




I propose to consider the question, ’Can machines think?’

I shall replace the question by another, which is closely related to it

and is expressed in relatively unambiguous words.

- Alan Turing -

Stay Hungry, Stay Foolish!

- Steve Jobs -

Code never lies,

comments sometimes do.

- Ron Jeffries -

I solemnly swear,

that I am up to no good!

- Harry Potter -
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A B S T R A C T

The advent of the Internet of Things (IoT), with the consequent

changes in network architectures and communication dynam-

ics, has strongly conditioned the security market by radically

shifting traditional perceptions of the current Internet toward an

integrated vision of smart interconnected objects. However, due

to their provided features and popularity, such devices have be-

come one of the main targets for attackers who, exploiting several

systems-related vulnerabilities and well-engineered applications,

are able to conduct different hostile activities. For this reason,

also thanks to the great success of Machine Learning (ML) and

Deep Learning (DL) based techniques in the last decade, many in-

novative solutions have been proposed in order to counteract the

exponential and yearly growth of malware applications. However,

since the related detection models should provide an adequate

generalization capability, their success strongly depends on the

right choice of the employed features. To this purpose, new em-

powered strategies are needed to spot malware threats in several

network security scenarios, with particular attention to those

related to IoT and Federated environments, respectively.

Therefore, this thesis focuses on the enhancement of detec-

tion solutions that, due to the presence of many vulnerable and

hardware-constrained devices, are characterized by several chal-

lenges regarding security and privacy. Under this vision, Chapter

1 presents a detailed overview of the state-of-the-art by highlight-

ing the weaknesses of the existing approaches. Next, Chapters

2, 3, and 4 focus on the empowerment and effectiveness of such

solutions by employing new dynamic and static-based feature

representation techniques. Also, they highlight the capabilities of

DL to offer sophisticated models capable of reducing Run-time

damages and involving the computation capabilities of federated

environments, respectively.

On the other hand, due to the recent explosion of IoT-related

malware applications and the necessity of protecting privacy,

the thesis extends its focus to malware detection activities in
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Federated organizations. Therefore, Chapter 5 proposes a new

Markov Chains-based detector capable of improving the most

famous Federated Learning (FL) based solutions. To this pur-

pose, a dedicated privacy-preserving architecture is employed,

in which the involved clients build the related detection model

by indirectly sharing the analyzed applications. Finally, Chapter

6 presents the Conclusions about the reported contributions by

highlighting possible and relevant future research directions.
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1
I N T R O D U C T I O N

1.1 overview of the thesis

The advent of the Internet of Things (IoT), with the consequent

changes in network architectures and communication dynamics,

has strongly conditioned the security market by radically shifting

the traditional perception of the Internet toward an integrated

vision of smart interconnected objects. However, due to their

worldwide popularity and provided features, such devices have

become one of the main targets for attackers who, exploiting

several systems-related vulnerabilities and well-engineered ap-

plications, are able to conduct different hostile activities and

cause many security-related issues. For this reason, also thanks

to the great success of Machine Learning (ML) and Deep Learn-

ing (DL) based techniques, many innovative solutions have been

proposed in order to counteract one of the most famous network

security issues, namely the exponential and yearly growth of

malware applications. For instance, Aonzo et al. [6] presented

BAdDroIds, a mobile application that leverages static features

for detecting malware, such as the required permissions and API

methods extracted from the DEX file. While Abderrahmane et al.

[1] employed a Convolutional Neural Network (CNN) to classify

malware applications using a matrix representation of system

calls.

However, malware static analysis-based approaches can be

strongly affected by obfuscation tools. Also, they become ineffec-

tive against most existing malware capable of evading pattern-

matching detection mechanisms, namely metamorphic and poly-

morphic ones [40]. Hence, several dynamic analysis-based ap-

proaches have been adopted to overcome these issues and capture

the behavior of analyzed applications [40]. However, such solu-

tions cannot perform classification tasks at Run-time because

they consider features derived by the post-analysis report, which
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2 introduction

describes applications that have already been executed and thus

that reached their malicious goals.

On the other hand, due to the recent explosion of IoT-related

malware applications, involved users and organizations became

increasingly reluctant to share their data. For this reason, one of

the most popular and recent options is associated with Federated

Learning (FL)-based solutions [71], in which each entity trains

an individual model using only its data and, in order to create a

global and shared model, sends the derived model parameters to

a central server [120]. In this direction, many FL-based solutions

have been proposed and adopted in several application domains,

such as Healthcare applications [20], Failure prognosis [29], and

Network traffic detection and classification [125, 127].

However, as highlighted in many notable literature studies [18,

46, 57, 83], non-Independent and Identically Distributed (non-

IID) data often adversely affects FL-based solutions regarding

the required training time, convergence, learning processes, and

classification results. Also, such strategies are often strongly influ-

enced by the configuration of some additional hyperparameters

(e.g. threshold values) that might limit their applicability [49, 78,

125].

Finally, since the related detection models should also have

an adequate generalization capability, their success strongly de-

pends on the right choice of the employed features. For this

reason, as highlighted below by the state-of-the-art, new empow-

ered detection strategies are needed to effectively spot malware

threats in several network security scenarios, with particular

attention to those related to IoT and Federated environments,

respectively.

1.2 the state-of-the-art on malware detectors

Nowadays, many detection frameworks and methodologies based

on static and dynamic analysis have been proposed [17, 65, 66,

105] to counter the continuous diffusion of malware. To this end,

static-based approaches can extract useful features (e.g. signa-

tures) without executing the analyzed applications. Indeed, to

accomplish this, such solutions disassemble the applications by

performing several reverse engineering operations. For example,
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Zhang et al. [122] proposed a semantic-based approach using

dependency graphs created from the application code. Instead,

Onwuzurike et al. [80] presented MaMaDROID, a malware de-

tection system that finds the sequences of methods potentially

invoked and maps them to their corresponding packages and

classes.

However, malware static analysis-based approaches can be

strongly affected by obfuscation tools. Also, they become ineffec-

tive against most existing malware capable of evading pattern-

matching detection mechanisms, namely metamorphic and poly-

morphic ones [40]. Therefore, in order to overcome these issues,

several dynamic-based solutions have been proposed to analyze

the dynamic behavior of an application and consider several

related aspects, such as parameter monitoring and API-Calls

tracing [32]. For instance, Kolosnjaji et al. [51] leveraged Deep

Neural Networks (DNNs) to analyze the sequence of system

calls extracted at Run-time. To accomplish this, they combined

convolutional and recurrent layers by obtaining an average ac-

curacy of 89.0% on 10 Android malware categories. Similarly,

Abderrahmane et al. [1] employed a CNN to perform malware

analysis in the presence of an unbalanced dataset. More pre-

cisely, they achieved an accuracy of 93.3% by classifying a matrix

representation of system calls. Next, in 2020, D’Angelo et al.

[22] improved this representation technique by considering the

API-Calls sequences arranged as corresponding matrices. More

precisely, they demonstrated the effectiveness of the proposed

approach, called API-Images, by obtaining an average accuracy

of 95% in performing binary classification tasks through Sparse

Autoencoders (SAEs).

Therefore, to also provide detection models with an adequate

generalization capability, I explore the effectiveness of dynamic-

based approaches in classifying several Android malware fami-

lies. To this purpose, I use a features representation technique,

called API-Images [22], to represent the dynamic behavior of

applications as corresponding images. Then, I employ the de-

rived API-Images to propose different kinds of Deep Learning

(DL)-based classifiers.

However, dynamic-based approaches cannot perform classifi-

cation tasks at Run-time because they consider features derived
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by the post-analysis report, which describes applications that

have already been executed and thus have fully shown their

behavior. On the other hand, thanks to the great success of DL

in many research fields, several solutions have been proposed

to face the related classification tasks as corresponding Video-

Classification activities. For instance, Perez et al. [85] proposed

a novel method to distinguish porn and no-porn videos based

on concatenated static and motion features. More precisely, they

validated their approach by considering two famous datasets,

namely Pornography-800 and Pornography-2k [9]. The achieved

results, carried out by a CNN, have shown an accuracy of 96.4%

and 97.9%, respectively. Instead, Xu et al. [119] investigated a new

approach to detect violent videos using two P3D-LSTM neural

networks. To accomplish this, they first considered static frames

and optical flows separately. Then, they classified such videos by

combining the extracted features through a late fusion strategy.

The achieved results, derived from different public and self-built

datasets, have proven the effectiveness of the presented approach

with an average accuracy of 97.97%. Instead, Santacroce et al.

[93] proposed a Time Distributed CNN based on the executable

code of applications. Hence, they first transformed the related

bytecodes into corresponding streams through a fixed-length

time windows mechanism. Then, they proved the effectiveness of

the following neural network by achieving an average accuracy

between 98.74% and 99.36%. However, since the following ap-

proach works on a stream representation of the bytecode, it can

be adversely affected by obfuscation techniques and polymorphic

malware.

Therefore, in order to support Run-time malware classifica-

tion activities, I employ an Autoencoders-based approach to

consider streams of API-Images and then face malware classifica-

tion tasks as corresponding Video-Classification activities. Hence,

unlike the most famous state-of-the-art solutions, the presented

approach might be involved in Run-time monitoring processes ca-

pable of detecting malicious applications in the shortest possible

time.

Although dynamic-based solutions can trace the behavior of

applications, static-based ones are often preferable because they

can acquire relevant signatures and features without executing
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the source code. For this reason, most notable DL-based mal-

ware detectors leverage static information, such as permissions,

Java methods, app components, and intent filters. For instance,

Vinayakumar et al. [110] employed several Long-Short Term

Memory (LSTM) network configurations to classify Android ap-

plications as benign or malicious. To accomplish this, for each

APK file, they considered the translated Android permissions

as corresponding numerical information. However, the obtained

results, characterized by a maximum accuracy of 89.7%, have

proven the ineffectiveness of this approach. For this reason, Li et

al. [59] compared several DNNs configurations by considering

both permissions and Java code. More precisely, they achieved

an average accuracy between 95% and 97% in classifying several

Android malware families. Similarly, Xie et al. [118] proposed

RepassDroid, a tool capable of distinguishing malicious applica-

tions from benign ones. More precisely, they first explored the

effectiveness of the most famous ML-based approaches. Next,

since the Random Forest (RF) algorithm had achieved the best

results with an accuracy of 99.7%, they employed the following

approach as the core module of RepassDroid. In addition, Li et

al. [56] proposed a DNN-based detector by obtaining an average

accuracy of 99.25%. To accomplish this, they considered other fea-

tures extracted from the Manifest file, such as app components,

hardware features, intent filters, and suspicious methods.

However, the discussed approaches consider Java methods

traced from the source code. Consequently, they become ineffec-

tive against most existing malware capable of evading pattern-

matching detection mechanisms, namely metamorphic and poly-

morphic ones. Therefore, to face this problem, I present a Fed-

erated CNN-based detector that leverages Android permissions

and their corresponding severity levels to classify different mal-

ware families.

On the other hand, due to the recent explosion of IoT-related

malware applications and the necessity of protecting privacy,

involved users and organizations became increasingly reluctant

to share their data. For this reason, one of the most popular

and recent options is associated with Federated Learning (FL)-

based solutions [71], in which each entity trains an individual

model using only its data and, in order to create a global and
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shared model, sends the derived model parameters to a central

server [120]. In this direction, many FL-based solutions have been

proposed and adopted in several application domains, such as

Healthcare applications [20], Failure prognosis [29], and Network

traffic detection and classification [125, 127]. Also, they have

been used for Malware classification in IoT environments by con-

sidering several extracted features, FL algorithms optimization,

learning models, and security schemes. Unfortunately, due to the

high amount of related works published, performing a complete

comparison is very difficult. For this reason, I report only some

contributions that can be helpful to understand the potential-

ity of the proposed architecture. Also, I remand to well-known

literature surveys [49, 78, 125] for more detailed information.

In 2020, Ruei-Hau et al. [41] proposed a new Android detec-

tion schema to prevent possible Poisoning attacks on a federated

model. They protected the federated learning process through

a Secure Multi-Party Computation (SMPC) implementation pro-

vided by OpenMined. Moreover, they evaluated the discussed

detection model in centralized and decentralized scenarios by

obtaining an average accuracy of 94.05% and 93.45%, respectively.

In the same direction, Galvez et al. [35] presented Less is More

(LiM), a Semi-supervised framework that leverages FL and static

features to detect Android malware applications. More precisely,

the following framework achieved an average F-Score of 95% over

50 iteration rounds and 50.000 Android applications distributed

among 200 clients. In 2021, Shukla et al. [99] proposed a Robust

and Active Protection with Intelligent Defense (RAPID) strategy

against malicious activities based on CNNs. They have proven

the effectiveness of the following malware classifier by obtain-

ing a 94% average accuracy. Also, to mitigate possible global

model-related poisoning, they introduced a server-side defence

mechanism based on the euclidean distances derived from each

federated model. Finally, in 2022, Rey et al. [89] and Popoola

et al. [86] presented similar network flows-based approaches to

detect the presence of cyberattacks in IoT domains. More pre-

cisely, the following methods have been trained by considering

several learning scenarios (Supervised, Semi-Supervised, and Un-

supervised), DNNs models, hyperparameters (number of clients
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and rounds), and network features by achieving a 99% average

accuracy.

Tab. 1.1 summarizes the discussed malware detectors by high-

lighting the adopted approach (Static or Dynamic), the employed

model, and the achieved accuracy, respectively.

Authors Title Approach Model Accuracy

Kolosnjaji et al. [51]
Deep Learning for Classification of

Malware System Call Sequence
Dynamic DNN 89.0%

Abderrahmane et al. [1]
Android Malware Detection Based on

System Calls Analysis and CNN Classification
Dynamic CNN 93.3%

D’Angelo et al. [22]
Malware detection in mobile environments

based on Autoencoders and API-images
Dynamic CNN-SAE 95.0%

Santacroce et al. [93]
Detecting Malware Code as Video With

Compressed, Time-Distributed Neural Networks
Dynamic CNN 99.3%

Popoola et al. [86]
Federated Deep Learning for Zero-Day

Botnet Attack Detection in IoT-Edge Devices
Dynamic FL-DNN 99.0%

Rey et al. [89]
Federated learning for

malware detection in IoT devices
Dynamic FL-DNN 99.0%

Vinayakumar et al. [110]
Deep android malware

detection and classification
Static LSTM 89.7%

Li et al. [59]
Android Malware Clustering through

Malicious Payload Mining
Static DNN 96.0%

Xie et al. [118]

RepassDroid: Automatic Detection of Android

Malware Based on Essential Permissions

and Semantic Features of Sensitive APIs

Static RF 99.7%

Li et al. [56]
Android Malware Detection

Based on Factorization Machine
Static DNN 99.2%

Quei-Hau et al. [41]
Privacy-Preserving Federated Learning System for

Android Malware Detection Based on Edge Computing
Static FL 94.0%

Shukla et al. [99]
On-device Malware Detection using

Performance-Aware and Robust Collaborative Learning
Static FL-CNN 94.0%

Table 1.1: An overview of the discussed malware detectors.

However, the reported FL-based approaches consider static

features that, as previously remarked, are strongly affected by ob-

fuscation techniques and polymorphic malware. Instead, traffic-

based ones, since considering features directly derived from the

network packets, become ineffective against traffic anonymiza-

tion techniques. Also, since they cannot analyze the application-

related dynamic behavior, they cannot be employed in any possi-

ble runtime-based detection or classification strategies [26].

Furthermore, as highlighted in many notable literature studies

[18, 46, 57, 83], FL-based solutions are often adversely affected

by non-Independent and Identically Distributed (non-IID) data.

Hence, to also face such issues, many learning strategies have

been proposed in recent years. In 2020, Karimireddy et al. [46]

presented the Stochastic Controlled Averaging algorithm (SCAF-
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FOLD) that tries to estimate the update direction for server and

client models. More precisely, the proposed algorithm, validated

in the presence of 100 clients and unbalanced dataset partitions,

has outperformed the most famous state-of-the-art Federated

algorithms by slightly reducing the required time effort. Li et

al. proposed [57] an extension of the FedAvg algorithm based,

at each iteration, on the selection of a subset of clients through

their local loss function values. The presented FedProx algorithm,

tested on four famous federated datasets, has achieved compara-

ble IID and non-IID loss functions but at the expense of slower

convergence. In 2021, Lu et al. presented [61] an improvement of

the FedAvg algorithm based on Earth Mover’s Distance (EMD)

between central and local parameters. More precisely, a new met-

ric, defined as node degree contribution, is derived in order to

improve the local models-related aggregation at each iteration.

Also, the experimental results, carried out with 100 clients and

a different number of iterations, have shown a similar conver-

gence behavior and a slight improvement in accuracy compared

with the FedAvg algorithm. Finally, Paragliola et al. [81] pro-

posed a PartialNet Strategy that reduces communication costs

by considering partially trained models that, at each iteration,

are aggregated by the central server if and only if they satisfy a

given threshold. The following strategy, validated on a real-world

dataset regarding people affected by hypertension, has proven its

effectiveness by reducing communication costs in both IID and

non-IID data scenarios.

Tab. 1.2 summarizes such discussed FL-based solutions by

highlighting their benefits and issues, respectively.

Authors Title Benefit Issue

Karimireddy et al. [46]
SCAFFOLD: Stochastic Controlled

Averaging for Federated Learning

Convergence

time reduction

Additional

hyperparameters

Li et al. [57]
Federated optimization in

heterogeneous networks

Similar loss

function values

Convergence

time increase

Lu et al. [61]
Parameters Compressed Mechanism in

Federated Learning for Edge Computing

Convergence

time reduction

Additional

hyperparameters

Paragliola et al. [81]
Definition of a novel federated learning

approach to reduce communication costs

Communication

cost reduction

Additional

hyperparameters

Table 1.2: FL-based approaches proposed for non-IID data-related is-
sues.
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However, as shown in Tab. 1.2, the proposed FL-based strate-

gies are often characterized by additional hyperparameters whose

tuning complexity could limit their applicability [49, 78, 125].

Therefore, in order to face the discussed issues and preserve

the intellectual property and privacy of the involved subjects, I

present a Markov chains-based dynamic detector. I accomplish

this by leveraging the effectiveness of Markov chains employed

in a federated logic. Also, I show the effectiveness of the pro-

posed approach in non-IID data scenarios that, instead, often

adversely affect the convergence and learning processes of the

classic FL-based models.

