x, x) =

∫
Rd
p

(
t

2
, x, y

)2

dy, t > 0, x ∈ Rd.

So, if we denote by ψ an eigenfunction of Amin associated to the eigenvalue λ,
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then Hölder’s inequality implies

eλ
t
2 |ψ(x)| = |T2(t/2)ψ(x)|

≤
∫
Rd
p

(
t

2
, x, y

)
|ψ(y)| dy

≤

(∫
Rd
p

(
t

2
, x, y

)2

dy

) 1
2

‖ψ‖2

= p(t, x, x)
1
2‖ψ‖2

for any t > 0 and any x ∈ Rd. Therefore, if we normalize ψ, i.e. ‖ψ‖2 = 1,

then

|ψ(x)| ≤ e−λ
t
2p(t, x, x)

1
2 , t > 0, x ∈ Rd.

So, by Theorem 2.6.1 and Theorem 2.6.2 we deduce the following result.

Corollary 2.7.2. Let ψ be any normalized eigenfunction of Amin. Then,

(a) in the case of polynomially growing coefficients, i.e., Q(x) = (1 + |x|m∗ )I

and V (x) = |x|s, where s > |m− 2| and m > 0, we have

|ψ(x)| ≤ c1e
−c2|x|

s−m+2
2

∗ ,

for all x ∈ Rd, for some constants c1, c2 > 0;

(b) in the case of exponentially growing coefficients, i.e., Q(x) = e|x|
m

I and

V (x) = e|x|
s

, where 2 ≤ m < s, we have

|ψ(x)| ≤ c1 exp

(
−c2

∫ |x|∗
0

e
τβ

2 dτ

)
,

for all x ∈ Rd, for some constants c1, c2 > 0.



Chapter 3

Elliptic operators with

unbounded diffusion, drift and

potential terms

In Chapter 2 we treated Schrödinger type operators in divergence form. In

this chapter, we are concerned with the more general elliptic operator defined

on smooth functions ϕ by

Aϕ = div(Q∇ϕ) + F · ∇ϕ− V ϕ,

where the diffusion coefficients Q, the drift F and the potential V are typically

unbounded functions.

As studied in the paper [32], here we aim to prove global Sobolev regularity

and pointwise upper bounds for the gradient of transition densities associated

with A. Throughout, we make the following assumptions on Q, F and V .

Hypothesis 3.0.1. We have Q = (qij)i,j=1,...,d ∈ C1+ζ
loc (Rd;Rd×d), F =

(Fj)j=1,...,d ∈ C1+ζ
loc (Rd;Rd) and 0 ≤ V ∈ Cζ

loc(Rd) for some ζ ∈ (0, 1). More-

over,

(a) The matrix Q is symmetric and uniformly elliptic, i.e. there is η > 0

such that
d∑

i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all x, ξ ∈ Rd;

(b) there are 0 ≤ Z ∈ C2+ζ(Rd) and a constant M ≥ 0 such that

lim|x|→∞ Z(x) =∞, AZ(x) ≤M and η∆Z(x) +F ·∇Z(x)−V (x)Z(x) ≤
M for all x ∈ Rd.

We observe that, by Remark 1.5.4, Hypothesis 3.0.1(b) implies that Z is a

Lyapunov function for A and η∆ + F · ∇ − V as introduced in Chapter 1.

As in Chapter 2, the construction of the minimal semigroup T (·) in Cb(Rd)

described in Chapter 1 applies for the more general elliptic operator A as well.

88
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Then a suitable realization of the above operator A generates a (typically not

strongly continuous) semigroup T = (T (t))t≥0 on the space Cb(Rd) that is

given through an integral kernel p, i.e.

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy, t > 0, x ∈ Rd, f ∈ Cb(Rd),

where the kernel p is positive, p(t, ·, ·) and p(t, x, ·) are measurable for any

t > 0, x ∈ Rd, and for a.e. fixed y ∈ Rd, p(·, ·, y) ∈ C1+ζ/2,2+ζ
loc ((0,∞)× Rd).

In Section 3.1, the approach of Chapter 2 based on the existence of time

dependent Lyapunov functions for ∂t + A and ∂t + η∆ + F · ∇ − V allows

us to establish estimates for the kernel p. Such functions play an important

role in the technique used in [41] in case of operators with bounded diffusion

coefficients in order to obtain estimates not only for p, but also for ∇p, the

gradient of p. In there, the key point is to prove the square integrability of the

logarithmic gradient of p. From that, global regularity results follow.

The core of this chapter is to repeat the same steps to achieve bounds

for the gradient of the transition kernel. For this purpose we make use of

an approximation argument: we approximate the operator A with a family

of operators An with bounded diffusion coefficients. As already underlined in

Chapter 2, what is important for this procedure to work when dealing with the

approximating kernels pn is to ensure that the constant in the right hand side

of the estimate of ∇pn does not depend on the diffusion matrix. To this end,

making use of Theorem 2.3.6, in Section 3.2 we establish a suitable estimate for

∇p in case of bounded diffusion coefficients. Then, in Section 3.3 we achieve

the corresponding estimate for the general operator A.

Finally, in Section 3.4 we see our main result at work on the prototype

operator

div
(
(1 + |x|m∗ )∇u

)
− |x|p−1x · ∇u− |x|s,

for p > (m− 1) ∨ 1, s > |m− 2| and m > 0, where x 7→ |x|∗ is a C2-function

satisfying |x|∗ = |x| for |x| ≥ 1.

3.1 Preliminaries

In this section we present the ingredients we will use in the next section to find

pointwise upper bounds for the derivatives of the kernel in case of bounded

diffusion coefficients. We will make use of time dependent Lyapunov functions

W for the operators L := ∂t+A and ∂t+η∆+F ·∇−V with respect to Z and

h introduced in Chapter 1, where Z is the Lyapunov function in Hypothesis

3.0.1(b) and 0 ≤ h ∈ L1((0, T )). According to Definition 1.6.2, for fixed T > 0

and for all (t, x) ∈ (0, T )× Rd, they satisfy the following inequalities

LW (t, x) ≤ h(t)W (t, x),

∂tW (t, x) + η∆W (t, x) + F (x) · ∇W (t, x)− V (x)W (t, x) ≤ h(t)W (t, x).
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3.1.1 Kernel estimates in case of bounded diffusion co-

efficients

As in Chapter 2, time dependent Lyapunov functions allow us to establish

pointwise upper bounds for the kernel p.

Theorem 3.1.1. Fix T > 0, x ∈ Rd and 0 < a0 < a < b < b0 < T . Let

us consider two time dependent Lyapunov functions W1, W2 for the operators

L = ∂t+A with 1 ≤ W1 ≤ W2 and a weight function 1 ≤ w ∈ C1,2((0, T )×Rd)

such that

(a) the functions w−2∂tw and w−2∇w are bounded on Q(a0, b0);

(b) there exist k > d + 2 and constants c1, . . . , c6 ≥ 1, possibly depending on

the interval (a0, b0), with

(i) w ≤ c1w
k−2
k W

2
k

1 , (ii) |Q∇w| ≤ c2w
k−1
k W

1
k

1 ,

(iii) |div(Q∇w)| ≤ c3w
k−2
k W

2
k

1 , (iv) |∂tw| ≤ c4w
k−2
k W

2
k

1 ,

(v) V
1
2 ≤ c5w

− 1
kW

1
k

2 , (vi) |F | ≤ c6w
− 1
kW

1
k

2 ,

on [a0, b0]× Rd.

If qij, Dhqij are bounded on Rd for i, j, h = 1, . . . , d, then there is a constant

C > 0 depending only on d, k and η such that

w(t, y)p(t, x, y) ≤ C

[(
c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 + c
k
2
3 + c

k
2
4

)∫ b0

a0

ξW1(t, x) dt

+
(
ck5 + ck6 + c

k
2
2 c

k
2
6

)∫ b0

a0

ξW2(t, x) dt

]
,

for all (t, y) ∈ (a, b)× Rd and any fixed x ∈ Rd, where

ξWi
(t, x) :=

∫
Rd
p(t, x, y)Wi(t, y) dy,

for i = 1, 2.

Proof. The difference of Theorem 2.4.2 and the above theorem is the presence

of the drift term in the operator A. For that, here we assumed further in-

equality (vi). We now inspect the proof of Theorem 2.4.2 and we highlight the

changes to make in order to deal with it.

We first assume that w along with its first order spatial derivatives is

bounded.
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Taking into account Remark 2.3.3, in Step 1 it is still possible to apply

Corollary 2.3.2 to infer that p ∈ Hs,1(Q(a1, b1)) for all s ∈ (1, k/2). Indeed, by

w ≥ 1, (i), (vi) and W1 ≤ W2, we have

Γ1(k/2, x, a0, b0)
k
2 =

∫
Q(a0,b0)

|F (y)|
k
2 p(t, x, y) dt dy

≤
∫
Q(a0,b0)

w(t, y)|F (y)|
k
2 p(t, x, y) dt dy

≤ c
k
2
6

∫
Q(a0,b0)

w(t, y)
1
2W2(t, y)

1
2p(t, x, y) dt dy

≤ c
k
4
1 c

k
2
6

∫
Q(a0,b0)

W1(t, y)
1
2W2(t, y)

1
2p(t, x, y) dt dy

≤ c
k
4
1 c

k
2
6

∫ b0

a0

ξW2(t, x) dt.

Moreover, since time dependent Lyapunov functions are integrable with respect

to p(t, x, y)dy thanks to Proposition 1.6.3, we deduce that Γ1(k/2, x, a0, b0) <

∞.

In Step 2 the keypoint is to apply Theorem 2.3.6. For that, repeating the

same computations, it turns out that we have to replace (2.49) and (2.50),

respectively, by

f = q∂tw + q div(Q∇w)− qV w +
k

2
pwϑ

k−2
2 ϑ′ + qF∇w,

h = 2qQ∇w + wqF.

As a consequence, in (2.51) the new terms ‖qF∇w‖ k
2

and ‖wqF‖k appear.

Making use of inequalities (ii) and (vi), in Step 3 we obtain

‖qF∇w‖ k
2
≤ η−1c2c6 ‖wq‖

k−2
k
∞ M

2
k

2 ,

‖wqF‖k ≤ c6 ‖wq‖
k−1
k
∞ M

1
k

2 .

Hence, we set

β = C
(
c2M

1
k

1 + c6M
1
k

2

)
,

γ = C

[(
c1

b1 − b
+ c3 + c4

)
M

2
k

1 + (c2c6 + c2
5)M

2
k

2

]
,

instead of (2.52). The rest of the proof carries over verbatim.

Remark 3.1.2. If one assumes |Q∇w| ≤ c2W
1
2k

1 , |QD2w| ≤ c′3W
1
k

1 and

|∇Q| ≤ c7w
− 1
kW

1
2k

1 , for some positive constants c2, c
′
3, c7, then, since w ≥ 1,

we have

|div(Q∇w)| ≤ d
(
|∇Q| |∇w|+

∣∣QD2w
∣∣)

≤ d
(
c2c7η

−1w
−1
k W

1
k

1 + c′3W
1
k

1

)
≤ d

(
c2c7η

−1 + c′3
)
w

k−2
k W

1
k

1 . (3.1)
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So, since 1 ≤ W1, the assumption (iii) of the above theorem is satisfied with

c3 = d
(
c2c7η

−1 + c′3
)
.

For further purposes, we obtain from the above remark the following corol-

lary.

Corollary 3.1.3. Assume all the assumptions of Theorem 3.1.1 except (ii)

and (iii). If |Q∇w| ≤ c2W
1
2k

1 , |QD2w| ≤ c′3W
1
k

1 and |∇Q| ≤ c7w
− 1
kW

1
2k

1 hold

for some positive constants c2, c
′
3, c7, then there is a constant C > 0 depending

only on d, k and η such that

w(t, y)p(t, x, y) ≤ C

(
A1

∫ b0

a0

ξW1(t, x) dt+ A2

∫ b0

a0

ξW2(t, x) dt

)
, (3.2)

for all (t, y) ∈ (a, b)× Rd and any fixed x ∈ Rd, with

A1 = c
k
2
1 +

c
k
2
1

(b0 − b)
k
2

+ ck2 +
[
d
(
c2c7η

−1 + c′3
)] k

2 + c
k
2
4 ,

A2 = ck5 + ck6 + c
k
2
2 c

k
2
6 . (3.3)

We aim to establish estimates for the derivatives of the kernel p. To this

purpose we make the following assumptions.

Hypothesis 3.1.4. Fix T > 0, x ∈ Rd and 0 < a0 < a < b < b0 < T . Let us

consider two time dependent Lyapunov functions 1 ≤ W1, W2 with W1 ≤ W2

and a weight function 1 ≤ w ∈ C1,3((0, T )× Rd) with ∂t∇w ∈ C((0, T )× Rd)

such that for some ε ∈ (0, 1) and k > 2(d+ 2) the following hold true:

(a)

∫
Rd

(
1

w(t, y)

)1−ε

dy < ∞ for all fixed t ∈ [a, b] and∫
Q(a,b)

(
1

w(t, y)

)1−ε

dt dy <∞;

(b) the functions w−2∇w, w−2∂tw, w−2D2w, w−3DiwDjw, w−2∂t∇w,

w−3∂tw∇w, |∇w|−k−1D2w and |∇w|−k−1∂t∇w are bounded on Q(a0, b0);

(c) there exist constants c1, . . . , c11 ≥ 1, possibly depending on the interval

(a0, b0), such that

(i) w ≤ c1w
k−2
k W

1
k

1 , (ii) |Q∇w| ≤ c2W
1
2k

1 ,

(iii) |QD2w| ≤ c3W
1
k

1 , (iv) |∂tw| ≤ c4w
k−2
k W

1
2k

1 ,

(v) V
1
2 ≤ c5w

− 1
kW

1
2k

2 , (vi) |F | ≤ c6w
− 1
kW

1
2k

2 ,

(vii) |∇Q| ≤ c7w
− 1
kW

1
2k

1 , (viii) |∇F | ≤ c8w
− 1
kW

1
k

2 ,

(ix) |∇V | ≤ c9w
− 2
kW

2
k

2 , (x) |D3w| ≤ c10W
3
2k

1 ,

(xi) |∂t∇w| ≤ c11W
1
k

1 ,
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on [a0, b0]× Rd.

From now on, we fix 0 < a0 < a < a1 < b1 < b < b0 < T with T >

0, b− b1 ≥ a1− a ≥ a− a0 and x ∈ Rd. Moreover, we consider p as a function

of (t, y) ∈ (0, T )× Rd.

3.1.2 Global regularity results for bounded diffusion co-

efficients

In this subsection we assume that the coefficients qij and their spatial deriva-

tives Dhqij are bounded on Rd for all i, j, h = 1, . . . , d. In here we present some

of the key results that in the next section will make our technique work.

Adapting [41, Theorem 5.1] to operators with potential term, we show that

p1/2 belongs to W 0,1
2 (Q(a, b)).

Theorem 3.1.5. Assume Hypothesis 3.1.4 and that qij, Dkqij are bounded on

Rd for i, j, k = 1, . . . , d. Then the functions p log2 p and p log p are integrable

in Q(a, b) and in Rd for all fixed t ∈ [a, b] and∫
Q(a,b)

|∇p(t, x, y)|2

p(t, x, y)
dt dy ≤ 1

η2

∫
Q(a,b)

(
|F (y)|2 + V 2(y)

)
p(t, x, y) dt dy

+

∫
Q(a,b)

p(t, x, y) log2 p(t, x, y) dt dy

− 2

η

∫
Rd

[p(t, x, y) log p(t, x, y)]t=bt=ady <∞.

In particular, p
1
2 belongs to W 0,1

2 (Q(a, b)).

Proof. We first observe that, by Corollary 3.1.3 and Hypothesis 3.1.4(a), p log p

is integrable in Rd for all fixed t ∈ [a, b] and p log2 p is integrable in Q(a, b).

Moreover, using Hypothesis 3.1.4 and Proposition 1.6.3, we have

Γ1(k, x, a0, b0)k =

∫
Q(a0,b0)

|F (y)|kp(t, x, y) dt dy

≤
∫
Q(a0,b0)

w(t, y)|F (y)|kp(t, x, y) dt dy

≤ ck6

∫
Q(a0,b0)

W2(t, y)
1
2p(t, x, y) dt dy

≤ ck6

∫ b0

a0

ξW2(t, x) dt <∞. (3.4)
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Similarly, we get

Γ2(k, x, a0, b0)k =

∫
Q(a0,b0)

V k(y)p(t, x, y) dt dy

≤
∫
Q(a0,b0)

w2(t, y)V k(y)p(t, x, y) dt dy

≤ c2k
5

∫
Q(a0,b0)

W2(t, y)p(t, x, y) dt dy

= c2k
5

∫ b0

a0

ξW2(t, x) dt <∞.

Hence, Lemma 2.3.1 and Remark 2.3.3 imply that p ∈ W 0,1
k (Q(a, b)). As a

consequence, since by Lemma 1.3.3 we have that for all ϕ ∈ C1,2
c (Q(a, b))∫

Q(a,b)

(∂tϕ(t, y) + Aϕ(t, y))p(t, x, y) dt dy =

∫
Rd

[p(t, x, y)ϕ(t, y)]t=bt=a dy,

then integrating by parts we get∫
Q(a,b)

p∂tϕdt dy =

∫
Q(a,b)

[〈Q∇ϕ,∇p〉 − p〈F,∇ϕ〉+ V ϕp] dt dy

+

∫
Rd

[p(t, x, y)ϕ(t, y)]t=bt=a dy. (3.5)

By density, the previous identity holds if ϕ ∈ W 1,1
2 (Q(a, b)) with compact

support in y. We now consider ζ ∈ C∞c (Rd) such that

• ζ(y) = 1 for |y| ≤ 1,

• ζ(y) = 0 for |y| ≥ 2,

• 0 ≤ ζ ≤ 1.

We set ζn(y) = ζ(y/n) for all n ∈ N. Since ζ2
n log p ∈ W 1,1

2 (Q(a, b)) by Propo-

sition C.4.2, choosing ϕ = ζ2
n log p in (3.5) yields∫

Q(a,b)

ζ2
n∂tp dt dy =

∫
Q(a,b)

(
ζ2
n

p

d∑
i,j=1

qijDipDjp+ 2ζn log p
d∑

i,j=1

qijDipDjζn

− ζ2
n〈F,∇p〉 − 2ζnp log p〈F,∇ζn〉+ ζ2

nV p log p

)
dt dy

+

∫
Rd

[
p(t, x, y)ζ2

n(y) log p(t, x, y)
]t=b
t=a

dy.
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Defining q(u, v) :=
∑d

i,j=1 qijuivj for all u, v ∈ Rd, we obtain∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy

=− 2

∫
Q(a,b)

ζn log p q(∇p,∇ζn) dt dy +

∫
Q(a,b)

ζ2
n〈F,∇p〉 dt dy

+ 2

∫
Q(a,b)

ζnp log p〈F,∇ζn〉 dt dy −
∫
Q(a,b)

ζ2
nV p log p dt dy

+

∫
Rd
ζ2
n[p− p log p]t=bt=a dy.

