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Abstract

The Multiplicative MIDAS Realized DCC (MMReDCC) model simultaneously accounts for short and
long term dynamics in the conditional (co)volatilities of asset returns, in line with the empirical evi-
dence suggesting that their level is changing over time as a function of economic conditions. Herein the
applicability of the model is improved along two directions. First, by proposing an algorithm that relies
on the maximization of an iteratively re-computed moment-based profile likelihood function and keeps
estimation feasible in large dimensions by mitigating the incidental parameter problem. Second, by
illustrating a conditional bootstrap procedure to generate multi-step ahead predictions from the model.
In an empirical application on a dataset of forty-six equities, the MMReDCC model is found to statisti-
cally outperform the selected benchmarks in terms of in-sample fit as well as in terms of out-of-sample
covariance predictions. The latter are mostly significant in periods of high market volatility.

Keywords: Realized covariance, dynamic component models, multi-step forecasting, iterative algorithm.

1 Introduction

Building models for predicting the volatility of high dimensional portfolios is important in risk management
and asset allocation. Previous developments on time-varying covariances in large dimensions include the
constant conditional correlation (CCC) model of Bollerslev (1990), where the volatilities of each asset are
allowed to vary through time but the correlations are time invariant, the RiskMetrics model by JPMorgan
(1994) and the DECO model by Engle and Kelly (2012), where pairwise correlations are assumed equal
at a point in time, whilst being time varying. Recently, Andersen et al. (2001), Barndorff-Nielsen and
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Shephard (2001) and Barndorff-Nielsen et al. (2011), among others, opened up a new channel for increasing
the precision of covariance matrix estimates and forecasts by exploiting the information of high frequency
asset returns. This development has motivated several researchers to investigate models directly fitted to
series of realized covariance matrices (see Gouriéroux et al. (2009), Jin and Maheu (2013) and Chiriac and
Voev (2011), to name a few).

Despite the superiority of these models, illustrated for example by Hautsch et al. (2015), there still
remain technical and practical challenges one needs to deal with when constructing covariance matrix
forecasts for high-dimensional systems. Primarily, the well-known “curse of dimensionality” problem,
implying that the number of parameters grows as a power function of the cross-sectional model dimension.
In order to save parameters, a simple solution is represented by the so called covariance (or correlation)
targeting approach of Engle (2009), which consists in pre-estimating the constant intercept matrix in
the model specification by linking it to the unconditional covariance matrix of returns. This method
can be applied under the stationarity assumption of the model and is one of the most widely employed
techniques to simplifying parameter estimation and reducing the computational burden when the numerical
maximization of the likelihood function becomes difficult. However, in order to implement it, the user needs
to have knowledge of the analytical relationship between the mean of the targeted process and the other
model parameters. In many cases, due to the complex dependence structure encountered in the dynamic
behavior of co-volatility matrices, this is far from being obvious (see Aielli (2013)). Moreover, even in
cases in which targeting is feasible, severe homogeneity constraints still have to be imposed on the model
parameters in order to make the model tractable for inference purposes (see e.g. Bauwens et al. (2016b)).

For their ability to separately analyze short and long run movements, component models have been
effectively used in the Multivariate GARCH literature as a parsimonious way of describing this rich dynamic
structure (see e.g. Colacito et al. (2011), Hafner and Linton (2010)). More recently, their applicability has
been extended to dynamic models for realized covariance matrices by Golosnoy et al. (2012) and Bauwens
et al. (2016a).

Herein we focus on the Multiplicative MIDAS Realized DCC (MMReDCC) model of Bauwens et al.
(2016a), whose main ingredients are a multiplicative component structure, a Mixed Data Sampling (MIDAS)-
type filter for modeling the secular dynamics and a short term parameterization directly inspired by the
Dynamic Conditional Correlation (DCC) model of Engle (2002). For more detailed discussions of the DCC
model and standard MIDAS regressions the reader can refer to Engle (2002), Ghysels et al. (2007) and
references therein.

The choice of this particular model is supported by the following considerations. First, the multiplica-
tive component structure entails specifying a unique long term factor for the whole covariance matrix, thus
preserving tractability in the estimation process. Second, the MIDAS-type filter used in the specification of
the secular component, compared to non-parametric smoothers, offers a much more convenient framework
for the generation of multi-step ahead forecasts and potentially allows for the inclusion of external explana-
tory variables (such as low-frequency macroeconomic indicators). Also, if compared to other parametric
alternatives, it represents an appealing compromise between parsimony and versatility. Finally, the short
run DCC structure improves in flexibility over more basic linear recursions (e.g. the BEKK model by Engle
and Kroner (1995) ).
On an empirical ground, our choice is further supported by the results of the extensive out-of-sample
forecasting comparison performed by Bauwens et al. (2016a). Although not identifying a unique winner,
their findings show that the MMReDCC model gives remarkably good performances in important financial
applications such as Value-at-Risk forecasting and portfolio allocation. Notwithstanding, their results are
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limited to a relatively low dimensional setting (10 assets) and to a short term forecasting horizon (1 day).
This paper extends the applicability of the model along these directions: estimation for high-dimensional

systems and multi-step forecasting. We contribute to the first line of research by developing a computa-
tionally feasible procedure for the estimation of vast dimensional MMReDCC models. In this respect, it is
important to remark that, although the introduction of a dynamic secular component in the structure of
the model adds a major element of flexibility and enables to obtain more accurate forecasts than standard
models reverting to constant mean levels (see Bauwens et al. (2016a)), it also substantially increases the
number of parameters to be estimated. Specifically, the long term component incorporates a scale intercept
matrix with number of parameters equal to n(n + 1)/2, where n denotes the number of assets. In a vast
dimensional framework, this quickly translates into the impossibility of estimating the model since the
intercept matrix cannot be directly targeted.

Therefore, we propose to overcome this estimation issue by proposing an iterative procedure inspired
by the covariance targeting idea of Engle (2009). More precisely, based on a Method of Moments estimator,
we profile out the parameters of the intercept matrix and iteratively maximize the likelihood in terms of
the other parameters of interest. We refer to this as the Iterative Moment-Based Profiling (IMP) estimator,
as opposed to the one-step Quasi Maximum Likelihood (QML) estimator which directly maximizes the
likelihood function with respect to the full parameter vector.

It is worth noticing that the proposed estimation approach can be considered as a switching algorithm
in the sense discussed by Boswijk (1995) and Cubadda et al. (2015), since the maximization of the overall
likelihood is obtained by switching between optimizations over different blocks of parameters. This idea
has a long standing tradition in the econometric analysis of time series. A simple, well known example
of switching algorithm is given by the iterative Cochrane-Orcutt estimator. Compared to conventional
switching algorithms, the approach that is here implemented incorporates an additional targeting step
with the aim to reduce the dimension of the optimization problem by concentrating out some of the
parameters by means of an iteratively re-computed moment-based estimator.

A comprehensive simulation study is performed to assess the finite-sample properties of the proposed
estimator which is found to deliver unbiased estimates and to be computationally reliable despite the large
number of parameters involved.

The second contribution of the paper is the development of a resampling based approach for the
generation of multi-step ahead forecasts of the realized covariance matrices, which is motivated by the
impossibility to derive a closed-form expression for the h-step predictor from the MMReDCC model. The
bootstrap has been a standard tool for generating multi-step forecasts from non-linear and non-Gaussian
time series models for more than two decades (see e.g. Clements and Smith (1997)). Its use has been later
extended to univariate volatility modeling (see e.g. Pascual et al. (2006); Shephard and Sheppard (2010))
and more recently to the multivariate setting by Fresoli et al. (2015) and Fresoli and Ruiz (2015).

In the same spirit of Fresoli and Ruiz (2015), we propose a resampling algorithm making use of residual
bootstrap with the appealing feature of being distribution-free, namely not relying on any particular
assumption about the distribution of the realized covariance matrices. Differently from them, who generate
multi-step forecasts from DCC models, our algorithm is adapted to the dynamic modeling of realized
covariance matrices.

Two different applications are performed to illustrate the usefulness of the model on real data. In the
first one, we focus on a low dimensional setting (ten assets), in which both the IMP and one-step QML
estimation procedures are feasible, and compare the estimates obtained by means of both algorithms. We
find that the IMP-based estimates are sufficiently close to the QML ones, so that using the IMP method in
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large dimensions is a sensible approach. We further consider the case in which the IMP estimated param-
eters are used as starting values for the one-step QMLE: despite an increase in the maximized likelihood
value, the improvement can be considered rather marginal, thus suggesting that the implementation of the
IMP algorithm alone may be sufficient in practical applications.

In the second application, the MMReDCC model estimated for forty-six assets by the IMP method
is used to generate forecasts of the realized covariance matrix up to twenty days ahead and compared to
existing benchmarks not accounting for short and long term (co)volatility dynamics. It clearly emerges
that over periods of relatively lower market volatility, where short and long run components are hardly
distinguishable, simpler model specifications tend to be preferred especially at the shortest horizons. The
opposite holds during more volatile periods, such as the one of the 2007-2008 financial crisis, where ac-
counting for time-varying long term dynamics in the conditional covariance process appears crucial to
generating superior forecasts. The latter are particularly sizeable at the longest horizons.

The remainder of the paper is organized as follows. Section 2 briefly recalls the structure of the
MMReDCC model and explains the curse of dimensionality issue. Section 3 introduces the IMP algorithm
and Section 4 presents the results of a Monte Carlo experiment aimed at assessing the finite sample
statistical properties of the proposed estimation algorithm. The bootstrap procedure for computing multi-
step ahead forecasts is explained in Section 5, along with a simulation study to assess its finite sample
behavior. Section 6 contains the empirical results for the in-sample estimation comparison and the out-of-
sample forecasting exercise. Section 7 concludes with some final remarks.

2 The MMReDCC model

Let Ct be a n × n positive definite and symmetric (PDS) realized estimator of the latent integrated
covariance matrix of daily returns. In the following, unless otherwise stated, we will refer to Ct as the
realized covariance (RC), although any other consistent PDS estimator could be used. Conditionally on
the set consisting of all relevant information up to and including day t − 1, Ct is assumed to follow a
n-dimensional central Wishart distribution:

Ct|It−1 ∼Wn(ν, St/ν), ∀t = 1, . . . , T, (1)

where ν (> n − 1) is the degrees of freedom parameter and St is the PDS conditional mean matrix of
order n. Under the assumption of absence of microstructure noise and other biases (see Barndorff-Nielsen
and Shephard (2001)), St represents the conditional covariance matrix of returns, which is our object of
interest.

In the MMReDCC model, St is designed to take into account the long run movements in the levels
around which realized (co)variances (and by extension, correlations) fluctuate from day to day. To this
extent, the model features a multiplicative decomposition of the conditional covariance matrix St into a
smoothly varying or secular component Mt=LtLt

′and a short-lived component St
∗, such that St can be

rewritten as St=Lt St
∗Lt
′, where the matrix square root Lt can be obtained by a Cholesky factorization of

Mt. These components can then be modeled separately.
First, the secular component is specified parametrically and extracted by means of a MIDAS filter

assumed to be a weighted sum of K lagged realized covariance matrices over a long horizon, where the
number of lags spanned in the MIDAS specification is usually chosen to minimize the trade-off between
the highest in-sample likelihood value and the number of observations lost to initialize the filter. It is
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expressed as

Mt = Λ + θ

K∑
k=1

φk(ω)Ct−k. (2)

In the right hand side of Eq.(2), the first term Λ is a n × n symmetric and semi-positive definite matrix
of constant parameters, θ is a positive scalar and φk(·) is a weight function parametrized according to the
restricted Beta polynomial

φk(ω) =

(
1− k

K

)ω−1∑K
j=1

(
1− j

K

)ω−1 .