1.3 contributions and organization

Therefore, on the basis of highlighted weaknesses, I focused my

PhD activities on proposing new empowered strategies capa-

ble of guaranteeing the success of early alerting facilities for

Malware detection activities. The achieved results, supported by

my publications, are reported in the remaining of the thesis as

follows:

Chapter 2 will focus on Malware classification related to Android-

based devices, which represent one of the most famous hostile

activity sources continuously monitored to preserve IoT ecosys-

tems. First, it will highlight the main advantages of both dynamic

and static-based solutions. Then, it will remark on the effective-

ness of dynamic features, arranged as API-Images, to classify

several Malware families through a Convolutional Neural Net-

work (CNN) and Recurrent Neural Network (RNN), respectively.

Chapter 3 will present an extension of such API-Images, called

API-Streams, that is employed to face an enhanced Malware

classification as corresponding Video-Classification tasks. Hence,

the effectiveness of the proposed approach is proven by classi-

fying different Malware families through a CNN-LSTM Sparse

Autoencoder-based detector.

Chapter 4 will continue the discussion about the Android Mal-

ware classification by analyzing the effectiveness of a static-based

approach. Therefore, it first presents new special features called

Permission Maps (Perm-Maps), which combine information re-

lated to Android permissions and their corresponding severity
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levels. Then, the related effectiveness is proven through a CNN

enhanced by a training process based on federated logic.

Chapter 5 will combine the effectiveness of dynamic-based

approaches with the cooperation of federated IoT devices by pro-

viding a privacy-preserving Malware detector. In this direction,

the capabilities of Markov Chains and associative rules are en-

hanced in order to improve the most famous Federated Learning

(FL) based approaches, which are often adversely affected by

non-Independent and Identically Distributed (non-IID) data in

terms of both the required training time and classification results,

respectively.

Finally, Chapter 6 will present the Conclusions about the re-

ported works by highlighting possible and relevant future re-

search directions. More precisely, it discusses how enhanced

DL-based strategies will be needed to face the more complex and

future issues related to network security scenarios.



2
A N D R O I D M A LWA R E C L A S S I F I C AT I O N

T H R O U G H D Y N A M I C F E AT U R E S A N D N E U R A L

N E T W O R K S

2.1 introduction

Due to their popularity and open nature, Android OS-based

devices have attracted several end-users around the World and

currently are one of the main targets for malware threats. Indeed,

as highlighted by famous cybersecurity companies, the presence

of unprotected devices (e.g. smartphones, tablets, smart TVs, and

wearable devices) represents a great opportunity for malware

developers to perform several malicious activities, such as steal-

ing data and launching cyberattacks. For instance, a recent study

by Symantec [104] has reported that an average of about 38,000

new malware applications are daily detected, while according to

the Statista report [102], the number of mobile app downloads

observed worldwide will reach 352 billion in 2021.

Therefore, based on these studies and the rapid growth of mal-

ware technologies explicitly targeted for Android platforms [87],

researchers are attempting to propose more effective detectors

capable of discovering more complex malware and supporting

the related zero-day detection. To this purpose, also thanks to the

great success of Machine Learning (ML) and Deep Learning (DL)

based techniques in the last decade, several static and dynamic

analysis-based solutions have been proposed in order to learn rel-

evant features from the analyzed applications [108]. For instance,

Aonzo et al. [6] presented BAdDroIds, a mobile application that

leverages deep learning for detecting malware by considering

static features, such as the required permissions and the API

methods extracted from the DEX file. Abderrahmane et al. [1]

employed a Convolutional Neural Network (CNN) to classify

malware applications using dynamic features, namely a matrix

representation of system calls.

11
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However, malware static analysis-based approaches can be

strongly affected by obfuscation tools. Also, they become ineffec-

tive against most existing malware capable of evading pattern-

matching detection mechanisms, namely metamorphic and poly-

morphic ones [40]. Hence, in order to overcome these issues,

several dynamic-based solutions have been proposed to analyze

the behavior of an application by considering several related

aspects, such as parameter monitoring and API-Calls tracing

[32].

Therefore, to also provide detection models with an adequate

generalization capability, the main aim of the following chapter is

to prove the effectiveness of dynamic features in classifying sev-

eral Android malware families through DL-based approaches1.

More precisely, a features representation technique, called API-

Images [22], is used to represent the dynamic behavior of appli-

cations as corresponding images. Then, the derived API-Images

are employed to train a Convolutional Neural Network (CNN)

and Recurrent Neural Network (RNN).

The remainder of the chapter is organized as follows. Sec.

2.2 will present a preliminary overview of the different DNNs

adopted typologies. Sec. 2.3 will describe the employed approach

based on API-Images. Finally, Sec. 2.4 will discuss the experimen-

tal results, while Sec. 2.5 will show the conclusions and future

work.

2.2 background

This Section briefly describes the main building blocks of this the-

sis, namely DNNs and the employed features. First, I report some

theoretical information about CNNs and RNNs that represent the

core of the discussed detectors. Then, I present an overview of

the sandbox tool used to perform the malware analyses. Finally,

I describe the main characteristics of the employed dataset and

its provided features.

1 Article published in [27]
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2.2.1 Deep Neural Network

Deep Neural Networks (DNNs) are an extension of the stan-

dard neural networks characterized by several hidden layers and

neurons, which confer the capability to learn a set of relevant

features and thus gain good classification results. For this reason,

according to their ability to develop robust prediction models

and adjust to non-linear environments, DNNs are increasingly

being used in a multitude of application domains [96].

Figure 2.1: DNN-related architecture [82].

DNNs, also named deep fully-connected feed-forward neural

networks, are commonly described through a Directed Acyclic

Graph (DAG) in which data flows unidirectionally from the input

to the output layer [55]. Their related architecture, shown in

Fig. 2.1, is derived by setting different hyper-parameters during

the training process [36]. Also, to provide a prediction, DNNs

present an output layer composed of a fixed number of neurons

corresponding to the total number of possible classes. Therefore,

as done in this thesis, DNNs provide a probability distribution

that describes the possibility that a data sample being classified

in its corresponding category.

2.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) represent a class of

famous DL-based models that have been effectively applied in
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various scientific fields, including machine vision [100], Natural

Language Processing (NLP) [94], and computational biology [2].

Their success is gained by a particular mathematical process

applied in the hidden layers, which confer to these networks the

ability to extract relevant and correlated features from input data

[30].

Figure 2.2: CNN-related architecture [103].

As shown in Fig. 2.2, a CNN can use two principal opera-

tions sequentially applied in each layer, called Convolution and

Pooling. Convolution is the first operation that employs multiple

convolutional filters, each responsible for detecting a particular

feature from the input data. Then, the Pooling operation (e.g. Max

Pooling) can be applied to aggregate the previous features among

them in order to derive new relevant information and reduce

the output size, respectively. Also, since the derived features are

usually arranged into a two-dimensional or three-dimensional

vector, an additional third operation of Flattening is applied to

convert each matrix into a corresponding one-dimensional vector.

Therefore, in this thesis, I use CNNs to extract flattened rele-

vant features that are directly and indirectly employed, through

a DNN, to perform several detection and classification tasks [10].

2.2.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs) can work on instances struc-

tured as progressive observations (i.e. time series) by considering

their mutual dependencies and evolution over time. In this way,

a given output depends on the previous ones [10]. To accomplish

this, RNNs present many recurrent layers trained using a variant
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of the Backpropagation (BP) algorithm, called Backpropagation

Through Time (BPTT) algorithm. The application of BPTT implies

that, as shown in Fig. 2.3, the unrolling of the trained network as

a deep network with multiple hidden layers.

To build a RNN, we can use SimpleRNN and Long Short-

Term Memory (LSTM) layers as input or hidden layers, while

the output part often consists of a DNN employed to obtain

the input data classification. In this thesis, I use SimpleRNN

and LSTM layers to analyze recurrence phenomena related to

Malware classification and traffic anomaly detection, respectively.

Also, notice that the LSTM layer is employed to overcome the

vanishing gradient problem [39].

Figure 2.3: RNN-related architecture [10].

2.2.4 Sandboxing approach

Sandbox environments can be employed in several configurations,

depending on the needs of security experts. Sandboxes can be

Virtual Machine (VM)-based, emulating an end user’s operating

system, or fully simulating a physical device [109]. More precisely,

a sandbox is a proactive system for malware detection that runs

a suspicious application in an isolated environment (e.g. a new

malware typology) and provides several related features [47].

Therefore, to perform Malware analyses and extract the em-

ployed static and dynamic features, I used the CuckooDroid
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Sandbox [12]. I chose such tool because it is an extension of

Cuckoo [11] specifically designed to analyze Android applica-

tions and overcome anti-emulation strategies. Indeed, these strate-

gies adversely affect the most famous sandboxing tools, such as

DroidMat [117] and CopperDroid [106].

Figure 2.4: High-level architecture of CuckooDroid.

As shown in Fig. 2.4, the high-level architecture of Cuck-

ooDroid consists of two main parts, namely the Host and Guest,

respectively. The Guest part can consist of several physical or

virtual machines in which applications are analyzed, while the

Host part is a machine devoted to running the central manage-

ment software. More precisely, the management software allows

the submission of applications and manages the communica-

tion between the Host and Guest parts, respectively. Also, the

CuckooDroid sandbox can communicate with three guest ma-

chines types, namely: with an Android emulator installed on a

Linux machine (Android On Linux Machine), with a physical

Android-based device (Android device cross-platform), and with

an Android emulator installed on the host machine (Android em-

ulator). Fig. 2.5 shows the architecture of the third type of guest

machine (i.e. Android Emulator) employed to perform malware

analyses.

More precisely, it consists of the following main modules:

- Python Agent: is the script implementing the central man-

agement software;
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Figure 2.5: Android emulator architecture.

- Android Analyzer: is the app analyzer installed during the

configuration of each guest machine;

- Xposed: is a framework that can communicate with other

modules or applications, such as the Emulator Anti-Detection

module and Droidmon;

- Superuser: is an Android application that can manage root

permissions required by applications;

- Content Generator: is an Android application that generates

a random list of contacts;

- AAPT-ARM: is a tool that extracts static features and other

information related to the analyzed application.
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2.2.5 Dataset and Analyzed features

Since static and dynamic-based approaches are often combined

to improve the probabilities of identifying an application as

malware, this thesis discusses the effectiveness of dynamic API-

Calls and Android Permissions, directly and indirectly, employed

to enhance the DL-based detectors. These basic features have been

extracted through the CuckooDroid Sandbox and are available

within a recently proposed dataset, namely the Unisa Malware

Dataset (UMD) [27].

More precisely, since one of the most critical malware anal-

ysis challenges is providing a dataset that represents the mal-

ware’s characteristics directly employable for models training

and knowledge construction, I created the following dataset by

considering the 24553 applications of Android Malware Dataset

(AMD) [58, 115] and 5560 applications of Drebin [7], respectively.

I chose such datasets because they have been widely employed

in literature by achieving notable results [13, 67, 77, 124]. Instead,

I did not include other recently published datasets (e.g. those

available in [75]) because they do not consider some famous

malware families or do not provide some post-analysis features,

such as permissions, API Calls, and network packets.

Thus, out of 30113 applications considered, only 25275 have

been successfully analyzed and thus uniquely stored through

their SHA256 value. Therefore, on the basis of this process, I col-

lected 20426 malware of AMD and 4849 of Drebin, respectively.

Tab. 2.1 shows the five most representative families of the consid-

ered datasets, while Tab. 2.2 summarizes the main characteristics

of UMD.

Dataset Malware Families

AMD
Airpush Dowgin FakeInst Mecor Youmi

5989 2985 2167 1820 1244

Drebin
FakeInst DKFu Opfake Plankton BaseBridge

881 635 607 443 314

Table 2.1: Representative post-analysis families of AMD and Drebin.



2.2 background 19

Total Apk Analyzed Apk Families Dim. (GB)

AMD 24553 20426 66 100.08

Drebin 5560 4849 143 17.55

Total 30113 25275 209 117.63

Table 2.2: UMD main characteristics.

Next, in order to provide an optimized version of UMD (UMD-

V2), I merged the two main folders (AMD and Drebin) by apply-

ing the following two steps:

1. Merge the identical families by removing duplicates;

2. Remove all applications characterized by some missing or

malformed files.

More precisely, the application of both steps has removed 24

malware and 990 applications. Consequently, the dataset dimen-

sion (Dim.) has also been reduced by 5 GB. Tab. 2.3 compares the

two versions of UMD datasets, while Tab. 2.4 summarizes the

most representative post-cleaning malware families.

Total Apk Families Dim. (GB)

UMD-V1 25275 209 117.63

UMD-V2 24285 185 112.45

Difference 990 24 5.18

Table 2.3: Comparison between the UMD’s versions.

Dataset Malware Families

UMD-V2
Airpush Dowgin FakeInst Mecor Youmi

5983 2985 2917 1820 1239

Table 2.4: Representative post-cleaning families of UMD.
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2.3 the employed approach

This Section describes the employed approach for training the

CNN and RNN-based classifiers, respectively. For this reason, I

first provide an overview of dynamic API-Calls. Then, I describe

a famous API-Calls-based representation technique, called API-

Images [22], which has been proven effective in several malware

classification tasks.

2.3.1 API-Calls

API-Calls play a relevant role in Android malware analysis be-

cause they summarize the behavior of analyzed applications.

More precisely, since API-Calls represent the API methods se-

quence invoked over time, they are often characterized by some

extra information, such as the timestamp, passed arguments, and

returned values. Therefore, API-Calls can be strongly helpful in

supporting Malware classification tasks.

Notice that the employed CuckooDroid Sandbox can collect

API-Calls through a module called Droidmon [42], which traces

API-Calls and stores them in a dedicated file called droidmon.log.

More precisely, as shown in Fig. 2.6, this file contains the list of

traced API-Calls and the related information arranged as JSON

objects, respectively.

Figure 2.6: Droidmon.log file.

2.3.2 API-Images

API-Images are a set of sparse matrices representing a complete

snapshot of analyzed applications. More precisely, an API-Image

can be built through the following two steps:

1) Identification of each API-Call with a unique ID.
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2) Matrix creation through the traced API-Calls sequence.

The first step can be accomplished using a dictionary in which

each textual API-Call corresponds to a numeric ID. Then, given

a traced API-Calls sequence, every two consecutive calls can be

used as coordinates to build the related API-Image matrix. Hence,

each pair of API-Calls is employed to draw a fixed point in the

API-Image. For instance, let a1, a2, and a3 be three APIs where a2

is called after a1 and a3 is called after a2. On the basis of described

process, we can consider only two pairs of coordinates, P1 =

(a1, a2) and P2 = (a2, a3), respectively. Also, since an application

may invoke different times the same API-Calls sequence, some

pairs can occur more than once. This situation can be managed

through different colour scales (e.g. RGB or Gray-scale) in which

each colour represents a frequency.

Figure 2.7: The workflow to obtain an API-Image.
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Figure 2.8: An example of 2 API-Images.

Fig. 2.7 summarizes the workflow to generate an API-Image,

while Fig. 2.8 shows two RGB API-Images representing the An-

droid malware families Airpush and Dowgin, respectively. More

precisely, the reported families show frequencies related to each

API-Call pair. Indeed, for each fixed point, a light colour rep-

resents those pairs repeated a few times, while a dark colour

represents those pairs repeated many times. Besides, it is possible

to observe how both images are characterized by two well-distinct

behavior that uniquely identifies each malware family.

2.4 experimental results

The goal of the presented experiments is devoted to demonstrat-

ing the effectiveness of API-Images in enhancing the proposed

DL-based classifiers. To accomplish this, I show the abilities of

CNN and RNN in classifying several malware applications and

overcoming the most famous ML-based approaches, respectively.

2.4.1 Dataset and Experimental setting

The dataset considered in the following experiments has been de-

rived by Unisa Malware Dataset (UMD), composed of about 2500

applications grouped into 5 Android families: Airpush, Dow-

gin, DroidKungFu (DKFu), FakeInstaller (FakeInst), and Opfake.

More precisely, in order to obtain the related API-Call sequences,

I analyzed each application through the Cuckoo Sandbox tool

[12]. Thus, by applying the previously described process (see
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Fig. 2.7), the obtained sequences have been used to generate one-

channel API-Images (116×116) in accordance with the maximum

number of different API-Calls observed. Next, to evaluate the

performances of the employed classifiers, I divided the result-

ing dataset into training and testing sets according to the 70/30

criteria, as reported in Tab. 2.5.

Family Training Testing Total

Airpush 350 150 500

Dowgin 350 150 500

DKFu 350 150 500

FakeInst 350 150 500

Opfake 350 150 500

Total 1750 750 2500

Table 2.5: Dataset division according to the 70/30 criteria.

Finally, notice that any experiments (including training and

testing phases) have been done with an iMac equipped with an

Intel 6-Core i7 CPU @ 3.20GHz and 16 GB RAM.

2.4.2 Evaluation metrics

To appreciate the classification quality of the employed DNNs,

I used the following evaluation metrics derived from the multi-

class confusion matrix: Accuracy (Acc.), Sensitivity (Sens.), Speci-

ficity (Spec.), Precision (Prec.), F-Score (F-Mea.), and Area Under

the ROC Curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Sensitivity =
TP

TP + FN
(2.2)

Speci f icity =
TN

TN + FP
(2.3)

Precision =
TP

TP + FP
(2.4)
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F− Score =
2 ∗ Sens ∗ Prec

Sens + Prec
(2.5)

AUC =
Sens + Spec

2
(2.6)

For each category, TPs (True Positives) refer to the applications

correctly classified, while TNs (True Negatives) refer to the ap-

plications correctly identified in another category. Conversely,

FPs (False Positives) are the applications mistakenly identified

as the considered category, while FNs (False Negatives) are the

applications mistakenly identified in another category. Also, to

achieve a global perspective of the detector effectiveness, the aver-

age performance values (Avg.) among all the observed malware

classes have been derived.

2.4.3 DNNs description and Results

As mentioned earlier, I used a CNN and a RNN to classify sev-

eral Android malware families. Accordingly, in this Section, the

DNNs-related implementation details are first reported. Then,

the experimental results are shown. Notice that I derived the de-

scribed architecture according to the results derived by using the

70/30 criteria. Also, I did not employ simple DNNs (composed

only of fully connected layers) because they have already been

adopted in literature to face similar tasks [51].

First, the employed CNN includes a sequence of two Conv2D

layers with kernel_size=(4,4), max pool_size=(2,2), and activa-

tion=relu, characterized by having 64 and 32 filters, respectively.

After that, a Flatten layer is employed to map the extracted

features as one-dimensional latent vectors and fed a fully con-

nected softmax network. Hence, I used three Dense layers having

activation=relu, dropout=0.4, and 128 neurons, respectively. In

addition, to consider the classification results as probability dis-

tributions, I used a fourth dense layer with five neurons and

activation=softmax as the output layer.