Then,∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy = −2In + Jn + 2Kn − Ln +

∫
Rd
ζ2
n[p− p log p]t=bt=a dy,

(3.6)

where

In =

∫
Q(a,b)

ζn log p q(∇p,∇ζn) dt dy, Jn =

∫
Q(a,b)

ζ2
n〈F,∇p〉 dt dy,

Kn =

∫
Q(a,b)

ζnp log p〈F,∇ζn〉 dt dy, Ln =

∫
Q(a,b)

ζ2
nV p log p dt dy.

In the following we estimate the previous quantities in order to show that

q(∇p,∇p)/p is integrable in Q(a, b).

Applying the Cauchy-Schwarz inequality and Hölder’s inequality, we deduce

that

|In| ≤
∫
Q(a,b)

ζn| log p| |q(∇p,∇ζn)| dt dy

≤
∫
Q(a,b)

(
ζn

√
q(∇p,∇p)
√
p

)(√
p| log p|

√
q(∇ζn,∇ζn)

)
dt dy

≤
(∫

Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy

) 1
2
(∫

Q(a,b)

p log2 p q(∇ζn,∇ζn) dt dy

) 1
2

.

(3.7)

In addition, given that |∇ζ| is bounded by a constant M , we observe that

q(∇ζn,∇ζn) ≤ ‖Q‖∞ |∇ζn|
2 ≤ M2 ‖Q‖∞

n2
.

Combining this with (3.7) and using Young’s inequality, we derive that

|In| ≤ ε1

∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy +
c ‖Q‖∞
4ε1n2

∫
Q(a,b)

p log2 p dt dy. (3.8)
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In the same way, we have

|Jn| ≤
∫
Q(a,b)

ζn|F | |∇p| dt dy

≤

(∫
Q(a,b)

ζ2
n

|∇p|2

p
dt dy

) 1
2 (∫

Q(a,b)

|F |2p dt dy
) 1

2

. (3.9)

Since the matrix Q is uniformly elliptic by Hypothesis 3.0.1, by Young’s in-

equality we get

|Jn| ≤
ε2

η

∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy +
1

4ε2

∫
Q(a,b)

|F |2p dt dy. (3.10)

Moreover, by Hölder’s and Young’s inequality, we have

|Kn| ≤
∫
Q(a,b)

|F |p| log p| |∇ζn| dt dy ≤
M

n

∫
Q(a,b)

|F |p| log p| dt dy

≤ M

n

(∫
Q(a,b)

|F |2p dt dy
) 1

2
(∫

Q(a,b)

p log2 p dt dy

) 1
2

≤ M

n

∫
Q(a,b)

|F |2p dt dy +
M

4n

∫
Q(a,b)

p log2 p dt dy (3.11)

and

|Ln| ≤
∫
Q(a,b)

V p| log p| dt dy ≤
(∫

Q(a,b)

V 2p dt dy

) 1
2
(∫

Q(a,b)

p log2 p dt dy

) 1
2

≤ 1

4ε3

∫
Q(a,b)

V 2p dt dy + ε3

∫
Q(a,b)

p log2 p dt dy. (3.12)

Using (3.8), (3.10), (3.11) and (3.12) in (3.6) yields(
1− 2ε1 −

ε2

η

)∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy

≤
(

1

4ε2

+
2M

n

)∫
Q(a,b)

|F |2p dt dy +
1

4ε3

∫
Q(a,b)

V 2p dt dy

+

(
M

2n
+ ε3 +

c ‖Q‖∞
2ε1n2

)∫
Q(a,b)

p log2 p dt dy

+

∫
Rd
ζ2
n[p− p log p]t=bt=a dy. (3.13)

We note that, taking into account Hypothesis 3.1.4 and Proposition 1.6.3 we

deduce that∫
Q(a,b)

|F |2p dt dy ≤ c2
6

∫
Q(a,b)

w−
2
kW

1
k

2 p dt dy ≤ c2
6

∫ b

a

ξW2(t, x) dt <∞ (3.14)
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and ∫
Q(a,b)

V 2p dt dy ≤ c4
5

∫
Q(a,b)

w−
4
kW

2
k

2 p dt dy ≤ c4
5

∫ b

a

ξW2(t, x) dt <∞.

Consequently, considering also that p log2 p is integrable in Q(a, b), letting

n→∞ in (3.13) leads to∫
Q(a,b)

q(∇p,∇p)
p

dt dy <∞.

We now come back to (3.6). Choosing ε1 = 1/n in (3.8) we get

|In| ≤
1

n

∫
Q(a,b)

ζ2
n

q(∇p,∇p)
p

dt dy +
c ‖Q‖∞

4n

∫
Q(a,b)

p log2 p dt dy.

Since both q(∇p,∇p)/p and p log2 p are integrable in Q(a, b), we find that

In → 0 as n → ∞. Similarly, by (3.11) and (3.14), Kn → 0 as n → ∞.

Moreover, applying Young’s inequality in (3.9), we have

|Jn| ≤ ε4

∫
Q(a,b)

|∇p|2

p
dt dy +

1

4ε4

∫
Q(a,b)

|F |2p dt dy.

Estimating Jn as above, Ln as in (3.12) and letting n → ∞ in (3.6) we gain

that

η

∫
Q(a,b)

|∇p|2

p
dt dy ≤

∫
Q(a,b)

q(∇p,∇p)
p

dt dy

≤ ε4

∫
Q(a,b)

|∇p|2

p
dt dy +

1

4ε4

∫
Q(a,b)

|F |2p dt dy +
1

4ε3

∫
Q(a,b)

V 2p dt dy

+ ε3

∫
Q(a,b)

p log2 p dt dy +

∫
Rd

[p− p log p]t=bt=a dy, (3.15)

where in the first inequality we used the uniformly ellipticity of the matrix Q.

We also observe that the function t 7→ (T (t)1)(x) is decreasing in [0,+∞) for

any x ∈ Rd because the semigroup is contractive. Hence, we have∫
Rd
p(b, x, y) dy ≤

∫
Rd
p(a, x, y) dy,

for all x ∈ Rd. It follows that
∫
Rd [p(t, x, y)]t=bt=a dy ≤ 0. Combining this with

(3.15) and setting ε3 = ε4 = η/2, then we derive the desired inequality.

As in [41, Lemma 5.1], we prove that ∇p is bounded.

Lemma 3.1.6. Assume Hypothesis 3.1.4 and that qij, Dhqij are bounded on

Rd for i, j, h = 1, . . . , d. Then ∇p ∈ Ls(Q(a1, b1)) for all 1 ≤ s ≤ ∞.
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Proof. Arguing as in the proof of Theorem 3.1.5 we know that ∇p ∈
Lk(Q(a, b)). We now show that ∇p ∈ L∞(Q(a, b)). For fixed x ∈ Rd we

consider the function q(t, y) := ϑk/2(t)p(t, x, y), where ϑ ∈ C∞(R) be such

that

• ϑ(t) = 1 for t ∈ [a1, b1],

• ϑ(t) = 0 for t ≤ a, t ≥ b,

• 0 ≤ ϑ ≤ 1.

We set

r1 > 1 such that
1

r1

=

(
1− 2

k

)
1

k
+

2

k
,

α =
k

r1

,

β > 1 such that
2

α
+

1

β
= 1.

Then, since
√
q ∈ W 0,1

2 (Q(a0, b0)) by Theorem 3.1.5, Hölder’s inequality with

exponents 1/α, 1/α and 1/β yields∫
Q(a0,b0)

|F |r1|∇q|r1 dt dy =

∫
Q(a0,b0)

|F |r1q1/αq−1/α|∇q|2/α|∇q|r1−2/α dt dy

≤
(∫

Q(a0,b0)

|∇q|2

q
dt dy

) 1
α
(∫

Q(a0,b0)

|F |r1αq dt dy
) 1

α

×
(∫

Q(a0,b0)

|∇q|(r1−
2
α

)β dt dy

) 1
β

≤
(∫

Q(a,b)

|∇p|2

p
dt dy

) 1
α
(∫

Q(a,b)

|F |kq dt dy
) 1

α

×
(∫

Q(a0,b0)

|∇q|k dt dy
) 1

β

.

We observe that the right hand side of the previous inequality is finite because

of Theorem 3.1.5, (3.4) and the fact that ∇p ∈ Lk(Q(a, b)). Hence F · ∇q be-

longs to Lr1(Q(a0, b0)). Similarly, applying Hölder’s inequality with exponents

2/α and 1/β we get∫
Q(a0,b0)

|divF |r1qr1 dt dy =

∫
Q(a0,b0)

|divF |r1q2/αqr1−2/α dt dy

≤
(∫

Q(a0,b0)

|divF |r1α/2q dt dy
) 2

α
(∫

Q(a0,b0)

q(r1− 2
α

)β dt dy

) 1
β

=

(∫
Q(a0,b0)

|divF |
k
2 q dt dy

) 2
α
(∫

Q(a0,b0)

qk dt dy

) 1
β

. (3.16)
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By Hypothesis 3.1.4 and Proposition 1.6.3 we deduce that∫
Q(a0,b0)

|divF |
k
2 q dt dy ≤ d

k
4

∫
Q(a0,b0)

|∇F |
k
2 q dt dy

≤ d
k
4 c

k
2
8

∫
Q(a0,b0)

w−
1
2W

1
2

2 q dt dy

≤ d
k
4 c

k
2
8

∫ b0

a0

ξW2(t, x) dt <∞. (3.17)

Thus from (3.16) we derive that q divF ∈ Lr1(Q(a0, b0)). Similar computations

imply that V q ∈ Lr1(Q(a0, b0)). Since F ∈ C1(Rd;Rd), we now apply Propo-

sition C.4.2(c) to infer that p ∈ W 1,2
r1,loc(Q(a0, b0)) and it satisfies the equation

∂tp− A∗yp = 0, where

A∗ = div(Q∇)− F · ∇ − V − divF

is the formal adjoint of A. As a consequence, q belongs to W 1,2
r1,loc(Q(a0, b0)) ∩

Lr1(Q(a0, b0)) and solves the parabolic problem{
∂tq − div(Q∇q) = −F · ∇q − V q − q divF + p∂t(ϑ

k
2 ), in Q(a0, b0),

q(a0, y) = 0, y ∈ Rd.

(3.18)

Since we proved that the right hand side belongs to Lr1(Q(a0, b0)), then by

[33, Theorem IV.9.1] it follows that q ∈ W 1,2
r1

(Q(a0, b0)).

If r1 < d+2, then ∇q ∈ Ls1(Q(a0, b0)) for 1/s1 = 1/r1−1/(d+2) according

to the Sobolev embedding theorem. In this case we iterate the procedure

described above with

1

rn+1

=

(
1− 2

k

)
1

sn
+

2

k
,

1

sn
=

1

rn
− 1

d+ 2
,

s0 = k,

for every n ∈ N. If rn < d+ 2 for every n ∈ N, then 0 ≤ sn ≤ sn+1. If we take

s = limn→∞ sn, we derive that

1

s
=

(
1− 2

k

)
1

s
+

2

k
− 1

d+ 2
< 0,

where we used that k > 2(d + 2). As a result, there exists n ∈ N such

that rn > d + 2, so ∇q ∈ L∞(Q(a0, b0)) by the Sobolev embedding theorem.

Otherwise, if rn = d + 2 for some n ∈ N, then sn < ∞ is arbitrary, thus

rn+1 > d+ 2, taking sn sufficiently large and since k > 2(d+ 2).

To sum up, ∇p ∈ L∞(Q(a, b)). If we now take into account Theorem 3.1.5,

we finally prove that ∇p ∈ L1(Q(a, b)) observing that∫
Q(a0,b0)

|∇q| dt dy ≤
(∫

Q(a0,b0)

|∇q|2

q
dt dy

)1/2(∫
Q(a0,b0)

q dt dy

)1/2

.
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Moreover, a result similar to [41, Theorem 5.2] is valid.

Theorem 3.1.7. Assume Hypothesis 3.1.4 and that qij, Dhqij are bounded on

Rd for i, j, h = 1, . . . , d. Then p ∈ W 1,2
k/2(Q(a1, b1)).

Proof. Let q and ϑ be as in Lemma 3.1.6. Since ∇q ∈ L∞(Q(a0, b0)) we have∫
Q(a0,b0)

|F |
k
2 |∇q|

k
2 dt dy =

∫
Q(a0,b0)

|F |
k
2 |∇q|

k−2
2
|∇q|
√
q

√
q dt dy

≤‖∇q‖
k−2
2
∞

(∫
Q(a0,b0)

|∇p|2

p
dt dy

) 1
2
(∫

Q(a0,b0)

|F |kq dt dy
) 1

2

.

Considering Theorem 3.1.5 and (3.4), we obtain that F · ∇q ∈ L k
2 (Q(a0, b0)).

In a similar way we have∫
Q(a0,b0)

|divF |
k
2 q

k
2 dt dy =

∫
Q(a0,b0)

|divF |
k
2 q

k−2
2 q

1
2 q

1
2 dt dy

≤‖q‖
k−2
2
∞

(∫
Q(a0,b0)

|divF |kq dt dy
) 1

2
(∫

Q(a0,b0)

q dt dy

) 1
2

.

Inequality (3.17) implies that q divF ∈ L k
2 (Q(a0, b0)). If we repeat the compu-

tation with V instead of divF , we find that V q belongs to L
k
2 (Q(a0, b0)) as well.

As in the proof of Lemma 3.1.6, q solves the parabolic problem (3.18). Since

the right hand side belongs to L
k
2 (Q(a0, b0)), we obtain that q ∈ W 1,2

k/2(Q(a, b)).

Hence, p ∈ W 1,2
k/2(Q(a1, b1)).

It is possible to prove even more regularity on ∇p, as the following result

shows.

Theorem 3.1.8. Assume Hypothesis 3.1.4 and that qij, Dhqij are bounded on

Rd for i, j, h = 1, . . . , d. Then ∇p ∈ H k
2
,1(Q(a1, b1)).

Proof. In view of Theorem 3.1.7, we are left to show that

∂t∇p(·, x, ·) ∈ (W 0,1
(k/2)′(Q(a1, b1)))′.

Let q and ϑ be as in Lemma 3.1.6 and consider ϕ ∈ C1,2
c (Q(a, b)). By Lemma

1.3.3, we have∫
Q(a,b)

(∂tϕ(t, y) + Aϕ(t, y))p(t, x, y) dt dy =

∫
Rd

[p(t, x, y)ϕ(t, y)]t=bt=a dy.

Substituting ϑ
k
2ϕ instead of ϕ in the previous equation, we get∫

Q(a,b)

(
q∂tϕ− 〈Q∇ϕ,∇q〉+ 〈F,∇ϕ〉q − V ϕq + pϕ∂tϑ

k
2

)
dt dy = 0.
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We replace again ϕ by the difference quotients with respect to the variable y

τ−hϕ(t, y) =
ϕ(t, y − hej)− ϕ(t, y)

|h|
,

for (t, y) ∈ Q(a, b), 0 6= h ∈ R and we obtain∫
Q(a,b)

q∂t(τ−hϕ) dt dy −
∫
Q(a,b)

〈Q∇(τ−hϕ),∇q〉 dt dy

+

∫
Q(a,b)

〈F,∇(τ−hϕ)〉q dt dy −
∫
Q(a,b)

V q(τ−hϕ) dt dy

+

∫
Q(a,b)

p(τ−hϕ)∂tϑ
k
2 dt dy = I1 − I2 + I3 − I4 + I5 = 0,

where

I1 =

∫
Q(a,b)

q∂t(τ−hϕ) dt dy, I2 =

∫
Q(a,b)

〈Q∇(τ−hϕ),∇q〉 dt dy,

I3 =

∫
Q(a,b)

〈F,∇(τ−hϕ)〉q dt dy, I4 =

∫
Q(a,b)

V q(τ−hϕ) dt dy,

I5 =

∫
Q(a,b)

p(τ−hϕ)∂tϑ
k
2 dt dy.

By a change of variables we have

I1 =

∫
Q(a,b)

(τhq)∂tϕdt dy

and

I2 =
1

|h|

∫
Q(a,b)

(
〈Q(y + hej)∇ϕ(t, y),∇q(t, y + hej)〉

− 〈Q(y)∇ϕ(t, y),∇q(t, y)〉
)
dt dy.

Summing and subtracting |h|−1
∫
Q(a,b)

〈Q(y+hej)∇ϕ(t, y),∇q(t, y)〉 dt dy in the

previous expression yields

I2 =

∫
Q(a,b)

(
〈Q(y + hej)∇ϕ(t, y),∇τhq(t, y)〉

+ 〈τhQ(y)∇ϕ(t, y),∇q(t, y)〉
)
dt dy.

Similarly, we find that

I3 =

∫
Q(a,b)

(
τhq(t, y)〈F (y + hej),∇ϕ(t, y)〉

+q(t, y)〈τhF (t, y),∇ϕ(t, y)〉
)
dt dy,

I4 =

∫
Q(a,b)

(τhV (y)q(t, y) + V (y + hej)τhq(t, y))ϕ(t, y) dt dy,

I5 =

∫
Q(a,b)

(τhp)ϕ∂tϑ
k
2 dt dy.
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Since qij ∈ C1
b (Rd), applying the Cauchy-Schwarz inequality and Hölder’s in-

equality we deduce that

|I2| ≤ c
(
‖∇τhq‖Lk/2(Q(a,b)) + ‖∇q‖Lk/2(Q(a,b))

)
‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) .

Moreover,

|I3| ≤
(∫

Q(a,b)

|τhq(t, y)|
k
2 |F (y + hej)|

k
2 dt dy

) 2
k

‖ϕ‖W 0,1

(k/2)′ (Q(a,b))

+

(∫
Q(a,b)

q
k
2 |τhF |

k
2 dt dy

) 2
k

‖ϕ‖W 0,1

(k/2)′ (Q(a,b))

≤‖τhq‖
k−2
k
∞

(∫
Q(a,b)

|τhp(t, y)|2

p
dt dy

) 1
k (∫

Q(a,b)

|F (y + hej)|k p dt dy
) 1

k

×

× ‖ϕ‖W 0,1

(k/2)′ (Q(a,b))

+ ‖q‖
k−2
k

L∞(Q(a,b))

(∫
Q(a,b)

|τhF |
k
2 q dt dy

) 2
k

‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) .

