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ON THE LONGSHOT BIAS IN TENNIS BETTING MARKETS: THE
CASCO NORMALIZATION

Vincenzo Candila* Antonio Scognamillof

Abstract.  This study focuses on investigating bookmakers’ behavior in the tennis gam-
bling market in presence of a clear underdog. The aim of this paper is threefold. First,
it investigates the distance (bias) between the true but unobserved probability of a given
sport outcome and the published odd by a bookmaker. Second, it tests the predictive skills
of the most widespread normalization methods when a player is clearly favourite on an-
other. Third, it proposes a new normalization method (called CaSco normalization), which
takes into account the positive relationship between the bias and the distance between the
odds. The empirical analysis relies on sample odds provided by Bet365 about over 27,000
matches from 2005 to 2015. Our findings show that. First, when there is a clear underdog,
the bookmaker minimises the losses in case of unexpected outcomes by increasing the bias
in the public available odds. Second, the normalization methods which take into account
the bias generally perform better than the other alternatives. Third, in-sample forecasts
based on CaSco normalization always outperform the other methods and more importantly,
the proposed technique always guaranties unbiased normalized probabilities.

Keywords: Bookmaker behavior, Betting, Favourite-Longshot Bias, Forecasting
AMS 2010 classifications: 60G25, 9102, 91C99.

JEL classifications: C10, C50, C52.

1. Introduction

Over the past few years, the extensive deregulation, the abolition of national monopolies
and the advent of on-line gambling have resulted in the exponential growth of the betting
market (Vlastakis et al., 2009). As an example, according to the United Kingdom Gambling
Commission, the non-remote betting market has generated a gross gambling yield of £3.25
billion from April 2014 to March 2015. It corresponds to an increase of 12% relative to the
size of the market five years before.

Hence, sports betting is increasingly considered a mass participation mainstream leisure
activity. Two kinds of actors play the betting markets: traditional bookmakers, who repre-
sent the supply side, and who set the odds, and the bettors, who represent the demand side,
and who wager money on an event with an uncertain outcome. The bettors can participate
in these markets using traditional bookmakers or person-to-person betting exchanges.

The question about as to which of these two (bookmakers or exchanges) has superior
skills in predicting outcomes has been the focus of a huge amount of studies. For instance,
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Smith et al. (2009) find a greater efficiency on the part of the exchange markets in reflecting
the outcome probabilities with respect to traditional bookmakers.

However, before performing a forecasting evaluation, it is necessary to derive the true
probability attributed by the bookmaker to a given outcome. In fact, the published odds
are considered a proxy of probability but not the actual probability, due to the presence of
the favourite-longshot bias. This bias consists of the difference between the published odds
and the probability expectations regarding the outcome set by the market maker, whose
behavior depends on their profit strategy.

Generally speaking, the method that is used to derive the implied probabilities starting
from the raw odds is called “normalization”. Three of the most common normalization
methods are: the basic, regression and Shin (Shin, 1991, 1992, 1993) methods. Strumbelj
(2014b) and Strumbelj (2014a) compare the forecasting performance of these methods and
show that Shin normalized probabilities are more accurate forecasts than those determined
using basic or regression normalization.

The origin of the bias has been extensively debated in the literature. Early studies ex-
plained the bias by reference to the demand-side factors relating to bettor rationality (Weitz-
man, 1965). These explanations are based on bettors’ “risk loving” behavior, or the so
called “fans’ sentiment”. More recently, several explanations based on the behavioral char-
acteristics of market makers (Shin, 1991, 1992, 1993), or structural characteristics of the
markets, such as the cost of acquiring information relevant to the outcomes (Hurley and
McDonough, 1995; Sobel and Travis Raines, 2003) have become common.

Whatever the nature of the bias is, it is a matter of fact that its existence undermines
betting market efficiency and predictability. Thus, while the emphasis of the literature has
largely focused on the efficiency of betting markets (Stekler et al., 2010), little attention
has been devoted to the normalization procedures and how well they perform. This article
aims to shed some light on these issues. More precisely, we are interested in verifying if
the previous cited normalization methods are always applicable. This is directly connected
with the magnitude of the bias. Our conjecture is that the greater the distance between
the probability odds, the larger the bias. From a behavior point of view, we believe that
the bookmakers alter the published odds more (allowing the bias to increase) when a clear
favourite and a clear underdog are present.