Instead, regarding the RNN, it includes a sequence of five

SimpleRNN layers with 100 neurons and return_sequences set

to True for the first four layers. Then, to again consider the

classification results as probability distributions, I used a sixth

dense layer with five neurons and activation=softmax as the



2.4 experimental results 25

output layer. Therefore, I trained both networks with Adam

optimizer and CategoricalCrossentropy loss function for 150

epochs and batch_size=256.

In addition, the following architectures have been derived by

varying the following hyper-parameters:

- numConvLayers: the number of Conv2D layers (1, 2, 3);

- numFilters: the number of filters for each Conv2D layer (8,

16, 32, 64);

- kernel_size: kernel_size values ((2,2), (3,3), (4,4));

- numPoolLayers: the number of MaxPool2D layers (1, 2, 3);

- pool_size: pool_size values ((2,2), (3,3), (4,4));

- numDenseLayers: the number of Dense layers (2, 3, 4);

- numNeurons: the number of neurons for each Dense layer

(5, 16, 32, 64, 128, 256, 512);

- dropout: dropout values for each Dense layer (0.2, 0.3, 0.4,

0.5);

- activation: activation functions used (relu, softmax, sig-

moid);

- batch_size: batch_size values (64, 128, 256, 512);

- loss: employed loss functions (Mean Squared Error - MSE,

CategoricalCrossentropy).

Tabs. 2.6 and 2.7 report the excellent performance metrics

derived by the multi-class confusion matrix for the employed

CNN and RNN, respectively.

2.4.4 Comparison and Discussion

Finally, to highlight the potentialities of the presented DL-based

classifiers, I compared the achieved results with those derived by

the most famous ML-based methods provided by WEKA [116],

namely: the Multi-Layer Perceptron (MLP) classifier, J48 Trees
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Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9960 0.9948 0.9814 1.0000 0.9906 0.9974

FakeInst 0.9987 1.0000 1.0000 0.9928 0.9964 0.9964

Opfake 0.9972 1.0000 1.0000 0.9869 0.9935 0.9968

Airpush 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Dowgin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg. 0.9984 0.9990 0.9963 0.9960 0.9961 0.9981

Table 2.6: CNN performance metrics.

Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9987 1.0000 1.0000 0.9927 0.9964 0.9964

FakeInst 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Opfake 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Airpush 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Dowgin 0.9987 0.9982 0.9935 1.0000 0.9966 0.9974

Avg. 0.9995 0.9997 0.9987 0.9986 0.9986 0.9988

Table 2.7: RNN performance metrics.

(J48) algorithm, and Naive Bayes (NB) classifier, respectively. I

accomplished this by arranging the API-Images as corresponding

flattened sequences. Tab. 2.8 compares the achieved classification

metrics with those derived by each ML-based method used.

Acc. Spec. Prec. Sens. F-Mea. AUC

RNN 0.9995 0.9997 0.9987 0.9986 0.9986 0.9988

CNN 0.9984 0.9990 0.9963 0.9960 0.9961 0.9981

MLP 0.9990 0.9950 0.9950 0.9950 0.9950 0.9950

J48 0.9970 0.9870 0.9870 0.9870 0.9870 0.9960

NB 0.9710 0.8970 0.8890 0.8870 0.8860 0.9900

Table 2.8: Comparison with ML-based methods provided by WEKA
(only Avg. values are reported).
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As shown in Tab. 2.8, the proposed DNNs outperformed each

traditional ML-based method taken into consideration. More pre-

cisely, it achieved an average F-Score improvement of 11% on the

NB classifier. In addition, the J48 Trees and the MLP classifier,

which have also achieved excellent classification results, have

been outperformed by the employed DNNs. Indeed, CNN and

RNN have obtained the best classification metrics (see Precision,

Sensibility, and F-Score) in recognising the different malware

families. Therefore, these results prove the effectiveness of dy-

namic features in reducing classification error and enhancing the

DL-based classifiers, respectively.

2.5 conclusions and future works

In this Chapter, I investigated the effectiveness of dynamic fea-

tures in enhancing DL-based malware classifiers. More precisely,

I analyzed the five most representative Android malware families

of the Unisa Malware Dataset (UMD). Hence, I first arranged the

traced API-Calls sequences as corresponding one-channel API-

Images. Then, I proved their effectiveness by employing CNN and

RNN-based classifiers, respectively. The obtained results have

shown an average accuracy of 99% for both employed DNNs by

also outperforming the most famous ML-based approaches.

However, due to the continuous release of sophisticated and

dangerous malware, this study highlights two possible future

works. First, enhanced DL-based approaches should be inves-

tigated in order to propose new malware detectors capable of

performing Run-time classification tasks. For instance, Chap. 3

discusses the effectiveness of Sparse Autoencoders (SAEs) in con-

sidering streams of API-Images sampled over time. Second, the

static-based approaches should be explored to propose malware

detectors not affected by the most famous obfuscation techniques.

For instance, Chap. 4 presents a Federated classifier based only

on Android Permissions and their corresponding severity levels.





3
A N D R O I D M A LWA R E D E T E C T I O N T H R O U G H

A P I - S T R E A M S A N D C N N - L S T M

AU T O E N C O D E R S

3.1 introduction

The sudden and rapid displacement of the global workforce

towards the houses, caused by the outbreak of the COVID-19

pandemic, has forced companies worldwide to make significant

changes to their infrastructures. In this new scenario, mobile

devices have been used more than ever to access corporate sys-

tems making them more susceptible to new cyber threats. For

instance, as reported by the Mobile Security Report of Check

Point [53], 97% of organizations have faced several threats from

mobile devices, while 46% of organizations have had at least one

employee that downloaded a malicious app. Consequently, due

to their popularity, mobile devices remain one of the main targets

for cyber-criminals, which constantly analyze systems-related

vulnerabilities and the worldwide trending topics in order to

conduct several hostile activities [50, 54].

For this reason, also thank the great success of Deep Learn-

ing (DL) in many research fields [30, 43, 126], several DL-based

solutions have been investigated to face malware classification

by considering both static and dynamic-based approaches [1, 6,

51, 56]. However, as remarked in Chap. 2, static-based solutions

can be strongly affected by obfuscation tools. Also, they become

ineffective against most existing malware capable of evading

pattern-matching detection mechanisms, namely metamorphic

and polymorphic ones [40]. On the other hand, dynamic-based

approaches cannot perform classification tasks at Run-time be-

cause they consider features derived by the post-analysis report,

which describes applications that have already been executed

and thus shown their behavior.

29
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Therefore, the main goal of this chapter aims to propose a

novel feature representation technique, called API-Streams1, to

perform Run-time malware classification tasks. To accomplish

this, the related API-Streams workflow, based on multiple API-

Images sampled during the applications’ execution, is presented.

Then, the effectiveness of the proposed approach is investigated

by facing several Video-Classification tasks. I accomplished this

by combining the capability of CNN-LSTM Sparse Autoencoders

(CNN-LSTM-SAEs) in finding relevant features, the goal of Video

Classification in distinguishing objects from a stream of frames,

and the classification abilities of Deep Neural Networks (DNNs),

respectively. Therefore, unlike the most famous state-of-the-art

solutions [1, 22, 51], the presented API-Streams might be involved

in Run-time monitoring processes capable of detecting malicious

applications in the shortest possible time. Consequently, the pro-

posed approach might also be helpful in reducing the damages

caused when applications are still running.

Hence, the main contributions of this chapter can be summa-

rized as follows:

1. A novel approach called API-Streams, based on several API-

Images, is proposed in order to represent malware behavior

at Run-time;

2. Several Video-Classification tasks, based on CNN-LSTM

Sparse Autoencoders, are faced to demonstrate the effec-

tiveness of the proposed approach.

The remainder of the chapter is organized as follows. Sec.

3.2 will present a preliminary overview of the different DNNs

adopted typologies. Sec. 3.3 will describe the proposed approach

based on API-Streams. Finally, Sec. 3.4 will discuss the exper-

imental results, while Sec. 3.5 will show the conclusions and

future work.

1 Article published in [26]
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3.2 background

This Section briefly describes the main building blocks employed

by the presented Android malware classifier, namely Autoen-

coders and Stacked Neural Networks.

3.2.1 Autoencoders

As depicted in Fig. 3.1, Autoencoders (AEs) represent one of the

most famous unsupervised neural network configurations, char-

acterized by having a symmetrical structure composed of two

main components known as encoder and decoder, respectively.

From a mathematical perspective, the encoder converts the input

data sample, x, into a low-dimensional latent vector h = f (x),

while the decoder reconstructs the input from the latent vector as

x̃ = g(h), such that x̃ = x [8]. Therefore, since the principal ob-

jective of an AE is learning to reconstruct its input as the desired

output, it is forced to extract only the relevant and representative

features from the input data.

Figure 3.1: Schematic representation of an Autoencoder.

However, differently from the classical features selection and

extraction techniques, the effectiveness of AEs descends on the

capability of representing the input using non-linear combina-

tions of the derived features. For this reason, AEs outperform the

most famous dimensionality reduction-based techniques, such

as Principal Component Analysis (PCA), Linear discriminant

analysis (LDA), and Discriminant Function Analysis (DFA) [79].



32 malware detection through api-streams and cnn-lstm-aes

Finally, since the encoding-decoding process can be imple-

mented through different neural network topologies, seven main

AEs categories have been proposed in the literature, namely: the

Sparse AE [73], the Undercomplete AE [107], the Denoising AE

[111], the Deep AE [121], the Convolutional AE [63], the Vari-

ational AE [44], and the Contractive AE [90]. In this proposal,

we explore the capabilities of CNN-LSTM Sparse Autoencoders

(CNN-LSTM-SAEs) in extracting meaningful features derived

from the input streams. Also, I remand to [19] and [30] for more

detailed information about the theoretical and practical aspects

of AEs.

3.2.2 Stacked Neural Network

Building reliable and robust neural network models for a specific

classification task is often challenging and time-consuming. How-

ever, their effectiveness can be improved by combining multiple

related models as one entire Stacked Neural Network (SNN).

The following theory is founded on the assumption that the com-

position of several feature typologies, respectively learned by

a specific network, decreases the uncertainty and enhances the

trade-off between training speed and classification accuracy [74].

Therefore, the training procedure of an SSN starts with the train-

ing of each involved model, performed independently, and then

proceeds by fine-tuning the whole network using a supervised

scheme, such as the Backpropagation algorithms.

Similarly, in this chapter, the capabilities of CNN-LSTM-SAEs

and DNNs are combined to propose a SNN-based malware

classifier capable of detecting malware applications during their

execution.

3.3 the proposed approach

This Section presents the proposed approach for implementing

the Android malware classifier. I accomplished this through the

following two main steps, namely: finding out the more repre-

sentative features from the input streams and then performing

classification using a Stacked Neural Network.
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Figure 3.2: SNN high-level architecture.

More precisely, as shown in Fig. 3.2, the former step is per-

formed using a Sparse AE (SAE) implemented by a CNN-LSTM

network that, as known in the literature, is capable of mining

both spatial and temporal features [30]. Whereas, for implement-

ing the classification step, the latent layer of the SAE is employed

as input to a fully connected neural network. In this way, I com-

bine the capability of SAEs in finding compact and relevant

features, the goal of Video-Classification in distinguishing objects

from a stream of frames, and the classification abilities of DNNs,

respectively.

Therefore, I first present a brief mathematical formulation of

AEs. Then, I combine the given formulation of CNN-SAEs and

LSTM-SAEs by defining the employed CNN-LSTM-SAE. Finally,

I describe the generation process of API-Steams by providing

some definitions.

3.3.1 AE Definition

In this configuration, I suppose that the AE used for processing

aggregated API-Images, with reference to Fig. 3.1, includes only

three layers typologies, namely: input, hidden, and output layers,

respectively.
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Let x ∈ R
d be the input vector of Fig. 3.1, and let xAE ∈ R

d′

be the input of the AE under consideration, then x ≡ xAE and

d = d′.

As explained in Subsection 3.2.1, an AE tries to reconstruct its

input by encoding it into a latent space h, that is then decoded

into an output x̃AE as reported in the following:

x̃AE = y(W ′,b′)(h(W,b)(xAE)) ≡ xAE (3.1)

where (W, b) and (W ′, b′) represent the matrix of the weights and

the bias vector of the encoder and decoder respectively, whereas

y is the activation function of the decoder.

Moreover, let n be the number of hidden neurons of AE, then

W ∈ R
n×d′ , b ∈ R

n, and h(W,b) is given by:

h(W,b)(xAE) = σ(WxAE + b) (3.2)

where σ is the activation function of the encoder.

Since an Autoencoder is trained by minimizing a loss function

F , it is possible to consider additional constraints, also referred to

as regularization terms, to give the AE some specific capabilities.

For instance, Sparse AEs are often employed to extract meaning-

ful and relevant features from input data and, consequently, to

improve the classification performance. Specifically, Sparsity can

be achieved with different strategies (e.g. L1 regularization and

KL regularization) by letting the AE of interest to have only a

few nodes that are simultaneously active (1 in theory) in order

to positively affect the learning process [64]. Concerning SAEs,

their regularization is accomplished by adding a penalty term to

the loss function, that is:

F (xAE, x̃AE)Sparse = F (xAE, x̃AE) + λS(W, b) (3.3)

where λ expresses the degree of regularization, and S(W, b)

represents the sparsity-related term.

Once the training process is completed, the output of the lth

hidden neuron hl can be derived by:
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hl = σ(
d′

∑
k=1

wlkxAE
k + bl) (3.4)

Hence, since the input data of a Sparse AE is constrained by
∥

∥

∥
xAE

∥

∥

∥

2
≤ 1, each input data component xAE

k activating the lth

neuron is given by:

xAE
k =

wlk

∑
d′
m=1(wlm)2

, ∀ k, m ∈ {1, ..., d′} (3.5)

which extracts a feature that exactly corresponds to the lth output

node. Accordingly, a Sparse AE can learn different sets of charac-

teristics from its input data that is at least equal to the number

of considered hidden neurons n.

3.3.2 CNN-SAE Definition

As detailed in Subsection 3.2.1, AEs are frequently coupled with

different DNNs flavors in order to add new functionalities and

learn more complex features from input data. Thus, to fully ex-

ploit the effectiveness of API-Images, I use several Convolutional

layers to derive relevant relations, which are also referred to as

spatial-features [30].

Let X ∈ R
Nx×Ny be the CNN-related input, AI ∈ R

N×N be an

API-Image, and C f ∈ R
a×b be the f th filter, respectively. Then,

X ≡ AI and Nx × Ny = d = N × N.

On these assumptions, the convolution operation, applied on

the CNN-input AI with N f filters, is defined by:

Fi,j =
N f

∑
f=1

a

∑
p=1

b

∑
q=1

C
f
p,q AIi+p−1,j+q−1 (3.6)

with Fi,j the components of the filtered input F.

The size of F is defined through its row Fx and column Fy

dimensions, by:
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Fx =
Nx − a + 2P

Sx
+ 1

Fy =
Ny − b + 2P

Sy
+ 1

(3.7)

where P is the Padding referring to the number of zeros sur-

rounding the border of X, while Sx and Sy represent the Strides

related to the row and column. Hence, Sx and Sy manage the

shift of the filter on the input matrix.

Since d = Nx × Ny, any xk can be mapped to a corresponding

point AIi,j into a two-dimensional array. Hence, with a limited

abuse of notation, follows that:

xk ≡ AIi,j (3.8)

with k ∈ {1, ..., d}, i ∈ {1, ..., Nx}, and j ∈ {1, ..., Ny}.
By substituting Fi,j of Eq. (3.6) into xAE

k of Eq. (3.4), it yields:

hl = σ(
d′

∑
k=1

w′lkxφ(k) + bl) (3.9)

such that d′ = Fx × Fy, while

w′lk =
N f

∑
f=1

a

∑
p=1

b

∑
q=1

C
f
p,qwlk (3.10)

and

xφ(k) ≡ AIi+p−1,j+q−1 (3.11)

Analogously to Eqs. 3.4 and 3.5, Eqs. 3.9 and 3.10 define that

w′lk (for each l, k) are the new mined features expressing a more

complex knowledge since they are expressed as the linear combi-

nation of the original wlk. Therefore, the CNN-SAE configuration

can deeply analyze the applications-related dynamic behavior,

represented as API-Images, by providing meaningful features to

employ for the proposed approach.
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3.3.3 LSTM-SAE Definition

In this configuration, LSTM layers are used, together with SAE,

as a Sequence-To-Sequence (STS) architecture [101] in which

the sequence of input features (e.g. time-series of a multivariate

input) is encoded into a corresponding fixed-length latent vector

and, vice-versa, decoded again as the input sequence. Hence,

this confers to LSTM-SAE configuration the capability of mining

temporal short and long-distance dependencies within the input

features.

Let XT = (x(1), x(2), ..., x(T)) be a T-length sequence of input

sequence at different timestamps t ∈ {1, ..., T}, the STS-encoder,

after T recursive updates, produces a synthesized output-vector

(yT) of a predetermined r× 1 dimension, which can be expressed

by:

yT = ΨT(x(1), x(2), ..., x(T)) (3.12)

with ΨT a non-linear multi-variable vector-valuated function

gathering the work of the LSTM cell for T timestamps.

Let yT
k be the kth component of yT, then substituting yT

k into

xAE
k of Eq. 3.4, it yields:

hl = σ(
r

∑
k=1

wlkyT
k + bl) (3.13)

Analogously to Eq. 3.4, Eq. 3.9 indicates that the extracted

features are a non-linear combination of T vectors of input fea-

tures, which are also referred to as temporal-features [30]. Hence,

since these new features express a compact representation of the

input features over time, the LSTM-SAE configuration can be

employed to analyze the dynamic behavior when applications

are still running.

3.3.4 CNN-LSTM-SAE Definition

In this configuration, spatial-features are first extracted, and then

their behavior over time is evaluated through temporal-features
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mined by the LSTM cells. Thus, the d-dimensional input vector is

arranged as a two-dimensional array (Nx × Ny). Next, it is fed to

CNN that gives a Fx × Fy matrix as output (see Eq. 3.7). Finally,

T CNN-outputs are combined by the LSTM cells to produce a

r-dimensional vector (yT).

With reference to Eq. 3.6, and according to Eqs. 3.8 and 3.11,

the components (Y
(t)
i,j ) of the CNN-output (Yt) at timestamp t are

given by:

F
(t)
u ≡ F

(t)
i,j =

N f

∑
f=1

a

∑
p=1

b

∑
q=1

C
f
p,qx

(t)
φ(u)

(3.14)

with t ∈ {1, ..., T}, u ∈ {1, ..., d′}, and d′ = Nx × Ny.

According to Eq. 3.12, the kth component (yT
k ) of yT is given by:

yT
k = ΨT

k (Y
(1), Y(2), ..., Y(T)), k ∈ {1, ..., r} (3.15)

which expresses a relation among T spatial-features derived by

the CNN.