Similarly, we have

|I4| ≤ ‖τhq‖
k−2
k
∞

(∫
Q(a,b)

|V (y + hej)|k p dt dy
) 1

k

(∫
Q(a,b)

|τhp(t, y)|2

p
dt dy

) 1
k

×

× ‖ϕ‖W 0,1

(k/2)′ (Q(a,b))

+ ‖q‖
k−2
k

L∞(Q(a,b))

(∫
Q(a,b)

|τhV |
k
2 p dt dy

) 2
k

‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) .

Finally,

|I5| ≤ c ‖τhp‖Lk/2(Q(a,b)) ‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) .

Hence,∣∣∣∣∣
∫
Q(a,b)

(τhq)∂tϕdt dy

∣∣∣∣∣ ≤ c

[
‖∇τhq‖Lk/2(Q(a,b)) + ‖∇q‖Lk/2(Q(a,b))

+ ‖τhq‖
k−2
k
∞

∥∥∥∥τhp√p
∥∥∥∥ 2
k

L2(Q(a,b))

(∫
Q(a,b)

|F (y + hej)|k p(t, y) dt dy

) 1
k

+ ‖τhq‖
k−2
k
∞

∥∥∥∥τhp√p
∥∥∥∥ 2
k

L2(Q(a,b))

(∫
Q(a,b)

|V (y + hej)|k p(t, y) dt dy

) 1
k

+ ‖q‖
k−2
k

L∞(Q(a,b))

{(∫
Q(a,b)

|τhF |
k
2 q(t, y) dt dy

) 2
k

+

(∫
Q(a,b)

|τhV |
k
2 q(t, y) dt dy

) 2
k

}
+ ‖τhp‖Lk/2(Q(a,b))

]
‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) .
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As p ∈ W 1,2
k/2(Q(a, b)) by Theorem 3.1.7, it follows that ∇τhq → ∇Djq

in L
k
2 (Q(a, b)) as h → 0, which implies the boundedness of ‖∇τhq‖

L
k
2 (Q(a,b))

.

Similarly, we may infer the boundedness of
∥∥τhp/√p∥∥L2(Q(a,b))

from Theorem

3.1.5. As ∇p ∈ L∞(Q(a, b)) by Lemma 3.1.6, the difference quotients τhq

converge weak* in L∞(Q(a, b)) to Djq, where also ‖τhq‖∞ is bounded. Bound-

edness of the integrals involving F can easily be deduced from the fact that

F ∈ C1+ζ
loc (Rd;Rd), V ∈ Cζ

loc(Rd) and the mean value theorem. All together,

we see that for a certain constant C, we have∣∣∣∣∫
Q(a,b)

(τhq)∂tϕdt dy

∣∣∣∣ ≤ C ‖ϕ‖W 0,1

(k/2)′ (Q(a,b)) ,

for all ϕ ∈ C1,2
c (Q(a, b)).

By density, this estimate extends to ϕ ∈ W 0,1
(k/2)′(Q(a, b)) and it follows

that the elements τhq are uniformly bounded in (W 0,1
(k/2)′(Q(a, b)))′. Thus, by

reflexivity, we see that as h → 0 we find cluster-points in (W 0,1
(k/2)′(Q(a, b)))′.

But testing against functions in C∞c (Q(a, b)), we find that the only possible

cluster point is Djq. This yields ∂tDjp ∈ (W 0,1
(k/2)′(Q(a, b)))′ and finishes the

proof.

3.2 Estimates for the derivatives of the kernel

in case of bounded diffusion coefficients

With the help of Theorem 2.3.6, we can now prove an upper bound for |w∇p|
that does not depend on the ‖·‖∞-bound of the diffusion coefficients.

Theorem 3.2.1. Assume Hypothesis 3.1.4 and that qij, Dhqij are bounded on

Rd for i, j, h = 1, . . . , d. Then there is a constant C > 0 depending only on d,

k and η (but not depending on ‖Q‖∞) such that

|w(t, y)∇p(t, x, y)|

≤C

{
B1 Ξ1(a0, b0)

1
2 ‖wp‖

1
2

L∞(Q(a,b))

+
(
B2 Ξ1(a0, b0)

2
k +B3 Ξ2(a0, b0)

2
k

)
‖wp‖

k−2
k

L∞(Q(a,b))

+

[
B4 Ξ1(a0, b0)

1
k +B5 Ξ2(a0, b0)

1
k

]
‖wp‖

k−1
k

L∞(Q(a,b))

+
(
B6 Ξ1(a0, b0)

1
2 +B7 Ξ2(a0, b0)

1
2

)(∫
Q(a,b)

|∇p|2

p
dt dy

) 1
2
}
,(3.19)

for all (t, y) ∈ (a1, b1)×Rd and fixed x ∈ Rd, where Bi, i = 1, . . . , 7 are positive

constants depending only on ci, i = 1, . . . , 11, b, b1 and k and, for i = 1, 2, we
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define

ξWi
(t, x) :=

∫
Rd
p(t, x, y)Wi(t, y) dy, Ξi(a0, b0) :=

∫ b0

a0

ξWi
(t, x) dt.

Proof. We first prove the theorem assuming that the weight function w, along

with its first order partial derivatives and its second order partial derivatives

of the form Dijw and ∂tDiw are bounded. We fix a0 < a < a2 < a1 < b1 <

b2 < b < b0.

We show that

∇(wp) ∈ H
k
2
,1(Q(a2, b2)) ∩ L∞(Q(a2, b2)). (3.20)

We apply Lemma 3.1.6 and Theorem 3.1.8 to infer that that

∇p ∈ H
k
2
,1(Q(a2, b2)) ∩ L∞(Q(a2, b2)).

By Corollary 3.1.3 we have p ∈ L∞(Q(a2, b2)). Moreover, arguing as in

the proof of Theorem 3.1.5, Hypothesis 3.1.4 and Proposition 1.6.3 lead to

Γ1(k/2, x, a0, b0), Γ2(k/2, x, a0, b0) < ∞. As a consequence, Lemma 2.3.1 and

Remark 2.3.3 imply that p ∈ H k
2
,1(Q(a2, b2)). Thus, we get (3.20).

Let ϑ ∈ C∞(R) be such that

• ϑ(t) = 1 for t ∈ [a1, b1],

• ϑ(t) = 0 for t ≤ a2, t ≥ b2,

• 0 ≤ ϑ ≤ 1 and |ϑ′| ≤ 2
b2−b1 .

We define

q(t, y) := ϑk/2(t)p(t, x, y)

and we note that∇(wq) ∈ H k
2
,1(Q(a2, b2))∩L∞(Q(a2, b2)). Furthermore, given

ϕ ∈ C∞c (Q(a2, b2)), we write

ψ(t, y) := ϑk/2(t)w(t, y)Dhϕ(t, y),

with h = 1, . . . , d. Applying Lemma 1.3.3 for each h = 1, . . . , d yields∫
Q(a2,b2)

(∂tψ(t, y) + Aψ(t, y))p(t, x, y) dt dy = 0.

Integrating by parts, we get∫
Q(a2,b2)

[
p∂tψ − 〈Q∇ψ,∇p〉+ 〈F,∇ψ〉p− V ψp

]
dt dy = 0.



3.2. Estimates for the derivatives of the kernel in case of bounded diffusion
coefficients 105

Replacing the expression of the functions ψ and q, after some computations

we derive that∫
Q(a2,b2)

[
k

2
ϑ′ϑ

k−2
2 wp(Dhϕ) + wq(∂tDhϕ)− 〈Q∇w,∇q〉(Dhϕ)

− 〈Q∇Dhϕ,w∇q〉+ 〈F, q∇w〉(Dhϕ) + 〈F,∇Dhϕ〉wq

− V wq(Dhϕ) + q(∂tw)(Dhϕ)

]
dt dy = 0.

Integrating by parts again in order to remove the derivative Dh in front of ϕ,

we have that∫
Q(a2,b2)

[
− k

2
ϑ′ϑ

k−2
2 w(Dhp)ϕ−

k

2
ϑ′ϑ

k−2
2 p(Dhw)ϕ+ (∂tDh(wq))ϕ

+ 〈(DhQ)∇w,∇q〉ϕ+ 〈Q(Dh∇w),∇q〉ϕ+ 〈Q∇w,Dh∇q〉ϕ
+ w〈(DhQ)∇q,∇ϕ〉+ 〈QDh(w∇q),∇ϕ〉 − q〈F,Dh∇w〉ϕ
− q〈DhF,∇w〉ϕ− (Dhq)〈F,∇w〉ϕ− w(Dhq)〈F,∇ϕ〉
− q(Dhw)〈F,∇ϕ〉 − wq〈DhF,∇ϕ〉+ V w(Dhq)ϕ+ V q(Dhw)ϕ

+ (DhV )wqϕ− (∂tDhw)qϕ− (∂tw)(Dhq)ϕ

]
dt dy = 0. (3.21)

Since∫
Q(a2,b2)

〈Q∇w,Dh∇q〉ϕdt dy = −
∫
Q(a2,b2)

[
(Dhq)div(Q∇w)ϕ

+ (Dhq)〈Q∇w,∇ϕ〉
]
dt dy

and ∫
Q(a2,b2)

〈QDh(w∇q),∇ϕ〉 dt dy

=

∫
Q(a2,b2)

[
〈Q∇Dh(wq),∇ϕ〉 − q〈QDh(∇w),∇ϕ〉

− (Dhq)〈Q∇w,∇ϕ〉
]
dt dy,

we can adjust the terms in (3.21) to obtain that∫
Q(a2,b2)

[〈Q∇u,∇ϕ〉+ ϕ∂tu] dtdy =

∫
Q(a2,b2)

fϕ dtdy +

∫
Q(a2,b2)

〈h,∇ϕ〉 dtdy,
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where

u =Dh(wq),

f =
k

2
ϑ′ϑ

k−2
2 w(Dhp) +

k

2
ϑ′ϑ

k−2
2 p(Dhw)− 〈(DhQ)∇w,∇q〉 − 〈Q(Dh∇w),∇q〉

+ (Dhq) div(Q∇w) + q〈Dh∇w,F 〉+ q〈∇w,DhF 〉+ (Dhq)〈∇w,F 〉
− V w(Dhq)− V q(Dhw)− wq(DhV ) + (∂tDhw)q + (∂tw)(Dhq),

h =2(Dhq)Q∇w − w(DhQ)(∇q) + qQDh∇w + wF (Dhq) + qF (Dhw)

+ wq(DhF ).

We now aim to apply Theorem 2.3.6 to the function u and infer that there

exists a constant C, depending only on d, η and k, but not on ‖Q‖∞, such

that

‖Dh(wq)‖∞

≤ C
[
‖Dh(wq)‖2 +

k

b2 − b1

∥∥∥ϑ k−2
2 w(Dhp)

∥∥∥
k
2

+
k

b2 − b1

∥∥∥ϑ k−2
2 p(Dhw)

∥∥∥
k
2

+ ‖〈(DhQ)∇w,∇q〉‖ k
2

+ ‖〈Q(Dh∇w),∇q〉‖ k
2

+ ‖(Dhq)div(Q∇w)‖ k
2

+ ‖q〈Dh∇w,F 〉‖ k
2

+ ‖q〈∇w,DhF 〉‖ k
2

+ ‖(Dhq)〈∇w,F 〉‖ k
2

+ ‖V w(Dhq)‖ k
2

+ ‖V q(Dhw)‖ k
2

+ ‖wq(DhV )‖ k
2

+ ‖(∂tDhw)q‖ k
2

+ ‖(∂tw)(Dhq)‖ k
2

+ ‖(Dhq)Q∇w‖k + ‖w(DhQ)(∇q)‖k + ‖qQDh∇w‖k

+ ‖wF (Dhq)‖k + ‖qF (Dhw)‖k + ‖wqDhF‖k
]
.

Summing over h = 1, . . . , d and since ‖∇(wq)‖∞ ≥ ‖w∇q‖∞−‖q∇w‖∞ yields

‖w∇q‖∞

≤ C

[
‖w∇q‖2 + ‖q∇w‖2 +

k

b2 − b1

∥∥∥ϑ k−2
2 w∇p

∥∥∥
k
2

+
k

b2 − b1

∥∥∥ϑ k−2
2 p∇w

∥∥∥
k
2

+ ‖〈∇Q∇w,∇q〉‖ k
2

+
∥∥QD2w∇q

∥∥
k
2

+ ‖(∇q)div(Q∇w)‖ k
2

+
∥∥q(D2w)F

∥∥
k
2

+ ‖q〈∇w,∇F 〉‖ k
2

+ ‖(∇q)〈∇w,F 〉‖ k
2

+ ‖V w∇q‖ k
2

+ ‖V q∇w‖ k
2

+ ‖wq∇V ‖ k
2

+ ‖(∂t∇w)q‖ k
2

+ ‖(∂tw)(∇q)‖ k
2

+ ‖〈Q∇w,∇q〉‖k + ‖w(∇Q)(∇q)‖k +
∥∥qQD2w

∥∥
k

+ ‖w〈∇q, F 〉‖k

+ ‖q〈∇w,F 〉‖k + ‖wq∇F‖k

]
+ ‖q∇w‖∞ . (3.22)

We set

P :=

∫
Q(a2,b2)

|∇p|2

p
dt dy

and, for a sake of simplicity, we write Ξi instead of Ξi(a2, b2) to refer to∫ b2
a2
ξWi

(t, x) dt for i = 1, 2. We observe that Ξ1, Ξ2 < ∞ by Proposition
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1.6.3. Moreover, thanks to Theorem 3.1.5, we know that P <∞. Finally, we

estimate the terms in the right hand side of (3.22). We start with ‖w∇q‖2.

Using Hölder’s inequality and Hypothesis 3.1.4(c) one obtains

‖w∇q‖2
2 =

∫
Q(a2,b2)

w2 |∇q|2 dt dy ≤ ‖w∇q‖∞
∫
Q(a2,b2)

|∇q|
√
q

√
qw dt dy

≤ ‖w∇q‖∞

(∫
Q(a2,b2)

|∇q|2

q
dt dy

) 1
2 (∫

Q(a2,b2)

w2q dt dy

) 1
2

≤ c
k
2
1 ‖w∇q‖∞

(∫
Q(a2,b2)

|∇p|2

p
dt dy

) 1
2 (∫

Q(a2,b2)

ξW1(t, x) dt

) 1
2

= c
k
2
1 ‖w∇q‖∞ P

1
2 Ξ

1
2
1 .

Hence, we have

‖w∇q‖2 ≤ c
k
4
1 P

1
4 Ξ

1
4
1 ‖w∇q‖

1
2
∞ .

Similarly, we get ∥∥∥ϑ k−2
2 w∇p

∥∥∥
k
2

≤ c1P
1
kΞ

1
k
1 ‖w∇q‖

k−2
k
∞ ,

‖〈∇Q∇w,∇q〉‖ k
2
≤ η−1c2c7P

1
kΞ

1
k
1 ‖w∇q‖

k−2
k
∞ ,

∥∥QD2w∇q
∥∥
k
2

≤ c3P
1
kΞ

1
k
1 ‖w∇q‖

k−2
k
∞ ,

‖(∇q)div(Q∇w)‖ k
2
≤ d(η−1c2c7 + c3)P

1
kΞ

1
k
1 ‖w∇q‖

k−2
k
∞ ,

where we have applied here (3.1). Moreover,

‖(∇q)〈∇w,F 〉‖ k
2
≤ η−1c2c6P

1
kΞ

1
k
2 ‖w∇q‖

k−2
k
∞ ,

‖V w∇q‖ k
2
≤ c2

5P
1
kΞ

1
k
2 ‖w∇q‖

k−2
k
∞ ,

‖(∂tw)(∇q)‖ k
2
≤ c4P

1
kΞ

1
k
1 ‖w∇q‖

k−2
k
∞ ,

‖〈Q∇w,∇q〉‖k ≤ c2P
1
2kΞ

1
2k
1 ‖w∇q‖

k−1
k
∞ ,

‖w(∇Q)(∇q)‖k ≤ c7P
1
2kΞ

1
2k
1 ‖w∇q‖

k−1
k
∞ ,

‖w〈∇q, F 〉‖k ≤ c6P
1
2kΞ

1
2k
2 ‖w∇q‖

k−1
k
∞ .
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In addition, we estimate ‖q∇w‖2
2 as follows

‖q∇w‖2
2 =

∫
Q(a2,b2)

q2 |∇w|2 dt dy ≤ η−2c2
2 ‖wq‖∞

∫
Q(a2,b2)

W
1
k

1 q dt dy

≤ η−2c2
2 ‖wq‖∞ Ξ1.

Thus, we have

‖q∇w‖2 ≤ η−1c2Ξ
1
2
1 ‖wq‖

1
2
∞ .

In a similar way, we obtain∥∥∥ϑ k−2
2 p∇w

∥∥∥
k
2

≤ η−1c2Ξ
2
k
1 ‖wq‖

k−2
k
∞ ,

∥∥q(D2w)F
∥∥
k
2

≤ η−1c3c6Ξ
2
k
2 ‖wq‖

k−2
k
∞ ,

‖q〈∇w,∇F 〉‖ k
2
≤ η−1c2c8Ξ

2
k
2 ‖wq‖

k−2
k
∞ ,

‖V q∇w‖ k
2
≤ η−1c2c

2
5Ξ

2
k
2 ‖wq‖

k−2
k
∞ ,

‖wq∇V ‖ k
2
≤ c9Ξ

2
k
2 ‖wq‖

k−2
k
∞ ,

‖(∂t∇w)q‖ k
2
≤ c11Ξ

2
k
1 ‖wq‖

k−2
k
∞ ,

∥∥qQD2w
∥∥
k
≤ c3Ξ

1
k
1 ‖wq‖

k−1
k
∞ ,

‖q〈∇w,F 〉‖k ≤ η−1c2c6Ξ
1
k
2 ‖wq‖

k−1
k
∞ ,

‖wq∇F‖k ≤ c8Ξ
1
k
2 ‖wq‖

k−1
k
∞ .

Finally, we get

‖q∇w‖∞ ≤ ‖q‖
k−1
k
∞

∥∥∥q(1 + |∇w|2)
k
2

∥∥∥ 1
k

∞
.