The scalar parameter ω determines the shape of the function and in order to achieve a time-decaying pattern
of the weights, it is constrained to be larger than 1. For identification, the constraint

∑K
k=1 φk(ω) = 1 is

imposed.
Second, the dynamics of the short term component S∗t is specified according to a scalar DCC parametriza-

tion that enables a separate treatment of conditional volatilities and correlations. Letting X be any square
matrix of arbitrary size n, in the remainder the notation diag{X} is used to denote a n×n diagonal matrix
with main diagonal elements equal to the corresponding diagonal elements of X. Therefore, assuming that
S∗t = D∗tR

∗
tD
∗
t , where D∗t = diag{S∗t }1/2, their scalar specifications correspond to the following equations:

S∗ii,t = (1− γi − δi) + γiC
∗
ii,t−1 + δiS

∗
ii,t−1, ∀i = 1, . . . , n (3)

R∗t = (1− α− β)In + αP ∗t−1 + βR∗t−1, (4)

where γi > 0, δi ≥ 0, γi + δi < 1, α > 0, β ≥ 0, α + β < 1, C∗t = L−1
t Ct(L

′
t)
−1 and P ∗t =

(diag{C∗t })−1/2C∗t (diag{C∗t })−1/2. The matrix C∗t is the realized covariance matrix purged of its long
term component and the matrix P ∗t is the corresponding short term realized correlation matrix. Mean
reversion to unity in Eq.(4) and to an identity matrix in Eq.(4) is needed for identification of the different
components. Let γ = {γ1, ..., γn}, δ = {δ1, ..., δn} for further use.

The parameters can be estimated by maximizing the following Wishart (quasi) log-likelihood function
in one step:

`T (ψ) = −1

2

T∑
t=1

{
log|St(ψ)|+tr[St(ψ)−1Ct]

}
. (5)

The finite-dimensional parameter vector ψ = {vech(Λ), θ, ω,γ, δ, α, β}, has length {nΛ + 2n + 4} where
nΛ = n(n + 1)/2 ∼ O(n2) denotes the number of unique parameters included in the intercept matrix Λ
of Eq.(2). It is worth reminding that ψ does not include the degrees of freedom parameter ν, as the first
order conditions for the estimation of the parameter vector ψ do not depend on ν (see Bauwens et al.
(2016a)).

It is obvious that, as n increases, the curse of dimensionality problem quickly arises, leading to the
number of parameters listed in the first two rows of Table 1. Observe that estimation becomes already
cumbersome after n = 20 and almost impossible for n ≥ 50.
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Table 1: Number of parameters of MMReDCC models
Note: entries report the number of parameters as a function of the dimension n; nΛ denotes the number of unique parameters contained
in the Λ matrix, ψ denotes the full vector of model parameters and ψ̃ the vector of parameters excluding nΛ.

n = 5 n = 10 n = 20 n = 50 n = 100

nΛ 15 55 210 1275 5050
ψ 29 79 254 1379 5254

ψ̃ 14 24 44 104 204

On the other hand, the last row of Table 1 shows that an obvious way to keep the model tractable
is to avoid estimating the parameters of the matrix Λ. This would be sufficient to reduce the order to
2n+ 4 ∼ O(n), thus making the model estimable also for large n.

In the following section we put forward a feasible estimation procedure that aims at overcoming the
direct estimation of the long term component intercept matrix, thus crucially mitigating the computational
complexity of the model.

3 An Iterative Moment based Profiling (IMP) algorithm

In this section we discuss an iterative procedure for fitting the MMReDCC model to large dimensional
datasets. The basic idea underlying the proposed algorithm is to eliminate from the likelihood maximization
the parameters of the intercept matrix Λ using a technique that builds upon the covariance targeting
discussed in Pedersen and Rahbek (2014) for BEKK and Engle et al. (2008) for DCC models. First of all,
notice that from Eq.(2) and the following relation

Λ = E(Mt)− θ
K∑
k=1

φk(ω)E(Ct−k),

a moment based estimator of the Λ intercept matrix is given by

Λ̂ =
1

T

T∑
t=1

[
Mt − θ

K∑
k=1

φk(ω)Ct−k

]
. (6)

Obviously, given the latent nature of Mt, the estimator in Eq.(6) cannot be computed in practice and
hence the covariance targeting approach cannot be applied in the usual way. It is worth noticing that, if Lt
and S∗t were assumed to be independent, given E(S∗t ) = In, it would hold that E(Ct) = E(Mt), implying
that an asymptotically equivalent version of Eq.(6) could be explicitly computed by replacing Mt by Ct.
However, this is not the approach we pursue, since the assumption of independence of the short and long
term sources is difficult to justify and would result in a rather counterintuitive and arbitrary constraint.
Hence, we adopt a different method.

It can be seen from Eq.(6) that no estimate of Λ makes sense regardless of the value of (θ, ω), so
that by making this dependence explicit, it is possible to obtain an estimate of Λ as a function of (θ, ω),
i.e. Λ̂(θ, ω). In this way, a different estimate of Λ is required for each different value of the other two
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parameters. Therefore, by substituting Λ̂(θ, ω) for Λ in the Wishart QML function stated in Eq.(5), the
following moment based QML approximation is obtained:

˜̀
T (ψ̃) = −1

2

T∑
t=1

{
log|L̃t(θ, ω)S∗t (ψ̃)L̃′t(θ, ω)|+tr{[L̃t(θ, ω)S∗t (ψ̃)L̃′t(θ, ω)]−1Ct}

}
(7)

with ψ̃ = (ω, θ,ψS∗)
′, ψ′S∗ = (γ, δ, α, β) and

M̃t(θ, ω) = L̃t(θ, ω)L̃′t(θ, ω) = Λ̂(θ, ω) + θ
K∑
k=1

φk(ω)Ct−k. (8)

The method we propose consists in estimating the parameters in ψ̃ by a block-wise maximization of
the moment-based QML function given in Eq.(7). First, conditional on some reasonable initial guess of
(θ, ω), ˜̀

T (ψ̃) is maximized with respect to the short term parameters ψS∗ and then, conditional on ψ̂S∗ ,
the same function is maximized with respect to (θ, ω). The procedure is iterated for j = 0, . . . , J until
some convergence criterion on the likelihood is met.

To initialize the algorithm at j = 0, one can reasonably use as starting values the parameter estimates
obtained by fitting the model to low dimensional subsets of data; also, an initial guess for the long term
component Mt,0 could be either provided in a naive way, i.e. using the series of observed realized covariance
matrices directly, or in a more sophisticated manner, by fitting to the data a nonparametric kernel smoother
with an optimized bandwidth parameter. Note that in order to guarantee the positive definiteness of
M̃t(θ, ω) in Eq.(8), it suffices to initialize Mt,0 from a PDS matrix and to impose θ > 0. Given that the
observed series of Ct, for every t, is PDS by definition, Λ̂(θ, ω) is assured to be at least semi-positive definite
at each iteration j > 0.

Once Λj(θj , ωj) has been computed at the initial iteration j = 0, for every j > 0 the steps conducted
in the algorithm are as follows:

Step 1 Plug Λj−1(θj−1, ωj−1) into the dynamic equation for M̃t,j and L̃t,j = chol(M̃t,j) for all t;

Step 2 For each asset i = 1, . . . , n, obtain the short term GARCH(1,1) parameters as follows:

{γ̂i,j , δ̂i,j} = arg max
{γi,δi}

˜̀
T (θj−1, ωj−1, αj−1, βj−1) ;

Step 3 Conditional on the estimated vectors γ̂j = (γ̂1,j , . . . , γ̂n,j)
′ and δ̂j = (δ̂1,j , . . . , δ̂n,j)

′, maximize the
same log-likelihood function with respect to the short term DCC correlation parameters:

{α̂j , β̂j} = arg max
{α,β}

˜̀
T

(
θj−1, ωj−1, γ̂j , δ̂j

)
;

Step 4 Conditionally on the vector of short term parameter estimates ψ̂S∗ = {γ̂j , δ̂j , α̂j , β̂j}, maximize ˜̀
T

with respect to {θj , ωj}; these estimates are used to compute an updated version of Λ̂j(θj , ωj);
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Table 2: Simulation setting
In Panel A, for every i = 1, ..., n it holds {γi + δi} < 1. Entries of Panel B are scalar parameters chosen to initialize the
algorithm in both sets of simulation exercises.

Panel A: Parameters

θ 0.5
K 264
ω 15
Λ Λi,i = 0.02, Λi,j = 0.002 for i 6= j
γi ∼ U(γ0 − 0.02, γ0 + 0.02), γ0 = 0.2
δi ∼ U(2δ0 + γi − 1 + 0.01, 1− γi − 0.01), δ0 = 0.7
α 0.2
β 0.7
ν 2n
T 1000, 2000
burn-in observations 1000

Panel B: Initial values

θ0 ω0 γi,0 δi,0 α0 β0

0.8 10 0.05 0.90 0.05 0.90

Step 5 Check for convergence, i.e. if∣∣∣∣∣ ˜̀T (ψ̃j)− ˜̀
T (ψ̃j−1)

˜̀
T (ψ̃j−1)

∣∣∣∣∣ < ε, ε = 0.000001;

if convergence is achieved, the algorithm stops; otherwise update all parameter estimates and go back
to Step 1.

It is worth to stress that although ˜̀
T (ψ̃) looks like a profile likelihood, it is not since Λ̂(θ, ω) is not a QML

estimator but a feasible moment estimator. This motivates our choice to refer to Steps 1−5 as the Iterative
Moment based Profiling algorithm, or IMP for short. This implies that ψ̃ is typically less efficient than the
standard QML estimator that maximizes Eq.(5) in one step. We come back to this issue in Section 6.1.

4 Simulation study

A Monte Carlo study is conducted to analyze the finite sample properties of the IMP estimator. We
assume the MMReDCC to be the DGP and we generate 500 time series of lengths T = 1000 and 2000
for n = 10, 20, 40 and 50, with true parameter values inspired by the estimates given in Bauwens et al.
(2016a), as summarized in Table 2.

It is important to stress that, in order to initialize the algorithm, parameter values have to be carefully
chosen. This is a standard requirement in every optimization procedure where the initial amount of
information on the model parameters is limited. In our situation we are mainly concerned with the impact
that different choices of Mt,0, more than the remaining set of parameters, may have on the convergence
of the IMP algorithm. We evaluate this by performing a robustness check based on the two possible
initializations of Mt,0 mentioned in Section 3.

In the first set of repetitions Mt,0 is computed by fitting to the series of simulated realized covariance
matrices a Nadaraya-Watson kernel estimator with a single bandwidth parameter for the whole covariance

8



Table 3: Simulation exercise I: summary statistics
The table reports summary statistics of the first set of simulations where Mt,0 is initialized using a nonparametric kernel estimator,
see Section 3. To save on space, γ̄ and δ̄ are reported as averaged values across series and replications. RB denotes the Relative Bias
computed over 500 replications. True parameter values used to simulate the process at the top of the table.