Thus, with reference to Eq. 3.4, follows that:

hl = σ(
r

∑
k=1

wlkyT
k + bl) (3.16)

Analogously to Eq. 3.13, Eq. 3.16 indicates that the extracted

features are a non-linear combination of T spatial-features ob-

tained by the CNN stage. Hence, the CNN-LSTM-SAE config-

uration can analyze the applications-related behavior in terms

of spatial and temporal-features, respectively. For this reason, I

employ a CNN-LSTM-SAE to derive relevant features within a

stream of T API-Images generated at Run-time.

3.3.5 API-Streams Definition

Informally, an API-Stream can be defined as a set of several API-

Images generated at Run-time. More precisely, the API-Streams

generation process begins by sampling API-Calls in several ∆t
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time windows, and for each considered sub-sequence, by gener-

ating a corresponding API-Image. Next, the obtained sequence

of API-Images can be similarly sampled over time and then in-

volved to generate several API-Streams. Therefore, the following

approach assumes that each time window identifies a fixed-

length sub-sequence of API-Calls or API-Images considered at

Run-time. I respectively refer to them with ∆tCalls and ∆tImages,

such that:

∆tCalls = KM ∗ DCalls (3.17)

∆tImages = JM ∗ DImages (3.18)

where KM is the number of API-Calls considered, DCalls is the

distance between 2 API-Calls, JM is the number of API-Images

considered, and DImages is the distance between 2 API-Images.

Also, KM ≥ 2 where 2 is the minimum number of required API-

Calls to achieve an API-Image with at least one fixed point, and

JM = t where t is the number of considered time steps.

Therefore, the total number AM of API-Images generated dur-

ing the app’s execution is derived as follows:

AM = (LM − ∆tCalls) + 1 (3.19)

where LM is the total number of API-Calls of an application M.

Finally, to include additional combinations of API-Streams,

I consider any sliding of the temporal window ∆tImages. To ac-

complish this, usually, a specific offset (Stride) is used [24]. As

a consequence, the total number SM of API-Streams generated

during the app’s execution is given by:

SM =









(AM − ∆tImages)

Stride
+ 1









(3.20)

Fig. 3.3 provides an instance of ∆tCalls and ∆tImages windows,

while Fig. 3.4 summarizes the API-Streams workflow and its

main steps.
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Figure 3.3: An instance of ∆tCalls and ∆tImages windows.

Figure 3.4: API-Streams workflow.

3.4 experimental results

The goal of the presented experiments is devoted to demonstrat-

ing the effectiveness of API-Streams in classifying Android mal-

ware families at Run-time. To accomplish this, I show the abilities

of a CNN-LSTM-SAE-SNN in performing Video-Classification

tasks in the presence of several unbalanced datasets.

3.4.1 Dataset and Experimental setting

The API-Streams datasets considered in the following experi-

ments have been composed of 5 representative Android families

of the Unisa Malware Dataset (UMD), namely Dowgin, Droid-

KungFu (DKFu), FakeInstaller (FakeInst), GinMaster (GinM), and
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Plankton. First, by following the workflow shown in Figs. 3.3

and 3.4, I generated AM API-Images (80×80) in accordance with

the maximum number of distinct API-Calls observed. Then, I

extracted SM API-Streams by considering the following parame-

ters:

• KM: the number of employed API-Calls: (5, 10, 15, 20, 25,

30, 35, 40, 45, 50);

• JM: the number of employed API-Images: (5, 10);

• DCalls: the distance between 2 API-Calls: (1);

• DImages: the distance between 2 API-Images: (1, 2, 3);

• Stride: the distance between 2 time windows: (1, 2).

More precisely, I generated several dataset instances by includ-

ing, each time, at least 1000, 2000, and 4000 API-Streams for each

malware family (namely the bound of SM). More precisely, the

value of SM, and those related to the other parameters, have been

iteratively derived according to the achieved results. Notice that,

on 360 different dataset combinations considered, I reported only

the instances that gave better results.

Therefore, I split each derived dataset using the 70/30 criteria.

Accordingly, I used 70% of each dataset for the learning phase

and the remaining 30% for testing. Also, I did an additional

validation step by using the 60/40 criteria. The following tables

summarize the information about the selected four datasets,

which have been generated by considering KM = 45, JM = 5, and

Stride = 1.

In detail, Tabs. 3.1 and 3.2 report the two datasets generated

with DImages = 1 by including at least 2000 API-Streams in the

former and 4000 API-Streams in the latter. Instead, Tabs. 3.3

and3.4 summarize the two datasets generated with DImages = 2

by including at least 2000 API-Streams in the first one and 4000

API-Streams in the second one. For the sake of clarity, I named

the following datasets Dataset1, Dataset2, Dataset3, and Dataset4,

respectively.

Finally, notice that any experiments (including training and

testing phases) have been done with an iMac equipped with an

Intel 6-Core i7 CPU @ 3.20GHz and 16 GB RAM.
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Training Testing Total

DKFu 1451 662 2113

Dowgin 2445 1020 3465

FakeInst 2802 1236 4038

GinM 1515 624 2139

Plankton 1484 615 2099

Total 9697 4157 13854

Table 3.1: Dataset1 - DImages = 1 and 2000 API-Streams.

Training Testing Total

DKFu 2820 1206 4026

Dowgin 5488 2410 7898

FakeInst 2843 1195 4038

GinM 2788 1226 4014

Plankton 2919 1189 4108

Total 16858 7226 24084

Table 3.2: Dataset2 - DImages = 1 and 4000 API-Streams.

Training Testing Total

DKFu 1398 615 2013

Dowgin 2794 1151 3945

FakeInst 1398 619 2017

GinM 1411 592 2003

Plankton 1419 632 2051

Total 8420 3609 12029

Table 3.3: Dataset3 - DImages = 2 and 2000 API-Streams.

3.4.2 Evaluation Metrics

To appreciate the classification quality of the employed model,

I used the following evaluation metrics derived from the multi-

class confusion matrix: Accuracy (Acc.), Sensitivity (Sens.), Speci-
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Training Testing Total

DKFu 2963 1275 4238

Dowgin 2951 1279 4230

FakeInst 2787 1215 4002

GinM 2772 1230 4002

Plankton 2918 1169 4087

Total 14391 6168 20559

Table 3.4: Dataset4 - DImages = 2 and 4000 API-Streams.

ficity (Spec.), Precision (Prec.), F-Score (F-Mea.), and Area Under

the ROC Curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(3.21)

Sensitivity =
TP

TP + FN
(3.22)

Speci f icity =
TN

TN + FP
(3.23)

Precision =
TP

TP + FP
(3.24)

F− Score =
2 ∗ Sens ∗ Prec

Sens + Prec
(3.25)

AUC =
Sens + Spec

2
(3.26)

For each category, TPs (True Positives) refer to the API-Streams

correctly classified, while TNs (True Negatives) refer to the API-

Streams correctly identified in another category. Conversely, FPs

(False Positives) are the API-Streams mistakenly identified as

the considered category, while FNs (False Negatives) are the

API-Streams mistakenly identified in another category. Also, to

achieve a global perspective of the detector effectiveness, the aver-

age performance values (Avg.) among all the observed malware

classes have been derived.
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3.4.3 Network description and Results

As mentioned earlier, I analyzed the effectiveness of CNN-LSTM

Autoencoders (CNN-LSTM-SAEs) and DNNs to classify sev-

eral Android malware families at Run-time. Accordingly, in this

Section, the network-related implementation details are first re-

ported. Then, the experimental results are shown. Notice that I

derived the described architecture according to the results de-

rived by using the 70/30 criteria.

Figure 3.5: Architecture of the employed encoder.

Fig. 3.5 summarizes the high-level organization of the CNN

and LSTM layers employed for the encoder side. More precisely, it

includes a sequence of two Conv2D layers with kernel_size=(4,4),

stride=(4,4), activation=relu, padding=same, and no pooling,

characterized by having 4 and 1 filters, respectively. After that,

I employed a Flatten layer to map the extracted features as cor-

responding one-dimensional vectors. Since I used a timeSteps
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of 5, three TimeDistributed layers have been employed on the

two convolutional layers and the flattening layer, respectively.

Next, I used the flattened CNN vectors to fed the first LSTM

layer characterized by 25 cells and return_sequence=True. Next,

we employed a second LSTM layer including 125 cells and re-

turn_sequence=False to achieve a latent vector of 125 features.

Hence, after having built the decoder side using the inverse se-

quence of the encoding layers, I trained the CNN-LSTM-SAE

configuration using Adam optimizer and the Mean Squared

Error (MSE) loss function for 5 epochs and batch_size=64.

Next, I employed the encoder part to fed a fully connected

softmax network comprising two Dense layers having activa-

tion=relu, dropout=0.5, and 256 neurons, respectively. In addition,

to consider the classification results as probability distributions, I

used a third dense layer with 5 neurons and activation=softmax

as the output layer. Therefore, I trained the following network

with Adam optimizer and the SparseCategoricalCrossentropy

loss function [60] for 250 epochs and batch_size=64. Finally, I

combined the employed encoder and softmax neural network as

a CNN-LSTM-SAE-SNN by performing a fine-tuning step for 20

epochs.

In addition, the following architecture has been derived by

varying the following hyper-parameters:

- numConvLayers: the number of Conv2D layers (1, 2, 3);

- numFilters: the number of filters for each Conv2D layer (1,

2, 4, 8, 16);

- kernel_size: kernel_size values ((2,2), (4,4));

- stride: the stride length for each Conv2D layer (1, 2, 4);

- numLSTMLayers: the number of LSTM layers (1, 2, 3);

- LSTM cells: the number of LSTM cells (25, 125, 250);

- timeSteps: the number of observations considered as input

time steps (5, 10);

- numDenseLayers: the number of Dense layers (1, 2, 3, 4);
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- numNeurons: the number of neurons for each Dense layer

(5, 64, 128, 256);

- dropout: dropout values for each Dense layer (0.2, 0.3, 0.4,

0.5);

- activation: activation functions used (relu, softmax);

- batch_size: batch_size values (16, 32, 64, 128);

- loss: employed loss functions (Mean Squared Error - MSE,

CategoricalCrossentropy, SparseCategoricalFocalLoss).

The following tables show the excellent statistics metrics de-

rived by applying 70/30 criteria on the involved datasets. Tabs

3.6, 3.8, 3.10, and 3.12 summarize the achieved results, while

Tabs. 3.5, 3.7, 3.9, and 3.11 report the corresponding confusion

matrices. Finally, Tab. 3.13 summarizes the average results, while

Tab. 3.14 those derived by using the 60/40 criteria.

DKFu Dowgin FakeInst GinM Plankton

DKFu 611 40 0 1 10

Dowgin 17 1003 0 0 0

FakeInst 0 0 1236 0 0

GinM 0 0 0 614 10

Plankton 24 0 0 22 569

Table 3.5: Multi-Class Confusion Matrix related to Dataset1.

Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9779 0.9852 0.9371 0.9230 0.9300 0.9541

Dowgin 0.9861 0.9943 0.9616 0.9833 0.9724 0.9888

FakeInst 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GinM 0.9919 0.9971 0.9639 0.9840 0.9738 0.9906

Plankton 0.9844 0.9875 0.9660 0.9252 0.9452 0.9564

Avg. 0.9881 0.9927 0.9656 0.9631 0.9643 0.9780

Table 3.6: Performance metrics related to Dataset1.
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DKFu Dowgin FakeInst GinM Plankton

DKFu 1151 28 0 1 26

Dowgin 23 2368 0 0 19

FakeInst 0 0 1195 0 0

GinM 60 2 0 1164 0

Plankton 1 29 0 0 1159

Table 3.7: Multi-Class Confusion Matrix related to Dataset2.

Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9805 0.9906 0.9320 0.9544 0.9431 0.9725

Dowgin 0.9859 0.9917 0.9757 0.9826 0.9791 0.9872

FakeInst 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GinM 0.9910 0.9896 0.9991 0.9494 0.9737 0.9695

Plankton 0.9895 0.9948 0.9626 0.9748 0.9687 0.9848

Avg. 0.9894 0.9932 0.9739 0.9722 0.9729 0.9828

Table 3.8: Performance metrics related to Dataset2.

DKFu Dowgin FakeInst GinM Plankton

DKFu 598 11 0 0 6

Dowgin 16 1135 0 0 0

FakeInst 0 0 619 0 0

GinM 0 1 0 578 13

Plankton 81 0 0 0 551

Table 3.9: Multi-Class Confusion Matrix related to Dataset3.

3.4.4 Comparison and Discussion

To highlight the potentialities of the presented approach, I com-

pared the achieved results with those derived by the most famous

ML-based methods provided by WEKA [116], namely: the Multi-

Layer Perceptron (MLP) classifier, J48 Trees (J48) algorithm, and

Naive Bayes (NB) classifier, respectively. I accomplished this by

arranging the API-Streams as corresponding flattened sequences.
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Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9683 0.9940 0.8604 0.9724 0.9130 0.9832

Dowgin 0.9919 0.9931 0.9895 0.9861 0.9878 0.9896

FakeInst 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GinM 0.9960 0.9951 1.0000 0.9764 0.9880 0.9858

Plankton 0.9721 0.9731 0.9667 0.8718 0.9168 0.9225

Avg. 0.9857 0.9911 0.9633 0.9613 0.9611 0.9761

Table 3.10: Performance metrics related to Dataset3.

DKFu Dowgin FakeInst GinM Plankton

DKFu 1185 3 0 5 82

Dowgin 0 1279 0 0 0

FakeInst 0 0 1204 11 0

GinM 0 7 0 1223 0

Plankton 17 61 0 0 1091

Table 3.11: Multi-Class Confusion Matrix related to Dataset4.

Acc. Spec. Prec. Sens. F-Mea. AUC

DKFu 0.9827 0.9964 0.9859 0.9294 0.9568 0.9630

Dowgin 0.9885 0.9855 0.9474 1.0000 0.9730 0.9926

FakeInst 0.9981 1.0000 1.0000 0.9909 0.9955 0.9955

GinM 0.9963 0.9968 0.9871 0.9943 0.9907 0.9954

Plankton 0.9741 0.9836 0.9301 0.9333 0.9317 0.9583

Avg. 0.9880 0.9925 0.9701 0.9696 0.9695 0.9808

Table 3.12: Performance metrics related to Dataset4.

However, due to the high number of considered features, any

relevant results have not been obtained.

Next, I compared the proposed model with the most famous

state-of-the-art static-based approaches. In particular, I consid-

ered results achieved by Xie et al. [118] with the Random For-

est algorithm (Xie-RF), results obtained by Li et al. [56] with a

DNN (Li-DNN), and Linear Learning Algorithm-related results
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Acc. Spec. Prec. Sens. F-Score AUC

Dataset1 0.9881 0.9927 0.9656 0.9631 0.9643 0.9780

Dataset2 0.9894 0.9932 0.9739 0.9722 0.9729 0.9828

Dataset3 0.9857 0.9911 0.9633 0.9613 0.9611 0.9761

Dataset4 0.9880 0.9925 0.9701 0.9696 0.9695 0.9808

Avg. 0.9878 0.9924 0.9681 0.9666 0.9670 0.9793

Table 3.13: Average metrics values related to 70/30 criteria.

Acc. Spec. Prec. Sens. F-Score AUC

Dataset1 0.9874 0.9923 0.9634 0.9599 0.9610 0.9761

Dataset2 0.9891 0.9934 0.9694 0.9760 0.9723 0.9847

Dataset3 0.9890 0.9933 0.9695 0.9766 0.9727 0.9850

Dataset4 0.9803 0.9876 0.9525 0.9514 0.9518 0.9695

Avg. 0.9865 0.9917 0.9637 0.9660 0.9645 0.9789

Table 3.14: Average metrics values related to 60/40 criteria.

achieved by Aonzo et al. [6] (Ao-LLA). Tab. 3.15 summarizes

the comparison between the proposed Stacked Neural Network

(Pr-SNN) and these static-based approaches.

Acc. Spec. Prec. Sens. F-Mea. AUC

Li-DNN 0.9925 0.9945 0.9961 0.9904 0.9933 0.9925

Ao-LLA 0.9890 0.9900 0.9900 0.9880 0.9890 0.9890

Pr-SSN 0.9878 0.9924 0.9681 0.9666 0.9670 0.9793

Xie-RF 0.9770 0.9992 0.9775 0.9775 0.9775 0.9884

Table 3.15: Comparison with static-based solutions (only Avg. values
are reported).

As reported in Tab. 3.15, the following comparison shows that

the Pr-SSN achieved an average accuracy equivalent to those

derived by the considered approaches. Also, the Pr-SSN obtained

only a 2% less concerning the remaining statistic metrics related

to Li-DDN and Ao-LLA, respectively. However, these solutions

are based on source code, and consequently, they become inef-
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fective against obfuscation techniques. Therefore, this proves the

effectiveness of the proposed approach against static-based ones.

Also, I compared the Pr-SNN with the most famous dynamic

DL-based solutions. More precisely, I considered results obtained

by Abderrahmane et al. [1] with a CNN (Ab-CNN) and results

reported in Chap. 2, which have been derived using a RNN (C1-

RNN) and a CNN (C1-CNN), respectively. Tab. 3.16 summarizes

the comparison between the Pr-SNN and these dynamic-based

approaches.

Acc. Spec. Prec. Sens. F-Mea. AUC

C1-RNN 0.9995 0.9997 0.9987 0.9986 0.9986 0.9993

C1-CNN 0.9984 0.9990 0.9963 0.9960 0.9961 1.0000

Pr-SSN 0.9878 0.9924 0.9681 0.9666 0.9670 0.9793

Ab-CNN 0.9330 0.9414 0.9410 0.9780 0.9600 0.9560

Table 3.16: Comparison with dynamic DL-based solutions (only Avg.
values are reported).

As reported in Tab. 3.16, the following comparison shows that

the Pr-SNN outperformed the Ab-CNN with an improvement

of 5% in average accuracy. Notice that, the evaluation metrics of

Ab-CNN have been derived by only considering a matrix rep-

resentation of system calls. Consequently, this approach cannot

achieve equivalent results as those derived by the Pr-SNN. In-

stead, C1-RNN and C1-CNN achieved the best results with an

improvement of 1% in average accuracy. However, the Pr-SNN is

able to classify malware applications by considering their behav-

ior as API-Streams. Also, since the achieved results are slightly

lower than those based on the API-Images, API-Streams might be

a valid approach to minimize the damages caused at Run-time.

Finally, to provide a graphical interpretation of how the usage

of CNN LSTM-SAE affects the features transformation, I visual-

ized the high dimensional latent space, of each involved testing

set, on a two-dimensional plane. I accomplished this by using the

t-Distributed Stochastic Neighbor Embedding (t-SNE) [62, 114].

