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An 'Active'’: "l want to be free, free as a man.

As evolved man over which rises up with the intellect

that defies nature by undisputed force of the science

wearing the excitement of spacing without limits in the cosmos
and convinced that the power of thought is the only freedom "
An 'He does not know': "Freedom is not to be on a tree,

not even a action or an invention,

freedom is not free space,

Freedom is participation.”

[Un 'Impegnato’: "Vorrei essere libero, libero come un uomo.

Come ['uomo piu evoluto che si innalza con la propria intelligenza

e che sfida la natura con la forza incontrastata della scienza,

con addosso l'entusiasmo di spaziare senza limiti nel cosmo

e convinto che la forza del pensiero sia la sola liberta"

Un 'Non so': "La liberta non é star sopra un albero,

non e neanche un gesto o un'invenzione,

la liberta non e uno spazio libero,

liberta e partecipazione."]

Giorgio Gaber, Liberta e partecipazione, Dialogo tra un impegnato ed un non so.
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0.1. INTRODUCTION xiv

0.1 Introduction

It is now ascertained that quantum mechanics is a powerful tool in the In-
formation and Communication theory. The quantum properties of light radiation
allow to implement, relatively easily and with high efficiency, large part of Quan-
tum Information protocols, developed to make possible the transfer of information
to a point arbitrarily far away. Many of the properties, which make the quantum
theory an instrument so precious, are related to the linear nature of the theory.
It is this linear nature the main cause of the existence of most of the quantum
paradoxes, included the celebrated EPR paradoz. As is well known, this paradox
arises, in 1935, with the interrogative-paper [1] of Einstein-Podolsky and Rosen
EPR Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete? Authors’ aim was to demonstrate the incompleteness of Quantum
Theory. The scientific history of the last seventy-eight years shows that EPR did
not reach their goal, but they paved the way for the discovery of genuinely quan-
tum correlations, which Schrodinger [2] called entanglement. Such correlations
are the basis of most efficient protocols developed to date in the field of quantum
mechanics. An entangled state is such that it cannot be factorized into pure local
states of which it is composed. This is because the subsystems share quantum
correlations. The Quantum Information theory exploits such nonclassical corre-
lations to encode, to process and to distribute information by techniques that
are impossible to implement, or that give very inefficient results, in the context
of classical physics. For this reason, in the last decades, many efforts have been
aimed at the production of entangled quantum states and at the study of the
quantum properties that take a quantum state to become a efficient resource in
the Quantum Information protocols. What is the best quantum resource to use
depends on the protocol that we choose and on the purpose we want to achieve.

A protocol widely studied in Quantum Information is arguably the quantum
teleportation. As is known, the no-cloning theorem, which is a direct consequence
of the postulates of quantum mechanics, forbids, in agreement with the theorem
of quantum non-discrimination, to create an exact duplicate of an unknown quan-
tum state. However, it is possible to transfer the quantum state from a system to
another system, provided, of course, the no-cloning theorem is respected.This im-
plies that the information in the original system must be destroyed. The quantum
teleportation is a technique that allows, under certain restrictions, to transfer a
quantum state from one system to another one arbitrarily far away. This protocol
is based on the fact that the two parts, called Alice and Bob, between which it
must take place the transfer of the state, share an entangled state, that is the
resource of the protocol.

Quantum states can be divided into two main categories: Gaussian states and
non-Gaussian states. The state describing a system belongs to one either category
depending on the statistical distribution of the observable of the state. Gaussian
states play an exceptional role in Quantum Information theory. They are easy to
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produce and control in the laboratory. Indeed they can be obtained in nonlinear
processes such as parametric amplifiers, in which a nonlinear medium is allocated
in an optical cavity providing an optical parametric oscillator OPO. Such systems,
in a semiclassical approach, are described by bilinear Hamiltonians, thus realize
the paradigm for the Gaussian state generation. In particular, below threshold a
single continuous-wave OPQO, generating squeezing in a fully degenerate operation
can give rise to a pair of bright cv entangled beams in the nondegenerate case. It
leads to states that represent robust resources for implementing different Quantum
Information and Communication tasks. These states, however, also suffer from
some limitations, both technical (which occurs if we try to generate states with
very high degree of entanglement) and intrinsic properties of the quantum theory
(Extremality of Gaussian Quantum States [3]). In this context, a appropriately
sculptured non-Gaussianity can become a resource for the efficient implementa-
tion of the quantum protocols. All quantum states that can not be described by
a Gaussian distribution function are non-Gaussian states. To identify the special
features that bring a non-Gaussianity to be a resource in Quantum Information is
not easy. In recent years many efforts have been made in the analysis of quantum
properties of classes of non-Gaussian states and in the engineering of experimental
schemes, making it possible to easily prepare and control non-Gaussian states in
the laboratory. Many advances have been made both in terms of experimental
and theoretical aspects. In the theoretical framework the features, whose must
enjoy a quantum state to be an optimal resource of quantum teleportation, have
been identified [4], in the context of continuous variables. A new class of states,
the Squeezed Bell states [4], has been proposed. It is able to offer a probability
of success of the teleportation protocol BKV greater than that provided by the
main known Gaussian and non-Gaussian resources [4], [5]. In the experimental
framework, some non-Gaussian quantum states have been implemented and, in
parallel, some techniques which avoid the use of optical active means (such the
OPO) have been developed. The crucial point of the experimental reality, at least
with regard to the continuous variables cv quantum optics, is the impossibility
to produce, realistically speaking, pure states. This occurrence leads to the new
interpretations of many physical concepts and opens many questions in Quantum
Information. For example, the definition of an entangled state is conceptually
connected to pure states. The properties of these states are described by wave
functions. All the gedanken experiments that we can think to realize for testing
the different theoretical aspects of the entanglement lead to a same entanglement
measure, but the pure entangled states, discussed in such experiments, are an
idealization. The states we can prepare and manipulate in the laboratory are not
pure but mixed, so we cannot expect to observe precisely the phenomenon intro-
duced by the theory. The experimental entanglement tests, especially in the cv
regime, are described in terms of density matrices rather than wave functions. It
is necessary becouse the systems interact with the environment and/or observers,
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therefore they undergo decoherence phenomena departing far from the ideal con-
cept of pure states. In optics the most common process leading to decoherence
is the phase-insensitive loss of photons through diffusion and absorption mecha-
nisms. This process is described by a Lindblad equation for the evolution of the
field operators that translates into a Master equation for the state density matrix.

This Dissertation collects my personal both theoretical and experimental con-
tributions, in the context of the Quantum Information theory and, more generally,
of the Quantum Optics in continuous variables. In this context, I have dealt with
various issues related to the efficiency of realization of quantum information pro-
tocols. Much of the research has been aimed at identifying the resources that
allow to realize quantum teleportation with a highest probability of success. For
this reason we proceeded to the study of quantum quantities that influence the
success rate of teleportation of a quantum state, in the protocol BKV.

The quantum resources, as we said so far, can be divided in two main classes:
Gaussian resources and non-Gaussian ones. My research activity has been struc-
tured in which way to be able to proceed, in parallel, to the analysis of both
classes.

This Dissertation is organized as follows.

After describing some basic concepts of the quantum theory (chapter 1) in
order to clarify the context in which it was carried out the results of the re-
search, in the chapter 2 we explore the concept of quantum state as resource.
We investigate the properties that allow to distinguish between classical states
and non-classical ones (§ 2.1). Then we analyze, in more detail, the features that
define the quantumness of a state as, for example, the mutual information (§ 2.2)
and the quantum discord (§ 2.3). We clarify the difference between entanglement
measure and entanglement criteria. Then we describe, in the formalism of the
characteristic function, the protocol of entanglement swapping, through which it
is possible to transfer the entanglement from two couples of entangled modes to
one couple of unentangled modes. Quantumness and nonlocality are two closely
related concepts. So we try to clarify some aspects of this relationship. We com-
plete the chapter with a description of the protocol of quantum teleportation. In
the first two chapters we lay the foundations in order to proceed to the description
of the original findings. We can divide such description into two main parts.

The first part (chapters 3 and 4) is dedicated to the results carried out on the
pure and mixed Gaussian resources.

To date there isn’t a single measure that quantifies the entanglement of mixed
states and various measures have been suggested in the literature, they are not
easy to apply and provide sometimes conflicting results. To assess the presence
of entanglement in a quantum system it is possible to refer to the many crite-
ria proposed in the literature. The criteria are often the most used tool, in the
experimental Quantum Optics field, to evaluate the quality of entanglement of a
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quantum-optical system. In chapter 3 we study some of the main criteria generally
used for Gaussian bipartite mixed states. This study has allowed us to establish
a hierarchy very useful for the evaluation of the entanglement [6]. Then we have
discussed and experimentally analyzed the effects of the transmission over a lossy
channel on the quantumness of bipartite Gaussian cv optical entangled states,
focusing our analysis on the states generated by a type-II OPO [7]. The obtained
results are reported in [6], [8]. Eventually, in chapter 4, it is reported the study of
the Bell’s inequality in terms of purity and entanglement for a bipartite Gaussian
state. The need to begin such a study comes two considerations: the deterio-
ration of the purity of a quantum state greatly affects the performance of the
system associated with that state; the entanglement is not the only type of gen-
uinely quantum correlation present in quantum systems. It becomes necessary,
therefore, to investigate how the "quantumness" owned by a state, established by
the violation of Bell’s inequality, is related to the purity of the state and to the
entanglement. The obtained results are reported in [9].

The second part (chapters 5, 6, 7 and 8) is dedicated to the results carried out
on non-Gaussian resources. The study of non-Gaussian resources mainly related
to a particular class of states: the squeezed Bell states. All the analysis carried out
to date show that these states are one of the best possible resources for efficient cv
quantum teleportation protocol BKV. We proceed as described below. In order
to assess which quantum resource allows to have a higher probability of success in
the quantum teleportation of a coherent state, have processed the following two
theoretical tests:

1. In chapter 5 we report the study of the behavior of the Bell’s inequality for
the whole class of states obtained by the squeezed Bell states. Such study
makes possible to determine what is the quantum resource that maximizes
the violation of the inequality, i.e. which is the most "non-local resource"
among all those considered. The results are collected in a paper of next
submission [10].

2. In the chapter 6, we analyze the performances of teleportation provided
by Bell squeezed resource, when it is subjected to two cascade protocols:
at first the squeezed Bell undergoes a swapping process; then the swapped
state is used as resource in a quantum teleportation protocol. The result is
compared with that provided by the other main quantum swapped resources.
The results are collected in a paper of next submission [11].

to understand how a resource behaves after undergoing a process of swapping
is very useful becouse error probability, in a transmission channel, scales with
the length of the channel. However it is possible to divide the channel into
segments of shorter length and applying a protocol of entanglement swapping
to restore the lost entanglement. This test is particularly useful to reconfirm
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the squeezed Bell states as one of the best resources suitable in quentum
Information, implemented within quantum theory quantum information.

As a consequence of the positive results of the two studies conducted to in-
vestigate the "quantum qualities" of the class of the squeezed Bell states, we have
proceeded (chapter 7) to the design of an experimental scheme of engineering, that
is capable to produce bimodal state, similar to squeezed Bell one. The analysis of
the ideal scheme has been expanded to the realistic case by introducing all pos-
sible contributions of losses, decoherence effects and detection for evaluating the
actual "experimental feasibility" of the sculptured resource and to provide, with
good approximation, the desired squeezed Bell state.The results are reported in a
paper of next submission [12].

In the chapter 8 it is reported the study of different types of non-Gaussian
states. In fact, the investigation of the technical limitations, that afflict the OPOs
sources, for the generation of Gaussian states with a high degree of entanglement,
has allowed us to understand that these "inconveniences", under appropriate con-
ditions, can become a resource for the generation of non-Gaussian states . These
considerations have led to the study of non-Gaussianity produced by fluctuations
of pump beam in a sub-threshold OPO. We have assumed to use this particular
non-Gaussian state as a resource for the teleportation of a coherent state. The
obtained fidelity, i.e. the probability of success of the teleportation, is greater
than that of a Gaussian resource. This result has allowed to discover a new type
of non-Gaussian resource, capable of realizing quantum teleportation with a high
probability of success.

Eventually, the conclusions of the entire Dissertation are drawn.



CHAPTER 1

PRELIMINARIES

In a outlook, that can be called positivistic, because it coincides with the attitude
at first adopted by logical positivists, we can divide any physical theory into the
following constituents: (a) the formalism, expressed in terms of primitive con-
cepts; (b) the rules of deduction, enabling us to derive theorems by manipulating
the symbols associated to the formalism; (¢) the dynamical law, imposing addi-
tional restrictions on values which can be taken by some primitive concepts; (d)
the correspondence rules, establishing the link between experience and theory [13].

In this chapter, we present some of these constituents in the context of the
Quantum Theory. They are preliminaries and allow us to introduce concepts as
continuous variables (see § 1.1.1), pure and mixed states (§ 1.1.2), Gaussian and
non-Gaussian states (in § 1.1.2.1 and 1.1.2.2), and notations that will be frequently
used throughout the Dissertation.

1.1 Observables and States

In this section we introduce the primitive quantum concepts of observable
and state, by establishing the link between the mathematical formalism and the
physical meaning [14].

1.1.1 Observables

An observable is rappresented by a self-adjoint operator on a Hilbert space
with spectral representation
0 = Z OnPna

where P, are orthogonal projectors of O,
Pn - Z |(1, On> <aa On‘ s

with o, eigenvalues of O and the parameter a labels the degenerate eigenvectors
belonging to the same eigenvalue of O. An observable has a complete orthogonal
set of eigenvectors. An observable is a theoretical construct, whose domain of
definition is a subset of a set of the real numbers, called spectrum of the observable,
and which is associated, by means of given correspondence rules, with one or more
measurable quantities.

The sums become integrals in the case of continuous spectra.
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So the observables of quantum systems can posses either a discrete or a con-
tinuous spectra. The quantum electromagnetic fields have both the continuous
and discrete degrees of freedom. For example, the photon number of the field
gives discrete outcomes whereas measurements of the field’s quadrature provide
continuous outcomes. A physical model that takes advantage of both the degrees
of freedom is called hybrid. In this dissertation we’ll refers mainly to the continuos
degrees of freedom of the quantum electromagnetic field.

1.1.2 The quantum state

The state of a physical system is the mathematical description of the knowl-
edge one has of it. It is represented by a self-adjoint, non-negative definite, and
of unit trace operator. This implies that any state operator, called also density
matriz p, may be diagonalized in terms of its eingenvalues and eigenvectors,

P=> pnln) (bl (11)

with 0 < p, < 1and > p, = 1. For a pure state, the statistical operator p is
idempotent, p? = p, so there is exactly one non zero eigenvalue of p, i. e. p, = 1,
py = 0 for n # n’. A pure state may be represented by wave vector |¢) in the
Hilbert space such as p = |¢) (¢|. A generic state, which is not pure, is called
mixed. Density matrix formalism encopasses the possibility of describing both
pure and mixed states. In this context it becomes very important to introduce
the parameter purity u,

w="Trlp?], (1.2)
such as .

— < <1 1.

v SHS (1.3)

with N dimension of the Hilbert space, i = 1 only for pure states. In the context
of the continuous variables 0 < p < 1. The purity assumes a relevant role in
quantum information protocols, indeed the fidelity, i.e. the rate of success of the
protocol, depends critically on the purity of the all involved states.

An description, alternative to operatorial one, of the state is given in terms
of the characteristic function x(A) = Tr[pD(X)], where D() is the displacement
operator, that for n bosons is defined by

D(A) = @) Di(M),
K1

where X is the column vector A = (A1, ..., A\)T, A\ € C, k= 1,...,n and Dy(\) =
ezﬁp{)\ka,Tc — Arax}, with the field mode operator a such that [ak, aﬂ = 0p-
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The characteristic function is also known as the moment-generating function,
since its derivatives in the origin of the complex plane generate symmetrically
ordered moments of the mode operators,

ap+q

() X

= Tr(pl(a}Va{]s], (1.4)
A=0

where, for the first non trivial moments we have [aTa] ¢ = %(aTa + aal), [aaTZ] g =
3(a%a + aa™ + alad?), [a'a®] , = 3(a®al + aa® + ala) [15].

The Fourier transform of the characteristic function is called Wigner distrib-
ution,

W(a) = /c n djn’\ exp{ATa + a AJv(A). (1.5)

1.1.2.1 Bipartite Gaussian State

A continuous-variable Gaussian bipartite state p,, is two-mode state, on the
Hilbert space ' H = H, ® Hp, that has a representation in terms of Gaussian
characteristic function or, equivalently, Gaussian Wigner function

exp{—1K'o 'K}
21/ Det|o]

where o is the covariance matrix and K = (X, Y,, X, Y,) is the vector of the
amplitude and phase field quadratures for mode a and b respectively. We have
considered null the first moments. In quantum optics, the quadrature operator
assumes the role of the dimensionless variables position ¢ and momentum p. It is
defined as follow:

W(K) =

~  ae” +ale®
9= NG
For ¢ = 0, XO = X called amplitude quadrature, is identical to adimensional

position operator g, whereas, for ¢ = 7/2 Xﬂ/g = Y called phase quadrature, is
identical to the adimensional momentum operator p. From commutation relation

[ak, al} = Oy, results that [X,Y] =i.

All the quantum features of a Gaussian state can be retrieved experimentally
by measuring the first and second order statistical momenta of the field quadra-
tures, i.e. the covariance matrix (CM) o

a:<7"§ g) (1.7)

with elements Ohk = % <{Kk, Kh}> — <Kk> <Kh>, where {Kk, Kh} = KkKh —I—Kth
is the anti-commutator; a and B are the covariance matrices associated to the

(1.6)
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reduced state of the subsystems a and b, while v describes the correlation between
the two subsystems. For this reason they are of great practical relevance, being
feasible to produce and control with linear optical elements. Moreover this state
appears naturally in every quantum system which can be described or approxi-
mated by a quadratic Bosonic Hamiltonian. Important examples include vacua,
coherent, squeezed, thermal, and squeezed-thermal states of the electromagnetic
field.

To study the correlation between the two modes of the system it is convenient,
at first, to transform the Gaussian state into some standard forms through local
symplectic operations, that is transformations preserving canonical commutation
relations of the quadratures. Any Gaussian state p. can be trasformed, through
symplectic transformations, into the standard form

n 0 ¢ 0
| 0 n 0 e
=1 . 0 m 0 . (1.8)

OCQO'ITL

The quantities n, m, ¢; and ¢y are determined by the four local symplectic invari-

ants I; = det(a) = n?, I, = det(8) = m?, I3 = det(y) = cic9, I = det(o) =

(nm — %) (nm — ¢3). Hereafter, whenever we refer to CM we will intend the

standard form covariance matrix (1.8) if not differently specified. As we men-

tioned above the purity of the state, and so also the condition Eq.(1.3), becomes

a essential constraint to establish the physicity of the state under investigation.
For a Gaussian state Eq. (1.2) reads

1

(o) = 1/Det o] (1.9)

From Eq. (1.3) we obtain the following constraint on the symplectic invariant Iy:

V>

. (1.10)

]

1.1.2.2 Non-Gaussian States

All states that do not have a Gaussian Wigner function are called non-Gaussian
nG states. As we will see in the following of Dissertation, non-Gaussianity is re-
vealing itself as a resource for continuous variable Quantum Information. For this
reason there needs a measure able to quantify the non-Gaussian character of a
quantum state.

Departures from Gaussian statistics may be noted by the observation of the
higher moments than the second one. It is possible, for example, to measure
the kurtosis, i. e. the fourth moment (X*) and to evaluate the kurtosys excess
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4
rection to make the kurtosis of the normal distribution equal to zero, so K is
zero for a Gaussian random variable, while for most (but not all) non-Gaussian
random variables it takes values different from zero. Moreover, random variables
with negative kurtosis are called sub-Gaussian variables, while random variables
with positive kurtosis are called super-Gaussian variables. Unfortunately, to use
kurtosis as nG measure presents some drawbacks. Indeed, although it is easy to
evaluate by a known probability density function, it becomes more complicated
to estimate it by a measured sample, becouse kurtosys may strongly depend on
only a few observations in the tails of the distribution. For this reason X is not
considered a robust measure of nG [16].

Different nG measures have been proposed to quantify the non-Gaussian char-
acter of a state, as the Hilbert-Schmidt distance Dyg and the quantum relative
entropy S. Although Dyg and S are based on different quantities, they share the
same basic idea: to quantify the nG of a state py in terms of its distinguishability
from a reference Gaussian state 7, where 7 is chosen in which way that it exhibits
the same covariance matrix and the same vector K of the non-Gaussian state
pne]16]. In the following we describe the main measures, introduced in leterature
[17] ,[16], for evaluating the non-Gaussianity of py:

nG using Hilbert-Schmidt distance [17]. Let

— 3. The "minus 3", at the end of this formula, is added as a cor-

D%{s [IONG> 7']
1 (pne)

duslpnal (1.11)

with D% [png, 7] the Hilbert distance between py and T,

t(png) + 1(7) = 26 [png; ]
2 )

D2 lonent] = 2T [(ow — 7] =

2
where 1 denotes the purity of the corresponding state and & [py, 7] is the overlap
between pyo and 7, K [pya, T] = TrpnaT]-

nG using quantum relative entropy. Let

dslonel = S(onellT) = Trlpng Inpyel — TripyeInt] = S(7) — S(one), (1.12)

where S(pya||T) = Trlpye(Inpye — In7] is the quantum relative entropy, i. e.
the quantum entropy relative to the Gaussian reference 7, and S(p) is the von
Neumann entropy of the state p, S(p) = —Trs[psLogpg].

Although the two measures dys[pye] and ds[pye] capture, in general, the
same qualitative non-Gaussian behavior [16], they induce different ordering on the
set of quantum states; that is, it is possible to obtain 0 ys[png1] > dms[pyee) and
dslpnei] < dslpnaal, or viceversa, with pyeqy and pyae two different non-Gaussian
states. This is probably due to the fact that different measures correspond to dif-
ferent operational meanings of non-Gaussianity: dyg takes in account the higher
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moments of the distribution, while dg is based upon the fact that Gaussian dis-
tributions maximize the von Neumann entropy at fixed covariance matrix.
However, the two measures are connected one to each other by means of the

inequality S(pgl|T) > Dis lone, 7 ie. dslone] > dusloneili (pye), that for
pure states becomes 0s[pya] = dus(pyeil-

1.2 Dynamical law

In this Section we review the suitable formalism [18], [19] to describe the
transmission of an arbitrary quantum state between regions spatially separated.

Any physical operation that reflects the time evolution of the state of a quan-
tum system can be regarded as a channel. In particular, the study of quantum
channels is useful to understand how quantum states are modified when subjected
to noisy quantum communication lines.

The evolution of an arbitrary two-mode state is an irreversible process, the
study of which requires the use of the open systems theory. In this context, we
can postulate an weak coupling g; of the considered system S with a reservoir
(bath) R made of large number of external modes. In particular we assume:

o Born approrimation - the coupling between system and environment is so
weak that the density matrix pp of the environment is negligibly influenced by
the interaction. This approximation allows to write the state pgp (t) of the global
system as pgp (t) & ps (t) @ pg;

o Markov approximation - the time development of the state of the system at
time ¢ only depends on the present state pg (t). This approximation is justified
if the time scale 7 over which pg (¢) varies appreciably under the influence of the
bath is large compared to the time scale 7 over which the bath forgets about its
past, 7 > TR.

o Secular approximation (rotating wave approximation)- the typical time scale
Ts of the intrinsic evolution of the system S is small compared to the relaxation
time 7.

These assumptions are typically satisfied for quantum optical systems and
allow to obtain the equation of the Kossakowski-Lindblad, that describes the time
evolution in noisy channel of the bipartite quantum state pg in the interaction
picture

ps=> % {(Nk 1) L [ag] + NoL [a;} — M;D|ay] — MyD [aﬂ } P )

k=1,2

where I';, denotes the damping rate of the k—mode, N, € R and M, € C
are, respectively, the effective photons number and the squeezing parameter of
the reservoir b. L£[O] is the Lindblad superatoroperator defined by L[O]p =
20p0" — O'Op — pOTO describing losses and linear, phase insensitive, amplifi-
cation processes and D [O] p = 20p0O — OOp — pOO takes in account phase de-
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pendent fluctuations. We have considered that each mode evolves independently
in its channel and there aren’t correlations among noises in different channels.

In the chapter 3 we describe the our experimental implementation [6], [8] of
a quantum channel. In such case, we had a thermal reservoir, i. e. M; = 0. So,
at the room temperature, i. e. N, ~ 0, the evolution of system .S is described by
the equation of motion

. Iy
=N L2 p, 1.13
P k;Z 9 [ k]P ( )

where Iy, is the damping rate of the trasmission channel of the k—mode (k = 1, 2).
From now on, we consider that the damping rates don’t depend of the channel,
'y =T (for k =1,2).

In the formalism of the Wigner function Eq.(1.5), the Eq. (1.13) becomes the
Fokker-Planck equation,

r 1
oW (Rt) = 3 (a;R+5agaR) W (R) (1.14)
r 1
-1 (a;my%) W(R).
where 9, = (Ox,, 0, Ox,,0y,) and Vi = OgOr = 0%, + 0%, + 0%, + 0%,.

1.3  Uncertainty priciple

Let A and B be two hermitian, not compatible operators, i.e such that their
commutator is not null. The condition [A, B] # 0 prevents the two operators have
simultaneous eigenvectors. However, we can estimate how much the eigenvector
of A is far from that of B. When [¢)) is eigenvector of A, the variance is zero,
ie. (| A% ) = (Y| AJ¥)?. So the variance is a measure of how close we are to
an eigenvector. We can define the following operators: a = AA = A — (A) and
b= AB = B — (B). They allow us to neglect the mean value without loss of
generality’,

(AJ)y = 0
(A0 = (1) = (1) =7,
with J = A, B and j = a,b. We obtain

VU A2 [y) (] B2 [¢)
= /(Ay |Ay) (By | BY)
> [(Ay |By)l|.

AAAB

'the variances don’t change.



1.3. UNCERTAINTY PRICIPLE 8

In the last line, we have invoked the Cauchy-Schwarz inequality, in view of the
which we obtain

AAAB = [(p[ AB )]

Now, we consider the following operators O; = 3 [a,b] and O, = 5 {a, b}, where the
braces {...} refer to the anti-commutator. They are antihermitian and hermitian,
respectively,

1 1 1 1
0, = 5 [a, b] 2(ba ab) 2(ab) 2(ba) 01,
0, = % {a,b} = OI,

so it is clear that the eigenvalue of O;+ 0Oy = ab is the sums of an pure immaginary
number and pure real one. Since the magnitude of a complex number is greater
than or equal to the magnitude of its imaginary part, we can write

((A4)%) ((AB)?) =

1 , 1
—Z<[A>B]> +Z<{a>b}>

with ({a,b}) > 0. From which we obtain the following inequality

((AA?) ((AB)*) = (A, B])®, (1.15)

RN

that is the wuncertainty Heisenberg’s principle. Physically realizable quantum
states must comply with this inequality. It then provides information on the
physicality of the analyzed quantum state.

We note that the inequality Eq.(1.15) was obtained for pure states [20],[21].
It has been demonstrated to be valid also for mixed states [22]. However, in the
case of pure states it is able to provide useful informations about the nature of
the state under consideration. For example it can be shown that the state that
minimizes the uncertainty, i. e. the state in which the inequality Eq. (1.15) is
verified with the sign of equality, has Gaussian distribution. For mixed states,
however, the inequality is, in general, strongly violated, so that it is not possible
to extract useful information on the distribution. Moreover, in the mixed state
case, also the purity Eq.(1.3) contributes to the physicality.

We have seen that the uncertainty principle is a direct consequence of the com-
mutation relations for non-compatible observables. As a consequence, the inequal-
ity (1.15), applied to the quadrature operators, provides ((AX)?) ((AY)?) > 1.

Uncertainty relations among canonical operators impose a constraint on the
covariance matrix, in according to which o represents a physical state iff

a+%(220, (1.16)
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0 1

-1 0/
Moreover the Heisemberg uncertainty (1.16) can be written in terms of the four
symplectic invariants

where 2 = w & w is the two-mode symplectic matrix, with w =

1
I+ 1+ 21 < 4L+ . (1.17)

The inequalities (1.16),( 1.17) ensure that o is a bona fidle CM, i. e. it
describes a physical state.