T= 1000 T= 2000
γ̄ δ̄ α β θ ω γ̄ δ̄ α β θ ω2

0.197 0.705 0.2 0.7 0.5 15 0.197 0.705 0.2 0.7 0.5 15
n=10 n=10

RB 0.098 -0.036 0.020 0.003 -0.058 -0.120 RB -0.039 -0.002 0.033 0.003 0.053 -0.095
IQR 0.048 0.093 0.006 0.010 0.044 1.641 IQR 0.032 0.068 0.006 0.008 0.037 1.819
Mean 0.202 0.699 0.204 0.702 0.475 14.820 Mean 0.2 0.713 0.207 0.702 0.526 13.58
Min 0.176 0.660 0.191 0.679 0.393 7.460 Min 0.153 0.669 0.183 0.523 0.072 1.949
Max 0.214 0.735 0.220 0.728 0.709 18.943 Max 0.22 0.803 0.37 0.817 1.000 17.74

n=20 n=20
RB 0.049 -0.009 0.019 0.001 -0.056 -0.110 RB 0.036 0.011 0.024 0.002 -0.014 -0.080
IQR 0.046 0.083 0.003 0.006 0.019 0.713 IQR 0.031 0.079 0.002 0.004 0.015 0.622
Mean 0.202 0.701 0.204 0.701 0.472 14.782 Mean 0.209 0.708 0.205 0.702 0.496 13.801
Min 0.171 0.633 0.197 0.687 0.430 12.802 Min 0.197 0.678 0.200 0.694 0.001 2.440
Max 0.219 0.744 0.211 0.711 0.532 16.759 Max 0.221 0.739 0.220 0.748 0.598 15.270

n=40 n=40
RB 0.028 0.023 0.015 0.002 -0.049 -0.080 RB 0.033 0.029 0.022 0.002 -0.014 -0.072
IQR 0.042 0.077 0.002 0.002 0.011 0.372 IQR 0.030 0.064 0.001 0.002 0.007 0.263
Mean 0.208 0.715 0.203 0.701 0.476 14.810 Mean 0.209 0.719 0.204 0.702 0.493 13.925
Min 0.190 0.656 0.060 0.695 0.446 3.735 Min 0.181 0.671 0.182 0.674 0.172 1.000
Max 0.217 0.762 0.222 0.799 0.705 16.500 Max 0.221 0.761 0.223 0.744 0.837 14.760

n=50 n=50
RB 0.027 0.011 0.016 0.001 -0.045 0.012 RB 0.029 0.027 0.017 0.001 -0.011 -0.037
IQR 0.042 0.076 0.001 0.002 0.008 0.293 IQR 0.030 0.056 0.001 0.002 0.007 0.220
Mean 0.208 0.716 0.203 0.701 0.473 15.182 Mean 0.208 0.720 0.203 0.701 0.494 14.442
Min 0.162 0.644 0.200 0.697 0.455 13.150 Min 0.191 0.657 0.199 0.695 0.474 12.089
Max 0.220 0.814 0.207 0.705 0.525 15.830 Max 0.222 0.763 0.207 0.707 0.529 16.238

matrix. As in Bauwens et al. (2016a) and Bauwens et al. (2013), the optimal bandwidth is selected by
a least squares cross-validation criterion, where the six-month rolling covariance is used as the reference
for the computation of least squares. In the second (equivalent) simulation study, Mt,0 is obtained by
substituting in Eq. (6) the observed Ct for the latent matrix Mt at each t. In both cases, the initial scalar
model parameters are set equal to the values listed in Panel B of Table 2. The estimation bias is evaluated

by the relative bias (RB), computed as 1
500

∑500
i=1

ψ̂i−ψ
ψ , along with the interquartile range (IQR), mean,

minimum and maximum of the obtained parameter estimates. To save space, we report averaged bias
results for the parameters of the MIDAS intercept matrix in a separate table.

Table 3 reports results from the first simulation exercise. As expected, the relative biases decrease as
n or T increases. The biases for the parameters of the short term volatility and correlation components
are very small, being smaller than five per cent in most of the cases, with one exception recorded for γ̄ at
T = 1000 for n = 10. As for the scalar parameters in the MIDAS specification, the bias for θ is negative in
seven out of eight cases (the exception occurs for n = 10 at T = 2000) and ranging from the maximum of
5.8% (in absolute value) for n = 10 and T = 1000 to the lowest value of 1.1% for n = 50 and T = 2000. The
bias on the ω parameter, also generally negative, tends to decrease with n but is usually of higher order
(from 1.1 to 12% in absolute value). A similar behavior is observed for the IQR measure, which decreases
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Table 4: Simulation exercise II: summary statistics
The table reports summary statistics of the second set of simulations where Mt,0 is initialized from the series of realized covariance
matrices, see Section 3. To save on space, γ̄ and δ̄ are reported as averaged values across series and replications. RB denotes the Relative
Bias computed over 500 replications. True parameter values used to simulate the process at the top of the table.

T= 1000 T= 2000
γ̄ δ̄ α β θ ω γ̄ δ̄ α β θ ω2

0.197 0.705 0.2 0.7 0.5 15 0.197 0.705 0.2 0.7 0.5 15
n=10 n=10

RB -0.077 0.013 0.019 0.002 -0.032 -0.007 RB 0.043 0.006 0.025 0.002 -0.012 -0.069
IQR 0.070 0.113 0.007 0.010 0.043 1.664 IQR 0.028 0.046 0.004 0.007 0.024 0.870
Mean 0.191 0.708 0.204 0.701 0.484 14.892 Mean 0.211 0.707 0.205 0.701 0.494 13.959
Min 0.107 0.588 0.191 0.678 0.393 6.678 Min 0.189 0.654 0.196 0.686 0.435 9.614
Max 0.231 0.833 0.218 0.723 0.927 19.237 Max 0.232 0.748 0.213 0.715 0.623 15.535

n=20 n=20
RB 0.048 -0.002 0.018 0.002 -0.045 -0.008 RB 0.006 0.039 0.023 0.002 -0.011 -0.064
IQR 0.042 0.085 0.003 0.005 0.021 0.719 IQR 0.030 0.060 0.002 0.004 0.013 0.510
Mean 0.207 0.702 0.204 0.701 0.477 14.887 Mean 0.206 0.721 0.205 0.701 0.494 14.047
Min 0.196 0.649 0.197 0.689 0.429 6.751 Min 0.164 0.680 0.199 0.692 0.467 11.108
Max 0.220 0.740 0.214 0.713 0.887 16.573 Max 0.225 0.772 0.209 0.710 0.555 15.241

n=40 n=40
RB 0.046 0.017 0.017 0.003 -0.045 0.005 RB 0.050 0.016 0.021 0.002 -0.012 -0.057
IQR 0.042 0.080 0.002 0.003 0.010 0.421 IQR 0.029 0.053 0.001 0.002 0.007 0.245
Mean 0.209 0.713 0.203 0.702 0.477 15.078 Mean 0.210 0.718 0.204 0.701 0.494 14.148
Min 0.197 0.682 0.193 0.696 0.116 6.895 Min 0.194 0.658 0.202 0.697 0.479 8.433
Max 0.219 0.756 0.216 0.807 0.955 49.985 Max 0.223 0.768 0.212 0.708 0.726 14.638

n=50 n=50
RB 0.029 0.028 0.016 0.002 -0.053 0.015 RB 0.028 0.018 0.020 0.002 -0.017 -0.048
IQR 0.041 0.071 0.001 0.002 0.009 0.342 IQR 0.030 0.061 0.001 0.001 0.005 0.195
Mean 0.208 0.715 0.203 0.701 0.473 15.225 Mean 0.208 0.721 0.204 0.701 0.492 14.278
Min 0.190 0.632 0.200 0.698 0.457 14.190 Min 0.184 0.674 0.202 0.698 0.437 11.178
Max 0.220 0.766 0.206 0.705 0.494 15.844 Max 0.216 0.766 0.209 0.713 0.508 14.742

across n and T but remains on higher values for the parameter ω. However, this does not represent a
major concern as the Beta weight function is not very sensitive to small variations of this parameter and
therefore we do not expect the likelihood function to be either.

Table 4 gives an idea of the robustness of the results to the other initialization of the long term
component. Entries can be directly compared to those in Table 3. As hoped for, the initial choice has a
minor impact on the overall accuracy of the estimator, as the parameter biases are in the same range of
magnitude and the comments made earlier are still valid under this alternative scenario.

Figure 1 contains plots of the Monte Carlo standard deviations of the estimated θ, ω, α and β parameters
against the cross-section size. In all cases, standard deviations tend to decline as the cross-section dimension
grows, with a faster decline when T = 2000. The two approaches produce similar parameter standard
deviations, with slightly bigger values recorded for θ and ω under the second simulation experiment in
correspondence with the higher cross-section sizes.

If we move to analyzing the bias results for the scale MIDAS intercept matrix, Table 5 shows that
under both sets of simulation exercises the estimator Λ̂(θ, ω) well approximates the true Λ matrix at all
cross-section dimensions, with the parameter bias (averaged across diagonal and off-diagonal elements)
clearly improving with increasing n and T . Again, the direct comparison of Panels A and B confirms that
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Table 5: Bias results for the scale MIDAS intercept matrix
Panel A reports summary statistics of the first simulation exercise where Mt,0 is initialized from a nonparametric smoother while Panel
B reports results from the second simulation exercise where the series of observed realized covariance matrices are used. RB{i,i} denotes
averaged values over diagonal terms, while RB{i,j} denotes averages over off diagonal terms. Number of simulations is 500.

Panel A: Simulation exercise I

T=1000 T=2000

n=10 n=10

RB{i,i} 0.080 RB{i,i} 0.033

RB{i,j} 0.079 RB{i,j} 0.002

n=20 n=20

RB{i,i} 0.073 RB{i,i} 0.068

RB{i,j} 0.062 RB{i,j} 0.048

n=40 n=40

RB{i,i} 0.073 RB{i,i} 0.062

RB{i,j} 0.061 RB{i,j} 0.046

n=50 n=50

RB{i,i} 0.072 RB{i,i} 0.004

RB{i,j} 0.057 RB{i,j} 0.037

Panel B: Simulation exercise II

T=1000 T=2000

n=10 n=10

RB{i,i} 0.075 RB{i,i} 0.060

RB{i,j} 0.066 RB{i,j} 0.040

n=20 n=20

RB{i,i} 0.072 RB{i,i} 0.058

RB{i,j} 0.060 RB{i,j} 0.044

n=40 n=40

RB{i,i} 0.073 RB{i,i} 0.058

RB{i,j} 0.159 RB{i,j} 0.043

n=50 n=50

RB{i,i} 0.072 RB{i,i} 0.058

RB{i,j} 0.058 RB{i,j} 0.043

the algorithm initialized from the series of realized covariance matrices overall performs no worse than the
one initialized from a nonparametric smoother.

Finally, as the final interest is in the overall accuracy of the model in fitting conditional (co)variances
and correlations (as a referee pointed out to us), we complement this section with an additional table that
extends the Monte Carlo study to analyze the properties of the estimated in-sample series. Specifically,
for each of the two exercises performed, we compare simulated and estimated variances, covariances and
correlations in terms of mean, standard deviation, lower and upper quartiles. Moreover, we compare the
performance, in terms of variability, of the equally weighted portfolios constructed employing the true and
the estimated conditional covariance matrix. Table 6 illustrates the strong similarity between the true series
and the series obtained using the estimated model parameters, which supports the set of results discussed
previously. Once again, no substantial difference can be detected between the two panels indexing the
chosen initialization approach.

To summarize, the simulation study carried out in this section suggests that the proposed algorithm
works accurately in finite samples and converges irrespective of the initialization choice made for the Mt

matrices. Overall, the moment-based estimator used for iteratively targeting the constant intercept matrix
in the secular component does not create a severe bias problem in the estimation of the other parameters,
thus representing a feasible solution to alleviate the curse of dimensionality issue that would otherwise
prevent the use of the MMReDCC model in high dimensional applications. Both initialization methods
for Mt,0 can be used in practice. In the empirical section, we have opted for the nonparametric smoother.

5 Multi-step Forecasting

Models featuring short and long run dynamics are particularly relevant for computing multi-step-ahead
predictions, as their dynamic component structure is conceivably expected to be beneficial for long term
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Figure 1: IMP Monte Carlo standard deviations
The figure shows standard deviations of the IMP Monte Carlo estimated scalar parameters θ, ω, α and β against the cross-section
dimension ranging from 10 to 50. Results from the first (Sim. I) and second (Sim. II) simulation study are jointly reported in Panel A
for T=1000 and Panel B for T=2000.
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Panel B: T=2000
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forecasts. Unfortunately, the complex nonlinear structure of the MMReDCC model prevents the analytical
derivation of closed-form solutions. In order to overcome this limit, we compute multi-step predictions by
means of a procedure based on bootstrap resampling. Subsection 5.1 formally introduces the procedure
while the next one investigates its properties in finite samples.