More precisely, t-SNE is a famous approach for non-linear data

dimensionality reduction that is often employed to allow data



3.4 experimental results 51

visualization on a two or three-dimensional plane. Figs. 3.6, 3.7,

3.8, and 3.9 show the obtained t-SNE representations.

Figure 3.6: t-SNE representation related to Dataset1.

Figure 3.7: t-SNE representation related to Dataset2.
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Figure 3.8: t-SNE representation related to Dataset3.

Figure 3.9: t-SNE representation related to Dataset4.

As depicted in the following figures, the analyzed latent vectors

have been clustered into five well-visible groups. Therefore, the

employed CNN-LSTM-SAE is able to derive relevant features
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from the input API-Streams by limiting the overlapping among

considered classes. More precisely, FakeInstaller is represented

by a unique group, while some overlaps are present among the

other groups, as confirmed by the results reported in Tabs 3.5,

3.7, 3.9, and 3.11. Finally, some families, like DKFu and Dowgin,

are represented by at least two sub-clusters. Consequently, this

might prove the presence of several sub-categories, also called

variants, characterized by a different behavior over time.

3.5 conclusions and future works

In this Chapter, I proposed a novel approach called API-Streams

to detect Android malware applications during their execution.

More precisely, I combined the capability of Autoencoders in

finding relevant features, the goal of Video-Classification in dis-

tinguishing objects from a stream of frames, and the classification

abilities of DNNs. To accomplish this, I first considered the dy-

namic behavior, represented as streams of API-Images, related

to five representative Android families of the Unisa Malware

Dataset (UMD). Then, I investigated the capability of CNN-

LSTM Sparse Autoencoders (CNN-LSTM-SAEs) in learning rele-

vant features from the considered behavior. The achieved results,

also compared with those derived by state-of-the-art static and

dynamic-based approaches, have proven the effectiveness of the

proposed model by obtaining an average accuracy of 98% in

the presence of several unbalanced training datasets. Finally, I

deeply analyzed the abilities of the employed Autoencoder to

correctly classify applications in the related family by provid-

ing the t-Distributed Stochastic Neighbor Embedding (t-SNE)

graphical representation of the considered API-Streams. For each

of them, the corresponding latent vectors have clustered in five

well-visible groups by confirming the capability of the employed

configuration in deriving meaningful features for the Run-time

malware classification goal.

However, since some malware families have been grouped

into at least two sub-clusters, several malware sub-categories

might be characterized by a distinct behavior over time. For

this reason, this study proposes two possible future works. First,

I will investigate the effectiveness of API-Streams and CNN-
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LSTM-SAEs by considering other malware categories. I focused

only on five Android malware families because the API-Streams

generation process is time-consuming. Second, I will investigate

the abilities of Autoencoders in detecting malware sub-categories

by considering their behaviour over time. More precisely, the

following studies might improve the effectiveness of Run-time

malware detection by proposing enhanced and unsupervised

DL-based approaches, respectively.



4
A F E D E R AT E D A P P R O A C H T O A N D R O I D

M A LWA R E C L A S S I F I C AT I O N T H R O U G H

P E R M - M A P S

4.1 introduction

Since Android-based devices are used by thousands of end-users

every year, more and more malicious applications are continu-

ously developed by cyber-criminals in order to steal sensitive

information and conduct hostile activities. According to the last

McAfee Mobile Threat Reports [68±70], cyber-criminals increased

the effectiveness of their activities with the support of a wide

variety of methods, such as back-doors and fake cryptocurrencies.

Consequently, as also shown in Fig. 4.1, the number of malicious

applications is drastically increased by overcoming 40 million

and growing by at least 4 million per year.

Figure 4.1: Malware applications detected by quarter in 2019 and 2020

[69].

Therefore, to face the following trend, several Machine Learn-

ing (ML) and Deep Learning (DL) approaches have proved to be

55
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effective in tackling many aspects related to Android threats, es-

pecially when they have been combined with static and dynamic

features directly extracted from mobile applications [33, 45, 66].

However, due to the continuous release of Android malware,

the related classification tasks are still challenging. Consequently,

many state-of-the-art approaches suffer from problems related

to dynamic re-training, as well as the updating of their training

datasets.

For this reason, the main goal of this chapter aims to propose

a novel feature representation technique, called Permission Maps

(Perm-Maps)1, to classify the different malware families by com-

bining Android permissions and their severity levels. Therefore,

the Perm-Maps workflow is first discussed and then embedded

in a Federated architecture in which end-users build the detection

model by sharing their analyzed applications. Next, the effective-

ness of the proposed approach is proven using a Convolutional

Neural Network (CNN) and compared with the most popular

ML and DL-based solutions. Finally, a feature selection technique

based on the most frequent permissions is investigated in order

to reduce the computational effort required to build the related

federated malware classifier.

Hence, the main contributions of this chapter can be summa-

rized as follows:

1. A novel feature representation technique, called Perm-

Maps, is proposed in order to exploit the effectiveness of

the Android permissions and their security levels arranged

as two-dimensional matrices;

2. A Federated architecture is presented to support the de-

tection model-related building process through the Perm-

Maps and end-users cooperation, respectively;

3. A Convolutional Neural Network is employed to classify

several Android malware families and then compared with

the most famous ML and DL-based solutions;

4. A feature selection technique based on the most frequent

Android permissions is investigated to reduce the required

computational effort.

1 Article published in [25]
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The remainder of the chapter is organized as follows. Sec. 4.2

will present a preliminary overview of Android Permissions and

their severity levels. Next, Sec. 4.3 will show the Perm-Maps

generation workflow, while Sec. 4.4 will describe the employed

Federated architecture. Finally, Sec. 4.5 will discuss the exper-

imental results, while Sec. 4.6 will show the conclusions and

future work.

4.2 background

In this Section, some key concepts related to Android permissions

are reported to understand and better appreciate the novelties of

the proposed approach.

4.2.1 Android Permissions

At high level, Android permissions can be categorized as De-

fault and Custom. Also, depending on their purpose, they are

characterized by a protection level flag (or severity level flag)

set up with several values known as normal, signature, and

dangerous [4]. For this reason, there are 3 Android permissions

typologies: Install-time, Runtime, and Special [3]. Install-time per-

missions grant an application limited access to data and perform

restricted actions that minimally affect the system or other apps.

Hence, when Install-time permission is declared, the Android OS

automatically grants the required permission without notifying

the end user. There are two types of Install-time permissions

called Normal permissions and Signature permissions:

- Normal permissions: allow access to data and actions that

present a minimal risk for the system or end-users privacy.

They can be used or identified through a protection level

set to normal;

- Signature permissions: since they are defined in another ap-

plication, the signature permissions are granted if, and only

if, the requesting application and declarant application are

signed through the same certificate. They can be used or

identified through a protection level set to signed.
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Runtime permissions, also known as Dangerous permissions,

grant an application additional access to restricted data by allow-

ing it to perform actions that substantially affect the system or

other apps. When an application requests Runtime permission,

the system shows a prompt and waits whether it is granted or not

by the end-user. Runtime permissions can be identified through

a protection level set to dangerous.

Finally, Special permissions can be only defined by the Original

Equipment Manufacturers (OEMs). They provide access control

concerning several energy-intensive actions, such as access to

other applications. More precisely, they are closely associated

with an app operation (app op) related to access control, and

they can be used or identified through a protection level set to

appop.

4.3 permission maps

Although most of the techniques used in literature include both

static and dynamic approaches, the static one is the most desired

because it can analyze the applications without running them.

Accordingly, this Section proposes a new static-based feature

representation technique called Permission Map (Perm-Map).

More precisely, A Perm-Map is a sparse matrix where Android

permissions, and their corresponding severity levels, are related

among them as fixed points and arranged in a two-dimensional

plane. As depicted in the following, the proposed Perm-Maps

can address 2 main issues:

1) Since Default and Custom permissions have different sever-

ity levels, a malicious developer could define some low

severity level permissions (e.g. Normal permissions) to per-

form several hostile activities without notifying the end

user, such as theft of sensitive data or launch of cyber-

attacks;

2) Since Perm-Maps represent static features only extracted

from the manifest file, they cannot be influenced by the

most famous obfuscator tools, like DexGuard [37], Pro-

Guard [38], and Obfuscapk [5].
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4.3.1 Perm-Map creation workflow

The creation of a Perm-Map consists mainly of the following 4

steps:

1. Extraction of the Android permissions and their corre-

sponding protection level;

2. Assignment of an identifier (IDp) to any Android permis-

sion;

3. Assignment of an identifier (IDs) to any severity level;

4. Creation of the Perm-Maps by using pairs of IDs (IDp; IDs)

as coordinates of fixed points in a two-dimensional plane.

The first three steps can be accomplished using several tools

or libraries devoted to the malware static analysis. A typical

approach, supported by the Android documentation, could en-

visage the usage of two dictionaries to collect the well-known

Android permissions and their severity levels with correspond-

ing identifiers IDp and IDs, respectively. Also, the <permission>

tag can be employed to know the protection level of Custom

permissions. This approach is adopted by several most famous

reverse engineering tools, like Androguard [28]. More precisely,

for each permission declared in the Manifest file, the tool finds

the corresponding severity level if the considered permission is

known. Otherwise, it assigns a dangerous protection level. Finally,

for each analyzed application, the fourth step is accomplished

by using each pair (IDp; IDs) to report a fixed point in a two-

dimensional plane. For instance, let p1 and p2 be two Android

permissions and let s3 and s2 be their security levels, respectively.

On the basis of described process, we can consider two pairs of

coordinates C1 = (p1, s3) and C2 = (p2, s2) and draw the corre-

sponding points in a two-dimensional plane. Also, since severity

levels could be different among them, we can highlight these

differences using different colour scales (e.g. RGB or Gray-scale).

Fig. 4.2 shows the complete workflow to obtain a Perm-Map.
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Figure 4.2: Perm-Maps workflow.

4.4 the proposed architecture

Since millions of Android-based applications are released every

year, managing related datasets is a process that requires much

effort, such as accessing, searching, and updating them. To over-

come these issues, this Section presents a Federated Architecture

to support Android malware classification through the proposed

Perm-Maps. More precisely, since such architectures employ a

Federated Logic, the end-user devices are forced to share their

data with a centralized infrastructure typically devoted to pro-

viding services [48]. For instance, thanks to its great success in

the last decade, such logic has been applied to face several issues
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related to the convergence process among Edge and Cloud in-

frastructures, such as data aggregation [16], data mobility [14],

and services migration [98]. Also, it has been involved in many

other famous application domains, such as Cryptography solu-

tions to preserve data security [92], optimization frameworks

for the Medical of Things Devices [95], and Vehicular Networks

optimization [112].

For this reason, the proposed architecture aims to provide a

data aggregation workflow in which federated devices share

their decentralized data with a server devoted to managing the

related classification model. Therefore, the main contributions of

the presented architecture, described through the Model Creation

and Model Update processes, can be summarized as follows:

1. An aggregation workflow is presented to collect decentral-

ized data from federated devices;

2. The resultant centralized dataset is employed to create a

shared CNN model based on proposed Perm-Maps;

3. A data update workflow is discussed to manage centralized

data in order to re-adapt and share the new model.

4.4.1 Model Creation process

At beginning of the Model Creation process, each device decom-

presses the apk file and sends the Manifest to the centralized

server. Thus, once all the data are received, the server gener-

ates the Perm-Maps following the workflow shown in Fig. 4.2.

Next, the server trains the CNN and sends the related model to

each device. Finally, end-user devices use the model to receive

a notification about the classification activity. Fig. 4.3 shows the

discussed process, while its main steps can be summarized as

follows:

1. End-user devices decompress the apk file;

2. Devices send the Manifest files to the central server;

3. The server generates the Perm-Maps once all data are re-

ceived;
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4. The server trains and tests the CNN;

5. The server sends the related model to each device;

6. Devices receive a notification about the classification activ-

ity.

Figure 4.3: Model Creation Process.

4.4.2 Model Update process

The following process is responsible for collecting new data when

an end-user installs a new application. At a high level, it differs

from the Model Creation process in 3 main aspects:

1. If an application is unknown, it automatically stores the

related manifest file on the centralized server;

2. If an application is unknown, it considers the end-users

feedback to generate a classification label;

3. If a threshold value is reached, it trains and shares the

updated CNN by considering new data.

Therefore, when an end-user installs an application, the device

decompresses the apk file, extracts the Perm-Map by reading the

Manifest, and employs the classification model. If the application
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is known, the model provides the achieved prediction. Otherwise,

it asks if the application is unknown or trusted and sends the

Manifest file and the user’s answer to the centralized server. Next,

the server stores new data and, once the dataset size reaches a

threshold value, generates the Perm-Maps. Finally, the server

re-trains the CNN and sends the updated model to each device.

Fig. 4.4 shows the discussed process, while its main steps can be

summarized as follows:

1. End-user devices decompress the apk file;

2. Devices extract the Perm-Map from the Manifest file;

3. Devices ask if the application is unknown or trusted;

4. Devices send the Manifest and the user’s answer to the

server;

5. The server stores new data;

6. The server generates the Perm-Maps once the dataset size

reaches a threshold value;

7. The server trains and tests the CNN-related model;

8. Finally, the server sends the updated model to each device.

Figure 4.4: Model Update Process.
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4.5 experimental results

The goal of the presented experiments is devoted to demon-

strating the effectiveness of Perm-Maps in classifying Android

applications. To accomplish this, I show the abilities of a CNN in

performing such classification tasks using an unbalanced dataset.

Also, I analyze the effectiveness of a features selection technique

to reduce the computational effort required by Perm-Map gener-

ation and CNN training processes, respectively.

4.5.1 Dataset and Experimental setting

The Perm-Maps dataset considered in the following experiments

has been composed of Goodware (GW) applications and 9 fa-

mous Android families of the Unisa Malware Dataset (UMD),

namely Adrd, Boqx, FakeDoc (FakeD), Fusob, GinMaster (GinM),

Iconosys (Isys), Kmin, Lotoor and Mseg. Hence, to simulate the

discussed Model Creation Process, each application has been

analyzed through the Android Device Cross-Platform mode of

CuckooDroid [11, 12]. More precisely, I employed 2 Android

Guest virtual machines to decompress each apk file and send

the related Manifest file to the Server machine. Thus, by follow-

ing the workflow shown in Fig. 4.2, I generated the Perm-Maps

matrices (4×298) in accordance with the maximum number of

severity levels and Android permissions observed, respectively.

Next, I split the whole dataset into two mutually exclusive sub-

sets called learning and testing datasets. I used 70% of the entire

dataset for learning and the remaining 30% for testing. Also, the

K-Fold cross-validation algorithm, with k=10 as recommended

value [10], has been employed to tune the hyper-parameters and

provide an unbiased evaluation of the employed CNN. Finally, in

order to analyze the applications’ distribution for each category, I

performed an Exploratory Data Analysis (EDA) on the involved

dataset [88, 128]. The obtained results, shown in Fig. 4.5 and Tab.

4.1, highlight the unbalanced nature of such dataset.
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Figure 4.5: Exploratory Data Analysis (EDA) on the involved dataset.

Training Testing Total

Adrd 56 22 78

Boqx 135 55 190

FakeD 99 31 130

Fusob 106 60 166

GinM 82 35 117

GW 55 23 78

Isys 101 34 135

Kmin 104 43 147

Lotoor 183 78 261

Mseg 145 68 213

Total 1066 449 1515

Table 4.1: Summary of the involved dataset.

4.5.2 Evaluation Metrics

To appreciate the classification quality of the employed DNNs,

I used the following evaluation metrics derived from the multi-

class confusion matrix: Accuracy (Acc.), Sensitivity (Sens.), Speci-

ficity (Spec.), Precision (Prec.), F-Score (F-Mea.), and Area Under

the ROC Curve (AUC).
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Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Sensitivity =
TP

TP + FN
(4.2)

Speci f icity =
TN

TN + FP
(4.3)

Precision =
TP

TP + FP
(4.4)

F− Score =
2 ∗ Sens ∗ Prec

Sens + Prec
(4.5)

AUC =
Sens + Spec

2
(4.6)

For each category, TPs (True Positives) refer to the applications

correctly classified, while TNs (True Negatives) refer to the ap-

plications correctly identified in another category. Conversely,

FPs (False Positives) are the applications mistakenly identified

as the considered category, while FNs (False Negatives) are the

applications mistakenly identified in another category. Also, to

achieve a global perspective of the detector effectiveness, the aver-

age performance values (Avg.) among all the observed malware

classes have been derived.

4.5.3 Network description and Results

As mentioned earlier, I used a CNN to classify several Android

applications into the related belonging categories. Accordingly, in

this Section, the related implementation details are first reported.

Then, the experimental results are shown. Notice that I derived

the described architecture according to the results derived by us-

ing the 70/30 criteria and the K-Fold cross-validation algorithm,

respectively.

Fig. 4.6 summarizes the high-level organization of the em-

ployed CNN, which is first composed of two Conv2D layers

with activation=relu, no pooling functions, and kernel_size=(2,2).

More precisely, I used eight filters and strides=(2,2) for the first

layer and two filters and strides=(1,1) for the second one, respec-

tively. After that, a Flatten layer is employed to map the extracted

features as one-dimensional latent vectors and fed a fully con-
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Figure 4.6: Architecture of the employed CNN.

nected softmax network. Hence, I used two Dense layers having

activation=relu, dropout=0.5, and 128 neurons, respectively. In

addition, to consider the classification results as probability dis-

tributions, I employed a third dense layer with ten neurons and

activation=softmax as the output layer. Therefore, I trained the

following network with Adam optimizer and the SparseCategor-

icalCrossentropy loss function for 150 epochs and batch_size=64.
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Additionally, the following architecture has been derived by

varying the following hyper-parameters:

- numConvLayers: the number of Conv2D layers (1, 2, 3);

- numFilters: the number of filters for each Conv2D layer (2,

4, 8, 16);

- kernel_size: kernel_size values ((2,2), (3,3), (4,4));

- stride: the stride length for each Conv2D layer (1, 2, 4);

- numDenseLayers: the number of Dense layers (1, 2, 3, 4);

- numNeurons: the number of neurons for each Dense layer

(10, 32, 64, 128, 256);

- dropout: dropout values for each Dense layer (0.2, 0.3, 0.4,

0.5);

- activation: activation functions used (relu, softmax);

- batch_size: batch_size values (16, 32, 64, 128);

- loss: employed loss functions (CategoricalCrossentropy,

SparseCategoricalFocalLoss).

More precisely, Tabs. 4.2 and 4.3 report the Multi-Class Con-

fusion Matrix and the statistics metrics derived by applying the

70/30 criteria, while Tab. 4.4 summarizes the metrics related to

the K-Fold cross-validation algorithm with k=10.