However, every covariance matrix is, by definition, real symmetric positive
definite. These information are stored in the constraints (1.16), (1.3), but not in
the (1.17). Therefore, the use of (1.17) requires more caution. It alone does not
ensure the physicality. It must be accompanied by the condition of positivity of
the density matrix, expressed, for example, by (1.3).

1.3.1 Squeezed states

A state is squeezed in respect to the observable A if ((AA)?) < 1 ([A, B])*.
So the squeezing is the reduction of quantum fluctuations in one observable below
the standard quantum limit (vacuum fluctuation) at the expense of an increased
uncertainty of the conjugate variable.

Squeezed states are an example of advantageous interchange between exper-
iment and theory in quantum optics. To be able to discuss the characteristics it
is not possible don’t consider the process that generates them (described briefly
in the following). The squeezed states are produced through a process of Optical
Parametric Generation OPG, in which the pump beam (typically a laser beam,
which emits radiation in the coherent state |3)), at the frequency w,,impinges
on a not center-symmetric crystal. At the output of the non linear crystal two
signals a and b are produced, such that the pump energy is distributed between
two output,

Wp = Wq + W,

and the total momentum is preserved. When the outputs a and b are degenerate
in frequency (degenerate OPG), and with the same wave vectors, the interacting
Hamiltonian reads

Hine = ih|sB] [ealbl — e7*ab], (1.18)

where we have considered the average on the input coherent state |3), ¢ = arg(f)+
arg(c) and ¢ is the coupling parameter.

In according to Hamiltonian H;,; Eq. (1.18) the pure two-mode squeezed
vacuum state reads

1), = e Minet = eloBlle??aldl == %atlt 1) (1.19)
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We note that putting |¢f] et = re® = ¢, with € = re'® arbitrary complex
number, we obtain the expression of |¢)), Eq. (1.19), in terms of the squeezing
operator S(§),

[¥)ap = S(€) 10015, (1.20)

with S(§) = e3(€"ab—€a) \We note the module r of ¢ is linked to the intensity of
the pump laser beam and the phase ¢ is manipulable through delay lines, so the
parameter of squeezing £ is completely under experimental control.

Tipically modes a and b generated by an OPG are weak, for this reason the
active medium (nonlinear crystal) is put often into an optical cavity. Under appro-
priate conditions the parametric interaction can overcome the effects of possible
losses (i.e. absorption, diffraction...). In this case the system undergoes an oscil-
lation and intense output beams are obtained. Such a device is called an Optical
Parametric Oscillator (OPO). The modes at the output of the OPO are ther-
mal modes, but their linear combination is squeezed. We express the two-mode
squeezing operator Sy, (—r) in terms of single-mode squeezing operators S, (),
Sa(—r). These are obtained by introducing the annichilation operators ¢ and d
made by the superpositions

s a4t b
\/5 )
- —a+b
d pu—
V2
We have
Sap (—=7) |00 >ap= S (=7) Sq (r) [00 >cq, (1.21)

where S, (&) = exp [—%fl%” + %f*l;z] , (k = ¢,d) is the single-mode squeezing op-
erator. Consequently, the characteristic function that describes the state 1) >4
results

Yot (B3 Ba) = Tt [ peaDe () Do)

where p.; = [0 >cq ca< ¥|. We compute the variance of the modes ¢ and d by the
characteristic function ( moment-generating function). Indeed, from the relation
Eq. (1.4) we obtain the following variances

A’X, = A%, =

62r
— 1.22
—. (1.22)

—2r

2

®

A%X, = A?Y.=

(1.23)

These relationships show that the squeezing operator acts attenuating the quan-
tum noise in one direction and amplifying it in the orthogonal direction.



CHAPTER 2

STATES AS RESOURCES

In this chapter we describe the properties that allow us to evaluate the quality of a
quantum resource. At first, we briefly make a distinction between classical states
and non-classical ones (§ 2.1). Then, since the protocols of quantum informa-
tion and communication exploit the correlations between subsystems, we analyze
the main types of correlations that may arise between subsystems of a bipartite
System:

e the mutual information, which takes into account correlations of both clas-
sical and quantum nature (§ 2.2);

e the quantum discord, by which we can evaluate all the genuinely quantum
correlations (§ 2.3);

e The entanglement, that is a particular type of genuinely quantum correlation

(§ 2.4).

The discussion on the entanglement is very long and complex and some issues
are still under discussion in the scientific community. To date, it is still a very hot
topic in the literature. In this chapter we will try to limit the description only
to the special aspects useful for understanding of the topics discussed during the
Dissertation. In particular, we describe some properties, of which should enjoy a
good entanglement measure and some measures very considered in the literature.
These concepts we will help us understand the bound to which Gaussian resources
can be considered extremal compared to non-Gaussian ones (§ 3.1). Moreover the
entanglement criteria (§ 2.4.1) are some of the quantum markers, used in (§ 3.2), to
determine the advantages of the use of a quantum resource compared to classical
one.

We describe also the entanglement swapping protocol (§ 2.5), which allows us
to establish entanglement between two beams that share not any common past.
We will analyze the consequences of the application of this protocol in chapter 6.

The concept of entanglement inevitably deals to non locality (§ 2.6.2). This
circumstance requires a brief discussion on different forms of non-locality in the
quantum theory. Moreover, it allows us to introduce a particular example of Bell’s
inequality (§ 2.7): the inequality CHSH (§ 2.7.1), used in Chapters 4 and 6 to
investigate some quantum properties of some quantum resources.

All the features listed so far can be helpful in identifying resources actually
useful quantum teleportation. It constitutes one of the central cores of the entire

11
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Dissertation. For this reason, we conclude this chapter by describing just the
continuous variables teleportation protocol (§ 2.8).

2.1 Non classicality

To express the density operator in terms of c-number functions is very useful,
because it makes possible to give a representation in phase space of all operators.
This approach allows a direct comparison between the classical and quantum
physics.

In classical statistical physics we evaluate the averages of functions O(q, p)
that depending from the phase space variables g and p with the help of the classical
probability distribution W, (g, p) through the relation

(Oalq.p)) = /_oo dq /_oo dpOe(q, p)Walq, p)- (2.1)

The role of the probability distribution of the classical phase space is taken from
the quasi-probability distributions, which allow to calculate the average of an
operator O in the following way

<(3()?,f/)> — /Oo dX /Oo dYO(X,Y)W(X,Y), (2.2)

where X and Y are the quadrature operators Eq. (1.6) and O(X,Y) is the c-
number representation of the operator O. Eq. (2.2) is similar to Eq. (2.1). In
general, it isn’t trivial to find this representation. Indeed there exist many classical
forms of the same operator depending on we choose to order the noncommuting
operators X and Y before we replace them by c-numbers. For the expectation
values of simmetrically ordered operators in X and Y the distribution function
W(X,Y) is precisely the Wigner function Eq. (1.5). The Wigner function allows
to describe physical systems in the phase-space without referring to the density
matrix. Quantum dynamics is described by the evolution of the phace-space quasi-
distribution. The main difference between W, (q,p) and the Wigner function
W(X,Y) is that the Wigner function is only a quasi-distribution, i. e. it is
bounded and normalized just like a distribution function, but it may be at negative
values. All of the above explains the statistical nature of operator p describing
the quantum state.

This border between classical and quantum states is of high importance for
the cv quantum information processing since it turns out that resource states that
belong to the ”classical” regime are incapable of executing quantum protocols
beating the performance of classical protocols [[23]].

It should establish a method to distinguish between classical and quantum
correlations.
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2.2  Mutual Information

Both the classical and quantum correlations can give an effective contribution
to the information theory.

The mutual information quantifies the amount of information that one random
variable contains about another random variable. In classical regime, let X', Y
two random variables associated to the probability distributions py—, and py—,
respectively, where x and y are the possible values that X and )’ can assume, the
mutual information is given by [24]

J(X :Y) = H(X) - H(X|Y), (2.3)

where H(X) = — > px—sLogpx—, is the classical Shannon entropy and H(X|Y),
i.e. the entropy of X conditional on knowing ) is given by

HX|Y) = =) py= HX[Y =y)

Yy
= - Z Dy=y Z Px|y=y log pxjy—y
Yy €T

By Eq. (2.3) we deduce that the mutual information is the reduction in the
uncertainty of one random variable due to the knowledge of the other.

Using the Bayes rule
Ply—y = Px.y=y
Dy=y
it is shown that H(X|Y) = H(X,)) — H(Y), where H(X,)) is joint entropy of
the pair of random variables (X', )) with a joint distribution p(z,y), so the Eq.

(2.3) can be written as
I(X:Y)=HX)+ HY)—-HX,)). (2.4)

Now, we translate the concept of mutual information in the quantum context. We
consider a quantum physical system S composed by the two subsystems S; and
Ss.

The mutual information Z is obtained replacing the classical probability dis-
tributions with the density matrices pg,, ps,, fs,.s,> and the Shannon entropy with
the von Neumann entropy

H(Ps) =-Trs [psLogpS].

In this way, we obtain
I(Sl . 82) = H(Sl) + H(Sg) - H(Sl,SQ), (25)

where H(S;) + H(Sy) is the uncertainty of the two subsystems, each treated
separately, and H(S;,Ss) is the uncertainty of the joint system.
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We have generalized the concept of mutual information Z to quantum systems.
However, the generalization of the expression J Eq. (2.3) is not as automatic,
since the conditional entropy H(S;|S2) requires to specify the state of S; given the
state of Ss, i. e. conditional information depends on the observer finding out about
one of the subsystems. This statement is ambiguous in quantum theory until the
to—be—measured observables on &; are selected so that the conditional state of
Ss can be defined. It necessarily involves the conditional state of a subsystem
after a measurement performed on the other one. Then the conditional entropy
is non so trivial in the quantum context. Indeed, in general, in order to find
out H(S8;|S2) one must choose a set of projection operators H? and define the
conditional density matrix given by the outcome corresponding to Hf2 through

pSl\Hf2 = TTSZH}SZ ps,s,- This leads to the following quantum generalization of J:

T(S1:8) ey = H(S) = H(SIH{IL?Y), (2.6)

that represents the information gained about the system &) as a result of the
measurement {Hfz}.

2.3  Quantum Discord

As we see in the previous section, the two classically identical expressions for
the mutual information Eqgs (2.3),(2.4) are profoundly different in the quantum
case.

The amount of genuinely quantum correlations, called Quantum Discord D,
is the difference D,

D = I(Sl . 82) - j(Sl . 82) (27)

(2}
It depends both on pg s, and on the projectors {Hfz}, i.e. also by the choice of
which observable is measured on Ss. In classical physics all observables commute,
so there is no such dependence. Thus, non-commutation of observables in quantum
theory is a source of information. The obvious use for the discord is to employ
it as a measure of how non-classical the underlying correlation of two quantum
systems is. In particular, when there exists a set of states in one of the two systems
in which the discord disappears, the state represented by pg s, admits a classical
interpretation of probabilities in that special basis. Moreover, unless the discord
disappears for trivial reasons (which would happen in the absence of correlation,
i.e., when pg s, =ps, Ps,), the basis which minimizes the discord can be regarded
as “the most classical”. For D = 0 the states of such preferred basis and their
corresponding eigenvalues can be treated as effectively classical [25].

2.4 Entanglement

The pillar correlation of quantum mechanics is undoubtedly the entanglement.
It was the first genuinely quantum correlation to be theorized [1], [2]. Its discov-
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ery involved an aglow debate about the nature of the quantum theory. To date,
paraphrasing Horodechi [26], we can say that it is still difficult to understand fully
what entanglement is: we know its manifestations like violation of Bell’s inequali-
ties, teleportation or quantum computation and its mathematical description, but
it is still more difficult to understand the phenomenon. Nevertheless, to date,
entanglement is the primary tool of the main protocols in Quantum Information
theory. For this reason it is necessary to establish unequivocally a method for
quantifying the content of entanglement in a state.

From the mathematical definition we know that, given the bipartite density
matrix p,p acting on a composite Hilbert space Hap = Ha ® Hp, the state pyp
is called separable if it can be represented as a convex sum of tensor products of
single states,

pap separable = pip = > proli @ pl, (2.8)
k

with pr, >0, >, pp =1, p% € Ha and p% € Hp are density operators describing
the Alice’s and Bob’s subsystems. Conversely, the state is entangled.

The first papers about the entanglement were based on the pure states. How
to quantify the entanglement of such states is also well established unequivocally
[27]. However, in practice, the experimentally producted states are mixed: the
[28] problem to quantify the entanglement becomes complicated for such states.

In general there exist different possible subdivisions:

1. finite/asymptotic regime. According to finite regime, we quantify the
entanglement of a single system. In the second case (asymptotic) we are
interested in entanglement of a sequence of systems, or quantum source. A
quantum source is a family of compatible states p,,, i.e. such as T'ry, p,, =
Pn_1- The simplest example of source is memoryless, for which p,, = p®". In
this case all the subsequently emitted systems are completely uncorrelated,
and the state of each system is the same. Given the entanglement measure
FE in finite regime, we obtain its density E> for the source @ = {p,} :

i Z(Pn)

EX(Q) =

n—o00 n

2. operational/abstract approach. The operational approach is based on
the better achievement of some operational task. For example a faithful
teleportation is possible using the state |¢+> = (1/\/5) (]00) + |11)) as re-
source. A mixed state cannot achieve the same result. However, if we have
many copies of the mixed state p, say n, it is possible, by use of local oper-
ation and classical communication (LOCC), to transform them in a smaller
number, say m, of states W +>. The number
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is the entanglement distillation. It is based on an infinite set of copies of
the analysed state and assumes an optimization over all possible LOCC
protocols. Through this measure we quantify the entanglement with respect
to rate of teleportation. There are entangled states, for which it is not
possible to obtain Ep. This type of entanglement is called entanglement
bound (see Appendix A). The second approach is based on the identification
of the natural properties that a good entanglement measure must comply.
For example the entanglement between two systems cannot increase without
quantum interaction.

Over the years, many entanglement measures have been proposed, but they
are often incommensurate among them. In fact, different entanglement measures
give different ordering' in the set of all states, i.e. E(p) > E(o) doesn’t imply
E'(p) > E'(0), with E different entanglement measure by E’ and p, o two mixed
states.

In the general confusion of the different measures ( arising by the different ap-
proaches), also only to establish the proprierties that an appropriate entanglement
measurement E/(p) should satisfy is an open problem [28], [29].

Many axioms have been suggested in the literature to clarify the quantification
of the entanglement, i.e. the question whether a given density operator is separable
or inseparable.

In the following we report some of the basic axioms that any potential measure
E (p) should satisfy

e Monotonicity. For any proper? LOCC A and any state, it is p E(A (p)) <
E(p).

e Monotonicity implies invariance under reversible operations.

1One can interpret this lack of single ordering as follows: there are many different types of
entanglement (in particular, we have seen that the entanglement bound is different from the
entanglement distillation), so it is possible that in one state we have more entanglement of one
type, while in the other state there is more entanglement of some other type.

2In according to [26] all possible physical operations can be divided into two main calsses:

1. state-to-ensamble operations;

2. ensemble-to-state operations (mixing);

A special class of the operation 1. is the state-to-state operation, called proper operartion.
It is described by trace preserving completely positiv map. The operations 2 are made on an
ensemble, ie a set of states {p,;} with ascribed probabilities {p;}, taking the convex combination

{phpz} = Pout = szpl

The action of mixing corresponds to erasure the information about the member of ensemble [29)].
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Let an LOCC operation produce ensemble {p;, p?“*} out of initial state p;,,.
In this circumstance, the montonicity implies

ZM’E (n") < E(pi)- (2.9)

We obtain a stronger condition if we require also non increasing under mix-
ing. In this case, to the condition (2.9) is added the condition of convexity.

e Comvesity. E(Y,pipi) < X pikE (p).
We note that entropy is a concave function of its argument: mixing of pure

states increases their von Neumnn entropy, but it decreases their entangle-
ment.

e Discrimince. E(p) = 0 if and only if p is separable.

This condition is very strong. There exist many types of entanglement. It
is possible that an entanglement measure vanishes for some entangled state
becouse the state does not contain the type of entanglement quantified by
that particular measure; for example any measure quantifying the distillable
entanglement does not respect this axiom, due to existence of bound entan-
gled states. For this reason, sometimes it is required the weaker property:

Weak discrimince. If p is separable then E(p) = 0.
The quantities that satisfy these postulates are called entanglement monotones,

in according to which the quantum entanglement cannot be created locally.

o Asymptotic continuity. Let p,, and o, sequences of states acting on m
copies of the composite Hilbert space, (Hy @ Hx)®™

| B . E(p) — B(owm)
16 Yim o = omlly =0 then lim =5

Two neighbouring states should be characterized by similar entanglement.

=0.

o Additivity. E(p ® o) = E(p) + E(o) for any p, 0 € Myk.

This property is extremely difficult to prove for two arbitrary density ma-
trices. However one can require the easier subadditivity

Subadditivity. E(p ® o) < E(p) + E(0),
or superadditivity,

Superadditivity. E(p ® o) > E(p) + E(o)
The additivity requires both of them.

e Normalization. For the maximally entangle state |¢_>, FisE (}¢_> <¢_ }) =
1;
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o Computability. There exists an efficient method to compute F for any p.

These we have listed are just some of the basic axioms reported in the liter-
ature. The complete list is very demanding, so it is not surprising that instead
of one ideal measure of entanglement fulfilling all required properties, there is a
plethora of measures, each of them satisfying some axioms only [28].

In the following we describe two different exemples of measures. At first, we
consider an operational measure. This type of measure takes in account the en-
tanglement that may also be quantified in an abstract manner by considering the
minimal resources required to generate a given state or a given maximal entan-
glement. It is based on an infinite set of copies of the analysed state and assume
an optimization over all possible LOCC protocols. A type of operational measure
is the distillable entanglement [29].

Distillable entanglement is a measure of a fundamental importance, that esti-
mates how much entanglement one may extract out of a state p and use,

n—oo M,

where m is the maximal number of singlets ‘¢*> obtained out of n copies of p by
an optimal LOCC conversion protocol. It is rather difficult to compute.

Moreover it is not likely to be convex, although it satisfies the weaker condition
of the pure state convezity.

At second, we introduce an algebraic measure, the Negativity.

Negativity. If a partial transpose of a state p is not positive then p is entangled.
The partial transpose® preserves the trace, so if p™ > 0 then ||p”|| o =Tr[p™] =
1. Hence we can use the trace norm to characterize the degree, to which the
positivity of p’ is violated. Negativity [30],

N(p) = HpTAHTr -1

is easy to compute, convex (partial transpose is linear and the trace norm is
convex) and monotone [30]. It is not additive, but this drawback may be cured by
defining the logaritmic negativity*. However, the major deficiency of the negativity
is its failure to satisfy the Discrimince. Moreover, it isn’t super additive.

In the Chapter 3 we will see that the existence of these two different measures
is reason of debate about the extremality of the Gaussian states.

2.4.1 Entanglement criteria

We have seen that it is not possible to define a single, universal entanglement
measure for mixed states, i.e. to quantify uniquely the amount of entanglement of

3partial transpose indicates the transposition of the density matrix with respect to only one
of the two subspaces of Hilbert.
4The logaritmic negativity is additive but it isn’t convex.
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a mixed quantum state. However we can use some criteria to evaluate the quality
of the entanglement in the quantum systems.

In the following we report a brief description of two different criteria: the
Peres-Horodechy-Simon (PHS) and the Duan criterion. They, in general, repre-
sent conditions only necessary (PHS) or only sufficient (DUAN) to entanglement.
However, both these criteria, in some specific cases, become necessary and suffi-
cient conditions to ascertain the presence of entanglement in a given state.

Let p4p the density matrix of the bipartite system that we want to analyze,

pap =Y peplh ® pl, (2.10)
k

with pr, > 0, S>.pe = 1, pf € Ha and pf, € Hp. For establishing if p,p is
entangled or not, we can use one of the following two criteria:

e Peres Horodechi-Simon PHS Criterion.

If (pJ)T # 0, J = A, B, the state is entangled.

With the symbol T" we have indicated the trasposition operation, that is ap-
plied to any one of the two subsystems. As it makes use of the partial transposi-
tion operation, the criterion is sometime referred to as the ppt criterion (positivity
under partial transposition).

It is a necessary and sufficient condition for entanglement in the 2 x2 and 2 x 3
dimensional cases [31]. and for Gaussian states [32], but ceases to be a sufficient
condition in higher dimensions [31].

By definition, it seems that to use this test on the state p, we must perform
the partial transposition of the density matrix p, diagonalize, and check if all
eigenvalues are non-negative. In fact if this circumstance is verified, it means that
the two subsystems are described by two indipendent density matrices p, and pg,
so it is separable. However, with increasing Hilbert space dimension, the partial
transposition operation will be expected to become more and more difficult to
implement it in practice. Fortunately, it was shown by Simon [32] that in the
limit of infinite dimension, corresponding to continuous variable bipartite states,
the criterion translates into a test that is extremely easy to implement. The key
concept of the work [32] is the observation that the partial transpose operation,
which acts on p and gives its transpose p?, in the continuous case,becomes mirror
reflection in the Wigner phase space,

p—pl = W(X,Y)— WX, -Y).

Then the criterion reads as follow:
if p is separable, then its Wigner distribution W necessarily goes over into a
Wigner distribution W), under the phace mirror reflection A, A = diag(1,1,1,—1)
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for a bipartite system [32]. Roughly speaking, local time reversal, defined by A,
is a symmetry in the subspace of separable states.

The criterion can be expressed as a restriction on the second moments. Indeed,
when the Wigner distribution undergoes mirror reflection, under partial transpose,
it follows that the variance changes from o to g, so 0 — 0 = Ao A. For this reason,
the condition, in according to which W, has to be a Wigner distribution for
separable states, translates into the following constraint on the second moments:

5+%Qz@ 5 = AoA,

or equivalently .
0+%§2Q Q= AQA,

as a necessary condition for separability. This restriction is generally stronger
than the usual uncertainty principle Eq.(1.16).

e Duan Criterion.

The Duan criterion is based on the idea that a maximally entangled continuous
variable state can be expressed as a co-eigenstate of a pair of EPR type operators,
i. e. of a couple of operators that represent correlated § observables®, such that
their total variance reduces to zero for maximally entangled states. The operators
Xy = X,— Xpand Y, =Y, + Y}, associated to the modes introduced in § (1.20)
can be considered examples of cv EPR type operators. However the variances
A2X, = A?Y, = 6;2T tend to zero only in the limit of infinite energy, so, in this
context, maximally entangled continuous variable states are not physical.

Nevertheless the variances will rapidly tend to zero by increasing the degree of
squeezing. It is possible to find [33] that for separable states, there exists a lower
bound to the total variance. This limit is obtained introducing the following pair
of EPR-like conjugate operators defined by

1 . 1
i=la|X; —=Xoand v = |a| Y1 + -Y2 , (2.11)
a a

with @ an arbitrary non—zero real number and the subscript 1 (2) refers to the
entangled subsystems. By calculating the total variance of such a pair of operators
on p, a separable state of the form of Eq.(2.8), it can be proven [33] that

(A0, +((80)), 2 >+ 5 (212)

setting a lower bound for separable states. Contrarily to the PHS criterion, in-
equality (2.12) has been formulated as a necessary condition for separability so
that it is a sufficient condition for entanglement of a generic cv state.

>The physical means of this concept will be explained in § 2.6.1.
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It can become (under some condition, see §3.2) a necessary and sufficient for
characterizing the entanglement of cv Gaussian states.

In Appendix A we report some considerations about the different physical
nature of the two introduced criteria.

2.5 Entanglement Swapping

The entanglement swapping protocol establishes entanglement between two
beams that share not any common past, i. e. through this protocol it is possible
to transfer the entanglement from two couples of entangled modes to one couple
of unentangled modes. To date, thanks to its ability to transfer entanglement, the
swapping is a standard tool in Quantum Communication. It, e.g., plays a rele-
vant role in the quantum repeaters implementation. Indeed the error probability
scales with the length of the channel. The swapping protocol allows to distribute
entanglement between the nodes of shorter segments, wherein the channel can be
divided. Naturally, the degree of success of the entanglement swapping process
depends on the original couples of entangled states.

In the following we decribe the entanglement swapping using the formalism
of the characteristic function.

A schematic picture of the cv such protocol is depicted in Fig. 2.1.

The initial state p, = pih @ p&, is a biseparable four-mode state, composed
by two indipendent couples of entanlged states: A, the two-mode entangled input
state pih,and B, the two-mode entangled resource pZ; the corresponding overall
characteristic function reads

4
Xolau; ao; sy o) = T"’[HDJ(%')PO]
j=1

= Xpp(a1;az) x34(as; aq), (2.13)

where T'r denotes the trace operation, D;(«;) denotes the displacement operator
of mode j (j =1,...,4), x1, is the characteristic function of the input state pi},
and 4, is the characteristic function of the resource pZ,.

By introducing the usual quadrature operators X; = %(aj + a}) and Y; =

i2 (a} — a;), and the corresponding phase space variables X; = %(O(j + aj) and
= ﬁ(a; —a;), such a state is described, in the phase space (X;,Y;),i =1,...4,

the characteristic function x, (X1, Y1; Xo, Yo; X3, Ya; X4, Yi):

g Sy

Xo (X1, Y1; Xo, Ya; X3, Va5 Xy, Vi) = xq0( X1, Y13 Xo, Y2) X34(X3, Y55 X4, YY), (2.14)

First step: Bell measurement. The Bell measurement is made by mixing the
beams 2 and 3 in a beam splitter and performing a homodyne measurement on
the outgoing beams:
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1. Entangler beam splitter. The mode 2 of the input two-mode entangled state
is mixed to mode 3 of the entangled resource at a balanced beam splitter.
The mixing makes entangled the modes at the output. Therefore the modes
1 and 4 become entangled.

2. Homodyne measurement. It is performed on the state at the output of the
beam splitter. The effects of the inefficiencies of the photodetectors and of
the photon losses are simulated by two additional fictitious beam splitters
34], with transmissivity T7 (reflectivity R} = 1 —1T7), j = 2,3, placed in
front of the detectors. We denote by X and Y the results of the homo-
dyne measurements of the first quadrature of the mode 3 and of the second
quadrature of the mode 2, respectively. The realistic Bell measurement is de-
scribed in full details, by using the formalism of the characteristic function,
in Ref. [5]. Here we give the final expression of the characteristic function
Xem(X1, Y1; Xy, Ys) associated with the whole measurement process:

PYX,Y B
XBm(X17Y1;X4,Y;1) %/dﬁdvelﬁy iXv
15§ T3U) (T2§ Tsv )
X X,Y;—’— _7__;X,Y
X12 ( 1 1 \/5 \/5 X34 \/5 \/§ 4 4
2 2
o l-%g? B %”2} ’ (2.15)

where the function P()? , }7) is the distribution of the measurement outcomes X
and Y, i.e.

v v 1 ig};fi)?v 7R%£27£§U2
P(X,Y) = W dgdve e 4 4

><X12<0,0,\/§,\/§>X34(\/§, \/§,0,0>. (2.16)

Third step: Propagation in a lossy channel. After the realistic Bell measurement,
the result is transmitted to the locations of modes 1 and 4 through classical
channels. It is assumed that both the input state and the resource are produced
close to the Charlie’s location (Bell measurement), and far from Alice’s and Bob’s
locations (remote users). Therefore, it is supposed that the modes 2 and 3 are
not affected by the decoherence due to propagation; on the contrary, the modes
1 and 4 propagate through noisy channels, e.g. optical fibers, towards Alice’s
and Bob’s locations, respectively. The dynamics of a multimode system subject
to decoherence is described, in the interaction picture, by the following master
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equation for the density operator p [35], [36]:

T,

ow = Y 5 {nmiLlallo+ (s + 1) Llailp} | (2.17)
i=1,4

where the Lindblad superoperators are defined as L[O]p = 20p0T—0T0p—pO' O,
T, is the mode damping rate, and 7, ; is the number of thermal photons of mode
. Because of the effect of decoherence due to propagation in the noisy channels,
the characteristic function (2.15) rewrites:

Xt(Xla}/l;Xlla}/zl) -
XBm(e_%TltXla e_%Tlt}/i; 6_%T4tX4a 6_%‘r4t}/4)

« 6_% 212174(1—{7@)(%-ﬁ-nth,i)(xiz‘*‘yf). (2.18)

Being related to the technical specifics of the experimental apparatus, e.g. the
efficiency of the photodetectors, the characteristics as the length of the chan-
nels (fibers), the temperature of the environment, we will assume to possess full
knowledge on the following quantities: 7} (equivalently R;, j =2,3), T; and ny,;
(¢ =1,4). Therefore, we will consider Tj, T; and ny,; fixed to certain values. In
the last step of the protocol, two displacements A; and A4 are performed at Alice’s
and Bob’s locations; a displacement \; = —g;(X — iY") is performed on mode 1,
and a displacement \y = g4()z +Z§7) is performed on mode 4. The real parameters
g1 and g4 are the gain factors of the displacement transformations [37]. After such
transformations, the characteristic function writes:

Xp(X1, Y13 Xy, Yy) = o~ V2E(91Y1-94Ya)~iv/2p(91 X1 +94 Xa)
xXt(Xla}/l;X4>}/4)- (219)

At these locations, according to the result of the Bell measurement, unitary
displacements are performed on mode 1 of the input state and on mode 4 of the
resource. The resulting two-mode swapped (entangled) state of modes 1 and 4 is
the output state of the protocol.