5.1 A conditional bootstrap (CB) procedure

At the outset, notice that Eq.(1) implies that E(Ct|=t−1) = St, so that Ct can be represented as

Ct = S
1/2
t Ut(S

1/2
t )′, (9)

where Ut is an element of a sequence of iid random matrices with E(Ut) = In, and S
1/2
t denotes the lower-

triangular Cholesky factor of St such that S
1/2
t (S

1/2
t )′ = St. If Ut ∼Wn(ν, In/ν), the Wishart assumption

of Eq.(1) is recovered, but this is not needed to justify the bootstrap procedure used for generating multi-
step-ahead forecasts of the realized covariance matrix Ct. The procedure is described in the following six
steps.

Step 1 Estimate the model on {Ct, t = 1, . . . , T} and obtain the parameter vector ψ̂ = {vech(Λ̂), θ̂, ω̂, γ̂, δ̂, α̂, β̂}
to compute the estimated conditional covariance Ŝt.

Step 2 Compute the estimated residuals

Ût = Ŝ
−1/2
t Ct(Ŝ

−1/2
t )′, t = 1, . . . , T
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Table 6: Properties of the estimator
The table shows summary statistics of simulated (True) and estimated variance, covariance and correlation series, with values reported
as averages across assets (n) and simulations (500). Sim .I denotes the first simulation exercise where Mt,0 is initialized from a
nonparametric smoother while Sim .II uses the series of realized covariance matrices. In the last two columns we compare the properties
of the volatilities of the n-dimensional equally weighted portfolios constructed using the true and the estimated conditional covariance
matrix at each t. Q1 and Q3 respectively denote the first (0.25) and the third (0.75) quartile.

n T Stat. Volatility (e-03) Covariance (e-03) Correlation Portf. volatility
True Sim .I Sim .II True Sim .I Sim .II True Sim .I Sim .II True Sim .I Sim .II

10 1000 Mean 0.924 0.932 0.938 0.109 0.109 0.110 0.116 0.116 0.118 0.014 0.014 0.015
Std 0.217 0.220 0.230 0.148 0.149 0.147 0.149 0.148 0.145 0.002 0.002 0.001
Q1 0.765 0.771 0.757 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014
Q3 1.050 1.060 1.059 0.203 0.204 0.205 0.223 0.222 0.243 0.015 0.015 0.016

2000 Mean 0.995 1.006 0.962 0.156 0.157 0.157 0.151 0.150 0.148 0.014 0.014 0.014
Std 0.172 0.181 0.202 0.118 0.122 0.121 0.114 0.115 0.117 0.001 0.001 0.001
Q1 0.836 0.840 0.827 0.060 0.059 0.058 0.062 0.060 0.061 0.014 0.014 0.013
Q3 1.128 1.145 1.150 0.244 0.247 0.220 0.240 0.240 0.238 0.015 0.015 0.015

20 1000 Mean 0.963 0.971 0.972 0.136 0.136 0.136 0.139 0.138 0.138 0.013 0.013 0.013
Std 0.157 0.161 0.162 0.110 0.111 0.111 0.108 0.108 0.108 0.001 0.001 0.001
Q1 0.828 0.833 0.832 0.055 0.055 0.055 0.060 0.060 0.060 0.013 0.013 0.013
Q3 1.075 1.086 1.087 0.210 0.211 0.212 0.218 0.218 0.218 0.014 0.014 0.014

2000 Mean 0.963 0.973 1.002 0.136 0.137 0.157 0.139 0.138 0.152 0.013 0.013 0.014
Std 0.161 0.168 0.158 0.113 0.115 0.107 0.111 0.111 0.101 0.001 0.001 0.001
Q1 0.828 0.832 0.854 0.055 0.055 0.072 0.060 0.059 0.075 0.013 0.013 0.013
Q3 1.075 1.089 1.128 0.210 0.212 0.235 0.218 0.218 0.230 0.014 0.014 0.014

40 1000 Mean 1.040 1.048 1.294 0.188 0.189 0.235 0.176 0.175 0.178 0.014 0.015 0.015
Std 0.123 0.131 0.115 0.087 0.088 0.085 0.079 0.079 0.076 0.001 0.001 0.001
Q1 0.894 0.896 0.902 0.102 0.103 0.106 0.106 0.106 0.109 0.014 0.014 0.014
Q3 1.168 1.181 1.285 0.262 0.264 0.288 0.245 0.244 0.248 0.015 0.015 0.015

2000 Mean 1.046 1.042 1.059 0.191 0.198 0.195 0.178 0.179 0.179 0.015 0.015 0.015
Std 0.123 0.125 0.129 0.088 0.089 0.088 0.078 0.078 0.078 0.001 0.001 0.001
Q1 0.899 0.876 0.905 0.106 0.109 0.107 0.109 0.109 0.110 0.014 0.014 0.014
Q3 1.176 1.057 1.194 0.266 0.274 0.271 0.247 0.251 0.248 0.015 0.015 0.015

50 1000 Mean 1.078 1.086 1.098 0.212 0.213 0.221 0.191 0.190 0.195 0.015 0.015 0.015
Std 0.115 0.123 0.120 0.082 0.082 0.080 0.071 0.071 0.068 0.001 0.001 0.001
Q1 0.918 0.920 0.928 0.118 0.118 0.124 0.119 0.119 0.124 0.015 0.015 0.015
Q3 1.222 1.234 1.249 0.294 0.296 0.304 0.262 0.261 0.266 0.016 0.016 0.016

2000 Mean 1.088 1.098 1.088 0.219 0.220 0.214 0.195 0.195 0.191 0.015 0.015 0.015
Std 0.114 0.121 0.123 0.082 0.083 0.084 0.070 0.070 0.072 0.001 0.001 0.001
Q1 0.925 0.928 0.922 0.123 0.123 0.119 0.124 0.123 0.120 0.015 0.015 0.015
Q3 1.235 1.249 1.235 0.302 0.304 0.295 0.266 0.265 0.261 0.016 0.016 0.016

and rescale them to enforce their sample mean to be equal to In:

Ũt = (Ê−1/2
u )Ût(Ê

−1/2
u )′,

where Êu = (1/T )
∑T

t=1 Ût. The rescaled Ũt can then be used to generate bootstrap replicates of
CT+j , for j = 1, . . . , h, where h denotes the chosen forecast horizon.

Step 3 Draw with replacement a bootstrap sample {ŨT+1|T , . . . , ŨT+h|T } of length h from the empirical CDF

of {Ũt, t = 1, . . . , T}.

Step 4 Initialize the procedure at CT , R̂
∗
T , P̂ ∗T , Ŝ∗T and L̂T . For j = 1 . . . , h, recursively generate a sequence
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of bootstrap replicates of CT+j as follows:

R∗T+j|T = (1− α̂− β̂)In + α̂P ∗T+j−1|T + β̂R∗T+j−1|T ,

S∗ii,T+j|T = (1− γ̂i − δ̂i) + γ̂iC
∗
ii,T+j−1|T + δ̂iS

∗
ii,T+j−1|T ,

S∗T+j|T = (diag{S∗T+j|T })
1/2R∗T+j|T (diag{S∗T+j|T })

1/2,

ST+j|T = LT+j|TS
∗
T+j|TL

′
T+j|T ,

CT+j|T = S
1/2
T+j|T ŨT+j|T (S

1/2
T+j|T )

′
,

MT+j|T = Λ̂(θ, ω) + θ̂
K∑
k=1

φk(ω̂)CT−k+j|T ,

LT+j|T = M
1/2
T+j|T ,

C∗T+j|T = L−1
T+j|TCT+j|T (L

′

T+j|T )−1,

P ∗T+j|T = (diag{C∗T+j|T })
−1/2C∗T+j|T (diag{C∗T+j|T })

−1/2.

Step 5 Repeat steps 3–4 B times, where B is set sufficiently large (e.g. B=5000). As a result, the procedure

generates an array of h×B bootstrap replicates (C
(1)
T+j|T , . . . , C

(B)
T+j|T ) for CT+j|T .

Step 6 Finally, the h-steps-ahead forecast is obtained as

ŜT,h =
1

B

B∑
b=1

C
(b)
T+h|T .

It is worth to mention that the proposed procedure is applied by conditioning on the estimated model
parameters, namely by keeping fixed the parameter estimates in all bootstrap forecasts of CT+j , for j =
1, . . . , h, such that the achieved bootstrap h-steps ahead prediction depends only on the resampled residuals.
Clearly, this could be relaxed in order to account for the variability associated to parameter estimation
by re-estimating ψ on each bootstrap replicate, but it would come at the not negligible cost of increasing
computational complexity and time. Overall, the results presented in Section 5.2 provide sufficient evidence
that our approach works fine in finite samples.

Finally, even if our primary interest is in forecasting from MMReDCC models, the proposed forecasting
procedure is very general and can be readily adapted to any model that admits the representation in Eq.(9),
where St is modeled as a function of past information =t−1. For example, in the empirical application which
is presented in Section 6.2, we also use it to generate multi-step ahead forecasts of Ct from the cRDCC
model of Bauwens et al. (2012). To this purpose, the dynamic equations in step 4 must be replaced by
those pertaining to the specific model of interest.

5.2 Finite sample properties

In order to analyze the finite sample behavior of the proposed bootstrap procedure, we devise a simple
Monte Carlo experiment. Namely, we generate 1000 series with the MMReDCC model using the same
simulation design used in Section 4, with the nonparametric smoother chosen as the initialization method
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for Mt,0. Results obtained employing the alternative initialization approach are qualitatively similar and
thus not reported for brevity. The sample sizes considered are T = 1000 and 2000 and the cross-sectional
dimensions are n = 5, 10, 20 and 50. In each case, we generate j = 1, . . . , h future values of the simulated
series, where h = 2, 10 and 20, that are considered as the reference forecasting sample.

For each obtained set of B bootstrap replicates (C
(1)
T+j|T , . . . , C

(B)
T+j|T ), we compute the corresponding

prediction limits, defined as the quantiles of the bootstrap distribution function of C
(b)
T+j|T (b = 1, . . . , B).

More specifically, if Dc,B(z) is an estimate of the distribution function Dc(z) = Pr(CT+j|T ≤ z), then, a
100(1− ϑ)% prediction interval for CT+j is achieved as

[LC,B(z), UC,B(z)] =

[
QC,B

(
ϑ

2

)
, QC,B

(
1− ϑ

2

)]
, (10)

with QC,B = D−1
c,B. Bootstrap intervals are constructed based on B=999 replicates with nominal coverages

1− ϑ equal to 0.90, 0.95 and 0.99. After this, we compute the empirical coverage by counting the number
of future values inside the corresponding intervals as (1 − ϑ)∗ = {LC,B ≤ CT+j ≤ UC,B}. In addition
we compute left and right coverage as the proportion of predictions falling below LC,B and above UC,B,
respectively.
Results are reported in Table 7 as averages across univariate variance (left panel) and covariance (right
panel) series. First of all, we can notice that results are qualitatively similar across the two panels. It
emerges that the intervals for future volatilities and covolatilities at multiple-steps ahead have average
coverages close to the nominal values, and that their performance improves as the sample size increases
from 1000 to 2000 observations.

The table also shows that the coverage rates depend on the forecast horizon, and that they have a
tendency to decrease as horizons increase. This comes as a consequence of the parameter estimation
variability that is not accounted for, as well as from the addition of error uncertainty. However, even if for
h > 2 there is a slight undercoverage, coverage values are never below their nominal levels by more than
2.7%, and this happens irrespective of the forecast horizon or the considered sample size.

Overall, Monte Carlo results show that the proposed bootstrap procedure is capable of generating
accurate point and interval forecasts from the MMReDCC model.

6 Empirical Applications

This section contains two empirical applications. The first application provides the estimation results
for the IMP estimator in comparison with the standard QML estimator in the ideal case where both
can be computed. The second one is performed in a large dimensional system and aims at evaluating
both the full-sample fit of the model and its forecasting performance. Specifically, we evaluate the ability
of the MMReDCC model to provide accurate multi-steps-ahead covariance predictions against existing
competitors not accounting for time-varying long term dynamics.