Furthermore, to analyze the Update Process and the effective-

ness of the proposed approach against new malicious applica-

tions, I estimated the data growth range within which to readjust

the proposed CNN. More precisely, I reduced the whole dataset

through an iterative process. At each step, 5% of data has been

removed by employing the new sub-dataset to train and test the

proposed CNN. Tab. 4.5 summarizes the classification metrics

derived by the testing phase for each considered sub-dataset.

More precisely, it highlights that CNN should be re-trained when

the data dimensions grow between 15% and 20%. For instance,

the comparison between the whole dataset (Size 100%) and the

dataset reduced by 20% (Size 80%) shows an average worsen-

ing of 3% in Precision, 7% in Sensibility, and 6% in F-Score,

respectively.
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Adrd Boqx FakeD Fusob GinM GW Isys Kmin Lotoor Mseg

Adrd 22 0 0 0 0 0 0 0 0 0

Boqx 0 55 0 0 0 0 0 0 0 0

FakeD 0 0 31 0 0 0 0 0 0 0

Fusob 0 0 0 60 0 0 0 0 0 0

GinM 0 0 0 0 35 0 0 0 1 0

GW 0 0 0 0 0 23 0 0 0 0

Isys 0 0 0 0 0 0 34 0 1 0

Kmin 0 0 0 0 0 0 0 43 0 0

Lotoor 0 4 0 0 0 0 0 0 78 0

Mseg 0 0 0 0 0 0 0 0 0 68

Table 4.2: Multi-Class Confusion Matrix related to 70/30 criteria.

Acc. Spec. Prec. Sens. F-Mea. AUC

Adrd 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Boqx 0.9912 0.9898 0.9322 1.0000 0.9649 0.9949

FakeD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fusob 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GinM 0.9978 0.9976 1.0000 0.9722 0.9859 0.9849

GW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Isys 0.9978 1.0000 1.0000 0.9714 0.9855 0.9857

Kmin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Lotoor 0.9867 0.9945 0.9750 0.9512 0.9630 0.9728

Mseg 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg. 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Table 4.3: Performance metrics related to 70/30 criteria.

4.5.4 Comparison and Discussion

To highlight the potentialities of the presented approach, I com-

pared the achieved results with those derived by the most famous

ML-based methods provided by WEKA [116], namely: the J48

Trees (J48) algorithm, Naive Bayes (NB) classifier, and Multi-Layer

Perceptron (MLP) classifier, respectively. I accomplished this by

arranging the Perm-Maps as corresponding flattened sequences.
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Acc. Spec. Prec. Sens. F-Mea. AUC

Fold 1 0.9960 0.9977 0.9830 0.9757 0.9789 0.9867

Fold 2 0.9956 0.9974 0.9839 0.9698 0.9762 0.9836

Fold 3 0.9965 0.9979 0.9871 0.9754 0.9809 0.9867

Fold 4 0.9965 0.9980 0.9859 0.9768 0.9810 0.9874

Fold 5 0.9965 0.9979 0.9869 0.9736 0.9798 0.9858

Fold 6 0.9960 0.9977 0.9838 0.9737 0.9783 0.9857

Fold 7 0.9952 0.9973 0.9739 0.9700 0.9717 0.9836

Fold 8 0.9947 0.9969 0.9797 0.9600 0.9688 0.9785

Fold 9 0.9956 0.9974 0.9849 0.9720 0.9780 0.9847

Fold 10 0.9960 0.9977 0.9835 0.9731 0.9775 0.9854

Avg. 0.9959 0.9976 0.9833 0.9719 0.9770 0.9847

Table 4.4: Performance metrics related to K-Fold k=10.

Size Acc. Spec. Prec. Sens. F-Mea. AUC

100% 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

95% 0.9977 0.9987 0.9853 0.9894 0.9872 0.9940

90% 0.9949 0.9970 0.9786 0.9667 0.9711 0.9819

85% 0.9914 0.9949 0.9666 0.9419 0.9529 0.9684

80% 0.9889 0.9936 0.9623 0.9116 0.9246 0.9526

75% 0.9667 0.9790 0.9188 0.7907 0.8132 0.8849

Table 4.5: Performance metrics related to Update Process.

Tab. 4.6 compares the proposed CNN (Pr-CNN) with ML-based

methods.

As shown in Tab. 4.6, the MLP classifier, with an 83% average

accuracy, is not able to better distinguish application categories

by considering Android permissions and their severity levels.

Instead, J48 trees and the NB classifier have achieved good results

by obtaining an average accuracy of 96%. However, the proposed

CNN outperformed such approaches by achieving up to a 3%

improvement over the NB classifier and J48 trees, and up to

16% over the Multi-Layer Perceptron classifier. Consequently, the
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Acc. Spec. Prec. Sens. F-Mea. AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

J48 0.9670 0.9670 0.9670 0.9680 0.9670 0.9670

NB 0.9647 0.9650 0.9650 0.9670 0.9640 0.9660

MLP 0.8348 0.8350 0.8330 0.8350 0.8340 0.8350

Table 4.6: Comparison between the proposed CNN and ML-based
methods (only Avg. values are reported).

involved CNN can reduce the number of FPs and FNs and thus

better minimize the classification error.

Also, I compared the proposed CNN with the state-of-art

ML and DL-based solutions, namely: the Random Forest results

respectively achieved by Kumar et al. (Kum-RF) [52] and Xie

et al. (Xie-RF) [118], LSTM neural network results achieved by

Vinayakumar et al. (Vi-LSTM) [110], and DNN results obtained

by Li et al. (Li-DNN) [56]. Tab. 4.7 summarizes the comparison

between the Pr-CNN and such approaches.

Acc. Spec. Prec. Sens. F-Mea. AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Li-DNN 0.9925 0.9945 0.9961 0.9904 0.9933 0.9925

Xie-RF 0.9770 0.9992 0.9775 0.9775 0.9775 0.9884

Kum-RF 0.9100 0.9200 0.9000 0.9300 0.9147 0.9250

Vi-LSTM 0.8970 0.6280 0.9100 0.9600 0.9147 0.7690

Table 4.7: Comparison between the proposed CNN and state-of-art
solutions (only Avg. values are reported).

As shown in Tab. 4.7, the Vi-LSTM and Kum-RF solutions

achieved discrete results and have been outperformed by the pro-

posed CNN, which obtained up to 10% and 8% improvement in

average accuracy, respectively. More precisely, the Vi-LSTM eval-

uation metrics were derived considering only Android permis-

sions translated as numerical information. Instead, the Kum-RF

evaluation metrics were derived considering Grayscale images

directly generated without performing any code extraction and

decompiling operations. Consequently, these static features are
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not relevant in order to achieving excellent classification results.

On the other hand, Xie-RF and Li-DNN have achieved equiva-

lent results to those obtained by the proposed CNN. However,

notice that the proposed representation technique is based only

on Android permissions and their severity levels, while Xie-RF

and Li-DNN employ Android permissions and Java methods.

For this reason, Xie-RF and Li-DNN become ineffective against

obfuscation techniques. Finally, Tab. 4.8 reports a final compari-

son among proposed CNN, ML-based methods of WEKA, and

state-of-art solutions.

Acc. Spec. Prec. Sens. F-Mea. AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Li-DNN 0.9925 0.9945 0.9961 0.9904 0.9933 0.9925

Xie-RF 0.9770 0.9992 0.9775 0.9775 0.9775 0.9884

J48 0.9670 0.9670 0.9670 0.9680 0.9670 0.9670

NB 0.9647 0.9650 0.9650 0.9670 0.9640 0.9660

Kum-RF 0.9100 0.9200 0.9000 0.9300 0.9147 0.9250

Vi-LSTM 0.8970 0.6280 0.9100 0.9600 0.9147 0.7690

MLP 0.8348 0.8350 0.8330 0.8350 0.8340 0.8350

Table 4.8: Overview among proposed CNN, ML-based methods of
WEKA, and state-of-art solutions (only Avg. values are re-
ported).

4.5.5 Features Optimization

Since the number of employed permissions is 298, the final goal

of the experimental phase is devoted to reducing the computa-

tional effort required by the Perm-Maps generation and CNN

training processes, respectively. To this purpose, I explored the

effectiveness of a features selection technique based on the most

frequent Android permissions. More precisely, I analyzed the re-

lated frequency distribution to find the minimum frequency that

would be able to reduce the employed permissions and preserve

the number of involved applications. Therefore, as a result of this

analysis, I considered Android permissions collected at least 50
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times from the whole dataset. Consequently, only 57 common

permissions on 298 have been chosen for the training and testing

phase, respectively. Fig. 4.7 shows the five most required Android

permissions.

Figure 4.7: Most required Android permissions.

Hence, following the workflow shown in Fig. 4.2, I employed

the 57 Android permissions to generate each Perm-Map as a

corresponding matrix (4×64) in accordance with the maximum

number of severity levels (4) and an over-bound for Android

permissions (64). I considered such over-bound to simplify the

operations performed by Convolutional layers. Next, in order to

run the experiments, I split the new dataset into two mutually ex-

clusive subsets called learning and testing datasets, respectively. I

used 70% of the entire dataset for learning and the remaining 30%

for testing. The employed neural network, trained with Adam

optimizer for 150 epochs and batch_size=64, presents the same

architecture shown in Fig. 4.6 except for the input shape=(4,64,1)

and Dense layers with dropout=0.45. Finally, the computational

effort required for the text substitution, Perm-Maps generation,

and training processes has been derived with and without con-

sidering the employed selection technique. Tab. 4.9 reports the
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computational effort required for each analyzed phase, Tab. 4.10

shows the achieved results, while Tab. 4.11 summarizes the com-

parison between the employed CNNs. I refer to them with CNN-

NoExtraction (CNN-NE) and CNN-WithExtraction (CNN-WE),

respectively.

No Sel. (s) With Sel. (s) Diff. (s)

Text Sub. 0.255570 0.152351 0.103219

Perm-Maps 0.058101 0.046116 0.011985

Training 11.589643 8.073685 3.515958

Total 11.903314 8.272152 3.631162

Table 4.9: Required computational effort.

Acc. Spec. Prec. Sens. F-Mea. AUC

Adrd 0.9978 1.0000 1.0000 0.9500 0.9744 0.9750

Boqx 0.9956 1.0000 1.0000 0.9688 0.9841 0.9844

FakeD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fusob 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GinM 0.9933 0.9976 0.9773 0.9556 0.9663 0.9766

GW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Isys 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Kmin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Lotoor 0.9911 0.9894 0.9524 1.0000 0.9756 0.9947

Mseg 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg. 0.9978 0.9987 0.9930 0.9874 0.9900 0.9931

Table 4.10: Performance metrics related to the features section.

Acc. Spec. Prec. Sens. F-Mea. AUC

CNN-NE 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

CNN-WE 0.9978 0.9987 0.9930 0.9874 0.9900 0.9931

Table 4.11: Comparison between the proposed CNNs.
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The obtained results show that the employed selection tech-

nique might reduce the computational effort required by each

analyzed process. More precisely, as reported in Tab. 4.9, the total

effort has been improved by 3.6 seconds. Finally, the comparison

shown in Tab. 4.11 demonstrates that proposed CNNs obtained

equivalent evaluation metrics. Therefore, the employed selection

technique might also optimize the proposed representation ap-

proach by drastically reducing the number of employed Android

permissions.

4.6 conclusions and future works

In this Chapter, I proposed a novel approach called Permission

Maps (Perm-Maps) to classify Android applications using static

features, namely permissions and their corresponding severity

levels. Therefore, I first proved the effectiveness of Perm-Maps

employing a CNN enhanced by a federated learning process, in

which end-users extract static features locally and send them to

a centralized server devoted to training the employed network.

The achieved results, also compared with those derived using

ML-based approaches, proved the effectiveness of the proposed

Perm-Maps. More precisely, the employed CNN archived up to

a 3% improvement in average accuracy over the Naive Bayes

classifier and J48 trees, and up to 16% over the Multi-Layer

Perceptron classifier, respectively. Finally, I explored a feature

selection technique in order to reduce required to build the

related federated malware classifier. The reported results have

shown that using the most frequent permissions can reduce such

effort by achieving equivalent results.

However, due to the high number of existing Android malware

categories, this study proposes two possible future works. First,

the effectiveness of the proposed Perm-Maps could be deeply

investigated using a considerable quantity of decentralized data

and applying a pure Federated Learning-based training process,

respectively. Second, the presented Federated logic might support

dynamic-based approaches in detecting more sophisticated and

malicious applications, such as zero-day malware. For instance,

Chap. 5 presents a malware detector based on associative rules

and Markov Chains using the same Federated logic.





5
P R I VA C Y- P R E S E RV I N G M A LWA R E D E T E C T I O N

T H R O U G H F E D E R AT E D M A R K O V C H A I N S

5.1 introduction

The exponential growth of the Internet of Things (IoT) technol-

ogy, together with the success of the Android OS, caused the

explosion of the number of mobile apps developed for many

kinds of devices, such as smart TVs, smart watches, refrigerators

and other interconnected gadgets that can be easily controlled

by using common smartphones. Also, since such smartphones

frequently assume the role of gateways for many mission-critical

applications, they prove to be one of the main driving forces

within IoT ecosystems. However, despite the importance of work

done, such devices introduce new cybersecurity issues and risks.

In particular, due to the lack of appropriate protection mecha-

nisms on the most famous IoT embedded platforms, the large

volume of yearly released malware applications poses challenges

that need the designing of detection and classification strategies

reliable and effective against the different malware families [76].

According to earlier classification studies [21±23], the intensive

usage of concealment and obfuscation strategies is one of the

primary factors related to the significant growth of malware

targeting IoT devices. However, malware applications usually

belong to a family with similar behaviors, implying that most

new malware is derived as new versions of already existing

malware. Hence, the possibility of developing strategies that can

effectively categorize malware depending on its family, regardless

of being a variant, appears particularly promising to prevent and

control its evolution over time. For this reason, many dynamic

analysis-based techniques have been proposed by considering the

dynamic behavior described through sequences of system-level

API calls. More precisely, these strategies assume that malicious

applications might contain a set of well-distinct APIs invoked

77
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more often or in a different order than those called by goodware

applications [123].

For instance, Markov chains are one of the most effective

cutting-edge strategies that describe the API calls invoked by ap-

plications and construct the representative behavioral patterns of

particular malware families [33]. They consider the sequence of

API calls to model the application-related behavior as a graph in

which each node represents a unique API, while each edge repre-

sents the transition probability between two APIs. Also, Markov

chains-based detectors have been proven resistant to evasion ef-

forts against irrelevant API calls injected throughout malicious

code and thus be effective against polymorphic malware [66].

However, building a sufficiently complete knowledge base on

emerging malware attacks is currently a slow and challenging

process also for state-of-the-art ML and DL-based solutions. In

addition, the involved organizations (companies and end-users)

are often unwilling to share their data because they are focused

on preserving their intellectual property related to their IoT

applications and systems.

Therefore, to face these issues, Federated Learning (FL)-based

approaches represent a recent privacy-preserving solution, which

leverages ML and DL models’ capabilities to enhance several

classification and detection tasks without sharing data [35, 41,

89]. However, as highlighted in many literature studies [18, 46, 57,

83], non-Independent and Identically Distributed (non-IID) data

often adversely affects FL-based models regarding the required

training time, convergence, learning processes, and classification

results. Also, such strategies are often strongly influenced by the

configuration of some additional hyperparameters (e.g. threshold

values) that might limit their applicability.

For this reason, the main goal of this chapter aims to propose

a federated Markov chains-based detector for IoT malware clas-

sification1. More precisely, Markov chains and associative rules

are employed within a similar logic to that described in Chap.

4, in which users analyze each application and then send the

extracted information to a central entity devoted to building

the proposed detector. Therefore, such paradigm makes data

owners proactive contributors to the related building process,

1 Article submitted to Future Generation Computer Systems
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also providing them with a mechanism to timely update the

global model without sharing their private raw data. Next, the

effectiveness of the proposed strategy, compared with the state-

of-the-art ML-based approaches, is analyzed within a realistic

IoT scenario. Finally, the required time effort is evaluated by

considering several dataset partitions and involved clients. More

precisely, I show that the proposed detector obtains comparable

time performances in the presence of non-IID data.

Hence, the main contributions of this chapter can be summa-

rized as follows:

1. A federated architecture is presented to support the rules

mining process as corresponding Markov chains;

2. The resulting associative rules-based detector is employed

in recognizing the different malware families by consider-

ing both centralized and decentralized data;

3. A performance study is done to show the effectiveness of

the proposed approach in the presence of non-IID data.

The remainder of the chapter is organized as follows. Sec. 5.2

will report a background overview of the employed detector.

Next, Sec. 5.3 will describe the proposed Federated architecture.

Finally, Sec. 5.4 will discuss the experimental results, while Sec.

5.5 will show the conclusions and future work.

5.2 background

Since a sequence of API calls can be effectively used to model the

most representative behavioral features associated with a specific

malware application, the background concepts related to the asso-

ciation rules-based detector, presented in [23], are recalled in this

Section. More precisely, I first describe the detector-related work-

flow through a step-by-step example. Then, I provide some math-

ematical definitions related to the rules pruning phase, which is

essential to obtain relevant classification results.
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5.2.1 Association rules-based detector

The execution flow of a specific application tm can be represented

as a sequence of API calls. As a consequence, rules representing

the given application can be extracted in the form {APIi →
APIj}, with APIi ≺ APIj. Note that such rules could include

API calls not necessarily contiguous. The number of skipped API

calls is considered the "spacing" of the rule. After that, such rules

can be associated with nodes of a Markov chain to represent the

application as a sequence of independent state transitions [34, 66].

Ultimately, we can describe such an API calls flow (i.e. a specific

application) by using a graph, with nodes representing two (not

necessarily contiguous) API calls and edges identifying their

transition timeline (the sequence of invocation) [33]. In order to

mine any possible insight from the API calls sequence, different

pairs of API calls (rules) are extracted by varying the spacing.

Hence, with a little abuse of notation needed for simplifica-

tion purposes, the related training process consists, for each

application tm, of several progressive steps n, with k ∈ [1, . . . , n]

representing the spacing in terms of positions to be skipped

within the API calls sequence.

For each intermediate step k (with k < n), all the k− 1 spaced

transitions between two API calls are arranged in a Markov-like

chain represented by a graph Gtm

k , in which the x-th node, Nx, is

defined as follows:

Nx = [(APIi → APIj), σx] (5.1)

where (APIi → APIj) represents the mined rule and σx is the

related number of occurrences, while the edges represent the

transition states.

Next, in the last step (k = n), all the graphs are merged into

one, namely Gtm , representing the entire execution profile of

the application tm. Also, both the edges and the total number

of occurrences of each node x of Gtm , i.e. σtm(x), are updated.