We now estimate ‖q(1+|∇w|2)
k
2 ‖∞ by applying Theorem 3.1.1 with w replaced

by w̃ = (1 + |∇w|2)
k
2 . First, we check the assumptions using Hypothesis

3.1.4(c):

w̃
2
k = 1 + |∇w|2 ≤ 1 + η−2c2

2W
1
k

1 ≤ (1 + η−2c2
2)W

2
k

1 ,

|Q∇w̃| = k(1 + |∇w|2)
k−2
2 |(QD2w)∇w| ≤ kw̃

k−2
k |QD2w||∇w| ≤ kc3w̃

k−1
k W

1
k

1 ,
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|div(Q∇w̃)| ≤d|∇(Q∇w̃)| ≤ d|∇Q||∇w̃|+ d|QD2w̃|

≤d|∇Q|kw̃
k−2
k |D2w||∇w|+ d

[
(k − 2)w̃−

2
k |∇w̃||QD2w||∇w|

+ kw̃
k−2
k |D3w||Q∇w|+ kw̃

k−2
k |QD2w||D2w|

]
≤kd[η−2c2c3c7 + (k − 1)η−1c2

3 + c2c10]w̃
k−2
k W

2
k

1 ,

|∂tw̃| ≤ k(1 + |∇w|2)
k−2
2 |∇w||∂t∇w| ≤ kη−1c2c11w̃

k−2
k W

2
k

1 ,

w̃
1
kV

1
2 ≤ (1 + |∇w|)V

1
2 ≤ (c5 + η−1c2c5)W

1
k

2 ,

w̃
1
k |F | ≤ (1 + |∇w|)|F | ≤ (c6 + η−1c2c6)W

1
k

2 .

Moreover, w̃−2∇w̃ and w̃−2∂tw̃ are bounded on Q(a0, b0) as we assumed in

Hypothesis 3.1.4(b) that the functions |∇w|−k−1D2w and |∇w|−k−1∂t∇w are

bounded. Hence, the assumptions of Theorem 3.1.1 hold true with w replaced

by w̃ and with the constants c1, . . . , c6 replaced, respectively, by 1+η−2c2
2, kc3,

kd[η−2c2c3c7 + (k − 1)η−1c2
3 + c2c10], kη−1c2c11, c5 + η−1c2c5 and c6 + η−1c2c6.

Thus, we obtain that

∥∥∥q(1 + |∇w|2)
k
2

∥∥∥
∞
≤ C

[(
ck2 +

ck2

(b2 − b1)
k
2

+ ck3 + c
k
2
2 c

k
2
3 c

k
2
7 + c

k
2
2 c

k
2
10 + c

k
2
2 c

k
2
11

)
Ξ1

+
(
ck6 + ck2c

k
6 + c

k
2
3 c

k
2
6 + c

k
2
2 c

k
2
3 c

k
2
6 + ck5 + ck2c

k
5

)
Ξ2

]
.

Consequently, we estimate the last term in the right hand side of (3.22) as

follows

‖q∇w‖∞ ≤ C

[(
c2 +

c2

(b2 − b1)
1
2

+ c3 + c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
10 + c

1
2
2 c

1
2
11

)
Ξ

1
k
1

+
(
c6 + c2c6 + c

1
2
3 c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c5 + c2c5

)
Ξ

1
k
2

]
‖wq‖

k−1
k
∞ .
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Combining (3.22) with the above estimates yields

‖w∇q‖∞
≤Cc

k
4
1 P

1
4 Ξ

1
4
1 ‖w∇q‖

1
2
∞ + CP

1
2k

[
(c2 + c7) Ξ

1
2k
1 + c6 Ξ

1
2k
2

]
‖w∇q‖

k−1
k
∞

+ CP
1
k

[(
c1

b2 − b1

+ c2c7 + c3 + c4

)
Ξ

1
k
1 + (c2c6 + c2

5) Ξ
1
k
2

]
‖w∇q‖

k−2
k
∞

+ Cc2 Ξ
1
2
1 ‖wq‖

1
2
∞

+ C

[(
c2

b2 − b1

+ c11

)
Ξ

2
k
1 + (c2c

2
5 + c3c6 + c2c8 + c9) Ξ

2
k
2

]
‖wq‖

k−2
k
∞

+ C

[(
c2 +

c2

(b2 − b1)
1
2

+ c3 + c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
10 + c

1
2
2 c

1
2
11

)
Ξ

1
k
1

+
(
c6 + c2c6 + c

1
2
3 c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c5 + c2c5 + c8

)
Ξ

1
k
2

]
‖wq‖

k−1
k
∞ .

We observe that, by Young’s inequality, we find

Cc
k
4
1 P

1
4 Ξ

1
4
1 ‖w∇q‖

1
2
∞ ≤ C2c

k
2
1 P

1
2 Ξ

1
2
1 +

1

4
‖w∇q‖∞ .

Then, setting

X := ‖w∇q‖
1
k
∞ ,

α :=C2c
k
2
1 P

1
2 Ξ

1
2
1 + Cc2 Ξ

1
2
1 ‖wq‖

1
2
∞ + C

[(
c2

b2 − b1

+ c11

)
Ξ

2
k
1

+ (c2c
2
5 + c3c6 + c2c8 + c9) Ξ

2
k
2

]
‖wq‖

k−2
k
∞

+ C

[(
c2 +

c2

(b2 − b1)
1
2

+ c3 + c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
10 + c

1
2
2 c

1
2
11

)
Ξ

1
k
1

+
(
c6 + c2c6 + c

1
2
3 c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c5 + c2c5 + c8

)
Ξ

1
k
2

]
‖wq‖

k−1
k
∞ ,

β :=CP
1
2k

[
(c2 + c7) Ξ

1
2k
1 + c6 Ξ

1
2k
2

]
,

γ :=CP
1
k

[(
c1

b2 − b1

+ c2c7 + c3 + c4

)
Ξ

1
k
1 + (c2c6 + c2

5) Ξ
1
k
2

]
,

we derive that

Xk ≤ 4

3
α +

4

3
βXk−1 +

4

3
γXk−2. (3.23)

We now prove that it leads to

X ≤ 4

3
β +

√
4

3
γ +

(
4

3
α

) 1
k

. (3.24)
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We consider the function

f(r) := rk − 4

3
βrk−1 − 4

3
γrk−2 − 4

3
α = rk−2

(
r2 − 4

3
βr − 4

3
γ

)
− 4

3
α

=: rk−2g(r)− 4

3
α.

First, we show that f is increasing in
(

4
3
β +

√
4
3
γ + (4

3
α)

1
k ,∞

)
. This can be

seen by computing the first derivative:

f ′(r) = (k − 2)rk−3g(r) + rk−2g′(r).

Since the function g in positive and increasing in
(

4
3
β +

√
4
3
γ + (4

3
α)

1
k ,∞

)
, it

follows that f ′(r) ≥ 0 in the given interval, so f is increasing.

Second, as in (2.55), we have that

f

(
4

3
β +

√
4

3
γ +

(
4

3
α

) 1
k

)
> 0.

On one hand, from the previous observations we deduce that f(r) > 0 if

r > 4
3
β +

√
4
3
γ + (4

3
α)

1
k . On the other hand, by (3.23), f(X) ≤ 0. Thus, we

conclude that (3.24) holds true. Consequently, there exists a positive constant

K1 such that

‖w∇q‖∞ ≤ K1

(
α + βk + γ

k
2

)
.

By plugging in the previous inequality the definition of α, β, γ we get

‖w∇q‖L∞(Q(a2,b2))

≤C

{
c2Ξ

1
2
1 ‖wq‖

1
2

L∞(Q(a2,b2)) +

[(
c2

b2 − b1

+ c11

)
Ξ

2
k
1

+ (c2c
2
5 + c3c6 + c2c8 + c9) Ξ

2
k
2

]
‖wq‖

k−2
k

L∞(Q(a2,b2))

+

[(
c2 +

c2

(b2 − b1)
1
2

+ c3 + c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
10 + c

1
2
2 c

1
2
11

)
Ξ

1
k
1

+
(
c6 + c2c6 + c

1
2
3 c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c5 + c2c5 + c8

)
Ξ

1
k
2

]
‖wq‖

k−1
k

L∞(Q(a2,b2))

+

[(
c
k
2
1 +

c
k
2
1

(b2 − b1)
k
2

+ ck2 + c
k
2
2 c

k
2
7 + c

k
2
3 + ck7 + c

k
2
4

)
Ξ

1
2
1

+ (ck6 + c
k
2
2 c

k
2
6 + ck5) Ξ

1
2
2

]
P

1
2

}
.
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Letting a2 ↓ a and b2 ↑ b and considering that
∫ b
a
ξWj

(t, x) dt ≤
∫ b0
a0
ξWj

(t, x) dt

for j = 1, 2, we gain

|w(t, y)∇p(t, x, y)|

≤C

{
c2Ξ1(a0, b0)

1
2 ‖wp‖

1
2

L∞(Q(a,b)) +

[(
c2

b− b1

+ c11

)
Ξ1(a0, b0)

2
k

+ (c2c
2
5 + c3c6 + c2c8 + c9)Ξ2(a0, b0)

2
k

]
‖wp‖

k−2
k

L∞(Q(a,b))

+

[(
c2 +

c2

(b− b1)
1
2

+ c3 + c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
10 + c

1
2
2 c

1
2
11

)
Ξ1(a0, b0)

1
k

+
(
c6 + c2c6 + c

1
2
3 c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c5 + c2c5 + c8

)
Ξ2(a0, b0)

1
k

]
‖wp‖

k−1
k

L∞(Q(a,b))

+

[(
c
k
2
1 +

c
k
2
1

(b− b1)
k
2

+ ck2 + c
k
2
2 c

k
2
7 + c

k
2
3 + ck7 + c

k
2
4

)
Ξ1(a0, b0)

1
2

+ (ck6 + c
k
2
2 c

k
2
6 + ck5)Ξ2(a0, b0)

1
2

](∫
Q(a,b)

|∇p|2

p
dt dy

) 1
2
}
, (3.25)

for all (t, y) ∈ (a1, b1)× Rd and fixed x ∈ Rd.

To finish the proof, it remains to remove the additional assumption on the

weight w. For ε > 0, we define the function

wε :=
w

1 + εw
.

We have

Diwε = (1 + εw)−2Diw,

∂twε = (1 + εw)−2∂tw,

Dijwε = (1 + εw)−2Dijw − 2ε(1 + εw)−3(Diw)(Djw),

∂tDiwε = (1 + εw)−2∂tDiw − 2ε(1 + εw)−3(∂tw)(Diw),

for all i, j = 1, . . . , d. Then by Hypothesis 3.1.4(b) it follows that wε, along

with its first order partial derivatives and its second order partial derivatives of

the form Dijwε and ∂tDiwε are bounded. If we now check Hypothesis 3.1.4(c)

we have that

wε ≤ w ≤ c
k
2
1 W

1
2

1 ,

|Q∇wε| = (1 + εw)−2|Q∇w| ≤ c2W
1
2k

1 ,

|QD2wε| ≤ (1 + εw)−2|QD2w|+ 2ε(1 + εw)−3|Q∇w||∇w| ≤ (c3 + 2η−1c2
2)W

1
k

1 ,
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|D3wε| ≤ (1 + εw)−2|D3w|+ 6ε(1 + εw)−3|∇w||D2w|+ 6ε2(1 + εw)−4|∇w|3

≤ (c10 + 6η−2c2c3 + 6η−3c3
2)W

3
2k

1 ,

|∂twε| = (1 + εw)−2|∂tw| ≤ c4w
k−2
k W

1
2k

1

and

|∂t∇wε| ≤ (1 + εw)−2|∂t∇w|+ 2ε(1 + εw)−3|∇w||∂tw| ≤ (c11 + 2η−1c2c4)W
1
k

1 .

This shows that wε satisfies Hypothesis 3.1.4(c) with the same constants

c1, c2, c4, c5, c6, c7, c8, c9 and with the constants c3, c10, c11 replaced, respec-

tively, by c3 + 2η−1c2
2, c10 + 6η−2c2c3 + 6η−3c3

2 and c11 + 2η−1c2c4.

Thus, the estimate (3.25) shown in the first part of the proof holds true

with the function wε instead of w and with the constants on the right hand side

that do not depend on ε. We finally let ε→ 0 to gain inequality (3.19).

Remark 3.2.2. From the above proof one can see that the constants Bi, i =

1, . . . , 6 are given by

B1 = c2,

B2 =
c2

b− b1

+ c2c4 + c11,

B3 = c2c
2
5 + c3c6 + c2

2c6 + c2c8 + c9,

B4 = c2 + c3 + c2
2 +

c2

(b− b1)
1
2

+ c
1
2
2 c

1
2
3 c

1
2
7 + c

3
2
2 c

1
2
7 + c

1
2
2 c

1
2
10 + c2c

1
2
3 + c2c

1
2
4 + c

1
2
2 c

1
2
11,

B5 = c6 + c2c6 + c
1
2
3 c

1
2
6 + c2c

1
2
6 + c

1
2
2 c

1
2
3 c

1
2
6 + c

3
2
2 c

1
2
6 + c5 + c2c5 + c8,

B6 = c
k
2
1 +

c
k
2
1

(b− b1)
k
2

+ ck2 + c
k
2
2 c

k
2
7 + c

k
2
3 + ck7 + c

k
2
4 ,

B7 = ck6 + c
k
2
2 c

k
2
6 + ck5. (3.26)

3.3 Estimates for the derivatives of the kernel

for general diffusion coefficients

In this section we proceed by approximation as in Chapter 2, Section 2.5. We

approximate the operator A as in Chapter 1. We consider the function ϕn
defined by (1.31), where W1 is the time dependent Lyapunov function from

Hypothesis 3.1.4 and the constant t0 ∈ (0, T ) will be chosen later on. Then,

we take the matrix Qn := (q
(n)
ij ) defined by (1.32) and the following family of

operators An with bounded diffusion coefficients

An = div(Qn∇) + F · ∇ − V.



3.3. Estimates for the derivatives of the kernel for general diffusion
coefficients 114

As a consequence of the Lemma 1.6.4, for every n ∈ N the semigroup generated

by An in Cb(Rd) is given by a kernel pn(t, x, y).

We now make the following assumptions.

Hypothesis 3.3.1. Fix T > 0, x ∈ Rd and 0 < a0 < a < b < b0 < T . Let us

consider two time dependent Lyapunov functions 1 ≤ W1, W2 for the operators

L := ∂t + A and ∂t + η∆ + F · ∇ − V with W1 ≤ W2, |∇W1|, |∇W2| bounded

on (0, T )×BR for all R > 0 and a weight function 1 ≤ w ∈ C1,2((0, T )× Rd)

such that

(a) there is t0 ∈ (0, T ) such that

|Q||∇W1(t0, ·)| ≤ c12W1(t0, ·)w−1/kW
1/2k
1 ;

(b) there are c0 > 0 and σ ∈ (0, 1) such that

W2 ≤ c0Z
1−σ,

where Z is the function introduced in Hypothesis 3.0.1(b);

(c) there is a nonnegative function f such that

∇Z(x) = f(x)∇W1(t0, x),

for all x ∈ Rd.

As a consequence of the previous assumptions, the operators An inherit

Hypothesis 3.1.4 from A.

Lemma 3.3.2. Assume that the operator A satisfies Hypotheses 3.1.4(c) and

3.3.1(a). Then the operator An satisfies Hypothesis 3.1.4(c) with the same con-

stants c1, c4, c5, c6, c8, c9, c10, c11 and with c2, c3, c7 being replaced, respectively,

by 2c2, 2c3 and
√

3(c7 + 2(1 +
√
d)c12).

Proof. The constants c1, c4, c5, c6, c8, c9, c10, c11 remain the same because the

corresponding inequalities do not depend on the diffusion coefficients. Let us

note that Hypothesis 3.1.4(c)-(ii) implies that

|∇w| ≤ η−1c2W
1
2k

1 .

So, it follows that

|Qn∇w| = |ϕnQ∇w + (1− ϕn)η∇w| ≤ |Q∇w|+ η |∇w| ≤ 2c2W
1
2k

1 .

Similarly, we get∣∣QnD
2w
∣∣ =

∣∣ϕnQD2w + (1− ϕn)ηD2w
∣∣ ≤ ∣∣QD2w

∣∣+ η
∣∣D2w

∣∣ ≤ 2c3W
1
k

1 .
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Finally, for (t, y) ∈ [a0, b0]×Rd, given that the function ϕ satisfies |sϕ′(s)| ≤ 2

as defined in Section 1.6 and using Hypothesis 3.3.1(a), we have

|∇Qn|2

=
d∑

i,j,h=1

∣∣∣∣ϕnDhqij +
ϕ′(W1(t0, ·)/n)

n
DhW1(t0, ·)(qij − ηδij)

∣∣∣∣2

≤3
d∑

i,j,h=1

[
|ϕnDhqij|2 +

|ϕ′(W1(t0, ·)/n)|2

n2
|DhW1(t0, ·)|2(q2

ij + η2δij)

]
≤3|ϕn|2|∇Q|2

+ 3(W1(t0, ·)/n)2|ϕ′(W1(t0, ·)/n)|2(W1(t0, ·))−2

d∑
i,j,h=1

|qijDhW1(t0, ·)|2

+ 3dη2(W1(t0, ·)/n)2|ϕ′(W1(t0, ·)/n)|2(W1(t0, ·))−2

d∑
h=1

|DhW1(t0, ·)|2

≤3(c2
7 + 4c2

12 + 4dc2
12)w−

2
kW

1
k

1 .

Then,

|∇Qn| ≤
√

3(c7 + 2c12 + 2
√
dc12)w−

1
kW

1
2k

1 .

We can now obtain estimates for the gradients of the kernels pn.

Lemma 3.3.3. Assume that Hypothesis 3.3.1 holds and that the operator A

satisfies Hypothesis 3.1.4. For i = 1, 2, we set

ξWi,n(t, x) :=

∫
Rd
pn(t, x, y)Wi(t, y) dy and Ξi,n(a0, b0) :=

∫ b0

a0

ξWi,n(t, x) dt.