Last step: the swapped entangled state. Finally, the output characteris-
tic function x,,.(X1, Y1; X4, Ys) describing the output state of the entanglement
swapping protocol, it is obtained taking the average of all the possible outcomes
X and Y of the Bell measurements. It is given by:

Y X V) = [ PR (6 i XY, (220)

out

where 7, = Y;t. The above integral yields the final expression (2.21) for the



2.6. EPR CORRELATION, ENTANGLEMENT AND BELL’S INEQUALITY?24

characteristic function associated with the swapped resource.

XS (X1 Y X, Ya) = xao(e Fan, e Ty Talgran + 9awa), Ts(—gapy + gapa))

Xaa (o911 + gaa), —Ta(=gip1 + gapa)s e % wa e 2 pa)

67% (1*6771)(%+nth,1)(ff%+l’§)*% (1*6774)(%+nth,4)($i+7’42;) (2'21)

BB (g1 +9424)?— T2 (—gupn +gapa)?
5= (91214944 > (—91P1+94p4 , (222)

®

where 7; denotes the dimensionless time 7, = 1;t.
In the instance of ideal protocol (R; = 0,7; = 1,7; = 0) and for ¢; = 0,
g4 = 1, Eq. (2.21) reduces to:

X(Swapp) (X17 Yh X47 }/;l) = X12<X17 }/17 X47 }/zl)X34 <X47 _}/;17 X47 }/;1) . (223)

out

This last formula offers a clear interpretation of the task of the swapping protocol.
For instance, assuming the entangled resource to be a twin beam with squeezing
parameter 734, in the limit of large rs4 the function s, (X4, —Yi; X4, Yy) tends to
one; correspondingly, the output characteristic function x,,, coincides with x;,,
with the complete swapping of mode 2 with the mode 4.

2.6 EPR correlation, entanglement and Bell’s inequality

The phenomenon of entanglement was noted from the seminal work of Ein-
stein, Podolsky and Rosen EPR [1]. As is known, the aim of the authors was to
demonstrate the incompatibility between the local causality and completeness of
quantum mechanics. They left the following premise [38]:

necessary condition for completeness. Fuvery element of the physical re-
ality must have a counterpart in the physical theory;

where the physical reality satisfies the following

sufficient condition for reality. If, without in any way disturbing a system,
we can predict with certainty (i. e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding to
this physical quantity.

Then they argumented that if a system is in an eigenstate of an operator A,
with eigenvalue a, by the criterion for the reality, there must be an element of
physical reality corresponding to the physical quantity A. On the other hand, if
the state of the system is a superposition of eigenstates of A, it is no possible to
assign an element of reality to the physical quantity A. From this EPR deduced
that either (1) the quantum-mechanical description of reality given by the wave
function is not complete or (2) when the operators corresponding to two physical
quantities do not commute the two quantities cannot have simultaneus reality.

Then they imagined an ideal experiment involving a bipartite system S =
S4+ Sp and two non-commutating operators O; and O,, whose bases eigenstates



2.6. EPR CORRELATION, ENTANGLEMENT AND BELL’S INEQUALITY25

of the subsystem Sy are indicated as {|¢,,) ,} and {|¢,) ,} respectively. Depending
on the quantity that is to be measured, 51 or 52, it is preferable to consider one
or the other following expansion of the overall bipartite state (that, in hindsight,
we call entangled)

‘¢> = ch|¢n>A®‘un>B>
) = ZC;L|¢S>A®|U5>B’

where |u,) 5 and |v,) 5 denote some states of Sp. They deduced that as a conse-
quence of two different measurements performed upon the first system, the second
system may be left in states with different wave functions®. EPR took for granted
the locality, i. e. that no real change can take place in the second system in
consequence of anything that may be done to the first system’. Based on this
assumption it is possible to assign two different wave functions to the same reality
in the presented model, in contraddiction of the sufficient condition for reality.
This implies, if we refer to the initial dilemma (1) — (2), that the sentence (2)
is false, therefore the quantum mechanics is not-complete. They put forward the
idea of the existence of a set of local hidden variables (LHVs) underlying quantum
systems which should be able to reproduce the statistics of the results, and, at
the same time, to restore locality.

At the EPR argumentations Schrodinger tried to find a solution [2], that save
the quantum mechanics [38]. He was, probably, the first to define the scenario
described by EPR in [1] as EPR paradox. Indeed he didn’t believe to the quantum
mechanics incompletenesses, but neither saw a flaw in the EPR argumentation.
At first, he defined the entanglement: If two separated bodies, each by itself known
mazimally, enter a situation in which occurs reqularly... [an] entanglement of our
knowledge of the bodies, and the disentanglement, After establishing one represen-
tative by observation, the other one can be inferred simultaneously... this procedure
will be called the disentanglement. Then he described the EPR paradox as the
obvious but very disconcerting fact that even though we restrict the disentangling
measurement to one system, the representative obtained for the other system is by
no means independent of the particular choise of the observation which we select
for the purpose and which by the way are entirely arbitrary.

Schrodinger called steering this ability to affects the state of the remote sub-
system. However, both EPR’s and Schrodinger arguments can not be tested in

61f we make a measurement of O; obtaining as result |1),.) 4, the overall state will become [¢)) =

ck [y) 4 @ |uk) g, so the subsystem Sp will be described by |ug) 5, if we measure Oy obtaining
|#,.) 4 » the state of Sp will collapse into |v,) 5 . This phenomenon is just what Schrodinger later
termed steering

"They never used the term locality, but the previous sentence is to all effects a necessary
condition for locality.
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the laboratory because they involve perfect correlations and pure states. Such
states are unobtainable in pratice due to unavoidable inefficiency in preparation
and detection of real pysical systems.

So the ability to manipulate a subsystem acting appropriately on the other
one wasn’t proved in laboratory until 1989. In such year, Reid et al worked out
an (of more general validity) useful criterion.

2.6.1 FEPR-Reid Criterion

The essential difference between EPR-Reid criterion and the original EPR
argument is in the concept of realty [38]:

Reid’s extension of EPR’s sufficient condition of reality. If, without
in any way disturbing a system, we can predict with some specified uncertainty
the value of a physical quantity, then there exists a stochastic element of phys-
ical reality which determines this physical quantity with at most that specific
uncertainty.

Moreover, the original version was formulated by EPR in terms of two spatially
separated particles with higly correlated positions and momenta, instead in [39]
the paradox is formulated in terms of the field quadratures at the output of an
ideal OPO. Indeed the conjugate quadrature phase amplitude of signal and idler
are higly correlated and, in principle, provide an example of EPR couple.

For the rest, the scenario is the same. The paradox describes the ability to infer
the expectation value of an observable (the position in EPR scenario, quadrature
in EPR-Reid one) on a sub—system by measuring the EPR companion observable
(momentum in the first scenario, conjugate quadrature in the second one) on the
second sub—system. However, as we said in § 2.4.1, the observables "quadrature"
aren’t maximally correlated, so the EPR-Reid must take in account an error of
inference. It is still possible to obtain the paradox providing if the error is small
compared to the uncertainty predicted by the Heisenberg uncertainty principle.

Therefore the EPR-Reid criterion can be verified calculating the conditional
variance for an observable on sub—system A given the result of a measurement on
sub-system B and comparing it with the standard quantum limit (i. e. with the
vacuum fluctuations).

We consider that Alice makes a measurement of the quadrature X A, on the
subsystem A, and Bob measures the quadrature Xz on the subsystem B. We
call unconditional probabilities the quantities of the type P(J4), P(Jg) J = X,
Y while the conditional probability P(Jg|J4), indicates the probability that Bob
obtains Jp in a measurement of 7T, B given the Alice’s outcome J,4. Alice and Bob
measure such conditional probabilities and obtain distributions with variances
A?(Xp|X4), A%(Yp|Y,4). Based on her results, Alice can estimate the results of
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Bob, from which she obtains an optimal average inference variances

1nf

A2 X5 = /dXAdXBP(XA)A2(XB|XA),
A2.Yp = / dY 4 dYsP(Y4)A?(Yp|Ya).

Reid showed that the violation of the inequality

1
A2 XpA2Yp > 1 (2.24)

implies the experimental demostration of the EPR paradox. This is the EPR-
Reid criterion. The subsystems that violate the inequality (2.24) are called EPR-
correlated and the corresponding operator (e.g. X p and YB that give AZ . Xp and
A2,Yp in (2.24)) form an EPR couple.

The EPR-Reid criterion represents only a sufficient condition to the entangle-
ment. Indeed it is a distinct form of nonlocality in respect to the entanglement,
as we will see in the next subsection.

2.6.2 Distinct forms of non-locality: Bell’s inequality, Entangle-
ment, EPR-Steering correlation

As we saw in § 2.6, the concepts of entanglement, steering, and nonlocality
were born together, in confused attempts to find an answer to the EPR question
[1]: "Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete?". Moreover, in 1969, Bell formulated mathematically the EPR’s idea
about the existence of some local hidden variables LHV [40].

In the light of the historical-scientific journey which took place from 1935 to
today, we can say that quantum mechanics is nonlocal and that different forms
of nonlocality exist. This concept has been clearly formalized in [41] and then in
[38]. According to the authors, let consider the usual spatially separated observes
Alice and Bob. Let D, the set of all observables on the Alice’s Hilbert space,
whose generic element is A, M, C D, denotes the meaurements that Alice can
perform. Analogues symbols are used for Bob (by the replacement a@ — ). The
set of ordered pairs M ={(A,B) : A € M,, B € Mg } represents a measurement
strategy. Alice and Bob perform measurements on systems prepared by a repro-
ducible preparation procedure ¢®. In this way it is possible to consider that all the
measures are performed on systems with the same state matrix w. Such measure-
ments provide the eigenvalues {a} {b}. So P(a|A;w) represents the probability
that Alice will obtain a as result of a measurement of the observable A on the
state w, while the joint probability that the Alice’ s measurement gives a and the

8¢ represents all those variables which are explicitly known in an experimental situation.
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Bob’s measurement gives b reads
P(a,b|A, Byw) = Tr[(Il; @ I} )w],

where H}-] J = A B, j = a,b is the projector satisfying JH‘]»] = jH‘j] (we are
restricting to projective measurements).

Bell’s nonlocality. The so-called Bell’s nonlocality emerged from the math-
ematical formulation [40] of the hidden variables theory suggested by EPR. Its
understanding is likely more immediate if we refer to the the example advocated
by Bohm [42] for describing the EPR paradox. We consider a pair of spin-half
particles in the singlet spin state, on the select components of the spins o, and 5.
The particles are free to move in opposite directions. We suppose to measure the
components along the direction @', with @ unit vector, in the hypoteses that the
measurements are made at places remote from one another and that the orienta-
tion of one magnet doesn’t influence the result obtained with the other. Following
the formalism introduced above, if the measurement of the observable A = ;- v’
gives the value a = +1, then B = 5, - ¥ gives b = —1 and viceversa. T.

We see that it is possible to predict the the result of any chosen component of
0 by a previous measurement of the same component of 7. This predetermination
is not present in the wave function. This circumstance suggested to EPR that
the wave function may be better specified by means of additional parameters &
and that introducing such parameters the system becomes again describable by
classical physics. Bell provided a mathematical formulation, in which the result
of measure A = 7; - v depends on both ¥ and &, and the result of measure
B =5, - u depends on both w and &, i. e.

a(v,€) =+1, bW, €)=+l

with the vital assumption that the result of B for particle 2 doesn’t depend on
the setting v of the magnet for particle .

Let p(&) the normalized probability distribution of £, then the expectation
value of the product of the two components A and B is

P(a,b|A, B;w) = Zp p(alA, €)p(b| B, €). (2.25)

Following quantum mechanics, the expectation value is given by
(G1- VUV oy W) =—V U, (2.26)

If there are variables ¢ for which Eq. (2.25) gives the same result of Eq. (2.26),
then quantum mechanics coincides with classical mechanics.

Bell showed that there exist systems for which the two quantities give different
results [40]. The local additional variables, introduced to restore causality and lo-
cality in the quantum mechanics, are incompatible with the statistical predictions
of the quantum mechanics.
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The Bell nonlocality is exhibited in any experiment on the state w iff the
correlation between a and b cannot explained by a LHV model, i. e. iff the
statistical prediction aren’t described by Eq. (2.25).

By Eq. (2.25) it is possible to establish some inequalities, called Bell’s in-
equalities, that are violated by the quantum mechanics. In the following sections
we will see that such inequalities put a limit between systems that exibit quantum
nonlocality and systems that admit descriptions in terms of hidden variables (i.
e. admit a classical description).

The violation of the Bell’s inequality (2.24) is a sufficient condition to ascertain
the presence of entanglement (see chapter 4).

However although the entanglement represents correlation witnessing the non-
locality of quantum mechanics, it is a distint form of nonlocality in respect to Bell’s
nonlocality [38]

Nonlocality of the entanglement. Bell inequality is obtained introducing
some hidden variable in the description of the observables that define the mea-
surement strategy. However such variables can be hidden in the description of the
state too.

A state w is nonseparable if it is impossibile to express it as a convex combi-
nation of product states,

W=y e ® pep(é). (2.27)
13

where 0¢ € Do, p; € Ds are (positive, normalized) quantum states. We suppose
that Alice and Bob measure a quorum of local observables to reconstruct the state
w by tomography: Alice measures the eigenvalue a for recostructing o¢, while Bob
measures the eigenvalue b for recostructing p,. In analogy to Bell nonlocality Eq.
(2.25), we say that w is nonseparable iff it isn’t possible to express the expectation
values of the observales, nessary to tomography, as

P(aa b‘Aa B;w) = Zp(a‘/h Ug)p(b|B,p§)p(€), (2'28)
3

Any constraint on the set of the possible phenomena derived by Eq. (2.28) is
called separability criterion or entanglement criterion. This definition is of course
equivalent to the definition that involves product states Eq. (2.27). Indeed, if
there is a separable model for all possible measurement settings, then the joint
state can be given. Conversely, if the state is given by a convex sum of the product
state Eq. (2.27), the joint probabilities for each pair of measurements are given
by Eq. (2.28).

Non-locality of the steering. Although the two introduced forms of non-
locality are conceptually very different, the scenarios introduced to describe they
are similar. In fact, in both circumstances, Alice and Bob try to act, each on its
own subsystem, independently of one another. There is a third part, outside the
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system, that we can call Charlie, which analyzes the results and establishes the
nonlocal character (see Fig 2.2).

This scenario is completely different from the nonlocality by steering”, which
describes an asymmetrical situation: one of two parts, e.g. Alice in Fig 2.3,
prepares the bipartite state and gives a subpart to Bob. In this context, the
steering describes the ability of Alice, to steer the results of Bob. The Alice’s
choise to measure A can cause the collapse of Bob’s system into different types of
states in the different ensambles ¢ = {ﬁf :a € A(A)}, the tilde denotes that the
state b’f = Tro[w(II2 @ I)] € Dp is unnormalized. The state w exhibits steering
iff it is not valid

P(a,b|A, Biw) = > p(al A, )p(b] B, pe)p(€)
13

Of course, Alice cannot affect Bob’s unconditioned state p = Trq[w] = 32, )
that would allow superluminal signaling. Bell nonlocality and entanglement are
both symmetric concepts between Alice and Bob. However, steering in inherently
asymmetric. The violation of the LHV model by only one of the two parts, for
example Bob, is a demonstration of EPR steering introduced by Schrodinger to
refer to the EPR paradox.

It means that Bob’s outcomes are described by some quantum state, but
Alice’s outocomes are free to be arbitrarly determined by &.

It is possible to verify that, for Gaussian states, the EPR-Reid correlation
(described in § 2.6.1) occurs under precisely the same conditions of EPR-steering
correlation.

2.7 Bell’s Inequality

In the same year (1969) of the Bell’s paper [40] Clauser, Horne, Shimony
and Holt presented a generalization of Bell’s theorem which applies to realizable
experiments [43].

Tipically, the experiment involves three distant parties, Sophie, Alice, and
Bob. Sophie (the source) prepares a bipartite state and distribute it to Alice and
Bob (the two usual partners). Then, Alice and Bob randomly and independently
decide between one of two possible quantum measurements A; or Ay (B or Bs),
which should have only two possible outcomes +1, or —1. The experimental setup
should be arranged in such a way that Alice and Bob do their measurements in
a causally disconnected manner. Thereby, Alice’s measurement cannot influence
Bob’s one, and vice-versa.

To summarize what has already been said in other words, local realism implies
two assumptions:

%introduced by Scrodinger in [2]
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(1) Realism. The physical properties A;, As, By, By have definite values
ai, ag, by, by, which exist independently of their observation. This implies the
existence of a probability distribution P (aj,as,bq,bs) dependent on how Sophie
generates the bipartite state.

(2) Locality. Alice’s measurement choice and outcome do not influence the re-
sult of Bob’s measurement, and vice-versa. The measurement events are separated
by a spacelike interval.

If we consider the local realism as the correct description of the physical world,
then we obtain the Bell-CHSH inequality

B = ‘<a1b1> -+ <a1b2> —+ <a261) — <a2b2>\ S 2,

where (a;b;) denotes the average over the subset of experimental data where Alice
measured a; and, simultaneously, Bob measured b;. An experimental test of Bell-
CHSH inequalities where a violation of B <2 is observed disproves any classical
(local realistic) description of Nature.

Now, if we consider that Sophie generates and distributes an entangled pair
of qubits, the Bell operator B reads

gqubz’t = (a;-01)® (by-02)+ (a;-01) @ (bs - 02)
+(az-01)®(b-03) — (az-01) ® (ba - 02),

where o, is the Pauli matrix for the jth (j = 1,2) qubit and a;, as, by, by ar for
unit three-dimensional vectors. R

Quantum mechanics predicts Bgpie = < qubit> — 2+/2, which is in contradic-
tion with local realism.

2.7.1 Continuous variable Bell-CHSH inequality

Many experimental Bell tests have been performed, observing the violation of
Bell’s inequalities predicted by quantum mechanics. The most of the experimental
schemes used optical setups because, it allows to generate and distribute entangled
particles (photons) at a distance in order to make Alice’s and Bob’s measurements
causally disconnected.

However, the available single-photon detectors suffer from a low efficiency 7,
which can be exploited by a local realistic model to yield a violation. Thus,
to reject local realism, it is necessary to make the extra assumption that the
registered pairs form a fair sample of the emitted pairs. So, from a logical point of
view, these experiments do not succeed in ruling out a local realistic model; this is
the so-called detector-efficiency loophole. This loophole has been closed in a recent
experiment with trapped ions, thanks to the high efficiency of the measurement
of the ion states. However, the measurement events were not spacelike separated,
opening in turn the so-called locality loophole.
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Many alternative schemes have been proposed, but they are experimentally
very challenging. An interesting alternative to the atom-based approaches con-
sists of all-optical schemes based on continuous variables of light. Indeed, the
balanced homodyne detection used in these schemes can exhibit a high detection
efficiency, sufficient to close to detection loophole, and the optical beams can be
can be transported at a distance from each other avoiding the problem of locality
loophole.

There are two different methods to test the Bell’s inequalities for the contin-
uous variable cv bipartite state. Following the first method (that incorporates
pseudo-spin [44] and homodyne approaches) one converts the problem of the cv
inequality Bell into the well known dv inequality Bell mapping the modes into
two-qubit system. The other one developes some test for specifically continuous
variable system.

2.7.2 Pseudo-spin approach

In [44] the following operators for photons, for a single-mode light field, are
introduced:

S, =

Wk

120+ 1) (2n 4 1| — [2n) (2n)] (2.29)

n=0

2n) (204 1] = (s3)",

hE

Il
=)

n

where |n) are the usual Fock state. The operator s, is the parity operator, whereas
sy and s_ are the "parity-flip" operators. They are called pseudospin operators
becouse their commutation relations of these operators are identical to those of
the spin-1/2 systems,

[S2,84] = £255,  [s4,s5-] = s.. (2.30)

This circumstance allows to establish a direct analogy to the discrete-variable
case introduced in 2.7, in which the pseudospin operators S = (s, sy, s.), with
s, £ 5, = 254, can be regarded as a cv counterpart of the spin operator . As the
pseudospin operators act upon the parity space of photons, they are called the
“parity spin” of photons.

Now let a =(sin ¥, cos ¢,, sin, sin¢,, cos,) an arbitrary vector on the sur-
face of a unit sphere, we obtain

a-s=s,cost, +sind, (ei%s, + ¢ W s+) )
The commutation relations in Eq. (2.30) lead to

(a-8)* =1, (2.31)
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that means that the outcome of the measurement of the Hermitian operator a - s
(with eigenvalues 1) is +1 or —1. The above observations show that there exists
a perfect analogy between the cv systems and the usual spin-1/2 systems. Using
the Egs. (2.29), (2.30), (2.31) we can write

B=(B) = E (W0, 0h) + E (9o 9y) + E (V) = E (1, 0y (2.32)
with
E (90,95) = < O g sffb)>
and
51(9]2 = 5, €08V, + Sz sint,.

In the phace space the poseudospin operators correspond to the following
Wigner functions

1
Wa = —sgn Rela]], W.=—-=6%(a), W,= —2—5 (Re[a]) P
where P denotes the Cauchy principal value [45].

2.7.3 Homodyne approach

In this case [46] one discretizes the measured quadrature X assuming as out-
come +1 when, for example, X > 0 and —1 otherwise. The violation of Bell’s
inequality is achieved as usual when |B| > 2,

B = E(191>901) + E(191>(102) +FE (192, 901) - E(ﬂ% 902) )

where 9J; and ¢; are tha phases of the homodyne measurements at the modes a
and b respectively, and

E (ﬁjv@ok) = /]R? dmﬁjdaj@ksgn ['Tﬁjx@k} P ('Tﬁj’xSDk) )

P (l‘gj , x¢k) beeing the joint probability to obtain the two outcomes xy, and z,, .

Unfortunately, the Gaussian two-mode state cannot be directly employed to
test Bell’s inequalities with the homodyne technique. Indeed, as noted by Bell
himself, this state is described by a positive-definite Gaussian Wigner function
[47] [48], which thus provides a local realistic model that explains all correlations
between quadrature measurements (carried out by balanced homodyne detectors).
Thus, as the homodyne is a Gaussian measure, to use this approach we need to
go beyond the Gaussian states.
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2.7.4 Space phase approach. Non locality in the Wigner represen-
tation

The starting point is the observation that the two-mode Wigner function
W (a, B) can be expressed as the quantum expectation value of a product of dis-
placed parity operators,
4
W(O{, B) = EH(O{, 6)> (233)
with R L R L
(e, §) = Dy(a)(=1)" Dj(e) ® Da(5)(~1)"Di(5). (2.34)

where ﬁj j = 1,2 denotes the unitary phase-space displacement operator for the
subsystems 1 and 2. As the measurement of the parity operator yields only one of
two values +1 or —1 there exists an apparent analogy between the measurement
of the parity operator and of the spin-1/2 projectors. The solid angle defining the
direction of the spin measurement is now replaced by the coherent displacement
describing the shift in phase space. By Eq. (2.34) we see that the correlation
functions measured in such experiments are given by the joint Wigner function
of the system, up to a multiplicative constant. As a consequence we have the
fundamental relation

E(a,b) = (o, B).

If the correlation function II(«, £) is measured for four possible combinations
of the displacement amplitudes a1, as, 5, B9, we can write the quantity B,

B =I(au, By) + U1, By) + U(ag, 8;) — (az, 8,), (2.35)
that for local theories satisfies the CSHS inequality
|B| <2. (2.36)

2.8 c¢v QuantumTeleportation protocol

In this section we discuss the quantum teleportation protocol in continuous
variable. Quantum teleportation was first proposed by Bennett et al. in the
discrete variable regime. The idea of cv teleportation was put forward by Vaidman,
but quantum-optical protocol for the teleportation of quadrature amplitudes of a
light field was introduced by Braunstein and Kimble [49].

The cv protocol is developed in complete analogy with the one for discrete
variables.

The key points of the teleportation, shown in a pictorial way in Fig 2.4, of an
unknown state |in) from position A, Alice, to position B, Bob, are

1. Initial Condition. Alice and Bob share a quantum channel (resource)
given by two modes a and b perfectly EPR correlated, such that

X=Xy =Y, +Y, =0. (2.37)
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The Eq. (2.37) describes an ideal EPR couple. In cv regime, it is obtained
only as a limit of infinite squeezing, whereas the realistic quantum channel
has a finite amount of squeezing.

2. cv Bell Measurement. Alice performs a version of the cv Bell measure-
ment through two subsequent operations:

(a) mixing of the modes |in) and a through a balanced beam splitter B.S,
performing the following bilinear transformation on the quadratures

Xaj:Xin Y. _}/aj:}/m
\/§ ) + \/§ )

where X4 and Y. are the quadratures of the output modes + and —.

Xy =

(b) Homodyne detection of the quadratures. Alice detects the quadratures

X_ and Y, obtaining the results X_ and Y+ Her meausurements cause
the collapse

X, = Xin +V2X_, Y, =Y, +V2Y,.

Due the EPR property Eq. (2.37), Bob’s quadratures are, instanta-
neously, prjected in

Xp= X +V2X_, Y, =Y, — V2V,

3. Classical communication. Alice gives the results of its measurements
(the two quadratures X _ and Y, ) to Bob through a classical channel.

4. Unitary transformation. Bob uses the received classical information to
perform a conditional dispacement on mode b, so he reconstructes the input
state and complete the teleportation process,

Xp = X=Xy —V2X. = Xin, Yo V) =Y, + V2V =V,

The use of continuous variables offers many advantages over the use of discrete
ones [50], e.g. one of the key points of difficulty of the discrete variable protocol is
the Bell measurement in order to couple the input qubit with the quantum channel.
Until now, in all the real experimental setups, such a measurement has not been
implemented in a clear and precise way. On the contrary, the cv version of the Bell
measurement is realized via linear passive optics and homodyne measurements,
whose outcomes can be discriminated with high precision (perfectly discriminated
in the asymptotic sense).
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2.8.1 Check the success of teleportation: fidelity

As can be seen from the description of the protocol, the teleported state
can remain unknown to both Alice and Bob. That is a third party, e.g. the
verificator, called often Victor, can prepare the quantum state |in) and give it to
Alice, asking to teleport it to another station (the Bob’s station). We suppose
that Victor doesn’t reveal any information about the initial state.

The field teleported p,,,, emerging from the Bob’s station, is analyzed by the
same Victor, that can establish the "quality" of the teleportation through the
evaluation of the overlap between the input state (which we assume pure) and the
(obviously mixed) output state,

f = <Z7’L‘ pout ‘Z?’L> .

F is called teleportation fidelity.

When the input state is a coherent state, the value of fidelity 0.5 marks the
boundary between classical and quantum physics, i.e. F >0.5 is possible only
with the help of the quantum strategy (with the use of entangled resource) [23].

2.8.2 Teleportation protocol in the formalism of characteristic func-
tion

We want to express the protocol in the characteristic function formalism.
This formalism is particularly suited when we treat with non-Gaussian states and
resources, because it greatly simplifies the calculational strategies.

Let p;,, the single mode input state to be teleported. Its characteristic function
is given by x,,(7v) = Tr[p;,, D ()], where D (&) is the usual displacement operator
with complex amplitude o’. The complex amplitude ~ of the input state can be
expressed in terms of the quadratures:

V2 oo
In a similar way we define the characteristic function of the resource p, as

Xap(@, ), or, equivalently, v, (X4, Ya; X5, Ys). The total initial state p,, ® py
is described by

Xab(a? 6) 7) = Xin(/y)Xab((% 6)

Alice mixes the input mode with her mode a in the balanced (lossless) BS per-
forming the following transformation on the complex amplitudes

oty
Ve = —F=,
V2

with vy = (X, +1Y;,)/v/2 the complex amplitudes of the output mod(is 4. Then
alice detect the quadratures X _ and Y, obtaining the results X_ and Y., i.e. she
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obtains 7 = X +i}7+, with probability P (7). Due Alice’s measurements, Bob
has the following conditionated state

Y(BF) = P() / Py (X — G B).