In particular, the occurrences are computed by summing the

occurrences σx of the same nodes of the previous (n− 1) graphs.

For instance, let t1 = ADDDBCDD and t2 = ADDBCCCC be

the API call sequences of two applications, by assuming only



5.2 background 81

three steps (n = 3), Figs. 5.1 and 5.2 show the extracted graphs

Gtm

k of each analyzed application at time-step k = 1 and k = 2,

respectively. As depicted, at time-step k = 1, the transitions

considered are contiguous, and no elements are present between

two API calls used for mining a rule. Contrary, at the time step

k = 2, every rule is extracted by skipping an API call.

Figure 5.1: Extracted graphs Gt1
k and Gt2

k at time-step k = 1.

Figure 5.2: Extracted graphs Gt1
k and Gt2

k at time-step k = 2.

Next, at time-step k = 3, the previous graphs are merged

into a new graph Gtm representing the Run-time behavior of a

considered application, as shown in Fig. 5.3.
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Figure 5.3: Merged graphs Gt1 and Gt2 related to t1 and t2 when k = 3.

Finally, since the set of association rules mined from different

applications can be used as a signature characterizing a specific

malware category (or class) c ∈ C (where C = {c1, . . . , c|C|} is

the set of malware categories), all the graphs Gtm associated with

N (c) applications belonging to the class c of the training dataset

T, are further merged as a final graph Gc, in which the total

number of occurrences of each node, σc, is again updated as

well as the related edges, as shown in Fig. 5.4. Note that, as

better explained below (see Equ. (5.3), σc is estimated by taking

into account the different lengths (in terms of number of API

calls) of the applications. Therefore, the proposed detector is

characterized by a time complexity of O(|T| × n × l), where

|T| is the training dataset dimension, n is the number of rules

extraction-related steps, and l is the number of API calls.

5.2.2 Pruning phase definition

Since many rules could be extracted from the training process,

a pruning step is of paramount importance in order to remove

unnecessary information and thus achieve relevant classification

results. It is performed by comparing the occurrence of each rule

with a threshold value. For instance, Fig. 5.5 shows all the pruned

rules (see dashed nodes) if a threshold less than 2 is considered.
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Figure 5.4: Final graph Gc derived by merging t1 and t2.

Figure 5.5: Pruning phase of rules with σx < 2.

However, the existence of similar rules among different mal-

ware families could lead to incorrect classification results. To

address this issue, a more complex pruning phase is employed,

in which only rules whose values of support and confidence

satisfy a given property (e.g., associated with a specific threshold

value) are considered valid.

More precisely, let A = {a1, ..., a|A|} the set of admissible API

calls, a generic rule is defined as follows:

Rpq = {ap → aq} (5.2)

with ap, aq ∈ A and ap ≺ aq, which denotes that the API ap is

called before than aq.
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By recalling the aforementioned association between rules and

nodes in the merged graph Gti associated with the application

ti ∈ T, and defining σti(Rpq) as the number of occurrence of the

rule Rpq in a given application ti ∈ T, then the support of the

rule Rpq with respect to the class c is defined as follows:

Φc(Rpq) =
|Rpq|∑

N (c)
i=1

σti (Rpq)
li

N (c)
(5.3)

where li is the number of API calls of ti, while |Rpq| is the cardi-

nality of the rule (i.e. 2).

Notice that, to take into account the different APIs flow lengths

that could occur among the applications of a given class c as

well as the unbalancing among the applications falling within

classes of T, the terms li, |Rpq|, and N (c) of Equ. 5.3 are used to

normalize the support within the range [0, 1].

However, as it is known, the support is not sufficient to estimate

the quality of the rules in representing the applications for multi-

class contexts. Thus, the confidence of a given rule Rpq on a class

c is also defined, as follows:

Γc(Rpq) =
Φc(Rpq)

∑v∈C Φv(Rpq)
(5.4)

Equ. 5.4 expresses the ability of a rule to be unique for a

specific class. Indeed, high values denote high uniqueness, while

low values indicate that the rule is also present in other malware

classes.

As depicted, Equ. 5.3 and Equ. 5.4 express a metric character-

izing a given rule concerning a class c, and thus, they can be

involved in the pruning phase. More specifically, rules having

support and confidence less than given thresholds are pruned.

5.2.3 Classification

Once the training phase is performed and, thus, several rules

are mined, new incoming applications need to be classified. To

accomplish this, the following metrics are defined [23].
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Firstly, the following confidence is provided:

Γc
Rpq

(tm) =















0 Rpq ̸⊆ tm,

σtm(Rpq) ∗ Γc(Rpq) Rpq ⊆ tm ∧ γ(tm) = c,

1/Γc(Rpq) Rpq ⊆ tm ∧ γ(tm) ̸= c.

(5.5)

where γ(tm) is the hypothesis of membership classes associated

with tm.

It represents the confidence of a rule Rpq with respect to a class

c associated with an application tm. As shown, its value depends

on the presence of the rule Rpq within the application tm, as

well as on the value assumed by the hypothesis of membership

classes.

After that, the degree of belonging to class c of an application

tm is estimated by evaluating a rank ρ, which is given by:

ρc(tm) = ∑
c∈C

∑
∀p,q

Γc
Rpq

(tm), (5.6)

where the summation on p and q takes into account all the rules

derived from the training phase.

Finally, the softmax function is used to classify the application

tm, as follows:

γ(tm) = arg max
h∈C

eρh(tm)

∑ν∈C eρν(tm)
. (5.7)

5.3 the proposed approach

This section presents the proposed federated architecture. More

precisely, I extend the support and confidence indexes within a

privacy-preserving federated environment. Then, I provide some

implementation details related to core modules. Finally, I describe

the proposed schema by highlighting its main advantages.

5.3.1 Federated indexes definition

The first step necessary for implementing the previously-discussed

detector within a federated logic is to extend both support and

confidence by considering the entire dataset T split among sev-

eral federated clients. Note that different clients could deal with
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similar malware. As a consequence, T could include multiple

copies of the same applications.

Let M be the number of considered clients, and Tj be the j-

th dataset gathered by the client j, then the entire dataset T is

subject to the following:

T =
M
⋃

j=1

Tj (5.8)

Notice that, during the learning process, no Tj dataset is sent

to the central server, but only the applications-related graphs Gc

are sent, guaranteeing privacy. Furthermore, Equ. 5.8 expresses

the ability of our approach to face the problem of learning from

non-IID data. In fact, according to Equ. 5.8, all partial graphs are

merged into a single one, and then the support and confidence

are evaluated only by the central server.

Accordingly, let N (c, Tj) be the number of application ti ∈ Tj

whose class is c, then the federated support of the rule Rpq can

be defined as follows:

Φc
f (Rpq) =

|Rpq|∑
M
j=1 ∑

N (c,Tj)

i=1
σti (Rpq)

li

N (c)
(5.9)

Similarly, the federated confidence of a given rule Rpq on a

class c is defined as follows:

Γc
f (Rpq) =

Φc
f (Rpq)

∑v∈C Φv
f (Rpq)

(5.10)

Finally, Equations 5.5 and 5.6 can be easily generalized to the

federated case by replacing Φ with Φ f and Γ with Γ f , respec-

tively and, also in this case, the classification of an application is

performed by Equ. 5.7.

5.3.2 The federated rules-based detector

To face the confidentiality and privacy issues related to sharing

data, I present an architecture that aims to support malware

classification tasks by embedding the proposed associative rules-

based detector within a federated logic, in which the involved IoT
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devices need to send their data to a central aggregation point de-

voted to sharing information. More precisely, the proposed archi-

tecture aims to provide a privacy-preserving workflow in which

federated entities asynchronously share only their applications-

related graphs (and not the raw data) and receive the malware

detector. Thus, the proposed architecture can guarantee the inter-

change of sensitive information, and their protection against the

most common data leakage threats, as done in traditional Fed-

erated Learning-based approaches. Furthermore, it also avoids

the issues related to integration operations. Indeed, the central-

ized aggregation of graphs is extremely simple and presents a

low computational effort. In addition, since Markov chains are

defined as a memoryless stochastic process, each set of mined

k-spaced associative rules, derived from the dynamic analysis of

API calls, represents a locally trained model, which is equivalent

to the local model of the classic FL-based solutions.

Moreover, the proposed workflow needs (in theory) only one

centralized aggregation to build the presented classifier, and

that does not need any usage of sophisticated algorithms, such

as the Federated Averaging (FedAvg) [72], Federated Matched

Averaging (FedMA) [113], and Federated Distance (FedDist) [31].

Therefore, the obtained results no longer depend on applications

processed by the federated entities (e.g., influenced by particular

data distribution) but only from the derived global model. Indeed,

since the defined support and confidence indexes (see Equ. 5.9

and Equ. 5.10) are computed on the centralized and aggregated

associative rules, I highlight the ability of the proposed logic to

face the non-IID data-related issues that, instead, adversely affect

the traditional federated learning-based solutions.

For this reason, the presented workflow differs from pure

FL-based ones and is also extremely suitable to improve the

convergence process among Edge and Cloud infrastructures,

with specific reference to data aggregation, data security, and

services migration [15, 91, 98]. Hence, to report as much detailed

information as possible, I describe the resulting architecture,

structured according to a Publish-Subscribe model/policy, by

defining three processes named Client-Side Extraction, Server-Side

Aggregation, and Detector Update, respectively.
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Therefore, the main goals of the proposed architecture can be

summarized as follows:

1. A data extraction workflow is needed to collect associative

rules from each federated entity (Client-Side Extraction);

2. A data aggregation workflow is useful to manage the re-

ceived rules as category graphs and share a malware detec-

tor with each entity (Server-Side Aggregation);

3. A data update workflow is necessary for periodically re-

adapting and re-sharing the malware detector (Detector

Update).

5.3.2.1 Client-Side Extraction process

At the beginning of the Client-Side Extraction process, each fed-

erated entity asks to subscribe to the central server and receives

the number of steps n to run. Next, for each analyzed applica-

tion, and at each iteration k < n, the client extracts the k-spaced

associative rules. Finally, the client sends the related graph to the

central server. Fig. 5.6 reports the discussed Client-Side Extraction

process, while its steps can be summarized as Alg. 1.

Figure 5.6: The high-level steps of the Client-Side Extraction process
that summarize the application pre-processing and sending
of the related graph.

More precisely, for each application t, Alg. 1 derives the cor-

responding class c and the list of API calls (apisList). Next, at

each iteration k < n, the algorithm extracts the set of k-spaced

associative rules by storing them in G. Note that, after the while
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Algorithm 1 Client-Side Extraction

Require: Tj (j-th dataset of applications)

1: n← askSubscription()

2: for each t ∈ Tj do

3: k← 1

4: G← ∅

5: c← Class(t)

6: apisList← traceAPIs(t)

7: while k < n do

8: G← extractRules(apisList,k)

9: k← k + 1

10: end while

11: sendGraph(G,c)

12: end for

loop, G will represent the graph containing any mined rules.

Finally, the algorithm sends G and c to the central server and

processes another application.

5.3.2.2 Server-Side Aggregation process

The Server-Side Aggregation process has the fundamental task

of collecting the application-related graphs to share the proposed

model with each federated entity. To accomplish this, the server

first merges each graph with those previously received. Then, it

uses the obtained information (i.e. the learned rules) to perform

the pruning phase and share the malware detector. Note that the

described process confers to the server the capability of continu-

ously sharing an updated classifier each time a new application

is received. Therefore, the server can immediately support the

federated entities for their detection activities, also in presence

of zero-day malware. Fig. 5.7 shows the Server-Side Aggregation

process, while its steps can be summarized as Alg. 2.

More precisely, every time the i-th client sends the graph G

and the corresponding class c, Alg. 2 merges G with the graphs

previously stored in graphList[c]. Note that graphList[c] contains

the set of k-spaced rules related to class c. Next, the algorithm

performs the pruning phase and sends the detector to each sub-

scribed client.
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Figure 5.7: The high-level steps of the Server-Side Aggregation process
that summarize the pruning phase and sharing of the detec-
tor.

Algorithm 2 Server-Side Aggregation

Require: M (number of subscribed clients)

1: for each i ≤ M do

2: (G,c)← receiveGraph(i)

3: graphList[c]← mergeGraph(G)

4: detector← pruningPhase(graphList)

5: sendToClients(detector)

6: end for

5.3.2.3 Detector Update process

This process is responsible for taking into account new malware

applications when a detector has already been shared. To accom-

plish this, it combines the previous phases by considering new

applications. Therefore, another ability of the presented architec-

ture is to continuously share an updated classifier regardless of

the presence of new or non-IID data.

More precisely, when an unknown malware application is

detected from a federated entity, the application-related graphs

are built and sent to the server along with the related malware
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class. Next, the server will merge the received graphs with those

already stored, and after the pruning phase, it will share the

updated malware detector with each subscribed entity.

5.4 experimental results

The first goal of the experiments is devoted to demonstrating the

contribution of the proposed architecture concerning the classi-

fication of several malware applications, while the second is to

study the required computational effort through performance

analysis. To accomplish this, I show the effectiveness of the pro-

posed detector, compared with other state-of-the-art approaches,

by considering both centralized and decentralized data. Next, I

analyze the required computational effort in the presence of sev-

eral federated entities and non-IID data partitions, respectively.

5.4.1 Dataset and Experimental setting

The dataset considered in the following experiments has been

derived by Unisa Malware Dataset (UMD), composed of about

3500 applications grouped into 8 Android families: Airpush (Air),

DroidKungFu (DKF), Fusob (Fus), Genpua (Gen), GinMaster

(Gin), Jisut (Jis), Opfake (Opf), and SmsPay (Sms). More precisely,

to evaluate the effectiveness of the proposed detector, I first

divided the related API-Calls dataset into training and testing

sets according to the 70/30 criteria, as reported in Tab. 5.1.

Thus, I employed the obtained sets for the centralized and

decentralized learning scenarios by respectively considering the

following splitting criteria and number of involved clients:

- Splitting: Horizontal (Samples of each category equally

distributed), Vertical (Samples of a category assigned only

for some clients), and Mixed;

- Clients: 4, 8, 12, and 16.

Finally, I simulated the proposed architecture within a socket-

based Client-Server scenario, using a MacBook Pro equipped

with an Apple M1 CPU and 16 GB of unified memory for the
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Family Training Testing Total

Air 265 114 379

DKF 700 301 1001

Fus 117 49 166

Gen 220 94 314

Gin 372 160 532

Jis 376 161 537

Opf 431 184 615

Sms 122 52 174

Total 2603 1115 3718

Table 5.1: Dataset division according to the 70/30 criteria.

sever-side and several virtualized clients Linux-based with 2

Processors and 2 GB RAM, respectively.

5.4.2 Evaluation metrics

To appreciate the classification quality of the proposed detector,

I derived the following evaluation metrics from the multi-class

confusion matrix: Accuracy (Acc.), Sensitivity (Sens.), Specificity

(Spec.), Precision (Prec.), F-Score (F-Mea.), and Area Under the

ROC Curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(5.11)

Sensitivity =
TP

TP + FN
(5.12)

Speci f icity =
TN

TN + FP
(5.13)

Precision =
TP

TP + FP
(5.14)

F− Score =
2 ∗ Sens ∗ Prec

Sens + Prec
(5.15)

AUC =
Sens + Spec

2
(5.16)
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For each category, TPs (True Positives) refer to the applications

correctly classified, while TNs (True Negatives) refer to the appli-

cations correctly identified in another category. Conversely, FPs

(False Positives) are the applications mistakenly identified as the

considered category, while FNs (False Negatives) present the ap-

plications mistakenly identified in another category. Notice that

all reported values have been defined in [0, 1]. Also, in order to

achieve a global evaluation of the proposed detector, the average

performance values (Avg.) and the standard deviation (Dev.) for

each considered metric.

5.4.3 Achieved results

To demonstrate the effectiveness and evaluate the performances

of the proposed federated architecture, I first considered the

employed dataset as centralized data processed by one client

only. More precisely, for each application related to the training

set, all the possible associative rules have been mined by using

a progressive spacing k ∈ [1, 100] and then sent to the server

as related graphs. Then, for each malware family, I merged the

corresponding graphs as one representative graph. Next, since

the number of extracted rules was too high and could adversely

affect the classification results, I performed the pruning phase by

considering any possible value of support (supp.) and confidence

(conf.) between 0.1 and 1.0. Finally, I employed the testing set to

evaluate the quality of the selected training rules by achieving

the best classification performances using the combination of

supp./conf. = 0.7/1.0. The obtained results, respectively shown

in Tabs. 5.2 and 5.3, demonstrate the effectiveness of the detector

in classifying several malware families with an average accuracy

of 99% and a limited number of FPs and FNs.

Subsequently, to show the effectiveness in a federated environ-

ment, we repeated the training process by considering several

training set sub-partitions distributed, each time, among different

clients. As shown in Tab. 5.4, since the application-related graphs

extraction process is performed only by clients, the proposed

federated detector achieved excellent classification performances

independently of the splitting criteria used and the number of

subscribed clients, respectively.
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Air DKF Fus Gen Gin Jis Opf Sms

Air 112 0 0 1 1 0 0 0

DKF 4 289 0 2 1 0 0 5

Fus 0 0 49 0 0 0 0 0

Gen 1 0 0 89 1 0 0 3

Gin 1 3 1 1 153 0 0 1

Jis 0 0 0 0 0 161 0 0

Opf 0 0 0 0 0 0 184 0

Sms 1 1 0 6 1 0 0 43

Table 5.2: Confusion matrix related to centralized data.

Acc. Sens. Spec. Prec. F-Mea. AUC

Air 0.9917 0.9412 0.9979 0.9825 0.9614 0.9696

DKF 0.9854 0.9863 0.9851 0.9601 0.9731 0.9857

Fus 0.9991 0.9800 1.0000 1.0000 0.9899 0.9900

Gen 0.9863 0.8990 0.9950 0.9468 0.9223 0.9470

Gin 0.9899 0.9745 0.9925 0.9563 0.9653 0.9835

Jis 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Opf 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sms 0.9836 0.8269 0.9914 0.8269 0.8269 0.9092

Avg. 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

Dev. (+/-) 0.0064 0.0566 0.0050 0.0539 0.0539 0.0291

Table 5.3: Performance results related to centralized data.