Then for any n ∈ N we have

|w(t, y)∇pn(t, x, y)| ≤ Kn,

for all (t, y) ∈ (a1, b1)× Rd and fixed x ∈ Rd, where

Kn = C

{(
B1Ã

1
2
1 +B2Ã

k−2
k

1 + B̃4Ã
k−1
k

1

)
Ξ1,n(a0, b0) +

[
B1A

1
2
2 + (B2 +B3)A

k−2
k

2

+B3Ã
k−2
k

1 + (B̃4 +B5)A
k−1
k

2 +B5Ã
k−1
k

1 + B̃6B8 +B7B8

]
Ξ2,n(a0, b0)

+
(
B̃6 Ξ1,n(a0, b0)

1
2 +B7 Ξ2,n(a0, b0)

1
2

)(∫
Q(a,b)

pn log2 pn dt dy

) 1
2

−
(
B̃6 Ξ1,n(a0, b0)

1
2 +B7 Ξ2,n(a0, b0)

1
2

)(∫
Rd

[pn log pn]t=bt=ady

) 1
2

}
,

and the constants A2, B1, . . . , B8, Ã1, B̃4, B̃6 are defined as in (3.3), (3.26),

(3.30), (3.28) and (3.29).
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Proof. Since the operator A satisfies Hypotheses 3.1.4 and 3.3.1, then for any

n ∈ N the operator An satisfies Hypotheses 3.0.1 and 3.1.4 by Lemma 1.6.4

with slightly different constants given by Lemma 3.3.2. Consequently, applying

(3.2) to pn we get

w(t, y)pn(t, x, y) ≤ C
(
Ã1 Ξ1,n(a0, b0) + A2 Ξ2,n(a0, b0)

)
, (3.27)

where

Ã1 = c
k
2
1 + ck2 +

c
k
2
1

(b0 − b)
k
2

+ c
k
2
2 c

k
2
7 + c

k
2
2 c

k
2
12 + c

k
2
3 + c

k
2
4 . (3.28)

Moreover, applying (3.19) to pn, we obtain

|w(t, y)∇pn(t, x, y)|

≤ C

{
B1 Ξ1,n(a0, b0)

1
2 ‖wpn‖

1
2

L∞(Q(a,b))

+
(
B2 Ξ1,n(a0, b0)

2
k +B3 Ξ2,n(a0, b0)

2
k

)
‖wpn‖

k−2
k

L∞(Q(a,b))

+

[
B̃4 Ξ1,n(a0, b0)

1
k +B5 Ξ2,n(a0, b0)

1
k

]
‖wpn‖

k−1
k

L∞(Q(a,b))

+
(
B̃6 Ξ1,n(a0, b0)

1
2 +B7 Ξ2,n(a0, b0)

1
2

)(∫
Q(a,b)

|∇pn|2

pn
dt dy

) 1
2
}
,

where

B̃4 =c2 + c3 + c2
2 +

c2

(b− b1)
1
2

+ c
1
2
2 c

1
2
3 c

1
2
7 + c

1
2
2 c

1
2
3 c

1
2
12 + c

3
2
2 c

1
2
7

+ c
3
2
2 c

1
2
12 + c

1
2
2 c

1
2
10 + c2c

1
2
3 + c2c

1
2
4 + c

1
2
2 c

1
2
11,

B̃6 =c
k
2
1 +

c
k
2
1

(b− b1)
k
2

+ ck2 + c
k
2
2 c

k
2
7 + c

k
2
2 c

k
2
12 + c

k
2
3 + ck7 + ck12 + c

k
2
4 . (3.29)

Finally, by Theorem 3.1.5 we have∫
Q(a,b)

|∇pn|2

pn
dt dy ≤ C

[
(c2

6 + c4
5) Ξ2,n(a0, b0) +

∫
Q(a,b)

pn log2 pn dt dy

−
∫
Rd

[pn log pn]t=bt=ady

]
.
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Combining them yields

|w(t, y)∇pn(t, x, y)|

≤ C

{
B1 Ξ1,n(a0, b0)

1
2

(
Ã

1
2
1 Ξ1,n(a0, b0)

1
2 + A

1
2
2 Ξ2,n(a0, b0)

1
2

)
+
(
B2Ξ1,n(a0, b0)

2
k +B3Ξ2,n(a0, b0)

2
k

)(
Ã

k−2
k

1 Ξ1,n(a0, b0)
k−2
k

+ A
k−2
k

2 Ξ2,n(a0, b0)
k−2
k

)
+
(
B̃4 Ξ1,n(a0, b0)

1
k +B5 Ξ2,n(a0, b0)

1
k

)
×

×
(
Ã

k−1
k

1 Ξ1,n(a0, b0)
k−1
k + A

k−1
k

2 Ξ2,n(a0, b0)
k−1
k

)
+
(
B̃6 Ξ1,n(a0, b0)

1
2

+B7 Ξ2,n(a0, b0)
1
2

)[
B8 Ξ2,n(a0, b0)

1
2 +

(∫
Q(a,b)

pn log2 pn dt dy

) 1
2

−
(∫

Rd
[pn log pn]t=bt=ady

) 1
2

]}
,

where

B8 = c6 + c2
5. (3.30)

Considering that Ξ1,n(a0, b0) ≤ Ξ2,n(a0, b0), the statement follows.

Lemma 3.3.4. Assume that Hypothesis 3.3.1 holds and that the operator A

satisfies Hypothesis 3.1.4. Then, for n→∞, we have∫
Rd

[pn(t, x, y) log pn(t, x, y)]t=bt=ady →
∫
Rd

[p(t, x, y) log p(t, x, y)]t=bt=ady

and∫
Q(a,b)

pn(t, x, y) log2 pn(t, x, y) dt dy →
∫
Q(a,b)

p(t, x, y) log2 p(t, x, y) dt dy.

In particular, the latter integrals are finite.

Proof. We observe that, by Lemma 1.6.6, we have that pn(t, x, ·) → p(t, x, ·)
locally uniformly in Rd as n → ∞. Moreover, Lemma 1.6.7 implies that

ξWj ,n(·, x) → ξWj
(·, x) uniformly in (a0, b0) as n → ∞ for j = 1, 2. Then, it

follows from inequality (3.27) that pn ≤ Cnw
−1 for a certain constant Cn with

supCn <∞. Making use of Hypothesis 3.1.4(a), we find integrable majorants

for pn log pn and pn log2 pn. At this point, the statements follows by means of

the dominated convergence theorem.

Corollary 3.3.5. Assume Hypotheses 3.1.4 and 3.3.1. Then

√
p ∈ W 0,1

2 (Q(a, b)).
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Proof. As a consequence of Hypothesis 3.1.4(b) and Lemma 3.3.4,

C := sup
n∈N

1

η2

∫
Q(a,b)

(
|F (y)|2 + V 2(y)

)
pn(t, x, y) dt dy

+

∫
Q(a,b)

pn(t, x, y) log2 pn(t, x, y) dt dy

− 2

η

∫
Rd

[pn(t, x, y) log pn(t, x, y)]t=bt=ady <∞.

It follows from Theorem 3.1.5 that
√
pn is bounded in W 0,1

2 (Q(a, b)). As this

space is reflexive, a subsequence of pn converges weakly to some element q of

W 0,1
2 (Q(a, b)). However, as pn → p pointwise and with an integrable majorant,

testing against a function in C∞c (Rd), we see that q = p.

We can now prove our main result.

Theorem 3.3.6. Assume that the operator A satisfies Hypotheses 3.1.4 and

3.3.1. Then we have

|w(t, y)∇p(t, x, y)| ≤ K,

for all (t, y) ∈ (a, b)× Rd and fixed x ∈ Rd, where

K = C

{(
B1Ã

1
2
1 +B2Ã

k−2
k

1 + B̃4Ã
k−1
k

1

)
Ξ1(a0, b0) +

[
B1A

1
2
2 + (B2 +B3)A

k−2
k

2

+B3Ã
k−2
k

1 + (B̃4 +B5)A
k−1
k

2 +B5Ã
k−1
k

1 + B̃6B8 +B7B8

]
Ξ2(a0, b0)

+
(
B̃6 Ξ1(a0, b0)

1
2 +B7 Ξ2(a0, b0)

1
2

)(∫
Q(a,b)

p log2 p dt dy

) 1
2

−
(
B̃6 Ξ1(a0, b0)

1
2 +B7 Ξ2(a0, b0)

1
2

)(∫
Rd

[p log p]t=bt=ady

) 1
2

}
, (3.31)

and the constants A2, B1, . . . , B8, Ã1, B̃4, B̃6 are defined as in (3.3), (3.26),

(3.30), (3.28) and (3.29).

Proof. By Lemmas 3.3.3 and 3.3.4 we infer that

lim sup
n→∞

|w(t, y)∇pn(t, x, y)| ≤ K.

Then, for |h| small, we have

w(t, y)

∣∣∣∣p(t, x, y + h)− p(t, x, y)

h

∣∣∣∣
= lim sup

n→∞
w(t, y)

∣∣∣∣pn(t, x, y + h)− pn(t, x, y)

h

∣∣∣∣
≤ lim sup

n→∞
w(t, y)

∫ 1

0

|∇pn(t, x, y + sh)| ds

≤ K

∫ 1

0

w(t, y)

w(t, y + sh)
ds.

If we now let |h| → 0, the statement follows.
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As a simple consequence one obtains the following Sobolev regularity for

p.

Corollary 3.3.7. Assume in addition to Hypotheses 3.1.4 and 3.3.1, that∫
Q(a,b)

w(t, x)−r dtdx <∞ for some r ∈ (1,∞). Then p ∈ W 0,1
r (Q(a, b)).

3.4 Application to the case of polynomial co-

efficients

Here we apply the results of the previous sections to the case of operators with

polynomial diffusion coefficients, drift and potential terms.

Consider Q(x) = (1 + |x|m∗ )I, F (x) = −|x|p−1x and V (x) = |x|s with

p > (m− 1) ∨ 1, s > |m− 2| and m > 0. To apply Theorem 3.3.6 we set

w(t, x) = eεt
α|x|β∗ and Wj(t, x) = eεjt

α|x|β∗ ,

for (t, y) ∈ (0, 1)× Rd, where j = 1, 2, β = s−m+2
2

, 0 < 2kε < ε1 < ε2 <
1
β

and

α > β
β+m−2

.

Theorem 3.4.1. Let p be the integral kernel associated with the operator A

with Q(x) = (1 + |x|m∗ )I, F (x) = −|x|p−1x and V (x) = |x|s, where p >

(m− 1) ∨ 1, s > |m− 2| and m > 0. Then

p(t, x, y) ≤ Ct1−
α(2m∨2p∨s)
s−m+2

ke−εt
α|y|

s−m+2
2

∗

and

|∇p(t, x, y)| ≤ C(1− log t)t
3
2
− 3α(m∨p∨ s2 )k+α

s−m+2 e−εt
α|y|β∗ (3.32)

for k > 2(d+ 2) and any t ∈ (0, 1), x, y ∈ Rd.

Proof. Step 1. We show that W1 and W2 are time dependent Lyapunov func-

tions for L = ∂t + A and ∂t + η∆ + F · ∇ − V with respect to the function

Z(x) = eε2|x|
β
∗ .

For that, we take into account Remark 2.2.2. Let |x| ≥ 1 and set Gj =∑d
i=1 Diqij = m|x|m−2xj. Since s > |m−2|, we have β > (2−m)∨0. Moreover,

|x|1−β−m
(

(G+ F ) · x
|x|
− V

εjβ|x|β−1

)
= |x|1−β−m

(
m|x|m−1 − |x|p − |x|s

εjβ|x|β−1

)
≤ m|x|−β − 1

εjβ
.
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If |x| is large enough, for example |x| ≥ K with

K >

(
m

1
εjβ
− 1

) 1
β

,

we get

|x|1−β−m
(

(G+ F ) · x
|x|
− V

εjβ|x|β−1

)
≤ m|x|−β − 1

εjβ

≤ mK−β − 1

εjβ
< −1,

where we have used that εj <
1
β
. In addition, we have

lim
|x|→∞

V (x) |x|2−2β−m = lim
|x|→∞

|x|2−2β−m+s = 1.

Hence, lim|x|→∞ V (x) |x|2−2β−m > c for any c < 1. Consequently, by Proposi-

tion 2.2.1 and Remark 2.2.2 we obtain that W1 and W2 are time dependent

Lyapunov functions for L = ∂t +A and ∂t + η∆ + F · ∇ − V . Similar compu-

tations show that the function Z(x) satisfies Hypothesis 3.0.1(b).

Step 2. We now show that A satisfies Hypotheses 3.1.4 and 3.3.1. Fix

T = 1, x ∈ Rd, 0 < a0 < a < b < b0 < T and k > 2(d + 2). Let (t, y) ∈
[a0, b0] × Rd. Clearly, Hypothesis 3.1.4(a)-(b) and Hypothesis 3.3.1(b) are

satisfied. We assume that |y| ≥ 1; otherwise, in a neighborhood of the origin,

all the quantities we are going to estimate are obviously bounded.

First, since 2ε < ε1, we infer that

w ≤ c1w
k−2
k W

1
k

1 ,

with c1 = 1. Second, we have

|Q(y)∇w(t, y)|
W1(t, y)

1
2k

= εβtα|y|β−1(1 + |y|m)e−
1
2k

(ε1−2kε)tα|y|β

≤ 2εβtα|y|β+m−1e−
1
2k

(ε1−2kε)tα|y|β . (3.33)

We make use of the following remark: since the function t 7→ tpe−t on (0,∞)

attains its maximum at the point t = p, then for τ, γ, z > 0 we have

zγe−τz
β

= τ−
γ
β (τzβ)

γ
β e−τz

β ≤ τ−
γ
β

(
γ

β

) γ
β

e−
γ
β =: C(γ, β)τ−

γ
β . (3.34)

Applying (3.34) to the inequality (3.33) with z = |y|, τ = 1
2k

(ε1−2kε)tα, β = β

and γ = β +m− 1 > 0 yields

|Q(y)∇w(t, y)|
W1(t, y)

1
2k

≤ 2C(β +m− 1, β)εβtα
[

1

2k
(ε1 − 2kε)tα

]−β+m−1
β

≤ ct−
α(m−1)+

β ≤ ca
−α(m−1)+

β

0 .
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Thus, we choose c2 = ca
−α(m−1)+

β

0 , where c is a universal constant. In a similar

way,

|Q(y)D2w(t, y)|
W1(t, y)

1
k

=
(1 + |y|m)|D2w(t, y)|

W1(t, y)
1
k

≤ 2
√

3εβtα
[(

(β − 2)+ +
√
d
)
|y|β+m−2 + εβtα|y|2β+m−2

]
e−

1
k

(ε1−kε)tα|y|β .

Applying (3.34) to each term, we get

|Q(y)D2w(t, y)|
W1(t, y)

1
k

≤C(β,m)εβtα

{(
(β − 2)+ +

√
d
)[1

k
(ε1 − kε)tα

]−β+m−2
β

+εβtα
[

1

k
(ε1 − kε)tα

]− 2β+m−2
β

}
≤ ct−

α(m−2)
β ≤ ca

−α(m−2)+

β

0 .

Therefore, we pick c3 = ca
−α(m−2)+

β

0 . Furthermore, if we consider t0 ∈ (0, t), we

have

|Q(y)||∇W1(t0, y)|
W1(t0, y)w(t, y)−1/kW1(t, y)1/2k

=
√
dβε1t

α
0 (1 + |y|m)|y|β−1e−

1
2k

(ε1−2ε)tα|y|β

≤ ct−α
m−1
β ≤ ca

−α (m−1)+

β

0 =: c12,

where we used (3.34). We can proceed in the same way to check the remaining

inequalities. To sum up, the constants c1, . . . , c12 are the following:

c1 = 1, c2 = c7 = c12 = ca
−α(m−1)+

β

0 , c3 = ca
−α(m−2)+

β

0 ,

c4 = c11 = ca−1
0 , c5 = ca

−αs
2β

0 , c6 = ca
−αp

β

0 ,

c8 = ca
−α(p−1)

β

0 , c9 = ca
−α(s−1)+

β

0 , c10 = c.

Step 3. We are now ready to apply Theorem 3.3.6. To that end, we choose

a0 = t/4, a = t/2, b = (t+1)/2 and b0 = (t+3)/4. If we now set λ = m∨p∨ s
2
,

since α > β
β+m−2

, s > |m− 2| and β = s−m+2
2

, we have

αλ

β
>

s

2(β +m− 2)
=

s

s+m− 2
>

1

2
.

Hence we can estimate the constant A2 in (3.3) as follows

A2 = ck6 + c
k
2
2 c

k
2
6 + ck5 = c

(
t−

αpk
β + t−

α((m−1)++p)k
2β + t−

αsk
2β

)
≤ ct−

αλk
β .(3.35)

Similarly, if we consider the remaining constants in the right hand side of (3.31)

we obtain that

Ã1 ≤ c
(
t−

αλk
β + t−

k
2

)
, B1 ≤ ct−

αλ
β , B2 ≤ ct−

αλ
β
−1,

B3 ≤ ct−
3αλ
β , B̃4 ≤ ct−

2αλ
β , B5 ≤ ct−

2αλ
β ,

B̃6 ≤ ct−
αλk
β , B7 ≤ ct−

αλk
β , B8 ≤ ct−

αλ
β . (3.36)
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Moreover, by Proposition 2.2.1, there are two constants H1 and H2 not de-

pending on a0 and b0 such that ξWj
(t, x) ≤ Hj for all (s, x) ∈ [0, 1]×Rd, so for

j = 1, 2 we have

Ξj(a0, b0) =

∫ b0

a0

ξWj
(t, x) dt ≤ Hj(b0 − a0) =

3t

4
Hj. (3.37)

Furthermore, by Corollary 3.1.3, the approximation procedure used to obtain

pn, (3.27) and Lemma 1.6.7 we obtain

p(t, x, y) ≤ Ct1−
αλk
β e−εt

α|y|β∗ . (3.38)

Then,

p(t, x, y) log p(t, x, y) ≤ Ct1−
αλk
β

[
logC +

(
1− αλk

β

)
log t− εtα|y|β∗

]
e−εt

α|y|β∗

≤ C(1− log t)t1−
αλk
β e−εt

α|y|β∗ .

Considering that a = t
2

and b = (t+ 1)/2, it leads to∫
Rd

[p(t, x, y) log p(t, x, y)]t=bt=a dy ≤ C(1− log t)t1−
αλk+α
β

∫
Rd
e−ε|z|

β
∗dz

≤ C(1− log t)t1−
αλk+α
β , (3.39)

where in the integral we performed the change of variables z = a
α
β y and z =

b
α
β y. We also get∫

Q(a,b)

p(t, x, y) log2 p(t, x, y) dt dy ≤ C(1− log t)2t2−
αλk+α
β . (3.40)

Putting (3.35)-(3.40) in (3.31) yields

K ≤ C(1− log t)t
3
2
− 3αλk+α

2β .