6.1 Small sample accuracy comparison

In small dimensional applications, according to Table 1, the QMLE is applicable and represents the most
efficient estimator, at least asymptotically. Hence, a simple way to evaluate the in-sample performance of
the proposed approach, is to compare the estimates provided by the IMP method to those obtained by
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Table 7: Prediction intervals
The table reports prediction intervals for variances (left panel) and covariances (right panel) of MMReDCC model across 1000 simula-
tions.

Variances

n Lead T Nominal Average Av.cov. Av.cov.
time coverage coverage below above

5 2 1000 0.90 0.891 0.054 0.054
0.95 0.945 0.026 0.029
0.99 0.978 0.008 0.014

2000 0.90 0.894 0.053 0.053
0.95 0.951 0.024 0.025
0.99 0.982 0.005 0.012

10 1000 0.90 0.878 0.064 0.059
0.95 0.932 0.036 0.032
0.99 0.971 0.012 0.017

2000 0.90 0.882 0.057 0.061
0.95 0.935 0.030 0.034
0.99 0.973 0.009 0.018

20 1000 0.90 0.873 0.062 0.065
0.95 0.932 0.033 0.035
0.99 0.977 0.006 0.017

2000 0.90 0.874 0.067 0.065
0.95 0.923 0.035 0.041
0.99 0.970 0.008 0.022

10 2 1000 0.90 0.891 0.053 0.057
0.95 0.940 0.028 0.031
0.99 0.979 0.007 0.015

2000 0.90 0.895 0.054 0.052
0.95 0.948 0.027 0.025
0.99 0.983 0.005 0.013

10 1000 0.90 0.876 0.060 0.064
0.95 0.933 0.030 0.037
0.99 0.975 0.007 0.018

2000 0.90 0.883 0.060 0.057
0.95 0.938 0.030 0.030
0.99 0.978 0.006 0.014

20 1000 0.90 0.873 0.065 0.066
0.95 0.930 0.033 0.037
0.99 0.975 0.007 0.018

2000 0.90 0.876 0.060 0.063
0.95 0.930 0.033 0.037
0.99 0.974 0.008 0.017

20 2 1000 0.90 0.892 0.049 0.059
0.95 0.943 0.025 0.032
0.99 0.981 0.006 0.014

2000 0.90 0.892 0.051 0.057
0.95 0.946 0.026 0.029
0.99 0.983 0.005 0.012

10 1000 0.90 0.880 0.055 0.065
0.95 0.935 0.029 0.036
0.99 0.976 0.007 0.017

2000 0.90 0.883 0.054 0.063
0.95 0.936 0.028 0.036
0.99 0.975 0.008 0.017

20 1000 0.90 0.877 0.060 0.063
0.95 0.933 0.032 0.036
0.99 0.972 0.009 0.019

2000 0.90 0.877 0.059 0.064
0.95 0.933 0.033 0.034
0.99 0.977 0.007 0.016

50 2 1000 0.90 0.899 0.045 0.056
0.95 0.950 0.023 0.027
0.99 0.985 0.005 0.010

2000 0.90 0.897 0.050 0.053
0.95 0.948 0.025 0.026
0.99 0.985 0.005 0.010

10 1000 0.90 0.888 0.051 0.061
0.95 0.940 0.027 0.033
0.99 0.979 0.007 0.015

2000 0.90 0.888 0.056 0.057
0.95 0.941 0.028 0.030
0.99 0.980 0.007 0.013

20 1000 0.90 0.879 0.054 0.067
0.95 0.934 0.029 0.037
0.99 0.977 0.007 0.017

2000 0.90 0.880 0.057 0.063
0.95 0.935 0.031 0.034
0.99 0.977 0.007 0.016

Covariances

n Lead T Nominal Average Av.cov. Av.cov.
time coverage coverage below above

5 2 1000 0.90 0.897 0.052 0.051
0.95 0.946 0.028 0.026
0.99 0.981 0.007 0.011

2000 0.90 0.906 0.046 0.048
0.95 0.954 0.025 0.021
0.99 0.982 0.007 0.011

10 1000 0.90 0.877 0.061 0.062
0.95 0.930 0.035 0.035
0.99 0.974 0.010 0.016

2000 0.90 0.882 0.060 0.058
0.95 0.935 0.035 0.031
0.99 0.978 0.010 0.013

20 1000 0.90 0.874 0.065 0.061
0.95 0.930 0.036 0.036
0.99 0.973 0.010 0.017

2000 0.90 0.879 0.064 0.057
0.95 0.933 0.036 0.034
0.99 0.971 0.012 0.018

10 2 1000 0.90 0.889 0.056 0.055
0.95 0.943 0.028 0.029
0.99 0.980 0.007 0.013

2000 0.90 0.895 0.053 0.053
0.95 0.946 0.028 0.027
0.99 0.981 0.007 0.012

10 1000 0.90 0.883 0.060 0.058
0.95 0.935 0.032 0.033
0.99 0.975 0.010 0.016

2000 0.90 0.880 0.058 0.060
0.95 0.935 0.032 0.032
0.99 0.977 0.009 0.014

20 1000 0.90 0.873 0.064 0.063
0.95 0.932 0.037 0.035
0.99 0.973 0.011 0.016

2000 0.90 0.870 0.063 0.064
0.95 0.934 0.035 0.038
0.99 0.972 0.010 0.017

20 2 1000 0.90 0.886 0.057 0.057
0.95 0.939 0.030 0.031
0.99 0.979 0.007 0.013

2000 0.90 0.887 0.057 0.056
0.95 0.940 0.030 0.030
0.99 0.979 0.007 0.013

10 1000 0.90 0.876 0.062 0.062
0.95 0.931 0.034 0.034
0.99 0.975 0.009 0.016

2000 0.90 0.876 0.061 0.062
0.95 0.932 0.034 0.034
0.99 0.975 0.009 0.016

20 1000 0.90 0.873 0.066 0.068
0.95 0.930 0.037 0.038
0.99 0.970 0.011 0.018

2000 0.90 0.875 0.065 0.066
0.95 0.931 0.037 0.037
0.99 0.972 0.011 0.017

50 2 1000 0.90 0.886 0.057 0.057
0.95 0.939 0.030 0.030
0.99 0.979 0.007 0.013

2000 0.90 0.889 0.055 0.056
0.95 0.942 0.029 0.029
0.99 0.980 0.007 0.013

10 1000 0.90 0.874 0.063 0.063
0.95 0.931 0.034 0.035
0.99 0.975 0.009 0.016

2000 0.90 0.878 0.061 0.061
0.95 0.934 0.033 0.033
0.99 0.977 0.008 0.015

20 1000 0.90 0.864 0.068 0.068
0.95 0.923 0.038 0.038
0.99 0.971 0.011 0.018

2000 0.90 0.868 0.066 0.066
0.95 0.926 0.037 0.036
0.99 0.973 0.010 0.017
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maximizing the quasi-likelihood (QL) with respect to the full parameter vector. To this purpose, we fix
the cross-sectional dimension equal to ten assets and fit the MMReDCC model to three different datasets.
An overview of the data being used is given in table A.12 in the Appendix. The first dataset comprises the
assets used in Bauwens et al. (2016a) and includes series of daily realized covariance matrices estimated
using five minute intraday returns over the period February 2001 until December 2009 (2242 observations);
the second set is made up of some of the most liquid equities of the S&P 500 traded from October 1997 to
July 2008 (2524 observations), while the last one consists of an arbitrarily selected subsample of assets from
the dataset used in the work of Boudt et al. (2014). The latter contains series of daily realized covariance
matrices obtained with the CholCov estimator over the period January 2007–December 2012 (1499 trading
days). As already mentioned, the choice of the realized estimator is not an issue as the model can be
fitted to any series of realized variance-covariance matrices as long as they are PDS. Finally, our analysis
focuses on open-to-close covariance matrices, whereby noisy overnight returns have not been included in
the construction of the estimators. We refer to the cited papers for further details.

As suggested by a referee, the IMP estimator could also be used to provide accurate initial values for
direct QML estimation leading to a reduction of the number of iterations needed to reach convergence
and, hence, to substantial computational savings. In this spirit we also consider the additional estimator,
denoted as IMP(+), obtained by performing one iteration of the one-step QL optimization, taking the IMP
estimate as starting point.

Estimation results for the MMReDCC model parameters by the QML, IMP and IMP(+) estimators
are collected in Panel A of Table 8. In the three datasets considered, all methods appear to deliver similar
estimates. Short term GARCH coefficients tend to be quite homogeneous across assets and generally
significant; the same applies to the short term correlation estimates. As for the parameters driving the
long term component, it can be noticed that the estimated θ and ω coefficients are regularly lower for the
IMP than for the QML method. This is in line with the prevailing negative bias found in the simulation
study. Coming to the analysis of the maximized quasi log-likelihood values, it can be seen that, as expected,
the QMLE returns the highest QL value for all the datasets, but those obtained by the IMP estimator are
very close, and the gap never exceeds 0.04% in relative terms. The IMP(+) further reduces the discrepancy
but its contribution is as small as 0.014% on average, thus far from impressive.

The bottom line of Panel A reports test statistics and corresponding p-values of a score test (ST)
performed to assess convergence of the IMP and IMP(+) estimators. Namely, we test the null hypothesis
that ψ∗ = 0 in the unrestricted model parameterized by ψ = ψ̂M +ψ∗ where ψ̂M denotes the estimate of
ψ obtained by estimation method M . In practice ψ∗ can be interpreted as the bias potentially affecting
the estimated ψ in case of lack of convergence of the IMP and IMP(+) algorithms. In order to double
check our results, the test is repeated for the QML estimator. The null is accepted in all cases. This result
is confirmed by Figure 2 that compares the values of the QL function recorded for the IMP estimator
in each iteration (continuous thin line) with the maximum obtained by direct maximization of the QL
function (dotted line) and by the IMP(+) estimator (continuous thick line). The plot shows that the IMP
algorithm increases the value of the QL function at each step monotonically converging to a value which
is very close to the maximum yielded by the direct QML estimator.

Finally, Panel B of Table 8 provides further information on the performance of the estimators measured
in terms of mean, standard deviation, first (Q1) and third (Q3) quantiles of the estimated conditional
variance, covariance and correlation series. Furthermore, to gain deeper insight on the practical impact
that the choice of the estimation algorithm can have on risk management applications, the comparison is
extended to the estimated conditional variances of the equally weighted portfolio returns. In general, the

17



distribution of the estimated series do not appear to be very sensitive to the estimation method adopted.
The most sizeable differences are observable between the estimated conditional variances and covariances
of Dataset 3. Our intuition is that a relevant role in explaining these differences is played by the sensibly
shorter time series length of Dataset 3: 1499 days versus 2242 for Dataset 1, and 2524 for Dataset 2.
Given the higher unconditional volatility level of Dataset 3, compared to 1 and 2, it is also tempting to
identify this as a determinant of the observed discrepancies between IMP and QML estimates. However,
in general, we prefer to be cautious about this issue since, working with real data, several other factors
could be in action. For example, model misspecification could differently affect, in an unknown way, the
IMP and QML estimators (see e.g. Francq et al. (2011)). Nevertheless, the discrepancy becomes negligible
if we focus on conditional correlations and, in particular, on portfolio volatility which is the main quantity
of interest for risk management applications.