Alice communicates her result 7 to Bob through a classical channel and, con-
sequently, Bob performs a displacement. If the two-mode resource x, is an
ideal EPR couple (i.e. Eq. (2.37) is satisfied), then the Bob’s displacement is
S — ' = f+7, but in the realistic circumstances the Bob’s displacement is given
by B

B—pB=06+7+0, (2.38)
where 0 = gD + g] takes in account the inefficiencies of the detection gD and the
non ideal initial correlation d;; ¢ depends on the first moments of the resource.
In according to the displacement Eq. (2.38) the final state at the Bob’s station is
given by

B —7—3F) =P@) / P — T8 —F—5).  (239)

If we want to know how much, on average, this state is similar to the input state,
we must average over all possible results 7,

Yo, 8) = / PAPENE — 7 — 5.
By Eq. (2.39) we obtain

Xout(ﬁ/ug) = /dQVIC(ﬁ/ - va)in(fY)v

where the kernel K is given by
K3 =.8) = [ Exaly =78 =7 -9

In this formalism, the teleportation fidelity F = T7[p;,0u:] » 1-€. the success
probability of the teleportation protocol, reads

F = 3 [ ENG () (2.40)

2
2.8.3 Teleportation protocol for Gaussian resources

Let us consider the particular case of Gaussian states, i.e. a pure Gaussian
state as input, described by the covariance matrix V;,, and a two-mode Gaussian
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state as resource, described by the block matrix Eq. (1.7) [50]. With a suitable
chosen of the dispacements dp and d; the teleportation fidelity reads
1
VdetT’

where T' = 2V, + ZaZ + 3 — Z~v — v'Z" and Z = diag{1, —1}, that for a
coherent input state becomes

1

F=—.
I+e?r
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. realistic Bell
classical measurement

displacement Bob

Alice

Figure 2.1: (Color online) Schematic picture of the non-ideal cv entanglement
swapping protocol, in which two indipendent couples, A and B, of two-mode
entanlged states (1 — 2 shared by Alice and Charlie, 3 — 4 shared by Bob and
Charlie) are used for producing the final swapped entangled state (composed by
1 and 4 modes), shared by the two final users Alice and Bob. See text for more
details.
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R P(alA
Alice —{ S, _;_.ﬁ_n_, ~
o P(alA) ) correlations
P(al A)F
quantum
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correlations
LHV model
PlabA,B) = 3 p(al A, p(] 5, E)p (€) —pLeessley
&
P(a,b|A,B) = Zp(a|A,rf§)p(b\B,pé)p(g) enfcarggleer?:m

Figure 2.2: Pictorial representation (color online) of the scenario describing two
possible test of nonlocality: Bell inequality and entanglement criteria. Alice makes
a measurement on the subystem Sy, while Bob, indipendently, realizes a measure-
ment on the subystem Sp. Charlie is the only acting on the joint system S. He
compares the quantum expectation value (obtained considering whole system)
with the product of the Alice’s and Bob’s results. If there isn’t coincidence the
system is correlated. To discriminate the quantum correlations from the classical
ones Charlie applies the hidden variables theory LHV. For more details see text.
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P(a,bﬁA,B).e
P(alA)

quantum
and/or
classical
correlations

T

LHV model
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Pla,blA,B) = Zp(a\ﬁai)b(blﬂﬂg)p(&)—*E%%mffg%ﬁ’,‘g
¢

Figure 2.3: Pictorial representation (color online) of the scenario describing a
possible test of nonlocality: EPR-steering. Alice prepares the whole bipartite
state. Then she gives the subpart S to Bob. If two subsystems are correlated,
then Alice can infer the Bob’s quantum state by measurements made on S4. To
discriminate the quantum correlations from the classical ones Alice applies the
hidden variables theory LHV. For more details see text.



2.8. CV QUANTUMTELEPORTATION PROTOCOL 42

displacement

Figure 2.4: Schematic picture (color online) of the teleportation protocol, in which
the resource (a two-mode entanlged state a-b), shared by Alice and Bob, is used
for teleporting the input state from Alice’s position to Bob’s position. See text
for more details.
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CHAPTER 3

GAUSSIAN STATES

The use of Gaussian states as resource in Quantum Information and Communi-
cation protocols is currently much debated. Although such states are of great
pratical relevance, the non classical effects not always manifest themselves. Con-
sider, for example, that the distribution function of Wigner is positive everywhere,
so it can be used to construct a local hidden variable correlation and accordingly
the Bell’s inequality is never violated [47].

In this chapter, we explore the question of how useful is the use of a Gaussian
resource in Quantum Information. At first we give some considerations on the
extremality of the Gaussian states (§ 3.1). Then we specialize the markers intro-
duced in the chapter 2 (e.g. mutual information, quantum discord, entanglement,
teleportation fidelity) to Gaussian case, in order to identify indicators of non-
classicality. Eventually, we study their evolution in a Gaussian channel. Gaussian
channel plays a quite central role in Quantum Information and Communication,
because it is a good model for the transmission of light through fibers, for random
classical noise, introduced by Gaussian random displacements in phase space and
losses that can be modelled as a beam splitter like interaction with the vacuum
or a thermal mode.

We report some experimental tests carried out in the laboratory of Quantum
Optics of the University of Naples Federico I1.

The results reported in this chapter are shown in [6], [8].

3.1 Are Gaussian states extremals?

Gaussian states play a "particular" role in Quantum Information, besides their
pratical relevance. They tend to be extremal within all continuous variable states
with respect to different quantum properties [3]. For example, they minimize
the content of entanglement in respect with the non-Gaussian states (at fixed
covariance matrix). Precisely becouse of this particular property of extremality,
in recent time the Gaussian states began to take a more marginal role compared
to the increasing interest in the non-Gaussian states. However some clarifications
are necessary.The extremality is demonstrated in [3] also over the entanglement
measures taking in account the following lemma

Lemma 1 Let f : B(H®Y) — R be a continuos functional, which is strongly

superadditive and invariant under local unitaries U, f(USNpU®N) = f(p). Then
for every density operator p describing an N -partite system with finite first and

44
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second moments, we have that

f(p) > fpe),

where pe is the Gaussian state with the same first and second moments as p

Grouping the N parties of the Lemma 1 into M < N ones and remembering
that every entanglement measure is invariant, by definition, under local unitaries,
the authors yield the following proposition

Proposition 2 Let E be a continuous entanglement measure which is strongly
superadditive. Then, for every density operator p describing an M -partite system
with finite CM (and arbitrary, finite, number modes per site) we have that any
Gaussian state pg with same CM provides a lower bound

E(ps) < E(p). (3.1)

Obviously, the estremality exists only for measures that verify the require-
ments of the Lemma.

Distillable entanglement Ep fulfills all the requirements. But the logarithmic
negativity £y that, among all the measures, is the most popular one as it is easy
to calculate, fails the requirements. Moreover, doesn’t satisfy Eq. (3.1), as shown
in [3] by a simple counterexample:

Example 3 For the state |p) = /1 — A\?|00) + \|11), with A\ = 1/4, we have
En(¢) = 0.57 whereas Ex(pq) ~ 0.64.

We conclude that the issue is not trivial. What is the best resource to be used
in quantum information depends on the type of protocol you want to use and on
the particular quantum features it needs to give the best possible performance.

3.2  Quantum Markers

The markers of quantumness, described in the chapter 2, assume a feasible
form for the Gaussian states. Indeed, since the Gaussian states are completely
characterized by the first and second moments of the quadratures, all quantum
markers are completely expressible as CM’s functions.

3.2.1 Mutual Information and Quantum Discord for Gaussian States
For Gaussian states, the Mutual Information Eqgs. (2.5), (2.6) reads

I(o) = (VL) + f(VIs) = f(ds) — f(do), (3.2)
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where f(z) = (z+1/2)log(x +1/2) — (x — 1/2)log(x — 1/2) and d are the CM
symplectic eigenvalues. In terms of the symplectic invariants read

1/2

V%i:[h+b+ﬂkiyﬂh+b+ﬂhﬁ—4h]

Tha Quantum Discord Eq. (2.7) becomes

VI + 2L, + 213) | (33)

Do) = (VD) - f(dy) — f(d.) +f( N

3.2.2 Entanglement Criteria for Gaussian states

PHS Criterion for Gaussian states. The PHS criterion is a necessary and
sufficient condition for separability, for all bipartite Gussian states.
Moreover, for a Gaussian state, described by the CM Eq. (1.8), it reads

. (3.4)

Ny

n® +m®+2|cieo| — 4 (nm—cf) (nm —c3) <
In terms of symplectic invariants, the Ineq. (3.4) becomes
1
L+ +2|)—41, < 1

Duan Criterion for Gaussian states.

We note that, as proved in Ref. [33], any Gaussian state can be transformed,
by local linear unitary Bogoliubov operations, i.e. by acting independently on
one or both the subsystems by applying local squeezing and/or rotations, into the

standard form
nq 0 C1 0
. 0 To 0 Cy
7= cc 0 my 0 ’ (35)

0 ¢ 0 mo
with the matrix elements satisfying the constrains
n—1/2  ny—1/2
my —1/2 me—1/2
ler] = leal = V(= 1/2) (m1 = 1/2) = \/(n2 = 1/2) (ma — 1/2) . (3.6)

In this case the EPR operators pair of Eq. (2.11) are written as

. 1 ~ 1
u=apX1+ (Cl)a_X2 and v = apY; — (C2)a_Y2 )
0 0

_ mi—1/2 _ mo—1/2
where ag = / 12 =\ moif
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The sufficient and necessary Duan criterion is given by

mi+mg —1

ag (ny +mny — 1) + —=2(|e1| = |e2]) <O . (3.7)

2
ag

In a more general contest it is possible to write the sufficient but not necessary
for a generic CM in the standard form of Eq. (1.8) as

2m —1
(2n—1)a2+%—2(c1—02)<0, (3.8)
where a can be set by a? = 7::11 //22 to minimize the left hand side of the inequality:

V@n—1)2m —1)— (¢, —¢3) < 0. (3.9)

We note that, while for symmetric states (m = n) |a| = 1 and the EPR pair
consists of two orthogonal field quadratures, this is not true, in general.
EPR-Reid Criterion for Gaussian states.
In terms of CM elements:

2 2
2 G @) 1
- — - —= —. 1
" < nm) ( nm) = 4 (3-10)

We note that, being based on conditional variances (and thus on conditional
states) this criterion is not symmetric under the exchange of the two sub-systems.
So that the criterion itself can be recast if sub-system A is measured and the
conditional variance on B is given

2 2
9 1 & 1

- — - <-. 3.11

" ( nm) ( nm) 4 ( )

The two statements (3.10), (3.11) of the EPR-Reid criterion can make it am-
biguous if one of the relations are not satisfied. This is not the case of balanced
systems (m = n). Moreover, it can be proved that no pure state can asymmetri-
cally violate the EPR criterion. It is easy to see that the above two expressions
for the EPR criterion are invariant for symplectic transformations like the PHS

one. In particular,
1, _ 1 /(1 _ 1
I, 4 \I, 4

For a pure state I, = 1/16 so that by (3.10), (3.11) we obtain

~—

I, >

L >

N
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3.2.3 Entanglement Witness
According to what is stated by the following lemma [51]

Lemma 4 For any inseparable state p € H1 ® Hsa there exists Hermitian operator
W such that Tr(Wp) < 0 and Tr(We) > 0, for any separable o ,where the operator
W is called entanglement witness.

For any entangled state p there exists entanglement witness W.
Now we define three different entanglement witness, one each for the three
criteria,

wpys = 4 (nm — c%) (nm — cg) + i — (n2 +m2) —2]c109|

s = (o) (- 3) (-0

2 2
1

WEPR = n2< - ) < S ) - (3.12)
nm nm 4

In summary, for a Gaussian bi—partite state the three criteria (see Egs. (3.4),
(3.9), and (3.10)) reduce to

<— wpys <0
p is entangled - { wpyan <0 . (3.13)
wepr < 0

The three witnesses don’t satisfy the requirements for being a measure of entangle-
ment. For example they don’t verify the basic axiom stating that a good measure
should be equal to 0 for any separable state [52].

However, once the state p is entangled wpys, wpyay and wgpgr provide suit-
able markers for evaluating how far the state is from being separable. Somehow
they measure the robustness of the entanglement.

We note that for diagonal fully symmetric states (n = m and ¢; = —cy = ¢ in
Eq. (1.8)), i. e. described by the following CM matrix

n 0 ¢ 0
~ 0 n 0 —c
o= c 0 n 0O , (3.14)
0 —c 0 n
wpps, Wpyan and wepr read
1
wpgs = 4(n2—02)2+1—2n2—202 , 3.15)
WPDUAN — Q(R—C)—l, (316)
A\ 1
2 .
WEpr — N (1 — E) — Z 3 (317)
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and the two bounds (¢ > n —1/2) for wpyg and wpyan coincide while the bound

for wgpr is ¢ > 4/n (n — %) so that the EPR-Reid criterion is stricter than the

PHS and Duan ones for any allowed value of n.

3.2.4 An extra marker: the purity

The purity of the composite system cannot be considered a general entangle-
ment marker [53]. As a matter of fact, any pair of physical systems in a pure state
has . = 1 even if they are disentangled. Nevertheless, it is useful to introduce the
purity (1.9) as an extra marker that tells how far the analysed state is from a pure
one, i.e. the extent to which the experimental entanglement tests, especially in
cv regime, must be described in terms of density matrices rather than wavefunc-
tions. In fact, the states that it is possible to prepare and to manipulate in the
laboratory are mixed. This is due to the circumstance that even when the state is
born pure, it decoheres into a mixture by interacting with the external world [18]
and the quantumness can be completely lost. In this context the purity becomes
a crucial marker.

The experimental data presented in this chapter refer to cv entangled state,
generated by a type-II sub—threshold OPO [7]. In this specific case, we have
a precise hypothesis on the ideal state: it is a pure twin—beam diagonal state,
described by the CM (3.14). Since the state, at the birth (¢ = 0), is pure, by
Egs. (1.3) with N = oo (cv) and (1.9), we obtain that the correlation parameter

c is equal to c = 4/ (n2 — i) At the outing of the OPO crystal, the state starts
to loose its purity becoming mixed, by Egs. (1.3), (1.9), we have

c< (n2 - i) (3.18)

with the equal sign valid only for pure states. This allows us to consider u as a
measure of the total decoherence that has affected the state.

3.2.5 Teleportation fidelity with Gaussian resources

If we imagine to teleport a coherent state |3) and use, for this purpose, a
two-mode pure squeezed vacuum state as a resource, the fidelity of teleportation

reads [50]
1
F=—-. 3.19
e—2r +1 ( )
We can see that only in the limit of infinite squeezing, the fidelity is equal to one,
i.e. there is perfect coincidence between the initial state and the state actually
teleported. However, this is impossible to obtain because it is need to infinite

energy (unphysical resource). The relationship (3.19) seems to leave it to say
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that a very large value of 7, but still finite (finite energy), the fidelity may be
one, i.e. it seems that the only obstacle to a teleportation with complete success
(probability of success equals to one) is technical: to arrange an experimental
setup that produces a squeezed vacuum state with a high parameter of squeezing
r. Instead, there is an impediment of physical nature which manifests itself most
clearly when we express the fidelity in terms of the CM elements.

The relation Eq. (3.19) is obtained when the resource is a pure Gaussian
state. More generally, we have a (pure or mixed) Gaussian state described by the
matrix o Eq. (1.7). The success of teleportation F of a coherent state with such
state (1.7) is given by [50]

F = (detT) 3, (3.20)

where
I'=20+ZaZ+3—-Zv—~"77,

with Z =diag{1,—1}. To make easier the algebra, we assume that the state is
described by the CM Eq. (3.14), so the teleportation fidelity Eq. (3.20) reads

1
F T1+2(n—c) (3:21)

The Eq. (3.21) shows that to be completely successful teleportation is necessary
that n = ¢, but this circumstance is prohibited by the Eq. (3.18), i.e. it is impos-
sible to have F = 1 with Gaussian resource, also if the state is pure. However,
for n — oo, y/n? —1/4 — n, i.e. once again we find that in the limit of infinite
energy the fidelity goes to one.

3.3 Teleportation fidelity and Entanglement

As we have said in the chapter 2 F =0.5 sets [23] a boundary for entrance into
the quantum domain in the sense that Alice and Bob can exceed this value only
making use of entanglement. So entanglement is a sufficient condition to quantum
fidelity, but not necessary.

By the Eq. (3.19) it is evident that a pure squeezed vacuum state, used as
resource in a teleportation protocol of a coherent state, gives F =0.5 for r = 0,
while exceeds this value as soon as we turn on the entanglement (r > 0).

A similar relation can be found also on the mixed resource. In fact, for a state
described by the matrix (3.14), the fidelity can be easily expressed in terms of the
Duan witness (3.16) as X

= 3.22
2+ wpyan ( )

We can see again that in absence of entanglement (wppyany = 0), the maximum is
given by F =0.5.
In this sense teleportation fidelity appears as an entanglement indicator.



3.3. TELEPORTATION FIDELITY AND ENTANGLEMENT o1

0.0F . S
un— physical states -5

WpHS
-0.2

-0.4

-0.6

—-0.8

Figure 3.1: Region plot (color online) of the different entaglement witnesses of
Egs. (3.12) and teleportation fidelity (Eq. (3.21)) as an entanglement marker.
The light gray (labelled with (VI)) areas indicate un-physical CMs (i.e. violating
inequality (1.16). The different criteria show different regions of entanglement
(see text for details).
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In Fig. 3.1 we have visualized the different region plots set by the three
entanglement witnesses Egs. (3.15), (3.16), (3.17) and the region for which F >
1/2 (see Eq. (3.21)). The regions have been identified considering a CM in the
form of Eq. (1.8) with m = n (balanced system). The axes report the value of &
(below) and ¢, (left), the two correlation terms of the covariance matrix normalized
to cprax = y/n? —1/4 so that & = —é = 1 will represent a pure maximally
entangled state (i.e. the state showing the maximum quantum correlation for
a given total energy of the system, see subsection ...). We note that the fully
symmetric states, described by the CM (3.14), that we indicated as diagonal
states, lay on the plot diagonal (top—left to bottom-right).

The light gray (labelled with (V1)) area indicates un—physical states i.e. CIM
violating inequality (1.16).

The state lying on the diagonal starting in ¢; = —¢; = 1 satisfy the conditions
(see Eq. (3.6)) for which the Duan criterion becomes also necessary so that the
coincidence between the Duan and the PHS bounds, along the diagonal, is not a
surprise. Being both necessary and sufficient they coincide. For these diagonal
states entanglement (seen as non—separability property) implies F > 1/2, so we
can see that, in the plot, along the diagonal, the three bounds F > 1/2, wpps < 0
and wpyany < 0 coincide.

There are two pairs of interesting regions in the plot that deserve some com-
ments. The first one, encompassing area labelled as (III) and (V) in the plot
(light green and yellow), represents areas where the states violate the PHS bound
(wpgs < 0) while they do not the Duan one (wpyany > 0). This apparent am-
biguity can be solved noting that the CM represented by these regions do not
respect the condition (3.6) so that the non—negativity of wppyany does not imply
a separability of the state. On the other hand for such states wpys < 0 implies
that they are effectively entangled. By transforming by local squeezing opera-
tions, as outlined in Ref. [33], these CM into a form that respect conditions
(3.6) it is possible to see that the transformed states show wppan < 0. We have
numerically done a few tests on such odd matrices, verifying that once taken into
that form, the states violate the Duan bound (3.7) as well, so confirming that the
Duan and PHS criterion are equivalent. We note that, being the latter written in
a more general form, it is more useful from the practical point of view. Moreover,
such a matrix transformation take states lying outside of the diagonal on the plot,
completely out from the plot itself. Indeed, the transformed CM have the form
given in Eq. (3.5) different from the one in Eq. (1.8) and represented in the plot.
We also note that the referred transformation change also the EPR operators pair
(see Eq (2.11)).

The second interesting region, labelled with (IV') (light green) in Fig. 3.1,
represents states that, although entangled, cannot be used for teleporting coherent
states, CM lying inside this area will not give F > 1/2. It is interesting to note
that such states fall also inside the region for which the Duan criterion (3.9) is
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not fulfilled. As above mentioned, once the relative CM is transformed into the
form (3.5) by local squeezing the transformed state will fulfill the Duan criterion
in the form (3.7) so that, in this new scenario, the system is surely entangled. At
the same time, if this novel state is used as a quantum resource for teleportation
of a coherent state it will give F > 1/2 [50] so that the local squeezing acts
as entanglement unveiling. The initial state lying in this area is entangled for
PHS, being wpys < 0, but, form the point of view of teleportation, entanglement
manifests itself in an useless way. This entanglement can be made useful by locally
transforming the two subsystems.

We can see that the EPR criterion (region (1), light brown) offers a more
restrictive condition with respect to the other two criteria even for diagonal states.

Region (II) (salmon) represents the bound fixed by the Duan criterion as
a sufficient but not necessary condition. While region (V') (white) represents
separable states.

3.4  Quantum markers evolution

We can see that the evolution, Eq. (1.14), preserves the Gaussian character
of the initial state and in terms of the CM o reads

o(t)=(1—e) %}1 + e Mo (0), (3.23)

where o (0) is the covariance matrix at ¢t = 0.
This form is in all equal to the effects of a fictitious beam-splitter (B.S) that
mimics the channel losses and couples into the system the vacuum quantum noise

through its unfilled port. Being Uy ({) = exp {C (akvk — vkak> } the SU(2) trans-

formation induced by the BS on the k—mode (k = 1, 2, with v; the modal oper-
ator for the Vacuum and T = eI the power transmission of the beam splitter

(tan¢ = /(1 — ), the above equation becomes:

1
or = (1—T)§I[+TO'1

. ar Y
_ (ﬁ 5T), (3.24)

In this form we can drop the temporal dependence and label the CM of the initial
state as op—; = 0. For states in the form of Eq. (1.8) the different elements

evolve as
1 1
S o
Jr 9 + (] 2) 9

Ci,T = CZ'T (325)
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with j = n, m and ¢ = 1,2. For ' — oo (corresponding to an infinite
transmission channel) 7' — 0 and or — %I[ i.e. the covariance matrix of the
vacuun state.

The quantum markers introduced in the § 3.2 are CM function, so they evolve
consequently.

Henceforth the subscript r will indicate the quantity undergone to a lossy
transmission described by Eq.(3.24).

We note that the vacuum state obtained for 7" = 0 is a pure one i.e. p, = 1.
Moreover, in the ideal case (no loss), the OPO would generate a pure state as well.
Being jig.rq < ftg; the evolution of yp in T is not monotonic. This is another
indication that the purity of the composite system cannot be considered a general
entanglement marker.

It is easy to see that Fr, wppsr, and wpyan describe properties very robust
under decoherence. Once they are F > 1/2, wpys < 0 and wpyay < 0 for T'=1
they will keep breaking the respective bounds for every level of loss. Both mutual
information and quantum discord show, with respect to loss, the same feature
even if decoherence affects their amount. On the contrary a state that show
EPR-like correlation (wgpr < 0) for T'= 1 will not keep this property along the
propagation so that some particular protocol based on this property cannot be
reproduced. Under a total loss greater than 50% any state looses this correlation

property.

3.5  The Experiment

The transmission over a Gaussian channel is described by Eq. (1.14). This
evolution is in all equivalent to a fixed amount of loss introduced by a fictitious
beam—splitter. The actual experimental apparatus is made of the cv entangled
state source, a variable attenuator (mimicking the BS), and a state character-
ization stage. A block diagram of the experimental setup is presented in Fig.
3.2

3.5.1 The cv entangled state source

The [7] state source relies on a CW internally frequency doubled Nd:YAG laser
(Innolight Diabolo) whose outputs @532nm and @1064nm are respectively used as
the pump for a non degenerate optical parametric oscillator (OPO) and the local
oscillator (LO) for the homodyne detector. The OPO is set to work below the
oscillation threshold and it provides at its output two entangled thermal states
(the signal, a and the idler b).

The OPO is based on an a-cut periodically poled KTP non linear crystal
(PPKTP, Raicol Crystals Ltd. on custom design) which allows implementing
a type II phase matching with frequency degenerate and cross polarized signal
and idler beams, for a crystal temperature of ~ 53°C. The transmissivity of the
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Figure 3.2: (color online) Block diagram of the experimental setup, able to imple-
ment the Eq. (3.23). The details on the OPO source are given §3.5.1 [54], while
the characterization stage, based on a single homodyne detector, is fully described
in Ref. [56, 58].

cavity output mirror, 7,,, is chosen in order to guarantee, together with crystal
losses (k) and other losses mechanisms (73,), an output coupling parameter 7,,,, =
Touwt/ (T + k) @1064 nm of ~ 0.73, corresponding to an experimental linewidth
of 15 MHz @1064 nm. In order to obtain a low oscillation threshold, OPO cavity
geometry is set to warrant simultaneous resonance on the pump, the signal and
the idler: pump resonance is guaranteed by servo-assisting the OPO cavity with
a Drever Pound Hall system, while the resonance of other beams is induced by
exploiting the natural birefringence of the KTP to tune the optical path of each
beam inside the cavity, through a fine control of the crystal temperature and tilts
[54]. Measured oscillation threshold is around 50 mW; during measurement runs
the system has been operated at ~60% of the threshold power to avoid unwanted
non—Gaussian effects [55].

The two beams outing the OPO are transmitted through a filter of variable
optical density. The loss level introduce by the filter is polarization independent
and can be tuned from a few percent up to more than 99%.

3.5.2 The state characterization stage

The laser beam used for the experiment is emitted at the wavelenght A = 532
nm. It is obtained by the Nd:YAG laser Innolight Diabolo through a second
harmonic generation process. The beam is sent to the Type-II sub-threshold
OPO described in § 3.5.1, that produces two beams athe the wavelenght A = 1064
nm: the signal and the idler modes. A polarization system at the output of
the OPO allows to choose the beam to be detected with a standard homodyne
detector. The polarization system is made of an half-wave plate (\/2) followed
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by a polarizing beam splitter (PBS); the different wave-plate orientations allow
choosing the beam to be transmitted by the PBS: the signal (a), the idler (b)
or their combinations ¢ = %(a +b)ord= %(a —b). Two other combinations,
e = %(z’ajtb) and f = %(ia— b), can be obtained by inserting before the PBS an
additional quarter wave plate (A\/4) [56, 57]. Acquisition times are considerably
short thank to pc-driven mechanical actuators that allow setting the A/2 and \/4
positions in a fast and well calibrated manner.

Once a beam is selected, it goes to an homodyne detector put downstream
the PBS. This exploits, as local oscillator, the laser output @1064 nm, previously
filtered and adjusted to match the geometrical properties of the OPO output: a
typical interferometer visibility is 0.98. The LO oscillator phase # is spanned by
a piezo-mounted mirror, linearly driven by a ramp generator who is, in turns,
adjusted to obtain a 27 variation in 200 ms. In order to avoid low frequency noise
in the homodyne current, it is demodulated at (2=3 MHz and low-pass filtered
(B=300 KHz). Then it is sampled by a PCI acquisition board (Gage 14100)
obtaining 10%pts/run, with 14-bit resolution. The electronic noise floor is 16 dBm
below the shot noise level, corresponding to the a SNR ~40. Data are analysed by
a (©Mathematica routine that extract from the six homodyne traces the relevant

quadrature variances necessary for reconstructing the whole covariance matrices
[56].

3.6 Experimental results in the range 0.01 < 7' < 0.63

We have performed different sets of measurement under lossy transmission
in order to investigate different loss regime. Each experimental CM comes from
seven homodyne traces: the shot noise calibration trace, obtained by obscuring
the OPO output, six traces each for one of the six modes required for a full
state characterization. Contrarily to other previous experiments, where quantum
tomographic routine were used in order to retrieve experimental CMs without
any apriori hypothesis on the measured state [58], we have evaluated CMs by
a simpler (¢)Mathematica routine that calculates relevant second order moments
of homodyne distributions in a faster way without enhancing the experimental
indeterminacy on the CM elements. We have tested on a few CMs that this
procedure gives results in all compatible with quantum tomography. We have
also checked, with the standard procedure outlined in [59], that the states under
scrutiny were effectively Gaussian.