Thus, Estimate (3.32) follows from Theorem 3.3.6.

Similar estimates as in the symmetric case, see Theorem 2.6.1, can be also

obtained for operators with drift term.

Remark 3.4.2. If in addition to the assumptions of Theorem 3.4.1 one as-

sumes that s > (p− 1) ∨ (2p−m)+, then

p(t, x, y) ≤ Ct1−
α(2m∨2p∨s)
s−m+2

ke−
ε
2
tα|x|

s−m+2
2

∗ e−
ε
2
tα|y|

s−m+2
2

∗ (3.41)

holds for k > d+ 2 and any t ∈ (0, 1), x, y ∈ Rd. Indeed, the formal adjoint of

A is A∗ = A−2F ·∇+ (d+p−1)|x|p−1. The associated minimal semigroup is

given by the kernel p(t, x, y)∗ = p(t, y, x). Since s > (p−1)∨(2p−m)+, one can

see that the condition in Remark 2.2.2 is satisfied and since s > p−1, it follows

that lim|x|→∞ Ṽ (x) |x|2−2β−m = 1, where Ṽ (x) := |x|s−(d+p−1)|x|p−1, x ∈ Rd.

So, p∗(t, x, y) satisfies (3.38). Arguing as in Step 4 of the proof of Theorem

2.6.1 one obtains (3.41).



Appendix A

Function spaces

In this appendix we collect all the function spaces that we consider in this

manuscript. In the following we will deal with real-valued or complex-valued

functions. However, all the definitions apply for vector-valued functions: for

example we say that F = (Fj) belongs to the space Cb(Rd;Rd) if each compo-

nent Fj belongs to Cb(Rd).

A.1 Spaces of continuous functions

Let Ω be a domain or its closure and K = R or C.

Definition A.1.1. • We denote by C(Ω) the set of all continuous functions

f : Ω→ K.

• For α ∈ (0, 1), Cα(Ω) is the subset of C(Ω) consisting of functions f : Ω→ K
which are α-Hölder continuous in Ω, namely such that

sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|α

<∞.

• In general, for α ∈ (0,∞), Cα(Ω) is the subset of C(Ω) of functions f : Ω→
K which admit derivatives up to the order [α] and their derivatives of order

[α] are (α− [α])-Hölder continuous in Ω (if α /∈ N).

• We denote by Cb(Ω) the set of all functions f : Ω → K which are bounded

and continuous in Ω. It is a Banach space when endowed with the sup-norm

‖f‖∞ = sup
x∈Ω
|f(x)|, f ∈ Cb(Ω).

• If Ω is bounded, then C0(Ω) denotes the set of all continuous functions

f : Ω → K which vanish on the boundary of Ω. If Ω is unbounded, then

sometimes we also require that f vanishes as |x| → ∞. It is a Banach space

when endowed with the sup-norm.
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• For α ∈ (0, 1), Cα
b (Ω) is the space of bounded α-Hölder continuous functions

in Ω, namely the subset of Cb(Ω) consisting of functions f : Ω → K such

that

[f ]Cαb (Ω) = sup
x,y∈Ω
x6=y

|f(x)− f(y)|
|x− y|α

<∞.

It is a Banach space when endowed with the norm

‖f‖Cαb (Ω) = ‖f‖∞ + [f ]Cαb (Ω), f ∈ Cα
b (Ω).

• In general, for α ∈ (0,∞), Cα
b (Ω) is the subset of Cb(Ω) of functions f : Ω→

K which admit bounded derivatives up to the order [α] and their derivatives

of order [α] are (α− [α])-Hölder continuous in Ω (if α /∈ N). It is a Banach

space when endowed with the norm

‖f‖Cαb (Ω) :=
∑
|β|≤[α]

∥∥Dβf
∥∥
∞ +

∑
|β|=[α]

[Dβf ]
C
α−[α]
b (Ω)

, f ∈ Cα
b (Ω).

• For α ∈ (0,∞), we denote by Cα
loc(Ω) the set of all functions f : Ω → K

which belong to Cα
b (K) for each compact subset K of Ω.

• Cc(Ω) denotes the space of continuous functions with compact support in

Ω ⊂ Rd.

• We denote by C∞c (Ω) the space of smooth functions with compact support in

Ω.

A.2 Parabolic Hölder spaces

Let I ⊂ R and Ω ⊂ Rd be, respectively, an interval and a domain, or a closure

of a domain. Moreover, let α, β ∈ (0, 1) and k ∈ N be fixed.

Definition A.2.1. • Cα,0
b (I × Ω) denotes the space of all the bounded con-

tinuous functions f : I × Ω → K such that the function f(·, x) is α-Hölder

continuous in I for each x ∈ Ω. It is a Banach space with the norm

‖f‖Cα,0b (I×Ω) = sup
x∈Ω
‖f(·, x)‖Cαb (I) , f ∈ Cα,0

b (I × Ω).

• By C0,β
b (I ×Ω) we denote the space of all the bounded continuous functions

f : I ×Ω→ K such that the function f(t, ·) is β-Hölder continuous in Ω for

each t ∈ I. It is a Banach space with the norm

‖f‖C0,β
b (I×Ω) = sup

t∈I
‖f(t, ·)‖Cβb (Ω) , f ∈ C0,β

b (I × Ω).
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• Cα,β
b (I × Ω) := Cα,0

b (I × Ω) ∩ C0,β
b (I × Ω). It is a Banach space with the

norm

‖f‖Cα,βb (I×Ω) = ‖f‖C0,β
b (I×Ω) + sup

x∈Ω
[f(·, x)]Cαb (I), f ∈ Cα,β

b (I × Ω).

• C1,2(I × Ω) denotes the space of all functions f : I × Ω → K which are

once continuously differentiable with respect to time and twice continuously

differentiable with respect to the spatial variables in I × Ω with continuous

derivatives.

• C1+α/2,2+α
b (I×Ω) is the subspace of C1,2(I×Ω) consisting of all the bounded

functions f : I × Ω → K with ∂tf and Dij in C
α/2,α
b (I × Ω) for each i, j =

1, . . . , d. It is a Banach space with the norm

‖f‖
C

1+α/2,2+α
b (I×Ω)

= ‖f‖∞ +
d∑
j=1

‖Djf‖∞ +
d∑

i,j=1

‖Dijf‖Cα/2,αb (I×Ω)

+ ‖∂tf‖Cα/2,αb (I×Ω)
, f ∈ C1+α/2,2+α

b (I × Ω).

• C1+α/2,2+α
loc (I×Ω) is the local Hölder space consisting of functions f : I×Ω→

K which belong to C
1+α/2,2+β
b (K) for every compact subset K of I × Ω.

• If I = (a, b) for 0 ≤ a < b and Ω = Rd, we denote by C1,2
c ((a, b) × Rd) the

space of all functions f : (a, b)×Rd → K compactly supported in (a, b)×Rd,

which belong to C1,2((a, b) × Rd). Notice that we are not requiring that

f ∈ C1,2
c ((a, b)× Rd) vanishes at t = a, t = b.

• C∞c (I×Ω) denotes the space of smooth functions f : I×Ω→ K with compact

support in I × Ω.

We skip the subscript ”b” to define the sets Cα,0(I × Ω), C0,β(I × Ω),

Cα,β(I × Ω) and C1+α/2,2+α(I × Ω) when the boundedness is not required.

A.3 Lp and Sobolev spaces

Let Ω be a domain of Rd.

Definition A.3.1. • For every p ∈ [1,∞), Lp(Ω) denotes the space of all the

(equivalence classes of) measurable functions f : Ω→ K such that∫
Ω

|f |p dx <∞.

It is a Banach space when endowed with the norm

‖f‖Lp(Ω) =

(∫
Ω

|f |p dx
) 1

p

, f ∈ Lp(Ω).
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• We denote by L∞(Ω) the space of all the (equivalence classes of) measurable

functions f : Ω→ K such that

ess sup
Ω
f = inf{C > 0: |f(x)| ≤ C, for almost every x ∈ Ω}.

It is a Banach space when endowed with the norm ‖f‖∞ = ess supΩ f for

every f ∈ L∞(Ω).

• For p ∈ [1,∞], Lploc(Ω) denotes the set of all the (equivalence classes of)

measurable functions f : Ω → K which belong to Lp(K) for every bounded

domain K whose closure is contained in Ω.

If Ω is clear from the context, then for p ∈ [1,∞] we simply write ‖·‖p for

the norm in Lp(Ω).

We now introduce Sobolev spaces of integer order. Let Ω be a domain of

Rd, k ∈ N and p ∈ [1,∞).

Definition A.3.2. • We denote by W k,p(Ω) the subspace of Lp(Ω) of all the

(equivalence classes of) measurable functions f : Ω → K with distributional

derivatives up to the order k belonging to Lp(Ω). It is a Banach space when

endowed with the norm

‖f‖Wk,p(Ω) =

( ∑
|α|≤k

‖Dαf‖pLp(Ω)

) 1
p

, f ∈ W k,p(Ω).

• We set H1(Ω) := W 1,2(Ω).

• By W k,p
0 (Ω) we denote the closure of the set of test functions C∞c (Ω) into

W k,p(Ω) with respect to the norm of W k,p(Ω).

• We denote by H1
0 (Ω) the closure of the set of test functions C∞c (Ω) with

respect to the norm of H1(Ω).

• W k,p
loc (Ω) denotes the set of all the (equivalence classes of) measurable func-

tions f : Ω → K which belong to W k,p(K) for every bounded domain K

whose closure is contained in Ω.

A.4 Parabolic Lp and Sobolev spaces

Let 0 ≤ a < b < ∞ and consider the set Q(a, b) = (a, b) × Rd. We define the

Lp-spaces in Q(a, b) as in Definition A.3.1.

Definition A.4.1. • For every p ∈ [1,∞), Lp(Q(a, b)) denotes the space of

all the (equivalence classes of) measurable functions f : Q(a, b) → K such

that ∫
Q(a,b)

|f |p dt dx <∞.
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It is a Banach space when endowed with the norm

‖f‖Lp(Q(a,b)) =

(∫
Q(a,b)

|f |p dt dx
) 1

p

, f ∈ Lp(Q(a, b)).

• We denote by L∞(Q(a, b)) the space of all the (equivalence classes of) mea-

surable functions f : Q(a, b)→ K such that

ess sup
Q(a,b)

f = inf{C > 0: |f(t, x)| ≤ C, for almost every (t, x) ∈ Q(a, b)}.

It is a Banach space when endowed with the norm ‖f‖∞ = ess supQ(a,b) f for

every f ∈ L∞(Q(a, b)).

We now define parabolic Sobolev spaces for p ∈ (1,∞) as follows.

Definition A.4.2. • By W 0,1
p (Q(a, b)) we denote the space of functions f ∈

Lp(Q(a, b)) having weak space derivatives Dif ∈ Lp(Q(a, b)) for i = 1, . . . , d

equipped with the norm

‖f‖W 0,1
p (Q(a,b)) := ‖f‖Lp(Q(a,b)) + ‖∇f‖Lp(Q(a,b);Rd).

• We denote by W 1,2
p (Q(a, b)) the space of functions f ∈ Lp(Q(a, b)) having

weak space derivatives Dα
i f ∈ Lp(Q(a, b)) for |α| ≤ 2 and weak time deriva-

tive ∂tf ∈ Lp(Q(a, b)) equipped with the norm

‖f‖W 1,2
p (Q(a,b)) := ‖f‖Lp(Q(a,b)) + ‖∂tf‖Lp(Q(a,b)) +

∑
1≤|α|≤2

‖Dαf‖Lp(Q(a,b)).

We shall also define the space Hp,1(Q(a, b)) and provide some properties.

Definition A.4.3. For 1 < p < ∞, we denote by Hp,1(Q(a, b)) the space of

all functions f ∈ W 0,1
p (Q(a, b)) with ∂tf ∈ (W 0,1

p′ (Q(a, b)))′, the dual space of

W 0,1
p′ (Q(a, b)), endowed with the norm

‖f‖Hp,1(Q(a,b)) := ‖∂tf‖(W 0,1

p′ (Q(a,b)))′ + ‖f‖W 0,1
p (Q(a,b)) ,

where 1/p+ 1/p′ = 1.

Lemma A.4.4. [41, Lemmas 7.1, 7.2] There exists a linear, continuous ex-

tension operator E : Hp,1(Q(a, b))→ Hp,1(Rd+1). Moreover, the restrictions of

functions in C∞c (Rd+1) to Q(a, b) are dense in Hp,1(Q(a, b)).

Theorem A.4.5. [41, Theorem 7.1] If p > d + 2, then Hp,1(Q(a, b)) is con-

tinuously embedded in C0(Q(a, b)).

Lemma A.4.6. [30, Lemma 12.3] Let u ∈ Hp,1(Q(a, b)) ∩ Cb(Q(a, b)) for

some p ∈ (1,∞). Then, there exists a sequence (un) ⊂ C∞c (Rd+1) of smooth

functions such that un tends to u in W 0,1
p (Q(a, b)) and locally uniformly in

Q(a, b), and ∂tun converges to ∂tu weakly* in (W 0,1
p′ (Q(a, b)))′ as n→∞.
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We conclude this section by defining the space Lp(a, b;Lq(Rd)) as follows.

Definition A.4.7. • For every p, q ∈ (1,∞) denote by Lp(a, b;Lq(Rd)) the

space of all the (equivalence classes of) measurable functions f : Q(a, b)→ R
such that ∫ b

a

‖f(t, ·)‖p
Lq(Rd)

dt <∞.

It is a Banach space when endowed with the norm

‖f‖p,q =

(∫ b

a

‖f(t, ·)‖p
Lq(Rd)

dt

) 1
p

.

• We denote by L∞(a, b;L2(Rd)) the space of all the (equivalence classes of)

measurable functions f : Q(a, b)→ R such that

sup
t∈(a,b)

‖f(t, ·)‖L2(Rd) <∞.

It is a Banach space when endowed with the norm

‖f‖∞,2 = sup
t∈(a,b)

‖f(t, ·)‖L2(Rd) .

Lemma A.4.8. [33, Chapter 2, § 3] Let d ≥ 2, p and q be given such that
1
p

+ d
2q

= d
4
. Here we have p ∈ [2,∞] and q ∈ [2, 2d/(d− 2)] in the case where

d ≥ 3 and p ∈ (2,∞], q ∈ [2,∞] in the case where d = 2. Then every function

in W 0,1
2 (Q(a, b))∩L∞(a, b;L2(Rd)) belongs to Lp(a, b;Lq(Rd)). Moreover, there

is a constant cS, which is independent of a, b in bounded subsets of R, such that

for f ∈ W 0,1
2 (Q(a, b)) ∩ L∞(a, b;L2(Rd)) we have

‖f‖p,q ≤ cS(‖f‖∞,2 + ‖∇f‖2).



Appendix B

Introduction to semigroup

theory

Semigroup theory has been widely studied and nowadays it is well understood.

We refer for example to K.J. Engel and R. Nagel [19], T. Kato [28], A. Lu-

nardi [40], L. Lorenzi and A. Rhandi [38]. In the following we provide a brief

survey on semigroups of bounded linear operators on a Banach space (X, ‖·‖).
In particular, we first introduce strongly continuous semigroups and analytic

semigroups. Subsequently, we deal with sub-Markovian and ultracontractive

C0-semigroups on L2-spaces.

Now, we take a step back and we give the definition of semigroup.

Definition B.0.1. A family {T (t) : t ≥ 0} of bounded and linear operators on

X is called a semigroup (or semigroup of bounded operators) if it satisfies the

semigroup property, i.e.,

(a) T (0) = I,

(b) T (t+ s) = T (t)T (s) for every t, s ≥ 0.

In order to simplify the notation, in the following we will write T (·). More-

over, we say that a semigroup T (·) is contractive if ‖T (t)‖ ≤ 1 for any t ≥ 0.

B.1 Spectrum and resolvent

Let A : D(A) ⊂ X → X be an operator on X. We define spectrum and

resolvent set of A the following sets

ρ(A) = {λ ∈ C | λI − A : D(A)→ X is bijective with bounded inverse},
σ(A) = C \ ρ(A).

Moreover, we call the resolvent of A the operator R(λ,A) ∈ L(X) defined by

R(λ,A) = (λI − A)−1,

129
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for any λ ∈ ρ(A).

If A : D(A) ⊂ X → X is a closed linear operator, then the family {R(λ,A) |
λ ∈ ρ(A)} satisfies the resolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(µ,A)R(λ,A),

for any λ, µ ∈ ρ(A). Actually, if a family of operators satisfies the resolvent

identity, then it’s a resolvent family as the next proposition states.

Proposition B.1.1. [38, Proposition A.4.6] Let Ω ⊂ C be an open set, and let

{F (λ) : λ ∈ Ω} ⊂ L(X) be a family of linear operators verifying the resolvent

identity

F (λ)− F (µ) = (µ− λ)F (λ)F (µ),

for any λ, µ ∈ Ω. If the operator F (λ0) is injective, for some λ0 ∈ Ω, then there

exists a closed linear operator A : D(A) ⊂ X → X such that ρ(A) contains Ω

and R(λ,A) = F (λ) for each λ ∈ Ω.

B.2 Strongly continuous semigroups

In this section we deal with the first important class of semigroups character-

ized by the strong continuity property.

Definition B.2.1. A family of bounded operators T (·) on X, which satisfies

the semigroup property, is a strongly continuous semigroup (or C0-semigroup)

if the function

t ∈ [0,+∞) 7→ T (t)x ∈ X

is continuous for every x ∈ X.

The next result shows that the function t 7→ ‖T (t)‖ grows at most expo-

nentially at infinity.

Proposition B.2.2. Let T (·) be a C0-semigroup. Then there exist M ≥ 1 and

ω ∈ R such that

‖T (t)‖ ≤Meωt,

for any t ≥ 0.

Moreover, the following characterization of strong continuity holds.

Corollary B.2.3. A semigroup of bounded operators T (·) on X is strongly

continuous if and only if the function t 7→ T (t)x is continuous at t = 0 for any

x ∈ X.

It is possible to associate to the C0-semigroup T (·) a linear operator, the

infinitesimal generator, defined as follows
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D(A) =

{
x ∈ X | ∃ lim

t→0+

T (t)x− x
t

∈ X
}
,

Ax = lim
t→0+

T (t)x− x
t

, x ∈ D(A).

It turns out that A is a closed linear operator whose domainD(A) is dense inX.

Moreover, T (t)D(A) ⊆ D(A) and AT (t)f = T (t)Af , for all t ≥ 0, f ∈ D(A).