In this work, we restrict our attention to the tennis betting markets, for two main reasons.
First, because of the high amount of data that are publicly available. Second, due to the fea-
tures of tennis match outcomes, where draws do not exist, which make easier the division
of the bias across the two players.

In the literature, different contributions highlight the presence of such a bias in tennis
betting markets. For instance, Lahvic¢ka (2014) argues that, considering a dataset of over
44,000 single tennis matches, not only is the favourite-longshot bias present, but it appears
more heavily in matches between lower-ranked players, in later-rounds and in high-level
tournaments. Very similar results have been found by Abinzano et al. (2016), in tennis
betting exchange markets. Given the existence of such a bias, it is fundamental to adopt
methods that are able to determine as much as possible the true probability of winning for
each player. No less important is the robustness of these methods to all type of matches.

Hence, the aim of this work is threefold. First, we investigate if the bias increases with
the distance between the probability odds. Second, we test how the most widespread nor-



malization methods behave, when one player is the clear favourite. Third, we propose a
new normalization method, called Candila-Scognamillo (CaSco), that is robust to all the
distances between the odds.

Overall, we find that the bias increases as long as the distance between the odds in-
creases. Moreover, the analysed normalization approaches are generally not robust to
matches where the distance between the odds is large. Rather, the probabilities obtained
from the CaSco approach are not biased, independently of the distance between the odds.
From a forecasting point of view, the CaSco probabilities have a superior forecasting ability
with respect to the other approaches, in terms of in-sample estimation.

The rest of the paper proceeds as follows: Section 2 presents the three normalization
methods cited above. Section 3 is devoted to the illustration of data and the investigation of
the relationship bias - distance. Section 4 introduces the CaSco normalization technique.
Section 5 evaluates the CaSco normalization method against the other normalization ap-
proaches, in terms of forecasting ability and bias robustness. Section 6 concludes.

2. Normalization methods

In individual sports with two possible outcomes, there are only two results: the victory of
a player and the defeat of the other. Thus, let 0; = (01,;,02,;) be the observed odds for
a match j and players 1 and 2. The odds 01 ; and 02 ; denote how much a bettor receives
investing one dollar, for instance, if player 1 or 2 wins, respectively. The probability odds
™ = (7T17j, 7T2,j) are:

1 1

Tl = — and 2,5 = —-
01,5 02,5
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Each probability can be considered as a proxy of the player strength. In fact, the smaller
the quote for player ¢ is, the larger ; is, more likely the winning of that player is. Within
this framework, we refer to the booksum II as the sum between the probability odds asso-
ciated to the two possible outcomes calculated as:

2
I => m;. 2)
=1

The empirical evidence generally shows that, since the booksum is normally greater than
one, probability odds do not represent the true probabilities of winning for each player
attributed by the bookmakers. This means that there is a difference between the real but
unobserved probability of winning and the bookmakers’ published odds. The literature on
this topic has highlighted two main reasons to explain this evidence. The first reason is that
the booksum incorporates the margin of the bookmaker, say m; = II; — 1. The second rea-
son concerns the fact that the observed quotes are adjusted by the bookmakers in order to
maximize their profits given some possible external factors. This second element is usually
referred as “longshot bias”. According to Forrest et al. (005a), “a (positive) longshot bias
implies that financially superior returns (i.e. smaller losses) accrue to a strategy of wagering
on short-odds rather than long-odds players”. Lahvicka (2014) reviews the huge amount
of literature on this topic, identifying three possible explanations for the phenomenon. The
first explanation concerns the fact that the bookmakers know that the bettors risk function



is locally convex and they take advantage of that by lowering the longshot odds (Friedman
and Savage, 1948). The second explanation relies on the assumption that bookmakers in-
crease their profit by setting lower longshot odds because of the bettors” bounded cognitive
ability, which lead them to overestimate the longshot winning probability (Kahneman and
Tversky, 1979). The third explanation assumes that both bettors and available information
are not homogeneous. As a result, the existence of a number of insider traders, who pre-
ventively know the match outcome or react faster to the new available information, exposes
the bookmakers to huge potential losses. As a coping strategy against this type of loss,
bookmakers tend to offer lower longshot odds (Shin, 1991).