Figure 2: The figure shows the log-likelihood value at the maximum (y-axis) achieved by the IMP (continuous thin line), IMP(+)
(continuous thick line) and 1-step QML (dotted line), for each of the considered datasets. The number of iterations needed for the IMP
optimization to converge is given on the x-axis (8 for Dataset 1, 3 for Dataset 2 and 9 for Dataset 3).
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6.2 Forecasting performance

In this subsection we push the analysis to higher dimensions, with the aim of assessing the usefulness
of the MMReDCC model in a forecasting exercise. As benchmarks we consider the consistent RDCC
(cRDCC) model of Bauwens et al. (2012) as the closest competitor and a simple Exponentially Weighted
Moving Average (EWMA) model. The EWMA predictor appears a natural candidate due to its widespread
diffusion among practitioners and in risk management systems like RiskMetrics. If applied to series of daily
realized covariance matrices, it is defined by

St = (1− λ)Ct−1 + λSt−1,

where the λ parameter is set equal to the value 0.94 (see also Golosnoy et al. (2012)).
On the other hand, the choice of the cRDCC as a benchmark is supported by two main reasons. First,

it assumes that conditional volatilities and correlations mean revert to constant quantities, thus it can
be considered as a simplified version of the MMReDCC model despite not being formally nested in it.
Second, the findings of Boudt et al. (2014) show that the cRDCC model favorably compares with some
widely used competitors, such as the HEAVY (Noureldin et al. (2012)) and the cDCC (Aielli (2013)) model,
in forecasting Value-at-Risk. In order to estimate the cRDCC in high dimension, we apply a three stage
QML estimation procedure as suggested by Bauwens et al. (2012), where the constant long term covariance
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Table 8: Application I. In-sample comparison
Panel A shows parameter estimates with corresponding standard errors in brackets for each of the estimators employed and the
three datasets considered (see table A.12 in the Appendix). IMP(+) denotes results achieved after one iteration of the one-step QL
optimization, taking the IMP estimate as starting point. The last two rows respectively report the log-likelihood (Loglik) values at the
maximum and Score test (ST) statistics with corresponding p-values in brackets. Panel B reports summary statistics for the estimated
series of volatilities (Vol), covariances (Cov) and correlations (Corr) across estimators and datasets. The properties of the volatilities
(Portf. vol) of the n-dimensional equally weighted portfolios constructed using the estimated conditional covariance matrices are also
compared. The number of in-sample observations is 2242 for Dataset 1, 2524 for Dataset 2 and 1499 for Dataset 3. Realized series of
the assets comprised in Dataset 2 multiplied by 10000.

Dataset 1 Dataset 2 Dataset 3

Panel A: Parameter estimates

QML IMP IMP(+)

γi δi γi δi γi δi
0.35
(0.10)

0.60
(0.03)

0.34
(0.06)

0.59
(0.03)

0.37
(0.15)

0.55
(0.08)

0.34
(0.38)

0.58
(0.08)

0.31
(0.76)

0.60
(0.05)

0.33
(0.86)

0.58
(0.07)

0.41
(0.04)

0.57
(0.06)

0.40
(0.03)

0.52
(0.05)

0.41
(0.05)

0.51
(0.09)

0.43
(0.06)

0.53
(0.06)

0.38
(0.04)

0.49
(0.06)

0.41
(0.06)

0.48
(0.07)

0.37
(0.05)

0.49
(0.05)

0.37
(0.03)

0.49
(0.04)

0.40
(0.05)

0.48
(0.06)

0.34
(0.05)

0.65
(0.12)

0.32
(0.04)

0.61
(0.06)

0.33
(0.06)

0.60
(0.06)

0.40
(0.05)

0.52
(0.11)

0.42
(0.04)

0.51
(0.05)

0.44
(0.06)

0.49
(0.10)

0.47
(0.04)

0.43
(0.04)

0.45
(0.03)

0.40
(0.05)

0.45
(0.04)

0.40
(0.05)

0.31
(0.06)

0.61
(0.08)

0.31
(0.04)

0.59
(0.05)

0.32
(0.04)

0.57
(0.08)

0.34
(0.06)

0.55
(0.09)

0.31
(0.04)

0.58
(0.06)

0.35
(0.05)

0.56
(0.08)

α β α β α β
0.07
(0.02)

0.91
(0.08)

0.08
(0.01)

0.88
(0.06)

0.07
(0.02)

0.88
(0.08)

θ ω θ ω θ ω
0.88
(0.01)

4.57
(0.01)

0.83
(0.00)

4.22
(0.01)

0.87
(0.00)

5.69
(0.03)

Loglik Loglik Loglik
−22592 −22601 −22597

ST ST ST
−0.001

(1.00)
−0.026

(1.00)
−0.001

(1.00)

QML IMP IMP(+)

γi δi γi δi γi δi
0.12
(0.04)

0.88
(0.19)

0.10
(0.06)

0.85
(0.10)

0.09
(0.03)

0.82
(0.15)

0.32
(0.15)

0.80
(0.18)

0.33
(0.07)

0.83
(0.12)

0.29
(0.05)

0.82
(0.18)

0.33
(0.08)

0.61
(1.01)

0.28
(0.07)

0.55
(0.10)

0.33
(0.30)

0.52
(0.43)

0.26
(0.03)

0.43
(0.18)

0.24
(0.06)

0.41
(0.01)

0.28
(0.12)

0.38
(0.06)

0.46
(0.08)

0.18
(0.09)

0.49
(0.14)

0.23
(0.05)

0.50
(0.09)

0.22
(0.06)

0.35
(0.14)

0.76
(0.25)

0.34
(0.20)

0.79
(0.28)

0.35
(0.15)

0.78
(0.20)

0.43
(0.09)

0.52
(0.09)

0.23
(0.10)

0.44
(0.62)

0.31
(0.10)

0.36
(0.09)

0.45
(0.21)

0.72
(0.17)

0.43
(0.16)

0.70
(0.01)

0.45
(0.19)

0.68
(0.03)

0.18
(0.06)

0.59
(0.19)

0.16
(0.15)

0.63
(0.04)

0.20
(0.17)

0.60
(0.13)

0.43
(0.11)

0.36
(0.09)

0.47
(0.17)

0.27
(0.01)

0.48
(0.12)

0.28
(0.10)

α β α β α β
0.05
(0.01)

0.86
(0.16)

0.04
(0.01)

0.89
(0.10)

0.05
(0.00)

0.87
(0.11)

θ ω θ ω θ ω
0.91
(0.01)

3.67
(0.02)

0.88
(0.02)

2.91
(0.07)

0.90
(0.06)

3.46
(0.19)

Loglik Loglik Loglik
162196 162143 162180

ST ST ST
0.103
(1.00)

0.345
(1.00)

0.290
(1.00)

QML IMP IMP(+)

γi δi γi δi γi δi
0.18
(0.07)

0.75
(0.06)

0.18
(0.16)

0.75
(0.07)

0.17
(0.09)

0.75
(0.05)

0.23
(0.20)

0.69
(0.04)

0.23
(0.90)

0.69
(0.05)

0.24
(0.92)

0.68
(0.04)

0.24
(0.04)

0.62
(0.06)

0.25
(0.16)

0.62
(0.21)

0.25
(0.06)

0.61
(0.09)

0.20
(0.05)

0.67
(0.07)

0.19
(0.06)

0.69
(0.07)

0.20
(0.07)

0.68
(0.06)

0.20
(0.06)

0.60
(0.09)

0.21
(0.11)

0.65
(0.12)

0.20
(0.06)

0.59
(0.10)

0.18
(0.11)

0.69
(0.20)

0.18
(0.09)

0.73
(0.13)

0.19
(0.10)

0.68
(0.18)

0.15
(0.09)

0.68
(0.23)

0.14
(0.08)

0.74
(0.19)

0.16
(0.10)

0.66
(0.23)

0.18
(0.07)

0.75
(0.16)

0.18
(0.30)

0.75
(0.40)

0.18
(0.08)

0.75
(0.16)

0.18
(0.10)

0.74
(0.27)

0.17
(0.14)

0.75
(0.23)

0.17
(0.20)

0.74
(0.50)

0.14
(0.04)

0.78
(0.05)

0.14
(0.06)

0.80
(0.10)

0.14
(0.04)

0.78
(0.05)

α β α β α β
0.01
(0.00)

0.80
(0.10)

0.01
(0.00)

0.88
(0.05)

0.01
(0.00)

0.77
(0.05)

θ ω θ ω θ ω
0.84
(0.02)

5.52
(1.58)

0.81
(0.18)

5.16
(0.57)

0.82
(0.01)

5.56
(0.44)

Loglik Loglik Loglik
−28567 −28568 −28567

ST ST ST
0.000
(1.00)

0.030
(1.00)

0.001
(1.00)

Panel B: Properties of estimated series

QML IMP IMP(+)

Vol mean 2.98 3.06 3.14
std 5.70 5.84 5.89
Q1 0.70 0.70 0.74
Q3 2.60 2.69 2.78

Cov mean 1.20 1.24 1.26
std 2.45 2.47 2.49
Q1 0.20 0.21 0.22
Q3 1.03 1.09 1.10

Corr mean 0.37 0.39 0.38
std 0.10 0.10 0.10
Q1 0.30 0.31 0.31
Q3 0.44 0.45 0.44

Portf. mean 0.95 0.97 0.99
vol std 0.69 0.69 0.69

Q1 0.52 0.53 0.54
Q3 1.10 1.13 1.14

QML IMP IMP(+)

Vol mean 3.60 3.59 3.91
std 8.66 9.03 9.50

Q(1) 0.95 1.07 1.19
Q(2) 4.12 4.28 4.70

Cov mean 0.67 0.71 0.73
std 1.53 1.85 1.96

Q(1) 0.24 0.26 0.28
Q(2) 0.81 0.87 0.92

Corr mean 0.26 0.27 0.25
std 0.12 0.13 0.12

Q(1) 0.17 0.17 0.17
Q(2) 0.35 0.36 0.35

Portf. mean 0.91 0.92 0.95
vol. std 0.38 0.37 0.37

Q(1) 0.60 0.62 0.63
Q(2) 1.10 1.11 1.13

QML IMP IMP(+)

Vol mean 17.33 12.83 11.75
std 23.93 19.86 18.35
Q1 4.38 3.30 3.07
Q3 12.19 11.15 10.23

Cov mean 7.16 5.20 4.81
std 8.94 7.03 6.53
Q1 1.85 1.23 1.14
Q3 7.17 5.21 4.76

Corr mean 0.42 0.42 0.42
std 0.08 0.09 0.09
Q1 0.36 0.35 0.35
Q3 0.48 0.48 0.48

Portf. mean 2.29 2.10 2.02
vol std 1.40 1.25 1.20

Q1 1.47 1.20 1.16
Q3 2.63 2.41 2.30
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matrix is consistently targeted by the unconditional covariance. This drastically reduces the number of
parameters to be estimated to 2n+ 2.

The dataset, also used by Laurent et al. (2012), contains realized covariance matrices based on intraday
returns computed from 6-minute intervals last mid-quotes of 46 assets traded in the NYSE and NASDAQ
over the period January 5, 1999 to November 14, 2008, for a total of 2483 observations.

Table 9 reports parameter estimates obtained by fitting the MMReDCC and cRDCC models over
the full sample period. As emerges from Panel A, the MMReDCC outperforms the cRDCC in terms of
the AIC and BIC criteria, which are both minimized for the MMReDCC. The univariate GARCH(1,1)
parameters γ̄ and δ̄, reported in averaged values across series, largely agree with each other, while the
correlation estimates are slightly different across the two models, with the cRDCC showing a higher level
of persistence.

To closely examine the difference in the fit of the models, consider the estimated conditional correlations
between two representative pairs of stocks. The first, presented in the upper panel of Figure 3, includes
two financial assets: American Express (AXP) and Bank of America (BAC), while the second pair, in the
lower panel, includes stocks from different sectors, i.e. McDonald’s (MCD) and Wells & Fargo (WFC). In
general the correlations returned by the MMReDCC model appear to be characterized by more pronounced
fluctuations. At the beginning of the sample the correlation paths from the two models evolve around the
same mean level while at the burst of the dot-com bubble in 2002 the MMReDCC correlations appear to
be characterized by a positive level shift which is not present in the cRDCC series. For the reminder of
the sample the cRDCC correlations are on average lower than those obtained from the MMReDCC. Given
the close similarity between the models, this can be reasonably explained by the fact that the parameters
θ and ω driving the long term (co)volatilities dynamics of the MMReDCC allow for a higher flexibility of
the model and consequently for a better responsiveness of correlations in periods of pronounced market
volatility.