Once a CM is obtained the different entanglement witnesses (wpys, Wpyan,
and wgpr Eq. (3.12)), state purity (¢ Eq. (1.9)), teleportation fidelity (F Eq.
(3.21)), quantum discord (D Eq. (3.3)), and mutual information (Z Eq. (3.2))
are calculated. Then, the overall decoherence, i.e. the total level of loss that
includes OPO cavity escape efficiency, propagation loss, filter absorption, homo-
dyne efficiency, is assigned as a label to the measurement. This expected level
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of decoherence is then compared to the theoretical one obtained by inverting Eq.
(3.24) and solving for 7" under the condition det(o) = 1/16; thus requiring that
o represents a pure state (see the discussion at the end of Sect.3.2.4). We have
verified that, even if experimental CMs do not reproduce exactly diagonal states,
all of them respect the Duan conditions (3.6) within experimental indeterminacies.
So that for the analysed matrix the Duan witness wppyan represent a sufficient
and necessary condition for entanglement.

In all the reported plots we have considered the less decohered datum (ob-
tained for 7= 0.63) as a reference so that all the reported theoretical curves are
obtained imposing that Eqgs. (3.25) and the quantum markers as function of the
Eq. (3.25) evaluted for 7' = 0.63 give the measured values.

The total losses we have measured span the interval 37 — 99% (0.01 < T <
0.63). We note that 7' = 0.63, having a cavity escape efficiency of ~ 0.73 implies
an overall state detection efficiency of ~ 0.86 in agreement with an homodyne
visibility of 0.98 + 0.01, a photodiode (nominal) efficiency of 0.90 + 0.01 and
residual transmission loss between the OPO output mirror and the detector surface
of 0.01 £ 0.01.
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Figure 3.3: (color online) Behavior of ¢ = |c1 7| + |car| /2 in Eq. (3.24). The full
(dark orange) line represents the theoretical behaviour calculated starting from
the first experimental point we have measured (7" = 0.63); the experimental points
(blue color) follow the theoretical line, i.e., as expected, the correlation reduces
linearly with T
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In Fig. 3.9 we report the behavior of ¢ = (|c1 7| + |car]) /2, i.e. the averaged
correlation terms see Eq. (3.25)). As expected the correlation between the two
sub-systems degrades linearly with the total loss (7" — 0). The expected behavior
(full dark orange line), obtained by considering the less absorbed CM (T" = 0.63)
as a reference, follows quote well the reported data. Actually, setting the less
absorbed datum as a reference can be seen as assuming that the actual state outing
the OPO is the same over the complete acquisition run. This is a strong hypoyhesis
that cannot be exactly fulfilled for tehcnical reasons. Thus, the scattering of the
point around that line is more due to source long—term dynamics then to actual
deviation from the Lindblad model. At the same time the fact that the points are
reasonably close to that line prove that the long term stability of the source can
be considered quite good.

0.0 B B .-JFE -
-
_4.0 0005
WpHS 0,05/ = =
-0.10+ =
~0.15¢ | | |
-8.00 000 ‘0.05 0.1? 0.15

00 02 04 06 08 10
T

Figure 3.4: (color online) wpyg vs.T. The full (dark orange) line represents
the theoretical behavior, calculated starting from the first experimental point at
T = 0.63. Error bars are obtained by propagating the experimental uncertainty
on the CM elements in the expression of wpyg in Eq. (3.12). The inset is
a magnification of the plot in the high loss regime (T < 0.15). We see that
the un—separability persists, as witnessed by wppg, even in presence of strong
decoherence.

As already mentioned, wpgs and wpyan describe a physical property of the
state that is strong under decoherence. This can be seen in Figs. 3.10 and 3.5
where wpgs and wpy Ay are plotted vs. T. We have also enlarged, in the insets the
region for strong loss (7" > 0.85) to prove that, even if the analysed state is very
close to a two-mode vacuum (the total average number of photon ((n +m — 1) /2)
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Figure 3.5: (color online) wpyan vs.T. The full (dark orange) line represents the
expected behavior calculated starting from the first experimental point we have
measured (7" = 0.63). Error bars on the experimental points (blue) are obtained
by propagating the uncertainty on the measured CM elements in Eq. (3.12). The
inset is a magnification of the plot in the high loss regime (7" < 0.15) in order to
stress the persistence of entanglement, as witnessed by wpyan, even in presence
of strong decoherence.
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reduce to 0.02 £ 0.01) it is still experimentally possible to prove that the state is
non-separable. It has to be noted that, while for T" — 0, wpgs approaches its
classical limit non—linearly, wpyan is linear. Thus, in the very high loss regime it
becomes more reliable to assess entanglement using the latter than the former.
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Figure 3.6: (color online) wgpg vs.T. The full (dark orange) line represents the
expected behaviour calculated starting from the first experimental point we have
measured (7" = 0.63). Error bars are obtained by propagating the uncertainty on
the CM elements in Eq. (3.12). They are considerably larger for point at low
loss.

wgpr < 0 indicates that the state exhibits EPR-like correlation so that it is
possible to gain information on the expectation value of one observable on one
sub—system with a precision better than the standard quantum limit once the
EPR companion is measured on the other sub—system. These feature is by far
the most fragile under decoherence: for T' < 0.5 no state can keep this quantum
feature. This can be understood from the fact that loss, a stochastic process,
affects directly the degree of correlation between the two sub—systems while the
system representation (i.e. its un—separability) is only smoothed by this process.
It is relevant to note that 7" = 0.5 also coincide with the minimum state purity
. So that, loosing the EPR character coincides with the maximum mixedness for
the state during its propagation. In Fig. 3.6 we report the experimental behavior
found for wgpgr for our state. Measured CMs for T' < 0.5 all show wgpr > 0. A
positive wgpr indicates that, for these states, any attempt to gain information on
one sub—system by measuring the other would result less precise than the standard
quantum limit.
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Figure 3.7: (color online) F vs.T. The full (dark orange) line represents the
expected behavior calculated starting from the first experimental point we have
measured (7' = 0.63). The inset is a magnification of the plot in the high loss
regime (7" < 0.15) in order to underline the persistence of a quantum teleportation
regime even in presence of strong decoherence (high loss).
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An important signature for an entangled cv state is its ability of acting as
a quantum resource in the cv teleportation protocol for coherent state. In Eq.
(3.21) we have expressed the fidelity F as a function of the CM elements. F,
as wpgs and wpyan, represents a robust signature of quantum properties for
the state undergoing to a lossy transmission. In particular, in Fig. 3.11, we see
that even in the high loss regime, F remains above the classical limit of 0.5 (see
the inset for greater details). Thus proving that cv entangled state, as the one
produced by our source, could, in principle, be though as the resource for realising
teleportation protocol of coherent state, in principle, at an infinite distance.

Eventually we have retrieved, from our CMs, the value for the quantum mu-
tual information Z (o) (Eq. (3.2)) and quantum discord D (o) (Eq. (3.3)).
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Figure 3.8: (color online) T and D vs.T. The full (dark orange) and dashed
(blue) lines represent the expected behaviors calculated starting from the first
experimental point we have measured (7' = 0.63) for Z and D respectively. The
inset is a magnification of the plot of D in the high loss regime (7" < 0.15).
We note the persistence of a true quantum correlation even in presence of strong
decoherence (high loss).

In Fig. 3.12 we report the experimental data together with the expected be-
haviors, as usually calculated considering the less decohered matrix as a reference,
for Z and D vs.T. As it can be seen the quantum discord follows very well its theo-
retical line while quantum mutual information is a little more scattered around it.
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Moreover, our data prove that even in presence of strong decoherence, it is possi-
ble to evaluate that D keeps > 0, within the experimental indeterminacies, all the
way down to an highly absorbed state. We note that Gaussian quantum discord is
attracting, very recently, a lot of experimental interest [60, 61, 62]. In particular,
in Ref. [60], the authors give an operational significance to quantum discord as
the possibility of encoding quantum information in separable states. In Ref. [61]
the optimal strategy for evaluating D (o) in homodyne measurement is presented.
It is interesting to compare our experimental plot with the one reported in Ref.
[62] where the authors analyse the quantum discord under the lossy transmission
of one of the two sub—systems. We note that in their case the scattering of the
experimental points around the theoretical curve is almost equivalent for Z and
D while in our case there is a clear difference.

3.7 Experimental results in the range 0.01 <7 < 0.25

In this section we report the results obtained investiganting more carefully the
strong dechoerence regime. The total losses we have measured span the interval
75 —99% (0.01 < T < 0.25).

In Fig. 3.9 we report the behaviour vs. T of the averaged correlation term
¢ = (levr| + |ear|) /2 and of the averaged diagonal element ny = (ny + mr) /2.
As expected the correlation between the two sub—systems degrades linearly toward
0 with the total loss T', while the diagonal element goes to 0.5the variance of the
vacuum state.

In Fig. 3.10 we have plotted wpys and wpyany vs T. We can see that, even
if the analysed state, for 7" = 0.01, is very close to a two mode vacuum (the
total average number of photon ((n +m — 1) /2) reduce to 0.02 &+ 0.01), it is still
experimentally possible to prove that the state is non—separable. For 7' = 0.99,
wppgs = —0.008 £ 0.001 while wpyany = —0.018 4+ 0.001 so that the distances
from the classical limit are respectively 8 and 18 times the experimental indeter-
minacies. Thus, in the very high loss regime it becomes more reliable to assess
entanglement using the latter than the former.

Observing Fig. 3.11, we confirm that the fidelity F is a robust signature of
quantum properties for the state undergoing to a lossy transmission. In particular
we see that even in the high loss regime, F remains above the classical limit of
0.5, proving that CV entangled state, as the one produced by our source, could be
used as resource for realising teleportation protocol of coherent state, in principle,
at an infinite distance. For T' = 0.01, F = 0.5023 4 0.0002 so that the distance
from the classical limit is still 12 times the experimental indeterminacy.

Eventually we have retrieved the values for quantum mutual information 7 (o)
(Eq. (3.2)) and discord D (o) (Eq. (3.3)).

In Fig. 3.12 we report the experimental data together with the expected
behaviours, as usually calculated considering the less decohered matrix as a ref-
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Figure 3.9: (color online) Behaviour of the averaged correlation term |cy 7| +
|cor| /2 and of the averaged diagonal element iy = (nr + mr) /2 in Eq. (3.24).
As expected the first reduces linearly with 7". The straight (full and dashed) lines
represent the expected behaviours calculated setting the less absorbed CM as the
reference state. Error bars are smaller than data points and amount to £0.01.
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Figure 3.10: (color online) wpys and wpyay vs. T. The full dark orange
(lower) and the blue (upper) lines represent the expected behaviour of wpys and
wpyan respectively. Error bars range between 10~ and 0.1.
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Figure 3.11: (color online) F vs. T. The full (dark orange) line represents
the expected behaviour. Error bars, obtained by propagating the experimental
indeterminacies in Eq. (3.21), range between 107° and 0.01. It si worth noting

that even for 7" = 0.99 the experimental point lies inside the quantum region
(F = 0.5023 £ .0.0002).
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Figure 3.12: (color online) Z and D vs.T. The full (dark orange) and dashed
(blue) lines represent the respective expected behaviours. Error bars respectively,
range between 3 x 1072 and 0.02 for Z and 10~* and 0.03 for D. Note that the data
for Z scatters more from the expected behaviour may be signalling extra classical

correlations.
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erence, for Z and D vs. T. As it can be seen the quantum discord follows its
theoretical line better than the mutual information. The latter is a little more
scattered around it. Moreover, our data prove that even in presence of strong
decoherence, it is possible to evaluate that D keeps > 0, within the experimental
indeterminacies, all the way down to an highly absorbed state. In particular, for
T = 0.01, D = 0.0022 £+ 0.0001 so that the distance from the classical limit is 22
times the experimental indeterminacy.



CHAPTER 4

BELL’S INEQUALITY VERSUS PURITY AND
ENTANGLEMENT FOR GAUSSIAN STATES

In this chapter, we want to analyze the violation of Bell’s inequality, for Gaussian
bipartite states, in terms of the covariance matrix, and to present a new handy
relation that describe in a simple way the linking among entanglement, purity
and Bell’s non-locality. To achieve our aim we follow the approach of Banaszek
and Wodkiewicz [14]. Although there has been a small controversy regarding the
use of such a method!, it provides an immediate physical significance about the
nature of the analyzed state. In fact, as we saw in § 2.7.4, it is possible to extract
informations about the nonlocality of the state simply observing its representation
in the phace space, since the Wigner function can be expressed as Eq. (2.33).

4.1 CHSH inequality in the space phace for Gaussian states

In this section we consider a Gaussian state, described by the covariance
matrix o Eq. (3.14) and we evaluate the quantity (2.35) B in terms of the following
displacement amplitudes [14): oy = 0, ay = VZ, 3, = 0, By, = —VZ. In this
circumstance B reads

1—|—2€Xp{— . I}—exp{— = 2I}

B(T _ nZ_c2 nZ_c2

— M [1 4 267417,;141- o 678(n+6),u‘1-j| (41)
with p = m. The maximal violation in respect to the displacement amplitude
is given by

Bz (n,c) = m%xB(I, n,c).

We obtain the maximal value of Z, corresponding to the maximal violation of the

inequality (2.36), by the derivative of B, that gives 7= m In [2<]. So Bz
reads

Bz (n,c) = p [1 +2e 4T _ 6_8(”“)’3} (4.2)

(i) TR
n—+c n-—+c

'In [44], the authors define an unsatisfactory feature the fact that the magnitude of the
violation of the Bell’s inequality depends on the displacement in the phase space, and not only
by the "dichotomic" parity operator

= u

69
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It is possible to express Bz in terms of the subsystem’s purity p, and the
correlation strength C,;, between the two subsystems a and b,

(AKX
T VBX (AXE)
obtaining
2
s
B (1, Cap) = 7=z [1+ T (Car)] (4.3)
alb
with

T (Cap) = (1 +2Capp) (14 Capp) =2(14+Capp)/(142Capp)

As already announced, our aim is to analyze the relationship among inequality’s
violation, entanglement and purity. Precisely for this reason we prefer not to refer
to a specific measure of entanglement (unique only for pure states), rather we use
the witness wpyany Eq. (3.16) for evaluating the entanglement. Indeed, as we saw
in the previous chapter, the Duan criterion is a necessary and sufficient condition
to assert the presence of entanglement in diagonal states Eq. (3.14).

It is easy to see that also wppyan can be written as function of i, and C,p. By
Eq. (3.16), it reads

(1 —Cap)

wpyay = ——— — L. (4'4)
Mg

4.1.1 Bell’s inequality violation for pure Gaussian states

We want to analyze the trend of Bz in terms of entanglement witness wpyan
for pure states. To achieve our aim it is convenient to express Bz as a function of
the purity u of the overall system and, of course, of the wpyan.

Since Eq. (1.9) we have

2

= Hs
=t
1 - Ca\b

that, in terms of wpyan Eq. (4.4), becomes

_ [T
1 — (uswpyan + prg — 1)?

1

Inverting it we obtain
2/1(1 + wpyan)

Hs = 14 M(l + wDUAN)2
Substituting the quantities C,;, and p, Egs. (4.4, 4.5) in Eq. 4.2, we find
Bz (1, wpyan), that is the relationship among the Bell’s function Bz, the pu-
rity p and the entanglement witness wpyay. For pure states B%“re (wpyan) =

Bz (1, wpyan) reads

(4.5)
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4-3(1+wpran)?

3 — (1 _'_ wDUAN)2:| |:1 + (1 + wDUAN)2 3(1+wDUAN)2

pure o
Biv_ (wDUAN) =1 + 9 9

(4.6)
where wpp 4y assumes values that are inclused in the codomain [—1, 0]. By Eq.
(4.6) it is possible to see that BZ"* (0) = 2, i. e. the point wpyay = 0, that marks
the border between separable and entangled states, providing the border point
between the hidden variable regime and quantum regime. Moreover B%We (—1) ~
2.19, that coincides with the maximal value found in [14]. This maximal value
can be optimized through a appropriate selection? of the displacement amplitudes
in Eq. (2.35), but this is beyond our purposes. In fact, our aim is to find the
relationship that links different quantum features regardless of the optimal value
which Bz may assume.
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Figure 4.1: (color online) Behaviour of B?”"e as a function of wpy sy, throughout
the range of values identified by the codomain [—1,0] of wpyan.

In the plot Fig 4.1 we report the behaviour of B%We as a function of wpyan,
throughout the range of values identified by the codomain of wpyany. We can see
that B?"e is monotonic. Moreover it is greater than the limit 2 when the state
is entangled, minor otherwise. In this sense, we can say that for pure Gaussian

2for example, in [46], Olivares at al. obtain a better violation, corresponding at Bz = 2.32,
searching the maximum of B Eq. (2.35) with the following displacement amplitudes: oy = v/Z,

Qg = _3\/fa ﬁl = _\/j-7 62 = 3\5-
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states Bg“re can be considered an entanglement witness as wpyay. This outcome
(obtained in the context of the continuous variables) confirms the results obtained
by Popescu et al [63], in according to which any pure entangled bipartite state
violates the Bell’s inequality in the two and more dimensional Hilbert spaces.

Moreover, observing the relations Eqgs. (4.3), (4.6) it is possible to establish
the following equivalences:

{Capp > 0} & {wpran <0} & {Bz > 2}.

4.1.2 Bell’s inequality violation for mixed Gaussian states

In the more general circumstances (1 # 1), let Cy, > 0, and

Hp = ]-_Ca|b>

N|=

2(1-C2)
Hp = LA )
14 (14 2Cq5)(1 + Capp) 142Ca

Hp = \/ I- Cg‘lﬂ

the entanglement and the Bell’s violation depend by the purity. With reference
to Eq. (4.3) we can distinguish three different regions. They are shown in Fig.
4.2.

The region I includes not entangled states, identified by the condition p, <
it the region I1, identified by the condition pp, < p, < pp reports the entangled
states, that are local for Bell (don’t violate the inequality (2.35)); eventually, the
region [II, bordered by pup < p, < pp, represents the entangled states that
are also nonlocal. The existence of the region /1, as also identified by Werner
[65], makes the Bell’s inequality a not too good entanglement witness for mixed
states. Moreover it is a further confirmation of the existence of different forms of
non-locality (see §2.6.2).

4.2  Gaussian noise breaks Bell’s nonlocality, but not entanglement

In this Section we want to show that passive Gaussian noise (described in §
3.4) breaks the Bell’s nonlocality. In particular we see that when a pure (¢ =
vn? —0.25), entangled (wpyay > 0.5) Bell’s nonlocal (i.e.Bz > 2) state evolves
in a Gaussian channel, retains its entanglement, but looses its Bell’s nonlocality.
This mean that although, at the born, the state is pure, therefore, for it, the
violation Bell’s inequality and the presence of entanglement are the expression
of the same type of non-classical correlations (in the previous section we have
seen that the Bell’s function becomes one kind of entanglement witness), the
decoherence highlights the different nature of the two markers: the Gaussian state
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no—physical

Figure 4.2: (color online) Region plot of different nonlocality markers. The region
I includes not entangled states, identified by the condition i, < pp; the region 17
includes entangled states that are local for Bell (2.35), identified by the condition
tp < py < pp; The region I11 represents the entangled states that are also
nonlocal, bordered by pp < p, < pp. See text for more details
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becomes local (in according to Bell), i.e. it admits a description in terms of hidden
variables, although it remains entangled. So the link that we have established in
§ (4.1.1) between entanglement and Bell’s nonlocality for pure states is broken
when the states undergo decoherence.
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Figure 4.3: (color online) Behaviour of Bz as a function of transmission coefficient
T, simulanting decoherence. We note that decoherence heavily affecst the Bell’s

nonlocality. In fact Bz violates Bell’s inequality for a very little range of values of
T.

In the plot Fig. 4.3, it is reported the behaviour of Bz as a function of
transmission coefficient?

T for different values of the parameter n. The plot clearly shows that the
decoherence acts immediately (for 7" very close to 1) making possible only a de-
scription in terms of hidden variables (B3 < 2). Furthermore, a greater number
of photons in the starting (pure) state corresponds to a larger starting (7' = 1)
value of Bz, but also a steeper descent towards the transition from non-local to
the local regime. This behavior is a confirmation of the circumstance [64] that the
larger degree of the initial squeezing, the more rapidly the squeezed state loses its
nonlocality.

31t is found with the help of Eqs (3.25).
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CHAPTER 5

DEGAUSSIFIED STATES

From what we have seen in the chapter 3, Gaussian states are a quantum resource
easy to implement and control and also robust against the decoherence.

In particular, we have analyzed the circumstance in which the Gaussian state
is generated by parametric oscillators. These fields are widely used in quantum
communication as resource states for teleportation protocols.

However we have also seen that for this class of states the fidelity of teleporta-
tion F is governed by the entanglement (see Egs. (3.19), (3.22)) as the only free
parameter, i.e. the success of such protocol is limited directly by the squeezing
level. This circumstance suffers from two limitations.

The first limitation is technical: to produce a stable source that generates a
twin beam with a high degree of squeezing. The parameter of squeezing increases
as the non-linear process that generates the down conversion takes place close
to the threshold. But, as the pump amplitude is approaching the threshold the
impact of fluctuating parameters tends to explode. As discussed by Chaturvedi et
al [73] the fields generated by the OPO contribute increasingly to the fluctuations
of the mode of pump giving rise to a phase transition. Even if the latter develops
for relative distances from the threshold of the order of 1076, for squeezing more
than 10 dB, the impact of amplitude fluctuations must be brought to account.
This means that increasing of r the state may be not more Gaussian, with a
non-Gaussianity not easily controllable.

The second limitation is physical. As we saw in the first chapter thare are
quantum constraints to the physicity of the states as the purity Eq.(1.3) and
the Haisemberg principle Eq. (1.16). For Gaussian states, the constraint purity
translates in a bound, Eq. (3.18), for the correlation term ¢. This term is related
to the degree of entanglement of the state. Since F, for Gaussian resources (even
in the most desirable possible case: pure states) that teleporting a coherent state,
has only one degree of freedom: the entanglement, it follows that the constraint on
c is a constraint on the fidelity. As we saw in the previous chapter, in the limit of
very high energies (tending to infinity) the constraint is negligible, but however, it
exists. The constraints Egs.(1.3), (1.16) concern both Gaussian and not Gaussian
states. However, only for Gaussian resources the fidelity of teleportation F is
governed by one free parameter.

For this reasons it appears very interesting to explore other classes of states.
Naturally the non-Gaussian states are a too general class and it is not easy to
establish the qualities that a state must have for beeing an useful resource to

76
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Quantum Information.

In this chapter we describe a new class of states introduced, at first, by
Dell’Anno et al. [4] in the year 2007. Moreover we study the nonlocal char-
acter of this class of states both through the method of pseudospin and in the
phase space. The optimization of the Bell’s function by a free parameter allows
to identify the most nonlocal resource among all the states belonging to the class.
The most nonlocal state has the same characteristics as identified by Dell’Anno
et al [4] actually useful for quantum teleportation. It complies with all the three
reasonable criteria, identified in [4], which help us to ascertain the features that
a resource must have to ensure a teleportation fidelity better than that obtained
by Gaussian resources.

The described results are reported in [10].

5.1 The Squeezed Bell states

In [4], Dell’Anno et al. investigated cv quantum teleportation using non-
Gaussian states of the radiation field as entangled resources.

They introduced a class of two-mode squeezed Bell-like states with the free
parameter J: the squeezed Bell states [¢) ¢y,

1) gp = S12 (¢) {c0s80,0),, +e“sind [1,1)},}, (5.1)

where S5 (¢) = e~¢alal+Caaz ig the two-mode squeezing operator, ( = 7€' is
the squeezing parameter, |m,m),, m = 0, 1 is a two-mode Fock state. The
normalization of the state is guaranted by the relation cos?d + sin?6 = 1. For
completeness we have reported in Eq. (5.1) the relative phase 6. However, in
[4], it was found that the inclusion of § between the two terms inside the braces
does not improve the performance of [¢) 4, . This state interpolates between and
include as subcases different classes of degaussified resources. Indeed, in addition
to the trivial case of

e the Gaussian squeezed vacuum state

[¥)vs =512 (€)10,0)45, (5.2)

obtained for § = 0, we have that:

e the squeezed photon number state

(1L 1) =S12(¢0)[1,1) (5-3)

is recovered for 0 = /2.
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‘ State H Definition ‘
PS squeezed state Npg a1a2512(¢)[0,0 >19
PA squeezed state Npa alalS15()]0,0 >1,

Squeezed number states S12(Q)[1,1 >1
Twin Beam Su(C)‘O, 0>19

Table 5.1: Theoretical (operatorial) definition of some Gaussian and degaussified
states included in the SB class.

e The photon added squeezed states

|¢;1,10) = _ 5@ {—etanh7|0,0), + [1,1) 15},  (5.4)

V1 + tanh?r

is obtained for § = cos™! <—m) ; while we obtain

v/ 1+tanh? r

e the photon subtracted squeezed states

(109,10 = po_S12(0) {—€¢?10,0),, + €**tanhr|1,1) ,} (5.5)

V' 1+ tanh?r

putting § = cos™t [ ———=2— ).
v/ 1+tanh? r

For convenience we list in TABLE 5.1 the theoretical definitions of all the
states obtained by Eq. (5.1).

As we seen by Eq. (5.1), the squeezed Bell state depends by the free parameter
0, that allows not only to recover the class of degaussified states, but also to tune
suitably the coefficients in such a way as to optimize their performace according
to the our purposes.

For example, in the next section, we will try the parameter § that maximizes
the violation of Bell’s inequality. In this way we will identify the parameter that
gives the most nonlocal state among all those obtained by Eq. (5.1).

5.2 Bell-CHSH’s inequality for Squeezed Bell states

A given state does not have to violate all possible Bell’s inequalities to be
considered nonlocal [44]; it is nonlocal when it violates any Bell’s inequality. Thus
the nonlocality degree depends not only on the given quantum state, but also
on the Bell operator considered (see § 2.7). In this section, we calculate the
Bell’s function B for the squeezed Bell states through the use of two different Bell
operators: pseudospins and parity (the latter is linked to phase space approach).
Our aim is to compare the nonlocality of all states obtainable by eq. (5.1). As
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we seen this class includes the twin beam Eq. (5.2). For this reason we have
neglected the homodyne approach.
All obtained results are reported in [10].

5.2.1 Pseudospin approach for the Squeezed Bell states
Following the strategy described in § 2.7.1 we calculate the quantity

E(01,02) = {urplsy) ® g, [drp)
= cosf;cosb, <S§1) ® S§2)>

+ cos 0 sin 0, <S§1) ® (Sf) + S(_2))>
+ sin 64 cos 0 <(S$) + S(_1)> S >

+ sin 8 sin 64 <(S§r1) + S(,l)> ( >> )

At first, we observe that the |¢)¢5) can be written as

[ts) = 512 (€) |1 + caafal| 00)

Using the two-mode Bogoliubov transformations,

S12(Q)alSh, (©) = S, (—¢)alSiz (—¢) = cal + e ?say (5.6)
S12(C)a3Si, (Q) = Siy (—C) ahSia (—C) = ca} + e “say, (5.7)

we can write

[Vsg) = [cl + o (cai + e*wsaQ) (ca2 +e” 5a1>] Si2 () 00)

- Z [chfZTB) + e eyes (2n +1)] n,n)

n=0
+e® Y CIP (n+1) [+ 1,n+1)
n=0
+e 2 cys? ZC(TB)TL In—1,n—1)
n=0
— Z [c CIB) 4 e eoesCTP) (20 4+ 1) 4 e %00,2C ) (n 4 1)
n=0

+62c20( n(l=194, 0)] |n,n),

where C"?) = ¢in¢ tig:;[. So, through this transformation, |¢¢p) reduces to the
form
Wsp) =Y CE n,n) (5.8)

n=0
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where > 7 }C’SB |2 = 1 for the normalization, with
CWB) = ¢,CTB) e~ cyes (2n + 1)+6_2i¢028207(:_?) (n + 1)+620207(1Tj)n (1—6n0),

where ¢; = cosd, ¢ = sind, and d,, ¢ is Kronecker’s delta function.
By the form Eq. (5.8) it is apparent that the terms <S§1) ® (S(f) + S(,Q)>>,

<<S§r1) + S(_1)> ® S§2)> vanish. Thus the function F (64, 63) becomes

E (01,02) = cosfcostsy Z <|C’§Til|2 + }C’égf 2) (5.9)
n=0
+sinfysinfy Y Re [2C5°Col ] (5.10)
n=0

= cosflicosfy + sin f;sinfs Z Re [QC’fngqﬁfJ .

n=0

We can see that the function F (6;,63) depends on the following free para-
meters: squeezing parameter r, the relative weight § between the Fock states
|00) and |11) of the SB state, and the angles of orientation 6;, 62 of the mea-
surements. So, by the computation of the Bell operator, Eq. (2.32), we obtain

B=B (7’, (5, 91, 92, (9/1, 9/2)
In ref. [44], the authors choose some values of orientations 61,6y, 67, 05:
b = 0 0y =m/2 (5.11)
O, = 0 0, = —0.