As said above, the methods to determine the true (but unobserved) probabilities, also
called implied probabilities, from the published odd are generally defined with the acronym
of normalization. In what follows, we briefly present three of the most common normaliza-
tion methods.

Basic normalization

The basic normalization consists of dividing the probability odds by their sum. This is the
most simple normalization technique. It has largely and commonly applied in the majority
of the studies (for example: Franck et al. (2010)) so that this approach has become almost
a synonymous of betting odds. Formally, the probability of winning of player ¢, for the
match j, denoted with p; ;, is obtained as:

Dii = i
2V S
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The basic normalization does not rely on any assumptions and divides proportionally the
part of the booksum exceeding one. In doing so, this method does not take into account
the part of the margin related to the longshot bias. In other words, the ratio between the
probability odds is the same as the ratio between the normalized ones.

Normalization by regression

The normalization by regression consists of regressing the observed outcomes on historical
betting odds. Forrest et al. 005a and Goddard and Asimakopoulos 2004, among others,
have reently used this approach to derive implied probabilities. When the outcome of the
even under consideration is is binary, the probit or logit estimators are used. Formally,
let Y7 ; be the observed outcome of the j-th match for player 1. If the probit estimator is
employed, p1 ; is obtained after running the following regression:

PT(YLJ' = 1|(771,j77r27j)) = (BO +B17r17j +/827r27j)’ with j=1,---,J.

Once run the regression for a given dataset, 3y, 81 and (2 are estimated such that py ;
can be easily calculated. Obviously, the other player’s probability of winning for the same
match is obtained by difference, i.e. (1 — py ;).



This methodology has some shortcomings. First, it requires an historical set of betting
odds and match outcomes and, unfortunately, for some sports the betting quotes are not
so publicly available. The smaller this set is, the less reliable and precise the estimated
probabilities are. Second, and more importantly, it does not take into account the problem
of the longshot bias.

Shin normalization

The model relies on the assumption that bookmakers formulate the betting odds maximiz-
ing their expected profit in a market where both uninformed bettors and a small portion of
insider traders are present. In particular, bookmakers set a spread in the published odds in
a bid to minimize the losses arising from the existence of a group of gamblers who have in-
sider information on the outcome of the event. The bookmaker cannot distinguish gamblers
who have insider information from those who do not, but has some idea on the proportion
of one group. Assuming that the spread is increasing with the incidence of insider trading,
the size of the observed spread provides some indication of the severity of market distortion
due to insider trading that results in a (positive) longshot bias. Jullien and Salanie (1994),
starting from the solution of the game proposed by Shin (1993), reverse the problem and
derive the probabilistic beliefs (i.e. the Shin probabilities) given the odds. In a nutshell,
Shin probabilities are the normalized odds obtained by taking into account the longshot
bias due to the existence of insider traders.

Formally, let the “distance” be the observed span between the probability odds for the
two players, thatis: d; = m j —my ;, for amatch j. Note that d; can be positive or negative.
The probability of winning for player ¢ is:

2 T
z7 +4(1 - z])n—j —zj
2(1 *Zj) ’

Dij = 4)

where z; represents the proportion of insider traders. Moreover, the larger z; is, the greater
the bias is (Smith et al., 2006). In case of sports with only two outcomes, Jullien and
Salanie (1994) and Cain et al. (2001) demonstrate that that z; depends only on the margin
and the distance between the probability odds:

m;(d; — 1)

W) 5)

i =

where, as seen above, m; represents the margin for the match j. The Shin method has
the great advantage to take into account the longshot bias, incorporating the behavior of
bookmakers in order to face the problem of insider traders. Nevertheless, this method also
has a drawback. In fact, the Shin method relies on a set of a priori assumptions about the
existence and proportion of insider traders that, in turn, are based on the observed spread
between the probability odds of each possible outcome.