Figure 3: Comparison of estimated conditional correlations of MCD-WFC (upper panel) and AXP-BAC (lower panel).
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Table 9: Application II. Full sample estimates and implemented loss functions
Panel A reports full sample estimates from the MMReDCC and cRDCC model, where γ̄ and δ̄ are averaged across the n series. AIC
and BIC criteria have been rescaled by the number of observations. Panel B contains the loss functions chosen to evaluate the models
forecasting ability. St denotes the predicted conditional covariance matrix while Ct is the 6-minute realized measure chosen as proxy
for the latent covariance matrix.

Panel A: Full sample estimates

MMReDCC cRDCC

γ̄ 0.381
(0.087)

0.373
(0.180)

δ̄ 0.543
(0.110)

0.551
(0.201)

α 0.016
(0.001)

0.020
(0.005)

β 0.950
(0.002)

0.974
(0.007)

θ 0.761
(0.027)

ω 3.278
(0.785)

Loglik 787304 683817

AIC -633 -617

BIC -630 -616

Panel B: Loss functions

ST Stein tr(S−1
t Ct)− log|S−1

t Ct|−n
vND von Neumann Divergence tr (Ct logCt − Ct logSt − Ct + St)

QLIK Qlike log|St|+tr
(
S−1
t Ct

)

To determine whether the MMReDCC model can lead to gains in forecasting accuracy we compute
predictions of the conditional covariance matrix of daily returns at 1, 5, 10 and 20 steps-ahead making use
of the bootstrap procedure explained in Section

The forecasting period is characterized by drastic changes in volatility dynamics, as emerges from the
summary statistics given in table A.13 in the Appendix. To better analyze to what extent this impacts on
the performance of the models, we break the evaluation sample into two sub-samples. Their differences can
be visualized by looking at Figure 4, which shows the realized variance of the equally weighted portfolio
made of the 46 assets used in the application. The upper panel spans the period from November, 2004
until end of June, 2007, where the market experiences a situation of stability after the turmoil of the 2000-
2003 dot-com bubble. On the other hand, the period from July, 2007 to November, 2008, highlighting
a widespread turbulence on the market, coincides with the burst of the subprime financial crisis which
reaches its peak with the collapse of Lehman Brothers in September 2008. During the last four months
of the latter sub-sample, the unconditional volatility of the portfolio is roughly ten times higher than over
the first sub-period.

The comparison of the models forecasting ability is performed using the consistent loss functions defined
in Panel B of Table 9, for which we report averaged values over the two out-of-sample periods considered.
The term consistent is used according to Laurent et al. (2013).

The test of Giacomini and White (2006) (GW) is used to examine the relative performance of the
MMReDCC model with respect to the cRDCC and the EWMA. Namely, for each loss function L, the
loss differential at time t is denoted as δt = L(Ct+h, S

MMReDCC
t+h|t ) − L(Ct+h, S

benchmark
t+h|t ), where Ct is
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the 6-minute realized covariance chosen as proxy for the true matrix. This difference is expected to be
zero if neither of the models is superior, otherwise, negative (positive) values correspond to a superior
forecasting performance of the MMReDCC (benchmark). In addition, consistently with the in-sample
analysis performed in Section 6.1, we also assess, using the univariate version of the QLIK loss function,
the ability of the different models to accurately predict the volatility of an equally weighted portfolio
including all the 46 assets. As given by Patton (2011), the formula of the QLIK loss function for the
volatility of the i-th asset is

QLIKt = log(Sii,t) +
Cii,t
Sii,t

,

whereas its portfolio version is obtained by replacing Cii,t and Sii,t by their portfolio equivalents.
The null of equal predictive accuracy is then tested by means of the following t-statistic

GW =
√
T − τ + h

∑T
t=τ+h δt√

avar
(∑T

t=τ+h δt

) ,
and the Newey-West estimator is used to consistently estimate the long run variance of

∑T
t=τ+h δt.

Table 10 shows the resulting average loss differences summarized by horizon. The value achieved by
either the EWMA or the cRDCC is in italic if the model is favored by the GW test, in bold if the test
favors the MMReDCC or underlined if the test is indecisive.

According to Panel A, the MMReDCC model is not leading to particularly impressive gains in fore-
casting accuracy compared to the two benchmarks. When focusing on direct evaluation of forecasts of the
whole RC matrix, the cRDCC is prevailing at the shortest horizon according to all loss functions, while for
h > 1 they fail to point towards a unique winner as the overall performance of the models is pretty similar
and the test is often inconclusive. Despite being the simplest model, the EWMA is found to perform no
worse than the other two and to be preferred twice by the vND over the MMReDCC. Considering that the
period covered by Panel A is characterized by a relatively small and slow-moving market volatility, these
results are probably not surprising for two reasons. First, it is known that in such circumstances highly
parameterized sophisticated models suffer from additional parameter uncertainty, thus being more heavily
penalized than model featuring simple parameterizations. Second, when the underlying process exhibits
smooth dynamics, it is more complicated for the MMReDCC model to disentangle the different volatility
components, thus suggesting that accurate predictions can be obtained by employing models that do not
necessarily account for time-varying long run levels.

As we move to analyze the results in Panel B, the situation is quickly reversed. The cRDCC is still
minimizing two out of three loss functions at the one-step horizon, but in all other cases it is evident
that, whenever the models predictive abilities can be distinguished, the GW test decides in favor of the
MMReDCC. The over-performance of the MMReDCC is particularly strong at the 20-day horizon, when
it delivers the optimal covariance forecasts according to the whole set of losses.

A slightly different situation arises when we move to the analysis of portfolio volatility forecasts. In
this case the forecasting performance of the MMReDCC model appears to be more stable over time. In
period A, at the 1-day horizon the MMReDCC is outperforming the EWMA and doing not significantly
worse than the cRDCC. At longer horizons, it is always prevailing over its competitors, the only exception
being represented by the CRDCC, for which at horizon 20 we cannot reject the null of equal predictive
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Figure 4: Equally weighted portfolio daily realized variance
The figure shows the daily realized variance over the forecasting period of the equally wighted portfolio composed of the
46 assets used in the empirical application and listed in Table 13. The sample is divided into a more calm period (upper
panel, 650 observations) and a more volatile period (lower panel, 350 observations).
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ability. In period B, again the worst performance is recorded for the 1-day horizon but, for longer horizons,
the MMReDCC is performing significantly better than its competitors in all cases except for the 10-day
horizon when the comparison with the EWMA result is indecisive.

Table 11 offers a closer inspection of the models relative performance by reporting GW test results
across univariate (co)volatilities and correlations. For sake of space, only the QLIK case is considered.
Each panel of the table records the number of series (out of 1081 (co)volatilities and 1035 correlations)
for which the test favors the MMReDCC, one of the benchmarks or gives no decision. Results are mostly
in accordance with those achieved for the whole covariance matrix and stress the evidence that in periods
of calm (Panel A) there is almost no benefit from employing the MMReDCC model for (co)volatility
prediction. The gain in terms of correlations is marginal and only achieved with respect to the EWMA.
On the other hand, sensibly better results are obtained over the final period (Panel B), both in terms of
(co)volatility and correlation dynamics. Noticeably, the number of cases favoring the MMReDCC increases
with h and becomes striking already at h = 10.

Overall, the main message we can get from these empirical results is that while constant long term
models may be preferred in moderately volatile time periods, the benefits from the MMReDCC model
can be fully appreciated in periods of market instability. This is easily explained by considering that, in
calm periods, such as the one immediately preceding the 2008 financial crisis, the expected volatility and
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correlation level are fairly constant over time. In such a framework the cRDCC model offers a simple and
effective tool for keeping track of the realized covariance dynamics and differences in the predictive ability
of the two models are mainly due to estimation noise. On the other hand, in periods of market instability
where calm and turbulent periods alternate, the long run levels of realized volatilities and correlations
are characterized by more pronounced excursions. In these cases, the flexibility of the MMReDCC model
assures a higher responsiveness and more reliable out-of-sample forecasts than the cRDCC which is bound
by the assumption of a constant long run level.

Table 10: Multi-step-ahead forecast evaluation
The table reports averaged values of the loss functions listed in Table 9. Results are reported across the out-of-sample period divided
into a more calm period (Panel A, November 2004 to July 2007) and a more turbulent period (Panel B, July 2007 to November 2008).
In the last row of each panel we also report the averaged QLIK of the out-of-sample variance of the equally weighted portfolio obtained
using the predicted covariance matrices of the models. For each horizon, we perform pairwise Giacomini-White (GW) tests for the
significance at 5% level of the loss difference between the MMReDCC and each benchmark: the competitor is in italic if it is favored by
the test, in bold if the MMReDCC is favored and underlined if the test is indecisive.

Horizon 1 Horizon 5 Horizon 10 Horizon 20

MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC

PANEL A: 29-11-2004/01-07-2007

ST 37.37 37.52 36.56 38.08 38.62 38.39 38.80 39.24 39.45 39.05 40.01 41.43

vND 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004

QLIK -386.62 -386.46 -387.43 -385.74 -385.20 -385.43 -385.02 -384.58 -384.38 -383.96 -383.79 -382.38

Portf. vol -9.69 -9.55 -9.69 -9.75 -9.49 -9.70 -9.789 -9.48 -9.75 -9.83 -9.46 -9.84

PANEL B: 02-07-2007/14-11-2008

ST 40.12 43.88 39.29 48.03 50.04 49.75 52.76 54.38 58.05 63.08 69.28 72.25

vND 0.023 0.026 0.025 0.030 0.032 0.033 0.043 0.047 0.044 0.045 0.054 0.054

QLIK -338.75 -338.00 -342.58 -337.35 -332.04 -335.33 -328.48 -327.86 -324.19 -318.29 -312.09 -309.12

Portf. vol -7.57 -7.43 -7.69 -7.70 -7.41 -7.34 -7.61 -7.37 -6.88 -7.16 -6.72 -5.88

7 Conclusions

The estimation procedure proposed in the paper allows to extend the range of applicability of the MM-
ReDCC model to large dimensional portfolios such as those encountered in risk management practice.
In order to reach this objective, we face two well-known challenges in multivariate time series modeling,
namely high-dimensional estimation and multi-step ahead forecasting.

To face the former challenge, we implement a feasible estimation procedure, the Iterative Moment
based Profiling (IMP) algorithm. It profiles out the parameters of the scale MIDAS intercept matrix and
iteratively maximizes the likelihood in terms of the other parameters of interest. Whilst not providing an
asymptotic inference theory for this method, we investigate the finite sample properties of the estimator
via a simulation study, which demonstrates that the IMP estimator delivers accurate estimates irrespective
of the initialization method employed. We also compare the one-step QML and IMP estimators on real
data sets of small dimension (ten) and find that not only the two estimators deliver very similar in-sample
estimates, but also that the loss of the IMP in terms of likelihood values can be considered as negligible.
Another application illustrates the usefulness of the IMP algorithm when the model has to be fitted to
high dimensional realized covariance matrices. In this respect, the IMP algorithm is reliable from the
computational point of view and easy to implement despite the large number of parameters involved in
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Table 11: GW test results across series
Unconditional Giacomini-White (GW) test results at 5% level of significance using the QLIK function. Each panel of the table records
the number of series for which the MMReDCC is favored, for which there is no decision and for which one of the benchmarks is favored.
Results are differentiated between conditional (co)volatilities (1081 series) and correlations (1035 series).