For every t > 0 and f ∈ X we have∫ t

0

T (s)f ds ∈ D(A) and T (t)f − f = A

∫ t

0

T (s)f ds.

In particular, if f ∈ D(A) then

A

∫ t

0

T (s)f ds =

∫ t

0

T (s)Af ds.

Proposition B.2.4. Let M ≥ 1 and ω ∈ R be such that ‖T (t)‖ ≤ Meωt for

all t ≥ 0. Then

(a) ρ(A) ⊃ {λ ∈ C | Reλ > ω};

(b) the resolvent operator is given by the Laplace trasform of T (t), namely

R(λ,A)f =

∫ ∞
0

e−λtT (t)f dt,

for any f ∈ X, λ ∈ C such that Reλ > ω;

(c) For any n ∈ N and λ ∈ C such that Reλ > ω we have

‖(R(λ,A))n‖ ≤ M

(Reλ− ω)n
.

There is a close connection between C0-semigroups and the abstract Cauchy

problem {
u′(t) = Au(t), t ≥ 0,

u(0) = f.

Indeed, for every f ∈ D(A) the function T (·)f is differentiable and it is the

unique solution of the previous Cauchy problem. For this reason, it is inter-

esting to establish if A is the generator of a C0-semigroup.

The first of this kind of results is the Hille-Yosida theorem.

Theorem B.2.5. Let A : D(A) ⊂ X → X be a closed and densely defined

operator (D(A) = X). Then A is the generator of a C0-semigroup on X if

and only if there exist ω ≥ 0, M > 0 such that
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(a) ρ(A) ⊃ {λ ∈ C | Reλ > ω};

(b) for any n ∈ N

‖(R(λ,A))n‖ ≤ M

(Reλ− ω)n
.

In this case, the semigroup T (·) generated by A satisfies ‖T (t)‖ ≤Meωt for all

t ≥ 0.

The second result we aim to state is the Lumer-Phillips theorem.

Theorem B.2.6. Let A : D(A) ⊂ X → X be a densely defined operator.

Moreover assume that ρ(A) ∩ (0,+∞) 6= ∅ and A is dissipative, i.e.

‖λf − Af‖ ≥ λ ‖f‖ ,

for any λ > 0 and f ∈ D(A). Then A generates a C0-semigroup of contractions

on X (i.e. ‖T (t)‖ ≤ 1 for any t ≥ 0).

B.3 Analytic semigroups

In this section we introduce another relevant class of semigroups of bounded

operators: the analytic semigroups. For ω ∈ R and θ0 ∈ (π/2, π) we denote by

Σω,θ0 := {λ ∈ C | λ 6= ω, |arg(λ− ω)| < θ0}

the sector in C of angle θ0. We now define sectorial operators; they are deeply

connected to analytic semigroups.

Definition B.3.1. Let A : D(A) ⊂ X → X be a closed linear operator. A is

called sectorial in X if there exist ω ∈ R, θ0 ∈ (π/2, π) and M > 0 such that

ρ(A) ⊇ Σω,θ0 and

‖R(λ,A)‖L(X) ≤M |λ− ω|−1,

for any λ ∈ Σω,θ0.

Moreover, S(ω, θ0,M) denotes the set of sectorial operators which satisfy

the previous definition. Then, if A ∈ S(ω, θ0,M), we define

T (t) =
1

2πi

∫
γr,η,ω

etλR(λ,A) dλ, (B.1)

for any t > 0, where γr,η,ω is the union of the following curves

γ1,r,η,ω : ρ ∈ [r,∞) 7→ ω + ρ e−iη ∈ C,
γ2,r,η,ω : θ ∈ [−η, η] 7→ ω + r eiθ ∈ C,
γ3,r,η,ω : ρ ∈ [r,∞) 7→ ω + ρ eiη ∈ C,

with r > 0 and η ∈ (π/2, θ0) fixed. It turns out that the above expression does

not depend on r and η and the following theorem holds.
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Theorem B.3.2. Let A ∈ S(ω, θ0,M) and T (t) be defined as in (B.1) for any

t > 0. Then the following statements hold.

(a) For any x ∈ X, k ∈ N and t > 0, T (t)x ∈ D(Ak). Moreover, if x ∈
D(Ak), then AkT (t)x = T (t)Akx for all t ≥ 0.

(b) If we set T (0) = I, the family T (·) defines a semigroup of bounded oper-

ators.

(c) There exists Mk > 0 (k ∈ N ∪ {0}) such that∥∥tk(A− ωI)kT (t)
∥∥ ≤Mke

ωt,

for any t > 0 and k ∈ N ∪ {0}.

(d) The function t 7→ T (t) belongs to C∞((0,∞), L(X)).

(e) We have Dk
t T (t) = AkT (t) for any t > 0.

(f) The function t 7→ T (t) admits an analytic extention to the sector Σ0,θ0−π/2
given by

T (z) =
1

2πi

∫
γr,θ′z,ω

eλzR(λ,A) dλ,

for any z ∈ Σ0,θ0−π/2, where θ′z is arbitrarily fixed in (π/2, θ0 − arg(z)).

By means of the previous results we define an analytic semigroup as follows.

Definition B.3.3. Let A : D(A) ⊂ X → X be a sectorial operator. Then the

family T (·) defined by (B.1) for t > 0 such that T (0) = I is called analytic

semigroup generated by A in X.

We now state some properties of the semigroup T (·).
Proposition B.3.4. Let T (·) be the analytic semigroup generated by A ∈
S(ω, θ0,M). Then the following properties hold true.

(a) For each x ∈ X and t > 0,

∫ t

0

T (s)x ds ∈ D(A) and

A

∫ t

0

T (s)x ds = T (t)x− x.

If, in addition, x ∈ D(A), then

T (t)x− x =

∫ t

0

T (s)Axds,

for any t ≥ 0.

(b) If λ ∈ C with Reλ > ω, then

R(λ,A) =

∫ ∞
0

e−λtT (t) dt.

One can wonder if A generates a C0-semigroup. In general the answer is

negative. However, if D(A) is dense in X, then T (·) is a C0-semigroup whose

infinitesimal generator is the sectorial operator A.



B. Introduction to semigroup theory 134

B.4 Sub-Markovian and ultracontractive C0-

semigroups on L2

In this section we deal with C0-semigroups on L2(Ω), where Ω is a subset of

Rd. We start by giving some definitions.

Definition B.4.1. Let Ω ⊂ Rd and T (·) be a C0-semigroup on L2(Ω). We say

that

• T (·) is real if, given a real-valued function f , then T (t)f is real-valued for

all t ≥ 0;

• T (·) is positive if T (t)f ≥ 0 for all t ≥ 0 and f ≥ 0;

• T (·) is L∞-contractive if ‖T (t)f‖∞ ≤ ‖f‖∞ for all t ≥ 0 and f ∈ L2(Ω) ∩
L∞(Ω);

• T (·) is sub-Markovian if it is positive and L∞-contractive;

• T (·) is symmetric if T ∗(·) = T (·);

• T (·) is ultracontractive if there is a constant c > 0 such that

‖T (t)‖L(L1,L∞) ≤ ct−
d
2 ,

for all t > 0.

To establish ultracontractivity we use the following useful result, see [4,

Proposition 1.5], where we replace the H1-norm with the L2-norm of the gra-

dient. The proof remains the same and is based on Nash’s inequality

‖u‖1+ 2
d

2 ≤ cd‖|∇u|‖2‖u‖
2
d
1 , (B.2)

for all u ∈ L1(Rd) ∩H1(Rd).

Proposition B.4.2. Let T (·) be a C0-semigroup on L2(Rd) such that T (·)
and T ∗(·) are sub-Markovian. Assume that, for δ > 0, the generator A of T (·)
satisfies

(a) D(A) ⊂ H1(Rd);

(b) 〈−Au, u〉 ≥ δ‖|∇u|‖2
2, ∀u ∈ D(A);

(c) 〈−A∗u, u〉 ≥ δ‖|∇u|‖2
2, ∀u ∈ D(A∗).

Then there is cδ > 0 such that

‖T (t)‖L(L1,L∞) ≤ cδt
−d/2, ∀t > 0,

i.e. T (·) is ultracontractive.



B. Introduction to semigroup theory 135

Proof. Since T ∗(·) is sub-Markovian, the L∞-contractivity of T ∗(·) implies that

T (·) is contractive on L1(Rd), that is

‖T (t)f‖1 ≤ ‖f‖1 , (B.3)

for any t ≥ 0 and f ∈ L1(Rd) ∩ L2(Rd). Therefore, T (·) extrapolates to a C0-

semigroup on L1(Rd) (see [5, Section 7.2]). Hence for f ∈ L1(Rd) ∩ L∞(Rd),

λR(λ,A)f → f in L1(Rd) and in L2(Rd) as λ→∞. Given that λR(λ,A)f ∈
D(A), it follows that D(A) ∩ L1(Rd) is dense in L1(Rd) ∩ L2(Rd).

We now prove that

‖T (t)f‖2 ≤
(
dc2

d

4δ

)d/4
t−d/4 ‖f‖1 , (B.4)

for every t ≥ 0 and f ∈ L1(Rd) ∩ L2(Rd). Let f ∈ D(A) ∩ L1(Rd). Since

T (t)f ∈ D(A), by (b) we have

d

dt
‖T (t)f‖2

2 = 2〈AT (t)f, T (t)f〉2 ≤ −2δ ‖∇T (t)f‖2
2 .

Thus, considering that T (t)f ∈ H1(Rd) by (a), we apply Nash’s inequality

(B.2) and we deduce that

d

dt
‖T (t)f‖2

2 ≤ −
2δ

c2
d

‖T (t)f‖2+4/d
2

‖T (t)f‖4/d
1

.

As a result, we derive

d

dt
(‖T (t)f‖2

2)−
2
d = −2

d
(‖T (t)f‖2

2)−
2
d
−1 d

dt
‖T (t)f‖2

2

≥ 4δ

dc2
d

(‖T (t)f‖2)−
4
d
−2‖T (t)f‖2+4/d

2

‖T (t)f‖4/d
1

=
4δ

dc2
d

‖T (t)f‖−4/d
1 ≥ 4δ

dc2
d

‖f‖−4/d
1 ,

where the last inequality follows by (B.3). Integrating, we obtain

‖T (t)f‖−4/d
2 =

∫ t

0

d

ds
(‖T (s)f‖2

2)−
2
dds+ (‖f‖2

2)−
2
d ≥ 4δ

dc2
d

t ‖f‖−4/d
1 .

Since D(A)∩L1(Rd) is dense in L1(Rd)∩L2(Rd), the previous inequality holds

true for any f ∈ L1(Rd) ∩ L2(Rd). Thus, (B.4) follows. If we now repeat the

same computations for the adjoint semigroup T ∗(·) applying (c) instead of (b),

we get

‖T ∗(t)f‖2 ≤
(
dc2

d

4δ

)d/4
t−d/4 ‖f‖1 ,

for every t ≥ 0 and f ∈ L1(Rd) ∩ L2(Rd). Then

‖T (t)f‖∞ ≤
(
dc2

d

4δ

)d/4
t−d/4 ‖f‖2 , (B.5)
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for every t ≥ 0 and f ∈ L2(Rd) ∩ L∞(Rd). Combining (B.4) with (B.5) yields

‖T (t)‖L(L1,L∞) ≤ ‖T (t/2)‖L(L1,L2) ‖T (t/2)‖L(L2,L∞) ≤
(
dc2

d

4δ

)d/2
t−d/2,

for every t ≥ 0. Therefore, the semigroup T (·) is ultracontractive with

cδ =

(
dc2

d

4δ

)d/2
.

The following result displays an important feature of ultracontractive semi-

groups, namely they are given through an integral kernel (see for example [38,

Theorem 15.1.3]).

Theorem B.4.3. Let Ω ⊂ Rd. If a C0-semigroup T (·) on L2(Ω) is ultra-

contractive, then for every t > 0 there exists an integral kernel p(t, ·, ·) ∈
L∞(Ω× Ω) such that

T (t)f(x) =

∫
Ω

p(t, x, y)f(y) dy,

for every t > 0 and f ∈ L1(Ω) ∩ L2(Ω). Moreover, ‖k(t, ·, ·)‖L∞(Ω×Ω) ≤ ct−
d
2

for every t > 0 and some constant c > 0.

We now give the definition of consistent semigroup.

Definition B.4.4. Let Ω ⊂ Rd and 1 ≤ p1 < p2 ≤ ∞. A semigroup Tp(·)
which is defined on Lp(Ω) for p ∈ [p1, p2] is called consistent if Tp(t)f = Tq(t)f

for all t > 0, q ∈ [p1, p2] and f ∈ Lp(Ω) ∩ Lq(Ω).

As in [18, Theorem 1.4.1], we see that a symmetric sub-Markovian semi-

group on L2(Ω) gives rise to consistent semigroups.

Theorem B.4.5. Let Ω ⊂ Rd. If T (·) is a symmetric sub-Markovian semi-

group on L2(Ω), then L1(Ω) ∩ L∞(Ω) is invariant under T (·) and T (·) may

be extended from L1(Ω) ∩ L∞(Ω) to a positive contraction semigroup Tp(·)
on Lp(Ω) for all 1 ≤ p ≤ ∞. These semigroups are strongly continuous if

1 ≤ p <∞ and are consistent.



Appendix C

Classical results on PDE’s of

elliptic and parabolic problems

In this appendix we recall some classical results we used in the previous chap-

ters, such as interior Schauder estimates and some maximum principle.

Let Ω be an open set of Rd. We consider the second order elliptic partial

differential operator A defined by

Aϕ(x) =
d∑

i,j=1

qij(x)Dijϕ(x) +
d∑
i=1

Fi(x)Diϕ(x)− V (x)ϕ(x), x ∈ Ω,

on smooth functions, with real coefficients qij, Fi and V defined in Ω. Through-

out, we keep the following assumptions.

Hypothesis C.0.1. The matrix Q = (qij)i,j=1,...,d is symmetric and uniformly

elliptic, i.e. there is η > 0 such that

d∑
i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all ξ ∈ Ω, x ∈ Ω.

C.1 A priori estimates

In the following theorem we state some well-known interior Lp-estimates.

Theorem C.1.1. [36, Theorem C.1.1] Let Ω be an open set and p any real

number in the interval (1,∞). If the coefficients of the operator A are bounded

and continuous in Ω, then for any open set Ω′ ⊂⊂ Ω there exists a positive

constant C, depending on p, Ω, Ω′, η and the moduli of continuity of qij in Ω′,

such that

‖u‖W 2,p(Ω′) ≤ C(‖u‖Lp(Ω) + ‖Au‖Lp(Ω)),

for any u ∈ Lp(Ω) ∩W 2,p
loc (Ω) such that Au ∈ Lp(Ω).

The next two theorems provide us with Schauder estimates.
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Theorem C.1.2. [36, Theorem C.1.4] Assume that the coefficients of the

operator A belong to Cζ
b (Ω) for some ζ ∈ (0, 1). Further, assume that u ∈

C
1+ζ/2,2+ζ
loc ((0, T )× Ω) is a bounded (with respect to the sup-norm) solution of

the equation ∂tu(t, x) − Au(t, x) = 0 for every t ∈ (0, T ), x ∈ Ω. Then, for

any open set Ω′ ⊂⊂ Ω and any s ∈ (0, T ), there exists a positive constant C

depending on s, the coefficients of the operator A, Ω,Ω′ and T such that

‖u‖C1+ζ/2,2+ζ([s,T )×Ω′) ≤ C sup
(0,T )×Ω

|u|.

Theorem C.1.3. [36, Theorem C.1.5] Let Ω be an open subset of Rd with

boundary of class C2+ζ for some ζ ∈ (0, 1), and let Ω′ and Ω′′ be two bounded

subsets of Ω such that Ω′ ⊂ Ω′′ ⊂ Ω and dist(Ω′,Ω\Ω′′) > 0. Moreover, assume

that the coefficients of the operator A belong to Cζ
loc(Ω). Finally, assume that

u ∈ C1+ζ/2,2+ζ([T1, T2] × Ω
′′
) solves the differential equation ∂tu − Au = 0 in

(T1, T2) × Ω′′ for some 0 ≤ T1 < T2. Then, if u ≡ 0 on (T1, T2) × ∂Ω′′, we

have that for any T ∗ ∈ (T1, T2) there exists a positive constant C depending on

T ∗, T1, T2,Ω
′,Ω′′ such that

‖u‖C1+ζ/2,2+ζ([T ∗,T2]×Ω
′
) ≤ C ‖u‖L∞((T1,T2)×Ω′′) .

C.2 Classical maximum principles

In this section we collect the classical maximum principles for continuous so-

lutions to both the elliptic equations and for the parabolic Cauchy problems.

We make the following assumptions.

Hypothesis C.2.1. (a) Ω is either an open bounded set with boundary of

class C2 or Ω = Rd;

(b) qij, Fi and 0 ≤ V belong to Cb(Ω);

(c) Hypothesis C.0.1 is satisfied.

We start with the classical maximum principle for elliptic equations.

Theorem C.2.2. [36, Theorem C.2.2] Let λ > 0 and suppose that u ∈ W 2,p
loc (Ω)

for all 1 < p <∞ satisfies the differential inequality λu− Au ≥ 0. Then

(a) if u ≥ 0 on ∂Ω, then u ≥ 0 in Ω;

(b) if f ∈ Cb(Ω) and u ∈ W 2,p
loc (Ω) for all 1 ≤ p <∞ solves the problem{

λu(x)− Au(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

then

‖u‖∞ ≤
‖f‖∞
λ

.
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We now state the weak parabolic maximum principle in the form we need.

Proposition C.2.3. [36, Proposition C.2.3] Fix T > 0. Let u ∈ C1,2((0, T ]×
Ω) ∩ Cb([0, T ]× Ω) be such that

∂tu(t, x)− Au(t, x) ≥ 0, t ∈ (0, T ], x ∈ Ω,

u(t, x) ≥ 0, t ∈ (0, T ], x ∈ ∂Ω,

u(0, x) ≥ 0, x ∈ Ω.

Then u ≥ 0 in [0, T ]× Ω.

C.3 Existence of classical solution to PDE’s

and analytic semigroups

Here, we adopt the following assumptions on Ω and on the coefficients of the

operator A.

Hypothesis C.3.1. (a) Ω is either an open set with a boundary which is

uniformly of class C2+2ζ for some ζ ∈ (0, 1) or Ω = Rd;

(b) qij, Fi and 0 ≤ V belong to C2ζ
b (Ω);

(c) The matrix Q = (qij)i,j=1,...,d is symmetric and uniformly elliptic, i.e.

there is η > 0 such that

d∑
i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all ξ ∈ Rd, x ∈ Ω.