Table 1: Summary statistics

All rounds 1st rounds Semifinals
J Margin  Distance J Margin  Distance J Margin  Distance
ATP 250 12249 0.076 0.356 5692 0.076 0.351 836 0.069 0.331
ATP 500 4105 0.073 0.402 1807 0.076 0.376 229 0.067 0.428
ATP 1000 5806 0.070 0.402 2278 0.076 0.351 181 0.057 0.484
ATP Finals 159 0.058 0.458 - - - 22 0.057 0.484
Grand Slam 5234 0.068 0.533 2613 0.069 0.533 85 0.056 0.550
Tot./Median 27553 0.070 0.402 12390 0.076 0376 1353 0.067 0.376

Notes: Columns “J”” show the number of matches, per type of tournament. Columns “Margin” show the median of the margins obtained from the summation
of the probability odds offered by Bet365 minus one, per type of tournament. Columns “Distance” show the median of the distance between the probability
odds, per type of tournament.

3. Bias in the tennis betting markets

Once presented the most common normalization techniques, let us verify the bias in tennis
betting market and how these techniques deal with it. In particular, we use the betting
quotes offered by the professional bookmaker Bet365 in the male tennis market, collecting
over 27,000 matches from the Tennis Data provider.l The matches cover the period 2005-
2015 and consider all the four Grand Slams (Australian Open, Roland Garros, Wimbledon,
U.S. Open) in each year, as well as all the Association of Tennis Professionals (ATP) world
tour tournaments, namely ATP 250, ATP 500 and ATP 1000, plus the ATP Finals.

Table 1 presents the number of matches as well as the median of the margin m and
distance d per tournament typologies and rounds.

First of all, we note that as long as the tournament has a greater importance, the median
of the margin decreases while the median of the distance increases. Looking at their corre-
lation, we find a strong negative linear relationship (-0.57). That is, the greater the distance
is, the clearer a favourite player is, the smaller the margin is and vice versa. This holds
independently of the round of the tournament considered.

Similarly, regardless of the type of tournament, the (median of the) margin is greater in
the first rounds of a competition (0.076) than those in the later rounds (0.067).

Our intuition is that the relationship between the margin and the distance leads the book-
maker to alter more the odds when there is a clear favourite and a clear longshot player,
reducing the margin and increasing the bias.

Generally speaking, the existence and the nature of the bias in the tennis market have
been largely debated in the literature. A first study by (Cain et al., 2003) did not find any
clear pattern regarding the existence of such a bias. Unfortunately, the study considers only
a very small sample of matches played at Wimbledon 1996. On the other hand, exploiting
a larger dataset of 5892 matches from 2001 to 2004, Forrest and McHale (2005) find that
the tennis betting market is characterized by a positive longshot bias similar to that found
in horse betting markets. The already cited works of Lahvicka (2014) and Abinzano et al.
(2016) confirm the existence of longshot bias in the market under consideration. Our anal-
ysis corroborates the previous results, as summarized in Table 2. In fact, betting on the
favorite yields larger returns (or smaller losses). In particular, a statistically significant bias
has been found in all the considered years (except 2013) in the whole period. However,

1
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Table 2: Returns on betting on favorites and longshots

All matches Distance > 0.8

Favourite Longshot ] Favourite Longshot J

2005 —0.038™* —0.184™* 2600 —0.002 —0.662""~ 194
2006 —0.056™*" —0.151™* 2516 0.018 —0.838"*~ 194
2007 —0.038™*~ —0.164™" 2587 —0.017 —0.487""" 229
2008 —0.051"* —0.141™ 2496 —0.012 —0.540""~ 226
2009 —0.062""~ —0.145"~ 2511 —0.012 —0.556""" 305
2010 —0.052"*~ —0.147* 2508 —0.011 —0.571"*~ 239
2011 —0.034™" —0.179™* 2514 —0.014 —0.506™"~ 264
2012 —0.044™ —0.139"" 2531 —0.022 —0.234 354
2013 —0.075"* —0.073" 2448 —0.025" —0.156 301
2014 —0.048™*~ —0.150"*" 2373 —0.014 —0.463""~ 242
2015 —0.040™* —0.175"* 2469 —0.012 —0.385"" 273
2005-2015 —0.049™* —0.150"** 27553 —0.013"*~ —0.465"" 2821