(Co)volatilities Correlations

PANEL A: 29-11-2004/01-07-2007

Horizon Favors MMReDCC Indecisive Favors B Model B

1 155 732 194 EWMA

24 447 610 cRDCC

5 121 833 127 EWMA

20 369 692 cRDCC

10 33 948 100 EWMA

37 356 688 cRDCC

20 51 850 180 EWMA

77 512 492 cRDCC

Favors MMReDCC Indecisive Favors B Model B

62 669 304 EWMA

87 522 426 cRDCC

89 882 64 EWMA

114 427 494 cRDCC

72 906 57 EWMA

213 503 319 cRDCC

118 877 40 EWMA

108 605 322 cRDCC

PANEL B: 02-07-2007/14-11-2008

Horizon Favors MMReDCC Indecisive Favors B Model B

1 41 853 187 EWMA

5 187 889 cRDCC

5 106 910 65 EWMA

429 620 32 cRDCC

10 198 883 0 EWMA

739 340 2 cRDCC

20 193 888 0 EWMA

835 246 0 cRDCC

Favors MMReDCC Indecisive Favors B Model B

130 689 133 EWMA

266 627 142 cRDCC

78 911 46 EWMA

502 505 28 cRDCC

217 791 27 EWMA

567 454 14 cRDCC

339 687 9 EWMA

626 405 4 cRDCC

the MMReDCC model. Given its flexibility, we fairly believe that it could be applied to datasets of even
larger dimensions.

As regards the second challenge, we develop a bootstrap approach to the generation of multi-step-
ahead predictions. In an application to a portfolio of forty-six stocks, we provide compelling evidence that
the MMReDCC model is useful for out-of-sample forecasting purposes in periods of pronounced market
volatility. If compared with existing multivariate competitors not accounting for time-varying long term
dynamics, the MMReDCC is found to deliver the most accurate predictions especially at long term horizons,
thus indicating the importance of allowing for a more flexible long run component.
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A Descriptive statistics

Table 12: Descriptive statistics of daily realized variances used in Application I
The table reports descriptive statistics of daily realized variances of the assets included in Dataset 1, 2 and 3 used in the first empirical
application. Realized variances of the assets comprised in Dataset 2 multiplied by 10000.

Symbol Issue name Mean Max. Min. Std.dev. Skewness Kurtosis

Dataset 1: February, 2001 – December, 2009
AA Alcoa 5.458 277.308 0.074 16.811 7.178 72.570
AXP American Express 5.055 176.478 0.112 11.094 7.529 84.686
BAC Bank of America 1.934 57.543 0.075 3.362 7.319 85.006
KO Coca Cola 2.455 43.106 0.084 3.412 4.724 36.234
DD Du Pont 2.073 115.378 0.126 4.155 13.296 288.066
GE General Electric 4.944 160.241 0.294 8.935 7.635 92.124
IBM International Business Machines 4.420 201.879 0.077 9.154 8.536 133.699
JPM JP Morgan 2.529 63.874 0.163 3.728 6.442 68.505
MSFT Microsoft 3.196 114.256 0.097 7.114 7.232 75.484
XOM Exxon Mobil 1.414 56.505 0.039 2.254 9.715 180.206

Dataset 2: May, 1997 – July, 2008
ABT Abbott Laboratories 3.831 249.408 0.197 8.588 17.264 397.922
T AT& T 5.490 458.044 0.166 14.953 17.145 412.001
FISV Fiserv 7.828 628.583 0.270 15.588 26.114 999.133
ALL Allstate Corporation 4.423 980.762 0.106 20.731 41.512 1934.757
GPC Genuine Parts Company 3.765 887.997 0.171 18.221 45.217 2180.553
AFL Aflac Incorporated 4.443 267.045 0.153 10.955 14.110 268.010
AA Alcoa 5.417 123.771 0.354 7.422 7.331 86.153
GE General Electric 3.973 366.830 0.131 11.481 20.633 559.319
CTL Century Link 4.472 687.135 0.217 18.814 24.783 775.201
C Cytigroup Inc. 6.244 861.435 0.157 21.306 27.458 1036.670

Dataset 3: January, 2007 – December, 2012
ACAS American Capital 8.576 331.786 0.060 20.844 7.226 78.667
AET Aetna 8.163 771.525 0.109 26.593 17.882 467.969
AFL Aflac Incorporated 9.113 675.348 0.133 27.345 13.811 284.791
AIG American International Group 8.799 555.098 0.103 26.382 11.459 185.778
AIZ Assurant 8.613 325.167 0.101 23.230 7.712 79.082
ALL The Allstate Corporation 8.213 543.714 0.186 24.593 11.277 189.052
AMP Ameriprise Financial 7.679 264.761 0.129 17.790 6.098 54.262
AXP American Express Company 8.076 945.750 0.095 30.571 21.795 618.891
BAC Bank of America 8.450 332.586 0.130 22.830 8.458 96.824
BBT BB&T Corporation 9.093 613.826 0.087 28.801 11.267 184.837
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Table 13: Descriptive statistics of daily realized variances used in Application II
The table reports descriptive statistics of daily realized variances of the assets used in the second empirical application, where the
forecasting sample, spanning from November 29, 2004 to November 14, 2008, is divided into a calm period (650 observations) and a
more turbulent period (350 observations) including the 2008 financial crisis. Realized volatilities multiplied by 10000.

Calm period: November 29, 2004 to June 28, 2007 (650 observations)

Stock Issue name Mean Max. Min. Std.dev. Skewness Kurtosis

AAPL Apple 3.114 44.664 0.257 2.997 6.109 68.647
ABT Abbott 1.040 11.301 0.151 0.818 4.773 45.820
AXP American Express 0.876 10.932 0.072 1.038 5.715 44.530
BA The Boeing Comp. 1.147 5.444 0.254 0.767 2.388 10.830
BAC Bank of America 0.701 13.063 0.117 0.764 8.737 120.508
BMY Bristol-Myers Squibb Comp. 1.270 20.256 0.179 1.286 7.526 90.830
BP BP b.l.c. 0.751 3.873 0.139 0.448 2.482 12.914
C Citigroup Inc. 0.846 12.850 0.123 0.963 7.033 72.020
CAT Caterpillar 1.605 11.470 0.303 1.233 3.277 19.679
CL Colgate-Palmolive 0.800 11.800 0.121 0.688 8.066 112.163
CSCO Cisco Systems 1.552 11.784 0.189 1.014 3.324 24.630
CVX Chevron Corp. 1.679 14.566 0.289 1.349 3.580 24.108
DELL Dell 1.756 14.185 0.242 1.298 2.927 19.247
DIS Walt Disney 1.014 7.920 0.201 0.712 3.932 30.039
EK Eastman Kodak 1.416 22.304 0.179 1.642 6.306 60.391
EXC Exelon 2.841 24.425 0.401 2.296 3.978 28.797
F Ford Motor 1.307 9.113 0.083 0.947 2.928 16.728
FDX FedEX Corp. 0.663 3.940 0.126 0.447 3.009 16.528
GE General Electric 1.305 6.982 0.181 0.858 2.407 11.664
GM General Motors 0.666 6.577 0.105 0.589 4.342 32.564
HD The Home Depot 1.306 10.663 0.173 1.003 4.422 34.275
HNZ HNZ Group 0.796 4.691 0.128 0.549 2.948 15.566
HON Honeywell 1.541 7.739 0.332 0.840 1.937 9.764
IBM International Business Machines 0.495 2.679 0.063 0.330 2.193 10.384
INTC Intel Corp. 0.955 13.492 0.140 0.939 5.838 59.503
JNJ Johnson & Johnson 0.577 4.866 0.076 0.366 3.806 34.495
JPM JP Morgan 0.962 9.037 0.142 0.654 4.891 49.285
KO Coca Cola 1.143 8.119 0.197 0.816 2.961 17.698
LLY Eli Lilly and Co. 0.884 8.232 0.099 0.702 5.275 47.421
MCD Mc’Donald 1.456 39.785 0.139 2.373 10.527 141.696
MMM 3M Company 1.769 22.744 0.346 2.065 6.197 53.214
MOT Motorola 0.892 4.629 0.179 0.556 2.350 11.471
MRK Merck & Co. 1.816 14.715 0.366 1.130 3.854 35.605
MS Morgan Stanley 0.608 4.486 0.118 0.408 3.538 24.998
MSFT Microsoft 1.094 19.804 0.146 1.058 9.820 157.073
SLB Schulumberger Limited 0.679 6.771 0.079 0.530 4.601 38.636
T AT&T 2.710 22.356 0.423 1.834 3.716 30.143
TWX Time Warner 3.020 13.708 0.206 1.905 1.995 8.992
UN Unilever 1.024 9.537 0.117 0.824 4.180 31.694
VZ Verizon Communications 1.184 48.463 0.241 2.020 20.043 463.495
ORCL Oracle Corp. 0.509 4.318 0.092 0.361 3.483 25.912
PEP Pepsico 0.954 8.887 0.172 0.768 4.086 30.276
PFE Pfizer Inc. 0.693 8.324 0.075 0.695 5.557 47.417
PG Procter & Gamble 0.914 7.693 0.131 0.632 4.083 34.957
QCOM Qualcomm 1.414 11.781 0.246 1.121 4.085 29.777
WFC Well Fargo & Co. 1.790 44.518 0.243 2.202 12.661 226.808

Turbulent period: June 29, 2007 to November 14, 2008 (350 observations)

Mean Max. Min. Std.dev. Skewness Kurtosis

8.579 109.719 0.609 12.570 4.249 26.370
3.225 81.740 0.258 5.702 8.409 106.373
12.572 312.208 0.838 22.702 7.818 92.250
5.151 57.291 0.532 7.796 3.231 15.171
14.876 276.824 0.279 26.233 4.942 38.722
4.259 87.928 0.242 6.620 6.861 76.824
3.906 65.784 0.219 6.626 4.212 28.869
21.287 1015.764 0.519 64.196 11.716 171.168
6.805 118.706 0.566 11.322 4.502 33.594
2.628 89.214 0.243 5.673 10.719 157.531
6.178 114.330 0.478 9.424 5.839 55.640
6.200 166.296 0.149 12.609 7.428 82.139
7.323 143.320 0.655 12.045 6.050 55.752
5.089 118.243 0.453 9.420 6.197 63.696
6.751 134.678 0.566 11.362 5.373 50.263
27.900 1981.687 0.937 116.942 13.976 226.720
5.261 71.372 0.235 7.107 4.048 27.759
6.789 97.782 0.292 13.465 4.100 23.033
7.993 160.418 0.495 11.651 7.441 87.734
2.303 39.958 0.208 3.666 4.777 38.049
5.686 139.350 0.541 10.774 6.729 72.384
4.494 85.792 0.490 7.507 5.156 44.724
5.841 76.334 0.478 7.396 4.103 29.515
2.034 59.372 0.086 4.539 7.056 77.545
14.577 234.008 0.332 25.147 4.980 34.276
2.874 101.443 0.189 6.550 10.331 148.976
3.471 89.880 0.265 6.457 7.790 94.853
3.730 148.108 0.273 8.824 12.878 207.094
3.849 60.731 0.286 6.388 4.156 26.768
5.405 153.458 0.532 10.592 8.776 113.275
42.394 1836.085 1.213 156.907 8.427 82.761
4.559 46.751 0.385 6.309 3.449 17.267
5.723 61.006 0.665 8.031 3.857 20.906
2.905 138.670 0.168 8.233 13.189 213.668
3.556 63.957 0.305 5.699 4.909 41.144
2.770 123.527 0.196 7.582 12.047 186.371
7.569 196.766 0.648 13.960 8.415 102.982
10.437 166.001 0.494 15.246 4.652 36.751
5.943 156.416 0.276 11.229 7.837 95.552
6.341 114.383 0.316 10.664 4.681 36.406
2.333 41.487 0.215 3.697 4.803 40.510
5.142 133.199 0.147 9.425 8.057 100.502
13.576 209.392 0.572 20.115 4.414 32.475
3.700 92.274 0.234 6.315 8.804 114.371
5.506 188.347 0.331 12.581 9.788 132.406
6.288 182.259 0.653 12.009 9.676 134.541
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