Their aim is to find the maximal violation of the inequality using T'B states. With
the setting Egs. (5.11) and 6 = 0, the Bell’s function B results

B (02) =2 (cos 02 + tanh (2r) sin b,) ,
and maximizing with respect to 05, we have

Broax (1) = max B (02)

= 24/1+ tanh®(2r),

that is, obviously, the same result of [44]. We can deduce that the squeezed vacuum
bipartite state ((5.8) with B = Cy(LTB)) exhibits a violation of the inequality
of Bell soon as the parameter of squeezing is different from zero (r > 0). This
confirms the connection between entanglement and violation of Bell’s inequality
for pure states [63], [66]. The maximal violation is given by r tending to infinity.
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In this case, in fact, the squeezed vacuum state tends to the EPR (maximally
correlated) state.

We have studied the function B obtained in the general case Eq. (5.9) with
the same chosen (5.11) for the angles of ref. [44], so we have a direct compar-
ison with the Gaussian states. With the setting (5.11) we obtain the function
B =B(r,0,0). The maximization procedure of B is made on the parameters
(8,8), i.e. Bop (6™ 929y — max; 4 B(r,d,0).

Of course, we obtain the degaussified states PS, PA, PN and the Gaussian
T B tuning suitably the parameter 0 (according to ref. [4] (§5.4)).

In Fig. 5.1 is reported the behaviour of B, (6™, §™*)) (blue solid line),
i.e. the of optimized function B, as function of r. It is compared with the
Bop (679 93 ohtained tuning & so as to provide the PS state (green dot-
dashed line), the T'B state (orange dashed line), and PA state (purple dotted
line). We can observe that the optimized SB state is more nonlocal than every-
one else considered states. In particular, we note that B,, reaches the maximum,
2v/2, for r tending to infinity, asymptotically, and for r = 0 with § = 7/2, i.e.
when the SB state becomes the well-known Bell state == (|00) + |11)). However,

V2
for r — oo all states approach the same value of violation.
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Figure 5.1: (color online)—Plot of the Bell function for the optimized state (blue
solid line), for the PS state (green dot-dashed line), for the T'B state (orange
dashed line), and for the PA state (purple dotted line) for r ranging from 0 to 2.
The inset is a magnification of the trends for € [0.2,1.0].
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5.3 Appropriate non-Gaussianity for cv quantum teleportation

It has been demonstrated [67] that the fidelity of teleportation can be im-
proved by exploiting the suitable deguassifications of Gaussian resources. Schemes
of degaussification produce enhancing of the entanglement of the output state.
However, when the resource is non-Gaussian, entanglement isn’t only free degree
conditioning the teleportation fidelity. There are other properties that play a
crucial role in the success of teleportation. It is well known that the Gaussian
twin beam, in the limit of infinite squeezing, realizes exactly the cv version of the
maximally entangled Bell state (qubit). We have seen, in the previous chapter,
that in the limit of r tending to infinity the Gaussian twin beam allows perfect
quantum teleportation with unitary fidelity. Therefore, [4] any efficient resource
for cv quantum information tasks should enjoy a further property, i.e. resem-
ble the form of a two-mode squeezed vacuum state, as much as possible, in the
large 7 limit, while retain its non-Gaussian character, Egs. (1.11), (1.12). The
squeezed-vacuum affinity G can be quantified by the following maximized overlap:

g = m?X| 12 <_S‘ ¢7"es>12 |2> (512)

where |—s) is a two-mode squeezed vacuum state with real parameter of squeezing
—s and [1,,,) is any entangled two-mode resource.

It is possible to see [4] that at sufficiently large squeezing the photon-added
squeezed and photon-subtracted squeezed resources have high entanglement and,
moreover, possess strong non-Gaussianity. Nevertheless, as we’ll see in the next
section, they aren’t the best resource of teleportation, they don’t satisfy the propri-
ety of squeezed-vacuum affinity. It is the optimal interplay of these three proprier-
ties: entanglement, non-Gaussianity and squeezed-vacuum affinity, that allows to
obtain the optimal non-Gaussian resource for cv quantum teleportation [4].

5.4 c¢v quantum teleportation with non-Gaussian resources

The authors of ref.s [4], [5] analyzed the teleportation fidelity F Eq. (2.40)
obtained using [¢)) 45 as resource for different Gaussian (coherent, squeezed) and
non-Gaussian ( single photon, photon added coherent) single mode input states.
For each given input state, the analytical expression of F is a function of the
independent parameters r, ¢, § and 0, i. e. F = F(r,¢,0,0). Maximizing F, at
fixed r, the optimal fidelity,

fopt = mgmx]—“(?, ¢> 5a 9))

is obtained for values of d, that are different for each input state, but that do not
reproduce any of the states already known, Egs. (5.2), (5.3), (5.4), (5.5). The
investigation revealed that the optimal non-Gaussian resource, obtained tuning
the parameter § in |¢)) 4, realizes the simultaneous maximization of the content
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of entanglement, of the degree of affinity with the two-mode squeezed vacuum
(5.12), and of the, suitably measured, amount of non-Gaussianity Eqs. (1.11),
(1.12).

The same results are obtained considering a realistic cv quantum teleportation

5].



CHAPTER 6

ENTANGLEMENT SWAPPING OF THE SQUEEZED
BELL STATES

Quantum resources are fragile and are subject to decoherence by interaction with
the environment. The unavoidable losses in the communication channel can lead
to a deterioration of quantumness limiting the possible applications of these states
to Quantum-Communication protocols. For this reason the performance of the
squeezed Bell states was analyzed also in the presence of losses, mechanisms of
decoherence and low efficency of detection. The analisys gaves the same results
of the ideal case [5]. However, even if the squeezed Bell state turns out to be the
best teleportation resource, compared to all those analyzed even in the presence
of losses, the overall performance degrades.

As we saw in section (2.5) to restore the entanglement lost during propagation
it is very useful to use the entanglement swapping protocol. It, e.g., plays a
relevant role in the quantum repeaters implementation, because error probability
is linked to the length of channel. The swapping protocol allows to distribute
entanglement between the nodes of shorter segments, wherein the channel is been
divided.

To determine which is the best resource of teleportation even in circumstances
where the state undergoes a process of swapping before becoming a resource for
teleportation we [11] have analyzed a cascaded quantum information scheme, in-
cluding as first step either an ideal or realistic swapping protocol, and subsequently
an ideal teleportation protocol. The cascaded scheme is structured as follows:

e Let p,., the initial resource. At first we apply the entanglement swapping
protocol, using the formalism of the characteristic function (see section 2.5).

As we have said in the previous chapters, it is easy to produce Gaussian twin
beam T'B with finite degree of squeezing. On the contrary it is hard and more
expensive to obtain non-Gaussian states. Therefore, following the idea of sticking
to the availability of current technologies, we have assumed to have at disposal
many copies of T'B and few copies of S B states. With such a constraint, the most
convenient approach would be to swap the non-Gaussian entanglement using the
TB and the SB states as resources and input states of the swapping protocol,
respectively. On the other hand, by removing the above constraint, one would
have on-demand availability of SB states. In this desirable instance, one could
use S'B states both as input and as resources of the swapping protocol. Moreover,
as we seen in the previous chapter, the SB can be tuned for giving the main

84
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de-gaussified states. For all these reasons, we have chosen to swap the squeezed
Bell states with all resources of interest so far considered.

e At second, we study the Vaidman-Braustein-Kimble (VKB) protocol (see
§ 2.8) for cv teleportation of a coherent state with non-Gaussian entan-
gled swapped resources, obtaining a teleportation fidelity F Eq. (2.40) as
function also of the states used in the swapping protocol. In terms of the
quadratures, it reads

1 (6(0) eLe
F— Faoun = 5- / AXadYd ™ (X4, Vi) x5 (X, —Y3),

where A, B = SB, PS, TB denote the inputs of the swapping protocol (see

Fig. 2.1), XEZO is the characteristic function of the coherent input state of

lep)

the teleportation protocol and ngt , given by

out

D) (3, V) = M (X, Vi) XS (X, — Vi Xa, Vi)

is the single mode output state of the teleportation protocol obtained using
(swapp)

as resource the output state x,,; of the swapping protocol.
e The final teleportation fidelity is optimized tuning the controllable available
free parameters P,
fA(?SIZB IIlIEJlX ‘FAS’U)B'

6.0.1 Teleportation fidelity with swapped resources

As explained above, we have computed the output characteristic function
Y W9PP) of the swapping protocol following the protocol described in section 2.5.
We do not report the analytical expression as it is excessively long and cumber-
some. Given yU¥PP) it is then straightforward to compute the output character-

(telep) (X4, Y,) of the subsequent ideal teleportation protocol

out
(telep) (coh (swapp

Xout ( 4>p4):Xm )(I4,p4)X0ut )(l“4,—p4;l“4,p4), (6.1)

istic function y

We have derived the analytical expression for the teleportation fidelity F 4,5 in
the most general instance is SBswSB. It contains as particular cases all the
fidelities of interest. Such a fidelity depends on the following parameters: the
squeezing amplitudes 719, 734 and the phases ¢y, ¢3, and the angles fo non-
Gaussianity 012, 034 and phases 015, 034 of the input states and of the resources
in addition to the parameters associated with the experimental setup'. Before

1g;, i = 1,4, that is the gain associated with unitary displacements;
T; (R;), i = 2 3 that is transmissivity (reflectivity) of beam splitters
Y, i= 1 4 that is damping factors

Nihy, § = 1 4, that is average number of thermal photons
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proceeding in the analysis, we establishes some simplifications and assumptions.
Without any loss of generality, as in Refs [4], [5] we fix the phases of the S B states
as follows: 015 = 034 = 0 and the squeezing phases ¢, = ¢3, = m. Due to such a
choice, the dependence of the teleportation fidelity on the two gains ¢; (i = 1,4)
reduces to the unique parameter g = g; + ¢s.

We don’t report the relation obtained for Fspswsp (more cumbersome). How-
ever, free parameters available for optimization, that gives fg%tstB, are P =
{012,034, G}

In order to provide significant examples, we report the analytical expressions
for Frpswrs and Fspewrn. They are computed by letting 615 = d34 = 0 in the
general analytical expression for Fspswsp and related to ideal swapping protocol
(ie. Ro=R3=0,71 =74 =0, see § 2.5). We obtain:

1 1. !
FrBswrB = {1 + 1(1 + ) (e7 212 478y 4 4_1(1 —9)%(e* ™ + 62T34)} . (6.2)

The optimal value g,,; obtained for fixed ry3, 734 reads

1 — e~ 2(r12+734)

Gopt = 1 n 6—2(r12+7‘34) .
We can see that, for growing values of the quantity (712 + 734), Gopt g0es rapidly
to one. The optimal fidelity, abtained by g, reads

14+ e—2(r12+734)

(opt) _
fTBszB - (1 + 6727‘12)(1 + 6727“34).

It is invariant under exchange of 15 and r34. In the limit of r33 — 0o, we obtain
the Eq.(3.19).
If we let (534 =0in fSBstB we get fSBszBa

Fspswr = Fresurp X (6.3)
6—47"12 _ _ .
{1 + Tfil%BszB [(1 + 9)2 - €4r12<1 - 9)2} sin® 12
6—27"12 o .
+ 5 Freswrs [(1+ §)*(cos §12 — sin d12) (6.4)

_64T12<1 . §)2<COS 512 + sin (512):| sin 512} )

where Frpsorp is given by Eq. (6.2).
If we fix g, the optimal fidelity F. é?éJQUTB is given by the optimal angle 675
such that
tan 2655
[6727‘12?]3 _ 62”2@%} {462(T12+7‘34) + (62T12 + 62T34) [ﬁ + 62(7‘12+7‘34)(1 _ E?)Q} }

ﬁ [4627’34 + ﬁ] + 62(7’12-&-7’34)?]% [1 + 4627’34@%] + (1 _ '§2)2(e47’12 + 4e2(r12+734) + 647"34)’
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with gy =147, 9. =1—7. If welet g =1 and so r3; — 0o we obtain 265" =
[1 + e~?2] associated with optimized teleportation of input coherent states with
(non-swapped) SB states used as resources.

Finally the optimized fidelity F.%") - is given by

opt
fSBszB maX FsBswrB
612 6opt

Moreover, if 019 is a specific fuction of 71, such that cosds = \/%%, the SB

states reduce to PS states and the optimized fidelity is simply given by

(opt) _
fPstTB max ‘FSBS’U)TB .
9 §12=cos— 1 [COSh r12/+/cosh 27’12]

The optimization over g is carried out numerically.

6.0.2 Results. Ideal swapping protocol:plots

In Fig. 6.1 we plot the optimized fidelities F8) o0 FD and FED
as a function of T12, at a ﬁxed r3s. We compare them with the corresponding
fidelities F. S?é)t , Fpg ©rt) and f ") associated with the same non-swapped resources.

—=~="[_ non—swapped res.

swapped res.

rn

Figure 6.1: (Color online) Optimized fidelity of teleportation féﬁfT pwith A =SB
(full line), PS (dashed line), and T'B (dotted line), as a function of the squeezing
parameter 715 of the swapped input state, and at fixed r3; = 1.5 of the swapping
T B resource. For comparison, we also report the plots of the teleportation fideli-
ties associated with the corresponding non-swapped resources (same plot style, but
with tinier and lighter lines). While the fidelities associated with non-swapped
resources saturate to one, the fidelities associated with swapped resources saturate
to a lower level, depending on the swapping squeezing parameter r3q4.
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Obviously, for large value of the squeezing parameter r3,4, the fidelities f%ﬁfT B

tend to the ideal fidelities fﬁf’p ", Indeed, the saturation level, exhibited for large

values of the squeezing of the swapped resource 719, is higher, and tends to the

ideal value one, for growing r34. In order to emphasize the improvement of the

teleportation with non-Gaussian resources, in Ref. [4] it is introduced a suitable
relative fidelity defined as:

opt) ref
f( pt) fﬁl )
f-ref

AFSY) = : (6.5)

where F, ggt) is the optimized teleportation fidelity of teleportation associated with

a SB resource, and fgef ) is the reference (optimized) fidelity associated to a
resource A. In order to quantify the enhancement in the teleportation perfor-
mance when using (swapped) non-Gaussian SB resources with respect to refer-
ence swapped resources, we generalize Eq. (6.5) and define the following relative
fidelity:

(opt) (ref)

sw f
Afsgswi) — SBswA(Tef) BswC ’ (66)

stwC

where F, é?éjgﬂ 4 is the optimized fidelity of teleportation that we obtain using a
S B resource swapped with a resource A, and F (Tffc is the reference (optimized)
teleportation fidelity associated with a resource B swapped with a resource C.
In particular, we analyze the behavior of AFswt?) and AFLIWTE) - These
quantities are plotted in Fig. 6.2 as functions of the squeezing parameter rio
of the swapped resource. It is worth noticing that the percentage improvement
corresponding to swapped resources is practically equal to that corresponding
to non-swapped resources. A high enhancement is obtained with respect to the
Gaussian instance. Moreover, the swapped SB resources result better that the
swapped P.S resources too, especially for low values of r19; however, a significant

improvement is also evident for r15 € [1,2]. The Figs. 6.3 and 6.4 show the three-

dimensional plots of AFG“TE) with B = TB and B = PS respectively, as

(I'BswTB .
functions of r15 and r34. AF BT H ), see Fig. 6.3, is monotone both as a function

of 15 and as a function of r34. However the performance supremacy of swapped
S B resources is evident with respect to swapped T B resources for low values of
ris as r3 # 0. Looking at Fig. 6.4, i.e. AFG2%T5) e see that the swapped SB
resources are better than the swapped PS resources for low values of ri9; then

the improvement, i.e. the relative fidelity, vanishes (as the resources coincide)

for a specific value of r15, depending on r34; at last, for growing ris, AF égif;gf)

exhibits a revival till it goes to zero for large 5.

Let us now assume that also the swapping resource can be a non-Gaussian
resource as well. Then, we consider the optimized fidelities F AZIZ 'y with A =
SB, PS, TB. Although we have computed the analytical expression for Fag, 4,
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Figure 6.2: (Color online) Relative teleportation fidelities A]:Sl;sw?g with B =
T B (full line) and B = PS (dashed line), as a function of the squeezing parameter
r19 of the swapped input state, and at fixed 34 = 1.5 of the swapping TB resource.
For comparison, we also report the relative fidelities Afég) associated with the

corresponding non-swapped resources (same plot style, but with tinier and lighter
lines).

the optimization of these fidelities is carried out numerically. In Fig. 6.5, fgoﬁf) A
is plotted as a function of rq5, for a fixed value of r34. As expected, a sensible en-
hancement of the teleportation fidelity can be observed for the fully non-Gaussian
instances with respect to the fully Gaussian instance; such an improvement is more

pronounced for the case of Swapped S B resources. In Fig. 6.6, the relative tele-

portation fidelities AF g@fﬁ? nd AF, Jgijjg’;s are plotted as functions of 7is.

The relative fidelities clearly show a marked enhanced performance of swapped
S B resources with respect to swapped PS and T'B resources. Remarkably, in
the fully non-Gaussian instance, the optimized (swapped) SB resources never

collapse onto optimized (swapped) PS resources; correspondingly, the relative
fidelity never vanishes.

6.0.3 Results. Realistic swapping protocol:plots

Let us now investigate the behavior of the swapped resources in the instance
of realistic swapping protocol. We assume to know the values of the parameters
associated with imperfections and decoherence effects. From an operational point
of view, the knowledge of these parameters is equivalent to assume a control on
the characteristics of the experimental apparatus, including the inefficiency of the
photo-detectors and the length and damping rate of the noisy channels. Fixed
the parameters associated with the experimental apparatus, the optimization of
the fidelities is carried out numerically. In Fig. 6.7, we plot the optimized fideli-
ties fg;f})B for several choices of the swapped resource A and of the swapping
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Iz

Figure 6.3: (Color omnline) Three-dimensional relative teleportation fidelity
Afég?i?gm as a function of the squeezing parameter 15 of the swapped in-
put resource, and of the squeezing parameter r3; of the swapping TB resource.

TB*“TB) )
Afé BswTB ) is monotone in 7 and T34

resource B. We observe that the (swapped) SB resources perform better than
the (swapped) PS and T'B resources, even when they are swapped with T'B re-
sources. Indeed, Fspswsp shows the best performance for any value of ri, (at
fixed 734). Furthermore, also Fgps,rp maintains above Fpgsyps, Fpsswrs, and
Freswrp for any r15. Let us notice that the PS resources perform better than the
T B resources for low values of 715, and as the squeezing parameter grows, both
the fidelities Fpgswps and Fpsqrp decrease going even below the fully Gaussian
instance Frps,rp. In order to emphasize the percentage improvement obtained in
the instance of SB input states and/or resources, in Fig. 6.8, we plot the relative

fidelity AF, g@f‘;ﬁ? for several choices of the swapping and swapped resources.

6.1 Conclusions

In this chapter, as in ref. [11], we have studied the efficiency of the cv quantum
swapping protocol for the transmission of quantum states and entanglement, using
a general class of non-Gaussian entangled resources. As a preliminary task, we
have expressed the entanglement swapping protocol in the characteristic function
representation. In order to evaluate the performance of the swapping protocol,
we have exploited a criterion based on the ideal teleportation of input coherent
states using swapped states as entangled resources; in particular, the teleportation
fidelity has been assumed as convenient indicator to quantify the performance
levels. We have showed that the non-Gaussian squeezed Bell resources allows for
optimization procedures, yielding high values of the fidelities both in the ideal and
the realistic instances.
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Figure 6.4: (Color online) Three-dimensional relative teleportation fidelity

AF, é];‘fjijgB) as a function of the squeezing parameter 15 of the swapped input

resource, and of the squeezing parameter r34 of the swapping TB resource.

swapped res.

2

Figure 6.5: (Color online) Optimized fidelity of teleportation ]—jﬁ{?’& with A =SB
(full line) A = PS (dashed line) and A = T'B (dotted line), as a function of the
squeezing parameter r15 of the swapped input state, and at fixed r34 = 1.5 of the
swapping resource. For comparison, we also report the plots of the teleportation
fidelities associated with the corresponding non-swapped resources (same plot
style, but with tinier and lighter lines). The swapped SB resources show a sensibly
higher saturation level with respect to the swapped PS and TB resources.
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Figure 6.6: (Color online) Relative teleportation fidelities AF, gfﬁﬁg with A =TB

(full line) and A = PS (dashed line), as a function of the squeezing parameter
r19 of the swapped input state, and at fixed r3y4 = 1.5 of the swapping resource.
AFPSPS)

SBsvSB

never vanishes for any r,.

5
‘
‘
’
‘
s
’
;
;
’
‘
s
3
9
05 '

0.475
0

rn

Figure 6.7: (Color online) Optimized fidelity of teleportation .7:15&1533 with A =
B = SB (full line), A = B = PS (dashed line), A = SB, B = TB (dot dashed
line), A = PS, B = T'B (double-dot dashed line), and A = B = T'B (dotted
line), as a function of the squeezing parameter 15 of the swapped input state, and
at fixed r34 = 1.5 of the swapping resource. The parameters of the experimental

apparatus are fixed as: 71 = 0.1, nyg1 = 0, 74 = 0.2, nypa = 0, Ry = v/0.05,
R3 = +/0.05. The swapped SB resources show a sensibly higher saturation level
with respect to the swapped PSS and T'B resources.
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Figure 6.8: (Color online) Relative teleportation fidelities A]:SJ;Z? with A =
SB, B =C = PS (full line), A = SB, B = C = TB (dotted line), A = C =
TB, B = PS (dashed line), A = B = C = T B (dot-dashed line), as a function of
the squeezing parameter 15 of the swapped input state, and at fixed r34 = 1.5 of

the swapping resource. The parameters of the experimental apparatus are fixed
as in Fig. 6.7.



CHAPTER 7

ENGINEERING OF THE SQUEEZED BELL STATES

As we seen in the chapter 5, the SB state, proposed in [4, 5], is
|U >gp= S15(—7) {c0s0]|0,0 >15 +sind|1,1 >15}. (7.1)

Tuning suitably the parameter § we can obtain the PA state, the PS state, the
PN state, and the T' B [4], where addition/subtraction operations, as well as the
number state, are referred to the case of 1 photon.

As we seen in chapters 5 e 6, |¥ >gp constitutes an optimal resource of non
locality, very useful for realizing the quantum teleportation and the swapping
protocol with a very high efficiency. For this reason we proceeded to plan an
experimental set up able to generate such state. In ref [12], we introduce the basic
scheme of generation, and the preliminary analysis on the performance of the new
resources will be performed. The experimental scheme introduced generates a new
class of non-Gaussian resources that approximates, under both ideal and realistic
conditions, the class of the (theoretically defined) SB states. The scheme has the
advantage of being versatile, in the sense that a variation of the free experimen-
tal parameters allows the generation of all degaussified states, described in §5.1.
Furthermore, the free experimental parameters can be exploited to optimize (as
we have made in the previous chapters) in different situations, the performance
in some quantum protocols.

In this chapter we report the results described in [12], in which we introduce
(see §7.1), in two steps, the basic generation scheme of the new class of entangled
states: at first, we consider a very ideal case of generation in order to emphasize
the connection with the (theoretically defined) SB states, and, at second, we
discuss the realistic instance.

The usefulness of the state is investigated in §6.5, estimating its performance as
a resource for the quantum teleportation of a coherent state [49] (see § 2.8). Based
on this criterion, we show that the optimized state, generated by our realistic
scheme, provides, in a significant range of the parameters, a better performance
than the other realistically generated states, including the PS state.

7.1 Scheme of generation of the new resources

The basic generation scheme is illustrated in Fig. 7.1.
In this scheme we exploit two (independently generated) Gaussian twin beams,
‘C >19= 512(<)|0,0 >19 and |§ >34= 534(5)‘0,0 >34, i. e. we start by the initial

94
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Figure 7.1: (Color online) the block-scheme of ideal setup for generating the class
of states Eq. (7.4). Two indipendent twin beam |(),, and [),,, are mixed into
two beam splitters BS; and BSy; of transmittivity 77 and T5, respectively. Two
single photon detectors D3 and D, realize simultaneous ddetections.

"proto-state"
1€ >12 |€ >34= 512(¢)S34(£)|0 >1234, (7.2)

where [0 >;_,= @);_, |0 > is the tensor product of n vacuum states. The twin
beams feed the input ports of two beam splitters of transmissivity 77 and 75,
respectively. Specifically, modes 1,3 mix themselves at the beam splitter (BSy),
and modes 2,4 at the beam splitter (B.S;7). The resulting state is the four-mode
entangled state |® >1534 described by:

| > 1934 = Usz(k1)Una(k2)|C >12 [€ >34
= Uiz(k1)Uza(K2)S12(€)S34(£)]0 >1034 - (7.3)

Here the squeezing operators are given by S;;(1) = exp {— /@Ta} + u*&\iaj} (=
¢, &) with complex squeezing parameters ( = rexp {z gbC} (i =1, =2) and
£ = sexp {z gbg} (i = 3, j = 4), respectively. Furthermore, the beam-splitter
operators are given by Uy (k) = exp {Hl (a}ak — alaD }, where for the first one

[ =1,k =2, for the second one | = 3,k = 4, and where tanx;, = /(1 —T}) /T;.

The basic idea is that, starting by the four-mode state |® >1534, the condi-
tional measurements provided by the simultaneous "cliks" of detectors D3, Dy,
and the restriction to suitable ranges of the beam-splitters parameters and of the
squeezing parameters, will lead to the generation of two-mode states which well
will approximate the theoretical SB states.
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Now we proceed by steps. At first, in §7.1.1, we consider the ideal situation,
i. e. single-photon conditional measurements without inefficiency and losses.
This allows to describe the basic elements of the scheme and to understand the
connection with the theoretical SB states (§7.1.2). Then, in §7.1.3, we discuss the
full realistic instance, that includes detection inefficiency and losses, whose values
are choosen as those currently accessible in actual experiments.

7.1.1 Single-photon conditional measurements

Simultaneous detections project the state of Eq. (7.3) onto the tunable state

(T)
| >= N3y < 1,1|Us3(k1)Uza(k2)S12(€) S534(€) |0 >1234, (7.4)

with N a normalization constant.