Notes: The first three columns show the returns on betting on favourites, longshots and the number of matches. The last three columns
show the returns on betting on favourites, longshots and the number of matches whose distance between the probability odds is greater
than 0.8. *, ** and *** denote significance of the ¢-test at the 10%, 5% and 1% levels, respectively.

differently from (Forrest and McHale, 2005), we find that both the strategies yield negative
returns and no-profitable strategy exists. In accordance with Cain et al. (2003), we have
also considered the sub-sample of matches in which there is a clear favourite, i.e. the odd
probabilities for the favourite are greater than 0.80. In this case, betting on the favourite al-
lows the bettor to break even in several cases (the losses are not statistically different from
zero) or experience very small losses. On the other hand, betting on the clear underdog
yields very high losses, greater than in the full-sample scenario.

Overall, these results only confirm that a positive longshot bias in the tennis betting mar-
ket exists. Now, let us verify how the most common normalization methods face the bias
problem and how they behave when the distance between the odds increases. In particular,
according to Lahvicka (2014), we regress the result of the matches on the implied probabil-
ities, by using a simple OLS estimator and heteroskedasticity robust standard errors. More
precisely, the following regression is carried out:

Yij = 0o+ bipij, withj=1---J (6)

where, Y; ; = 1 if player ¢ wins and O otherwise and p; ; is the implied probability for
that player under a given normalization method. In eq. (6), for each match j, a player and
consequently his implied probability is randomly chosen. According to the literature, the
null of no bias occurs when 5y = 0 and 5; = 1, while the presence of bias occurs when
Bo < 0 and 81 > 1. This is because under the efficient market hypothesis, prices (odds)
should reflect all the available information related to the outcome of the event (Coombes
et al., 1998) such that they can predict perfectly the probability associated to the outcome
(Forrest and McHale, 2005). The results of the estimations are in Table 3. In the table, the
significance of the previous null hypotheses is reported. Many points can be underlined.
First, when all the matches are considered, the implied probabilities provided by the Basic
and normalization by regression are always biased. Instead, the Shin probabilities are not
biased. Second, when all the matches whose distance between the odds is greater than
0.7 are analysed (center panel of the table), not only the bias signalled by the Basic and
normalization by regression increases, but also that of the Shin. The situation becomes
clearer when the distance between the odds overcomes 0.8. In this regard, all the considered
normalization methods provide biased probabilities. In fact, even for the Shin method, the
null of no bias is rejected at 10% significance for 8y and 1% for ;.



Table 3: Longshot bias with respect to the normalization meth-

ods
Basic Regression Shin

Whole sample

Bo —0.0362*** —0.0368*** —0.0040

051 1.0760*** 1.0709*** 1.0117
Distance > 0.7

Bo —0.0344*** 0.0263*** —0.0055

51 1.0757*** 0.9573*** 1.0180***
Distance > 0.8

Bo —0.0388*** 0.0329*** —0.0119*

51 1.0855*** 0.9451*** 1.0318***

Notes: The table reports the estimated coefficients of the OLS regression “Results of
the matches on the implied probabilities”, where the variable “Result” can assume value
1 or 0 and the implied probabilities are the normalized probabilities according to the
methods in column. The number of matches included in the top, center and bottom
panel are 27,553, 4,954 and 2,821, respectively. *, ** and *** denote significance of the
t-test at the 10%, 5% and 1% levels, respectively.

So far, the first two aims of this work can be answered. The bias between the true but
unobserved probabilities attributed by the bookmaker and the implied probability increases
when the matches have a clear favourite. This means that the bookmakers behave differ-
ently under these cases. In our opinion, this is because, when a player is clearly a favourite,
the bookmaker losses, in case of a longshot victory, are potentially very high. In this regard,
the bookmaker “fears” the underdog so much to diminish the longshot odd (meaning that
his probability odd increases). Such bookmaker behavior prevents huge losses arising from
unexpected outcomes. Conversely, when the distance between the observed probability
odds is small, the bookmaker can reduce the longshot bias, offering more attractive odds
with no high loss risk. This means that, under these circumstances, there is less difference
between the probabilities odds and the true but unobserved probabilities.