5.4.4 Comparison and discussion

Next, to highlight the potentialities of the presented classifier, I

compared the achieved results with those derived by the most

famous ML-based methods provided by the Scikit-learn [84]

Python library, namely: the Random Forest (RF) algorithm, Linear

Support Vector Machine (SVM) classifier, Decision Trees (DTs),

and Gaussian Naive Bayes (GNB) classifier, respectively. I ac-

complished this by arranging the k-spaced APIs sequences as



5.4 experimental results 95

Clients Acc. Sens. Spec. Prec. F-Mea. AUC

Centr. 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

4 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

8 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

12 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

16 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

Table 5.4: Comparison with different splitting criteria and subscribed
clients.

corresponding adjacent matrices, in which each APIs pair has

been represented with the related frequency. Tabs. 5.5, 5.6, 5.7,

and 5.8 report the obtained classification metrics for each ML-

based method used, while Tab. 5.9 compares these methods with

the proposed detector.

Acc. Sens. Spec. Prec. F-Mea. AUC

Air 0.9748 0.9023 0.9844 0.8844 0.8933 0.9434

DKF 0.9474 0.9494 0.9468 0.8513 0.8977 0.9481

Fus 0.9998 1.0000 0.9998 0.9969 0.9985 0.9999

Gen 0.9677 0.8063 0.9871 0.8830 0.8429 0.8967

Gin 0.9681 0.8757 0.9869 0.9318 0.9029 0.9313

Jis 0.9988 0.9979 0.9990 0.9934 0.9956 0.9984

Opf 0.9970 0.9900 0.9978 0.9822 0.9861 0.9939

Sms 0.9690 0.6348 0.9902 0.8034 0.7093 0.8125

Avg. 0.9778 0.8946 0.9865 0.9158 0.9033 0.9405

Dev. (+/-) 0.0177 0.1170 0.0160 0.0672 0.0907 0.0594

Table 5.5: Performance results related to Random Forest.

As reported in Tab. 5.9, the proposed approach outperformed

each traditional ML-based method taken into consideration. More

precisely, it achieved an average F-Score improvement of 19% on

the GNB classifier and 11% on the Decision Trees. In addition, the

RF and SVM classifiers, which have obtained good classification

results, have been outperformed by the federated detector with
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Acc. Sens. Spec. Prec. F-Mea. AUC

Air 0.9682 0.8820 0.9797 0.8517 0.8666 0.9308

DKF 0.9422 0.9042 0.9544 0.8642 0.8837 0.9293

Fus 0.9973 1.0000 0.9971 0.9585 0.9788 0.9986

Gen 0.9557 0.7907 0.9756 0.7960 0.7933 0.8832

Gin 0.9556 0.8578 0.9755 0.8770 0.8673 0.9167

Jis 0.9978 0.9901 0.9989 0.9929 0.9915 0.9945

Opf 0.9931 0.9736 0.9955 0.9639 0.9688 0.9846

Sms 0.9525 0.4810 0.9824 0.6346 0.5472 0.7317

Avg. 0.9703 0.8599 0.9824 0.8674 0.8622 0.9212

Dev. (+/-) 0.0211 0.1582 0.0139 0.1078 0.1352 0.0813

Table 5.6: Performance results related to Linear SVM.

Acc. Sens. Spec. Prec. F-Mea. AUC

Air 0.9516 0.8116 0.9702 0.7828 0.7969 0.8909

DKF 0.9336 0.8715 0.9535 0.8574 0.8644 0.9125

Fus 0.9986 1.0000 0.9985 0.9786 0.9892 0.9993

Gen 0.9461 0.7297 0.9721 0.7591 0.7441 0.8509

Gin 0.9489 0.8473 0.9696 0.8501 0.8487 0.9084

Jis 0.9982 0.9979 0.9983 0.9888 0.9933 0.9981

Opf 0.9936 0.9843 0.9948 0.9586 0.9713 0.9895

Sms 0.9519 0.5201 0.9792 0.6135 0.5629 0.7496

Avg. 0.9653 0.8453 0.9795 0.8486 0.8464 0.9124

Dev. (+/-) 0.0250 0.1530 0.0153 0.1206 0.1375 0.0803

Table 5.7: Performance results related to Decision Trees.

an average improvement of 5% and 9%, respectively. However,

differently from the proposed approach, such methods have

been trained on the centralized raw data arranged as adjacent

matrices. Therefore, they need an extra pre-processing step as

well as not guarantee the privacy of the involved clients and the

confidentiality of related data.
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Acc. Sens. Spec. Prec. F-Mea. AUC

Air 0.9432 0.7546 0.9682 0.7587 0.7567 0.8614

DKF 0.8760 0.7551 0.9149 0.7401 0.7475 0.8350

Fus 0.9925 1.0000 0.9920 0.8935 0.9438 0.9960

Gen 0.9449 0.6280 0.9830 0.8165 0.7100 0.8055

Gin 0.9033 0.5411 0.9771 0.8280 0.6545 0.7591

Jis 0.9850 0.9994 0.9828 0.8984 0.9462 0.9911

Opf 0.9359 0.9811 0.9304 0.6334 0.7698 0.9558

Sms 0.9541 0.5894 0.9772 0.6215 0.6050 0.7833

Avg. 0.9419 0.7811 0.9657 0.7738 0.7667 0.8734

Dev. (+/-) 0.0361 0.1784 0.0259 0.0993 0.1151 0.0888

Table 5.8: Performance results related to Gaussian NB.

Acc. Sens. Spec. Prec. F-Mea. AUC

Proposed 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

RF 0.9778 0.8946 0.9865 0.9158 0.9033 0.9405

SVM 0.9703 0.8599 0.9824 0.8674 0.8622 0.9212

DTs 0.9653 0.8453 0.9795 0.8486 0.8464 0.9124

GNB 0.9419 0.7811 0.9657 0.7738 0.7667 0.8734

Table 5.9: Comparison with ML-based methods.

In addition, I used the adjacent matrices (73×73) to test a DL-

based approach. I accomplished this through a CNN, shown in

Fig. 5.8, trained in the centralized and federated-learning sce-

narios, respectively. Tab. 5.10 summarizes the results derived

by considering each splitting criteria and the number of sub-

scribed clients, Tab. 5.11 reports the client-related Accuracy val-

ues derived on the testing dataset, while Tab. 5.12 compares our

approach with the employed CNN.

As shown in Tabs. 5.10 and 5.11, the employed CNN achieved

comparable results only with the Mixed splitting criteria (Mix).

Vice-versa, due to the lack of convergence of the Federated CNN,

no relevant results have been achieved by the other splitting

criteria (Vertical and Horizontal). More precisely, the Vertical one
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Figure 5.8: Architecture of the CNN used in comparisons.

has highlighted how DL-based models cannot learn if the data-

related categories are distributed only to some clients, adversely

affecting the federated learning process. Instead, the Horizontal

one has highlighted how IID data can also adversely influence

the FL-based models. This phenomenon occurs when data are

characterized from many sub-categories, producing a sort of

nested Vertical splitting. In our case, this means that each k-

spaced adjacent matrix can be related to a specific k-th sub-
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Split Acc. Sens. Spec. Prec. F-Mea. AUC

Centr. 0.9697 0.8692 0.9820 0.8741 0.8711 0.9256

Mix4 0.9695 0.8705 0.9819 0.8754 0.8714 0.9262

Mix8 0.9659 0.8585 0.9799 0.8576 0.8563 0.9192

Mix12 0.9635 0.8467 0.9784 0.8486 0.8462 0.9126

Mix16 0.9603 0.8318 0.9766 0.8325 0.8297 0.9042

Table 5.10: Performance Results related to CNN.

Clients Split min_Acc. max_Acc. avg_Acc.

4 Mix 0.9678 0.9687 0.9683

8 Mix 0.9638 0.9655 0.9647

12 Mix 0.9595 0.9622 0.9613

16 Mix 0.9561 0.9595 0.9583

Table 5.11: Clients-related Accuracy values.

Method Acc. Sens. Spec. Prec. F-Mea. AUC

Proposed 0.9920 0.9510 0.9952 0.9591 0.9549 0.9731

Centr. 0.9697 0.8692 0.9820 0.8741 0.8711 0.9256

Mix4 0.9695 0.8705 0.9819 0.8754 0.8714 0.9262

Table 5.12: Comparison with the CNN.

category, with k varying from 1 to 100. Therefore, these matrices

adversely affect the federated learning process also when they

seem to be Independent and Identically Distributed (IID). Finally,

the comparison provided in Tab. 5.12 shows that our approach

outperformed the FL-based CNN by achieving an average F-Score

improvement of 8%. Therefore, this confirms the effectiveness of

the proposed detector in achieving excellent classification metrics

for any considered splitting criteria (IID and no-IID) that, instead,

adversely affect the classical FL-based solutions [18, 46, 57, 83].
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5.4.5 Performance evaluation

To evaluate the performance of the proposed architecture during

the Client-Side Extraction and Server-Side Aggregation processes,

I first derived the required time effort by using the entire train-

ing set on a single machine. Next, I partitioned it by applying

the previously mentioned splitting criteria and considering the

number of involved clients, as reported in Tabs. 5.13, 5.14, 5.15,

5.16, 5.17, 5.18, 5.19, 5.20 and 5.21, respectively.

Clients Air DKF Fus Gen Gin Jis Opf Sms

4 66 175 29 55 93 94 107 30

8 33 87 14 27 46 47 53 15

12 22 58 9 18 31 31 35 10

16 16 43 7 13 23 23 26 7

Table 5.13: Horizontal training set division for each client.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 265 700 0 0 0 0 0 0

C2 0 0 117 220 0 0 0 0

C3 0 0 0 0 372 376 0 0

C4 0 0 0 0 0 0 431 122

Table 5.14: Vertical training set division for 4 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 265 350 0 0 0 0 107 0

C2 0 350 117 0 0 0 107 0

C3 0 0 0 110 186 188 107 0

C4 0 0 0 110 186 188 110 122

Table 5.15: Mixed training set division for 4 clients.

Hence, to carefully analyze the model scalability for each con-

sidered combination (splitting criteria/number of clients), I de-

rived the parallel Speedup [97], which is given by:
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 132 350 0 0 0 0 0 0

C2 0 0 58 110 0 0 0 0

C3 0 0 0 0 186 188 0 0

C4 0 0 0 0 0 0 215 61

C5 133 350 0 0 0 0 0 0

C6 0 0 59 110 0 0 0 0

C7 0 0 0 0 186 188 0 0

C8 0 0 0 0 0 0 216 61

Table 5.16: Vertical training set division for 8 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 132 175 0 0 0 0 107 0

C2 0 175 117 0 0 0 107 0

C3 0 0 0 55 93 94 107 0

C4 0 0 0 55 93 94 110 122

C5 133 175 0 0 0 0 0 0

C6 0 175 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

Table 5.17: Mixed training set division for 8 clients.

Speedup =
Ts

Tp
, (5.17)

where Ts is the time effort without parallelism and Tp is the

required time effort with parallelism. Fig. 5.9 shows the speedup-

related behavior for each considered splitting criteria and clients,

respectively.

As shown in Fig. 5.9, since the derived Speedup values are

slightly different, it is possible to appreciate how the proposed

model is characterized by semi-linear scalability. More precisely,

when the number of clients is low (i.e. 4 and 8), the system rapidly

scales thanks to low communication costs. Instead, when the
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 0 0

C2 0 0 29 55 0 0 0 0

C3 0 0 0 0 93 94 0 0

C4 0 0 0 0 0 0 215 61

C5 133 350 0 0 0 0 0 0

C6 0 0 59 110 0 0 0 0

C7 0 0 0 0 186 188 0 0

C8 0 0 0 0 0 0 108 30

C9 66 175 0 0 0 0 0 0

C10 0 0 29 55 0 0 0 0

C11 0 0 0 0 93 94 0 0

C12 0 0 0 0 0 0 108 31

Table 5.18: Vertical training set division for 12 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 53 0

C2 0 175 29 0 0 0 53 0

C3 0 0 0 55 93 94 53 0

C4 0 0 0 55 93 94 53 30

C5 133 175 0 0 0 0 0 0

C6 0 175 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

C9 66 0 0 0 0 0 53 0

C10 0 0 29 0 0 0 53 30

C11 0 0 29 0 0 0 53 30

C12 0 0 30 0 0 0 60 32

Table 5.19: Mixed training set division for 12 clients.

number of clients increases, the related execution costs decrease

to the point that counterbalances the high communication costs.



5.5 conclusions and future works 103

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 0 0

C2 0 0 29 55 0 0 0 0

C3 0 0 0 0 93 94 0 0

C4 0 0 0 0 0 0 107 30

C5 66 175 0 0 0 0 0 0

C6 0 0 29 55 0 0 0 0

C7 0 0 0 0 93 94 0 0

C8 0 0 0 0 0 0 107 30

C9 66 175 0 0 0 0 0 0

C10 0 0 29 55 0 0 0 0

C11 0 0 0 0 93 94 0 0

C12 0 0 0 0 0 0 107 30

C13 67 175 0 0 0 0 0 0

C14 0 0 30 55 0 0 0 0

C15 0 0 0 0 93 94 0 0

C16 0 0 0 0 0 0 110 32

Table 5.20: Vertical training set division for 16 clients.

For this reason, differently by the classical FL-based solutions [18,

46, 57, 83], the proposed architecture can obtain excellent time

performances in the presence of non-IID.

5.5 conclusions and future works

In this Chapter, I investigated the capabilities of Markov chains

and associations-based rules within an IoT environment in order

to support a privacy-aware malware classification. To accomplish

this, I enhanced the dynamic-based detector, presented in [23],

through the federated logic discussed in Chap. 4. Therefore, I

proposed a dedicated architecture capable of performing a feder-

ated training process in which end-users build a shared detector

by sending the analyzed applications to a central server. Conse-

quently, the interchange of sensitive information, and their protec-
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 87 0 0 0 0 53 0

C2 0 87 29 0 0 0 53 0

C3 0 0 0 55 93 94 53 0

C4 0 0 0 55 93 94 53 30

C5 66 87 0 0 0 0 0 0

C6 0 87 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

C9 66 0 0 0 0 0 53 0

C10 0 0 29 0 0 0 53 30

C11 0 0 29 0 0 0 53 30

C12 0 0 30 0 0 0 60 32

C13 67 87 0 0 0 0 0 0

C14 0 87 0 0 0 0 0 0

C15 0 87 0 0 0 0 0 0

C16 0 91 0 0 0 0 0 0

Table 5.21: Mixed training set division for 16 clients.

tion against the most common data leakage threats, has been simi-

larly guaranteed as done in traditional Federated Learning-based

approaches. Next, I validated the effectiveness of the presented

method by employing several famous malware families derived

from the UMD dataset. More precisely, the obtained results have

shown an average accuracy of 99% by outperforming the most

famous DL and FL-based approaches and highlighting possible

benefits in zero-day malware detection. Finally, I also provided a

statistical and temporal performance assessment in the presence

of non-IID data, in which I considered several dataset partitions,

splitting criteria, and number of subscribed clients, respectively.

However, due to the high number of existing and yearly re-

leased malware applications, this study proposes some possible

future works that might provide some benefits, such as well-

suited mechanisms to improve the zero-day detection and the
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Figure 5.9: Speedup comparison.

building of new communication channels and environments for

federated entities, respectively.

For this reason, I will investigate an extension of the pro-

posed detector in order to detect new malware families and

variants characterized by more intricate dynamic patterns. For

instance, given an arbitrary rule, the employed pruning indexes

might consider only the "nearest rules". Also, I will optimize the

applications-related extraction process in order to improve the

required temporal effort. For instance, several selection criteria

could be employed (e.g. the proposed pruning indexes) to con-

sider only the relevant rule sequences effectively mined during

the application execution.





6
C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis, I presented new enhanced DL-based strategies to

spot malware threats in IoT network security scenarios. There-

fore, the proposed approaches, derived from my PhD activities

and related publications, have been designed with the aim of

guaranteeing the success of the related early alerting facilities.

First, in Chapter 2, I started by focusing on Malware classifi-

cation related to Android-based devices, which represent one

of the most famous hostile activities sources. More precisely, I

remarked on the effectiveness of dynamic features, arranged

as API-Images, to classify several Malware families through a

Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN), respectively. The derived results have shown

an average accuracy of 99% for both employed DNNs by outper-

forming the most famous ML-based approaches.

Next, in Chapter 3, I presented an extension of such API-

Images to face an enhanced Malware classification as Video-

Classification tasks. The proposed features representation tech-

nique, named API-Streams, has been proven effective in classi-

fying different Malware families through a CNN-LSTM Sparse

Autoencoder (CNN-LSTM-SAE). The achieved results, also com-

pared with those derived by the most famous static and dynamic-

based approaches, have proven the effectiveness of the proposed

model by obtaining an average accuracy of 98% in the presence

of several unbalanced training datasets. In addition, such results

also highlighted the existence of several malware sub-categories

characterized by a well-distinct dynamic behavior.

On the other hand, in Chapter 4, I analyzed other Android

malware families by analyzing the effectiveness of a static-based

approach. More precisely, I presented a new representation tech-

nique called Permission Maps (Perm-Maps), which combines

information related to Android permissions and their correspond-

ing severity levels. The achieved results, carried out through a

CNN enhanced by a training process based on federative logic,
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108 conclusions and future works

have demonstrated the effectiveness of the employed detector by

obtaining an average accuracy of 99.74%.

Finally, in Chapter 5, I combined the effectiveness of dynamic-

based approaches with the cooperation of federated devices

by providing a privacy-preserving Malware detector. In this

direction, the capabilities of Markov Chains and associative rules

have been investigated in order to improve the state-of-the-art

solutions. More precisely, the achieved results have proven that

the proposed approach cannot be affected by non-Independent

and Identically Distributed (non-IID) data in terms of required

time effort and classification results (with an average accuracy

always of 99.20%), respectively.

On the basis of achieved outcomes, I firmly believe that new

empowered detection strategies will play a more and more domi-

nant role in effectively spotting many kinds of threats in Internet

security scenarios, with particular attention to those IoT and Fed-

erated environments-related. For this reason, I would propose

the following three future research directions.

First, I will investigate the abilities of CNN and LSTM Au-

toencoders in detecting malware sub-categories, which are often

characterized by a well-distinct dynamic behavior. Indeed, the

Autoencoders’ unsupervised learning mechanism might improve

the effectiveness of the Run-time malware detection and pro-

pose more targeted DL-based approaches, respectively. Second, I

will enhance the proposed federated detectors in order to detect

future malware families. More precisely, empowering these solu-

tions might provide several benefits, such as new mechanisms

capable of counteracting the malware-related spread, improv-

ing zero-day detection, and creating new privacy-preserving

environments. Finally, since traffic anomaly detection activities

represent another fundamental topic related to Internet security

scenarios, I will investigate the effectiveness of the presented

techniques in spotting illegitimate traffic flows in federated orga-

nizations. More precisely, the combination of such approaches

might be helpful in detecting simultaneously hostile activities

coming from multiple federated entities, which can also be seen

as classic traffic observation points. Therefore, this future work

might better provide the foundations for a new generation of

Federated Intrusion Detection and Prevention Systems.
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