To make the calculations less complicated, we have described the strategy
of post-selection in the formalism of the characteristic function. When a post-
selection strategy is applied, the simultaneous detections of single photons in
mode 3 and 4 project the density matrix pyg3, = [P >1234 1234 (P into

(11>)
T

1

= WTTM [P1234 @ 3|1 >< 13 ® 4|1 >< 1|4]

T

1
o / B0 By Byd B,

X X1234 (B1; Ba; Bs; By) Dy (=51) D (—=Bs)

X Tr g4 | Dy (—B5) D (=B1)5 |1 >< Uz ]l >< 1]

! / 0,028, M (By; By) Dy (—By) D (—5,)

B Nﬁb)ﬂ

where M (34;3,) is given by:

1
M (By;8,) = 2 /d2ﬂ3d2ﬂ4X1234 (By; Ba: Bs; By)
< x5 (B5) x4 (Ba)

and !

ng) (Br) = T [f)l (=851 >< 1\3]
= (1 - ‘6k|2) 67|16k|2/2 fOI' k= 3747

L<m|D(=a)|n >= (l!)l/2 amfnef“"'z/zL?f*” (la[?), and LY (z) = Ly (z) =1 — .

m!
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is the characteristic function of the single-photon projector, ;|1 >< 1|, acting on

)

the k—th mode. The normalization constant ./\/}‘1> is given by

NI =T 13 [p134 ® 3[1 >< 13 ® 41 >< 1]
In conclusion, we have

1 N A
XQD) (Y1,72) = WTrl? [p12D1 (71) D2 (72)}

T

1
zxgm;i/fﬁdﬁkﬁﬂﬁﬁﬁﬁ

x Tria [ Dy (1) Dy (=) Da (1) Dz (=15,

1
= WM (71572) -

7.1.2 Tunable states similar to Squeezed Bell states

Varying the free parameters, ri, k2, 7, s, ¢;, ¢ we can obtain different
(Gaussian or degaussified) states. First of all, we fix ¢, = m; thus, Si2(() =
S12(—=7). On the other hand, if we fix also ¢, = 7 (as it will be later forced by op-
timization, see next section) it is simple to see that, with this choice for the phases,
the role of the two beam splitters inside the scheme become indistinguishable:

T=T,=T,

and thus ky,ky = k. Obviously, we have also £ = —s and S34(§) = S34(—5).
Indeed, we will see that this simplified instance is sufficient for our purposes.
Furthermore, we will make the assumption that x* << 1, and that the value
of the strength [¢|(= s) of the ancillary squeezing S34 is at most of the same
order of x? (this will be clarified by the procedure below). Therefore, we exploit
beam splitters with a high transmissivity 7' = cos? |k|, and the ancillary squeezing
Ss4 with a weak squeezing strength. As a consequence of such assumptions, the
unitary operators Uis(k), Uss(k) can be expanded in power series and can be
truncated to the order k2, while S34(€) can be truncated to the order [£] = s.
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Therefore, we have:

\@1234 ~

rk2(alas — ayal

2
1+ k(alas — ayal) + 5 ) + O(K*) | x
[ iy A(adas —axa)® o g
1 + k(abas — azay) + 5 + O(Kr”)| %
1+ (s(akal — asay) + O(s?))| x
S12(=7)[0,0,0,0)1234. (7.5)

Next, the postelection strategy is applied. Specifically, by using coincidence
photodetection, the conditional measurements of simultaneous detections of sin-
gle photons in mode 3 and 4 project the non-normalized state Eq. (7.5) onto
31 < ]_, 1|<I) >1234.ThUSZ

31 < 1, 1|(I) >1234~ (S + K2a1a2)512(—’/‘)|0, 0 >19 . (76)

Due to our assumptions on the parameters k2 and |¢], in the above equation we
have implicitly neglected terms proportional to |£|x?, i.e. contributions of the
form —SI{Q(GJ{al + agag)Sm(—Tﬂ0,0 >10, and of higher degree. Exploiting the
(two-mode) Bogoliubov transformations

SIQ(—T) a; S12(—r) = coshra; + sinhra;r-, (i#j=12), (7.7)
we obtain the non-normalized state:

Sia(—r) {(s + k*sinhr cosh )]0, 0)12
+r%sinh®r[1,1 >15} | (7.8)

whose form, apart from normalization, coincides with that of the squeezed Bell
state (5.1). Introducing normalization factors, we obtain finally:

| > 12 = S12(—7) {co0[0,0 >12 +c11|1,1 >12}

—A + sinh r coshr
Coo = B ) ) (79)
[(=X + sinh r cosh )2 + (sinh® r)2]1/2
C11 = (1 - 0(2)0)1/2 s (710)
where A = —s/k?. Obviously, the state can be written in the form (5.1), where it

is simple to see that

(7.11)

k2 sinh?r
§ = arctan

s + k2sinhr coshr
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Note that, being the expression (7.8) of the state generated by the scheme of Fig.
7.1 practically identical to that of the theoretical state (5.1), the particular cases of
the PA, PS, PN and T'B states generated in this ideal instance can be obtained
by choosing the experimental parameters in such a way that § (Eq. (7.11)) is led
to assume, from time to time, the corresponding special values described in [4]. Tt
is to be noted that one could also consider further terms in the expansion, again
obtaining states which approximate the theoretical SB states. For example, one
can truncate at order x* in the beam splitter operators, and one can truncate at
order |£]3 in the squeezing operator, by imposing the constraint that |£]? is at most
of order 3. But, for our aims, this would be only an unnecessary complication.

The ideal instance here discussed allows to well understand the general idea,
showing that the basic scheme can generate states similar to the theoretical SB
states. On the other hand, the constraint that the shape of the generated states
must be just that of the S B states is not strictly necessary for our aims, being the
previous procedure only addressed to emphasize the connection with the theoreti-
cal SB states. In fact, we aim simply to generate states with a better performance
than that of TB and of generated PS squeezed states. If our scheme, in some
conditions, generates a state that is not of the SB form (5.1), but that satisfies
this requirement, it is not a problem. Therefore, in the analysis of § 7.2, while
retaining the condition x? << 1, the parameter s will be free to assume any value.

We now move to discuss the inclusion of unavoidable experimental imperfec-
tions to gain insight on a realistic realization of our scheme.

7.1.3 Realistic generation

In realistic experimental conditions the state |¥7 > takes trace of decoherence
mechanisms which affect the squeezing sources: cavity output coupling, and losses
during the propagation [55],[68].

In this context, the four-mode proto—state | >15 |£ >34, Eq. (7.2), becomes
the four-mode squeezed thermal state described by the input density matrix (see
appendix A)

Prazs = Stz (€) S3a (€) pllsasSTy () S44 (9) (7.12)

where pih,, = ®i_, pi, with pi* is the density matrix of the thermal state as-
sociated to the k—mode. On the other hand, at typical temperatures (300 K),
the thermal density matrix pi,, tends to the vacuum state, so that p;,3, coin-
cides pratically with the projection operator associated to the previous pure state
|® >1934 (see the discussion in Appendix B).

A possible realistic scheme is sketched in Fig.7.2. The decoherence mecha-
nisms are modelled by introducing four fictitious beam-splitters (one for every
starting mode) with equal transmissivity 7, (= 1 — Ry). Each beam-splitter has
the empty port illuminated by a vacuum mode v,. As already mentioned, at
room temperature the thermal contribution to the decoherence is negligible, and
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Figure 7.2: Realistic scheme (color online).(color online). At the ideal scheme (Fig.
(7.1)), four fictitious beam splitters of transmittivity 7} are introduced to mimic
dechoerence mechanisms. Moreover, the single-photon detectors are replaced by
POVMs (II{"™ and II{") with quantum efficiencies 7 < 1.

thus we must simply replace the state |® >1934 of Eq. (7.3) with the state

4
9" >1230= Q) Uk (T2) [® > 1234, (7.13)

k=1

where the beam splitter operator that mixes mode a; with the respective vacuum

Uy is given by Uy (T;) = exp {FLZCALLTA)]C — m}‘dkﬁ,i}, and k¢ is such that tank, =

(1 —="1Ty) /Ty. Now we will proceed with the postselection procedure (see ap-

pendix A for further details). The detection associated to modes k = 3,4 is now

modeled by the POVM H,(;m) (n,.), taking account simply of the threshold detection
of n > 1 photons, that is given by

1 () = Iy — I (), (7.14)
where .
I ) =3 (1= m)" m >4 5< i, (7.15)
m=0

and 7, is the k—mode non-unit detection efficiency. So that the relative density
matrix becomes

Trgs [ o @ I (my) © T ()
N (g, 114)

p5 (Ty, 1) = : (7.16)
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where o, is the density matrix relative to the state |®’' >1934 , and the normal-
ization constant

NE™ (13, 1) = Trias [ praas © T () @ T (1) (7.17)

that depends on 74, 1,4, represents the success rate in a real scenario. Applying this
scheme, we can obtain, under a realistic situation of presence of losses (T; < 1)
and of not perfect quantum efficiencies (13,7, < 1), an approximated version
of SB states, PS and T'B states simply by inserting the values of the ancillary
parameters which provide these states in the theoretical instance [4]:

P (Trmsma) = P (Toy15,m4)

pgg) (TZ>773’774) = p’(IC‘m) (TZ>/’73”'74)

p’_(l?g) (TZ>773’774) = p’(I(‘)n) (TZ>/’73”'74)

s=0,k>~0 ’

)
s~k2<L1,p=m1

<3

It must be also remarked that, in addition to the other imperfections, it is to be
considered a further practical restriction: due to decoherence, the effective value
of the squeezing parameters is reduced. In fact, in appendix A, it is shown that
the real squeezing parameter 1’ is related to the free-losses parameter r according
to

Y= —% In[l1-T7,(1-e?)]. (7.18)

So, e.g., if in the block scheme (Fig. 7.2) the squeezing is fixed at r = 2 (~ 17.4
dB), the realistic scheme, affected by 15% losses (T, = 0.85), corresponds to a
beam with ' of about 0.90 (~ 7.81 dB).

Once established the generation scheme, and the form of the generated states,
the criterion that will be assumed in the next section to test their usefulness will
be their efficiency (measured by fidelity) in implement quantum teleportation.
However, we will compare only fidelities associated to optimized SB states, PS
states and T'B. In fact, the performance of the PA states and, even more, of
the SN states when used as resources in quantum teleportation protocols is much
worst than that of the Gaussian T'B: the reason is that these resources do not
satisfy the crucial requirement of Gaussian affinity [4].

7.2 The tunable resources for the teleportation protocol

Preliminaries — In this Section we seek to optimize the fidelity of the BKV
teleportation protocol for a coherent state [49] using, as the bipartite entangled
resource, the states generated by the proposed scheme. To this end, it is convenient
to exploit the formalism of the characteristic function [69], particularly suited
for the analysis of non-Gaussian states, because it simplifies the computational
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strategies, expecially if the non-Gaussian state is used as a resource for the BKV
teleportation protocol [4].

For a n-mode state described by the density matrix p the characteristic func-
tion is defined by

X(B1: Bas oy By) = Tr[pD1(B1) Da(By) - Dn(8,)], (7.19)

where D;(f;) denotes the Glauber displacement operator for the mode i (i =
1,...,n).

In Appendix B we show that, given a four-mode state represented by the
characteristic function X434 (315 B2; B3; B4), the state achieved after conditional
measurements on the two ancillaries modes (3 and 4) (depicted by detectors D in

Fig. 7.1 is given by the characteristic function XSFD) (By;B),

1
XSFD) (B1;8y) = WX

/d2ﬂ3d254X1234 (B1; Ba; Bs; By)

<xs” (B5) x5 (B4 (7.20)

where 3, is a vector of the complex coherent amplitude, d?3, = d3,d3}, while
X234 (B1; Ba; Bs; B4) is the characteristic function of the initial state. It will cor-
respond to |® >1934 (see Eq.(7.3)), for the ideal scheme, or to |®' >1234 (see Eq.
(7.13)), for the realistic scheme. In the above formula, XéD) (B;) denotes the char-
acteristic function of the conditional measurement realized by detectors D on the
modes k = 3,4 (its definition is provided in Appendix B).

We note now that we can consider the following states:

e Theoretical states — the ones given by their operatorial definition (see TA-
BLEI) and not always exactly attainable by our scheme. Their performance
has been considered in [4, 5].

o Generated states: ideal case — the ones generated by our scheme when we
assume that losses are absent, detectors are perfectly photon-resolving, and
projective measurements are performed.

e (Generated states: realistic case — the ones generated by our scheme when

losses are considered, and only on/off measurements are allowed, described
by a non—-ideal POVM.

In the next section we will discuss then at first the performance of the states
generated in the ideal instance, by making also a comparison with the performance
of the theoretical states. Later, we will discuss the performance of the states
generated in realistic conditions. As announced, we will measure the performance
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of a given state by considering the teleportation fidelity. In the formalism of the
characteristic function, the teleportation fidelity is given by [69]

F =1 [ NG (7.21)

where A is the vector of the complex coherent amplitude for a generic state, and
d?\ = d\d)\*. Being the input state a coherent state | >, the characteristic
function x;, = X.on 15

Xeon(A) = e2Fr2isba] (7.22)
while the characteristic function x,,, of the output state is [4]
Xout(A) = Xcoh(A)Xres(A*; A)? (723>

where ., (A"; A) denotes the characteristic function of the entangled state used
as resource for the protocol. In order to determine the teleportation fidelity, We
will exploit, from time to time, its specific form for each considered state.

However, before proceeding further, we recall that our proposal has been based
on an approximation (k2 << 1), and on the possibility of an improvement provided
by an optimization procedure. The only unconditioned parameter is the strength r
of the squeezing operator S1(§); once fixed r, the fidelity of the state generated by
our scheme will depend on the two squeezing parameters, and on transmissivities:
thus, the optimization must be performed with respect to the phases of the two
squeezing operators, to the transmissivities, and to the squeezing strength s of
S34(€). In the following we will show that optimization with respect to phases
and transmissivities is compatible with the assumptions exploited in order to
generate SB states.

We have at first solved the optimization problem with respect to the squeezing
phases; in fact, the analysis of several cases shows that the optimization procedure
always returns ¢, = ¢, = , thus implying that the optimal building bricks for
our scheme (see Fig. 7.1) are two independent two—mode squeezed states with
( = —r, and £ = —s; this is in agreement with the position assumed a priori
when we implemented our scheme in the previous section. From now on, thus, we
will continue to use for the squeezing operators the notations: Sia(—r), Sz4(—s).
As already remarked, this choice for the phases, that is forced by optimization,
allows to take a common value 7' for the two transmissivities. The optimization
with respect to T must take into account the role that the transmissivity plays
in setting the distillation success rate (see Eq. (7.17)). Furthermore, the result
of this analysis must be congruent with the assumption x?> << 1 (i. e. high
transmissivity T = cos? |k|) that is needed for our generation scheme. We have
found that the fidelity monotonically increases with 7. The optimal value would
be thus obtained for 7" — 1, a limiting value that, however, leads the success
rate to drop to zero. Therefore, we set, in all what follows, 7' = 0.99 (a value
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experimentally obtainable), and we cancel the dependence on T'. In this way, we
satisfy the assumption k% ~ 0.01 << 1 and, de facto, we achieve optimization
with respect to transmissivity.

Finally, regarding optimization with respect to the ancillary parameter s, as
we have announced in the previous section we allow that this parameter covers
a wide range, and we identify, from time to time, the value of s that, at each
given r, maximizes the fidelity. We will see that, when the ideal generation is
considered, this value corresponds to S B states for not too large values of r, while
for values of  which exceed a given threshold this is no more true; despite this, the
states generated by the scheme and associated to the maximum fidelity provide
a performance better than that of T'B and PS states. In the realistic instance,
obviously, we do not mind to compare the form of the optimized states with that
of the theoretical S B states, but we focus our attention only on their performance.

7.2.1 Ideal case of the single-photon measurement

As a testbench for the proposed scheme, we have considered the teleportation
fidelity for the most ideal case where the detectors D, Fig. 7.1, realize simulta-
neous projective single photon measurements, and the system is loss-free. The
output state is, then, pure and described by the wave function given in Eq. (7.4).

Fig. 7.3 shows plots of the teleportation fidelity obtained using, as a resource,
states that can be generated by the most ideal version of the proposed scheme. In
particular, we have plotted the fidelity vs. the squeezing s (< r) of the ancillary
modes (3,4) for eight different values of r (= 0.6 , 0.8 , 1, 1.2, 1.4, 1.6, 1.8, and
2). For every curve, the value at s = 0 corresponds to the fidelity for a generated
PS state, while s = r corresponds to the fidelity obtained with a T'B.

It can be seen that for every r there is a maximum in the fidelity that moves
toward higher s when r increases; at the same time the maximum becomes less
pronounced. We see that:

e For low values of the main squeezing the optimal resource is obtained for
s close to 0. In particular, for the first lower values r = 0.6,0.8,1 the
generated SB state, as approximated by our generation scheme, provides
the best performance (the value of s does not exceed the order of magnitude
of k* ~ 0.01, see TABLE II).

e For values of r greater than 1 the state produced by the generation scheme
and corresponding to the maximum fidelity, as r grows moves away in-
creasingly from the SB state (the value of s exceeds sensibly the order of
magnitude of k% ~ 0.01, see TABLE II). However, this state still provides a
better performance than that of a 7B and of an (experimentally generated)
PS state.
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Figure 7.3: (Color on line) Fidelity of teleportation of the state generated from
our scheme in the ideal instance (single-photon conditional measurements) plotted
vs. the ancillary squeezing parameter s (< 7) for different values of the main
squeezing parameter r: (a) r = 0.6 (brown full line); (b) r = 0.8 (purple dashed
line); (c¢) r = 1 (red large—dashed line); (d) » = 1.2 (blue dotted line); (e) r = 1.4
(green large-dotted line); (f) » = 1.6 (black dotted—dashed line); (g) r = 1.8
(magenta double dotted—dashed line); (h) » = 2 (orange triple dotted—dashed
line). The point at s = 0 corresponds to the fidelity achieved with a PS squezed
state generated in ideal conditions, while at s = r we obtain the fidelity achieved
with a TB, generated as well in ideal conditions.

e In this same last region a T'B state provides a better performance than that
of the (experimentally generated) PS states and SB states.

Now we compare the optimal fidelity that can be obtained by the class of
states here introduced, i.e. the value of the maximum in Fig. 7.3 with that of the
theoretical states. In Fig. 7.4 it is plotted vs. r the optimal fidelity corresponding
to states generated in the ideal case, and these values are compared with those of
the fidelity obtained by exploiting the theoretical definition of T'B, PS, and SB
states. In the same figure it is also reported the fidelity of the PS states (s = 0)
generated in the ideal case.

On one hand, we can see that, in this pretty ideal contest, the best fidelity
of teleportation, for all the considered range of r, is achieved by exploiting the
(optimized) theoretical SB states as found in Ref. [4]. On the other hand, the
optimal fidelity for the class of states which we have introduced gets closer to
that of the theoretical SB states when r increases. It has to be stressed that
while the fidelities of the theoretical states and of the generated PSS state can be
analytically computed as functions of r, the optimal fidelity for the whole class of
generated states must be computed numerically point by point, so that the plot
of this optimized fidelity, if seen in greater details, looks as a broken line. In the
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Lr [ s |
0.6 | 0.00057
0.8 | 0.0046
10| 0011
12| 0.022
14| 0.036
16| 0.056
18| 0.082
20| 0.12

Table 7.1: Values of s corresponding to the maximum performance of the states
generated by our scheme (in the ideal instance) for the considered values of r.

plot range 0 < r < 2, representing experimentally feasible levels of squeezing, we
can distinguish two different regimes:

a) r < 0.5 — the procedure of maximization Eq. (7.21) gives s ~ 0, i.e.
the best teleportation resource generated by the scheme is given by states that
well approximate the experimentally generated PS states. On the other hand,
the three curves corresponding to the optimal fidelity on generated states, to the
fidelity of generated PS states and to to the fidelity of theoretical PS states,
respectively, are superimposed and lie in between the fidelity of the optimized
theoretical SB state (above) and the fidelity of a T'B (below).

b) r > 0.5 — the performance of the optimized resource generated by the
scheme overcomes both that of the generated PS state and that of the theoret-
ical PS state, while offering a performance very close to that of the optimized
theoretical S B state. In Fig. 7.5 we report the behaviours in the range 1 < r < 2.

As an example, if we fix r = 1.6, we obtain the value 0.974 (at s = 0.056) for
the optimized fidelity of the generated states. While, for the same r, the fidelities
given by theoretical resources are 0.977 (optimized theoretical SB state), 0.965
(theoretical PS state), and 0.961 (T'B). Therefore, in the framework of the ideal
generation the performance of the generated states is very close to that of the
theoretical ones.

7.2.2 Realistic lossy scenario

As pointed out previously, a realistic scenario for the generation of these class
of states can be modeled by considering an inefficient photon detection and a lossy
environment for the starting pair of two—mode squeezed states. In what follows
we have considered the value n = 0.15 for the detection efficiency (that is the
value currently obtainable in real experiments). Moreover, we remark that the
values of the squeezing strength r which appear in the plots are referred to the
original main squeezing, but the reduction to the effective squeezing r has been
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Figure 7.4: (Color online) Comparison among: the optimized fidelity on the class
of generated states in the ideal instance of generation (red dashed), the fidelity of
the PS squeezed state generated in the ideal instance (green large—dashed), the
optimized fidelity of the theoretical SB states (cyan continuous), the fidelity of
the theoretical PS squeezed states (purple dotted—dashed), and the fidelity of the
theoretical TB (black dotted).

taken into account in order to obtain the final results.

In Fig. 7.6 we have plotted the optimized fidelity of teleportation associated
to the generated states, (that depends on the squeezing strengths r, s) assuming
at first an overall level of (fictitious) transmissivity 7y = 0.85 (i. e. a level of loss
equal to 0.15) in Eq. (7.13). In the figure we have plotted the optimized fidelity
as a function of the squeezing parameter s (< r), assuming for r the same values
of Fig. 7.3. We can observe that:

a) the behavior of the fidelities does not change very much apart from a
smoothing of the curves around their maximum,;

b) as expected, the fidelities suffer a further deterioration due to the combined
effect of non—ideal single photon detection processes, and of losses.

In this first plot the level of losses equal to 0.15 has been taken as a reference,
being at present this level experimentally accessible by properly choosing optical
components for the squeezing source. On the other hand, very recently an out-
standing source with an overall loss of less than 0.08 has been reported [70]. In
view of this result, we are led to investigate the behavior of the fidelities when
the level of losses is varied. Therefore, we fix again the detection efficiency to be
n = 0.15, we select for the squeezing parameter r the value » = 1.6, and we report,
in Fig. 7.7, the optimized fidelity on the generated states as a function of the pa-
rameter of loss (denoted by ¢). The plot is compared with the curves relative to
the fidelity associated to the generated PS state, and to the fidelity associated to
a T B, where also in these last two cases we have fixed n = 0.15, r = 1.6. As it
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Figure 7.5: (Color online) Details of Fig. 7.4 in the range 1 < r < 2 for: the opti-
mized fidelity on the class of generated states in the ideal instance of generation
(red dashed), the fidelity of the PS squeezed state generated in the ideal instance
(green large—dashed), the optimized fidelity of the theoretical SB states (cyan con-
tinuous) the fidelity of the theoretical PS squeezed states (purple dotted—dashed),
and the fidelity of the theoretical TB (black dotted).

can be seen, for losses up to £ = 0.30 the optimized state obtained by our scheme
of generation leads to the best fidelity. It has to be noted that, at a fixed r, the
value of s corresponding to the maximum does not change very much. In the
reported case this value is included in the interval (0.048,0.050).

Summing up, as remarked in point b) above the values of the fidelities in
this realistic instance sensibly deteriorate. On the other hand, for values of r
between 1.2 and 1.6 the optimized fidelities take again appreciable values which
are better than those obtained when generated PS states and T'B states are
exploited. Furthermore, as we see by the Fig. 7.7, a (foreseeable) improving in
the control of losses could improve the performance to levels comparable with
those of the theoretical instance.

7.3 Conclusions

In this chapter [12], we have introduced a generation scheme that can produce
a class of non-Gaussian tunable states which well approximates the class of SB
states proposed in [4, 5|. A preliminary analysis shows that the state generated
by our scheme is such that, used as a resource, provides the maximum fidelity
of teleportation of a coherent state, i.e. ensures, in the most interesting range of
the currently accessible experimental values of the main squeezing strength r, a
better performance both with respect to a generated T'B and with respect to a
generated PS state (this last representing the best resource till now experimen-
tally obtained). This is true both in ideal conditions and in realistic conditions.
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Figure 7.6: (Color online) Fidelity of teleportation in a realistic lossy scenario
(level of losses equal to 0.15, i. e. T, = 0.85, and 1 = 0.15). The fidelity depends
on the squeezing parameters s, r, and has been plotted vs. s (< r) for the same
values of 7 used in Fig. 7.3: (a) r = 0.6 (brown full line); (b) » = 0.8 (purple
dashed line); (c) r = 1 (red large—dashed line); (d) » = 1.2 (blue dotted line);
(e) r = 1.4 (green large—dotted line); (f) » = 1.6 (black dotted—dashed line); (g)
r = 1.8 (magenta double dotted—dashed line); (h) » = 2 (orange triple dotted—
dashed line).

In particular, in ideal conditions of generation (no losses, perfect photon-resolving
detection) if 7 > 0.5 the performance of the optimal generated state lies very near
to that of the optimized theoretical SB state. In realistic conditions (presence of
losses, only on/off measurements allowed), obviously, the fidelities sensibly dete-
riorate, but, as remarked, the optimal generated state provides again, in a wide
zone of interesting values of r, the best performance with respect to a generated
T B state and with respect to a generated P.S state.

It is interesting to note that also a slight improvement in reducing the level of
losses and in increasing the detection efficiency leads to a relevant improvement in
the performance of the optimal state generated in realistic conditions. Regarding
the problem of improving the efficiency in photon-resolving, detectors based on
superconducting wires could solve the problem in reasonable times. Once achieved
these improvements, the efficiency of the realistically generated state would ap-
proach sensibly the remarkable efficiency of the optimal generated state in the
ideal instance.

Anyway, our preliminary analysis shows that our scheme can generate non-
Gaussian states with better performance than other generated states, including
the PS state. In a forthcoming paper, the experimental set up needed to realize
our scheme of generation will be designed. To this end, we will consider two
possible instances: continuous wave and pulsed regime. In this second paper we
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Figure 7.7: (Color online) Optimized fidelity of the states generated in realistic
conditions (with n = 0.15) plotted as a function of the loss parameter ¢, for r = 1.6
(blue full line). The plot is compared with those relative to the fidelity of the PS
squezed states (s = 0, dark line)) and to the fidelity of the TB (s = r, green
large—dashed line), when both are generated in realistic conditions with n = 0.15.

will face with the problem of a sufficiently effective detection in coincidence of
two photons in the two different modes, as required by our scheme. In the same
paper we will show how the generated states can be reconstructed by performing
suitable homodyne detections.

Obviously, at the end of this route we aim to obtain our most ambitious goal,
the actual realization of the experimental generation.



CHAPTER 8

NON LINEARITIES INDUCED BY FLUCTUATIONS
IN THE OPTICAL PARAMETRIC OSCILLATOR

In the course of this Dissertation we have highligth that there are two main classes
of quantum resources: Gaussian states and non-Gaussian states. We have seen
that there are many benefits' from the use of these resources, but also that each
of them suffers some limitations. For example, in the chapter 3, we have reported
some experimental findings, showing that the quantum features of the Gaussian
resources are very robust against the decoherence, but, in the chapter 5, we have
described some technical and physical limitations afflicting this class of states.
In particular we have stressed that we need of high squeezing parameter r for
obtaing a very high teleportation fidelity. This means that the parametric process
of down conversion, that generates the Gaussian squeezed states, must take place
close to the critical point of threshold of the process. In such point the role of the
fluctuating parameters of the system becomes critical. The generated state under
this condition becomes an undesiderable, uncontrollable non-Gaussian state [71].
Moreover approching the threshold the fluctuating parameters tend to expolde.

On the other hand, it is possible to apply another strategy, that allows to bet-
ter the performance of the resource without to approach the threshold of the down
conversion process. In fact in the chapters 5 and 7 we have seen that starting from
Gaussian states, as generated by the OPO under stable conditions?, and apply-
ing some nonlinear operations -for expample a single photon detection- we obtain
non-Gaussian states, that offer performances better than Gaussian states. In this
case the non-Gaussianity isn’t undesired and uncontrollable, but it is intentional.

To be fair we have to say that also the latter strategy suffers some limitations.
To degaussify a two-mode Gaussian state is a non trivial experimental operation.
In fact the conditioning measures must take place simultaneously on both modes of
the state. This condition is not easy to obtain, also due to the low efficiency of the
single photon detectors. So we can note that the scheme proposed in the chapter
7 presents some experimental diffulty. For this reason we studied extensively the
feasibility conditions deducting that it is achievable (see chapter 7).

However, at the same time, we looked for other possible sources of non-
Gaussianity.

In this chapter we present a preliminary study, conducted in collaboration
with Prof. S. Solimeno and Dr A. Porzio, at the University of Naples Federico II,

Ldifferent for each class
2far from the threshold.
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about a new way to obtain non-Gaussian states: to transform the undesiderable
fluctuations of an OPO close to threshold in controllable tools for producing an
optimal non-Gaussian resource. In this way, the non linearity for trasforming a
Gaussian state in a non-Gaussian one isn’t in the detection-step, but it is in the
generation-step. Unfortunately this study is still at an early stage. However, as
there seems to be very interesting, we consider appropriate to mention it in this
Dissertation. The chapter is structured so as to provide an analysis of the role
of fluctuations in a type-II OPO (see chapter 3). In particular we look at the
modifications induced, by the fluctuations, onto the state, by the analisys of the
characteristic function, and onto the covariance matrix. Eventually we study the
ability of this state to act as a resource in a teleportation protocol. We prove that
extra noise source can induce an improvement in the teleportation fidelity.