With reference to our second aim, we can argue that the normalization methods analysed
in this work are not robust to all the type of matches. Really, two of the three methods pro-
duce biased implied probability independently of the distance between odds. Instead, the
Shin method fails to solve the bias problem only when the distance between the published
odds is high. Thus, a proper method, robust to all the types of matches, is needed. The rest
of the paper is devoted to the presentation and verification of the proposed approach.

4. The CaSco normalization

The CaSco normalization technique is designed to work under all types of matches. It
assumes that the probability of winning for a player is obtained subtracting one half of
the margin to the probability odd of that player, when the distance is low. Instead, when
the distance is greater than a given threshold ¢, the probability of winning for a player
is obtained by subtracting a percentage of the margin § from the probability odd of that
player. By subtracting one half of the margin, under low-distance matches, we assume that
the bookmaker alters less the published odds. Instead, under high-distance matches, the
behavior of bookmaker becomes more substantial.



Formally, the CaSco normalization calculates the probability of winning of player 7 for
the match 7, as follows:

7r17j—0.5-mj lf‘d]|§¢
Pl = T,j — J - m; if ‘d]| > w and dj >0 . (7)
T — (1 —=06)-m; if |[d;] > ¢ and d; <0

In (7), the key quantities are ) and 4, respectively the threshold and “amount” of the mar-
gin to subtract from the probability odds. If d; is positive, then player 1 for that particular
match is the favourite and vice versa. The sense of (7) is that if player 1 is the favourite,
then its probability odd is diminished of a quantity varying from ¢ - m; to, at most, 0.5 - m;.
The greater the distance d; is, more favourite player 1 is, the less the CaSco normaliza-
tion subtracts the margin from the probability odds. If, instead, player 1 is the longshot,
meaning that d; is negative, the probability odds are diminished of a quantity greater than
0.5- mj.

Note that once calculated the probability for player 1, the other is obtained as its com-
plementary. Moreover, simple algebra revels that

p1j +p2; =1, (8)

independently of which player enters (7).

Suppose that player 1 is the favourite and that, for a given match j, d; > . Under this
situation, we would have:

pl’j = 71'17]‘ — (5 . mj and p27j = 7T27j — (1 — 5) . mj.

Replacing the last expressions in eq. (8), we obtain:

7T1’j—(5'm3‘—|—7T27j—(1—5)'mj: 1;
T+ T;—0-mj—mj+0-m; = 1;
1—|—mj—mj: 1.

Finally, this kind of normalization is asymmetric. Even if the distance is smaller than
the threshold ¢, the operation 7; — 0.5 - m alters the ratio between the original probability
odds and the resulting implied probabilities while the ratio is more heavily altered when the
distance is above the threshold . Thus, this method takes into account the longshot bias,
as it depends on the margin and distance.

At this point, to make (7) feasible, we need to estimate ) and J, subject to the constraints
0 <6 < 0.5 and min(d) < ¢ < max(d). Note that the positivity of ¢ excludes implied
probabilities greater than one, while ) has to be included between the smallest and the
greatest distance, for all the considered matches. For ease of notation, from now on, we
will consider only player 1 such that p; ; becomes p;.

Estimation of threshold v) and amount §

The estimation of ¢ and J as resulting by eq. (7) is carried out by the linear minimum
mean square error (LMMSE) estimator, belonging to the wider class of M-estimators with



Table 4: 5, 1[1 and 95% boostrap CI

é CILB CIUB
0 0.165 0.022 0.300
Y 0.800 0.730 0.820

Notes: The table reports the estimated coefficients of the threshold
1) and amount §. The estimator used is the LMMSE (eq. (7)). The
number of matches is 20,190. C' Iy g and CIy g denote the lower
and upper bound of the 95% bootstrap confidence interval, respec-
tively.

constraints. The asymptotic properties of constrained M-estimation are largely discussed in
Shapiro (2000) and Geyer (1994), for instance. With our notation, the LMMSE estimator
is:

J

argmin > (Y = pj )
¥,6 j=1

subjectto 0 <4 < 0.5,
min(d) < ¢ < max(d).

©)

As above, Y in (9) denotes the observed outcome of the match j for player 1. If Y; = 0,
then player 1 has been defeated. Otherwise, if Y; = 1, then player 1 has defeated player 2
in the match j, with j = 1,--- | J. Moreover, the dependence of the normalized probability
for player 1 and match j from ¢ and 4 is expressed with p; (4, 5). Practically speaking, the
estimation of 1 and J is carried out by numerically solving eq. (9).