Proposition C.3.2. [36, Proposition C.3.2] For every f ∈ Cb(Ω) the Cauchy-

Dirichlet problem 
∂tu(t, x) = Au(t, x), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = f(x), x ∈ Ω,

admits a unique solution u ∈ C([0,∞) × Ω \ ({0} × ∂Ω)) ∩ C1,2((0,∞) × Ω)

which is bounded in [0, T ] × Ω for any T > 0. Moreover, ‖u(t, ·)‖∞ ≤ ‖f‖∞
for every t > 0.

Moreover, the following result involving analytic semigroups holds.

Theorem C.3.3. [36, Theorem C.3.6] The realization of the operator A with

domain

D(A) = {u ∈ C0(Ω) ∩W 2,p
loc (Ω) for all 1 ≤ p <∞ : Au ∈ C(Ω)}

is sectorial in Cb(Ω).
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Concerning the elliptic equation, we have the following result.

Proposition C.3.4. [36, Proposition C.3.4] For every f ∈ Cb(Ω) and any

λ > 0, there exists a unique solution u ∈ W 2,p
loc (Ω) for all 1 ≤ p < ∞ to the

Dirichlet problem {
λu(x)− Au(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

C.4 Local regularity of transition densities

In this section we combine the results of [8] with the Schauder estimates to

obtain regularity properties of the transition kernel associated with the second

order elliptic operator defined as in Chapter 3 by

Aϕ = div(Q∇ϕ) + F · ∇ϕ− V ϕ.

We assume that the diffusion coefficients qij and their spatial derivatives Dhqij
are bounded on Rd for all i, j, h = 1, . . . , d, whereas the drift F and the poten-

tial V can also be unbounded. More precisely, we make the following assump-

tions.

Hypothesis C.4.1. (a) We have qij ∈ C1+ζ
b (Rd), Fi ∈ Cζ

loc(Rd), 0 ≤ V ∈
Cζ

loc(Rd) for some ζ ∈ (0, 1);

(b) The matrix Q = (qij)i,j=1,...,d is symmetric and uniformly elliptic, i.e.

there is η > 0 such that

d∑
i,j=1

qij(x)ξiξj ≥ η|ξ|2 for all x, ξ ∈ Rd.

We consider the minimal semigroup T (·) in Cb(Rd) generated by A as con-

structed in Chapter 1. It is given through an integral kernel p as follows

T (t)f(x) =

∫
Rd
p(t, x, y)f(y) dy, t > 0, x ∈ Rd, f ∈ Cb(Rd).

Then, the following result shows some regularity properties of p with respect

to all the variables (t, x, y).

Proposition C.4.2. [34, Proposition 2.1] The kernel p(t, x, y) is a positive

continuous function in (0,∞)×Rd×Rd which enjoys the following properties.

(a) For every x ∈ Rd, 1 < s < ∞, the function p(·, x, ·) belongs to

Hs,1
loc((0,∞) × Rd). In particular p,Dyp ∈ Lsloc((0,∞) × Rd) for all

i = 1, . . . , d and p(·, x, ·) is continuous.
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(b) For every y ∈ Rd the function p(·, ·, y) belongs to C
1+ζ/2,2+ζ
loc ((0,∞)×Rd)

and solves the equation ∂tp = Ap for t > 0. Moreover

sup
|y|≤R

‖p(·, ·, y)‖C1+ζ/2,2+ζ([ε,T ]×BR) <∞,

for every 0 < ε < T and R > 0.

(c) If, in addition, F ∈ C1(Rd;Rd), then p(·, x, ·) ∈ W 1,2
s,loc(Q(0, T )) for every

x ∈ Rd, 1 < s <∞ and satisfies the equation ∂tp− A∗yp = 0, where

A∗ = div(Q∇)− F · ∇ − (V + divF )

is the formal adjoint of A.



Appendix D

Semigroups associated with

sesquilinear forms

In this appendix we give an overview of sesquilinear form theory and associated

operators and semigroups. We refer to the book of Ouhabaz [49] for a wide

description on this subject.

Let H be a Hilbert space over K = C or R and D(a) a linear subspace of

H. We denote by 〈·, ·〉 the inner product of H and by ‖·‖ the corresponding

norm.

Definition D.0.1. An application

a : D(a)×D(a)→ K

is called unbounded sesquilinear form if for every α ∈ K and u, v, w ∈ D(a)

we have

a(αu+ v, w) = αa(u,w) + a(v, w)

and

a(u, αv + w) = αa(u, v) + a(u,w).

The space D(a) is the domain of a.

We now introduce some relevant properties a sesquilinear form may enjoy.

Definition D.0.2. Let a : D(a)×D(a)→ K be a sesquilinear form. We say

that

(a) a is densely defined if

D(a) is dense in H. (D.1)

(b) a is accretive if

Re a(u, u) ≥ 0 for all u ∈ D(a). (D.2)
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(c) a is continuous if there exists a non-negative constant M such that

|a(u, v)| ≤M ‖u‖a ‖v‖a for all u, v ∈ D(a). (D.3)

where ‖u‖a :=
√

Re a(u, u) + ‖u‖2.

(d) a is closed if

(D(a), ‖·‖a) is a complete space. (D.4)

If the form a satisfies conditions (D.1)-(D.4), then ‖·‖a is a norm on D(a),

the norm associated with the form a, and D(a) is a Hilbert space.

Definition D.0.3. Let a : D(a) × D(a) → K be a sesquilinear form. The

adjoint form of a is the sesquilinear form a∗ defined by

a∗(u, v) := a(v, u),

with domain D(a∗) = D(a). We say that a is a symmetric form if a∗ = a, that

is

a(u, v) := a(v, u),

for all u, v ∈ D(a).

D.1 Generation result

One can associate an operator to sesquilinear forms enjoying the properties

mentioned above.

Definition D.1.1. Let a be a densely defined, accretive, continuous and closed

sesquilinear form on H. The unbounded operator A defined by

D(A) = {u ∈ D(a) | ∃v ∈ H : a(u, φ) = 〈v, φ〉 ∀φ ∈ D(a)},
Au = v, u ∈ D(A)

is called the operator associated with the form a.

The following result clarifies the connection between sesquilinear forms and

semigroups.

Proposition D.1.2. [49, Proposition 1.51] The operator −A is the generator

of a strongly continuous contraction semigroup on H.

Remark D.1.3. Let (V, ‖·‖V ) be an Hilbert space that is continuously and

densely injected into H (we write V
d
↪→ H), i.e. V ⊂ H, V is dense in H for

the norm of H and there exists a constant c > 0 such that

‖u‖ ≤ c ‖u‖V for all u ∈ V. (D.5)

Let a : V × V → K be a sesquilinear form satifying the following conditions:
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(a) there exists a non-negative constant M such that

|a(u, v)| ≤M ‖u‖V ‖v‖V for all u, v ∈ V. (D.6)

(b) a is coercive, i.e. there exists ν > 0 such that

Re a(u, u) ≥ ν ‖u‖2
V for all u ∈ V. (D.7)

Then a is densely defined and accretive. Moreover, we note that the norms

‖·‖V and ‖·‖a are equivalent. Indeed, by (D.7), we have that

‖u‖2
a = Re a(u, u) + ‖u‖2 ≥ Re a(u, u) ≥ ν ‖u‖2

V

and, by (D.5) and (D.6),

‖u‖2
a = Re a(u, u) + ‖u‖2 ≤ |a(u, u)|+ c2 ‖u‖2

V ≤ (M + c2) ‖u‖2
V .

Consequently, the form a is also continuous and closed. Then, by Proposition

D.1.2, −A is the generator of a strongly continuous contraction semigroup on

H.

D.2 Positive and L∞-contractive semigroups

Let H = L2(Ω) and a be a densely defined, accretive, continuous and closed

sesquilinear form on L2(Ω). Denote by A its associated operator and by

(e−tA)t≥0 the semigroup generated by −A on L2(Ω). The following criteria

provide us with equivalent conditions on the sesquilinear form a to check if the

semigroup (e−tA)t≥0 is positive and L∞-contractive.

Theorem D.2.1 (First Beurling-Deny criterion). [49, Theorem 2.6] The fol-

lowing assertions are equivalent.

(a) The semigroup (e−tA)t≥0 is positive.

(b) u ∈ D(a) =⇒ (Reu)+ ∈ D(a), a(Reu, Imu) ∈ R and

a((Reu)+, (Reu)−) ≤ 0.

Theorem D.2.2 (Second Beurling-Deny criterion). [49, Theorem 2.13] The

following assertions are equivalent.

(a) The semigroup (e−tA)t≥0 is L∞-contractive.

(b) u ∈ D(a) =⇒ (1 ∧ |u|) signu ∈ D(a) and Re a((1 ∧ |u|) signu, (|u| −
1)+ signu) ≥ 0.



List of Symbols

Sets

N set of all positive natural numbers

R set of all real numbers

C set of all complex numbers

Rd euclidean d-dimensional space

Bρ open disk with centre at 0 and radius ρ > 0

Bρ the closure of Bρ

Q(a, b) the strip (a, b)× Rd

A ⊂⊂ B given two subsets A,B ⊂ Rd with B open, it means

that A is contained in B

∅ empty set

L(X, Y ) space of all bounded linear operators T from X into Y

with ‖T‖ = supx 6=0
‖Tx‖
‖x‖

L(X) := L(X,X)

D(Rd) := C∞c (Rd) space of test functions

D(Rd)′ space of distributions on Ω ⊂ Rd

Matrix and linear algebra

ej the j-th vector of the canonical basis of Rd

〈x, y〉 inner euclidean product between the vectors x, y ∈ Rd

x · y =: 〈x, y〉
|x| euclidean norm of x ∈ Rd

|Q| euclidean norm of the d×dmatrixQ = (qij), i.e. |Q|2 =∑d
i,j=1 |qij|2

‖Q‖∞ norm of the d×d matrix Q = (qij) if the entries depend

on x ∈ Ω ⊂ Rd, i.e. ‖Q‖2
∞ =

∑d
i,j=1 ‖qij‖

2
∞

|∇Q| euclidean norm of the gradient of the matrix Q = (qij)

whose entries are continuously differentiable in an open

set Ω ⊂ Rd, i.e. |∇Q|2 =
∑d

i,j,k=1 |Dkqij|2
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Functions

χE characteristic function of the set E, i.e. χE(x) = 1 if

x ∈ E and χE(x) = 0 if x /∈ E
1 the function identically equal to 1

f+ positive part of the real-valued function f : Ω ⊂ Rd →
R, i.e. f+(x) = max(f(x), 0) for every x ∈ Ω

f− negative part of the real-valued function f : Ω ⊂ Rd →
R, i.e. f−(x) = min(f(x), 0) for every x ∈ Ω

f complex conjugate of the complex function of f : Ω ⊂
Rd → C

Ref real part of the function f : Ω ⊂ Rd → C
Imf imaginary part of the function f : Ω ⊂ Rd → C
signf sign of the function f : Ω ⊂ Rd → C defined as u(x)

|u(x)| if

u(x) 6= 0 and 0 if u(x) = 0

∂tf = ∂f
∂t

time derivative of a function f : I × Rd → R,

where I ⊂ [0,∞) is an interval

Dif = ∂f
∂xi

i-th spatial derivative of a function f : I ×Rd →
R, where I ⊂ [0,∞) is an interval

Dijf = DiDjf second order spatial derivative of a function

f : I × Rd → R, where I ⊂ [0,∞) is an interval

∇f = (D1f, . . . , Ddf) gradient of f

|∇f |2 =
∑d

j=1 |Djf |2

|D2f |2 =
∑d

i,j=1 |Dijf |2

div(F ) =
∑d

i=1DiFi divergence of F : Rd → Rd

Operators

I identity operator in a Banach space X

Miscellanea

supp(f) support of a function f

x ∨ y maximum between x, y ∈ R
[x] integer part of x ∈ R
|α| length of the multi-index α, i.e. |α| = α1 + · · ·+ αd
δij Kronecker delta, i.e. δij = 1 if i = j and δij = 1

otherwise

dist(x,Ω2) distance of the point x from the set Ω2, i.e.

dist(x,Ω2) = infx∈Ω2 |x− y|
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dist(Ω1,Ω2) distance of the set Ω1 from the set Ω2, i.e. the number

dist(Ω1,Ω2) = infx∈Ω1 dist(x,Ω2)

dx Lebesgue measure in Rd
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Spaces, Graduate Studies in Mathematics 12, Amer. Math. Soc., 1996.

[30] M. Kunze, L. Lorenzi, A. Rhandi, Kernel estimates for nonautonomous

Kolmogorov equations with potential term, in New Prospects in Direct, In-

verse and Control Problems for Evolution Equations, edited by A. Favini,

G. Fragnelli and R.M. Mininni, Springer INdAM Series 10 (2014), 229–

251.

[31] M. Kunze, L. Lorenzi, A. Rhandi, Kernel estimates for nonautonomous

Kolmogorov equations, Advances in Mathematics, 287 (2016), 600–639.

[32] M. Kunze, M. Porfido, A. Rhandi, Bounds for the gradient of the tran-

sition kernel for elliptic operators with unbounded diffusion, drift and po-

tential terms, preprint (2022), https://arxiv.org/abs/2209.15358.

[33] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva Linear and

Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Rus-

sian); Transl. Math. Monographs 23, AMS, Providence, RI, 1967 (in En-

glish).

[34] K. Laidoune, G. Metafune, D. Pallara, A. Rhandi, Global properties of

transition kernels associated to second order elliptic operators, Progr. Non-

linear Differential Equations Appl. 60 (2011), 415–432.

[35] G.M. Lieberman, Second order parabolic differential equations, World

Scientific, Singapore, 1996.

[36] L. Lorenzi, M. Bertoldi, Analytical Methods for Markov Semigroups,

Chapman & Hall/CRC, Taylor & Francis Group, Roca Baton, 2007.

[37] L. Lorenzi, A. Rhandi, On Schrödinger type operators with unbounded

coefficients: generation and heat kernel estimates, J. Evol. Equ. 15 (2015),

53–88.



Bibliography 151

[38] L. Lorenzi, A. Rhandi, Semigroups of Bounded Operators and Second-

Order Elliptic and Parabolic Partial Differential Equations, Chapman &

Hall/CRC, Taylor & Francis Group, Roca Baton, 2021.

[39] A. Lunardi, Analytic semigroups and optimal regularity in parabolic prob-

lems, Progress in Nonlinear Differential Equations and Their Applications
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[41] G. Metafune, D. Pallara, A. Rhandi, Global properties of transition prob-

abilities of singular diffusions, Theory Probab. Appl. 54 (2010), 68–96.

[42] G. Metafune, C. Spina, Kernel estimates for a class of Schrödinger

semigroups, J. Evol. Equ. 7 (2007), 719–742.

[43] G. Metafune, C. Spina, Elliptic operators with unbounded coefficients in

Lp spaces, Annali Scuola Normale Superiore di Pisa Cl. Sci. (5) Vol. XI

(2012), 303–340 .

[44] G. Metafune, C. Spina, Kernel estimates for some elliptic operators with

unbounded coefficients, Discrete and Continuous Dynamical Systems A

32 (2012), 2285–2299.

[45] G. Metafune, C. Spina, C. Tacelli, Elliptic operators with unbounded

diffusion and drift coefficients in Lp spaces, Adv. Diff. Equat. 19 (2014),

473–526.

[46] G. Metafune, C. Spina, C. Tacelli, On a class of elliptic operators with

unbounded diffusion coefficients, Evol. Equ. Control Theory 3 (2014),

671–680.

[47] G. Metafune, D. Pallara, M. Wacker, Compactness properties of Feller

semigroups, Studia Math. 153 (2002), 179–206.

[48] G. Metafune, D. Pallara, M. Wacker, Feller semigroups on RN , Semigroup

Forum 65 (2002), 159–205.

[49] E.M. Ouhabaz, Analysis of Heat Equations on Domains, London Math.

Soc. Monogr. Ser., 31, Princeton Univ. Press, 2004.

[50] S. V. Shaposhnikov, Fokker-Planck-Kolmogorov equations with a potential

and a nonuniformly elliptic diffusion matrix, Tr. Mosk. Mat. Obs., 74

(2013), 15–29.

[51] C. Spina, Kernel estimates for a class of Kolmogorov semigroups, Arch.

Math. 91 (2008), 265–279.



Bibliography 152

[52] P. Stollmann, J. Voigt, Perturbation of Dirichlet forms by measures, Po-

tential Anal. 5 (1996), 109–138.


	Abstract
	Sommario
	Introduction
	The minimal semigroup in 
	The resolvent equation
	The semigroup
	The weak generator
	Lyapunov functions
	Integrability of Lyapunov functions
	Time dependent Lyapunov functions

	Schrödinger type operators with unbounded diffusion terms
	Generation of semigroups on 
	Time dependent Lyapunov functions
	Time dependent Lyapunov functions for polynomially growing diffusion
	Time dependent Lyapunov functions for exponentially growing diffusion

	Preliminary results for bounded diffusion coefficients
	Global regularity results
	Boundedness of weak solutions to parabolic problems

	Kernel estimates in case of bounded diffusion coefficients
	Kernel estimates for general diffusion coefficients
	Some applications
	Kernel estimates in case of polynomial coefficients
	Kernel estimates in case of exponential coefficients

	Spectral properties and eigenfunctions estimates

	Elliptic operators with unbounded diffusion, drift and potential terms
	Preliminaries
	Kernel estimates in case of bounded diffusion coefficients
	Global regularity results for bounded diffusion coefficients

	Estimates for the derivatives of the kernel in case of bounded diffusion coefficients
	Estimates for the derivatives of the kernel for general diffusion coefficients
	Application to the case of polynomial coefficients

	Function spaces
	Spaces of continuous functions
	Parabolic Hölder spaces
	 and Sobolev spaces
	Parabolic  and Sobolev spaces

	Introduction to semigroup theory
	Spectrum and resolvent
	Strongly continuous semigroups
	Analytic semigroups
	Sub-Markovian and ultracontractive -semigroups on 

	Classical results on PDE's of elliptic and parabolic problems
	A priori estimates
	Classical maximum principles
	Existence of classical solution to PDE's and analytic semigroups
	Local regularity of transition densities

	Semigroups associated with sesquilinear forms
	Generation result
	Positive and -contractive semigroups

	List of Symbols
	Bibliography