8.1 Graham-Haken-Langevin system

From what has been said in the previous chapters, we can deduce that the
optical parametric oscillators are most used source of continuous variable entan-
glement. They are currently exploited for producing both Gaussian states and as
source for degaussified states. Type II OPOs rely on parametric down—conversion:
a strong pump beam at frequency w, interacts in a non-linear crystal with the
vacuum fields thus generating two mutually orthogonal beams, signal and idler,
at frequency wy = w; = 3w, respectively [72],[73]. The three OPO cavity modes
ay (ap pump at frequency w,, a, and a; respectively signal and idler) evolve under
the action of the Hamiltonian

Hipe = ih2 (bsbibg - boblbj) +ih (5*b0 - gbg) (8.1)

where Y is the coupling parameter proportional to the crystal second order suscep-
tibility . The pump field €& = e "%re (1 + up) is treated in the rotating frame
e~wrt a5 a complex quantity with a constant amplitude €, that we assume modu-
lated by a fluctuating factor 1+, (¢) ({u,) = 0) times a phase factor e~**», where

b, (t) is a slowly diffusing phase, i.e. in accordance with the usual laser theory
((¢, (1) — @, (¥ ))>2 = 2Ay, |t — t'| with A, the laser linewidth [74]. In particular
L¢, = w, a stationary Gaussian process with (w, (t) @, (t')) = 24,6 (t —t').
p, (t) will be treated as a stationary Gaussian process. Analogously as,a; are
defined in the frame e~*»t/2,

The cavity modes are characterized by damping factor v; = v, y; +7;,, with
Y;m> Vj. due respectively to the output mirror (M) and the other loss mechanisms
(x: crystal absorption and scattering, absorption of the two mirrors, etc.). Modes
are assumed to be slightly_detuned by (51_3]- = z—j [Lj%] — wj, [z] standing for the
closest integer to x. L; = L; +0L; with L; the average OPO cavity optical length
at frequency w; while L; is due to the mirror position fluctuations.
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In OPO, the degree of correlation in the output fields is a function of the
distance from the threshold oscillation. To have higher degree of correlation means
to drive the OPO close to the oscillation threshold, in a regime where the OPO
dynamic departs from the ideal case and the output fields are influenced by all the
noise sources. The OPO dynamic can be described by a set of Langevin equations.

The evolution of the cavity mode operators is rooted in the theory of Langevin
equations with quantum sources developed by Graham-Haken [72]. Namely it is
described by the Graham-Haken Langevin equations (GHLE).

We introduce the quadratures

X, = £ (e’A‘z’z’/Qag + e_i¢P/2aT) (8.2)
2v/2gy )
Y. = £ (—z’ei"bp/zotq + ie_i‘ﬁP/QaT)
2v/2¢y )
where the subscript ¢ = +, — distiguishes idler and signal, E is a parameter that
quantifies the distance by the threshold, gy is an adimensional parameter, of the
order of 1079, describing the non-linear interaction strength y of the OPO crystal,

. 20
AT

In terms of the quadratures (8.2) the GHLEs become

U = —H-¥_+N, (8.3)
¥, = —H,¥,+N, (8.4)
where i )
Xo Yoktp + Xr }
U, =  No=| /0fp T 2o |
0 L Yb :| 0 [ w+YR0
and
A O [ CE(Xo+6Y) -2 -cEY,
H = s 4 2 _ g
; [o AJ*_ 2 _CEYy  —cE(Xo+0Y) o TeWs
H, = —%1+@H ‘Ol}zﬂgmawo

We note that X, Y, are the quadratures relative to the pump, while X Res }A/RU X Ro>s }A/RO
are the vacuum fluctuating quadratures, such that

(XeMXr () = (V¥ () =or—7)

(K Xno(7)) = (Vo) Vo(7)) = 3807 = 7).
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Moreover @ = w, + w; + W, = 2W;s + Wp, A\c = 1 — L.

We can see, by Egs (8.3), that the OPO analyzed is characterized by four
classical fluctuating parameters i, w,, 6v and dyx. These four terms, together
determine the OPO dynamics. For typical operating conditions, (Uup ~ 1073 =
1072, gy ~ 1075, v ~ 10 + 20 MHz, 0w, ~ 1-+1000 Hz, o7 ~ 1+ 10 mK,
on/O0T ~ 107% +10* and o, ~ 107° + 10*) so that o5, and o, respectively
range in the intervals 1076 <+ 10~* and 107° = 1073,

We note that the presence of phase noises (w, and dv) physically implies that
the dynamic of the X quadrature is coupled to the dynamic of Y. This physical
aspect, has a strong consequence in the form of the fluctuating covariance matrix
for the downconverted fields switching cross—correlations that are absent in an
ideal system.

8.2 Integration of the GHL system
Integrating (8.4) yields

Xo(r) = / "l

[cos o (m,7) (G0t (') + Xy (7)) = sinp (r,7) (2 () + Vi, (7)) | a7
Yo (r) = /T e To(T=7") «

[cosgo (r,7") (fﬂ (7) + Y, (T’)) +sing (1, 7') (%up (1) + Xg, (T/))] dr’
with ¢ (7,7') = [, wdr”.

Analogously we have
()= [ Gnr) N
with

G (r,7) = Te JrHd™ — 1 _ / H.dr" + / Hng”/ Hdr" —---

T being the time ordering operator. Next G (7,7') can be expanded in a power
series in € :

G (r,7) = GEO) (1,7") + EGED (1,7") + €2G£2) (1,7
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where
dGo) N — _HO.gO
Ec(Tﬂ—)__c'c
d
EGﬁ (r,7) = —H®.GY +W_.GY
d
d—G§2> (r,7) = —H®.G®» +wW_.GWY
-
that is
GO (r,7) = o JoEdr

Ggl) (r,7) = /, Ggo) (1, 7") - W (7") Ggo) (", 7"y dr"

G® (r,7) = / GW (r,7") - W (") - GV (7", ') dr"

T

Averaging the quantity

U (r)®l (1) = / dT// dr"G (1,7) - N (r')NT (T/l) -GL(r,7")

with respect to the quantum noise N (7') yields the covariance matrix

o= [ GG
with
pin = (NG ()N (7))
the density matrix of the quantum noise entering the cavity.

From (8.2) it descends for the covariance matrix [75] o ;; averaged with respect
to the quantum noise sources X _, Yr,

Oue (T) = <)f_<2 (7_)> = Ogyy (1) = <Y§2 (T)>
_ /Oo [e”*‘TlG?m (r,7") + e”leG?zy (T, 7")} dr’

Oy (T) = (Xo (1) Yo (7)) = (Yo (1) X (7))
= / [—62)\<T,ngz (7,7") Gey (7, 7") + 62’\57/G<zy (7,7") Gegar (7, 7') | dT’

—00

In particular the variance <X92<> = 0y of Xy, = X cosf + Y_sin 0 reads

09 (T) = Ocuw (T) cos? 0 + 204y (1) 8020 + 0y (7) sin® 6
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Depending X, (1), Y, () on the Gaussian quantum processes Xz_(7'), Yz, (7') we
have more in general

(X2 (1)) = { (2n — 1)No_(71) (8.5)

0 othervise

Therefore, we obtain

2g52(n (7)) +1

O (T) = 2 5 [cosh (27 (7)) — sinh (27 (7)) cos 2¢ (T)]
ry (1) = L o (o1 (7)) sin 20 ()
Oay (T) = %% [cosh (27 (7)) + sinh (27 (7)) cos 2¢ (T)] ,

from which it is possible to reconstruct the quantum state. In fact, the Weyl
characteristic function

X (€:t) =Tr[D (&) p (1),

can be found starting from the set of moments (X2 (7)) and using Eq.(8.5). We
obtain

X (£ 7)
= <€Xp |:_ (0<$$ (T) U? + (Uczy (T) + Osya (T)) Ug Vs + Ocyy (T) U?)} >ﬁuctuating paramgé’rg)
where
SU1 + Us
U = ——Fs, 8.7
s NG (8.7)

SU1 + V2

V2

X (&;7) is averaged with respect the classical processes w,, v, and x and depend-
ing on time through the fluctuation induced by the pump amplitude in o (7).
At zeroth order of the expansion x (£ ;7) reduces to

x@¢ﬂ=<mp%(Aﬁﬂﬁ+Aﬁﬂﬁﬂ># (838)

&m:@/e&“”%ﬂwwww (8.9)

—00

Ve =

where

and
E.=2(1+<E)
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Consequently, by x ({.;7) we can obtain the Wigner function,

1 X2 XY, Y?
W(Xg,Yg):7<exp{—< 2 —= )D :
det o (T) Ocax (T) Oy (T) Ocyy <T) fluctuating parameters

Now, we can observe that purity p Eq (1.2) is given by

It has been proved in [75] that the covariance matrix of the mixed state o,
at the output of non fluctuating OPO, propagating through a noisy channel is:

o (1) =0 (1—e"7) +o.(0)e " (8.10)

with o, the asymptotic covariance matrix

2N+142M, M
_ 2 2
O = M. 2N+1—2M;
2 2

and M = M; 4 iM; is the correlation function of the bath, while N is a phe-
nomenological parameter related to the purity of the asymptotic state. Then we
have that, in the circumstances in which fluctuating parameters are considered,

Eq. (8.10) becomes

2Ness+14+2Mieyy
— Moey

o (1) = 2N, ¢ s+1—2M
£f leff
Maeyy = €

where

(0) + Ocyy (0) — 2N — 16—1“
2
(0) - Ocyy (0) —2N — 16—1“
2
Mgeff = M2 + (O'gxy (0) — Mg) G_FT

T

O-IE$
Nepp = N+—

T

g
My = M+ —=

8.3 Teleportation fidelity

We want to calculate the teleportation fidelity F of a coherent state |3),
described by the characteristic function

Xin (2,0) = 05 | =5 ol + (& +i0) B — (& — i0) B] V3



8.3. TELEPORTATION FIDELITY 118

with Eq.(8.6) used as resourse. We have

1
F = % /dUQdU2Xin <u2, 7)2) Xout (—u27 _U2) , (811)

where y,,; is the characteristic function of the teleportated state,

Xout (U2,V2) = Xip (U2, V2) Xpes (U2, —V2; Un, V2) . (8.12)

and
Xres (u1> V1; Ug, 'UQ) =X (u+> Vi; t) X (U_, V_; t) s

where x (uy,v4;t) is given in Eq.((8.6). Therefore,

E2
Xout <u27 V2; T) = Xin (u27 UQ) exXp |:_4— (U+$$ (T) ug + O —yy (T) U%)

Ix
The fidelity F Eq.(8.11), is given by averaging on the time-dependent quan-
tities

F =70,

where

1
F(7) = 5 [ duadua, (um, 00 7) o (—z, =027

- ! (8.13)

%Q%ﬂﬂmuy+g(ggrw@o+g

Expanding in terms of the fluctuating quantities o4, (1) and o_,, (7), and re-
taining only even non-zero moments, we have

L
k=0
with
0k,0
F) :
; E2 E2
(n—1) (m—1)
5m,02+zz + 5”702*9(@/ + E(nfl)z(mfl)
E2 2 +xT —yy

\/Eo:yy +1 \/Eam +1

where

2\ 2(4+1) N
@muu+3w(%ﬁ @%Aﬂ—amﬁ
(40 4 4)!! (E%T +1yu%vz -
29y s

0 =el

sqq
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The parameters Eg}q are the averages of the fluctuating quantities a?qq (7). In

particular, we have

1

FO) , (8.14)
2 2
J(Erm 1) (£ 1)
=0 =9
FO oy (8.15)
Eopyy—i-l ”Ea+zz+1
_ Sf'(o) <0-?Hm (T) - U+zz2) <U%yy <T> - Ufyy2)
-8 ( zgx)2 ( 2gx)2
O taz T 2 0 _yy + 2
s =
f(Q) — — +zx + = vy 4 EEE;J:E(_O;y (816)
\/EU,yy—Fl \/EUerz‘i‘l
= _ =\ (o 2\
B 35 0) (U+xaz (7—) — O4az ) 4 (U—yy (7—) — O—yy >
- 64 205\ 200\ 3
O tzx + E2 O-fyy + E2
2 —2 2 2 —2 2
o (% —72) (72, (1) — 7
o 1 Y (8.17)
=) )

It is worth noting that the even moments all have positive coefficients so that
any fluctuation of o,, (7) and o_,, (7) will improve the overall fidelity.



CHAPTER 9

CONCLUSIONS

The purpose of this Dissertation was to investigate the quantum properties of
the electromagnetic field of light radiation. These properties make it possible to
ascertain the characteristics that a quantum state must have to be a good resource
of teleportation.

We have dedicated part of the dissertation to the study of Gaussian bipar-
tite states. They are one of the most renown resources for implementing of cv
quantum communication protocols such as cv teleportation of coherent states. In
the chapter 3, we have discussed in detail the relationship between three different
entanglement criteria used in the cv framework and linked them to the telepor-
tation fidelity. The latter evaluates the ability of this class of states in quantum
teleportation protocol.

Then, in the same chapter, we have experimentally analyzed how the de-
coherence affects different entanglement criteria and quantum markers for a cv
bipartite state outing a subthreshold type-II OPO. The decoherence is been ex-
perimentally introduced by transmitting the quantum state through a variable
attenuator. Our experimental findings prove that the Lindblad approach for de-
scribing lossy transmission is valid all the way down to strongly decohered states.
Moreover, we have proved that the particular class of states we have analyzed
keeps, within the experimental indeterminacies, its main quantum signatures, i.e.
the possibility of realizing quantum teleportation of coherent states with a fidelity
above 0.5 and a quantum discord above 0 for a total loss of ~ 99%. So it can,
in principle, to realize quantum teleportation over an infinitely long Gaussian
channel. From the analysis of the behaviour of the quantum discord and mutual
information under decoherence, we interestingly found that the scattering of the
points around the theoretical curve is significantly more evident for the quantum
mutual information, which may be signaling that a key role, in our case, is played
by unexpected classical correlations [6], [7], [8]. This point will be the subject of
further theoretical and experimental investigations.

In the Chapter 4 we have shown that when a Gaussian bipartite state evolves
in a Gaussian channel, retains its entanglement, but looses its Bell’s nonlocality.
This mean that although, at the born, the state is pure, therefore, for it, the
violation Bell’s inequality and the presence of entanglement are the expression of
the same type of non-classical correlations, the decoherence highlights the differ-
ent nature of the two markers: the Gaussian state becomes local (in according to
Bell), i.e. it admits a description in terms of hidden variables, although it remains
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entangled. We have analyzed the behaviour of the Bell function Bz under deco-
herence for different values of the CM element n (see Eq. (1.8)). We have seen
that the decoherence immediately allows a description in terms of hidden variables
(B3 < 2). Furthermore, a greater number of photons in the starting (pure) state
corresponds to a larger starting value of Bz, but also a steeper descent towards
the transition from non-local to the local regime [9]. This behavior is a confirma-
tion of the circumstance that the larger degree of the initial squeezing, the more
rapidly the squeezed state loses its nonlocality [64].

In the second part of this Dissertation, we have reported the study of non-
Gaussian resources.

We have considered a general class of non Gaussian states, the Squeezed Bell
states SB [4]. We have analyzed efficiency of this class in the ¢v quantum swap-
ping protocol (chapter 6) for the transmission of quantum states and entanglement,
[11]. In order to ease the calculations, we have re-written the entanglement swap-
ping protocol in the characteristic function formalism. In order to evaluate the
performance of the state subjected to the swapping, we have used it as entangled
resource for the ideal teleportation of input coherent state. The teleportation
fidelity has been assumed as convenient indicator to quantify the performance
levels. We have showed that the non-Gaussian squeezed Bell resources allow for
optimization procedures, yielding high values of the fidelities both in the ideal and
the realistic instances.

We have also shown that the Squeezed Bell states are the most nonlocal states
among all the states of the same class [10] (chapter 5).

Attracted by these very positive results we have looked for engineering this
type of resource. Actually, we have found a generation scheme (chapter 7) that
produces a class of non-Gaussian tunable states. It is not exactly the Squeezed
Bell class. However it well approximates the S B states proposed in [4, 5]. In fact,
in the currently accessible experimental values of squeezing r, the state, that can
be generated by our scheme, used as a resource, provides the maximum fidelity
of teleportation of a coherent state with respect to a generated T'B (representing
the more feasible resource till now experimentally obtained) and with respect
to a generated PS state (representing the best resource till now experimentally
obtained). This is true both in ideal conditions and in realistic conditions, but
obviously in realistic conditions (presence of losses, only on/off measurements
allowed) the overall fidelities sensibly deteriorate [12].

However, we consider the introduced scheme a very good proposal for both
the current technologies and the future technological improvements.

In fact it is sufficient a slight improvement in reducing the level of losses
and in increasing the detection efficiency for improving clearly the performance
of the optimal state generated in realistic conditions. These encouraging results
lead us to design, in more details, our scheme of generation. In particular, in a
forthcoming paper, we will consider two possible instances: continuous wave and
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pulsed regime. In this second paper we will face with the problem of a sufficiently
effective detection in coincidence of two photons in the two different modes, as
required by our scheme. In the same paper we will show how the generated states
can be reconstructed by performing suitable homodyne detections.

Eventually we have studied another class of non Gaussian states (chapter 8),
obtained analyzing the fluctuating parameters of an type II-OPO. In this new
model, the non linearity for trasforming a Gaussian state in a non-Gaussian one
isn’t in the detection-step (as in the previous scheme), but it is in the generation-
step. This study is still at the preliminary stage. Our hope is to transform
the undesiderable non-Gaussianity (producted by fluctuating OPO parameters)
in controllable tools for producing an optimal non-Gaussian resource.



CHAPTER 10

APPENDIX A

10.1 PHS criterion and distillability

As we said in §2.4.1, entanglement criterion PHS does not always provide the
same type of information (logical implication). At first, Peres [76] provided a nec-
essary condition for separibility, then Horodechi [31] showed that such condition
is also sufficient in 2 x 2 and 2 x 3 Hilbert spaces. His proof is based on the
operation of partial transposition. In fact, he demonstrated that:

Theorem 5 If (p*)T > 0 in spaces of dimensions 2 x 2 and 2 x 3 then p,5 Eq.
(2.10) is separable.

So we can easily deduce that there exist PPT states, which are not separable
in M x N spaces, with M =2, N > 4 or M > 3. They are called bound entangled
states to distinguish them from the free entangled states.

Once again we come to the conclusion that there are different forms of non-
locality. More specifically, in this particular context we see that there are differ-
ent forms of entanlgement [77]. However, although bound entangled states are
entangled states, they are not distillable states, so they are not actually useful to
Quantum Information protocols

10.2 Signatures of Entanglement

In §2.4.1 we have reported two particular entanglement criteria (PHS criterion
and Duan one). Even if they reach the same conclusion!, the starting point is
different. The processing allowing to develop PHS criterion starts to definition
of bipartite state Eq. (2.10) and discusses the properties that a density matrix
must satisfy in order to represent a quantum state. The second criterion, instead,
starts from the analysis of the properties that the (characterizing quantum state)
observables must have. In the following we see in more details the latter approach.

Let {A;} the set of the Hermitian operators describing the observables of the
system. The measure of A; is affected by a statistical uncertainty AA;,

AAZ = (A7) = (A,

If the quantum state is an eigenstate of the observable A;, then AA; = 0. When it
does not exist an simultaneous eigenstate of all operators { A;}, then there is a non

'Tn [33], Duan et al showed that the Duan criterion becomes a necessary and sufficient
condition for the entanglement, when the covariance matrix is positive semidefinite.
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trivial limit U > 0 for the sum uncertainty (as it is obvious from the uncertainty
principle),
d AL U

Now we consider a bipartite system, described by the quantum state p 45, in which
each subsystem (A, B) is characterized by a set of observables, {A;} and {B;},
with local uncertainties such that

Y AAI>Us, Y AB?>Us.

The operator proprierties A; + B; of the joint system can be determinated by local
measurements A;, B; respectively. For product state p, 5 = p4 ® pp the values of
the local measurements (made on the single subsystems) are uncorrelated, so the
uncertainties of A; + B; are equal to the sums of the local uncertainty,

A(A;+ B)? = AA? + AB?,
More in general, for mixture of product states, psp = >, Pmprm.4 ® P 5, We have

> A(Ai+ By)? > Ua+ Us. (10.1)

Any violation of this uncertainty limit implies that the state cannot be separated
into a mixture of product states.

The violation of any local uncertainty relation of the form Eq. (10.1) is there-
fore a sufficient condition for the existence of entanglement [78].

When the observables A; and B; are precisely the quadrature operators Eq.
(1.6), we obtain Duan criterion.



CHAPTER 11

APPENDIX B

Characteristic function formalism —Here we describe in some details the proposed
state in terms of the characteristic function. In such formalism, at the overall
density operator pj,s, relative to the product state! Eq.(7.2) [¢ >19 | >34 is
associated the following characteristic function

X" (0‘”) = Xi12 (0‘/1/2) X34 (O‘gz;) )
where

" noonN AN TN BN NN N | PR B
o’ = (ajy; o) = (o, " ay, "5 a3, "5 o), o)

" 1
Xij (a”) = exp {—5 (|§i‘2 + |§j|2)} )

and ¢;; = af;cosh || + o sinh |\, with X = ¢ if i = 1 A j = 2, and
A=¢if i =3 A j = 4. For simulating the effect of decoherence in Fig. 7.2, we
imagine four thermal beam splitters T'BS (one for every beam), with transmis-
sivity Ty, (= 1 — Ryp), in which each second port is occupied by the thermal state
described by the following characteristic function

1,
i () = exp {5 (2 + 1) 7

where 7 = (7}, 7)) and 7y, is the average number of thermal quanta at the
equilibrium in the k—th mode

ath = (ehw/kBT _ 1)—1 .

The overall characteristic function before of the thermal beam splitters, X .7 s
describes a eight-mode state given by

XpreTBS (a//; T/) = X// (a//) Xth (T/) ’ (111)

where x,, () = [[i_y X2 (},). The beam splitters act on the state through a
SU(2) transformation, that yields the following relation among the variables of
the input and output modes of the beam splitter

o = I + /Ry,
T =1Ipt — VRypao.

! describing a pair of two indipendent two-mode squeezing states.

125



126
So the input modes are related at the output modes by the simple transformation

" o__ I
{ o = ﬂha RthT7 (112)

v =Ty7T+ VRyo.
Using the trasformations (11.2), the characteristic function (11.1), after the four
thermal beam splitters BSy,, depend on o’ and 7, and it becomes
XpostTBS (o/; T) = x" ( Tino! — Rtiﬂ')
X Xy ( TinT + Rtha’) :
Tracing out the thermal state by putting 7 = 0, we have

X/ (a/) - XpostTBS (a/7 0)
= X' ( Ttha’) Xth ( Rtho/> : (11.3)

The photon losses are introduced through other four beam splitters, VBS (V
for "vacuum"), with transmissivity? T, (= 1 — R,), in which each second port is
occupied by the vacuum,

vac 1
i (o) = esp {31 | (1L4)

with v} = (v}, v}/). So the overall vacuum characteristic function is x,,. (V') =
Hi:l X3 (vy,). The overall characteristic function before of the vacuum beam
splitters, X,y pg, 18 given by

XpreVBS (a/’ vl) = X/ (a/) Xvac (U/) : (115)

In this case, the SU(2) transformation gives the relations:

o = Da/ + Rg’U’, (11 6)
v =T — VR, '

a/ - \/Téa Y Ré”? (11 7)
v =VIv+ VR, '

so, at the output of the beam splitters V' B.S, under the traformations (11.7) the
characteristic function (11.5) becomes

XpostV BS (s v)
=x' ( Tio — @U) Xvac ( Ty + Réa) :

2For T, = 1 we obtain the ideal state.
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Tracing out the vacuum state (v = 0), we have

x (@) = X' ( Tza) Xvac (@a)
=x" ( TthTza> Xth ( RthTza)

<X (VT0)

Considering the transformation by BS; and BS;; for the complex variables
a = (aq; ag; a5 ay) (see Fig. 7.2)

{ a; = \/771ﬁ1 - \/R_l/a?n
Q3 = \/Tl/ﬂ?, + \/R_lﬁla
{ s = V18, — vV Ry,

ay = VT, + v Raf3s,

the characteristic function x (a) of the four modes 1,2, 3,4, is given by

X1234 (B1; Ba; B3; Ba)
= x(VTi8, - VEiBy VT — vV TaBBy

\/ﬁﬁs + \/R71513 \/7T2ﬂ4 + \/R72ﬂ2> . (11'8)

The density matrix of the characteristic function X934 (81; Bs; B3; B4) is thus given
by

P1234
- % /d2ﬂ1d2ﬂ2d253d2ﬂ4)€1234 (By; By B3; By)
x Dy (=81) D2 (=B5) D3 (—f3) Da (=5,) -

However, we note that, at the optical frequency, hw is always in the range 1.5
to 2.5eV; so at the enviroment temperature 7" ~ 300K, the average number ny,
is about 1073°. The value of the 7y, is very smaller compared at the the average
number of photons introduced by the other operators involved. For this reason,
we have neglected the thermal contribute to decoherence.



CHAPTER 12

APPENDIX C

Postselection: single-photon projector

When a post-selection strategy is applied by using coincidence photodetection,
in the ideal case the conditional measurements of simultaneous detections of single
photons in mode 3 and 4 project the density matrix p;,3, into

(I1><1y)
T
1
= WTTM (P934 ® 3|1 >< 1|3 ®@ 4|1 >< 14
T
1
- [ EBEAEB,
T
X X134 (B1; Ba; Bs; By) Dl (—=51) f)2 (—Bs)
Tr 54 | D3 (—B3) Da(—B4)5 |1 >< 1]34|1 >< 1|4]
1 . R
— i [ PBEBM(B13B) D (~5,) D (-5
N ™
where
M (515 ﬂz)
1
= ﬁ/d253d2ﬁ4X1234 (B1; Ba; Bs; By)
< x5 (B) X (Ba)
and!

X;(J1><1D (By) = Ty [bl (=B85 |1 >< 1|3]
= (1— |8} e VP2 for k = 3,4,

is the characteristic function of the single-photon projector, |1 >< 1|, acting on
the k—th mode. The normalization constant NT(‘1><1D is given by

1)(1
NP =Tr10g [pragg ® (1) (Ly @ 4 [1) (1]

m!

L<m|D(=a)|n >= (l!)l/2 amfnef“"'z/zL?f*” (la[?), and LY (z) = Ly (z) =1 — .
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In conclusion, we have

1)(1 1 b 5
Ny
1

— W /d2ﬁ1d2ﬂg/\/l (B1;B2)
% Trva [ Dy (1) D1 (=) Da (1) Da (=5,
1

= N}\U(U)M (V15 72) -

Postselection: realistic on/off operator (POVM)
A realistic on/off detector is described by a positive operator-valued measure
(POVM), Eq.(7.16). The detection on—POVM gives

(on) Tray [101234 ® ﬂgsm) (n3) ® ﬂz(fn) (774)]

P o on

1

" N
/d251d2ﬂ2d2ﬂ3d254X1234 (51; Ba; 533 ﬁ4) Dl <_ﬁ1) D2 (_52) X

Trgy | Dy (=B5) Da (=B, ™ (ng) 1™ (my)

= WZM / d*B,d*BoM (B1; B2) x Dy (=51) D2 (—Bs),
where
M (B3 82) =~ [ Bt By (B BB Ba) X X" (BT (By).
o
Here

@ (=) = T [P (B 1] = 70 (5)——exp {2515, L = 0
Nk Nk

is the characteristic function of the POVM of the photodetector of the modes
k =3,4, and

N}On) = Tri934 [01234 ® ﬂgson) (n3) ® ﬂffm) (774)] :
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The characteristic function obtained by the density matrix pé? ") is

(on)

XT (71372)
1 A R
— WTTH [p12D1 (71) D2 (’72)]

1 . . . .

55 | @B BaM (Byi B) X Triy | Dy (=5,) Dz (=B5) D (1) D2 (3)|
N 2

1
= WM (%; 72) .

In terms of the 3, and 3,, we have

ngm) (B1;8s)
1

B /\/}}On)ﬂ

/ d*B3d® ByX 1234 (B1; Ba; Bs; Ba)

X X3" (B3) X1" (By)
1
= W [X1234 (B1; B2; 0; 0)
1
+ p /d254X1234 (813 B2; 0; B4) Ga (B4)
1
+ T /d253X1234 (B1; Ba; B3 0) Gs (B3)
1
+P /d253d2ﬂ4X1234 (B1; Ba; Bs; Ba) G5 (B3) G4 (Ba) |

where

1 2 —
Gr (By) = —n_keXP{— 2n:k‘5k|2}-

(k=3,4).
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