In order to perform an in-sample analysis, we consider only the period 2005-2012, con-
sisting of J = 20, 190 matches for the estimation of 1) and 6. The remaining period is left
for the out-of-sample evaluation, to be realized in the future.

The estimated threshold and amount are in Table 4. Because of unknown distribution
of § and 1, we adopt a bootstrap procedure in order to find the confidence intervals (CI).
Repeating the estimation of (9) 200.000 times, we obtain the 95% CI, as highlighted in
column 2 and 3 of the same table.

As regards the inference issues, being the zeros not included in the 95% Cls, we can
state that 6 and 1[1 are statistically different from zero. Thus, if the distance between two
probability odds is smaller or equal to 1) = 0.80, then the CaSco normalization obtains the
probability of victory of player 1 by subtracting one half of the margin from 7. If, instead,
the distance is greater than 0.80 and player 1 is the favourite, then his probability of victory
is obtained by subtracting 6 = 16.5% of the margin from 7. Finally, if again the distance
is greater than 0.80 but player 1 is the longshot, then his probability of victory is obtained
by subtracting 83.5% of the margin from 7. In doing so, the probability for the longshot
player is changed more than that for the favourite.

5. Forecasting and bias evaluation with CaSco probabilities

This section presents the evaluation of the CaSco normalization in terms of forecasting
ability and bias robustness.
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Table 5: Forecasting evaluation scores

Loss Functional form

Brier /T3 (Yig = iy)’

K-L 1/ 32 Vi - log(Ya,;/pry) + (1= Y1) -log((1 = Y1) /(1 = pr;))]
Skill-score 1= (Vi —p1y)? (Y1, — E(W))?

Notes: p1 ; represents the predicted probability of winning for player 1 and match j, under a given normalization method.
E (Y1) represents the average of outcomes for player 1.

Table 6: In-sample normalization methods evaluation

Brier K-L Skill score R?
Basic 0.1871*** 0.5531%** 0.2505 0.3246
Regression 0.1884*** 0.5587*** 0.2456 0.3133
Shin 0.1868*** 0.5516™** 0.2518 0.3277
CaSco 0.1868*** 0.5512%** 0.2519 0.3284

Notes: The table reports in the first three columns the averages of loss functions mapping the distance
between the each method in row and the observed outcome. In the last column the Nagelkerke’s R? is
reported, as it results from the regression of the observed outcome on the implied probability obtained from
each of the methods in row. The number of matches is 20,190. *** denote significance at the 1% levels.

In order to compare the CaSco forecasting ability with respect to the other analysed ap-
proaches, we consider the Brier (Brier, 1950), Kullback— Leibler (K-L) (Lai et al. (2011),
eq. (2.1)) and Skill score (Lahiri and Yang (2013), eq. (40)) as well as the Nagelkerke’s
R? (Nagelkerke, 1991). The smaller the first two scores are, the better the relative method
is while the opposite holds for the last two scores. The Brier, K-L and the Skill scores are
expressed in Table 5.

In-sample analysis

The results of the forecasting evaluation are in Table 6. It results that the CaSco normal-
ization has the best forecasting accuracy, regardless of the score function employed. In
fact, it has the smallest distance from the true outcome, on average, and the greatest R2.
Furthermore, accordingly to the previous literature (Strumbelj, 2014b), we find that the
normalization by regression has the worst performance.

The improvement of the forecasting performances guaranteed by the CaSco normaliza-
tion is also confirmed by the Diebold-Mariano (DM) test, in the version proposed for bi-
nary outcomes by Gneiting and Katzfuss (2014) (eq. (11)). In particular, we consider the
two-tailed test, comparing the performance of the CaSco with respect to the other three
methods, taking into account both the Brier and K-L loss functions. Table 7 shows that the
null hypothesis of equal predictive ability between the CaSco and each of the other alter-
native method is always rejected. Moreover, being the DM statistics negative, the CaSco
procedure is always preferred to the Basic, regression and Shin normalization methods.

With reference to the bias issue in terms of distance robustness, we repeat the OLS regres-
sion as in (6), this time only considering the period 2005-2012, and adding the performance
of the CaSco technique. The results are in Table 8. Again, the null of no bias is always re-
jected under the Basic and normalization by regression. The Shin technique works properly
only when the whole sample is considered while it presents some bias when the matches
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Table 7: In-sample differences evaluation

Loss Basic Regression Shin
Brier -4.0487*** -6.5408"** -2.0767**
K-L -4.6480*** -5.6388*** -2.0735**

Notes: The table reports the DM statistics of the two tailed test of equal predictive
accuracy between the CaSco and each model in column, using the loss function in row.
The number of matches is 20,190. ** and *** denote significance at the 5% and 1%
levels, respectively.

Table 8: In-sample performance of normalization methods in terms of bias

Basic Regression Shin CaSco

Whole sample

Bo —0.0379*** —0.0300*** —0.0042 0.0024

51 1.0788*** 1.0576*** 1.0114 0.9980
Distance > 0.7

Bo —0.0344*** 0.0230*** —0.0135* 0.0024

061 1.0757*** 0.9554*** 1.0217** 0.9980
Distance > 0.8

Bo 0.0471*** 0.0307*** —0.0174** 0.0024

051 1.1011*** 0.9505*** 1.0415%** 0.9980

Notes: The table reports the estimated coefficients of the OLS regression “Results of the matches on the implied
probabilities”, where the result variable can assume value 1 or 0 and the implied probabilities are the normalized
probabilities according to the methods in column. The number of matches included in the top, center and bottom
panel are 20,190, 3,646 and 1,997, respectively. *, ** and *** denote significance of the ¢-test at the 10%, 5%
and 1% levels, respectively.

involve a clear favourite. Instead, the null hypothesis of no bias is always not rejected,
under the CaSco method, independently of the type of matches considered.

6. Conclusions

Over the past few years, the extensive deregulation, the abolition of national monopolies
and the advent of on-line betting have resulted in the exponential growth of the betting
markets (Vlastakis et al., 2009). This growth makes theoretical and empirical analysis
of multiple aspects of betting behavior more and more relevant for economic and social
research. This study has focused on investigating bookmaker behavior in the tennis betting
market. As has been widely discussed in the literature, in these markets there is a bias
between the odds published by the bookmakers and the true but unobserved probabilities
of the outcome of interest.

The focus of this paper has been on this bias and how the most frequently used methods
for deriving the implied probabilities from the published odds deal with it. More specifi-
cally, the aim of this paper has been threefold. First, we have investigated the relationship
between the bias and the distance between the probability odds. Second, we have tested
how the normalization methods considered behave, with respect to matches where one
player is clearly the favourite. Third, we have proposed and tested a new normalization
method, named CaSco, the goal of which is to produce unbiased probabilities, robustly to
all types of matches.
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As regards the first aim, we have found that the bias increases with the distance between
the odds. In this regard, our results are in line with those of Hurley and McDonough (1995)
and Smith et al. (2006), that suggest that the bias is positively related to the bookmakers’
profit margin, since the market maker deductions are inversely related to the distance be-
tween the two alternative outcome odds. However, our intuition is that the bias is due to
the bookmakers’ decision process in a risky environment, rather than due to the informa-
tion search cost. Fearing the underdog’s victory, bookmakers alter the published odds more
substantially in order to minimise the losses in case of an unexpected outcome, when the
match has a clear favourite.

With respect to the second aim, we have verified that the implied probabilities based on
the theoretical model developed by Shin (1993) perform better than the other alternatives.
This is because the Shin probabilities take into account the presence of a bias in the pub-
lished odds. However, the Shin probabilities still produce biased probabilities in the case
of matches with clear longshots.

Regarding the third aim, the forecasting performance of the proposed approach, ex-
pressed as the average distance between the implied probability and the observed outcome,
is quite satisfactory. More specifically, the CaSco normalization, from an in-sample per-
spective, has consistently outperformed the other normalization methods, regardless of the
loss functions employed. More importantly, the CaSco probabilities are unbiased, indepen-
dent of the distance between the published odds (in contrast to the other approaches).
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